

C++ Programming:
An Object-Oriented Approach

Behrouz A. Forouzan
Richard F. Gilberg

for23380_fm_i-xviii.indd 1 08/11/18 11:51 am

C++ PROGRAMMING: AN OBJECT-ORIENTED APPROACH

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2020 by McGraw-Hill Education. All rights
reserved. Printed in the United States of America. No part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LWI 21 20 19

ISBN 978-0-07-352338-5 (bound edition)
MHID 0-07-352338-0 (bound edition)
ISBN 978-1-259-57145-9 (loose-leaf edition)
MHID 1-259-57145-9 (loose-leaf edition)

Executive Portfolio Manager: Suzy Bainbridge
Product Developer: Heather Ervolino
Marketing Manager: Shannon O’Donnell
Content Project Managers: Jane Mohr and Sandra Schnee
Buyer: Laura Fuller
Designer: Egzon Shaqiri
Content Licensing Specialist: Shawntel Schmitt
Cover Image: ©McGraw-Hill Education
Compositor: MPS Limited

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Forouzan, Behrouz A., author. | Gilberg, Richard F., author.
 C++ programming : an object-oriented approach / Behrouz A. Forouzan, Richard F. Gilberg.
 First edition. | New York, NY : McGraw-Hill Education, [2020] |
 Includes index.
 LCCN 2018030975| ISBN 9780073523385 (bound edition : acid-free paper) |

ISBN 0073523380 (bound edition : acid-free paper) | ISBN 9781259571459 (loose-leaf edition) |
ISBN 1259571459 (loose-leaf edition)

 LCSH: Object-oriented programming (Computer science) | C++ (Computer program language)
 LCC QA76.64 .F684 2019 | DDC 005.1/17—dc23
 LC record available at https://lccn.loc.gov/2018030975

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorse-
ment by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented
at these sites.

mheducation.com/highered

for23380_fm_i-xviii.indd 2 08/11/18 11:51 am

To my wife, Faezeh
Behrouz A. Forouzan

To my wife, Evelyn
Richard F. Gilberg

for23380_fm_i-xviii.indd 3 08/11/18 11:51 am

This page intentionally left blank

v

 Preface xv

 Chapter 1 Introduction to Computers and Programming Languages 1

 Chapter 2 Basics of C++ Programming 19

 Chapter 3 Expressions and Statements 59

 Chapter 4 Selection 112

 Chapter 5 Repetition 158

 Chapter 6 Functions 208

 Chapter 7 User-Defined Types: Classes 273

 Chapter 8 Arrays 338

 Chapter 9 References, Pointers, and Memory Management 380

 Chapter 10 Strings 443

 Chapter 11 Relationships among Classes 496

 Chapter 12 Polymorphism and Other Issues 553

 Chapter 13 Operator Overloading 597

 Chapter 14 Exception Handling 657

 Chapter 15 Generic Programming: Templates 693

 Chapter 16 Input/Output Streams 716

 Chapter 17 Recursion 776

 Chapter 18 Introduction to Data Structures 813

 Chapter 19 Standard Template Library (STL) 852

 Chapter 20 Design Patterns Available online

Brief Table of Contents

for23380_fm_i-xviii.indd 5 08/11/18 11:51 am

 Appendixes A-R Available online

 Appendix A Unicode

 Appendix B Positional Numbering System

 Appendix C C++ Expressions and Operators

 Appendix D Bitwise Operations

 Appendix E Bit Fields

 Appendix F Preprocessing

 Appendix G Namespaces

 Appendix H Ratios

 Appendix I Time

 Appendix J Lambda Expressions

 Appendix K Regular Expressions

 Appendix L Smart Pointers

 Appendix M Random Number Generation

 Appendix N References

 Appendix O Move versus Copy

 Appendix P A Brief Review of C++ 11

 Appendix Q Unified Modeling Language (UML)

 Appendix R Bitset

 CheckPoints Available online

 True/False Questions Available online

 Review Questions Available online

 Glossary Available online

 Index 915

for23380_fm_i-xviii.indd 6 08/11/18 11:51 am

vii

Preface xv

What Is the C++ Language? xv

Why This Book? xv

Appendices xvi

Instructor Resources xvii

Acknowledgments xvii

 Introduction to Computers and Programming Languages 1

 1.1 Computer System 1
 1.2 Computer Languages 5
 1.3 Language Paradigms 7
 1.4 Program Design 10
 1.5 Program Development 13
 1.6 Testing 15
 Key Terms 16
 Summary 17
 Problems 17

 Basics of C++ Programming 19

 2.1 C++ Programs 19
 2.2 Variable, Value, and Constant 26
 2.3 Components of a C++ Program 32
 2.4 Data Types 36
 Key Terms 52
 Summary 52
 Problems 52
 Programming Projects 57

1

2

Contents

for23380_fm_i-xviii.indd 7 08/11/18 11:51 am

viii Contents

 Expressions and Statements 59

 3.1 Expressions 59
 3.2 Type Conversion 71
 3.3 Order of Evaluation 76
 3.4 Overflow and Underflow 81
 3.5 Formatting Data 85
 3.6 Statements 93
 3.7 Program Design 98
 Key Terms 105
 Summary 105
 Problems 106
 Programs 110

 Selection 112

 4.1 Simple Selection 112
 4.2 Complex Decisions 126
 4.3 Decisions on Specific Values 134
 4.4 Conditional Expressions 142
 4.5 Program Design 144
 Key Terms 152
 Summary 153
 Problems 153
 Programs 156

 Repetition 158

 5.1 Introduction 158
 5.2 The while Statement 161
 5.3 The for Statement 175
 5.4 The do-while Statement 180
 5.5 More About Loops 184
 5.6 Other Related Statements 188
 5.7 Program Design 191
 Key Terms 203
 Summary 203
 Problems 204
 Programs 206

3

4

5

for23380_fm_i-xviii.indd 8 08/11/18 11:51 am

Contents ix

 Functions 208

 6.1 Introduction 208
 6.2 Library Functions 213
 6.3 User-Defined Functions 224
 6.4 Data Exchange 233
 6.5 More About Parameters 244
 6.6 Scope and Lifetime 248
 6.7 Program Design 256
 Key Terms 265
 Summary 265
 Problems 266
 Programs 269

 User-Defined Types: Classes 273

 7.1 Introduction 273
 7.2 Classes 275
 7.3 Constructors and Destructors 283
 7.4 Instance Members 294
 7.5 Static Members 302
 7.6 Object-Oriented Programming 311
 7.7 Designing Classes 320
 Key Terms 332
 Summary 332
 Problems 333
 Programs 335

 Arrays 338

 8.1 One-Dimensional Arrays 338
 8.2 More on Arrays 349
 8.3 Multidimensional Arrays 363
 8.4 Program Design 369
 Key Terms 376
 Summary 376
 Problems 376
 Programs 378

6

7

8

for23380_fm_i-xviii.indd 9 08/11/18 11:51 am

x Contents

 References, Pointers, and Memory Management 380

 9.1 References 380
 9.2 Pointers 391
 9.3 Arrays and Pointers 405
 9.4 Memory Management 414
 9.5 Program Design 425
 Key Terms 437
 Summary 437
 Problems 437
 Programs 442

 Strings 443

 10.1 C Strings 443
 10.2 The C++ String Class 460
 10.3 Program Design 484
 Key Terms 492
 Summary 492
 Problems 493
 Programs 494

 Relationships among Classes 496

 11.1 Inheritance 496
 11.2 Association 519
 11.3 Dependency 528
 11.4 Program Design 532
 Key Terms 546
 Summary 546
 Problems 547
 Programs 550

 Polymorphism and Other Issues 553

 12.1 Polymorphism 553
 12.2 Other Issues 567

9

10

11

12

for23380_fm_i-xviii.indd 10 08/11/18 11:51 am

Contents xi

 Key Terms 594
 Summary 594
 Problems 594
 Programs 596

 Operator Overloading 597

 13.1 Three Roles of an Object 597
 13.2 Overloading Principles 602
 13.3 Overloading as a Member 605
 13.4 Overloading as a Nonmember 621
 13.5 Type Conversion 625
 13.6 Designing Classes 626
 Key Terms 652
 Summary 653
 Problems 653
 Programs 654

 Exception Handling 657

 14.1 Introduction 657
 14.2 Exceptions in Classes 675
 14.3 Standard Exception Classes 682
 Key Terms 688
 Summary 688
 Problems 689
 Programs 692

 Generic Programming: Templates 693

 15.1 Function Template 693
 15.2 Class Template 703
 Key Terms 713
 Summary 713
 Problems 714
 Programs 715

13

14

15

for23380_fm_i-xviii.indd 11 08/11/18 11:51 am

xii Contents

 Input/Output Streams 716

 16.1 Introduction 716
 16.2 Console Streams 720
 16.3 File Streams 729
 16.4 String Streams 751
 16.5 Formatting Data 755
 16.6 Program Design 766
 Key Terms 773
 Summary 773
 Problems 774
 Programs 774

 Recursion 776

 17.1 Introduction 776
 17.2 Recursive Sort and Search 792
 17.3 Program Design 803
 Key Terms 808
 Summary 808
 Problems 809
 Programs 811

 Introduction to Data Structures 813

 18.1 Introduction 813
 18.2 Singly Linked List 815
 18.3 Stacks and Queues 825
 18.4 Binary Search Trees 841
 Key Terms 849
 Summary 850
 Problems 850
 Programs 851

16

17

18

for23380_fm_i-xviii.indd 12 08/11/18 11:51 am

Contents xiii

 Standard Template Library (STL) 852

 19.1 Introduction 852
 19.2 Iterators 853
 19.3 Sequence Containers 856
 19.4 Container Adapters 877
 19.5 Associative Containers 884
 19.6 Using Functions 894
 19.7 Algorithms 899
 Key Terms 910
 Summary 910
 Problems 911
 Programs 911

 Design Patterns Online

 20.1 Introduction
 20.2 Creational Patterns
 20.3 Structural Patterns
 20.4 Behavioral Patterns
 Key Terms
 Summary
 Problems
 Programs

Online Appendices
 Appendix A Unicode
 Appendix B Positional Numbering System
 Appendix C C++ Expressions and Operators
 Appendix D Bitwise Operations
 Appendix E Bit Fields
 Appendix F Preprocessing

19

20

for23380_fm_i-xviii.indd 13 08/11/18 11:51 am

xiv Contents

 Appendix G Namespaces
 Appendix H Ratios
 Appendix I Time
 Appendix J Lambda Expressions
 Appendix K Regular Expressions
 Appendix L Smart Pointers
 Appendix M Random Number Generation
 Appendix N References
 Appendix O Move versus Copy
 Appendix P A Brief Review of C++ 11
 Appendix Q Unified Modeling Language (UML)
 Appendix R Bitset

CheckPoints Available online

True/False Questions Available online

Review Questions Available online

Glossary Available online

Index 915

for23380_fm_i-xviii.indd 14 08/11/18 11:51 am

xv

This book complements a course designed to teach object-oriented programming using the syntax
of the C++ language. It will also prepare students for advanced concepts such as data structure
and design patterns. Students who have completed this course will be ready to take on any other
object-oriented language course, a data-structure course, or a course about design patterns.

What Is the C++ Language?
C++ is a progressive programming language derived from its predecessors, the C language
and the B language. The C++ language expands the idea of a struct to a class in which dif-
ferent objects can be created from one single definition of a class with different values for
each data element.

Furthermore, the C++ language explores the idea of object-oriented languages that
simulate real life. In real life, we define a type and then we have objects of that type. In the
C++ language, we define a class and then we create objects from that class. C++ also in-
cludes the idea of inheritance. In inheritance, we can create a class and then extend the defi-
nition to create other classes, just as in real life where the idea of an animal can be extended
to create the idea of a horse, a cow, a dog, and so on.

Perhaps the most interesting addition to C++ is the idea of polymorphism. Polymor-
phism gives us the ability to write several versions of an action with the same name to be
used by different objects. This practice is found in real life when we use the verb open. We
can say that we open a business, open a can, open a door, and so on. Although the word open
is used in all cases, it elicits different actions on different objects.

The most recent additions to C++ include the Standard Template Library (STL), a
collection of predefined complex objects and actions that can be applied to those objects, as
well as design patterns to make problem solving more efficient and coherent.

Why This Book?
The book has five distinctive goals as discussed below.

Teach Computer Programming
The book can be used as the first course in computer programming using the C++ language
as the vehicle. Chapters 1 to 6 are designed for this purpose. They discuss computer systems
and languages. They also discuss the basics of the C++ syntax and program controls, such
as decisions and repetitions. Chapters 1 to 6 are essential to learning programming using the
C++ language.

Teach the Syntax of the C++ Language
Chapters 7 to 12 are essential in the study of object-oriented programming. Although Chap-
ters 8 and 9 are not directly related to the object-oriented features of C++, we believe that
these two chapters can be taught after students understand the basics of object-oriented pro-
gramming, which are discussed in Chapter 7.

Preface

for23380_fm_i-xviii.indd 15 08/11/18 11:51 am

xvi Preface

Appendices
Appendices can be found online and are divided into six categories.

References
Appendices A to E are designed to be used as references for students. Students may need to
consult these appendices when studying chapters in the book.

Language Knowledge
Appendices F and G give students information about how C++ prepares a source code for
compilation and how it handles names in different sections.

Present New Features of C++
Chapters 13 to 17 discuss other topics normally taught in a first or second course in program-
ming. They can be taught in any order.

Discuss Data Structure and Introduce the STL Library
Chapters 18 and 19 are an introduction to data structures. They prepare students for a course
in data structures.

Introduce Design Patterns
Chapter 20 (which can be found online) gives simple and alternative solutions to some
typical problems in object-oriented programming that would be more difficult to solve if
patterns were not used. Chapter 20 gives students an insight to object-oriented programming
through a set of standard solutions to specific problems. Although design patterns are nor-
mally taught in computer graphics courses, we have applied them to nongraphic problems
for students who have no graphical programming experience.

Course Outline
The twenty chapters of the book are outlined in the following figure.

Can be taught in anywhere after chapter 7
Can be taught if time allows (second course)
Data structures (optional)
Design patterns (optional)

Basic C++ language
Object-oriented concepts

Legend:

Chapter 1

Chapter 6

Chapter 7
Chapter 10
Chapter 11
Chapter 12

Chapter 8
Chapter 9

Chapter 13

Chapter 17

Chapter 18
Chapter 19

Chapter 20

for23380_fm_i-xviii.indd 16 08/11/18 11:51 am

Preface xvii

Advanced Topics
Appendixes H to O discuss some advanced topics that were added to C++. They can be
taught in the class, or students can use them as a source of additional information.

Brief Review of C++ 11
Appendix P gives a brief review of C++ 11 topics that were not discussed in the appendices
that discussed advanced topics.

Brief Review of UML
We have used UML diagrams in the text. Appendix Q provides general insight into UML as
a tool for designing object-oriented projects.

Bitset
The concept of bitset becomes more popular when C++ is used in network programming.
We have included this topic in Appendix R.

Instructor Resources
Accompanying this text are several additional resources which can be found online at www
.mhhe.com/forouzan1e. These include CheckPoint questions that help instructors gauge stu-
dent understanding after reading each section of a chapter. True/false and review questions
are also available to further test student’s knowledge. Complete solutions to the CheckPoint
features, true/false questions, review questions, and problems are provided as well. Lastly,
Lecture PPTs, text image files, and sample programs are provided as well.

Acknowledgments
We would like to express our gratitude to the reviewers of this text. Their insight and sug-
gestions over the last few years greatly influenced this first edition. In alphabetical order, the
reviewers are as follows:

Vicki H. Allan, Utah State University
Kanad Biswas, Institute of Technology, Delhi
Gary Dickerson, Union College
Max I. Formitchev, Maximus Energy
Cynthia C. Fry, Baylor University
Barbara Guillott, Q&A Analyst, CGI, Lafayette, LA
Jon Hanrath, Illinois Institute of Technology
David Keathly, University of North Texas
Robert Kramer, Youngstown State University
Kami Makki, Lamar University
Christopher J. Mallery, Principal Software Engineering Lead for Microsoft
Michael L. Mick, Purdue University, Calumet
Amar Raheja, California State Polytechnic University, Pomona
Brendan Sheehan, University of Nevada–Reno

At McGraw-Hill, we would like to thank the following editorial and production staff:
Thomas Scaife, Senior Portfolio Manager; Suzy Bainbridge, Executive Portfolio Manager;
Heather Ervolino, Product Developer; Shannon O’Donnell, Marketing Manager; Patrick
Diller, Business Project Manager; and Jane Mohr, Content Project Manager.

for23380_fm_i-xviii.indd 17 08/11/18 11:51 am

This page intentionally left blank

1

1

1.1 COMPUTER SYSTEM
A computer system is made of two major components: hardware and software. The com-
puter hardware is the physical equipment. The software is the collection of programs
(instructions) that allow the hardware to do its job.

1.1.1 Computer Hardware
The hardware of a computer system consists of six parts: a central processing unit (CPU),
main memory, secondary storage, the input system, the output system, and the communica-
tion system. These components are connected together by what is called a bus. Figure 1.1
shows these six components and their connection.

Central Processing Unit (CPU)
The central processing unit (CPU) consists of the arithmetic-logical unit (ALU), the con-
trol unit, and a set of registers to hold data temporarily while being processed. The control
unit is the traffic cop of the system; it coordinates all the operations of the system. The ALU

In this chapter, we describe the components of a computer system and discuss the general
ideas behind computer languages. The overview provided in this chapter will help prepare
you for future chapters. You can skip the chapter in the first reading and return to it when
you have a better understanding of programming.

Introduction to Computers
and Programming Languages

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss the two major components of a computer: hardware and software.

•	Describe the six parts of hardware: CPU, primary memory, secondary storage, input system,
output system, and communication system.

•	Describe the two major categories of software: system software and application software.

•	Describe the evolution of computer languages from machine languages, to assembly
languages, and to high-level languages.

•	Discuss four different paradigms of computer languages: procedural, object-oriented,
functional, and logic.

•	Describe the two steps of program design: understand the problem and develop a solution.

•	Describe the multistep procedure that transforms a program written in the C++ language to
an executable program.

for23380_ch01_001-018.indd 1 02/11/18 5:02 pm

2 Chapter 1 Introduction	to	Computers	and	Programming	Languages

executes instructions such as arithmetic calculations and comparisons among data. Figure 1.2
shows the general idea behind a central processing unit.

Primary Memory
Primary memory is where programs and data are stored temporarily during processing.
The contents of primary memory are lost when we turn off the computer. Figure 1.3 shows
primary memory in more detail. Each storage location in memory has an address, much like
a street address, that is used to reference the memory’s contents. The addresses in Figure
1.3(a) are shown on the left as numbers ranging from zero to (n – 1), where n is the size of
memory. In Figure 1.3(b) the address is shown symbolically as x.

CPU

Main
memory

Bus

Input
system

Communication
system

Output
system

Secondary
storage

Figure 1.1	 Basic	hardware	components

Central processing unit (CPU)

ALU

Control unit

Registers

Figure 1.2	 Central	processing	unit
(photo)	©leungchopan/Getty	Images

(a) General layout

Operating
system

0
1

Program

Data

256
15.34
Hello

n − 1

(b) Address and contents

Contents

x

Address

256

Figure 1.3	 Primary	memory
(photo)	©Simon	Belcher/Alamy

for23380_ch01_001-018.indd 2 02/11/18 5:02 pm

1.1 Computer	System 3

Generally, each address refers to a fixed amount of memory. In personal computers,
the amount of storage accessed is usually one, two, or four bytes. In large computers, it can
be many bytes. When more than one byte is accessed at a time, word rather than byte is usu-
ally used for the memory size.

In general, primary memory is used for three purposes: to store the operating system,
to store the program, and to store data. The type of data stored is dependent on the applica-
tion. In Figure 1.3, we demonstrate three different types of data: an integer (256), a real
number (15.34), and a string (Hello).

Secondary Storage
Programs and data are stored permanently in secondary storage. When we turn off the
computer, our programs and data remain in the secondary storage ready for the next time
we need them. Examples of secondary storage include hard disks, CDs and DVDs, and flash
drives (Figure 1.4).

Input System
The input system is usually a keyboard where programs and data are entered into the com-
puter. Examples of other input devices include a mouse, a pen or stylus, a touch screen, or
an audio input unit (Figure 1.5).

Output System
The output system is usually a monitor or a printer where the output is displayed or printed.
If the output is displayed on the monitor, we say we have a soft copy. If it is printed on the
printer, we say we have a hard copy (Figure 1.6).

Communication System
We can create a network of computers by connecting several computers. Communication
devices are installed on a computer system for this purpose. Figure 1.7 shows some of these
devices.

Figure 1.4	 Some	secondary	storage	devices
©Shutterstock/PaulPaladin;	©David	Arky/Getty	Images;	©McGraw-Hill	Education

Figure 1.5	 Some	input	systems
©JG	Photography/Alamy;	©Keith	Eng	2007

for23380_ch01_001-018.indd 3 02/11/18 5:02 pm

4 Chapter 1 Introduction	to	Computers	and	Programming	Languages

1.1.2 Computer Software
Computer software is divided into two broad categories: system software and application
software. This is true regardless of the hardware system architecture. System software man-
ages the computer resources. Application software, on the other hand, is directly responsible
for helping users solve their problems.

System Software
System software consists of programs that manage the hardware resources of a computer
and perform required information processing. These programs are divided into three groups:
the operating system, system support, and system development.

Operating System The operating system provides services such as a user interface, file and
database access, and interfaces to communication systems. The primary purpose of this soft-
ware is to operate the system in an efficient manner while allowing users access to the
system.

System Support System support provides system utilities and other operating services. Ex-
amples of system utilities are sort programs and disk format programs. Operating services
consist of programs that provide performance statistics for the operational staff and security
monitors to protect the system and data.

System Development System development software includes the language translators that
convert programs into machine language for execution, debugging tools to assure that the
programs are error-free, and computer-assisted software engineering (CASE) systems that
are beyond the scope of this book.

Figure 1.7	 Some	communication	devices
©Ingram	Publishing;	©somnuek	saelim/123RF

Figure 1.6	 Some	output	systems
©Roy	Wylam/Alamy;	©Stephen	VanHorn/Alamy

for23380_ch01_001-018.indd 4 02/11/18 5:03 pm

1.2 Computer	Languages 5

Application Software
Application software is broken into two categories: general-purpose software and
application-specific software.

General-Purpose Software General-purpose software is purchased from a software devel-
oper and can be used for more than one application. Examples of general-purpose software
include word processors, database management systems, and computer-aided design sys-
tems. These programs are called general purpose because they can solve a variety of user
computing problems.

Application-Specific Software Application-specific software can be used only for its in-
tended purpose. A general ledger system used by accountants and a material requirements
planning system used by engineers are examples of application-specific software. They can
be used only for the task they were designed for; they cannot be used for other generalized
tasks.

1.2 COMPUTER LANGUAGES
To write a program for a computer, we must use a computer language. Over the years,
computer languages have evolved from machine to symbolic to high-level languages and
beyond. A time line for computer languages is seen in Figure 1.8.

1.2.1 Machine Languages
In the earliest days of computers, the only programming languages available were machine
languages. While each computer still has its own machine language, which is made of
streams of 0s and 1s, we no longer program in machine language.

The only language understood by a computer is its machine language.

1.2.2 Symbolic Languages
It became obvious that not many programs would be written if programmers continued to
work in machine language. In the early 1950s, Grace Hopper, a mathematician and a mem-
ber of the United States Navy, developed the concept of a special computer program for
converting programs into machine language (see Figure 1.9).

Her work led to the use of programming languages, which simply mirrored the ma-
chine languages using symbols, or mnemonics, to represent the various machine language
instructions. Because they used symbols, these languages were known as symbolic lan-
guages. A special program called an assembler is used to translate symbolic code into ma-
chine language. Because symbolic languages have to be assembled into machine language,
they soon became known as assembly languages. This name is still used today for symbolic
languages that closely represent the machine language of their computer.

1940 1950 1960

Machine languages
Symbolic languages

High-level languages

1970 1980 1990 2000 2010
Time

Figure 1.8	 Computer	language	evolution

for23380_ch01_001-018.indd 5 02/11/18 5:03 pm

6 Chapter 1 Introduction	to	Computers	and	Programming	Languages

Figure 1.9	 Grace	Hopper
©Cynthia	Johnson/Getty	Images

Symbolic language uses mnemonic symbols to
represent machine language instructions.

1.2.3 High-Level Languages
Although symbolic languages greatly improved programming efficiency, they still required
programmers to concentrate on the hardware they were using. Working with symbolic lan-
guages was also very tedious because each machine instruction had to be individually coded.
The desire to improve programmer efficiency and to change the focus from the computer to
the problem being solved led to the development of high-level languages.

High-level languages are portable to many different computers, which allows the pro-
grammer to concentrate on the application problem at hand rather than the intricacies of the
computer. High-level languages are designed to relieve the programmer from the details of
the assembly language. However, high-level languages share one thing with symbolic lan-
guages: They must be converted to machine language. This process is called compilation.

The first widely used high-level language, FORTRAN (Formula Translation), was
created by John Backus and an IBM team in 1957. Following soon after FORTRAN was
COBOL (Common Business-Oriented Language). Admiral Grace Hopper was again a key
figure, this time in the development of the COBOL business language.

for23380_ch01_001-018.indd 6 02/11/18 5:03 pm

1.3 Language	Paradigms 7

Over the years, several other languages—most notably BASIC, Pascal, Ada, C, C++,
and Java—were developed. Today, one of the popular high-level languages for system soft-
ware and new application code is C++, which we discuss in this book.

1.3 LANGUAGE PARADIGMS
Computer languages can be categorized according to the approach they use in solving a prob-
lem. A paradigm is a model or a framework for describing how a program handles data. Al-
though there are several taxonomies for dividing current languages into a set of paradigms, we
discuss only four: procedural, object-oriented, functional, and logic, as shown in Figure 1.10.
The figure also shows which language belongs to which paradigm according to our taxonomy.

Note that the C++ language can be used both as a procedural and an object-oriented
paradigm, as we will see in future chapters.

1.3.1 Procedural Paradigm
In a procedural (also called imperative) paradigm, a program is a set of commands. The
execution of each command changes the state of the memory related to that problem. For
example, assume we want to find the sum of any two values. We reserve three memory
locations and call them a, b, and sum. The combination of these three memory locations
comprises a state in this case. Figure 1.11 shows how a procedural paradigm uses four com-
mands to change the state of memory four times. Note that the memory locations in gray
show the original state, wherein the locations are reserved for the program.

To get the value of the first number, a, into memory, we use an input command (input
a). After execution of this command, the computer waits for us to enter a number on the
keyboard. We entered 6. When we press the enter key on the keyboard, the number 6 is
stored in the first memory location and the state of memory is changed. After the second
command, again the state of the memory is changed and now both 6 and 8 are stored in
memory. The third command changes the memory state by adding the values of a and b
and storing the result in sum. Although the last command (output sum) does not look like it
is changing the memory state, it is considered a change because the value of sum is output.

The way we have written the code in Figure 1.11 is very inefficient for two reasons.
First, it contains some commands that can be repeated in the same program or other pro-
grams. Second, if the set of data to be handled is large, we need to handle them one by one.
To remove these two inefficiencies, the procedural paradigm allows packaging commands
and data items.

Computer language
paradigms

Procedural Object-
oriented Functional Logic

C
C++

BASIC Visual Basic
Ada C#
Pascal Java

COBOL C++ Scheme
FORTRAN Smalltalk LISP Prolog

Figure 1.10	 Language	paradigms

for23380_ch01_001-018.indd 7 02/11/18 5:03 pm

8 Chapter 1 Introduction	to	Computers	and	Programming	Languages

 a. If we are writing code for different programs, we can package the code and create
what is called a procedure (or function). A procedure can be written once and then
copied in different programs. The standard procedures can be stored in the language
library and be used instead of rewritten.

 b. If we are handling a large set of data items (for example, hundred or thousands of
numbers), we need to store them in a package (called different names such as array
or record) and input them all together, process them all together, and output them
all at the same time. The operation at the background is still done one data item at a
time, but the program can see the data items as packages.

The following shows how a procedural paradigm uses three lines of code to sort a list of
numbers of any size. Of course, we must have already written the procedures and already
packaged data items into a list.

input (list);
sort (list);
output (list);

1.3.2 Object-Oriented Paradigm
In the procedural paradigm, the often-used procedures can be created and saved. We then
apply a subset of these procedures to the corresponding data packages to solve our particular
problem. One thing that is obvious in this paradigm is that there is no explicit relationship
between the set of procedures and the set of data packages. When we want to solve a prob-
lem, we need to choose our data package and then go and find the appropriate procedure(s)
to be applied to it.

The object-oriented paradigm goes further and defines that the set of procedures that
can be applied to a particular type of data package needs to be packaged with the data. The
whole is referred to as an object. In other words, an object is a package containing all pos-
sible operations that can be applied to a particular type of data structure.

This is the same concept we find in some physical objects in our daily life. For exam-
ple, let us think about a dish-washing machine as an object. The minimum operations we ex-
pect from a dishwasher are washing, rinsing, and drying. All of these operations are included

input a

input b

sum = a + b

output sum

Program

States

a
b

sum

6

a
b

sum

a
b

sum

6
8

a
b

sum 14

6
8

a
b

sum 14

6
8 1414

6

8

Figure 1.11	 An	example	of	a	procedural	paradigm

for23380_ch01_001-018.indd 8 02/11/18 5:03 pm

1.3 Language	Paradigms 9

in any typical dish-washing machine. However, each time we load the machine with a dif-
ferent set of dishes (same as a different set of data). We need to be careful, however, not to
load the machine with a load it is not designed for (not to wash clothes, for example, in the
dish-washing machine).

In the real world, all the hardware necessary for an operation is included in an object;
in the object-oriented programming world, each object holds only data, but the code that
defines the procedures is shared. Figure 1.12 shows the relationship between the procedures
and data in the object-oriented paradigm.

1.3.3 Functional Paradigm
In the functional paradigm, a program is a mathematical function. In this context, a func-
tion is a black box that maps a list of inputs to a list of outputs. For example, adding num-
bers can be considered as a function in which the input is a list of numbers to be added and
the output is a list with only one item, the sum. In other words, the functional paradigm is
concerned with the result of a mathematical function. In this paradigm, we are not using
commands and we are not following the memory state. The idea is that we have some primi-
tive functions, such as add, subtract, multiply, divide. We also have some primitive func-
tions that create a list or extract the first element or the rest of the elements from a list. We
can write a program or a new function by combining these primitive functions. Figure 1.13
shows how we add two numbers using the functional paradigm. The code is symbolic, but
each language in this paradigm has its own definition for a function. Note also that in our
code, we distinguish between a number and a list. We have a number as 8, but a list with one

sort ()
reverse ()
search (...)

print (...)

1081713

14381711

20911012

list1

list2

listn Shared
Procedures

Objects

Figure 1.12	 An	example	of	an	object-oriented	paradigm

sum (first (6, 8), first (rest (6, 8)))

first ()

first ()

rest ()

list (6, 8)

sum ()

6
(8)

8

14

Code

Visualization

Figure 1.13	 An	example	of	a	functional	paradigm

for23380_ch01_001-018.indd 9 02/11/18 5:03 pm

10 Chapter 1 Introduction	to	Computers	and	Programming	Languages

element is (8). The function first gets a number, but the function rest gets a list. To get
the second number in the list, we first use the function rest to get the list (8) and then use
the function first to get 8.

1.3.4 Logic Paradigm
The logic paradigm uses a set of facts and a set of rules to answer queries. It is based on
formal logic as defined by Greek mathematicians. We first give the program the facts and
rules before asking queries. Figure 1.14 shows a simplified and symbolic version of a logic
paradigm. A fact such as Parent (Fay, Tara) is read as “Fay is the parent of Tara.”

1.3.5 Paradigms in C++ Language
Our discussion of four paradigms might lead you to wonder where the C++ language stands.
C++ is an extension to the C language and is based on the procedural paradigm. However,
the existence of classes and objects allows the language to be used as an object-oriented lan-
guage. In this book we use C++ mostly as a procedural paradigm in early chapters (except
for input/output that are done using objects). However, we use the language as an object-
oriented paradigm after the introductory chapters.

1.4 PROGRAM DESIGN
Program design is a two-step process that requires understanding the problem and then de-
veloping a solution. When we are given the assignment to develop a program, we are given
a program requirements statement and the design of any program interfaces. In other words,
we are told what the program needs to do. Our job is to determine how to take the inputs we
are given and convert them to the outputs that have been specified. To understand how this
process works, let’s look at a simple problem.

Find the largest number in a list of numbers.

How do we go about doing this?

1.4.1 Understand the Problem
The first step in program design is to understand the problem. We begin by reading the
requirements statement carefully. When we fully understand it, we review our understand-
ing with the user. Often this involves asking questions to confirm our understanding. For
example, after reading our simple requirements statement, we should ask several clarifying
questions.

Rule

Parent (X, Z) AND Parent (Z, Y)
Grandparent (X, Y)

Facts

Parent (Fay, Tara)
Parent (Tara, Willie)
Parent (Tara, Benji)

Queries

6. Grandparent (Fay, Willi)? Yes
5. Grandparent (Fay, Benji)? Yes

3. Parent (Tara, Benji)? Yes

1. Parent (Willie, Tara)? No
2. Parent (Fay, Benji)? No

4. Grandparent (Tara,Willi)? No

Figure 1.14	 An	example	of	a	logic	paradigm

for23380_ch01_001-018.indd 10 02/11/18 5:03 pm

1.4 Program	Design 11

What type of numbers are we dealing with (with fractions or without fractions)?

Are the numbers arranged in any special sequence, such as lowest to highest?

How many numbers can we expect?

If we don’t clarify the problem—that is, if we make assumptions about the input or
the output—we may supply the wrong answer. To answer our questions, we need to process
integers arranged in any sequence. There is no limit as to the number of integers.

As this example shows, even the simplest problem statements may require clarifica-
tion. Imagine how many questions must be asked for a program that contains hundreds or
thousands of detailed statements.

1.4.2 Develop the Solution
Once we fully understand the problem and have clarified any questions we may have, we
develop a solution in the form of an algorithm. An algorithm is a set of logical steps neces-
sary to solve a problem. Algorithms have two important characteristics: first, they are inde-
pendent of the computer system. This means that they can be used to implement a manual
system in an office as well as a program in a computer. Second, an algorithm accepts data as
input and processes the data into an output.

To write the algorithm for our problem, we use an intuitive approach, calling not only
on the problem statement but also our knowledge and experience. We start with a small set
of five numbers: Once we have developed a solution for five numbers, we extend it to any
number of integers.

13 7 19 29 23

We begin with a simple assumption: The algorithm processes the numbers one at a
time. We name the algorithm FindLargest. Every algorithm has a name to identify it.
FindLargest looks at each number in turn without knowing the values of the others. As it
processes each number, it compares it to the largest number known to that point and deter-
mines if the new number is larger. It then looks at the next number to see if it is larger, and
then the next number and the next number until all of the numbers have been processed.
Figure 1.15 shows the steps in determining the largest among five integers.

The algorithm requires that we keep track of two values, the current number and the
largest number found. We determine the largest number using the following steps.

 ∙ Step 1: We input the first number, 13. Since largest has no value, we set it to the
value of the first number.

 ∙ Step 2: We input the second number, 7. Since 7 is less than 13, the value of largest
does not need to be changed.

 ∙ Step 3: We input the third number 19. When we compare 19 to the value of largest, 13,
we see that 19 is larger. We therefore set largest to 19.

 ∙ Step 4: We input the fourth number, 29. When we compare 29 to the value of largest,
19, we see that 29 is larger. We set largest to 29.

 ∙ Step 5: We input the fifth number, 23. Because it is smaller than 29, largest does not
need to be changed. Because there is no more input, we are done and we have deter-
mined that the largest value is 29.

 ∙ Step 6: We output the value of largest, which is 29.

for23380_ch01_001-018.indd 11 02/11/18 5:03 pm

12 Chapter 1 Introduction	to	Computers	and	Programming	Languages

Algorithm Generalization
The algorithm shown in Figure 1.15 does not quite solve our original problem definition
because it only handles five numbers. To make it work for all number series, we need to re-
place steps 2 through 5 to process an undetermined number of values. This requires that we
generalize the statements so that they are the same. We can do this with a minor rephrasing
of the statements as shown below.

If the current number is greater than largest, set largest to the current number.

We then include the rephrased statement in a repeat statement that executes the steps
until all numbers are processed. The resulting algorithm is shown in Figure 1.16.

It is important to realize that the design is done before we write the program. In this
respect, it is like the architect’s blueprint. No one would start to build a house without
a detailed set of plans, yet one of the most common errors of both experienced and new

The find largest algorithm

Set largest to first number

Input first number

Output largest

While there are more numbers, repeat

If next number greater than largest.
set largest to current number

Input next number

Figure 1.16	 Algorithm	to	find	largest	among	n	numbers

29

Input data

13 07 19 29 23

Output data

Step 1 largest13 13first number

Step 2 largest07 13second number

Step 3 largest19 19third number

Step 5 largest23 29fifth number

Step 4 largest29fourth number29

Figure 1.15	 Find	the	largest	among	five	integers

for23380_ch01_001-018.indd 12 02/11/18 5:03 pm

1.5 Program	Development 13

programmers alike is to start coding a program before the design is complete and fully
documented.

This rush to start is partially because programmers think they fully understand the
problem and partially because they are excited about getting on with a new problem to solve.
In the first case, they find that they did not fully understand the problem. By taking the time
to design the program, they raise more questions that must be answered and therefore gain a
better understanding of the problem.

The second reason programmers code before completing the design is just human na-
ture. Programming is a tremendously exciting task. To see your design begin to take shape,
to see your program creation working for the first time, brings a form of personal satisfaction
that is a natural high.

Unified Modeling Language (UML)
The Unified Modeling Language (UML) is a standard tool for designing, specifying, and
documenting many aspects of a computing system. For example, it can be used to design
large complex systems, programs, and objects within a program. It can also be used to show
the relationship between objects in an object-oriented language such as C++. We discuss
UML in future chapters when we learn to design programs.

1.5 PROGRAM DEVELOPMENT
Figure 1.17 shows the general procedure for turning a program written in any language into
machine language. The procedure for a C++ program is a little bit more involved. The pro-
cess is presented in a straightforward, linear fashion, but we need to recognize that these steps are
repeated many times during the development process to correct errors and make improvements
to the code.

Characters

Commands

Commands

Programmer

Library code

Editor

Disk

Input data
Output data

Compiler

Disk

Linker

Disk
Loader

Memory

Programmer

User

User

Source code

Compiled code

Compiled code

Executable code

Executable code

Executable code

Figure 1.17	 Writing,	editing,	and	executing	a	program

for23380_ch01_001-018.indd 13 02/11/18 5:03 pm

14 Chapter 1 Introduction	to	Computers	and	Programming	Languages

It is the job of the programmer to write the program and then to turn it into an execut-
able file. There are four steps in this process:

 a. Write and edit the program.
 b. Compile the program.
 c. Link the program with the required library modules (normally done automatically).
 d. Execute the program. From our point of view, executing the program is one step.

From the computer point of view, however, it is two substeps: load the program and
run the program.

1.5.1 Write and Edit Programs
The software used to write programs is known as a text editor. A text editor helps us
enter, change, and store character data. Depending on the editor on our system, we could
use it for writing letters, creating reports, or writing programs. The big difference be-
tween the other forms of text processing and writing programs is that programs are ori-
ented around lines of code, while most text processing is oriented around characters and
paragraphs.

The text editor could be a generalized word processor, but it is more often a special
editor provided by the company that supplies the compiler. Some of the features we look for
in an editor are search commands that are used to locate and replace statements, copy-and-
paste commands that can be used to copy or move statements from one part of a program
to another, formatting commands that use colors to display key parts of the program, and
automatic formatting that aligns and indents parts of the program.

After we complete a program, we save our file to disk. This file then becomes the input
to the compiler; it is known as a source file.

1.5.2 Compile Programs
The information in a source file stored on disk must be translated into machine language so
the computer can understand it. This is the job of the compiler.

1.5.3 Link Programs
As we will see later in the text, a program is made up of many functions. Some of these
functions are written by us and are part of our source program. However, there are other
functions, such as input/output processes and mathematical library functions, that exist else-
where and must be attached to our program. The linker assembles the system functions and
ours into the executable file.

1.5.4 Execute Program
Once the program has been linked, it is ready for execution. To execute a program we use
an operating system command, such as run, to load the program into main memory and
execute it. Getting the program into memory is the function of an operating system program
known as the loader. It locates the executable program and reads it into memory. When
everything is ready, control is given to the program and it begins execution.

In a typical program execution, the program reads data for processing, either from the
user or from a file. After the program processes the data, it prepares the output. Data output
can be written to the user’s monitor or to a file. When the program is finished, it tells the
operating system, which removes the program from memory.

for23380_ch01_001-018.indd 14 02/11/18 5:03 pm

1.6 Testing 15

1.6 TESTING
After we write the program, we must test it. Program testing can be a very tedious and
time-consuming part of program development. As the programmer, we are responsible for
completely testing it. We must make sure that every instruction and every possible situation
have been tested.

1.6.1 Designing Test Data
Test data should be developed throughout the design and development of a program. As we
design the program, we create test cases to verify the design. These test cases then become
part of the test data after we write the program.

In addition, as we design the program, we ask ourself what situations, especially
unusual situations, we need to test, and then we make a note of them. For example, in
FindLargest, what if only one number is input? Similarly, what if the data were in se-
quence or all the same? When we design the program, we review it with an eye toward
test cases and make additional notes of the cases needed. Finally, while we code the pro-
gram, we make more notes of test cases.

When it comes time to construct the test cases, we review our notes and organize
them into logical sets. Except for very simple student programs, one set of test data never
completely validates a program. For large-scale development projects, 20, 30, or even more
test cases may need to be run to validate a program. All of these test cases become what is
known as a test plan.

One set of test data never completely validates a program.

Finally, as we test the program, we discover more test cases. Again, we write them down
and incorporate them into the test plan. When the program is finished and in production, we
still need the test plan for modifications to the program. Testing of modifications is known as
regression testing and should start with the test plan developed when we wrote the program.

How do we know when our program is completely tested? In reality, there is no way
to know for sure, but there are a few things we can do to help the odds. While some of
these concepts will not be clear until we get to later chapters, we include them here for
completeness.

 a. Verify that every line of code has been executed at least once. Fortunately, there are
programming tools on the market today that help us do this.

 b. Verify that every conditional statement in the program has executed both the true and
false branches, even if one of them is null.

 c. For every condition that has a range, make sure the tests include the first and last
items in the range, as well as items before the first and after the last. The most
common mistakes in range tests occur at the extremes of the range.

 d. If error conditions are being checked, make sure all error logic is tested. This may
require a temporary modification to the program to force the errors; for instance, an
input/output error usually cannot be created—it must be simulated.

1.6.2 Program Errors
There are three general classifications of errors: specification errors, code errors, and logic
errors.

for23380_ch01_001-018.indd 15 02/11/18 5:03 pm

16 Chapter 1 Introduction	to	Computers	and	Programming	Languages

Specification Errors
Specification errors occur when the problem definition is either incorrectly stated or misin-
terpreted. Specification errors should be caught when we review our design with analysts
and users.

Code Errors
Code errors usually generate a compiler error message. These errors are the easiest to
correct. Some code errors generate what is known as a warning message, which usually
means that the compiler has made an assumption about the code and needs to have it
verified. It may be right, or it may be wrong. Even though the program may run with a
warning message, the code should be changed so that all warning messages are elimi-
nated.

Logic Errors
The most difficult errors to find and correct are logic errors. Examples of logic errors are
division by zero or forgetting to store the first number in largest in FindLargest. They
can be corrected only by thorough testing. And remember, before we run a test case, we
should know what the correct answer is. Don’t assume that the computer’s answer is correct;
if there’s a logic error, the answer will be wrong.

K e y T e r m s

algorithm
application software
application-specific software
arithmetic-logical unit (ALU)
assembler
assembly language
central processing unit (CPU)
code errors
compiler
computer hardware
computer language
computer software
computer system
data item
executable file
executable program
function
functional paradigm
general-purpose software
hardware
high-level language
imperative paradigm
linker
input system

loader
logic errors
logic paradigm
machine language
object-oriented paradigm
operating system
output system
primary memory
procedural paradigm
procedure
program design
program errors
program testing
regression testing
secondary storage
software
source file
specification errors
symbolic language
system development software
system software
system support software
text editor
Unified Modeling Language (UML)

for23380_ch01_001-018.indd 16 02/11/18 5:03 pm

Problems 17

Computer systems are made up of two major components: hardware (CPU, memory, second-
ary storage, output system, and communication system) and software (system software and
application software).

Computer languages are used to develop software. The computers themselves run in ma-
chine language. Over the years programming languages have progressed through symbolic
languages to the many high-level languages used today.

Language paradigms (procedural, object-oriented, functional, logic) describe the ap-
proach used to solve problems on the computer. C++ is based on the procedural and object-
oriented paradigms.

Program design is a two-step process that requires understanding the problem and then
developing a solution.

Algorithms have two important characteristics; they are independent of the computer
system and they accept data as input and process data into an output.

Program development turns the program design into a computer system in four steps:
write the program, compile it, link it, and execute it.

Testing a program requires that every instruction and every possible situation is vali-
dated.

S u m m a r y

P r o b l e m s

PR-1. Show the state of the memory for the following example of a procedural paradigm
(see Figure 1.11).

input a
input b
input c
sum = a + b + c
output sum

PR-2. Show the state of the memory for the following example of a procedural
paradigm (see Figure 1.11). Assume that values of length and width are 12 and 8,
respectively, and represent the sides of a rectangle.

input length
input width
area = length × width
parameter = 2 × (length + width)

PR-3. Imagine we need to create a bank account object using an object-oriented
paradigm. Show the data and list of procedures you think need to be encapsulated
with the data (see Figure 1.12).

PR-4. In a functional paradigm, show the result of the following function (see Figure 1.13).

first (rest (rest (a, b, c)))

PR-5. In a functional paradigm, show the result of the following function, assuming that
the list (...) makes a list of given elements (see Figure 1.13).

list (first (rest (a, b)), first (a, b))

for23380_ch01_001-018.indd 17 02/11/18 5:03 pm

18 Chapter 1 Introduction	to	Computers	and	Programming	Languages

PR-6. Based on Figure 1.14, what is the result of the following queries?

Parent (Benji, Tara)?
GrandParent (Fay, Willi)?

PR-7. Based on Figure 1.14, what is the result of the following queries?

Parent (Fay, Tara)?
GrandParent (Tara, Willi)?

PR-8. Show the value of sum after the following algorithm is executed.

sum = 0
sum = sum + 10
sum = sum × 10
sum = sum − 10

PR-9. Show the value of x after the following algorithm is executed.

x = 5
x = x + 1
x = x − 10

PR-10. Show the value of x, y, and z after the following algorithm is executed.

x = 2
y = 5
x = x + 1
y = y − 10
z = 8
z = x + y
x = y + z
y = x + y + z

PR-11. Design an algorithm that converts a value in centimeters to a value in inches using
the following formula:

1 inch = 2.54 centimeters

PR-12. Design an algorithm that converts a value in inches to a value in centimeters using
the following formula:

1 centimeter = 0.3937 inch

PR-13. Design an algorithm that converts a temperature value in Fahrenheit (F) to a value
in Celsius (C) using the following formula:

C = (F − 32) × (100/180)

PR-14. Design an algorithm to find the sales tax and the total sale value of a transaction
made of two soft drinks (1 dollar each), three bottles of milk (2 dollars each), and
one can of coffee (3 dollars). The tax is 9 percent.

PR-15. Design an algorithm that finds the smallest among a list of numbers.
PR-16. Design an algorithm that finds the sum of a list of numbers.
PR-17. Design an algorithm that finds the product of a list of numbers.
PR-18. Design an algorithm that adds numbers from 1 to 100.

for23380_ch01_001-018.indd 18 02/11/18 5:03 pm

19

2.1 C++ PROGRAMS
Every C++ program is made of several sections, and each section is made of several parts.
Each section or part must follow the rules defined in the C++ language, just as documents
written in one of the natural languages follow the rules of that language.

Before we formally delve into the structure of a C++ program and explore some of the
pertinent rules, we study some sample programs.

2.1.1 First Program
Program 2.1 shows a simple example of a C++ program and will help us gain a basic under-
standing of C++ programs.

This chapter sets the foundation of computer programming in C++. Each C++ pro-
gram involves input, output, and assignment. First, we discuss how these activities can
be achieved using two objects and an operator. Next, we introduce the fundamental data
types in C++. Fundamental data types are primitive built-in data types that can be used
without being declared. We then discuss variables, values, and constants and how they can
be used in a program. Finally, we discuss two components of a program, namely, tokens
and comments.

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss variables, values, and constants and how they are used in C++ programs.

•	Discuss the general components of a C++ program that is made of tokens and comments.

•	Discuss the fundamental data types in C++ and their size.

•	Show how we can use integer data types in programs.

•	Show how we can use character data types in programs.

•	Show how we can use Boolean data types in programs.

•	Show how we can use floating-point data types in programs.

•	Discuss the void data type and discuss its use.

•	 Introduce C++ strings and briefly discuss their use.

•	 Introduce and discuss some simple programs in C++.

2 Basics of C++ Programming

for23380_ch02_019-058.indd 19 02/11/18 5:10 pm

20 Chapter 2 Basics	of	C++	Programming

Box and Background Coloring
We have shown the program in a table made of two columns and several rows with some
boxes and some colored or shaded backgrounds. These decorations are just for demonstra-
tion in this book. They are not part of the C++ language. Other books may use other decora-
tions to make the components of a program more visible.

Box and background coloring are not part of a C++ program;
they are used in this book to show different sections of a program.

Separation of Code and Result
We have divided the program into two sections vertically. The top section, in two columns,
shows the code that we have written. The bottom section shows the result of the program
when it runs. Note that the first line of the second section (Run:) is not part of the program or
its results after running. It is added by us to show that this section is the result of running the
program. If we run the program more than once, you will see multiple sections each starting
with (Run:). The results of the program are normally shown on the screen of the computer
on which we compile and run the program, but we show them at the bottom of each program
inside a shaded area for quick reference.

We separate the code from the results of the program for demonstration;
the results of the program are normally shown on the screen.

Case Sensitivity
Every C++ program is case-sensitive. We must use the terms exactly as defined in the
language. If we change the case of a letter in a term that is part of the language, we get a
compilation error. In other words, we cannot use the word Include or IOSTREAM instead
of include or iostream in line 1 of the program. We cannot use the word Main instead of
main in line 3. This is also true with terms like std, cout, endl, and return.

C++ language is case-sensitive. The term that names an entity
must be used as it is defined without changing the case of its letters.

Program 2.1	 The	first	simple	program

1
2
3
4
5
6
7
8
9

10

#include <iostream>

int main ()
{

std :: cout << "This is a simple program in C++ ";
std :: cout << "to show the main structure." << std :: endl;
std :: cout << "We learn more about the language ";
std :: cout << "in this chapter and the rest of the book.";
return 0;

}

Run:
This is a simple program in C++ to show the main structure.
We learn more about the language in this chapter and in the rest of the book.

for23380_ch02_019-058.indd 20 02/11/18 5:10 pm

2.1 C++	Programs 21

Program Lines
Although it is not necessary to do so, we divide our programs into lines to show the different
sections and to increase readability. When we discuss the program, we use line numbers for
ease of reference. Line numbers are not part of the program and should not be included in
the program when we create the source code. Note that we also add blank lines to separate
different sections of the program (for example, line 2 in Program 2.1).

Line numbers are not part of the program and should not be included in
the source code. They are used in this book for reference to each line.

Indention
In Program 2.1, we have indented lines in the function body. Although it is not necessary
to do so we believe it improves the readability of the program. We always indent lines that
belong to an enclosing entity. Lines 5 to 9 belong to the function body, and we have indented
them to show that they are inside the two braces.

Line indention improves the readability of a program
and we strongly recommend it.

Program Analysis
We briefly analyze the program line by line (except for line 2, which is blank to increase
readability to indicate the separation of the two sections).

Line 1: Preprocessor Directive A preprocessor directive is a command to the compiler to take
some action before it compiles the program. Line 1 of the program (without the line number)
is a preprocessor directive as shown below:

#include <iostream>

A C++ program needs some predefined lines of code that are not written by us.
These lines of code are very complex and sometimes access the hardware of the computer,
which means they depend on the type of computer we are using. The C++ designers cre-
ated these lines of code and included them in files referred to as header files. We do not
have to write these lines; we can simply copy the contents of these files into our code.
To copy them, we need to know the name of the file, iostream, which stands for input/
output stream in this case. To tell the complier that we need to include the contents of
this file, we need to have an include line as shown above. The include line starts with
the # symbol. When a line in a program starts with this symbol, it is an indication to the
compiler that something needs to be done before the program can be compiled. Before
the compiler starts compiling our code, it runs another program, called preprocessor, that
checks all preprocessor commands (the include directive is one of them). The compiler
does what is needed in the command (such as including the contents of the header file) and
then removes the preprocessor directive. After all preprocessor directives have been taken
care of and are removed, the program is ready for compilation. Note that each preprocess-
ing command needs to be in a single line by itself with the first nonblank, character, the
symbol # (pound sign). In the include directive, the name of the file must be enclosed in
two pointed brackets such as <filename> after the term include. We discuss preprocess-
ing in more details in Appendix F.

for23380_ch02_019-058.indd 21 02/11/18 5:10 pm

22 Chapter 2 Basics	of	C++	Programming

Note that no semicolon should be put after any include directive.
The compiler may generate an error if it finds one.

Line 3: Function Header Line 3 of the program (without the line number) is shown below:

int main ()

A C++ program is normally made of a number of functions. A function, as we will
see in future chapters, is a section that groups a number of lines of code. A C++ program
consists of one or more functions, but it must contain one function named main. The execu-
tion of a C++ program starts with the main function and terminates when the main function
is terminated.

Execution of each C++ program starts with the main function, which
means that each program must have one function named main.

Each function has a header and a body. The header defines the name of the function
and what goes into the function (inside the parentheses) and what type of information comes
out of the function, mentioned before the name int in this case. Line 3 is the header of the
main function. It shows that the name of the function is main; nothing will be passed to the
function (parentheses are empty); an integer value will be returned from the function (int is
C++ for an integer) and given to the operating system.

Lines 4 and 10: Opening and Closing Braces Lines 4 and 10 are a combination of an opening
and a closing brace (curly brackets) that need to go together to enclose the whole body of
the function. It is a compilation error to have one without the other. The following shows
these lines.

{
…

}

Every function definition in C++ needs a body enclosed between an opening and a closing
brace.

It is a major error to have an opening brace without a closing
one or a closing brace without an opening one.

Line 5: The First Line of Body Let us now discuss the contents of the body, line by line, start-
ing with line 5 that is shown below:

std :: cout << "This is a simple program in C++ ";

Most of the lines in the body of a function are commands that tell the computer what
to do. As we see in a natural language, a command (an imperative sentence) is made of a
verb, a direct object, an indirect object (target or recipient), and a terminator (normally a
period). This is what we see in a command line in a function although in a different order. In

for23380_ch02_019-058.indd 22 02/11/18 5:10 pm

2.1 C++	Programs 23

this case. the target object (cout, which is the monitor) comes first, the verb (write) comes
next, and what to write (direct object, a string) comes last. The command is terminated with
a semicolon (instead of a period). With this explanation, line 5 of Program 2.1 says that
the computer should write the object string (This is a simple program in C++) on the
monitor and move to the next command. Note that the two quotation marks are part of the
language syntax; they are not written on the screen. Figure 2.1 shows a graphical analysis
of line 5.

We will see that each object in C++ (as an object-oriented language) has a name. The
monitor connected to our computer also has a name in C++. It is called std :: cout. Note that
the name in this case is made of two parts, std and cout, separated by a colon. Just like
people in real life are recognized by two identifiers, last name and first name, an object in
C++ also has a last name and a first name. The monitor’s last name is std (abbreviation
for standard); its first name is cout (abbreviation for console out). The last name defines
the group (family) to which the object belongs; the first name defines the actual name of
the object in the group. In summary, line 5 tells the computer to write the given message
on the screen.

Line 6: The Second Line of Body Line 6 of the program is as shown below:

std :: cout << "to show the main structure. " << std :: endl;

This line is very similar to line 5 with some exceptions. First, the message is different,
“to show the main structure.” Second, after the message is written, the verb (<<) is repeated.
Third, no new message is defined, but the program writes a predefined object called std ::
endl. This is a different object, an object that when sent to the monitor adds a new line at the
end of the previous message, which causes the output to move to the next line. This object,
endl, is an abbreviation of (end line). The next output will be printed on the next line. Figure
2.2 shows that the destination is the same (mentioned only once) but the verb and the object
are repeated. In the first section, the object is a string object; in the second it is endl (note that
the last character is a lowercase L, not a one).

Lines 7 and 8 Lines 7 and 8 are similar to lines 5 and 6, but there is no endl object because
line 8 is the last line of text and there is no need for the endl object.

Target Verb Object Terminator
std :: cout

Monitor write on the message end

<< ;"This is a simple program in C++"

Figure 2.1	 Analysis	of	line	5	

Destination Verb Object Object Terminator

std :: cout

monitor write message end

<<

Verb

write

<<

line feed

std :: endl ;"to show the main structure."

Figure 2.2	 Analysis	of	line	6

for23380_ch02_019-058.indd 23 02/11/18 5:10 pm

24 Chapter 2 Basics	of	C++	Programming

Line 9 The last line in the body of the function is different from other lines:

return 0;

This line is still a command, but there is no explicit target object. The target object is
implicit here. It is an entity in the C++ system that is called the runner. Figure 2.3 shows
the situation.

The runner starts the main function running from the first command in the body; the
runner expects the function to return a value that shows if the program has been successful
or not. The returned value defines the success or failure. If the program reaches the last line
in the function and returns 0, it means success. Figure 2.3 shows a simple version of the
program as started and stopped by the runner.

Program Output
The result of the execution of the commands whose target object is cout is shown on the
monitor connected to the computer on which we are running the program. In this case, we
have two lines of text to be shown on the monitor. Figure 2.4 shows the monitor (console)
window where our program output is displayed (the details are platform dependent).

2.1.2 Second Program
In this section we write another program in C++ similar to the first one, but with some
modification and addition. Although many puritans believe that every object in the pro-
gram should be coded with both a last name and a first name, such as std :: cout or std
:: endl, most programmers believe that we do not need to mention the last name of each
object individually. They believe we should give the group (last) name at the top of the pro-
gram and then use only the first name. We discuss this issue in more detail in Appendix G,
namespaces. Program 2.2 shows our second program.

nonzero: failure

zero: success

call

C++ Runner

Program

int main ()
{

}
retrun 0;

Figure 2.3	 Relationship	between	the	runner	and	our	program

C:\.
This simple C++ program shows the main structure.
We will learn more about the C++ language in this chapter and in the rest of the book.

Figure 2.4	 The	console	(cout	object)	where	the	output	is	shown.

for23380_ch02_019-058.indd 24 02/11/18 5:10 pm

2.1 C++	Programs 25

Analysis
We briefly analyze the lines in Program 2.2 that are different from the corresponding lines
in the first program.

Lines 1 to 3: Block Comment Lines 1 to 3 in the second program are different from the first
program. They are what we call a block comment. A block comment is one or more lines
that are considered comments for the user or reviewer of the code and are totally ignored
by the compiler (block comments are erased before the program is compiled). The format
is shown below:

/* Text to be ignored
Text to be ignored
Text to be ignored */

The comment has a starting section and ending section. The starting section is made
of two characters (/*), and the ending section is made of the same two characters but in
the reverse order (*/). Everything in between is considered a comment and is ignored.
Note that we can have any character between the starting section and the ending sec-
tion (including * and /) but not in combination to create a starting section or an ending

Program 2.2	 The	second	simple	program	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* This program shows how we can print a square of asterisks. *
***/

#include <iostream>
using namespace std;
int main ()

{
// Printing a square of asterisks
cout << "******" << endl;
cout << "******" << endl;
cout << "******" << endl;
cout << "******" << endl;
cout << "******" << endl;
cout << "******";
return 0;

}

Run:

for23380_ch02_019-058.indd 25 02/11/18 5:10 pm

26 Chapter 2 Basics	of	C++	Programming

section. Inside the program we use colored text for the whole comment. Note that in lines
1 to 3, we have used some asterisks as text to create a frame for our comment, but this is
a personal choice.

Line 5 This line is also new in this program, as shown below:

using namespace std;

Line 5 tells the compiler that when it cannot see the last name of an object, insert std:: in
front of it to make the name complete. In other words, it tells the compiler that some names
that we use in the program belong to the namespace std. With this single line, we can use
the cout and endl objects without qualifying them with the std namespace.

Line 9 This line is also a comment, but a line comment (instead of a block comment). This
type of comment starts with two slashes and continues with text as a comment (up to the end
of the line). The whole line is ignored by the compiler.

// Printing a square of asterisks

This type of comment can span only a single line. If we need two lines of comments, we
must start another line comment or use a block comment.

Lines 10 to 15 These lines do the same thing as similar ones in the first program, but we can
use cout and endl without (std ::). Each line prints a line of six asterisks on the monitor to
create a square of asterisks. In Program 2.2 we have used a yellow background to highlight
the body of the function here. This is not needed; it is only used for readability.

2.2 VARIABLE, VALUE, AND CONSTANT
Before we can write more programs, we need to understand three concepts: variables, val-
ues, and constants.

2.2.1 Variables
Programs written in the C++ language receive input data, manipulate them, and create out-
put data. Since the input and output data may change, we must be able to store the input
data, store the intermediate data, and store the output data in memory. For this reason, C++,
like most programming languages, uses the concept of variables. A variable in computer
language parlance is a memory chunk that needs to have a name and a type. It is called a
variable because its contents may change during the execution of the program. It’s purpose
is to store and retrieve data. It must have a type because we use different data types for
different purposes.

A variable is a memory location, with a name and a type, that stores
different values in each moment of a program’s execution.

Before we use a variable, we must define it. We must tell the compiler that we want to
use a memory location with the given name and the given type. The name is used to refer to
the variable; the type is used to tell what type of data is stored in the variable.

for23380_ch02_019-058.indd 26 02/11/18 5:10 pm

2.2 Variable,	Value,	and	Constant 27

EXAMPLE 2.1
Figure 2.5 shows three variables with their types and names. The figure also shows how we
define them to ensure that the compiler will know the variable to which we are referring.

We have not discussed data types yet, but we specify that all three data types are inte-
ger types (int) that represent a whole number (without fractions), such as 17, 35, 100, and
so on, but not 23.67.

2.2.2 Values
The contents of a variable are referred to as its value. For example, if num1 at this moment
holds the integer 17, its value is 17. When we use the name of a variable in a program, some-
times we mean the variable itself, sometimes the value it holds. The next example shows the
difference.

EXAMPLE 2.2
Assume we want to write a program that accepts any two whole numbers, adds them to-
gether, and displays the result. While we not have studied data types yet, we understand that
the two numbers and the result are integer types (int in C++). To store the two numbers and
the result of the addition, we need to give them names. We call them num1, num2, and sum,
respectively. We then write a program that, each time it runs, finds the sum of two numbers
entered at the keyboard and prints them (Program 2.3).

int num1 ;num1
num2
sum

int num2 ;
int sum ;

Variables in memory Definitions in program

int
int
int

Figure 2.5	 Variables	in	memory	and	their	
definition	in	a	program

(continued)

Program 2.3	 A	program	that	adds	two	values

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* This program gets the values for two numbers from the keyboard, *
* adds them together and prints the result on the monitor. *
***/

#include <iostream>
using namespace std;

int main ()
{

// Definition
int num1;
int num2;
int sum;
// Getting inputs
cout << "Enter the first number: ";

for23380_ch02_019-058.indd 27 02/11/18 5:10 pm

28 Chapter 2 Basics	of	C++	Programming

We examine the contents of lines 11 to 13 as shown below:

int num1;
int num2;
int sum;

These three lines declare variables. Declaration of a variable means reservation of mem-
ory with a corresponding name. In the case of the above three declarations, we have the
situation shown previously in Figure 2.5. Note that no values are stored in the program at
this moment.

Now we examine lines 15 to 18 as shown below:

cout << "Enter the first number: ";
cin >> num1;
cout << "Enter the second number: ";
cin >> num2;

We are familiar with the first line. The first line prints a message, which is referred to as
prompt, on the screen. It tells the user what to do next. The second line is new for us. It uses
a target object, cin (for console in) and a command (>>), which means read. This command
waits for the user of the program to enter a value (an integer in this case) on the keyboard
and hit the enter key. The program then stores the value entered in variable num1. The third
line is the same as the first one. The fourth line is the same as the second line, but it stores
the value entered by the user in variable num2. After these four lines, two values are stored

Program 2.3	 A	program	that	adds	two	values	(Continued)

16
17
18
19
20
21
22
23
24

cin >> num1;
cout << "Enter the second number: ";
cin >> num2;
// Calculation and storing result
sum = num1 + num2;
// Display output
cout << "The sum is: " << sum;
return 0;

}

Run:
Enter the first number: 23
Enter the second number: 35
The sum is: 58

Run:
Enter the first number: 7
Enter the second number: 110
The sum is: 117

for23380_ch02_019-058.indd 28 02/11/18 5:10 pm

2.2 Variable,	Value,	and	Constant 29

in two variables. If we assume that we entered 23 and 35, the memory location now looks
like Figure 2.6.

Now we analyze line 20 as shown below:

sum = num1 + num2;

In this line, we use two operators: assignment (=) and addition (+). We discuss operators in
the next chapter in more detail. For the moment, let us describe their roles in this line. The
assignment operator (=) means store. It stores the value on the right-hand side and the vari-
able on the left-hand side. In other words, it is of the form

variable = value;

In this case, the variable on the left-hand side is sum, and the value on the right-hand side is
a copy of the value stored in num1 added to a copy of the value stored in num2, as shown in
Figure 2.7.

Line 22 is similar to what we have seen before. It is

cout << "The sum is: " << sum;

In this case two entities are shown on the screen. The first is the message; the second is the
value of variable sum as shown in Figure 2.8.

The cin and the cout Objects
The concept of variable and value are closely tied to the concept of the cin and cout objects
in the previous program. The cin object is the source of data; the cout object is the desti-

num1

cin >> num1
cin >> num2

23

num2

sum

23

35 35

Variables

Actions

cin (keyboard)

Commands

Figure 2.6	 Variable	contents	before	and	
after	two	input	commands

1

2
3

num1

sum = num1 + num2

23

num2

sum

35

58

num1

num2

sum
Variables before Variables after

Command

23

35

Figure 2.7	 Variable	contents	before	and	after	assignment

for23380_ch02_019-058.indd 29 02/11/18 5:10 pm

30 Chapter 2 Basics	of	C++	Programming

nation of data. The cin object uses an input device (such as the keyboard) as the source of
data. The cout object uses an output device (such as the monitor) as the destination of data.
The cin object uses the operators (>>) to get the data; the cout object uses the operator (<<)
to deliver the data. We can better understand the role of these objects if we see them together
with their memory as shown in Figure 2.9.

To remember which operators we need to use, we can think of (>>) and (<<) as double
arrows in the direction of data movement. In the case of input, data moves to the right; in the
case of output, data moves to the left.

The most important point that we need to remember about the cin object is that we
need a variable name (as the destination of data). On the other hand, we need a value as the
source of data for the cout object. However, we have seen that we use a command such as
cout << sum, where the sum is the name of a variable. We should be aware that in this case,
we mean the value of sum, not the name of sum. This is an important issue that we need to
remember. The name of the variable sometimes means the physical variable as the destina-
tion; sometimes, it means a copy of the value stored in it.

The value used with the cout object does not necessarily have to be the value of a
variable; it can be an independent value such as (cout << 12), which means send the value
12 to the monitor.

The cin object needs to see a variable name;
the cout object needs to see a value.

The following examples clarify these important concepts.

num1

num2
sum

cout (monitor)

Command

The sum is: 58

cout << "The sum is:" << sum;

Variables

23

35
58

Figure 2.8	 Situation	of	variables	and	monitor	after	
line	22

Figure 2.9 Keyboard	and	monitor	as	the	source	and	
destination	of	date

Memory

cout

cin

>>

>>

cin >> variable;

cout << value;

for23380_ch02_019-058.indd 30 02/11/18 5:10 pm

2.2 Variable,	Value,	and	Constant 31

cin >> x;
cout << x;
cout << 4;
cin >> 4

// Get a value from keyboard and store it in variable x.

// Get the value of variable x and display it; value of x will not change.

// Display the value 4 on the screen.

// Error. The cin object needs a variable, not a value.

Assignment Operator
Another entity related to the concept of value and variable is the assignment operator. The
assignment operator (=) needs a variable on the left-hand side and a value on the right-hand
side as shown in Figure 2.10.

When we talk about a value related to the assignment operator, we mean the value of
a variable whose name is given, an independent value, or a combination of values to make a
single value. Examples are as follows:

x = y;
x = 5;
x = y + 6;
x = x + 3;
x = x + y;

// Store the value of variable y into variable x.

// Store 5 into variable x.

// Take value of y, add 6 to it, and store the result in variable x.

// Take value of x, add 3 to it, and store the result back in variable x.

// Take value of x, add value of y to it, and store the result back in x.

Note that the terms x and y on the left- and right-hand sides of the assignment operator mean
different things.

A variable on the right-hand side of an assignment
operator means copy the value of the variable (as a source);
a variable on the left-hand side of the assignment operator

means store the value in that variable (as a destination).

2.2.3 Constants
The last entity that we discuss in this section is a constant. A constant is a storage entity
whose value cannot be changed. Its value is fixed. We declare the memory location that
holds it, we qualify the name with the const modifier, and we use the assignment operator
to store the value we want to be held by it no matter how many times we reference it. The
format is shown for the value of π in mathematics. Note that the term double represents a
number with fraction such as 3.14159 or 7.2.

const double PI = 3.14159; // Definition of a constant

variable = value;

Name of a variable
as the destination

A value as the
source

Figure 2.10 Source	and	destination	in	an	assignment	

for23380_ch02_019-058.indd 31 02/11/18 5:10 pm

32 Chapter 2 Basics	of	C++	Programming

The above definition tells us that we want to store the value of π in a memory location named
PI, but we want its value to be fixed and not changed during the program run. In other words,
we can access the value, but we cannot change the value. This means that we cannot use the
name PI on the left-hand side of an assignment operator (except when we define it) and we
cannot use it with the cin object as shown below:

PI = x;
cin >> PI;
cout << PI;
x = PI;

// Error the value of PI cannot be changed

// Error PI cannot receive a value

// The value of PI can be shown on the monitor

// The value of PI be stored in a variable

Another way we can use a constant value in a program is to use it as a literal. We use
a literal value in our program without storing it in a memory location. The experts, however,
forbid the use of literals in a program unless their use is completely clear to everyone who
looks at the program. The following shows how we can use both a stored constant and a
literal constant to find the perimeter of a circle when its radius is given (the asterisk in this
case means multiplication).

perimeter = 2 * PI * radius; // 2 is a literal, PI is an stored constant

2.3 COMPONENTS OF A C++ PROGRAM
Now that we have discussed some programs in C++ and have analyzed them, we introduce
the components of a C++ program. To write in a new natural language like French or Span-
ish, we must know the components of the language. We must know the meaning of the set
of words we use and how to combine them to make sentences. We must also be familiar
with the punctuation symbols used in the language. Learning to create a program in a new
computer language, such as C++, is much simpler because it has a limited number of words
and symbols to master.

What we see in a C++ program (referred to as source code) is usually made of two
things interleaved with each other. The first is the code that is used by the compiler to cre-
ate the runnable program (in machine language). The second is comments added by the
programmer to explain the purpose of the whole or a part of the program. The first uses
the tokens of the C++ language; the second uses words in the English language and a few
predefined symbols.

2.3.1 Tokens
A C++ program without comments is a sequence of tokens. A token can be an identifier, a
literal, or a symbol. We discuss each next.

Identifiers
An identifier is the name of an entity in the C++ language. To be a valid identifier, a name
must start with a letter or an underscore, and it can have zero or more digits, letters, or un-
derscores. There is no limit to the number of characters in an identifier.

An identifier must start with a letter or an underscore, and it can
have zero or more letters, digits, or underscores.

for23380_ch02_019-058.indd 32 02/11/18 5:10 pm

2.3 Components	of	a	C++	Program 33

As we mentioned before, the C++ language is case-sensitive. Many programmers
use identifiers made of lowercase letters, but it is becoming more and more common to
use two-word or three-word identifiers with the first word all in lowercase and subse-
quent words starting with an uppercase letter, such as lowerValue, upperValue, firstTest,
secondTest, timeOfWithdraw, and so on. The library of the C++ language also uses
identifiers with several words separated by an underscore, but we need to avoid them in
our programs.

EXAMPLE 2.3
The list of identifiers in Program 2.1 is shown below:

include, iostream, int, main, std, cout, endl, return

They can be categoried as keywords, predefined identifiers, and user-defined identifiers. We
discuss each category next.

Keywords A keyword (sometimes called reserved word) is an identifier that is reserved by
the C++ language and cannot be redefined by the programmer or the library of the language.
We show in color the keywords in the text and in programs to distinguish them from other
identifiers. Table 2.1 shows the list of 84 keywords in C++. These keywords are made ac-
cording to the rules of identifiers we discussed before.

alignas alignof and and_eq asm

auto bitand	 bitor bool break

case	 catch char char16_t	 char32_t

class compl const const_cast constexpr

continue decltype default delete do

double dynamic_cast	 else enum explicit

export extern false	 float	 for

friend goto if	 inline int

long mutable namespace	 new noexcept

not not_eq nullptr operator or

or_eq private protected public register

reinterpret_cast return short	 signed sizeof

static static_assert	 static_cast struct switch

template	 this thread_local throw true	

try typedef typeid	 typename	 union

unsigned using virtual void	 volatile

wchar_t while	 xor xor_eq

Table 2.1 Keywords

for23380_ch02_019-058.indd 33 02/11/18 5:10 pm

34 Chapter 2 Basics	of	C++	Programming

EXAMPLE 2.4
Find how many of the identifiers in Program 2.1 are keywords. We see that only two of them
are keywords that are shown in color. We use blue in this text to distinguish keywords from
other identifiers.

int, return

Predefined Identifiers We encounter some identifiers in the C++ language that are not key-
words but are predefined in the language. Although we can redefine them and use them in
our programs, it is better not to do so to avoid confusion.

EXAMPLE 2.5
Find how many of the predefined identifiers we have used in Program 2.1. There are six of
them as shown below:

include, iostream, main, std, cout, endl

User-Defined Identifiers Users of the language (programmers) can define a set of identifiers
to be used in their programs as long as they follow the rules of identifiers we discussed be-
fore. The following are some valid programmer identifiers:

z z12 _3 sum average result2 counter

However, we do not recommend the first three identifiers. The first two are not descriptive
(the name does not say anything about the entity); the third starts with an underscore, which
is usually used only for predefined identifiers.

The following are all invalid (illegal) identifiers and create a compilation error. The
first three start with a digit. The third, fourth, and fifth have some symbols other than digits
or letters. The last two are keywords and cannot be redefined by a programmer.

3z 13 3?2 sum@ count-2 delete double

EXAMPLE 2.6
We did not define any identifiers in Program 2.1 or Program 2.2. However, we have created
three identifiers in Program 2.3 as shown below:

num1, num2, sum

Literals
Another set of tokens we encounter in a program are literals. Literals are constant values of
different types. We will discuss some literals in this chapter after we discuss the data types
in the C++ language.

for23380_ch02_019-058.indd 34 02/11/18 5:10 pm

2.3 Components	of	a	C++	Program 35

EXAMPLE 2.7
We have used five literals in Program 2.1: one integer literal and four string literals.

0
"This is a simple program in C++ "
"to show the main structure."
"We learn more about the language ";
"in this chapter and the rest of the book.";

// numeric literal

// string literal

// string literal

// string literal

// string literal

Symbols
C++ uses nonalphabetic symbols as operators and punctuation. We discuss some of the
operators later in the chapter. Here we discuss some of the punctuation symbols in sample
programs. Table 2.2 shows the symbols used in the C++ language.

EXAMPLE 2.8
Find the symbols used in Program 2.1. They are shown below:

() { :: << ; }

2.3.2 Comments
We briefly discussed comments when we introduced our second program. Comments are
explanations added to the program to make it understandable for people who read the source
code. They are text that is removed by the preprocessor, which is a program that prepares
the source code for compilation.

Single-Line Comments
If we need a short comment, we can use a single-line comment. A single-line comment starts
with // and terminates at the end of the line. It can start at any point in a line, but it consumes
the rest of the line. The rest of the line after // is ignored by the compiler. In this book we
show comments in red.

cout << "Hello World"; // This prints the first line.

{ } [] # ## () <: :>

<% %> %: %:%: ; : ... , . +

− * / % ^ & | ? :: .*

−> −>* ~ ! = == < > <= >=

|= << >> <<= >>= -= += *= /= %=

&= != ^= ++ −	−

Table 2.2 Symbols in C++

for23380_ch02_019-058.indd 35 02/11/18 5:10 pm

36 Chapter 2 Basics	of	C++	Programming

Multiple-Line Comments
A multiple-line comment can span several lines. It has two markers, one to define the be-
ginning and another to define the end of the comment. The opening marker is /* while the
closing marker is */. When the opening marker (/*) is encountered by the preprocessor, the
rest of the text is ignored until the preprocessor encounters the closing marker (*/). The fol-
lowing shows a multiple-line command:

/* This is a program to show how we can print a message of two lines

using the output object cout defined in the iostream file. */

Nesting Comments
C++ does not support nested comments, although new programmers often try to nest
them. A little thought about how comments are processed by the compiler will clarify the
issue.

1. A line comment cannot be nested inside a line comment because when the compiler
sees the line comment token (//) it ignores everything else on the line. The line is
simply printed.

2. Nesting either a line comment or another multiple-line comment inside a multiple-
line comment also doesn’t work because again the compiler ignores everything from
the opening token to the end token (/* … */).

3. The one situation that can create an error is nesting a multiple-line comment in a
single line comment. Let’s look at this situation more closely.

// Single line comment. /* Start of multiple-line comment.

Line two of comments

*/ End of multiple-line comments

There are several problems with this error:

a. The compiler does not see the start of the multiple-line comment because it ignores
everything on the line after the opening token (//).

b. The comments that follow on the second and successive lines are most likely English
or mathematical descriptions. They will generate one or more error messages.

c. The compiler generates an error message when the end token (*/) is found because it
doesn’t have a start token. Remember, the start token was ignored.

2.4 DATA TYPES
A program written in the C++ language, in a procedural or an object-oriented paradigm,
needs to manipulate data. In other words, a program in C++ is like a machine that accepts
some input data, manipulates them, and produces the output data. To make manipulating
data efficient, C++ recognizes different data types. The number of data types defined in
the C++ language is very large, but we can divide these types into two broad categories:
built-in and user-defined, with each category divided into two groups as shown in Figure
2.11.

for23380_ch02_019-058.indd 36 02/11/18 5:10 pm

2.4 Data	Types 37

The built-in data types are those defined by the language. The language distinguishes
two groups in this category: fundamental (or primitive) and compound. The fundamental
types are very basic; we can use them immediately; the compound types are derived from the
fundamental types (discussed in future chapters). The language also divides the user-defined
type into two categories: enumerated and class.

The fundamental data types themselves are divided into five categories based on the
nature of what they define as shown in Figure 2.12.

In this section, we only discuss fundamental types and one of the class types (string
class). We discuss compound types in future chapters.

2.4.1 Integer Type
A number without a fraction is called an integer. For example, the number 1376 is an integer,
but the number 1376.25 is not. C++ allows three different sizes of integers: short int, int,
long int (in appendix M, we discuss a new integer data type defined in C++11). However, the
term int can be omitted if there is no ambiguity. The size of these types is platform dependent,
which means that long int can be 4 bytes in one machine and 8 bytes in another. Each of these
three different types can be either signed or unsigned (the default is signed). We use a prefix
to show that. In other words, C++ actually defines six different integer data types.

Table 2.3 shows the range of numbers used in a typical machine. Note that we have
assumed 4 bytes (32 bits) for the size of long int, but some platforms use 8 bytes for this
purpose.

Although the language does not define the exact size and ranges of the different integer
data types, it emphasizes their relative sizes. It defines the following relationship, in which
the symbol ≤ means “less than or equal.”

short int ≤ int ≤ long int

To better visualize these different integer types and their sizes, we can look at Figure
2.13.

Data types

Fundamental Compound

Built-in

Enumerated Class

User-defined

Figure 2.11 Data	types	in	C++

Fundamental
data types

Floating-pointInteger Character Boolean Void

Integral types

Arithmetic types

Figure 2.12 Fundamental	data	types

for23380_ch02_019-058.indd 37 02/11/18 5:10 pm

38 Chapter 2 Basics	of	C++	Programming

The signed types can be positive or negative; the unsigned types are only positive.
Note that the total range of a type is the same in the signed and unsigned version, but the
range is divided into two equally divided sections in the signed version (0 is considered as
part of the signed section).

If we do not explicitly define the sign of an integer, it is signed.

Integer Variables
We can use integer variables in our program if we explicitly define a variable of type integer:
short int, int, and long int (short int and long int can be abbreviated to short or long). At the
same time, we can define the sign of the integer: signed or unsigned (the default is signed).

EXAMPLE 2.9
The following shows the definition of six variables, each a different integer type.

// Long format // Short format

unsigned short int first;
signed short int second;
unsigned int third;
signed int fourth;
unsigned long int fifth;
signed long int six;

unsigned short first;
short second;
unsigned int third;
int fourth;
unsigned long fifth;
long int six;

EXAMPLE 2.10
Assume we need to find the value of any set of coins (dollars, quarters, dimes, nickels, pen-
nies) in pennies. Since the value of each coin is predefined and always positive, we can use
unsigned integer constants as shown in Program 2.4.

Type Sign Range

short	int
signed −32,768 +32,767

unsigned 0 65,536

	int
signed −2,147,483,648 +2,147,483,647

unsigned 0 4,294,967,295

	long	int
signed −2,147,483,648 +2,147,483,647

unsigned 0 4,294,967,295

Table 2.3 Ranges of integers in a typical machine

short0–1

int0–1

Sizes of signed integers Sizes of unsigned integers

unsigned int0

unsigned short0

unsigned long0long0–1

Figure 2.13 The	relative	sizes	of	integer	data	types

for23380_ch02_019-058.indd 38 02/11/18 5:10 pm

2.4 Data	Types 39

Program 2.4	 Using	unsigned	integers	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/***
* Finding the total value of a set of coins *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Defining constants
const unsigned int pennyValue = 1;
const unsigned int nickelValue = 5;
const unsigned int dimeValue = 10;
const unsigned int quarterValue = 25;
const unsigned int dollarValue = 100;

// Defining variables (number of each coin)
unsigned int pennies;
unsigned int nickels;
unsigned int dimes;
unsigned int quarters;
unsigned int dollars;

// Defining total value
unsigned long totalValue;

// Inputting number of different coins
cout << "Enter the number of pennies: ";
cin >> pennies;
cout << "Enter the number of nickels: ";
cin >> nickels;
cout << "Enter the number of dimes: ";
cin >> dimes;
cout << "Enter the number of quarters: ";
cin >> quarters;
cout << "Enter the number of dollars: ";
cin >> dollars;

// Calculating total value
totalValue = pennies * pennyValue + nickels * nickelValue +
 dimes * dimeValue + quarters * quarterValue + dollars * dollarValue;

// Outputting result
cout << "The total value is: " << totalValue << " pennies." ;
return 0;

}

Run:
Enter the number of pennies: 20
Enter the number of nickels: 5
Enter the number of dimes: 10
Enter the number of quarters: 4
Enter the number of dollars: 6
The total value is: 845 pennies.

for23380_ch02_019-058.indd 39 02/11/18 5:10 pm

40 Chapter 2 Basics	of	C++	Programming

EXAMPLE 2.11
We need to consider signed integers when dealing with bank transactions. A deposit is a
positive-value transaction; a withdrawal is a negative-value transaction. Program 2.5 shows
the balance of an account after three transactions when we open the account with a balance
of zero dollars. Note that because we use both positive and negative integers, we let each
customer withdraw money even if the balance is negative.

EXAMPLE 2.12
Later in the book, we discuss more about the size and maximum and minimum values of
each type. At this time, we write a small program (Program 2.6) and use the sizeof operator

Program 2.5	 Using	signed	integers	in	a	program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* Finding the balance of an account after three transactions *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Definition of variables
int balance = 0;
int transaction;

// Inputting first transaction and adjusting the balance
cout << "Enter the value of the first transaction: ";
cin >> transaction;
balance = balance + transaction;

// Inputting second transaction and adjusting the balance
cout << "Enter the value of the second transaction: ";
cin >> transaction;
balance = balance + transaction;

// Inputting third transaction and adjusting the balance
cout << "Enter the value of the third transaction: ";
cin >> transaction;
balance = balance + transaction;

// Outputting the final balance
cout << "The total balance is: " << balance << " dollars. ";
return 0;

}

Run:
Enter the value of the first transaction: 70
Enter the value of the second transaction: −50
Enter the value of the third transaction: 35
The total balance in your account is: 55 dollars.

for23380_ch02_019-058.indd 40 02/11/18 5:10 pm

2.4 Data	Types 41

to find the size of the integer data types in the platform we are working on. This may help us
to avoid using data values out of the range for the type.

Note that the size of an int and a long int are the same in the computer we used to run
the program.

Integer Literals
When we explicitly use a value of any type in our program, it is referred to as a literal. An
integer literal, when used in a program, has a constant value; its value does not change
when the program executes. If the programmer does not define the size and the sign of an
integer literal, the system uses the smallest size (int or long) that can fit the value. If the
integer is positive, the literal would be unsigned; if it is negative, the literal would be signed.
The programmer can explicitly define the size and the sign of the literal using suffixes as
defined in Table 2.4.

Note that short int is not used for literals. The default value is int (no suffix). To
tell the compiler that we want long, we can use the suffix l or L (lowercase or uppercase).
Numeric literals are signed by default: to explicitly say that we want them unsigned, we
need to us the suffix u or U (lowercase or uppercase). Note, however, that we do not

Program 2.6	 Finding	size	of	integer	types	

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
* A program to find the size of all three integer types *
 ***/

#include <iostream>
using namespace std;

int main ()
{

cout << "Size of short int is " << sizeof (short int) << " bytes." << endl;
cout << "Size of int is " << sizeof (int) << " bytes." << endl;
cout << "Size of long int is " << sizeof (long int) << " bytes." << endl;
return 0;

}

Run:
Size of short int: 2 bytes.
Size of int: 4 bytes.
Size of long int: 4 bytes.

Table 2.4 Suffixes for explicit size and sign of an integer literal

Size Suffixes Sign Suffixes

int None signed	int	or	signed	long	 None

long l	or	L unsigned	int	or	unsigned	long u	or	U

for23380_ch02_019-058.indd 41 02/11/18 5:10 pm

42 Chapter 2 Basics	of	C++	Programming

recommend using the lowercase formats (l or u). The first is too easily confused with the
digit 1.

To explicitly define the size or sign of an integer literal, we use suffixes.

EXAMPLE 2.13
The following shows the only four cases we can have when we use an integer as a literal:

1234
1234U
1234L
1234UL

// The system uses signed integer
// The system uses unsigned integer
// The system uses signed long int
// The system uses unsigned long int

Integer literals can be used for two purposes. They can be used as a stand-alone value
in a calculation or they can be used to initialize a variable.

Integer Literals Used for Initialization When we declare a variable, we can initialize it to a
value. This does not mean that we cannot later change the value of the variable. It just means
that if a new value is not assigned to the variable, the variable holds the initial value. Later
in the book, we discuss default initialization values for variables, but until then we should
remember to initialize a variable with an appropriate value.

To show why we need to be careful when we use integer literals to initialize variables,
let us run Program 2.7.

Program 2.7	 Initialization	with	integer	literals

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* Using some literal values as variable initializers *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration and initialization
int x = -1245;
unsigned int y = 1245;
unsigned int z = -2367;
unsigned int t = 14.56;

// Outputting initialized values
cout << x << endl;
cout << y << endl;
cout << z << endl;
cout << t;

(continued)

for23380_ch02_019-058.indd 42 02/11/18 5:10 pm

2.4 Data	Types 43

The result shows that there is a logic error in line 12. We defined the variable z to
be an unsigned integer and we stored the value -2367 in it. This number is interpreted as
4294964929 and stored in z. We will discuss this logical error in the next chapter, but this is
not what we intended it to be. The result in line 18 is another surprise. Since we defined the
variable t to be of type unsigned integer and we stored a noninteger value in it, the system
changed the literal to an integer value by dropping the fraction part after the decimal point.
Most puritans consider this case a logical error.

Integer Literals Used as Stand-Alone Values We can also use an integer literal as a stand-
alone value in a program. In this case, the value seen by the program depends on both the
literal value and its contents.

EXAMPLE 2.14
Program 2.8 shows a few cases that test the aforementioned situations.

Program 2.7	 Initialization	with	integer	literals	(Continued)

19
20

return 0;
}

Run:
Value of x: -1245 // OK.
Value of y: 1245 // OK.
Value of z: 4294964929 // Logical error. A negative value is changed to positive.
Value of t: 14 // The value is truncated.

(continued)

Program 2.8	 Use	of	some	literals	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* Using some stand alone literal values *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Variable definition
int x;
unsigned long int y;

// Assignments
x = 1456;
y = -14567;

// Outputs
cout << x << endl;
cout << y << endl;

for23380_ch02_019-058.indd 43 02/11/18 5:10 pm

44 Chapter 2 Basics	of	C++	Programming

Note that in line 14 an unsigned literal must be stored in variable y, but we assigned a
negative value to it. In the next chapter, we will see the reason for this behavior.

2.4.2 Character Type
The second integral type we discuss is the character type. It is called char. We can think
of char as an integer smaller than an unsigned short int. The size of a char as originally
defined in C++ is 1 byte and it was implicitly unsigned. Today, however, we sometimes
see characters of 1 byte, 2 bytes, or even 4 bytes in size. We even hear about signed and
unsigned characters. These new types are designed to support the internationalization of the
C++ language. We discuss some of these types in Appendix A. In this chapter, we assume
that a char data type is a 1 byte integral type that defines a character in the ASCII encoding
system (see Appendix A). The ASCII encoding system defines 128 characters using integral
values from 0 to 127.

Character Variables
We can use character variables in our program just as we can use integer variables. How-
ever, we avoid signed and unsigned qualifiers in this chapter. The following shows some
examples of declaring two variables of type char.

char first;
char second;

Character Literals
We can use two types of character literals. We can use alphabet characters as defined in
the ASCII table (Appendix A) inside two single quotes. We can also use the integer value
of the characters as defined in the ASCII table. As long as it is unambiguous that we mean
character literals, the compiler stores the corresponding character in memory. Program 2.9
gives a very simple example using four character variables and character literals to initial-
ize them.

Note the values printed for the first and second variables are the same. We have used a
literal character for the first and a literal integer for the second. This is the case for the third
and fourth variables.

Program 2.8	 Use	of	some	literals	(Continued)

18
19
20
21

cout << 1234 << endl;
cout << 143267L << endl;
return 0;

}

Run:
1456 // OK.
4294952729 // Wrong value. The variable is unsigned; the value is signed.
1234 // OK.
143267 // OK.

for23380_ch02_019-058.indd 44 02/11/18 5:10 pm

2.4 Data	Types 45

Sequence Description Sequence Description

\n New	line	(line	feed) \f Form	feed

\t Tab \’ Single	quote

\b Backspace \” Double	quote

\r Carriage	return \\ Backslash

Table 2.5 Some special characters

Program 2.9	 Character	variables	and	literals	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* Using some char variables and initialize them *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Defining and initializing some variables of char type
char first = 'A';
char second = 65;
char third = 'B';
char fourth = 66;

// Printing values
cout << "Value of first: " << first << endl;
cout << "Value of second: " << second << endl;
cout << "Value of third: " << third << endl;
cout << "Value of fourth: " << fourth;
return 0;

}

Run:
Value of first: A
Value of second: A
Value of third: B
Value of fourth: B

A character literal is always enclosed in a pair of single quotes.

We can use an escape sequence (backslash followed by a symbol) to define some
special characters as shown in Table 2.5.

We use a backslash in front of the first five characters because they are not printable
characters. The single quote is used to delimit a character, so we must use the backslash
to mean we want the single quote itself, not the delimiter. This is the same with the

for23380_ch02_019-058.indd 45 02/11/18 5:10 pm

46 Chapter 2 Basics	of	C++	Programming

double quote, but it is used to delimit the string. Therefore, we need to use the a backs-
lash to tell the program that we literally need this character, not the delimiter. If we want
to literally use a backslash, we must escape it with another backslash.

EXAMPLE 2.15
Although we can define variables and assign any of these escape sequences, the better way
is to show their effect when they are used in strings. Program 2.10 shows how we use seven
of them in seven strings. The form feed cannot be used with the monitor; it is designed to
feed a new page to the printer.

2.4.3 Boolean Type
The C++ language defines a type called Boolean (named after the French mathematician/
philosopher George Bool) to represent a value that can be either true or false. The type is
referred to as Boolean, but the type name used in a program is actually bool, which is a
keyword.

 This type is mostly used to represent the result of comparing two values. For example,
if we compare the integers 23 and 24 for equality, we get false. However, if we compare
them for inequality, we get true.

Program 2.10	 Effect	of	some	special	characters	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* Using some special characters in strings *
 ***/

#include <iostream>
using namespace std;

int main ()
{

cout << "Hello\n";
cout << "Hi\t friends." << endl;
cout << "Buenos dias \bamigos." << endl; // two space after dias
cout << "Hello\rBonjour mes amis." << endl;
cout << "This is a single quote\'." << endl;
cout << "This is a double quote\"." <<endl;
cout << "This is how to print a backslash \\.";
return 0;

}

Run:
Hello // \n has the same effect as endl
Hi friends. // effect of tab
Buenos dias amigos. // \b deletes the previous character (one of the spaces)
Bonjour mes amis. //\r moves control to beginning of line (Hello will be gone)
This is a single quote'. // A single quote is displayed
This is a double quote". // A double quote is displayed
This is how to a print backslash \. // A backslash is displayed

for23380_ch02_019-058.indd 46 02/11/18 5:10 pm

2.4 Data	Types 47

Boolean Variables
In almost all implementations, a value of type bool is stored in a 1 byte chunk of memory.
In other words, the size is 1 byte or 8 bits. If we compare a variable of type char with a
variable of type bool, we see that both use 1 byte of memory and we can store integers
in both of them. The difference is that the integer stored in type char is interpreted as a
character; the integer stored in type bool is interpreted as a logical value (0 or 1) or (false
or true).

The size of a bool data type is 1 byte.

Boolean data types are used in decision-making processes that we discuss in future
chapters.

Boolean Literals
Since a Boolean type is in fact a 1 byte integer, we could use a small integer to represent a
Boolean literal. Traditionally, any zero value is interpreted as false; any nonzero value is
interpreted as true. When the value of a Boolean type is output, it is either 0 or 1. In a future
chapter, we show how to print the literals false or true instead.

EXAMPLE 2.16
Program 2.11 is a simple program to test Boolean values.

(continued)

Program 2.11	 Boolean	type	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The use of Boolean variables and values *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Variable definitions
bool x = 123;
bool y = -8;
bool z = 0;
bool t = -0;
bool u = true;
bool v = false;

// Outputting values
cout << "Value of x: " << x << endl;
cout << "Value of y: " << y << endl;
cout << "Value of z: " << z << endl;

for23380_ch02_019-058.indd 47 02/11/18 5:10 pm

48 Chapter 2 Basics	of	C++	Programming

Note that any nonzero value (positive or negative) is interpreted as true; any zero
value is interpreted as false. The Boolean values are displayed as 1 or 0 unless we explicitly
change them to true or false, as we will discuss in a future chapter.

2.4.4 Floating-Point Type
A number with a fraction is called a floating-point type in C++. To make computation ef-
ficient, C++ defines three different floating-point sizes: float, double, and long double. All
floating-point numbers are signed.

All floating-point numbers are signed.

Floating-point numbers are stored in the computer using the IEEE standard (see Ap-
pendix S for the range). Although the language does not define the exact size and ranges of
the different floating-point data types, it emphasizes their relative sizes. It defines the fol-
lowing relationship in which the symbol <= “means less than or equal.”

float ≤ double ≤ long double

Figure 2.14 shows this relationship graphically. Note that all floating-point data types
are signed so the relationship is simpler than in the case of integer data types.

Floating-Point Variables
We can define floating-point variables in the same way that we have defined integers. We
can initialize them when we declare them or we can assign values to them later.

Program 2.11	 Boolean	type	(Continued)

20
21
22
23
24

cout << "Value of t: " << t << endl;
cout << "Value of u: " << u << endl;
cout << "Value of v: " << v << endl;
return 0;

}

Run:
Value of x: 1 // 123 is interpreted as 1 (true)
Value of y: 1 // -8 is interpreted as 1 (true)
Value of z: 0 // 0 is interpreted as 0 (false)
Value of t: 0 // -0 is interpreted as 0 (false)
Value of u: 1 // true is output as 1
Value of v: 0 // false is output as 0

float
double

long double

Sizes of floating-point types
0.0

Figure 2.14 Relative	sizes	of	floating-point	types

for23380_ch02_019-058.indd 48 02/11/18 5:10 pm

2.4 Data	Types 49

Floating-Point Literals
Floating-point literals are numeric values with fractions such as 32.78, 141.123, 123456.0,
and -2472.657. The programmer can explicitly define the size by using suffixes as shown
in Table 2.6

The default size of a floating-point literal is double.

EXAMPLE 2.17
We discussed previously how to calculate the area and perimeter of a circle. Program 2.12
calculates the area and perimeter of any circle given its radius.

Floating-point type Suffixes Example

float f	or	F 12.23F,	12345.45F,	−1436F

double None 1425.36,	1234.34,	123454

long	double l	or	L 2456.23L,	143679.00004	L,	−0.02345L

Table 2.6 Suffixes to define the size of a literal

Program 2.12	 Calculating	area	and	perimeter	of	a	circle	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* This program calculates the area and perimeter of a circle. *
 ***/

#include <iostream>
using namespace std;

int main ().
{

// Defining a stored constant
const double PI = 3.14159;

// Defining three variables
double radius;
double perimeter;
double area;

// Inputting value for radius
cout << "Enter the radius of the circle: ";
cin >> radius;

// Calculating perimeter and area and storing them in variables
perimeter = 2 * PI * radius; // 2 is used as a constant literal
area = PI * PI * radius;

(continued)

for23380_ch02_019-058.indd 49 02/11/18 5:10 pm

50 Chapter 2 Basics	of	C++	Programming

Program 2.12	 Calculating	area	and	perimeter	of	a	circle	(Continued)

21
22
23
24
25
26

// Outputing the value of radius, perimeter, and area
cout << "The radius is: " << radius << endl;
cout << "The perimeter is: " << perimeter << endl;
cout << "The area is: " << area;
return 0;

}

Run:
Enter the radius of the circle: 10.5
The radius is: 10.5
The perimeter is: 65.9734
The area is: 103.631

2.4.5 Void Type
The void type is a special type that has no value. However, it is useful because it can show
the lack of any value. For example, we can use void to show that a function returns no value.
The lack of value is the same concept we use in real life when we say a void check, which
is a check that is used for other purposes but has no value. The void type can be used, for
example, to show that a function returns nothing.

2.4.6 String Class
The string that we have used so far in this chapter is inherited from the C language. It is a
collection of characters ending in a null character. For example, the string "John" can be
thought of as a collection of five characters ‘J’,‘o’, ‘h’, ‘n’, and ‘\0’, the latter of which de-
fines a null character (terminator). We see this type of string in more details when we discuss
arrays (collection of elements) in a future chapter.

C++ defines a new string class that is a user-defined type (see Figure 2.11). The string
class is defined in the C++ library and is more sophisticated and easier to use because many
operations are defined for it. We use the C++ strings instead of C strings gradually until
we discuss this class in full in a future chapter.

To use the C++ string, we must include the header file <string> in our program as
shown below:

include <string>

We declare a variable of type string using the following definition:

string name;

in which name is the name of the variable. An object of class string can also be created using
double quotes such as "John". One of the differences between the literal of the C string and
the object of the C++ string is that the first is made of five characters; the second only of
four characters (no null character is needed in a C++ string). The main difference and the
advantage of the C++ string will reveal itself as we gradually learn to use operations on the
objects of this class.

for23380_ch02_019-058.indd 50 02/11/18 5:10 pm

2.4 Data	Types 51

One of the interesting things that we can do with C++ string is concatenation. We can
simply use the addition operator (+) to concatenate two or more strings together, as we see
in the next example.

EXAMPLE 2.18
In this example we write a simple program (Program 2.13) that uses C++ strings. We de-
clare the first name, last name, and initial of a person and, using concatenation, we print the
whole name. This is just a simple example of a string class; the most powerful examples are
discussed in future chapters.

Program 2.13	 Using	string	class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* This program prints the full name of a person given the first, *
* the middle, and the last name. *
 ***/

#include <iostream>
#include <string> // Need to use the string class
using namespace std;

int main ()
{

// Defining variables
string first;
string initial;
string last;
string space = " ";
string dot = ".";
string fullName;

// Input data for first name, initial, and last name
cout << "Enter the first name: ";
cin >> first;
cout << "Enter the initial: ";
cin >> middle;
cout << "Enter the last name: ";
cin >> last;

// Formation of full name using concatenation operator
fullName = first + space + initial + dot + space + last;

// Outputting full name
cout << "The full name is: " << fullName;
return 0;

}

Run:
Enter the first name: John
Enter the initial: A
Enter the last name: Brown
The full name is: John A. Brown

for23380_ch02_019-058.indd 51 02/11/18 5:10 pm

52 Chapter 2 Basics	of	C++	Programming

K e y T e r m s

ASCII
backslash
block comment
Boolean
Boolean literal
built-in data type
C string
C++ string
character type
character literal
class
comment
constant
data type
double
double quote
enumerated
floating-point

floating-point literal
fundamental data type
identifier
include
include directive
integer
integer data type
integer literal
keyword
line comment
literal
new line
preprocessor
single quotes
string class
token
value
variable

The C++ language is case-sensitive. We normally divide our programs into lines to improve
readability. The header file in a program includes predefined code at the top of the program.
Every C++ program needs at least one function named main.

A program in C++ uses variables, which have a name and a type.
The cin and cout objects we use in a program are closely related to the ideas of variable

and value. The cin object gets data from a keyboard and stores it in a variable; the cout object
sends a value to the monitor.

The source code in a C++ program is usually made of two things interleaved with each
other: code and comments. The code uses the tokens of the C++ language; the comments are
words in English. A token can be an identifier, a literal, or a symbol.

A program written in the C++ language manipulates data. C++ recognizes different
types of data: built-in (fundamental and compound) and user-defined (enumerated and
class). The fundamental data types are divided into three categories: integer, character, and
floating-point type. An integer is a number without a fraction. A character data type defines
a letter. The Boolean data type represents a true or false value. The floating-point type
represents a number with a fraction.

The C++ language uses two string types: the first is called C-string; the second is called
C++ string.

S u m m a r y

P r o b l e m s

PR-1. Locate the errors (if any) in the following program.

1
2
3

#include <iostream>
using namespace std

for23380_ch02_019-058.indd 52 02/11/18 5:10 pm

Problems 53

4
5
6
7
8
9

int main ()
{

cout << 25;
cout << first;
return 0;

}

PR-2. Locate the errors (if any) in the following program.

1
2
3
4
5
6
7
8

#include <iostream>

int main ()
{

cout << 35;
cout << 45;
return 0;

}

PR-3. Locate the errors (if any) in the following program.

1
2
3
4
5
6
7
8

#include <iostream>
using namespace std

int main ();
{

std :: cout << 35 << endl;
std :: cout << 45;

}

PR-4. Locate the errors (if any) in the following program.

1
2
3
4
5
6
7
8
9

10

#include <iostream>
using namespace std

int main ()
{

int a = 25;
a + 30 = a ;
cout << a;
return 0;

}

PR-5. Locate the errors (if any) in the following program.

1
2
3
4
5
6
7
8
9

#include <iostream>
using namespace std;

int main ()
{

string name;
cout << name;
return 1;

}

for23380_ch02_019-058.indd 53 02/11/18 5:10 pm

54 Chapter 2 Basics	of	C++	Programming

PR-6. Locate the errors (if any) in the following program.

1
2
3
4
5
6
7
8

using namespace std;

int main ()
{

double = 24;
cout << double ;
return 0

}

PR-7. Locate the errors (if any) in the following program.

1
2
3
4
5
6
7
8
9

#include <iostream>
using namespace std;

int main ()
{

int y = 32.34;
cout << y ;
return 0;

}

PR-8. Locate the errors (if any) in the following program.

1
2
3
4
5
6
7
8
9

#include <iostream>
using namespace std;

int main ()
{

float y = 32.34;
cout << y ;
return 0;

}

PR-9. Locate the errors (if any) in the following program.

1
2
3
4
5
6
7
8
9

#include <iostream>
using namespace std;

int main ()
{

double y = 32.34;
cout << ;
return 0;

}

PR-10. Locate the errors (if any) in the following program.

1
2
3
4

#include <iostream>
using namespace std;

int main ()

for23380_ch02_019-058.indd 54 02/11/18 5:10 pm

Problems 55

5
6
7
8
9

10
11

{
char y = 32;
char t = 78;
char z = y + t;
cout << z;
return 0;

}

PR-11. What is printed from the following program?

1
2
3
4
5
6
7
8
9

10
11

#include <iostream>
using namespace std;

int main ()
{

int x = 12;
int y = 14;
int z = x + y;
cout << z;
return 0;

}

PR-12. What is printed from the following program?

1
2
3
4
5
6
7
8
9

10

#include <iostream>
using namespace std;

int main ()
{

double x = 12.24;
double y = 14.32;
cout << x << " + " << y;
return 0;

}

PR-13. What is printed from the following program?

1
2
3
4
5
6
7
8
9

10

#include <iostream>
using namespace std;

int main ()
{

char x = 'A';
char y = 'B';
cout << x << y;
return 0;

}

PR-14. What is printed from the following program?

1
2
3

#include <iostream>
using namespace std;

for23380_ch02_019-058.indd 55 02/11/18 5:10 pm

56 Chapter 2 Basics	of	C++	Programming

4
5
6
7
8
9

10
11

int main ()
{

bool truth = true;
bool lie = false;
bool result = truth + lie;
cout << result;
return 0;

}

PR-15. List all keywords in the following program.

1
2
3
4
5
6
7
8
9

10

#include <iostream>
using namespace std;

int main ()
{

int x = 0;
int y = 1;
cout << x << y;
return 0;

}

PR-16. Find all non-keyword identifiers in the following program.

1
2
3
4
5
6
7
8
9

10

#include <iostream>
using namespace std;

int main ()
{

int x = 4;
int y = 22;
cout << x << y;
return 0;

}

PR-17. Find all variables in the following program.

1
2
3
4
5
6
7
8
9

10

#include <iostream>
using namespace std;

int main ()
{

int x = 4;
int y = 22;
cout << x << y;
return 0;

}

PR-18. Give the line numbers containing line comments in the following program.

1
2
3

#include <iostream>
using namespace std;

for23380_ch02_019-058.indd 56 02/11/18 5:10 pm

Programming	Projects 57

4
5
6
7
8
9

10
11
12

int main ()
{

// Declaration and initialization of two variables
int x = 4;
int y = 22;
// Print the value of x and y
cout << x << " " << y;
return 0;

}

PR-19. Give the line numbers containing block comments in the following program.

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
 * A small program to print two values. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

int x = 4;
int y = 22;
cout << x << " " << y;
return 0;

}

P r o g r a m m i n g P r o j e c t s

PRG-1. Write a program that prints the following triangle of asterisks.

*
**

PRG-2. Write a program that prints the following figure using asterisks.

*
**

**
*

PRG-3. Write a program that prints a big letter H as shown below.

H H
H H
HHHH
H H
H H

PRG-4. Write a program that, given the time duration of a task in the number of hours,
minutes, and seconds, calculates the duration in seconds.

for23380_ch02_019-058.indd 57 02/11/18 5:10 pm

58 Chapter 2 Basics	of	C++	Programming

PRG-5. Write a program that inputs four integer values and calculates and prints the sum
of them.

PRG-6. Write a program that calculates and prints the area and the perimeter of a square
when the size of one side is given.

PRG-7. Write a program that, using a C++ string, prints your name in the format shown
below after being prompted to input your first and the last name. Note that the
last name should come before the first name as shown.

Your full name is: last, first

PRG-8. Write a program that prompts the user to enter two integers. It then prints their
sum. Run your program several times, each with different values for variables.

PRG-9. Write a program that calculates the sales tax of a transaction given the sale
amount. Assume that the tax is 9 percent. Use a constant to define the tax rate.
Run your program several times, each with different values for sale amount. Use
the following format for output.

Sale amount: …
Tax amount: …
Total amount due: …

PRG-10. Write a program that, given street number, street name, city name, state name,
and zip code, prints the address in the following format.

street-number, street city, state zip-code

for23380_ch02_019-058.indd 58 02/11/18 5:10 pm

59

3.1 EXPRESSIONS
We have seen that a program is a value manipulator. It takes values, manipulates them, and
creates new values. To do so, a program defines several small entities called expressions.
An expression is an entity with a value that can change the state of memory (side effect).

An expression is an entity that has a value and may have a side effect.

In this chapter, we introduce two main components of a program: expressions and state-
ments. An expression in a C++ program looks like a phrase in a natural language like Eng-
lish; a statement in a C++ program looks like a sentence in English. If we want to use a
natural language correctly, we need to understand phrases and sentences and how they are
formed. To understand the C++ language and how to create a program in this language, we
need to understand expressions and statements.

In C++ we have several types of expressions and several types of statements. We
cannot discuss all of them in this chapter, but we discuss enough to be able to write simple
programs. The discussion of expressions and statements will be continued in the next few
chapters until we master all of them.

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss expressions, how they are formed, and how they are evaluated and discuss primary
expressions, unary expressions, multiplicative expressions, additive expressions, and
assignment expressions.

•	Discuss type conversion in an expression, including implicit and explicit conversion.

•	Discuss the order of evaluation of simple expressions in a complex expression using
precedence and associativity of subexpressions.

•	Discuss overflow and underflow in both integer and floating-point data types.

•	Show how to format input and output data using manipulators with no argument and with one
argument.

•	Discuss statements and show some simple types of statements, including declaration
statements, expression statements, null statements, compound statements, and return
statements.

•	Discuss three steps in program design: understanding the problem, developing an algorithm,
and writing the code.

3 Expressions and Statements

for23380_ch03_059-111.indd 59 02/11/18 5:11 pm

60 Chapter 3 Expressions	and	Statements

An expression can be a simple value. An expression can also use operators to combine
values to create a new value. In C++, we can have an expression with no operator, with one
operator, with two operators, or with three operators. We can also combine expressions to
create another expression.

To handle expressions, we need a list of expressions with the corresponding operators
they use to create expressions. This list is given in Appendix C, but for the purpose of this
chapter we need only a part of the list as shown in Table 3.1. Note that we have used some
abbreviations in this list such as Pred (for precedence), Assoc (for associativity), expr (for
expression), and op (for operator).

Before we discuss the expressions in each group, let us give some information about
Table 3.1.

1. The table lists only five groups of expressions, but C++ today has nineteen groups of
expressions as depicted in Appendix C.

2. The first column defines the group of the expressions. The second column defines the
name normally used for each subgroup. The third column defines the symbol or term
used as the operator. The fourth column shows how the operator combines expressions
to create a new expression.

3. The fifth column defines the precedence (Pred) of the operator. We discuss precedence
later in the chapter; it tells us the order of evaluation when we have a collection of
expressions with different precedences; the one with the highest precedence is
evaluated first. Note that we have nineteen levels of precedence, but we have shown
only five of them in Table 3.1.

4. The sixth column defines the associativity (Assoc) of the operator. We also discuss
associativity later in the chapter; it tells us the order of evaluation when we have
expressions with the same precedence. The associativity can be either left-to-right (→)
or right-to-left (←).

We now discuss the five groups of expressions we defined in Table 3.1.

Group Name Operator Expression Pred Assoc

Primary literal	
name	
parenthetic	expr

literal	
name	
(expr)

19 →

Unary plus		
minus	
sizeof

+	
–	
sizeof

+	expr	
–	expr	
size	expr

17 ←

Multiplicative multiplication	
division	
remainder

*	
/	
%

expr	*	expr	
expr	/	expr	
expr	%	expr

14 →

Additive addition	
subtraction

+	
–

expr	+	expr	
expr	–	expr

13 →

Assignment simple	assignment	
comp.	assignment

=	
op=

variable	=	expr	
variable	op	=	expr

3 ←

Table 3.1 Partial list of C++ expressions

for23380_ch03_059-111.indd 60 02/11/18 5:11 pm

3.1 Expressions 61

3.1.1 Primary Expressions
A primary expression is a simple expression with no operator. It is the basic building block
for making more complex expressions. A primary expression has precedence 19, which
means it has the highest precedence among all expressions. We have several primary expres-
sions, as shown in Appendix C, but we describe only those shown in Table 3.1.

Literal
We have discussed literals (values that are used in a program). A literal in a program is a
primary expression; it has a value, but no side-effect. The following shows some literals as
primary expressions. Note that there are no short literals:

Literal Description Literal Description

false
'A'
"Hello"
234

// Boolean literal
// character literal
// string literal
// integer literal

12897234L
245.78F
114.7892
245.784321L

// long integer literal
// float literal
// double literal
// long double literal

EXAMPLE 3.1
As we have seen, a literal can be used for the sake of its value, as shown in Program 3.1.

Name
When we use a name in our program we are using a primary expression. An identifier as a
name can be a variable, an object name, a function name, and so on. The simplest name we
can use in our program is the name of a variable. It is a primary expression with a value, the

Program 3.1	 Literal	expressions

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
 * The program shows some literal expressions. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

 cout << false << " " << 'A' << " " << "Hello" << endl;
 cout << 23412 << " " << 12897234L << endl;
 cout << 245.78F << " " << 114.782 << " " << 2.051L;
 return 0;

}

Run:
0 A Hello // A Boolean , a character, a string
23412 12897234 // An integer, a long integer (there is no short literal)
24.78 114.782 2.051 // A float, a double, a long double

for23380_ch03_059-111.indd 61 02/11/18 5:11 pm

62 Chapter 3 Expressions	and	Statements

value stored in the corresponding variable. As we saw in the previous chapter, we can also
use a qualified name (a name with the group name and the individual name separated by
double colon).

Expression Description

x
cout
std :: cout

// Can be a name of a variable
// The name of an object
// A name qualified with its namespace

Parenthetical Expression
When we have an expression of a lower level of precedence that we want to change to a
primary expression, we enclose it in parentheses. This is done to use the complex expression
in a place where we need a primary expression. Sometimes we also need to evaluate part of
an expression before evaluating the rest of it. A primary expression has the highest level of
precedence, so we add parentheses to force the expression inside the parentheses to be evalu-
ated first. We will see some parenthetical expressions later in the chapter, but the following
shows two examples.

Expression Description

(x + 3) * 5
12 / (x + 2)

// After adding the value of x with 3, multiply the result by 5
// After adding x with 2, then divide 12 by the result

In both cases, if we remove the parentheses, the value of the expressions will be
changed and will not be what we intended, as the next program shows.

EXAMPLE 3.2
Program 3.2 shows how it makes a big difference when we use parentheses. We use the two
expressions described above with and without parentheses to see the differences.

Program 3.2	 Parenthetical	expression	

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
* The program shows the use of parenthetical expressions. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Variable declaration
int x = 4;

// Printing the first expression with and without parentheses
cout << "Value with parentheses: " << (x + 3) * 5 << endl;
cout << "Value without parentheses: " << x + 3 * 5 << endl << endl;

(continued)

for23380_ch03_059-111.indd 62 02/11/18 5:11 pm

3.1 Expressions 63

3.1.2 Unary Expressions
A unary expression is an expression made of an operator applied to a single value (called an
operand), which must be a primary expression, (if not, it must be first converted to a primary
expression, as discussed later in the chapter). The result is a primary expression. In a unary
expression the operator comes before the operand.

Plus and Minus Expressions
We have two expression named plus expression and minus expression, but we discuss
them together. In both expression types, the operator comes before the operand, as shown
in Figure 3.1.

The plus operator does not change the value of its operand (it is only for emphasis);
the minus operator does change the value of its operand (it flips the value). If the value is
originally positive, the operator changes it to negative and vice versa.

EXAMPLE 3.3
Program 3.3 shows how we can apply the plus/minus operator on primary expressions.

The sizeof Expression
Another unary expression is when we use the sizeof operator as shown in Figure 3.2. There
are two versions of this operator: one that finds the size of an expression and one that finds
the size of a type. The first version evaluates the expression (finds its value) and then finds

Program 3.2	 Parenthetical	expression	(Continued)

14
15
16
17
18

// Printing the second expression with and without parentheses
cout << "Value with parentheses: " << 12 / (x + 2) << endl;
cout << "Value without parentheses: " << 12 / x + 2;
return 0;

}

Run:
Value with parentheses: 35
Value without parentheses: 19

Value with parentheses: 2
Value without parentheses: 5

Value

Expression
(operand)

Operand

Operand

(a) Plus/Minus Expression (b) Effect of Minus Operator

Value

Value 0

0

+ −

Figure 3.1	 Plus	and	minus	expression

for23380_ch03_059-111.indd 63 02/11/18 5:11 pm

64 Chapter 3 Expressions	and	Statements

the size of the value. The second finds the size of the type as defined by the C++ implemen-
tation. The following shows examples of these two versions:

sizeof expression
sizeof (type)

// Finds the size of an expression.
// Finds the size of a type.

However, note that the expression in the first version needs to be a primary expression. So
if we have an expression that contains an operator, we need to enclose it in parentheses. The
result of the second expression is, of course, system dependent because the size of the data

Program 3.3	 Testing	plus/minus	expressions	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The program shows the use of plus/minus expressions *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration and initialization
int x = 4;
int y = −10;

// Applying plus and minus operator on variable x
cout << "Using plus operator on x: " << +x << endl;
cout << "Using minus operator on x: " << -x << endl;

// Applying plus and minus operator on variable y
cout << "Using plus operator on y: " << +y << endl;
cout << "Using minus operator on y: " << -y;
return 0;

}

Run:
Using plus operator on x: 4
Using minus operator on x: -4
Using plus operator on y:-10
Using minus operator on y: 10

The size of
Expression

Note:
The operator can find the
size of an expression or the
size of a type.

Value

size of

Expression
or

(type)

Figure 3.2	 The	size	of	expression

for23380_ch03_059-111.indd 64 02/11/18 5:11 pm

3.1 Expressions 65

type is system dependent. We discuss other unary expressions in future chapters when we
use them.

3.1.3 Multiplicative Expressions
A multiplicative expression is a binary expression in which there are two operands: left and
right. There are three operators that create multiplicative expressions, as shown in Figure 3.3
(multiplication, division, and remainder).

Multiplication
To multiply two values, we use a multiplication operator whose symbol is * (asterisk). Some
type change may occur if the two operands are not the same type, as discussed later.

Division
To divide one value by another, we use a division operator whose symbol is / (forward
slash). The result is an integer value if the two operands are both integers. The result can be
a floating-point value if one of the operands is floating-point.

Remainder
To find the remainder of one integer value when divided by another integer value, we use
a remainder operator whose symbol is the percent sign (%). The two operands need to be
positive integral types. If either of the operand is a negative integral type, the result is system
dependent.

EXAMPLE 3.4
Program 3.4 tests some multiplicative expressions.

Value

* / %

Expression
(operand)

Expression
(operand)

Note:

For multiplication and division operators,
if the the operands are of the same sign, the
result is a positive value; otherwise the
result is a negative value. For the remainder
operator, the sign of the result is system
dependent.

Figure 3.3	 Multiplicative	expression

Program 3.4	 Multiplicative	expressions

1
2
3
4
5
6
7
8

/***
* Shows effects of multiplicative expressions *
 ***/

#include <iostream>
using namespace std;

int main ()
{

(continued)

for23380_ch03_059-111.indd 65 02/11/18 5:11 pm

66 Chapter 3 Expressions	and	Statements

Program 3.4	 Multiplicative	expressions	(Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// Multiplication
cout << "Testing multiplication operator" << endl;
cout << "Value of 3 * 4 = " << 3 * 4 << endl;
cout << "Value of 2.4 * 4.1 = " << 2.4 * 4.1 << endl;
cout << "Value of −3 * 4 = " << −3 * 4 << endl;

// Division
cout << "Testing division operator" << endl;
cout << "Value of 30 / 5 = " << 30 / 5 << endl;
cout << "Value of 4 / 7 = " << 4 / 7 << endl;

// Remainder
cout << "Testing remainder operator" << endl;
cout << "Value of 30 % 5 = " << 30 % 5 << endl;
cout << "Value of 30 % 4 = " << 30 % 4 << endl;
cout << "Value of 3 % 7 = " << 3 % 7 << endl;
return 0;

}

Run:
Testing multiplication operator
Value of 3 * 4 = 12
Value of 2.4 * 4.1 = 9.84
Value of -3 * 4 = -12
Testing division operator
Value of 30 / 5 = 6
Value of 4 / 7 = 0
Testing remainder operator
Value of 30 % 5 = 0
Value of 30 % 4 = 2
Value of 3 % 7 = 3

3.1.4 Additive Expressions
An additive expression is a binary expression in which there are two operands: the left and
right operands. We have two additive expressions: addition and subtraction (both are re-
ferred to as additive expressions) as shown in Figure 3.4.

Value

Expression
(operand)

Expression
(operand)

Note:
When we subtract one operand from
another, the sign of the result is the
sign of the larger operand.

+ −

Figure 3.4	 Additive	expressions

for23380_ch03_059-111.indd 66 02/11/18 5:11 pm

3.1 Expressions 67

EXAMPLE 3.5
Program 3.5 shows how we can test some additive expressions.

3.1.5 Assignment Expressions
An assignment expression creates a value and has a side effect. It changes the memory state
of the computer. There are two assignment expressions: simple and compound. We discuss
the simple assignments and some compound assignments here, and we leave the discussion
of the rest of the compound assignments for future chapters.

Simple Assignment
The simple assignment operator uses the = symbol. Although the symbol looks like equal-
ity in mathematics, it is called assigned to in C++. It is a binary operator with two operands.
The left operand is a variable name. The right operand is an expression to be evaluated by
the operator. Figure 3.5 shows the idea.

We can summarize the action of a simple assignment in two steps:

1. The operator stores the value of the expression in the variable. This is called the side
effect because the previous value of the variable is lost and a new value is stored in it.

2. The operator returns the value obtained in step 1 to be used in more complex expressions.

Program 3.5	 Addition	and	subtraction		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* Shows effects of addition and subtraction operators *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Testing some add operations
cout << "Some addition operations" << endl;
cout << "Value of 30 + 5 = " << 30 + 5 << endl;
cout << "Value of 20.5 + 6.2 = " << 20.5 + 6.2 << endl;

// Testing some subtract operations
cout << "Some subtraction operations" << endl;
cout << "Value of 5 − 30 = " << 5 − 30 << endl;
cout << "Value of 51.2 − 30.4 = " << 51.2 − 30.4 << endl;
return 0;

}

Run:
Some addition operations
Value of 30 + 5 = 35
Value of 20.5 + 6.2 = 26.7
Some subtraction operations
Value of 5 − 30 = −25
Value of 51.2 − 30.4 = 20.8

for23380_ch03_059-111.indd 67 02/11/18 5:11 pm

68 Chapter 3 Expressions	and	Statements

In an assignment, the value of right expression is stored in the
variable (side effect) before the expression value is returned.

EXAMPLE 3.6
Program 3.6 shows how we can test the return value and the side effect. We first do the assign-
ment that returns the value to be printed (we need to use the parentheses to make the assign-
ment expression be done first). We then print the value of the variable to check the side effect.

Variable

Side
effect

?

Value

Expression
(operand)

=1

2

Note:

The left operand needs to be a variable.

The original value of the variable is lost, and
the value of the right expression is stored in
the variable as a side effect.

The side effect is done first; the value is
returned next.

Figure 3.5	 Simple	assignment

Program 3.6	 Simple	assignment	operator	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* Testing some simple assignment expressions *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Variable Declaration
int x;
int y;

// First assignment
cout << "Return value of assignment expression: " << (x = 14) << endl;
cout << "Value of variable x: " << x << endl;

// Second assignment
cout << "Return value of assignment expression: " << (y = 87) << endl;
cout << "Value of variable y: " << y;
return 0;

}

Run:
Return value of assignment expression: 14
Value of variable x: 14
Return value of assignment expression: 87
Value of variable y: 87

for23380_ch03_059-111.indd 68 02/11/18 5:11 pm

3.1 Expressions 69

Compound Assignments
Figure 3.6 shows the compound assignment and its interpretation. In programming, we often
need to change the contents of a variable and store the result back into the variable, such as
x = x + 5. The name of the variable is used two times in each expression: once in the left
expression and once in the right expression. We need to understand that the same identifier
here means two different things. At the right side of the assignment operator, the identifier x
means a copy of the original value; at the left side, it means calculate the value of the right
expression and store the result in variable x. Since expressions like the above are very com-
mon in programming, C++ provides a shortcut for this type of expression. It combines the
assignment operator and the operator at the right side into one single operator called a com-
pound assignment and uses the variable identifier only once. The expression becomes x += 5.

The following shows some compound assignment expressions and their interpretation
by the compiler.

x += 5
y −= 3
z *= 10
t /= 8
u %= 7

// It is interpreted by the compiler as
// It is interpreted by the compiler as
// It is interpreted by the compiler as
// It is interpreted by the compiler as
// It is interpreted by the compiler as

x = x + 5
y = y - 3
z = z * 10
t = t / 8
u = u % 7

Note that each compound assignment operator is made of two operators; we cannot separate
them from each other. In other words, we get an error if we use z * = 10 instead of z *= 10.

EXAMPLE 3.7
Program 3.7 tests the side effect of some compound assignments.

Program 3.7	 Testing	compound	assignments

1
2
3
4
5
6
7
8

/***
* Testing some compound-assignment expressions *
 ***/

#include <iostream>
using namespace std;

int main ()
{

lvalue

Side
effect =

Variable

rvalue

Op

Value

Compound assignment Interpretation
Value

Expr

Variable

lvalue and rvalue

Side
effect Op=

Expr

value
value

Figure 3.6	 Compound	assignment	and	its	interpretation

(continued)

for23380_ch03_059-111.indd 69 02/11/18 5:11 pm

70 Chapter 3 Expressions	and	Statements

Program 3.7	 Testing	compound	assignments	(Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// Declaration of five variables
int x = 20;
int y = 30;
int z = 40;
int t = 50;
int u = 60;

// Use compound assignments
x += 5;
y −= 3;
z *= 10;
t /= 8;
u %= 7;

// Output results
cout << "Value of x: " << x << endl;
cout << "Value of y: " << y << endl;
cout << "Value of z: " << z << endl;
cout << "Value of t: " << t << endl;
cout << "Value of u: " << u;
return 0;

}

Run:
Value of x: 25
Value of y: 27
Value of z: 400
Value of t: 6
Value of u: 4

The first result can be thought of as x = x + 5 or x = 20 + 5, which is actually x = 25. The
last result can be thought of as u = u % 7 or u = 60 % 7, which is actually u = 4.

3.1.6 The concepts of lvalue and rvalue
In C++ any entity that can be put at the left-hand side of the assignment operator is called an
lvalue (left value). On the other hand, any entity that can be put at the right-hand side of an
assignment is called an rvalue (right value). The name is sometimes misleading. It is clearer
to say that an entity that can be a destination of a value is called an lvalue; an entity that
can be the source of a value is an rvalue. A variable is an lvalue when it is at the left-hand
side of an assignment and acts as a destination. The same variable is an rvalue when it is
located at the right-hand side of an assignment and acts as a source. In a compound assign-
ment, the variable acts both as an lvalue and an rvalue. This can be seen when we expand
an expression like x += 3 to x = x + 3.

An lvalue can be thought as the destination of a value;
an rvalue can be thought as the source of a value.

for23380_ch03_059-111.indd 70 02/11/18 5:11 pm

3.2 Type	Conversion	 71

3.2 TYPE CONVERSION
We have discussed some arithmetic data types, some operators, and some expressions, but
we need to remember that operators operate on data. We now need to answer two questions
before we can find the return value and side effect (if any) of an arithmetic operation.

1. What happens when we apply an arithmetic operator to nonarithmetic data types such
as Boolean or character? For example, what happens if we add two Boolean data items
or multiply two characters?

2. When using binary operators, what happens if the operands are of different types?
What is the type of the return value?

To answer these questions, we need to discuss two different processes: implicit type conver-
sion and explicit type conversion. In the first process, the data types are implicitly changed
to answer the above questions; in the second process, we force type conversion.

The C++ language provides a tool to test the type of any expression as shown below:

typeid (expression).name()

The expression is the one for which we need to know its type. The tool returns an abbrevia-
tion of the type (i for int, d for double, and so on). To use this tool, we need to include the
<typeinfo> header file.

3.2.1 Implicit Conversion
Every time we use an operation on a data type for which that operation is not defined, the C++
compiler performs implicit type conversion before giving us the result. Implicit type conver-
sion means changing the type of the operand(s) to another type on which the operation can be
applied. This is done in two steps: implicit type promotion (promoting the type of the operand
to a larger size) and implicit type change (changing the type of one operand to the other’s type
in a binary operation to make them of the same type). We discuss each step separately.

Implicit type conversion is done automatically by the compiler.

Implicit Type Promotion
Implicit type promotion is automatically applied to any operand to make it suitable for an arith-
metic operation. This is done for two reasons. First, the type of the operand is not suitable for an
arithmetic operation (Boolean and character). Second, there is no arithmetic operator defined for
the type (short and float) because if we apply an arithmetic operator on a short or float value,
the result may not fit in a short or float (think about multiplying two data items). To avoid these
problems, the compiler applies five rules for implicit type promotion, as shown in Table 3.2.

Rule Original Type Promoted Type

1 bool int

2 char int

3 short int

3 unsigned short	 unsigned int

4 float	 double

Table 3.2 Implicit type promotion

for23380_ch03_059-111.indd 71 02/11/18 5:11 pm

72 Chapter 3 Expressions	and	Statements

EXAMPLE 3.8
Program 3.8 shows how implicit type promotion occurs to change the type of a bool, a char,
and a short data type to an int data type. It also shows how the type of float data is changed
to a double data type. Note that no arithmetic data types are defined for these data types.
So if we can use an arithmetic operation (addition in this case), this means that an implicit
promotion has occurred.

Program 3.8	 Implicit	promotion	of	data	types	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* Testing implicit type conversion for types with no arithmetic *
* operations: bool, char, short, and float *
 ***/

#include <iostream>
#include <typeinfo>
using namespace std;

int main ()
{

// Declarations
bool x = true;
char y = 'A';
short z = 14;
float t = 24.5;

// Type conversion from bool to int
cout << "Type of x + 100: " << typeid (x + 100).name() << endl;
cout << "Value of x + 100: " << x + 100 << endl;

// Type conversion from char to int
cout << "Type of y + 1000: " << typeid (y + 1000).name() << endl;
cout << "Value of y + 1000: " << y + 1000 << endl;

// Type conversion from short to int
cout << "Type of z * 100: " << typeid (z * 10).name() << endl;
cout << "Value of z * 100: " << z * 100 << endl;

// Type conversion from float to double
cout << "Type of t + 15000.2: " << typeid (t + 15000.2).name() << endl;
cout << "Value of t + 15000.2: " << t + 15000.2;
return 0;

}

Run:
Type of x + 100: i // Type is integer
Value of x + 100: 101
Type of y + 1000: i // Type is integer
Value of y + 1000: 1065
Type of z * 100: i // Type is integer
Value of z * 100: 1400
Type of t + 15000.2: d // Type is double
Value of t + 15000.2: 15024.7

for23380_ch03_059-111.indd 72 02/11/18 5:11 pm

3.2 Type	Conversion	 73

Implicit Type Change
After implicit promotion of each operand according to the rules we discussed above, the
compiler may or may not perform implicit type change. Implicit type change occurs when
the two operands are of different types; after the change, both operands are of the same type.
If the operation is unary, there is no need for implicit conversion; if the operation is binary,
the implicit type change may be needed to make the types of both operands the same. We
discuss two cases.

Expressions with No Side Effect In this case, the operand in the lower level of hierarchy
(smaller size) needs to be converted to the type of the higher level of hierarchy according to
the hierarchy of types defined in Figure 3.7. Note that the types that are already promoted
in the previous section are not included in this list. For example, data items of type bool,
char, short, unsigned short, and float are not in this list because they are already implicitly
promoted as described in the previous section.

The recipe followed by the compiler finds the operand with the higher level and con-
verts the other one to that level.

EXAMPLE 3.9
Program 3.9 shows an example. We have three variables.

int

Lowest
level

Highest
level

unsigned
int long unsigned

long double long
double

Figure 3.7	 Hierarchy	of	types	for	implicit	conversion

Program 3.9	 Implicit	type	conversion	(no	side	effect)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* Implicit type conversion in an expression of mixed types when *
* there is no side effect. *
 ***/

#include <iostream>
#include <typeinfo>
using namespace std;

int main ()
{

// Declarations
int x = 123;
long y = 140;
double z = 114.56;

// Check the type and value of expression x + y
cout << "Type of x + y: " << typeid (x + y).name ()<<endl;
cout << "Value of x + y: " << x + y << endl << endl;

(continued)

for23380_ch03_059-111.indd 73 02/11/18 5:11 pm

74 Chapter 3 Expressions	and	Statements

Program 3.9	 Implicit	type	conversion	(no	side	effect)	(Continued)

18
19
20
21
22

// Check the type and value of expression x + y + z
cout << "Type of x + y + z: " << typeid (x + y + z).name ()<< endl;
cout << "Value of x + y + z: " << x + y + z << endl;
return 0;

}

Run:
Type of x + y: l // Type is long
Value of x + y: 263

Type of x + y + z: d // Type is double
Value of x + y + z: 377.56

Expression with Side Effects In some operations or activities, in which a value is supposed
to go to a destination of a predefined type, we cannot change the type of the destination be-
cause it is already defined. For example, this happens when we assign a value to a variable
of a different type. In these cases, the compiler performs implicit type change. The compiler
changes the source type to fit in the destination type. For example, if we assign a floating-
point value to an integer, the compiler truncates the source value and assigns the integral
part to the destination variable. On the other hand, if we try to assign an integer value to a
variable of a floating-point type, then the compiler adds a fraction part (of zero value) to the
integer to make it a floating-point value.

EXAMPLE 3.10
Program 3.10 shows how a floating-point value is truncated to an integer to be stored in a
variable of int type and how an integer value is changed to a floating-point type to be stored
in a variable of type double.

Program 3.10	 Implicit	type	conversion	(with	side	effect)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* Checking type conversion in an expression of mixed types *
 ***/

#include <iostream>
#include <typeinfo>
using namespace std;

int main ()
{

// Declaration
int x;
double y;

// Assignment
x = 23.67;
y = 130;

(continued)

for23380_ch03_059-111.indd 74 02/11/18 5:11 pm

3.2 Type	Conversion	 75

Program 3.10	 Implicit	type	conversion	(with	side	effect)	(Continued)

16
17
18
19
20
21
22
23

// Checking type and value of x
cout << "Type of x = 23.67: " << typeid (x = 23.67).name ()<<endl;
cout << "Value of x after assignment: " << x << endl << endl;

// Checking type and value of x
cout << "Type of y = 130: " << typeid (y = 130).name ()<<endl;
cout << "Value of y after assignment: " << y << endl;
return 0;

}

Run:
Type of x = 23.67: i // Type is int
Value of x after assignment: 23

Type of y = 130: d // Type is double
Value of y after assignment: 130

Program 3.11	 Explicit	conversion

1
2
3
4
5
6
7
8

/***
* Comparing implicit and explicit conversion in an expression *
 ***/

#include <iostream>
using namespace std;

int main ()
{

(continued)

Note that the value of y is printed as 130, but it is actually 130.0; we need a manipulator to
show the fraction part (discussed later in the chapter).

3.2.2 Explicit Type Conversion (Casting)
Sometimes we need or we want to change the type of an operand explicitly. This can be done
using explicit type conversion, a process called casting. Casting is done in C++ in several
ways, but we show only one of them, static_cast, which was described in a previous section.

static_cast <type> (expression)

EXAMPLE 3.11
Program 3.11 shows the difference between implicit and explicit type conversion. We have
two variables of different types. We can add the values of these two variables and thereby
allow implicit type conversion, or we can use explicit type conversion. In the first case, the
complier changes the value of y to a double; in the second case, we force the value of x to
change to an int. Note that in implicit conversion, the value of y is changed to 30.0 and added
to 23.56, resulting in 53.56. In explicit conversion, the value of 23.56 is changed to 23 and
added with 30, resulting in 53.

for23380_ch03_059-111.indd 75 02/11/18 5:11 pm

76 Chapter 3 Expressions	and	Statements

Program 3.11	 Explicit	conversion	(Continued)

9
10
11
12
13
14
15
16
17

// Declaration
double x = 23.56;
int y = 30;

// Allowing implicit conversion
cout << "Without casting: " << x + y <<endl;

// Forcing explicit conversion
cout << "With casting: " << static_cast <int> (x) + y;
return 0;

}

Run:
Without casting: 53.56
With casting: 53

3.3 ORDER OF EVALUATION
We discussed a few expression types in the last two sections. The reader may ask what hap-
pens if we have a complex expression with more than one operator. How does the computer
evaluate the expression? For example, what is the value of the following expression made
of four operators?

3 + 4 * 7 / 22 − 8

To answer this question, we need to think of two properties of operators: precedence and
associativity. Appendix C gives the list of all operators and expressions used in C++, but
for the purpose of this chapter, we need only a partial list as shown previously in Table 3.1.

3.3.1 Precedence
When we have a complex expression with several simple expressions of different prece-
dence levels, we need to use the following steps to find the value of the complex expression:

1. We evaluate the simple expression with the highest level of precedence and replace it
with its value. Now we have a new expression.

2. We repeat step 1 until the whole expression is evaluated.

EXAMPLE 3.12
Program 3.12 shows how we can find the result of the expression 5 + 7 * 4 when evaluated by
C++. The program shows both the result and the evaluation steps. Note that the multiplica-
tion has precedence 14, but addition has precedence 13.

Program 3.12	 Evaluating	a	simple	expression	

1
2
3

/***
* Evaluating a simple expression with two levels of precedence *
 ***/

(continued)

for23380_ch03_059-111.indd 76 02/11/18 5:11 pm

3.3 Order	of	Evaluation 77

EXAMPLE 3.13
Program 3.13 shows how we evaluate the complex expression result = 5 − 15 % 4, which is
made of three operators—assignment, subtraction, and remainder—each with a different
level of precedence.

Program 3.13	 Evaluating	a	complex	expression

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* Evaluating an expression with three levels of precedence *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declare one variable
int result;

// Evaluate the expression and store the result in the variable
result = 5 − 15 % 4;

// Output the result stored in the variable
cout << "The value stored in result: " << result;
return 0;

}

Run:
The value stored in result: 2

Program 3.12	 Evaluating	a	simple	expression	(Continued)

4
5
6
7
8
9

10
11

#include <iostream>
using namespace std;

int main ()
{

cout << "Result of expression: " << 5 + 7 * 4 << endl;
return 0;

}

Run:
Result of expression: 33

Original expression

After first evaluation

After second evaluation

5 + 7 * 4

5 + 28

33

Evaluation
steps

(continued)

for23380_ch03_059-111.indd 77 02/11/18 5:11 pm

78 Chapter 3 Expressions	and	Statements

Program 3.13	 Evaluating	a	complex	expression	(Continued)

Evaluation
Steps

Original expression

After first evaluation

After second evaluation

Return value2

result = 5 - 15 % 4

result = 5 - 3

result = 2
result

side
effect

2

EXAMPLE 3.14
Now assume that we need to purposely change the precedence level of a simple expression.
For example, we need to add the literal 6 to the value of variable x and then multiply the
result by 7. Here multiplication has precedence over addition, but we need to do the addition
first. The solution is to use parentheses. As we learned before, a pair of parentheses creates
a primary expression that is at the highest level of precedence. Program 3.14 shows how we
write and evaluate the expression.

EXAMPLE 3.15
As another example, assume the original values of x and y are 8 and 10, respectively. Pro-
gram 3.15 shows how we can find the value of y after evaluation of the following expression:

Program 3.14	 Simple	expression	with	parentheses	

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***
* Evaluating simple expression including parentheses *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int x = 5;

// Outputting value of expression
cout << "Value of (x + 6) * 7: " << (x + 6) * 7 ;
return 0;

}

Run:
Value of (x + 6) * 7: 77

Original expression

After first evaluation

After second evaluation

Evaluation
steps

(x + 6) * 7

11 * 7

77

for23380_ch03_059-111.indd 78 02/11/18 5:11 pm

3.3 Order	of	Evaluation 79

y *= x + 5. Note that the expression at the right-hand side of the compound assignment operator
is considered a primary expression when we expand the compound assignment to a simple as-
signment. In other words, the compound assignment is actually y *= (x + 5), which is expanded
to y = y * (x + 5).

3.3.2 Associativity
In each previous example, the complex expression we used had only one single instance
of an expression type (multiplicative, additive, or assignment). What happens if a com-
plex expression has more than one expression at the same level of precedence (for ex-
ample, two multiplicative expressions). In this case, we need to use the associativity of
the simple expressions. Associativity of an operator is either left-to-right or right-to-left
(see Table 3.1). When we need to evaluate a particular expression with more than one
instance of an expression type, we need to evaluate the expressions according to their
associativity.

EXAMPLE 3.16
Let us find the value of an expression with two multiplicative operators and two additive
operators: 5 − 30 / 4 * 8 + 10. Program 3.16 shows how C++ evaluates this expression.

Program 3.15	 Expression	with	side	effects	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* Evaluating a simple expression with side effect *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration and initialization
int x = 8;
int y = 10;

// Assignment
y *= x + 5;

// Outputting value of variable y
cout << "Value of y: " << y ;
return 0;

}

Run:
Value of y: 130

Original expression

After interpretation

After evaluating parentheses

After evaluating multiplication

y *= x + 5

y = 130

y = y * (x + 5)

y = y * 13

y
side

effect

Evaluation
steps

130

for23380_ch03_059-111.indd 79 02/11/18 5:11 pm

80 Chapter 3 Expressions	and	Statements

In this complex expression, the multiplicative expressions are evaluated first because of
their precedence. Furthermore, they are evaluated from the left because of their associativity
(left to right).

EXAMPLE 3.17
Program 3.17 shows how the system evaluates two expression involving operators (com-
pound assignment) with the same precedence, but with associativity from right to left.

Program 3.16	 Precedence	and	associativity	 	

1
2
3
4
5
6
7
8
9

10
11

/***
* Evaluation involving both precedence and associativity *
 ***/

#include <iostream>
using namespace std;

int main ()
{

cout << "Value of expression: " << 5 - 30 / 4 * 8 + 10 ;
return 0;

}

Run:
Value of expression: −41

Original expression

After evaluating division

After evaluating multiplication

After evaluating subtraction

After evaluating addition

5 - 30 / 4 * 8 + 10

5 - 7 * 8 + 10

5 - 56 + 10

- 51 + 10

- 41

Evaluation
steps

Program 3.17	 Expressions	with	the	same	precedence	

1
2
3
4
5
6
7
8

/***
* Evaluating expression with right-to-left associativity *
 ***/

#include <iostream>
using namespace std;

int main ()
{

(continued)

for23380_ch03_059-111.indd 80 02/11/18 5:11 pm

3.4 Overflow	and	Underflow 81

Program 3.17	 Expressions	with	the	same	precedence	(Continued)

9
10
11
12
13
14
15
16
17
18

// Declaration and initialization
int x = 10;
int y = 20;

// Assignment
y += x *= 40;

// Printing values of x and y
cout << "Value of x: " << x << endl;
cout << "Value of y: " << y;
return 0;

}

Run:
Value of x: 400
Value of y: 420

y += x *= 40

y += x *= 40

y += 400

side
effect

side
effect

Original expression

After first evaluation

After second evaluation

400

420

x

y

Evaluation
steps

3.4 OVERFLOW AND UNDERFLOW
Before we write more programs, we discuss an issue all programmers need to understand:
overflow and underflow. In real life, it is possible to write a very large number on paper.
However, the memory allocation for data types in each computer system is limited. What
happens if we try to store a number larger than the maximum value or smaller than the mini-
mum value for a type? The result is overflow or underflow. C++ does not create an error
message during the compilation, although it may give us a warning. What happens is that the
result is not what we expected. The overflow and underflow behavior is different for integers
and floating-point values (other types are promoted to either integer to floating-point, as we
discussed before).

3.4.1 Overflow and Underflow In Integers
As we know, integer data types can be unsigned or signed. The overflow and underflow
error is different for unsigned and signed integers. We discuss each case separately.

Overflow and Underflow in Unsigned Integers
The range of an unsigned integer is from zero to the positive maximum value. We want to
see what happens when we try to use a value larger than the maximum value or a value less
than zero. In the first case, we have an overflow situation; in the second case, we have an un-
derflow situation. Both are shown in Figure 3.8. In either case, the values are wrapped back

for23380_ch03_059-111.indd 81 02/11/18 5:11 pm

82 Chapter 3 Expressions	and	Statements

into the valid range. The circular notation better shows the effect of overflow and underflow.
Adding is clockwise; subtracting is counterclockwise.

Program 3.18 shows the effect of overflow and underflow in an unsigned int type. We
initialize a variable (num1) to the maximum value and then try to add one to it. We initialize
another variable (num2) to zero and then try to subtract one from it. The output result shows
that wrapping has occurred. Since maximum and minimum values are system dependent, we
use a library function in lines 11 and 12 to set the values.

Underflow

0 max
Overflow

0 max

0max
0max

Overflow

Underflow

Figure 3.8	 Overflow	and	underflow	in	unsigned	integers

Program 3.18	 Testing	overflow	and	underflow	for	unsigned	integers	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* A program to test overflow and underflow in unsigned integers *
 ***/

#include <iostream>
#include <limits>
using namespace std;

int main ()
{

// Create two unsigned integer of maximum and minimum values
unsigned int num1 = numeric_limits <unsigned int> :: max();
unsigned int num2 = numeric_limits <unsigned int> :: min();

// Print the maximum and minimum values
cout << "The value of maximum unsigned int: " << num1 << endl;
cout << "The value of minimum unsigned int: " << num2 << endl;

// Force the integers to overflow
num1 += 1;
num2 −= 1;

// Print the overflowed values
cout << "The value of num1 + 1 after overflow: " << num1 << endl;
cout << "The value of num2 − 1 after underflow: " << num2 << endl;
return 0;

}

Run:
The value of maximum unsigned int: 4294967295
The value of minimum unsigned int: 0
The value of num1 + 1 after overflow: 0
The value of num2 − 1 after underflow: 4294967295

for23380_ch03_059-111.indd 82 02/11/18 5:11 pm

3.4 Overflow	and	Underflow 83

Overflow and Underflow in Signed Integers
The range of a signed integer is from a negative minimum to a positive maximum value.
We want to see what happens when we try to use a value larger than the maximum value
or a value less than the minimum value. We have an overflow situation in the first case; we
have underflow situation in the second case. Both are shown in Figure 3.9. In other words,
the values are wrapped back into the valid range. A positive value larger than the positive
maximum becomes a negative value; a negative value smaller than the negative minimum
becomes a positive value.

Program 3.19 shows the effect of overflow and underflow in a signed int type. We
initialize a variable (num1) to the maximum value and then try to add one to it. We initial-
ize another variable (num2) to the minimum value and then try to subtract one from it. The
output result shows that wrapping has occurred. Since maximum and minimum values are
system dependent, we use a library function in lines 11 and 12 to set the values.

Program 3.19	 Testing	overflow	and	underflow	in	signed	integers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* A program to test overflow and underflow in signed integers *
 ***/

#include <iostream>
#include <limits>
using namespace std;

int main ()
{

// Find the maximum and minimum of an integer
int num1 = numeric_limits <int> :: max();
int num2 = numeric_limits <int> :: min();

// Print the maximum and minimum values
cout << "Value of maximum signed int: " << num1 << endl;
cout << "Value of minimum signed int: " << num2 << endl;

// Cause num1 and num2 to overflow
num1 += 1;
num2 −= 1;

// Print the overflowed values
cout << "The value of num1 + 1 after overflow: " << num1 << endl;
cout << "The value of num2 - 1 after underflow: " << num2 << endl;

Underflow

−1 0 maxmax min

0−1

maxmin

0−1

maxmin

Underflow
0−1

Overflow

min Overflow

Figure 3.9	 Overflow	and	underflow	in	signed	integers	

(continued)

for23380_ch03_059-111.indd 83 02/11/18 5:11 pm

84 Chapter 3 Expressions	and	Statements

Program 3.19	 Testing	overflow	and	underflow	in	signed	integers	(Continued)

22
23

return 0;
}

Run:
The value of maximum signed int: 2147483647
The value of minimum signed int: −2147483648
The value of num1 + 1 after overflow: −2147483648
The value of num2 − 1 after underflow: 2147483647

3.4.2 Overflow and Underflow in Floating-Point Values
We also have overflow and underflow in floating-point values; however, there are two dif-
ferences here. First, all floating-point values are signed. Second, there is no wrapping when
overflow and underflow occurs; instead we have sinking. Overflow results in sinking to
+infinity; underflow results in sinking to −infinity. Figure 3.10 shows the concept.

Note that we have two max values and two min values. The min values define the small
numbers nearest zero. The positive max and negative max values may create positive or nega-
tive infinity when increased or decreased, respectively. Program 3.20 initializes num1 and
num2 to positive max and negative max values and then multiplies each number by 1000.00 to
make the values overflow to +inf and -inf. Since positive maximum and negative maxi-
mum values are system dependent, we use a library function in lines 11 and 12 to instigate
them.

+inf-inf
+min +max−min

OverflowUnderflow

−max

Figure 3.10	 Overflow	and	underflow	in	floating-point	values

Program 3.20	 Overflow	and	underflow	in	doubles

1
2
3
4
5
6
7
8
9

10
11
12

/***
* A program to test overflow and underflow in doubles *
 ***/

#include <iostream>
#include <limits>
using namespace std;

int main ()
{

// Find the positive and negative maximum double
double num1 = +numeric_limits <double> :: max ();
double num2 = −numeric_limits <double> :: max ();

(continued)

for23380_ch03_059-111.indd 84 02/11/18 5:11 pm

3.5 Formatting	Data 85

Program 3.20	 Overflow	and	underflow	in	doubles	(Continued)

13
14
15
16
17
18
19
20
21
22
23

// Print the positive and negative maximum double
cout << "The value of maximum double: " << num1 << endl;
cout << "The value of minimum double: " << num2 << endl;

 // Multiply the values by 1000.00
num1 *= 1000.00;
num2 *= 1000.00;

// Print the overflowed values
cout << "The value of num1 * 1000 after overflow: " << num1 << endl;
cout << "The value of num2 * 1000 after underflow: " << num2 << endl;
return 0;

}

Run:
The value of maximum double: 1.79769e+308
The value of minimum double: −1.79769e+308
The value of num1 * 1000 after overflow: INF
The value of num2 * 1000 after underflow: −INF

3.5 FORMATTING DATA
The programs we have used in the previous section input or output data in a standard (de-
fault) format. For example, Boolean data are input and output as 0 or 1. The integer values
are input and output in decimal format (see Appendix B). The floating-point values are input
in a standard format (integral part followed by a decimal point and the fraction part) and
output as required by the application. Sometimes we need to change this behavior. We need
to format data as we like. This is done with the help of predefined objects called manipula-
tors. We have manipulators for outputting data and manipulators for inputting data. We first
discuss the manipulators for outputting data, which are more common and extensive; we
then discuss manipulators for inputting data.

3.5.1 Manipulators for Output
As we mentioned before, output operations are done using output objects. We use the pre-
defined output object (cout). So far, we have only passed data items to the insertion operator
(<<); we have not defined how the data should be formatted when displayed or printed. An
output manipulator is an object that can be passed to the insertion operator to change the be-
havior of the output. We have two different kinds of output manipulators: with no argument
and with one argument. We discuss each next.

No-Argument Manipulators
There are several output manipulators that need no argument. The no-argument manipula-
tors are part of <iostream>, which means no extra header file is needed. We show the com-
mon no-argument manipulators in Table 3.3.

The manipulators for each category (except endl) come in groups of two or three. One
of the manipulators in each group is the default. If we do not use a manipulator in that group,
it is set to the default value. In Table 3.3 we show the default values in red. Note that the
term (none) means that there is no default: The system uses the fixed or scientific based on

for23380_ch03_059-111.indd 85 02/11/18 5:11 pm

86 Chapter 3 Expressions	and	Statements

Manipulator Boolean Character Integer Floating point

endl √ √ √ √

noboolalpha,	boolalpha √

dec,	oct,	hex √

noshowbase,	showbase √

(none), fixed,	scientific	 √

noshowpoint,	showpoint √

noshowpos,	showpos √ √

nouppercase,	uppercase √ √

left,	right,	internal √ √ √ √

Table 3.3 No-argument manipulators for output stream

the value of the floating-point data unless we explicitly define one of the other two choices.
All manipulators except endl change the state of the output stream. When we choose one
of the manipulators in the group, the output stream uses that manipulator until we change
the state using a different one. This means that we can apply one of the manipulators for all
output data until we need to change it.

All no-argument manipulators except endl change
the state of the output stream.

The endl Manipulator We have used this manipulator from the beginning of the book. It is
designed to add a '\n' character at the end of the data to force the next output to move to the
next line. It is the only no-argument manipulator that does not change the state of the stream.
We must repeat it every time we need it.

Manipulators for Boolean Literals (noboolalpha, boolalpha) The first category of manipulators
in Table 3.3 can be used only with Boolean data types. The noboolalpha manipulator out-
puts a Boolean value as an integer (0 or 1); the boolalpha outputs the bool value as a literal
(false or true). Program 3.21 shows a test. Note that we do not need the manipulator in line
17; the state of the output has already been changed in line 16.

Program 3.21	 Testing	boolalpha	manipulator

1
2
3
4
5
6
7
8

/***
* A program to test boolalpha manipulator for logical values *
 ***/

#include <iostream>
using namespace std;

int main ()
{

(continued)

for23380_ch03_059-111.indd 86 02/11/18 5:11 pm

3.5 Formatting	Data 87

(continued)

Program 3.21	 Testing	boolalpha	Manipulator	(Continued)

9
10
11
12
13
14
15
16
17
18
19

// Declaration
bool x = true;
bool y = false;

// Testing values without manipulators
cout << "Value of x using default: " << x << endl;
cout << "Value of y using default: " << y << endl;

// Testing values using manipulators
cout << "Value of x using manipulator: " << boolalpha << x << endl;
cout << "Value of y: " << y;
return 0;

}

Run:
Value of x using default: 1
Value of y using default: 0
Value of x using manipulator: true
Value of y: false

Program 3.22	 Testing	manipulator	for	the	base	of	integers	

1
2
3
4
5
6
7

/***
* A program to print data in different bases (decimal,octal, *
* and hexadecimal) *
 ***/

#include <iostream>
using namespace std;

Manipulator for Different Bases (dec, oct, hex) Although all integers are stored in the computer
in binary base 2 (see Appendix B), we may need to output them in our program in one of
the three different formats: dec (base 10), oct (base 8), or hex (base 16). The default is dec.
Presentation does not affect the size, sign, or value in the computer; it is only for the program-
mer’s convenience. It allows the programmer to use the format that is most convenient. For
example, we can print the integer 1237 as 1237 (decimal), 2325 (octal), or 4D5 (hexadecimal).

Manipulators for Base Prefix (noshowbase, showbase) When we output an integer in different
bases, we have the choice not to show the base of the number (default) or show the base
of the number. The base is shown as a prefix (nothing for decimal, 0 for octal, and 0x for
hexadecimal).

EXAMPLE 3.18
Program 3.22 shows how we can use manipulators to convert an integer in different bases
and show or not show the prefix of the base.

for23380_ch03_059-111.indd 87 02/11/18 5:11 pm

88 Chapter 3 Expressions	and	Statements

Program 3.22	 Testing	manipulator	for	the	base	of	integers	(Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20
21

int main ()
{

// Declaration of variable x
int x = 1237;

// Outputting x in three bases without showbase
cout << "x in decimal: " << x << endl;
cout << "x in octal: " << oct << x << endl;
cout << "x in hexadecimal: " << hex << x << endl << endl;

// Outputting x in three bases with showbase
cout << "x in decimal: " << x << endl;
cout << "x in octal: " << showbase << oct << x << endl;
cout << "x in hexadecimal: " << showbase << hex << x;
return 0;

}

Run:
x in decimal: 1237
x in octal: 2325
x in hexadecimal: 4d5

x in decimal: 1237
x in octal: 02325 // 0 shows that the number is in octal
x in hexadecimal: 0x4d5 // 0x shows that the number is in hexadecimal

Manipulators for Fixed or Scientific Notation We have two ways to show a floating-point type
value: fixed or scientific. Both are shown in Figure 3.11.

In the fixed format, a floating-point value is shown as an integer part and the fraction
part separated by a decimal point such as (dddd.ddd) in which each d is a digit. The number
is preceded by a minus sign if it is negative. In the scientific format, the number is shown
as a number in fixed format multiplied by an exponent (10n) if the number is very large or
(10−n) if the number is very small.

Manipulators for Showing the Decimal Point If the fraction part of a floating-point value is
zero, C++ does not print the decimal point. We can force the output to show the decimal
point with a zero fraction using the showpoint manipulator.

sign fixed with one digit in integral part exponent sign exponente or E

Fixed Format

Scientific Format

sign whole part fraction part

Figure 3.11	 Fixed	and	scientific	format	for	manipulators

for23380_ch03_059-111.indd 88 02/11/18 5:11 pm

3.5 Formatting	Data 89

EXAMPLE 3.19
Program 3.23 shows how we use manipulators for the floating-point types.

Manipulators for Showing the Positive Sign C++ does not show a positive sign (+) if the
number is positive (the negative sign is always shown). To force a positive number to be
printed with the positive sign, we can use the showpos manipulator.

Manipulators for Showing Letters in Uppercase We have seen that the integer and floating-
point values sometimes include alphabetic characters (a, b, c, d, e, f) for values in hexa-
decimal notation, x for hexadecimal notation, and e for scientific notation. These characters
are printed in lowercase by default. If we want them to be printed in uppercase, we use the
manipulator uppercase.

Manipulator for Adjusting Numbers in a Field Later we see how we can define the size of a
field (number of characters occupied) to print a value using manipulators with arguments.
After the size is determined, we need to decide how we want to adjust the value and the sign
(if any) in the field. C++ uses three formats for this as shown in Figure 3.12.

Program 3.23	 Testing	floating-point	manipulators

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* A program to test some manipulators for floating-point types *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declarations
double x = 1237;
double y = 12376745.5623;

//Using fixed (default) and showpoint manipulator
cout << "x in fixed_point format: " << x << endl;
cout << "x in fixed_point format: " << showpoint << x << endl;

//Using scientific manipulator
cout << "y in scientific format: " << y << scientific;
return 0;

}

Run:
x in fixed_point format: 1237 // We have not used showpoint
x in fixed_point format: 1237.00 // We have used showpoint
y in scientific format: 1.23767e+007

left

- 5 2 1 4

internal

- 5 2 1 4 - 5 2 1 4

right

Figure 3.12	 Adjusting	a	value	in	a	field

for23380_ch03_059-111.indd 89 02/11/18 5:11 pm

90 Chapter 3 Expressions	and	Statements

In the left format (default), the number and sign are located at the left of the field and
the rest of field is filled with padding (as we explain shortly). In the internal format, the
sign occupies the leftmost part of the field, the number occupies the rightmost parts, and the
remaining part is filled with padding. In the right format, the sign and the number occupy
the rightmost part and the left part is filled with padding. Note that this manipulator does not
change the state of the stream.

Manipulators with Arguments
We discuss only three manipulators that take one argument (an integer or a character) as
shown in Table 3.4. To use these manipulators, we need to include the <iomanip> header in
our program. They are not defined in <iostream>.

Manipulator setprecision (n) This manipulator is used only for fixed (not scientific) floating-
point values. The integer inside the parentheses (n) defines the number of digits after the
decimal point.

Manipulator setw (n) This manipulator is used to define the size of the field that we want our
value to occupy. Note that in the case of the floating-point data type, we need to consider
space for the whole part, decimal point, and the fraction part. Note that this manipulator does
not change the state of the stream. It needs to be set for each value individually.

Manipulator setfill (ch) This manipulator shows how we can fill the field with padding if the
actual size of our value is less than the size defined by setw (n). The argument inside paren-
theses is a literal character used as padding. The manipulators left, internal, and right that we
discussed before can then determine where the padding is located.

All manipulators with arguments except setw change the state of the
output stream. We must repeat setw where we need it.

EXAMPLE 3.20
Program 3.24 shows how we can test manipulators with arguments.

Manipulator Boolean Character Integer Floating point

setprecision (n)	 √

setw (n) √ √ √ √

setfill (ch) √ √ √ √

Table 3.4 One-argument manipulators for output stream

Program 3.24	 Using	manipulators	with	arguments

1
2
3
4

/***
* A program to test other manipulators for floating-point types *
 ***/

#include <iostream>

(continued)

for23380_ch03_059-111.indd 90 02/11/18 5:11 pm

3.5 Formatting	Data 91

3.5.2 Manipulators for Input
There are manipulators that can be used with input. We mention only two of them here and
discuss the rest in Chapter 16. They are shown in Table 3.5. Note that they are the same as
the first two for output streams but they are used for input streams. In the first case, we can
enter a Boolean value as true or false instead of 0 or 1. In the second case, we can enter the
integer values in octal or hexadecimal.

EXAMPLE 3.21
Program 3.25 shows how we can enter a false or true value for a Boolean and then print it
as 0 or 1.

Program 3.25	 Testing	input	for	Boolean	values	

1
2
3

/***
* A program to input Boolean values as false or true *
 ***/

(continued)

Program 3.24	 Using	manipulators	with	arguments	(Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

#include <iomanip>
using namespace std;

int main ()
{

// Declaration
double x = 1237234.1235;

// Applying common formats
cout << fixed << setprecision(2) << showpos << setfill('*');

// Printing x in three formats
cout << setw(15) << left << x << endl;
cout << setw(15) << internal << x << endl;
cout << setw(15) << right << x;
return 0;

}

Run:
+1237234.12****
+****1237234.12
****+1237234.12

Manipulator Boolean Character Integer Floating-point

noboolalpha,	boolalpha √

dec,	oct,	hex √

Table 3.5 Manipulator for input stream

for23380_ch03_059-111.indd 91 02/11/18 5:11 pm

92 Chapter 3 Expressions	and	Statements

Program 3.25	 Testing	input	for	Boolean	values	(Continued)

4
5
6
7
8
9

10
11
12
13
14
15
16
17

#include <iostream>
using namespace std;

int main ()
{

// Declaration
bool flag;

// Input value using manipulator
cout << "Enter true or false for flag: ";
cin >> boolalpha >> flag;

// Output value
cout << flag ;
return 0;

}

Run:
Enter true or false for flag: false
0

Run:
Enter true or false for flag: true
1

Program 3.26	 Inputting	integers	in	different	bases

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* A program to input integer value in any base *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int num1, num2, num3;

// Input first number in decimal (no manipulator)
cout << "Enter the first number in decimal: ";
cin >> num1;

// Input second number in octal
cout << "Enter the second number in octal: ";
cin >> oct >> num2;

EXAMPLE 3.22
Program 3.26 shows how we input the value of three variables in decimal, octal, and hexa-
decimal format.We then print the three values in decimal.

(continued)

for23380_ch03_059-111.indd 92 02/11/18 5:11 pm

3.6 Statements 93

Program 3.26	 Inputting	integers	in	different	bases	(Continued)

17
18
19
20
21
22
23
24
25

// Input second number in hexadecimal
cout << "Enter the third number in hexadecimal: ";
cin >> hex >> num3;

// Output values
cout << num1 << endl;
cout << num2 << endl;
cout << num3;
return 0;

}

Run:
Enter the first number in decimal: 124
Enter the second number in octal: 76
Enter the third number in hexadecimal: 2ab
124
62
683

3.6 STATEMENTS
We have studied expressions, but we also need statements to create a program in the C++
language. A C++ program is made of a sequence of statements. Each statement is executed
by the computer, in the order dictated by the program, to achieve the goal of the program.

If we compare the C++ language with a natural language such as English, we find that
a statement in C++ plays the role of a sentence in a natural language. When reading text in
English, for example, a sentence is a unit of information we must interpret and understand
before moving to the next sentence. A statement in a C++ program is a command that the
C++ running environment must execute before going to the next statement. However, a
programming language, like C++, has some statements that change the order of execution
to move from one point in the program to another.

C++ provides many different types of statements, each with a predefined task. We
discuss only some of them here. We discuss the rest gradually in future chapters.

Some statements need a semicolon to terminate the statement. On the other hand, some
statements do not need a semicolon because they have another token at the end that is used
as a terminator.

Some statements need a semicolon at the end as the terminator,
but some already have a built-in terminator.

3.6.1 Declaration Statement
There are two terms in C++ that must be explained: declaration and definition. Declaration
introduces an entity by mentioning its type and giving it a name (an identifier). Definition,
on the other hand, means to allocate memory for the entity. There are many entities that need
to be declared and defined for a complex program, but for now we limit ourselves only to
variable and constant declaration.

for23380_ch03_059-111.indd 93 02/11/18 5:11 pm

94 Chapter 3 Expressions	and	Statements

Variable Declaration
We discussed the concept of variables in a previous section. To use a variable in our program,
we must declare it. Variable declaration is in fact both declaration and definition unless we
add an extra modifier (called extern) to postpone the definition to some other part of the pro-
gram. Variable declaration statements require a semicolon to indicate statement termination.

A variable declaration statement requires a semicolon to terminate the statement.

Single Declaration A single declaration gives a name to a variable and defines its type.
It also reserves a physical location in memory, suitable to hold a data item of the declared
type. We declare and define three variables below: test, sum, and average. Note that each
declaration needs a semicolon to terminate the statement.

short test;
int sum;
double average;

Multiple Declaration If we need to declare several variables of the same type, we can com-
bine them and use only one declaration statement. For example, the following shows how
we declare three variables of type int, two variables of type double, and one variable of type
char. Note that we need to separate the variable names by a comma, but we need only one
semicolon to terminate the statement. Note also that there is no need to add a space after
the comma, but we strongly recommend at least one space after each comma to make the
program readable.

int first, second, third;
double average, mean;
char ch;

Initialization When we declare a variable, we give the variable a name and we ask the com-
puter to allocate a memory location of the corresponding type. The declaration, however,
does not say what should be stored in the memory location initially, but we can initialize the
variables when we declare them as shown in the following declarations.

int first = 0;
double average = 0.0, mean = 0.0;
char ch = 'a';

We may ask what happens if the variables are not initialized. We encounter two cases.

Global Variables If a variable is global (declared outside any function), it is initialized to
default values (integers are initialized to 0, floating points to 0.0). Note that characters and
Boolean data types are special (small) integers and are initialized to 0.

Local Variables If a variable is local (declared inside a function), it is not initialized, but the
variable holds some garbage left over from the previous use. Before using a local variable,
we need to either initialize it or change the garbage stored in it by other means.

Before using a local variable, we need to store a value in it.

for23380_ch03_059-111.indd 94 02/11/18 5:11 pm

3.6 Statements 95

Constant Declaration
In a previous section we discussed that a constant is a memory location in which its value
is initialized and cannot be changed. To use a constant, we need to declare it (declaration
in this case also means definition). A constant declaration is similar to variable declara-
tion but with four differences. First, we need to use the keyword const in front of the type.
Second, we must initialize a constant when it is declared. Third, it is customary to use
uppercase letters to name a constant to distinguish it from the variables in the program (if
the name involves more than one word, the words are separated by underscores). Fourth,
constants are normally declared in the global area of the program (before any function,
including main), which makes them visible in all functions. The following are examples of
using constants.

const int FOOT_TO_INCH = 12;
const double TAX_RATE = 8.5;
const double PI = 3.1415926536;

Constants must be initialized when they are declared.

3.6.2 Expression Statement
An expression statement is an expression ended by a semicolon (as the terminator). We
learned in the previous section that an expression has a value and possibly a side effect.
When an expression statement is found in a program, the computer determines its value and
performs its side effect. The value is thrown away, but the side effect changes the memory
state of the computer. This means that expression statements in which the expression has no
side effect are useless as statements; we need to avoid them although the compiler does not
create an error.

The computer evaluates the value of the expression and performs
its side effect. The value is thrown away.

EXAMPLE 3.23
The following are expression statements. Some are useful and some pointless. Only the last
one creates a compilation error.

num = 24;
num *= 10;
num = data + 6;
num1 + num2;
num1 * 6;
num;
6;
cout << "Hello!";
cin >> data

// Expression statement
// Expression statement
// Expression statement
// Useless. There is no side effect
// Useless. There is no side effect.
// Useless. There is no side effect.
// Useless. There is no side effect.
// Input.
// Output

In some of the literature, an expression statement is called an assignment statement.
There is no assignment statement in the syntax of the C++ language, only an expression
statement. We follow the formal language specification.

for23380_ch03_059-111.indd 95 02/11/18 5:11 pm

96 Chapter 3 Expressions	and	Statements

Although we need to input data into our program and send the results out of our pro-
grams, there are no input/output statements in C++. In C++, input and output operations are
done using stream objects (cin and cout), as shown in Figure 3.13.

A stream object can be thought of as a conduit connecting the program to the physical
input device (such as a keyboard) or a physical output device (such as a monitor). The stream
connected to the keyboard is called cin; the stream connected to the monitor is called cout.
The symbol >> (called extraction operator) is in fact an operator defined for the cin object;
the symbol << (called insertion operator) is in fact an operator defined for the cout object.

On the surface, when we use an input/output command, it looks like it is a new type of
statement, but it is not. An input/output command is in fact an expression statement, and it
needs a semicolon at the end.

Input/output commands that we have used in our programs are
in fact expression statements and need a semicolon as a terminator.

3.6.3 Null Statement
A null statement is a statement that does nothing. We will see in the next two chapters that
there are occasions in which the C++ syntax needs a statement but does not need a side ef-
fect. We will discuss some of the applications of the null statements in future chapters, but
for the moment assume that by mistake we added two semicolons at the end of an expres-
sion. The compiler does not complain because it thinks we are using two statements: one
expression statement and one a null statement. The following shows the case.

num = 24; ; // We have an expression statement and a null statement.

3.6.4 Compound Statement
Sometimes we need to treat several statements as a single statement. In this case, we enclose the
statements in a pair of braces. We can combine any number of statements (zero or more) inside
a pair of braces. The process creates a single statement called a compound statement, which is
also referred to as a block. We must use a compound statement whenever C++ syntax needs a
single statement, but we need more than one statement. As we will see in future chapters, some-
times we even enclose a single statement in a pair of braces to improve readability and avoid
confusion. Note that we do not need a semicolon at the end of a compound statement; the closing
brace serves as the terminator. The following shows a compound statement with two statements.

{
int num = 8;
cout << num << endl;

}

cin >> variable;
>> variable
cinkeyboard

monitor cout << value;
>>

valuecout

Figure 3.13	 Input/output	objects	and	operations

for23380_ch03_059-111.indd 96 02/11/18 5:11 pm

3.6 Statements 97

What happens if we add a semicolon at end of the compound statement? Nothing. The com-
piler thinks that we have a compound followed by a null statement.

EXAMPLE 3.24
The body of a function needs a compound statement after the header as shown below:

int main ()
{

…
return 0;

}

3.6.5 Return Statement
Another statement we have used in our programs is the return statement, which may re-
turn a value to the entity that called the function, such as main that returns 0 to the system.
This statement belongs to the category of control statements that we discuss in chapter 4 in
more detail.

EXAMPLE 3.25
In this example we write a program in C++; the program will input three integers, calculate
the sum, and print the sum (Program 3.27). Various statements are used in the program.

Program 3.27	 Input	three	integers	and	print	the	sum	of	them

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* A program to add three integers and print the result *
 ***/

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

// Variables declaration
int first, second, third, sum;

// Prompts and inputs
cout << "Enter the first integer: ";
cin >> first;
cout << "Enter the second integer: ";
cin >> second;
cout << "Enter the third integer: ";
cin >> third;

// Calculation
sum = first + second + third;

// Output
cout << "The sum of the three integers is: " << sum;

(continued)

for23380_ch03_059-111.indd 97 02/11/18 5:11 pm

98 Chapter 3 Expressions	and	Statements

Program 3.27	 Input	three	integers	and	print	the	sum	of	them	(Continued)

23
24

return 0;
}

Run:
Enter the first integer: 20
Enter the second integer: 30
Enter the third integer: 10
The sum of the three integers is: 60

Run:
Enter the first integer: 10
Enter the second integer: 8
Enter the third integer: 3
The sum of the three integers is: 21

Let us analyze the statements we have used in this program. The program starts with
the definition of the main function. The body of the main function (lines 10 through 23) is a
compound statement. Line 11 is a declaration statement. Lines 13 through 18 are expression
statements (input/output commands). Line 20 is an expression statement (addition). Line 22
is an expression statement (output command). Line 23 is a return statement. The compound
statement in lines 10 through 23 is a combination of several statements (excluding the com-
ments) that are enclosed between two delimiters: the opening and closing braces.

3.7 PROGRAM DESIGN
In this section, we design and implement five programs. We use a software development
process that consists of three steps.

 ∙ Understand the Problem. In the first step, we see if we understand the problem to be
solved.

 ∙ Develop the Algorithm. In the second step, we develop an algorithm for the problem.
We have several tools to do so, but we use only the informal description in this chapter
because the programs we write are very simple.

 ∙ Write the Code. In the third step, we use the developed algorithm to write the C++
code.

3.7.1 Extracting Parts of a Floating-Point Number
Let us design and implement a program that, given a floating-point value, extracts and prints
the integral and the fraction parts.

Understand the Problem
A floating-point number is given; we want to separate the fractional part and the integral
part. For example, given 123.78, we want to output 123 and 0.78.

Develop the Algorithm
The algorithm in this case is simple. We input a number, extract its integral and fraction
parts, and output the original number, the integral part, and the fraction part. The step-by-
step algorithm is shown below:

for23380_ch03_059-111.indd 98 02/11/18 5:11 pm

3.7 Program	Design	 99

1. Input
a. Input a number.

2. Process
a. Extract the integral part.
b. Extract the fraction part.

3. Output
a. Output the original number.
b. Output the integral part.
c. Output the fraction part.

Write the Code
Now that we have formalized all of the elements of the program—input section, processing
section, and output section—we can write the code (see Program 3.28).

Program 3.28	 Extracting	integral	and	fractional	parts	of	a	floating-point	number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* This program shows how to extract the integral part and the *
* fractional part of a floating-point number *
 ***/

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

// Variable Declaration
double number;
int intPart;
double fractPart;

// Input
cout << "Enter a floating-point number: ";
cin >> number;

// Processing
intPart = static_cast <int> (number);
fractPart = number - intPart;

// Output
cout << fixed << showpoint << setprecision (2);
cout << "The original number: " << number << endl;
cout << "The integral part: " << intPart << endl;
cout << "The fractional part: " << fractPart;
return 0;

} // End of main

(continued)

for23380_ch03_059-111.indd 99 02/11/18 5:11 pm

100 Chapter 3 Expressions	and	Statements

Program 3.28	 Extracting	integral	and	fractional	parts	of	a	floating-point	number	(Continued)

Run:
Enter the floating-point number: 145.72
The original number: 145.72
The integral part: 145
The fractional part: 0.72

Run:
Enter the floating-point number: −546
The original number: −546.00
The integral part: −546
The fractional part: 0.00

Run:
Enter the floating-point number: −0.14
The original number: −0.14
The integral part: 0
The fractional part: −0.14

We have used the fixed, showpoint, and setprecision manipulators to format our
output. Note that in each run we enter only one floating-point value. One way to test if our
program does its job is to add the integral and fraction part in each run and see if we can get
the original number. In the first run, we have 145 + 0.72 = 145.72.

3.7.2 Extracting the First Digit of an Integer
Let us design and implement a program that, given an integer, extracts and prints the first
(rightmost) digit of an integer.

Understand the Problem
An integer is given; we want to extract the first digit of the number. For example, given
6759, we want to output 9.

Develop the Algorithm
The algorithm in this case is simple. We input an integer and extract its first digit. We then
print the original integer and the first digit. The algorithm is shown below:

1. Input
a. Input an integer.

2. Process
a. Extract the first (rightmost) digit.

3. Output
a. Output the original number.
b. Output the first digit.

Write the Code
We write the program by using the input, processing, and output sections we defined (Pro-
gram 3.29).

for23380_ch03_059-111.indd 100 02/11/18 5:11 pm

3.7 Program	Design	 101

Program 3.29	 Extracting	the	first	digit	of	a	given	integer

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* This program extracts the first digit of an input integer. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Variables Declaration
unsigned int givenInt, firstDigit;

// Prompt and Input
cout << "Enter a positive integer: ";
cin >> givenInt;

// Processing
firstDigit = givenInt % 10 ;

// Output
cout << "Entered integer: " << givenInt << endl;
cout << "Extracted first digit: " << firstDigit << endl;
return 0;

}

Run:
Enter a positive integer: 253
Entered integer: 253
Extracted first digit: 3

Run:
Enter a positive integer: 45672
Entered integer: 45672
Extracted first digit: 2

3.7.3 Changing a Duration of Time to Its Components
Let us design and implement another problem. Find how many hours, minutes, and second
are in a time duration given in seconds.

Understand the Problem
We are given a large integer such as 234,572 as the number of seconds to perform a task. We
need to find how many hours, minutes, and seconds it took to perform the task.

Develop the Algorithm
The algorithm in this case is simple. We input a number representing seconds and extract the
hours, minutes, and seconds in it. We then print the number of hours, minutes, and seconds.
The algorithm is shown below:

for23380_ch03_059-111.indd 101 02/11/18 5:11 pm

102 Chapter 3 Expressions	and	Statements

1. Input
a. Input an integer representing the duration in seconds.

2. Process
a. Extract the number of hours that can fit in the seconds.
b. Extract the number of minutes that can fit in the rest of the seconds.
c. Find the left-over seconds.

3. Output
a. Output the duration value given in seconds.
b. Output the number of extracted hours.
c. Output the number of extracted minutes.
d. Output the number of left-over seconds.

Write the Code
Now we can create the program code based on the preceding algorithm (Program 3.30).

Program 3.30	 Change	a	time	duration	to	its	components

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* This program changes a duration of time in seconds to hours *
* minutes, and seconds. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Variables Declaration
unsigned long duration, hours, minutes, seconds;

// Prompt and Input
cout << "Enter a positive integer for the number of seconds: ";
cin >> duration;

// Processing
hours = duration / 3600L;
minutes = (duration − (hours * 3600L)) / 60L;
seconds = duration − (hours * 3600L) − (minutes * 60);

// Output
cout << "Given Duration in seconds: " << duration << endl;
cout << "Result: ";
cout << hours << " hours, ";
cout << minutes << " minutes, and ";
cout << seconds << " seconds.";
return 0;

} // End main

(continued)

for23380_ch03_059-111.indd 102 02/11/18 5:11 pm

3.7 Program	Design	 103

Program 3.30	 Change	a	time	duration	to	its	components	(Continued)

Run:
Enter a positive integer for the number of seconds: 4000
Given duration in seconds: 4000
Result: 1 hours, 6 minutes, and 40 seconds.

Run:
Enter a positive integer for the number of seconds: 39250
Given duration in seconds: 39250
Result: 10 hours, 54 minutes, and 10 seconds.

We cannot say that the answer is right by just looking at the result. We should test
some of the results to be certain that our program is correctly designed. For example, we can
go backward and find the input from the output in both runs as shown below:

Run 1: (1 * 3600) + (6 * 60) + 40 = 3600 + 360 + 40 = 4000 seconds
Run 2: (10 * 3600) + (54 * 60) + 10 = 36000 + 3240 + 10 = 39250 seconds

Since we get the same value we gave for the duration, the program is working properly.

3.7.4 Calculating Average and Deviation
In this problem, we want to read three integers, calculate their average, and determine the
deviation of each integer from the average.

Understand the Problem
The average of a list of numbers can be found by adding them together and dividing the
result by the size of the list. The deviation of each number means how far that number is
from the average, positive or negative. For example, we have three numbers: 10, 14, and 15.
The sum of the numbers is 39. The average is 39/3 or 13. The deviation of the first number
is 10 − 13 = −3, the deviation of the second number is 14 − 13 = 1, and the deviation of the
fourth number is 15 − 13 = 2.

Develop the Algorithm
The algorithm in this case is somewhat involved. We input three integers. We calculate the
sum and the average. We calculate the deviation of each number from the average. We then
output the sum, the average, and the deviation for each number. The algorithm is shown below:

1. Input
a. Input three numbers.

2. Process
a. Add three numbers to find the sum.
b. Divide the sum by 3 to find the average.
c. Find the deviation of each number from the average.

3. Output
a. Output the value of sum.
b. Output the value of average.
c. Output the deviation of each number.

for23380_ch03_059-111.indd 103 02/11/18 5:11 pm

104 Chapter 3 Expressions	and	Statements

Write the Code
We now write the code (Program 3.31).

Program 3.31	 Finding	the	sum,	the	average,	and	deviations

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***
* This program takes three integers, adds them, finds their *
* average and the deviation of each from the average. *
 ***/

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

// Variable declaration
int num1, num2, num3;
int sum;
double average;
double dev1, dev2, dev3;

// Prompt and Input
cout << "Enter the first integer: ";
cin >> num1;
cout << "Enter the second integer: ";
cin >> num2;
cout << "Enter the third integer: ";
cin >> num3;

// Processing
sum = num1 + num2 + num3;
average = static_cast <double> (sum) / 3;
dev1 = num1 − average;
dev2 = num2 − average;
dev3 = num3 − average;

// Output
cout << fixed << setprecision (2) << showpos;
cout << "Sum of three numbers: " << sum << endl;
cout << "Average: " << setw(9) << average << endl;
cout << "Deviation of number 1: " << setw(9) << dev1 << endl;
cout << "Deviation of number 2: " << setw(9) << dev2 << endl;
cout << "Deviation of number 3: " << setw(9) << dev3 << endl;
return 0;

}

Run:
Enter the first integer: 100
Enter the second integer: 101
Enter the third integer: 103

(continued)

for23380_ch03_059-111.indd 104 02/11/18 5:11 pm

Summary 105

Program 3.31	 Finding	the	sum,	the	average,	and	deviations	(Continued)

Sum of three numbers: 304
Average: 101.33
Deviation of number 1: −1.33
Deviation of number 2: −0.33
Deviation of number 3: +1.67

We need to be sure the results are correct. If we add each deviation to the average, we
should get the original number. However, this calculation may result in an approximation.
We have

a. 101.33 + (−1.33) = 100 (first number).
b. 101.33 + (−0.33) = 101 (second number).
c. 101.33 + (+1.67) = 103 (third number).

An expression is an entity with a value and possibly a side effect. An expression can be
made of a simple value or multiple values combined with operators. A primary expression
contains one value and no operator. A unary expression contains one value and one operator.
A binary expression contains one operator and two values. A ternary expression is made of
two operators and three values. Expression evaluation may involve type conversion, which
can be implicit or explicit.

To find the order of evaluation of simple expression in a complex expression, we need to
think of two properties of operators: precedence and associativity. Precedence is used when

S u m m a r y

K e y T e r m s

addition
associativity
casting
compound assignment
compound statement
constant declaration
declaration
definition
explicit type conversion
expression
expression statement
fixed format
implicit type change
implicit type conversion
implicit type promotion
literal
lvalue
manipulator
minus expression
multiple declaration
multiplicative expression

name
null statement
overflow
plus expression
precedence
primary expression
return statement
rvalue
scientific format
showpoint
simple assignment
single declaraton
sizeof
statement
subtraction
type conversion
unary expression
underflow
uppercase
variable declaration

for23380_ch03_059-111.indd 105 02/11/18 5:11 pm

106 Chapter 3 Expressions	and	Statements

we have an expression of different levels of precedence; associativity is used when we have
expressions of the same precedence.

Overflow and underflow define the rules for determining what happens when a number
is either too large or too small for a variable.

Sometimes we need to format data. This is done with the help of predefined objects
called manipulators. We have manipulators for outputting data and manipulators for input-
ting data.

To write a program in C++, we need statements. C++ provides many different types
of statements, each with a pre-defined task. We discusses five types of statements in this
chapter: declaration statement, expression statement, null statement, compound statement,
and return statement.

Program design is a process that needs to be carefully followed using at least three steps:
understanding the program, developing algorithms, and writing the code.

P r o b l e m s

PR-1. Evaluate the following integer expressions in decimal. Find any errors.

a. 0723
c. −0241

b. 0491
d. −0412

PR-2. Evaluate the following integer expressions in decimal. Find any errors.

a. −0x1A12
c. 0xA2EF

b. −0xH21B
d. 0x4

PR-3. Evaluate the following floating-point expressions. Find any errors.

a. 0.0712F
c. 1.234E2

b. 6.0712
d. 1123E-2

PR-4. Evaluate the following expressions.

3 + 7 * 2 4 * 2 + 7 7 / 4 + 3 * 4

PR-5. Evaluate the following expressions.

4 / 3 * 6 / 2 + 8 % 3 24 % 5 + 16 % 5 * 4 / 2

PR-6. Assume x = 3, y = 5, and z = 6. Evaluate the following expressions (assume each
expression is independent).

x − 3 + y * 2 − z / 2 (x + 2) % (y * y)

PR-7. Assume x = 3, y = 5, and z = 6. Evaluate the following expressions (assume each
expression is independent).

(y / 3 + x) * z % x y − 2 − x * y

PR-8. Assume x = 4 and y = 2. Find the value of x after evaluating each of the following
expressions.

x −= y − 2; x += y + 2;

PR-9. Assume x = 4, y = 2, and z = 5. Find the value of z after evaluating each of the
following expressions.

z /= x + y + 4; z %= y * 2 + 3;

for23380_ch03_059-111.indd 106 02/11/18 5:11 pm

Problems 107

PR-10. What is the value of each expression?

2 + 4 3 % 5; 3.2 * 2; 5 + 3.2;

PR-11. What is the value of each expression?

'A' − 2 'B' + 3.2; 4.5 + 'D'; 'C' * 2;

PR-12. If x is integer, y is float, and z is double, what are the values of x, y, and z?
 x = 'A' y = 3 z = 2 z = 2.5 + 2

PR-13. Change the following simple assignments to compound assignments.

 x = x + 4; y = y − 2; z = z + 2 − t t = t / 5;

PR-14. Change the following compound assignments to simple assignments.

x += 8 y −= 8 + x z *= t + 2 t %= x + 5

PR-15. Given that x is character, y is short integer, z is integer, and t is long
integer, find any errors in the following statements.

x = 105.2; y = 4.6; z = 27; t = 'A';

PR-16. Which of the following variables are correctly declared?

a. char letter = 'A';
b. int first, second;
c. double average, tax = 8.5;
d. long double 3x;

PR-17. Which of the following variables are correctly declared?

a. char letter, grade;
b. int sum = 5;
c. double average * 3;
d. long double 34.123;

PR-18. Assume the following statements occur one after another in a program. Show the
values of x, y, and z after all statements have been executed.

int x = 2, y = 4, z = 5;
x = y − 2;
y += x;
z /= x + y + 4;
z %= y * 2 + 3;

PR-19. Assume the following statements occur one after another in a program. Show the
values of x, y, and z after all statements have been executed.

double x = 2.5, y = 3.2, z = 5.1;
x = y + 2 ;
y += x − 1.5;
z += x + y * 4;

PR-20. Declare two variables of type int, two of type float, three of type double, and one
of type char.

PR-21. Declare x, y, z, and t to be constants of type char, short, int, and float, respectively.
Use appropriate values for each constant.

for23380_ch03_059-111.indd 107 02/11/18 5:11 pm

108 Chapter 3 Expressions	and	Statements

PR-22. Which of the following statements gives a compile-time error? Explain your
answer.

a. 2 + x = 4;
c. y = x + 2 % 5;

b. z = z + 2 = 6;
d. t = z = 4 + 5;

PR-23. Assume the following statements occur one after another in a program. Show the
values of x, y, and z after all statements have been executed.

int x = 2, y, z;
x = y = x + 2 ;
y += y − 6;
z = y + 5;

PR-24. Assume the following statements occur one after another in a program. Show the
values of x and y after all statements have been executed. Are the values of x and
y swapped? Explain.

int x = 2, y = 10;
y = x ;
x = y;

PR-25. Assume the following statements occur one after another in a program. Show the
values of x and y after all statements have been executed. Are the values of x and
y are swapped? Explain.

int x = 2, y = 10;
int temp;
temp = x ;
x = y;
y = temp ;

PR-26. What would be printed from the following lines of code?

cout << fixed << setprecision (2) << 124.78560 << endl;
cout << fixed << setprecision (2) << 0.14 << endl;
cout << fixed << setprecision (2) << 20 << endl;
cout << fixed << setprecision (2) << 14767.0 << endl;

PR-27. What would be printed from the following lines of code?

cout << fixed << setprecision (4) << 124.79 << endl;
cout << fixed << setprecision (4) << 0.14 << endl;
cout << fixed << setprecision (4) << 20.0 << endl;
cout << fixed << setprecision (4) << 14767.00 << endl;

PR-28. Write the following expression statements in C++. Each statement is independent.

increment the value of x
decrement the value of y
set the value of t to 5.14
copy the current value of variable first to the variable second.

PR-29. Write the following expression statements in C++. Each statement is independent.

add 2 to the contents of variable x
multiply the value of variable y by 7

for23380_ch03_059-111.indd 108 02/11/18 5:11 pm

Problems 109

add value of x with y and store the result in z
set the value of flag (of type bool) to false

PR-30. Find any error in each of the following statements (x, y, z, and t are numeric
types).

x += 7;
y *= y;
z + 6 = z;
3t = 12;

PR-31. Find any error in each of the following statements (assuming that all variables are
numeric types).

x = 7 = 4;
y *= y = 6;
z = z + 5 = 8;
hello = 12;

PR-32. Assume x is of type bool, y is of type char, z is of type short, and t is of type
float. What implicit promotion takes place in each of the following expressions,
and what is the value of each expression?

x + 4
y * 2
z − 24;
t + 23.4;

PR-33. Assume x is of type int, y is of type long, z is of type long long, and t is of
type long double. What implicit promotion takes place in each of the following
expressions?

x + y
y * z
z − t;

PR-34. What will be output from the following program segment?
double x = −909.245;
cout << fixed << setprecision (2) << x << endl;
cout << fixed << setw (15) << setprecision (3) << setfill ('*') << x;

PR-35. What will be output from the following program segment?
int x = 50;
cout << setw(10) << setfill ('*') << x;

PR-36. What will be output from the following program segment?
int n1 = 10, n2 = 20;
char ch = '$';
cout << setw(n1) << setfill (ch) << 241 << endl;
cout << setw(n2) << setfill (ch) << 14672;

PR-37. What will be output from the following program segment?

int n1 = 8, n2 = 12;
char ch = '#';

for23380_ch03_059-111.indd 109 02/11/18 5:11 pm

110 Chapter 3 Expressions	and	Statements

cout << setw(n1) << setprecision (3) << setfill (ch) << 475.12 << endl;
cout << setw(n2) << setprecision (4) << setfill (ch) << 0.151;

PR-38. What will be output when the following code is executed and we enter the Boolean
value false?

bool x;
cin >> boolalpha >> x;
cout << x ;

PR-39. What will be output when the following code is run and we input 72?

int x;
cin >> oct >> x;
cout << x;

PR-40. What will be output when the following code is run and we input 72?

int x;
cin >> hex >> x;
cout << x;

P r o g r a m s

PRG-1. Write a program that finds the maximum and minimum values for a short and
unsigned int in your computer.

PRG-2. Write a program that finds the minimum and maximum values for a long, and a
long long in your computer.

PRG-3. Write a program that finds the minimum and maximum values for a float and a
double in your computer.

PRG-4. Write a program that extracts and prints the second digit of an input data of
type int.

PRG-5. Write a program that individually extracts the rightmost three digits of an input
data of type int.

PRG-6. Write a program that, given a three-digit integer, constructs and prints another
integer whose digits are in the reverse order of the given one. For example,
given 372, the program prints 273.

PRG-7. Write a program that, given a number of hours, calculates the number of weeks,
days, and hours included in that number.

PRG-8. Write a program that, given the time duration of a task in the number of hours,
minutes, and seconds, calculates duration in seconds.

PRG-9. Write a program that inputs the number of seconds (a long value) and changes it
to days, hours, minutes, and seconds.

PRG-10. Write a program that inputs four scores (int values) and finds and prints the
average of the scores (a double value).

PRG-11. Write a program that helps a cashier at a store find the amount of change given,
the amount of a purchase in dollars and cents, and the amount of dollars and
cents given by the customer. The answer should be in dollars, quarters, dimes,
nickels, and pennies.

for23380_ch03_059-111.indd 110 02/11/18 5:11 pm

Programs 111

PRG-12. Write a program that, given a temperature in Celsius, calculates and prints the
temperature in Fahrenheit using the formula F = (9/5) C + 32.

PRG-13. Write a program that, given a temperature in Fahrenheit, calculates and prints
the temperature in Centigrade using the formula C = (F − 32) * 5/9.

PRG-14. Assume a party of three couples dines in a restaurant. The first family has two
children. Each of the other families has one child. Write a program that divides
the bill among each family if a child is charged 3/4 of an adult share. The total
charge (before tax) is given as an input. The tax is 9.5 percent, and 20 percent
must be added for service.

PRG-15. An hourly employee is paid regular pay per hour for 40 hours a week. She
will be paid 60 percent more for every hour she works over 40 hours. Write a
program that asks an employee to enter the number of extra hours worked last
week and the weekly rate and then calculates and prints total payment.

PRG-16. Write a program to create a customer’s bill for a company. The company sells
only three products: TV sets, DVD players, and remote controllers. The unit
prices are $1400.00, $220.00, and $35.20, respectively. The program must
read from the keyboard the quantity of each piece of equipment purchased. It
then calculates the cost of each item, the subtotal, and the total cost after an
8.25 percent sales tax.

for23380_ch03_059-111.indd 111 02/11/18 5:11 pm

112

4.1 SIMPLE SELECTION
To solve some problems, we must make decisions based on the test of a true-false condition.
If the condition is true, we need to execute a set of statements; if the condition is false, we
need to execute another set of statements (or no statements). This process is referred to as
selection. The question is, How do we create the condition that should be tested? The answer
is that we use expressions whose values are either true or false.

4.1.1 Relational and Equality Expressions
To make simple decisions, we need either relational or equality expressions. These expres-
sions are shown in Appendix C, but we show them in Table 4.1 for quick reference. We
distinguish between the two groups because they occupy different levels of precedence (11
and 10).

The programs we wrote in previous chapters were based on a sequential execution of state-
ments. The programs were mostly made of input statements, calculation statements, and out-
put statements. Every time we ran the program, all statements in the program were executed
one after another. The sequential execution of statements may solve simple problems, but
we also need to have control statements. In this chapter, we discuss the first group of control
statements: selection statements. A selection statement allows the programmer to choose
between different actions based on one or more conditions.

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss the need for relational and equality expressions in achieving simple selections.

•	Understand how we can make a one-way selection using the if statement.

•	Understand how we can make a two-way selection using the if-else statement.

•	Understand how we can make a multiway selection using the nested if-else statement.

•	Show how complex decisions can be made by combining relational/equality expressions with
logical expressions.

•	Understand how we can make a multiway selection in which the decision is based on discrete
values using a switch statement.

•	Show how we can use a conditional expression instead of a simple if-else statement.

4 Selection

for23380_ch04_112-157.indd 112 06/11/18 2:43 pm

4.1 Simple	Selection 113

Relational Expressions
As Table 4.1 shows, relational expressions use four relational operators to compare two
values. Note that the result of (a <= b) is true if a is equal to or if a is less than b; it is false
if a is greater than b. Similarly, the result of (a >= b) is true if a is greater than or equal to
b; the result is false if a is less than b. The type of the left and the right expression must be
the same when the comparison is evaluated. If the two expressions are not the same type,
the conversion we discussed in Chapter 3 is applied. The following shows some examples
of relational operators.

3 < 4
12.78 < 7.36
5 <= 3.24
5.0 <= 5
3 > false
5 >= 2.2

// The result is true because 3 is less than 4.
// The result is false because 12.78 is not less than 7.36.
// The left operand is first promoted to 5.0. The result is false.
// The right operand is first promoted to 5.0. The result is true.
// The right operand is promoted to 0. The result is true.
// The left operand is promoted to 5.0. The result is true.

Equality Expressions
Table 4.1 also shows two equality expressions that determine if two entities are equal or
not. Note that the result of (a == b) is true if a is equal to b; it is false if a is not equal to b.
Similarly, the result of (a != b) is true if the value of a is different from the value of b; the
result is false if they are equal. The type of the left and the right expressions must be the same
when the comparison is evaluated. If the two expressions are not the same type, the conver-
sion we discussed in Chapter 3 is applied. The following shows some equality expressions
and their results.

3 == 4
true == false
true != false
3 != false
65 != 'A'

// The result is false.
// The exprssion is converted to (1 == 0). The result is false.
// The expression is converted to (1 != 0). The result is true.
// The right operand is changed to 0. The result is true.
// The result is false because 'A' is converted to 65.

Group Name Operator Expression Pred Assoc

Relational less
less	or	equal
greater
greater	or	equal

<
<=
>
>=

expr	<	expr
expr	<=	expr
expr	>	expr
expr	>=	expr

11 →

Equality equal
not	equal

==
!=

expr	==	expr
expr	!=	expr

10 →

Table 4.1 Relational and equality expressions

for23380_ch04_112-157.indd 113 06/11/18 2:43 pm

114 Chapter 4 Selection

Precedence and Associativity
When we try to evaluate a complex expression involving relational and equality expressions,
we need to pay attention to the precedence and associativity of these two groups. In a com-
plex expression, parentheses help to indicate the order of evaluation. The following shows
some examples:

3 < 4 == 1
2 < 3 < 0
3 <= 6 < 5
4 == 4 < 2

// Using precedence we have (3 < 4) == 1. The result is true.
// Using associativity we have (2 < 3) < 0. The result is false.
// Using associativity we have (3 <= 6) < 5. The result is true.
// Using precedence we have 4 == (4 < 2) or 4 == 0. The result is false.

Pitfall
We should avoid using either of the equality operators with floating-point values because
we do not know with what precision these values are stored in memory. In other words, the
result is system dependent.

x == 2.78123
x != 14.67823

//The result may be false even if the value of x is 2.78123.
// Even if the value of x is close to 14.67823, the result may be true.

4.1.2 One-Way Selection: The if Statement
The most common structure for making decisions is one-way selection, which is accom-
plished in C++ by the if statement. Figure 4.1 shows the logic of one-way selection and the
syntax of the if statement in C++.

In this type of statement, we use an expression to test a condition. The program ex-
ecutes the statement (or the set of statements) if the result of the test is true; it skips the
statement (or the set of statements) if the result is false. Note that if we have more than one
statement to be executed, we need to use a compound statement.

This type of selection is often referred to as one-way selection: to do a task or not to do
a task. Note that the selection expression makes sense only if each time we run the program,
the result is unpredictable (based on the tested condition). In other words, the result of the
relational or equality expression should be based on the input to the program; otherwise, the
decision making does not make sense.

Note that the statement to be executed when the result of the testing is true is one single
statement, but this single statement can be a compound statement (a set of statements inside
two braces). Some programmers discard the braces when there is only one statement to be
executed. We strongly discourage this practice. The braces clearly show the flow of the pro-
gram even when there is only one statement to be executed.

[true]

[false]
Statement(s)

(a) Flow diagram (b) C++ syntax

if (Condition)
{
 Statement(s)
}

Condition

Figure 4.1	 One-way	selection

for23380_ch04_112-157.indd 114 06/11/18 2:43 pm

4.1 Simple	Selection 115

Program 4.1	 Printing	absolute	value

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* Using if-statement to print the absolute value of a number *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int number;

// Getting input
cout << "Enter an integer: ";
cin >> number;

// Finding the absolute value
if (number < 0)
{

number = −number;
}

// Printing the absolute value
cout << "Absolute value of the number you entered is: " << number;
return 0;

}

Run:
Enter an integer: 25
Absolute value of the number you entered is: 25

Run:
Enter an integer: −17
Absolute value of the number you entered is: 17

EXAMPLE 4.1
Program 4.1 shows a very simple use of an if statement to find the absolute value of an in-
teger entered by the user of the program. If the user enters a negative integer, the programs
changes it to a positive integer of the same magnitude; otherwise, the program does nothing.
After the program exits the decision-making section (lines 15 to 18), it prints the absolute
value of the integer entered.

Note that we do not need the braces (lines 16 and 18) in this simple example, but it is
a good practice to use them.

EXAMPLE 4.2
Program 4.2 also demonstrates the use of an if statement. It calculates the weekly gross
earnings for an employee. If the employee works more than 40 hours during the week, the
overtime pay rate for the extra hours is 130 percent of the base pay rate.

for23380_ch04_112-157.indd 115 06/11/18 2:43 pm

116 Chapter 4 Selection

Program 4.2	 Gross	payment	of	an	employee

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***
* Use of if-statement to find gross payment of an employee *
 ***/

#include <iostream>
#include <iomanip>;
using namespace std;

int main ()
{

// Declaration;
double hours;
double rate;
double regularPay;
double overPay;
double totalPay;

// Input
cout << "Enter hours worked: ";
cin >> hours;
cout << "Enter pay rate: ";
cin >> rate;

// Calculation that does not depend on decision
regularPay = hours * rate;
overPay = 0.0;

// Calculation that is skipped if hours worked is not more than 40
if (hours > 40.0)
{

overPay = (hours − 40.0) * rate * 0.30;
} // End if

// Rest of the calculation
totalPay = regularPay + overPay;

// Printing output
cout << fixed << showpoint;
cout << "Regular pay = " << setprecision (2) << regularPay << endl;
cout << "Over time pay = " << setprecision (2) << overPay << endl;
cout << "Total pay = " << setprecision (2) << totalPay << endl;
return 0;

}

Run:
Enter hours worked: 30
Enter pay rate: 22.00
Regular pay = 660.00
Over time pay = 0.00
Total pay = 660.00

(continued)

for23380_ch04_112-157.indd 116 06/11/18 2:43 pm

4.1 Simple	Selection 117

Run:
Enter hours worked: 45
Enter pay rate: 25.00
Regular pay = 1125.00
Over time pay = 37.50
Total pay = 1162.50

Program 4.2	 Gross	payment	of	an	employee	(Continued)

In the first run, since the employee worked less than 40 hours, the program ignores the
statement in line 27. The overtime pay remains 0.0 as initialized. In the second run, since the
employee worked more than 40 hours, statement 27 is executed, the overtime pay is calcu-
lated as $37.50, and it is added to regularPay, which makes totalPay $1162.50.

Some Pitfalls
When we use an if statement for one-way selection, we must look carefully for pitfalls.
These errors normally are not caught by the compiler because they are logic errors, not
syntactical ones. We compile and run the program, but we find that the result is not correct.

Using the Assignment Operator Instead of the Equality Operator A common mistake is to use
the assignment operator (=) instead of the equality operator (==). The following shows an
example:

if (x = 0)
{

statement;
}

// This statement is always false.

// The statement is never executed.

Note that in this case the condition is always false no matter what the value of x is. The
expression changes the value of x to 0 (which we did not intend). The result of the expres-
sion is the value of x, which is 0. We have seen that the value of 0 is interpreted as false in an
expression that needs a Boolean value. This means the statement is never executed.

Similarly, if we have (x = 5) instead of (x == 5), the result is always true and the
statement is always executed as shown below:

if (x = 5)
{

statement;
}

// This condition is always true.

// The statement is always executed.

Forgetting Braces Another common mistake is to forget the braces when we have more than
one statement to be executed:

if (x == 0)
statement1;
statement2;

// Statement1 is executed if x is equal to 0.
// Statement2 is always executed.

for23380_ch04_112-157.indd 117 06/11/18 2:43 pm

118 Chapter 4 Selection

In the above example, the compiler interprets the body of the if statement as only one
statement (statment1) and then always executes statement2. Our recommendation is to al-
ways use the braces to avoid this confusion.

Extra Semicolon The if statement is one statement that is made of the header and a compound
statement as the body. If we put an extra semicolon at the end of the header, the compiler
thinks that the body is empty. In the following example, statement1 and statement2 are
executed no matter what the value of x is. In other words, statement1 and statement2 are
considered a compound statement separate from the if statement.

if (x == 0);
{

statement1;
statement2;

}

// Semicolon makes the body of if statement empty.

// Statement1 is always executed.
// Statement2 is always executed.

4.1.3 Two-Way Selection: if-else Statement
The second statement we discuss for selection is two-way selection using the if-else state-
ment as shown in Figure 4.2. When the program reaches the if-else statement during ex-
ecution, it first evaluates the Boolean expression. If the value of this expression is true,
the program executes statement1 and ignores statement2; otherwise, the program executes
statement2 and ignores statement1. Note that in each run, only one of the two statements,
statement1 or statement2, is executed but never both. Also note that statement1 and
statement2 can be either a single statement or a compound statement. However, we always
recommend using braces (a compound statement) even if we have only one statement for
either branch. The if-else statement is used whenever we have to do something, no matter
what the result of the decision is.

EXAMPLE 4.3
Program 4.3 prints a pass/no-pass grade for a student based on a test score. After entering the
score, we use an if-else statement to check if the score is equal to or above 70. In this case,
the if branch and the else branch each have only one statement. The program executes either
line 17 or 21 but never both.

Note that in this case, we print the result of the test as a pass/no-pass grade, no matter
what the value of the grade is. However, it is also possible to use only the if statement when
we use a variable to hold the result, as we will see in future chapters.

[false] [true]

Boolean
expression

Previous
statement

Next
statement

if (boolean-expression)
{
 statement1;
}
else
{
 statement2;
}

(a) Flow diagram (b) C++ syntax

statement1statement2

Figure 4.2	 if-else	statement

for23380_ch04_112-157.indd 118 06/11/18 2:43 pm

4.1 Simple	Selection 119

Program 4.3	 Find	pass/no-pass	grade

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* Use of an if-else statement to find a pass/no-pass grade *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Local Declaration
int score;

// Input
cout << "Enter a score between 0 and 100: ";
cin >> score;

// Decision
if (score >= 70)
{

cout << "Grade is pass" << endl;
} // End if
else
{

cout << "Grade is nopass" << endl;
} // End else
return 0;

}

Run:
Enter a score between 0 and 100: 65
Grade is nopass.

Run:
Enter a score between 0 and 100: 92
Grade is pass.

EXAMPLE 4.4
Program 4.4 asks the user to enter two integers and prints the larger one.

Program 4.4	 Finding	larger	of	two	numbers

1
2
3
4
5

/***
* Use of if-else statement to print larger between two numbers *
* or print the first if numbers are equal *
 ***/

#include <iostream>

(continued)

for23380_ch04_112-157.indd 119 06/11/18 2:43 pm

120 Chapter 4 Selection

Program 4.4	 Finding	larger	of	two	numbers	(Continued)

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using namespace std;

int main ()
{

// Declaration
int num1, num2;
int larger;

// Input Stataments
cout << "Enter the first number: ";
cin >> num1;
cout << "Enter the second number: ";
cin >> num2;

// Decision
if (num1 >= num2)
{

larger = num1;
} // End if
else
{

larger = num2;
} // End else

// Printing result
cout << "The larger number is: " << larger;
return 0;

}

Run:
Enter the first number: 40
Enter the second number: 25
The larger number is: 40

Run:
Enter the first number: 22
Enter the second number: 67
The larger number is: 67

Note that in the above program, we separate the output from the decision-making
process. We do not print the larger value in the decision section. We store the larger value
in a variable (called larger), and then we print it after the decision process is complete.
This is a better strategy than the one used in the previous program because we separate
the tasks.

Another Pitfall: Extra Semicolon An extra semicolon in the header creates the same
problem we saw for one-way selection. However, the error here is different; it is a com-
pilation error. The program does not compile because the compiler thinks that we are
using an else clause without an if clause. This is a less dangerous error because it forces
us to make the correction and recompile. Compile-time errors are better than run-time
errors.

for23380_ch04_112-157.indd 120 06/11/18 2:43 pm

4.1 Simple	Selection 121

// Coded // Interpreted by the compiler

if (b); // Extra semicolon
{

statement1;
}
else
{

statement2;
}

if (b) ; // Empty statement
{

statement1
}
else // Error here (else without if)
{

statement2
}

Nested if-else Statement
As we discussed in the previous section, each branch in an if-else statement can be any type
of statement. This means that each branch can be another if-else statement. This situation
is referred to as a nested if-else statement. Although we can have as many levels of nesting
as we desire, the program becomes very complicated after a few levels. Figure 4.3 shows a
nested if-else statement with two levels. Note that nesting can occur in the if branch or the
else branch or both. The figure shows the nesting in both branches.

EXAMPLE 4.5
Let’s write a program that determines if one number is greater than, equal to, or less than a
second number. The flow diagram is shown in Figure 4.4. Note that the else branch in this
case has only one task.

Code

if (expr1)
{
 if (expr2)
 {
 statement1;
 }
 else
 {
 statement2;
 }
}
else
{
 if (expr3)
 {
 statement3;
 }
 else
 {
 statement4;
 }
}

[false]

Flow diagram

[true]

[false] [true]

Expr3
Expr1

Expr2

[false] [true]

statement2 statement1statement3statement4

Figure 4.3	 Nested	if-else	statement

[true][false]

[false] [true]

write "num1 > num2"write "num1 == num2"write "num1 < num2"

num1 >= num2
num1 > num2

Figure 4.4	 The	diagram	for	finding	the	relationship	between	two	numbers

for23380_ch04_112-157.indd 121 06/11/18 2:43 pm

122 Chapter 4 Selection

The solution first determines if the first number is greater than or equal to the second
number. If this condition is false, the program has established that num1 is less than num2.
If num1 is greater than or equal to num2, the program tests further to find the exact relation-
ship. This is an example of a nested if-else statement in which the left branch is just a simple
statement. The code is shown in Program 4.5.

Program 4.5	 Finding	the	relationship	between	two	numbers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/***
* Find if a number is greater than, equal, or less than another *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int num1, num2;

// Get input values
cout << "Enter the first number: ";
cin >> num1;
cout << "Enter the second number: ";
cin >> num2;

// Decision using nested if-else statement
if (num1 >= num2)
{

if (num1 > num2)
{

cout << num1 << " > " << num2;
}
else
{

cout << num1 << " == " << num2;
}

}
else
{

cout << num1 << " < " << num2;
}
return 0;

}

Run:
Enter the first number: 42
Enter the second number: 32
42 > 32

(continued)

for23380_ch04_112-157.indd 122 06/11/18 2:43 pm

4.1 Simple	Selection 123

Run
Enter the first number: 12
Enter the second number: 12
12 == 12

Run
Enter the first number: 12
Enter the second number: 28
12 < 28

Program 4.5	 Find	the	relationship	between	two	numbers	(Continued)

A Serious Pitfall: Dangling Else Problem Nested if-else statements may create a classic prob-
lem known as the dangling else. If in a nested if-else statement we can have more if branches
than else branches, we need to know which if branch should be paired with which else
branch. The answer is that the complier matches an else with the most recent unpaired if.
This is done regardless of how we have intended our code.

An else is always paired with the most recent unpaired if.

Figure 4.5 shows one flow diagram and two coded solutions.
The first code does not correspond with the diagram because the if and the else sec-

tions are wrongly paired. In cases like this, we must use a compound statement as shown
in the second code to be sure that the else statement is paired with the first if statement, not
the second. We will see later that there is another solution to this problem: using logical
expressions.

Always use compound statements to avoid a dangling else problem.

4.1.4 Multiway Selection
Sometimes we need to solve a problem with several conditions, as shown below. Note that
each statement could be a compound statement:

Flow diagram

Incorrect code

Correct code

expr1

expr2
[false] [true]

[true]

statement1statement2

if (expr1)
{
 if (expr2)
 {
 statement1
 }
}
else
{
 statement2
}

if (expr1)
 if (expr2)
 statement1
 else
 statement2

Figure 4.5	 Dangling	else	problem

for23380_ch04_112-157.indd 123 06/11/18 2:43 pm

124 Chapter 4 Selection

If condition 1 is true, do statement 1
If condition 2 is true, do statement 2
…
If none of the above conditions is true, do statement n

This is known as a multiway selection. We can use a nested if-else statement to achieve
multiway selection. Figure 4.6 shows the flow diagram for multiway conditions with five
different statements.

We can format the multiway selection in Figure 4.6 in two different ways, as shown
below:

Non-Compact Compact

if (condition 1)
statement 1;

else
if (condition 2)

statement 2;
else

if (condition 3)
statement 3;

else
if (condition 4)

statement 4;
else

statement 5;

if (condition 1)
statement 1;

else if (condition 2)
statement 2;

else if (condition 3)
statement 3;

else if (condition 4)
statement 4;

else
statement 5;

Note that the left implementation is syntactically the same as the right implementation
except that else and if, which are in two subsequent lines without any statement between
them, are combined with only one single space between them. As far as C++ is concerned,
a new line character and a space are the same. The compact format is both shorter in the
number of lines and requires less indentions. It is much easier to read. To keep the code
short, we have not used braces. Braces should always be used in a program, as shown in the
next example.

[True][False]

[False]

[False]

[False]

[True]
[True]

[True]

Statement 1Statement 2Statement 3Statement 4Statement 5

condition 1

condition 2

condition 4

condition 3

Figure 4.6	 Multiway	if-else	selection

for23380_ch04_112-157.indd 124 06/11/18 2:43 pm

4.1 Simple	Selection 125

EXAMPLE 4.6
Assume a professor wants to write a program to determine the letter grade (A, B, C, D,
and F) for a test score between 0 and 100. The code, using multiway selection, is shown in
Program 4.6.

Program 4.6	 Finding	a	grade	related	to	a	score

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/***
* Find a grade given a score using the multi-way selection *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int score;
char grade;

// Get Input
cout << "Enter a score between 0 and 100: ";
cin >> score;

// Multi-way decision using if-else
if (score >= 90)
{

grade = 'A';
}
else if (score >= 80)
{

grade = 'B';
}
else if (score >= 70)
{

grade = 'C';
}
else if (score >= 60)
{

grade = 'D';
}
else
{

grade = 'F';
}

// Output
cout << "The grade is: " << grade;
return 0;

} // End main

(continued)

for23380_ch04_112-157.indd 125 06/11/18 2:43 pm

126 Chapter 4 Selection

Run:
Enter a score between 0 and 100: 83
The grade is B

Run:
Enter a score between 0 and 100: 65
The grade is D

Run:
Enter a score between 0 and 100: 95
The grade is A

Program 4.6	 Finding	a	grade	related	to	a	score	(Continued)

4.2 COMPLEX DECISIONS
In the previous section, we solved some decision-making problems using the relational and
equality expressions. Sometimes the decision to be made is more complex and we need more
expression types to define it. For example, we cannot make a decision based on a value in a
specific range, such as x should be between 5 and 10. We need to deploy more expressions.
In this section, we introduce three logical expressions that facilitate more complex decisions.
These logical expressions can be used in other areas of computer programming, such as rep-
etition, that we discuss in future chapters.

4.2.1 Logical Expressions
Logical expressions use logical operators that take one or two operands of Boolean type and
create a Boolean type. We have three logical operators: NOT (!), AND (&&), and OR (||). Ap-
pendix C shows all C++ expressions; we include only those expressions we need in this sec-
tion in Table 4.2. We also include the relational and equality expressions in Table 4.2 so we can
see the relationship among all expressions that are necessary in creating selection statements.
Note that the logical-not expression has a very high precedence (even more than relational and
equality expressions), but logical-and and logical-or expressions have a very low precedence.
We must also pay attention to the associativity of the logical-not (which is right to left).

Group Name Operator Expression Pred Assoc

Unary logical	not ! !	expr 17 ←

Relational less
less	or	equal
greater
greater	or	equal

<
<=
>
>=

expr	<	expr
expr	<=	expr
expr	>	expr
expr	>=	expr

11 →

Equality equal
not	equal

==
!=

expr	==	expr
expr	!=	expr

10 →

Logical	AND logical	and && expr	&&	expr 6 →

Logical	OR logical	or || expr	||	expr 5 →

Table 4.2 Precedence and associativity of some expressions

for23380_ch04_112-157.indd 126 06/11/18 2:43 pm

4.2 Complex	Decisions 127

The best way to show the result of a logical expression is to use a truth table. Figure
4.7 shows the three logical operators and their interpretations.

In the case of the not expression, we have only one input. Note that conversion occurs
if we use operands other than true or false for this operator. The following shows some ex-
amples of using the logical-not expression.

!true
!false
!5
!0

// The result is false.
// The result is true.
// First, 5 is converted to Boolean true. The result is false.
// First, 0 is converted to Boolean false. The result is true.

The and expression needs to see two Boolean values as its operands. The result is the
Boolean value true if and only if both operands are true; the result is false if either of the op-
erands is false. Again note that conversion occurs if we use operands other than true or false
for these operators. The following shows some examples of using the logical and expression.

true && true
false && true
(3 < 5) && (4 > 2)
(4 < 6) && (2 == 3)
6 && false
4 && 0

// The result is true.
// The result is false.
// It is true && true. The result is true.
// It is true && false. The result is false.
// First, 6 is converted to true. The result is false.
// First 4 is converted to true and 0 to false. The result is false.

The or expression also needs to see two Boolean values as its operands. The result is
the Boolean value false if and only if both operands are false; the result is true if either of
the operands is true. Again note that conversion occurs if we use operands other than true or
false for these operators.The following shows some logical or expressions and their results.

true || true
false || false
(1 < 4) || (2 ==3)
(4 < 3) || (4 <= 3)
3 || false
0 || false

// The result is true.
// The result is false.
// It is (true || false). The result is true.
// It is (false || false). The result is false.
// First, 3 is converted to true. The result is true.
// First 0 is converted to false. The result is false.

The following shows how precedence and associativity affect calculation of the com-
plex expressions. Adding parentheses in our calculation helps us find the result.

!false && true
false || true && false
2 == 2 || 5 < 6 && false

// This is (!false) && true. The result is true.
// This is false || (true && false). The result is false.
// This is true || (false && false). The result is true.

true true true

truefalse true
true false true

false false false
Left Right Result

OR

Truth Table

AND

Truth Table

true true true

truefalse false
true false false

false false false
Left Right Result

NOT

Truth Table

falsetrue
false true

Operand Result

Figure 4.7	 Logical	expression	and	their	truth	tables

for23380_ch04_112-157.indd 127 06/11/18 2:43 pm

128 Chapter 4 Selection

4.2.2 Use of Logical Expressions
We can code complex selection criteria using the combination of relational/equality expres-
sions and logical expressions. Let’s take a look at some cases.

Use Of AND Expression
Since the result of an and expression is true when both operands are true, we can use an and
expression when we need the two conditions to be true to do something. In other words, the
expression

condition1 && condition2

is true when both condition1 and condition2 are true. For example, to test if a number is
inside a range, we need two conditions, as shown in Figure 4.8.

EXAMPLE 4.7
Assume a car rental company defines the minimum and maximum age to rent a car to be 25
and 100, respectively. Program 4.7 shows how a person’s age can be tested using a simple
decision-making code.

(value >= x) && (value <= y)

Common Range

value <= y
value >= x

range-∞ +∞x y

Figure 4.8	 A	common	range	as	the	combination	of	
two	relations

Program 4.7	 Finding	age	eligibility	

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***
* Find age eligibility to rent a car *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration of variables
int age;
bool eligible;

// Getting input
cout << "Enter your age: ";
cin >> age;

(continued)

for23380_ch04_112-157.indd 128 06/11/18 2:43 pm

4.2 Complex	Decisions 129

Program 4.7	 Finding	age	eligibility	(Continued)

15
16
17
18
19
20
21
22
23
24
25
26
27

// Setting the condition
eligible = (age >=25) && (age <= 100);

// Testing the condition and output
if (eligible)
{

cout << "You are eligible to rent a car.";
}
else
{

cout << "Sorry! You are not eligible to rent a car.";
}
return 0;

}

Run:
Enter your age: 27
You are eligible to rent a car.

Run:
Enter your age: 54
You are eligible to rent a car.

Run:
Enter your age: 103
Sorry! You are not eligible to rent a car.

Run:
Enter your age: 21
Sorry! You are not eligible to rent a car.

Use of OR Expression
Since the result of an or expression is true when either of the operands is true, we must think
of an or operator when we need to test if at least one of the two conditions is true in a deci-
sion. In other words, the expression

condition1 || condition2

is true when either condition1 or condition2 (or both) is true. For example, to test if a number
is outside a range, we need to test two conditions, as shown in Figure 4.9.

(value <= x) || (value >= y)

value <= x value >= y

rangex y-∞ +∞

Figure 4.9	 A	disjoint	range	as	the	combination	of	two	
relations

for23380_ch04_112-157.indd 129 06/11/18 2:43 pm

130 Chapter 4 Selection

Note that for the test to work, x and y must be distinct and y must be larger than x. Otherwise,
there is an overlap and the range is not distinct.

EXAMPLE 4.8
Assume we want the air-conditioning system in a house to be on when the inside tempera-
ture is above 75 degrees or below 60 degrees Fahrenheit. We can simulate this by inputting
the temperature and turning on the air-conditioning system as shown in Program 4.8. After
the system is on, the program can decide to turn on the heater or the cooler. Note that for
either the heater or the cooler to be on, the air-conditioning system must be turned on first.

Program 4.8	 Turning	the	air-conditioning	system	on	and	off	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/***
* Turn the air conditioning system on if the temperature is *
* below or above a certain temperature. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Variable declaration
int temperature;
bool hot;
bool cold;

// Input the temperature
cout << "Enter the temperature: ";
cin >> temperature;

// Set two conditions
hot = temperature >= 75;
cold = temperature <= 65;

// Make the decision
if (hot || cold)
{

cout << "The air condition system is turned on!" << endl;
if (hot)
{

cout << "The cooler is working!" << endl;
}
else
{

cout << "The heater is working!" << endl;
}

}
else
{

(continued)

for23380_ch04_112-157.indd 130 06/11/18 2:43 pm

4.2 Complex	Decisions 131

Program 4.8	 Turning	the	air-conditioning	system	on	and	off	(Continued)

35
36
37
38

cout << "The air condition system is turned off!" << endl;
}
return 0;

}

Run:
Enter the temperature: 73
The air condition system is turned off!

Run:
Enter the temperature: 63
The air condition system is turned on!
The heater is working!

Run:
Enter the temperature: 82
The air condition system is turned on!
The cooler is working!

Use of NOT Expression
The not operator flips the value of a logical expression. If the logical expression is originally
true, the result is false; if the logical expression is originally false, the result is true. In other
words, the result of the following expression is the inverse of the given condition.

!condition

EXAMPLE 4.9
In our current calendar, the month of February has 28 days instead of 29. To check for a
leap year, we need to check three conditions. If a year is divisible by 400, it is definitely a
leap year. Otherwise, if the year is divisible by 4, but not by 100, it is also a leap year. The
condition can be written using the logical expression shown below:

leapYear = (divisibleBy400) || (divisibleBy4 && !(divisibleBy100))

Program 4.9 shows how we can use the above condition to test if a given year is a leap year.

Program 4.9	 Finding	if	a	given	year	is	a	leap	year		

1
2
3
4
5
6
7
8

/***
* Find if a given year is a leap year testing three conditions *
 ***/

#include <iostream>
using namespace std;

int main ()
{

(continued)

for23380_ch04_112-157.indd 131 06/11/18 2:43 pm

132 Chapter 4 Selection

Program 4.9	 Finding	if	a	given	year	is	a	leap	year	(Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// Variable declaration
int year;
bool divBy400, divBy4, divBy100;
bool leapYear;

// Input year
cout << "Enter the year: ";
cin >> year;

// Set conditions
divBy400 = ((year % 400) == 0);
divBy4 = ((year % 4) == 0);
divBy100 = ((year % 100) == 0);
leapYear = (divBy400) || (divBy4 && !(divBy100));

// Decision and output
if (leapYear)
{

cout << "Year " << year << " is a leap year." << endl;
}
else
{

cout << "Year " << year << " is not a leap year." << endl;
}
return 0;

}

Run:
Enter the year: 2000
Year 2000 is a leap year.

Run:
Enter the year: 1900
Year 1900 is not a leap year.

Run:
Enter the year: 2012
Year 2012 is a leap year.

Run:
Enter the year: 2014
Year 2014 is not a leap year.

Removal of Not Operator
There are occasions when we write a condition and we end up with a not operator in front of
the expression, which sometimes can be difficult to comprehend or interpret.

Expressions Involving Relational or Equality Operators If the expression after the not operator
is relational or an inequality, it is simple to remove the not operator and change the expression
because we can easily find another expression that is the opposite of the one we have. The
following shows how to remove a not operator in front of a relational or equality expression.

for23380_ch04_112-157.indd 132 06/11/18 2:43 pm

4.2 Complex	Decisions 133

!(x < 7)
!(x > 7)
!(x == 7)

⟶
⟶
⟶

(x >= 7)
(x <= 7)
(x != 7)

!(x >= 7)
!(x <= 7)
!(x != 7)

⟶
⟶
⟶

(x < 7)
(x > 7)
(x == 7)

Expressions Involving Logical-And or Logical-Or Operators When an expression involves a
logical-and or a logical-or operator, the case is not simple. We need to use one of the two
forms of what is called De Morgan’s law, named after logician August De Morgan (1806–
1871). The two forms are shown below:

!(x && y) ⟶ (!x || !y) !(x || y) ⟶ (!x && !y)

In other words, we can remove the not operator in front of the logical-and expression
if we change the logical-and operator to the logical-or operator and insert the not operator in
front of each expression. Conversely, we can remove the not operator in front of the logical-
or expression if we change the logical-or operator to the logical-and operator and insert the
not operator in front of each expression.

At first glance, it looks like we are elongating the expression by removing one not
operator and adding two not operators, but we are simplifying the expression and making it
easier to understand.

EXAMPLE 4.10
Assume we want to stop jogging when the temperature is below 35 degrees Fahrenheit (too
cold) or above 90 degrees Fahrenheit (too hot). We can write the stop condition as

Stop Condition ⟶ (temp < 35) || (temp > 90)

If we want to find the continue jogging conditions, we can easily negate the above expres-
sion as

Continue Condition ⟶ !((temp < 35) || (temp > 90))

The second form of De Morgan’s law allows us to write the expression as

Continue Condition ⟶ (!(temp < 35) && !(temp > 90))

Although we have two logical-not operators here, we can simplify the expression (using the
rules we learn in this section) to get a better picture.

Continue Condition ⟶ (temp >= 35) && (temp <= 90)

The last version says that we can continue to jog as long as the temperature is between 35
and 90.

Swapping if and else Blocks
Sometimes we want to swap the if and else blocks in an if-else statement. We can do this by
flipping the condition in the if clause. This is helpful when the if block is empty as shown
below. By swapping the if and else blocks, we can make the else block empty, and the empty
block can be removed to a simple decision. Note that we cannot eliminate the empty if block,

for23380_ch04_112-157.indd 133 06/11/18 2:43 pm

134 Chapter 4 Selection

but we can eliminate the empty else block. Let us see how this can help to simplify the code
as shown below:

// Original code // After swapping //After simplifying

if (x)
{

}
else
{

statement;
}

if (!x)
{

statement;
}
else
{

}

if (!x)
{

statement;
}

Short-Circuit Behavior: A Problem to Be Aware Of
C++ tries to be efficient and uses what is called short-circuit behavior. This behavior can
happen in both logical and and logical or expressions.

Short-Circuit Behavior with Logical AND Operator In an and expression, C++ evaluates the
left operand. If it is false, it does not evaluate the right operand because the result is false
regardless of the value of the right operand. If the left operand is true, then the right operand
is evaluated. Although this behavior does not affect our program in many cases, it may af-
fect our program when the right operand has a side effect. This means that we should avoid
using expressions with side effects as the right operand. The following shows two examples.

(3 < 2) && (x = 2)
(2 < 6) && (x = 2)

// The second operand is ignored. x is not changed.
// The second operand is evaluated. The integer 2 is stored in x.

Short-Circuit Behavior with Logical OR Operator In an or expression, C++ evaluates the left
operand. If it is true, it does not evaluate the right operand because the result is true regard-
less of the value of the right operand. If the left operand is false, then the right operand is
evaluated. Although this behavior does not affect our program in many cases, it may affect
our program when the right operand has a side effect. This means that we should avoid using
expressions with side effects as the right operand with the logical-or operator. The following
shows two examples.

(2 < 5) || (x = 3)
(7 < 6) || (x = 5)

// The second operand is ignored. x is not changed.
// The second operand is evaluated. The integer 5 is stored in x.

We recommend avoiding side effects in a logical expression.

4.3 DECISIONS ON SPECIFIC VALUES
In the previous two sections we discussed decision-making processes that depend on Bool-
ean conditions. We tested a single condition and multiple conditions. In each case, if the con-
dition was true, we did something; otherwise, we did something else or nothing. Sometimes
we need to make multiple decisions, but the decision to be made in each case is not based on
Boolean conditions; the decision is based on some specific integral values. For example, we
may have to do a different task on each day of the week. This is a decision-making process

for23380_ch04_112-157.indd 134 06/11/18 2:43 pm

4.3 Decisions	on	Specific	Values 135

based on one of the seven values for the day: 1, 2, 3, 4, 5, 6, or 7. Although we can still use
seven conditions (day == 1), (day == 2) , … , (day == 7) and use a multiple if-else state-
ment, C++ has a better solution for us: the switch statement, which we discuss next.

4.3.1 Switch Statement
Another multiway decision construct in C++ is the switch statement, in which the decision
is based on specific values. Figure 4.10 shows the case in which we must test specific values
(1 to n) and, based on the result, we must do one of the n tasks.

Structure of Switch Statement
Before we discuss how the switch statement can be used for multivalue decisions, let us look
at the structure of this statement. The basic switch statement is designed for what is called a
fall through flow. Figure 4.11 shows the flow diagram and the syntax of a switch statement
with four cases (we can have as many cases as we need).

 The switch statement makes a decision to enter the fall through flow when the value of
the expression matches a value defined in one of the cases. In other words, entering the fall
through is based on a value, but when the flow enters the fall through, it goes all the way to
the end and executes all remaining fall through statements.

In the figure, the value of the expression is first compared to the value1. If there is a
match, statement1 through statement4 are all executed. If the value of the expression
does not match value1, but matches value2, statement2 through statement4 are ex-
ecuted (statement1 is skipped). If none of the values are matched, no statement is executed.
The value in the case clauses should be unique.

task:1

1
Values

Tasks

2 3 n-1 n

task: 2 task: 3 task: n-1 task: n

Figure 4.10	 Decision	based	on	integral	values

[match]

[no match]

Statement1

case value1: Statement 1

case value2: Statement 2

case value3: Statement 3

case value4: Statement 4

(b) Switch statement(a) Flow diagram

{

}

switch (expression)

Expression

value1

value2

value3

value4

[match]

[no match]

Statement2

[match]

[no match]

Statement3

[match]

[no match]

Statement4

Figure 4.11	 Water	fall	flow	of	a	switch	statement

for23380_ch04_112-157.indd 135 06/11/18 2:43 pm

136 Chapter 4 Selection

EXAMPLE 4.11
To show how a switch statement works, we use Program 4.10. In this program, we assign in-
teger values, 0 to 6, to the days of the week (Sunday through Saturday) and see how a switch
statement enters the week at a specific day (defined by the input value) and prints the name
of the day and the names of the rest of the days in the week.

Program 4.10	 Printing	the	days	of	the	week

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* Use a switch statement to print the days of the weeks from a *
* specific day to the end of the week. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int day;

// Input
cout << "Enter a number between 0 and 6: ";
cin >> day;

// Switch statement (decision and output)
switch (day)
{

case 0: cout << "Sunday" << endl;
case 1: cout << "Monday" << endl;
case 2: cout << "Tuesday" << endl;
case 3: cout << "Wednesday" << endl;
case 4: cout << "Thursday" << endl;
case 5: cout << "Friday" << endl;
case 6: cout <<"Saturday" << endl;

} // End switch
return 0;

}// End main

Run:
Enter a number between 0 and 6: 2
Tuesday
Wednesday
Thursday
Friday
Saturday

Run:
Enter a number between 1 and 6: 4
Thursday

(continued)

for23380_ch04_112-157.indd 136 06/11/18 2:43 pm

4.3 Decisions	on	Specific	Values 137

Program 4.10	 Printing	the	days	of	the	week	(Continued)

Friday
Saturday

Run:
Enter a number between 1 and 6: 6
Saturday

Run:
Enter a number between 1 and 6: 8

We run the program four times. The first time we enter 2 for the integer day; the switch
enters at the case 2 and prints the rest of the week (Tuesday through Saturday). In the second
run, we enter 4 for the integer day; the switch statement enters at the case 4 and prints the
rest of the week (Thursday through Saturday). In the third run, we enter 6; the program only
prints the last day of the week (Saturday). In the fourth run, we enter 8, which is not in the
list of integral values; nothing is printed.

Switch Statement with Breaks
To use the switch statement for multivalue selection, we must add break statements. A break
statement breaks the flow of the program at the time the statement is encountered and jumps to
the end of the switch statement. Figure 4.12 shows the switch statement with the break statement
added at each branch. We can see that each time we enter the switch statement, only one path
is followed, the one that matches the expression. Compare the flow diagrams of Figure 4.11
and Figure 4.12 to see the differences. Figure 4.11 uses fall through; Figure 4.12 uses selection.

EXAMPLE 4.12
Let us change Program 4.10 to a switch statement with breaks. Program 4.11 shows the
result. In each run of the program only one day is printed. Like before, we enter 3 for the

[match]

[no match]

Statement1 break

break

break

break

case value1: Statment 1;

break;

break;

break;

break;

case value2: Statment 2;

case value3: Statment 3;

case value4: Statment 4;

(b) Switch statement(a) Flow diagram

{

}

switch (expression)

Expression

value1

value2

value3

value4

[match]

[no match]

Statement2

[match]

[no match]

Statement3

[match]

[no match]

Statement4

Figure 4.12	 Switch	statement	with	breaks

for23380_ch04_112-157.indd 137 06/11/18 2:43 pm

138 Chapter 4 Selection

integer day in the first run; the result is Tuesday. In the second run, we enter 5 for the integer
day; the result is Thursday. When we enter 8 for the integer day, none of the cases match
and nothing is printed. Note that the last break is not really needed, but good programmers
add it to make the symmetry complete. Note also that we have added a second output in the
first and last cases to demonstrate that multiple statements can also be executed in any case
branch.

Program 4.11	 Printing	the	day	of	the	week	from	a	given	day

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

/***
* Use a swith statement with break to print the name of the *
* week day. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int day;

// Input
cout << "Enter a number between 0 and 6: ";
cin >> day;

// Switch statement (Decision and output)
switch (day)
{

case 0: cout << "Sunday" << endl;
cout << "First day of the week " << endl;
break;

case 1: cout << "Monday" << endl;
break;

case 2: cout << "Tuesday" << endl;
break;

case 3: cout << "Wednesday" << endl;
break;

case 4: cout << "Thursday" << endl;
break;

case 5: cout << "Friday" << endl;
break;

case 6: cout <<"Saturday" << endl;
cout << "Last day of the week " << endl;
break; // This is not needed, but added for parallelism

} // End switch
return 0;

}// End main

(continued)

for23380_ch04_112-157.indd 138 06/11/18 2:43 pm

4.3 Decisions	on	Specific	Values 139

Program 4.11	 Printing	the	day	of	the	week	from	a	given	day	(Continued)

Run:
Enter a number between 0 and 6: 0
Sunday
First day of the week

Run:
Enter a number between 0 and 6: 4
Thursday

Run:
Enter a number between 0 and 6: 6
Saturday
Last day of the week

Run:
Enter a number between 0 and 6: 8

Adding Default
Sometimes we have several cases that need to take the same action. In this case, if all of the
cases are at the end of the switch statement, we can make the statement shorter by adding a
default case. A default case is entered when none of the cases match.

The default case can also be used for error detection. It can be used to detect the error
when none of the cases match the given value. However, we need to know that the default
case can be used only once, as the last case.

The default case must be the last case in a switch statement.

This means if we use the default to catch several case values, it cannot be used for error
detection. We need to use other tools. The next example shows the use of a default case.

EXAMPLE 4.13
Let us show how we can use the switch statement to change a test score to a letter grade.
We have a problem that needs to be solved; the grade is based on a range of scores, not a
single value. For example, if a score is in the range 90 to 100, the grade should be assigned
the letter ‘A’. However, we can solve the problem using a switch statement if we change
the ranges to single values using the division operator. If we divide a score between 0 and
100 by 10, we get a value between 0 and 10. Program 4.12 shows how to solve the problem
using this technique.

Program 4.12	 Printing	a	grade	from	a	score

1
2
3
4
5
6

/***
* Use a swith statement to print a grade from a given score. *
 ***/

#include <iostream>
using namespace std;

(continued)

for23380_ch04_112-157.indd 139 06/11/18 2:43 pm

140 Chapter 4 Selection

Program 4.12	 Printing	a	grade	from	a	score	(Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

int main ()
{

// Declaration
int score;
char grade;

// Input
cout << "Enter a score between 0 and 100: ";
cin >> score;

// Decision making using switch statement
switch (score / 10)
{

case 10: grade = 'A';
break;

case 9 : grade = 'A';
break;

case 8 : grade = 'B';
break;

case 7 : grade = 'C';
break;

case 6 : grade = 'D';
break;

default: grade = 'F';
} // End switch

// Output
cout << "Score: " << score << endl;
cout << "Grade: " << grade << endl;
return 0;

}

Run:
Enter a score between 0 and 100: 71
Score: 71
Grade: C

Run:
Enter a score between 0 and 100: 93
Score: 93
Grade: A

Run:
Enter a score between 0 and 100: 24
Score: 24
Grade: F

As you can see, we have used a default case to handle several cases (5, 4, 3, 2, 1, 0), which
means all grades less than 60. However, we still have a problem. What if the user enters a score
less than 0 or greater than 100? The program will give the grade F. To handle this problem, we
need to test the validity of the input first. One way to do this is as follows.

for23380_ch04_112-157.indd 140 06/11/18 2:43 pm

4.3 Decisions	on	Specific	Values 141

cout << "Enter a score between 0 and 100: ";
cin >> score;
if (score > 100)
{

score = 100;
}
if (score < 0)
{

score = 0;
}

We will see a better input validation strategy when we discuss repetition in the next
chapter.

Combining Cases
If the task performed by several cases is the same, we can combine the cases. This is
possible because the fall through nature of the switch statement allows the program to go
through the cases until a break statement is encountered. We show the idea in the next
example.

EXAMPLE 4.14
In Program 4.13 we read a letter grade and print a pass/no-pass grade. The default statement
serves as the error detector.

Program 4.13	 Finding	a	pass/no-pass	grade

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* Use a switch statement to find a pass/nopass grade. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
char grade;

// Input
cout << "Enter a grade (A, B, C, D, F): ";
cin >> grade;

// Decision section using switch statement
switch (grade)
{

case 'A':

(continued)

for23380_ch04_112-157.indd 141 06/11/18 2:43 pm

142 Chapter 4 Selection

Program 4.13	 Finding	a	pass/no-pass	grade	(Continued)

18
19
20
21
22
23
24
25
26
27

case 'B':
case 'C': cout << "Grade is pass";

break;
case 'D':
case 'F': cout << "Grade is nopass";

break;
default: cout <<"Error in the input. Try again.";

} // End switch
return 0;

}// End main

Run:
Enter a grade (A, B, C, D, F): A
Grade is pass

Run:
Enter a grade (A, B, C, D, F): D
Grade is nopass

Run:
Enter a grade (A, B, C, D, F): F
Grade is nopass

Run:
Enter a grade (A, B, C, D, F): G
Error in the input. Try again.

Run:
Enter a grade (A, B, C, D, F): B
Grade is pass

Run:
Enter a grade (A, B, C, D, F): C
Grade is pass

4.4 CONDITIONAL EXPRESSIONS
Another construct that can be used for decision making is the conditional expression. It is the
only ternary expression in C++. It uses two operators and three operands, as discussed next.

4.4.1 Structure of a Conditional Expression
The following shows the syntax of a conditional expression.

condition ? expression1 : expression2

Table 4.3 shows the location of conditional expressions in the list of expressions in Appendix C.

for23380_ch04_112-157.indd 142 06/11/18 2:43 pm

4.4 Conditional	Expressions 143

The type expr1 must be a Boolean expression with a true or false value. The type expr2 and
expr3 must be the same, but the common type can be any type discussed in previous chap-
ters. The whole construct is also an expression with a value. The value of the whole expres-
sion is the value of expr2 if expr1 is true; otherwise, it is the value of expr3.

The conditional expression can be used anywhere an expression can be used.

4.4.2 Comparison
Let us compare the conditional expression with the two-way if-else statement as shown in
Figure 4.13.

 ∙ The two-way if-else statement is made of a Boolean expression with a true branch and
a false branch. The logical expression is made of a Boolean expression and two expres-
sions, one for true and one for false.

 ∙ A two-way if-else statement is a statement; it can be used anywhere we can use a state-
ment. The conditional expression is an expression, it can also be used anywhere we can
use an expression. We can use it in one of the following ways:
a. We can use as an expression in a statement.
b. We can add a semicolon at the end to change it to a stand-alone statement. This

method is useful when both the second and third statements have a side effect.

EXAMPLE 4.15
In Program 4.14 we print the larger of two integers using a conditional expression.

Group Name Operator Expression Pred Assoc

Conditional conditional ?	: expr1	?		expr2	:	expr3 4 ←

Table 4.3 Conditional expression

[false] [true]

statement1statement2

Condition
if (condition)

statement1;

statement2;
else

(a) Flow diagram (b) Using if-else statement

 condition ? statement1 : statement2;

(c) Using a condtional expression

x = condition ? statement1 : stateemnt2; // As part of another statement

// As an expression statement

Figure 4.13	 Comparing	if-else	statement	and	conditional	expression

for23380_ch04_112-157.indd 143 06/11/18 2:43 pm

144 Chapter 4 Selection

Program 4.14	 Conditional	expression	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* Uses a conditional expression to print the larger of two *
* numbers or the first if the numbers are equal *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int num1, num2;
int larger;

// Input
cout << "Enter the first number: ";
cin >> num1;
cout << "Enter the second number: ";
cin >> num2;

// Decision making
larger = num1 >= num2 ? num1 : num2;

// Output
cout << "The larger is: " << larger;
return 0;

}// End main

Run:
Enter the first number: 40
Enter the second number: 25
The larger is: 40

Run:
Enter the first number: 22
Enter the second number: 67
The larger is: 67

4.5 PROGRAM DESIGN
In this section, we design and implement four programs. We use the software development
process we discussed in Chapter 3: understand the problem, develop an algorithm, and write
the code.

4.5.1 Student’s Score
Let us create a program that helps a professor find the score of a student in a class based on
the result of three tests. The professor believes that the student’s score should be the average
of the maximum and minimum of the three scores.

for23380_ch04_112-157.indd 144 06/11/18 2:43 pm

4.5 Program	Design	 145

Understand the Problem
We need input, processing, and output. We need to input the three scores. Next we must
find the maximum and the minimum scores of the three input scores. Finally, we must find
the average of the two and set the student’s score to the average. Although there are more
efficient methods discussed in future chapters, we first find the maximum score and then
the minimum score using nested if-else structure. The student score is the average of the
minimum and the maximum scores.

Develop the Algorithm
Based on our understanding, we can create the following algorithm.

1. Input
a. input score1
b. input score2
c. input score3

2. Process
a. find the maxScore

1. if score1 is greater than the other two, maxScore is score1
2. else if score2 is greater than the other two, maxScore is score2
3. else maxScore is score3

b. find the minScore
1. if score1 is smaller than the other two, minScore is score1
2. else if score2 is smaller than the other two, minScore is score2
3. else minScore is score3

c. find the student's score
1. add maxScore and minScore
2. divide the result by two to get the student's score

3. Output
a. Output three scores
b. Output minScore and maxScoe
c. Output the student's score

Write the Code
Now we can write the code based on the developed algorithm (Program 4.15). The only
section of the program that needs some explanation is lines 47 to 52. The maximum and
minimum scores are of type integer, and we want the student score to be of type integer. If
the sum of the maximum and minimum scores is odd, we add 1 to it to make the sum even.
Adding 1 effectively rounds the result of the division up to the higher score; otherwise, the
score would be truncated to the lower score.

Program 4.15	 Finding	the	student	score	based	on	three	tests

1
2
3
4
5

/***
* Finding the student score based on the given three scores *
* The program sets the student score to the average of maximum *
* and minimum of the three scores *
 ***/

(continued)

for23380_ch04_112-157.indd 145 06/11/18 2:43 pm

146 Chapter 4 Selection

Program 4.15	 Finding	the	student	score	based	on	three	tests	(Continued)

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#include <iostream>
using namespace std;

int main ()
{

// Declarations
int score1, score2, score3, maxScore, minScore, score;

// Input
cout << "Enter the first score: ";
cin >> score1;
cout << "Enter the second score: ";
cin >> score2;
cout << "Enter the third score: ";
cin >> score3;

// Find maximum score
if (score1 > score2 && score1 > score3)
{

maxScore = score1;
}
else if (score2 > score1 && score2 > score3)
{

maxScore = score2;
}
else
{

maxScore = score3;
}

// Find minimum score
if (score1 < score2 && score1 < score3)
{

minScore = score1;
}
else if (score2 < score1 && score2 <= score3)
{

minScore = score2;
}
else
{

minScore = score3;
}

// Find and round the student score
int temp = maxScore + minScore;
if (temp % 2 == 1)

(continued)

for23380_ch04_112-157.indd 146 06/11/18 2:43 pm

4.5 Program	Design	 147

Program 4.15	 Finding	the	student	score	based	on	three	tests	(Continued)

49
50
51
52
53
54
55
56
57
58
59

{
temp += 1;

}
score = temp / 2;

// Print results
cout << "Scores: " << score1 << " " << score2 << " " << score3 << endl;
cout << "minimum and maximum scores: ";
cout << minScore << " " << maxScore << endl;
cout << "Student score: " << score;
return 0;

}

Run:
Enter the first score: 78
Enter the second score: 92
Enter the third score: 79
Scores: 78 92 79
minimum and maximum scores: 78 92
Student score: 85

Run:
Enter the first score: 65
Enter the second score: 93
Enter the third score: 60
Scores: 65 93 60
minimum and maximum scores: 60 93
Student score: 77

4.5.2 Finding the Tax for a Given Income
Let us design a program that calculates and prints the tax for a given income.

Understand the Problem
Income tax in many countries is bracketed, which means there are different tax rates for each
bracket as shown in Figure 4.14.

The total tax is the sum of the taxes in each bracket (Table 4.4). A person in bracket1
pays tax1. A person in bracket2 pays the sum of tax1 and tax2. A person in bracket3 pays
tax1, tax2, and tax3. A person in bracket4 pays tax1, tax2, tax3, and tax4. The diff in the
table means the difference between the income and the previous limit.

bracket1

rate1 rate2 rate3 rate4

bracket2 bracket3 bracket4

0.00 limit1 limit2 limit3

Figure 4.14	 Concept	of	bracketed	tax

for23380_ch04_112-157.indd 147 06/11/18 2:43 pm

148 Chapter 4 Selection

Develop the Algorithm
The algorithm in this case is simple. We input the income, calculate the tax using nested
 if-else constructs, and then print the tax amounts as shown in Figure 4.15.

Write the Code
We create a program based on the two previous sections, we make the program reusable
when the rate and the bracket ranges change in the future, and we declare the rate and limit
instead of literally coding them in the program. We also create four Boolean variables that
define in which bracket the income belongs (bracket1 to bracket4). If bracket1 is true, the in-
come is in the first bracket and so on. To prevent errors (like a negative input for income), we
create another branch in the if-else statement to handle error conditions. If the user enters a
negative income, the program prints a message and immediately returns lines 44 and 45. The
return statement in line 45 is needed to print the result in lines 48 and 49. See Program 4.16.

Bracket Tax1 Tax2 Tax3 Tax4

bracket	1 diff	×	rate1
bracket	2 limit1	×	rate1 diff	×	rate2
bracket	3 limit1	×	rate1 limit2	×	rate2 diff	×	rate3
bracket	4 limit1	×	rate1 limit2	×	rate2 limit3	×	rate3 diff	×	rate4

Table 4.4 Tax brackets

bracket 1

bracket 2
bracket 3

bracket 4

Note:
Tax calculation in
each bracke is differnet
as shown before.

input income

output tax

Calculate Tax

Calculate Tax

Calculate Tax

Calculate TaxError

Figure 4.15	 Flow	diagram	for	design	of	calculating	income	tax

Program 4.16	 An	individualʼs	tax	burden

1
2
3
4

/***
* Finding the tax of an individual using four different tax *
* brackets *
 ***/

(continued)

for23380_ch04_112-157.indd 148 06/11/18 2:43 pm

4.5 Program	Design	 149

(continued)

Program 4.16	 An	individualʼs	tax	burden	(Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

#include <iostream>
using namespace std;

int main ()
{

// Declaration and initialization
double income, tax ;
bool bracket1, bracket2, bracket3, bracket4;
double limit1 = 10000.00, limit2 = 50000.00, limit3 = 100000.00;
double rate1 = 0.05, rate2 = 0.10, rate3 = 0.15, rate4 = 0.20;

// Input
cout << "Enter income in dollars: " ;
cin >> income;

// Defining brackets
bracket1 = (income <= limit1) && (income >=0) ;
bracket2 = (income > limit1) && (income <= limit2);
bracket3 = (income > limit2) && (income <= limit3);
bracket4 = (income > limit3);

// Calculating tax
if (bracket1)
{

tax = income * rate1;
}
else if (bracket2)
{

tax = limit1 * rate1 + (income − limit1) * rate2 ;
}
else if (bracket3)
{

tax = limit1 * rate1 + (limit2 − limit1) * rate2 +
 (income − limit2) * rate3 ;

}
else if (bracket4)
{

tax = limit1 * rate1 + (limit2 − limit1) * rate2 +
 (limit3 − limit2) * rate3 + (income − limit3) * rate4 ;

}
else
{

cout << "Error! Invalid income!";
return 0;

}
// Printing income and tax

for23380_ch04_112-157.indd 149 06/11/18 2:43 pm

150 Chapter 4 Selection

Program 4.16	 An	individualʼs	tax	burden	(Continued)

48
49
50
51

cout << "Income: " << income << endl;
cout << "Tax due: " << tax;
return 0;

}

Run:
Enter income in dollars: 8500
Income: 8500
Tax due: 425

Run:
Enter income in dollars: 14500
Income: 14500
Tax due: 950

Run:
Enter income in dollars: −5
Error! Invalid income!

Run:
Enter income in dollars: 123000
Income: 123000
Tax due: 16600

The income in the third run (−5) is invalid; otherwise, the income in each run is in one
of the brackets. In the first run, the tax payer is in bracket1 and pays 5 percent of her income
to taxes (425). In the second run, the tax payer is in bracket2. She pays 500 for bracket1 (the
first 10000 dollars) and 450 for the bracket 2 (the remaining 4500 dollars), and so on. Verify
that each result is correct.

4.5.3 Day Number
Assume we give all days in the year a day number. For example, January 1 is day1 and
December 31 is day365. We want to find the day number in a year given the month and the
day of the month.

Understand the Problem
To solve the problem, we need the month and the day of that month. We need the month
because we must calculate the number of days passed in all previous months.

Develop the Algorithm
We need two tasks in this algorithm: adding the number of days in all past months and add-
ing the day number in the current month. The first is done in a switch statement, one case for
each month. The second is done after the switch statement. The switch statement using the
fall through approach (without break statements) is very suitable for this problem because we
need to accumulate the number of days passed in the previous months. To make the switch
statement work, we start from the last month of the year and go to the first month. If we are
in month 7, for example, we enter the case 7, but we add the number of days from month 6
to month 1. When we come out of the switch statement, we add the number of days in the
current month.

for23380_ch04_112-157.indd 150 06/11/18 2:43 pm

4.5 Program	Design	 151

Write the Code
Program 4.17 follows the algorithm. Note that we have ignored the case of a leap year, in
which February contains 29 days. We leave the case of a leap year for an exercise. We have
also ignored input errors, which we discuss in a future chapter.

Program 4.17	 Day	number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/***
* Finding the number of days passed from the beginning of the *
* the year including the current day *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int month;
int day;
int totalDays = 0;

// Input current month and current day of the month
cout << "Enter month: ";
cin >> month;
cout << "Enter day of month: ";
cin >> day;

// Number of days in months
int m01 = 31;
int m02 = 28;
int m03 = 31;
int m04 = 30;
int m05 = 31;
int m06 = 30;
int m07 = 31;
int m08 = 31;
int m09 = 30;
int m10 = 31;
int m11 = 30;

// Switch statement find the total days using fall through
switch (month)
{

case 12 : totalDays += m11;
case 11 : totalDays += m10;
case 10 : totalDays += m09;
case 9 : totalDays += m08;
case 8 : totalDays += m07;

(continued)

for23380_ch04_112-157.indd 151 06/11/18 2:43 pm

152 Chapter 4 Selection

Program 4.17	 Day	number	(Continued)

39
40
41
42
43
44
45
46
47
48
49
50
51
52

case 7 : totalDays += m06;
case 6 : totalDays += m05;
case 5 : totalDays += m04;
case 4 : totalDays += m03;
case 3 : totalDays += m02;
case 2 : totalDays += m01;
case 1 : totalDays += 0;

}
// Adding the day of the month to the previous total days
totalDays += day;

// Printing the result
cout << "Day number: " << totalDays;
return 0;

}

Run:
Enter month: 1
Enter day of month: 23
Day number: 23

Run:
Enter month: 4
Enter day of month: 12
Day number: 102

Run:
Enter month: 11
Enter day of month: 24
Day number: 328

Run:
Enter month: 12
Enter day of month: 31
Day number: 365

K e y T e r m s

conditional expression
dangling else
De Morgan’s law
default case
equality expression
if statement
if-else statement
logical-and expression
logical expression

logical-not expression
logical-or expression
multiway selection
one-way selection
relational expression
short-circuit behavior
switch statement
two-way selection

for23380_ch04_112-157.indd 152 06/11/18 2:43 pm

Problems 153

To solve some problems, we need to make a decision based on the test of a true-false condi-
tion. This is referred to as selection. The most common structure for making a decision is
the one way selection, accomplished in C++ by the if statement. The second statement we
discussed for selection is the two-way selection using the if-else statement.

Sometimes decision-making problems are too complex to be solved by using the rela-
tional and equality expressions. We can combine relational and equality expressions with
logical expressions to achieve a selection. We discussed three logical operators: NOT, AND,
and OR.

Another multiway decision construct in C++ is the switch statement in which the deci-
sion is based on specific values.

Another construct that can be used for decision making is called the conditional expres-
sion. It is the only ternary expression in C++. It uses two operators and three operands.

S u m m a r y

P r o b l e m s

PR-1. If originally x = 4 and y = 0, what are the values of x and y after executing the
following code?

if (x != 0)
{

y = 3;
}

PR-2. If originally x = 4, y = 0, and z = 2, what are the values of x, y, and z after exe-
cuting the following code?

if (z == 2)
{

y = 1;
}
else
{

x = 3;
}

PR-3. If originally x = 4, y = 0, and z = 2, what are the values of x, y, and z after exe-
cuting the following code?

if (x > y || y < z)
{

x = 10;
}

PR-4. If originally x = true, y = false, and z = true, what are the values of x, y, and z
after executing the following code?

if (x)
{

if (y)
{

z = false;

for23380_ch04_112-157.indd 153 06/11/18 2:43 pm

154 Chapter 4 Selection

}
else
{

y = true;
}

}

PR-5. If originally x = 4, y = 0, and z = 2, what are the values of x, y, and z after exe-
cuting the following code?

if (z == 0 || y != 0)
{

if (z <= 2)
{

z = 4;
}

}
else
{

y = 5;
z = y + x;

}

PR-6. If originally x = 0, y = 0, and z = 1, what are the values of x, y, and z after exe-
cuting the following code?

switch (x)
{

case 0 : x = 2;
 y = 3;

case 1 : x = 4;
default : y = 5;

 x = 1;
}

PR-7. If originally x = 2, y = 1, and z = 1, what are the values of x, y, and z after exe-
cuting the following code?

switch (x)
{

case 0 : x = 3;
 y = 2;

case 1 : x = 2;
default : y = 3;

 x = 4;
}

PR-8. Rewrite the following multiway selection using a switch statement.

if (x == 2)
{

x++;

for23380_ch04_112-157.indd 154 06/11/18 2:43 pm

Problems 155

}
else if (x == 3)
{

x−−;
}
else
{

cout << "End!";
}

PR-9. Rewrite the following switch statement using a multiway if-else statement.

switch (x)
{

case 1: cout << "One" << endl;
break;

case 2: cout << "Two" << endl;
break;

default: cout << "Any" << endl;
break;

}

PR-10. Rewrite the following code fragment using one switch statement.

if (ch == 'A' || ch == 'a')
countA++;

else if (ch == 'E' || ch == 'e')
countE++;

else if (ch == 'I' || ch == 'i')
countI++;

else
cout << "Error--Not A, E, or I " << endl;

PR-11. Write a code fragment that will assign the value 1 to the variable best if the integer
variable score is 90 or greater.

PR-12. Write a code fragment to add 4 to an integer variable num if a float variable
amount is greater than 5.4.

PR-13. Write a code fragment to print the value of the integer num if the variable flag is
true.

PR-14. Write a code fragment to do the following: If the variable divisor is not zero,
divide the variable dividend by divisor and store the result in quotient. If divisor is
zero, assign it to quotient. Then print all three variables. Assume that the variables
dividend and divisor are integers and quotient is a double.

PR-15. Write a code fragment to check if the variable flag is true; if true, read values of
integer variables num1 and num2. Then calculate and print the values of the sum
and average of both inputs. If the variable flag is false, do nothing.

PR-16. Write a code fragment that tests the value of an integer num1. If the value is 10,
square num1. If it is 9, read a new value into num1. If it is 2 or 3, multiply num1
by 99 and print out the result. Implement your code using nested if statements, not
a switch statement.

for23380_ch04_112-157.indd 155 06/11/18 2:43 pm

156 Chapter 4 Selection

P r o g r a m s

PRG-1. Write a program that accept only two-digit unsigned integers from the user and
then reverses the digits and prints them. Use an if statement to terminate the
program if the input number has more than two digits.

PRG-2. Write a program that, given three integers, prints the smallest one.
PRG-3. Write a program that, given an integer between 1 and 12 (inclusive), prints the

corresponding month of the year.
PRG-4. Write a program that, given the type of vehicle (‘c’ for car, ‘b’ for bus, ‘t’ for

truck) and the hours a vehicle spent in the parking lot, returns the parking charge
based on the rates shown below.

car: $2 per hour bus:$3 per hour truck: $4 per hour

PRG-5. Write a program that determines a student’s grade. It reads three test scores
(between 0 and 100) and calculates the grade based on the following rules:
a. If the average score is 90 or more, the grade is ‘A’.
b. If the average score is between 80 and 90, the program checks the third score.

If the third score is more than 90, the grade is ‘A’; otherwise, the grade is ‘B’.
c. If the average score is between 70 and 80, the program checks the third score.

If the third score is more than 80, the grade is ‘B’; otherwise, the grade is ‘C’.
d. If the average score is between 60 and 70, the program checks the third score.

If the third score is more than 70, the grade is ‘C’; otherwise, the grade is ‘D’.
e. If the average score is less than 60, the program checks the third score. If the

third score is more than 60, the grade is ‘D’; otherwise, the grade is ‘F’.
PRG-6. Write a program that calculates and prints a student’s total tuition at a college.

The students pay a fee of $10 per unit for up to 12 units; once they have paid
for 12 units, they have no additional per-unit fee. The registration fee is $10 per
student.

PRG-7. A wholesale store gives a discount on the number of items purchased, as shown
below.

Quantity Discount Quantity Discount

1 to 9 0% 50 to 99 5%

10 to 49 3% 100 or more 10%

 Write a program that, given the quantity and unit price of an item, calculates the
total price after the discount.

PRG-8. Write a program that prints the quarter (1, 2, 3, and 4) of a point in the Cartesian
(rectangular) system given the values of x and y for the point. For example, if
both x and y are positive, the point is located in the first quadrant. If both x and y
are negative, the point is located in the third quadrant, and so on.

PRG-9. Change Program 4.17 to consider the extra day in a leap year (February is 29
days instead of 28 days). The program must get the year from the user and use
the following formula to find if the year is a leap year.

leapYear = (year % 400) || (year % 4 && ! (year % 100))

for23380_ch04_112-157.indd 156 06/11/18 2:43 pm

Programs 157

PRG-10. Write a program that finds the day of the week for any given date using Zeller’s
congruence. Zeller found the following formula to calculate the day of the week
using the day of the month, the month, and the year.

weekday = (day + 26 * (month + 1) / 10 +
 year + year / 4 − year /100 + year /400) % 7

 The formula is based on the following:
a. There are seven days in the week so the calculation must be done modulo 7.
b. The first term, day, shows that each day of the month moves the weekday

forward by 1.
c. The second term, 26 * (month + 1) / 10, is the Zeller congruence. Instead of

worrying about the number of days in each month, Zeller devised this solu-
tion. Zeller’s formula works for a solar system when the year starts from
March, not January. Therefore, we must consider the months January and
February as months 13 and 14 of the previous year. In other words, January
of 2017 must be considered as month 13 of year 2016.

d. The next term, year, moves the week day one day for each year because a
non-leap year is 365 and when divided by 7 the result is 1.

e. The next term, year / 4, is the contribution of the leap year. We know that each
year divided by 4 could be a leap year that adds one day to the week day.

f. The next term, year / 100, is the term that excludes the year divided by 100
from the previous year.

g. The next term, year / 400, is the term that defines if a year divided by 400 is
a leap year and needs to add 1 to the calculation.

PRG-11. Change the menu-driven calculator program (Program 4.18) to do calculations
on floating-point numbers.

PRG-12. Write a program that, given a dollar value, prints the minimum number of bill
denominations in 100s, 50s, 20s, 10s, 5s, and 1s. Use the conditional expression
(: ?) to print only nonzero numbers of bills.

for23380_ch04_112-157.indd 157 06/11/18 2:43 pm

158

5.1 INTRODUCTION
Although we can solve many problems in computer science using only the sequence and
selection constructs, this approach will not solve all problems. Assume we want to change
100 test scores to their corresponding letter grades. We have three choices:

a. We can write a program with only one selection statement and run it 100 times. This
approach is very time consuming.

The programs we have written in the previous chapters were based on sequential statements
or selection statements. In most programs, we need to repeat lines of code. Repetition al-
lows the program to iterate a section of code multiple times. C++ provides three constructs
for repeating a set of statements without physically repeating them in the code: while state-
ments, for statements, and do-while statements.To use any of these constructs, we need more
expression types.

Objectives

After you have read and studied this chapter, you should be able to:

•	Review the expressions that can be used as counters in repetition statements.

•	Understand the syntax of a while statement and its use in creating a counter-controlled or
event-controlled repetition.

•	Understand how to initialize and update a counter in a counter-controlled repetition
statement.

•	Understand how to use a sentinel, an end of file (EOF) marker, or a flag in an event-
controlled repetition statement.

•	Understand the syntax of a for statement as a replacement for a counter-controlled while
statement.

•	Understand how initialization, testing, and counter updating are all done in the header of a for
statement.

•	Understand the syntax of a do-while statement and how it can be used for data validation.

•	Analyze and compare the three repetition constructs.

•	Discuss other statements related to repetition and how we can avoid them by changing the
structure of the repetition statements.

5 Repetition

for23380_ch05_158-207.indd 158 06/11/18 2:44 pm

5.1 Introduction 159

b. We can write one program with 100 selection statements. This approach is long and
must be changed if the number of students changes.

c. We can use repetition statements (also called loops) that allow us to repeat one activity
or a set of activities as many times as we desire.

5.1.1 Prefix and Postfix Expressions
When we use repetition statements, we often need to use a counter to check how many times
something is repeated and to terminate the repetition when we have done enough. Two
groups of expressions are designed to simulate a counter: postfix increment/decrement and
prefix increment/decrement. These two types of expressions are part of the C++ expressions
discussed in Appendix C. For quick reference, we have copied them in Table 5.1. Note that
postfix increment/decrement expressions belong to the group postfix and prefix increment/
decrement expressions belong to the group unary.

Postfix Increment and Postfix Decrement Expressions
Postfix increment and postfix decrement expressions are made of a single operand and
one operator (++ or −−) that are placed after the operand, as shown in Figure 5.1.

In each expression the operand is the name of a variable (an lvalue as we discussed
before). The previous value of the variable is the return value, but the value of the vari-
able is incremented or decremented (side effect). In other words, if the value of variable
x is 3, the x++ expression returns 3 and increments the contents of x to be 4. Similarly,
if the value of y−− is 8, the expression returns 8 and decrements y to be 7, as shown in
Figure 5.2.

Group Name Operator Expression Pred Assoc

postfix postfix	increment ++ lvalue++ 18 →

postfix	decrement −− lvalue−−

unary prefix	increment ++ ++lvalue 17 ←

prefix	decrement −− −−lvalue

Table 5.1 Prefix and postfix expressions

Figure 5.1	 Postfix	increment	and	postfix	decrement	expressions

Variable side effect
value

value

++ -- Note:
The value is returned
before the side effect occurs.1

2

for23380_ch05_158-207.indd 159 06/11/18 2:44 pm

160 Chapter 5 Repetition

EXAMPLE 5.1
Figure 5.2 tells us that we can use the side effect of expression x++ as a count-up counter
and the side effect of expression y−− as a count-down counter if we continuously increment
variable x and decrement variable y.

// Using x as count-up counter // Using y as count-down counter

int x = 3;
x++;
x++;
x++;
cout << x; // 6 is printed

int y = 8;
y−−;
y−−;
y−−;
cout << y; // 5 is printed

Prefix Increment and Prefix Decrement Expressions
Prefix increment and prefix decrement expressions are made of a single operand and one
operator (++ or −−) that are placed before the operand, as shown in Figure 5.3.

In each expression the side effect occurs (the variable is incremented or decremented)
before the value is returned. Figure 5.4 shows the result of incrementing or decrementing a
variable using these expressions.

EXAMPLE 5.2
Figure 5.4 tells us that we can use the side effect of the expression ++x as a count-up counter
and the side effect of the expression −−y as a count-down counter if we continuously incre-
ment variable x and decrement variable y.

Figure 5.2	 Values	and	side	effects	of	postfix	expressions

Before

x 3

y 8

x++

Expressions

y--

Values

3

8

After

x 4

y 7

Figure 5.3	 Prefix	increment	and	prefix	decrement	expressions

Note:
The side effect occurs
before the value is returned.

Variable
side effect

value

1
2

value++ --

Figure 5.4	 Values	and	side	effects	of	prefix	expressions

Before

x 3

y 8

++x

Expressions

--y

Values

4

7

After

x 4

y 7

for23380_ch05_158-207.indd 160 06/11/18 2:44 pm

1615.2 The	while	Statement

// Using x as count-up counter // Using y as count-down counter

int x = 3;
++x;
++x;
++x;
cout << x; // 6 is printed

int y = 8;
y−−;
y−−;
y−−;
cout << y; // 5 is printed

Comparison between Postfix and Prefix Expressions
When we compare the postfix and prefix expressions, we see that they behave the same if
we are only interested in their side effects (contents of the variable). The difference is in the
return values. The return value of the postfix expression is the original value of the variable;
the return value of the prefix expression is the value of the variable after the side effect. In
other words, if we are using any of these expressions as a counter, there is no difference.
Traditionally programmers use the postfix expressions.

5.1.2 Repetition Statements
Three repetition statements are used in C++: the while statement, the for statement, and the
do-while statement, as shown in Figure 5.5. We discuss all three in this chapter.

5.2 THE while STATEMENT
The first repetition statement we discuss is the while statement (or while loop). Figure 5.6
shows the flow diagram and the syntax of this statement. The while statement is made of the
reserved word while, followed by a Boolean expression (called the condition) in parenthe-
ses, followed by a single statement, which is the body of the while statement.

Figure 5.5	 Three	repetition	statements	in	C++

Repetition
statements

while for do-while

Pre-test loop Pre-test loop Post-test loop

Figure 5.6	 Flow	diagram	and	syntax	of	the	while	statement

[true]
[false]

Flow diagram

C++ syntax

while (condition)

statement

Note:
Only the single statement
after the condition is the
body of the loop.

statement

condition

for23380_ch05_158-207.indd 161 06/11/18 2:44 pm

162 Chapter 5 Repetition

The structure repeatedly evaluates the condition and executes the statement as long
as the condition is true. When the condition becomes false, the repetition stops. In that mo-
ment, the control passes to the next statement after the while statement.

The while statement does not need a semicolon at the end.

The body of the loop must be a single statement. If we need to execute more than one
statement in the body of the loop, we enclose the statements in a compound statement to
make them a single statement to the while loop. However, it is good practice to always use
a compound statement as the body no matter how many statements we need to execute the
body. The following shows the code that we normally see as a while statement.

while (condition)
{

statement-1;
...
statement-n;

}

The body of the while statement must be a single statement.

The construct in Figure 5.6 is the general idea behind the while statement. It does not
define what the condition checks and how we can design the condition to be true when we
want to repeat the statement or to be false when we need to stop repeating the statement.
C++ provides two types of while statements: counter-controlled and event-controlled. Each
type answers these questions differently.

5.2.1 Counter-Controlled while Statement
Often, we know how many times the body of the loop must be repeated. In these cases, we
can use a counter. We can set the counter to an initial value before the loop, increment or
decrement the counter in each iteration, and stop the loop when we are done. For example, if
we have decided to do 20 push-ups every morning, we are using a counter-controlled loop.
We know how many times we want to repeat it. We count the number of push-ups and we
stop when we are done.

To change the general while loop structure we showed in Figure 5.6 to a counter-
controlled loop, we must add one statement before the loop to initialize the counter and aug-
ment the body of the loop to update the counter. Now the body of the loop must be a compound
statement that includes the actions to be taken and the counter update. Figure 5.7 shows the
flow diagram and the C++ code. Besides a counter, we also need a limit value against which
to check the value of the counter. The limit value can be either specific or implicit.

In a counter-controlled while loop, the counter is initialized before
entering the loop, it is checked with the limit in each iteration, and it

is updated inside the loop.

EXAMPLE 5.3
Assume we need to print the message “Hello world!” 10 times. We can use a while loop
instead of repeating the message 10 times. Here the limit (10) can be literally given in the
condition of the loop, as shown in Program 5.1.

for23380_ch05_158-207.indd 162 06/11/18 2:44 pm

163

Figure 5.7	 Flow	diagram	and	the	code	for	a	counter-controlled		
while	statement

Code

while (condition)

Initialize counter

{
Actions

Update counter
}

Note:

The condition checks that the limit
has not been reached.

We need to have an explicit
or implicit limit.

Flow diagram

Initialize
counter

Update
counter

[true] [false]

condition

Actions

Program 5.1	 A	counter-controlled	while	statement	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* Use of a while statement to print a message 10 times *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration and initialization of counter
int counter = 0;

// While statement
while (counter < 10) // The number of repetition is fixed to 10
{

cout << "Hello world!" << endl;
counter++;

}
return 0;

}

Run:
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!

5.2 The	while	Statement

for23380_ch05_158-207.indd 163 06/11/18 2:44 pm

164 Chapter 5 Repetition

We have used a counter, which is initialized at line 10 and updated at line 15. The limit
that we want to use (10) is literally coded as the condition of the loop in line 12. The body
of the loop is repeated when the counter is 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. When the counter
becomes 10, we come out of the loop as shown in Table 5.2.

No matter how many times we run the program, the message is printed 10 times be-
cause the number of the repetitions is fixed.

EXAMPLE 5.4
Now let us assume that a professor needs to write a program to determine the average score
for each student during the term. The professor gives four exams in each term to each stu-
dent. This is also a case in which the iteration limit is fixed, but the professor can run the
program several times with the scores for different students. Program 5.2 shows the case.

Counter 0 1 2 3 4 5 6 7 8 9 10

Condition true true true true true true true true true true false

Body	executed? yes yes yes yes yes yes yes yes yes yes no

Table 5.2 Values of counter and Boolean expression in each iteration

Program 5.2	 Finding	the	average	of	a	set	of	scores	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* Use of the counter-controlled while loop to find the average *
* of scores for each student. *
 ***/

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

// Declaration
int score;
int sum = 0;
double average;

// Loop
int counter = 0; // initialize the counter
while (counter < 4) // Test the counter
{

// Process (Read and add score to the sum)
cout << "Enter the next score (between 0 and 100): ";
cin >> score;
sum = sum + score;
counter++; // Increment the counter

}

(continued)

for23380_ch05_158-207.indd 164 06/11/18 2:44 pm

165

Program 5.2	 Finding	the	average	of	a	set	of	scores (Continued)

25
26
27
28
29
30

// Result
average = static_cast <double> (sum) / 4;
cout << fixed << setprecision (2) << showpoint;
cout << "The average of scores is: " << average;
return 0;

}

Run:
Enter the next score (between 0 and 100): 78
Enter the next score (between 0 and 100): 68
Enter the next score (between 0 and 100): 92
Enter the next score (between 0 and 100): 88
The average of scores is: 81.50

Run:
Enter the next score (between 0 and 100): 80
Enter the next score (between 0 and 100): 90
Enter the next score (between 0 and 100): 76
Enter the next score (between 0 and 100): 74
The average of scores is: 80.00

EXAMPLE 5.5
In the previous program, the limit that controls the loop iteration was set to a fixed value.
We can also have a counter-controlled loop in which the limit can be changed for each run.
For example, Program 5.3 shows how we can print the integers from 1 to a limit in which the
limit is given by the user in each run. Note that in this program, we actually print the value
of the count variable.

Program 5.3	 Printing	n	integers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* Use of a while statement loop to print integers from 0 to n *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration of the limit and counter
int n, count;

// Input the value of n (limit)
cout << "Enter the number of integers to print: ";
cin >> n;

// Printing integers
count = 0;

(continued)

5.2 The	while	Statement

for23380_ch05_158-207.indd 165 06/11/18 2:44 pm

166 Chapter 5 Repetition

Note that in the last two runs the condition (count < n) is false in line 16 and the
program never enters the body of the loop.

EXAMPLE 5.6
We know from mathematics that the sum of the following series is as shown below:

1 + 2 + 3 + 4 + … + n = n (n+1) / 2
1 + 4 + 9 + 16 +… + n2 = n (n+1) (2n + 1) / 6
1 + 8 + 27 + 64 + … + n3 = n2 (n+1)2 / 4

We can check the result of this series using a simple counter-controlled while state-
ment as shown in Program 5.4. Note that the counter in each case is the value of n in the
above formulas. Also note that the counter in this case needs to start from 1 (not zero) and
the condition should be (counter <= n).

Program 5.3	 Printing	n	integers (Continued)

16
17
18
19
20
21
22

while (count < n)
{

cout << count << endl;
count++;

}
return 0;

}

Run:
Enter the number of integers to print: 5
0
1
2
3
4

Run:
Enter the number of integers to print: 0

Run:
Enter the number of integers to print: −3

Program 5.4	 Using	the	while	loop	to	calculate	a	series	

1
2
3
4
5
6
7

/***
* Use of a while statement to calculate the sum of three series *
 ***/

#include <iostream>
using namespace std;

int main ()

(continued)

for23380_ch05_158-207.indd 166 06/11/18 2:44 pm

167

Program 5.4	 Using	the	while	loop	to	calculate	a	series (Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

{
// Declaration and initialization
int sum1 = 0, sum2 = 0, sum3 = 0;
int n;
// Input value of n (limit)
cout << "Enter the value of n: ";
cin >> n;

// The while statement
int counter = 1; // Initialize counter
while (counter <= n)
{

sum1 += counter;
sum2 += counter * counter;
sum3 += counter * counter * counter;
counter++; // Update counter

}
// Printing results
cout << "Value of n: " << n << endl;
cout << "Value of sum1: " << sum1 << endl;
cout << "Value of sum2: " << sum2 << endl;
cout << "Value of sum3: " << sum3 << endl;
return 0;

}

Run:
Enter the value of n: 5
Value of n: 5
Value of sum1: 15
Value of sum2: 55
Value of sum3: 225

Run:
Enter the value of n: 15
Value of n: 15
Value of sum1: 120
Value of sum2: 1240
Value of sum3: 14400

5.2.2 Event-Controlled while Loop
Sometimes we want to repeat an activity, but we do not know how many times we need to
do it. We know that we should stop when an event occurs. This may also happen in real life.
For example, we want to do push-ups in the morning, but we do not know how far we can
go. We think we should stop when we get tired. In other words, tiredness is the event we are
looking for to stop the repetition. Figure 5.8 shows an event-controlled loop.

The events that occur in computer programming can be several things, but the most en-
countered events are the appearance of a sentinel, the appearance of the end-of-file marker,
and the occurrence of a condition.

5.2 The	while	Statement

for23380_ch05_158-207.indd 167 06/11/18 2:44 pm

168 Chapter 5 Repetition

Sentinel-Controlled while Loop
A sentinel is a guard who prevents unauthorized persons from passing a point. In data pro-
cessing, a sentinel is a value that is added to the list of data to show when we need to stop
processing. The type of the sentinel is the same as the rest of the data, but its value must be
different from all of the data items before it. Note that when we use the while loop as the sen-
tinel-controlled loop, the sentinel is not to be processed (the while loop is a pre-test loop).

In an sentinel-controlled while loop, the sentinel is not to be processed.

EXAMPLE 5.7
Assume we have a long list of positive numbers to add. We do not want to count the numbers
before entering them into the computer. Since we know that there are no negative numbers
in the list, we can add a negative number at the end of the list to serve as the sentinel, as
shown below:

14 23 71 87 … 66 12 −1

The sentinel in this case is the integer −1. With it the numbers can be added as shown in
Program 5.5. Note that we have used a prompt statement before the loop and in the loop to let
the user know what to do. Program 5.5 shows how we use the sentinel to control the iteration.

Figure 5.8	 Event-controlled	while	loop

input first
item

Code

while (event did not occur)
input first item

{
Actions (s)
input next item

}

Note:
An event should occur to stop
the loop.

Flow diagram

[true] [false]

condition

Actions (s)

input next
item

Program 5.5	 The	sentinel-controlled	loop

1
2
3
4
5
6
7
8

/***
* Use of the sentinel-controlled while loop to find the sum *
* of some numbers *
 ***/

#include <iostream>
using namespace std;

int main ()

(continued)

for23380_ch05_158-207.indd 168 06/11/18 2:44 pm

169

EOF-Controlled while Loop
We can read data from the keyboard or from a file. In both cases, we can use the EOF marker
that serves as a sentinel sentinel in an eof-controlled loop. It can be added to the keyboard
and is always present in a file. It is a marker that defines that no more data will be entered
through the keyboard or that we have reached the end of the file. The EOF marker allows us
to read the data items and control the repetition of the loop. If we are using the keyboard as
the source of data, the EOF is (ctrl + d) in the Unix environment and (ctrl + z) in the
Windows environment (the first means “hold the control key and press d”; the second means
“hold the control key and press z”). On the other hand, if we are using a file as the source of
data, the EOF marker is added when the file is created. Figure 5.9 shows both cases.

Program 5.5	 The	sentinel-controlled	loop (Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

{
// Declaration
int sum = 0;
int num;

// Loop including the first input
cout << "Enter an integer (−1 to stop): ";
cin >> num;
while (num != −1)
{

sum = sum + num;
cout << "Enter an integer (−1 to stop): ";
cin >> num ; // Sentinel update

}
// Outputting result
cout << "The sum is: " << sum;
return 0;

}

Run:
Enter an integer (−1 to stop): 25
Enter an integer (−1 to stop): 22
Enter an integer (−1 to stop): 12
Enter an integer (−1 to stop): 67
Enter an integer (−1 to stop): −1
The sum is: 126

Figure 5.9	 EOF	marker	for	keyboard	object	and	file	object

Keyboard

infile >> variable

cin >> variable

inFile

cin

File

variable

variable

EOF

EOF

5.2 The	while	Statement

for23380_ch05_158-207.indd 169 06/11/18 2:44 pm

170 Chapter 5 Repetition

How can we use EOF? Fortunately, the >> operator has a side effect and a return
value. It reads the next item in the stream. If the next item is EOF, it discards it and returns
false (the loop is terminated). If the next item is not EOF, it stores the next item in the vari-
able defined after the operator >> and returns true (the loop continues).

// Reading from keyboard // Reading from a file

while (cin >> num)
{

process;
}

while (infile >> num)
{

process;
}

EXAMPLE 5.8
Program 5.6 is the repetition of the previous example but using EOF to control the loop.

Program 5.6	 Using	EOF	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* Use of the EOF-controlled while loop to find the sum *
* of some numbers entered on the keyboard *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int sum = 0;
int num;

// Loop including initialization
cout << "Enter the first integer (EOF to stop): ";
while (cin >> num)
{

sum = sum + num;
cout << "Enter the next integer: "; // update

}
// Output
cout << "The sum is: " << sum;
return 0;

}

Run:
Enter the first integer: 24
Enter the next integer: 12
Enter the next integer: 123
Enter the next integer: 14
Enter the next integer: ^Z
The sum is: 173

for23380_ch05_158-207.indd 170 06/11/18 2:44 pm

171

EXAMPLE 5.9
We can do the same with a file named numbers.dat that has five numbers in it: 100, 200, 300,
400, and 500 as shown in Program 5.7.

Flag-Controlled while Loop
Sometimes the event we are looking for does not necessarily happen at the end of a list of items
like we saw with a sentinel or an EOF. The event can be a condition that may occur anywhere
in a list of items. For example, assume that we are searching for the first integer greater than
or equal to 100 in a list of integers. We cannot use a sentinel because we are not looking for a
particular value such as 100 to stop the loop. The number that will stop the loop can be 100, 132,
150, and so on. We cannot use EOF because we do not want to process all integers. We are look-
ing for a condition that can be defined as (number >=100). The solution is a flag-controlled
loop. We create a Boolean variable referred to as a flag. We set the flag to false before entering
the loop; we set it to true when the condition occurs. However, we need to combine the flag with
other tools to avoid an infinitive loop if the condition never occurs. In other words, we combine
the flag-controlled condition with a sentinel-controlled or EOF-controlled condition.

Program 5.7	 Using	EOF	on	a	file

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* Use of the EOF-controlled while loop to find the sum *
* of some numbers stored in a file *
 ***/

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{

// Declarations
int sum = 0;
int num;
ifstream infile;

// Openning file
infile.open ("numbers.dat");

// While loop
while (infile >> num)
{

sum = sum + num;
}

// Output result
cout << "The sum is: " << sum;
infile.close ();
return 0;

}

Run:
The sum is: 1500

5.2 The	while	Statement

for23380_ch05_158-207.indd 171 06/11/18 2:44 pm

172 Chapter 5 Repetition

The flag-controlled mechanism is normally combined with
another mechanism to prevent an infinite loop.

EXAMPLE 5.10
Assume we want to print the first integer that is greater than or equal to 150 in a list of
integers. We can use a Boolean flag that is set to false before entering the loop. If the number
is found, we set the flag to true and come out of the loop. Otherwise, we let the EOF marker
terminate the loop. Program 5.8 uses this design.

Program 5.8	 Use	of	a	flag		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/***
* Use of both EOF and a flag to terminate a loop *
 ***/

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{

// Declarations
ifstream infile;
int num;
bool flag;

// Open file
infile.open ("numbers.dat");

// Loop to find a number greater than 150
flag = false;
while (infile >> num && !flag)
{

if (num >= 150)
{

cout << "The number is: " << num;
flag = true;

}
}

// Check flag
if (!flag)
{

cout << "The number was not found!";
}
infile.close ();
return 0;

}

(continued)

for23380_ch05_158-207.indd 172 06/11/18 2:44 pm

173

Note that we test the program with the same file and two different contents. In the first
run, the contents of the file is

90 110 120 135 170 200 230 EOF

We come out of the loop when 170 is read because it matches the condition we are looking
(it is greater than 150). The flag is set to true, which means !flag is false and the loop is ter-
minated although the other condition (infile >> num) is true. In the second run the contents
of the file is

90 110 120 135 137 140 EOF

The flag never becomes true, but when we reach the EOF, the other condition (infile >>
num) becomes false and the loop is terminated.

If the number is found inside the loop, we print it. If the loop is terminated, the flag is
still false and we know that we have reached the end of file.

Pitfalls
Although there are many pitfalls to be avoided with the while statement, we mention only
four here.

Zero-Iteration Loop We must avoid a loop that never iterates. This happens when the
Boolean expression is false when it is tested for the first time. In this case, the body of the
loop never executes no matter how many times we run the program. Unfortunately, this prob-
lem is not caught during compilation-time or run-time. We must be very careful to avoid this
situation. The following are two cases of zero iteration.

while (false)
{

…
}

while (2 == 3)
{

…
}

Infinite-Iteration Loop Another example of a while statement pitfall is a loop that re-
peats its body forever. This happens when the Boolean expression is true each time it is
tested. In this case, the loop never stops. This type of a loop should normally be avoided,
but, as we will discuss in the next section, we create such a loop to let a server program run
forever.

Program 5.8	 Use	of	a	flag (Continued)

Run:
The number is: 170

Run:
The number was not found!

5.2 The	while	Statement

for23380_ch05_158-207.indd 173 06/11/18 2:44 pm

174 Chapter 5 Repetition

while (true)
{

…
}

while (2 != 3)
{

…
}

Empty-Body Loop Sometimes we accidentally create a loop whose body is empty. This
happens, for example, if we add a semicolon after the header of the while statement. The
compiler thinks that we do not want to use braces and that there is a null statement before the
semicolon. The actual body is interpreted as a stand-alone statement that is executed once
after the loop. The compiler does not give an error, but the program does not do what we
expected (logical error).

while (expression); // Empty expression (compound expression ignored)
{

…
}

Use of Floating-Point Values in Boolean Expressions As we discuss in a previous
chapter, floating-point values depend on the precision of the numbers in any system. For
example, 3.141516 and 3.1415 are not equal but may appear to be equal if the precision is
only four places after the decimal point. For this reason, we must be very careful when test-
ing floating-point numbers for equality.

Creating a Delay
C++ provides several tools (discussed in future chapters) to create a delay in a program.
We can also create a delay using a while statement. We can use a counter-controlled while
statement whose body has only the updating statement. The loop does not do anything but
go through iterations, which creates a delay. The following is an example. The code creates
a 10-second delay if the computer performs 10,000 iterations in a second, which means this
type of delay depends on the speed of the computer.

int counter = 0;
while (counter < 100000)
{

counter++;
}

5.2.3 Analysis of a while Statement
We can better understand the behavior of the while statement if we think of it as a
combination of decision-making statements as shown in Figure 5.10. In each loop
execution, there is a true path and a false path. Figure 5.10 shows that the number
of tests is always one more than the number of repetitions. If the body of the loop is
repeated n times, n + 1 tests are made. In the first n tests, the result is true; in the last
test, the result is false. This means that even if the body is not executed at all, we need
to make one test and the result should be false. The above analysis shows that the while
statement is a pre-test loop. A test must be done in each iteration before the body is
executed.

for23380_ch05_158-207.indd 174 06/11/18 2:44 pm

1755.3 The	for	Statement

A while statement is a pre-test loop.
If the body is executed n times,

the condition has been tested (n + 1) times.

5.3 THE for STATEMENT
As we discussed in the previous section, we can always use the while statement as a counter-
controlled loop. C++ provides another loop construct, however, called the for statement,
that is particularly useful when we need counter-controlled iteration. It combines the three el-
ements of a loop—initialization, conditional test, and update—into the loop construct itself.
A quick comparison between the two loops shows that the for statement is much more com-
pact than using a while statement for counter-controlled looping, as shown in Figure 5.11.

5.3.1 Header
We now discuss in detail each of the three sections in the header of a for statement.

Figure 5.10	 Analysis	of	a	while	statement

n = 0 n = 1

Statistics

The testing result should be
n times true and the last time
false.

n

n + 1
Repetition
Testing

[true]
[false]

Condition

Statement(s)

Statements

truefalse

false

Exit

Exit

n = 2

Statements

Statements

false

true

true

Exit

Figure 5.11	 Comparison	between	a	while	loop	and	a	for	loop

 The while statement
The for statement

while (condition)

{ {

}
}

actions

update;

actions

initialization;

for (initilization; condition; update)

for23380_ch05_158-207.indd 175 06/11/18 2:44 pm

176 Chapter 5 Repetition

Initialization
The initialization section is an expression that initializes the counter. It is customary to use
lowercase variables such i, j, k, for the counter. We can declare the counter before the header
of the loop or declare the counter at the same time that we initialize it.

// Counter declaration before the header // Counter declaration inside the header

int i;
for (i = 0 ; … ; …)
{

actions
}

for (int i = 0 ; … ; …)
{

actions
}

In the first method, the scope of the counter extends beyond the boundary of the loop; in the
second method, the scope of the counter is only inside the loop.

Condition
The condition section is the second part in the header. As in the while statement, the condition
in the for statement is a Boolean expression. If the condition is true, the body of the loop is ex-
ecuted; otherwise, the loop exits, which indicates that the for statement is a pre-test loop. If the
condition section is empty (between the first and the second semicolons), it is defaulted to true.

If the condition second is empty, it is defaulted to true.

EXAMPLE 5.11
The following for loop does not compile because the condition section in the header is missing.

for (int i = 0 ; i++) {...}

EXAMPLE 5.12
The following for loop compiles and creates an infinite loop because the condition section is
missing and is defaulted to true section is empty.

for (int i = 0 ; ; i++) {...}

Updating
The updating section is executed after the body of the loop is executed. After updating, the
condition is tested again to see if the body should be executed once more. The updating
section can be missing, which means updating, explicitly or implicitly, must be done in the
body of the loop.

5.3.2 Body
The body of the for statement should be the same as the body of the corresponding while
statement with one exception: the updating of the counter is missing because it has been
moved to the header.

EXAMPLE 5.13
We can change Program 5.3, which used a while statement, to Program 5.9, which uses a for
statement. We can see that the result is the same, but the for statement makes the program
shorter and easier to understand.

for23380_ch05_158-207.indd 176 06/11/18 2:44 pm

177

EXAMPLE 5.14
Assume we want to print integers from 1 to 300 that are divisible by 7. The output, however,
is to be printed in a table made of 10 columns. Program 5.10 shows the solution.

We know that the last number must be less than or equal to 300, but we do not know
the number of rows and columns in the output. We print data in a row until the number of
columns becomes 10. At this point, we move to the next row.

Program 5.9	 Printing	n	integers	using	a	for	statement	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* Use of a for loop to print n integers *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int n;

// Get the value of n
cout << "Enter the number of integers to print: ";
cin >> n;

// Loop
for (int counter = 0; counter < n; counter++)
{

cout << counter << " ";
}
return 0;

}

Run:
Enter the number of integers to print: 5
0 1 2 3 4

Run:
Enter the number of integers to print: 3
0 1 2

Program 5.10	 Printing	the	integers	divisible	by	7

1
2
3
4
5
6

/***
* Prints numbers divisible by 7 in the range 1 to 300 in a *
* table made of 10 columns. *
 ***/

#include <iostream>
#include <iomanip>

(continued)

5.3 The	for	Statement

for23380_ch05_158-207.indd 177 06/11/18 2:44 pm

178 Chapter 5 Repetition

EXAMPLE 5.15
Assume we want to print a month when the number of days in the month and the first week day
in the month (0 to 6 for Sunday through Saturday) is given. Program 5.11 shows a solution.

Program 5.10	 Printing	the	integers	divisible	by	7 (Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

using namespace std;

int main ()
{

// Declaration including initialization
int lower = 1;
int higher = 300;
int divisor = 7;
int col = 1;

// Processing loop
for (int i = lower; i < higher ; i++)
{

if (i % divisor == 0)
{

cout << setw(4) << i;
col++;
if (col > 10)
{

cout << endl;
col = 1;

}
}

}
return 0;

}

Run:
 7 14 21 28 35 42 49 56 63 70
 77 84 91 98 105 112 119 126 133 140
 147 154 161 168 175 182 189 196 203 210
 217 224 231 238 245 252 259 266 273 280
 287 294

Program 5.11	 Printing	a	calendar	for	a	month

1
2
3
4
5

/***
* Prints a month's calendar when we are given the number of days *
* and the first day of the month. *
 ***/

#include <iostream>

(continued)

for23380_ch05_158-207.indd 178 06/11/18 2:44 pm

179

Program 5.11	 Printing	a	calendar	for	a	month (Continued)

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

#include <iomanip>
using namespace std;

int main ()
{

// Declaration including initialization
int startDay;
int daysInMonth;
int col = 1;

// Validation of days In a Month
do
{

cout << "Enter the number of days in the month (28, 29, 30, or 31): ";
cin >> daysInMonth;

} while (daysInMonth < 28 || daysInMonth > 31);
// Validation of start day
do
{

cout << "Enter start day (0 to 6): ";
cin >> startDay;

} while (startDay < 0 || startDay > 6);
// Print titles
cout << endl;
cout << "Sun Mon Tue Wed Thr Fri Sat" << endl;
cout << "--- --- --- --- --- --- ---" << endl;

// Print spaces before the startday
for (int space = 0; space < startDay; space++)
{

cout << " ";
col++;

}
// Print the calendar
for (int day = 1; day <= daysInMonth; day++)
{

cout << setw(3) << day << " ";
col++;
if (col > 7)
{

cout << endl;
col = 1;

}
}
return 0;

} // End main

(continued)

5.3 The	for	Statement

for23380_ch05_158-207.indd 179 06/11/18 2:44 pm

180 Chapter 5 Repetition

Program 5.11	 Printing	a	calendar	for	a	month (Continued)

Run:
Enter the number of days in the month (28, 29, 30, or 31): 31
Enter start day (0 to 6): 3

Sun Mon Tue Wed Thr Fri Sat
--- --- --- --- --- --- ---
 1 2 3 4
 5 6 7 8 9 10 11
 12 13 14 15 16 17 18
 19 20 21 22 23 24 25
 26 27 28 29 30 31

5.4 THE do-while STATEMENT
The last repetition statement we discuss is the do-while statement, in which the logical
expression is tested at the end of each iteration instead of at the beginning. For this reason,
the do-while loop is a post-test loop. Since the logical expression in each iteration is tested
after the body of the loop is executed, the body of the loop in a do-while statement is always
executed at least once (Figure 5.12).

The do-while statement consists of five parts: the reserved word do, the statement that
is the body of the loop (usually a compound statement enclosed in braces), the reserved
word while, a logical expression in parentheses, and a semicolon. Note that the semicolon is
required at the end of the do-while statement.

A semicolon is required at the end of the do-while statement.

5.4.1 Event-Controlled Loop
The do-while statement is designed to be used as an event-controlled loop. However, the
post-test feature of the do-while loop requires a different provision to control the loop.

At Least One Iteration
The do-while loop is the recommended solution when a problem requires that the body of
the loop be executed at least once.

Figure 5.12	 Flow	diagram	and	syntax	for	a	do-while	statement

[true]
[false]

Flow diagram

Note:
A do-while statement requires a semicolon.

C++ syntax

do

while (condition) ;

statement

statement

Condition

for23380_ch05_158-207.indd 180 06/11/18 2:44 pm

181

We use a do-while loop when the problem requires that
the body of the loop be executed at least once.

EXAMPLE 5.16
We want to write a program that extracts and prints the left-most digit of any nonnegative
integer. In other words, if the input integer is 247, the digit 2 should be printed, and if the
integer is 7562, the digit 7 should be printed. Program 5.12 contains the solution for this
problem.

In the first run, the number has only one digit. The first iteration of the loop extracts
the only digit, and the value of num becomes 0, which means that the loop is terminated.

Program 5.12	 Extracting	the	left	most	digit	of	an	integer	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* Demonstrate the use of the do-while loop to extract the *
* left-most digit of an integer. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int num;
short leftDigit;

// Input
cout << "Enter a non-negative integer: ";
cin >> num;

// Loop
do
{

leftDigit = num % 10;
num = num / 10;

} while (num > 0);
// Output
cout << "The leftmost digit is: " << leftDigit << endl;
return 0;

}

Run:
Enter a non-negative integer: 5
The leftmost digit is: 5

Run:
Enter a non-negative integer: 4567
The leftmost digit is: 4

5.4 The	do-while	Statement

for23380_ch05_158-207.indd 181 06/11/18 2:44 pm

182 Chapter 5 Repetition

In the second run, the number has three digits. Here the first iteration extracts the right
most digit (1), but the second iteration discards this digit and replaces it with the new right
most digit (3) because when we enter the second iteration, the value of num is 23. A num-
ber with three digits goes through three iterations. The problem shows that we definitely
need at least one iteration because the number entered has at least one digit (even if the
number is 0).

Data Validation
Another common example that requires at least one iteration is data validation. Data vali-
dation should be included in a program whenever a user enters data that must match a set
of criteria. For example, when we enter flight information in an airline reservation system,
some of the data are required and some are optional. Data validation ensures that we have
entered all of the required data in the proper format.

EXAMPLE 5.17
Data entry often requires the data be in a predefined range. For example, when we
change a numeric score to a grade, test scores are usually in the range of 0 and 100. If
the user enters a number out of the range, the program needs to repeat the request until
the user enters a number that is in the correct range. Program 5.13 demonstrates this data

Program 5.13	 Using	a	do-while	loop	for	validation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* Demonstrate the use of the do-while loop to validate data *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int score;
char grade;

 // Input validation loop
do
{

cout << "Enter a score between 0 and 100: ";
cin >> score;

} while (score < 0 || score > 100);
// Decision
switch (score / 10)
{

case 10: grade = 'A';

(continued)

for23380_ch05_158-207.indd 182 06/11/18 2:44 pm

5.4 The	do-while	Statement 183

validation. Note the use of logical-or and inequality expressions to define the unaccept-
able range.

In the first run, the user enters a score in the valid range. The body of the loop
is executed only once, and the score is accepted. In the second run, the user enters an
out-of-range score two times. The body of the loop is repeated three times; the score
entered in the first two iterations is discarded and the score entered in the third iteration
is accepted. The program shows that a do-while loop is an appropriate design for data
validation.

5.4.2 Analysis of a do-while Loop
We analyzed the while loop in a previous section to find out that the while loop is a
pre-test loop in which the number of tests is one more than the number of iterations.
We said that a for loop is a variant of the while loop, which means it follows the
specification of the while loop. It is useful to analyze the do-while loop and compare
it with the while loop. To do so, we unfold a do-while loop as we did with the while
loop (Figure 5.13).

In a do-while loop, if a body is executed n times,
the condition is tested n times.

Program 5.13	 Using	a	do-while	loop	for	validation (Continued)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

break;
case 9: grade = 'A';
break;
case 8: grade = 'B';
break;
case 7: grade = 'C';
break;
case 6: grade = 'D';
break;
default: grade = 'F';

}
// Output
cout << "The grade is " << grade << endl;
return 0;

}

Run:
Enter a score between 0 and 100: 83
The grade is B

Run:
Enter a score between 0 and 100: 111
Enter a score between 0 and 100: 97
The grade is A

for23380_ch05_158-207.indd 183 06/11/18 2:44 pm

184 Chapter 5 Repetition

5.5 MORE ABOUT LOOPS
In this section, we first compare the three loop constructs: while loop, for loop, and do-while
loop. We then see how we can combine them to create nested loops, which are helpful in
solving problems.

5.5.1 Comparison of Three Loops
The three loop statements discussed in the previous sections have some common and some
different features. Table 5.3 shows the comparison summary for n iterations.

 ∙ The while loop and the for loop are pre-test loops. The do-while loop is a post-test loop.
 ∙ The while and the do-while loops are primarily designed as event-controlled loops; the

for loop is primarily designed as a counter-controlled loop.
 ∙ The while loop and the for loop can iterate zero times; the do-while loop iterates at

least once.
 ∙ If we want n iterations in a loop, then we need n + 1 tests in the while loop and the for

loop, but only n tests in the do-while loop.

5.5.2 Nested Loops
We can have a nested loop, a loop inside another loop. The inside loop does not have to be
of the same type as the outside loop.

Figure 5.13	 Analysis	of	a	do-while	loop

Statistics
n

n

Iteration
Testing

Note:
The minimum value of n is 1.

do-while loop

n = 1

n = 2

n = 3

Statement

false

true

StatementStatement

false

truetrue

StatementStatementStatement

false

[true]
[false]

Statement

Feature while Loop for Loop do-while Loop

Test type pre-test pre-test post-test

Primary design event-controlled counter-controlled event-controlled

Minimum iterations 0 0 1

Number of tests n + 1 n + 1 n

Table 5.3 Comparison of while, for, and do-while Loops

for23380_ch05_158-207.indd 184 06/11/18 2:44 pm

5.5 More	About	Loops 185

EXAMPLE 5.18
We can use nested for loops to print a set of asterisks horizontally and vertically; that is, to
print a rectangle of asterisks. The outside loop controls the rows; the inside loop controls
the columns. For each iteration of the outside loop, the inside loop is repeated once for each
column. To print a rectangle of four lines (rows) with eight asterisks (columns) in each line,
the outside loop uses 4 iterations; the inside loop uses 32 (4 × 8) iterations. Program 5.14
shows the code and two sample runs.

Program 5.14	 A	for	statement	inside	another	for	statement	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* Use a for loop inside another loop to print a patterns of *
* asterisks horizontally and vertically *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int rows; // Number of rows
int cols; // Number of columns

// Inputs
cout << "Enter the number of rows: ";
cin >> rows;
cout << "Enter the number of columns: ";
cin >> cols;

// Output
for (int count1 = 1; count1 <= rows; count1++)
{

for (int count2 = 1; count2 <= cols; count2++)
{

cout << "*";
}
cout << endl;

}
return 0;

}

Run:
Enter the number of rows: 3
Enter the number of columns: 8

Run:
Enter the number of rows: 2
Enter the number of columns: 6

for23380_ch05_158-207.indd 185 06/11/18 2:44 pm

186 Chapter 5 Repetition

EXAMPLE 5.19
Let’s look at another example. This time the value of the outside loop counter controls the
starting value of the inside loop counter (Program 5.15).

Program 5.15	 Printing	a	pattern	of	digits

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* Use a for loop inside another loop to print a patterns of *
* digits horizontally and vertically *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Delcaration
int rows; // Number of rows
int cols; // Number of columns

// Inputs
cout << "Enter the number of rows: ";
cin >> rows;
cout << "Enter the number of columns: ";
cin >> cols;

// Nested loops
for (int i = 1; i <= rows; i++)
{

 for (int j = i; j <= i + cols −1; j++)
{

cout << j << " ";
} // End inner loop
cout << endl;

}
return 0;

}

Run:
Enter the number of rows: 3
Enter the number of columns: 6
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8

Run:
Enter the number of rows: 2
Enter the number of columns: 8
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9

for23380_ch05_158-207.indd 186 06/11/18 2:44 pm

5.5 More	About	Loops 187

EXAMPLE 5.20
Program 5.16 shows how to create the multiplication table for size 2 to 10. The size is input
by the user. Note that the value in row i and column j is in fact the value of (i * j).

Program 5.16	 Creating	a	multiplication	table	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* Use a for loop inside another loop to print a multiplication *
* table of size 2 to 10. *
 ***/

 #include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

// Declaration of size
int size;

// Input and validation
do
{

cout << "Enter table size (2 to 10): " ;
cin >> size;

} while (size < 2 || size > 10);
// Printing the table (nested loops)
for (int i = 1 ; i <= size; i++)
{

for (int j = 1 ; j <= size ; j++)
{

cout << setw (4) << i * j;
}
cout << endl;

}
return 0;

}

Run:
Enter table size (2 to 10): 4
 1 2 3 4
 2 4 6 8
 3 6 9 12
 4 8 12 16

(continued)

for23380_ch05_158-207.indd 187 06/11/18 2:44 pm

188 Chapter 5 Repetition

5.6 OTHER RELATED STATEMENTS
In addition to three repetition statements, C++ defines another group of statements that
are normally used with repetition statements: return, break, continue, and goto. Figure 5.14
shows the taxonomy of these statements.

5.6.1 The return Statement
The return statement terminates the current function immediately and returns control to
the function caller. The use of a return statement in a loop causes the loop to terminate and,
at the same time, the function in which the loop is iterating (such as main) to be terminated.

EXAMPLE 5.21
In mathematics, we can divide the positive integers into three groups: 1, prime, and com-
posite. A prime number is divisible only by itself and 1. A composite number is not a prime.
Prime numbers play a very important role in computer science and security. To determine
if a number is prime, we can use the following steps (although there are more efficient, but
more complex ways).

a. If the number is 1, we know the number is not a prime.
b. If the number is divisible by any number less than itself, it is not prime; it is

composite.

Note that we do not have to test all numbers from 2 to the number itself; as soon as we find
any integer 2 or greater that divides the number, we can announce that the number is not
prime and terminate the loop. Program 5.17 shows one solution.

Note that we have inserted a return statement at line23, a return statement at line 32,
and a return statement at line 37. All three can terminate the program.

Program 5.16	 Creating	a	multiplication	table (Continued)

Run:
Enter table size (2 to 10): 11
Enter table size (2 to 10): 9
 1 2 3 4 5 6 7 8 9
 2 4 6 8 10 12 14 16 18
 3 6 9 12 15 18 21 24 27
 4 8 12 16 20 24 28 32 36
 5 10 15 20 25 30 35 40 45
 6 12 18 24 30 36 42 48 54
 7 14 21 28 35 42 49 56 63
 8 16 24 32 40 48 56 64 72
 9 18 27 36 45 54 63 72 81

Figure 5.14	 Statements	related	to	repetition

return break continue goto

Statements related
 to repetition

for23380_ch05_158-207.indd 188 06/11/18 2:44 pm

5.6 Other	Related	Statements	 189

Program 5.17	 Finding	if	a	number	is	a	prime

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/***
* Use a return statement to find if a number is a prime or not. *
* The program returns from the main function as soon if finds *
* if a number is 1 or composite. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
int num;

// Input validation loop
do
{

cout << "Enter a positive integer: " ;
cin >> num;

} while (num <= 0);
// Testing if the input is 1
if (num == 1)
{

cout << "1 is not a composite nor a prime.";
return 0;

}
// Testing for composite
for (int i = 2; i < num ; i++)
{

if (num % i == 0)
{

cout << num << "is composite." << endl;
cout << "The first divisor is " << i << endl;
return 0;

}
}

// Output Result
cout << num << " is a prime." << endl;
return 0;

}

Run:
Enter a positive integer: 1
1 is not a composite nor a prime.

Run:
Enter a positive integer: 12
12 is composite.
The first divisor is 2

(continued)

for23380_ch05_158-207.indd 189 06/11/18 2:44 pm

190 Chapter 5 Repetition

5.6.2 The break Statement
The break statement in C++ can be used in the body of a loop or a switch statement. We
saw the use of the break statement in a switch statement in Chapter 4. We can also use a
break statement to come out of a loop prematurely when we need to. All three loop state-
ments can be terminated by the break statement. The break statement transfers control to
the end of the loop. Most computer science professionals consider the use of the break in a
loop non structural. They believe the Boolean expression in the loop should be redesigned
to avoid using a break statement. The following code shows two different loops, with and
without a break statement; both code segments do the same thing. (Statement1 and State-
ment2 are symbolic and can be any statement, including a compound statement.)

while (expression)
{

Statement1
if (condition)

break;
Statement2

}

while (expression && !condition)
{

Statement1
if (!condition)

Statement2
}

5.6.3 The continue Statement
The next statement related to looping is the continue statement. As we saw before, a
break statement terminates a loop if a condition occurs. But sometimes we do not want to
terminate the loop; we just want to terminate one iteration and continue with the remain-
ing iterations. In this case, we can use a continue statement, but we need to be careful
because in the while and do-while loops, control is transferred to the Boolean expression.
Therefore, any required updating must be included in the statements before the continue
statement. In a for loop, however, the control is transferred to the updating statement in the
header of the loop because the updating is explicitly there. Figure 5.15 shows the transfer
point in each loop.

5.6.4 The goto Statement
Another statement in C++ that can be used with a loop statement is the goto statement. The
following shows the format of this statement.

goto label

Program 5.17	 Finding	if	a	number	is	a	prime (Continued)

Run:
Enter a positive integer: 23
23 is a prime.

Run:
Enter a positive integer: 97
97 is a prime.

for23380_ch05_158-207.indd 190 06/11/18 2:44 pm

5.7 Program	Design	 191

in which label is an identifier referring to a labeled statement in the same function. Although
the goto statement is still part of the C++ language, puritan programmers consider the use
of the goto statement unstructured. Its use may create spaghetti code that is hard and time
consuming to debug. For this reason, we do not discuss this statement in depth here, and
we do not need to discuss label statements.

5.7 PROGRAM DESIGN
In this section, we show how to use selection and repetition statements to solve some classic
problems in computer science. We give some basic solutions to these problems, but in future
chapters we will provide more structured and efficient solutions.

5.7.1 Summation and Products
Although in previous sections we have written some programs that add numbers, in this sec-
tion we give a formal solution to problems involving summation and products. Summation
means to add a list of numbers; multiplication means to multiply a list of numbers. The fol-
lowing shows the idea of adding or multiplying a set of reals.

sum = 17.0 + 14.4 + … + 71.2
product = 17.0 × 14.4 × … × 71.2

Understand the Problem
We have a list of floating-point numbers to add (or multiply). We can initialize a variable
sum (or product) to hold the result of the summation (or multiplication) and use a loop to add
each integer to sum (or multiply each integer with product) as shown below:

Initialization sum = 0.0 product = 1.0

Iteration 1
Iteration 2
…
Iteration n

sum += 17.0
sum += 14.4
…
sum += 71.2

product *= 17.0
product *= 14.4
…
product *= 71.2

Printing result sum product

Note that the initialization is different for sum and product. For the sum, the initialization is
sum = 0.0; for the product, the initialization is product = 1.0.

Figure 5.15	 The	continue	statement

while (expression)

while (expression) ;

{

if (condition)
continue;

}

A while loop A do-while loop A for loop

for (initial; expression; update)
{

if (otherCondition)
continue;

}

do
{

if (condition)
continue;

}

(a) (b) (c)

for23380_ch05_158-207.indd 191 06/11/18 2:44 pm

192 Chapter 5 Repetition

Develop the Algorithm
We must use a loop to add or multiply the integers because the size of the list is not fixed
for all runs of the program. We can use a counter-controlled loop if we are given the list size
before each run; we can use an event-controlled loop otherwise. We’ll give the algorithm and
program for the counter-controlled loop; we’ll leave the event-controlled loop as an exercise.

a. Original inputting. We must ask ourself what should be input before starting the loop.
In the counter-controlled loop, we need to enter the size of the list.

b. Initialization. We must initialize the value of sum and product. In other words, we
must set (sum = 0.0) and (product = 1.0). We also must initialize the counter when we
use the counter-controlled loop.

c. Processing in each iteration. In each iteration, we must read the next number, add it
to sum, and multiply it by product. We also must increment the counter. The number of
iterations is controlled by the counter.

d. Creating the result. The results (sum and product) can be printed after the loop is
terminated.

Using the following steps, we can give the informal algorithm:

1. Input
a. input size

2. Initialize
a. initialize sum to 0.0
b. initialize product to 1.0
c. initialize counter to 0

3. Repeat as long as the counter is less than the size
a. read the next number
b. set new sum to previous sum plus number
c. set new product to previous product times number
d. update counter

4. Output
a. output the sum
b. output the product

Write the Program
Program 5.18 shows the code based on the algorithm. The types of the sum and product are
long double, so it is rare that we get overflow or underflow. However, if you want, you can
add code to test for them.

Program 5.18	 Finding	the	product	of	a	list	of	numbers

1
2
3
4

/***
* It shows how to add and multiply a list of integers when the *
* size of the list is predefined *
 ***/

(continued)

for23380_ch05_158-207.indd 192 06/11/18 2:44 pm

5.7 Program	Design	 193

Program 5.18	 Finding	the	product	of	a	list	of	numbers	(Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

// Variable declaration
int size;
long double number;
long double sum, product;

// input validation for the size
do
{

cout << "Enter a non-negative integer value for size: " ;
cin >> size;

} while (size < 0);
// Initialization
sum = 0;
product = 1;

// Processing
for (int i = 1; i <= size; i++)
{

cout << "Enter the next integer: ";
cin >> number;
sum += number;
product *= number;

}
// Output
cout << fixed << setprecision (2);
cout << "sum = " << sum << endl;
cout << "product = " << product;
return 0;

}

Run:
Enter a non-negative integer value for size: 6
Enter the next number: 12
Enter the next number: 13.45
Enter the next number: 15
Enter the next number: 22.10
Enter the next number: 11.34
Enter the next number: 14
sum = 87.89
product = 8494310.92

(continued)

for23380_ch05_158-207.indd 193 06/11/18 2:44 pm

194 Chapter 5 Repetition

The first run multiplies seven numbers. The second run shows that if the list is empty
(size = 0), the result is the initial value for the variables sum and product. It is good practice
to show that the list is empty.

5.7.2 Factorial
Another calculation that we encounter in programming is to find the factorial of a number.

Understand the Problem
Factorial is a special kind of multiplication in which the numbers to be multiplied are posi-
tive integers (from 1 to the factorial number). In other words, we are looking for the result
of (1 × 2 × 3 ×⋯ × n), where n is the size of the list. This is referred to as factorial n (called
n! in mathematics). The only information we need from the user is the last number in the
series (n).

Develop the Algorithm
The algorithm to find the factorial is the same as the one we discussed for multiplication
in the previous problem. However, since in each iteration we must multiply the counter
by the factorial, we must start the counter from 1 (not zero); otherwise the value of the
factorial becomes zero in the first iteration and remains zero for the rest of the algorithm.
Since we start the counter from 1, we need to come out of the loop when the counter is
n + 1 instead of n.

1. Input
a. input n

2. Initialize
a. initialize factorial to 1
b. initialize counter to 1

3. Repeat as long as the counter is less than n + 1

a. set new factorial to previous factorial times counter
b. update counter

4. Output
a. output factorial

Write the Program
Based on the program components, it is very simple to write the code for this problem.
However, we must be concerned about one potential problem: overflow in the result value.
Depending on the size of the unsigned long type in the system, the result could overflow
with a large value for n (Program 5.19).

Program 5.18	 Finding	the	product	of	a	list	of	numbers	(Continued)

Run:
Enter a non-negative integer value for n: 0
sum = 0.00
product = 1.00

for23380_ch05_158-207.indd 194 06/11/18 2:44 pm

5.7 Program	Design	 195

Program 5.19	 Factorial

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* It uses the idea of list multiplication to find the value *
* of n! (factorial n) *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Variable declaration
int n;
unsigned long long factorial;

// Input
do
{

cout << "Enter the factorial size: ";
cin >> n;

} while (n < 0);
// initialization
factorial = 1;

// Processing
for (int i = 1; i < n + 1; i++)
{

factorial *= i;
}

// Output
cout << n << "! = " << factorial;
return 0;

}

Run:
Enter the factorial size: 0
0! = 1

Run:
Enter the factorial size: 4
4! = 24

Run:
Enter the factorial size: 12
12! = 479001600

Run:
Enter the factorial size: 22
22! = 17196083355034583040

Run:
Enter the factorial size: 30
30! = 9682165104862298112

for23380_ch05_158-207.indd 195 06/11/18 2:44 pm

196 Chapter 5 Repetition

Let us analyze the outputs: The first output defines 0! = 1, which is according to the
definition. The second output is obvious; when n is 4, we have 4! = 1 × 2 × 3 × 4 = 24.
The third output shows that the factorial calculation really becomes large when n is 12. The
results of the fourth and fifth outputs are strange. The result of 30! is less than the result of
22!. This means overflow has occurred, but we do not know where. It could have occurred
for values less than n = 22.

5.7.3 Power
Another interesting example of multiplication is calculating the power of a number (bn) in
which b is called the base and n is called the exponent.

Understand the Problem
This is an example of multiplication in which the list is the repetition of the same value, the
base. In other words, we multiply the base n times by itself.

power = bn = b × b × b × . . . × b × b n times

The library of C++ provides a function that calculates the power of any base to any expo-
nent. The numbers used in this function are all floating-point values. Sometimes we need to
use unsigned integers, which is what we do in this section.

Develop the Algorithm
The following is the informal description of the algorithm.

1. Input
a. input base

b. input exponent

2. Initialize
a. power to 1
b. set counter to 0

3. Repeat as long as the counter is less than exponent

a. set new power to previous power times base
b. update counter

4. Output
a. output power

Write the Program
Since we know how to handle overflow, we give the final version of the program in
Program 5.20.

Program 5.20	 Calcuating	a	base	to	a	power	(b	^	n)

1
2
3
4

/***
* It uses the idea of multiplication to find the value of a *
* base to the power of an exponent (b^n). *
 ***/

(continued)

for23380_ch05_158-207.indd 196 06/11/18 2:44 pm

5.7 Program	Design	 197

Program 5.20	 Calcuating	a	base	to	a	power	(b	^	n)	(Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#include <iostream>
using namespace std;

int main ()
{

// Variable declaration
int base, exponent;
unsigned long int power, temp;
bool overflow;

// input validation for base
do
{

cout << "Enter a non-negative integer value for b: " ;
cin >> base;

} while (base < 0);
// input validation for exponent
do
{

cout << "Enter a non-negative integer value for n: " ;
cin >> exponent;

} while (exponent < 0);
// initialization
power = 1;
temp = power;
overflow = false;

// Processing
for (int i = 1; (i <= exponent) && (!overflow); i++)
{

power * = base;
if (power / base != temp)
{

overflow = true; // terminate the loop
}
temp = power;

}
// Output
if (overflow)
{

cout << "Overflow occurred! Try again with smaller b or n." ;
}
else
{

cout << base << "^" << exponent << " = " << power;
}

(continued)

for23380_ch05_158-207.indd 197 06/11/18 2:44 pm

198 Chapter 5 Repetition

The first point about Program 5.20 is that we may be tempted to allow negative values for
the b (base). If we do so, the result would be negative when the value of n (exponent) is odd.
Therefore, we use an unsigned value for power and temp to keep the overflow checking simple.

The second point is that the variable power overflows in the last test, which means our
system cannot accept 528. The difference between this problem and the pervious one is that
the overflow depends on the value of b and n together. So it is more difficult to determine
what caused overflow.

5.7.4 The Smallest and the Largest
Two other common activities in computer science are to find the smallest and the largest
values among a list of numbers.

Understand the Problem
Assume that we have the following list of numbers: 17, 14, 12, 18, and 71. We initialize
the variable smallest to +infinity before entering the loop. In each step, we determine the
smaller between the result of the last iteration and the next number. We do this by using an
if statement. The following demonstrates the process for the smallest. The process for the
largest is similar. We set the variable largest to −infinity before entering the loop. In each
iteration, we determine the larger between the previous largest and the next number.

Numbers smallest = + infinity

17
14
12
71

smallest = smaller of 17 and previous smallest (+infinity) = 17
smallest = smaller of 14 and previous smallest (17) = 14
smallest = smaller of 12 and previous smallest (14) = 12
smallest = smaller of 71 and previous smallest (12) = 12

Result 12

Some literature initializes smallest (or largest) to the first number. Although this prac-
tice works for almost all cases, it does not work if the list is empty. In other words, it is not

Program 5.20	 Calcuating	a	base	to	a	power	(b	^	n)	(Continued)

49
50

return 0;
}

Run:
Enter a non-negative integer value for b: 22
Enter a non-negative integer value for n: 5
22^5 = 5153632

Run:
Enter a non-negative integer value for b: 5
Enter a non-negative integer value for n: 25
5^25 = 298023223876953125

Run:
Enter a non-negative integer value for b: 5
Enter a non-negative integer value for n: 28
Overflow occurred! Try again with smaller b or n.

for23380_ch05_158-207.indd 198 06/11/18 2:44 pm

5.7 Program	Design	 199

a general solution. You may wonder why we set smallest to +infinity. The reason is that
we want smallest to be the value of the first number in the list after the first iteration. The
procedure is similar for largest.

Develop the Algorithm
The following is the informal description of the algorithm.

1. Input
a. input size

2. Initialize
a. initialize smallest to (+infinity)
a. initialize largest to (−infinity)
b. initialize counter to 0

3. Repeat as long as the counter is less than size

a. read next number
b. set smallest to the smaller of previous smallest and the number
b. set largest to the larger of previous largest and the number
b. update counter

4. Output
b. output smallest
a. output largest

Write the Program
Program 5.21 shows how we can combine the components we discussed to find the smallest
and the largest among a list of integers.

Program 5.21	 Finding	the	smallest	and	the	largest	in	a	list

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* The program finds the smallest and the largest among a list *
* of integers when the size of the list is known. *
 ***/

#include <iostream>
#include <limits> // Header file for numeric limits
using namespace std;

int main ()
{

// Variable declaration
int size;
int number, smallest, largest;

// Initialization
smallest = numeric_limits <int> :: max();

(continued)

for23380_ch05_158-207.indd 199 06/11/18 2:44 pm

200 Chapter 5 Repetition

Program 5.21	 Finding	the	smallest	and	the	largest	in	a	list	(Continued)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

largest = numeric_limits <int> :: min() ;
// Size Input
do
{

cout << "Enter the size of the list (non-negative): ";
cin >> size;

} while (size <= 0);
// Processing
for (int i = 1; i <= size; i++)
{

cout << "Enter the next item: ";
cin >> number;
if (number < smallest)
{

smallest = number;
}
if (number > largest)
{

largest = number;
}

} // End for
// Result output
cout << "The smallest item is: " << smallest << endl;
cout << "The largest item is: " << largest << endl;
return 0;

}

Run:
Enter the size of the list (non-negative): 6
Enter the next item: 12
Enter the next item: −3
Enter the next item: 14
Enter the next item: 15
Enter the next item: 27
Enter the next item: −7
The smallest item is: −7
The largest item is: 27

Run:
Enter the size of the list (non-negative): 3
Enter the next item: 1
Enter the next item: 87
Enter the next item: 45
The smallest item is: 1
The largest item is: 87

for23380_ch05_158-207.indd 200 06/11/18 2:44 pm

5.7 Program	Design	 201

5.7.5 Any or All Queries
Another common activity in computer science is to search a list of items using specified
criteria. In particular, we often need to see if any item meets the criteria or if all items meet
the criteria.

Understand the Problem
If we are looking for any item that meets the criteria, we stop the search as soon as we find
the first item that does. If we want to check if all items meet the criteria, we stop the search
as soon as we find the first item that does not. Figure 5.16 shows the search process.

Develop the Algorithm
Since we need to stop the search when we find an item meeting the criteria (in any) or when
we find the item not meeting the criteria (in all), we need to use a combination of a counter-
controlled (or sentinel or EOF) and a flag-controlled loop. We call this flag success. We initialize
success to false for any and to true for all. In the case of any, we are successful if success turns
to true during the loop. In the case of all, we are successful if success remains true for the entire
duration. The best way to find the condition of either loop is to think about the condition for
exiting the loop and use De Morgan’s law to change it to the condition for staying in the loop.

Problem Terminating condition Staying condition

any:
all:

(no more item) or (success)
(no more item) or (not success)

(more item) and (not success)
(more item) and (success)

The following is the separate informal description of the algorithm for any and all queries.
Note that we have written separate descriptions for each problem because the condition for
terminating the loop and the output result is different for each problem.

Description for any Description for all

1. input
a. input size

2. Initialize
a. success = false

b. counter = 0

1. input
a. input size

2. Initialize
a. success = true

b. counter = 0

Figure 5.16	 The	search	looking	for	any	or	all	

Unchecked Meet criteria Does not meet criteria
Legend

All

success

failure

Any

success

failure

for23380_ch05_158-207.indd 201 06/11/18 2:44 pm

202 Chapter 5 Repetition

3. Repeat (counter < size or !success)
a. read next item
b. success = criteria
c. counter++

4. if success
a. write success message

5. else
a. write failure message

3. Repeat (counter < size or success)
a. read next item
b. success = criteria
c. counter++

4. if success
a. write success message

5. else
a. write failure message

Write the Program
Since the two programs are very similar, we give the code for the case of any and leave the
case of all as an exercise. Program 5.22 shows the code. We have a validation loop, a search
loop, and a post-loop decision to check if the item meeting the given criterion was found
or not.

Program 5.22	 Finding	if	any	item	in	a	list	meets	a	given	criterion

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* The program search a list of item to find if any item is *
* divisible by 7. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration
bool success;
int size;
int item;

// Input Validation
do
{

cout << "Enter the number of items in the list: ";
cin >> size;

} while (size < 0);
// Processing
for (int i = 0; (i < size) && (!success); i++)
{

cout << "Enter the next item: ";
cin >> item;
 success = (item %7 == 0);

}
// Checking success or failure

(continued)

for23380_ch05_158-207.indd 202 06/11/18 2:44 pm

Summary 203

Program 5.22	 Finding	if	any	item	in	a	list	meets	a	given	criterion (Continued)

28
29
30
31
32
33
34
35
36
37

if (success)
{

cout << "The number " << item << " is divisible by 7." << endl;
}
else
{

cout << "None of the numbers is divisible by 7." << endl;
}
return 0;

}

Run:
Enter the number of items in the list: 5
Enter the next item: 12
Enter the next item: 32
Enter the next item: 28
The number 28 is divisible by 7.

Run:
Enter the number of items in the list: 5
Enter the next item: 6
Enter the next item: 12
Enter the next item: 15
Enter the next item: 17
Enter the next item: 22
None of the numbers is divisible by 7.

K e y T e r m s

break statement
continue statement
counter-controlled loop
data validation
do-while statement
EOF-controlled loop
event-controlled loop
flag-controlled loop
for statement
goto statement
nested loop

post-test loop
postfix increment expression
postfix decrement expression
pre-test loop
prefix increment expression
prefix decrement expression
return statement
sentinel
sentinel-controlled loop
while statement

Repetition allows the program to iterate a section of code multiple times. When we are
using repetition statements, we need to use a counter to check how many times something is
repeated. Two groups of expressions are designed to simulate a counter: postfix increment/
decrement and prefix increment/decrement. There are three repetition statements: the while
loop, the for loop, and the do-while loop.

S u m m a r y

for23380_ch05_158-207.indd 203 06/11/18 2:44 pm

204 Chapter 5 Repetition

The while loop contains a condition, a Boolean expression, followed by a single statement
known as the body of the loop. The for statement combines the three elements: loop-
initialization, conditional test, and update. The do-while loop is similar to the while loop
except that the logical expression is tested at the end of each iteration.

There are four other statements that may be used with the loop construct: return, break,
continue, and goto. The return statement terminates a function. The break statement jumps to
the end of a loop prematurely and discontinues repetition. The continue statement in a loop
is used to immediately terminate one iteration, but the next iteration will be executed. The
goto statement transfers control to a labeled statement. It is considered non-structured and
should not be used.

P r o b l e m s

PR-1. How many times is the body of the following loop executed? What is the value of
x after the loop termination?

int x = 5;
while (x < 9)
{

x++;
}

PR-2. How many times is the body of the following loop executed? What is the value of
x after the loop termination?

int x = 5;
while (x < 11)
{

x += 2;
}

PR-3. How many times is the body of the following loop executed? What is the value of
x after the loop termination?

int x = 7;
while (x < 3)
{

x++;
}

PR-4. How many times is the body of the following loop executed? What are the values
of x and y after the loop termination?

int x = 7;
int y = 5;
while (x < 11 && y > 3)
{

x++;
y−−;

}

for23380_ch05_158-207.indd 204 06/11/18 2:44 pm

Problems 205

PR-5. How many times is the body of the following loop executed? What is the value of
x after the loop termination?

int x = 7;
while (false)
{

x++;
}

PR-6. How many times is the body of the following loop executed? What is the value of
x after the loop termination?

int x = 10;
while (true)
{

x−−;
}

PR-7. How many times is the body of the following loop executed? What is the value of
x after the loop termination?

int x = 5;
do
{

x −= 2;
} while (x != 4);

PR-8. How many times is the body of the following loop executed? What is the value of
x after the loop termination?

int x = 15;

do
{

x −= 2;
if (x < 9)
break;

} while (true);

PR-9. What is printed from the following program segment?

int x = 13;
while (x > 7)
{

cout << x << " ";
x−−;

}

PR-10. What is printed from the following program segment?

for (int x = 13; x > 7; x−−)
{

cout << x << " ";
}

for23380_ch05_158-207.indd 205 06/11/18 2:44 pm

206 Chapter 5 Repetition

PR-11. What is printed from the following program segment?

int x = 13;
do
{

cout << x << " ";
x−−;

} while (x > 7);

PR-12. Change the following do-while loop to a while loop.

int x = 10;
do
{

cout << x << end;
x++;

} while (true);

 Both do-while and while are infinite loops.
PR-13. Change the following while loop to a for loop.

int x = 10;
while (x < 20)
{

cout << x << endl;
x++;

}

PR-14. Change the following for loop to a while loop.

for (int x = 20; x < 10; x−−)
{

cout << x << endl;
}

P r o g r a m s

PRG-1. Write a program to print any of the following four patterns. The pattern type
(1 to 4) and the size of the pattern (1 to 9) are given by the user.

type 1 type 2 type 3 type 4

*
**

**
*

**

*

 *
 **

PRG-2. Write a program to print one of the following patterns. The pattern type and size
(number of rows) are given by the user (between 1 and 6).

for23380_ch05_158-207.indd 206 06/11/18 2:44 pm

Programs 207

type 1 type 2

*

*

PRG-3. Write a program that reads a list of positive integers less than 1000 from a
keyboard. The program prints the sum and the average of the numbers. The
program will stop when the user types 1000 as a sentinel.

PRG-4. Write a program that asks the user to enter a list of positive or negative integers
using the integer 0 as the sentinel. The program then counts the number of
positive and negative integers entered.

PRG-5. Write a program that asks the user to enter two positive integers. The program
then prints a list of even and a list of odd numbers between the given integers.

PRG-6. Write a program that prints all numbers between 1 and 100 that are divisible by 7.
PRG-7. Write a program that prints all numbers between 1 and 100 that are divisible by

both 5 and 7.
PRG-8. Write a program that reads a positive integer between 1 and 100 and prints its

factors (divisors). A factor is a number that divides another number. For example,
the factors of 10 are 1, 2, 5, and 10. The factors of 12 are 1, 2, 3, 4, 6, and 12.

PRG-9. Write a program that reads two integers between 1 and 100 and prints their
common factors (divisors).

PRG-10. Write a program that finds the greatest common divisor of two integers m and n
using the following algorithm:
a. Let m = m − n and swap m and n if m < n after subtraction.
b. Repeat step (a) until n is 0. The greatest common divisor is m. Test your pro-

grams with the following pairs of data: 9 and 12; 7 and 11; and 12 and 140.
PRG-11. Write a program that reads a list of scores between 0 and 100 and finds and

prints the smallest and the largest scores. The program needs to ask for the
number of the scores from the user; this number must be less than or equal to 10.

PRG-12. Write a program to display the leap years in the years 2000 to 2099. A leap
year is a year that is divisible by 4, but if it is divisible by 100, it should also be
divisible by 400.

PRG-13. Write a program that asks the user to enter a positive integer. The program then
prints the sum of the digits.

PRG-14. Write a program that asks the user to enter a positive integer. The program
then prints the integer in reverse order. For example, if the user enters 359, the
program prints 953.

PRG-15. Write a program that asks the user to enter a positive integer. The program then
checks to see if the number is a palindrome. A palindrome integer is an integer
that is the same when the order of digits is reversed. For example, 353 and
376673 are palindromes. Hint: Use the result of the program in PRG-14.

PRG-16. Write a program that creates a table of Celsius/Fahrenheit conversions between
0 and 99 degree Celsius. The conversion formula is as follows:

Fahrenheit = Celcius * 180.0 / 100.0 + 32

for23380_ch05_158-207.indd 207 06/11/18 2:44 pm

208

6.1 INTRODUCTION
A function is an entity designed to do a task; it has a header and a set of statements enclosed
in opening and closing braces. In previous chapters, we used one single function, main, to
do the whole task of the program. In other words, we put the whole responsibility of solving
a problem on the main function. This approach works for small programs in which the task
is very simple and the program is short.

The programs we have presented thus far have been very simple. They solve problems that
can be understood without too much effort. As we consider increasingly larger and more
complex programs, however, we will discover that it is not possible to understand all aspects
of most programs without somehow first reducing them to more elementary parts.

Breaking a complex problem into smaller parts is a common practice. We divide pro-
grams into modules that are tractable. In this chapter, we discuss functions, an abstraction in
computer programming that helps to divide a large program into smaller parts.

Objectives

After you have read and studied this chapter, you should be able to:

•	 Introduce functions and discuss the benefits of dividing the task of a program into smaller
tasks, each assigned to a function.

•	Give the elements of a function: definition, declaration, and call.

•	Group the functions in C++ into library functions and user-defined functions.

•	Discuss library functions that we can use without defining them, such as mathematical
functions, character functions, time functions, and random-number generators.

•	 Introduce the idea of user-defined functions by dividing them into four groups: void functions
with no parameters, void functions with parameters, data-returning functions with no
parameters, and data-returning functions with parameters.

•	Discuss the mechanism of data exchange between the calling function and the called
function: data pass and data return.

•	Discuss default parameters and function overloading in which two or more functions can be
defined with different signatures.

•	Discuss the scope of entities in a program: local and global.

•	Discuss the lifetime of entities in a program, including automatic and static variables.

•	Design and write programs using functions.

6 Functions

for23380_ch06_208-272.indd 208 03/11/18 12:28 pm

6.1 Introduction 209

When a task is more complicated, we divide the task into smaller tasks, in which each
task is responsible for a part of the job. We see this approach in many other situations. For
example, manufacturing a car is divided into several tasks. The body is made at one location,
the engine is made somewhere else, another entity is responsible for making tires, and so on.
When all of the parts are made and ready, the car is assembled.

The same approach can be applied to programming. We can divide a program into
different sections, in which each section is responsible for a part of the task. Each section in
this case is called a function in C++, although other terms with the same meaning, such as
method or procedure, are also used. Figure 6.1 shows this approach.

In the figure, the responsibility of the program is still on the shoulder of the main
function, but main calls other functions to do part of the job. The statements input (…),
process (…), and output (…) are function calls that invoke the corresponding functions
and let them do part of the job. When each function terminates, the control returns to the
main function. The figure also shows that the main function is called by the C++ runner.
When we run the program, the main function is invoked and does its task. In other words,
we have used the concept of a function from the first program we wrote in the first chap-
ter of this book. In this chapter, we develop the idea and learn how we can write more
functions.

6.1.1 Benefits
You may wonder about the benefit of dividing a task into several small tasks when doing so
involves writing more code because of the overhead involved in each function. Despite the
extra work, there are benefits to task division, including the following.

Easier to Write Simpler Task
Everyone knows that doing simple tasks is easier than doing difficult tasks. It is easier to
concentrate on manufacturing tires for cars than manufacturing the whole car.

Error Checking (Debugging)
One of the big headaches of programming is finding errors (called bugs). Error checking
(or debugging) is much more simple when a program is divided into small functions. Each
function can be debugged and then put together as one program.

Figure 6.1	 A	program	made	of	several	functions

input (...);

main ();

C++ runner

The main function

Other functions

Note:
Arrows show the
flow control.

process (...);

output (...);

return 0;

{

}

int main ()
return ... ;

type input (...)
{

}

return ... ;

type output (...)
{

}

return ... ;

type process (...)
{

}

for23380_ch06_208-272.indd 209 03/11/18 12:28 pm

210 Chapter 6 Functions

Reusability
Small tasks can be reused in many large tasks. If we isolate these small tasks and write a
function for each, we can create many large programs by assembling these small functions.
We do not need to rewrite the small task over and over again.

Library of Functions
Some common tasks that involve interaction with the operating system and the computer
hardware are pre-written and available to the user. We can use these functions without writ-
ing the code for them.

6.1.2 Definition, Declaration, and Call
To work with a function, we must consider three entities: function definition, function dec-
laration, and function call. We briefly discuss these here.

Function Definition
The function definition creates the function. Like any other entity in C++, the definition
of a function must follow syntax rules. Figure 6.2 shows the basic syntax of a function
definition.

As the figure shows, the definition is made of two sections: the function header and
the function body. The header defines the name of the function, the type of data that will
be returned from the function, and the parameter list, which consists of the data items (with
their types) that are passed to the function. The body defines what is done by the function.

EXAMPLE 6.1
The following shows the definition of a function that finds and returns the larger of two
given integers.

int larger (int first, int second) // header
{

int temp;
if (first > second)
{

temp = first;
}
else
{

temp = second;
}
return temp;

}

Figure 6.2	 Syntax	of	function	definition

return-type function-name (parameter list)
{

Body
}

for23380_ch06_208-272.indd 210 03/11/18 12:28 pm

6.1 Introduction 211

The return type is integer. There are two parameters each of type integer. The body is a com-
pound statement, as we have seen in the main function in previous chapters.

Function Declaration
The function declaration (also called function prototype) is only the header of the func-
tion followed by a semicolon. The parameter names are optional; the types are required.
The function declaration is used to show how the function should be called. It tells us what
goes into the function and what comes out of it without defining the action performed by the
function.

EXAMPLE 6.2
The following shows the declaration of the function defined in Example 6.1. We have given
two versions, with and without the names of the parameters.

int larger (int first, int second);
int larger (int, int);

// With the names of the parameters
// Without the names of the parameters

Function Call
A function call is a postfix expression that invokes a function to do its job. As with the
expressions we learned in previous chapters, we need to know the syntax of this expression
to call it. It belongs to the postfix group (like the postfix-increment and postfix-decrement
expressions). Table 6.1 shows the position of the function call expression with relation to
other expressions as discussed in Appendix C.

Figure 6.3 shows more information about a function call expression.
If we compare the syntax of the function call with other postfix expressions, such as

postfix-increment or postfix-decrement, we see that the operand in this case is a name (the
name of the function). The operator is a pair of parentheses with a list of zero or more values.
A function call can have a side effect, a return value, or both. If it has only a side effect, it
needs to be used as an expression statement. If it returns a value (with or without a side ef-
fect), it can be used in any situation where a value is needed. Our larger function is called as
larger (value1, value2), as shown in the next example.

Group Name Operator Expression Pred Assoc

postfix function	call (…) name	(expr,	…) 18 →

Table 6.1 Function call

Figure 6.3	 Function	call	operator

returned value

Note:
A function call can have a
side effect, a return value,
or both.

name

Side
effect

functionName
(value, value,)

for23380_ch06_208-272.indd 211 03/11/18 12:28 pm

212 Chapter 6 Functions

EXAMPLE 6.3
The following shows how we can call our larger function in main as many times as we want.

int main ()
{

cout << larger (3, 13);
cout << larger (10, 12);
cout << larger (2, 12);
return 0;

}

You may have noticed that the main function we used in previous chapters is itself the
definition of a function. The function is called by the C++ run-time environment. Its header
tells us that it returns an integer, but its parameter list is empty (Appendix N shows the main
function with a parameter list).

Arguments and Parameters
Before we close this section, we discuss two terms used in functions: arguments and pa-
rameters. A parameter is a variable declared in the header of the function definition; an
argument is a value that initializes the parameter when the function is called. In other
words, a parameter is like a variable on the left-hand side of an assignment statement; the
corresponding argument is like the value used on the right-hand side of the assignment
statement. The initialization of the parameter is done explicitly by the system when a func-
tion is called.

The following shows the function call with the assignment statement. The parameter x
is initialized with argument 5.

int main ()
{

…
fun (5);
…

}
void fun (int x)
{

…
}

// Function call; 5 is an argument

// Function definition; x is a parameter

As we will see, the argument can be a variable or even an object, but only its value takes part
in the function call.

6.1.3 Library and User-Defined Functions
To use functions in a program, we must have a function definition and a function call. How-
ever, we must choose between two types: library functions and user-defined functions.

Library Functions
The C++ library contains predefined functions. We need only the declaration of the func-
tions to call them. We study some of these functions later in this chapter.

for23380_ch06_208-272.indd 212 03/11/18 12:28 pm

6.2 Library	Functions	 213

User-Defined Functions
There are a lot of functions that we need, but there are no predefined functions for them.
We must define these functions first and then call them. We learn how to do so later in the
chapter.

6.2 LIBRARY FUNCTIONS
As we said before, if a there is a predefined function in library, we do not need to worry
about the function definition. We only add the corresponding header file in which the func-
tion is defined. However, we must call the function, which means that we must know the
declaration of the function.

6.2.1 Mathematical Functions
C++ defines a set of mathematical functions that can be called in our program. These func-
tions are predefined and collected under the <cmath> header. The prefix “c” in the name of
the header emphasizes that it is inherited (with some changes) from the C language.

We need the <cmath> header to use the mathematical functions.

Numeric Functions
Numeric functions are used in numeric calculations. The parameters are normally one or
more numeric values and the result is also a numeric value. Table 6.2 shows some of the
common functions in this category as well as function declarations.

The type is float, double, or long double. In the case of the pow function, the second
argument can also be an integer. All of these functions can accept different types of argu-
ments and can return a value of a different type. This means these functions are overloaded
(we discuss overloading later in the chapter).

EXAMPLE 6.4
Program 6.1 shows the return values of the functions given in Table 6.2.

Function declaration Explanation

type	abs	(type	x); Returns	absolute	value	of	x	

type	ceil	(type	x); Returns	largest	integral	value	less	than	or	equal	to	x

type	floor	(type	x); Returns	smallest	integral	value	less	than	or	equal	to	x

type	log	(type	x); Returns	the	natural	(base	e)	logarithm	of	x

type	log10	(type	x); Returns	the	common	(base	10)	logarithm	of	x

type	exp	(type	x); Returns	ex

type	pow	(type	x,	type	y); Returns	xy;	note	that	y	can	also	be	of	type	int	in	this	case

type	sqrt	(type	x); Returns	the	square	root	of	x	(x1/2)

Table 6.2 Some numeric functions defined in <cmath>

for23380_ch06_208-272.indd 213 03/11/18 12:28 pm

214 Chapter 6 Functions

Program 6.1	 Testing	some	numeric	functions	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* This program shows how to use some of the numeric functions *
* defined in the <cmath> header file. *
 ***/

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{

// abs function with two different arguments
cout << "abs (8) = " << abs (8) << endl;
cout << "abs (−8) = " << abs (−8) << endl;
// floor and ceil functions with the same argument
cout << "floor (12.78) = " << floor (12.78) << endl;
cout << "ceil (12.78) = " << ceil (12.78) << endl;
// log and log10 functions
cout << "log (100) = " << log (100) << endl;
cout << "log10 (100) = " << log10 (100) << endl;
// exp and pow functions
cout << "exp (5) = " << exp (5) << endl;
cout << "pow (2, 3) = " << pow (2,3) << endl;
// sqrt function
cout << "sqrt (100) " << sqrt (100);
return 0;

}

Run:
abs(8) = 8
abs(−8) = 8
floor(12.78) = 12
ceil(12.78) = 13
log(100) = 4.60517
log10 (100) = 2
exp(5) = 148.413
pow(2, 3) = 8
sqrt(100) = 10

Note that since none of the functions has a side effect, the return value will be thrown
away when we use any of the functions as an expression statement. We must use each func-
tion where a value is needed, such as an argument to the insertion operator (<<).

EXAMPLE 6.5
For an application of one of these functions, pow, let us find the roots of the quadratic equa-
tion ax2 + bx + c = 0 as we have seen in mathematics. We know that three situations can
happen depending on the value of (b2 − 4ac), which we call the term:

for23380_ch06_208-272.indd 214 03/11/18 12:28 pm

6.2 Library	Functions	 215

a. If the value of the term is negative, there are no real roots (they are complex).
b. If the value of the term is zero, the two roots are the same and the common value is

−b/2a.
c. If the value of the term is positive, the two roots are distinct and their values are −b +

(b2 − 4ac)1/2 and −b − (b2 − 4ac)1/2.

We can use these three facts to find the roots of any quadratic expression, as shown in
Program 6.2.

Program 6.2	 Calculating	the	root	of	a	quadratic	equation	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

/***
* This program finds the roots of the quadratic equations *
 ***/

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{

// Declaration of variables
int a, b, c;
double term;
// Inputting the value of three coefficients
cout << "Enter the value of coefficient a: ";
cin >> a;
cout << "Enter the value of coefficient b: ";
cin >> b;
cout << "Enter the value of coefficient c: ";
cin >> c;
// Calculating the value of term (b2 − 4ac)
term = pow (b, 2) − 4 * a * c;
if (term < 0)
{

cout << "There is no root!" << endl;
}
else if (term == 0)
{

cout << "The two roots are equal." << endl;
cout << "x1 = x2 = " << −b / (2 * a) << endl;

}
else
{

cout << "There are two distinct roots: " << endl;
cout << "x1 = " << (−b + sqrt (term)) / (2 * a) << endl;
cout << "x2 = " << (−b − sqrt (term)) / (2 * a) << endl;

(continued)

for23380_ch06_208-272.indd 215 03/11/18 12:28 pm

216 Chapter 6 Functions

Trigonometric Functions
Table 6.3 gives the list of common trigonometric functions. Note that all of these functions
are also overloaded. The type entries (colored red) represent one of the floating-point types
(float, double, and long double).

Note that the argument of the first three functions needs to be in radians, in which
180 degrees = π radians and (π = 3.141592653589793238462) approximately.

EXAMPLE 6.6
Program 6.3 shows the use of some trigonometric functions.

Program 6.2	 Calculating	the	root	of	a	quadratic	equation (Continued)

36
37
38

}
return 0;

}

Run:
Enter the value of coefficient a: 3
Enter the value of coefficient b: 5
Enter the value of coefficient c: 4
There is no root!

Run:
Enter the value of coefficient a: 1
Enter the value of coefficient b: 2
Enter the value of coefficient c: 1
The two roots are equal.
x1 = x2 = −1

Run:
Enter the value of coefficient a: 4
Enter the value of coefficient b: -9
Enter the value of coefficient c: 2
There are two distinct roots:
x1 = 2
x2 = 0.25

Function
declaration

Function
explanation

Argument
units

Returned
range

type	cos	(type	x); Returns	the	cosine radians [−1,	+1]

type	sin	(type	x); Returns	the	sine radians [−1,	+1]

type	tan	(type	x); Returns	the	tangent radians any

type	acos	(type	x); Returns	the	inverse	cosine [−1,	+1] [0,	π]

type	asin	(type	x); Returns	the	inverse	sine [−1,	+1] [0,	π]

type	atan	(type	x); Returns	the	inverse	tangent any [−π/2,	+π/2]

Table 6.3 Trigonometric functions

for23380_ch06_208-272.indd 216 03/11/18 12:28 pm

6.2 Library	Functions	 217

EXAMPLE 6.7
Trigonometry tells us that we can find the perimeter and area of a polygon with four or more
sides given the number of sides and the length of each side, as shown in Figure 6.4.

Program 6.4 shows how we can find the perimeter and the area of any polygon.

Program 6.3	 Trigonometric	functions	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* A program to test some trigonometric functions *
 ***/

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{

// Defining constant PI and an angle of 45 degrees
const double PI = 3.141592653589793238462;
double degree = PI / 4;
// Finding the sin, cos, and tan of an angle of 45 degrees
cout << "sin (45): " << sin (degree) << endl;
cout << "cos (45): " << cos (degree) << endl;
cout << "tan (45): " << tan (degree);
return 0;

}

Run:
sin (45): 0.707107
cos (45): 0.707107
tan (45): 1

Program 6.4	 Calculating	the	perimeter	and	area	of	a	polygon	 	

1
2
3
4
5
6
7
8

/***
* This program finds the perimeter and the area of a polygon *
* given the number of sides and the length of a side *
 ***/

#include <iostream>
#include <cmath>
using namespace std;

Figure 6.4	 Perimeter	and	area	of	polygons

n: 4 n: 5 n: 6

perimeter = n × s

area = n × s2

4 × tan (π/n)

(continued)

for23380_ch06_208-272.indd 217 03/11/18 12:28 pm

218 Chapter 6 Functions

Program 6.4	 Calculating	the	perimeter	and	area	of	a	polygon (Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

int main ()
{

// Declarations
const double PI = 3.141592653589793238462;
int n;
double s, peri, area;
// Inputting number of sides
do
{

cout << "Enter the number of sides (4 or more): ";
cin >> n;

} while (n < 4);
// Inputting the length of each side
do
{

cout << "Enter length of each side: ";
cin >> s;

} while (s <= 0.0);
// Calculating perimeter and area
peri = n * s;
area = (n * pow (s, 2)) / (n * tan (PI / n));
// Printing results
cout << "Perimeter: " << peri << endl;
cout << "Area: " << area;
return 0;

}

Run:
Enter the number of sides (4 or more): 2
Enter the number of sides (4 or more): 3
Enter the number of sides (4 or more): 4
Enter length of each side: 5
Perimeter: 20
Area: 25

Run:
Enter the number of sides (4 or more): 5
Enter length of each side: 5
Perimeter: 25
Area: 34.4095

6.2.2 Character Functions
We discussed characters as a fundamental type in Chapter 2. We can apply most of the op-
erations we discussed for fundamental types to character types. We can also use input/output
operations on characters.

for23380_ch06_208-272.indd 218 03/11/18 12:28 pm

6.2 Library	Functions	 219

In addition, there are several library functions that handle characters in C++. All char-
acter handling functions are found in the <cctype> library (abbreviation of C Character
Type). They are inherited from the C language.

We need the <cctype> header to use the character functions.

Character Classification Functions
All of the classification function names start with the prefix is, such as iscontrol, isupper,
an so on. If the argument belongs to the category defined by the function name, the function
returns 1 (which can be interpreted as true); otherwise, the function returns 0 (which can be
interpreted as false). Table 6.4 shows the list of these functions. Note that the parameter in
each function is of type int, but we always pass a character as the parameter (a character is
an integer smaller than short integer).

Character Conversion Functions
Two functions in C++ are used to convert a character from one class to another. These func-
tions start with the prefix to and return an integer that is the value of the converted character.
Table 6.5 shows these two functions.

Note that the return value of these functions is defined as an integer, but we can always
convert the return value (implicitly or explicitly) to a character as shown in Program 6.5.

Program 6.5 shows an example of using the predefined functions isalpha and toupper
to change the characters in the text to uppercase and to count the alphabetic characters.

Function declaration Explanation

int	isalnum	(int	x); Is	the	parameter	an	alphanumeric	character?

int	isalpha	(int	x); Is	the	parameter	an	alphabetic	character?

int	iscntrl	(int	x); Is	the	parameter	a	control	character?

int	isdigit	(int	x); Is	the	parameter	a	decimal	digit	(0	to	9)?

int	isgraph	(int	x); Is	the	parameter	a	printable	character	other	than	space?

int	islower	(int	x); Is	the	parameter	a	lowercase	letter	(a	to	z)?

int	isprint	(int	x); Is	the	parameter	a	printable	character	(including	space)?

int	ispunct	(int	x); Is	the	parameter	a	punctuation	character?

int	isspace	(int	x); Is	the	parameter	a	whitespace	character	(space,	return,	or	tab)?

int	isupper	(int	x); Is	the	parameter	an	uppercase	character	(A	to	Z)?

int	isxdigit	(int	x); Is	the	parameter	a	hexadecimal	character	(0–9,	a–f,	or	A–F)?

Table 6.4 Character classification functions

Declaration Explanation

int	tolower	(int	x) Returns	the	lowercase	version	of	its	parameter.

int	toupper	(int	x) Returns	the	uppercase	version	of	its	parameter.

Table 6.5 Character conversion functions

for23380_ch06_208-272.indd 219 03/11/18 12:28 pm

220 Chapter 6 Functions

6.2.3 Handling Time
One of the library functions we often encounter in C++ programming is the time function
defined in the <ctime> header file. We discuss this function in more detail in Appendix I,
but for the moment, it is enough to say that this function returns the number of seconds
elapsed from the Unix epoch (midnight of January 1, 1970) when the argument passed to
the function is 0. In other words, time(0) gives the count of seconds from the epoch until the
time that the function is called, as shown in Figure 6.5.

To find the day, month, and year of the current time, we need more sophisticated
functions, which we discuss in a future chapter (leap years must be considered). However,
it is easy to find the hours, minutes, and seconds of the current time, as shown in the next
example.

Program 6.5	 Using	character	functions		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* A program that changes every lowercase letter to an uppercase *
* letter and counts the alphabetic characters. *
 ***/

#include <iostream>
#include <cctype>
using namespace std;

int main ()
{

// Declaration
char ch;
int count = 0;
// Inputting characters and processing
while (cin >> noskipws >> ch)
{

if (isalpha (ch))
{

count++;
}
ch = toupper (ch);
cout << ch ;

}
// Printing the count of characters
cout << "The count of alphabetic characters is: " << count;
return 0;

}

Run:
This is a line made of more than 10 characters.
THIS IS A LINE MADE OF MORE THAN 10 CHARACTERS.
^Z
The count of alphabetic characters is: 35

for23380_ch06_208-272.indd 220 03/11/18 12:28 pm

6.2 Library	Functions	 221

EXAMPLE 6.8
Program 6.6 shows how we can use the time(0) function to print the current time. We need
to know that the time calculated is Greenwich mean time (GMT), not the local time.

Note the use of / and % operators in Program 6.6. The first finds the elapsed unit; the
second finds the current unit. Note also that if you want to find the current time in your lo-
cation, you must add or subtract the difference between your local time and the GMT time.

6.2.4 Random Number Generation
The C++ 11 standard defined classes to create random numbers in any distribution as de-
fined in probability theory. We discuss these classes later in the book. In this chapter, we

Figure 6.5	 Number	of	seconds	defined	by	time(0)	function	

Elapsed time = time (0)

Current
time

Midnight
January 01, 1970

Program 6.6	 Finding	current	time	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* A program finding the current time using time (0) function *
 ***/

#include <iostream>
#include <ctime>
using namespace std;

int main ()
{

// Finding elapsed seconds and current second
long elapsedSeconds = time (0);
int currentSecond = elapsedSeconds % 60;
// Finding elapsed minutes and current minute
long elpasedMinutes = elapsedSeconds / 60;
int currentMinute = elpasedMinutes % 60;
// Finding elapsed hours and current hour
long elapsedHours = elpasedMinutes / 60;
int currentHour = elapsedHours % 24;
// Printing current time
cout << "Current time: ";
cout << currentHour << " : " << currentMinute << " : " << currentSecond;
return 0;

}

Run:
Current time: 20 : 57 : 59

Run:
Current time: 20 : 58 : 22

for23380_ch06_208-272.indd 221 03/11/18 12:28 pm

222 Chapter 6 Functions

introduce the random number generator inherited from the C language and defined in the
<cstdlib> header file. The function is called rand. It generates a random integer between 0
and RAND_MAX, a value that is system dependent but is normally set to 32,767 (215 − 1),
which means one of the 32,768 different values if we include 0.

This function is pseudorandom: It generates the same set of random numbers in each
run of the program because it uses the same seed to start the random series. The seed is set
to 1, which means that the same series is always generated. To get a different series in each
run, we must give a different seed to the rand function each time we run the program. The
best choice is to use the function time(0), which is the number of seconds passed from the
epoch, as we discussed before. Each time we run the program, the value of time(0) is differ-
ent, which means we get a different set of random numbers. To do so, we simply pass the
return value of time(0) to another function named srand (seed for random) and then call the
rand function.

We often need to create a random number in the range a to b (inclusive). To do so, we
must create a random number using the rand function. We then must scale it to the range 0
to (b − a). We finally shift it as shown in Figure 6.6.

EXAMPLE 6.9
As an application of generating a random number, we have created a number-guessing game
(see Program 6.7). We generate a random number between two limits (low and high) and let
the user guess a limited number of times to find it. In each try, if the guess is not correct, we
give a clue to the user.

Figure 6.6	 Scaling	and	shifting	a	random	number

0 RAND_MAX

0

a b

Scaling

Scaling

Shifting

Shifting

b − a

temp = rand () % (b − a + 1)

result = temp + a

Program 6.7	 A	guessing	game

1
2
3
4
5
6
7
8
9

10
11
12

/***
* A program simulating a guessing game using a random number *
 ***/

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main ()
{

// Declaration and initialization
int low = 5;

(continued)

for23380_ch06_208-272.indd 222 03/11/18 12:28 pm

6.2 Library	Functions	 223

(continued)

Program 6.7	 A	guessing	game (Continued)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

int high = 15;
int tryLimit = 5;
int guess;
// Generation of random number
srand (time (0));
int temp = rand();
int num = temp % (high − low + 1) + low;
// Guessing loop
int counter = 1;
bool found = false;
while (counter <= tryLimit && !found)
{

do
{

cout << "Enter your guess between 5 to 15 (inclusive): ";
cin >> guess;

} while (guess < 5 || guess > 15);

if (guess == num)
{

found = true;
}
else if (guess > num)
{

cout << "Your guess was too high!" << endl;
}
else
{

cout << "Your guess was too low!" << endl;
}
counter++;

}
// Success response
if (found)
{

cout << "Congratulation: You found it. ";
cout << "The number was: " << num;

}
// Failure response
else
{

cout << "Sorry, you did not find it! ";
cout << "The number was: " << num;

for23380_ch06_208-272.indd 223 03/11/18 12:28 pm

224 Chapter 6 Functions

6.3 USER-DEFINED FUNCTIONS
Not all functions we need are defined in the C++ library. To call a function that is not de-
fined in the library, we must first define it in our program.

6.3.1 Four Categories of Functions
We showed the general syntax of a function definition in Figure 6.2 and the syntax of the func-
tion call operator in Figure 6.3. In this section, we develop the function concept further by giving
the syntax details for the four types of functions that we encounter in C++: void functions with
no parameters, void functions with parameters, value-returning functions with no parameters,
and value-returning functions with parameters as shown in Figure 6.7. We also discuss the ap-
plications of each type so that when we want to design a function, we know which type we need.

Program 6.7	 A	guessing	game (Continued)

56
57
58

}
return 0;

}

Run:
Enter your guess between 5 to 15 (inclusive): 7
Your guess was too low!
Enter your guess between 5 to 15 (inclusive): 8
Congratulation: You found it. The number was: 8

Run:
Enter your guess between 5 to 15 (inclusive): 15
Your guess was too high!
Enter your guess between 5 to 15 (inclusive): 14
Your guess was too high!
Enter your guess between 5 to 15 (inclusive): 13
Your guess was too high!
Enter your guess between 5 to 15 (inclusive): 12
Your guess was too high!
Enter your guess between 5 to 15 (inclusive): 11
Your guess was too high!
Sorry, you did not find it! The number was: 10

Figure 6.7	 Four	categories	of	functions	in	C++

void name ()
{

}

Void with no parameters

Value-returning with no parameters Value-returning with parameters

Void with parameters

void name (type parameter, ...)

type name (type parameter, ...)

{

}

type name ()
{

}

{

}

...
return value;

...
return;

...
return value;

...
return;

for23380_ch06_208-272.indd 224 03/11/18 12:28 pm

6.3 User-defined	Functions 225

Void Function with No Parameters
Probably the simplest case is a void function with no parameters. The function takes no pa-
rameters and returns nothing. This type of function is only defined for its side effect, which
occurs inside the function; otherwise, the function is useless. Since the function does not
return a value, we cannot use it where a value is needed. We can only use this function as a
postfix expression in which its side effect is used.

EXAMPLE 6.10
Let us create a void function with no parameters that prints a message, such as a greeting,
on the screen (side effect) as shown in Program 6.8. Note that we have used a different
background color for the function definition. Note also that the function definition (lines 13
to 19) comes before the function call (line 23) in the main function. In fact, we have two
function definitions, one for the greeting function and one for the main function. The greet-
ing function is called from inside of the main function; the main function is called by the
C++ runner.

Program 6.8	 Using	a	void	function	with	no	argument	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* A program that prints a boxed greeting using a void function *
 ***/

#include <iostream>
using namespace std;

/***
* Function definition for the greeting function. This is a void *
* function with no parameters that creates a three-line message. *
* The function returns nothing to its caller. It has only a side *
* effect (displaying three lines) *
 ***/

void greeting ()
{

cout <<"*******************" << endl;
cout <<"* Hello Friends *" << endl;
cout <<"*******************" ;
return;

}

int main ()
{

greeting(); // Calling the greeting function (expression statement)
return 0;

}

Run:

* Hello Friends *

for23380_ch06_208-272.indd 225 03/11/18 12:28 pm

226 Chapter 6 Functions

Figure 6.8 shows the communication between the main function and the greeting
function. Although no data is exchanged between the main and greeting functions, there
is a side effect. The main function first calls the greeting function. The greeting function
prints the greeting on the screen (side effect). The control then returns to the main function
(void return).

Void Function with Parameters
The next choice is to create a function with parameters. The function is passed values (argu-
ments) that sit in the place of parameters. The function has a side effect but does not return
data to its caller. This type of function is used when we need only the side effect of the func-
tion but we also need to pass some information, such as what is to be output each time we
call the function. As we will see later, the void function with parameters is a good choice for
the output module in the input-process-output design.

EXAMPLE 6.11
Program 6.9 shows an example in which the parameter tells the function how to format
the pattern in each execution. Lines 14 to 25 are the function definition; line 38 is the
function call.

Figure 6.8	 Communication	between	the	main	function	and	
the	greeting	function

greeting ();
return 0; return;

int main () void greeting ()
{

}

{

}

cout << ;

side
effect

Program 6.9	 A	void	function	with	a	parameter

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* This program shows how we can create different patterns using *
* a void function with a parameter. *
 ***/

#include <iostream>
using namespace std;

/***
* Function definition for the pattern function. This is a void *
* function with one parameter that accepts its size from the *
* user each time the program is called. The parameter is used *
* to create a different size for the pattern. *
 ***/

void pattern (int size)
{

for (int i = 0; i < size; i++)
{

for (int j = 0; j < size; j++)

(continued)

for23380_ch06_208-272.indd 226 03/11/18 12:28 pm

6.3 User-defined	Functions 227

Figure 6.9 shows the communication between main and the pattern function. Each
time we run the program, we get a value for patternSize and pass that value to the function
call to control the size of the printed pattern. In other words, the patternSize value is stored
in the size parameter each time we call the function.

Value-Returning Function with No Parameters
This type of function is designed only for its return value. The function normally has an
input side effect and returns the input value to the calling function. As we will see later, it is
a good choice for the input module in the input-process-output design. Program 6.10 dem-
onstrates the design concept. It calls an input function, getData, that reads an integer from
the keyboard and returns it to the main function for processing.

Program 6.9	 A	void	function	with	a	parameter (Continued)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

{
cout << "*" ;

}
cout << endl;

}
return;

}

int main()
{

// Declaration
int patternSize; // Argument to be pass to the square function
// Input validation
do
{

cout << "Enter the size of the pattern: ";
cin >> patternSize;

} while (patternSize <=0);
// Function call
pattern (patternSize); // patternSize is the argument
return 0;

}

Run
Enter the size of the pattern: 3

Run
Enter the size of the pattern: 4

for23380_ch06_208-272.indd 227 03/11/18 12:28 pm

228 Chapter 6 Functions

Figure 6.9	 Communication	between	the	main	function	and	the	pattern	
function

void pattern (int size)

pattern (patternSize);
return 0; return;

{

}

int main ()
{

}

1
2

Notes: side effectdata sent

Program 6.10	 A	value-returning	function	without	parameters

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* This program shows how to define a function to get a positive *
* integer from the keyboard and print its right-most digit. *
 ***/

#include <iostream>
using namespace std;

/***
* The getdata function is a returning-value function with *
* no parameters. It takes the user input (side effect) from *
* the keyboard and returns the value to the main function *
* after validating that the number is positive. *
 ***/

int getData()
{

int data;
do
{

cout << "Enter a positive integer: ";
cin >> data;

} while (data <= 0);
return data;

}

int main()
{

int number = getData(); // Function call with no argument
cout << "Right-most digit: " << number % 10;
return 0;

}

Run
Enter a positive integer: 56
Right-most digit: 6

(continued)

for23380_ch06_208-272.indd 228 03/11/18 12:28 pm

6.3 User-defined	Functions 229

Figure 6.10 shows the communication between the main function and the getData
function. Each time we run the program, we get an integer from the keyboard, validate that
it is positive, and return it to the main function.

Value-Returning Function with Parameters
Program 6.11 shows how we can have a function with parameters that returns a value. The
larger function accepts two values from the main function, finds the larger of the two, and
returns the result.

Program 6.11	 A	value-returning	function	with	parameters

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* This program shows how to define a function to find the *
* larger of any two positive integers given by the user. *
 ***/

#include <iostream>
using namespace std;

/***
* The larger function is a value-returning function with two *
* parameters that gets two values from the calling function *
* and returns the larger one. The function has no side effect. *
 ***/

int larger (int fst, int snd)
{

int max;
if (fst > snd)
{

max = fst;
}

Program 6.10	 A	value-returning	function	without	parameters (Continued)

Run
Enter a positive integer: -72
Enter a positive integer: 72
Right-most digit: 2

(continued)

Figure 6.10	 Communication	between	the	main	function	and	
the	pattern	function

Notes: side effectreturned value

return data;

int getData ()

1num = getData ();

return 0;

int main ()
{ {

} }
2

for23380_ch06_208-272.indd 229 03/11/18 12:28 pm

230 Chapter 6 Functions

Program 6.11	 A	value-returning	function	with	parameters (Continued)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

else
{

max = snd;
}
return (max);

} // End larger

int main()
{

// Declaration
int first, second;
// Get inputs
cout << "Enter the first number: ";
cin >> first;
cout << "Enter the second number: ";
cin >> second;
// Function call
cout << "Larger: " << larger (first, second); // Function call
return 0;

}

Run
Enter the first number: 56
Enter the second number: 71
Larger: 71

Run
Enter the first number: -10
Enter the second number: 8
Larger: 8

Figure 6.11 shows the communication between the main function and the larger func-
tion. The main function sends two values (arguments) to larger. The larger function finds
the larger of the two and returns it.

6.3.2 Using Declarations
In all of the previous examples, we have put the function definition before the function call.
Another approach is to put a declaration (prototype) of the function before the function call

Figure 6.11	 Function	call,	returns,	and	side	effect	

cout << larger (first, second);
return 0;

{

}

int main ()

Notes: call with parameter returned value

return max ;

int larger (int fst, int snd)
{

}

1

2

for23380_ch06_208-272.indd 230 03/11/18 12:28 pm

6.3 User-defined	Functions 231

and put the function definition after the function call, as shown in Figure 6.12. Note that the
declaration must have a semicolon at the end.

A semicolon is needed at the end of a function declaration.

EXAMPLE 6.12
Program 6.12 follows the principle of modular programming: input-process-output. The
main function is responsible for only three calls: input call, processing call, and output call.
The rest is done by three functions: input, process, output. Program 6.12 is designed to get
the value of a year from the user (input), find if the year is a leap year (processing), and print
the result (output). We previously discussed that a year needs to satisfy two criteria to be a
leap year. First, it must be divisible by 4. Second, if it is divisible by 100, it must also be
divisible by 400.

Figure 6.12	 Setting	function	definition	after	function	call	

Definition

Declaration

Call

type name (type, type, ...);

name (arg1, arg2, ...)

type name (type1 p1, type2 p2, ...)
{

}

Note:
The definition goes after
the function call, but we
need the function declaration
before the function call.

Program 6.12	 Finding	if	a	year	is	a	leap	year

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* This program shows how to use three functions: input an *
* integer representing a year, check if it is a leap year, *
* and print the result. *
 ***/

#include <iostream>
using namespace std;

// Declarations (prototypes)
int input ();
bool process (int year);
void output (int year, bool result);

int main ()
{

// Input, processing, output
int year = input();
bool result = process (year);
output (year, result);

}

(continued)

for23380_ch06_208-272.indd 231 03/11/18 12:28 pm

232 Chapter 6 Functions

Program 6.12	 Finding	if	a	year	is	a	leap	year (Continued)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/***
* The definition of the input function. It is called in the *
* main function. It takes the value of the year from the user *
* (side effect), validates the year to be greater than 1582, *
* and returns the result to the main function. The function is *
* value-returning, with no parameters, but with a side effect. *
 ***/

int input ()
{

int year;
do
{

cout << "Enter a year after 1582: " ;
cin >> year;

} while (year <= 1582);
return year;

}
/***

* The definition of the process function. It takes the value of *
* the year from the main function as a parameter. It checks to *
* to see if it is a leap year and returns a boolean value back *
* to main. It is a value-returning function with a parameter *
* and no side effect. *
 ***/

bool process (int year)
{

bool criteria1 = (year % 4 == 0);
bool criteria2 = (year % 100 != 0) || (year % 400 == 0);
return (criteria1) && (criteria2);

}
/***

* The output function takes the year value and the Boolean value *
* returned from the process function. It prints the results on *
* the monitor. It is a void function with two parameters. *
 ***/

void output (int year, bool result)
{

if (result)
{

cout << "Year " << year << " is a leap year.";
}
else
{

(continued)

for23380_ch06_208-272.indd 232 03/11/18 12:28 pm

6.4 Data	Exchange 233

Figure 6.13 shows the communication between the main function and the other three
functions. The numbers define the order of communication. The main function first calls
the input function, which gets input from the keyboard and returns a value (after valida-
tion) to the main function. The main function then calls the process function and passes
the value of the year to it to determine if the year is a leap year and to return the result. The
main function then calls the output function to print the value of the year and indicate if it
is a leap year or not.

6.4 DATA EXCHANGE
In the previous section, we showed that a calling function can communicate with the called
function. During communication, the two functions can exchange data in two directions:
forward and backward, as shown in Figure 6.14. We discuss each case separately.

6.4.1 Passing Data
If the parameter list of the called function is not empty, data is passed from each argument to
the corresponding parameter. Depending on the application, we can use three mechanisms

Program 6.12	 Finding	if	a	year	is	a	leap	year (Continued)

64
65
66
67

cout << "Year " << year << " is not a leap year.";
}
return;

}

Run
Enter a year after 1582: 1900
Year 1900 is not a leap year.

Run
Enter a year after 1582: 1500
Enter a year after 1582: 1600
Year 1600 is a leap year.

Figure 6.13	 Relation	between	the	main	function	and	three	called	functions

Notes:

return 0;

int main ()
{{

}

}
return year;

int input ()

{

}

bool process (int year)

side effect

3

1
2

4

6

5

send value

int year = input ();

bool result = process (year);

output (year, result);

return valuereturn result;

{

}

void output (int year, bool result)

return;

for23380_ch06_208-272.indd 233 03/11/18 12:28 pm

234 Chapter 6 Functions

for passing data from an argument to a parameter: pass-by-value, pass-by-reference, and
pass-by-pointer.

Pass-by-Value
In the pass-by-value mechanism, the argument sends a copy of the data item to the corre-
sponding parameter. The parameter receives the value and stores it. Since the exchange is
made through a value, the argument can be a literal value or the value of a variable, as shown
in Figure 6.15.

We use pass-by-value when we do not want a called function changing the value of the
arguments passed to it. In other words, the called function can only read the value of the argu-
ments; it cannot modify them. In computer parlance, this is referred to as read-only access.

The pass-by-value method initializes a parameter with a copy of
the corresponding argument.

EXAMPLE 6.13
Program 6.13 shows a simple example to demonstrate the idea behind pass-by-value. We
increment the value of parameter y in the called function (fun), but the value of the corre-
sponding argument x is not incremented.

We see examples of pass-by-value in real life. When a friend wants to borrow a valu-
able document from you, you can give her a copy of the document. Your friend can do what-
ever she likes with the document, but your original document remains untouched.

Pass-by-Reference
In the pass-by-reference mechanism, a memory location is shared between the argument and
the corresponding parameter. The calling and the called functions can refer to that memory

Figure 6.14	 Data	exchange	between	a	caller	and	a	called		
function

return 0;

{

}

int main ()

Legend:

Data Pass
Data Return

return data;

type aFunction (type par1, type par2, ...)

cout << aFunction (arg1, arg2, ...);

{

}

Figure 6.15	 The	concept	of	pass-by-value

y

int main ()

Passing a literal value Passing value of a variable

fun (5); 5
{

}

void fun (int y)
{
}

x

y

int main ()

fun (x);
int x = 10; {

}

void fun (int y)
{
}

for23380_ch06_208-272.indd 234 03/11/18 12:28 pm

6.4 Data	Exchange 235

location by the same name or different names (different names are preferred). The parameter
name is an alias for the argument name. Figure 6.16 shows the concept.

In the figure, the two names, x and y, are actually referring to the same variable loca-
tion, which is created by the calling function and used by the called function. However, to
tell the compiler that y is not a new memory location, C++ requires that we declare y as an
alias to an integer location (int& y), not a new integer location (int y).

EXAMPLE 6.14
Program 6.14 repeats the previous example, but we have used pass-by-reference instead of
pass-by-value.

Program 6.13	 Testing	pass-by-value	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/***
* This program shows how a change in the parameter cannot *
* affect the corresponding argument in pass-by-value. *
 ***/

#include <iostream>
using namespace std;

// Function declaration
void fun (int y);

int main ()
{

// Declaration and initialization of an argument
int x = 10;
// Calling function fun and passing x as an argument
fun (x);
// Printing the value of x to see no change
cout << "Value of x in main: " << x << endl;
return 0;

}
/***

* Fun is a function that receives the value of x by value and *
* stores it in parameter y. The locations x and y are two *
* independent memory locations. The value of y is incremented *
* in fun, but the value of x in main remains unchanged. *
 ***/

void fun (int y)
{

y++;
cout << "Value of y in fun: " << y << endl;
return;

}

Run
Value of y in fun: 11 // y in the called function is incremented.
Value of x in main: 10 // x in the main is not affected.

for23380_ch06_208-272.indd 235 03/11/18 12:28 pm

236 Chapter 6 Functions

Figure 6.16	 The	concept	of	pass-by-reference

x

y

Note:
No memory location is allocated
in the called function. The called
function uses the location allocated
for the argument as its parameter.

fun (x);
int x = 10; {

}

void fun (int& y)

int main ()

{

}

Program 6.14	 Testing	pass-by-reference

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/***
* This program shows how a change in the parameter can change the *
* corresponding argument when data is passed by reference. *
 ***/

#include <iostream>
using namespace std;

// Function declaration;
void fun (int& y); // The ampersand tell us that y is an alliance

int main ()
{

// Declaration and initialization of an argument
int x = 10;
// Calling function fun and passing x as an argument
fun (x);
// Printing the value of x to see change
cout << "Value of x in main: " << x << endl;
return 0;

}
/***

* Fun is a function that receives the value of y by reference, *
* which means the parameter y is an alias for the argument x in *
* the function call. This function increments its parameters, which *
* results in incrementing the argument in main. *
 ***/

void fun (int& y)
{

y++;
cout << "Value of y in fun: " << y << endl;
return;

}

Run
Value of y in fun: 11
Value of x in main: 11 // Change of y in fun, has changed x in main

for23380_ch06_208-272.indd 236 03/11/18 12:28 pm

6.4 Data	Exchange 237

Note that we call the function fun with argument x of value 10. The fun function in-
crements the value of y and prints it as 11. Since the main function and the fun function are
sharing the same memory location, the value of x in the main function was also incremented
as shown.

We see examples of pass-by-reference in real life. When we pass a document to a
friend for editing, we are sharing the original document with her. Any change to the docu-
ment by our friend changes it for us when the document is returned.

In computer parlance, we sometimes refer to pass-by-reference as read-write commu-
nication, which means the called function can read the value of the arguments in the calling
function, and it can also change them.

EXAMPLE 6.15
As a classical example, we show the process of swapping the values of two variables, first
and second. After swapping, the variable first holds what was originally stored in second;
the variable second holds what was originally stored in first. For example, if the value of
the variables first and second was 10 and 20, respectively, the variables should hold 20 and
10 after swapping. We should convince ourselves that using the simple assignment first =
second and second = first sets both variables to 10 or 20. We must use a temporary variable
and three assignments as shown in Figure 6.17. Note that the name of each variable must
appear once at the left-hand side and once at the right-hand side of the assignment operator.

Swapping is used in sorting and other algorithms and is repeated so many times in
each algorithm that it is worth having a function and calling the function whenever we need
it. However, the called function cannot swap the variables in the calling function if we use
pass-by-value because the data are exchanged in the called function but not in the calling
function. This is a case where we need to use pass-by-reference, as shown in Program 6.15.

Program 6.15	 Using	a	swap	function

1
2
3
4
5
6
7
8
9

10
11

/***
* This program shows how pass-by-reference can swap two values *
* in the calling function. *
 ***/

#include <iostream>
using namespace std;

void swap (int& first, int& second); // Function declaration

int main ()
{

Figure 6.17	 Using	a	temporary	variable	to	swap	two	values

temp = first first = second second = tempOriginal

temp

first 10

second 20

temp

first 10

10

second 20

temp

first

second 20

temp

first

second

20

10

20

10

10

(continued)

for23380_ch06_208-272.indd 237 03/11/18 12:28 pm

238 Chapter 6 Functions

Pass-by-Pointer
In the pass-by-pointer mechanism, the argument sends a memory address to the corre-
sponding parameter. The parameter stores the address and can access the value stored in the
argument through that address. The pass-by-pointer mechanism is used in the C language
because pass-by-reference does not exist in C. It is still used to some extent in C++. We
discuss pass-by-pointer after we discuss pointers in Chapter 9.

Advantages and Disadvantages
Before closing this section, we briefly review the advantages and disadvantages of each
method.

a. Pass-by-value is very simple and protects arguments from being changed by the called
function. However, it has one disadvantage: The argument object needs to be copied
and passed from the calling function to the called function. If the object is small, like
the built-in data types we have used so far, copying is not expensive and we should use
this method. We will see in Chapter 9, however, that we do not use pass-by-value in
object-oriented programming when the object size is large. We use the other methods
(pass-by-reference and pass-by-pointer).

Program 6.15	 Using	a	swap	function (Continued)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

// Declaration
int first = 10;
int second = 20;
swap (first, second); // Function call
// Printing to test swapping
cout << "Value of first in main: " << first << endl;
cout << "Value of second in main: " << second;
return 0;

}
/***

* The swap function takes two parameters as pass-by-reference. *
* It then swaps the values of fst and snd using a temporary *
* variable named temp. Since the data are passed by reference, *
* changing the parameters in the swap means changing values in *
* the arguments (first and second in main). *
 ***/

void swap (int& fst, int& snd)
{

int temp = fst;
fst = snd;
snd = temp;
return;

}

Run:
Value of first in main: 20
Value of second in main: 10

for23380_ch06_208-272.indd 238 03/11/18 12:28 pm

6.4 Data	Exchange 239

b. Pass-by-reference changes the arguments in the calling function when the parameters
are changed by the called function. If this is the purpose of the function, such as the
case in swapping, pass-by-reference is the best choice. This method has the advantage
that copying is not needed; the objects in the calling function and the called function
are the same with different names. This means that for large objects, when copying can
be expensive, we should use this method.

c. Pass-by-pointer has the same advantage as pass-by-reference. It is normally avoided in
C++, but it can be used if the nature of the data to be passed involves pointers (such as
C-type strings and arrays, both of which are discussed in future chapters).

6.4.2 Returning Data
We have seen that a void function is designed for its side effect; it does not return anything
to the calling function. On the other hand, a non-void function needs to return a value to its
caller. This can be done in three ways: return-by-value, return-by-reference, and return-by-
pointer.

Return-by-Value
The most common return method is return-by-value. The called function creates an expres-
sion in its body and returns it to the calling function. In this case, the function-call expression
must be called in a situation that needs a value. Figure 6.18 shows two examples of the value
of an expression being returned to the called function.

EXAMPLE 6.16
Program 6.16 demonstrates return-by-value.

Figure 6.18	 Return-by-value

int main ()

Returning a literal value Returning value of a variable

cout << isEven (x);
{

}

bool isEven (int y)
{

}

x

y

x

y

int main ()

cout << isEven (x);

bool result = (y % 2 == 0);
return (y % 2 == 0); return result;

{

}

bool isEven (int y)
{

}

Program 6.16	 Returning	a	literal	value	from	a	function

1
2
3
4
5
6
7
8

/***
* This program shows how we can return a value from a function. *
 ***/

#include <iostream>
using namespace std;

// Function declaration
bool isEven (int y);

(continued)

for23380_ch06_208-272.indd 239 03/11/18 12:28 pm

240 Chapter 6 Functions

Return-by-Reference
Most of the functions we encounter in C++ (when used as a procedural programming lan-
guage) return data by value. It is easy and straightforward to use return-by-value. However,
return-by-value has a drawback. The compiler must make a copy of the object to be returned
by the called function and then return it to the calling function. In the case of the built-in data
types, this is normally no problem. However, in object-oriented programming we encounter
large objects that must be returned. For efficiency we should return them by reference. A
problem occurs, however, when the called function creates the object because after the func-
tion terminates, the object does not exist anymore; it cannot be returned by reference. We
discuss return-by-reference in Chapater 9.

Return-by-Pointer
Return-by-pointer can yield the same effect as return-by-reference, but this practice is sel-
dom used.

6.4.3 A Comprehensive Example
In this section we consider a program that uses the principles of modular programming. We
must create a program that gets a score, calculates the corresponding grade, and prints the
result. The relationship among the modules is shown in Figure 6.19.

EXAMPLE 6.17
Program 6.17 shows how we can create functions for each task. The first two are value-
returning functions; the third is a void function.

Program 6.16	 Returning	a	literal	value	from	a	function (Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

int main ()
{

// Function call
cout << boolalpha << isEven (5) << endl;
cout << boolalpha << isEven (10);
return 0;

}
/***

* The isEven function takes one parameter y. It then checks to *
* see if the value of y is even by getting the remainder of y. *
* The function then returns the result by value (literal value). *
 ***/

bool isEven (int y)
{

return ((y % 2) == 0);
}

Run:
false
true

for23380_ch06_208-272.indd 240 03/11/18 12:28 pm

6.4 Data	Exchange 241

Figure 6.19	 A	structure	chart	for	calculating	and	printing	grades	
and	scores

main

side
effect

side
effect

getScore findGrade printResult

Program 6.17	 Calculating	a	grade	based	on	a	score	value

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/***
* This program shows how to use three functions to input, *
* calculate, and print the score and grade of a student. *
 ***/

#include <iostream>
using namespace std;

// Function declarations
int getScore ();
char findGrade (int score);
void printResult (int score, char grade);

int main ()
{

// Declaration
int score;
char grade;
// Function calls
score = getScore ();
grade = findGrade (score);
printResult (score, grade);
return 0;

}
/***

* The getScore function is an input function with a side effect *
* that gets the input from the user and returns the score by *
* value to the main function. It uses a local variable (score) *
* whose value is returned to the main function. The function *
* also validates the score to be between 0 and 100. *
 ***/

int getScore ()
{

int score; // Local declaration
do

(continued)

for23380_ch06_208-272.indd 241 03/11/18 12:28 pm

242 Chapter 6 Functions

Program 6.17	 Calculating	a	grade	based	on	a	score	value (Continued)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

{
cout << "Enter a score between 0 and 100: ";
cin >> score;

} while (score < 0 || score > 100);
return score;

}
/***

* The findGrade function calculates and returns a character *
* grade (A, B, C, D, F) related to the scored passed to it. *
* It uses pass-by-value to get the value of the score. It *
* use return-by-value to return the grade to the main function. *
* We have used a nested if-else construct, but it can also be *
* be done using a switch statement. *
 ***/

char findGrade (int score)
{

char grade; // Local declaration
if (score >= 90)
{

grade = 'A';
}
else if (score >= 80)
{

grade = 'B';
}
else if (score >= 70)
{

grade = 'C';
}
else if (score >= 60)
{

grade = 'D';
}
else
{

grade = 'F';
}
return grade;

}
/***

* The last function prints the score and corresponding grade. *
 ***/

void printResult (int score, char grade)

(continued)

for23380_ch06_208-272.indd 242 03/11/18 12:28 pm

6.4 Data	Exchange 243

Figure 6.20 shows the communication between the main function and the three called
functions.

When we analyze the small program in Figure 6.20, we find that the main function is
responsible for coordinating the job of each of the other three functions. The first function,
getScore, gets the data (score) from outside and gives it back to main. The second function,
findGrade, receives the data (score) from main, processes it, and return the result (grade)
back to main. The third function, printResult, receives two data items (score and grade)
from main and sends them to the monitor.

Note that we have used the same name for the parameters and local variables that
handle the score. We call all of them score without any confusion in the program. The reason
is that they are in different territories (or scope, as we explain later). We have four storage
locations called score, one in each entity. The ones in getScore and main are local variables;
the ones in findGrade and printResult are parameters. We have also three storage locations
named grade, two local variables and one parameter.

Program 6.17	 Calculating	a	grade	based	on	a	score	value (Continued)

78
79
80
81
82

{
cout << endl << "Result of the test." << endl;
cout << "Score: " << score << " out of 100"<< endl;
cout << "Grade: ";

}

Run:
Enter a score between 0 and 100: 87
Result of the test.
Score: 87 out of 100
Grade: B

Run:
Enter a score between 0 and 100: 93
Result of the test.
Score: 93 out of 100
Grade: A

Figure 6.20	 Passing	data	between	main	and	called	functions

Legend:
pass-by-value local variable

parameterreturn value
side effect
calculation

score

grade
grade

grade

main
cin cout

cout

findGrade

printResult

scorescore

score

getScore

1 2

3

5

86

4

7

for23380_ch06_208-272.indd 243 03/11/18 12:28 pm

244 Chapter 6 Functions

6.5 MORE ABOUT PARAMETERS
There are two other issues related to parameters that we must discuss: default parameters
and overloaded functions.

6.5.1 Default Parameters
A program may call a function several times. If the function is designed with pass-by-value
parameters, it may happen that the value of a parameter is the same most of the time. In
this case, we can use a default parameter value for one or more of the parameter values
(including all parameters). If only some parameters have default parameters, they must be
the rightmost parameters.

EXAMPLE 6.18
Assume that we have designed a function named calcEarnings that calculates the weekly
gross earnings for a group of employees. The function uses two parameters, rate and hours.
Most of the employees work 40 hours; some, however, work less. We assume that no em-
ployee can work more than 40 hours (company regulation). We can use the default value 40
for the parameter hours in this function by simply assigning the default value to the param-
eter in the parameter list. The following declaration statement shows the declaration for a
function named calcEarnings with a default of 40 hours.

double calcEarnings (double rate, double hours = 40.0);

Note that if there is no function declaration (when the function definition comes before the
function call), then the function definition, as we discussed before, serves as function declara-
tion. This means the default parameters must be defined in the header of the function definition.

When an employee works 40 hours, we can call calcEarnings by passing just the ar-
gument for the rate parameter. When the employee works less than 40 hours, we pass both
the rate and the hours. The following examples demonstrate the default parameter concept.

calcEarnings (payRate);
calcEarnings (payRate, hourWorked);

In the first call, the program inserts the default value 40 for the hours worked by the
employee. Note that default parameters must be the rightmost (last) parameters in the func-
tion’s parameter list. Program 6.18 shows the idea.

Program 6.18	 Using	a	default	value

1
2
3
4
5
6
7
8

/***
* This program shows how we use the default parameter value. *
 ***/

#include <iostream>
using namespace std;

// Declaration: the second parameter uses a default value of 40
double calcEarnings (double rate, double hours = 40);

(continued)

for23380_ch06_208-272.indd 244 03/11/18 12:28 pm

6.5 More	About	Parameters 245

6.5.2 Function Overloading
Can we have two functions with the same name? The answer is positive if their parameter
lists are different (in type, in number, or in order). In C++, the practice is called function
overloading. The criteria the compiler uses to allow two functions with the same name in
a program is referred to as the function signature. The signature of a function is the com-
bination of the name and the types in the parameter list. If two function definitions have
different signatures, the compiler can distinguish between them. Note that the return type
of a function is not included in the signature because C++ must select between overloaded
functions when the function is called; the return type is not included in the syntax of the
function call.

The return value of a function is not included in its signature.

EXAMPLE 6.19
The following shows how to define different functions to find the maximum between two
integers and two floating-point values.

int max (int a, int b)
{

…
}

double max (double a, double b)
{

…
}

Program 6.18	 Using	a	default	value (Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

int main ()
{

// The first function call uses the default value
cout << "Emplyee 1 pay: " << calcEarnings (22.0) << endl;
cout << "Emplyee 2 pay: " << calcEarnings (12.50, 18);
return 0;

 }
/***

* The function definition has two parameters, but we do not *
* have to show the default parameter in the defintion because *
* it is the declaration that contains the default value. *
 ***/

double calcEarnings (double rate, double hours)
{

double pay;
pay = hours * rate;
return pay;

} // End of calcEarnings

Run:
Emplyee 1 pay: 880
Emplyee 2 pay: 225

for23380_ch06_208-272.indd 245 03/11/18 12:28 pm

246 Chapter 6 Functions

The above two functions are considered two different (overloaded) functions because their
signatures are different. The first function (the one on the left) has the signature max (int,
int); the second function has the signature max (double, double).

EXAMPLE 6.20
The following two functions are not recognized as two overloaded functions because their
signatures are the same.

int get ()
{

…
}

double get ()
{

…
}

The first function has the signature get (); the second function has also the signature get ().
If we write a program with the above two definitions, it does not compile.

The compiler does not compile a program that contains two
function definitions with the same signature.

EXAMPLE 6.21
Overloading can help us call one function from inside another. For example, we can write
three overloaded functions to find the maximum of two integers, the maximum of three
integers, and the maximum of four integers. The second function calls the first function in
its definition; the third function calls the second. Program 6.19 demonstrates the concept.

Program 6.19	 Creating	three	overloaded	functions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* This program shows how we can use different signatures to *
* create three overloaded functions. *
 ***/

#include <iostream>
using namespace std;

// Function Declaration
int max (int num1, int num2);
int max (int num1, int num2, int num3);
int max (int num1, int num2, int num3, int num4);

int main ()
{

// Three calls to overloaded max functions
cout << "maximum (5, 7): " << max (5, 7) << endl;
cout << "maximum (7, 9, 8): " << max (7, 9, 8) << endl;
cout << "maximum (14, 3, 12, 11): " << max (14, 3, 12, 11);

(continued)

for23380_ch06_208-272.indd 246 03/11/18 12:28 pm

6.5 More	About	Parameters 247

(continued)

Program 6.19	 Creating	three	overloaded	functions (Continued)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

return 0;
}// End main
/***

* The following is the definition for the max function with *
* two arguments num1 and num2. It returns the maximum of the *
* parameters. *
 ***/

int max (int num1, int num2)
{

int larger; // Local variable
if (num1 >= num2)
{

larger = num1;
}
else
{

larger = num2;
}
return larger;

}
/***

* The following is the definition for the max function with *
* three arguments num1, num2, and num3. It uses a call to *
* the function with two arguments to first find the maximum *
* of the first two. It then makes another call to the first *
* function to find the maximum of the result and the num3. *
 ***/

int max (int num1, int num2, int num3)
{

return max(max(num1, num2), num3);
}
/***

* The following is the definition for the max function with *
* four arguments num1, num2, and num3, and num4. It uses a *
* a call to the function with three arguments first to find *
* the maximum of the first three, and then calls the function *
* with two arguments to find the max of the previous result *
* and the fourth number. *
 ***/

int max (int num1, int num2, int num3, int num4)
{

return max(max(num1, num2, num3), num4);
} // End max function with four parameters

for23380_ch06_208-272.indd 247 03/11/18 12:28 pm

248 Chapter 6 Functions

6.6 SCOPE AND LIFETIME
In this section we discuss two concepts that affect the design and use of functions: scope
and lifetime.

6.6.1 Scope
Scope defines where in the source code a named entity (constant, variable, object, function,
and so on) is visible. To define the scope of an entity, we must first define scope. Scope is a
region in the source code that has one or more declarations. In other words, when we declare
an entity, we create a scope for that entity.

Scope is a region with a declaration.

Local Scope
An entity that has local scope is visible from the point it is declared until the end of the
block (defined by the closing brace). Local scope can start in the header that comes before
the block (such as function header or loop header) or immediately after the beginning of the
block (after opening brace) or sometimes in the middle of the block. However, the end of a
local scope is always where the closing brace is seen.

Figure 6.21 shows three cases of a local scope. The first case shows the scope of a pa-
rameter declared in the header of a function. The second case shows the scope of a counter
declared in a for-loop. The third case shows the scope of a local variable declared in the body
of the main function.

Overlapped Scopes We cannot have two entities with the same name in a block; doing
so creates a compilation error. Figure 6.22 shows situation in which we have declared two
variables with the same name: one in the function header and one in the function body. The
scope of the two variables is the function body, although one scope is declared before the
other. The two scopes overlapp and we get an error during compilation.

Nested Blocks When we write a program, we often see nested blocks: a block inside
another block. What is the scope of the entities declared in the outer block and in the inner
block? The entity in the outer block has a larger scope that includes the inner block; the entity
that is declared inside the inner block has a smaller scope that includes only the inner block.
Figure 6.23 shows the difference.

Program 6.19	 Creating	three	overloaded	functions (Continued)

Run:
maximum (5, 7): 7
maximum (7, 9, 8): 9
maximum (14, 3, 12, 11): 14

Figure 6.21	 Three	cases	of	a	local	scope

Scope of a parameter

void fun (int num)
{

} scope of num

for (int i; i < 5; i++)
{

} scope of i

Scope of a counter Scope of a local variable

scope of sum

int main ()

int sum;
{

}

for23380_ch06_208-272.indd 248 03/11/18 12:28 pm

6.6 Scope	and	Lifetime	 249

The variable sum is declared inside the outer block; it is visible in the outer and the
inner blocks. The variable i (the counter of the loop) is declared in the header of the inner
block; it is visible only in the inner block. If we try to use the variable i outside of the inner
block, we get a compilation error.

Shadowing in Local Scopes In the previous case of nested blocks, the names were differ-
ent. What happens if we declare two entities with the same name, one in the outer block and
one in the inner block? What are the visibilities? Although this looks like overlapping scope,
the situation is different because of the two distinct scopes (inner and outer). In this case,
known as function shadowing, the visibility of the entity in the inner block shadows the
visibility of the entity in the outer block. In other words, once the duplicate name is declared
in the inner block, the corresponding entity is the only one that can be seen until it goes out
of scope at the end of the block. The outer block entity is visible until the inner block’s entity
is defined and after the inner block terminates.

Program 6.20 shows a simple example of visibility. We have two variables named
sum. The one in the outer block is initialized to 5 and the one in the inner block is initial-
ized to 3. When we print the sum in the inner block, the one declared in the outer block is
shadowed. The system sees only the one initialized to 3 and prints its contents (3). When we
leave the inner block, the sum in the outer block becomes visible again and its contents (5)
are printed.

Figure 6.22	 Overlapping	scopes	(error	in	
this	case)

scope
of num

scope
of num

int calculate (int num)
{

}

Error: Overlapping scopes in a single block

int num = 0;

Figure 6.23	 Scope	in	a	nested	block

scope
of sum

scope
of i

int main ()
{

}

for (int i = 0 ; i < 10; i++)
{

}

A nested block

int sum = 0;

cout << sum << endl;

 sum += i;

Program 6.20	 Shadowing	in	local	scope

1
2
3
4

/***
* A variable declared inside a block shadows another variable *
* with the same name declared outside the block *
 ***/

(continued)

for23380_ch06_208-272.indd 249 03/11/18 12:28 pm

250 Chapter 6 Functions

Global Scope
An entity has a global scope if it is declared outside all functions. A global entity is
visible from the location it is declared to the end of the program. Figure 6.24 shows the
scope of a variable named sum declared outside main and print. It is visible in both func-
tions.

Shadowing in Global Scope We discussed shadowing for local scope. If we consider
global scope as the largest block in a program that extends from the beginning of the
program to the end of the program, we can see that shadowing also applies to the global
scope. In other words, a local scope shadows a global scope. Program 6.21 shows the
point. We have two variables named num: a global and a local. The local variable shadows
the global variable.

Program 6.20	 Shadowing	in	local	scope (Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18

#include <iostream>
using namespace std;

int main ()
{

int sum = 5;
cout << sum << endl;
{

int sum = 3;
cout << sum << endl; // The sum in the inner block is visible

}
cout << sum << endl; // The sum in the outer block is visible
return 0;

}

Run
5
3
5

Figure 6.24	 Scope	of	a	global	entity

int main ()
{

{

}

}

int sum = 0;

sum++;

cout << sum << endl;

print();

sc
op

e
of

 su
m

void print ()

void print ();

for23380_ch06_208-272.indd 250 03/11/18 12:28 pm

6.6 Scope	and	Lifetime	 251

Scope Resolution Operator Sometimes we may need to override the shadowing and ac-
cess a global entity inside a local block. C++ provides an operator (::) that can explicitly or
implicitly define the scope of the entity. Figure 6.25 shows the two versions of this operator.
The first version takes one right operand; the second version takes two operands.

In the first version, the name of the scope is implicit (it means the global scope of the
program). In the second version, we must give the name of the scope. Program 6.22 shows
the use of the first version of the scope operator.

Program 6.21	 Shadowing	in	global	scope

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* A program to test shadowing of global scope *
 ***/

#include <iostream>
using namespace std;

int num = 5; // Global variable

int main ()
{

cout << num << endl; // global num
int num = 25; // Local variable
cout << num; // local num shadows global num
return 0;

} // End of main

Run
5
25

Figure 6.25	 Two	versions	of	scope	resolution	operator

ObjectObject

name

::
namescope

::

Version with one operand Version with two operands

Program 6.22	 Using	the	scope	resolution	operator

1
2
3
4
5

/***
* A program to test the use of scope operator *
 ***/

#include <iostream>
using namespace std;

(continued)

for23380_ch06_208-272.indd 251 03/11/18 12:28 pm

252 Chapter 6 Functions

Scopes Related to Functions
It can be challenging to understand the scope of functions. A function has a name, and the
parameters of the function also have names. We must distinguish between the two.

Scope of Function Names A function is an entity with a name; it has a scope. The func-
tion scope is from the point that it is declared until the end of the program. We have dis-
cussed that we can eliminate the function declaration (prototype) by inserting the function
definition before the main function. In this case, the function definition serves both as decla-
ration and definition. Figure 6.26 shows the scope of a function name in both cases.

In the first case, the scope of the function name (print) starts at the point where the
function is declared and extends until the end of the program. In the second case, the defi-
nition serves both as the declaration and definition, which means the scope of the function
name (print) starts at the function header and extends to the end of the program.

Scope of Function Parameters In addition to the function name, function parameters
are other entities with names, which means they also have scope. Their scope starts from
the point they are declared up to the point when the function block is terminated. However,

Program 6.22	 Using	the	scope	resolution	operator (Continued)

6
7
8
9

10
11
12
13
14
15

int num = 5; // A global variable

int main ()
{

int num = 25; // A local variable
cout <<" Value of Global num: " << ::num << endl;
cout <<" Value of Local num: " << num << endl;
return 0;

} // End of main

Run
Value of Global num: 5
Value of Local num: 25

Figure 6.26	 Scope	of	function	name

int main ()
{

{

}

}

void print (int xx, int yy)

void print (int, int);

print (x, y);

sc
op

e
of

 p
rin

t

Case with prototype Case without prototype

sc
op

e
of

 p
rin

t

int main ()
{

{

}

}

void print (int xx, int yy)

print (x, y);

for23380_ch06_208-272.indd 252 03/11/18 12:28 pm

6.6 Scope	and	Lifetime	 253

we must caution that the parameters are not declared in the function declaration (prototype);
they are declared in the header of the function definition. Function declaration just declares
the name of the function and gives its structures (types of parameters). This is why we can
have a function declaration without mentioning the parameter names. Figure 6.27 shows
the scope of the parameters in the print function shown in Figure 6.26. We have omitted the
names of the parameter in the declaration to emphasize that the compiler does not need them
and the scope does not start from that point. However, we strongly recommend that they be
included in the declaration for documentation.

Note that in both cases, the parameter scope is local to the function definition. That is
the reason we need pass-by-value, pass-by-reference, and pass-by-pointer even if we use the
same names for a parameter and its corresponding argument. The scope of a parameter is
local to the definition of the called function; the scope of an argument is local to the calling
function.

6.6.2 Lifetime
Every entity in a program has a lifetime: It is born and it dies. However, in this section we
discuss only the lifetime of local variables in a function. The lifetime of a variable in a func-
tion is important because we may call a function several times. We have two types of local
variables in a function: automatic and static.

Automatic Local Variable
An automatic local variable is born when the function is called and dies when the function
terminates. By default all local variables in a function have automatic lifetime, but we can
explicitly use the modifier auto in front of the variable declaration to emphasize that local
variables are reborn each time the function is called. Program 6.23 shows the idea.

Figure 6.27	 Scope	of	function	parameter

int main ()
{

{

}

}

void print (int xx, int yy)

void print (int, int);

print (x, y);

sc
op

e
of

pa
ra

m
et

er
s

Case with prototype Case without prototype

int main ()
{

{

}

}

void print (int xx, int yy)

print (x, y);

sc
op

e
of

pa
ra

m
et

er
s

Program 6.23	 Testing	automatic	local	variables

1
2
3
4

/***
* A program to test the use of an automatic local variable *
 ***/

#include <iostream>

(continued)

for23380_ch06_208-272.indd 253 03/11/18 12:28 pm

254 Chapter 6 Functions

Program 6.23	 Testing	automatic	local	variables (Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

using namespace std;

void fun ();

int main ()
{

fun ();
fun ();
fun ();
return 0;

 }
/***

* The function has two automatic local variables, num and count. *
* In each function call, these variables are initialized. *
 ***/

void fun ()
{

int num = 3; // implicit auto variable
auto int count = 0; // explicit auto variable
num++;
count++;
cout << "num = " << num << " and " << "count = " << count << endl;

}

Run
num = 4 and count = 1
num = 4 and count = 1
num = 4 and count = 1

The program calls the function fun three times. In each call, the two variables are
born, initialized to 3 and 0, and incremented. Each time the function fun terminates, these
variables die. In other words, the system does not keep track of these variables. In each call,
two new variables are created.

Static Local Variable
The modifier static has three applications in C++, but we discuss only the one related to
local variables. A static local variable is created by using the static modifier. The lifetime
of a static variable is the lifetime of the program in which it is defined. A static variable is
initialized only once, but the system keeps track of its contents as long as the program is
running. This means it is initialized in the first call to the function, but it can be changed
during subsequent function calls. We can change the variable count in the previous pro-
gram to a static variable and see how the system keeps the value of count from call to call.
Program 6.24 shows how we can use a static variable to tell how many times the function
fun was called.

for23380_ch06_208-272.indd 254 03/11/18 12:28 pm

6.6 Scope	and	Lifetime	 255

Note that the program ignores the initialization in the second and third calls, but it
keeps the value of count after each call. After termination of the first call, the count value
is 1; after termination of the second call, the value is 2; and after the termination of the third
call, the value is 3.

We used the static variable in the previous program to count how many times the func-
tion fun was called. The static variable can be used in other ways. For example, we can use
a static variable to find the maximum or minimum value of an argument when the function
is called several times.

Initialization
It is worthwhile to compare the initialization of a global variable, an automatic local vari-
able, and a static local variable. If an automatic local variable is not explicitly initialized, it

Program 6.24	 Testing	static	variables

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* A program to test the use of static variables *
 ***/

#include <iostream>
using namespace std;

void fun ();

int main ()
{

fun ();
fun ();
fun ();
return 0;

 }
/***

* The function has one static variable named count. It is *
* initialized in the first call, but it holds its value for *
* the next time. This means value is incremented in each call. *
 ***/

void fun ()
{

static int count = 0; // explicit static variable
count++;
cout << "count = " << count << endl;

}

Run
count = 1
count = 2
count = 3

for23380_ch06_208-272.indd 255 03/11/18 12:28 pm

256 Chapter 6 Functions

holds the garbage left over from the previous use. Global and static local variables, on the
other hand, are initialized to default values (0 for integral types, 0.0 for floating-point types,
and false for Boolean types) if they are not initialized explicitly. In other words, global and
static local variables behave the same with respect to initialization.

If not initialized explicitly, global and static local variables
are initialized to default values, but local variables

contain garbage left over from previous use.

Program 6.25 shows how the three variables (one global, one static local, and one
automatic local) are initialized implicitly. The global and the static local variables are initial-
ized to default values; the automatic local variable keeps the garbage value left over from
previous use.

6.7 PROGRAM DESIGN
In this section we show how to use functions in three programs. The three programs are all re-
lated to finance. They are classical programs and are discussed in computer-science literature.

6.7.1 Future Value of a Fixed Investment
We want to write a program that uses functions and introduces the concepts of a factor and
a multiplier. These concepts are used in the next two programs to calculate the future value
of a periodic investment and to find the monthly payment of a loan.

Program 6.25	 Initializing	different	variable	types

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* A program to test the initialization of variables *
 ***/

#include <iostream>
using namespace std;

int global; // A global variable

int main ()
{

static int sLocal; // A static local variable
auto int aLocal; // An automatic local variable
// Printing values
cout << "Global = " << global << endl;
cout << "Static Local = " << sLocal << endl;
cout << "Automatic Local = " << aLocal << endl;
return 0;

}

Run
Global = 0
Static Local = 0
Automatic Local = 4202830 // Garbage value

for23380_ch06_208-272.indd 256 03/11/18 12:28 pm

6.7 Program	Design	 257

Understand the Problem
The future value of a fixed investment can be calculated as:

future value = investment × (1 + rate)term

in which rate is the periodic interest rate and term is the number of periods (years or months).
We can think of (1 + rate) as a factor that shows the value of a one-dollar investment at the
end of the next period. We can also think about (factor term) as a multiplier that shows the
value of a one-dollar investment at the end of the term. With these assumptions, we have

 factor = (1 + rate)
 multiplier = factorterm

future value = investment × multiplier

In other words, to find the future value of an investment, we must find the future value of one
dollar (using multliplier) and then multiply it by the amount of the investment.

Develop the Algorithm
Structure Chart In the structure chart shown in Figure 6.28, we divide the task among
three functions: input, process, and output. Each of these functions calls other functions. The
input function calls the getInput function three times to get the investment, rate, and term
(number of periods). The process function calls another function named findMultiplier to
get the multiplier and multiply it by the investment to find the future value of the investment.
The output function first calls the printData function to print the given data. It then calls
printResult to print the result (multiplier and future value). We divide the output into two
categories to show what was given (collected by the input function) and what was calculated
(found in the process function).

The main function The main function calls three functions: input, process, and output.

The input function The input function is a void function that gets three values from the
user and passes them to the main function using pass-by-reference. To get the input, it calls
another function, getInput, that displays a different message each time it is called. It gets the
amount of investment, the interest rate, and the term (number of years).

The process function The process function calculates the future value. We use pass-by-
value for the first three parameters and pass-by-reference for the last two because they need
to change the value of multiplier and futureValue in main. The process function calls another

Figure 6.28	 Structure	chart	for	investment	problem

process

Repeat
3 times

input

find
Multiplier

print
Data

print
Result

output

get
Input

main

for23380_ch06_208-272.indd 257 03/11/18 12:28 pm

258 Chapter 6 Functions

function, findMultiplier, to calculate the multiplier. The multiplier is a number that must be
multiplied by the original investment to give the future value at the end of the period. It can
be defined as (multiplier = factorterm), in which the factor is (1 + rate /100).

The output function The output function calls two functions, printData and printResult,
to show what was input by the user and what was calculated.

Write the Program
Program 6.26 shows the main function and the three functions called by main: input, pro-
cess, and output. It also gives the definition of the getInput (called by input), findMultliplier
(called by process), and printData and printResult (called by output).

Program 6.26	 Finding	the	future	value	of	a	fixed	investment

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/***
* The program shows how to use functions to calculate the future *
* value of an investment that earns compound interest. *
 ***/

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

// Declaration of top-level functions
void input (double& invest, double& rate, double& term);
void process (double invest, double rate, double term,
 double& multiplier, double& futureValue);
void output (double invest, double rate, double term,
 double multiplier, double futureValue);
// Declaration of low-level functions
double getInput (string message);
double findMultiplier (double rate, double period);
void printData (double invest, double rate, double term);
void printResult (double multiplier, double value);

int main ()
{

// Variable Declaration
double invest, rate, term; // For input
double multiplier, futureValue; // For Result
// Call first level functions
input (invest, rate, term);
process (invest, rate, term, multiplier, futureValue);
output (invest, rate, term, multiplier, futureValue);
return 0;

}

(continued)

for23380_ch06_208-272.indd 258 03/11/18 12:28 pm

6.7 Program	Design	 259

Program 6.26	 Finding	the	future	value	of	a	fixed	investment (Continued)

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

/***
* The input function gets three inputs by calling the getInput *
* function three times. It uses pass-by-reference to send back *
* the values to main. After the function termination, the *
* data values are stored in invest, rate, and term. *
 ***/

void input (double& invest, double& rate, double& term)
{

invest = getInput ("Enter the value of investment: ");
rate = getInput ("Enter the interest rate per year: ");
term = getInput("Enter the term (number of years): ");

}
/***

* The process function calls findMultiplier to calculate the *
* the multiplier. It then multiplies the return value by the value *
* invested to find the future value. *
 ***/

void process (double invest, double rate, double term,
 double& multiplier, double& futureValue)
{

multiplier = findMultiplier (rate, term);
futureValue = multiplier * invest;

}
/***

* The output function calls printData to print three given values. *
* It then calls printResult to print the two calculated values. *
 ***/

void output (double invest, double rate, double term,
 double multiplier, double futureValue)
{

printData (invest, rate, term);
printResult (multiplier, futureValue);

}
/***

* The getInput function gets the input from the user. Its only *
* parameter is an object of type string that contains a *
* different message in each call to ask the user to input *
* the appropriate data. It validates the data and sends it *
* back to the calling expression in the input function. *
 ***/

double getInput (string message)
{

double input;
do

(continued)

for23380_ch06_208-272.indd 259 03/11/18 12:28 pm

260 Chapter 6 Functions

Program 6.26	 Finding	the	future	value	of	a	fixed	investment (Continued)

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

{
cout << message;
cin >> input;

} while (input < 0.0);
return input;

}
/***

* The findMultiplier is very simple. The two values, rate and term, *
* are passed to it by value. It first calculates the factor. It *
* then returns the multiplier using the pow function. *
 ***/

double findMultiplier (double rate, double term)
{

double factor = 1 + rate/100;
return pow (factor , term);

}
/***

* The printData function prints the three data items input by *
* the user with appropriate explanations. It is a void function *
* with only side effects. *
 ***/

void printData (double invest, double rate, double term)
{

cout << endl << "Information about investment" << endl;
cout << "Investment: " << fixed << setprecision (2) << invest << endl;
cout << "Interest rate: " << rate << fixed << setprecision (2);
cout << " percent per year" << endl;
cout << "Term: " << term << " years" << endl << endl;

}
/***

* The printResult function prints the two results of the program. *
* It prints the multiplier and the futureValue of the investment. *
* It is also a void function with only side effects. *
 ***/

void printResult (double multiplier, double futureValue)
{

cout << "Investment is multiplied by: " << fixed << setprecision (8);
cout << multiplier << endl;
cout << "Future value: " << fixed << setprecision(2);
cout << futureValue << endl;

}

Run:
Enter the value of investment: 360000
Enter the interest rate per year: 5
Enter the term (number of years): 30

(continued)

for23380_ch06_208-272.indd 260 03/11/18 12:28 pm

6.7 Program	Design	 261

The result shows that the multiplier is 4.32194238. Any dollar invested with 5 percent
interest per year for 30 years results in 4.32194238 dollars. We can test the program with
different investment values but the same rate and term to see that the multiplier is the same;
only the future value will be changed.

6.7.2 Future Value of a Periodic Investment
Instead of a one-time investment, we can periodically invest in a bank account that pays
compound interest. For example, we may invest the same amount each month.

Understand the Problem
1. We assume that the periodic investment is the same in each period.
2. We assume that the investment interval and the interval to pay the interest are the

same. In other words, if we invest monthly, the interest is also calculated and added to
the previous value monthly.

Develop the Algorithm
Based on the previous two assumptions, we need only change the calculation of the mul-
tiplier in the previous program to make it work for a periodic investment. In this case, we
actually have n multipliers, one for each period, in which n =term × period. The multiplier
for the second investment should be calculated for (n −1) periods. The multiplier for the
third investment should be calculated for (n −2) periods. Finally, the multiplier for the last
investment should be calculated for only one period. In other words, the total multiplier is

multiplier = (1 + factor)n + (1 + factor)n − 1 + … + (1 + factor)1

This is a power series that has a solution in mathematics, but we can easily use a loop to
simulate it. So the findMultiplier function in the previous program can be changed to simu-
late the series in a for loop.

double findMultiplier (double rate, double term)
{

double multiplier = 0;
double factor = 1 + rate/100;
for (int i = term; i >=0; i−−)
{

multiplier += pow (factor , i);
}
return multiplier;

}

Program 6.26	 Finding	the	future	value	of	a	fixed	investment (Continued)

Information about investment
Investment: 360000.00
Interest rate: 5.00 percent per year
Term: 30.00 years

Investment is multiplied by: 4.32194238
Future value: 1555899.26

for23380_ch06_208-272.indd 261 03/11/18 12:28 pm

262 Chapter 6 Functions

Write the Program
Based on the preceding explanation, we can repeat the program for the fixed investment to
find the future value of a periodic investment (Program 6.27).

Program 6.27	 Finding	the	future	value	of	periodic	investments

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/***
* This program shows the use of functions to calculate the future *
* value of periodic investments each of the same amount. *
 ***/

#include <iostream>
#include <iomanip>
#include <cmath>
#include <string>
using namespace std;

// Declaration of top-level functions
void input(double& invest, double& rate, double& term);
void process (double invest, double rate, double term,

 double& multiplier, double& futureValue);
void output (double invest, double rate, double term,

 double multiplier, double futureValue);
// Declaration of low-level functions
double getInput (string message);
double findMultiplier (double rate, double period);
void printData (double invest, double rate, double term);
void printResult (double multiplier, double value);

int main ()
{

// Variable Declaration
double invest, rate, term; // For input
double multiplier, futureValue; // For Result
// Call first level functions
input (invest, rate, term);
process (invest, rate, term, multiplier, futureValue);
output (invest, rate, term, multiplier, futureValue);
return 0;

}
/***

* The input function gets three inputs by calling the getInput *
* function three times. It uses pass-by-reference to send back *
* the values to main. After the function termination, the *
* data values are stored in invest, rate, and term. *
 ***/

(continued)

for23380_ch06_208-272.indd 262 03/11/18 12:28 pm

6.7 Program	Design	 263

(continued)

Program 6.27	 Finding	the	future	value	of	periodic	investments (Continued)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

void input (double& invest, double& rate, double& term)
{

invest = getInput ("Enter the value of periodic investment: ");
rate = getInput ("Enter the interest rate per year: ");
term = getInput("Enter the term (number of years): ");

}
/***

* The process function calls findMultiplier to calculate the *
* the multiplier. It then multiplies the return value by the value *
* invested to find the future value. *
 ***/

void process (double invest, double rate, double term,
double& multiplier, double& futureValue)

{
multiplier = findMultiplier (rate, term);
futureValue = multiplier * invest;

}
/***

* The output function calls printData to print three given values. *
* It then calls printResult to print the two calculated values. *
 ***/

void output (double invest, double rate, double term,
double multiplier, double futureValue)

{
printData (invest, rate, term);
printResult (multiplier, futureValue);

}
/***

* The getInput function gets the input from the user. Its *
* only parameter is an object of type string that contains *
* a different message in each call to force the user to input *
* the appropriate data. It then validates data and sends it back *
* to the calling expression in the input function. *
 ***/

double getInput(string message)
{

double input;
do
{

cout << message;
cin >> input;

} while (input < 0.0);
return input;

for23380_ch06_208-272.indd 263 03/11/18 12:28 pm

264 Chapter 6 Functions

Program 6.27	 Finding	the	future	value	of	periodic	investments (Continued)

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

}
/***

* This findMultiplier in this case needs to add all multipliers *
* calculated for each year together, each with a different exponent. *
* The function then returns the result to the process function. *
 ***/

double findMultiplier (double rate, double term)
{

double multiplier = 0;
double factor = 1 + rate/100;
for (int i = term; i > 0 ; i− −)
{

multiplier += pow (factor , i);
}
return multiplier;

}
/***

* The printData function prints the three data items input by *
* the user with appropriate explanations. *
 ***/

void printData (double invest, double rate, double term)
{

cout << endl << "Information about period invesment" << endl;
cout << "Periodic Investment: " << fixed << setprecision (2)
 << invest << endl;
cout << "Interest rate: " << rate << fixed << setprecision (2);
cout << " percent per year" << endl;
cout << "Term: " << term << " years" << endl << endl;

}
/***

* The printResult function prints the two results of the program. *
* It prints the multiplier and the futureValue of the investment. *
 ***/

void printResult (double multiplier, double futureValue)
{

cout << "Result of investment" << endl;
cout << "Investment is multiplied by :" << fixed << setprecision (8);
cout << multiplier << endl;
cout << "Future value: " << fixed << setprecision(2);
cout << futureValue << endl;

}

Run:
Enter the value of periodic investment: 12000
Enter the interest rate per year: 5

(continued)

for23380_ch06_208-272.indd 264 03/11/18 12:28 pm

Summary 265

Note that the total investment in Program 6.26 and Program 6.27 is $360,000, but the
future value of the second program is less. This is natural because when we invest periodi-
cally, the dollars are not totally invested for the full term.

Program 6.27	 Find	the	future	value	of	periodic	investments (Continued)

Enter the term (number of years): 30

Information about period invesment
Periodic Investment: 12000.00
Interest rate: 5.00 percent per year
Term: 30.00 years

Result of investment
Investment is multiplied by: 69.76078988
Future value: 837129.48

K e y T e r m s

automatic local variable
default parameter
function
function body
function call
function declaration
function definition
function header
function overloading
function prototype
function scope
function shadowing

function signature
global scope
lifetime
local scope
nested block
parameter list
pass-by-pointer
pass-by-reference
pass-by-value
scope
static local variable
void function

A function is an entity with a header and a set of statements that are designed to do a task.
As programs become more complex, we divide the task into smaller tasks, each of which
is responsible for a part of the job. There are four benefits to dividing a task into several
small tasks: easier to write, easier to debug. reusable, and can be saved for future use.
Three entities are associated with a function: function definition, function declaration,
and function call.

In a library function, the definition is already created in the C++ library; we only need
to include the corresponding header file in our program and then call the function. In a user-
defined function, we declare, define, and call the function.

Functions in a program may need to exchange data. We refer to this activity as data
pass and data return. Each can be done using one of the three methods: by value, by refer-
ence, or by pointer.

S u m m a r y

for23380_ch06_208-272.indd 265 03/11/18 12:28 pm

266 Chapter 6 Functions

We can have one or more default parameters with predefined values in a function
declaration.

Function overloading provides several definitions for a function with the same name
but with different signatures, which means a different number of parameters, or different
types of parameters, or both. The return value of a function is not part of its signature.

Scope and lifetime are two concepts that affect the design and use of functions. Scope
defines where in the source code a named entity is visible. An entity in a program has a
lifetime: It is born and it dies.

P r o b l e m s

PR-1. Find the signature associated with each of the following function declarations:

int firstFunction (int x, float y, int z);
void secondFunction (int x, boolean y);
void thirdFunction (double x, double y);
void fourthFunction ();

PR-2. Given the declaration of the following two functions, determine if they are
overloaded versions of each other.

int fun (int x, int y);
void fun (int a, int b);

PR-3. Given the declaration of the following two functions, determine if they are
overloaded versions of each other.

int fun (int x, int y);
void fun (float a, float b);

PR-4. Given the declaration of the following two functions, determine if they are
overloaded versions of each other.

int fun (int x, int y, int z);
float fun (int a, int b);

PR-5. Given the declaration of the following two functions, determine if they are
overloaded versions of each other.

int functionOne (int x, int y);
int functionTwo (int a, int b);

PR-6. Given the declaration of the following two functions, determine if they are
overloaded versions of each other.

int fun ();
float fun ();

PR-7. Find the valid function declarations among the following:

a. float one (int a, int b);
b. boolean two (int a, b);
c. float (int a, int b);
d. void three (void);
e. int ();

for23380_ch06_208-272.indd 266 03/11/18 12:28 pm

Problems 267

PR-8. Find any errors in the following function definition:

void one (int a)
{

return a;
}

PR-9. Find any errors in the following function definition:

int two (int a)
{

int b = a * a;
}

PR-10. Find any errors in the following function definition:

int three (int a, int b)
{

c = a * b;
return c;

}

PR-11. Find any errors in the following function definition:

void one ()
{

cout << "In One" << endl;
void two ()
{
 cout << "In Two" << endl;
 return;
}
return;

}

PR-12. Find any errors in the following function definition:

int wrong (int x)
{

double x = 2.7;
return x;

}

PR-13. What would be returned when the following function is called?

int test ()
{

return 3.25;
}

PR-14. What would be returned when the following function is called?

char test ()
{

return 67;
}

for23380_ch06_208-272.indd 267 03/11/18 12:28 pm

268 Chapter 6 Functions

PR-15. What would be returned when the following function is called?

double test ()
{

return 9;
}

PR-16. What would be printed from the following program?

include <iostream>
using namespace std;

int main ()
{

 int x;
 cout << x;
 return 0;

}

PR-17. What would be printed from the following program?

include <iostream>
using namespace std;

int x;

int main ()
{

cout << x;
return 0;

}

PR-18. What would be printed from the following program?

include <iostream>
using namespace std;

int x;

int main ()
{

int x;
cout << x;

}

PR-19. What would be printed from the following program?

#include <iostream>
#include <cmath>
using namespace std;

int main ()

for23380_ch06_208-272.indd 268 03/11/18 12:28 pm

Programs 269

{
double x = 23.671;
cout << floor (x * 10 + 0.5) / 10 << endl;
return 0;

}

PR-20. What would be printed from the following program?

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{

double x = −23.671;
cout << floor (x * 10 − 0.5) / 10 << endl;
return 0;

}

P r o g r a m s

PRG-1. Write a short program to find the result of the following function calls.

a. abs (25) and abs (−23)
b. floor (44.56) and floor (−23.78)
c. ceil (25.23) and ceil (−2.89)

PRG-2. Write a short program to find the result of the following function calls.

a. pow (5.0, 3) and pow (5, −3)
b. sqrt (44.56)
c. exp (−6.2) and exp (44.26)
d. log (16.2) and log10 (14.24)

PRG-3. Write a short program to find the result of the following function calls. The
value of PI is defined in the text.

a. sin (0) and sin (PI)
b. cos (0) and cos (PI)
c. tan (0) and tan (1)
d. asin (0) and asin (1)
e. acos (0) and acos (1)
f. atan (0) and atan (1)

PRG-4. Show how we can use the round function to round a value. For example, the
number 23.2 should be changed to 23, number 23.8 should be changed to 24,
the number −23.2 should be changed to −23, and the number −23.8 should be
changed to −24.

PRG-5. To show the behavior of the random number generator, generate 5 sets of
random numbers in which each set contains 10 random numbers between 10 and
99 (two-digit values). Then find the sum of the numbers in each set to see the
variations.

for23380_ch06_208-272.indd 269 03/11/18 12:28 pm

270 Chapter 6 Functions

PRG-6. Show how to call the rand function to create a random number that can only be
0 or 1 and simulates the tossing of a coin.

PRG-7. Show how to call the rand function to create a random number between 0.1
and 0.9 with only one digit after the decimal point. Hint: Find random numbers
between 1 and 9 and then divide the result by 10 to get a double value. Write a
program to test your answer with 10 numbers.

PRG-8. Show how to call the rand function to create a random number belonging to the
following set: 2, 4, 6, 8, 10.

PRG-9. Write a program that prints the square root of the first 10 integers using the
corresponding function in the <cmath> header. Tabulate your result with
appropriate headers.

PRG-10. Write a program that prints the cubic root of the first 10 integers using the pow
function in the <cmath> header. Tabulate your result with appropriate headers.

PRG-11. Write a function that finds log2 x using the log functions in the <cmath> header
file. Note that we have loga x = logb x / logb a. Test your function in a program
with values of x from 1 to 10. Tabulate your result with appropriate headers.

PRG-12. Write a function that, given a temperature in Celsius, returns the temperature in
Fahrenheit. Use your function in a program and test it with Celsius values 0, 37,
40, and 100. The conversion from Celsius to Fahrenheit is given below:

Fahrenheit = Celcius * 180.0 / 100.0 + 32

PRG-13. Write a function that, given a temperature in Fahrenheit, returns the temperature
in Celsius. Use your function in a program and test it with Fahrenheit values 32,
98.6, 104, and 212. The conversion from Fahrenheit to Celsius is given below:

Celcius = (Fahrenheit − 32) * (100.0 / 180.0)

PRG-14. Write a function to find the factorial of a positive number as shown below. Then use
the function in a program to get the value of n from the user and print the factorial
value. Test your program with values of n between 1 and 20 to avoid overflow.

factorial (n) = n * (n − 1) * (n − 2) * ... * 3 * 2 * 1

PRG-15. The permutation of n objects k at a time can be defined as shown below. The equation
tells us how many permutations of n objects can be formed k elements at a time.

P(n, k) = factorial (n) / factorial (n − k)

PRG-16. The combination of n objects k at a time can be defined as shown below. The
equation tells us how many combination of n objects can be formed k elements
at a time.

P(n, k) = factorial (n) / (factorial (n − k) * factorial (k))

PRG-17. The Pascal triangle defines the coefficient of the terms (Cn) in the expansion of
the binomial

(x + y)n = C0 x0yn + C1 x1yn − 1 + ... + Cn-1 xn − 1y1 + Cn xny0

 The following shows the coefficient related to each n from 0 to 5. Note that both
rows and columns start from 0.

for23380_ch06_208-272.indd 270 03/11/18 12:28 pm

Programs 271

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

 Note that the value of each coefficient in a row and column is the sum of the
coefficients in the previous row and previous column added with the coefficient
in the previous row and the same column as shown below.

Pascal (row, col) = pascal (row − 1, col − 1) + pascal (row − 1 , col)

 Write a function to find the value’s coefficients for any n. Test your function to
print the coefficient for n from 1 to 10 in rows and columns.

PRG-18. The value of PI (π) in trigonometry can be calculated as shown below:

π = 4 × [1 − 1 / 3 + 1 / 5 + ... + (−1)i + 1 / (2i − 1)]

 in which i varies from 1 to n. As n becomes increasingly larger, we get the value
of π increasingly closer to the actual value. Write a function to return the value
of π for the given value of n. Then write a program to tabulate the values of i
and π for i from 1 to 2001 in increments of 200.

PRG-19. Write a function to create four-digit random integers in the range 1111 to 9999.
Eliminate any number that has a zero in it. Then create 100 numbers and print
them in a table with 10 numbers to a line.

PRG-20. Write two functions. The first finds the average of any set of three integers.
The second finds the median of any set of three integers. A median is the
number in the middle when the set is sorted (for example, the median of
4, 9, 6 is 6 because if the numbers are sorted the set is (4, 6, 9)). Then call
each function in the program to find the average and median of any three
integers. Test your program for at least five different sets and tabulate the
result.

PRG-21. Write a function that finds the count of the digits in any positive integer (greater
than 0). The integer is to be read from the keyboard. For example, the number
of digits in 367 is 3. Hint: Divide the given integer by 10 continuously and
increment the count until the integer is 0. Test the function in a program and
tabulate the number of digits for at least 10 integers.

PRG-22. Write a function that finds the sum of the digits in any given integer. For
example, the sum of the digits in 367 is 16. Write a program to tabulate at least
five integers and print the sum of their digits.

PRG-23. Write a function that reverses the digits in its argument. For example, given the
integer 378, the function returns 873. Test your program with a few integers
with different numbers of digits.

PRG-24. An integer is a palindrome if it can be read backward and forward. For example
5, 121, 12321, 1347431 are all palindromes. Write a function to determine if a
number is a palindrome. Use the function developed in PRG-23 to reverse the
given integer before testing if it is a palindrome.

for23380_ch06_208-272.indd 271 03/11/18 12:28 pm

272 Chapter 6 Functions

PRG-25. An integer is a prime if it is divisible only by itself and 1. Note that the integer
1 is not a prime. Write a function to test if a given number is prime. Then use a
program to print the prime numbers less than 100 in a table of 10 columns.

PRG-26. Another way to find if a number is a prime is to find if it is divisible only by
itself and not any other number in the range 1 to its square root. Write a function
to test if a given number is a prime using this method. Then use a program to
print the prime numbers less than 500 in a table of 10 columns.

PRG-27. An integer is emirp (prime spelled backward) if, when we inverse the digits, it is
also a prime number. Write a function to print the emirp integers from 1 to 1000
ten numbers in a line.

PRG-28. Write a program that finds all the factors of a given number. A factor is a
number less than the given number that divides the number. The program should
use a function to test if a number is divisible by another number. Test your
function with numbers between 1 and 100.

PRG-29. Write a function that finds all of the prime factors of a given number. A prime
factor is a prime and also a factor. Use the idea of finding a prime in PRG-23.
Test your function with numbers between 1 and 100.

PRG-30. Write a program that, given the desired future value, the number of years, and
the interest rate, finds the value of the fixed amount to be invested. Hint: First
find the multiplier.

PRG-31. Write a program that, given the monthly payment, the number of years, and
the interest rate, finds the value of the loan one can borrow. Hint: First find the
multipliers.

for23380_ch06_208-272.indd 272 03/11/18 12:28 pm

273

7.1 INTRODUCTION
In Chapter 1, we mentioned that C++ is a combination of a procedural and an object-
oriented language. In previous chapters, we have used the language mostly as a procedural
language; in this chapter we start using it as an object-oriented language.

7.1.1 Types and Instances in Real Life
A type is a concept from which an instance is created. In other words, a type is an abstrac-
tion; an instance of that type is a concrete entity. The word clock is a type; it defines a gen-
eral concept that we are familiar with. The clock in John’s office, the clock in Sue’s office,
or the clock in a train station are instances of this type. The word circle is a type. We can
draw circles with different radii as instances of that type. We can even go further and say that
the word person is a type, and that John, Sue, and Michelle are instances of the type person.

The relationship between a type and its instances is a one-to-many relation. We can
have many instances from one single type. Figure 7.1 shows the type Circle and four in-
stances that we call circle1, circle2, circle3, and circle4.

This is the first chapter in which we use C++ as an object-oriented language. In previous chap-
ters we discussed the basics, and we will need what we learned in those chapters to understand
the materials we use in this chapter and the rest of the book. In this chapter, we show how to
create new types and how to use them. The mechanism for creating new types uses a class or
an enumerated type. We will discuss classes in this chapter but we will ignore discussion on
enumerated types because they are not common.

Objectives

After you have read and studied this chapter, you should be able to:

•	 Introduce object-oriented concepts, including types and instances, attributes and behaviors,
and data members and member functions.

•	Discuss the class definition that declares data members and member functions.

•	Discuss three types of constructors: parameter constructors, default constructors, and copy
constructors.

•	Discuss destructors that are used to clean up the objects before they are recycled.

•	Discuss instance data members and instance member functions.

•	Discuss static data members and static member functions.

•	Discuss how we divide the three sections of a program into three separate files—interface
file, implementation file, and application file—and achieve one of the goals of object-
oriented programming: encapsulation.

7 User-Defined Types: Classes

for23380_ch07_273-337.indd 273 06/11/18 2:45 pm

274 Chapter 7 User-Defined	Types:	Classes

Any instance we encounter in this world has a set of attributes and a set of behaviors.

Attributes
In real life an attribute is a characteristic ascribed to an instance. In computer science, an
attribute is any characteristic that interests us in an instance. For example, if the instance is
an employee, we may be interested only in the employee’s name, address, position, and sal-
ary. On the other hand, if the instance is a student in a university, we may be interested only
in the student’s name, year, courses taken, and grades. If the instance is a circle, we may be
interested only in its radius, perimeter, and area.

An attribute is a characteristic of an instance that we are interested in.

Behaviors
When we think about instances, we also think about their behaviors. In this sense, a behavior
is an operation that an instance can perform on itself. For example, if an instance is an em-
ployee, we assume that she can give her name, her address, and her salary. On the other hand,
if an instance is a circle, we assume that it can give its radius, its perimeter, and its area. Note
that in object-oriented programming, we assume that an instance is capable of performing an
operation on itself.

A behavior is an operation that we assume an instance can
perform on itself.

7.1.2 Classes and Objects in Programs
In object-oriented programming, we still use the terms type and instance. In C++, a user-
defined type can be created using a construct named class. An instance of a class is referred
to as an object. This means that we use type and class. We also use instances and objects. In
object-oriented programming, attributes and behaviors of an object are represented as data
members and member functions.

Data Members
A data member of an object is a variable whose value represents an attribute. For example,
the radius of a circle object can be represented by the value of a variable of type double.
In other words, the attribute of an object of type circle can be effectively represented as a
variable of type double that holds the value of the radius for that instance. However, some
attributes of an instance are not independent; they may depend on values of other attributes.
For example, the perimeter and the area of a circle may be two attributes for a mathemati-
cian, but we do not represent them as data members because both depend on the value of
the radius.

Type Instances

Circle
circle3circle2circle1 circle4

Figure 7.1	 A	type	and	its	instances

for23380_ch07_273-337.indd 274 06/11/18 2:45 pm

7.2 Classes 275

Attributes of an object in object-oriented programming
are simulated using data members.

Member Function
In programming, a function is an entity that can do something. A member function in
object-oriented programming is a function that simulates one of the behaviors of an object.
For example, we can write a function that allows a circle to give its radius, its area, and its
perimeter. We can also write a function that a circle can use to set its radius, but we should
be aware of dependent attributes when we do so.

Behaviors of an object in object-oriented programming
are simulated using member functions.

7.1.3 Comparison
Figure 7.2 shows the terms we use in real life and in object-oriented programming. The fig-
ure can be used throughout the chapter to better understand the concepts we discuss.

7.2 CLASSES
Although C++ has many predefined (built-in) types such as int, double, char, and bool, it
also allows programmers to create new types. In C++, new types are mostly created using
a class. To write object-oriented programs, we need to create a class, as a type, and then in-
stantiate objects as instances of that type. In procedural programming, we need only write an
application program (the main function and some other functions) to use objects of built-in
types. In object-oriented programming we need three sections: the class definition, the mem-
ber function definition, and the application (which uses the objects created from the class).
In other words, if we want to write object-oriented programs versus writing procedural pro-
grams, we should always think about these three sections. We will see that sometimes each
section is designed and saved by different entities. We have seen that in some cases, the first
two sections (class definition and member function definitions) are created and stored in the
C++ library (like the string and file classes), but the principle is the same: We need all three
sections, as shown in Figure 7.3.

In the class definition section, we declare the data members and member functions. In
the member function definition section, we define all member functions. In the application
section, we instantiate objects and apply the member function to those objects.

Real life Object-oriented programming

Type

Instance

Attribute

Behavior

Type or class

Instance or object

Data member

Member function

Figure 7.2	 Comparison	of	terms	in	real	life	and	in	object-
oriented	programming

for23380_ch07_273-337.indd 275 06/11/18 2:45 pm

276 Chapter 7 User-Defined	Types:	Classes

7.2.1 An Example
Before we formally discuss these three sections, we use them in Program 7.1. We know that
there are many issues that we have not discussed yet, but the program will be used to discuss
them gradually.

Figure 7.3	 Three	sections	of	a	C++	program	in	object-
oriented	paradigm

Class definition
Declarations of
attributes
and behaviors

Instantiation of
objects and application
of behaviors

Definition of
behaviors

Member functions
definition

Application

Program 7.1	 Creating	and	handling	two	circle	objects	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* A program to use a class in object-oriented programming *
***/

#include <iostream>
using namespace std;

/***
* Class definition: the declaration of data members and member *
* functions of the class *
***/

class Circle
{

private:
double radius;

public:
double getRadius () const;
double getArea () const;
double getPerimeter () const;
void setRadius (double value);

};
/***

* Members function definition. Each function declared in the *
* class definition section is defined in this section. *
***/

// Definition of getRadius member function
double Circle :: getRadius () const
{

return radius;
}

(continued)

for23380_ch07_273-337.indd 276 06/11/18 2:45 pm

7.2 Classes 277

Program 7.1	 Creating	and	handling	two	circle	objects	(Continued)

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

// Definition of getArea member function
double Circle :: getArea () const
{

const double PI = 3.14;
return (PI * radius * radius);

}
// Definition of getPerimeter member function
double Circle :: getPerimeter () const
{

const double PI = 3.14;
return (2 * PI * radius);

}
// Definition of setRadius member function
void Circle :: setRadius (double value)
{

radius = value;
}
/***

* Application section: Objects are instantiated in this section. *
* Objects use member functions to get or set their attributes. *
***/

int main ()
{

// Creating first circle and applying member functions
cout << "Circle 1: " << endl;
Circle circle1;
circle1.setRadius (10.0);
cout << "Radius: " << circle1.getRadius() << endl;
cout << "Area: " << circle1.getArea() << endl;
cout << "Perimeter: " << circle1.getPerimeter() << endl << endl;
// Creating second circle and applying member functions
cout << "Circle 2: " << endl;
Circle circle2;
circle2.setRadius (20.0);
cout << "Radius: " << circle2.getRadius() << endl;
cout << "Area: " << circle2.getArea() << endl;
cout << "Perimeter: " << circle2.getPerimeter();
return 0;

}

Run:
Circle 1:
Radius: 10
Area: 314
Perimeter: 62.8

(continued)

for23380_ch07_273-337.indd 277 06/11/18 2:45 pm

278 Chapter 7 User-Defined	Types:	Classes

Lines 11 to 20 are the class definition. Lines 25 to 46 are member functions definitions,
and lines 51 to 68 are the application. We will discuss each section in detail by referring to
this program.

7.2.2 Class Definition
To create a new type, we must first write a class definition. A class definition is made of
three parts: a header, a body, and a semicolon. A class header is made of the reserved word
class followed by the name given by the designer. Although we are free to use lowercase
or uppercase letters when we define user-defined types, we follow a convention that rec-
ommends that class names start with an uppercase letter to distinguish them from library
classes, which start with lowercase letters. The class body is a block (starting with an open-
ing brace and ending with a closing brace) that holds the declaration of data members and
member functions in the block. The third element of a class declaration is a semicolon that
terminates the definition. We repeat the class definition for our class:

class Circle // Header
{

private:
double radius; // Data member declaration

public:
double getRadius () const; // Member function declaration
double getArea () const; // Member function declaration
double getPerimeter () const; // Member function declaration
void setRadius (double value); // Member function declaration

}; // A semicolon is needed at the end of class definition

Declaring Data Members
One part of the class definition declares data members of the class, variables or constants of
built-in types or other previously defined class types. The data members of a class simulate
the attributes of the objects that are instantiated from the class. However, in any object we
may have several attributes, some of which are dependent on the others and can be cal-
culated given the other attributes. Among the dependent attributes, we need to select the
simplest and the most basic ones. For example, in our circle class, we have three attributes:
radius, area, and perimeter. Each of them can be calculated given one of the other two, but
the radius is the most primitive and most basic. We have chosen the radius to be a data mem-
ber. Selecting more than one attribute among the dependent attributes can cause an error in
the program; we may change one of them and forget to change the others. For example, if
we have chosen both radius and area as data members, changing the radius using a member
function and not changing the area at the same time creates a circle whose area is calculated
erroneously and vice versa.

Program 7.1	 Creating	and	handling	two	circle	objects	(Continued)

Circle 2:
Radius: 20
Area: 1256
Perimeter: 125.6

for23380_ch07_273-337.indd 278 06/11/18 2:45 pm

7.2 Classes 279

Data members in a class must not depend on each other.

Declaring Member Functions
The second part of the class definition declares the member functions of the class; that is,
it declares all functions that are used to simulate the behavior of the class. This section is
similar to the prototype declaration we used when we were working with global functions in
previous chapters. There is, however, one difference: Some functions have the const quali-
fier at the end and some do not. Those that change something in the object cannot use this
qualifier; those that are not allowed to change anything need this qualifier. We will return to
this issue later in the chapter.

Access Modifiers
The access modifier determines how a class can be accessed. The declaration of data mem-
bers and member functions in a class is by default private. These members and member
functions cannot be accessed for retrieving or changing.

When there is no access modifier for a member, it is private by default.

To circumvent this limitation, C++ defines three access modifiers. The designer of a class
can apply an access modifier to the declaration of a member to control access to that mem-
ber. C++ uses three modifiers for this purpose: private, protected, and public as shown in
Figure 7.4. Table 7.1 gives the general idea behind each modifier.

When a member is private, it can only be accessed inside the class (through member
functions). When a member is public, it can be accessed from anywhere (inside the same
class, inside the subclasses, and in the application). We discuss protected members when we
discuss subclasses in Chapter 11.

Access Modifiers for Data Members The modifiers for data members are normally set
to private for emphasis (although no modifier means private). This means that the data
members are not accessible directly. They must be accessed through the member functions.

protected

public

private

Figure 7.4	 Access	modifier

Modifier
Access from
same class

Access from
subclass

Access from
anywhere

private Yes No No

protected Yes Yes No

public Yes Yes Yes

Table 7.1 Member Access for each modifier

for23380_ch07_273-337.indd 279 06/11/18 2:45 pm

280 Chapter 7 User-Defined	Types:	Classes

However, privacy does not mean privacy in visibility; it means privacy in access. A private
data member is visible, but it cannot be accessed except through a member function.

The data members of a class are normally set to private.

Access Modifiers for Member Functions To operate on the data members, the applica-
tion must use member functions, which means that the declaration of member functions
usually must be set to public.

The instance member functions of a class are normally set to public.

However, sometimes the modifier of a member function must be set to private, such as when
a member function must help other member functions but is not allowed to be called by
functions outside the class. We will discuss this issue later in this chapter.

Group Modifier Access You may have noticed that we have used only one keyword, pri-
vate, and one keyword, public, in the whole class definition. This is referred to as group
modification. We have collected all data members under one group and have used the pri-
vate keyword followed by a colon to say that all of the keywords are private. We have also
grouped all member functions and used one public keyword followed by a colon to say that
all of them are public. In other words, a modifier is valid until we encounter a new one. We
could have defined the modifier followed by a colon for each data member or member func-
tion, but it is not necessary. Indention after the modifier is for clarity.

7.2.3 Member Functions Definition
The declaration of a member function gives its prototype; each member function also needs
a definition. The definition of a function must be done separately except in some situations,
which we discuss later in this chapter. In Program 7.1 we created a definition for each mem-
ber function based on the declaration defined in the class definition.

double Circle :: getRadius () const
{

return radius;
}
double Circle :: getArea () const
{

const double PI = 3.14;
return (PI * radius * radius);

}
double Circle :: getPerimeter () const
{

const double PI = 3.14;
return (2 * PI * radius);

}
void Circle :: setRadius (double value)
{

radius = value;
}

for23380_ch07_273-337.indd 280 06/11/18 2:45 pm

7.2 Classes 281

The definition of each member function is similar to the definition that we have used
in previous chapters, but with two differences. The first is the qualifier (const) that is applied
to some member function. The second is the name of the function that must be qualified with
the name of the class. This is similar to when we know two people with the name Sue, one
coming from the Brown family and the other from the White family. In C++, we need to
mention the class name (family name) first followed by a class scope (::) symbol to achieve
this goal. The class scope is a primary expression as shown in Appendix C, but it is repeated
in Table 7.2 for convenience.

You may ask why we did not include the last name of a data member or a member
function in the class declaration. The reason is that these members are enclosed in the class
definition; they belong to that class. This is similar to the case in which we do not mention
the last name of an individual when she is in the family; the last name is used when we are
out of the family circle. Figure 7.5 shows the difference.

Note that the return type of the function always comes before the whole name. In the
class declaration, there is no explicit last name, so it comes before the first name. In the func-
tion definition, it must come before the whole name.

7.2.4 Inline Functions
When the body of a function is short, the execution time involved in the function call (stor-
ing the arguments, transferring control, retrieving the argument, and storing the return value)
may be greater than executing the code inside the function. To improve program perfor-
mance, we can declare a function as an inline function to indicate that the compiler can
replace the function call with the actual code in the function. However, the compiler may
ignore this request. We have not used inline functions in our previous programs and will not
do so, but you are free to use this option.

Implicit Inline Function
A function is defined as an implicit inline function when we replace its declaration (in the
class definition) with its definition. This is not recommended for two reasons. First, it makes
the definition more difficult to read. Second, it violates the principle of encapsulation, which
we discuss shortly. The following shows a partial definition of the Circle class with an im-
plicit inline function.

Group Name Operator Expression Pred Assoc

Primary class	scope :: class	::	name 19 →

Table 7.2 Class scope

class Circle
{

}

public:
double getRadius () const;

No scope resolution in
the function declaration

Scope resolution in
in the function definition

{

}

double Circle :: getRadius () const;

Figure 7.5	 Using	names	in	the	class	definition	and	member	functions

for23380_ch07_273-337.indd 281 06/11/18 2:45 pm

282 Chapter 7 User-Defined	Types:	Classes

class Circle
{

// Data Members
private:

double radius;
// Member functions
public:

double getRadius () const { return radius }
…

};

We have included the definition of the getRadius function in the class definition, which
means that there is no need to include the definition of this function separately.

Explicit Inline Function
A function is defined as an explicit inline function by adding the keyword inline in front of
the function definition. In this case, the definition remained unchanged with the exception
of adding the inline keyword.

inline double Circle :: getRadius() const
{

return radius;
}

7.2.5 Application
The class definition and member function definition must be used. We need an application
section—the main function, for example—to instantiate objects of the class and apply the
member functions on the those objects as shown in Program 7.1. We first instantiated one
object named circle1 using the following format (we discuss this format and similar ones
later in the chapter).

Object Instantiation
Before using any member function, we must instantiate an object of the class as shown
below:

Circle circle1;

After this line we have an object named circle1 that encapsulates one single data member
(variable) of type double named radius, which contains the garbage left over from the previ-
ous operation. We must change the value of this variable before using it.

Applying Operation on Objects
After instantiation, we can let the object apply one or more operations defined in the member
function definition on itself.

circle1.setRadius (10.0);
cout << "Radius: " << circle1.getRadius() << endl;
cout << "Area: " << circle1.getArea() << endl;
cout << "Perimeter: " << circle1.getPerimeter() << endl << endl;

for23380_ch07_273-337.indd 282 06/11/18 2:45 pm

7.3 Constructors	and	Destructors 283

The first line sets the radius of circle1. The second line gets the value of the circle’s radius.
The next two lines calculate and print the area and perimeter of the object named circle1.

Member Selection
You may wonder why we are using a dot between the object name and the member function
that is supposed to operate on the object. This is called the member select operator, and we
discuss it later in the chapter. In other words, we can apply the same function on different
objects using this operator as shown below:

circle1.getRadius();
circle2.getRadius();

// circle1 is supposed to get its radius
// circle2 is supposed to get its radius

7.2.6 Structs
We sometimes encounter a construct in C++ that is in fact a legacy from the C language:
struct. A struct in the C++ language is actually a class with one difference: In a struct, all
members are public by default; in a class, all members are private by default. We can always
create a class to simulate a struct as shown below:

struct
{

string first;
char middle;
string last;

};

class
{

public:
string first;
char middle;
string last;

};

Some programmers still use a struct instead of a class because doing so allows them to
access the elements in a struct directly (they are public) without using a member function.
This can be seen in some programs that aggregate data items into one item, such as a node
in a linked-list structure; we will discuss these in Chapter 13. Our recommendation is to use
a class instead of a struct.

7.3 CONSTRUCTORS AND DESTRUCTORS
In object-oriented programming, an instance is an object that encapsulates the data members
defined in the class definition. If we want an object to perform some operations on itself, we
should first create the object and initialize its data members. Creation is done when a special
member function named a constructor is called in the application; initialization is when the
body of a constructor is executed.

On the other hand, when we do not need an object anymore, the object should be
cleaned up and the memory occupied by the object should be recycled. Cleanup is automati-
cally done when another special member function named a destructor is called, the object
goes out of scope, and the body of the destructor is executed; recycling is done when the
program is terminated.

A constructor is a special member function that creates and initializes an object.
A destructor is a special member function that cleans and destroys an object.

In other words, as shown in Figure 7.6, an object goes through five steps. It is created
and initialized by a special member function called a constructor. It applies some operations

for23380_ch07_273-337.indd 283 06/11/18 2:45 pm

284 Chapter 7 User-Defined	Types:	Classes

requested by the application on itself. It is cleaned up and recycled by another special mem-
ber function called a destructor.

7.3.1 Constructors
A constructor is a member function that creates an object when it is called and initializes the
data members of an object when it is executed. The declaration of the data members in the
class definition does not initialize the data members; the declaration just gives the names and
the types of the data members.

A constructor has two characteristics: It does not have a return value, and its name is
the same as the name of the class. A constructor cannot have a return value (not even void)
because it is not designed to return anything; its purpose is different. It creates an object and
initializes the data members. Although we will see that a constructor may also do some other
tasks, such as validation of values, these tasks are also considered part of the initialization.

We can have three types of constructors in a class: parameter constructors, default
constructors, and copy constructors.

Constructor Declaration
A constructor is a member function of the class, which means it must be declared in the class
definition. A constructor has no return value, its name is the same as the name of the class,
and it cannot have the const qualifier because the constructor initializes the value of the data
members (more about this later). The following shows how we add the declaration of three
constructors to our Circle class.

class Circle
{

…
public:

Circle (double radius);
Circle ();
Circle (const Circle& circle);
…

}

// Parameter Constructor
// Default Constructor
// Copy Constructor

Note that all constructors of the class are normally public, so the application can call any of
the constructors to initialize an object of the class.

Parameter Constructor Normally we have a parameter constructor that initializes the
data members of each instance with specified values. The parameter constructor can be over-
loaded, which means that we can have several parameter constructors each with a different
signature. The advantage of the parameter constructor is that we can initialize the data mem-
bers of each object with a specific value. In other words, if we use a parameter constructor,
the radius of one circle can be initialized to 3.1, another one to 4.6, and so on.

Creation Initialization Operations Cleaning up Recycling

Constructor

Life cycle of an object in object-oriented programming

Destructor

Figure 7.6	 Life	cycle	of	an	object

for23380_ch07_273-337.indd 284 06/11/18 2:45 pm

7.3 Constructors	and	Destructors 285

The parameter constructor can be overloaded for a class.

Default Constructor The default constructor is a constructor with no parameters. It is used
to create objects with each data member for all objects set to some literal values or default
values. Note that we cannot overload the default constructor because it has no parameter list
and therefore is not eligible for overloading.

The default constructor cannot be overloaded for a class.

Copy Constructor Sometimes we want to initialize each data member of an object to
the same value as a corresponding data member of a previously created object. We can
use a copy constructor in this case. A copy constructor copies the data member values
of the given object to the new object just created. After calling the copy constructor, the
source and the destination objects have exactly the same value for each data member,
although they are different objects. The copy constructor has only one parameter that
receives the source object by reference. The const modifier in front of the parameter type
guarantees that the pass-by-reference cannot change the source object. Remember that
pass-by-reference has two characteristics. First, there is no need to physically copy the
object. Second, a change in the destination means the same change in the source. Using
the const modifier, we keep the first characteristic, but we forbid the second. Also note
that we cannot overload the copy constructor because the parameter list is fixed and we
cannot have an alternative form.

The copy constructor cannot be overloaded for a class.

Constructor Definition
As we said, a constructor is a member function, but a special one. It cannot have a return
value, and its name is the same as the name of the class. The following shows the definition
of the three constructors for our Circle class.

// Definition of a parameter constructor
Circle :: Circle (double rds)
: radius (rds) // Initialization list
{

// Any other statements
}
// Definition of a default constructor
Circle :: Circle ()
: radius (1.0) // Initialization list. If it is missing, radius is set to garbage values
{

// Any other statements
}
// Definition of a copy constructor
Circle :: Circle (const Circle& cr)
: radius (cr.radius) // Initialization list
{

// Any other statements
}

for23380_ch07_273-337.indd 285 06/11/18 2:45 pm

286 Chapter 7 User-Defined	Types:	Classes

The main difference between the definition of a constructor and definition of other
member functions is that a constructor can have an initialization list after the header to ini-
tialize the data members. The initialization list is put after the header and before the body of
the constructor and it starts with a colon. In our Circle class, we have only one data member
to initialize. If we need to initialize more than one data member, the initialization of each
data member must be separated by a comma from other data members. In general, the ini-
tialization list has the following format:

: dataMemember (parameter), … , dataMember (parameter)

We can think of each initialization as an assignment statement that assigns the param-
eter to the data member, such as dataMember = parameter. There is no terminator for the
initialization list. The next line is the body of the constructor. The dataMember name must
be the same as the one defined in the declaration of the data member, but the name of each
parameter is determined by the programmer.

Another important point is that a constant data member of an object must be initialized
when the object is created. As we have seen in previous chapters, we cannot change a con-
stant entity after it has been declared, but C++ allows us to initialize it in the initialization
section of a constructor.

Sometimes, however, we must use the body of the constructor to initialize complex
data members (through assignments) that cannot be simply initialized in the initialization
list. The body of a constructor can also be used for additional processing, such as validating
a parameter, opening files if needed, or even printing a message to verify that the constructor
was called.

7.3.2 Destructors
Like a constructor, a destructor has two special characteristics. First, the name of the
destructor is the name of the class preceded by a tilde symbol (~), but the tilde is added
to the first name, not the last name (the last name is the same for all member functions).
Second, like a constructor, a destructor cannot have a return value (not even void) because
it returns nothing. A destructor is guaranteed to be automatically called and executed by
the system when the object instantiated from the class goes out of scope. In other words,
if we have instantiated five objects from the class, the destructor is automatically called
five times to guarantee that all objects are cleaned up. Cleanup is most important if the
constructed has called resources such as files. After the program is terminated, the allo-
cated memory is recycled. A destructor can take no arguments, which means it cannot be
overloaded.

A destructor is a special-purpose member function with no
parameter and is designed to clean up and recycle an object.

Destructor Declaration
The following shows the declaration of the destructor in the class definition.

class Circle
{

...
public:

...
~Circle ();

}
// Destructor

for23380_ch07_273-337.indd 286 06/11/18 2:45 pm

7.3 Constructors	and	Destructors 287

Destructor Definition
The definition of a destructor is similar to the definition of the other three member functions,
but it must have a tilde (~) in front of the first name. A destructor should be public like all
constructors.

// Definition of a destructor
Circle :: ~Circle ()
{

// Any statements as needed
}

7.3.3 Creating and Destroying Objects
We are now ready to show how we can instantiate objects when they are needed and how
we can destroy them when they are not needed. Note that calling a constructor creates an
object. When the constructor is executed, it initializes the data members. Similarly, when a
destructor is executed, the data members are cleaned up. When the program is terminated,
the memory locations are released.

Figure 7.7 shows the syntax for calling a parameter constructor, a default constructor,
and a copy constructor. There is no syntax to call a destructor because it is called by the sys-
tem. We must pay attention to the call of a default constructor. In C++ the default construc-
tor does not need empty parentheses. If we use empty parentheses when we call the default
constructor, the system thinks we want to call an overloaded parameter constructor with no
parameters; if such a constructor is not defined, we get an error.

Note that the literature sometimes includes the assignment operator as part of the
group, but the assignment operator just copies the data member of one object to another. The
two objects must exist already. We will discuss the assignment operator in Chapter 13 and
will explain its relation to the above four member functions when we do.

Table 7.3 compares the creation of variables when dealing with built-in types to the
creation of objects when dealing with objects of class types.

Called by systemDestructor

Parameter
constructor Circle circle1 (5.1);

Copy
constructor Circle circle3 (aCircle);

Default
constructor Circle circle2; Note: no parentheses

aCircle is an existing object

No call by the user

Figure 7.7	 Object	construction	and	destruction	for	a	class	type

Member Class type Built-in type

Parameter	constructor Circle	circle1	(10.0); double x1 = 10.0;

Default	constructor Circle	circle2; double x2;

Copy	constructor Circle	circle3	(circle1); None

Destructor No	call No	call

Table 7.3 Comparison between creation of variables and objects of classes

for23380_ch07_273-337.indd 287 06/11/18 2:45 pm

288 Chapter 7 User-Defined	Types:	Classes

7.3.4 Required Member Functions
We may ask, which of these four member functions are required for a class? What hap-
pens if we ignore declaring and defining one or more of them as we did in the case of
our Circle class? We can best answer this question if we put these member functions
into three groups as shown in Figure 7.8. Each group is independent when it comes to its
requirements.

Group 1
Group 1 consists of the parameter constructor and the default constructor. We must have
at least one of these constructors; we may sometimes need both. If we provide either of
them, the system does not provide any for us. If we provide neither of them, the system
provides a default constructor, referred to as a synthetic default constructor, that initializes
each member to what is left over as garbage in the system. That is what happened in our
first definition of the Circle. We needed one of the two constructors in the first group, but
we did not provide one. The system provided one for us with garbage stored in the radius
data member. We did not use the object created before we re-initialized the constructors
with the setRadius member function. To be safe, we can always provide both of the con-
structors in Group 1.

We normally declare and define both parameter and
default constructors in our class.

Group 2
The second group is the copy constructor. A class must have one and only one copy con-
structor, but if we do not provide one, the system provides one for us, which is referred
to as the synthetic copy constructor. Most of the time it is better to create our own copy
constructor.

Group 3
The third group is the destructor. A class must have one and only one destructor, but if we
do not provide one, the system provides one for us, which is referred to as the synthetic
destructor. Most of the time, the synthesized destructor is not what we want. It is better to
create our own destructor.

EXAMPLE 7.1
Program 7.2 repeats our Circle class with the constructors and the destructor provided. We
include a message in the body of each constructor and the destructor to show when they are
called.

Parameter/default
constructor

Group 1 Group 2 Group 3

Note:
We need at least one member from each group. If we do not define at least one member
from each group, the system provides one.

Copy
constructor Destructor

Figure 7.8	 Grouping	constructors	and	destructor

for23380_ch07_273-337.indd 288 06/11/18 2:45 pm

7.3 Constructors	and	Destructors 289

Program 7.2	 A	complete	Circle	class		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

/***
* A program to use a class in object-oriented programming *
 ***/

#include <iostream>
using namespace std;

/***
* Class Definition: *
* declaration of parameter constructor, default constructor, *
* copy constructor, destructor, and other member functions *
 ***/

class Circle
{

private:
double radius;

public:
Circle (double radius); // Parameter Constructor
Circle (); // Default Constructor
~Circle (); // Destructor
Circle (const Circle& circle); // Copy Constructor
void setRadius (double radius); // Mutator
double getRadius () const; // Accessor
double getArea () const; // Accessor
double getPerimeter () const; // Accessor

};
/***

* Member Function Definition: *
* Definition of parameter constructor, default constructor, *
* copy constructor, destructor, and other member functions *
 ***/

// Definition of parameter constructor
Circle :: Circle (double rds)
: radius (rds)
{

cout << "The parameter constructor was called. " << endl;
}
// Definition of default constructor
Circle :: Circle ()
: radius (0.0)
{

cout << "The default constructor was called. " << endl;
}
// Definition of copy constructor
Circle :: Circle (const Circle& circle)

(continued)

for23380_ch07_273-337.indd 289 06/11/18 2:45 pm

290 Chapter 7 User-Defined	Types:	Classes

Program 7.2	 A	complete	Circle	class	(Continued)

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

: radius (circle.radius)
{

cout << "The copy constructor was called. " << endl;
}
// Definition of destructor
Circle :: ~Circle ()
{

cout << "The destructor was called for circle with radius " ;
cout << endl;

}
// Definition of setRadius member function
void Circle :: setRadius (double value)
{

radius = value;
}
// Definition of getRadius member function
double Circle :: getRadius () const
{

return radius;
}
// Definition of getArea member function
double Circle :: getArea () const
{

const double PI = 3.14;
return (PI * radius * radius);

}
// Definition of getPerimeter member function
double Circle :: getPerimeter () const
{

const double PI = 3.14;
return (2 * PI * radius);

}
/***

* Application : *
* Creating three objects of class Circle (circle1, circle2, *
* and circle3) and applying some operation on each object *
 ***/

int main ()
{

// Instantiation of circle1 and applying operations on it
Circle circle1 (5.2);
cout << "Radius: " << circle1.getRadius() << endl;
cout << "Area: " << circle1.getArea() << endl;
cout << "Perimeter: " << circle1.getPerimeter() << endl << endl;

(continued)

for23380_ch07_273-337.indd 290 06/11/18 2:45 pm

7.3 Constructors	and	Destructors 291

Program 7.2	 A	complete	Circle	class	(Continued)

89
90
91
92
93
94
95
96
97
98
99

100
101

// Instantiation of circle2 and applying operations on it
Circle circle2 (circle1);
cout << "Radius: " << circle2.getRadius() << endl;
cout << "Area: " << circle2.getArea() << endl;
cout << "Perimeter: " << circle2.getPerimeter() << endl << endl;
// Instantiation of circle3 and applying operations on it
Circle circle3;
cout << "Radius: " << circle3.getRadius() << endl;
cout << "Area: " << circle3.getArea() << endl;
cout << "Perimeter: " << circle3.getPerimeter() << endl << endl;
// Calls to destructors occur here
return 0;

}

Run:
The parameter constructor was called.
Radius: 5.2
Area: 84.9056
Perimeter: 32.656

The copy constructor was called.
Radius: 5.2
Area: 84.9056
Perimeter: 32.656

The default constructor was called.
Radius: 0
Area: 0
Perimeter: 0

The destructor was called for circle with radius: 0
The destructor was called for circle with radius: 5.2
The destructor was called for circle with radius: 5.2

Note that the application creates three objects, circle1, circle2, and circle3, using a
parameter constructor, a copy constructor, and a default constructor. Note that the applica-
tion does not call the destructor but the system calls it when the object goes out of scope.
The interesting point is that the objects are destroyed in the reverse order in which they are
constructed. The last created object is destroyed first; the first created object is destroyed
last. We will discuss the reason in Chapter 14 when we show that the objects are created in
stack memory. In a stack, the last item inserted is the first item that can be removed (like a
stack of dishes).

EXAMPLE 7.2
Sometimes we need only the parameter constructor because the default and copy construc-
tors do not make sense. We discussed the use of random number generation in Chapter 6.

for23380_ch07_273-337.indd 291 06/11/18 2:45 pm

292 Chapter 7 User-Defined	Types:	Classes

We know that for each random number, we need to call the seed function with an appropriate
argument (such as time(0)). We then call the random function. Finally we need to scale and
shift the generated random number to get a random number in the desired range. All of this
work can be done in a class. We instantiate an object of the class to create a random number,
as shown in Program 7.3.

Program 7.3	 Defining	and	creating	three	random	numbers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***
* A program to declare, define, and use a class that generates *
* a random-number integer between any given range defined in *
* the constructor of the class. *
 ***/

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

/***
* Class Definition (Declaration of data members and member *
* functions) for a Random-number generator. *
 ***/

class RandomInteger
{

private:
int low; // Data member
int high; // Data member
int value; // Data member

public:
RandomInteger (int low, int high); // Constructor
~RandomInteger (); // Destructor
// Preventing a synthesized copy constructor
RandomInteger (const RandomInteger& random) = delete;
void print () const; // Accessor member function

};
/***

* Definitions of constructor, destructor, and accessor member *
* functions for the random number generator class *
 ***/

// Constructor
RandomInteger :: RandomInteger (int lw, int hh)
:low (lw), high (hh)
{

srand (time (0));
int temp = rand ();

(continued)

for23380_ch07_273-337.indd 292 06/11/18 2:45 pm

7.3 Constructors	and	Destructors 293

Program 7.3	 Defining	and	creating	three	random	numbers	(Continued)

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

value = temp % (high − low + 1) + low;
}
// Destructor
RandomInteger :: ~RandomInteger ()
{
}
// Accessor member function
void RandomInteger :: print () const
{

cout << value << endl;
}
/***

* Application to instantiate random number objects and print *
* the value of the random number *
 ***/

int main ()
{

// Generating a random integer between 100 and 200
RandomInteger r1 (100, 200);
cout << "Random number between 100 and 200: ";
r1.print ();
// Generating a random integer between 400 and 600
RandomInteger r2 (400, 600);
cout << "Random number between 400 and 600: ";
r2.print ();
// Generating a random integer between 400 and 600 ;
RandomInteger r3 (1500, 2000);
cout << "Random number between 1500 and 2000: ";
r3.print ();
return 0;

}

Run:
Random number between 100 and 200: 130
Random number between 400 and 600: 570
Random number between 1500 and 2000: 1720

There are four points we must mention about this program.

 ∙ This is an example in which we do not need a default constructor because creation
of a random number with literal values does not make sense. Since we have defined
a parameter constructor, the system does not create a default constructor in this case,
which is what we want.

 ∙ We do not need a copy constructor for this class (it does not make sense to create the
same random number), but we cannot stop the system from defining a synthesized
one. In this case, the new C++11 standard comes to the rescue. It allows us to declare

for23380_ch07_273-337.indd 293 06/11/18 2:45 pm

294 Chapter 7 User-Defined	Types:	Classes

a copy constructor and set it to the keyword delete, which prevents the system from
providing a synthesized copy constructor (see the class definition, line 25).

 ∙ Although we have three data members, only two of them (low and high) are initialized
in the initialization list of the constructor. The third data member (value) is calculated
in the body of the constructor. The calculation is too complex to be done in the initial-
izer list. The only accessor member function is the print function, which prints the
value of the created random number.

 ∙ Finally, we have no mutator member functions because we do not want to change the
created random number.

7.4 INSTANCE MEMBERS
In the previous three sections, we learned how to define classes, how to instantiate objects
from classes, and how to apply member functions on the data members of objects. In this
section and the next, we learn more about these members and the interaction among mem-
bers in the background; doing so will help us design better classes. When we design a class,
we can have two groups of members: instance members and class members.

7.4.1 Instance Data Members
An instance data member defines the attributes of an instance, which means that each
object must encapsulate the set of data members defined in the class. These data members
belong exclusively to the corresponding instance and cannot be accessed by other instances.
The term encapsulation here means that separate regions of memory are assigned for each
object and each region stores possibly different values for each data member. Figure 7.9
shows the concept of encapsulation.

Access Modifier for Instance Data Member
Although an instance data member can have a private or a public access modifier, it makes
more sense for instance data members to be private. If we make the data members of an
instance member public, they can be directly accessed by the application without calling an
instance member function. That is not the goal of object-oriented programming. In object-
oriented programming we want the objects to apply their behaviors on their attributes. In
other words, we must make the instance data members private so that they can be accessed
only through instance member functions.

The instance data members of a class are normally private
and can be accessed only through instance member functions.

Instance data members encapsulaed in objects

object1

data1

data2

15

20.5

object2

data1

data2

24

65.2

object3

data1

data2

8

14.2

Figure 7.9	 Encapsulation	of	data	members	in	objects

for23380_ch07_273-337.indd 294 06/11/18 2:45 pm

7.4 Instance	Members 295

7.4.2 Instance Member Functions
An instance member function defines one of the behaviors that can be applied on the in-
stance data members of an object. Although each object has its own instance data members,
there is only one copy of each instance member function in memory and it must be shared
by all instances. Figure 7.10 shows the case of a class with two instance data members and
four instance member functions.

Since we have created three objects from this class, we have three pairs of instance
data members and four instance member functions; each member function is shared among
the objects (one object at a time).

Access Modifier for Instance Member Functions
Unlike instance data members, the access modifier for an instance member function is nor-
mally public and allows access from outside the class (the application) unless the instance
member function is supposed to be used only by other instance member functions within the
class.

The instance member function of a class must be public
so it can be accessed from outside the class.

Instance Member Function Selectors
An application (for example, the main function) can call an instance member function to
operate on an instance. In object-oriented programming, this call must be done through the
instance. The application must first construct an instance and then let the instance call the in-
stance member function. In other words, it looks like the instance is operating on itself. The
C++ language defines two operators, called member selector operators, for this purpose.
They are defined in Appendix C as part of the postfix expression and repeated in Table 7.4
for quick reference.

function1

function2

function3

function4

Instance member
functions

Instance data members

object1

data1

data2

15

20.5

object2

data1

data2

24

65.2

object3

data1

data2

8

14.2

Figure 7.10	 A	class	with	two	data	members	and	four	member	functions

Group Name Operator Expression Pred Assoc

Postfix member	selector . object.member 18 →

member	selector −> pointer	−> member 18 →

Table 7.4 Member selector operators

for23380_ch07_273-337.indd 295 06/11/18 2:45 pm

296 Chapter 7 User-Defined	Types:	Classes

Figure 7.11 shows how the first member select operator can be used to select a mem-
ber function given the name of the object. We discuss the use of the second one shortly when
we discuss locking and unlocking an instance.

We used the dot member select operator in Program 7.2 and Program 7.3 to let the
objects call their member functions.

Locking and Unlocking
If there is only one copy of a member function, how can that function be used by one object
at one time and by another object at another time? The more important question is, When
a function is being used by one object, how can we prevent other objects from using it? In
other words, how we can lock a function when it is being used and unlock it when the func-
tion is terminated (returned) so that it can be used by another object later?

The answer is that locking and unlocking are done in the background. C++ adds a
pointer (a variable that holds the address of an object) to each member function. So while
we use the dot member selector depicted in Figure 7.11, the compiler changes it to a pointer
member selector depicted in Figure 7.12, in which each member function has a hidden
pointer named the this pointer. The function is employed by the object to which the this
pointer is pointing at the time. In other words, the function code is applied to the data mem-
bers of the object pointed to by the this pointer.

object
name action

object

data1

data2

15

20.5

function
name

Figure 7.11	 Use	of	member	select	operator	to	apply	an	operation	on	
an	instance

Figure 7.12	 Locking	and	unlocking	a	function	to	a	particular	object

this

this

this

At time 1

At time 2

At time 3

object1.function()

object2.function ()

object3.function ()

object1

data1

data2

15

20.5

object2

data1

data2

24

65.2

object2

data1

data2

8

14.2

object1

data1

data2

15

20.5

object2

data1

data2

24

65.2

object2

data1

data2

8

14.2

object1

data1

data2

15

20.5

object2

data1

data2

24

65.2

object2

data1

data2

8

14.2

function ()

function ()

function ()

for23380_ch07_273-337.indd 296 06/11/18 2:45 pm

7.4 Instance	Members 297

Figure 7.12 shows one member function that is used by different objects at dif-
ferent times. The function is the same, but the object being operated on is different
at different times. Since each function has only one this pointer and we can call only
one function at a time, we should be convinced that locking and unlocking are done
properly.

Hidden Parameter How does an instance member function get a this pointer? It is added
as a parameter to the instance member function by the compiler as shown below:

// Written by the user
double getRadius () const
{

return radius;
}

// Changed by the compiler
double getRadius (Circle* this) const
{

return (this −> radius);
}

The operator (−>) is a special operator that is the combination of the indirection operator
and the member operation. In other words, we have the following relation:

this −> radius is the same as (*this).radius

When we use the member operator to call an instance member function, the compiler changes
the call statement into two statements, as shown below:

// Written by the user
circle1.getRadius();

// Changed by the system
this = &circle1;
getRadius (this);

Explicit Use of this Pointer
We can use the this pointer in our program to refer to a data member instead of using the
data member itself, and we can use the name of the data member as a parameter. In this way,
we do not have to use abbreviated names as we did in the past. The following shows coding
setRadius for the Circle class without and with the use of the this pointer.

// Without using the this pointer
void Circle :: setRadius (double rds)
{

radius = rds;
}

// Using the this pointer
void Circle :: setRadius (double radius)
{

this −> radius = radius;
}

We must remember that the this pointer cannot be used in the initialization list of a
constructor because at that point, the host object has not been constructed; however, it can
be used in the body of the constructor if needed.

Host Object
When an instance member function is being executed, there is always a host object. The
host object is the object that the instance member function is operating on at a given mo-
ment. In other words, the host object is the object that is pointed to by the this pointer. There
is only one host object during the execution of an instance member function. Figure 7.12
depicts the situations we discuss next.

for23380_ch07_273-337.indd 297 06/11/18 2:45 pm

298 Chapter 7 User-Defined	Types:	Classes

The host object of an instance member function is
the object pointed to by the this pointer.

Accessor Member Function
An accessor member function (sometimes called a getter) gets information from the host
object but does not change the state of the object. In other words, it makes the host object
a read-only object. It gets the value of one or more data members but does not change their
values in the host object. For example, an instance member function that returns the value of
the radius in a Circle object is an accessor instance member function. To guarantee that an
accessor instance member function does not change the state of the object, we must add the
const qualifier at the end of the function header (both in the declaration and the definition)
as shown below:

double getRadius () const;
double getPerimeter () const;
double getArea() const;

// const qualifier makes the host object read-only
// const qualifier makes the host object read-only
// const qualifier makes the host object read-only

The parameter list of an accessor member function is normally empty. The const
modifier at the end of the header defines the host object as a constant object that cannot be
changed.

An accessor instance function must not change the state
of the host object; it needs the const modifier.

An accessor member function does not have to return the value of a data member; it
can be used to create a side effect (through outputting a value, for example) as long as there
is no change in the state of the object. For example, we can have an output function that
prints the value of the radius, the perimeter, and the area of an object of the Circle class with
no return value as shown below.

void Circle :: print () const
{

cout << "Radius: " << radius << endl;
cout << "Perimeter: " << 2 * radius * 3.14 << endl;
cout << "Area: " << radius * radius * 3.14 << endl;

}

In Chapter 16 we will see that the extraction operator (<<) is in fact an accessor func-
tion applied to the cout object.

Mutator Member Function
The objects of a class type in a program are normally initialized by the parameter construc-
tor. This means that the state of the object is set when it is constructed. However, sometimes
we must change the original state. For example, if we create a class representing a bank
account, the data member that represents the balance changes over time (with each deposit
and withdrawal). This means we may need instance member functions that can change the
state of their host objects. Such a function is called a mutator member function (sometimes
called a setter). This function must not have the constant qualifier because it is supposed to
change the state of the host object. In our Circle class, we have only one instance mutator
member functions as shown below:

for23380_ch07_273-337.indd 298 06/11/18 2:45 pm

7.4 Instance	Members 299

void setRadius (double rds); // No const qualifier for a mutator

A mutator instance member function does not need to have a parameter to change the
value of a data member; it can be a function with no parameters and a side effect (through
inputting a value, for example).

A mutator instance function changes the state
of the host object; it cannot have the const modifier.

For example, we can have an input function that inputs the value of the radius of an object
of the Circle class with no return value as shown below.

void Circle :: input()
{

cout << "Enter the radius of the circle object: ";
cin << radius;

}

In Chapter 16 we will see that the insertion operator (>>) is in fact a mutator function
applied to the cin object.

Note that constructors and destructors can be thought as mutator member functions
because they initialize or clean up objects (thereby changing the state).

7.4.3 Class Invariants
One of the important issues in a class’s design is class invariants. A class invariant is one
or more conditions that we must impose on some or all of the instance data members of a
class and that we should enforce through instance member functions. In other words, it is an
issue related to both instance data members and instance member functions. When we look
in our Circle class, we see that the radius of a circle must be a positive value; a circle with a
negative value does not make sense. The compiler does not catch this problem because we
have defined the radius as type double, and a double value can be negative.

An invariant is one or more conditions that must
be imposed on some or all class data members.

We enforce the invariant of a class through instance data member functions that cre-
ate objects (parameter constructors) or mutator member functions that change the value of
a data member. For example, we can change the parameter constructor of our Circle class
to guarantee the invariant of the class. The following shows how to change the constructor.

Circle :: Circle (double rds)
: radius (rds)
{

if (radius <= 0.0))
{

cout << "No circle can be made!" << endl;
cout << "The program is aborted" << endl;
assert (false);

}
}

for23380_ch07_273-337.indd 299 06/11/18 2:45 pm

300 Chapter 7 User-Defined	Types:	Classes

In this case we must abort the program because the corresponding object cannot be created,
and the lack of the object may affect the rest of the program. The assert function is a library
function that has no effect when its argument is set to true; it aborts the program when its
argument is set to false. We have used it with the false argument to abort the program in
case the invariant is not satisfied. To use the assert function, we must include the <cassert>
header file in our program.

EXAMPLE 7.3
In this example we create a new class, Rectangle, that represents a rectangle type with two data
members: length and height as shown in Program 7.4. Note that we have not used any mutator
member functions because we do not want to resize a rectangle after it has been created, but
they could be added easily. Also note that instead of using two accessor functions to get length
and height separately, we have used one accessor function, print, that prints both of them.

Program 7.4	 Using	the	class	Rectangle

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* A program to declare, define, and use a Rectangle class *
 ***/

#include <iostream>
#include <cassert>
using namespace std;
/***

* Class Definition (Declaration of data members and member *
* functions) for a Rectangle class. *
 ***/

class Rectangle
{

private:
double length; // Data member
double height; // Data member

public:
Rectangle (double length, double height); // Constructor
Rectangle (const Rectangle& rect); // Copy constructor
~Rectangle (); // Destructor
void print () const; // Accessor member
double getArea () const; // Accessor member
double getPerimeter () const; // Accessor member

};
/***

 * Definitions of constructors, destructor, and the accessor *
 * instance member functions *
 ***/

// Parameter constructor
Rectangle :: Rectangle (double len, double hgt)
: length (len), height (hgt)

(continued)

for23380_ch07_273-337.indd 300 06/11/18 2:45 pm

7.4 Instance	Members 301

Program 7.4	 Using	the	class	Rectangle	(Continued)

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

{
if ((length <= 0.0) || (height <= 0.0))
{

cout << "No rectangle can be made!" << endl;
assert (false);

}
}
// Copy constructor
Rectangle :: Rectangle (const Rectangle& rect)
: length (rect.length), height (rect.height)
{
}
// Destructor
Rectangle :: ~Rectangle ()
{
}
// Accessor member function: Print length and height
void Rectangle :: print() const
{

cout << "A rectangle of " << length << " by " << height << endl;
}
// Accessor member function: Get area
double Rectangle :: getArea () const
{

return (length * height);
}
// Accessor member function: Get perimeter
double Rectangle :: getPerimeter () const
{

return (2 * (length + height));
}
/***

* Application to instantiate three objects and use them *
 ***/

int main ()
{

// Instantiation of three objects
Rectangle rect1 (3.0, 4.2); // Using parameter constructor
Rectangle rect2 (5.1, 10.2); // Using parameter constructor
Rectangle rect3 (rect2); // Using copy constructor
// Operations on first rectangle
cout << "Rectangle 1: ";
rect1.print();

(continued)

for23380_ch07_273-337.indd 301 06/11/18 2:45 pm

302 Chapter 7 User-Defined	Types:	Classes

Program 7.4	 Using	the	class	Rectangle	(Continued)

74
75
76
77
78
79
80
81
82
83
84
85
86
87

cout << "Area: " << rect1.getArea() << endl;
cout << "Perimeter: " << rect1.getPerimeter() << endl << endl;
// Operations on second rectangle
cout << "Rectangle 2: ";
rect2.print();
cout << "Area: " << rect2.getArea() << endl;
cout << "Perimeter: " << rect2.getPerimeter() << endl << endl;
// Operations on third rectangle
cout << "Rectangle 3: ";
rect3.print();
cout << "Area: " << rect3.getArea() << endl;
cout << "Perimeter: " << rect3.getPerimeter() << endl << endl;
return 0;

}

Run
Rectangle 1: A rectangle of 3 by 4.2
Area: 12.6
Perimeter: 14.4

Rectangle 2: A rectangle of 5.1 by 10.2
Area: 52.02
Perimeter: 30.6

Rectangle 3: A rectangle of 5.1 by 10.2
Area: 52.02
Perimeter: 30.6

7.5 STATIC MEMBERS
As we mentioned, a class type can have two types of members: instance members and static
members. We discussed instance members in the previous section; we discuss static mem-
bers in this section. As with instance members, we can have static data members and static
member functions. We discuss them separately.

7.5.1 Static Data Members
A static data member is a data member that belongs to all instances; it also belongs to
the class itself. As an example of a static data member, assume that we want to keep track
of the number of current instances in our program. We can create a static data member,
called count, which is initialized to 0. We can change the definition of all constructors to
increment this static member every time an instance is created. We can change the defini-
tion of the destructor to decrement it when an object is destroyed (goes out of scope). A
static data member has other applications that we will see later in this chapter and in other
chapters.

for23380_ch07_273-337.indd 302 06/11/18 2:45 pm

7.5 Static	Members 303

Declaring Static Data Members
Data members belong to the class, and their declarations must be included in the class defini-
tion; static members must be qualified with the keyword static. The following shows how
we declare a static data member named count inside the class definition.

class Rectangle
{

private:
…
static int count; // Static data member

public:
…

}

Initializing Static Data Members
We know that an instance data member is normally initialized in a constructor, but a static
data member belongs to no instance, which means it cannot be initialized in a constructor.
A static data member must be initialized after the class definition. This means it must be
initialized in a global area of the program. We code it after the class definition. We must
show that it belongs to the class by adding the class name and the class scope operator (::) to
the definition, but the static qualifier should not be added. It is already qualified as a static
data member in the definition section of the class. The following shows how we initialize the
static member count, which is already declared inside the class.

int Rectangle :: count = 0; // initialization of static data member

7.5.2 Static Member Functions
After declaring and initialing a static data member, we must find a way to access it (for
example, to print its value). Since a static data member is normally private, we need a pub-
lic member function to do so. Although this can be done by an instance member function,
normally we use a static member function for this purpose. A static member function can
access the static data member through an object and also through the name of the class when
no object exists. In other words, the use of a static member function enables us to access the
corresponding static data member when an instance wants to access it or when the applica-
tion needs to access it. Note that a static member function has no host object because it is not
associated with any instance.

A static member function has no host object.

Declaring Static Member Functions
A static member function, like a static data member, belongs to the class. It should be de-
clared inside the class but must be qualified with the keyword static. The following shows
how we can add a static member function getCount to retrieve the value of the static data
member count in our Rectangle class.

for23380_ch07_273-337.indd 303 06/11/18 2:45 pm

304 Chapter 7 User-Defined	Types:	Classes

class Rectangle
{

private:
…
static int count; // Static data member

public:
static int getCount(); // Static member function
…

}

Defining Static Member Functions
A static member function must be defined outside of the class, like an instance member
function. There is no difference between the definition of a static member function and an
instance member function. If we want to see if a function definition is an instance or a static
one, we need to refer to the declaration.

int Rectangle :: getCount()
{

return count;
}

Note that we cannot use the const qualifier because there is no host object.

Calling Static Member Functions
A static member function can be called either through an instance or through the class (for
example, Rectangle). To call a static member function through an instance, we use the same
syntax we use to call an instance member function; to call a static member function through
the class, we use the name of the class and the class resolution operator (::). The following
shows both methods.

rect.getCount ();
Rectangle :: getCount();

// Through an instance
// Through the class

Warning: We cannot use a static member function to access an instance data member be-
cause a static member function does not have the hidden this pointer, which defines the
instance that needs to be referenced.

A static member function cannot be used to access instance
data members because it has no this pointer parameter.

On the other hand, an instance member function can be used to access static data
members (the this pointer is not used), but we usually avoid this. A good practice is to use
instance member functions to access instance data members and static member functions
to access static data members. We recommend that the territory of instance members in
the program be separated from static members symbolically, as shown in Figure 7.13.

for23380_ch07_273-337.indd 304 06/11/18 2:45 pm

7.5 Static	Members 305

EXAMPLE 7.4
In this example we write a program that tests a static data member and the corresponding
static member function using the Rectangle class. Program 7.5 also shows how we can count
the instances.

Instance-1
instance data

instance data

instance data

instance data

Instance-N
static data

static data

Instance member functions
(one copy of each)

Instance territory Static territory

Static member
functions

(one copy of each)

Figure 7.13	 Separation	of	instance	and	static	territory

Program 7.5	 Testing	static	members	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* A program to create objects and count them. *
 ***/

#include <iostream>
using namespace std;
/***

* Definitions of the class Rectangle *
 ***/

class Rectangle
{

private:
double length;
double height;
static int count; //Static data member

public:
Rectangle (double length, double height);
Rectangle ();
~Rectangle ();
Rectangle (const Rectangle& rect);
static int getCount (); // Static member function

};
// Initialization of static data member
int Rectangle :: count = 0;
/***

* Definitions of instance member functions *
 ***/

// Definition of parameter constructor

(continued)

for23380_ch07_273-337.indd 305 06/11/18 2:45 pm

306 Chapter 7 User-Defined	Types:	Classes

Program 7.5	 Testing	static	members	(Continued)

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Rectangle :: Rectangle (double len, double hgt)
: length (len), height (hgt)
{

count++;
}
// Definition of default constructor
Rectangle :: Rectangle ()
: length (0.0), height (0.0)
{

count++;
}
// Definition of copy constructor
Rectangle :: Rectangle (const Rectangle& rect)
:length (rect.length), height (rect.height)
{

count++;
}
// Definition of destructor
Rectangle :: ~Rectangle ()
{

count−−;
}
/***

* Definitions of the static member function *
 ***/

int Rectangle :: getCount ()
{

return count;
}

/***
* Application to create and count Rectangle objects *
 ***/

int main ()
{

{
Rectangle rect1 (3.2, 1.2);
Rectangle rect2 (1.5, 2.1);
Rectangle rect3;
Rectangle rect4 (rect1);
Rectangle rect5 (rect2);
cout << "Count of objects: " << rect5.getCount() << endl;

}

(continued)

for23380_ch07_273-337.indd 306 06/11/18 2:45 pm

7.5 Static	Members 307

Program 7.5	 Testing	static	members	(Continued)

71
72
73

cout << "Count of objects: " << Rectangle :: getCount();
return 0;

}

Run:
Count of objects: 5
Count of objects: 0

(continued)

Declaration of the static member is done in line 14 using the keyword static. Initializa-
tion of this member is done in line 23 outside the class. The definition of the function is done
in lines 53–56. We have added a nested block (lines 63–70) in the main function to create a
scope in which the objects are created. This means that outside this block, there is no instance,
but we can check the value of the static data member using the class name. We create five
instances before we go out of the block; we check the value of the static data member through
the last object and find it to be 5. After we go out of the block, all the instances are destroyed
and we can check the value of the static data member through the class name to see that it is 0.

EXAMPLE 7.5
In this example we design a class that represents a checking account. The only two instance
data members we designed for this class are the account number and balance. Although the
balance can be initialized by the user of the class during creation of an instance, the account
number cannot be entered by the user because it must be unique. To prevent duplication of
the account number, we have used a static data member, called base, that is initialized to 0
and incremented with the opening of each new account. We add 100000 to this static data
member to make it a large number as is customary. We do not need a static member function
because we are not checking the value of the static data member. Program 7.6 shows this
class and its application.

Program 7.6	 An	example	of	a	bank	account

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* A program to declare, define, and use a bank account class *
 ***/

#include <iostream>
#include <cassert>
using namespace std;

/***
* Class Definition (Declaration of all members) *
 ***/

class Account
{

private:
long accNumber;
double balance;

for23380_ch07_273-337.indd 307 06/11/18 2:45 pm

308 Chapter 7 User-Defined	Types:	Classes

Program 7.6	 An	example	of	a	bank	account	(Continued)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

static int base; // Static data member
public:

Account (double bal); // Constructor
~Account (); // Destructor
void checkBalance () const; // Accessor
void deposit (double amount); // Mutator
void withdraw (double amount); // Mutator

};
// Initialization of static data member
int Account :: base = 0;
/***

* Definition of all member functions *
 ***/

// Parameter Constructor
Account :: Account (double bal)
:balance (bal)
{

if (bal < 0.0)
{

cout << "Balance is negative; program terminates";
assert (false);

}
base++;
accNumber = 100000 + base;

cout << "Account " << accNumber << " is opened. " << endl;
cout << "Balance $" << balance << endl << endl;

}
// Destructor
Account :: ~Account ()
{

cout << "Account #: " << accNumber << " is closed." << endl;
cout << "$" << balance << " was sent to the customer." << endl <<endl;

}
// Accessor member function
void Account :: checkBalance () const
{

cout << "Account #: " << accNumber << endl;
cout << "Transaction: balance check" << endl;
cout << "Balance: $" << balance << endl<< endl;

}
// Mutator Member function
void Account :: deposit (double amount)

(continued)

for23380_ch07_273-337.indd 308 06/11/18 2:45 pm

7.5 Static	Members 309

Program 7.6	 An	example	of	a	bank	account	(Continued)

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

{
if (amount > 0.0)
{

balance += amount;
cout << "Account #: " << accNumber << endl;
cout << "Transaction: deposit of $" << amount << endl;
cout << "New balance: $" << balance << endl << endl;

}
else
{

cout << "Transaction aborted." << endl;
}

}
// Mutator member function
void Account :: withdraw (double amount)
{

if (amount > balance)
{

amount = balance;
}
balance −= amount;
cout << "Account #: " << accNumber << endl;
cout << "Transaction: withdraw of $" << amount << endl;
cout << "New balance: $" << balance << endl << endl;

}
/***

* Application (the main function) to use the account class *
 ***/

int main ()
{

// Creation of three accounts
Account acc1 (2000);
Account acc2 (5000);
Account acc3 (1000);
// Transaction
acc1.deposit (150);
acc2.checkBalance ();
acc1.checkBalance ();
acc3.withdraw (800);
acc1.withdraw (1000);
acc2.deposit (120);
return 0;

}

(continued)

for23380_ch07_273-337.indd 309 06/11/18 2:45 pm

310 Chapter 7 User-Defined	Types:	Classes

Program 7.6	 An	example	of	a	bank	account	(Continued)

Run:
Account 100001 is opened.
Balance $2000

Account 100002 is opened.
Balance $5000

Account 100003 is opened.
Balance $1000

Account #: 100001
Transaction: deposit of $150
New balance: $2150

Account #: 100002
Transaction: balance check
Balance: $5000

Account #: 100001
Transaction: balance check
Balance: $2150

Account #: 100003
Transaction: withdraw of $800
New balance: $200

Account #: 100001
Transaction: withdraw of $1000
New balance: $1150

Account #: 100002
Transaction: deposit of $120
New balance: $5120

Account #: 100003 is closed.
$200 was sent to the customer.

Account #: 100002 is closed.
$5120 was sent to the customer.

Account #: 100001 is closed.
$1150 was sent to the customer.

for23380_ch07_273-337.indd 310 06/11/18 2:45 pm

7.6 Object-Oriented	Programming 311

There are several points that we must explain about this program.

 ∙ Although we could have used a member function to let the user close each account,
we let the account be closed when the program terminates. In our design, when the
destructor is called, the account is closed and the remaining balance is sent to the bank
customer.

 ∙ We have defined a parameter constructor, which means that the system will not create
a synthesized constructor (which is not desirable in this class because of the initializa-
tion of the account number).

 ∙ Since we have not defined a copy constructor, the system has created a synthesized
copy constructor that the application can call in this situation. We must avoid this situ-
ation because we cannot have two accounts with the same account number. The best
way to prevent this situation is to declare a copy constructor and set to it the keyword
delete, which automatically prevents the system from creating a synthesized copy con-
structor, as shown below:

Account (const Account& acc) = delete;

 However, this feature was introduced in the C++11 standard, which means the pro-
gram must be compiled with a C++11 compiler.

 ∙ We have used the assert library function (discussed previously) in the constructor to
ensure that no account is opened with a negative balance.

7.6 OBJECT-ORIENTED PROGRAMMING
We now move from procedural programming to object-oriented programming. Doing so
requires that we change some procedures we were using in previous chapters. We need to
implement some changes in the way we compile and run programs. We will use the ap-
proaches we introduce in this section in future chapters.

7.6.1 Separate Files
As we have learned, when C++ is used as an object-oriented programming language, there
are normally three code sections: class definition, member function definition, and applica-
tion. So far we have used only one file that includes these sections. For the reason that we
will discuss shortly, C++ allows us to create three separate files, one for each section as
shown in Figure 7.14.

circle.h

Interface file

Implementation file

Application file

circle.cpp

circle.cpp app.cpp

Class definition

Member function
definition

Application

Figure 7.14	 Three	files	created	in	C++	for	a	class

for23380_ch07_273-337.indd 311 06/11/18 2:45 pm

312 Chapter 7 User-Defined	Types:	Classes

Interface File
The interface file is a file that contains the class definition (data member declarations and
member function declarations). It gives the general picture of the class to be used by the
other files; that is, it defines the type that is used by the other two files. The name of this file
is normally the name of the class with an h extension, such as circle.h. The letter h desig-
nates it as a header file.

Implementation File
This implementation file contains the definition of member functions. It is the code for all
member function declarations given in the interface file. The name of this file is normally
the name of the class with a cpp extension, such as circle.cpp, although the extension may
vary in different C++ environments.

Application File
The application file includes the main function that is used to instantiate objects and let each
object perform operations on themselves. The application file must also have the extension
cpp, but the name of the file is usually chosen by the user. The name we use is app.cpp,
although the extension may vary in different C++ environments.

7.6.2 Separate Compilation
After creating three separate files, we must compile them to create an executable file. In
C++, the process is referred to as separate compilation (Figure 7.15).

Note that although the process is the same for each operating system, the name of
the compilation commands and the name of the created files may be different in different
environments.

include include

Se
pa

ra
te

ly
 c

om
pi

le
d

Se
pa

ra
te

ly
 c

om
pi

le
d

Any name

ci
rc

le
. o

Executable file

Compiler Compiler

ap
p.

o

Circle.h

ci
rc

le
.c

pp

ap
p.

cp
p

Interface file

Application file

Implementation file

Object file

Executable file

Legend:

Linker

Figure 7.15	 Process	of	separate	compilation	

for23380_ch07_273-337.indd 312 06/11/18 2:45 pm

7.6 Object-Oriented	Programming 313

Step-by-Step Process
The following is the step-by-step process:

a. The interface file is created containing only the class definition (declaration of data
members and member functions). This file must be included in the implementation file
and the application file, as we show shortly. In our Circle class, we can call this file
circle.h.

b. The implementation file (member function definitions) is created with the interface file
by including an include directive. The option −c indicates that we want only compila-
tion.

c++ −c circle.cpp

 If the compilation is successful, we have an object file with the extension o. In our
example, the name of the file would be circle.o.

c. The application file (the main function) is created in which the interface file is also
added to the beginning of the file using the include directive. This file is compiled using
the following command. The option −c indicates that we want only compilation.

c++ −c app.cpp

 If the compilation is successful, we have an object file with the extension o. In our
example, the name of the file would be app.o.

d. We then link the two object files together with the −o option to create an executable
file as shown below:

c++ −o application circle.o app.o

e. The result is an executable file that can be run to as shown below:

c++ application

Example
Here we apply the process of separate compilation on our Circle class. We will do the same
for all classes that we design from now on.

Creating the Interface File We create the interface file that includes the class definition
(declaration of data members and member functions) as shown in Program 7.7. The only three
lines that are new in this file are lines 7, 8, and 25. These three lines prevent the duplication
of this file by other files in the compilation that also include it. We discuss this issue shortly.

Program 7.7	 The	interface	file

1
2
3
4
5
6

/***
* This is the interface file that defines the class Circle. *
* It gives declaration of data members and member functions. *
* This file will be included at the top of the implementation *
* and application files. *
 ***/

(continued)

for23380_ch07_273-337.indd 313 06/11/18 2:45 pm

314 Chapter 7 User-Defined	Types:	Classes

Program 7.7	 The	interface	file	(Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#ifndef CIRCLE_H
#define CIRCLE_H
#include <iostream>
#include <cassert>
#include "circle.h"
using namespace std;
// Class Definition
class Circle
{

private:
double radius;

public:
Circle (double radius); // Parameter constructor
Circle (); // Default constructor
Circle (const Circle& circle); // Copy constructor
~Circle (); // Destructor
void setRadius (double radius); // Mutator function
double getRadius () const; // Accessor function
double getArea () const; // Accessor function
double getPerimeter () const; // Accessor function

};
#endif

Creating the Implementation File Program 7.8 shows the implementation containing
the definitions of all member functions. To compile this file separately, the compiler must
see the declaration of the data member and member functions. We include a copy of the
interface file at line 8. Note that the include statement actually copies, line by line, all decla-
rations and inserts them after line 8.

Program 7.8	 The	implementation	file	

1
2
3
4
5
6
7
8
9

10
11
12

/***
* This is the implementation file that defines the definition *
* of all member functions. A copy of the interface file is *
* included at the top to allow compilation of this file. *
 ***/

include "circle.h"
/***

* The parameter constructor with one argument that initializes *
* a circle with the given value. It uses the assert function to *
* validate that the radius is a positive double value. If not, *
* the program is aborted. *
 ***/

(continued)

for23380_ch07_273-337.indd 314 06/11/18 2:45 pm

7.6 Object-Oriented	Programming 315

Program 7.8	 The	implementation	file	(Continued)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Circle :: Circle (double rds)
: radius (rds)
{

if (radius < 0.0)
{

assert (false);
}

}
/***

* The default constructor that initializes a circle set to 0.0. *
* It does not need an assertion. *
 ***/

Circle :: Circle ()
: radius (0.0)
{
}
/***

* The copy constructor that copies the radius of another circle *
* to create a new one. The source circle is already validated, *
* which means that we do not need validation. *
 ***/

Circle :: Circle (const Circle& circle)
: radius (circle.radius)
{
}
/***

* A destructor that cleans up an object when the application is *
* terminated. *
 ***/

Circle :: ~Circle ()
{
}
/***

* The setRadius function is defined to change the circle *
* by decreasing or increasing the size of the radius. It needs *
* validation because the new size of must be a positive value. *
 ***/

void Circle :: setRadius (double value)
{

radius = value;
if (radius < 0.0)
{

assert (false);

(continued)

for23380_ch07_273-337.indd 315 06/11/18 2:45 pm

316 Chapter 7 User-Defined	Types:	Classes

Program 7.8	 The	implementation	file	(Continued)

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

}
}
/***

* The getRadius is a function that returns the radius *
* of an object. It needs the const modifier to prevent the *
* accidental change of the host object. *
 ***/

double Circle :: getRadius () const
{

return radius;
}
/***

* The getArea accessor function returns the area of the host *
* object. It needs the const modifier to prevent the accidental *
* change of the host object. *
 ***/

double Circle :: getArea () const
{

const double PI = 3.14;
return (PI * radius * radius);

}
/***

* The getPerimeter accessor function returns the perimeter of *
* the host object. It needs the const modifier to prevent the *
* accidental change of the host object. *
 ***/

double Circle :: getPerimeter () const
{

const double PI = 3.14;
return (2 * PI * radius);

}

Creating the Application File Program 7.9 is the same as we have seen before with one
exception: The contents of the interface file is added at the beginning using the include
macro.

Program 7.9	 The	application	file	 	

1
2
3
4
5
6

/***
* This is the application file that instantiates objects and *
* lets the object operate on themselves using member functions. *
* To be to compiled, it needs a copy of the interface file. *
 ***/

include "circle.h"

(continued)

for23380_ch07_273-337.indd 316 06/11/18 2:45 pm

7.6 Object-Oriented	Programming 317

Program 7.9	 The	application	file	(Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

int main ()
{

// Instantiation of first object and applying operations
Circle circle1 (5.2);
cout << "Radius: " << circle1.getRadius() << endl;
cout << "Area: " << circle1.getArea() << endl;
cout << "Perimeter: " << circle1.getPerimeter() << endl;
cout << endl;
// Instantiation of second object and applying operations
Circle circle2 (circle1);
cout << "Radius: " << circle2.getRadius() << endl;
cout << "Area: " << circle2.getArea() << endl;
cout << "Perimeter: " << circle2.getPerimeter() << endl;
cout << endl;
// Instantiation of third object and applying operations
Circle circle3;
cout << "Radius: " << circle3.getRadius() << endl;
cout << "Area: " << circle3.getArea() << endl;
cout << "Perimeter: " << circle3.getPerimeter() << endl;
cout << endl;
return 0;

}

Compiling, Linking, and Running The following shows the compiling, the linking, and
the running processes. Note that these processes are separate from the creation of other files.

c++ −c circle.cpp
c++ −c app.cpp
c++ −o application circle.o app.o
application

// Compilation of implementation file
// Compilation of application file
// Linking of two compiled object files
// Running the executable file

Radius: 5.2
Area: 84.9056
Perimeter: 32.656

Radius: 5.2
Area: 84.9056
Perimeter: 32.656

Radius: 0
Area: 0
Perimeter: 0

7.6.3 Preventing Multiple Inclusion
If we include the contents of the same header file more than once in a compilation file,
the compiler issues an error and the compilation is aborted. To prevent this, we use the

for23380_ch07_273-337.indd 317 06/11/18 2:45 pm

318 Chapter 7 User-Defined	Types:	Classes

following preprocessor directives: define, ifndef (if not defined), and endif. In this section
we learn how to use these three preprocessor directives to ignore a duplicate inclusion of
a header file. In the file that will be included in another file, such as the interface file, we
add these three directives as shown in Figure 7.16.

These three directives work with a flag (a constant). The flag we have used in the fig-
ure is the name of the file with an underscore followed by the letter H, all in uppercase. This
is a convention; any name can be used if consistent. The directive ifndef follows the rule of
the if statement. If the directive constant has not been defined, the body of ifndef is included.
In other words, the code in CIRCLE_H is included in the file. If the flag is already defined,
the pre-process ignores the rest of the text and jumps to the endif directive.

Now let us see what happens when we include the file cirlce.h more than once in our
program or include another file that also has the include directive. What we get is two copies
of the circle.h contents in our file as shown in Figure 7.17.

When the pre-processor encounters the first ifndef directive, since the flag is not de-
fined yet, it defines it (next line) and adds the rest of code until it encounters the endif di-
rective, which means that the contents of the header file are added to the source file. When
the pre-processor encounters the second ifndef directive, since the flag is already defined, it
immediately jumps to the endif directive and does not include the contents of the header file
again. That is what we need to accomplish. You may be wondering how a file gets included
twice. Generally this happens when two different files, each with the same include file, are
added to a third file.

7.6.4 Encapsulation
You may wonder why we need separate compilations. Separate compilations allow us to
achieve one of the goals of object-oriented programming, encapsulation. Encapsulation in

circle.h

// contents of the circle.h file

#ifndef CIRCLE_H
#define CIRCLE_H

#endif

Figure 7.16	 The	contents	of	
the	header	file	after	adding	three	
directives

circle.cpp or app.cpp

Included

Ignored

// contents of the circle.h

#ifndef CIRCLE_H
#define CIRCLE_H

#endif

// contents of th circle.h

#ifndef CIRCLE_H
#define CIRCLE_H

#endif

Figure 7.17	 How	conditional	directives	ignore	duplicate	
inclusion

for23380_ch07_273-337.indd 318 06/11/18 2:45 pm

7.6 Object-Oriented	Programming 319

object-oriented programming allows us to distinguish between the design of a class and the
use of the class.

Design of the Class
The designer creates the interface file and the implementation file. The designer makes the
interface file public. The implementation file is compiled, but only the compiled version is
made public; the source code remains private. The designer can change the implementation
file at any time, re-compile it, and re-announce it.

Use of the Class
The user receives a copy of the interface file and the compiled version of the implementa-
tion file. The user adds the interface to her application file and compiles it. He then links his
own compiled file and the compiled file received from the designer to create an executable
file.

Effect
The effective result is that the designer protects both the interface file and the implementa-
tion file from any changes by the user as follows:

 ∙ The interface file is protected from change because there are two copies of it used in
the process. The designer uses one copy and the user uses another copy. If the user
changes the copy he received publicly, the separate-compilation process does not work.

 ∙ The implementation file is protected from change because the designer sends the com-
piled version of the file to the user. Compilation is a one-way process. The user cannot
get the original file from the compiled file to change it.

This means the whole design is encapsulated in a box and cannot be changed by the user; the
user can only create instances and let the instances operate on themselves.

Public Interface
There is one more step before users can effectively instantiate objects and use them. Al-
though users can print and look at the interface created by the designer, the designer nor-
mally creates what is called a public interface, which is the declaration of the member
functions with some explanation so users will understand how to call the member functions
in their applications.

The public interface is a text file based on the function
declaration that tells the user of the class how to use it.

Compared with a real-life object such as a product, the public interface is the manual
we receive from the manufacturer that states how to use the product.

EXAMPLE 7.6
Table 7.5 shows an example of the public interface for our Circle class (as developed so far).
We can always add more explanation if needed to make the user comfortable.

for23380_ch07_273-337.indd 319 06/11/18 2:45 pm

320 Chapter 7 User-Defined	Types:	Classes

7.7 DESIGNING CLASSES
In this section we create two new types using classes: one to represent a fraction and one to
represent a timer.

7.7.1 Fraction Class
A fraction, also called a rational number, is a ratio of two integers such as 3/4, 1/2,
7/5, and so on. There is no built-in type in C++ that can represent a fraction; we need
to create a new type for it with two data members of type integer. We call the first
the numer (abbreviation for numerator) and the second the denom (abbreviation for
denominator).

We create three constructors, one destructor, some accessors, and some mutators. We
also add a private member function called normalize, which is used to handle class invari-
ants. We add a private member function called gcd that finds the greatest common divisor,
as discussed in Chapter 5. This function is called by the normalize function.

Note that we play the roles of both the designer and the user, but in real life these two
roles are performed by different people.

Constructors and Destructor

Circle	::	Circle	()
A	default	constructor	to	build	a	circle	with	length	=	0.0	and	height	=	0.0.			

Circle	::	Circle	(double	radius)	
A	parameter	constructor	to	build	a	circle	with	the	given	radius.

Circle	::	Circle	(const	Circle&	circle)
A	copy	constructor	to	build	a	circle	the	same	as	an	existing	circle.	

Circle	::	~Circle	().
The	destructor	to	clean	up	the	circle	object	that	goes	out	of	scope.

Accessor Functions

Circle	::	double	getRadius	()	const
An	accessor	function	that	returns	the	radius	of	the	host	object.

Circle	::	double	getArea	()	const	
An	accessor	function	that	returns	the	area	of	the	host	object.

Circle::	double	getPerimeter	()	const
An	accessor	function	that	returns	the	perimeter	of	the	host	object.

Mutator Functions

Circle::	void	setRadius	(double	radius)
A	mutator	function	that	changes	the	radius	of	the	host	object.

Table 7.5 The public interface for the Circle class

for23380_ch07_273-337.indd 320 06/11/18 2:45 pm

7.7 Designing	Classes 321

Invariants
The first things we must consider when defining a new class are the invariants, as we dis-
cussed earlier in the chapter. The invariants that concern us in the fraction objects are three
conditions:

 ∙ The numerator and the denominator should not have a common factor. For example 6/9
should be reduced to 2/3.

 ∙ The denominator cannot be 0. A fraction such as 2/0 is undefined.
 ∙ The sign of the fraction is the product of the sign of the numerator and denominator

and should be set as the sign of the numerator.

We create two private member functions to take care of the invariants. The gcd function
finds the greatest common divisor between the numerator and denominator. The normalized
function takes care of the three invariants using the gcd function.

Interface File
We now create the interface file, fraction.h. The interface file is the definition of the class.
Although the declarations of private data members and private member functions (if any)
are not part of the public interface, they must be in this file because we will need them when
this file is included in the other two compiled files.

Data Members Our fraction objects will have only two data members: the numerator,
which we call numer; and the denominator, which we call denom. Both of these data mem-
bers can be of type int because we normally do not use fractions with a very large numerator
or denominator.

Member Functions We have many member functions that can be applied to the data mem-
bers. We can also have member functions that operate on multiple objects created from the
class, such as compare two fractions or add two fractions. We postpone the second category
until the next chapter.

Code Program 7.10 shows the interface file. Note that the instance member functions are
all public and accessible through the class instances, but we also have two helper functions

Program 7.10	 The	fraction.h	file

1
2
3
4
5
6
7
8
9

10
11

/***
* The interface file fraction.h defining the class Fraction *
 ***/

#include <iostream>
using namespace std;

#ifndef FRACTION_H
#define FRACTION_H

class Fraction
{

(continued)

for23380_ch07_273-337.indd 321 06/11/18 2:45 pm

322 Chapter 7 User-Defined	Types:	Classes

Program 7.10	 The	fraction.h	file	(Continued)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// Data members
private:

int numer;
int denom;

// Public member functions
public:

// Constructors
Fraction (int num, int den);
Fraction ();
Fraction (const Fraction& fract);
~Fraction ();
// Accessors
int getNumer () const;
int getDenom () const;
void print () const;
// Mutators
void setNumer (int num);
void setDenom (int den);

// Helping private member functions
private:

void normalize ();
int gcd (int n, int m);

};
#endif

to handle the class invariants (normalize and gcd). They are declared private so that they are
only accessible through the class parameter constructor.

Implementation File
We now write the function definition for all member functions (public and private) defined
in the interface file. Note that we have added the interface file as a header file in this program
(the compiler needs to see the declarations before compiling the definitions). Program 7.11
shows the implementation file.

 ∙ We have added the <cassert> header file in line 7 to allow the use of the assert macro
in line 101, which is needed to abort the program if the denominator is 0.

 ∙ Lines 104 to 108 take care of second condition of the class invariant. If the denomina-
tor is negative, we change both numerator and denominator to move the negative sign
to the numerator.

 ∙ Lines 110 to 112 take care of the third condition of the class invariant. We use the
greatest common divisor function, as discussed in previous chapters, to find the
greatest divisor between numerator and denominator and then divide both by this
divisor. Note that we use the absolute values of numerator and denominator when
computing gcd.

for23380_ch07_273-337.indd 322 06/11/18 2:45 pm

7.7 Designing	Classes 323

Program 7.11	 The	fraction.cpp	file

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

/***
* The implementation file fraction.cpp defining the instance *
* member functions and helper functions for the Fraction class *
 ***/

#include <iostream>
#include <cmath>
#include <cassert>
#include "fraction.h"
using namespace std;

/***
* The parameter constructor gets values for the numerator *
* and denominator, initializes the object, and normalizes the *
* value of the numerator and the denominator according to the *
* conditions defined in the class invariant. *
 ***/

Fraction :: Fraction (int num, int den = 1)
: numer (num), denom (den)
{

normalize ();
}
/***

* The default constructor creates a fraction as 0/1. It does *
* not need validation. *
 ***/

Fraction :: Fraction ()
: numer (0), denom (1)
{
}
/***

* The copy constructor creates a new fraction from an exisiting *
* object. It does not need normalization because the source *
* object is already normalized. *
 ***/

Fraction :: Fraction (const Fraction& fract)
: numer (fract.numer), denom (fract.denom)
{
}
/***

* The destructor simply cleans up a fraction for recycling. *
 ***/

Fraction :: ~Fraction ()
{
}

(continued)

for23380_ch07_273-337.indd 323 06/11/18 2:45 pm

324 Chapter 7 User-Defined	Types:	Classes

Program 7.11	 The	fraction.cpp	file	(Continued)

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

/***
* The getNumer function is an accessor function returning the *
* numerator of the host object. It needs the const modifier. *
 ***/

int Fraction :: getNumer () const
{

return numer;
}
/***

* The getDenum function is an accessor function returns the *
* denominator of the host object. It needs the const modifier. *
 ***/

int Fraction :: getDenom () const
{

return denom;
}
/***

* The print function is an accessor function with a side effect *
* that display the fraction object in the form x/y. *
 ***/

void Fraction :: print () const
{

cout << numer << "/" << denom << endl;
}
/***

* The setNumer is a mutator function that changes the numerator *
* of an existing object. The object needs normalization. *
 ***/

void Fraction :: setNumer (int num)
{

numer = num;
normalize();

}
/***

* The setDenom is a mutator function that changes the denominator *
* of an existing object. The object needs normalization. *
 ***/

void Fraction :: setDenom (int den)
{

denom = den;
normalize();

}

(continued)

for23380_ch07_273-337.indd 324 06/11/18 2:45 pm

7.7 Designing	Classes 325

Program 7.11	 The	fraction.cpp	file	(Continued)

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

/***
* Normalize function takes care of three fraction invariants. *
 ***/

void Fraction :: normalize ()
{

// Handling a denominator of zero
if (denom == 0)
{

cout << "Invalid denomination. Need to quit." << endl;
assert (false);

}
// Changing the sign of denominator
if (denom < 0)
{

denom = − denom;
numer = − numer;

}
// Dividing numerator and denominator by gcd
int divisor = gcd (abs(numer), abs (denom));
numer = numer / divisor;
denom = denom / divisor;

}
/***

* The gcd function finds the greatest common divisor between *
* the numerator and the denominator. *
 ***/

int Fraction :: gcd (int n, int m)
{

int gcd = 1;
for (int k = 1; k <= n && k <= m; k++)
{

if (n % k == 0 && m % k == 0)
{

gcd = k;
}

}
return gcd;

}

Application File
The application file is created by the user. Program 7.12 is an example to show what it looks
like. The only thing the user needs to include is a copy of the interface file (line 4). We ran
the program once and entered a zero for the denominator; it was aborted (not shown here).

for23380_ch07_273-337.indd 325 06/11/18 2:45 pm

326 Chapter 7 User-Defined	Types:	Classes

Program 7.12	 Application	file	(app.cpp)		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/***
 * The application file app.cpp uses the Fraction objects. *
 **/

#include "fraction.h"
#include <iostream>
using namespace std;

int main ()
{

// Instantiation of some objects
Fraction fract1 ;
Fraction fract2 (14, 21);
Fraction fract3 (11, −8);
Fraction fract4 (fract3);
// Printing the object
cout << "Printing four fractions after constructed: " << endl;
cout << "fract1: ";
fract1. print();
cout << "fract2: ";
fract2. print();
cout << "fract3: ";
fract3. print();
cout << "fract4: ";
fract4. print();
// Using mutators
cout << "Changing the first two fractions and printing them:" << endl;
fract1.setNumer(4);
cout << "fract1: ";
fract1.print();
fract2.setDenom(−5);
cout << "fract2: ";
fract2.print();
// Using accessors
cout << "Testing the changes in two fractions:" << endl;
cout << "fract1 numerator: " << fract1.getNumer() << endl;
cout << "fract2 numerator: " << fract2.getDenom() << endl;
return 0;

}

Compiling, Linking, and Running
The following shows the compiling, the linking, and the running processes. Note that this
process is separate from the creation of other files.

for23380_ch07_273-337.indd 326 06/11/18 2:45 pm

7.7 Designing	Classes 327

c++ −c fraction.cpp
c++ −c app.cpp
c++ −o application fraction.o app.o
application

// Compilation of implementation file
// Compilation of application file
// Linking of two compiled object files
// Running the executable file

Run:
Printing four fractions after constructed:
fract1: 0/1
fract2: 2/3
fract3: −11/8
fract4: −11/8
Changing the first two fractions and printing them:
fract1: 4/1
fract2:−2/5
Testing the changes in two fractions:
Numerator of fract1: 4
Denominator of fract2: 5

The second object is normalized; 14/21 is changed to 2/3. The third object is also normal-
ized; 11/−8 is changed to −11/8. The numerator of the first object is changed and reprinted
as 4/1. The denominator of second object is changed to −5, but it was normalized and printed
as −2/5. Finally, we use the accessor functions to get the numerator of the first object and
denominator of the second object.

7.7.2 Time Class
We now add a Time class. This class, like time used in real life, has three data members:
hours, minutes, and seconds. We have a parameter constructor and a default constructor, but
we do not need a copy constructor (it does not make sense to have two objects showing the
same time). We have three accessor functions to get hours, minutes, and seconds, respec-
tively. We use only one mutator function, which we call tick, that, each time it is called,
moves the time object 1 second forward.

Invariants
Before writing the code for this class, we must consider the invariants of the class. We must
focus on the following two conditions:

 ∙ All three data members must be nonnegative; otherwise, the program is aborted. We
cannot have a negative time.

 ∙ The hours should be between 0 and 23 (we assume military time), the minutes should
be between 0 and 59, and the seconds should also be between 0 and 59. We use modulo
arithmetic to keep these values in the range. If the value of the seconds is greater than
59, we must extract the corresponding minutes from it and add them to the minutes.
We do the same with the seconds. In the case of the hours, the extracted values are
discarded.

We create a private member function called normalize to take care of the invariants.

Interface File
We now create the interface file, time.h. The interface file is the definition of the class.

for23380_ch07_273-337.indd 327 06/11/18 2:45 pm

328 Chapter 7 User-Defined	Types:	Classes

Data Members We need three private data members: hours, minutes, and seconds. All are
of type int.

Member Functions There are many member functions that could be applied not only on
data members but also on the objects created from the class. For example, we can compare
two times, determine the time elapsed between two times, and so on. We defer defining these
operations to future chapters. In this chapter, we use member functions that act as construc-
tors, destructor, accessors of data members, and mutators of data members.

Code Program 7.13 shows the interface file. This is just a header file and will be included
in both the application file and the user file.

Implementation File
We now write the function definition for all member functions (public and private) defined
in the interface file. Note that we have added the interface file as a header file in this pro-
gram. Program 7.14 shows the implementation file.

Program 7.13	 The	interface	file	(time.cpp)	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* The interface file for time.h class *
 ***/

#include <iostream>
using namespace std;

#ifndef TIME_H
#define TIME_H

class Time
{

private:
int hours;
int minutes;
int seconds;

public:
Time (int hours, int minutes, int seconds);
Time ();
~Time ();
void print() const;
void tick();

private:
void normalize (); // Helping function

};
#endif

for23380_ch07_273-337.indd 328 06/11/18 2:45 pm

7.7 Designing	Classes 329

Program 7.14	 The	implementation	file	(time.cpp)	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

/***
* The impletation file time.cpp for functions in Time class *
 ***/

#include <cmath>
#include <cassert>
#include "time.h"

/***
* The parameter constructor accepts three values corresponding *
* to the data members from the user and initializes and object. *
* It uses the normalize function to ensure that hours, minutes, *
* and seconds are in the predefined ranges. *
 ***/

Time :: Time (int hr, int mi, int se)
: hours (hr), minutes (mi), seconds (se)
{

normalize ();
}
/***

* The default constructor creates a time object. *
 ***/

Time :: Time ()
: hours (0), minutes (0), seconds (0)
{
}
/***

* The destructor just cleans up the object(s) before recycling. *
 ***/

Time :: ~Time ()
{
}
/***

* The print function is an accessor function that has a side *
* effect: it displays the time. *
 ***/

void Time :: print () const
{

cout << hours << ":" << minutes << ":" << seconds << endl;
}
/***

* The tick function is a mutator function that increments the *
* number of seconds. *
 ***/

(continued)

for23380_ch07_273-337.indd 329 06/11/18 2:45 pm

330 Chapter 7 User-Defined	Types:	Classes

Program 7.14	 The	implementation	file	(time.cpp)	(Continued)

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

void Time :: tick ()
{

seconds++;
normalize();

}
/***

* The normalize function checks the invariants of the class. *
* It either aborts the creation of the class or normalizes the *
* the hours, minutes, and the seconds. *
 ***/

void Time :: normalize ()
{

// Handling negative data members
if ((hours < 0) || (minutes < 0) || (seconds < 0))
{

cout << "Data are not valid. Need to quit!" << endl;
assert (false);

}
// Handling out of range values
if (seconds > 59)
{

int temp = seconds / 60;
seconds = seconds % 60;
minutes = minutes + temp;

}
if (minutes > 59)
{

int temp = minutes / 60;
minutes = minutes % 60;
hours = hours + temp;

}
if (hours > 23)
{

hours = hours % 24;
}

}

Please note the following about this program:

 ∙ We have added the <cassert> header file so we can use the assert macro and thereby
prevent negative values for hours, minutes, and seconds.

 ∙ In the normalize function, we have used three if statements to take care of values out
of range.

for23380_ch07_273-337.indd 330 06/11/18 2:45 pm

7.7 Designing	Classes 331

Program 7.15	 Application	file	(app.cpp)	to	test	the	Time	class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The application file app.cc to use the Time class *
 ***/

#include "time.h"

int main ()
{

// Instantiation of a time object
Time time (4, 5, 27);
// Printing the original time
cout << "Original time: " ;
time.print();
// adding 143500 seconds to the original time
for (int i = 0; i < 143500; i++)
{

time.tick ();
}
// Printing the time after 143500 ticks
cout << "Time after 143500 ticks " ;
time.print();
return 0;

}

Application File
The user creates the application file. Program 7.15 is just one example of an application file.
The only thing the user must do is include a copy of the interface file.

Compiling, Linking, and Running
The following shows the compiling, the linking, and the running processes.

c++ −c time.cpp
c++ −c app.cpp
c++ −o application time.o app.o
application

// Compilation of implementation file
// Compilation of application file
// Linking of two object files
// Running the executable file

Run:
Original time: 4:5:27
Time after 143500 ticks: 19:57:7

Note that after ticking for 143500 seconds, one day passes and we move to hour 19,
minute 57, and seconds. We can verify this easily.

for23380_ch07_273-337.indd 331 06/11/18 2:45 pm

332 Chapter 7 User-Defined	Types:	Classes

K e y T e r m s

access modifier
accessor member function
application file
attribute
behavior
class
class body
class definition
class header
class invariant
constructor
data member
destructor
encapsulation
explicit inline function
fraction
host object
implementation file

implicit inline function
inline function
instance
instance data member
instance member function
interface file
member function
member selector operator
mutator member function
object
parameter constructor
public interface
separate compilation
static data member
static member function
struct
this pointer

Object-oriented concepts include types and instances, attributes and behaviors, and data
members and member functions. A type is a concept (abstraction) from which an instance
(concrete entity) is created. Attributes are the characteristics of an object, such as name and
address, that we are interested in. A behavior is an action of an object. A data member of an
object is a variable whose value represents an attribute. A member function, then, represents
one of the behaviors of an object.

A class definition is made up of the reserved word class followed by its name and the
body, which is a block that holds the declaration of data members and member functions.
There are three access modifiers that determine who can see a data member or member
function: private, protected, and public. Private data members can be accessed only through
member functions. Member functions, on the other hand, are usually public and can be ac-
cessed through an instance. Constructors and destructors are special member functions that
construct or destroy a class instance. The state of an object is the combination of the values
stored in its data members.

In object-oriented programming, instantiation of an object is done by a special member
function called a constructor, and the cleanup is done by a special member function called
a destructor.

The instance data members define the attributes of each instance, which means that
each instance needs to encapsulate all instance data members. An instance member function
defines one of the behaviors of an instance.

A static data member is one that belongs to all instances and the class. It cannot be ini-
tialized by a constructor; it needs to be initialized in the global area of the program.

In object-oriented programming, we divide the three sections of a program into three sepa-
rate files: interface file, implementation file, and application file. The interface file is included at
the beginning of the implementation file and the application file. These two files are compiled
separately and linked together. Separate compilation allows us to reveal the interface of the class
to the user but to hide the implementation from the user. The principle is called encapsulation.

S u m m a r y

for23380_ch07_273-337.indd 332 06/11/18 2:45 pm

Problems 333

P r o b l e m s

PR-1. Which of the following is the declaration of a parameter constructor? Which
is the declaration of a default constructor? Which is the declaration of a copy
constructor?

Fun ();
Fun (int x);
Fun (const Fun& fun);

PR-2. What is the error in the following declaration of a constructor for the class
Rectangle?

int Rectangle (int length, int height);

PR-3. What is the error in the following declaration of a destructor for the class
Rectangle?

int ~Rectangle ();

PR-4. Change the definition of the following constructor to use initialization instead of
assignment.

Rectangle :: Rectangle (int len, int wid)
{

length = len;
height = wid;

}

PR-5. Given the following class definition:

class Sample
{

private:
 int x;
public:
 int getX () const;

};

 Find the error (if any) in each of the following constructor calls.

Sample first (4):
Sample second ();
Sample third;

PR-6. Given the following class definition:

class Sample
{

private:
 int x;
public:
 Sample (int x);
 int getX () const;

};

for23380_ch07_273-337.indd 333 06/11/18 2:45 pm

334 Chapter 7 User-Defined	Types:	Classes

 Find the error in each of the following instantiations.

Sample first (4);
Sample second (4, 8);
Sample third;

PR-7. Find the error(s) in the following class definition.

class First
private:
 double x;
 double y;
public:
 double getX () const;
 double getY () const;

PR-8. Find the error (s) in the following class definition.

class Second
{

private:
 double x;
 double y;
public:
 bool Second (int x, int y);
 double getX () const;
 double getY () const;

};

PR-9. Find the error(s) in the following class definition.

class Third
{

private:
 int x;
 int y;
public:
 ~Third (int z);
 int getX () const;
 int getY () const;

};

PR-10. If x is a data member of the class, find the error in the following member function
definition of the class:

Fun :: int getX () const
{

return x;
}

PR-11. Which of the following is the proper definition of an accessor function of the class
Sample?

type Sample :: getValue () const
{

type Sample :: getValue ()
{

for23380_ch07_273-337.indd 334 06/11/18 2:45 pm

Programs 335

 return . . . ;
}

 return . . . ;
}

PR-12. Which of the following can be a mutator function for the class Sample?

void Sample :: setValue () const
{

. . . ;
}

void Sample :: setValue ()
{

. . . ;
}

PR-13. Assume we have the following class definition. Write the definition of the two
member functions.

class Fun
{

private:
 int x;
pubic:
 Fun (int);
 Fun (const Fun&);

};

PR-14. Show how an application can use the parameter constructor and the copy
constructor defined in PR-13.

P r o g r a m s

PRG-1. Create a class named One with two integer data members, x and y, and two
member functions getX and getY. Define the interface file, the implementation
file, and an application file that instantiates one object from the class and prints
the values of x and y.

PRG-2. Create a class named Two with one integer data member named x and one
character data member named a. Define four member functions getX, getA, setX,
and setA. Define the interface file, the implementation file, and an application
file that instantiates one object from the class and prints the values of data
members. Then set the values of data members through the mutator functions
and print their values again.

PRG-3. A point in planar Cartesian coordinates is normally defined with two integer
values (x and y). Define a class named Point with two data members. Define a
print function that returns the coordinates of a Point object. Define functions
to tell the user if a point is on the left side, right side, above, or below another
point. Define a function to find the distance between two points as shown
below:

distance = sqrt ((x2 − x1)2 + (y2 − y1)2)

PRG-4. Code the interface file, the implementation file, and the application file for a
class name Person with the following members:

a. Data members are name and age.
b. Accessor member functions are getName and getAge.

for23380_ch07_273-337.indd 335 06/11/18 2:45 pm

336 Chapter 7 User-Defined	Types:	Classes

c. Mutator member functions are setName and setAge.
d. There is a parameter constructor and a destructor.

PRG-5. Define a class named Triangle as follows:

a. Data members are firstSide, secondSide, and thirdSide.
b. Use a constructor that asserts that the sum of any two sides to be greater than

the third one.
c. Accessor member functions are getSides,getPerimeter, and getArea. To find

the perimeter and area of a triangle, use the following.

perimeter = a + b + c
area = sqrt ((p) ∗ (p - a) ∗ (p - b) ∗ (p - c)) // p = perimeter / 2

d. Define a constructor for the class.

PRG-6. Define a class name Address as follows:

a. Data members are houseNo and streetName, cityName, stateName, and
zipcode.

b. Define a parameter constructor and a destructor.
c. Define an accessor member function to print the address.

PRG-7. Define a class name Employee as follows:

a. Data members are name, age, serviceYear, salary.
b. Define a parameter constructor and a destructor.
c. Accessor member functions are getName, getAge, getServiceYear, and getSalary.

PRG-8. In object-oriented programming, we can create a class that helps to find the
solution to a mathematical equation. One of the equations we often need to solve
in algebra is the quadratic equation as shown below:

ax2 + bx + c = 0

 The roots of this equation are:

x1 = −b + sqrt (b2 − 4 * a * c) x2 = −b − sqrt (b2 − 4 * a * c)

 The phrase inside the parentheses is called the discriminant. If the value of the
discriminant is positive, the equation has two roots. If it is zero, the equation
has one root. If it is negative, the equation has no roots. Create a class named
Quadratic that finds the roots of a quadratic equation when the coefficients a, b,
and c are given.

PRG-9. We wrote a program in Chapter 4 to find the day of the week for any given date
using Zeller’s congruence:

weekday = (day + 26 * (month + 1) / 10 +
 year + year / 4 − year /100 + year /400) % 7

 To show that any program written in the procedural paradigm can be written in
the object-oriented paradigm, design a class Zeller with three data members—day,
month, and year—to find the corresponding week day (Saturday to Sunday).

for23380_ch07_273-337.indd 336 06/11/18 2:45 pm

Programs 337

PRG-10. Design a Complex class representing complex numbers. A complex number in
mathematics is defined as x + i y where x defines the real part of the number
and y is the imaginary part. The letter i represents the square root of −1 (which
means i2 is −1). Include functions to add one complex number to the host
object, to subtract one complex number from the host object, to multiply one
complex number by the host object, and to divide one complex number by the
host object:

(x1 + i y1) + (x2 + i y2) = (x1 + x2) + i (y1 + y2)
(x1 + i y1) − (x2 + i y2) = (x1 − x2) + i (y1 − y1)
(x1 + i y1) * (x2 + i y2) = (x1x2 − y1y2) + i (x1y2 + x2y1)
(x1 + i y1) / (x2 + i y2) = ((x1x2 + y1y2) + i −x1y2 + x2y1)) / denominator
In which denominator = x2

2 + y2
2

for23380_ch07_273-337.indd 337 06/11/18 2:45 pm

338

8.1 ONE-DIMENSIONAL ARRAYS
A one-dimensional array is a sequence of data items of the same built-in or user-defined
type. A compound type is a structure that contains two types; the array is the first type and
the data type in the array is the second type.

An array is a compound type that defines a
sequence of data items of the same type.

8.1.1 Array Attributes
Arrays have three attributes—type, capacity, and size—as shown in Figure 8.1. The figure
shows three arrays, each with different attributes. We discuss each attribute next.

After discussing most of the fundamental built-in data types and the user defined type, it is
time to discuss the first compound data type: the array. We will discuss other compound data
types in the next chapter.

Objectives

After you have read and studied this chapter, you should be able to:

•	 Introduce a one-dimensional array as a sequence of elements in which all elements must be of
the same type (fundamental or user-defined).

•	Discuss the three attributes of a one-dimensional array: type, capacity, and size.

•	Show how to declare and initialize a one-dimensional array.

•	Discuss how we can access the elements of a one-dimensional array using the subscript
expression.

•	Discuss nonmodifying and modifying operations on one-dimensional arrays.

•	Discuss how we can use functions to apply both nonmodifying and modifying operations on
one-dimensional arrays.

•	Discuss parallel one-dimensional arrays and their application.

•	Discuss two-dimensional arrays and how they are declared and initialized.

•	Discuss operations on two dimensional arrays that create another two-dimensional array.

•	Show how to change a two-dimensional array to a one-dimensional array using the linear
operation or the zigzag operation.

8 Arrays

for23380_ch08_338-379.indd 338 02/11/18 5:14 pm

8.1 One-dimensional	Arrays 339

Type
The type of an array is the type of data items (elements) in the array. For example, we can
have an int array, a double array, a char array, and a Circle array.

The type of all data items in an array must be the same;
the array type is the type of the elements.

Capacity
The capacity of an array is the maximum number of elements it can hold. This attribute is
either a literal or a constant value that cannot be changed after the array is declared. We
normally use uppercase letters for the name of the capacity.

We cannot change the capacity of the array after it has been declared.

Size
The size of an array defines how many elements are valid at each moment; that is, how many
contain valid data. We may create an array of capacity 10, but at one moment we may have
only three valid elements; at another moment, we may have eight valid elements. In other
words, size is a controlling attribute of the array.

Array size defines the number of valid elements at each moment.

8.1.2 Declaration, Allocation, and Initialization
An array must be declared before being used. The compiler allocates memory locations for
the array when it is declared. The elements of an array can also be initialized at the time the
array is declared.

Array Declaration
Array declaration gives an array a name, sets the type of the elements, sets the capacity
of the array, and allocates memory locations for the array. In other words, declaration of an

Figure 8.1	 Attributes	of	arrays

Array of
int types

72
93
82
55

79
95

88

C
A

PA
C

IT
Y

 =
 8

si
ze

 =
 7

Array of
double types

112.6
13.7
211.4
23.7

C
A

PA
C

IT
Y

 =
 6

si
ze

 =
 4

Array of
Circle types

circle1
circle2
circle3
circle4

C
A

PA
C

IT
Y

 =
 4

si
ze

 =
 4

Note:
We have used uppercase for CAPACITY because it is a constant or literal.
We have used lowercase for size because it is a variable.
The gray area is part of the array that is not occupied at this moment.

for23380_ch08_338-379.indd 339 02/11/18 5:14 pm

340 Chapter 8 Arrays

array is also a definition. Figure 8.2 shows the syntax for declaring an array and compares it
with the declaration of a variable.

There are three important points about the above syntax shown in Figure 8.2:

1. The declaration consists of four sections: type, name, capacity, and the terminating
semicolon.

2. If we compare an array declaration with a variable declaration, we see that the only
difference is the addition of the capacity enclosed in two brackets.

3. The capacity of an array must be either a constant or a literal.

EXAMPLE 8.1
The following shows how we declare the arrays shown in Figure 8.1 using literal values for
capacity.

int scores [8]; double nums [6]; Circle crls [4];

EXAMPLE 8.2
The following shows the same declarations defining capacity.

const int CAPACITY = 8;
int scores [CAPACITY];

const int CAPACITY = 6;
double nums [CAPACITY];

const int CAPACITY = 4;
Circle crls [CAPACITY];

The advantage of this practice is that we can refer to the capacity of the array using
the constant identifier (CAPACITY). As we discussed previously, it is customary to use up-
percase letters to define constants.

Memory Allocation
After an array has been declared, the compiler allocates memory locations for the array.
Allocation depends on the type and capacity of the array. Each element of the array is ac-
cessible through an index enclosed in two brackets. The index, however, starts from [0] and
goes to [CAPACITY − 1]. Figure 8.3 shows declarations and allocation of memory for three
arrays: scores, nums, and crls.

Note that elements in an array use zero-indexing, which means the indexes start from
[0] and go to [CAPACITY − 1].

The array elements are referenced using zero indexing.

Figure 8.2	 Array	declaration	compared	with	variable	declaration

Array declaration Variable declaration

semicolon

;name

type of
variable

variable
name

type[CAPACITY] ;name

array
name

type

semicolontype of
elements

array
capacity

for23380_ch08_338-379.indd 340 02/11/18 5:14 pm

8.1 One-dimensional	Arrays 341

Initialization
Each element of an array is like an individual variable. When we declare an array, the com-
piler allocates memory locations for each element according to the array type. As with indi-
vidual variables, we have two cases:

1. If the array is declared in the global area of the program, each element is given a default
value according to the array type. The default value for the Boolean type is false, for
the character type is the nul character, for the integer type is 0, for the floating type is
0.0, and for the object type is the object created by the default constructor.

2. If the array is declared inside a function (including main), the elements are filled with
garbage values (what is left from the previous use of the memory location).

Explicit Initialization To better control the initial values stored in the array elements, we
can explicitly initialize the elements of the array. The initial values, however, must be en-
closed in braces and separated by commas. The following shows how we can declare and, at
the same time, initialize the elements of the array scores of eight elements.

const int CAPACITY = 8;
int scores [CAPACITY] = {87, 92, 100, 65, 70, 10, 96, 77};

We can also initialize an array of class objects in this way when each element in the initial-
ization is a call to a constructor as shown below:

const int CAPACITY = 4;
Circle circles [CAPACITY] = {Circle (4.0), Circle (5.0), Circle (6.0), Circle (7.0)};

The declaration initializes the array of Circle object to four circles of radii 4.0, 5.0, 6.0, and
7.0, respectively.

Implicit Capacity When the number of the initialization elements is exactly the capacity of
the array, we do not have to define the array capacity, as shown below. The compiler counts
the initial values and sets the capacity of the array accordingly. However, we do not have the
advantage of a constant that refers to the array’s capacity.

int scores [] = {87, 92, 100, 65, 70, 10, 96, 77};

Partial Default Filling The number of initialization values cannot be larger than the capac-
ity of the array (compilation error), but it can be less than the capacity of the array. In this

Figure 8.3	 Three	arrays	of	different	types	

int scores [8];
double nums[6];
Circle crls [4];

Declarations

scores

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

nums

[0]
[1]
[2]
[3]
[4]
[5]

crls

[0]
[1]
[2]
[3]

for23380_ch08_338-379.indd 341 02/11/18 5:14 pm

342 Chapter 8 Arrays

case, the rest of elements are filled with default values regardless if the array is declared in
the global area or inside a function.

const int CAPACITY = 10;
int scores [CAPACITY] = {87, 92, 100};

The first three elements are set to 87, 92, and 100, respectively; the rest of the elements are
set to 0.

The following shows how we can explicitly initialize all elements of an array of 100
elements to 0.0.

const int CAPACITY = 100;
double anArray [CAPACITY] = {0.0};

The first element is set to 0.0; the rest of the elements are set to the default value, which is
also 0.0 for a floating-point type.

8.1.3 Accessing Array Elements
We have learned that if we want to access the contents of a variable, we must use an expres-
sion. In the case of a single variable, the name of the variable is a primary expression and we
can use it to get the value stored in the variable. In the case of an array, we must use a postfix
expression called subscript. The subscript expression uses the subscript operator ([…]),
with one operand. The operand is the name of the array. In Chapter 9 we show that the name
of an array is actually the name of a pointer pointing to the first element. Table 8.1 provides
an example of C++ expressions as shown in Appendix C.

Figure 8.4 shows how we can access an element of the array using the subscript
expression.

The following shows how we can access one of the elements of each of three arrays we
declared previously in Figure 8.3.

scores [4]
nums [5]
crls [3]

// Accessing element at location 4
// Accessing element at location 5
// Accessing element at location 3

Group Name Operator Expression Pred Assoc

postfix subscript […] name	[expr] 18 →

Table 8.1

Figure 8.4	 Accessing	an	array	element	using	a	subscript		
expression

name

Element

[index]

Subscript expression

Notes:
The operator takes the name of
the array as the operand.
The operator returns an element
of the array, which can be used
to access or change the value in
the element.

for23380_ch08_338-379.indd 342 02/11/18 5:14 pm

8.1 One-dimensional	Arrays 343

Note that the subscript expression returns the element. We can use the element wherever
a variable can be used. For example, we can use the element as an lvalue or an rvalue.
Figure 8.5 shows how we can store (change or set) and retrieve (get) the value of an element.

Out-of-Range Error
One of the hidden errors that cannot be caught during compilation or run time is accessing
an element of an array that is not bounded by the capacity of the array. The index used in the
subscript expression, arrayName [index], must be in the range between 0 and CAPACITY
− 1. If we use a subscript expression to retrieve the value of an element that is out of range,
we will get a garbage value because the location is not part of the array. The more dangerous
situation is when we try to store a value in an element that is out of range. In this case, we
may unintentionally destroy data or program code. When the program runs, the result is un-
predictable: The program may fail or it may produce invalid results. C++ implementations
do not give a compile-time or run-time warning when these errors occur. We will discuss the
reason for this strange behavior when we discuss pointers in the next section.

Out-of-range error is a serious issue that must be avoided.

Two Uses of Brackets
We have seen two uses of brackets in an array, as shown in Figure 8.6.

EXAMPLE 8.3
An array is very useful for holding a list of items of the same type when all of the items need
to be in memory for processing. Assume we want to read a list of items and print them in
the reverse order. We use an array whose capacity is large enough to hold all elements in the
list. Program 8.1 shows how we use a validation loop to ensure that the projected size of the
array is not greater than the capacity of the array.

Figure 8.5	 Storing	and	retrieving	an	element	of	an	array

array after
initialization

store
numbers [2] = 67;

retrieve
x = numbers [3];

[0]
[1]
[2]
[3]
[4]

0
5
10
15
20

array after
storing

[0]
[1]
[2]
[3]
[4]

0
5
67
15
20

array after
retrieving

result

[0]
[1]
[2]
[3]
[4]

0
5
67
15
20

x 15

int numbers [5] = {0, 5, 10, 15, 20};
int x;

Declaration

Figure 8.6	 Two	uses	of	brackets

Array declaration Array accessing

[capacity];arraytype [index]array

Program 8.1	 Printing	a	list	in	reverse	order

1
2
3
4

/***
* Use of an array to read a list of integers and output them *
* in the reverse order of reading. *
 ***/

(continued)

for23380_ch08_338-379.indd 343 02/11/18 5:14 pm

344 Chapter 8 Arrays

There are two important points about Program 8.1.

1. We do not have the out-of-range problem in this array because we forced the value of
the size variable to be between 1 and CAPACITY in the validation loop. For example,
when we have set the CAPACITY to 10, we can have between 1 and 10 integers, which

Program 8.1	 Printing	a	list	in	reverse	order (Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#include <iostream>
using namespace std;

int main ()
{

// Declarations
const int CAPACITY = 10;
int numbers [CAPACITY];
int size;
// Getting the size from user and validate it
do
{

cout << "Enter the size (1 and 10) ";
cin >> size;

} while (size < 1 || size > CAPACITY);
// Inputting Integers
cout << "Enter " << size << " integer(s): " ;
for (int i = 0 ; i < size ; i++)
{

cin >> numbers [i] ;
}
// Outputting Integers in reverse order of inputting
cout << "Integer(s) in reversed order: ";
for (int i = size − 1 ; i >= 0 ; i− −)
{

cout << numbers[i] << " " ;
}
return 0;

}

Run:
Enter the size (1 to 10): 10
Enter 10 integer(s): 2 3 4 5 6 7 8 9 10 11
Integer(s) in reversed order: 11 10 9 8 7 6 5 4 3 2

Run:
Enter the size (1 to 10): 0
Enter the size (1 to 10): 11
Enter the size (1 to 10): 7
Enter 7 integer(s): 4 11 78 2 5 3 8 9 // The last integer is ignored.
Integer(s) in reversed order: 8 3 5 2 78 11 4

for23380_ch08_338-379.indd 344 02/11/18 5:14 pm

8.1 One-dimensional	Arrays 345

fills elements with index 0 to 9; no integer goes out of the array boundaries (see the
second run).

2. The keyboard is treated as a file in which the numbers are keyed one after another
with at least one space between them. As long as the read loop is not terminated, the
numbers are read one by one. Even if the user enters a return key before inputting
the number of integers defined by the size variable, the program waits for the user
to enter the rest of the integers (the return key is taken as a space). On the other
hand, if the user enters more numbers than defined by the size variable, only the
predefined number of integers is read and the rest are ignored (as in the second run,
in which the last entered number, integer 9, is ignored).

EXAMPLE 8.4
Instead of reading array elements from the keyboard, we can use an input file. A key-
board and an input file behave similarly (each acts as a source of sequential items).
Also, instead of writing the array elements on the monitor after processing, we can
store them in an output file. A monitor and an output file behave similarly (each acts
as a destination for a sequence of data items). Program 8.2 shows how we can repeat
Program 8.1, reading the original numbers from a file and writing the processed number
to another file.

Program 8.2	 Reversing	the	order	of	a	list	of	numbers	using	files	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* Use of an array to read a list of integers from a file, to *
* reverse the order of elements, and to write the reversed *
* elements to another file *
 ***/

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{

// Declarations
const int CAPACITY = 50;
int numbers [CAPACITY];
int size = 0;
ifstream inputFile;
ofstream outputFile;
// Openning the input file
inputFile.open ("inFile.dat");
if (!inputFile)
{

cout << "Error. Input file cannot be opened." << endl;
cout << "The program is terminated";

(continued)

for23380_ch08_338-379.indd 345 02/11/18 5:14 pm

346 Chapter 8 Arrays

When we open the input file and the output file in a text editor, we get the following con-
tents, in which the lists are inverse of each other.

Input file
12 56 72 89 11 71 61 92 34 13

Output file
13 34 92 61 71 11 89 72 56 12

There are several important points about Program 8.2:

1. We have included the <fstream> header file so we can use operations on files.
2. Since we do not know the count of the numbers in the input file, we must be cautious

and select a large number (50 in this case) for the capacity.
3. If the input file is not successfully opened, we terminate the program with a message

(lines 19 to 25). Similarly, if the output file is not opened successfully, we terminate
the program with a message (lines 34 to 40).

4. The size of the array is automatically set when we reach the end of the input file (line 29).
5. When we run the program, we see nothing unless there is a problem with opening the

input or output file.
6. The program never reads more than 50 integers (see line 27).

Program 8.2	 Reversing	the	order	of	a	list	of	numbers	using	files (Continued)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

return 0;
}
// Reading the list of numbers from the input file into array
while (inputFile >> numbers [size] && size <= 50)
{

size++;
}
// Closing the input file
inputFile.close();
// Opening the output file
outputFile.open ("outFile.dat");
if (!outputFile)
{

cout << "Error. Output file cannot be opened." << endl;
cout << "The program is terminated.";
return 0;

}
// Writing the elements of the reversed array into the output file
for (int i = size − 1 ; i >= 0 ; i− −)
{

outputFile << numbers[i] << " " ;
}
// Closing the output file
outputFile.close();
return 0;

}

for23380_ch08_338-379.indd 346 02/11/18 5:14 pm

8.1 One-dimensional	Arrays 347

EXAMPLE 8.5
Although most of the time we use zero indexing in the array, sometimes it is convenient to
create an array of one extra element and ignore the element at index 0. In this case, our in-
dexing starts from 1. For example, we can create an array of 12 elements to hold the number
of days in each month (for a non–leap year). However, it is convenient to create an array of
13 elements and not use the element at index 0, as shown in Figure 8.7. (Note that we have
shown the array horizontally to save space.)

Program 8.3 shows how we can write a short program to use the array shown in
Figure 8.7. This can serve the same purpose as the switch statement.

Figure 8.7	 An	array	representing	the	number	of	days	in	
a	year

[2][1][0] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

31 28 30 30 3031 30 31 31 31 3131year

Program 8.3	 Finding	the	number	of	days	in	a	month	of	year

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* Use of an array to get the number of days in each month *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declarations
int numberOfDays [13] = {0, 31, 28, 31, 30, 31, 30,
 31, 31, 30, 31, 30, 31};
int month;
// Getting input and validate
do
{

cout << "Enter the month number (1 to 12): ";
cin >> month;

} while (month < 1 || month > 12);
// Output
cout << "There are " << numberOfDays[month];
cout << " days in this month.";
return 0;

}

Run:
Enter the month number (1 to 12): 1
There are 31 days in this month.

Run:
Enter the month number (1 to 12): 6
There are 30 days in this month.

(continued)

for23380_ch08_338-379.indd 347 02/11/18 5:14 pm

348 Chapter 8 Arrays

Note that the third run rejects the months less than 1 and greater than 12.

EXAMPLE 8.6
In Chapter 7 we created a Circle class. Using the Circle implementation file, we can create
an application program that uses the compiled version of the Circle class to create an array
of three circles (Program 8.4).

The following shows how we can compile and link the implementation and application
files to see the radius, area, and perimeter of each circle.

Program 8.3	 Finding	the	number	of	days	in	a	month	of	year (Continued)

Run:
Enter the month number (1 to 12): 0
Enter the month number (1 to 12): 13
Enter the month number (1 to 12): 3
There are 31 days in this month.

Program 8.4	 Creating	an	array	of	three	circles

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* A program that uses the compiled version of the Circle class *
* to create an array of three circles. *
 ***/

#include <iostream>
#include "circle.h"
using namespace std;

int main ()
{

// Declaration of array
Circle circles [3];
// Instantiation of objects
circles [0] = Circle (3.0);
circles [1] = Circle (4.0);
circles [2] = Circle (5.0);
// Printing information
for (int i = 0; i < 3 ; i++)
{

cout << "Information about circle [" << i << "]" << endl;
cout << "Radius: " << circles[i].getRadius() << " ";
cout << "Area: " << circles[i].getArea() << " ";
cout << "perimeter: " << circles[i].getPerimeter() << " ";
cout << endl;

}
return 0;

}

for23380_ch08_338-379.indd 348 02/11/18 5:14 pm

8.2 More	on	Arrays 349

c++ -c circle.cpp
c++ -c app.cpp
c++ -o application circle.o app.o
application

Run:
Information about circle [0]
Radius: 3 Area: 28.26 perimeter: 18.84

Information about circle [1]
Radius: 4 Area: 50.24 perimeter: 25.12

Information about circle [2]
Radius: 5 Area: 78.5 perimeter: 31.4

8.2 MORE ON ARRAYS
In this section, we discuss some operations that we can apply on one-dimensional arrays.
We divide these operations into two categories: those that access the elements of the array
without changing their values or modifying their order and those that either change the value
or change the structure of the array. We also explain how to use functions with arrays to
simulate operations. Finally, we discuss parallel arrays and their applications.

8.2.1 Accessing Operations
The accessing operations are those that neither change the value of the elements nor the
structure of the array (order of the elements). We discuss some of these operations.

Finding the Sum and Average
Assume we want to find the sum and average of the elements in an array named numbers.
The following shows how to do this using a for loop. We assume that the capacity of the
array is greater than or equal to the size.

double average;
int sum = 0;
for (int i = 0; i < size; i++)
{

sum += numbers [i];
}
average = static_cast <double> (sum) / size;

Finding the Smallest and Largest
In previous chapters, we learned how to find the smallest and largest of a list of numbers. If
the numbers are encapsulated in an array, we can use the same strategy to find the smallest
and the largest values in the array.

int smallest = + 1000000;
int largest = − 1000000;
for (int i = 0; i < size; i++)

for23380_ch08_338-379.indd 349 02/11/18 5:14 pm

350 Chapter 8 Arrays

{
if (numbers [i] < smallest)
{

smallest = numbers [i];
}
if (numbers [i] > largest)
{

largest = numbers [i];
}

}

EXAMPLE 8.7
In this example, we write a program to read a list of integers from an input file (numFile.dat)
whose contents are shown below:

14 76 80 33 21 95 22 88 16 39

Program 8.5 finds and prints the sum, the average, the smallest, and the largest of the num-
bers and displays them on the monitor.

Program 8.5	 Finding	the	sum,	average,	smallest,	and	largest	in	a	sequence	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* Use of an array to read a list of integers from a file and *
* prints the sum, the average, the smallest, and largest of *
* the numbers in the file. *
 ***/

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{

// File declaration
ifstream inputFile;
// Array and variable declarations
const int CAPACITY = 50;
int numbers [CAPACITY];
int size = 0;
// Initialization
int sum = 0;
double average;
int smallest = 1000000;
int largest = −1000000;

(continued)

for23380_ch08_338-379.indd 350 02/11/18 5:14 pm

8.2 More	on	Arrays 351

Program 8.5	 Finding	the	sum,	average,	smallest,	and	largest	in	a	sequence (Continued)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

// Opening input file with opening validation
inputFile.open ("numFile.dat");
if (!inputFile)
{

cout << "Error. Input file cannot be opened." << endl;
cout << "The program is terminated.";
return 0;

}
// Reading (copying) numbers from the file
while (inputFile >> numbers [size])
{

size++;
}
// Closing input file
inputFile.close();
// Finding sum, average, smallest, and the largest
for (int i = 0; i < size; i++)
{

sum += numbers[i];
if (numbers[i] < smallest)
{

smallest = numbers[i];
}
if (numbers[i] > largest)
{

largest = numbers[i];
}

}
average = static_cast <double> (sum) / size;
// Printing results
cout << "There are " << size << " numbers in the list" << endl;
cout << "The sum of them is: " << sum << endl;
cout << "The average of them is: " << average << endl;
cout << "The smallest number is: " << smallest << endl;
cout << "The largest number is: " << largest << endl;
return 0;

}

Run:
There are 10 numbers in the list.
The sum of them is: 484
The average of them is: 48.4
The smallest number is: 14
The largest number is: 95

for23380_ch08_338-379.indd 351 02/11/18 5:14 pm

352 Chapter 8 Arrays

Searching for a Value
In array processing, we often need to search for a value. Although there are advanced and
efficient algorithms to search an array, they require that the array is sorted. We show an
elementary search here that can be used even when the array is not sorted. It is sometimes
called a linear search. The value we are testing for is known as the search argument.

EXAMPLE 8.8
Assume we want to find if any value in an array of size 100 is equal to a value entered at
run time. We can use a for loop with two terminating conditions. The first assures that we
do not go beyond the size of the array; the second tests if we have found the element we are
looking for. If the search is successful, we have found the index of the element, which is
what we are looking for.

bool found = false;
for (int i = 0; (i < size) && (!found); i++)
{

if (numbers [i] == value)
{

index = i;
found = true;

}
}
if (found)
{

cout >> "The value was found at index: " << index;
}
else
{

cout >> "The value was not found".;
}

8.2.2 Modifying Operations
There are operations that may change the value of elements, the order of elements, or both.

Swapping
The first operation we discuss is the one that swaps (exchanges) the contents of two ele-
ments. This exchange is often used in other operations such as sorting. Figure 8.8 shows the
wrong approach and the right approach in swapping elements 1 and 3.

[2][1][0] [3] [4]
12 7 8 11 45

[2][1][0] [3] [4]
12 11 8 11 45

[2][1][0] [3] [4]
12 11 8 11 45list [1] = list [3]

list [1] = list [3]

list [3] = list [1]

list [3] = temp
temp = list[1]

Correct approach: using three operations and an extra variable

Wrong approach: using two operations

[2][1][0] [3] [4]

12 7 8 11 45

[2][1][0] [3] [4]

12 11 8 11 45

[2][1][0] [3] [4]

12 11 8 7 45

temp temp7 temp7

Figure 8.8	 Wrong	way	and	right	way	to	swap	two	elements	in	an	array

for23380_ch08_338-379.indd 352 02/11/18 5:14 pm

8.2 More	on	Arrays 353

In the wrong approach, we use only two operations. As Figure 8.8 shows, after the two
operations, both list [1] and list [3] contain the integer 11 because we lose the contents of list
[1] in the first operation.

list [1] = list [3];
list [3] = list [1];

// Copy list[3] into list[1]
// Copy value of list [3] to list [1]

The solution is to use a temporary variable to store the value of list [1] before losing it.
Figure 8.8 shows that this must be done before the other two operations. After the second
operation, we lose the value of list [1], but we have saved a copy of it in temp. We retrieve
this value in the third operation.

temp = list [1];
list [1] = list [3];
list [3] = temp;

// Save original value of list [1]
// Copy value of list [3] to list [1]
// Copy value of temp to list [3]

Note each of the three variables, temp, list [1], list [3], is used once in the left-hand side and
once in the right-hand side of the three operations.

Sorting an Array
An operation that only changes the order of elements is called sorting. Sorting is a very in-
volved operation that uses swapping of elements until the elements in the array are in order.
We discuss sorting techniques in Chapters 17 and 19.

Deleting an Element
One of the operations that is not very efficient in an array is to delete an element. Let us as-
sume that we want to delete the element at index 3. The way to delete an element in the array
is to copy (move) all elements after the target index one element toward the beginning of the
array, as shown in Figure 8.9.

The figure shows that we need three movements. We cannot delete the element at
index 6, but we can reduce the size of the array to make the element unavailable.

EXAMPLE 8.9
Assume we want to delete the element at index pos. We can use a for loop to move elements
up and then decrement the size of the array.

Figure 8.9	 Deleting	an	element	in	an	array

deleting
target

not to
be used

si
ze

 =
 7

original

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8
11
45

[7]
[8]
[9]

22
78

result

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8
45

[7]
[8]
[9]

22

78
78

si
ze

 =
 6

first move

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8
45
45

[7]
[8]
[9]

22
78

second move

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8
45

[7]
[8]
[9]

22
22

78

third move

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8

22

[7]
[8]
[9]

78
78

451

2
3

for23380_ch08_338-379.indd 353 02/11/18 5:14 pm

354 Chapter 8 Arrays

for (int i = pos + 1; i < size; i++)
{

array [i − 1] = array [i] // Movement
}
size−−;

Inserting an Element
Another inefficient operation is inserting an element into the middle of an array. This opera-
tion can be done only if the array is partially filled; otherwise, we go out of the boundary of
the array. Figure 8.10 shows how we can insert an element of value 80 at index 5. All ele-
ments must be moved one position toward the end to make space for the insertion. However,
this time we need to start movements from the last element.

EXAMPLE 8.10
Assume we want to insert an item (value) at a specific index (pos) in an array whose current
size is defined by the variable size. If the size of the array is less than its capacity, we move
all elements from the index (size) up to index (pos) one element toward the end of the array
and make space for the new element to be inserted.

for (int i = size; i > pos; i−−)
{

numbers[i] = number [i −1]; // Movement
}
numbers [pos] = value;
size++;

8.2.3 Using Functions with Arrays
We have seen that a function is a block of code that performs operations on fundamental
and class types. We now want to explore how a function can operate on an array. To do so,
we need to know if we can pass an array to a function as an argument and if we can return
an array from a function.

Figure 8.10	 Inserting	an	element	into	an	array

interting
location 80

si
ze

 =
 7

original

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8
11
45

[7]
[8]
[9]

22
78

result

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8
11

[7]
[8]
[9]

22
78

45

si
ze

 =
 8

first move

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8
11
45

[7]
[8]
[9]

22
78
78

second move

array

[2]
[1]
[0]

[3]
[4]
[5]
[6]

12
7
8
11
45

80

[7]
[8]
[9]

22
22
78

1
2

for23380_ch08_338-379.indd 354 02/11/18 5:14 pm

8.2 More	on	Arrays 355

Passing Arrays to Functions
As we will discuss later in the chapter, the name of the array is a constant pointer (address)
to the first element. In other words, the name defines a fixed point in memory. When we pass
the name of an array to a function, we are passing this address to the function. In other words,
the array is still stored in the area belonging to the calling function, but the called function can
access it or modify it. Figure 8.11 shows the situation. The figure shows that the memory al-
location is done only through the calling function, but the called function is allowed to access
or modify the element of the array. To access the array that belongs to the calling function, the
called function must know the beginning address and the size of the array. The beginning ad-
dress is defined using a parameter that contains the type, the name of the array, and an empty
bracket (int array []). The size of the array is defined as a separate parameter.

We can have two situations. If we want the called function to access only the elements
of the array without being able to modify it, we must use the const modifier in front of the
array name. On the other hand, if we want the called function to be able to modify the array,
we do not use the const modifier. The following shows the prototype of the called function
in both cases:

void function (const type array [], int size);
void function (type array [], int size);

// Only for accessing
// For modifying

In other words, we add the const modifier to the name of the array to protect the array from
changes by the called function.

EXAMPLE 8.11
As a simple example, we create a small array and then call a function named print to print
the value of the elements. This is an example in which the called function is not supposed to
change the array passed to the function (Program 8.6).

Figure 8.11	 Passing	an	array	to	a	function

Calling function Called function

[3]

[4]

[1]

[0]

[2]

array

function (array, 5);

operation
int anArray [5];

int main ()
{

}

void function (int array [] , int size)
{

}

Program 8.6	 Using	a	function	to	access	an	array	

1
2
3
4
5
6

/***
* Passing array name and size to a function to let it print the *
* element of the array *
 ***/

#include <iostream>
using namespace std;

(continued)

for23380_ch08_338-379.indd 355 02/11/18 5:14 pm

356 Chapter 8 Arrays

EXAMPLE 8.12
As another simple example, we create a small array and then call a function named multi-
plyByTwo to multiply the elements of the array by 2. This is an example in which the called
function modifies the array created in main. Note that we also use the print function defined
in the previous program. We call this function two times, before modifying the array and
after modifying the array (Program 8.7).

Program 8.6	 Using	a	function	to	access	an	array (Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* Function print accepts the name and the size of an array. *
* The function then prints the elements of the array created *
* and initialized in main. It does not modify the array. *
 ***/

void print (const int numbers [], int size)
{

for (int i = 0; i < size; i++)
{

cout << numbers [i] <<" ";
}
return;

}

int main()
{

// Declaration and initialization of the array
int numbers [15] = {5, 7, 9, 11, 13};
// Calling the print function
print (numbers, 5);
return 0;

}

Run:
5 7 9 11 13

Program 8.7	 Using	a	function	to	modify	an	array	

1
2
3
4
5
6
7

/***
* Passing array name and size to a function to let it modify *
* the elements of the array *
 ***/

#include <iostream>
using namespace std;

(continued)

for23380_ch08_338-379.indd 356 02/11/18 5:14 pm

8.2 More	on	Arrays 357

Program 8.7	 Using	a	function	to	modify	an	array (Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

/***
* Function multiplyByTwo is a modifying function that changes *
* the array in main. There is no const modifier here. *
* The function accesses the array in main and modifies it. *
 ***/

void multiplyByTwo (int numbers [], int size)
{

for (int i = 0; i < size; i++)
{

numbers [i] *= 2;
}
return;

}

/***
* Function print accepts the name and the size of an array. *
* The function then prints the elements of the array created *
* and initialized in main. It does not modify the array. *
 ***/

void print (const int numbers [], int size)
{

for (int i = 0; i < size; i++)
{

cout << numbers [i] << " ";
}
cout << endl;
return;

}

int main()
{

// Declaration and initialization of an array
int numbers [5] = {150, 170, 190, 110, 130};
// Printing the array before being modified
print (numbers, 5);
// Modifying the array in multiplyByTwo function
multiplyByTwo (numbers , 5);
// Printing the array after being modified
print (numbers, 5);
return 0;

}

Run:
150 170 190 110 130
300 340 380 220 260

for23380_ch08_338-379.indd 357 02/11/18 5:14 pm

358 Chapter 8 Arrays

The first line of output shows the original array; the second line shows the array after
modification.

No Returning Array from Function
C++ does not allow us to return an array from a function. In other words, we cannot have a
function prototype such as the following.

type [] function (const type array [], int size); // It is not allowed in C++

When passing arrays to function, we have three choices as shown below:

// array will not change.
void (const type array [], int size);
// array will change.
void (type array [], int size);
// array1 will not change, but array 2 can be modified version of array1.
void (const type array1 [], type array2 [], int size);

To simulate returning an array from a function, we can
use two arrays (one constant and one nonconstant).

EXAMPLE 8.13
Assume we want to write a function to reverse the contents of an array without changing the
original array. This is possible if we create two similar arrays, the original and the modified
one (which can originally be empty) as shown in Program 8.8. Note that we print both the
original and modified arrays.

Program 8.8	 Simulating	array	return	by	passing	two	arrays

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* Passing two array to a function simulating returning an array. *
 ***/

#include <iostream>
using namespace std;
/***

* Function reverse is a function that takes two arrays. It uses *
* the first array to reverse the element in the second array. *
 ***/

void reverse (const int array1[], int array2[], int size)
{

for (int i = 0, j = size − 1; i < size; i++, j−−)
{

array2 [j] = array1 [i];
}
return;

}

(continued)

for23380_ch08_338-379.indd 358 02/11/18 5:14 pm

8.2 More	on	Arrays 359

8.2.4 Parallel Arrays
Sometimes we need a list in which each row is made of more than one data item, possibly
of different types. For example, we may need to keep name, score, and grade information
about each student in a course. This can be done using three parallel arrays as shown in
Figure 8.12.

Program 8.8	 Simulating	array	return	by	passing	two	arrays (Continued)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

/***
* Function print accepts the name and the size of an array. *
* It then prints the elements of the array without modifying it. *
 ***/

void print (const int array [], int size)
{

for (int i = 0; i < size; i++)
{

cout << array [i] << " ";
}
cout << endl;
return;

}

int main ()
{

// Declaration of two arrays
int array1 [5] = {150, 170, 190, 110, 130};
int array2 [5];
// Calling reverse function to modify array2 to be the reverse of array1
reverse (array1, array2 , 5);
// Printing both arrays
print (array1, 5);
print (array2, 5);
return 0;

}

Run:
150 170 190 110 130
130 110 190 170 150

Figure 8.12	 Three	parallel	arrays	of	different	types

Note:
The broken line shows
associativity among three
elements in different arrays.

names

string int char

scores grades

'B'
'C'
'A'
'C'
'D'

82
73
91
72
65

John
Luci

Marry

George

Sue

for23380_ch08_338-379.indd 359 02/11/18 5:14 pm

360 Chapter 8 Arrays

EXAMPLE 8.14
Program 8.9 creates and initializes two parallel arrays, names and scores, in main. It then
calls a function to determine the student’s grades and stores them in a third parallel array,
called grades. It then prints the arrays.

Program 8.9	 Using	three	parallel	arrays

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***
* The program uses three parallel arrays to create a list of *
* names, scores, and grades of five students in a course. *
 ***/

#include <iostream>
#include <iomanip>
using namespace std;
/***

* The function findGrades accepts the constant array score, the *
* non-constant array grades, and the common size of the arrays. *
* It uses the first array to create the second array. *
 ***/

void findGrades (const int scores [], char grades [], int size)
{

char temp [] = {'F', 'F', 'F', 'F', 'F', 'F', 'D', 'C', 'B', 'A', 'A'};
for (int i = 0; i < size; i++)
{

grades [i] = temp [scores [i] /10];
}
return ;

}
int main()
{

// Declaration of three arrays and initialization of two
string names [4] = {"George", "John", "Luci", "Mary"};
int scores [4] = {82, 73, 91, 72};
char grades [4];
// Function call
findGrades (scores, grades, 5);
// Printing values in all three arrows with headers
for (int i = 0; i < 4; i++)
{

cout << setw (10) << left << names[i] << " " << setw (2) ;
cout << scores[i] << " " << setw(2) << grades[i] << endl;

}
return 0;

}

(continued)

for23380_ch08_338-379.indd 360 02/11/18 5:14 pm

8.2 More	on	Arrays 361

EXAMPLE 8.15
A better approach to parallel arrays is the use of an array of objects. For example, we can
create a class named Student with three data members—name, score, and grade—to solve
the problem presented in Example 8.14. We then create an array of objects in which each
element is an instance of the class Student. In this way, we can create the class and make it
available to each professor using separate compilation. The professors can then create their
customized applications (main function) to use the class with any number of students. Pro-
gram 8.10 shows the Student interface.

Program 8.9	 Using	three	parallel	arrays (Continued)

Run:
George 82 B
John 73 C
Luci 91 A
Mary 72 C

Program 8.10	 The	interface	for	the	Student	class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* This is the interface file for a Student class with three *
* private data members and four public member functions. *
 ***/

#ifndef STUDENT_H
#define STUDENT_H
#include <iostream>
#include <string>
using namespace std;

class Student
{

private:
string name;
int score;
char grade;

public:
Student ();
Student (string name, int score);
~Student ();
void print();

};
#endif

for23380_ch08_338-379.indd 361 02/11/18 5:14 pm

362 Chapter 8 Arrays

Program 8.11 shows the implementation.
Program 8.12 shows the application.

Program 8.11	 The	implementation	file	for	the	Student	class	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* This the implementation for the Student class whose interface *
* file is given in Program 8-11. *
 ***/

#include "student.h"

// Default constructor
Student :: Student()
{
}
// Parameter Constructor
Student :: Student (string nm, int sc)
:name (nm), score (sc)
{

char temp [] = {'F', 'F', 'F', 'F', 'F', 'F', 'D', 'C', 'B', 'A', 'A'};
grade = temp [score /10];

}
// Destructor
Student :: ~Student()
{
}
// Print member function
void Student :: print()
{

cout << setw (12) << left << name;
cout << setw (8) << right << score;
cout << setw (8) << right << grade << endl;

}

Program 8.12	 The	application	file	for	Student	class

1
2
3
4
5
6
7
8
9

/***
* The application file to create objects from the Student *
* class and print the name, score, and grade of each student *
 ***/

#include "student.h"
#include "iomanip"

int main ()
{

(continued)

for23380_ch08_338-379.indd 362 02/11/18 5:14 pm

8.3 Multidimensional	Arrays 363

The following shows the separate compilation and running of the application program
for creating and displaying students’ information.

c++ − c students.cpp // Compilation of implementation file
c++ − c app.cpp // Compilation of application file
c++ − o application student.o app.o // Linking of two compiled object files
application // Running the executable file

Run:
George 82 B
John 73 C
Luci 91 A
Mary 72 C
Sue 65 D

Although the approach may look more involved and uses more lines of code, it has
the advantage that when the Student class is created, it can be used by any professor by just
downloading the interface and the implementation. Each professor can customize her own
application based on her need.

8.3 MULTIDIMENSIONAL ARRAYS
Some applications require that a set of values be arranged in a multidimensional array.
The most common are two-dimensional arrays, but we may occasionally encounter three-
dimensional arrays.

8.3.1 Two-Dimensional Arrays
A two-dimensional array defines a structured data type in which two indices are used to
define the location of elements in rows and columns. The first index defines the row; the
second index defines the column. Figure 8.13 shows a two-dimensional array, named scores,
with five rows and three columns.

Program 8.12	 The	application	file	for	Student	class (Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// Declaration of an array of Students using default constructors
Student students [5];
// Instantiation of five objects using parameter constructors
students[0] = Student ("George", 82);
students[1] = Student ("John", 73);
students[2] = Student ("Luci", 91);
students[3] = Student ("Mary", 72);
students[4] = Student ("Sue", 65);
// Printing students' name, score, and grade
for (int i = 0; i < 5; i++)
{

students[i].print();
}
return 0;

}

for23380_ch08_338-379.indd 363 02/11/18 5:14 pm

364 Chapter 8 Arrays

Note that just like one-dimensional arrays, the first row is row 0 and the first column
is column 0. The scores for student 1 occupy row 0; The scores for test 1 for all students
occupy column 0.

Declaration and Initialization
We declare and define a two-dimensional array like we did with a one-dimensional array,
but we must define two dimensions, rows and columns. We define the number of rows first
and the number of columns second. The following shows how we define an array of scores
of five students in three tests.

int score [5][3];

Subscript Operators In one-dimensional arrays, we need to use one subscript operator. In
two-dimensional arrays, we need to use two subscript operators.

Initialization Initializing the elements in the array is done row by row. However, the initial-
ization list is more readable if we separate the rows using braces, as shown below.

int scores [5][3] = { {82, 65, 72},
 {73, 70, 80},
 {91, 76, 40},
 {72, 72, 68},
 {65, 90, 80} };

To initialize the whole array to zeros (when array is declared locally), we specify only the
first value, as follows:

int scores [5][3] = {0};

Accessing Elements We can access each element in the array using the exact location of
the element defined by the two indexes. Accessing can be used to store a value in an indi-
vidual element or retrieve the value of an element.

scores[1][0] = 5; // Storing 5 in row 1 column 0
cin >> scores[2][1]; // Inputting value for row 2 column 1
x = scores [1][2]; // Copying the value of row 1 column 2 into variable x
cout << scores [0][0]; // Outputting value of row 0 column 0

Passing Two-Dimensional Arrays to Functions
Passing a two-dimensional array to a function uses the same principle we discussed for one-
dimensional arrays. As shown below, the first parameter defines the array. Here, the first

Figure 8.13	 Two-dimensional	array	(scores	of	
five students	in	three	tests)

[0]
[1]
[2]

[0] [1] [2]

[3]
[4]

scores [1][2]

scores [4][1]

int scores [5][3];

for23380_ch08_338-379.indd 364 02/11/18 5:14 pm

8.3 Multidimensional	Arrays 365

bracket is empty, but the second bracket must literally define the size of the second dimen-
sion. The size of the first dimension must be passed to the array as a separate parameter.

void function (int array[] [3] , int rowSize);

EXAMPLE 8.16
Figure 8.14 shows the relationship between the two-dimensional array and the two
one-dimensional arrays.

Program 8.13 shows how we can find the student average and the test average using
two functions. Each function accepts a two-dimensional array and a one-dimensional array.

Figure 8.14	 One	two-dimensional	and	two	one-
dimensional	arrays

[0]
[1]
[2]

[0] [1] [2]

[0] [1] [2]

[3]
[4]

[0]
[1]
[2]
[3]
[4]

student
average

Declarations

scores [5][3];
stdAver [3];
testAver [5];

test
average

Scores

Program 8.13	 Using	three	arrays

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The program creates student average and test average from the *
* two-dimensional test scores. *
 ***/

#include <iostream>
#include <iomanip>
using namespace std;

/***
* The function takes a two-dimensional array of test scores *
* for six students in three tests. It then modifies an array *
* in main representing student average. *
 ***/

void findStudentAverage (int const scores [][3],
 double stdAver [], int rowSize, int colSize)

{
for (int i = 0; i < rowSize; i++)
{

int sum = 0;
for (int j = 0; j < colSize; j++)
{

sum += scores[i][j];
}

(continued)

for23380_ch08_338-379.indd 365 02/11/18 5:14 pm

366 Chapter 8 Arrays

Program 8.13	 Using	three	arrays (Continued)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

double average = static_cast <double> (sum) / colSize;
stdAver[i] = average;

}
return;

}
/***

* The function takes a two-dimensional array of test scores *
* for six students in three tests. It then modifies an array *
* in main representing test averages. *
 ***/

void findTestAverage (int const scores [][3],
 double tstAver [], int rowSize , int colSize)

{
for (int j = 0; j< colSize; j++)
{

int sum = 0;
for (int i = 0; i < rowSize; i++)
{

sum += scores [i][j];
}
double average = static_cast <double> (sum) / rowSize;
tstAver[j] = average;

}
}

int main()
{

// Declarations of three arrays and some variables
const int rowSize = 5;
const int colSize = 3;
int scores [rowSize][colSize] = {{82, 65, 72},

 {73, 70, 80},
 {91, 67, 40},
 {72, 72, 68},
 {65, 90, 80}};

double stdAver [rowSize];
double tstAver [colSize];
// Calling two functions to modify two average arrays
findStudentAverage (scores, stdAver, rowSize, colSize);
findTestAverage (scores, tstAver, rowSize, colSize);
// Print headings
cout << " Test Scores stdAver" << endl;
cout << " --------------------------- ------- " << endl;

(continued)

for23380_ch08_338-379.indd 366 02/11/18 5:14 pm

8.3 Multidimensional	Arrays 367

We use the indexes i and j to represent rows and columns in the loops. In lines 14 and 34,
we pass the two-dimensional array as a constant entity with the second index set to literal 3
(number of columns). In lines 15 and 35, we pass a one-dimensional array as a nonconstant
entity to allow each function to store the average. In lines 15 and 35, we pass both rowSize
and colSize to be used by the loops.

Operations
Some of the operations we defined previously for a one-dimensional array can be used with
two-dimension arrays. Others must be modified to be applicable to two-dimensional arrays.
For example, searching and sorting should be applied to each dimension separately. How-
ever, there are some operations that can be applied specifically to two-dimensional arrays.

Folding We can fold a two-dimensional array around a horizontal axis (row folding) or a
vertical axis (column folding) as shown in Figure 8.15.

EXAMPLE 8.17
The following shows how we can use a nested loop to do row folding. We leave the code for
column folding as an exercise.

Program 8.13	 Using	three	arrays (Continued)

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

// Print test scores and student averages
for (int i = 0; i < rowSize ; i++)
{

for (int j = 0 ; j < colSize; j++)
{

cout << setw (12) << scores[i][j];
}
cout << fixed << setprecision (2) << " " << stdAver[i] << endl;

}
// Print test averages
cout << "tstAver ";
cout << "--------------------------- ";
for (int j = 0 ; j < colSize; j++)
{

cout << fixed << setprecision (2) << stdAver[j] << " ";
}
return 0;

}

Run:
 Test Scores stdAver
 ------------------------ -------
 82 65 72 73.00
 73 70 80 74.33
 91 67 40 66.00
 72 72 68 70.67
 65 90 80 78.33
tstAver 73.00 74.33 66.00

for23380_ch08_338-379.indd 367 02/11/18 5:14 pm

368 Chapter 8 Arrays

for (int i = 0 ; i < rowSize ; i++)
{

for (int j = 0 ; j < colSize ; j++)
{

foldedArray [rowSize − 1 − i][j] = originalArray [i][j];
}

}

Transposing When working with a two-dimensional array, we may need to transpose it.
For example, transposition is necessary if we want to solve a set of equations using ma-
trixes. Transposing means changing the role of the rows and columns. A row becomes a
column; a column becomes a row. Figure 8.16 shows the idea applied to a 3 × 4 array. The
result is a 4 × 3 array. To transpose an array, we need to change the row index to a column
index and vice versa.

EXAMPLE 8.18
The following shows how we can use a nested loop to do transposing.

for (int i = 0 ; i < orgRowSize ; i++)
{

for (int j = 0 ; j < orgColSize ; j++)
{

trasposedArray [j][i] = originalArray [i][j];
}

}

Figure 8.15	 Folding	a	two-dimensional	array

Original

Row folding
Column folding

OriginalFolded

folding
axis

folding
axis

Folded

0 1 2 3
10 11 12 13
20 21 22 23 0 1 2 3

10 11 12 13
20 21 22 23

3 2 1 0
13 12 11 10
23 22 21 2020 21 22 23

10 11 12 13
0 1 2 3

Figure 8.16	 Transpose	operation	on	
a	two-dimensional	array

Original
Transposed

0 1 2 3
10 11 12 13
20 21 22 23

transpose
0
1
2
3

10
11
12
13

20
21
22
23

for23380_ch08_338-379.indd 368 02/11/18 5:14 pm

8.4 Program	Design	 369

Linearizing We may need to send the contents of a two-dimensional array through a net-
work (for example, when we send a video). Before transmission, the array must be changed
to a one-dimensional array (through a process known as linearization). Figure 8.17 shows
three ways to do so: row by row, column by column, and zigzag.

8.3.2 Three-Dimensional Arrays
C++ does not limit arrays to two dimensions. However, arrays with more than three dimen-
sions are rare. Figure 8.18 shows how we can represent a three-dimensional array. The
business shown in Figure 8.18 operates in three states, has up to four offices in each state,
and has up to 12 employees in each office. We leave writing a program to handle a three-
dimensional array as an exercise.

8.4 PROGRAM DESIGN
In this section, we show how to use arrays to solve classical problems in computer science.

8.4.1 Frequency Array and Histogram
Arrays can be used to create a frequency array that shows the distribution of elements in
a list of integers. The array can then be used to create a histogram, which is a graphical
representation of the table. Figure 8.19 shows typical data and the frequency array created
from the data.

Figure 8.17	 Linearizing	an	array

Original

row by row

column by column

zigzag

0 1 2
10 11 12
20 21 22
30 31 32

3
13
23
33

0 1 210 11 1220 21 2230 31 323 13 23 33

0 1 2 10 11 12 20 21 22 30 31 323 13 23 33

0 1 210 11 1220 21 2230 31 32 3 13 23 33

Figure 8.18	 A	three-dimensional	array

Firs
t

dim
en

sio
n

Second
dimension

Third
dimension

int employees[3][4][12]
Declaration

for23380_ch08_338-379.indd 369 02/11/18 5:14 pm

370 Chapter 8 Arrays

Assume we have collected a sequence of integers in which each integer is between 0
and 9 inclusive (Figure 8.19 shows only 20 integers, but the list can be of any length). We
want to know the number of 0s, the number of 1s, the number of 2s, and so on. We create
an array of 10 elements to hold the count of each value. We call the array frequency. Note
that if we add all values in the frequency array, we come up with the number of integers in
the list. The number of integers and range of numbers are normally large, and the integers
are read from a file. The list in the figure can be thought of as the contents of a file. We read
the integers one by one from the file and create a frequency array. For example, each time we
read an integer 4, we add one to the frequency[4]. Note that we can only use a list of integers
because an index of the frequency array is an integer.

Understand the Problem
We need to create an array frequency, in which each integer read from the list is related to the
index of the array. In other words, if we encounter a 6 in the list, we need to increment the value
of the element in frequency[6]. For this reason, the size of the frequency array is equal to the
range of the values in the data array. The values in the data array are between 0 and 9; the in-
dexes of the frequency array are [0] to [9]. To create the frequency array, we go through the list,
element by element, and when we see an element of value x, we add 1 to frequency[x]. Once the
array is built, we create a histogram that graphically shows it. Note that some literature creates
two arrays for this problem: data and frequencies. The data array is not needed unless we want
to keep all of the data items in memory during program execution for other purposes.

Develop the Algorithm
The following steps are necessary:

1. Declare and initialize the frequency array to all 0s.
2. Open the integer file and make sure that the file is opened correctly; otherwise, the

program should be terminated.
3. Read the integer file, one integer at a time. If the integer is in the desired range (0 to

9 in our case), we increment the content of the frequency array at the corresponding
index. If it is not, we ignore it.

4. Print the values stored in the histogram array, element by element. At the same time we
must create the corresponding line of the histogram (in our case, a number of asterisks
that is equal to the value of that element).

Write the Program
Program 8.14 shows the code based on the five-step algorithm.

Figure 8.19	 List	of	integers	and	frequency	array

A list of 20 integers

Frequency
[0] [1] [2] [3] [4] [5] [6] [8] [9][7]

int frequency[10] ;

Declaration

8 1 1 4 4 7 960782 33 3925 42

1 2 2 2 23 3 3 1 1

count of 0s count of 4s count of 9s

for23380_ch08_338-379.indd 370 02/11/18 5:14 pm

8.4 Program	Design	 371

Program 8.14	 Creating	a	frequency	array	and	a	histogram

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

/***
* The program reads a list of integers from a file and creates a *
* frequency array and histogram for the list of integers between *
* 0 and 9 (inclusive). *
 ***/

#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;

int main ()
{

// Declaration and initialization
const int CAPACITY = 10;
int frequencies [CAPACITY] = {0};
ifstream integerFile;
// Opening integer file
integerFile.open ("integerFile.dat");
if (!integerFile)
{

cout << "Error. Integer file cannot be opened." << endl;
cout << "The program is terminated.";
return 0;

}
// Reading from the integer file and creating frequency array
int data;
int size = 0;
while (integerFile >> data)
{

if (data >= 0 && data <= 9)
{

size++;
frequencies[data]++;

}
}
// Closing integer file
integerFile.close();
// Printing frequencies and histogram
cout << "There are " << size << " valid data items." << endl;

for (int i = 0; i < 10 ; i++)
{

cout << setw (3) << i << " ";

(continued)

for23380_ch08_338-379.indd 371 02/11/18 5:14 pm

372 Chapter 8 Arrays

Program 8.14	 Creating	a	frequency	array	and	a	histogram (Continued)

44
45
46
47
48
49
50
51
52

for (int f = 1; f <= frequencies [i] ; f++)
{

cout << '*' ;
}
cout << " " << frequencies [i] << endl;

}
return 0;

}

Run:
 There are 202 valid data items.
 0 ********************** 22
 1 **** 4
 2 ******************* 19
 3 ************* 13
 4 ******************** 20
 5 ********************************* 33
 6 **************************** 28
 7 **************************** 28
 8 ************************* 25
 9 ********** 10

The number of asterisks in each line is actually the count of the corresponding integer.
The following shows the contents of the integer file we used. Note that there are

205 integers in the list, but three of them (shown in color) are not in the range 0 to 9. This
means that the program reads all 205 integers, but the frequency array is formed with only
202 integers.

1 3 2 2 5 7 3 2 8 0 6 4 6 7 0 7 8 5 4 2 3 0 6 7 5 8 5 4 8 9 6 5 5 9 2 3 5 2 6 7 8
0 6 4 6 7 0 7 8 5 4 2 13 0 6 7 5 8 5 4 8 9 6 7 0 7 8 5 4 2 3 0 6 7 5 8 5 4 8 9 6 5
2 7 0 7 8 5 4 2 3 0 6 7 5 8 5 4 8 9 6 15 5 9 7 0 7 8 5 4 2 3 0 6 7 5 8 9 6 5 6 6 4
5 9 7 0 7 8 5 4 2 3 0 6 7 5 8 9 6 5 6 6 4 2 7 0 7 8 5 4 2 3 0 6 7 5 8 5 4 8 9 6 5
1 3 2 2 5 7 3 2 8 0 6 4 6 17 0 7 8 5 4 2 3 0 0 6 4 6 7 0 7 8 5 4 2 3 0 6 7 5 8 1 1

8.4.2 Linear Transformation
We mentioned earlier that in the linear transformation of a two-dimensional array to a one-
dimensional array, we have two choices: row transformation and column transformation. In
the first, the transformation is done row by row; in the second, it is done column by column
(Figure 8.20).

Understand the Problem
We must find the logic that will allow us to change the data in an array of N rows and M
columns of elements to a line with N × M elements.

for23380_ch08_338-379.indd 372 02/11/18 5:14 pm

8.4 Program	Design	 373

Develop the Algorithm
We declare and initialize a two-dimensional array. For a small array, we can simply enter
the values; for a large array, we would read the data from a file. We define four functions:

1. The first function transforms the array row by row and creates an array we call the
rowArray.

2. The second function transforms the array column by column and creates an array we
call the colArray.

3. The third function prints the two-dimensional array.
4. The fourth function prints either of the one-dimensional arrays.

The job of the main function is very simple. After declaration and initialization of the two-
dimensional array, it calls the first function and the second function to create one-dimensional
arrays. It then calls the corresponding functions to print the two-dimensional and each of the
one-dimensional arrays.

Write the Program
Program 8.15 shows the code based on the explanations we provided.

Figure 8.20	 Linear	transformation

[0]

[0]

[1]

[1] [2] [3]

0

10 11 12 13

1 2 3

[0] [1] [2] [3] [5] [6] [7][4]

0 10 11 10 111 2 3

MovementOriginal array Transformed array

Transformed array

[0]

[0]

[1]

[1] [2] [3]

0

10 11 12 13

1 2 3

[0] [1] [2] [3] [5] [6] [7][4]

0 2 1210 1 11

Movement

Row-by-row transformation

Column-by-column transformation

Original array

3 13

Program 8.15	 Array	transformation	

1
2
3
4
5
6
7
8

/***
* The program shows how to transform a two-dimensional array to *
* two one-dimensional arrays using row-by-row or column-by-column *
* transformation. *
 ***/

#include <iostream>
#include <iomanip>
using namespace std;

(continued)

for23380_ch08_338-379.indd 373 02/11/18 5:14 pm

374 Chapter 8 Arrays

Program 8.15	 Array	transformation (Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

/***
* The rowTransform function creates a one-dimensional array from *
* a two-dimensional array using row-by-row transformation. The *
* first array is passed as a const to prevent changes. *
 ***/

void rowTransform (const int originArray [][4], int rowSize,
 int rowArray[])
{

int i = 0;
int j = 0;
for (int k = 0 ; k < 8; k++)
{

rowArray [k] = originArray [i] [j];
j++;
if (j > 3)
{

i++;
j = 0;

}
}

}
/***

* The colTransform function creates a one-dimensional array from *
* a two-dimensional array using column-by-column transformation. *
* The first array is passed as a constant to prevent changes. *
 ***/

void colTransform (const int originArray [][4], int rowSize,
 int colArray[])
{

int i = 0;
int j = 0;
for (int k = 0 ; k < 8; k++)
{

colArray[k] = originArray [i][j];
i++;
if (i > 1)
{

j++;
i = 0;

}
}

}

(continued)

for23380_ch08_338-379.indd 374 02/11/18 5:14 pm

8.4 Program	Design	 375

Program 8.15	 Array	transformation (Continued)

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

/***
* The function prints the contents of a two-dimensional array *
* passed to it as a constant argument. *
 ***/

void printTwoDimensional (const int twoDimensional [][4],
 int rowSize)
{

for (int i = 0; i < rowSize; i++)
{

for (int j = 0; j < 4; j++)
{

cout << setw (4) << twoDimensional [i][j];
}
cout << endl;

}
cout << endl;

}

/***
* The function prints the contents of a one-dimensional array *
* passed to it as a constant argument. *
 ***/

void printOneDimensional (const int oneDimensional[], int size)
{

for (int i = 0; i < size; i++)
{

cout << setw (4) << oneDimensional[i];
}
cout << endl;

}

int main ()
{

// Declaration of three arrays and initialization of the first
int originArray [2][4] = {{0, 1, 2, 3}, {10, 11, 12, 13}};
int rowArray [8];
int colArray [8];
// Calling two functions to transform arrays
rowTransform (originArray, 2, rowArray);
colTransform (originArray, 2, colArray);
// Printing the two-dimensional array
cout << " Original Array " << endl;
printTwoDimensional (originArray, 2);

(continued)

for23380_ch08_338-379.indd 375 02/11/18 5:14 pm

376 Chapter 8 Arrays

Program 8.15	 Array	transformation (Continued)

95
96
97
98
99

100
101
102

// Printing the row-transformed one-dimensional array
cout << "Row-Transformed Array: ";
printOneDimensional (rowArray, 8);
// Printing the col-transformed one-dimensional array
cout << "Column-Transformed Array: ";
printOneDimensional (colArray, 8);
return 0;

}

Run:
 Original Array
 0 1 2 3
 10 11 12 13

Row-Transformed Array: 0 1 2 3 10 11 12 13
Column-Transformed Array: 0 10 1 11 2 12 3 13

K e y T e r m s

array declaration
frequency array
histogram
linearization
multidimensional array

one-dimensional array
parallel arrays
subscript
three-dimensional array
two-dimensional array

Arrays are sequences of data items of the same type. An array is a compound type; we can have
an array of any type other than void. An array has three attributes: type, size and capacity. To
declare an array, we specify its type, name, and capacity enclosed in square brackets. Arrays
declared in the global area of a program are initialized with default values. Arrays declared
inside of functions are initialized with garbage values left over from the previous operations.

In a one-dimensional array, each element can be accessed using a single index. Ac-
cessing an element in a two-dimensional array requires two indexes, representing the row
and the column. Several operations are common on two-dimensional arrays: folding, trans-
posing, and linearizing, We are not limited to two dimensions; however more than three
dimensional arrays are very rare.

S u m m a r y

P r o b l e m s

PR-1. Given the following declarations, write the code that prints the array elements
with an even index.

int arr [10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

for23380_ch08_338-379.indd 376 02/11/18 5:14 pm

Problems 377

PR-2. Given the following declaration, write the code that prints the first five elements
of the array.

int arr [12] = {0, 10, 20, 39, 40, 50, 60, 70, 80, 90};

PR-3. Write the code that fills the elements with an even index with integer 0 and the
elements with an odd index with integer 1 using the following declaration.

int arr [10];

PR-4. Write the code that fills the first five elements with integer 5 and the last five
elements with integer 10 given the following array declarations.

int arr [10];

PR-5. What is the output from the following code segment?

int arr [10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
for (int i = 0; i < 5; i++)
{

cout << arr [i * 2] << " ";
}

PR-6. What is the output from the following code segment?

int arr [10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
for (int i = 0; i < 5; i++)
{

arr [i] = arr [i * 2 + 1];
cout << arr [i] << endl;

}

PR-7. What is the output from the following code segment?

int arr1 [5] = {0, 1, 2, 3, 4};
int arr2 [5];
for (int i = 0; i < 5; i++)
{

arr2 [i] = arr1 [i];
cout << arr1 [i] + arr2 [i] << endl;

}

PR-8. What is the output from the following code segment?

int arr [5] = {0, 1, 2, 3, 4};
for (int i = 1; i <= 4; i++)
{

cout << arr [i] << " ";
}
cout << endl;

PR-9. Write the code that creates another array, arr2, whose elements are in the reverse
order of the following array named arr1.

int arr1 [10] = {0, 10, 20, 39, 40, 50, 60, 70, 80, 90};

for23380_ch08_338-379.indd 377 02/11/18 5:14 pm

378 Chapter 8 Arrays

PR-10. Write the definition of a function that, given two arrays of integers, arr1 and
arr2, as parameters, compares the two arrays for equality and returns true or false.
Assume that the capacity of both arrays is the same.

PR-11. Write the definition of a function that, given an array of integers, arr1 with capacity
n, creates another array arr2. Each element in arr2 should be two times the
corresponding element in arr1. Assume that the capacity of arr2 is the same as arr1.

PR-12. Write the definition of a function that, given an array of integers, arr, with size
n, checks to see if the elements of the array are in increasing order (value of each
element is greater than or equal to the previous element). The function should
return true or false.

PR-13. Write the definition of a function that, given an array of integers, arr with size n,
searches the array for the given value. The function returns true or false.

PR-14. Write the definition of a function that, given an array of integers named arr, swaps
the two elements of the array with the given indexes. Note that the function should
check the validity of the given indexes.

PR-15. Write the definition of a function that, given an array of integers named arr,
deletes the element at the given index. Note that the function should assert the
validity of the given index.

PR-16. Write the definition of a function that, given an array of integers named arr,
inserts a given value at the given index. Note that the function should check the
validity of the given index.

PR-17. Write the declarations and initialization of two arrays of capacity 10 in which the
first holds the name and the second the salary of employees in a company.

PR-18. Write the definition of a function that, given a two-dimensional array named table,
of n rows and 3 columns, prints the elements in row r. Check the validity of r
passed as a parameter.

PR-19. Write the definition of a function that takes a two-dimensional array, named table,
of n rows and 3 columns, and prints the elements in column c. Check the validity
of c passed as a parameter.

PR-20. Show the values of the elements in the following array, which is created by linear
row transformation of the array.

int sample [2][4] = {{1, 2, 3, 4} , {5, 6, 7, 8}};

PR-21. Show the values of the elements in the following array, which is created by linear
column transformation of the following array initialization:

int sample [2][4] = {{1, 2, 3, 4} , {5, 6, 7, 8}};

PR-22. Show the values of the elements in the array that is created by zigzag
transformation of the following array.

int sample [3][3] = {{1, 2, 3},{4, 5, 6},{7, 8, 9}};

P r o g r a m s

PRG-1. Write a program that randomly creates an array of 100 elements and fills the
elements with random integers between 100 and 200. The program prints the
elements in 10 rows by calling a print function.

for23380_ch08_338-379.indd 378 02/11/18 5:14 pm

Programs 379

PRG-2. Write a program that creates a list of 10 random integers between 1 and 100 and
then prints the elements of array, the smallest element, and the largest element.

PRG-3. Write a program that creates a list of 10 random integers between 1 and 100
and then prints the elements of the array, the average of the elements, and the
standard deviation of them using the formula shown below, in which n defines
the size of the list and aver defines the average value:

stdDev = sqrt ((num[0] - aver)2 + … + (num [n-1] - aver)2) / n

PRG-4. Write a program that creates a list of 10 random integers between 1 and 100 and
a function to round shift the elements one element toward the end of the array
such that the first element becomes the second, the second element becomes the
third, …, and the last element becomes the first. The program prints the original
array and the shifted array.

PRG-5. Write a program that creates an array of 10 integers filled randomly with values
from 1 to 100. The program then removes the largest and the smallest elements
from the array and prints the original array and the array after the two elements
have been removed.

PRG-6. Write a program that creates an array of 10 integers filled randomly with values
from 1 to 100; then creates another array in which the order of elements is
reversed; and then prints the contents of both arrays.

PRG-7. Write a program that creates an array of 20 integers in which each element
is between 1 and 100. The program then creates two arrays: one holding odd
values and the other holding even values.

PRG-8. Write a program that randomly creates a two-dimensional array of size 6 by
6; the array contains integers from 100 to 199. The program then creates two
functions. The first creates an array that contains the diagonal elements from
left to right, and the second creates the diagonal elements from right to left. The
program prints the two-dimensional array and both one-dimensional arrays.

PRG-9. Write a program that creates two one-dimensional arrays of size 5 and fills them
with random values between 100 and 199. The program then uses a function to
merge the two arrays to create a new one. Merging takes one element from each
array in sequence. The program prints the contents of all arrays.

PRG-10. Write a program that initializes two arrays of size 5 with random values between
100 and 199 and then writes a function to create a two-dimensional array of size
2 by 5 in which each row is the copy of one of the original arrays. The program
prints the contents of the three arrays.

PRG-11. Write a program that initializes two arrays of size 5 with random values between
100 and 199 and then writes a function to create a two-dimensional array of
size 5 by 2 in which each column is the copy of one of the original arrays. The
program prints the contents of the three arrays.

for23380_ch08_338-379.indd 379 02/11/18 5:14 pm

380

9.1 REFERENCES
A reference is an alternative name for an object. References have been added to C++ to sim-
plify communication between entities such as functions, as we will see later in the chapter.

9.1.1 Introduction
A variable declared as type& is an alternative name for a variable declared as type. When
we declare a reference variable, we do not create a new object in memory; we just declare
an alternative name for an existing variable. The original variable and the reference variable

In Chapter 8 we discussed one of the compound data types: arrays. In this chapter we dis-
cuss the other two compound data types: references and pointers. We also discuss memory
management related to storing pointed objects in heap memory.

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss reference types and reference variables.

•	Discuss how to create a permanent binding between a reference variable and the original
variable.

•	Discuss how to retrieve and change data in the original variable through the reference
variable.

•	Show the application of references in relation to functions: pass-by-reference and
return-by-reference.

•	Discuss pointer types and pointer variables.

•	Discuss how to create a permanent or temporary binding between a pointer variable and a
data variable.

•	Discuss how to retrieve and change data in a data variable through the pointer variable.

•	Show the application of pointers in relation to functions: pass-by-pointer and
return-by-pointer.

•	Discuss relations between arrays and pointers, and discuss array arithmetic.

•	Discuss four areas of memory available to programmers and their applications.

•	Discuss when an object can be stored in stack memory and when it needs to be stored in heap
memory.

•	Discuss dynamic memory allocation.

9 References, Pointers, and
Memory Management

for23380_ch09_380-442.indd 380 06/11/18 2:45 pm

9.1 References 381

are in fact the same memory location called by different names. For this reason, we need to
bind a reference variable to the original variable immediately when we declare it. Binding is
done through initializing the reference variable with the name of the original variable. The
following shows the creation of an original variable of type int named score and the binding
of a reference variable of type int& to it.

int score = 92;
int& rScore = score;

// Declaring and initializing variable score of type int
// Declaring variable rScore of type int& and binding it

Figure 9.1 shows the situation in memory. We have only one memory location, but
with two names. One of the names defines the original variable; the other name defines a
reference to that variable.

The interesting point is that the same value, 92, is seen as an int type when accessed
through the score variable; it is seen as an int& type when accessed through the rScore variable.

The name we have used for a reference variable is the same as the original name, but
we add an r at the beginning and make the first letter of the original name uppercase. This is
not a mandate. This is our convention and helps us remember to which original variable our
reference variable is bound.

Compound Type
Although the original variable and the reference variable define the same location in memory
with the same value seen by both of them, the types of the original variable and the reference
variable are different. For example, in Figure 9.1, the type of variable score is int, but the
type of variable rScore is int&. In other words, the use of reference variables creates a new
compound type: reference type. A reference type is a compound type because we can have
a reference to an int (int&), a reference to a double (double&), a reference to a bool (bool&),
and so on. When we bind a variable to a reference variable, the type of the reference vari-
able should be a reference to the type of the original variable. The following is a compilation
error. We cannot initialize a reference variable of double& to refer to a variable of type int.

int num = 100;
double& rNum = num; // Compilation error. Type mismatch

Permanent Binding
After a reference variable has been declared and bound to a variable name, a reference
relationship has been created between them and cannot be broken until the variables are de-
stroyed (go out of scope). In C++ parlance, we say that the relationship between a variable
and the corresponding reference variable is a constant relation. Figure 9.2 shows that we
cannot change the reference relation after it has been created.

value

type: int

92scoreOriginal variable
name

type: int&

rScore Reference variable
name

Figure 9.1	 Original	variable	and	reference	variable

for23380_ch09_380-442.indd 381 06/11/18 2:45 pm

382 Chapter 9 References,	Pointers,	and	Memory	Management

We discuss more about the constantness in reference relationships later in this chapter.

After the reference relationship is established, it cannot be changed.

EXAMPLE 9.1
We will get a compilation error if we first bind rScore to score and then try to break this
relationship and bind rScore to num, as shown below:

int score = 92;
int& rScore = score;
int num = 80;
int& rScore = num; // Compilation error, breaking the reference relationship

EXAMPLE 9.2
Sometimes we see statements that should not be confused with breaking the reference rela-
tionship. For example, consider the following:

int score = 92;
int& rScore = score;
int num = 80;
rScore = num;

In this code segment, we are not breaking the relationship. We are storing a copy of value
in num to the common memory location established by the reference relationship. In other
words, the last statement is not binding; it is an assignment to the common variable. We
could have used the statement score = num with the same effect.

Multiplicity
We can have multiple reference variables bound to the same variable, but the reverse is not
possible. We cannot have a reference variable bound to more than one variable.

EXAMPLE 9.3
The following shows how to bind three reference variables (rNum1, rNum2, and rNum3) to
a single variable num.

int num = 100;
num& rNum1 = num;
num& rNum2 = num;
num& rNum3 = num;

// rNum1 is bound to num
// rNum2 is bound to num
// rNum3 is bound to num

This means that a memory location can be called using four names: num, rNum1, rNum2,
and rNum3, as shown in Figure 9.3.

scoreoriginal name reference namerScore

constant relation

value

Figure 9.2	 The	reference	relation	as	a	constant	relation

for23380_ch09_380-442.indd 382 06/11/18 2:45 pm

9.1 References 383

EXAMPLE 9.4
We get a compilation error if we try to bind one reference variable to more than one variable
because doing so means breaking the constant reference relation and creating a new one,
which is not allowed.

int num1 = 100;
int num2 = 200;
num& rNum = num1;
num& rNum = num2;

// rNum is bound to num1
// Compilation error. rNum cannot be bound to num2

Figure 9.4 shows this unacceptable relationship.

No Binding to Values
Note that a reference variable cannot be bound to a value. For example, we get a compilation
error in the following statement.

int& x = 92; // Compilation error: no binding to values

9.1.2 Retrieving Value
When the reference relationship is established, the value stored in the common memory
locations can be retrieved either through the original variable or reference variable.

EXAMPLE 9.5
Program 9.1 shows the use of an original variable and its reference. However, this applica-
tion is only for demonstration; the actual relationship between a variable and its reference is
beneficial when we use them in two different functions, as we will see later in the chapter.

num rNum1

rNum3

A location in memory
has four names.

Note: rNum2

100

Figure 9.3	 Multiple	references	to	the	same	
variable	are	allowed.

num1
rNum cannot be an alias
name for two different locations,
even if they hold the same value.

Note:

rNum
100

num2

error

error 100

Figure 9.4	 A	reference	to	multiple	variables	is	not	allowed.

Program 9.1	 Accessing	value

1
2
3

/***
* The program shows how to declare and initialize the original *
* and reference variables and then access the common value *

(continued)

for23380_ch09_380-442.indd 383 06/11/18 2:45 pm

384 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.1	 Accessing	value	(Continued)

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

* through either of them. *
***/

#include <iostream>
using namespace std;

int main ()
{

// Creation of reference relations
int score = 92;
int& rScore = score;
// Using data variable
cout << "Accessing value through data variable." << endl;
cout << "score: " << score << endl;
// Using reference variable
cout << "Accessing value through reference variable." << endl;
cout << "rScore: " << rScore;
return 0;

}

Run:
Accessing value through data variable.
score: 92
Accessing value through reference variable.
rScore: 92

9.1.3 Changing Value
There is only one value in a reference relationship, but the value can be changed either
through the original variable or through any of the reference variables, unless we use const
modifiers (Figure 9.5).

Data cannnot be changed at all.

Data cannot be changed
through reference variable.

No const modifier is allowed here
because the relationship is already constant.

Constant (permanent) relationship

score pScore92

const int score = 92;

const int& pScore = score;

Figure 9.5	 Preventing	change	in	a	reference	relation

for23380_ch09_380-442.indd 384 06/11/18 2:45 pm

9.1 References 385

The constant modifier can be put in front of the original variable or in front of the
reference variable. The relationship (binding) is by nature constant and cannot be broken.
Figure 9.5 shows the use of a const modifier for both the original and the reference variables.

Table 9.1 shows the four possible combinations, but the second one creates a compila-
tion error, as we describe shortly.

First Case
In the first case, there is no restriction to changing the value either through the original vari-
able or through the reference variable.

Second Case
The second case creates a compilation error because we try to bind a nonconstant reference
variable to a constant variable. Since the original variable is already constant, there is no way
that we can change its value through the reference variable.

Third Case
In the third case, the data can be changed through the data variable, but we want to restrict it
from being changed through the reference variable.

Fourth Case
In the fourth case, we want to create an original variable and a reference variable in a way
that neither the original variable nor the reference variable can change the common value.
This case has little application because the data variable and the reference variables can only
be used to retrieve data, not to change them.

9.1.4 Applications
Using references in the same namespace, such as in the same function, is unnecessary be-
cause we can always use the original variable instead of the reference variable. Both vari-
ables use the same memory location. The idea of references is beneficial when the two vari-
ables are in different scopes, like in a calling function and the called function. We can save
memory by using one memory location and accessing it in two functions using the original
variable and the reference variable.

In this section we discuss the use of references in the communication between two
functions. We discuss using references in passing data to a function and in returning data
from a function. The first application is called pass-by-reference; the second is called
return-by-reference.

Case Data variable Reference variable Status

1 int	name	=	value;	 int&	rName	=	name; OK

2 const	int	name	=	value;	 int&	rName	=	name; Error

3 int	name	=	value;	 const	int&	rName	=	name; OK

4 const	int	name	=	value;	 const	int&	rName	=	name; OK

Table 9.1 Four possible combinations

for23380_ch09_380-442.indd 385 06/11/18 2:45 pm

386 Chapter 9 References,	Pointers,	and	Memory	Management

Pass-by-Reference
In the first case, pass-by-reference, a calling function has an object (or objects) that it needs
to send to the called function for processing. In Chapter 6 we used pass-by-value; now we
use pass-by-reference. Both methods are shown in Figure 9.6.

We write two small programs, side by side, to compare the two methods. Assume we
want a function that processes integers passed to it. The function can be designed as pass-
by-value or pass-by-reference as shown below:

#include <iostream>
using namespace std;
// Prototype
void doIt (int);

int main ()
{

int num = 10;
doIt (num);
return 0;

}
// Pass-by-value
void doIt (int num)
{

// Code
}

#include <iostream>
using namespace std;
// Prototype
void doIt (int&);

int main ()
{

int num = 10;
doIt (num);
return 0;

}
// Pass-by-reference
void doIt (int& rNum)
{

// Code
}

Characteristics of Pass-by-Value In the pass-by-value method, the calling function sends
a copy of its argument to the called function. The copy becomes the parameter in the called
function. In other words, the following statement is done in the background:

int num2 = num1;

 ∙ In pass-by-value, we have two independent objects: the argument and the parameter.
This means that changes in the parameter, intentional or accidental, cannot affect the
argument. This may be an advantage in one situation and a disadvantage in another
situation.

Calling
function

Called
function

Pass-by-value

copy all bytes

num1

num2

share

num

rNum

Pass-by-reference

Figure 9.6	 Comparing	pass-by-value	and	pass-by-reference

for23380_ch09_380-442.indd 386 06/11/18 2:45 pm

9.1 References 387

 ∙ Another issue in using pass-by-value is the cost of copying. Copying all bytes of the ar-
gument can be costly if the object to be copied is large. This means that if the object to
be passed is of a fundamental type, we should not worry because the number of bytes
to be copied is small (normally less that eight). However, if we need to copy an object
of class type with thousands of bytes, we should consider other methods.

Characteristics of Pass-by-Reference In the pass-by-reference method, the parameter is
only a reference to the argument. The binding between the two occurs in the background as
part of the running environment, as shown below:

int& rNum = num;

 ∙ In pass-by-reference, the argument and the parameter are exactly the same object; we
are saving memory allocation. Any change in the parameter means the same change in
the argument unless we use a constant reference, as we discussed previously.

 ∙ It is obvious that pass-by-reference eliminates the cost of copying. The argument and
the parameter are the same object. We must consider this method when we want to pass
a large object, such as an object of class type, to a called function.

Recommendation Now that we have discussed the pros and cons of each method of pass-
ing an argument to a function, we consider the following recommendations, which will help
us decide which method to use.

1. If we need to prevent change, we should use

a. pass-by-value for small objects.
b. pass-by-constant reference for large objects.

2. If there is a need for change, we should use pass-by-reference.

Warning We cannot bind a reference parameter to a value argument. For example, the fol-
lowing code creates a compilation error.

void fun (int& rX) { … }
fun (5);

// Function definition
// Function call (compilation error)

The parameter rX is a reference parameter. The argument of the function call must be a vari-
able name, not a value.

EXAMPLE 9.6
Assume we want to write a function to print the value of a fundamental data type. We do
not want to change the value of the data in the calling function. This is the first case in our
recommendation; we can use either pass-by-value or pass-by-constant reference. Since the
object is small, we can use pass-by-value. We have given several examples of this situation
previously.

EXAMPLE 9.7
Assume we want to write a copy constructor for a class. This is also the first case in our
recommendation because we do not want the function to change the original object. How-
ever, pass-by-value is costly (the object can be large) and, more important, it is impossible
because pass-by-value needs the call to the copy constructor to copy the object, which means

for23380_ch09_380-442.indd 387 06/11/18 2:45 pm

388 Chapter 9 References,	Pointers,	and	Memory	Management

we need the copy constructor to create a copy constructor (vicious circle). The C++ stan-
dard says we must use pass-by-constant reference as shown below:

// Pass-by-reference in copy constructor
Circle :: Circle (const Circle& circle)
: radius (circle.radius)
{
}

EXAMPLE 9.8
Assume we want to write a function to swap two data items. This is the second case in our
recommendation. We need change, so we use pass-by-reference as shown in Program 9.2.

Program 9.2	 Using	a	swap	function	with	pass-by-reference	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/***
* The program shows how to use pass-by-reference to allow a *
* called function to swap two values in the calling function. *
***/

#include <iostream>
using namespace std;

void swap (int& first, int& second) ; // Prototype

int main ()
{

// Definition of two variables
int x = 10;
int y = 20;
// Printing the value of x and y before swapping
cout << "Values of x and y before swapping." << endl;
cout << "x: " << x << " " << "y: " << y << endl;
// Calling swap function to swap the values of x and y
swap (x , y);
// Printing the value of x and y after swapping
cout << "Values of x and y after swapping." << endl;
cout << "x: " << x << " " << "y: " << y;
return 0;

}
/***

* The swap function swaps the values of the parameters and *
* pass-by-reference allows the corresponding arguments in main *
* to be swapped accordingly. *
***/

void swap (int& rX, int& rY)
{

(continued)

for23380_ch09_380-442.indd 388 06/11/18 2:45 pm

9.1 References 389

Program 9.2	 Using	a	swap	function	with	pass-by-reference	(Continued)

32
33
34
35

int temp = rX;
rX = rY;
rY = temp;

}

Run:
Values of x and y before swapping.
x: 10 y: 20
Values of x and y after swapping.
x: 20 y: 10

Return-by-Reference
In the second case, return-by-reference, a called function has an object that must be re-
turned to the calling function.

Characteristics of Return-by-Value In return-by-value, the called function returns an
object of the desired type using the following prototype.

type function (...);

Return-by-value is simple and can be used anywhere. We can return the value of a parameter
or a local variable. The only drawback is the cost of copying. If the object to be returned is
a fundamental type, we should not worry; if it is an object of a class type, we know that the
copy constructor will be called and the cost may be high.

Characteristics of Return-by-Reference In return-by-reference, the type of the object
to be returned is a reference to another object, as shown in the following prototype.

type& function (...);

This method eliminates the cost of copying, but it has a drawback: We cannot return an ob-
ject by reference if it is a value parameter or a local variable (except static). The reason, as
we will discuss later in the chapter, is that when a function is terminated all local variables
and value parameters are destroyed. When an object is destroyed, we cannot have an alias
name to it, but we can return a reference to a reference parameter.

EXAMPLE 9.9
Assume we want to write a function to find the larger between two integers. We could use
either the combination of pass-by-value and return-by-value or the combination of pass-by-
reference and return-by-reference. The following shows the two programs side by side for
comparison.

#include <iostream>
using namespace std;

#include <iostream>
using namespace std;

for23380_ch09_380-442.indd 389 06/11/18 2:45 pm

390 Chapter 9 References,	Pointers,	and	Memory	Management

// Return-by-value
int larger (int x, int y)
{

if (x > y)
{

return x;
}
return y;

}
int main ()
{

int x = 10;
int y = 20;
int z = larger (x, y);
cout << z;
return 0;

}

// Return-by-reference
int& larger (int& x, int& y)
{

if (x > y)
{

return x;
}
return y;

}
int main ()
{

int x = 10;
int y = 20;
int z = larger (x, y);
cout << z;
return 0;

}

Run:
20

Run:
20

We see examples of both practices in cases like this because the cost of copying is
small in pass-by-value and return-by-value.

EXAMPLE 9.10
In this example we find the larger between two objects of class types. In Chapter 7 we cre-
ated a fraction class. We do not repeat the interface and the implementation file here (sepa-
rate compilation). We just create an application file that uses pass-by-reference and return-
by-reference to find the smaller of two fractions. Program 9.3 shows the application file.

Program 9.3	 Finding	the	larger	of	two	fractions	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The program creates two pairs of fractions and then calls a *
* function named larger to find the larger in each pair *
***/

#include "fraction.h"

Fraction& larger (Fraction&, Fraction&); // Prototype

int main ()
{

// Creating first pair of fractions and finding the larger
Fraction fract1 (3, 13);
Fraction fract2 (5, 17);
cout << "Larger of the first pair of fraction: " ;
larger (fract1, fract2).print ();
// Creating second pair of fractions and finding the larger

(continued)

for23380_ch09_380-442.indd 390 06/11/18 2:45 pm

9.2 Pointers 391

Program 9.3	 Finding	the	larger	of	two	fractions	(Continued)

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Fraction fract3 (4, 9);
Fraction fract4 (1, 6);
cout << "Larger of the second pair of fractions: " ;
larger (fract3, fract4).print ();
return 0;

}
/***

* The function gets two fractions by reference, compares them *
* and returns the larger. *
***/

Fraction& larger (Fraction& fract1, Fraction& fract2)
{

if (fract1.getNumer() * fract2.getDenom() >
 fract2.getNumer() * fract1.getDenom())

{
return fract1;

}
return fract2;

}

Run:
Larger of first pair of fractions: 5/17
Larger of second pair of fractions: 4/9

The interesting point is that in each call, the returned item is an lvalue, one of the ob-
jects that was sent to the function. This is why we can apply the print function defined in the
class to the object (lines 17 and 22).

9.2 POINTERS
A pointer type is a compound type representing the address of a memory location. A pointer
variable is a variable whose contents are of pointer type. In this section, we discuss ad-
dresses, pointer types, pointer variables, and some related issues.

9.2.1 Addresses
When we talk about addresses, we must consider two separate concepts: addresses in mem-
ory and the address of a variable.

Addresses in Memory
As we discussed briefly in Chapter 1, computer memory is a sequence of bytes. In other
words, the smallest accessible unit is a byte. When we say that a computer has a memory
(random access memory, or RAM) of 1 kilobyte, we mean that memory is made of 210 or
1024 bytes. Today’s computers have memories in the range of megabytes (220), gigabytes
(230), or even terabytes (240).

Each byte of memory has an address. The addresses are shown in hexadecimal format.
For example, in a computer with 1 kilobyte of memory, the bytes are numbered from 0x000
to 0x3ff (0 to 1023 in decimal) as shown in Figure 9.7.

for23380_ch09_380-442.indd 391 06/11/18 2:45 pm

392 Chapter 9 References,	Pointers,	and	Memory	Management

Memory

Address of the first byte

Address of the last byte

0x000
0x001
0x002

0x3ff
0x3fe

Figure 9.7	 Addresses	in	1	kilobyte	of	RAM

Program 9.4	 Printing	size,	value,	and	addresses	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* The program to define three variables and to print their *
* values and their addresses in the memory *
***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration of three data variables
bool flag = true;
int score = 92;
double average = 82.56;
// Printing size, value, and address of the flag variable
cout << "A variable of type bool" << endl;
cout << "Size: " << sizeof (flag) << " " ;
cout << "Value: " << flag << " ";
cout << "Address: "<< &flag << endl << endl;

(continued)

Address of a Variable
In our programs, we define variables of different types: Boolean, character, integer, floating
point, and class. Each variable occupies one or more bytes of memory. A variable of type
bool or char normally occupies one byte of memory. A variable of type int may occupy four
or more bytes of memory. A variable of type double may also occupy four or more bytes of
memory (the sizeof operator can be used to determine the number of bytes). The address of
a variable is the address of the first byte it occupies. This is an important point we must re-
member when we are working with addresses or pointers, as we will see. To get the address
of a variable, we use the address operator (&) in front of the variable.

The address of a variable is the address of the first byte
occupied by that variable.

EXAMPLE 9.11
In this example we write a simple program that prints the addresses of three variables: bool,
int, and double (Program 9.4).

for23380_ch09_380-442.indd 392 06/11/18 2:46 pm

9.2 Pointers 393

Program 9.4	 Printing	size,	value,	and	addresses	(Continued)

19
20
21
22
23
24
25
26
27
28
29
30

// Printing size, value, and address of the score variable
cout << "A variable of type int" << endl;
cout << "Size: " << sizeof (score) << " " ;
cout << "Value: " << score << " ";
cout << "Address: "<< &score << endl << endl;
// Printing size, value, and address of the average variable
cout << "A variable of type double" << endl;
cout << "Size: " << sizeof (average) << " " ;
cout << "Value: " << average << " ";
cout << "Address: "<< &average << endl;
return 0;

}

Run:
A variable of type bool
Size: 1 Value: 1 Address: 0x28fef0

A variable of type int
Size: 4 Value: 92 Address: 0x28fef1

A variable of type double
Size: 8 Value: 82.56 Address: 0x28fef5

There are three important points about Program 9.4:

 ∙ The extraction operator (<<) is overloaded so that it can accept an address. Therefore,
we can use the expression cout << &score to print the address of the variables.

 ∙ The addresses are displayed using hexadecimal notation. The addresses are not inte-
gers; they are pointer types, as we will see shortly.

 ∙ The sizes and addresses may be different in different systems. The addresses may start
from the smallest to largest or vice versa. There may be some gaps in the addresses.

Figure 9.8 shows the addresses as printed in Program 9.5.

 Memory

Definition
address of score

address of average

address of flagflag
score

average

bool flag = true;
int score = 92;
double average = 82.56;

1

92

82.56

0x28fef0
0x28fef1

0x28fef5

Figure 9.8	 Memory	situation	declared	and	defined	in	Program 9.5

for23380_ch09_380-442.indd 393 06/11/18 2:46 pm

394 Chapter 9 References,	Pointers,	and	Memory	Management

9.2.2 Pointer Types and Pointer Variables
We can manipulate addresses because C++ defines the pointer type and allows us to use
pointer variables.

Pointer Types
The pointer type is a compound type whose literal values are addresses. It is a compound
type in the sense that we have pointer to char (address of a char variable), pointer to int (ad-
dress of an int variable), pointer to double (address of a double variable), and so on. Note
that we only talk about the address of a variable, not a value, because a value is always stored
in a variable in memory. To create a pointer to a type, we add the asterisk symbol after the
type. The following shows some pointer types.

bool*
int*
double*
Circle*

// A pointer to an object of bool type
// A pointer to an object of int type
// A pointer to an object of double type
// A pointer to an object of Circle type

To create a pointer to a type, we add the asterisk symbol to the type.

Pointer Variables
We can store the value of a pointer type in a pointer variable. Although we can have differ-
ent pointer types, what is stored in a pointer variable is a 4-byte address. In other words, the
size of a pointer variable is fixed in C++, which means that a pointer variable can have an
address from 0x00000000 to 0xFFFFFFFF.

Declaration To use pointers, we need pointer variables. To declare a pointer variable, we
need to tell the computer that it is a pointer to a specific type. The following are declaration
examples. The selection of names is our choice because we later bind these pointer variables
to the corresponding data variables.

bool* pFlag;
int* pScore;
double* pAverage;

// pFlag is variable of pointer type to bool
// pScore is variable of pointer type to int
// pAverage is variable of pointer type to double

We read the declaration from right to left (pFlag is a pointer to a bool).

Initialization A pointer variable, like a data variable, must be initialized before being
used. It must be initialized with a valid address in memory, which means that we cannot
initialize it with a literal address; the address must be that of an existing variable. To
meet this criterion, we use the address operator, the ampersand. We will discuss this
operator shortly, but the following shows how we can initialize our three declared pointer
variables.

bool* pFlag = &flag;
int* pScore = &score;
double* pAverage = &average;

// Initialize pFlag with address of flag
// Initialize pScore with address of score
// Initialize pAverage with address of average

Pointer initialization has some restrictions. Since pFlag is a pointer to a variable of
type bool, it must be initialized with the address of a variable of type bool. Similarly, since

for23380_ch09_380-442.indd 394 06/11/18 2:46 pm

9.2 Pointers 395

Actual situation

Symbolic representation
pScore score

92

address of score

pScore
type: int* 0x28fef1

value

score
92 type: int 0x28fef1

Figure 9.9	 The	pointed	and	the	pointer	variables

pScore is a pointer to a variable of type int, it must be initialized with the address of a
type int. Figure 9.9 shows the actual and symbolic relationship between a pointer variable
(pScore) and the corresponding pointed variable (score).

EXAMPLE 9.12
The following is a compilation error. We cannot assign pointer literals to pointer variables.

double* pAverage = 0x123467; // Compilation Error. No literal addresses

EXAMPLE 9.13
The following is a compilation error. We cannot assign the address of an int variable to a
pointer of type double.

int num;
double* p = # // Compilation Error. Variable p is of type double*

Indirection (Dereference)
Declaration and initialization of pointer variables allows us to use the address stored in the
pointer variable to access the value stored in the pointed variable. This is done through the
indirection operator (also called the dereference operator) using the asterisk symbol as
shown below:

*pFlage;
*pScore;
*pAverage;

// value stored in flag
// value stored in score
// value stored in average

You may ask why we need to use the indirection operator to retrieve or change the
value of the variable flag when we can do so directly. The answer, as we will see later in
the section, is that we use different approaches (direct and indirect accesses) in different
domains. For example, we use the direct approach in a calling function and the indirect ap-
proach in the corresponding called function.

Two Related Operators
The two operators we use in this section are the address-of operator and the indirection
operator. These two operators are unary operators defined in Appendix C and shown in
Table 9.2.

for23380_ch09_380-442.indd 395 06/11/18 2:46 pm

396 Chapter 9 References,	Pointers,	and	Memory	Management

Figure 9.10 shows how these two operators are used. The address-of operator takes
a variable and returns its address; the indirection operator takes an address and returns the
value of the corresponding pointed variable.

C++ uses the ampersand and the asterisk symbols for three purposes as shown in
Table 9.3.

The ampersand symbol is used to define a reference type. It can also be used as a
unary operator to get the address of a variable. It is also used as a binary bitwise AND op-
erator (discussed in Appendix C). When it is used to define a reference type, it is put after
the type (int&). When it is used to get the address of a variable, it is put before the variable
name (&score). When it is used as a binary operator, it is used between the two operands.

The asterisk symbol can also be used in three situations: as a pointer type, as a unary
operator to get the value of a pointed variable, and as a binary multiplication operator. When
it is used to define a pointer type, it is put after the type (int*). When it is used to indirectly
access a value, it is put before the pointer (*pScore). When it is used as a binary operator, it
is used between the two operands.

9.2.3 Retrieving Value
After the pointer relationship is established, we can retrieve the value stored in the memory
location either through the data variable or pointer variable.

EXAMPLE 9.14
In this example we write a simple program that accesses the values of a data variable directly
and indirectly (Program 9.5).

Group Name Operator Expression Pred Assoc

Unary address-of	
indirection

&
*

&lvalue
*	pointer

17 ←

Table 9.2 The address expression

Symbol Type definition Unary operator Binary operator

& type& &variable x	&	y

* type* *pointer x	*	y

Table 9.3 Uses of ampersand and asterisk operators

Figure 9.10	 Address-of	operator	and	indirection		
operator

variable

address
ad

dr
es

s
op

er
at

or

in
di

re
ct

io
n

op
er

at
or

address

value

*&

for23380_ch09_380-442.indd 396 06/11/18 2:46 pm

9.2 Pointers 397

9.2.4 Using Constant Modifiers
One of the issues that is a source of confusion and error is how to control changes to a data
variable and a pointer. Changes are controlled through the use of const modifiers. We can
use up to three const modifiers, each with a different purpose, as shown in Figure 9.11. The
first two are related to changing data; the third is related to changing the relationship be-
tween the data variable and the pointer variable.

Controlling Data Change
Table 9.4 shows the four possible combinations that we can use to control data change.

Program 9.5	 Direct	and	indirect	retrieval	of	data

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The program shows how to access (retrieve or change) the value *
* of a data variable both directly and indirectly. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration and initialization of variables
int score = 92;
int* pScore = &score;
// Retrieving value of data variable directly and indirectly
cout << "Direct retrieve of score: " << score << endl;
cout << "Indirect retrieve of score: " << *pScore;
return 0;

}

Run:
Direct retrieve of score: 92
Indirect retrieve of score 92

Figure 9.11	 Three	uses	of	constant	modifiers	in	relation	to	pointers	

scorepScore 92

const int score = 92;No data
change

pScore = & score;const int* No indirect
change

const pScore = & score;int*

Pointing relation

No address
change

for23380_ch09_380-442.indd 397 06/11/18 2:46 pm

398 Chapter 9 References,	Pointers,	and	Memory	Management

First Case In the first case, there is no restriction on changing the value either through the
data variable or through the pointer variable.

int score = 92;
int* pScore = &score;
score = 80;
*pScore = 70;

// Change through data variable
// Change through pointer variable

Second Case The second case is a forbidden case. We get a compilation error when we try
to bind the data variable to the pointer variable. Since the data variable is already constant,
there is no way that we can bind it to a nonconstant pointer type.

const int score = 92;
int* pScore = &score;

// Compilation error

Third Case In the third case, the data can be changed through the data variable, but we
want to prevent it from being changed through the pointer variable. If we try to change it
through the pointer variable, we get a compilation error.

int score = 92;
const int* pScore = &score;
score = 80;
*pScore = 80;

// Compilation Error

Fourth Case In the fourth case, we want to create both a data variable and a pointer vari-
able that cannot be changed. This case has little application because data variables and point-
er variables can only be used to retrieve data, not to change them.

const int score = 92;
const int* pScore = &score;
score = 80;
*pScore = 80;

// Compilation Error
// Compilation Error

Changing Pointers (Binding)
We can use the constant modifier to bind the data variable to the pointer variable for the life-
time of the program. In other words, each of the four previous cases can be combined with
either a nonconstant or a constant pointer (Table 9.5).

Case Data variable Pointer variable

1 int	name	=	value; int*	pName	=	&name;

2	(forbidden) const	int	name	=	value; int*	pName	=	&name;

3 int	name	=	value; const	int&	pName	=	&name;

4 const	int	name	=	value; const	int&	pName=	&name;

Table 9.4 Four possible combinations

for23380_ch09_380-442.indd 398 06/11/18 2:46 pm

9.2 Pointers 399

Figure 9.12 shows that if the pointing relationship is constant, we cannot break the
relationship and make the pointer point to another data variable. Note that in this case, the
const modifier must be put in front of the name of the pointer variable.

9.2.5 Pointer to Pointer
A pointer variable is a location in memory. Can we store the address of this memory location
in another memory location? The answer is yes. We can have new types: pointer to pointer
to int, pointer to pointer to double, and so on. We can even go further and have a pointer to
pointer to pointer to int and so on. But more than two levels are rarely seen in practice. When
we use double asterisks after a type, we mean pointer to pointer to type, as shown below:

int score = 92;
const int* pScore = &score;
int** ppScore = &pscore;

// Declaration and initialization of score
// Binding pScore to score
// Binding ppScore to pscore

Figure 9.13 shows the concept of pointer to pointer.

Changing relationship between the data variable and the pointer variable

any-of-four-previous-cases	pName	=	&name;	 //	Changeable

any-of-four-previous-cases	const	pName	=	&name;	 //	Unchangeable

Table 9.5 Eight possible combinations

Figure 9.12	 Constant	pointing	relationship	cannot	be	broken.

p = &var1;

int* p;

int* const p;

p = &var2;

var16

var210
p

var16

var210
p

p = &var1; p = &var2;

var16

var210
p

var16

var210
p

Figure 9.13	 A	pointer	to	pointer	to int

Symbolic representation Memory
layout

score

pScore 0x28fe50

0x28fe63ppScore

Declaration
int score = 92
int* pScore= &score;
int** ppScore= &pScore;

scorepScoreppScore

92

0x28fe2A92

0x28fe2A

0x28fe50

for23380_ch09_380-442.indd 399 06/11/18 2:46 pm

400 Chapter 9 References,	Pointers,	and	Memory	Management

9.2.6 Two Special Pointers
Sometimes we see two special pointers: pointer to nowhere and pointer to void. We briefly
explain these two pointers; we will see more applications in future chapters.

Pointer to Nowhere: Null Pointer
A pointer to nowhere (sometimes called a null pointer) is a pointer that points to no memory
location. Although the C language used the word NULL to define such a pointer, the C++
language prefers to use the literal 0. In other words, if we want to show that a pointer is not
pointing to any memory location at this moment, we can bind it to 0 as shown below.

int* p1 = 0;
double* p2 = 0;

Note that neither of the previous two statements means that p1 or p2 is pointing to the
memory location at 0x0. The byte at this address is used for the system and is not available
to the user. The literal value 0 simply means that the pointer at this moment is pointing to
nowhere.

The programmer assigns 0 to a pointer to show that the pointer cannot be used until it
is bound to a valid address. Note that when a name is declared, it cannot become invalid until
it goes out of scope. Assigning 0 to a pointer variable means that declaration is still valid, but
we cannot use it. If a logic error does try use the pointer, the program aborts.

When a pointer is not null, its value can be interpreted as true; when it is null, its value
can be interpreted as false. This means we can always check to see if a pointer is null or not
as shown below:

int x = 7;
int* p = &x;
if (p) {…}
p = 0;
if (p) {…}

// Test is true here (p is not null)

// Test is false here (p null)

Pointer to Void: Generic Pointer
A void pointer is a generic pointer. It can point to an object of any type. The following
shows how we can use a generic pointer to point to any type. Assume that we first need to
point it to an int object and later to a double object. Note that a void pointer cannot be redi-
rected until it is cast to an appropriate type.

void* p;
int x = 10;
p = &x;
double y = 23.4;
p = &y;

// Declaring a void pointer

// Make p to point to an int type

// Make p to point to a double type

9.2.7 Applications
Just like references, pointers can be used to create communication between functions. We
discuss the use of pointers in passing data to a function and returning data from a function.
The first application is called pass-by-pointer; the second is called return-by-pointer.

for23380_ch09_380-442.indd 400 06/11/18 2:46 pm

9.2 Pointers 401

Pass-by-Pointer
Pointers can be used to send data from a calling function to a called function. We show pass-
by-value, pass-by-reference, and pass-by-pointer in Figure 9.14. In the third case, pass-
by-pointer, the calling function sends the address of the object (argument) to the called
function and the called function stores it in a pointer (parameter). Unlike the case of pass-by-
reference, there is no sharing here. The run-time system must copy the address of the argu-
ment in the calling function and send it to the called function. However, the cost of copying
is not as high in the case of pass-by-value. It is a fixed cost of copying a 4-byte address.

We write two small programs, side by side, to compare the two methods. Assume we
want to have a function that does something to an integer passed to it. The function can be
designed as pass-by-value or pass-by-pointer, as shown below:

#include <iostream>
using namespace std;
// Prototype
void doIt (int);

int main ()
{

int num1 = 10;
doIt (num1);
return 0;

}
// Pass-by-value
void doIt (int num2)
{

// Code
}

#include <iostream>
using namespace std;
// Prototype
void doIt (int*);

int main ()
{

int num = 10;
doIt (&num);
return 0;

}
// Pass-by-pointer
void doIt (int* pNum)
{

// Code
}

Characteristics of Pass-by-Pointer We discussed the characteristics of pass-by-value
and pass-by-reference previously. In the pass-by-pointer method, the parameter is the ad-
dress of the argument. The binding between the two occurs in the background as part of the
running environment, as shown below:

int* pNum = #

Figure 9.14	 Comparing	three	methods	of	passing	data	to	a	function

Calling
functions

Called
functions

Pass-by-value Pass-by-pointer

copy
all bytes

num

num

copy address

num

pNum

share

num

rNum

Pass-by-reference

for23380_ch09_380-442.indd 401 06/11/18 2:46 pm

402 Chapter 9 References,	Pointers,	and	Memory	Management

 ∙ In pass-by-pointer, the argument and the parameter are bound together. Any change in
the parameter means the same change in the argument unless we use a constant pointer,
as we discussed previously.

 ∙ It is obvious that pass-by-pointer reduces the cost of copying. Only a 4-byte address is
copied. We must consider this method when we want to pass a large object, such as an
object of class type, to a called function.

Recommendation We augment the recommendation we made previously to three prac-
tices: pass-by-value, pass-by-reference, and pass-by-pointer.

1. If we need to prevent change, we must use

a. pass-by-value for small objects.
b. pass-by-constant reference or pass-by-constant pointer for large objects.

2. If there is a need for change, we must use pass-by-reference or pass-by-pointer.

EXAMPLE 9.15
Assume we want to write a function to print the value of a fundamental data type. We do
not want to change the value of the data in the calling function. This is the first case in our
recommendation. Since the object is small, we can use pass-by-value.

EXAMPLE 9.16
Assume we want to write a function to swap two data items. This is the second case in our
recommendation. We showed how to use pass-by-reference previously; in Program 9.6 we
show how to use pass-by-pointer.

Program 9.6	 Using	a	swap	function	with	pass-by-pointer

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The program shows how to use pass-by-pointer to allow a *
* called function to swap two values in the calling function. *
 ***/

#include <iostream>
using namespace std;

void swap (int* first, int* second) ; // Prototype

int main ()
{

// Definition of two variables
int x = 10;
int y = 20;
// Printing the value of x and y before swapping
cout << "Values of x and y before swapping." << endl;
cout << "x: " << x << " " << "y: " << y << endl;

(continued)

for23380_ch09_380-442.indd 402 06/11/18 2:46 pm

9.2 Pointers 403

Return-by-Pointer
In the second case, return-by-pointer, a called function has an object that must be returned
to the calling function. We can use return-by-pointer.

Characteristics of Return-by-Pointer
In this case, the type of the object to be returned is a pointer to a function parameter, which
itself is a pointer to an object in the calling function, as shown in the following prototype:

type* function (type* ...);

As we discussed in the case of return-by-reference, this practice has some drawbacks, most
notable the following: We cannot return a pointer to a value parameter or to a local variable.
When the called function is terminated, all local objects and value parameters are destroyed
and there is no longer an object to point to.

EXAMPLE 9.17
Assume we want to write a function to find the larger of two integers. We could use ei-
ther the combination of pass-by-value and return-by-value or the combination of pass-
by-pointer and return-by-pointer. The following shows the two programs side by side for
comparison.

Program 9.6	 Using	a	swap	function	with	pass-by-pointer (Continued)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// Calling swap function to swap the values of x and y
swap (&x , &y);
// Printing the value of x and y after swapping
cout << "Values of x and y after swapping." << endl;
cout << "x: " << x << " " << "y: " << y;
return 0;

}
/***

* The swap function swaps the values of parameters and *
* pass-by-pointer allows the corresponding arguments in main *
* to be swapped accordingly. *
 ***/

void swap (int* pX, int* pY)
{

int temp = *pX;
*pX= *pY;
*pY = temp;

}

Run:
Values of x and y before swapping.
x: 10 y: 20
Values of x and y after swapping.
x: 20 y: 10

for23380_ch09_380-442.indd 403 06/11/18 2:46 pm

404 Chapter 9 References,	Pointers,	and	Memory	Management

#include <iostream>
using namespace std;

int larger (int x, int y)
{

if (x > y)
{

return x;
}
return y;

}
int main ()
{

int x = 10;
int y = 20;
int z = larger (x, y);
cout << z;
return 0;

}

#include <iostream>
using namespace std;

int* larger (int* x, int* y)
{

if (*x > *y)
{

return x;
}
return y;

}
int main ()
{

int x = 10;
int y = 20;
int z = *larger (&x, &y);
cout << z;
return 0;

}

Run:
20

Run:
20

We will see examples of both practices in cases like this because the cost of copying is not
large in pass-by-pointer and return-by-pointer.

EXAMPLE 9.18
In this example we find the larger of two objects of class type. We used return-by-reference
previously; now we use return-by-pointer. We create an application file that uses pass-by-
pointer and return-by-pointer to find the smaller of two fractions. Program 9.7 shows the
application file.

Note that the member select expression, (object -> member), is in fact a shortcut for
the expression (*object.member). Both were discussed in Chapter 7. Also note that the ob-
ject returned by a pointer is an lvalue, which means we can apply the member function print
to the returned object as shown in lines 17 and 22.

Program 9.7	 Finding	the	larger	between	two	objects

1
2
3
4
5
6
7
8
9

/***
* The program creates two pairs of fractions and then calls a *
* function named larger to find the larger in each pair. *
 ***/

#include "fraction.h"
#include <iostream>
using namespace std;

Fraction* larger (Fraction*, Fraction*); // Prototype

(continued)

for23380_ch09_380-442.indd 404 06/11/18 2:46 pm

9.3 Arrays	and	Pointers 405

Program 9.7	 Finding	the	larger	between	two	objects (Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

int main ()
{

// Creating the first pair of fractions
Fraction fract1 (3, 13);
Fraction fract2 (5, 17);
cout << "Larger of the first pair of fraction: " ;
larger (&fract1, &fract2) -> print ();
// Creating the second pair of fractions
Fraction fract3 (4, 9);
Fraction fract4 (1, 6);
cout << "Larger of the second pair of fractions: " ;
larger (&fract3, &fract4) -> print ();
return 0;

}
/***

* The function gets two fractions by pointer, compares them *
* and returns the larger of the two. *
 ***/

Fraction* larger (Fraction* fract1, Fraction* fract2)
{

if (fract1 -> getNumer() * fract2 -> getDenom() >
 fract2 -> getNumer() * fract1 ->getDenom())
{

return fract1;
}
return fract2;

}

Run:
Larger of first pair of fractions: 5/17
Larger of second pair of fractions: 4/9

9.3 ARRAYS AND POINTERS
In C++, arrays and pointers are intertwined with each other. In this section we learn how
one-dimensional and two-dimensional arrays can be represented by pointers.

9.3.1 One-Dimensional Arrays and Pointers
When we declare an array named arr of type t and of capacity N, the system creates N mem-
ory locations of type t. The system then creates a constant pointer of type t that is pointed to
the first element, as shown in Figure 9.15.

That the pointer is constant means its contents (address) cannot be changed. It is al-
ways pointing to the first element. Since the address of the first element is fixed, we know

for23380_ch09_380-442.indd 405 06/11/18 2:46 pm

406 Chapter 9 References,	Pointers,	and	Memory	Management

the address of all the elements. The address of the element at index 0 is arr (or arr + 0); the
address of the element at index 1 is arr + 1; and so on.

The name of the array is a constant pointer to the first element.

To demonstrate, we write a program and print the addresses of the array elements
defined in Figure 9.15. We use the value of both the pointers and the address operator to
prove that they are the same (Program 9.8). The program demonstrates that we can access
the address of each element using either constant pointers or indexes. In fact, the indexes are

Figure 9.15	 Relationship	between	an	array	and	a	pointer

int arr [5] = {10, 11, 12, 13, 14}; [0]

[2]
[3]
[4]

[1] Declaration

Note:
The pointer arr is a constant
pointer and cannot move.

Memory allocation

arr 10
11
12
13
14

Program 9.8	 A	program	to	check	the	address	of	each	array	element

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* The program proves that the system stores the address of each *
* element in the array in a constant pointer. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration of an array of five int
int arr [5];
// Printing the addresses through pointers and the & operator
for (int i = 0; i < 5; i++)
{

cout << "Address of cell " << i << " Using pointer: ";
cout << arr + i << endl;
cout << "Address of cell " << i << " Using & operator: ";
cout << &arr [i] << endl << endl;

}
return 0;

}

Run:
Address of cell 0 Using pointer: 0x28fee8
Address of cell 0 Using address operator: 0x28fee8

(continued)

for23380_ch09_380-442.indd 406 06/11/18 2:46 pm

9.3 Arrays	and	Pointers 407

symbolic representations that make it easier to access elements. This means that arr[0] is the
same as *(arr + 0), but we must be careful to use parentheses because the asterisk operator
has priority over the addition operator, and using parentheses will allow us to change this.
It is also interesting that each address increases by 4 bytes, which demonstrates that the size
of an integer is 4.

When referring to array elements using pointers, we need
parentheses to give priority to the addition operator.

EXAMPLE 9.19
Program 9.9 shows that we can get the same result by referring to the elements of an array
using indexes and pointers.

Program 9.8	 A	program	to	check	the	address	of	each	array	element (Continued)

Address of cell 1 Using pointer: 0x28feec
Address of cell 1 Using address operator: 0x28feec

Address of cell 2 Using pointer: 0x28fef0
Address of cell 2 Using address operator: 0x28fef0

Address of cell 3 Using pointer: 0x28fef4
Address of cell 3 Using address operator: 0x28fef4

Address of cell 4 Using pointer: 0x28fef8
Address of cell 4 Using address operator: 0x28fef8

Program 9.9	 Using	indexes	and	pointers	with	an	array

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The program shows how to access the elements of an array *
* using either the indexes or pointers to elements. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Declaration and initialization of an array
int numbers [5] = {10, 11, 12,13, 14};
// Accessing elements through the indexes
cout << "Accessing elements through indexes" << endl;
for (int i = 0; i < 5; i++)
{

cout << numbers [i] << " ";

(continued)

for23380_ch09_380-442.indd 407 06/11/18 2:46 pm

408 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.9	 Using	indexes	and	pointers	with	an	array (Continued)

17
18
19
20
21
22
23
24
25
26

}
cout << endl;
// Accessing elements through the pointers
cout << "Accessing elements through pointers" << endl;
for (int i = 0; i < 5; i++)
{

cout << *(numbers + i) << " ";
}
return 0;

}

Run:
Accessing elements through indexes
10 11 12 13 14
Accessing elements through pointers
10 11 12 13 14

Pointer Arithmetic
Pointer types are not integer types. However, pointer arithmetic allows a limited number
of arithmetic operators to be applied to pointer types. We must look at these operators with
a new definition in mind. When we use these operators, we must remember that because the
result is another pointer value, that value must point to a memory location in our control;
otherwise, the result is nonsense. This is why using these operators makes sense when we
apply them to pointers to the elements of the array: When we declare an array, the memory
locations involved are in our control.

Integer Addition or Subtraction We can use the addition operator to add an integer to, or
the subtraction operator to subtract an integer from, a pointer:

Addition: ptr1 = ptr + n Subtraction: ptr2 = ptr − n

Using the addition and subtraction operators this way creates a new definition for them. It
creates a new pointer n × m bytes forward or backward; m is the size of the pointed vari-
able, where m is the number of bytes occupied by each element. So the operation moves the
pointer n elements forward or backward as shown in Figure 9.16. Addition creates a pointer

Figure 9.16	 Integer	addition	and	subtraction	of	pointers

ptr

arr

After creation of ptr After creation of ptr1 After creation of ptr2

int* ptr = &arr [2];

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

ptr

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

int* ptr2 = ptr − 2;

arr

ptr1

ptr2

ptr

ptr1

int* ptr1 = ptr + 2;

arr

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

for23380_ch09_380-442.indd 408 06/11/18 2:46 pm

9.3 Arrays	and	Pointers 409

farther from the beginning of the array; subtraction creates a pointer closer to the beginning
of the array. The red arrow shows the original pointer.

Increment and Decrement These two operators are designed to be used with variables
(lvalues). They cannot be used with the name of the array because the name is a constant
value. The meaning of ptr++ is the same as ptr = ptr + 1, and the meaning of ptr−− is the
same as ptr = ptr − 1. In these cases the original pointer moves as shown in Figure 9.17.
After the increment operation, the original pointer is pointing to the arr[3]. After the decre-
ment operation, it is pointing back to arr[2].

Compound Addition and Subtraction We can also use compound addition and subtrac-
tion operators on pointer variables. If ptr is a pointer variable, the expression (ptr += 3) is
equivalent to (ptr = ptr + 3) and the expression (ptr −= 3) is equivalent to (ptr = ptr − 3).
These operations, like the increment and decrement operators, move the pointer toward the
beginning or toward the end, as shown in Figure 9.18.

Pointer Subtraction We can subtract one pointer from another. If ptr1 and ptr2 are point-
ers in which ptr1 points to an element of a lower index and ptr2 to an element of a higher
index, then the expression (ptr2 − ptr1) returns a positive integer and (ptr1 − ptr2) returns a
negative integer as shown in Figure 9.19. In other words, the results of these operations are
integers, not pointers.

No Pointer Addition The addition of pointer values is not allowed in C++ because it does
not make sense.

Figure 9.17	 Increment	and	decrement	operators	apply	to	pointers

ptr

arr

int* ptr = &arr [2];

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

ptr++;

arr

ptr

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

ptr−−;

arr

ptr

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

After creation of ptr After moving down After moving up

Figure 9.18	 Compound	addition	and	subtraction

ptr

arr

int* ptr = &arr[2];

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

ptr += 2;

arr

ptr

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

ptr −= 3;

arr

ptr
[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

After creation of ptr After moving ptr down After moving ptr up

for23380_ch09_380-442.indd 409 06/11/18 2:46 pm

410 Chapter 9 References,	Pointers,	and	Memory	Management

We cannot add two pointers.

Comparing Pointers We can compare two pointers as shown in Figure 9.20. If ptr1 and
ptr2 are pointers to elements of an array, the expression (ptr1 == ptr2) is true when ptr1
and ptr2 point to the same element. The expression (ptr1 != ptr2) is true when ptr1 and ptr2
point to different elements. The expression (ptr1 < ptr2) is true if ptr1 points to an element
with a lower index than pointer ptr2. The expression (ptr1 > ptr2) is true if ptr1 points to
a higher index than ptr2. The expression (ptr1 <= ptr2) is true if the two pointers point to
the same element or ptr1 points to an element closer to the beginning of the array than ptr2.
The expression (ptr1 >= ptr2) is true if the two pointers point to the same element or ptr1
points to an element closer to the end of the array than ptr2.

No Other Operations We cannot use any other arithmetic operations on pointers. For
example, multiplication, division, and modulo operators are not defined for pointer types.

A Warning We must use pointer arithmetic with caution. If the operation causes access
outside the array territory, we may destroy memory locations that are not part of the array.

Functions with Array Parameters
A pointer in a function can be used to represent an array. We discuss two cases.

Passing a Pointer to a Function for an Array We can pass a pointer to a function instead
of passing the array. In other words, the following two prototypes are the same.

int getSum (const array [], int size);
int getSum (const int* p, int size);

// Using array
// Using pointer

Figure 9.19	 Pointer	subtraction

ptr1

ptr2

n is 2

m is −2arr

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

int n = ptr1 − ptr2 ;

int m = ptr2 − ptr1 ;

Figure 9.20	 Comparing	pointers

ptr1

ptr2

numbers

[0]
[1]
[2]
[3]
[4]
[5]

0
10
20
30
40
50

fact is false

bool fact = (ptr1 == ptr2) ;

fact is true

bool fact = (ptr1 != ptr2) ;

fact is false

bool fact = (ptr1 > ptr2) ;

fact is false

bool fact = (ptr1 >= ptr2) ;

fact is true

bool fact = (ptr1 <= ptr2) ;

fact is true

bool fact = (ptr1 < ptr2) ;

for23380_ch09_380-442.indd 410 06/11/18 2:46 pm

9.3 Arrays	and	Pointers 411

We have used the constant modifier to prevent the function getSum from changing the value
of the elements.

EXAMPLE 9.20
Program 9.10 shows how we can use the second version in the code above to find the sum
of the elements in an array.

In Program 9.10, the first parameter of the getSum function is a constant to integer (so
that the function cannot change the values of the elements). However, this does not mean
that it is a constant pointer. We can move it. If we had made the parameter a constant pointer
with the prototype (const int* const, int), then we could not use p++ in line 27. We would
have to use *(p + 1) instead.

Program 9.10	 Finding	the	sum	of	elements	in	an	array

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* The program shows how to access the elements of an array *
* using pointers. *
 ***/

#include <iostream>
using namespace std;

int getSum (const int*, int); // Prototype

int main ()
{

// Array declaration and initialization
int arr [5] = {10, 11, 12, 13, 14};
// Function call
cout << "Sum of elements: " << getSum (arr, 5);
return 0;

}
/***

* The function gets a pointer to the first element of an *
* array and calculates and returns the sum of the elements. *
 ***/

int getSum (const int* p, int size)
{

int sum = 0;
for (int i = 0; i < size ; i++)
{

sum += *(p++);
}
return sum;

}

Run:
Sum of elements: 60

for23380_ch09_380-442.indd 411 06/11/18 2:46 pm

412 Chapter 9 References,	Pointers,	and	Memory	Management

EXAMPLE 9.21
Assume we want to write a function that reverses the elements of the array using pointers.
Program 9.11shows an example.

Program 9.11	 Reversing	the	elements	of	an	array	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/***
* The program shows how a function can reverse the elements *
* of an array using a pointer. *
 ***/

#include <iostream>
using namespace std;

void reverse (int* , int);

int main ()
{

// Array declaration and initialization
int arr [5] = {10, 11, 12, 13, 14};
// Calling function
reverse (arr, 5);
// Printing array after reversed
cout << "Reversed array: ";
for (int i = 0; i < 5; i++)
{

cout << *(arr + i) << " ";
}
return 0;

}
/***

* The function uses a pointer to the first element of the array *
* and the size of the array to reverse the elements in place. *
 ***/

void reverse (int* pArr, int size)
{

int i = 0;
int j = size − 1;
while (i < size / 2)
{

int temp = *(pArr + i);
*(pArr + i) = *(pArr + j);
*(pArr + j) = temp;
i++;
j− −;

}
}

Run:
Reversed array: 14 13 12 11 10

for23380_ch09_380-442.indd 412 06/11/18 2:46 pm

9.3 Arrays	and	Pointers 413

Although arr is a constant pointer and cannot move, pArr does not have to be a con-
stant pointer; it is a separate pointer variable. Also note that pArr cannot be a pointer to a
constant integer because it is supposed to change the pointed element in swapping. We swap
only half of the elements. When half of the elements are swapped, we are done.

Returning an Array from a Function Although we may think about returning an array
from a function, we must remember that an array is a combination of two pieces of informa-
tion: the pointer to the first element and the size of the array. A function can return only one
piece of information (unless we bundle the pointer and the size in an object). As we men-
tioned in Chapter 8, we cannot return an array from a function.

9.3.2 Two-Dimensional Arrays and Pointers
A two-dimensional array in C++ is an array of arrays. If we keep this fact in mind, then it is
easy to use pointers with two-dimensional arrays. Figure 9.21 shows what we see as a two-
dimensional array and what C++ sees.

Contrary to some beliefs, the name of a two-dimensional array is not a pointer to
pointer to integer; it is a pointer to an array of four integers or int (matrix*) [4]. The paren-
theses around the array name mean that the array is read as “matrix is a pointer to an array
of four integers.” We must remember this fact when we pass a two-dimensional array to a
function. As usual, the column size must be given with the pointer; the row size should be
given separately as an integer.

EXAMPLE 9.22
In this example we write a short program and pass the array defined in Figure 9.21 to a function
that will print the elements as shown in Program 9.12.

Figure 9.21	 A	two-dimensional	array	seen	by	user	and	C++

int matrix [3] [4] = {{10, 11, 12, 13}, {20, 21, 22, 23}, {30, 31, 32, 33}};

[0]

[0] [2]

[2]

[3]

[1]

[1]

Declaration

Seen by user Seen by C++

int*

int (*matrix) [4]

10

20

30

11

22

32

12

21

31

13

23

10

20

30

11

22

32

12

21

31

13

23

33 33

Program 9.12	 Passing	a	two-dimensional	array	to	a	function

1
2
3
4
5
6
7
8
9

/***
* The program to show how to pass a two-dimensional array to a *
* function using pointer notations. *
 ***/

#include <iostream>
using namespace std;

void print (int (*) [4], int); // Prototype

(continued)

for23380_ch09_380-442.indd 413 06/11/18 2:46 pm

414 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.12	 Passing	a	two-dimensional	array	to	a	function (Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

int main ()
{

int matrix [3][4] = {{10, 11, 12, 13}, {20, 21, 22, 23},
 {31, 32, 33, 34}};
// Calling print function
print (matrix, 3);
return 0;

}
/***

* The function accepts a pointer to any array of four integers *
* with the number of rows. *
 ***/

void print (int (*m) [4], int rows)
{

for (int i = 0; i < rows; i++)
{

for (int j = 0 ; j < 4; j++)
{

cout << m[i][j] << " ";
}
cout << endl;

}
}

Run:
10 11 12 13
20 21 22 23
31 32 33 34

9.4 MEMORY MANAGEMENT
When a program in C++ is running, it uses memory locations. The code must be stored in
memory and every object, fundamental or user-defined, must also be stored in memory. How-
ever, the C++ environment divides memory into different areas, as shown in Figure 9.22, to
make memory management more efficient. Note that the figure does not show the order of
different memory areas in the computer.

Figure 9.22	 Memory	sections	used	by	a	program

Code memory

Static memory

Stack memory

Stores the program code

Stores global or static objects

Stores local variables or parameters

Stores objects created during run timeHeap memory

for23380_ch09_380-442.indd 414 06/11/18 2:46 pm

9.4 Memory	Management 415

In this section we discuss these areas of memory and how we can use them. Under-
standing the characteristics and knowing how to use each area enables us to write better
programs.

9.4.1 Code Memory
Code memory holds the program code. When the program is running, the running environ-
ment of C++ executes each statement, one after another, or branches to another statement.
No objects are stored in this area of memory. Code memory is released when the program
is terminated.

Code memory stores the program code;
it is released when the program terminates.

9.4.2 Static Memory
Static memory is used to hold global objects (those that are not part of any function, includ-
ing main) and static objects created anywhere in the program (in the global area or inside
functions). These objects are automatically destroyed and their memory is released when the
program is terminated.

Static memory stores the global and static objects;
it is released when the program terminates.

EXAMPLE 9.23
Program 9.13 shows a very simple program. The memory locations for three data variables,
first, second, and third, are created in static memory. The first is a global variable; the sec-
ond and the third are static variables.

Program 9.13	 Using	static	memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The program shows how global and static objects are visible *
* at any point in the program. They last through the life of the *
* the program. *
 ***/

#include <iostream>
using namespace std;

int first = 20; // Global variable in static memory
static int second = 30 ; // Static variable created in static memory

int main ()
{

static int third = 50; // Static variable in static memory

cout << "Value of Global variable: " << first << endl;

(continued)

for23380_ch09_380-442.indd 415 06/11/18 2:46 pm

416 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.13	 Using	static	memory (Continued)

17
18
19
20

cout << "Value of Global static variable: " << second << endl;
cout << "Value of local static variable: " << third;
return 0;

}

Run:
Value of Global variable: 20
Value of Global static variable: 30
Value of local static variable: 50

9.4.3 Stack Memory
The part of memory used by a program to hold local or parameter objects of functions is
stack memory. As we know from daily life, a stack is a last-in-first-out container. What-
ever is pushed last is popped first. This characteristic of a stack is well suited for storing
parameters and local variables in functions. When we call a function, the system pushes
the parameters and local variables into stack memory. When the function is terminated, the
system pops these variables and throws them away. Figure 9.23 shows the functions calls
and the behavior of stack memory for a simple program that calls the function first, which
in turn calls the function second.

Figure 9.23 shows pushing and popping at the right-hand side. The stack memory is
empty at the beginning.When the running environment calls the main function, it pushes its
only local variable (x) into the stack (main has no parameter). When main calls the function
first, the system pushes its only parameter (a) into the stack. When the function first calls
second, the system pushes its only parameter (b) into the stack.

Figure 9.23	 Using	stack	memory

x

x

b
a

a void first (int a)
{

}
second (a);

int main ()
{

}

int x = ... ;
first (x);

return 0;

void second (int b)
{

}
... ;
return ;

return ;

x Push

Push

Push

Pushes Pops

Pop

Pop

Pop

Empty stack Empty stack

Stack after
x is pushed

Stack after
a is pushed

Stack after
b is pushed

Stack before
b is popped

Stack before
a is popped

Stack before
x is popped

Running
environment

x

x

b
a

a

x

for23380_ch09_380-442.indd 416 06/11/18 2:46 pm

9.4 Memory	Management 417

When the function second returns, the system pops its only parameter (b) and
throws it away (not needed anymore). When the function first returns, the system pops
its only parameter (a) and throws it away (not needed anymore). When the function
main returns, the system pops its only local variable (x) and throws it away (not needed
anymore). The stack memory is empty again at the end when the program is terminated.
For the sake of simplicity, we have not used local variables in function first or second;
otherwise, those local variables would also be pushed and popped from the stack.

Advantage
The system uses stack memory in every program. The last-in first-out operation of stack
memory makes it very efficient. Objects are stored and remain in stack memory only when
they are in a function’s scope. When an object goes out of the function’s scope, it is popped
and thrown away; it is not accessible anymore.

Limitations
The efficiency of using stack memory creates two restrictions on its use:

 ∙ The objects must have a name at compilation time. No unnamed object can be stored
in a stack.

 ∙ The size of the object must be defined at compilation time. The system cannot allocate
stack memory for an object unless it knows the exact size of the object. For a single
object, the size can be inferred from the type; for a list of objects (such as an array), the
number of elements must be defined at compilation time.

Based on the preceding discussion, we can call stack memory the compile-time memory.
Every object stored in stack memory must be clearly defined during compilation time.

An object created in stack memory must be given
a name and have a size during compilation.

EXAMPLE 9.24
Assume that we need a variable-size array, which means that every time we run the program,
the array size must be defined by the user as shown below:

#include <iostream>
using namespace std;

int main ()
{

int size;
cin >> size;
double array [size]; // Compilation error
...
return 0;

}

We get the compilation error shown above because the compiler must know the size
of the array before it can allocate memory in the stack. We solve this problem in the next
section.

for23380_ch09_380-442.indd 417 06/11/18 2:46 pm

418 Chapter 9 References,	Pointers,	and	Memory	Management

9.4.4 Heap Memory
Sometimes we need to create objects in memory during run time. This happens when we do
not know the size of the object when we create and compile the program. Heap memory
(also called free memory or dynamic memory) is used to store objects created during run
time. This situation occurs when an object, or a collection of objects, needs a lot of memory
or when the amount of memory cannot be calculated during the compilation. The objects
created in heap memory cannot have a name, so to access them, we need a pointer in stack
memory that can be pointed to them. In other words, we need both stack and heap memory
for this purpose. Stack memory is used to hold the pointer (a small object of 4 bytes); heap
memory is used to store the pointed object (usually a large object) as shown in Figure 9.24.

The pointed object in heap memory cannot have a name; it is referred to by the pointer
that is pointing to it. On the other hand, the pointer object is in the stack; it must have a name.
In other words, the name of the pointer helps us refer to it; the address of the pointed object
enables us to access it.

An object created in heap memory cannot have a name;
it can be accessed only through its address, which is reached

by a pointer in stack memory.

Two Operators: new and delete
Now the questions are how we can create an object in the heap during run time, and how
we can destroy it when it is not needed, if the object has no name. This is done through four
operators. These operators are defined in Appendix C and are shown in Table 9.6 for quick
reference.

The first operator in Table 9.6 is used to create memory in the heap for a single object.
The second operator is used to create an array of objects in the heap. The third operator
is used to delete the single object using its pointer. The fourth operator is used to delete

Figure 9.24	 A	pointer	in	the	stack	and	a	pointed	object	in	the	heap

Stack memory

Note:
The pointer is in stack memory; it must have a name (ptr).
The pointed object is in heap memory; it cannot have a name.

Heap memory

ptr

pointed object (no name)pointer (named)

Group Name Operator Expression Pred Assoc

Unary allocate	object
allocate	array
delete	object
delete	array

new
new	[]
delete
delete	[]

new	type
new	type	[size]
delete	ptr
delete	[]	ptr

17 ←

Table 9.6 Operators for memory allocation and release in the heap

for23380_ch09_380-442.indd 418 06/11/18 2:46 pm

9.4 Memory	Management 419

allocated memory for an array in the heap. Figure 9.25 shows the four operators that create
the new and delete expressions.

Note that after delete, the pointer is a dangling pointer, which we discuss later in this
section. It cannot be used until the new operator is applied to it again.

EXAMPLE 9.25
In this example, we create an object in the heap. Assume we want to write a program that
creates a variable-size array each time the user runs the program. This array cannot be cre-
ated in stack memory because the size of the array is not defined during compilation time; it
is only defined during run time. Figure 9.26 shows this situation.

Program 9.14 show how we can achieve this situation. Before terminating the pro-
gram, we must delete the array created in the heap (line 34).

Figure 9.25	 The	new	and	delete	operators

type

pointer value pointer value

new

type [size]

new

allocate single location

delete single location delete array of locations

allocate array of locations

pointer

void pointer

delete

[] pointer

void pointer

delete

Figure 9.26	 A	pointer	in	the	stack	and	an	array	in	the	heap

pArray
Heap memory

Stack memory

Program 9.14	 Using	heap	memory	to	store	a	variable-size	array

1
2
3
4
5
6

/***
* The program shows how to create and access a variable-size *
* array in the heap and use pointers to access elements. *
 ***/

#include <iostream>
using namespace std;

(continued)

for23380_ch09_380-442.indd 419 06/11/18 2:46 pm

420 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.14	 Using	heap	memory	to	store	a	variable-size	array (Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

int main ()
{

// Declaration of array size and the pointer in the stack
int size;
int* pArray;
// Validation of the size to be greater than zero
do
{

cout << "Enter the array size (larger than zero): ";
cin >> size;

} while (size <= 0);
// Creation of array in the heap
pArray = new int [size];
// Inputting the values of array
for (int i = 0; i < size ; i++)
{

cout << "Enter the value for element " << i << ": ";
cin >> *(pArray + i);

}
// Outputting the values of the array
cout << "The elements in the array are: " << endl;
for (int i = 0; i < size ; i++)
{

cout << *(pArray + i) << " ";
}
// Deleting the array in the heap
delete [] pArray;
return 0;

}

Run:
Enter the array size (larger than zero): 3
Enter the value for element 0: 6
Enter the value for element 1: 12
Enter the value for element 2: 5
The elements in the array are:
6 12 5

Issues Related to Heap Memory
When we work with heap memory and use the related operators (new and delete), we must
be aware of some problems that may occur.

Deleting without Allocating One of the errors that may occur in programming is that
we try to use the delete operator without using the new operator first. This means we try to

for23380_ch09_380-442.indd 420 06/11/18 2:46 pm

9.4 Memory	Management 421

delete an object in the heap without allocating it. This normally occurs when the object is
allocated in the stack but we try to delete it from the heap, as shown below:

double x = 23.4;
double* pX = &x; // Allocation in the stack
delete pX; // Deletion in the heap may create run-time error

Allocating without Deleting (Memory Leak) A more serious problem, known as memory
leak, occurs when we allocate an object in the heap but we do not delete it, as shown below:

double* pX = new double;
… // using the allocated memory

This means that we have created a memory location in the heap and we have not deleted it.
Most of the operating systems delete the memory location when the pointer that is pointing
to it goes out of the scope. There is, however, a serious problem if the pointer is re-pointed
to another memory location (in the stack or the heap). In this case, there is no pointer pointed
to the object that goes out of scope and alerts the operating system to delete the allocated
memory. This serious problem is referred to as memory leak and should be avoided. A
memory leak makes the undeleted memory location unusable and may result in the collapse
of the computer system if it runs out of memory.

Dangling Pointer Another problem is a dangling pointer that, which may occur that may
occur when we delete the pointed object and then try to use it again, as shown below:

double* pX = new double;
… // using the allocated memory
delete pX;
*pX = 35.3; // Dangling pointer

The last line creates an unexpected error because the pointer is null and cannot be indirected.

When we work with heap memory, we must pair each new
operator with the delete operator and avoid dangling pointers.

Recommendation
Always explicitly delete any memory locations created in the heap.

9.4.5 Two-Dimensional Arrays
As we discussed previously, a two-dimensional array is made of rows and columns. We
have three choices when creating a two-dimensional array. We discuss these choices in this
section.

Using Only Stack Memory
If both the row size and the column size are known before compilation, we can create the
array totally in the stack as we have done previously.

for23380_ch09_380-442.indd 421 06/11/18 2:46 pm

422 Chapter 9 References,	Pointers,	and	Memory	Management

Using Both Stack and Heap Memory
If the row dimension is know before the compilation, we can create an array of pointers in
the stack and then create each row in the heap as shown in Figure 9.27.

The following shows the code to create such an array. The number of rows is fixed
before compilation (4); the number of columns must be entered during run time.

int* arr [4]; // This is an array of four pointers to integers in the stack
cin >> colNums;
for (int i = 0; i < 4 ; i++)
{

arr[i] = new int [colNums]; // an array of colNums in the heap
}

Using Only Heap Memory
If neither of the dimensions is known before the compilation, we must create the whole two-
dimensional array in the heap as shown in Figure 9.28.

The following code creates such an array. The value of both dimensions is not known
during compilation.

cin >> rowNums;
cin >> colNums;
int** arr = new int* [rowNums];
for (int i = 0; i < n + 1 ; i++)
{

arr[i] = new int [colNums];
}

arr

heap stack

Figure 9.27	 A	two-dimensional	
array	in	the	stack	and	in	the	heap

arr

heap

stack

Figure 9.28	 A	two-dimensional	array	totally	in	the	
heap

for23380_ch09_380-442.indd 422 06/11/18 2:46 pm

9.4 Memory	Management 423

An Example: Ragged Array
We can create a two-dimensional array in which the number of elements in one row is dif-
ferent from the number of elements in another row, as shown in Figure 9.29.

In other words, can we have an array in which the first row has, for example, three ele-
ments, and the second row has four elements. This is referred to as a ragged array. This is
possible, but we cannot allocate the elements in stack memory; they must be created in the
heap. In other words, we must think about an array of pointers in which each pointer points
to an array of the desired size, as shown in Figure 9.29. This design is more memory efficient
than using a two-dimensional array, which leaves some of the elements empty.

EXAMPLE 9.26
Pascal’s triangle determines the coefficients of a binomial expansion. When a binomial like
(x + y) is raised to a positive integer power, we have:

(x + y)n = a0 xn + a1 xn−1y + a2 xn−2y2 + … + an−1 x yn−1 + anyn

The coefficient of each term (a0, a1, a2, …, an−1, an) can be calculated using a triangle
of n + 1 rows and n + 1 columns. Each cell in the array holds the coefficient for a term.
The number of rows is one more than the power value (n). Each element in the triangle
is calculated by adding the element in the previous row and the previous column with the
element in the previous row and the same column, as shown below (when n = 4). It is ob-
vious that to calculate the coefficients for any value of n (beyond 0 and 1), we must know
the value of the coefficients for the previous n. This justifies the use of a two-dimensional
array. We can use an array of pointers to dynamically create the array and calculate the
coefficients.

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1

EXAMPLE 9.27
Program 9.15 finds the coefficients for any n between 0 and 9. The number of allocated
locations for each row is one greater than the row number. For example, when i = 0, we
must allocate one location from the heap. When i = 9, we must allocate 10 locations from
the heap.

arr

heap
stack

Figure 9.29	 Ragged	array

for23380_ch09_380-442.indd 423 06/11/18 2:46 pm

424 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.15	 Finding	the	Pascal	coefficients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

/***
* The program shows how to create Pascal coefficients using *
* a ragged array dynamically allocated on the heap. *
 ***/

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

// Declaration
int maxPower = 10;
int n;
// Input validation
do
{

cout << "Enter the power of binomial : ";
cin >> n;

} while (n < 0 || n > maxPower);
// Allocate memory from heap
int** pascal = new int* [n + 1];
for (int i = 0; i < n + 1 ; i++)
{

pascal[i] = new int [i];
}
// Formation of the coefficient
for (int i = 0; i <= n ; i++)
{

for (int j = 0; j < i + 1; j++)
{

if (j == 0 || i == j)
{

pascal [i][j] = 1;
}
else
{

pascal [i][j] = pascal [i − 1] [j − 1] + pascal [i − 1][j];
}

}
}
// Print coefficients
cout << endl;
cout << "Coefficients for (x + y)^" << n << " are:";
for (int j = 0; j <= n ; j++)

(continued)

for23380_ch09_380-442.indd 424 06/11/18 2:46 pm

9.5 Program	Design 425

Program 9.15	 Finding	the	Pascal	coefficients (Continued)

45
46
47
48
49
50
51
52
53
54
55
56

{
cout << setw (5) << pascal [n][j] ;

}
cout << endl;
// Delete allocated memory
for (int i = 0; i < n + 1 ; i++)
{

delete [] pascal [i];
}
delete [] pascal;
return 0;

}

Run:
Enter the power of binomial : 5
Coefficients for (x + y)^5 are: 1 5 10 10 5 1

In line 22 of this program, we created a variable named pascal of type int** in stack
memory. In the same line, we created an array of pointers in the heap and stored the returned
pointer in the variable pascal. The variable pascal now points to an array of pointers. We
then used a loop to create (n + 1) arrays, each of a different size in the heap. Each array is
pointed to by a pointer in the array pascal [i]. In lines 51–55, we first deleted the (n + 1)
arrays of integer in the heap. We then deleted the array pointed by the Pascal variable. Loca-
tions in the heap must be deleted in the reverse order of allocations.

9.5 PROGRAM DESIGN
In this section, we create two classes in which some of the data members are created in the heap.

9.5.1 Course Class
We create a Course class whose objects can be used by a professor in a school to create sta-
tistics about each of her courses. Since each course may have a different number of students,
we must have an array of variable size in each course to keep track of the scores. To save
each professor from having to write a program, the Course class has been created and saved
by the programmers in administration. Each professor is given the public interface with
which to create the application and run it. In this section, we show what has been done by
the programmer in administration and what should be done by the professors.

Data Members
Figure 9.30 shows the arrangement of data member in the Course class.

We must keep four pieces of information for each student: identity, score, grade, and
deviation from average. Instead of creating four parallel arrays in the heap, we have packed
these four pieces of information in a struct and created an array of structs in the heap.

Member Functions
Several private member functions are called by the constructor automatically when an ob-
ject of the class is instantiated. The two public member functions are the constructor and
destructor.

for23380_ch09_380-442.indd 425 06/11/18 2:46 pm

426 Chapter 9 References,	Pointers,	and	Memory	Management

Input File
We assume that the input file contains the following data, in which the first column repre-
sents the student identity and the second column defines the score in the course.

1000 88
1001 100
1002 92
1003 77
1004 54
1005 82
1006 67
1007 95
1008 93
1009 100

Interface, Implementation, and Application Files
Programs 9.16, 9.17, and 9.18 show the files.

heap

stack

Note:
Student is a struct made of four members.

students

numOfStds

inputFile Name

inputFile

Student

averageScore

standardDeviation

Figure 9.30	 Data	members	of	the	Course	class

Program 9.16	 Interface	file	for	the	Course	class		 	

1
2
3
4
5
6
7
8
9

10

/***
* We have private data members and public member functions. *
* The private member functions are helper functions called *
* by the constructor to do its job. The constructor is *
* responsible for everything. The destructor deletes arrays *
* created in the heap and closes the input file. *
 ***/

#ifndef COURSE_H
#define COURSE_H
#include <iostream>

(continued)

for23380_ch09_380-442.indd 426 06/11/18 2:46 pm

9.5 Program	Design 427

Program 9.16	 Interface	file	for	the	Course	class (Continued)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

#include <fstream>
using namespace std;

class Course
{

private:
int numOfStds;
const char* inputFileName;
ifstream inputFile;
struct Student {int id; int score; char grade;
 double deviation;};
Student* students;
double averageScore;
double standardDeviation;
// Private member functions
void getInput ();
void setGrades ();
void setAverage ();
void setDeviations();
void printResult() const;

public:
Course (int numOfStds, const char* inputFileName);
~Course ();

};
#endif

Program 9.17	 Implementation	file

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The implementation file gives the definitions of all private *
* and public member functions. *
***/

#include "course.h"
#include <iomanip>
#include <cmath>

/***
* The constructor is responsible for initializing student's *
* number and the name of the input file containing scores. *
* The constructor then opens the input file and creates *
* an array in the heap. The rest of the job is done by helper *
* functions that set the scores, the grades, the average and *
* deviations, and prints the results. *
***/

(continued)

for23380_ch09_380-442.indd 427 06/11/18 2:46 pm

428 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.17	 Implementation	file	(Continued)

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Course :: Course (int num, const char* ifn)
:numOfStds (num), inputFileName (ifn)
{

inputFile.open (inputFileName);
students = new Student [numOfStds];
getInput ();
setGrades ();
setAverage ();
setDeviations();
printResult();

}
/***

* The destructor is responsible for deleting the array created *
* in the heap using the corresponding pointer. It also closes *
* the input file opened by the constructor. *
***/

Course :: ~Course ()
{

delete [] students;
inputFile.close ();

}
/***

* The getInput function is responsible for reading the input *
* file containg the identity and score of students. *
***/

void Course :: getInput()
{

for (int i = 0; i < numOfStds; i++)
{

inputFile >> students [i].id;
inputFile >> students [i].score;

}
}
/***

* The getGrades function uses the score for each student and *
* changes it to the grade using an array of chars. *
***/

void Course :: setGrades()
{

char charGrades [] =
 {'F', 'F', 'F' , 'F' , 'F' , 'F', 'D' , 'C' , 'B' , 'A' , 'A'};
for (int i = 0; i < numOfStds; i++)
{

int index = students[i].score / 10;

(continued)

for23380_ch09_380-442.indd 428 06/11/18 2:46 pm

9.5 Program	Design 429

Program 9.17	 Implementation	file	(Continued)

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

students[i].grade = charGrades [index];
}

}
/***

* The setAverage function processes scores in the array and *
* creates the average for the class. *
***/

void Course :: setAverage()
{

int sum = 0;
for (int i = 0; i < numOfStds; i++)
{

sum += students[i].score;
}
averageScore = static_cast <double> (sum) / numOfStds;

}
/***

* The setDeviation function reprocesses the scores to determine *
* the deviation of each student's score from the average. *
***/

void Course :: setDeviations()
{

standardDeviation = 0.0;
for (int i = 0; i < numOfStds; i++)
{

students[i].deviation = students[i].score - averageScore;
standardDeviation += pow(students[i].deviation , 2);

}
standardDeviation = sqrt (standardDeviation) / numOfStds;

}
/***

* The printResult function prints all information about the *
* the course. *
***/

void Course :: printResult() const
{

cout << endl;
cout << "Identity Score Grade Deviation" << endl;
cout << "-------- ----- ----- ---------" << endl;
for (int i = 0; i < numOfStds ; i++)
{

cout << setw (4) << noshowpoint << noshowpos;
cout << right << students[i].id;
cout << setw (14) << noshowpoint << noshowpos;

(continued)

for23380_ch09_380-442.indd 429 06/11/18 2:46 pm

430 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.17	 Implementation	file	(Continued)

105
106
107
108
109
110
111
112
113
114

cout << right << students[i].score;
cout << setw (10) << right << students[i].grade;
cout << fixed << setw (20) << right << setprecision (2);
cout << showpoint << showpos;
cout << students[i].deviation << endl;

}
cout << "Average score: " << fixed << setw (4);
cout << setprecision (2) <<averageScore << endl;
cout << "Standard Deviation: " << standardDeviation;

}

Program 9.18	 Application	file	

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***
* The application program is very simple. The user instantiates *
* an object of the class and passes the number of students and *
* name of the input file where the scores are stored. *
* Everything is done by the constructor of the class. *
***/

#include "course.h"

int main ()
{

// Instantiation of the Course object
Course course (10, "scores.dat");
return 0;

}

Run:
Identity Score Grade Deviation
-------- ----- ----- ---------
1000 88 B +3.20
1001 100 A +15.20
1002 92 A +7.20
1003 77 C -7.80
1004 54 F -30.80
1005 82 B -2.80
1006 67 D -17.80
1007 95 A +10.20
1008 93 A +8.20
1009 100 A +15.20
Average score: +84.80
Standard Deviation: +4.51

for23380_ch09_380-442.indd 430 06/11/18 2:46 pm

9.5 Program	Design 431

9.5.2 A Matrix Class
A matrix is a table of values in mathematics. In computer programming, we can simulate a
matrix with a two-dimensional array. In this section, we define a Matrix class to show how
to apply selected operations on matrices.

Operation
We define three operations on matrices: addition, subtraction, and multiplication. Division
of matrices is very complex and requires the inversion of matrices.

Addition We can add two matrices if the number of rows in the first is the same as the num-
ber of rows in the second and the number of columns in the first is the same as the number of
columns in the second. In other words, r1 == r2 and c2 == c2. The resulting matrix consists
of r rows and c columns (Figure 9.31). Note that letters are symbolic values.

Each element in the resulting matrix is the sum of the corresponding elements in the
two matrices, as shown below:

A = a1 + a2
...
F = f1 + f2

Subtraction Subtraction is the same as addition but the values of the corresponding cells
are subtracted. (Figure 9.32).

Each element in the resulting matrix is the difference of the corresponding element in
the two matrices, as shown below:

A = a1 - a2
...
F = f1 - f2

Multiplication We can multiply two matrices if the number of columns in the first matrix
is the same as the number of rows in the second matrix (c1 == r2). The result is a matrix
with the number of rows equal to r1 and the number of columns equal to c2 as shown in
Figure 9.33.

a1 b1 c1

d1 e1 f1

matrix1 matrix2

a2 b2 c2

d2 e2 f2

result

A

D

B

E

C
+=

F

Figure 9.31	 Adding	two	matrices

a1 b1 c1

d1 e1 f1

matrix1 matrix2

a2 b2 c2

d2 e2 f2

result

A

D

B

E

C
-=

F

Figure 9.32	 Subtracting	two	matrices

for23380_ch09_380-442.indd 431 06/11/18 2:46 pm

432 Chapter 9 References,	Pointers,	and	Memory	Management

Each element in the resulting cell is the sum of the product of the corresponding row
and column.

A = a * g + b * k + c * o
B = a * h + b * l + c * p
...
H = d * j + e * n + f * r

Code
Now we define the interface, implementation, and application files.

Interface File Program 9.19 shows the interface file.

k l m n

o p q r

g h i j

result matrix1
matrix2

a cb

d e f

A B C

E F G

D

H
×=

Figure 9.33	 Multiplying	two	matrices

Program 9.19	 The	interface	file	for	the	Matrix	class	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The interface file for the Matrix class. The only private data *
* members are the sizes of the matrix and the pointer that *
* points to the matrix in the heap. *
* The constructor creates a matrix in the heap and the destructor *
* deletes the allocated memory in the heap. *
* The setup member function fills the matrices randomly. *
* We have addition, subtraction, multiplication, and print *
* member functions. *
***/

#include <iostream>
#ifndef MATRIX_H
#define MATRIX_H
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <cassert>
using namespace std;

// Matrix class definition
class Matrix
{

private:

(continued)

for23380_ch09_380-442.indd 432 06/11/18 2:46 pm

9.5 Program	Design 433

Program 9.20	 The	implementation	file	for	the	Matrix	class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* We have implemented all member functions declared in the *
* interface file. *
* The implementation follows the description of operations *
* discussed before. *
***/

#include "matrix.h"

// Constructor: creates a matrix in the heap
Matrix :: Matrix (int r, int c)
: rowSize (r), colSize (c)
{

ptr = new int* [rowSize];
for (int i = 0; i < rowSize; i++)
{

ptr [i] = new int [colSize];
}

}
// Destructor: deletes memory locations in the heap
Matrix :: ~Matrix ()
{

for (int i = 0; i < rowSize ; i++)
{

delete [] ptr [i];

(continued)

Program 9.19	 The	interface	file	for	the	Matrix	class	(Continued)

24
25
26
27
28
29
30
31
32
33
34
35
36

int rowSize;
int colSize;
int** ptr;

public:
Matrix (int rowSize, int colSize);

~Matrix ();
void setup ();
void add (const Matrix& second, Matrix& result) const;
void subtract (const Matrix& second, Matrix& result) const;
void multiply (const Matrix& second, Matrix& result) const;
void print () const;

};
#endif

Implementation File Program 9.20 shows the implementation file. Note that the setup
member function randomly fills the matrix, but in real-life situations, we can read the values
from a file.

for23380_ch09_380-442.indd 433 06/11/18 2:46 pm

434 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.20	 The	implementation	file	for	the	Matrix	class	(Continued)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

}
delete [] ptr;

}
// The setup fills the cells with random values between 1 and 5.
void Matrix :: setup ()
{

for (int i = 0; i < rowSize; i++)
{

for (int j = 0; j < colSize ; j++)
{

ptr [i][j] = rand () % 5 + 1;
}

}
}
// The add function adds second to the host and creates result.
void Matrix :: add (const Matrix& second, Matrix& result) const
{

assert (second.rowSize == rowSize && second.colSize == colSize);
assert (result.rowSize == rowSize && result.colSize == colSize);

for (int i = 0; i < rowSize ; i++)
{

for (int j = 0; j < second.colSize; j++)
{

result.ptr[i][j] = ptr[i][j] + second.ptr[i][j];
}

}
}
// The subtract function subtracts second from host.
void Matrix :: subtract (const Matrix& second, Matrix& result) const
{

assert (second.rowSize == rowSize && second.colSize == colSize);
assert (result.rowSize == rowSize && result.colSize == colSize);
for (int i = 0; i < rowSize ; i++)
{

for (int j = 0; j < second.colSize; j++)
{

result.ptr[i][j] = ptr[i][j] − second.ptr[i][j];
}

}
}
// The multiply function multiplies second by host.
void Matrix :: multiply (const Matrix& second, Matrix& result) const
{

(continued)

for23380_ch09_380-442.indd 434 06/11/18 2:46 pm

9.5 Program	Design 435

Program 9.20	 The	implementation	file	for	the	Matrix	class	(Continued)

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

assert (colSize == second.rowSize);
assert (result.rowSize = rowSize);
assert (result.colSize = second.colSize);
for (int i = 0; i < rowSize ; i++)
{

for (int j = 0; j < second.colSize; j++)
{

result.ptr[i][j] = 0;
for (int k = 0 ; k < colSize; k++)
{

result.ptr[i][j] += ptr[i][k] * second.ptr[k][j];
}

}
}

}
// The print function prints the values of cells.
void Matrix :: print () const
{

for (int i = 0 ; i < rowSize; i++)
{

for (int j = 0; j < colSize ; j++)
{

cout << setw (5) << ptr [i][j];
}
cout << endl;

}
cout << endl;

}

Program 9.21	 Application	to	test	the	Matrix	class

1
2
3
4
5
6
7
8
9

10

/***
* We create several matrix objects in the heap, and we apply *
* some operations on them. *
***/

#include "matrix.h"

int main ()
{

// Instantiation and setup of matrix1
cout << "matrix1" << endl;

(continued)

Application File Program 9.21 shows the application for using the Matrix class.

for23380_ch09_380-442.indd 435 06/11/18 2:46 pm

436 Chapter 9 References,	Pointers,	and	Memory	Management

Program 9.21	 Application	to	test	the	Matrix	class	(Continued)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Matrix matrix1 (3, 4);
matrix1.setup ();
matrix1.print();
// Instantiation and setup of matrix2
cout << "matrix2" << endl;
Matrix matrix2 (3, 4);
matrix2.setup ();
matrix2.print ();
// Instantiation and setup of matrix3
cout << "A new matrix3" << endl;
Matrix matrix3 (4, 2);
matrix3.setup ();
matrix3.print ();
// Adding matrix2 to matrix1 and printing the resulting matrix
cout << "Result of matrix1 + matrix2" << endl;
Matrix addResult (3, 4);
matrix1.add (matrix2, addResult);
addResult.print ();
// Subtracting matrix2 from matrix1 and printing the resulting matrix
cout << " Result of matrix1 - matrix2" << endl;
Matrix subResult (3, 4);
matrix1.subtract (matrix2, subResult);
subResult.print ();
// Multiplying matrix1 and matrix3 and printing the resulting matrix
cout << "Result of matrix1 * matrix3" << endl;
Matrix mulResult (3, 2);
matrix1.multiply (matrix3, mulResult);
mulResult.print();
return 0;

}

Run:
matrix1
 3 2 3 1
 4 4 5 1
 4 1 1 5
matrix2
 4 3 1 3
 3 5 1 5
 4 5 1 4
matrix3
 4 1
 5 5
 3 4
 2 1

(continued)

for23380_ch09_380-442.indd 436 06/11/18 2:46 pm

Problems 437

Program 9.21	 Application	to	test	the	Matrix	class	(Continued)

Result of matrix1 + matrix2
 7 5 4 4
 7 9 6 6
 8 6 2 9
Result of matrix1 − matrix2
 −1 −1 2 −2
 1 −1 4 −4
 0 −4 0 1
Result of matrix1 * matrix3
 33 26
 53 45
 34 18

K e y T e r m s

address operator
ampersand symbol
code memory
dangling pointer
generic pointer
global object
heap memory
indirection operator
memory leak
null pointer
pass-by-pointer
pass-by-reference

pointer arithmetic
pointer type
ragged array
reference type
reference variable
return-by-pointer
return-by-reference
return-by-value
static memory
stack memory
static object

A reference type is a compound type that allows a memory location to be used with different
names.

A pointer type is a compound type representing an address in memory. A pointer vari-
able is a variable that contains an address.

The memory used by a C++ program is made of four distinct areas: code memory (hold-
ing programs), static memory (holding global and static objects), stack memory (holding the
parameter and local objects), and heap memory (holding the object created during runtime).

S u m m a r y

P r o b l e m s

PR-1. Given the following lines of code, show what would be printed.

int x = 10;
int& y = x;
cout << x << " " << y;

for23380_ch09_380-442.indd 437 06/11/18 2:46 pm

438 Chapter 9 References,	Pointers,	and	Memory	Management

PR-2. Given the following lines of code, show what would be printed.

int x = 100;
int& y = x;
int& z = x;
cout << x << " " << y << " " << z;

PR-3. What is wrong with the following lines of code?

int x = 1000;
int& y = 2000;

PR-4. What is printed from the following lines of code?

int x = 1;
int y = 2;
int& z = x;
z = y;
cout << x << " " << y << " " << z;

PR-5. What is wrong with the following lines of code?

const int x = 100;
double& y = x;

PR-6. What is wrong with the following lines of code?

const int x = 100;
int& y = x;

PR-7. What is wrong with the following lines of code?

int x = 1000;
const int& y = x;

PR-8. What is printed from the following program?

#include <iostream>
using namespace std;

void fun (int& y);

int main ()
{

int x = 10;
fun (x) ;
cout << x << endl;
return 0;

}

void fun (int& y)
{

y++;
}

for23380_ch09_380-442.indd 438 06/11/18 2:46 pm

Problems 439

PR-9. What is printed from the following program?

#include <iostream>
using namespace std;

void fun (int& y);

int main ()
{

fun (10) ;

cout << x << endl;
return 0;

}

void fun (int& y)
{

y++;
}

PR-10. What is printed from the following program?

#include <iostream>
using namespace std;

int& fun (int& yy, int& zz);

int main ()
{

int x = 120;
int y = 80;
cout << fun (x , y);
return 0;

}

int& fun (int& yy, int& zz)
{

if (yy > zz)
{

return yy;
}
return zz;

}

PR-11. What is printed from the following program?

#include <iostream>
using namespace std;

int& fun (int yy, int zz);

for23380_ch09_380-442.indd 439 06/11/18 2:46 pm

440 Chapter 9 References,	Pointers,	and	Memory	Management

int main ()
{

int x = 120;
int y = 80;
cout << fun (x , y);
return 0;

}

int& fun (int yy, int zz)
{

if (yy > zz)
{

return yy;
}
return zz;

}

PR-12. What is printed from the following program?

#include <iostream>
using namespace std;

int& fun (int& yy, int& zz)
{

if (yy > zz)
{

return yy;
}
return zz;

}
int main ()
{

cout << fun (120 , 80);
return 0;

}

PR-13. Given the following lines of code, show what would be printed.

int x = 10;
int* y = &x;
cout << x << " " << *y;

PR-14. Given the following lines of code, show what would be printed.

int x = 100;
int* y = &x;
int* z = &x;
cout << x << " " << *y << " " << *z;

PR-15. What is wrong with the following line of code?

int* x = 25;

for23380_ch09_380-442.indd 440 06/11/18 2:46 pm

Problems 441

PR-16. What is wrong with the following lines of code?

const int x = 100;
double* y = &x;

PR-17. What is wrong with the following lines of code?

const int x = 100;
int* y = &x;

PR-18. What is wrong with the following lines of code?

const int x = 100;
const int* y = &x;
int* y = &x;

PR-19. What is wrong with the following lines of code?

int x = 1000;
int y = 2000;
int* const z = &x;
z = &y;

PR-20. What is printed from the following lines of code?

int sample [5] = {0, 10, 20, 30, 40};
cout << *(sample + 2);

PR-21. What is printed from the following lines of code?

int sample [5] = {5, 10, 15, 20, 25};
cout << *sample + 2 << endl;
cout << *(sample + 2);

PR-22. What is printed from the following lines of code?

int sample [5] = {0, 10, 20, 30, 40};
cout << *(sample + 7);

PR-23. What is printed from the following program?

#include <iostream>
using namespace std;

void fun (int* x)
{

cout << *(x + 2);
}

int main ()
{

int sample [5] = {0, 10, 20, 30, 40};
fun (sample);
return 0;

}

for23380_ch09_380-442.indd 441 06/11/18 2:46 pm

442 Chapter 9 References,	Pointers,	and	Memory	Management

PR-24. What is created in the heap from the following statement? Draw a picture to show
the object in the heap.

int** arr = new int* [3];

PR-25. What is created in the heap from the following statements? Draw a picture to show
the object in the heap.

int** arr = new int* [3];
for (int i = 0; i < 3; i++)
{

arr[i] = new int [5];
}

PR-26. Write the code to fill the two-dimensional array created in PR-25 with values
entered at the keyboard.

PR-27. How should the delete operator be used to delete the array created in PR-25?

P r o g r a m s

PRG-1. Write a function that finds the largest of three integers using pass-by-reference
and return-by-reference. Your design can use the function we wrote for finding
the larger between two integers. Test your function in a program.

PRG-2. Write a function that finds the largest of three fractions using pass-by-reference
and return-by-reference. Your design can use the design we wrote to find the
largest between two fractions. Test your function in a program.

PRG-3. Write a function that multiplies two fractions and returns the result using pass-
by-reference and return-by-reference. Test your function in a program.

PRG-4. For greater control over how an array can be used, we can create an array class.
Design a class named Array with the data members capacity, size, and arr (a
pointer that points to the first element of the array in the heap). Also design a
member function named insert that adds elements to the end of the array, and
a function named print that prints the element of the array. Test your program
with different lists of array elements.

PRG-5. Redesign the Array class from PRG-4 to be a sorted array (with possible
duplicate values). In a sorted array, we may need to move some elements toward
the end of the array to insert a new elements at the correct position. We also
may need to move some elements toward the front of the array when we delete
an element.

PRG-6. In object-oriented programming, we can always create a class for the problem
to be solved and let the user instantiate objects from the class and use them.
Define a class that creates a multiplication table of any size up to 10. Then use
an application program to instantiate any multiplication table.

PRG-7. Redesign the Pascal triangle as a class in which we can create a list of
coefficients of a binomial of any size that is passed to the constructor. For
example, Pascal (5) prints the coefficients for (x + y)5.

for23380_ch09_380-442.indd 442 06/11/18 2:46 pm

443

10.1 C STRINGS
Although the C++ language contains the C++ string class type, which we will discuss in
the second section of this chapter, we briefly discuss the C string (or C-style string as it is
sometimes called) for two reasons. First, there are some programs (including some libraries)
that still use C strings. Second, the C++ string class uses some C strings in its definitions,
so a basic knowledge of C-strings is necessary to understand C++ strings. To use C strings,
we need the <cstring> library header file.

The <cstring> header file is needed to use C strings.

A C string is not a class type. It is an array of characters, but this does not mean that
any array of characters is a C string. To be a C string, the last character in the array must be
the null character ('\0'). In other words, a C string is a null-terminated array of characters.
Figure 10.1 shows a C string.

This chapter explores the topic of strings, something that we use in virtually every
program. The C++ language inherits the C string from the C language; we discuss
this in the first section of this chapter. C++ defines a richer and more secure string
that we discuss in the second section of the chapter. The C-string is an array of null-
terminated characters; the C++ string is a class that matches the idea of object-oriented
programming.

Objectives

After you have read and studied this chapter, you should be able to:

•	Describe the general concepts and use of C strings.

•	Provide a brief list of the C string library in the <cstring> header file.

•	Demonstrate the use of C strings in programs.

•	Explain the operations defined for C strings in the library.

•	Provide a brief list of the C++ string library in the <string> header file.

•	Explain the operations defined for C++ strings in the library.

•	Demonstrate the use of C++ strings in programs.

10 Strings

for23380_ch10_443-495.indd 443 02/11/18 5:16 pm

444 Chapter 10 Strings

Since the name of an array is a pointer to the first element in the array, the name of a
C string is a pointer to the first character in the string. However, we must remember that the
name of a C string does not define a variable; it defines a pointer value (like the name of any
array). In other words, it is not an lvalue; it is an rvalue. It is a constant pointer, which means
that the pointer cannot be moved to point to any other element.

The C string name is a constant pointer to the first character.

10.1.1 C String Library
Before we discuss how to use C strings, we list the common operations with their prototypes
(if applicable) in Table 10.1.

Figure 10.1	 General	idea	behind	a	C	string

name

Legend:

C string

char

pointer to char
'\0'

// Construction

There	is	no	constructor.	User	needs	to	create	an	array	of	characters.

// Destruction

There	is	no	destructor.	The	user	needs	to	destroy	the	array	if	created	in	the	heap.

// Copy construction (two member functions are designed for copying a string)

char* strcpy (char* str1, const char* str2)

char* strncpy (char* str1, const char* str2, size_t n)

// Finding the length

size_t strlen (const char* str)

// Input / output

There	is	no	input/output	operation	in	the	library,	but	the	>>	and	<<	operators	are	overloaded	
for	input	and	output.	The	user	can	also	use	the	getline	(  )	function	defined	in	the	istream	class	
to	input	a	line	of	characters.

// Accessing characters

There	is	no	member	function	to	access	individual	characters,	but	the	user	can	use	the	index	
operator	[...]	to	do	so.

// Searching for a character (forward and backward)

char* strchr (const char* str, int c)

char* strrchr (const char* str, int c)

// Searching for a substring

char* strstr (const char* str, const char* substr)

Table 10.1 Prototypes for functions in the <cstring> header

(continued)

for23380_ch10_443-495.indd 444 02/11/18 5:16 pm

10.1 C	Strings 445

10.1.2 Operation on C Strings
In this section, we explain how we can use the member functions defined in Table 10.1.

Construction
As we said, a C string is not a class type, which means there is no constructor defined in the
library. To construct a C string, we must create an array of characters and set the last element
to the null character '\0'.

We can create two types of C strings: nonconstant and constant. In a nonconstant C
string, the value of the characters can be changed after creation; in a constant C string, the
value of the characters cannot be changed. The following shows how we can create and
initialize a C string.

char str [] = {'A', 'B', 'C', 'D', '\0'};
char str [] = "ABCD";
const char str [] = {'A', 'B', 'C', 'D', '\0'};
const char str [] = "ABCD";

// Nonconstant
// Nonconstant compact
// Constant
// Constant compact

The first form of initialization is what we have seen in the past for any array of characters.
The second form, which is sometimes referred to as the compact form, uses a compact
initialization in which the characters are enclosed in double quotes and no null character is
included. The compiler extracts the characters one by one and stores them in the correspond-
ing array cells. The null character is added automatically. Figure 10.2 shows the idea behind
the compact form.

We recommend using the compact form
to avoid omitting the null character.

// Searching for a character in a set (only forward search)

char* strpbrk (const char* str, const char* set)

// Comparing two strings

int strcmp (char* str1, const char* str2)

int strncmp (char* str1, const char* str2, size_t n)

// Concatenation (appending a string at the back of another)

char* strcat (char* str1, const char* str2)

char* strncat (char* str1, const char* str2, size_t n)

// Tokenizing

char* strtok (char* str, const char* delimit)

Table 10.1 Prototypes for functions in the <cstring> header (Continued)

Figure 10.2	 The	effect	of	using	compact	initialization

str
char str [] = "ABCD" ;

const char str [] = "ABCD" ;
'A' 'B' 'C' 'D' '\0'

for23380_ch10_443-495.indd 445 02/11/18 5:16 pm

446 Chapter 10 Strings

As we mentioned, the name of the string created in Table 10.1 or Figure 10.2 is an
rvalue pointer, not a variable. If we want to create a variable, we must declare a variable
of type char* or const char* and assign the name of the string to that variable, as shown in
Figure 10.3.

In Chapter 8 we mentioned that we cannot return an array from a function because an
array requires a pointer to the first element and its size. The design of the C string eliminates
the second requirement. The size is not needed because the last character is a null character
and implicitly defines the size. This means that we can return a pointer variable pointing to
a C string from a function.

String Literal We have seen literals of data types, such as integer, floating point, or char-
acter. For example, 3 is an integer literal, 23.7 is a floating-pointing literal, and 'A' is a
character literal. We can also have a string literal. A string literal is a null-terminated array
of characters whose name is the sequence of characters in the array enclosed by two quota-
tion marks, as shown in Figure 10.4.

A string literal is a constant string that is part of the C++ language and is used with
both C strings and C++ strings. When it is created, it can be used anywhere that a string
literal can be used. We have used a string literal to print messages. However, we must
remember that a string literal is a constant entity and cannot be changed after it has been
created.

A string literal is a constant entity; it cannot be changed.

EXAMPLE 10.1
The following code fragment shows that we can use a string literal like other literals. For
example, we can use the cout object and the insertion operator to print the value of an integer
literal, a floating-point literal, a character literal, and a string literal.

cout << 5 << endl;
cout << 21.3 << endl;
cout << 'A' << endl;
cout << "Hello dear" << endl;

// Printing an integer literal
// Printing a floating-point literal
// Printing a character literal
// Printing a string literal

Figure 10.3	 Creation	of	pointer	variable	from	a	string	

str

p
char str [] = "ABCD" ;
char* p = str;

Nonconstant pointer variable

Constant pointer variable

'A' 'B' 'C' 'D' '\0'

str

p

cosnt char str [] = "ABCD"

const char* p = str;
'A' 'B' 'C' 'D' '\0'

Figure 10.4	 A	string	literal

"Hello dear" 'H' 'e' 'l' 'l' 'd' 'e' 'a' 'r''o' ' ' '\0'

for23380_ch10_443-495.indd 446 02/11/18 5:16 pm

10.1 C	Strings 447

Creating Strings Using String Literals The string literal makes it easy to create a
C string by first creating the desired string literal and then assigning it to a pointer to a con-
stant character. Figure 10.5 shows the process.

C++ forbids assigning a string literal to a nonconstant pointer to a character, as shown
below:

char* str = "Hello";
const char* str = "Hello";

// Error. Literal is a constant
// OK.

Assigning a string literal
to a nonconstant pointer results in a compilation error.

Compact Initializer and String Literal We must distinguish between a compact initial-
izer and a string literal, although both look the same. The difference is where they are used.
A compact initializer is a simple form of a regular initializer that we have seen. When used,
the compiler takes out the characters one by one and stores them in the character array. A
string literal is already a constant string that can be used wherever a string can be used. It is a
pointer to a string created in memory and can be assigned to a pointer to a constant character.
The following shows the difference in use:

char str1 [] = "Hello";
const char str2 [] = "Hello";
const char* str3 = "Hello";

// "Hello" is a compact initializer
// "Hello" is a compact initializer
// "Hello" is a literal string

Construction in Heap Memory Since a C string is an array, we can create it in heap
memory. However, since the name of the string in this case is a pointer to a character, we
cannot use compact initialization. If it is a nonconstant string, we must initialize it character
by character; if it is a constant string, we must use a string literal to do so.

char* str = new char [3];
const char* str = new char [3];

// Nonconstant string of two characters
// Constant string of two characters

Destruction
As mentioned in Table 10.1, a C string is not a class type, which means no destructor is de-
fined in the library. If a C string is created in stack memory, it is automatically deleted when
the main function terminates. When the string is created in the heap, we must use the delete
operator to delete it; in doing so we avoid a memory leak.

const char* str = new char [3];
delete [] str;

// Creation
// Deletion

Figure 10.5	 Assignment	of	a	string	literal	to	a	pointer

Pointer assignment by a literal

str
const char* str = "Hello";

"Hello" 'H' 'e' 'l' 'l' 'o' '\0'

for23380_ch10_443-495.indd 447 02/11/18 5:16 pm

448 Chapter 10 Strings

Copying
Since a C string is not defined as a class, there is no copy constructor. However, the design-
ers of the library have defined two member functions: strcpy and strncpy. The function
strcpy replaces the first string with the whole second string; the function strncpy replaces the
first n characters in the first string with the first n characters of the second string. Note that
the copying changes the destination string, but not the source string.

strcpy (str1, str2);
strncopy (str1, str2, n);

// Using the whole str2
// Using part of str2

The two functions strcpy (. . .) and strncpy (. . .) can be used
to replace one string with another.

EXAMPLE 10.2
In Program 10.1 the first function totally erases str1 and replaces it with str2. The second
function replaces the first n character of str1 with the first n characters of str2 and leaves the
rest of str1 unchanged.

Program 10.1	 Copying	in	a	C	string	library	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The program shows how to use strcpy and strncpy to replace *
* the whole string or part of it with the whole or part of *
* another string. *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

// Copy the whole str2 to str1. String str1 is erased.
char str1 [] = "This is the first string.";
char str2 [] = "This is the second string.";
strcpy (str1, str2);
cout << "str1: " << str1 << endl;
// Copy part of str4 to str3. str3 is partially erased.
char str3 [] = "abcdefghijk.";
const char* str4 = "ABCDEFGHIJK";
strncpy (str3, str4, 4);
cout << "str3: " << str3 << endl;
return 0;

}

Run:
str1: This is the second string.
str3: ABCDefghijk.

for23380_ch10_443-495.indd 448 02/11/18 5:16 pm

10.1 C	Strings 449

String Length
Each C string has a size (length) that is the number of characters in the string without count-
ing the null character. The C string library defines the strlen function to find the length of the
string. The function accepts a C string and returns its length as a size_t type, which is defined
as an unsigned int in the library.

size_t n = strlen (str); // Finding the length of str

The strlen (...) function returns the number of characters in a
C string without counting the null character.

EXAMPLE 10.3
Program 10.2 shows how we can find the length of a C string.

Input and Output
In addition to initialization with a compact form or assignment using a literal string, we can
read the characters into a C string that is declared as an array of characters. We cannot do
so when the string is declared as a type (char* or const char*) because the compiler must
allocate memory before reading the characters.

Overloaded Extraction and Insertion Operators Consider the situation in which a
<cstring> library has overloaded the extraction operator (>>) and the insertion operator

Program 10.2	 Finding	the	length	of	two	strings	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* The program shows how to get the length of a C-string, which *
* is the number of characters before the null character *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

// Declaration and definition of four strings
const char* str1 = "Hello my friends.";
char str2 [] = {'H', 'e', 'l', 'l', 'o', '\0'} ;
// Finding and printing the length of each string
cout << "Length of str1: " << strlen (str1) << endl;
cout << "Length of str2: " << strlen (str2);
return 0;

}

Run:
Length of str1: 17
Length of str2: 5

for23380_ch10_443-495.indd 449 02/11/18 5:16 pm

450 Chapter 10 Strings

(<<) to be used for string input and output. The extraction operator extracts characters one by
one from an input object (keyboard or a file) and stores them in the array until a whitespace
character is encountered. It then adds the null character at the end. The problem is that the
character array that stores the input must have allocated enough memory locations to store
all characters entered (before a whitespace) plus one for the null character. If the allocation
is not large enough, the result is unpredictable. The insertion operator writes characters in
the array to an output device until a null character is encountered.

cin >> str;
cout << str;

// Input
// Output

EXAMPLE 10.4
Program 10.3 includes a null character in the literal string for str4 just to show that the literal
string is terminated by the null character and the rest of the characters are not part of the
literal string (line 15). In other words, the string has only 8 characters instead of 19. We have
input the characters for str5, but note that only the first word is stored in the string; the rest
are ignored because the extraction operator stops at the first whitespace.

Program 10.3	 Using	C	strings	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* The program shows how to create C-strings and use input and *
* output operations with them. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

// Create one constant and one non-constant string.
char str1 [] = {'H', 'e', 'l', 'l', 'o', '\0'} ;
const char str2 [] = {'H', 'e', 'l', 'l', 'o', '\0'};
// Create two constant string types and use string literals.
const char* str3 = "Goodbye";
const char* str4 = "Goodbye\0 my friend";
// Printing four strings
cout << "str1: " << str1 << endl;
cout << "str2: " << str2 << endl;
cout << "str3: " << str3 << endl;
cout << "str4: " << str4 << endl << endl;
// Create and input a fifth string.
char str5 [20];
cout << "Enter the characters for str5: " ;
cin >> str5;
cout << "str5: " << str5;

(continued)

for23380_ch10_443-495.indd 450 02/11/18 5:16 pm

10.1 C	Strings 451

The getline Function To read a line of characters that includes whitespace, we must use
the function defined for this purpose, the getline function. The getline function is a member
of the istream class, which means that we must have an object of type cin. If the delim pa-
rameter is missing, we use the '\n' character.

cin.getline (str, n);
cin.get (str, n, 'delimeter');

// Using '\n' as the delimiter
// Using a specific delimiter

EXAMPLE 10.5
Program 10.4 creates an array of strings, reads lines into the array, and prints the lines.

Program 10.4	 Using	an	array	of	strings

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* The program shows how to read a set of lines using the *
* getline function and print them. *
 ***/

#include <iostream>
#include <cstring>
using namespace std;

int main ()
{

// Declaration of an array of strings
char lines [3][80];
// Inputting three lines
for (int i = 0; i < 3; i++)
{

cout << "Enter a line of characters: ";
cin.getline (lines [i], 80);

}

Program 10.3	 Using	C	strings (Continued)

26
27

return 0;
}

Run:
str1: Hello
str2: Hello
str3: Goodbye
str4: Goodbye

Enter the characters for str5: This is the one.
str5: This

(continued)

for23380_ch10_443-495.indd 451 02/11/18 5:16 pm

452 Chapter 10 Strings

Program 10.4	 Using	an	array	of	strings (Continued)

19
20
21
22
23
24
25
26
27

// Outputting three lines
cout << endl;
cout << "Output: " << endl;
for (int i = 0; i < 3; i++)
{

cout << lines [i] << endl;
}
return 0;

}

Run:
Enter a line of characters: This is the first line.
Enter a line of characters: This is the second line.
Enter a line of characters: This is the third line.

Output:
This is the first line.
This is the second line.
This is the third line.

Accessing Characters
The next operation we discuss is how to access any character in a string. We can use the sub-
script operator to access a character if we know its position in the string. Accessing means
retrieving only if the string is constant. Accessing can mean retrieving or changing if the
string is nonconstant.

char c = str [i];
str[i] = c;

// The string str is a constant
// The string str is nonconstant

EXAMPLE 10.6
Program 10.5 shows how to access characters in constant and nonconstant strings.

Program 10.5	 Accessing	characters	in	a	C	string

1
2
3
4
5
6
7
8
9

10

/***
* The program shows how to access a character in a string *
* using the subscript operator. *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

(continued)

for23380_ch10_443-495.indd 452 02/11/18 5:16 pm

10.1 C	Strings 453

Searching for a Character
We can search a string to find a character. The search can return a pointer of the first occur-
rence (forward search) or the last occurrence (backward search). The first search uses the
strchr function; the second uses the strrchr function. After a pointer to the character is set,
we can use it to change the character if the string is not constant. If the character cannot be
found, a null pointer is returned.

char* ptr = strchr (str, 'c');
char* ptr = strrchr (str, 'c');

// Forward search
// Backward search

We can use strchr (...) and strrchr (...) member functions to
create a pointer to a character.

EXAMPLE 10.7
Program 10.6 shows how to search for a character.

Program 10.5	 Accessing	characters	in	a	C	string (Continued)

11
12
13
14
15
16
17
18
19
20

// Creation of two C-strings
const char* str1 = "Hello my friends.";
char str2 [] = "This is the second string.";
// Retrieving character at a given position
cout << "Character at index 6 in str1: " << str1[6] << endl;
// Changing character at a given position
str2 [0] = 't';
cout << "str2 after change: " << str2;
return 0;

}

Run:
Character at index 6 in str1: m
str2 after change: this is the second string.

Program 10.6	 Finding	the	start	of	a	substring

1
2
3
4
5
6
7
8
9

10
11

/***
* A program to search for a given character using forward *
* search to find the first occurrence or backward search to *
* to find the last occurrence *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

(continued)

for23380_ch10_443-495.indd 453 02/11/18 5:16 pm

454 Chapter 10 Strings

Program 10.6	 Finding	the	start	of	a	substring (Continued)

12
13
14
15
16
17
18
19
20
21
22
23

// Declaration of a string
char str [] = "Hello friends.";
// Capitalizing the first occurrence of character e
char* cPtr = strchr (str, 'e');
*cPtr = 'E' ;
cout << "str after first change: " << str << endl;
// Capitalizing the last occurrence of character e
cPtr = strrchr (str, 'e');
*cPtr = 'E' ;
cout << "str after last change: " << str << endl;
return 0;

}

Run:
str after first change: HEllo friends.
str after last change: HEllo friEnds.

Searching for a Substring
We can search a string to find the position of a substring using the strstr function. The func-
tion returns a pointer to the first character in the substring. If the substring cannot be found
in the string, a null pointer is returned.

char* ptr = strstr (str, substr); // Searching for a substring

EXAMPLE 10.8
Program 10.7 shows how to find a substring.

Program 10.7	 Finding	a	substring

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* The program shows how to use the strstr member function to *
* find the occurrence of a substring in a string. *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

// Creating a string
char str [] = "Hello friends of mine.";
// Finding the location of the substring
char* sPtr = strstr (str, "friends");
cout << "The substring starts at index: " << sPtr − str;

(continued)

for23380_ch10_443-495.indd 454 02/11/18 5:16 pm

10.1 C	Strings 455

Searching for Any Character in a Set
Sometimes we need to search a string to find the position of any character defined in a set of
characters. In other words, we do not want to find the position of a specified character in the
string; we want to find the first position of any character in the set. Later in this chapter we
learn that this operation is used to tokenize a string. The set is also defined as a string. The
function strpbrk is used for this purpose. If no character can be found, a null pointer is returned.

char* p = strpbrk (str, set); // Searching for character in a set

The member function strpbrk (...) allows us to find the position
of the first occurance of any character in a set of characters.

EXAMPLE 10.9
Program 10.8 shows how to use the strpbrk (...) function.

Program 10.7	 Finding	a	substring (Continued)

16
17

return 0;
}

Run:
The substring starts at index: 6

Program 10.8	 Searching	for	a	character	in	a	set

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* The program shows how we can use the strpbrk function to *
* find the location of any character in a set of characters. *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

// Creation of a string
char str [] = "Hello friends of mine.";
// Finding the first occurance of any character in a set
char* pPtr = strpbrk (str, "pfmd");
cout << "The character " << *pPtr << " was found." << endl ;
cout << "It is at index: " << pPtr − str;
return 0;

}

Run:
The character f was found.
It is at index: 6

for23380_ch10_443-495.indd 455 02/11/18 5:16 pm

456 Chapter 10 Strings

Comparing
We can compare two strings using the strcmp and strncmp functions. The first compares
the two strings; the second compares only the first n characters of the two strings. Com-
parison is done character by character until a character that is not the same is reached (note
that the null character is also used in the comparison). When unequal characters are found,
the comparison stops and the functions return a negative number if the character in the
first string is smaller than the second. It returns a positive integer if the character in the
first string is larger than the second. If different characters were not found, the functions
return 0.

int value = (str1, str2);
int value = (str1, str2, n);

// Comparing str1 with the whole str2
// Comparing str1 with the first n characters of str2

Two strings can be compared with strcmp (...) and
strncmp (...) member functions.

EXAMPLE 10.10
Program 10.9 uses these two functions. Note that the compare function does not modify any
of the two strings.

Program 10.9	 Comparing	C	strings

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The program shows how we can compare two strings using the *
* strcmp and strncmp functions. *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

// Declaration of two C-strings
const char* str1 = "Hello Alice.";
const char* str2 = "Hello John.";
const char* str3 = "Hello Betsy.";
// Comparison use the whole length
cout << "Comparing str1 and str2: ";
cout << strcmp (str1, str2) << endl;
cout << "Comparing str2 and str3: ";
cout << strcmp (str2, str3) << endl;
// Comparison using one the first characters
cout << "Comparing first 5 characters of str1 and str2: ";
cout << strncmp (str1, str2, 5);

(continued)

for23380_ch10_443-495.indd 456 02/11/18 5:16 pm

10.1 C	Strings 457

Concatenation (Appending)
We can add a string at the end of another string. In this case the destination string will be
changed, but the source remains unchanged. The library defines two member functions for
this purpose: the strcat and strncat functions. The first function concatenates all characters
in str2 at the end of str1. The second function concatenates only the first n characters of the
second string at the end of the first string. However, we must be sure that str1 has enough
memory allocation to accept the concatenation (Program 10.10).

strcat (str1, str2);
strncat (str1, str2, n);

// Appending the whole str2 to str1
// Appending the first n characters of str2 to str1

The member functions strcat (...) and strncat (...) can be used
to concatenate one string at the end of the other.

EXAMPLE 10.11
Program 10.10 uses the two member functions related to concatenation.

Program 10.10	 Using	strcat	and	strncat	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* We use strcat and strncast to concatenate a string at the *
* end of another string. *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

// Using strcat function
char str1 [20] = "This is ";
const char* str2 = "a string.";
strcat (str1, str2);
cout << "str1: " << str1 << endl;
// Using strncat function

Program 10.9	 Comparing	C	strings (Continued)

23
24

return 0;
}

Run:
Comparing str1 and str2: −1
Comparing str2 and str3: 1
Comparing first 5 characters of str1 and str2: 0

(continued)

for23380_ch10_443-495.indd 457 02/11/18 5:16 pm

458 Chapter 10 Strings

Program 10.10	 Using	strcat	and	strncat (Continued)

17
18
19
20
21
22

char str3 [20] = "abcdefghijk";
const char* str4 = "ABCDEFGHIJK";
strncat (str3, str4, 4);
cout << "str3: " << str3 << endl;
return 0;

}

Run:
str1: This is a string.
str3: abcdefghijkABCD

Tokenizing
One of the common operations on a string is to find tokens embedded in a string. String
Tokens are substrings separated by delimiters (such as whitespace). The library defines the
strtok function. To find all tokens in a string, we must call the strtok function multiple times.
When the strtok function is called, it performs three specific tasks:

1. It searches the string for the first occurrence of a character not in the delimiter set. The
search starts from the character pointed to by the first parameter. If a character is found,
it sets the pointer p to that character. If not found, it does nothing.

2. It then searches for the first occurrence of a character in the delimiter set. If the
character is found, it changes that character to a null character.

3. It returns the pointer set in the first task.

In Figure 10.6, the strtok function finds the first character not in the delimiter set
and points p to that character. It then finds a character in the delimiter set and changes that

Figure 10.6	 Tokenizing	using	space	and	comma	as	delimiters

First
call

Second
call

Third
call

Fourth
call

delimit

p = strtok (str, delimit);

p = strtok (0, delimit);

p = strtok (0, delimit);

p = strtok (0, delimit);

str

p
str

p
str

p
str

p

str

'J' 'u' 'l' 'y' ' ' ' ''1' '5' '2' '0' '1' '5' '\0'

' ' '''

'''

'''

'\0'

'J' 'u' 'l' 'y' ' ''1' '5' '2' '0' '1' '5' '\0''\0'

'\0''J' 'u' 'l' 'y' ' ''1' '5' '2' '0' '1' '5' '\0''\0'

'\0''J' 'u' 'l' 'y' ' ''1' '5' '2' '0' '1' '5' '\0''\0'

'\0''J' 'u' 'l' 'y' ' ''1' '5' '2' '0' '1' '5' '\0''\0'

for23380_ch10_443-495.indd 458 02/11/18 5:16 pm

10.1 C	Strings 459

character to a null character. This means a string has been created by p that spans from p to
the null character. In the second and the following calls, the first parameter is the null pointer
and the strtok function starts its search from the null pointer created in the previous call.
When the function reaches the end of the string, p is null.

char* p = strtok (str, delimiter); // Tokenizing str using a delimiter

The strtok (...) function can be used to split a string
into tokens using delimiter characters.

EXAMPLE 10.12
Program 10.11 uses the strtok (...) function to split a string into tokens. The program loops to
repeatedly call strtok until p points to a null character (end of original string). Note that the
original string is changed in this process, which means it cannot be a constant string.

Note that Program 10.11 handles two other conditions. First, if the string is empty, p in
line 15 is set to null and the while is skipped, which means nothing is printed. Second, if the
string is made of only one word, after the only word is printed in line 18 in the first iteration,
p is pointed to a null character and the loop is terminated.

Program 10.11	 Tokenizing	a	string	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The program shows how we can use the strtok function to extract *
* tokens from a date. *
 ***/

#include <cstring>
#include <iostream>
using namespace std;

int main ()
{

// Declaration of a sentence and a pointer
char str [] = "July 15, 2015";
char* p;
// Use strtok to extract all words
p = strtok (str, ", "); // first call
while (p)
{

cout << p << endl;
p = strtok (0, ", "); // second, third, and fourth calls

}
return 0;

}

Run:
July
15
2015

for23380_ch10_443-495.indd 459 02/11/18 5:16 pm

460 Chapter 10 Strings

Problems with C Strings
Although C strings provide a way to use strings, they are more error prone and not as robust
as C++ strings. We therefore recommend C++ strings be used as much as possible. We
discuss C++ strings in the next section.

10.2 THE C++ STRING CLASS
The C++ library provides a class named string, whose objects are normally referred to
as C++ string objects as compared to C string arrays of characters. To use the objects
and member functions of this class, we must include the header file <string> in our
program.

The C++ string library defines a class type whereas the C string library defines an
array of characters. When working with a C string, we must create an array of characters
and apply functions defined in the <cstring> library. When using a C++ string, we can
construct a string object and apply the predefined member functions in the <string> library
to it. We strongly recommend using the C++ string as much as possible.

To use C++ strings, we need the <string> header file.

10.2.1 General Design Idea
To better understand how the string class works, we must consider general concepts that
designers use in designing the string class. The string class has private data members and
public member functions. The user calls the public member functions to manipulate string
objects. In general, the data members include a pointer to an array of characters. Other data
members keep information about the character array. The data members are normally cre-
ated in stack memory, but the character array itself is allocated in the heap because its size
is not defined until run time. While the C++ string can be visualized as a character array,
it is not null terminated as we saw in C strings. Figure 10.7 shows the general picture of a
C++ string.

A C++ string is an array of characters, but it is not null terminated.

Figure 10.7	 General	idea	behind	the	C++	string	object

St
ac

k
m

em
or

y

Heap
memory

Legend:

Notes:
1. A C++ string is not null terminated.
3. The front is at index 0.

active character
reserved character

pointer to character array
other data members

capacity

front back

size

2. Size must be less than or equal to capacity.
4. The back is at index (size −1).

for23380_ch10_443-495.indd 460 02/11/18 5:16 pm

10.2 The	C++	String	Class 461

Before discussing each of the member functions, we discuss a metadata type and
a constant that are used in the library: size_type and npos. We show them in a different
color to emphasize that they are not fundamental data types; they are type definitions
created in the library using fundamental types. The size_type is an unsigned int. It is
defined as unsigned to prevent a negative integer because size must always be positive.
It has two purposes: It is the index of the character array, and it contains the count of a
set of characters; in both cases, the value cannot be negative. The constant npos has the
type size_type, and its value is set to −1. The npos constant is used to show that we have
passed the last element in forward movement or the first element in backward movement.
In other words, it is an index that does not exist. These two identifiers are defined in the
std :: string namespace. When we use them in our program, we must qualify them with
their namespace as shown below:

string :: size-type length;
string :: npos;

10.2.2 C++ String Library
Before we discuss member functions in the library, we give their prototypes (Table 10.2).

Table 10.2 Selected members of C++ library

// Constructors

string :: string ()

string :: string (size_type count, char c)

string :: string (const char* cstr)

string :: string (const char* cstr, size_type count)

// Destructor

string :: ~string ()

// Copy constructors

string :: string (const string& strg)

string :: string (const string& strg, size_type index, size_type length = npos)

// Operations related to size and capacity

size_type string :: size () const

size_type string :: max_size () const

void string :: resize (size_type n, char c)

size_type string :: capacity () const

void string :: reserve (size_type n = 0)

bool string :: empty () const

// Input and output

istream& operator>> (istream& in, string& strg)

ostream& operator<< (ostream& out, const string& strg)

(continued)

for23380_ch10_443-495.indd 461 02/11/18 5:16 pm

462 Chapter 10 Strings

Table 10.2 Selected members of C++ library (Continued)

istream& getline (istream& in, string& strg)

istream& getline (istream& in, string& strg, char delimit)

// Accessing a character given its position

const char& string :: operator[] (size_type pos) const

char& string :: operator[] (size_type pos)

const char& string :: at (size_type pos) const

char& string :: at (size_type pos)

// Accessing a substring given the position of the first character and length

string string :: substr (size_type pos = 0, size_typ length = npos) const

// Finding the position of a given character (forward or backward search)

size_type string :: find (char c, size_type index = 0) const

size_type string :: rfind (char c, size_type index = npos) const

// Finding the position of a character in a set (forward or backward search)

size_type string :: find_first_of (const string& temp, size_type pos = 0)

size_type string :: find_last_of (const string& temp, size_type pos = npos)

// Finding the position of a character not in a set (forward or backward search)

size_type string :: find_first_not_of (const string& temp, size_type pos = 0)

size_type string :: find_last_not_of (const string& temp, size_type pos = npos)

// Comparing two strings

int string :: compare (size_type pos1, size_type n1,const string strg2,

 size_type pos2, size_type n2) const

int string :: compare (size_type pos1, size_type n1,

 const char* cstr, size_type n2) const

// Logical comparison of two strings (oper can be <, <=, >, >=, ==, !=)

bool string :: operatorOper (const string strg1, const string strg2)

bool string :: operatorOper (const string strg1, const char* cstr)

bool string :: operatorOper (const char* cstr, const string strg1)

// Pushing a character at the end of a string

void string :: push_back (char c)

// Modifying a string using another string (append, insert, replace, and assign)

string& string :: append (const string& temp)

string& string :: insert (size_type pos, const string& temp)

string& string :: replace (size_type pos, size_type n, const string& temp)

string& string :: assign (size_type pos, size_type n, const string& temp)

// Clearing and erasing a string

void string :: clear ()

(continued)

for23380_ch10_443-495.indd 462 02/11/18 5:16 pm

10.2 The	C++	String	Class 463

10.2.3 Operations Defined for C++ Strings
We briefly describe the operations defined in Table 10.2.

Construction
The C++ string defines one default constructor and three parameter constructors.

Default Constructor The default constructor shown in Table 10.2 is straight forward. It
creates an empty string by setting the pointer data member in Figure 10.7 (green box) to 0
(null pointer). The following shows how we can create an empty string.

string strg; // Creating an empty string object

Parameter Constructors In addition to the default constructor, the string class allows us
to create a string object in three different ways, as shown in Table 10.2. We can use a set of
characters of the same value, a string literal, and part of a string literal. The following shows
how we can create these objects:

string strg1 (5 , 'a');
string strg2 ("hello");
string strg3 ("hello", 2);

// The string "aaaaa"
// The string "hello"
// The string "he"

Table 10.2 Selected members of C++ library (Continued)

string& string :: erase (size_type pos = 0, size_type n = npos)

// Using the assignment operator

string& string :: operator= (const string& strg)

string& string :: operator= (const char* cstr)

string& string :: operator= (char c)

// Using the compound assignment (addition)

string& string :: operator+= (const string& strg)

string& string :: operator+= (const char* cstr)

string& string :: operator+= (char c)

// Using the addition operator

string& string :: operator+ (const string& strg1, const string& strg2)

string& string :: operator+ (const string& strg1, const char* cstr2)

string& string :: operator+ (const char* cstr1, const string& strg2)

string& string :: operator+ (const string& strg1, char c)

// Conversion to a character array

const char* string :: data () const

// Conversion to a C-string

 const char* string :: c_str () const

for23380_ch10_443-495.indd 463 02/11/18 5:16 pm

464 Chapter 10 Strings

The string strg1 is made of the same five characters (the size_type here defines
the length). The string strg2 is made of a string literal. In this case, the function cop-
ies all characters in the literal (except the null character at the end) to the string object.
The string strg3 is part of a string literal. If we want to use a part of the C-string object
(here and later in other member functions), we must start at the beginning of the string
because the pointer to a string literal is a constant pointer and cannot be moved. How-
ever, we can define the number of characters that should be copied. In this case, we
have said we want only two characters, which means only “he” is used to create a C++
string object.

Destruction
The destructor of the string class simply deletes the character array created in the heap and
pops all data members allocated in the stack. In other words, calling the delete operator to
free allocated memory is done by the destructor, which helps prevent memory leaks.

Copy Construction
The string class allows us to use two different copy constructors: a copy constructor com-
prised of a full existing object or a copy constructor comprised of part of an existing object.

string strg (oldStrg);
string strg (oldstrg1, index, length);

// Using the whole oldStrg
// Using part of the oldStrg

Size and Capacity
A C++ string object uses an array of characters in the heap. If the size of the array must be
decreased during an operation, the value of the size member function is changed. However,
if the size of the string must be increased during an operation, reallocation is needed. A big-
ger array must be created in the heap, the value of the existing elements must be copied, the
new elements must be filled, and the original memory recycled. This is done by the private
member functions in the background. However, this process can create a huge overhead for
the system if many small incremental changes in the size are needed. To prevent this over-
head, the system allows the user to make a reservation, which leads to a larger array than
needed when the array is created.

Size and Maximum Size There are two functions that return values of the string size. The
size function returns the number of characters currently in the string object. The max_size
function returns the maximum number of characters that a string object can have; it is nor-
mally a very big number that is system dependent.

size_type n = strg.size ();
size_type n = strg.max_size ();

// Getting the size
// Getting the maximum size

Resizing The resize function changes the size of the string. If n < size, characters are de-
leted from the end of the string to make the size equal to n; if n > size, copies of character c
are added to the end of the string to make the size n.

strg.resize (n, 'c'); //Resizing and filling the rest of string with 'c'

for23380_ch10_443-495.indd 464 02/11/18 5:16 pm

10.2 The	C++	String	Class 465

Capacity and Reserve The capacity function returns the current capacity of the character
array. If we have not made a reservation, the capacity is the same as the size. We can call the
reserve function to make the capacity larger than the size.

size_type n = strg.capacity ();
strg.reserve (n);

// Getting the capacity
// Reserving a larger array

However, there are some restrictions. If the argument of the function is less than the size,
nothing happens (capacity cannot be less than the size). If the argument defines a small in-
crease, the system may augment it.

Emptiness The empty function returns true if the size is 0; false otherwise.

bool fact = strg.empty(); // Checking emptiness

EXAMPLE 10.13
Program 10.12 uses the member functions related to size, capacity, emptiness, and reservation.

Program 10.12	 Testing	functions	related	to	size	and	capacity	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* The program creates a string object and then tests the size, *
* maximum size, and capacity before and after reservation. *
***/

#include <string>
#include <iostream>
using namespace std;

int main ()
{

// Creating a string object
string strg ("Hello my friends");
// Test size, maximum size and capacity
cout << "Size: " << strg.size () << endl;
cout << "Maximum size: " << strg.max_size() << endl;
cout << "Capacity: " << strg.capacity() << endl;
cout << "Empty? " << boolalpha << strg.empty() << endl;
cout << endl;
// Making reservation and test again
strg.reserve (20);
cout << "Size: " << strg.size () << endl;
cout << "Maximum size: " << strg.max_size() << endl;
cout << "Capacity: " << strg.capacity() << endl;
cout << "Empty? " << boolalpha << strg.empty();
return 0;

}

(continued)

for23380_ch10_443-495.indd 465 02/11/18 5:16 pm

466 Chapter 10 Strings

In Program 10.12 we tried to reserve a total of 20 characters, but the system re-
served 32 characters (16 more than the current size). The system thinks that if we have
created the original string with 16 characters, an extra four locations probably would
not be enough.

Input and Output
We discuss more about input/output of class objects in Chapters 13 and 16. In this section,
we briefly discuss how we input a string object and how we output a string object.

Input/Output Operators The input and output operators that we have used so far with
fundamental data types are member functions of the input object (istream) and output object
(ostream). The object to be input or output is the parameter. If we want to input or output a
string, the parameter must be an instance of the string class.

The in object is connected to the keyboard (cin) or a file; the out object is connected
to the monitor (cout) or a file. The second parameter for the output operator is a constant
string because outputting should not change the string object, but the second parameter for
the input operator is not constant because the input read from the keyboard or file changes
the string.

The input operator reads from an input stream character by character. It needs to know
when it should stop reading. The designer of the function has decided that it will stop when
a whitespace character is encountered. This means that if there is a space, or a new line char-
acter in the input stream, the reading will stop when it is read.

The output operator writes the string object to an output stream from the beginning to
the end. It does not have the limitations of the input operator.

cin >> strg;
cout << strg;

// inputting characters for a string
// outputing the character of a string

EXAMPLE 10.14
Program 10.13 shows how we can use the input/output operators with a string object.

Program 10.12	 Testing	functions	related	to	size	and	capacity (Continued)

Run:
Size: 16
Maximum size: 1073741820
Capacity: 16
Empty? false

Size: 16
Maximum size: 1073741820
Capacity: 32
Empty? false

for23380_ch10_443-495.indd 466 02/11/18 5:16 pm

10.2 The	C++	String	Class 467

In the first run, we just type the string “Hello”. All characters are input and out-
put. In the second run, we type the string “Hi my friends”, and the input stops when
the first space is encountered. Only the string “Hi” is stored in the string object and
printed.

The getline Function As we said, input operators have predefined delimiters that stop the
reading from an input stream. To give users more control, the istream object has a function
named getline with two versions. The first version uses '\n' as the delimiter, which means
it can read the whole line; the second version allows users to define their own delimiter
character.

getline (in, strg);
getline (in, strg, 'c');

// The input stops with '\n'
// The input stops with character c

EXAMPLE 10.15
Program 10.14 shows how we input single-line and multiple-line strings.

Program 10.13	 Using	input/output	operators		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* A program to test input/output operators with string objects. *
***/

#include <string>
#include <iostream>
using namespace std;

int main ()
{

// Constructing a default object
string strg;
// Inputting and outputting values for the strg object
cout << "Input the string: " ;
cin >> strg;
cout << strg << endl;
return 0;

}

Run:
Input the string: Hello
Hello

Run:
Input the string: Hi my friends
Hi

for23380_ch10_443-495.indd 467 02/11/18 5:16 pm

468 Chapter 10 Strings

Note that the input is shown in red; the output is in black. In the first section, we use
the default delimiter, which is the '\n' character (enter key). In the second section, we use
the '$' character as the delimiter. Neither of the delimiter characters is printed.

Accessing Characters
After a string object has been instantiated, we can access an individual character to retrieve
or change it if we know its index (its position in the string relative to zero). The string class
provides four member functions for this purpose. The first two use the overloaded subscript
operator [] to return a character as an rvalue or lvalue. We discuss operator overloading in
Chapter 13; for the moment, the operator [] gives the name of a function that allows us to

Program 10.14	 Using	getline	for	input		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* A program to test the getline function with strings. *
***/

#include <string>
#include <iostream>
using namespace std;

int main ()
{

// Constructing a default object
string strg;
// Creating a string made of a single line
cout << "Enter a line of characters: " << endl;
getline (cin, strg);
cout << strg << endl << endl;
// Creating a string made of multiple lines
cout << "Enter lines of characters ended with $: " << endl;
getline (cin, strg, '$');
cout << strg;
return 0;

}

Run:
Enter a line of characters:
This is a line of text.
This is a line of text.

Enter lines of characters ended with $:
This is a multi-line set of
characters to be
stored in a string.$
This is a multi-line set of
characters to be
stored in a string.

for23380_ch10_443-495.indd 468 02/11/18 5:16 pm

10.2 The	C++	String	Class 469

use the operator [] as we did with an array. The second two members use the at function to
select a character.

char c = strg [pos];
char c = strg.at (pos);
const char c = strg [pos];
const char c = strg.at (pos);

// The character c can be modified
// The character c can be modified
// The character c cannot be modified
// The character c cannot be modified

The subscript operator does not check the size of the string and may create an unpre-
dictable result and termination of the program if the subscript is out of range; the at functions
checks the size and throws an exception if the position parameter is not within the range of
the array. We learn how to handle exceptions in Chapter 14.

Accessing character functions allows us to provide
the position of the character to be returned.

EXAMPLE 10.16
Program 10.15 shows how we can retrieve individual characters in a string.

EXAMPLE 10.17
Program 10.16 shows how we can change all lowercase characters in a line to uppercase. We
first use the subscript operator ([]) to retrieve the character (as an rvalue). We then use the
same operator as an lvalue to store the uppercase version of the character.

Program 10.15	 Retrieving	and	changing	characters		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The program shows how to retrieve a single character in a *
* string. *
***/

#include <string>
#include <iostream>
using namespace std;

int main ()
{

// Construction of a string
string strg ("A short string");
// Retrieving and printing characters at index 5 and 8
cout << "Character at index 5: " << strg [5] << endl ;;
cout << "Character at index 8: " << strg.at(8) << endl;
return 0;

}

Run:
Character at index 5: r
Character at index 8: s

for23380_ch10_443-495.indd 469 02/11/18 5:16 pm

470 Chapter 10 Strings

EXAMPLE 10.18
Program 10.17 creates and tests a function that reverses the characters in a string. The func-
tion uses pass-by-reference to reverse the same string object passed to it. Inside the function,
we create a temporary string using the copy constructor to create and then reverse the string.
We use this function for problems that we discuss later in the chapter.

Program 10.16	 Changing	all	characters	to	uppercase	 		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* The program shows how we can capitalize a line of text using *
* the operator [] as an lvalue and rvalue. *
***/

#include <string>
#include <iostream>

using namespace std;
int main ()
{

string line;

cout << "Enter a line of text: " << endl;
getline (cin, line);
for (int i = 0; i < line.size(); i++)
{

line[i] = toupper (line[i]);
}
cout << line;
return 0;

}

Run:
Enter a line of text:
This is a line of text to be capitalized.
THIS IS A LINE OF TEXT TO BE CAPITALIZED.

Program 10.17	 Reversing	a	string	object	

1
2
3
4
5
6
7
8
9

/***
* The program uses a function to reverse a string object. *
***/

#include <string>
#include <iostream>
using namespace std;

void reverse (string& strg); // Function declaration

(continued)

for23380_ch10_443-495.indd 470 02/11/18 5:16 pm

10.2 The	C++	String	Class 471

Retrieving a Substring
We can retrieve a substring, a set of consecutive characters, from a string by giving the index
of the first character and the number of characters to be retrieved (length). Since only the
left-most parameters can be set to default, if only one parameter is given, it is taken as pos. If
both parameters are missing, the whole string is returned. Note that the function is defined as
constant, which means that the host object cannot be changed. The following result contains
a string that is created in the process.

string result = strg.substr (pos, n); // Result contains n characters

EXAMPLE 10.19
Program 10.18 shows the two uses of a substring function.

Program 10.17	 Reversing	a	string	object (Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

int main ()
{

// Declaration of string object
string strg;
// Input the original object and print it
cout << "Enter a string: ";
getline (cin, strg);
cout << "Original string: " << strg << endl;
// Reverse the object and print it
reverse (strg);
cout << "Reversed string: " << strg;
return 0;

}
/***

* The function reverses a string passed by reference to it. *
***/

void reverse (string& strg)
{

string temp (strg);
int size = strg.size () ;
for (int i = 0; i < size; i++)
{

strg [i] = temp [size − 1 − i];
}

}

Run:
Enter a string: Hello my friends.
Original string: Hello my friends.
Reversed string: .sdneirf ym olleH

for23380_ch10_443-495.indd 471 02/11/18 5:16 pm

472 Chapter 10 Strings

Searching for a Character
Searching in a C++ string is very broad and covers many cases. In specific searching, we
are given a search argument consisting of a specific character that we want to find in the host
string object. However, it may happen that there is more than one copy of the search argu-
ment in the host object. In a forward search, we are looking for the first copy; in a backward
search, we are looking for the last copy. Note that searching does not retrieve or change
the object being searched; it only finds the position of the search argument. If we want to
retrieve or change the located character or string, we must use other member functions that
we discussed earlier.

Forward and Backward Search for a Given Character In character searches, we can
use two member functions (find and rfind) to search for a specific character in the forward
or backward direction as shown in Figure 10.8.

Program 10.18	 Retrieving	two	substrings		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The program shows how to retrieve two substrings from a *
* string object. *
***/

#include <string>
#include <iostream>
using namespace std;

int main ()
{

// Construction of a string
string strg ("The C++ language is fun to work with.");
// Retrieving two substrings.
cout << strg.substr(8) << endl ;
cout << strg.substr(4,12) << endl;
return 0;

}

Run:
language is fun to work with.
C++ language

Figure 10.8	 Searching	for	a	character	in	a	string

Note:
If the character is not found (in either direction), the constant npos (−1) is returnd.

forward search
host string host string

backward search

pos
search direction

pos
search direction

for23380_ch10_443-495.indd 472 02/11/18 5:16 pm

10.2 The	C++	String	Class 473

Table 10.2 shows the function definitions for the character searches. The host string is
searched. The first parameter defines the character to be found; the second parameter defines
the starting index. If the second parameter is missing, the character defaults to 0 in forward
searches or npos in backward searches. If the search is successful, the index of the corre-
sponding character is returned; otherwise the constant npos (−1) is returned.

Warning: Both functions return an unsigned integer (size_type). However, when
the character is not found, both functions return the constant npos, which is an integer with
value −1. Since −1 cannot be returned as an unsigned integer, the value is wrapped and a
very large number (maximum integer −1) is returned. We must be aware of this issue and
handle it properly in our programs.

size_type pos = strg.find (c, index);
size_type pos = strg.rfind (c, index);

// forward search
// backward search

Forward or Backward Search for a Character Belonging to a Set A more interest-
ing search is when need to find any character in a set. For example, assume we want to
find the first vowel in the host string. A vowel belongs to the set “aeiou”. We look for
any one of these characters, and we return the index of the first vowel in forward search
or the index of last vowel in backward search. Another alternative is that we want to
look for a character not in a set. For example, we want to find the first or last nonvowel
character in the host string.

We can have a variety of search sets: a C++ string, a C string, part of a C string, or
even a single character. To make the format of the functions easier to understand, we cre-
ate a temporary host object defining the set and then use the temporary object in the search
function. Figure 10.9 shows the idea. We have four functions that we can combine with each
of the four sets.

 ∙ The find_first_of function does a forward search to find the first character in the string
that matches any character in the given set. If found, it returns the corresponding index;
otherwise, it returns npos.

 ∙ The find_first_not_of function does a forward search to find the first character in the
string that does not match any given character in the set. If found, it returns the cor-
responding index; otherwise, it returns npos.

 ∙ The find_last_of function does a backward search to find the last character in the string
that matches any character in the given set. If found, it returns the corresponding index;
otherwise, it returns npos.

Figure 10.9	 The	idea	behind	four	find	functions

host string

host string

find_first_of and find_first_not_of

find_last_of and find_last_not_of

pos

pos

search direction

search direction

temporary string (set)

character

C++ string

C-string (part)

C-string
n

for23380_ch10_443-495.indd 473 02/11/18 5:16 pm

474 Chapter 10 Strings

 ∙ The find_last_not_of function does a backward search to find the last character in the
string that does not match any character in the given set. If found, it returns the cor-
responding index; otherwise, it returns npos.

The following shows how we can use these functions. Note that the set is the temporary
string we need to create in one of the four ways defined in Figure 10.9, and the index defines
the starting point of the search.

size_type pos = strg.find_first_of (set, index);
size_type pos = strg.find_last_of (set, index);
size_type pos = strg.find_first_not_of (set, index);
size_type pos = strg.find_last_not_of (set, index);

// forward search
// backward search
// forward search
// backward search

Tokenizing
We can use the search functions to find the beginning and end of substrings and then extract
the substrings from the string. For example, assume we are looking to find words in a text.
The words in a text are normally separated by a space or a new line character ('\n'). If we
create a set of these two characters as the delimiters of the words, we can extracts words
from the text. Figure 10.10 shows how we can use a strategy to do so.

Program 10.19 extracts words using two search functions and a loop. We use the func-
tion find_first_not_of to find the beginning of a word (a word cannot have a character in the
set); we use find_first_of to find the end of a word (a character in the set comes after a word).
The delimiter is made of two characters in this case: space and new line. We could have
more, such as comma, semicolon, and so on, but we ignore them to keep the program simple.

Figure 10.10	 Strategy	to	extract	words	from	a	line	of	text

Legend:

word
delimiter

start of a word
end of a word

wStart
wEnd

w
St

ar
t

w
St

ar
t

w
St

ar
t

w
St

ar
t

w
En

d

w
En

d

w
En

d

w
En

d

w
St

ar
t

w
En

d0 npos

Program 10.19	 Retrieving	words	from	a	line	of	text	

1
2
3
4
5
6
7
8
9

/***
* The program uses search functions to find and extract words *
* in a line of text. *
***/

#include <string>
#include <iostream>
using namespace std;

int main ()

(continued)

for23380_ch10_443-495.indd 474 02/11/18 5:16 pm

10.2 The	C++	String	Class 475

Program 10.19	 Retrieving	words	from	a	line	of	text (Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

{
// Declaration of variables, types, and constants
string text, word;
string delimiter (" \n");
string:: size_type wStart, wEnd;
string :: size_type npos;
// Input a line of text from keyboard
cout << "Enter a line of text: " << endl ;
getline (cin, text);
// Search, find, and print words
cout << "Words in the text:" << endl;
wStart = text.find_first_not_of (delimiter, 0);
while (wStart < npos)
{

wEnd = text.find_first_of (delimiter, wStart);
cout << text.substr (wStart, wEnd − wStart) << endl;
wStart = text.find_first_not_of (delimiter, wEnd);

}
return 0;

}

Run:
Enter a line of text:
This is a line of text.
Words in the text:
This
is
a
line
of
text.

Before the loop in Program 10.19, we set wStart to point to the beginning of the current
word, which is the first word in the text (line 21). In each iteration of the loop

a. We set wEnd to the end of the current word (line 24).
b. We retrieve the substring between wStart and wEnd (line 25).
c. We update the value of wStart to point to the beginning of the next word for the next

iteration (line 26).

When we come out of the loop, all words have been retrieved and printed. Analyze the loop
to determine what happens if two or three spaces are found between words.

Comparing Strings
The C++ string provides two ways to compare two strings: integral and Boolean.

for23380_ch10_443-495.indd 475 02/11/18 5:16 pm

476 Chapter 10 Strings

Integral Comparison The integral comparison compares two strings and returns one of
three integral values: zero when the two strings are equal, a positive number when the first
string is greater than the second, and a negative number when the first string is less than the
second. There are a few syntax rules. The first string is the host string. The string parameter
can be a C++ string or a C string. Each can be a string or a substring. The substring of a
C++ string can be defined by giving the beginning index and the length; the substring of a
C string must start from the first character. Figure 10.11 shows the idea.

int result = strg.compare (pos1, n1, strg2, pos2, n2);
int result = strg.compare (pos1, n1, str, n2);

// Two C++ strings
// C++ string and C string

Table 10.2 gives two member functions to compare two strings. The first compares the
host string with another C++ string; the second compares the host string with a C string. Note
that the C string does not use the pos parameter because it must always start from the beginning.

As usual, pos1 and n1 define the beginning index and the length of the first string; pos2
and n2 define the beginning index and the length of the second string. Figure 10.11 shows
how we can use these member functions.

EXAMPLE 10.20
Program 10.20 compares strings.

Figure 10.11	 Comparing	two	strings

Host string

Host string

Parameter string

Parameter string

Note:
If pos1 or pos2 is missing, it means the beginning of the string.
If n1 or n2 is missing, it means the end of the string.

Comparing two C++ strings

Comparing a C++ string and a C string

pos2
n2

C++ string

C string

pos1
n1

pos1
n1 n2

Legend:

Program 10.20	 Integral	comparison	of	strings	

1
2
3
4
5
6
7

/***
* The program to test integral comparison. *
***/

#include <string>
#include <iostream>
using namespace std;

(continued)

for23380_ch10_443-495.indd 476 02/11/18 5:16 pm

10.2 The	C++	String	Class 477

Program 10.20	 Integral	comparison	of	strings (Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

int main ()
{

// Declaration of two C++ strings
string strg1 ("Hello my friends");
string strg2 ("Hello friends");
// Comparing two C++ strings
cout << strg1 << " compared with " << strg2 << ": ";
cout << strg1.compare (strg2) << endl;
// Comparing part of the two C++ strings
cout << "Hello compared with Hello: ";
cout << strg1.compare(0, 5, strg2, 0, 5) << endl;
// Comparing part of the first C++ string and a C-string
cout << "Hello compared with Hello: ";
cout << strg1.compare (0, 5, strg2) << endl;
// Comparing part of a C++ string and part of a C-string
cout << "Hel compared with Hell: ";
cout << strg2.compare (0, 3, "Hello" ,4);
return 0;

}

Run:
Hello my friends compared with Hello friends: 1
Hello compared with Hello: 0
Hello compared with Hello: −8
Hel compared with Hell: −1

We check the results:

1. In the first comparison (line 15), we are comparing “Hello my friends” with “Hello
friends”. The comparison goes character by character until we compare the ‘m’
character with the ‘f’ character. The ‘m’ character is larger than the ‘f’ character, the
comparison stops, and the function returns 1 (a positive number).

2. In the second comparison (line 18), we are comparing “Hello” with “Hello”. The two
substrings are equal; the result is 0.

3. In the third comparison (line 21), we are comparing “Hello” and “Hello friends”. A
null character is compared to a space. The result is a negative number (−8).

4. In the fourth comparison (line 24), we are comparing “Hel” with “Hell”. When we
reach the fourth character, we are comparing a null character with ‘l’. The result is a
negative number (−1).

We must be careful that we do not convert the integral result to a Boolean type in integral
comparison because both 1 and −1 are converted to true, which is not correct.

Logical Comparison The logical comparison compares two strings and returns a Boolean
value (true or false). Just like the integral comparison, two strings are compared. The first is
always the host, and the second is a C++ string or a C string. Unlike the integral compari-
son, we cannot compare two substrings. If we want to do so, we must make temporary C++
strings out of the substrings and then compare them.

for23380_ch10_443-495.indd 477 02/11/18 5:16 pm

478 Chapter 10 Strings

The prototypes use operator overloading, which we will discuss in Chapter 13. The
term Oper in the prototypes can be one of the relational or equality operators (<, <=, >,
>=, ==, or !=). We can compare the two strings as though they are fundamental types using
these operators. You may wonder if we can compare two C strings. We can do that, but they
are considered fundamental types, and normal relational and equality operators are applied
to them (we do not need the <string> header). Note that in logical comparisons, one of the
two strings must be a C++ string.

The following shows how we can use these member functions.

bool result = strg1 oper strg2;
bool result = strg oper str;
bool result = str oper strg;

// Comparing two C++ strings
// Comparing a C++ string and a C string
// Comparing a C string and a C++ string

EXAMPLE 10.21
Program 10.21 compares strings.

Program 10.21	 Using	logical	operators	to	compare	strings	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* The program to test logical operators to compare two strings. *
***/

#include <string>
#include <iostream>
using namespace std;

int main ()
{

// Creation of four C++ strings
string strg1;
string strg2 (5, 'a');
string strg3 ("Hello Friends");
string strg4 ("Hi People", 4);
// Using six logical operators (relational and equality)
cout << "strg1 < strg2 : " << boolalpha << (strg1 < strg2);
cout << endl;
cout << "strg2 >= strg3: " << boolalpha << (strg2 >= strg3);
cout << endl;
cout << "strg1 == strg2: " << boolalpha << (strg1 == strg2);
cout << endl;
cout << "Hi P != strg4: " << boolalpha << ("Hi P" != strg4);
return 0;

}

Run:
strg1 < strg2 : true
strg2 >= strg3: true
strg2 < strg3: false
strg1 == strg2: false
Hi P != strg4: false

for23380_ch10_443-495.indd 478 02/11/18 5:16 pm

10.2 The	C++	String	Class 479

EXAMPLE 10.22
A string is a palindrome if it reads the same forward and backward. The strings “rotor,” “dad,”
and “noon” are all palindromes. Examples of more complex palindromes are “Madam, I am
Adam” and “Able was I ere I saw Elba.” We can easily check if a string is a palindrome by
comparing it with its own reverse. In some cases, we must remove the punctuation and make
the characters all the same before reversing the string. Program 10.22 shows how to check
a string for palindrome.

Program 10.22	 Testing	for	a	palindrome

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***
* The program checks to see if an input string is a palindrome. *
***/

#include <string>
#include <iostream>
using namespace std;

// Declaration of two functions
void reverse (string& strg);
bool isPalindrome (string& strg);

int main ()
{

// Construction of a default string object
string strg;
// Inputting
cout << "Enter a string: ";
getline (cin, strg);
// Checking for palindrome
if (isPalindrome (strg))
{

cout << strg << " is a palindrome.";
}
else
{

cout << strg << " is not a palindrome.";
}
return 0;

}
/***

* The isPalindrome function calls the reverse function *
* to compare its parameter with its reversed parameter. *
***/

bool isPalindrome (string& strg)
{

string temp (strg);
reverse (temp);

(continued)

for23380_ch10_443-495.indd 479 02/11/18 5:16 pm

480 Chapter 10 Strings

Program 10.22	 Testing	for	a	palindrome	(Continued)

38
39
40
41
42
43
44
45
46
47
48
49
50
51

return (temp == strg);
}
/***

* The reverse function reverses the string parameter. *
***/

void reverse (string& strg)
{

string temp (strg);
int size = strg.size () ;
for (int i = 0; i < size; i++)
{

strg[i] = temp [size − 1 − i];
}

}

Run:
Enter a string: rotor
rotor is a palindrome.

Run:
Enter a string: mom
mom is a palindrome.

Run:
Enter a string: son
son is not a palindrome.

Push_Back
We often need to add a character to a string. The string library defines the push_back func-
tion that adds a character at the end of the string. The library member function can be used
as shown below:

strg.push_back (c); // Append character c at the end of strg

In our programming design section, we show how we can push a character in front of the
string. We also show how we can pop a character from the front or the back.

Modifying Operations
The C++ string library gives a set of different function definitions for modifying operations.
However, if we construct a temporary string as the parameter, the number of member func-
tions can be reduced to four. The temp string is the set of characters that we are looking for.

temp (strg);
temp (strg, pos2, n2);
temp (1, c);
temp (cstr);
temp (cstr, n);

// A complete C++ string
// A part of C++ string
// A string made of one character
// A complete C-String
// The first n characters of a C-string

for23380_ch10_443-495.indd 480 02/11/18 5:16 pm

10.2 The	C++	String	Class 481

Figure 10.12 shows how four groups of functions use the temporary string to modify the
host string.

The following shows how we use these four categories of functions:

strg.append (temp);
strg.insert (pos1, temp);
strg.replace (pos1, n1, temp);
strg.assign (temp);

// Append
// Insert
// Replace
// Assign

Partial or Total Erasure
There are two functions that can totally or partially erase the characters in the string without
destructing the string. The object still exists, but it is partially or totally devoid of its characters.

strg.clear ();
strg.erase (pos, n);

// Erase all character in the string
// Erase part of the string

Overloaded Operators
Some of the modifying operations are achieved using overloaded operators. C++ overloads
the assignment operator (=), the compound assignment operator (+=), and the addition op-
erator (+) as shown below. The temp, temp1, and temp2 are instances of the string class.

string strg = temp;
string strg += temp;
string strg = temp1 + temp2;

// Assignment
// Compound Assignment
// Addition

Figure 10.12	 General	idea	behind	append,	insert,	replace,	and	assign

append

insert

Legend:

Five ways to
make a temporary

string

replace

assign

pos1

pos1

pos2

temp string

host
string

host
string

host
string

host
string

temp string

temp string

n1

n2

n2

n2

temp string

C++ string

Character

C string

Erased character

for23380_ch10_443-495.indd 481 02/11/18 5:16 pm

482 Chapter 10 Strings

EXAMPLE 10.23
Program 10.23 shows how we can read the first name, last name, and initial of a person to
create the full name in two formats.

EXAMPLE 10.24
In this example we show how we can change a file with left-justified text to a file with
right-justified text. There are several approaches to this problem, depending on how much
information we have about the file. If we know the maximum line size, the problem is very

Program 10.23	 Printing	the	full	name	of	a	person

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* A program to show concatenation of strings and characters. *
***/

#include <string>
#include <iostream>
using namespace std;

int main ()
{

// Declarations
string first, last;
char init;
// Input first, last, and initial
cout << "Enter first name: ";
cin >> first;
cout << "Enter last name: ";
cin >> last;
cout << "Enter initial: ";
cin >> init;
// Printing the full name in one format
cout << endl;
cout << "Full name in first format: ";
cout << first + " " + init + "." + " " + last << endl << endl;
// Printing the full name in another format
cout << "Full name in second format: ";
cout << last + ", " + first + " " + init + ".";
return 0;

}

Run:
Enter first name: John
Enter last name: Brown
Enter initial: A

Full name in first format: John A. Brown

Full name in second format: Brown, John A.

for23380_ch10_443-495.indd 482 02/11/18 5:16 pm

10.2 The	C++	String	Class 483

simple. Otherwise, we need to find the maximum line size. To find the maximum line size,
we can use two approaches. In the first, we can read the lines in the input file into an array
of strings, find the maximum line size, and then write the array into the output file. The
problem is that we need to create an array in stack memory. In the second approach, we can
read the input file two times. The first time, we just find the maximum line size. We then
close the file and read it again to change the size of the line and store it in the output file.
Program 10.24 uses the second approach.

Program 10.24	 Writing	justified	lines	in	a	file	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

/***
* The program reads a left-justified file and creates a new *
* right-justified file. *
***/

#include <string>
#include <iostream>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

// Declaration of files and a string object
ifstream inputFile;
ofstream outputFile;
string line;
// Read the input file just to find the maximum line size
inputFile.open ("inFile.dat");
assert (inputFile);
int maxSize = 0;
while (!inputFile.eof())
{

getline (inputFile, line);
if (line.size() > maxSize)
{

maxSize = line.size();
}

}
inputFile.close ();
// Read the input file and create the output file.
inputFile.open ("inFile.dat");
assert (inputFile);
outputFile.open ("outFile.dat");
assert (outputFile);
while (!inputFile.eof())

}

(continued)

for23380_ch10_443-495.indd 483 02/11/18 5:16 pm

484 Chapter 10 Strings

The following shows the contents of the input file and output file set side by side after
the program is run.

Contents of input file Contents of output file

This is a line.
This is the second line.
This is a new longer line.
This is a shorter one.
This is the longest line by far.

This is a line.
This is the second line.
This is a new longer line.
This is a shorter one.
This is the longest line by far.

Conversion
We can convert a C++ object to a character array or to a C string.

const char* arr = strg.data ();
const char* str = strg.c_str ();

// Conversion to a character array
// Conversion to a C string

10.3 PROGRAM DESIGN
In this section, we first create four customized functions using member functions in the
string class. We then use these functions to solve some of the classic problems in string
processing.

10.3.1 Four Customized Functions
A library class defines a set of member functions, but we can always create functions cus-
tomized to our need. The functions we add cannot be class member functions, but they can
use class types as parameters. We demonstrate this capability by defining four new functions
related to the C++ string class. We create these functions in terms of member functions de-
fined in the C++ string class. To use them in any program, we collect them in a header file
called customized.h and include the file everywhere we need to use them. We have called
these functions: pushBack, pushFront, popBack, and popFront. In later chapters, we will see
that these functions are defined for other class libraries (although by different names), but
only one of them, under the name push_back, is defined for the string class. Figure 10.13
shows the behavior of these four customized functions.

Program 10.24	 Writing	justified	lines	in	a	file	(Continued)

37
38
39
40
41
42
43
44
45
46

getline (inputFile, line);
string temp (maxSize − line.size() , ' ');
line.insert (0, temp);
line.append ("\n");
outputFile << line;

}
inputFile.close();
outputFile.close();
return 0;

}

for23380_ch10_443-495.indd 484 02/11/18 5:16 pm

10.3 Program	Design 485

Program 10.25 shows the header file that creates our four customized functions.
Program 10.26 shows how we test our customized function using a trivial string.

Figure 10.13	 Effect	of	four	customized	functions

pushBack

popBack popFront

pushFront

Program 10.25	 Header	file	for	our	customized	functions	 		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* A header file to define our four customized functions. *
* The pushFront function adds the given character at the front. *
* The pushBack function adds the given character at the back. *
* The popFront function removes the character at the front. *
* The popBack function removes the character at the back. *
***/

#ifndef custom_H
#define custom_H
#include <iostream>
#include <string>
using namespace std;

// Definition of pushFront function
void pushFront (string& strg, char c)
{

string temp (1, c);
strg.insert (0, temp);

}
// Definition of pushBack function
void pushBack (string& strg, char c)
{

string temp (1, c);
strg.append (temp);

}
// Definition of popFront function
char popFront (string& strg)
{

int index = 0;
char temp = strg [index];

(continued)

for23380_ch10_443-495.indd 485 02/11/18 5:16 pm

486 Chapter 10 Strings

Program 10.25	 Header	file	for	our	customized	functions (Continued)

31
32
33
34
35
36
37
38
39
40
41
42

strg.erase (index, 1);
return temp;

}
// Definition of popBack function
char popBack (string& strg)
{

int index = strg.size () − 1;
char temp = strg [index];
strg.erase (index, 1);
return temp;

}
#endif

Program 10.26	 Testing	four	customized	functions	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* A program that tests the customized functions defined in the *
* customized header file. *
***/

#include "customized.h"
#include <string>
#include <iostream>
using namespace std;

int main ()
{

// Declaration of original string
string strg ("abcdefgh");
// Testing pushFront function
cout << "String before calling pushFront: " << strg << endl;
pushFront (strg, 'A');
cout << "String after calling pushFront: " << strg << endl;
cout << endl;
// Testing pushBack function
cout << "String before calling pushBack: " << strg << endl;
pushBack (strg, 'Z');
cout << "String after calling pushBack: " << strg << endl;
cout << endl;
// Testing popFront function
cout << "String before calling popFront: " << strg << endl;
char c1 = popFront (strg);
cout << "String after calling popFront: " << strg << endl;
cout << "The popped character: " << c1 << endl;

(continued)

for23380_ch10_443-495.indd 486 02/11/18 5:16 pm

10.3 Program	Design 487

Program 10.26	 Testing	four	customized	functions (Continued)

29
30
31
32
33
34
35
36
37

cout << endl;
// Testing popBack function
cout << "String before calling popBack: " << strg << endl;
char c2 = popBack (strg);
cout << "String after calling popBack: " << strg << endl;
cout << "The popped character: " << c2 << endl;
cout << endl;
return 0;

}

Run:
String before calling pushFront: abcdefgh
String after calling pushFront: Aabcdefgh

String before calling pushBack: Aabcdefgh
String after calling pushBack: AabcdefghZ

String before calling popFront: AabcdefghZ
String after calling popFront: abcdefghZ
The popped character: A

String before calling popBack: abcdefghZ
String after calling popBack: abcdefgh
The popped character: Z

10.3.2 Conversion in Positional Number Systems
In computer science we use different positional numbering systems; these are described
in Appendix B: binary, octal, decimal, and hexadecimal. Each positional numbering
system uses a set of symbols and a base. The base defines the total number of symbols
used in the system. Table 10.3 shows the base and the symbols we work with in pro-
gramming. Note that the values of symbols A, B, C, D, E, F are 10, 11, 12, 13, 14, and
15, respectively.

Although all of these number systems represent an integer using different notations,
the decimal system is the only one that can be directly used as an integer in a program. A
number in other systems must be represented as a string of characters.

System Base Symbols

binary 2 0,	1

octal 8 0,	1,	2,	3,	4,	5,	6,	7

decimal 10 0,	1,	2,	3,	4,	5,	6,	7,	8,	9

hexadecimal 16 0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F

Table 10.3 Positional numbering system

for23380_ch10_443-495.indd 487 02/11/18 5:16 pm

488 Chapter 10 Strings

In C++, a number in the decimal system is used as an integer;
numbers in other systems are used as a string of characters.

This means that when we are working with different numbering systems, we must change a
string to an integer or vice versa. In this section we give a general design for doing so. Before
studying the rest of this section, we recommend that you review Appendix B.

Conversion from Any Other Base to Decimal
Figure 10.14 shows how we convert a string of three characters to an integer.

We use a loop that is controlled by the size of the string. When the string is empty,
we exit the loop. Before starting the loop, we set the value of the decimal variable to 0.
In each iteration, we multiply the previous value of decimal by its base. We then pop
the front character, convert it to decimal, and add it to the value of decimal. Note that in
each iteration, the value of decimal is increased, but the size of the string is decreased.
When we come out of the loop, the value of decimal is computed. Table 10.4 shows the
algorithm.

Figure 10.14	 Converting	from	any	base	to	decimal

[1][0]

After
iteration 1

[0]

After
iteration 2

After
iteration 3

[1] [2][0]

In the
beginning

Legend:

Lo
op

Note:
In each iteration, the string
diminishes, but the decimal
value grows.

deleted char

decimal value

decimal = 0

decimal

decimal

decimal

original char

Table 10.4 Algorithm for converting a string to a decimal

set base // set base to 2, 8, 16

decimal = 0

input string

while (string not empty)

{

decimal *= base; 	
ch = popFront (string) // Use popFront function developed before

decimal += findValue (ch) // Use a function to change ch to its value

}

output decimal

for23380_ch10_443-495.indd 488 02/11/18 5:16 pm

10.3 Program	Design 489

Program 10.27	 Changing	a	binary	string	to	a	decimal	integer	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***
* A program to change a binary string to a decimal integer. *
***/

#include "customized.h"
#include <string>
#include <iostream>
using namespace std;
/***

* A function to change a numeric character to its equivalent *
* integer value. *
***/

int findValue (char ch)
{

return static_cast <int>(ch) − 48;
}

int main ()
{

// Declaration, inputting, and validation of binary string
string binary;
do
{

cout << "Enter binary string: ";
getline (cin, binary);

} while (binary.find_first_not_of ("01") < binary.size());
// Initialization and calculation of decimal integer
int base = 2;
int decimal = 0;
while (!binary.empty())
{

decimal *= base;
char ch = popFront (binary);
decimal += findValue (ch);

}
cout << "Decimal value: " << decimal;
return 0;

}

EXAMPLE 10.25
Program 10.27 changes a binary string to a decimal integer. In this case, base is 2. We have
used the popFront function we developed before (included in the header file). We have
written a small function named findValue to change the extracted character to its integer
value.

(continued)

for23380_ch10_443-495.indd 489 02/11/18 5:16 pm

490 Chapter 10 Strings

There are three important points about Program 10.27: First, in lines 21 to 25 we
process a line of text that represents a binary string. The string we need must be made only
of the characters ‘0’ and ‘1’, which means the input string must be validated before being
used. This is done by the find_first_not_of function we learned earlier in the chapter. This
function looks for characters that are not ‘0’ or ‘1’ and returns the corresponding index. If
the returned index is less than the size of the string, it means that a character other than 0 or
1 was found in the string, and we loop back to read again.

Second, consider line 31. Each time we enter the loop, we must reset the value of decimal
to decimal times the value of base, as for the algorithm given in Table 10.3.

Third, consider the popFront function. We know that in each iteration we must extract
the next character in the string, which is correctly done by the popFront function defined in
the header file.

Conversion from Decimal to Any Other Base
Figure 10.15 shows how we convert a decimal to a string of three characters.

We use a loop that is controlled by the value of the decimal number. When the value
is 0, we stop. Before starting the loop, the string is empty. In each iteration, we divide
the previous value of decimal by base and get the remainder. We then change the resulting
value to a character and push it to the front of the string. Note that in each iteration, the value
of the decimal decreases until it becomes 0, but the size of the string is increased. When we
come out of the loop, the string is ready. Table 10.5 shows the algorithm.

Program 10.27	 Changing	a	binary	string	to	a	decimal	integer (Continued)

Run:
Enter binary string: 11 101
Enter binary string: 11101
Decimal value: 29

Run:
Enter binary string: 1181
Enter binary string: 11111
Decimal value: 31

Run:
Enter binary string: 111000111
Decimal value: 455

Figure 10.15	 Converting	from	decimal	to	other	bases

[1]

[1]

[0]

[0]

[0]

After
iteration 1

[2]

After
iteration 2

After
iteration 3

In the
beginning Legend:

Lo
op

Note:
In each iteration, the
string grows, but the
decimal value decreases.

decimal value

decimal = 0

decimal

decimal

decimal

original char

for23380_ch10_443-495.indd 490 02/11/18 5:16 pm

10.3 Program	Design 491

EXAMPLE 10.26
Program 10.28 shows how we convert a decimal to a binary string.

Table 10.5 Algorithm for converting a decimal to a string

set base // set base to 2, 8, 16

input decimal

while (decimal > 0)

{

value = decimal % base;

ch = findChar (value) // Use a function to change value to char

string.pushFront (ch) // Use pushFront function developed before

}

output string

Program 10.28	 Converting	from	decimal	to	binary		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* A program to change a decimal numeral to a binary string *
***/

#include <string>
#include "customized.h"
#include <iostream>
using namespace std;

/***
* A function to change an integer to a character using the *
* char function *
***/

char findChar (int digit)
{

return char (digit + 48);
}

int main ()
{

// Declaration of variables
int decimal;
int base = 2;
string strg;
// Input and validation of decimal number
do

(continued)

for23380_ch10_443-495.indd 491 02/11/18 5:16 pm

492 Chapter 10 Strings

The validation of the input decimal value is simple and is done in a do-while loop. To insert
the character in the binary string, we use the pushFront function we created and included in
the header file.

Program 10.28	 Converting	from	decimal	to	binary (Continued)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

{
cout << "Enter a positive decimal: " ;
cin >> decimal;

} while (decimal <= 0);
// Conversion to binary
while (decimal > 0)
{

int digit = decimal % base;
char ch = findChar (digit);
pushFront (strg, ch);
decimal /= base;

}
// Outputting binary
cout << "Binary: " << strg;
return 0;

}

Run:
Enter a positive decimal: 35
Binary: 100011

Run:
Enter a positive decimal: 7
Binary: 111

Run:
Enter a positive decimal: 126
Binary: 1111110

K e y T e r m s

C string
C++ string

string literal
string token

The C string is a null-terminated array of characters that can be created like an array. A lit-
eral string is a constant value that encloses characters in two double quotes. We can input C
strings using the extraction operator or the getline library function. We can output C strings
using the insertion operator.

S u m m a r y

for23380_ch10_443-495.indd 492 02/11/18 5:16 pm

Problems 493

P r o b l e m s

PR-1. The following code fragment uses C strings. Change the code to use C++ strings.

const char* str = "This is a string.";
cout << strlen (str) << endl;

PR-2. The following code fragment uses C strings. Change the code to use C++ strings.

const char* str1 = "This is a string.";
const char* str2 = "This is another one.";
cout << strcmp (str1, str2) << endl;

PR-3. The following code fragment uses C strings. Rewrite the following code using
C++ strings to achieve the same goal.

char str1 [] = "This is the first string.";
const char* str2 = "Here is another one.";
strcpy (str1, str2);
cout << str1 << endl;

PR-4. The following code fragment uses C strings. Rewrite the code using C++ strings
to achieve the same goal.

char str1 [] = "This is the first string.";
const char* str2 = "Here is another one.";
strncpy (str1, str2, 4);
cout << str1 << endl;

PR-5. The following code fragment uses C strings. Change the code to use C++ strings.

char str1 [40] = "The time has come. ";
const char* str2 = "Are your ready?";
strcat (str1, str2);
cout << str1 << endl;

PR-6. The following code fragment uses C strings. Change the code to use C++ strings.

char str1 [40] = "The time has changed. ";
const char* str2 = "Do you know? My dear friend.";
strncat (str1, str2, 12);
cout << str1 << endl;

PR-7. The following code fragment uses C strings. Change the code to use C++ strings.

char str [] = "This is a long string.";
*strchr (str, 's') = 'S';
*strrchr (str, 's') = 'S';
cout << str << endl;

The C++ string class is found in the <string> header file. It is a class that creates a
character array that is not null-terminated and is created in heap memory. It defines data
members and member functions like any other class.

for23380_ch10_443-495.indd 493 02/11/18 5:16 pm

494 Chapter 10 Strings

PR-8. The following code fragment uses C strings. Change the code to use C++ strings.

const char* str = "This is a long string.";
char* p = strstr (str, "is");
cout << *p << endl;

PR-9. The following code fragment uses C strings to delete the first character in the
string. Change the code to use C++ strings.

const char* str = "ABCDEFGH";
str = str + 1;
cout << str << endl;

PR-10. The following code uses C strings to delete all but the last character in a string.
Change the code to use C++ strings.

const char* str = "ABCDEFGH";
str = str + strlen (str) − 1;
cout << str << endl;

PR-11. The following code fragment is written using C++ strings. Change the code to use
C strings.

string strg ("ABCDEFGH");
strg.push_back ('I');
cout << strg << endl;

PR-12. Write a code fragment that splits a C++ string into two equally sized strings. If the
number of characters in the original string is odd, the code adds a blank character
at the end of string before splitting.

PR-13. Write a code fragment to extract the first four characters of a string and the last
four characters of a string. Then print the extracted strings.

P r o g r a m s

PRG-1. Write a function that finds the count of a given character in a C++ string. Test
the function in a program.

PRG-2. Write a function that converts all characters in a C++ string to uppercase. Test
the function in a program.

PRG-3. Write a function that removes all occurrences of a given character from a C++
string. Test the function in a program.

PRG-4. Write a function that removes duplicate characters from a string (keeping only
one instance of each character). Test the function in a program.

PRG-5. Write a function that, given two strings, creates another string that contains only
the common characters of the two strings. One solution is to first remove the
duplicate characters from each string before creating the string with common
characters (PRG-4).

PRG-6. Write a function that has three C++ strings as parameters. It searches the first
parameter to find the second parameter (as a substring) and replaces it with the
third parameter. It returns the changed first parameter if the substring can be found;
otherwise, it returns the original first parameter. Test your function in a program.

PRG-7. Write a function that inserts a given string in the middle of a second string. If
the second string has an odd number of characters, the program first repeats the
last character before inserting. Write a program to test your function.

for23380_ch10_443-495.indd 494 02/11/18 5:16 pm

Programs 495

PRG-8. Modify Program 10.21 to handle complex palindromes such as “Madam, I’m
Adam” or “A man, a plan, a canal: Panama.”

PRG-9. Write a program to change a positive integer to its corresponding octal string
(base 8). For example, the integer 1234 will be changed to the string “2322.”
Hint: You can use a toChar function to change each octal digit to an octal
character, the pushFront function we developed in the text to insert an octal
character into the string, and a toString function that calls the other two
functions repeatedly until the whole transformation is done.

PRG-10. Write a program to change a positive integer to its corresponding hexadecimal
string (base 16). For example, the integer 23456 will be changed to the string
“5BA0” when we use only uppercase letters. Hint: You can use a toChar function
to change each hex digit to a hex character, the pushFront function we developed
in the text to insert a hex character into the string, and a toString function that
calls the other two functions repeatedly until the whole transformation is done.

PRG-11. Write a program to change an octal string to a decimal integer. An octal string
uses only characters ‘0’ to ‘7’. The base is 8. Hint: You can use the popFront
function we developed in the text to extract the next character from an octal
string, a toInt function to change an octal character into an octal digit, and a
toDecimal function that continuously calls the other two functions to finish the
task. Note that the octal string must be validated, which can be done using the
find_first_not_of function discussed in the text.

PRG-12. Write a program to change a hexadecimal string to a decimal integer. For our
purpose, a hexadecimal string uses only characters ‘0’ to ‘9’ and ‘A’ to ‘F’ or ‘a’
to ‘f’. The base is 16. Hint: You can use the popFront function we developed in
the text to extract the next character from a hexadecimal string, a toInt function
to change a hexadecimal character into an hexadecimal digit, and a toDecimal
function that continuously calls the other two functions to finish the task. Note
that the hexadecimal string must be validated, which can be done using the
find_first_not_of functions discussed in the text.

PRG-13. In situations where a piece of data can be represented in different forms, as
shown in programming problems PRG-9 through PRG-11, we can use a class.
We can declare the only data member in the most common form (such as
unsigned integer) and then use set and get functions to set and get the value of
the data as a string in four different bases (2, 8, 10, and 16). Give the interface
file, the implementation file, and the application file for this class. Define some
helper function, namely toInt, toChar, pushFront, popFront, and validate, that
validates the string passed to the set function.

PRG-14. Create a class called Address that represents an Internet address. An Internet
address in version 4 (IPv4 address) is a decimal value between 0 and
4,294,967,295. In other words, it can be the addresses of more than four billion
computers connected to the Internet. The two common representations of an
IP address are in binary format (base 2) or dotted decimal format (base 256)
as shown below. The binary format is a string made of four 8-bit sections. The
dotted-decimal format is a string made of four decimal values (0 to 255) that
are separated by dots. Note that both in binary and dotted decimal notation, all
elements (bits or decimal values) must be present, although some may be zero.
The following shows an example of an IPv4 address.

Decimal format: 71832456
Binary format : 00000100 01001000 00010011 10001000
Dotted Decimal format: 4.72.19.136

for23380_ch10_443-495.indd 495 02/11/18 5:16 pm

496

11.1 INHERITANCE
Inheritance in object-oriented programming derives a more specific concept from a more
general one. That is what we do in real life. For example, the concept of animal in biology
is more general than the concept of horse. We can give the definition of an animal; we can
then add to the definition to create the definition of a horse. There is an is-a relation from
the more specific to the more general. All horses are animals, but not all animals are horses.

In object-oriented programming, classes are not used in isolation. They are used in relation
to each other. A program normally uses several classes with different relationships between
them. Figure 11.1 shows the taxonomy of relations we discuss in this chapter.

Objectives

After you have read and studied this chapter, you should be able to:

•	Define inheritance relationships between classes, including public, protected, and private
inheritance.

•	Learn how to write class definitions and member function definitions for several classes in an
inheritance relationship.

•	Define association as a relationship between classes, and define its variations: aggregation
and composition.

•	Learn how to write class definitions and member function definitions for several classes in an
association.

•	Define the dependency relationship between classes to show that one class can use the objects
of another class.

•	Learn how to write class definitions and member function definitions for classes in a
dependency relationship.

11 Relationships among Classes

Class relationship

Inheritance
is-a

Dependency
uses-a

Association
is related to

Aggregation Composition

Figure 11.1	 Relationship	among	classes

for23380_ch11_496-552.indd 496 02/11/18 5:18 pm

11.1 Inheritance 497

11.1.1 General Idea
To show the relationship between classes in inheritance, we use the Unified Modeling Lan-
guage (UML). UML is a language that shows the relationship between classes and objects
graphically. We discuss UML in Appendix N in more detail, but we show some of the dia-
grams used in it in this chapter. The classes are shown as rectangular boxes in UML. The
inheritance relation is shown by a line ending in a hollow triangle that goes from the more
specific class to a more general class. Figure 11.2 shows three inheritance relationships.

In C++, the most general class is called the base class and a more specific class is
called the derived class. A more general class is also known as a superclass; a more specific
class is also known as a subclass.

From a UML diagram, we can derive the relationship between the set of objects in an
inheritance as in Figure 11.3, which shows that the set of horses is smaller than the set of
animals.

A specific concept must have the characteristics of the general concept, but it can have
more. In other words, a horse should first be an animal, then a horse. That is why C++ says
that a derived class extends its base class. The term extends here means the derived class
must have all of the data members and member functions defined in the base class, but it can
add to the list. In other words, the derived class inherits all of the data members and member
functions of the base class (with the exception of constructors, destructor, and assignment
operators that need to be redefined), and it can create new data members and member func-
tions. We will discuss later why constructors, the destructor, and assignment operators can-
not be inherited.

The derived class inherits all members (with some exceptions)
 from the base class, and it can add to them.

To create a derived class from a base class, we have three choices in C++: private in-
heritance, protected inheritance, and public inheritance. To show the type of the inheritance
we want to use, we insert a colon after the class, followed by one of the keywords (private,

Horse

Animal

Circle

Shape

Student

Person

Figure 11.2	 UML	diagram	for	inheritance

Horse

Animal animals

(a) Classes

base

derived

(b) Objects

horses

Figure 11.3	 Classes	and	objects	in	an	inheritance	
hierarchy

for23380_ch11_496-552.indd 497 02/11/18 5:18 pm

498 Chapter 11 Relationships	among	Classes

Private inheritance

class D : private B
{

};

Protected inheritance

class D : protected B
{

};

Public inheritance

class D : public B
{

};

Figure 11.4	 Inheritance	types

Person

−identity : long

Student

−gpa : double

Notes:
The type of data members
is shown after the member
name separated by a colon.
The minus signs define the
visibility of data members as
private.

Figure 11.5	 Two	classes	in	an	inheritance	relationship

protected, or public). Figure 11.4 shows these three types of inheritance in which B is the
base class and D is the derived class.

The default type of inheritance is private. In other words, if we do not specify the type
(public, protected, or private), the system assumes that we want private inheritance. Since
private inheritance, as we will see later, is seldom used, we need to explicitly define the type
of the inheritance. The most common is the public inheritance.

11.1.2 Public Inheritance
Although the default inheritance type is private inheritance, the most common, by far, is
public inheritance. The other two types of inheritance are rarely used. We briefly discuss
the other two types of inheritance later in the chapter, but in this section we concentrate
on public inheritance. Some other object-oriented languages, like Java, have only public
inheritance.

The most common use of inheritance is public inheritance.

EXAMPLE 11.1
In this example we design two classes, Person and Student, in which the class Student in-
herits from the class Person. We know that a student is a person. We assume that the Person
class uses only one data member: identity (such as social security number). We also assume
that the Student class needs two data members: identity and gpa. However, since the identity
data member is already defined in the class Person, it does not need to be defined in the class
Student because of inheritance. Figure 11.5 shows the extended UML class diagram with
two compartments to accommodate the data members.

Based on Figure 11.5, we can immediately see the advantage of inheritance. The Stu-
dent class uses the data member of the Person class and adds one data member of its own.

EXAMPLE 11.2
In this example we add member functions to the two classes. We ignore the constructors
and destructor at this point because they are not inherited; we assume the synthetic ones are

for23380_ch11_496-552.indd 498 02/11/18 5:18 pm

11.1 Inheritance 499

Notes:
The type of data members
and member functions is
shown after the member
name separated by a colon.
The minus signs define the
visibility of data members as
private; the plus signs define
the visibility of the member
fuctions as public.

Person

−identity : long

+setId (long identity) : void
+getId () : int

Student

−gpa : double

+setGPA (double gpa) : void
+getGPA () : double

Figure 11.6	 Classes	with	both	data	members	and	member	
functions

Program 11.1	 Public	inheritance	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The program shows how we can let the class Student inherit *
* from the class Person because a student is a person. *
***/

#include <iostream>
#include <cassert>
#include <string>
using namespace std;

/***
* The class definition for the Person class *
***/

class Person
{

private:
long identity;

public:
void setId (long identity);

(continued)

used. We add one getter and one setter function to each class. We use a more extended UML
diagram with another compartment defining the member functions, as shown in Figure 11.6.

Based on Figure 11.6, we can see another advantage. The object of the Student class
must set and get the identity value, but the identity is already defined in the Person class and
the Student class does not need to set or get it.

EXAMPLE 11.3
Program 11.1 shows the idea in a simple program. Later we show how to use inheritance to
obtain separate compilation.

for23380_ch11_496-552.indd 499 02/11/18 5:18 pm

500 Chapter 11 Relationships	among	Classes

Program 11.1	 Public	inheritance (Continued)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

long getId() const;
};
/***

* The definition of setId function in the Person class *
***/

void Person :: setId (long id)
{

identity = id;
assert (identity >= 100000000 && identity <= 999999999) ;

}

/***
* The definition of the getId function in the Person class *
***/

long Person :: getId () const
{

return identity;
}

/***
* The class definition for the Student class *
***/

class Student : public Person
{

private:
double gpa;

public:
void setGPA (double gpa);
double getGPA () const;

};

/***
* The definition of setGPA function in Student class *
***/

void Student :: setGPA (double gp)
{

gpa = gp;
assert (gpa >=0 && gpa <= 4.0);

}

/***
* The definition of getGPA function in Student class *
***/

(continued)

for23380_ch11_496-552.indd 500 02/11/18 5:18 pm

11.1 Inheritance 501

Program 11.1	 Public	inheritance (Continued)

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

double Student :: getGPA() const
{

return gpa;
}

/***
* The application function (main) that uses both classes *
***/

int main ()
{

// Instantiation and use of a Person object
Person person;
person.setId (111111111L);
cout << "Person Information: " << endl;
cout << "Person’s identity: " << person.getId ();
cout << endl << endl;
// Instantiation and use of a Student object
Student student;
student.setId (222222222L);
student.setGPA (3.9);
cout << "Student Information: " << endl;
cout << "Student’s identity: " << student.getId() << endl;
cout << "Student’s gpa: " << student.getGPA();
return 0;

}

Run:
Person Information:
Person’s Identity: 111111111

Student Information:
Student’s identity: 222222222
Student’s gpa: 3.9

There are three important points about this program:

a. There are two classes in this program. We instantiate an object of the Person class and
we also instantiate an object of the Student class.

b. Although we have not defined the data member identity for the Student class, an object
of this class inherits identity from the Person class.

c. We have used an identity instead of name to identity a person. We use identity because
a name is of type string, which is a class type, and if we use it we are actually adding
a composition relationship to the inheritance relationship, but we have not yet defined
the composition relationship.

for23380_ch11_496-552.indd 501 02/11/18 5:18 pm

502 Chapter 11 Relationships	among	Classes

Person

Student

identity

identity

Note:
The inherited private data members
become inaccessible in the derived
class. They need to be accessed
through the base class.

gpa

Legend:

Private
Inaccessible

Figure 11.7	 Private	data	members	in	public	inheritance

Person

Functions

Functions

Student

identity

identity
Note:
In public inheritance, the public
memeber functions are inherited
as public member functions in
the derived class. gpa

getId

getId

getGPA

setId

setId

setGPA

Legend:

Private
Inaccessible
Public

Figure 11.8	 Public	member	functions	in	public	inheritance

Private Data Members
Before delving further into the subject of inheritance, we discuss the contents of the base
class and derived class objects. As Figure 11.7 shows, the base class object has only one data
member, but the derived class object has two data members: one inherited and one created.

In public inheritance, a private data member in the base class is inherited in the derived
class, but it goes one step further in privacy; it becomes inaccessible (sometimes called hid-
den) in the derived class; it must be accessed only through its own class member functions,
as we discuss shortly.

A private member in the base class becomes an
inaccessible (hidden) member in the derived class.

Public Member Functions
Figure 11.8 adds public member functions to Figure 11.7. We can see that the base class has
only two member functions while the derived class has four member functions, two inherited
and two newly defined in the derived class.

A public member in the base class becomes a
public member in the derived class.

Accessing Private Data Members
The following list shows how we access private data members in each class:

 ∙ In the base class, we can access the private data members through the public member
functions defined in this class (setId and getId).

 ∙ In the derived class, we need two groups of public member functions:
a. To access the inherited private data members, which are hidden, we use the public

member functions defined in the base class (setId and getId).

for23380_ch11_496-552.indd 502 02/11/18 5:18 pm

11.1 Inheritance 503

Scopes

Scope of
derived class

Scope of
base class

Base

Derived

Figure 11.9	 The	scope	of	base	and	derived	classes

b. If we need to access a data member defined in the derived class, we use the member
functions defined in the derived class (setGPA and getGPA).

Functions with the Same Names in Different Classes
In the two previous classes, Person and Student, we have used two member functions for
setting data members (setId and setGPA) and two member functions for getting data mem-
bers (getId and getGPA). Can we use two functions with the same name, one in the base
class and the other in the derived class? In other words, can we have a function named set
in the base class and another function also named set in the derived class? Similarly, can
we have a function named get in the base class and another function also named get in the
derived class? The answer to both questions is positive, but we need to use two different
concepts: overloaded and overridden functions.

To use the same name for a function in the base and derived
classes, we need overloaded or overridden member functions.

Overloaded Member Functions As we discussed in Chapter 6, overloaded functions are
two functions with the same name but with two different signatures. Overloaded functions
can be used in the same or different classes without being confused with each other. We can
have two functions named set, one in the base class and the other in the derived class, with
the following prototypes:

// In Person class
void set (long identity);

// In Student class
void set (double gpa);

Since the signatures are different, we can the use the first in the Person class and the second
in the Student class.

Overridden Member Functions If the signature of the two functions with the same name
is the same, we have overridden member functions as shown below.

// In Person class
long get ();

// In Student class
double get ();

Class Scope
We can better understand the rules of inheritance if we know the scope to which the base and
the derived classes belong. We discussed scope in Chapter 6; classes in public inheritance
hierarchy also have scope. The base class has its own class scope and the derived class has
its own. However, the scope of the derived class is enclosed in the scope of the base class as
shown in Figure 11.9. Note that although we show only two inheritance levels here, there is
no limit to how many levels can be used.

for23380_ch11_496-552.indd 503 02/11/18 5:18 pm

504 Chapter 11 Relationships	among	Classes

In Figure 11.9, the scope of the two classes shows that every name defined in the base
class is also visible in the derived class, but the reverse is not true. This concept parallels
block scope within a function.

How can the system distinguish which function we are calling? We must remember
that we do not call member functions in a class just by name; we let the instance call the ap-
propriate function. In other words, if person and student are two objects of the Person and
Student classes, respectively, we use the following two statements:

// Using Person object
person.set (111111111L);
person.get ();

// Using Student object
student.set (3.7);
student.get ();

Scope tells us how a compiler invokes a function based on the following rules:

a. The compiler tries to find a matching function (using names and parameters) that be-
longs to the class of the object that has invoked the function.

b. If no matching function is found, the compiler looks at the functions inherited from
the superclass.

c. If no match is found, the search continues until the base class is reached.
d. If no match is found in any class, a compilation error is issued.

Delegation Of Duty
An overloaded or overridden member function in a derived class can delegate part of its
operation to a member function in a class in a higher level by calling the corresponding
member function. This is easily done with void member functions; it is more complicated
with value-returning functions because two values must be returned, which requires a struct
or a class object. We concentrate on the void member function in this case.

For example, the set member function in the Student class can be designed to set the
data members of the Person class, identity, and the data member of its own class, gpa.
However, as we said, the identity data member is hidden in the Student class and cannot be
accessed by the set function in the Student class, but the set function in the Student class
can call the set function of the Person class. In the same way, we can design a print func-
tion in the Person class that prints only the value of the identity data member. We can also
design a print function in the Student class to call the print function in the Person class to
do parts of its job. The following shows the definition of set function and print function
with delegation.

// Using Person object
void Person :: set (long id)
{

identity = id;
}

void Person :: print ()
{

cout << name;
}

// Using Student object
void Student :: set (long id, double gp)
{

Person :: set (id); // Delegation
gpa = gp;

}

void Student :: print ()
{

Person :: print (); // Delegation
cout << gpa;

}

for23380_ch11_496-552.indd 504 02/11/18 5:18 pm

11.1 Inheritance 505

Note that to call the set function or the print function in the base class, we must use the class
scope operator, Person :: set (...) or Person :: print ().

Members Not Inherited: Invocation
There are five member functions that are not inherited in the derived class: default construc-
tor, parameter constructor, copy constructor, destructor, and the assignment operator. We
postpone the discussion of the assignment operator until Chapter 11, but we discuss the other
four in this chapter.

The constructors and the destructor are not inherited because an object of a derived
class naturally has more data members than a corresponding base class. The constructor of
a derived class must construct more; the destructor of a derived class must destruct more.

Constructors, destructor, and assignment operators
are not inherited; they must be redefined.

However, we have a dilemma here. The constructor of the derived class cannot initialize the
data members of the base class because they are hidden in the derived class. Similarly, the
destructor of a derived class cannot delete the data members of the base class because they
are hidden in the derived class.

The constructor problem can be solved if the constructor of the derived class invokes
the constructor of the base class in its initialization and then initializes the data members
of the derived class. Similarly, the destructor problem can be solved if the destructor of the
derived class first deletes the data members of the derived class and then calls the destructor
of the base class, as shown in Figure 11.10.

Note that the orders of activities in a constructor and destructor are reverse of each
other. Since the destructor is called by the system, not the user, the activities are done in
the background unless the object uses pointers or files that may need the intervention of
the user.

EXAMPLE 11.4
Table 11.1 shows the default constructor, parameter constructor, copy constructor, and de-
structor for our Person and Student classes side by side. Note that the derived class section
uses the base class constructor (invocation). After calling the constructor of the base class,
the initializer can initialize the private member of the derived class.

 The term st in the call to the copy constructor refers to a Student object. You may
wonder how we can pass this object to the Person copy constructor, which needs a pa-
rameter of type Person object. The puzzle can be solved if we know that whenever we
use an object of the derived class where an object of the base class is needed, the object is
sliced and the data members belonging to the derived class are dropped. In other words,
the object in the Person (st) call is only that part of the Student class that is inherited from
the Person class.

Constructors for derived class Destructors for derived class

1

2 Initialize inherited members

Call base-class constructor 1

2

Delete inherited members

Call base-class destructor

Figure 11.10	 Constructors	and	destructor	in	inheritance

for23380_ch11_496-552.indd 505 02/11/18 5:18 pm

506 Chapter 11 Relationships	among	Classes

Base class Derived class

// Default Constructor
Person :: Person ()
: identity (0)
{
}
// Parameter Constructor
Person :: Person (long id)
: identity (id),
{
}
// Copy Constructor
Person :: Person (const Person& obj)
: identity (obj.identity)
{
}
// Destructor
Person :: ~Person ()
{
}

// Default Constructor
Student :: Student ()
: Person (0), gpa (0.0)
{
}
// Parameter Constructor
Student :: Student (long id, double gp)
: Person (id), gpa (gp)
{
}
// Copy Constructor
Student :: Student (const Student& st)
: Person (st) , gpa (std.gpa)
{
}
// Destructor
Student :: ~Student ()
{
}

Table 11.1 Definition of constructors and destructor

,

student

gpa

: identity (id)
initialize

person

identity
identity

: Person (id)
call constructor

gpa (gp)
initialize

Figure 11.11	 Constructing	an	object	of	type	Person	and	Student

Figure 11.11 shows how the base class and the derived class objects are con-
structed using the parameter constructor. In the case of the base class (Person), we must
initialize the only data member. In the derived class (Student), we can construct the
inherited part by calling the constructor of the base class and then initializing the new
data member. The constructor of the base class is a public member and can be accessed
in the derived class.

Delegation versus Invocation
Delegation and invocation are different concepts and are done differently. In delegation, a
derived member function delegates part of its duty to the base class using the class resolution
operator (::). In invocation, the constructor of a derived class calls the constructor of the base
class during initialization, which does not require the class resolution operator.

for23380_ch11_496-552.indd 506 02/11/18 5:18 pm

11.1 Inheritance 507

person.cpp

person.o

Compiler

person.h

executable file

student.h

student.cpp

student.o

Compiler

app.cpp

app.o

Compiler

Linker

separate compilation

Figure 11.12	 Separate	compilation

Program 11.2	 File	person.h	

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
* The interface file for the Person class *
***/

#ifndef PERSON_H
#define PERSON_H
#include <cassert>
#include <iostream>
#include <iomanip>
using namespace std;

class Person
{

(continued)

Separate Compilation
We discussed separate compilation before, but it is interesting to see how it works in the case
of inheritance, as shown in Figure 11.12.

The figure reveals several points. The Person class is compiled and sent to anyone who
wants to use only that class. The Person and the Student classes are compiled by two differ-
ent entities if the Student class has access to the interface file for the Person class because
the interface file for the Student class must include the interface file for the Person class.

An Example Using Separate Compilation
We now give the interface, implementation, and application files for our simple inheritance
example with constructors, destructor, and other functions. We have added more data fields,
but we have eliminated the set and get functions and used only the print function to print the
information for a person or a student.

The Interface and Implementation Files for the Person Class We first give the interface
and implementation files for the Person class. This class is independent and can be used in
conjunction with an application file. Program11.2 shows the interface file for the Person class.

for23380_ch11_496-552.indd 507 02/11/18 5:18 pm

508 Chapter 11 Relationships	among	Classes

Program 11.2	 File	person.h	 (Continued)

14
15
16
17
18
19
20
21
22
23

private:
long identity;

public:
Person ();
Person (long identity);
~Person();
Person (const Person& person);
void print () const;

};
#endif

Program 11.3	 File	person.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* The implementation file for the Person class *
***/

#include "person.h"

// Default constructor
Person :: Person ()
: identity (0)
{
}
// Parameter constructor
Person :: Person (long id)
: identity (id)
{

assert (identity >= 100000000 && identity <= 999999999);
}
// Copy constructor
Person :: Person (const Person& person)
: identity (person.identity)
{
}
// Destructor
Person:: ~Person()
{
}
// Accessor member function
void Person :: print () const
{

cout << "Identity: " << identity << endl;
}

Program 11.3 shows the implementation file for the Person class.

for23380_ch11_496-552.indd 508 02/11/18 5:18 pm

11.1 Inheritance 509

Program 11.4	 File	student.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file for the Student class *
***/

#ifndef STUDENT_H
#define STUDENT_H
#include "person.h"

class Student: public Person
{

private:
double gpa;

public:
Student ();
Student (long identity, double gpa);
~Student();
Student (const Student& student);
void print () const;

};
#endif

Program 11.5	 File	student.cpp	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* The implementation file for the Student class *
***/

#include "student.h"

// Default constructor
Student :: Student ()
: Person (), gpa (0.0)
{
}
// Parameter constructor
Student :: Student (long id, double gp)
: Person (id), gpa (gp)
{

assert (gpa >= 0.0 && gpa <= 4.0);
}
// Copy constructor
Student :: Student (const Student& student)

(continued)

The Interface and Implementation Files for the Student Class Now we show the inter-
face and implementation files for the Student class, which is inherited from the Person class.

Program 11.5 shows the implementation file for the Student class.

for23380_ch11_496-552.indd 509 02/11/18 5:18 pm

510 Chapter 11 Relationships	among	Classes

Program 11.5	 File	student.cpp (Continued)

19
20
21
22
23
24
25
26
27
28
29
30
31

: Person (student), gpa (student.gpa)
{
}
// Destructor
Student :: ~Student()
{
}
// Accessor member function
void Student ::print () const
{

Person :: print ();
cout << "GPA: " << fixed << setprecision (2) << gpa << endl;

}

Application File for Using the Classes Program 11.6 shows a simple example of the ap-
plication file. The client can create any application file and use the Person and Student classes.

Program 11.6	 File	app.cpp		 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The application to test the Person and Student classes *
***/

#include "student.h"

int main ()
{

// Instantiation and using a Person object
Person person (111111111);
cout << "Information about person: " << endl;
person.print ();
cout << endl;
// Instantiation and using a Student object
Student student (222222222, 3.9);
cout << "Information about student: " << endl;
student.print ();
cout << endl;
return 0;

}

Run:
Information about person:
Identity: 111111111

Information about student:
Identity: 222222222
GPA: 3.90

for23380_ch11_496-552.indd 510 02/11/18 5:18 pm

11.1 Inheritance 511

Using private data member in inheritance

Using protected data member in inheritance

Base class

Base class Derived class

Derived class
Note:
Parameter y is a
dummy one to be
used to set x.

private
x set (x) set (x)

private
x

protected
x set (x) x

protected

set (y)

set (x)

Figure 11.13	 Private	versus	protected	member

11.1.3 More about Public Inheritance
In this section we discuss additional issues about public inheritance.

Protected Members
So far we have only discussed the private and the public members in a class. C++ also
defines another specifier for a member, protected. A protected member acts like a pri-
vate member in the base class (or when there is no derivation). When we extend a class,
then the role of a protected member manifests itself. A protected member is accessible
in the derived class and all classes derived from the derived class. In other words, a
protected member is inherited like a private member, but it is not hidden in the derived
class. The functions defined in the derived class can easily access a protected member
without having to call a function inherited from the base class. Figure 11.13 shows the
difference.

Figure 11.13 shows two cases. In the first case, we have only one private data member
and one public member function. When we use derivation, the private member x is hidden.
Although the function set (x) is public and seen in the derived class, it cannot be called
directly because the parameter x cannot be seen. We need to create another function, with
another dummy variable y to access x, as shown below:

void Derived :: set (int y)
{

Base :: set (y); // Calling the inherited function
}

If we have defined the data member as protected, it is seen in the derived class and we can
use set (x) directly without having to create another function with a dummy variable. The
question is which approach we should take: using private data members or the protected data
members. We discuss the advantage and disadvantage of both approaches next.

Using Private Data Members Using private data members enforces the concept of en-
capsulation. As we discussed in previous chapters, encapsulation means hiding the data

for23380_ch11_496-552.indd 511 02/11/18 5:18 pm

512 Chapter 11 Relationships	among	Classes

members of a class. When we use private data members, data are hidden to entities outside
of the class and also to derived classes. On the other hand, using private data members means
creating more code in the derived class. Therefore, the advantage of private data members is
stronger encapsulation; its disadvantage is creating more code in the derived class. If we are
the designer of the base class and want to protect our data members from direct access, we
should use private data members.

Using Protected Data Members Using protected data members makes the coding of the
derived classes simpler. However, it breaks the idea of encapsulation. We will see that some-
times we must use protected data members because the coding becomes very complicated if
we use private data members.

Blocking Inheritance
Sometimes we may want to block inheritance—for example, when we have defined a class
(as a designer) and do not want users to inherit from this class and create derived classes.
The C++ standard allows us to do so using the final modifier, as shown below.

class First final
{

…
}

We can also use the final modifier to stop the inheritance anywhere in the hierarchy.
For example, we may have a derived class from a base class, but we do not want the hierar-
chy to continue, as shown below.

class First
{

…
}
class Second final : public First
{

…
}

The Second class is inherited from the First class, but inheritance is blocked here. We do
not want someone try to create another subclass from the Second class. The final modifier
blocks further inheritance.

Liskov Substitution Principle (LSP)
A design principle that is sometimes ignored is the Liskov substitution principle
(LSP), developed by Barbara Liskov. This principle says that an object of a superclass
must always be substitutable by an object of a subclass without altering any of the prop-
erties of the superclass. We may think of an object as a special kind of another object
in real life, but in object-oriented programming, we must check LSP before writing
the code.

for23380_ch11_496-552.indd 512 02/11/18 5:18 pm

11.1 Inheritance 513

length

width

side

length

width

side

ClassesClasses Objects Objects

Rectangle Square

RectangleSquare

Figure 11.14	 Liskov	substitution	principle

Person

Student Employee

Figure 11.15	 Inheritance	tree

EXAMPLE 11.5
To better understand the Liskov substitution principle, we consider two objects: square
and rectangle. In real life, we may say that a square is a special kind of a rectangle in
which the length and the width are the same. We may also say that a rectangle is a square
in which the length and sides are not of the same size. Neither of these two definitions
complies with the is-a relationship in object-oriented programming. To understand the
reason, we examine both approaches as shown in Figure 11.14.

In Figure 11.14, in the case on the left, we may think that the Square class can be de-
rived from the Rectangle class because a square is a special kind of a rectangle. However,
we see that an object of type Square has only one data member instead of two. An object of
type Square cannot encapsulate an object of type Rectangle so it is not substitutable.

Also in Figure 11.14, in the case on the right, an object of the Rectangle class has more
data members than an object of the Square class, but none of them can be copied from the
Square class. In other words an object of Rectangle class has no relationship with an object
of Square class and cannot be substituted for it.

This does not mean that we cannot have a Square class and a Rectangle class in an
inheritance hierarchy. It means that they cannot inherit from each other; they can be at the
same level and inherit from a common base class.

Inheritance Tree
In C++, we can have an inheritance tree. For example, we can have two classes that inherit
from the Person class: Student and Employee. It is clear that a student is a person and an
employee is also a person. Figure 11.15 shows this inheritance tree. Later in this chapter we
define other classes, such as Undergraduate class and Graduate students class, that inherit
from the Student class. We also define Staff and Professor classes that inherit from the Em-
ployee class.

Example 11.6
In this example we create interface files, implementation files, and application files for the
classes shown in Figure 11.15. See Programs 11.7 through 11.13.

for23380_ch11_496-552.indd 513 02/11/18 5:18 pm

514 Chapter 11 Relationships	among	Classes

Program 11.7	 File	person.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The interface file to define the Person class *
***/

#ifndef PERSON_H
#define PERSON_H
#include <iostream>
#include <string>
using namespace std;

// Definition of Person class
class Person
{

private:
string name;

public:
Person (string nme);
~Person();
void print () const;

};
#endif

Program 11.8	 File	person.cpp	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The implementation file for the Person class *
***/

#include "person.h"

// Constructor for Person class
Person :: Person (string nm)
:name (nm)
{
}
// Destructor for Person class
Person :: ~Person()
{
}
// Definition of print member function
void Person :: print () const
{

cout << "Name: " << name << endl;
}

for23380_ch11_496-552.indd 514 02/11/18 5:18 pm

11.1 Inheritance 515

Program 11.9	 File	student.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file to define the Student class *
***/

#ifndef STUDENT_H
#define STUDENT_H
#include "person.h"

// Definition of the Student class
class Student : public Person
{

private:
string name;
double gpa;

public:
Student (string name, double gpa);
~Student ();
void print () const;

};
#endif

Program 11.10	 File	student.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The interface file to define the Employee class *
***/

#include "student.h"

// Constructor for Student class
Student :: Student (string nm, double gp)
:Person (nm), gpa (gp)
{
}
// Destructor for Student class
Student :: ~Student ()
{
}
// Definition of the print member function
void Student :: print () const
{

Person :: print();
cout << "GPA: " << gpa << endl;

}

for23380_ch11_496-552.indd 515 02/11/18 5:18 pm

516 Chapter 11 Relationships	among	Classes

Program 11.11	 File	employee.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file to define the Student class *
***/

#ifndef EMPLOYEE_H
#define EMPLOYEE_H
#include "person.h"

// Definition of the Employee class
class Employee : public Person
{

private:
string name;
double salary;

public:
Employee (string name, double salary);
~Employee ();
void print () const;

};
#endif

Program 11.12	 File	employee.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The implementation file for the Employee class *
***/

#include "employee.h"

// Constructor for Employee class
Employee :: Employee (string nm, double sa)
:Person (nm), salary (sa)
{
}
// Destructor for Employee class
Employee :: ~Employee()
{
}
// Definition of print member function
void Employee :: print () const
{

Person :: print();
cout << "Salary: " << salary << endl;

}

for23380_ch11_496-552.indd 516 02/11/18 5:18 pm

11.1 Inheritance 517

Program 11.13	 File	application.cpp	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* The application file to use classes *
***/

#include "student.h"
#include "employee.h"

 int main ()
 {

// Instantiation and using an object of the Person class
cout << "Person: " << endl;
Person person ("John");
person.print ();
cout << endl << endl;
// Instantiation and using an object of the Student class
cout << "Student: " << endl;
Student student ("Mary", 3.9);
student.print ();
cout << endl << endl;
// Instantiation and using an object of the Employee class
cout << "Employee: " << endl;
Employee employee ("Juan", 78000.00);
employee.print ();
cout << endl << endl;
return 0;

}

Run:
Person:
Name: John

Student:
Name: Mary
GPA: 3.9

Employee:
Name: Juan
Salary: 78000

11.1.4 Three Types of Inheritance
Although public inheritance is by far the most common type of derivation, C++ allows us to use
two other types of derivation: private and protected. Before we discuss the application of these
two derivations, we show the status of elements in each derivation using Figure 11.16. The term
hidden in the table means that the member is not accessible to the public member functions of
the derived class. It must be accessed by the public member function of the base class.

for23380_ch11_496-552.indd 517 02/11/18 5:18 pm

518 Chapter 11 Relationships	among	Classes

Base class member

Base class member

Base class member

Derived class member

Derived class member

Derived class member

Public
inheritance

Protected
inheritance

Private
inheritance

public

protected

private

public

protected

private

public

protected

private

public

protected

protected

Hidden

Hidden

Hidden

Figure 11.16	 Inheritance	types

Public Inheritance
Public inheritance is what we use most of the time. This type of derivation defines an is-a
relationship between the base class object and the derived class object because the public
interface of the base class becomes a public interface of the derived class. In other words,
an object of a derived class is an object of the base class. Note that the private members of
the base class remain private in the derived class, and they cannot be accessed through the
public functions of the derived class; they must be accessed through the member functions
of the base class.

Protected Inheritance
Protected inheritance is rare and virtually never used.

Private Inheritance
Private inheritance is much less common than public inheritance, but it has some appli-
cations. In Figure 11.16, we see that the public members of the base class become private
members in the derived class. This property allows inherited implementation (code reuse).
Assume that we have written the code for a class. Now we want to write the code for another
class, but there is no is-a relationship between the two. However, we notice that some of the
public members of the first class can help us code some of the public members of the new
class. We inherit the second class privately from the first class to use some of its functions.
The following is example. We do not need to specify that the inheritance is private because
private inheritance is by default.

void First :: functionFirst ()
{

… ;
}

for23380_ch11_496-552.indd 518 02/11/18 5:18 pm

11.2 Association 519

lives at

occupied by

1 1

1*
Class Class

Person Address

Figure 11.17	 An	association	relationship

Key Interpretation

n

*
0	. . .	1
n	. . .	m
n,	m

Exactly	n	objects
Any	number	of	objects	including	none
Zero	or	one	object
A	range	from	n	to	m	objects
n	or	m	objects

Table 11.2 Multiplicity in association diagrams

void Second :: functionSecond()
{

First : FunctionFirst() // Use FunctionFirst to do some of the job
… ; // Add more code to the rest of the job

}

We will see examples of private inheritance when we discuss data structures in future
chapters. For example, a stack is not a linked-list, but it can inherit code from a linked list.

Private inheritance does not define a type inheritance;
it defines an implementation inheritance.

11.2 ASSOCIATION
Not all relationships between classes can be defined as inheritance. We encounter classes
in object-oriented programming that have other types of relationships with each other. The
second type of relationship we discuss here is association. More programs are being devel-
oped today that use association rather than inheritance. An association between two classes
shows a relationship. For example, we can define a class named Person and another class
named Address. An object of the type Person may be related to an object of type Address: A
person lives in an address and the address is occupied by a person. The Address class is not
inherited from the Person class; neither the other way. In other words, a person is not an ad-
dress; an address is not a person. We cannot define either class as a subclass of the other one.
A relationship of this type is shown in UML diagrams as a solid line between two classes,
as shown in Figure 11.17.

An association diagram also shows the type of relationship between the classes. This
is shown by an arrow and text in the direction of the corresponding class. Another piece of
information represented in an association diagram is multiplicity. Multiplicity defines the
number of objects that take part in the association. Multiplicity is shown at the end of the
line next to the class. Figure 11.17 shows that one person can have only one address, but
one address can belong to any number of occupants (all people who live in that address).
Table 11.2 shows different types of multiplicity.

for23380_ch11_496-552.indd 519 02/11/18 5:18 pm

520 Chapter 11 Relationships	among	Classes

takes

taken by0 40

1
1

Class Class

Student Course0 5

Figure 11.18	 Association	between	courses	and	students

DatePerson
A person has a birth date

Figure 11.19	 Example	of	aggregation	relationship

As another example, assume we need to define the association relationship between
students and courses they take. We can define two classes: Course and Student. If we assume
that at each semester a student can take up to five courses, and a course can be taken by up
to forty students, we can depict these relationships in an association diagram, as shown in
Figure 11.18.

The association relationship in Figure 11.18 defines a many-to-many relationship. An
association representing a many-to-many relationship cannot be implemented directly be-
cause it creates an infinite number of objects in the program (circular relationship). Usually
this type of association is implemented in a such a way that this circular infinity is avoided.
For example, a Student object can have a list of five course names (not a complete Course
object), and a Course object can have a list of forty student names (not a complete Student
object). Later in this chapter we present a program that shows this type of relationship.

11.2.1 Aggregation
Aggregation is a special kind of association in which the relationship involves ownership.
In other words, it models the “has-a” relationship. One class is called an aggregator and the
other an aggregatee. An object of the aggregator class contains one or more objects of the ag-
gregatee class. Figure 11.19 shows the UML diagram for aggregation. Note that the symbol
for aggregation is a hollow diamond placed at the site of the aggregator.

The aggregation relationship is one-way; it cannot be two way because that would
create an infinite number of objects. As Figure 11.19 shows, a Person can have a birth date
(an object of the class Date), but a Date object can be related to multiple events, not only the
birth date of a person.

An aggregation is a one-to-may relationship from the
aggregator to the aggregatee.

We must remember that in this type of relationship, the life of an aggregatee is independent
of the life of its aggregator. An aggregatee may be instantiated before the instantiation of the
aggregator and may live after it.

In an aggregation, the lifetime of the aggregatee is
independent of the lifetime of the aggregator.

Example 11.7
In this example we create a Person class and a Date class. The Date class is independent
and can be used to represent any event. The Person class uses an object of the Date class to
define the birthday of a person.

for23380_ch11_496-552.indd 520 02/11/18 5:18 pm

11.2 Association 521

Program 11.14	 The	file	date.h		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* The interface file for date.h class *
***/

#ifndef DATE_H
#define DATE_H
#include <iostream>
#include <cassert>
using namespace std;

class Date
{

private:
int month;
int day;
int year;

public:
Date (int month, int day, int year);
~Date ();
void print() const;

};
#endif

Program 11.15	 File	date.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The implementation of functions in the Date class *
***/

#include "date.h"

// Parameter constructor
Date :: Date (int m, int d, int y)
: month (m), day (d), year (y)
{

if ((month < 1) || (month > 12))
{

cout << "Month is out of range. ";
assert (false);

}
int daysInMonths [13] = {0, 31, 28, 31, 30, 31, 30, 31,
 31, 30, 31, 30 ,31};

(continued)

The Date Class Program 11.14 show the interface file for the Date class.
Program 11.15 shows the implementation of the Date class.

for23380_ch11_496-552.indd 521 02/11/18 5:18 pm

522 Chapter 11 Relationships	among	Classes

Program 11.15	 File	date.cpp (Continued)

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

if ((day < 1) || (day > daysInMonths [month]))
{

cout << "Day out of range! ";
assert (false);

}
if ((year < 1900) || (year > 2099))
{

cout << "Year out of range! " ;
assert (false);

}
}
 // Destructor
Date :: ~Date ()
{
}
// Print member function
void Date :: print() const
{

cout << month << "/" << day << "/" << year << endl;
}

Program 11.16	 File	person.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file for the Person class *
***/

#ifndef PERSON_H
#define PERSON_H
#include "date.h"

// Definition of the Person class
class Person
{

private:
long identity;
Date birthDate;

public:
Person (long identity, Date birthDate);
~Person ();
void print () const;

};
#endif

The Person Class Program 11.16 shows the interface file for the Person class.

for23380_ch11_496-552.indd 522 02/11/18 5:18 pm

11.2 Association 523

Program 11.17	 File	person.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The implementation file for Person concrete class *
***/

#include "person.h"

// Constructor
Person :: Person (long id, Date bd)
: identity (id), birthDate (bd)
{

assert (identity > 111111111 && identity < 999999999);
}
// Destructor
Person :: ~Person ()
{
}
// Print function
void Person :: print () const
{

cout << "Person Identity: " << identity << endl;
cout << "Person date of birth: ";
birthDate.print ();
cout << endl << endl;

}

Program 11.18	 File	app.cpp	

1
2
3
4
5
6
7
8
9

10
11
12

/***
* The application file to test the Person class *
***/

#include "person.h"

int main ()
{

// Instantiation
Date date1 (5, 6, 1980);
Person person1 (111111456, date1);
Date date2 (4, 23, 1978);
Person person2 (345332446, date2);

(continued)

Program 11.17 shows the implementation file for the Person class that aggregates the
Date class.

The Application Class Program 11.18 shows the implementation of the application class
that uses the Person class.

for23380_ch11_496-552.indd 523 02/11/18 5:18 pm

524 Chapter 11 Relationships	among	Classes

Program 11.18	 File	app.cpp (Continued)

13
14
15
16
17

// Output
person1.print ();
person2.print ();
return 0;

}

Run:
Person Identity: 111111456
Person date of birth: 5/6/1980

Person Identity: 345332446
Person date of birth: 4/23/1978

1
NameEmployee

Figure 11.20	 Example	of	the	
composition	relationship

11.2.2 Composition
Composition is a special kind of aggregation in which the lifetime of the containee depends
on the lifetime of the container. For example, the relationship between a person and her
name is an example of composition. The name cannot exist without being the name of a
person. Figure 11.20 shows the relationship between an employee and her name. The name
itself is composed of three string objects. Note that the symbol for composition is a solid
diamond placed at the side of the composer. In the case of the relationship between the Em-
ployee and the Name, the composer is the Employee. In the case of the relationship between
Name and string, the Name is the composer.

The distinction between aggregation and composition is normally conceptual; it de-
pends on how the designer thinks about the relationship. For example, a designer may
think that a name must always belong to a person and cannot have a life of its own.
Another designer may think that a name continues to exist even if the person dies. The
distinction also depends on the environment in which we are designing our classes. For
example, in a car factory, the relationship between a car and its engine is composition; we
cannot use the engine without installing it in a car. In an engine factory, each engine has
its own life cycle.

Like the aggregation relationship, the composition relationship is implemented as
classes in which the container class has a data member (or list of data members) of the con-
tainee type. However, containee objects are created inside the container objects; they do not
have independent lives.

Example 11.8
We create an employee class in which an employee object has two data members: salary
and name. The name itself is an object of a class with three fields: first name, initial, and
last name.

Name Class Program 11.19 shows the interface file for Name class.

for23380_ch11_496-552.indd 524 02/11/18 5:18 pm

11.2 Association 525

Program 11.20 shows the implementation file for the Name class.

Program 11.19	 File	name.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The interface file for the Name class *
***/

#ifndef NAME_H
#define NAME_H
#include <string>
#include <iostream>
#include <cassert>
using namespace std;

class Name
{

private:
string first;
string init;
string last;

public:
Name (string first, string init, string last);
~Name ();
void print () const;

};
#endif

Program 11.20	 File	name.cpp		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The implementation file for Name class *
***/

#include "name.h"

// Constructor
Name :: Name (string fst, string i, string lst)
:first (fst), init (i), last (lst)
{

assert (init.size () == 1);
toupper (first[0]);
toupper (init [0]);
toupper (last[0]);

}
 // Destructor
Name :: ~Name ()

(continued)

for23380_ch11_496-552.indd 525 02/11/18 5:18 pm

526 Chapter 11 Relationships	among	Classes

Program 11.20	 File	name.cpp (Continued)

17
18
19
20
21
22
23
24

{
}
// Print member function
void Name :: print () const
{

cout << "Emplyee name: " << first << " " << init << ". ";
cout << last << endl;

}

Program 11.21	 File	employee.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file for the employee class *
***/

#ifndef EMPLOYEE_H
#define EMPLOYEE_H
#include "name.h"

class Employee
{

private:
Name name;
double salary;

public:
Employee (string first, string init, string last,
 double salary);
~Employee ();
void print () const;

};
#endif

Program 11.22	 File	employee.cpp	 	

1
2
3
4
5
6
7
8
9

/***
* The implementation file for Employee class *
***/

#include "employee.h"

// Constructor
Employee :: Employee (string fst, string i, string lst,
 double sal)

Employee Class Program 11.21 shows the interface file for the Employee class
Program 11.22 shows the implementation file for the Employee class.

(continued)

for23380_ch11_496-552.indd 526 02/11/18 5:18 pm

11.2 Association 527

Program 11.22	 File	employee.cpp	(Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23

: name (fst, i, lst), salary (sal)
{

assert (salary > 0.0 and salary < 100000.0);
}
// Destructor
Employee :: ~Employee ()
{
}
// Print member function
void Employee :: print () const
{

name.print();
cout << "Salary: " << salary << endl << endl;

}

Program 11.23	 The	file	appl.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
 * The application file to test the Employee class *
***/

#include "employee.h"

int main ()
{

// Instantiation
Employee employee1 ("Mary", "B", "White", 22120.00);
Employee employee2 ("William", "S", "Black", 46700.00);
Employee employee3 ("Ryan", "A", "Brown", 12500.00);
// Output
employee1.print ();
employee2.print ();
employee3.print ();
return 0;

}

Run:
Emplyee name: Mary B. White
Salary: 22120

Emplyee name: William S. Black
Salary: 46700

Emplyee name: Ryan A. Brown
Salary: 12500

Application Program 11.23 shows the application file for testing the Employee class.

for23380_ch11_496-552.indd 527 02/11/18 5:18 pm

528 Chapter 11 Relationships	among	Classes

11.3 DEPENDENCY
The third type of relationship that we can define between two classes is dependency. De-
pendency is a weaker relationship than inheritance or association. Although there are several
definitions for dependency, we use the one that is most prevalent. We say that dependency
models the “uses” relationship. Class A depends on class B if class A somehow uses class
B. It other words, class A depends on class B if A cannot perform its complete task without
knowing that class B exists. This happens when

 ∙ Class A uses an object of type B as a parameter in a member function.
 ∙ Class A has a member function that returns an object of type B.
 ∙ Class A has a member function that has a local variable of type B.

11.3.1 UML Diagrams
We use both UML class diagrams and UML sequence diagrams to show dependencies (see
Appendix Q).

UML Class Diagram
Although there are many variations of the UML class diagram for dependency, we use the
one that shows the dependency with a dashed line and arrow from the depending class to the
depended class. Figure 11.21 shows an example of a dependency relationship in which class
A depends on class B.

UML Sequence Diagram
A sequence diagram shows the interaction between objects. The main function and each
object have lifelines that show the passing of time. The objects can be instantiated and their
member function can be called.

As a simple example, we have two classes, First and Second. Class First has a member
function called fun() that the user cannot call directly in the application (for some reason
such as security). We want to use another function in the Second class called funny() to call
the function fun() in the First class. However, we must pass an instance of the First class
inside funny() so the First class can use it when it calls its fun() class (Figure 11.22).

In Figure 11.22 the main function instantiates an object of the class First and an object of
the class Second. The main function calls the funny(. . .) member function of the class Second
and passes an object of the class First as a parameter. An object of the class Second can then
call the fun() function of the class First using the name of the object that received from main.
Note that the relationship between objects First and Second is dependency. Object Second uses
class First in its member function funny(. . .), and object Second calls the member function of
object First.

11.3.2 A Comprehensive Example
We use a comprehensive example to demonstrate the basics of dependency relationships.
Assume we want to create an invoice for the list of products sold. We have a class named
Invoice and a class named Product. The class Invoice uses instances of the class Product as a
parameter in one of its member functions (add). Figure 11.23 shows the UML class diagram.

Dependency

class A uses class B
Class A Class B

Figure 11.21	 UML	class	diagram	for	dependency

for23380_ch11_496-552.indd 528 02/11/18 5:18 pm

11.3 Dependency 529

We show the sequence diagram for two products in Figure 11.24. Note that the main
function must instantiate two objects of type Product and one object of type Invoice. The
main function then calls the add function in the Invoice class to add the products to the in-
voice, but it must get the price of each product from the corresponding object.

funny (first)

fun ()

result

instantiate

instantiate
user

lifeline

object instantiation
function call

Legend:

object of a class

returning result

User
(main)

function execution

first

name

second

Figure 11.22	 Sequence	diagram	for	the	First	and	Second	classes

uses has
Invoice Product

Library class

string

Figure 11.23	 UML	class	diagram	for	Invoice	and	Product	classes

add (...)

add (...)

print (...)

getPrice ()

getPrice ()

instantiate

instantiate

instantiate

User
(main)

product1

product2

invoice

user

lifeline

instantiation
function call

Legend:

object

returning result

function

name

Figure 11.24	 Sequence	diagram	for	the	Invoice	program

for23380_ch11_496-552.indd 529 02/11/18 5:18 pm

530 Chapter 11 Relationships	among	Classes

Product Class Program 11.24 is the interface for the Product class.
Program 11.25 is the implementation file for the Product class.

Program 11.24	 File	product.h		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The interface file for the Product class *
***/

#ifndef PRODUCT_H
#define PRODUCT_H
#include <string>
#include <iostream>
using namespace std;

class Product
{

private:
string name;
double unitPrice;

public:
Product (string name, double unitPrice);
~Product ();
double getPrice () const;

};
#endif

Program 11.25	 File	product.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The implementation file for Product class *
***/

#include "product.h"

// Constructor
Product :: Product (string nm, double up)
: name (nm), unitPrice (up)
{
}
// Destructor
Product :: ~Product ()
{
}
// The getPrice member function
double Product :: getPrice () const
{

return unitPrice;
}

for23380_ch11_496-552.indd 530 02/11/18 5:18 pm

11.3 Dependency 531

Invoice Class Program 11.26 is the interface file for the Invoice class.
Program 11.27 shows the implementation file for the Invoice class.

Program 11.26	 File	Invoice.h		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file for the Invoice class *
***/

#ifndef INVOICE_H
#define INVOICE_H
#include "product.h"

class Invoice
{

private:
int invoiceNumber;
double invoiceTotal;

public:
Invoice (int invoiceNumber);
~Invoice ();
void add (int quantity, Product product);
void print () const;

};
#endif

Program 11.27	 File	invoice.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The implementation file for Invoice class *
***/

#include "invoice.h"

// Constructor
Invoice :: Invoice (int invNum)
: invoiceNumber (invNum), invoiceTotal (0.0)
{
}
// Destructor
Invoice :: ~Invoice ()
{
}
// Add member function
void Invoice :: add (int quantity, Product product)
{

invoiceTotal += quantity * product.getPrice ();
}

(continued)

for23380_ch11_496-552.indd 531 02/11/18 5:18 pm

532 Chapter 11 Relationships	among	Classes

Program 11.27	 File	invoice.cpp (Continued)

20
21
22
23
24
25

// Print member function
void Invoice :: print () const
{

cout << "Invoice Number: " << invoiceNumber << endl;
cout << "Invoice Total: " << invoiceTotal << endl;

}

Program 11.28	 File	application.cpp		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The application file to test the Invoice class *
***/

#include "invoice.h"

int main ()
{

// Instantiation of two products
Product product1 ("Table", 150.00);
Product product2 ("Chair", 80.00);
// Creation of invoice for the two products
Invoice invoice (1001);
invoice.add (1, product1);
invoice.add (6, product2);
invoice.print ();
return 0;

}

Run:
Invoice Number: 1001
Invoice Total: 630

Application Program 11.28 is the application file for testing the Invoice class.

11.4 PROGRAM DESIGN
In this section we discuss two projects. The first shows how to create a Tokenizer class; the
second shows how to simulate the registration process at a university.

11.4.1 A Tokenizer Class
A common problem is to tokenize a string of characters using a list of delimiters. For exam-
ple, we may need to extract words from a text. The words in a text are separated by spaces and
new-line characters. The words in this case are called tokens, and the characters that separate
the words are delimiters. For example, the following string has seven tokens (words) in it.

"This is a book about C++ language"

for23380_ch11_496-552.indd 532 02/11/18 5:18 pm

11.4 Program	Design 533

The C++ language has no class whose objects can tokenize a string, but we can create
a class to do so. The string library class has member functions that search a string to find a
character in a string or to find a character which is not in a string. We can use these functions
in the string library to create a Tokenizer class.

Relationship Among Classes
Before writing the code for the Tokenizer class, we show the UML class diagram that depicts
the relationship between classes. We use only two classes in this task: Tokenizer class and
string class. Figure 11.25 shows the relationship between these two classes.

In Figure 11.25 the Tokenizer class uses the string class three times. It uses it to create
the target string (the text to be tokenized), to create the delimiter string, and finally to cre-
ate tokens. We have one string as a target and one string as a delimiter, but we create many
strings as tokens. The relationship between the tokenizer object and the target or delimiter
object is composition. The relationship between the tokenizer object and tokens is depen-
dency (the tokens are returned objects from functions in the Tokenizer class).

Sequence Diagram
Figure 11.26 shows the interaction between objects in a sequence diagram.

Tokenizer string1

targetstring

token

 parameter
object

return
object

string

delimiter

Figure 11.25	 Relationship	between	classes	

find_first_not_of ()

find_first_of ()

nextToken ()

return token

m
or

eT
ok

en
 ()

user

lifeline

function

instantiate

invoke

return

looping

Legend:

User
(main)

target

tokenizer

loop

Figure 11.26	 Sequence	diagram	for	the	Tokenizer	design

for23380_ch11_496-552.indd 533 02/11/18 5:18 pm

534 Chapter 11 Relationships	among	Classes

After the target and tokenizer objects have been instantiated, the program uses a loop to ex-
tract tokens from the target object. The user calls the nextToken() function in the tokenizer
object, which in turn calls find_first_not_of() and find_first_of() member functions in the
target object. The tokenizer object then returns an instance of the token object to the user.
Note that we do not use the token objects in the sequence diagram because they are used only
as a returning object (dependency).

Programs
Since the string class is a library class with predefined public interfaces, we must create only
one class, Tokenizer. Its interface file is shown in Program 11.29. The class has only two
data members, target and delim, which are of type string. However, the class returns a token
of type string (line 21). The class has only two member functions (besides the constructor
and destructor): the first checks to see if there are any tokens in the target string; the second
returns the next token in the target string.

We also have one implementation file that implements the Tokenizer class. There are
four functions in this file: constructor, destructor, the function that checks if there are more
tokens, and the function that returns the next token (Program 11.30).

We can create an application file to create and use objects of the Tokenizer class.
Program 11.31 is an example.

Program 11.29	 File	tokenizer.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The interface file for the Tokenizer class *
***/

#ifndef TOKENIZER_H
#define TOKENIZER_H
#include <iostream>
#include <string>
using namespace std;

class Tokenizer
{

private:
string target;
string delim;
int begin;
int end;

public:
Tokenizer (const string& target, const string& delim);
~Tokenizer ();
bool moreToken() const;
string nextToken();

};
#endif

for23380_ch11_496-552.indd 534 02/11/18 5:18 pm

11.4 Program	Design 535

Program 11.30	 File	tokenizer.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* The implementation file for the Tokenizer class *
***/

#include "tokenizer.h"

// Constructor
Tokenizer :: Tokenizer (const string& tar, const string& del)
: target (tar), delim (del)
{

begin = target.find_first_not_of (delim, 0);
end = target.find_first_of (delim, begin);

}
// Destructor
Tokenizer :: ~Tokenizer()
{
}
// Checks for more tokens
bool Tokenizer :: moreToken () const
{

return (begin != − 1);
}
// Returns the next token
string Tokenizer :: nextToken ()
{

string token = target.substr (begin, end − begin);
begin = target.find_first_not_of (delim, end);
end = target.find_first_of(delim, begin);
return token;

}

Program 11.31	 File	app.cpp	

1
2
3
4
5
6
7
8
9

10
11

/***
* The application file to test the Tokenizer class *
***/

#include "tokenizer.h"

int main ()
{

// The target string that needs to be tokenized
string target ("This is the string to be tokenized. \n");
// The delimit string defines the set of separators
string delimit (" \n"); // Delimiter made of ' ' and '\n'

(continued)

for23380_ch11_496-552.indd 535 02/11/18 5:18 pm

536 Chapter 11 Relationships	among	Classes

Program 11.31	 File	app.cpp (Continued)

12
13
14
15
16
17
18
19
20

// Instantiation of tokenizer object
Tokenizer tokenizer (target, delimit);
// Traversing the target string to find tokens
while (tokenizer.moreToken ())
{

cout << tokenizer.nextToken () << endl;
}
return 0;

}

Run:
This
is
the
string
to
be
tokenize.

11.4.2 Registration
In this section we use association and dependency between classes to design a simple regis-
tration system for a small department in a college or university.

UML Class Diagram
We use six classes as shown in Figure 11.27.

Each student object composes a string object (as student name) and composes a schedule
object, which in turn composes an array of student names (strings). Each course object com-
poses a string object (as course name) and composes a roster object, which in turn composes
an array of course names (strings). The registrar class just uses the student and course objects.

UML Sequence Diagram
Before writing the code for the five user-defined classes involved, we show the sequence
diagram and the interaction between the classes (Figure 11.28). Note that the roster object

1

1

1

*

*
1

uses

uses

name

name

names

names

course

schedule string

string

stringroster

student

registrar

string

Figure 11.27	 Relationship	among	classes	in	registration	project

for23380_ch11_496-552.indd 536 02/11/18 5:18 pm

11.4 Program	Design 537

is created by the course object, and the schedule object is created by the student object. The
registrar, course, and student objects are created by main. We show the case for one single
student and one single course to make the diagram simpler.

Programs
Program 11.32 is the interface file. Program 11.33 is the implementation file.

enroll ()

getRoster ()

getSchedule ()

addCourse ()

print ()

print ()

print ()

print ()

addStudent ()

Legend:
User

(main)
instantiate

function call

function return

object

registrar

name

student

schedule

course

roster

Figure 11.28	 Sequence	diagram	for	the	registrar	project

Program 11.32	 File	courseRoster.h

1
2
3
4
5

/***
* The interface file for the class CourseRoster *
***/

#ifndef COURSEROSTER_H
#define COURSEROSTER_H

(continued)

for23380_ch11_496-552.indd 537 02/11/18 5:18 pm

538 Chapter 11 Relationships	among	Classes

Program 11.32	 File	courseRoster.h (Continued)

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#include <string>
#include <iostream>
#include <cassert>
using namespace std;

// Class Definition
class CourseRoster
{

private:
int size;
string* stdNames;

public:
CourseRoster ();
~CourseRoster();
void addStudent (string studentName);
void print () const;

};
#endif

Program 11.33	 File	courseRoster.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* The implementation file for class CourseRoster *
***/

#include "courseRoster.h"

// Constructor
CourseRoster :: CourseRoster ()
:size (0)
{

stdNames = new string [20];
}
// Destructor
CourseRoster :: ~CourseRoster ()
{

delete [] stdNames;
}
 // Definition of addStudent function
void CourseRoster :: addStudent (string studentName)
{

stdNames [size] = studentName;
size++;

(continued)

for23380_ch11_496-552.indd 538 02/11/18 5:18 pm

11.4 Program	Design 539

Program 11.33	 File	courseRoster.cpp (Continued)

22
23
24
25
26
27
28
29
30
31
32

}
// Definition of print function
void CourseRoster :: print () const
{

cout << "List of Students" << endl;
for (int i = 0; i < size; i++)
{

cout << stdNames[i] << endl;
}
cout << endl;

}

Class Course
Program 11.34 is the interface file. Program 11.35 is the implementation file.

Program 11.34	 File	course.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* The interface file for the class Course *
***/

#ifndef COURSE_H
#define COURSE_H
#include <cassert>
#include <string>
#include <iostream>
#include "courseRoster.h"
using namespace std;

// Class Definition
class Course
{

private:
string name;
int units;
CourseRoster* roster;

public:
Course (string name, int units);
~Course ();
string getName() const;
CourseRoster* getRoster () const;
void addStudent (string name);
void print () const;

};
#endif

for23380_ch11_496-552.indd 539 02/11/18 5:18 pm

540 Chapter 11 Relationships	among	Classes

Program 11.35	 File	course.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***
* The implementation file for the class Course *
***/

#include "course.h"

// Constructor
Course :: Course (string nm, int ut)
: name (nm), units (ut)
{

roster = new CourseRoster;
}
// Destructor
Course :: ~Course ()
{
}
// Definition of getName function
string Course :: getName() const
{

return name;
}
// Definition of addStudent function
void Course :: addStudent (string name)
{

roster − >addStudent (name);
}
// Definition of getRoster function
CourseRoster* Course :: getRoster () const
{

return roster;
}
// Definition of print function
void Course :: print () const
{

cout << "Course Name: " << name << endl;
cout << "Number of Units: " << units << endl;
roster − > print ();

}

StudentSchedule Class
Program 11.36 is the interface file.

for23380_ch11_496-552.indd 540 02/11/18 5:18 pm

11.4 Program	Design 541

Program 11.37 is the implementation file.

Program 11.36	 File	studentSchedule.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The interface file for the class StudentSchedule *
***/

#ifndef STUDENTSCHEDULE_H
#define STUDENTSCHEDULE_H
#include <string>
#include <iostream>
#include <cassert>
using namespace std;

// Class Definition
class StudentSchedule
{

private:
int size;
string* courseNames;

public:
StudentSchedule ();
~StudentSchedule();
void addCourse (string course);
void print () const;

};
#endif

Program 11.37	 File	studentSchedule.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
* The implementation file for the class StudentSchedule *
***/

#include "studentSchedule.h"

// Constructor
StudentSchedule :: StudentSchedule ()
:size (0)
{

courseNames = new string [5];
}
// Destructor
StudentSchedule :: ~StudentSchedule ()

(continued)

for23380_ch11_496-552.indd 541 02/11/18 5:18 pm

542 Chapter 11 Relationships	among	Classes

Program 11.37	 File	studentSchedule.cpp (Continued)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

{
delete [] courseNames;

}
// Definition of addCourse function
void StudentSchedule :: addCourse (string name)
{

courseNames [size] = name;
size++;

}
// Definition of print function
void StudentSchedule :: print () const
{

cout << "List of Courses" << endl;
for (int i = 0; i < size; i++)
{

cout << courseNames[i] << endl;
}
cout << endl;

}

Program 11.38 is the interface file.

Program 11.38	 File	student.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The interface file for the class Student *
***/

#ifndef STUDENT_H
#define STUDENT_H
#include <cassert>
#include <string>
#include <iostream>
#include "studentSchedule.h"
using namespace std;

// Class Definition
class Student
{

private:
string name;
StudentSchedule* schedule;

public:
Student (string name);
~Student ();
string getName () const;
StudentSchedule* getSchedule () const;

(continued)

for23380_ch11_496-552.indd 542 02/11/18 5:18 pm

11.4 Program	Design 543

Program 11.39 is the implementation file.

Program 11.39	 File	student.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

/***
* The implementation file for the class Student *
***/

#include "student.h"

// Constructor
Student :: Student (string nm)
:name (nm)
{

schedule = new StudentSchedule;
}
// Destructor
Student :: ~Student ()
{
}
// Definition of getName function
string Student :: getName () const
{

return name;
}
// Definition of getSchedule function
StudentSchedule* Student :: getSchedule () const
{

return schedule;
}
// Definition of addCourse function
void Student :: addCourse (string name)
{

schedule -> addCourse (name);
}
// Definition of print function
void Student :: print () const
{

cout << "Student name: " << name << endl;
schedule − >print ();

}

Program 11.38	 File	student.h	(Continued)

23
24
25
26

void addCourse (string name);
void print () const;

};
#endif

for23380_ch11_496-552.indd 543 02/11/18 5:18 pm

544 Chapter 11 Relationships	among	Classes

Program 11.40	 File	registrar.h	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The interface file for the class Registrar *
***/

#ifndef REGISTRAR_H
#define REGISTRAR_H
#include "course.h"
#include "student.h"

// Class Definition
class Registrar
{

public:
Registrar ();
~Registrar();
void enroll (Student student, Course course);

};
#endif

Program 11.40 is the interface file.
Program 11.41 is the implementation file.
Program 11.42 is the application file. Note that the application creates one regis-

trar object. In Chapter 20, we learn how to control the Registrar object so that it is unique

Program 11.41	 File	registrar.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The implementation file for the class Registrar *
***/

#include "registrar.h"

// Constructor
Registrar :: Registrar ()
{
}
// Destructor
Registrar :: ~Registrar ()
{
}
// Enroll function
void Registrar :: enroll (Student student, Course course)
{

(course.getRoster ()) -> addStudent (student.getName());
(student.getSchedule()) -> addCourse (course.getName());

}

for23380_ch11_496-552.indd 544 02/11/18 5:18 pm

11.4 Program	Design 545

(Singleton pattern), but for the moment we assume only one registrar object is created. The
Program 11.42 then creates three Student objects and three Course objects. The registrar
object is responsible for enrolling the students in the courses they want. Note that we do not
instantiate any object from the StudentSchedule or CourseRoster class. The first is instanti-
ated in the Student class and the second in the Course class.

Program 11.42	 File	application.cpp	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/***
* The application file to test classes in Registration project *
***/

#include "registrar.h"

int main ()
{

// Instantiation of a Registrar object
Registrar registrar;
// Instantiation of three student objects
Student student1 ("John");
Student student2 ("Mary");
Student student3 ("Ann");
// Instantiation of three course objects
Course course1 ("CIS101", 4);
Course course2 ("CIS102", 3);
Course course3 ("CIS103", 3);
// Let the registrar object enroll students in the courses
registrar.enroll (student1, course1);
registrar.enroll (student1, course2);
registrar.enroll (student2, course1);
registrar.enroll (student2, course3);
registrar.enroll (student3, course1);
// Printing the information about each student
student1.print();
student2.print();
student3.print();
// Printing information about each course
course1.print();
course2.print();
course3.print();
return 0;

}

Run:
Student name: John
List of Courses
CIS101
CIS102

(continued)

for23380_ch11_496-552.indd 545 02/11/18 5:18 pm

546 Chapter 11 Relationships	among	Classes

Program 11.42	 File	application.cpp (Continued)

Student name: Mary
List of Courses
CIS101
CIS103

Student name: Ann
List of Courses
CIS101

Course Name: CIS101
Number of Units: 4
List of Students
John
Mary
Ann

Course Name: CIS102
Number of Units: 3
List of Students
John

Course Name: CIS103
Number of Units: 3
List of Students
Mary

K e y T e r m s

aggregation
association
base class
composition
dependency
derived class
inheritance
inheritance tree

Liskov substitution principle
multiplicity
private inheritance
protected inheritance
protected member
public inheritance
subclass
superclass

Inheritance in object-oriented programming derives a more specific concept from a more
general one. The more general class is called the base class and a more specific one is called
the derived class. The derived class inherits all of the base class members except parameter
constructors, the default constructor, copy constructor(s), the destructor, and the assignment
operator. There are three inheritance types, public, protected, and private; the default is pri-
vate but the most common is public.

S u m m a r y

for23380_ch11_496-552.indd 546 02/11/18 5:18 pm

Problems 547

An association between two classes shows the relationship between them. Aggrega-
tion is a special kind of association in which the relationship involves ownership, a “has-a”
relationship. A composition is a special kind of aggregation in which the lifetime of the
containee depends on the lifetime of the container.

Dependency is a weak relationship between classes. It models the “uses” relationship.

P r o b l e m s

PR-1. Assume we have defined the following two classes. Write the definition of the set
and print functions for both classes using delegation.

// Declaration of the class First
class First
{

private:
int a;

public:
void set (int a);
void print () const;

};
// Declaration of the class Second
class Second : public First
{

private:
int b;

public:
void set (int a, int b);
void print () const;

};

PR-2. Assume we have defined the following two classes. Write the definition of the set
and print functions for both classes without using delegation.

// Declaration of the class First
class First
{

protected:
int a;

public:
void set (int a);
void print () const;

};
// Declaration of the class Second
class Second : public First
{

private:
int b;

public:
void set (int a, int b);
void print () const;

};

for23380_ch11_496-552.indd 547 02/11/18 5:18 pm

548 Chapter 11 Relationships	among	Classes

PR-3. Assume we have a class First defined as follows. If class Second is a public
derivative from class First, what is the accessibility of members one, two,
and set in class Second?

class First
{

private:
int one;

protected:
int two;

public:
void set (int one, int two);

}

PR-4. Repeat PR-3 but assume class Second is a protected derivative of class First.
PR-5. Repeat PR-4 but assume class Second is a private derivative of class First.
PR-6. We have the following three class definitions. Write the definition for the

constructor and the print functions for all three classes.
// Definition of class First
class First
{

private:
int a;

public:
First (int a);
void print () const;

};
// Definition of class Second
class Second : public First
{

private:
int b;

public:
Second (int a, int b);
void print () const;

};
// Definition of class Third
class Third : public Second
{

private:
int c;

public:
Third (int a, int b, int c);
void print () const;

};

PR-7. We have the following three class definitions. Write the definition for the
constructor and the print functions for all three classes.

// Definition of class First
class First

for23380_ch11_496-552.indd 548 02/11/18 5:18 pm

Problems 549

{
private:

int a;
public:

First (int a);
void print () const;

};
// Definition of class Second
class Second : public First
{

private:
int b;

public:
Second (int a, int b);
void print () const;

};
// Definition of class Third
class Third : public First
{

private:
int c;

public:
Third (int a, int c);
void print () const;

};

PR-8. We have the following two class definitions. Write the definition for the
constructor and the print functions for both classes.

// Definition of class First
class First
{

private:
int a;
double b;

public:
First (int a, double b);
void print () const;

};
// Definition of class Second
class Second
{

private:
First f;
char c;

public:
Second (First f, char c);
void print () const;

};

for23380_ch11_496-552.indd 549 02/11/18 5:18 pm

550 Chapter 11 Relationships	among	Classes

PR-9. Draw a sequence diagram for the interaction of main with the Person and Student
objects in Program 11.6.

PR-10. Draw a sequence diagram for the interaction of main with the Person and Date
objects in Program 11.6. Note that we have two instances of the Person class and
two instances of Date class.

PR-11. Draw a sequence diagram for the interaction of objects in Program 11.21.

P r o g r a m s

PRG-1. Design a class name Square that defines a square geometric shape. The class
must have a data member named side that defines the length of each side. Then
define two member functions, getPeri and getArea, to find the perimeter and
area of the square shape. Now define a Cube that defines a cubic shape and
inherits from the Square class. The class Cube needs no new data members, but
it needs the member functions getArea and getVolume. Provide the appropriate
constructors and destructors for both classes.

PRG-2. Design a class named Rectangle with two private data members: length and width.
Define constructors and a destructor for the class and write member functions
to find the perimeter and area of a rectangle. Then define a class named Cuboid
(representing a box) that inherits from the class Rectangle with an extra data
member: height. Then write constructors and a destructor for the Cuboid class,
and write member functions to find the surface and volume of the Cuboid objects.

PRG-3. Create a Sphere class that inherits from a Circle class. We know that we can
create a sphere object by turning a circle around its diameter.

a. Design an interface for a class named circle with one private data member:
radius. Define a parameter constructor and a destructor for the class and write
member functions to find the perimeter and area of a circle using the following
relationships.

perimeter = 2 * π * radius area = π * radius * radius

b. Define an interface file for a class named Sphere. Also define a parameter con-
structor and a destructor for the class and write member functions to find the
surface and volume of a sphere.

c. Define an implementation file for the class Sphere using the following formu-
las to find the surface and the volume of a sphere; in the formulas, perimeter is
the perimeter of the circle and area is the area of the circle defined in part (b).

surface = 2 * radius * perimeter volume = (4 / 3) * radius * area

d. Write an application file to test the Circle and Sphere classes.
PRG-4. Create a Cylinder class that inherits from a Circle class. We know that we can

create a cylinder object by adding a height to the circle object.

a. Design an interface for a class named circle as done in PRG-3.
b. Define an interface file for a class named Cylinder. Also define a parameter

constructor and a destructor for the class, and write member functions to find
the surface and volume of a sphere.

for23380_ch11_496-552.indd 550 02/11/18 5:18 pm

Programs 551

c. Define an implementation file for the class Cylinder using the following for-
mulas to find the surface and the volume of a cylinder; in these formulas, pe-
rimeter is the perimeter of the circle and area is the area of the circle defined
in part (b).

surface = height * perimeter volume = height * area

d. Write an application file to test the Circle and Cylinder class.
PRG-5. Create a simple employee class that supports two classifications of employees,

salaried and hourly. All employees have four data members: name, employee
number, birth date, and date hired. Salaried employees have a monthly salary
and an annual bonus, which is stated as a percentage in the range of 0 to 10
percent. Hourly employees have an hourly wage and an overtime rate which
ranges from 50 to 100 percent.

PRG-6. Design a class named Student with two data members: name and gpa. Then
define a class named Course whose data member capacity holds the number
of students in the course and an array of students created in heap memory.
The Student class must have a member function to print information about
the student object. The Course class must have information about enrolling
students in the course and must print information about all students
enrolled.

PRG-7. Design a class named Course with two data members: name and units. Then
design a class named Student with three data members: name, gpa, and a list
of courses taken. The list must be implemented as an array in heap memory.
Create constructors, destructor, and all necessary member functions for the
operation of the Course and Student class. Test both classes in an application
program.

PRG-8. Write a program that simulates the three classes defined as shown below:

Person

Student Employee

a. Use name as the only data member for the Person class.
b. Use name and gpa as data members for the Student class.
c. Use name and salary as data members for the Employee class.

PRG-9. Write a program that simulates the seven classes defined as shown below. The
first three classes (Person, Student, and Employee) have been defined in PRG-8.
Create codes to define the other four classes.

Person

Student Employee

ProfessorStaffGraduateUndergrad

for23380_ch11_496-552.indd 551 02/11/18 5:18 pm

552 Chapter 11 Relationships	among	Classes

a. Use year (1, 2, 3, 4) for the Undergraduate class.
b. Use goal (master, phd) for the Graduate class.
c. Use status (manager, nonmanager) for the Staff class.
d. Use status (part-time, full-time) for the Professor class.

We recommend to use the enum construct to define any of the four statuses and
thus to avoid value checking.

PRG-10. Define a class named Point that represents a point with coordinates x and y.
Then write member functions that use the Point class to find the distances
between two points. Use the dependency relationship as shown below:

uses
Point

PRG-11. Redesign the Fraction class that we defined in Chapter 7 to make the Fraction
class dependent on itself for four operations: add, subtract, multiply, and divide,
as shown in the following figure:

uses
Fraction

for23380_ch11_496-552.indd 552 02/11/18 5:18 pm

553

12.1 POLYMORPHISM
In previous chapters, we mentioned that one of the main pillars of object-oriented program-
ming is polymorphism. Polymorphism gives us the ability to write several versions of a
function, each in a separate class. Then, when we call the function, the version appropriate
for the object being referenced is executed. We see the same concept in our everyday lan-
guage. We use one verb (function) to mean different things. For example, we say “open,”
meaning to open a door, a jar, or a book; which one is determined by the context. Similarly,
in C++, we can call a function named printArea to print the area of a triangle or the area of
a rectangle.

 To better understand the concept of polymorphism, we must first understand the con-
cept of plug-compatible objects. An analogy with electrical devices may help, as shown in
Figure 12.1.

In this chapter we discuss polymorphism and other issues related to object-oriented pro-
gramming. Polymorphism gives us the ability to write several versions of a function in dif-
ferent classes. We also discuss two other issues that are related to polymorphism: abstract
classes and multiple inheritance.

Objectives

After you have read and studied this chapter, you should be able to:

•	Define polymorphism and describe three necessary conditions to achieve it.

•	Define virtual tables and how they help the system decide which virtual function to use
during run time.

•	Discuss virtual destructors and why they are needed for the proper use of polymorphism.

•	Distinguish between static and dynamic binding in inheritance.

•	Discuss Run Time Type Information (RTTI) and how it is used.

•	Discuss abstract classes and their use.

•	Discuss interface classes and their use.

•	Discuss multiple inheritance and its associated problems.

•	Show how the use of virtual base inheritance and class mixing can eliminate the problem of
duplicated data members in multiple inheritance.

12 Polymorphism and
Other Issues

for23380_ch12_553-596.indd 553 06/11/18 2:46 pm

554 Chapter 12 Polymorphism	and	Other	Issues

Assume we have two electrical devices (such as a table lamp and a television set). We
have only one socket that can supply power to one of these devices at a time. Each device has
a plug that can be inserted in the only socket. At time t1, we plug the lamp into the socket.
At time t2, we unplug the lamp and plug the TV set in the socket. We can do so because
the two devices are plug-compatible; their plugs follow the same standard. The interesting
point about plug-compatible devices is that all get the same thing (electrical power) from the
socket, but each does a different task.

12.1.1 Condition for Polymorphism
We define the conditions for polymorphism in inheritance by comparing polymorphism
with a plug.

Pointers or References
For comparison, we need something that plays the role of a socket that, once created, can
accept plug-compatible objects. In C++, a pointer or a reference can play this role. We can
define a pointer (or a reference) that can point to the base class; we can then let the pointer
point to any object in the hierarchy. For this reason, the pointer and reference variables are
sometimes referred to as polymorphic variables.

Exchangeable Objects
We need plug-compatible objects that play the role of the devices. An object in an inheri-
tance hierarchy plays this role.

Virtual Functions
We need something to play the role of power given to different devices that perform differ-
ent tasks. This is done in C++ using virtual functions, which are modified by the keyword
virtual. For example, we can have a print function in all classes, all named the same but
each printing differently.

For polymorphism, we need pointers (or references), we need
exchangeable objects, and we need virtual functions.

socket

A
t t

im
e

t1
A

t t
im

e
t2

Legend:

Note:
At each time,
only one of the
devices receives
power from socket.

plug

Lamp Television

Lamp Television

Figure 12.1	 A	socket	and	plug-compatible	devices

for23380_ch12_553-596.indd 554 06/11/18 2:46 pm

12.1 Polymorphism 555

EXAMPLE 12.1
Program 12.1 shows an incomplete polymorphic program using only the first two condi-
tions. We define two classes. We then create a pointer (simulating a socket) that can accept
an object of each class at different times (plug-compatible object). For simplicity, we define
only one public member function for each class and let the system add default constructors.

Program 12.1	 An	incomplete	polymorphic	program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

/***
* A simple program to show the first two conditions for *
* polymorphism *
***/

#include <iostream>
#include <string>
using namespace std;

// Definition of Base class and in-line print function
class Base
{

public:
void print () const {cout << "In the Base" << endl;}

};
// Definition of Derived class and in-line print function
class Derived : public Base
{

public:
void print () const {cout << "In the Derive" << endl;}

};

int main ()
{

// Creation of a pointer to the Base class (simulating socket)
Base* ptr;
// Let ptr point to an object of the Base class
ptr = new Base ();
ptr −> print();
delete ptr;
// Let ptr point to an object of the Derived class
ptr = new Derived();
ptr −> print();
delete ptr;
return 0;

}

Run:
In the Base
In the Base

for23380_ch12_553-596.indd 555 06/11/18 2:46 pm

556 Chapter 12 Polymorphism	and	Other	Issues

At line 27, ptr is pointing to an object of the Base class, and at line 28, we call the
function defined in the Base class. At line 31, we make the same pointer point to an object
of the Derived class, and at line 32, we tried to call the function defined in the Derived class,
but the result shows that the function defined for the Base class is called. The first two con-
ditions of polymorphism are accomplished in the program, but the third condition (virtual
functions) is not fulfilled. The print function is not a virtual function.

The result should be expected because the variable ptr is defined as a pointer to Base. It
can accept being pointed to an object of the Derived type because a derived object is a Base
object (inheritance defines an is-a relationship). However, when it wants to call the print
function, it is still a pointer to Base, so it calls the print function defined in the Base class.
We have not changed the type of the pointer; we have just forced it to point to the Derived
class.

EXAMPLE 12.2
We repeat the previous example, but we make the print function virtual. The result is that
the correct function is activated in each call as shown in Program 12.2. In lines 13 and 19,
we added the modifier virtual to the print function. Line 28 calls the appropriate print func-
tion for the Base class, and line 32 calls the appropriate print function for the Derived class.

Program 12.2	 A	valid	polymorphic	program	using	all	three	conditions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* A simple program to show that if all three necessary *
* conditions are fulfilled, we have polymorphism. *
***/

#include <iostream>
#include <string>
using namespace std;

// Definition of Base class and in-line definition for print function
class Base
{

public:
virtual void print () const {cout << "In the Base" << endl;}

};
// Definition of Derived class and in-line definition for print function
class Derived : public Base
{

public:
virtual void print () const {cout << "In the Derive" << endl;}

};

int main ()
{

// Creation of a pointer to the Base class (simulating socket)
Base* ptr;

(continued)

for23380_ch12_553-596.indd 556 06/11/18 2:46 pm

12.1 Polymorphism 557

Program 12.2	 A	valid	polymorphic	program	using	all	three	conditions (Continued)

26
27
28
29
30
31
32
33
34
35

// Let ptr point to an object of the Base class
ptr = new Base ();
ptr −> print();
delete ptr;
// Let ptr point to an object of the Derived class
ptr = new Derived();
ptr −> print();
delete ptr;
return 0;

}

Run:
In the Base
In the Derived

Virtual Modifier Not Necessary
Although we have added the virtual modifier to both print functions, it is not needed. When
a function is defined as virtual, all functions in the hierarchy of classes with the same signa-
ture are automatically virtual.

Mechanism
To understand how virtual functions take part in polymorphic behavior, we must understand
virtual tables (vtables). In polymorphism, the system creates a virtual table for each class in
the hierarchy of classes. Each entry in each vtable has a pointer to the corresponding virtual
function. Each object created in an application will have an extra data member that is a
pointer to the corresponding vtable. In the case of our simple program, there are two objects
and two vtables, each with one entry as shown in Figure 12.2.

When ptr is pointing to the Base object, the VPTR pointer added to the Base class ob-
ject is reached, which is pointing to the vtable of the Base class. In this case, the vtable has
only one entry, which invokes the only virtual function in Base class. When ptr is pointing to
the Derived object, the vtable of the Derived object is reached, and the print function defined
in the Derived class is invoked.

Base :: print ()
{
 . . .
}

Derived :: print ()
{
 . . .
}

Base object

Derived object

When ptr is pointing to the Base class

When ptr is pointing to the Derived class

ptr VPTR

Base vtable

Derived vtable

ptr VPTR

Figure 12.2	 Virtual	tables	for	Base	and	Derived	classes

for23380_ch12_553-596.indd 557 06/11/18 2:46 pm

558 Chapter 12 Polymorphism	and	Other	Issues

12.1.2 Constructors and Destructors
Constructors and destructors in a class hierarchy are also member functions, although spe-
cial ones. Do they need to be declared virtual? We discuss the cases of constructors and
destructors separately.

Constructors Cannot Be Virtual
Constructors cannot be virtual because although constructors are member functions, the
names of the constructors are different for the base and derived classes (different signatures).

Virtual Destructors
Although the names of the destructors differ in the base and derived classes, the destructors
are not normally called by their name. When there is a virtual member function anywhere
in the design, we should also make the destructors virtual to avoid memory leaks. To under-
stand the situation, we discuss two cases: (1) when we are not using polymorphism, and (2)
when we are using polymorphism.

Case 1: No Polymorphism Assume that the base class has a data member of type string
allocated in heap memory. Since the derived class inherits the string data member, the de-
rived class also has a data member allocated in heap memory. Figure 12.3 shows the situ-
ation when we are not using polymorphism. We create a Person class and a Student class.
The Person class has a name data member of type string in which the characters are created
in the heap. The Student class inherits name from the Person class, but it also adds another
data member, gpa.

We cannot have a memory leak in this situation. When the program terminates, the
destructors for Person class and Student class are called, which automatically calls the de-
structors of the string class, which delete the allocated memory in the heap.

Case 2: Polymorphism Now assume we use polymorphism. The situation is different.
The Person object and the Student object are created in the heap. The string objects are also
created in the heap. We must apply the delete operator to the polymorphic variable, ptr, in
stack memory to delete the objects in heap memory. When the objects are deleted, their de-
structors are called and the string objects are deleted. Figure 12.4 shows the situation.

Is it guaranteed that both objects are deleted when we apply the delete operator on the
ptr pointer? To answer the question, let us look at the delete operator when applied to the
pointer in two different situations.

Person object
characters

characters

name

name

gpa

Stack memory
Heap memory

Student object

Figure 12.3	 Two	objects	in	a	program	when	
polymorphism	is	not	used

for23380_ch12_553-596.indd 558 06/11/18 2:46 pm

12.1 Polymorphism 559

ptr = new Person (...);
...
delete ptr; // It deletes Person because ptr is of type Person*.

ptr = new Student (...);
...
delete ptr; // It does not delete Student because ptr is of type Person*.

In the first case, the pointer ptr is a pointer to Person type and the delete operator can delete
the Person object. When the Person object is deleted, its destructor is called, which in turn
calls the destructor of the string class. The characters created in the heap are de-allocated.
There is no memory leak.

In the second case, the pointer ptr is still a pointer to Person type, which means it can
delete an object of a Person class (which does not exist and nothing happens), but it cannot
delete the object of the Student class. When the object of the Student class is not deleted,
its destructor is not called, which means that the destructor of the string class is not called,
which means the characters in the heap are not de-allocated. We have memory leak. Note
that the memory occupied by the Student object will be eventually deallocated when the
program goes out of scope, but the pointer pointing to characters becomes a dangling pointer
and the system can never delete the memory location created by the characters in the string.

The solution is to make the destructor of the base class virtual, which automatically
makes the destructor of the derived class virtual. In this case, the system allows two different
member functions with different names to be virtual, and they are both added to the virtual
table. Figure 12.5 shows that we have two entries in the virtual table, and when an object in
the heap is deleted, the program knows which destructor should be called.

C++ recommends that we always define an explicit
destructor for the base class in polymorphism and make it

virtual. Use of virtual destructors prevents
possible memory leaks in polymorphism.

Person object

name

name

gpa

Stack
memory

Stack
memory

Heap memory

Student object

When ptr is pointing to the Person class

When ptr is pointing to the Student class

ptr

ptr

Figure 12.4	 Two	objects	in	a	program	when	polymorphism	is	used

for23380_ch12_553-596.indd 559 06/11/18 2:46 pm

560 Chapter 12 Polymorphism	and	Other	Issues

Example 12.3
We show how we can use polymorphism to print the information in the Student class through
a pointer pointing to the Person class.

Person Class Program 12.3 shows the interface file for the Person class .

Person :: ~Person ()
{
}

Student :: ~Student ()
{
}

Person :: print ()
{
 . . .
}

Student :: print ()
{
 . . .
}

Person object

Student object

When ptr is pointing to the Person class

When ptr is pointing to the Student class

ptr VPTR

Person vtable

Student vtable

ptr VPTR

Figure 12.5	 Virtual	tables	when	using	virtual	destructors	

Program 12.3	 File	person.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file for the Person class *
***/

#ifndef PERSON_H
#define PERSON_H
#include <iostream>
#include <string>
using namespace std;

class Person
{

private:
string name;

public:
Person (string name);
virtual ~Person ();
virtual void print () const;

};
#endif

for23380_ch12_553-596.indd 560 06/11/18 2:46 pm

12.1 Polymorphism 561

Program 12.4 shows the implementation file for the Person class.

Student Class Program 12.5 shows the interface file for the Student class. Program 12.6
shows the implementation file for the Student class.

Program 12.4	 File	person.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The implementation file for the Person class *
***/

#include "Person.h"

// Definition of the Person constructor
Person :: Person (string nm)
: name (nm)
{
}
// Definition of the Person destructor (virtual)
Person :: ~Person ()
{
}
// Definition of the print function (virtual)
void Person :: print () const
{

cout << "Name: " << name << endl;
}

Program 12.5	 File	student.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The interface file for the Student class *
***/

#ifndef STUDENT_H
#define STUDENT_H
#include "person.h"

class Student: public Person
{

private:
double gpa;

public:
Student (string name, double gpa);
virtual void print () const;

};
#endif

for23380_ch12_553-596.indd 561 06/11/18 2:46 pm

562 Chapter 12 Polymorphism	and	Other	Issues

Application Program 12.7 shows the application file.

Program 12.6	 File	student.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The implementation file for the Student class *
***/

#include "Student.h"

// Definition of Constructor for Student class
Student :: Student (string nm, double gp)
: Person (nm), gpa (gp)
{
}
// Definition of virtual print function for Student class
void Student :: print () const
{

Person :: print ();
cout << "GPA: " << gpa << endl;

}

Program 12.7	 File	app.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The application file to test Person and Student classes *
***/

#include "Student.h"

int main ()
{

// Creation of ptr as polymorphic variable
Person* ptr;
// Instantiation Person object in the heap
ptr = new Person ("Lucie");
cout << "Person Information";
ptr -> print();
cout << endl;
delete ptr;
// Instantiation Student object in the heap
ptr = new Student ("John", 3.9);
cout << "Student Information";
ptr -> print();
cout << endl;
delete ptr;
return 0;

}

(continued)

for23380_ch12_553-596.indd 562 06/11/18 2:46 pm

12.1 Polymorphism 563

Program 12.8	 Using	an	array	of	pointers	in	polymorphism

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* Modification of application file to show the actual use of *
* polymorphism with an array of pointers. *
***/

#include "student.h"

int main ()
{

// Declaration of an array of polymorphic variables (pointers)
Person* ptr [4];
// Instantiation of four objects in the heap memory
ptr[0] = new Student ("Joe", 3.7);
ptr[1] = new Student ("John", 3.9);
ptr[2] = new Person ("Bruce");
ptr[3] = new Person ("Sue");
// Calling the virtual print function for each object
for (int i = 0; i < 4; i++)
{

ptr[i] -> print ();
cout << endl;

}

(continued)

Program 12.7	 File	app.cpp (Continued)

Run:
Person Information
Name: Lucie
Student Information
Name: John
GPA: 3.9

A Better Use of Polymorphism
As you may have noticed, we did not need polymorphism in Program 12.3. We can achieve
the same result without using a pointer to point to different objects. We can use person.
print() instead of ptr −> print() and we can use student.print() instead of ptr −> print().
However, the program shows the idea of polymorphism with only one pointer that can point
to different objects.

A better demonstration is when we have to use polymorphism. Assume we need to
have an array of objects. We know that all elements of an array must be of the same type;
this means we cannot use an array of objects if the objects are of different types. However,
we can use an array of pointers, in which each pointer can point to an object of the base class
(Person in the previous example). In other words, we can have an array of polymorphic vari-
ables instead of one. Program 12.8 is the same as Program 12.7 except that we have used an
array of pointers.

for23380_ch12_553-596.indd 563 06/11/18 2:46 pm

564 Chapter 12 Polymorphism	and	Other	Issues

Program 12.8	 Using	an	array	of	pointers	in	polymorphism (Continued)

22
23
24
25
26
27
28

// Deleting the objects in the heap
for (int i = 0; i < 4; i++)
{

delete ptr [i];
}
return 0;

}

Run:
Name: Joe
GPA: 3.70

Name: John
GPA: 3.90

Name: Bruce

Name: Sue

Figure 12.6 shows the virtual tables for Program 12.8 with four objects, two of
each type.

In Figure 12.6 we have only one virtual table for each class, but both objects of type
Person have a VPTR pointer that points to the Person vtable, and both objects of the Student
class have a pointer that points to the Student vtable.

Polymorphism in Other Languages
If you know other object-oriented languages, you might wonder why you cannot find
all of aforementioned conditions in other languages even though polymorphism is often
mentioned in discussions of those languages. These three conditions always exist in

Person :: ~Person ()
{
}

Student :: ~Student ()
{
 . . .
}

Person :: print ()
{
 . . .
}

Student :: print ()
{
 . . .
}

Person objects

Student objects

Person vtable

Student vtable

ptr [0]
ptr [1]
ptr [2]
ptr [3]

VPTR

VPTR

VPTR

VPTR

Figure 12.6	 Virtual	tables	for	objects	in	Program	12.8

for23380_ch12_553-596.indd 564 06/11/18 2:46 pm

12.1 Polymorphism 565

other languages, but they may be hidden. For example, in the Java language, which was
designed after C++, polymorphism occurs with all of the three conditions as follows:

1. Java supports public inheritance (in fact, Java has only one type of inheritance, public),
which means we have interchangeable objects through inheritance.

2. Although there are no pointers or references in Java at the user level, class objects are
always created in the heap and there are variables (called reference types) that point to
these objects; each class object is accessible through polymorphic variables (sockets).

3. All member functions in Java are virtual functions by default, which means that the
third condition, existence of polymorphic functions, is also fulfilled.

12.1.3 Binding
Binding is an issue related to polymorphism. While there is no extra code required to assure
that binding is correct, we should understand what happens. As mentioned in previous chap-
ters, a function is split into two entities: function call and function definition. Binding here
means the association between the function call—for example, print()—and the function
body—for example, void print {…}.

We know that the function definition is created somewhere and the function call
occurs somewhere else. If we have only one single definition for a function, there is no con-
fusion. Whenever we call a function, the corresponding definition is executed.

However, we have seen in inheritance that we may have two functions with the same
signature (overriding functions). This means that the function has only one form of call but
may have more than one definition. If a Person object calls the print function, one definition
is executed; if a Student object calls the print function, a different definition is executed.
Binding here means how the program binds (associates) a function call to a function defini-
tion. There are two cases: static binding and dynamic binding.

Static Binding
The term static binding (sometimes called compile-time binding or early binding) occurs
when we have more than one definition for a function, but the compiler knows which ver-
sion of the definition is to be used when the program is compiled. We know that each defi-
nition of the function is stored somewhere in memory, and the compiler knows where it is
when it encounters the function call. This may happen, for example, when the function is
called by its corresponding object, as shown below.

person.print ();
student.print ();

When the compiler encounters the first call, it knows that the call should be for the
definition of print function that prints the data member of the Person object (only name).
When the compiler encounters the second call, it knows that the call should be to the defini-
tion of the print function that prints the data members of the Student object (name and gpa).

There is no ambiguity and there is no need for polymorphism. Everything is defined
earlier; binding is established during compilation time and the compiler establishes the
association.

Dynamic Binding
Static binding is simple, but it is not always possible. We use polymorphism for dynamic
binding (also called late binding or run-time binding), which means that we must bind a call
to the corresponding definition during run time. This is needed when the object is not known

for23380_ch12_553-596.indd 565 06/11/18 2:46 pm

566 Chapter 12 Polymorphism	and	Other	Issues

during the compilation. For example, when, during program execution, different objects are
being inserted into a polymorphic variable and the program needs to call the appropriate
function, then the binding must be done during run time. For this reason, we need a virtual
function to force the run-time system to create a table that shows which object needs which
function and to bind the call to the appropriate function. Polymorphism is closely tied to
dynamic binding because we want to be able to execute the appropriate function definition.

12.1.4 Run-Time Type Information (RTTI)
When working with hierarchy of classes, sometimes we need to know the type of the object
we are dealing with or sometimes we want to change the type of the object.

Using typeid Operator
If we want to find the type of the object at run time, we can use the <typeinfo> header to
access an object of the class type_info (note that the class name has an underscore, but the
header name does not). The class type_info has no constructor, destructor, or copy con-
structor. The only way to create an object of type_info is by using an overloaded operator
named typeid. We can create an object of type_info by passing an expression to the operator
typeid that can be evaluated as a type; for example, typeid (5), typeid (object_name), typeid
(6 + 2), and so on. We can then use one of the four member functions or operators that
are defined in the type_info class as shown in Table 12.1, in which t1 and t2 are objects of
type_info class.

Program 12.9 shows how we can find the type of two objects.

t1 == t2
t1 != t2
t1.name ()
t1.before (t2)

// Return true if t1 and t2 are of the same type
// Return true if t1 and t2 are of different types
// Returns a C-type string (name of the t1)
// Returns true if t1 comes before t2 (in inheritance)

Table 12.1 Operation on type_info objects

Program 12.9	 Testing	typeid	operator

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
* A program to use typeid operator to find the name of classes *
***/

#include <iostream>
#include <string>
#include <typeinfo>
using namespace std;

class Animal {};
class Horse {};

int main ()
{

(continued)

for23380_ch12_553-596.indd 566 06/11/18 2:46 pm

12.2 Other	Issues 567

Note that the name of the class is preceded by the number of characters in each case (6 and 5).

Using a Dynamic-Cast Operator
We have seen that in a polymorphic relationship we can upcast a pointer, which means that
we make a pointer in the derived class so that it points to the base class as shown below:

Person* ptr1 = new Student

Here, the pointer returned from the new operator is a pointer to a Student object, but we as-
sign it to a pointer that points to a Person object (the pointer is upcast).

C++ also allows us to downcast a pointer to make it point to an object in the lower
order of hierarchy. This can be done using a dynamic_cast operator as shown below:

Student* ptr2 = dynamic_cast <Student*) (ptr1)

This casting proves that the Student class is a class derived from the Person class because
ptr1 can be downcast to ptr2. Some programmers consider this to be a form of type check-
ing. However, we do not recommend that programmers use the dynamic_cast operator for
type checking because it involves a lot of overhead.

12.2 OTHER ISSUES
In this section we discuss abstract classes and multiple inheritance. We include a project that
uses several levels of inherited classes.

12.2.1 Abstract Classes
The classes we have designed so far are called concrete classes. A concrete class can be in-
stantiated and create objects of its type. When we create a set of classes, sometimes we find
that there is a list of behaviors that are identical to all classes. For example, assume we define
two classes named Rectangle and Square. Both of these classes have at least two common
behaviors: getArea() and getPerimeter(). How can we force the creator of these two classes
(in particular when each class is created by a different entity) to provide the definition of both
member functions for each class? We know that the formulas to find the area and perimeter
of these geometrical shapes differ, which means that each class must create its own version
of getArea and getPerimeter.

Program 12.9	 Testing	typeid	operator (Continued)

14
15
16
17
18
19

Animal a;
Horse h;
cout << typeid(a).name() << endl;
cout << typeid(h).name();
return 0;

}

Run:
6Animal
5Horse

for23380_ch12_553-596.indd 567 06/11/18 2:46 pm

568 Chapter 12 Polymorphism	and	Other	Issues

The solution in object-oriented programming is to create an abstract class, which
forces the designers of all derived classes to add these two definitions to their classes. A
set of classes with one abstract class must have the declaration and definition for the pure
virtual functions.

An abstract class is a class with at least one pure virtual function.

Declaration of Pure Virtual Functions
An abstract class is a class with at least one pure virtual function. A pure virtual func-
tion is a virtual function in which the declaration is set to zero and there is no definition
in the abstract class. The following shows two virtual member functions for the Shape
class:

virtual double getArea (0) = 0;
virtual double getPerimeter (0) = 0;

Definition of Pure Virtual Functions
The abstract class does not define its pure virtual function, but every class that inherits from
the abstract class must provide the definition of each pure virtual function or declare it as a
pure virtual to be defined in the next lower level of the hierarchy.

No Instantiation
We cannot instantiate an object from an abstract class because it does not have the definition
of its pure virtual functions. For an object to be instantiated from a class, the class must have
the definitions of all member functions. This means that an abstract class must be polymor-
phically inherited if we are to define concrete classes for instantiation.

An abstract class cannot be instantiated because there is no
definition for the pure virtual member functions.

Interfaces
An abstract class can have both virtual and pure virtual functions. In some cases, however,
we may need to create a blueprint for inherited classes. We can define a class with all pure
virtual functions. This class is sometimes referred to as an interface; we cannot create any
implementation file from this class, only the interface file.

An interface is a special case of an abstract class in which
all member functions are pure virtual functions.

Shape Class
To show the use of an abstract class, we create five concrete classes to represent shapes. All
classes are inherited from an abstract class Shape, as shown in Figure 12.7.

Shape

Circle EllipseTriangleSquare Rectangle

Legend:

concrete class
abstract class

Figure 12.7	 Adding	an	abstract	class	to	a	set	of	classes

for23380_ch12_553-596.indd 568 06/11/18 2:46 pm

12.2 Other	Issues 569

Program 12.10	 File	shape.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* The interface for the abstract Shape class *
***/

#ifndef SHAPE_H
#define SHAPE_H
#include <iostream>
#include <cassert>
#include <cmath>
using namespace std;

// Class definition
class Shape
{

protected:
virtual bool isValid () const = 0;

public:
virtual void print () const = 0 ;
virtual double getArea () const = 0 ;
virtual double getPerimeter () const = 0;

};
#endif

Program 12.10 is the interface file for the Shape class.
Note that we have no data members and only pure virtual member functions in this

program. The reason is that we do not want objects instantiated from this class; its purpose
is only to force the derived classes to implement the pure virtual member functions. The first
pure member function forces all classes to implement an isValid() member function and thus
validate their data members during the construction of objects. The other two pure member
functions force each derived class to have at least two member functions to calculate the area
and perimeter of the corresponding shape.

Program 12.11 is the interface file for the Square class. It has only one data member,
one private member function to validate the only data member, and three public member
functions.

Program 12.11	 File	square.h

1
2
3
4
5
6
7

/***
* The interface file of the Square class *
***/

#ifndef SQUARE_H
#define SQUARE_H
#include "shape.h"

(continued)

for23380_ch12_553-596.indd 569 06/11/18 2:46 pm

570 Chapter 12 Polymorphism	and	Other	Issues

Program 12.11	 File	square.h (Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20
21

// Class Definition
class Square : public Shape
{

private:
double side;
bool isValid() const;

public:
Square (double side);
~Square ();
void print() const;
double getArea () const;
double getPerimeter () const;

};
#endif

Program 12.12 is the implementation file for the Square class.

Program 12.12	 File	square.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* The implementation file of the Square class *
***/

#include "square.h"

// Constructor
Square :: Square (double s)
:side (s)
{

if (!isValid ())
{

cout << "Invalid square!";
assert (false);

}
}
// Destructor
Square :: ~Square ()
{
}
// Definition of print function
void Square :: print () const
{

cout << "Square of side " << side << endl;
}

(continued)

for23380_ch12_553-596.indd 570 06/11/18 2:46 pm

12.2 Other	Issues 571

Program 12.13	 File	rectangle.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The interface file for the Rectangle class *
***/

#ifndef RECTANGLE_H
#define RECTANGLE_H
#include "shape.h"

// Class definition
class Rectangle : public Shape
{

private:
double length;
double width;
bool isValid() const;

public:
Rectangle (double length, double width);
~Rectangle ();
void print () const;
double getArea() const;
double getPerimeter() const;

};
#endif

Program 12.12	 File	square.cpp (Continued)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// Finding the area
double Square :: getArea () const
{

return (side * side);
}
// Finding the perimeter
double Square :: getPerimeter () const
{

return (4 * side);
}
// Private isValid function
bool Square :: isValid () const
{

return (side > 0.0);
}

Program 12.13 is the interface file for the Rectangle class. It has two data members, one
private member function, and three public member functions.

for23380_ch12_553-596.indd 571 06/11/18 2:46 pm

572 Chapter 12 Polymorphism	and	Other	Issues

Program 12.14	 File	rectangle.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/***
* The implementation file the Rectangle class *
***/

#include "rectangle.h"

// Constructor
Rectangle :: Rectangle (double lg, double wd)
: length (lg), width (wd)
{

if (!isValid())
{

cout << "Invalid rectangle!";
assert (false);

}
}
// Destructor
Rectangle :: ~Rectangle ()
{
}
// Definition of print function
void Rectangle :: print () const
{

cout << "Rectangle of " << length << " X " << width << endl;
}
// Finding the area
double Rectangle :: getArea() const
{

return length * width;
}
// Finding the perimeter
double Rectangle :: getPerimeter() const
{

return 2 * (length + width);
}
// Private isValid function
bool Rectangle :: isValid () const
{

return (length > 0.0 && width > 0.0);
}

Program 12.14 is the implementation file for the Rectangle class.
Program 12.15 is the interface file for the Triangle class. It has three private data mem-

bers, one private member function, and three public member functions.

for23380_ch12_553-596.indd 572 06/11/18 2:46 pm

12.2 Other	Issues 573

Program 12.15	 File	triangle.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The interface file for the Triangle class *
***/

#ifndef TRIANGLE_H
#define TRIANGLE_H
#include "shape.h"

// Class definition
class Triangle : public Shape
{

private:
double side1;
double side2;
double side3;
bool isValid () const;

public:
Triangle (double side1, double side2, double side3);
~Triangle ();
void print() const;
double getArea() const;
double getPerimeter() const;

};
#endif

Program 12.16 is the implementation file for the Triangle class.

Program 12.16	 File	triangle.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* The implementation file the Triangle class *
***/

#include "triangle.h"

// Constructor
Triangle :: Triangle (double s1, double s2, double s3)
: side1(s1), side2(s2), side3 (s3)
{

if (!isValid())
{

cout << "Invalid triangle!";
assert (false);

}
}

(continued)

for23380_ch12_553-596.indd 573 06/11/18 2:46 pm

574 Chapter 12 Polymorphism	and	Other	Issues

Program 12.16	 File	triangle.cpp (Continued)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// Destructor
Triangle :: ~Triangle ()
{
}
// Definition of print function
void Triangle :: print() const
{

cout << "Triangle of : " << side1 << " X " << side2 << " X ";
cout << side3 << endl;

}
// Finding the area
double Triangle :: getArea() const
{

double s = (side1 + side2 + side3) / 2;
return (sqrt (s * (s − side1) * (s − side2) * (s − side3)));

}
// Finding the perimeter
double Triangle :: getPerimeter() const
{

return (side1 + side2 + side3);
}
// Private isValid function
bool Triangle :: isValid () const
{

bool fact1 = (side1 + side2) > side3;
bool fact2 = (side1 + side3) > side2;
bool fact3 = (side2 + side3) > side1;
return (fact1 && fact2 && fact3);

}

Program 12.17 is the interface file for the Circle class. It has only one private data member
(the radius).

Program 12.17	 File	circle.h

1
2
3
4
5
6
7

/***
* The interface file for the Circle class *
***/

#ifndef CIRCLE_H
#define CIRCLE_H
#include "shape.h"

(continued)

for23380_ch12_553-596.indd 574 06/11/18 2:46 pm

12.2 Other	Issues 575

Program 12.18 is the implementation file for the Circle class. Program 12.19 is the
interface file for the Ellipse class. It is similar to the one for the Circle class, but it needs
two radii.

Program 12.17	 File	circle.h (Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20
21

// Class definition
class Circle : public Shape
{

private:
double radius;
bool isValid () const;

public:
Circle (double radius);
~Circle ();
void print() const;
double getArea() const;
double getPerimeter() const;

};
#endif

Program 12.18	 File	circle.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The implementation file the Circle class *
***/

#include "circle.h"

// Constructor
Circle :: Circle (double r)
: radius (r)
{

if (!isValid())
{

cout << "Invalid circle!";
assert (false);

}
}
// Destructor
Circle :: ~Circle ()
{
}
// Definition of print function
void Circle :: print() const
{

(continued)

for23380_ch12_553-596.indd 575 06/11/18 2:46 pm

576 Chapter 12 Polymorphism	and	Other	Issues

Program 12.18	 File	circle.cpp (Continued)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

cout << "Circle of radius : " << radius << endl;
}
// Finding the area
double Circle :: getArea() const
{

return (3.14 * radius * radius);
}
// Finding the perimeter
double Circle :: getPerimeter() const
{

return 2 * 3.14 * radius;
}
// Private isValid function
bool Circle :: isValid () const
{

return (radius > 0);
}

Program 12.19	 File	ellipse.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The interface file for the Ellipse class *
***/

#ifndef ELLIPSE_H
#define ELLIPSE_H
#include "shape.h"

// Class definition
class Ellipse : public Shape
{

private:
double radius1;
double radius2;
bool isValid () const;

public:
Ellipse (double radius1, double radius2);
~Ellipse ();
void print() const;
double getArea () const;
double getPerimeter () const;

};
#endif

for23380_ch12_553-596.indd 576 06/11/18 2:46 pm

12.2 Other	Issues 577

Program 12.20 is the implementation file for the Ellipse class.

Program 12.20	 File	ellipse.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

/***
* The interface file for the Ellipse class *
***/

#include "ellipse.h"

// Constructor
Ellipse :: Ellipse (double r1, double r2)
: radius1 (r1), radius2 (r2)
{

if (!isValid())
{

cout << "Invalid ellipse!";
assert (false);

}
}
// Destructor
Ellipse :: ~Ellipse ()
{
}
// Definition of print function
void Ellipse :: print() const
{

cout << "Ellipse of radii: " << radius1 << " X " <<;
cout << radius2 << endl;

}
// Finding the area
double Ellipse :: getArea () const
{

return (3.14 * radius1 * radius2);
}
// Finding the perimeter
double Ellipse ::getPerimeter () const
{

double temp = (radius1 * radius1 + radius2 * radius2) / 2;
return (2 * 3.14 * temp);

}
// Private isValid function
bool Ellipse :: isValid () const
{

return (radius1 > 0 && radius2 > 0);
}

for23380_ch12_553-596.indd 577 06/11/18 2:46 pm

578 Chapter 12 Polymorphism	and	Other	Issues

Program 12.21 is the application for testing one instance of each class.

Program 12.21	 File	app.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

/***
* The application file to test all classes *
***/

#include "square.h"
#include "rectangle.h"
#include "triangle.h"
#include "circle.h"
#include "ellipse.h"

int main ()
{

// Instantiation and testing the Square class
cout << "Information about a square" << endl;
Square square (5);
square.print ();
cout << "area: " << square.getArea () << endl;
cout << "Perimeter: " << square.getPerimeter () << endl;
cout << endl;
// Instantiation and testing the Rectangle class
cout << "Information about a rectangle" << endl;
Rectangle rectangle (5, 4);
rectangle.print ();
cout << "area: " << rectangle.getArea () << endl;
cout << "Perimeter: " << rectangle.getPerimeter () << endl;
cout << endl;
// Instantiation and testing the Triangle class
cout << "Information about a triangle" << endl;
Triangle triangle (3, 4, 5);
triangle.print ();
cout << "area: " << triangle.getArea () << endl;
cout << "Perimeter: " << triangle.getPerimeter () << endl;
cout << endl;
// Instantiation and testing the Circle class
cout << "Information about a circle" << endl;
Circle circle (5);
circle.print ();
cout << "area: " << circle.getArea () << endl;
cout << "Perimeter: " << circle.getPerimeter () << endl;
cout << endl;
// Instantiation and testing the Ellipse class
cout << "Information about an ellipse" << endl;
Ellipse ellipse (5, 4);

(continued)

for23380_ch12_553-596.indd 578 06/11/18 2:46 pm

12.2 Other	Issues 579

Program 12.21	 File	app.cpp (Continued)

43
44
45
46
47

ellipse.print ();
cout << "area: " << ellipse.getArea () << endl;;
cout << "Perimeter: " << ellipse.getPerimeter ()<< endl;
return 0;

}

Run:
Information about a square
Square of size 5
area: 25
Perimeter: 20

Information about a rectangle
Rectangle of 5 X 4
area: 20
Perimeter: 18

Information about a triangle
Triangle of : 3 X 4 X 5
area: 6
Perimeter: 12

Information about a circle
Circle of radius : 5
area: 78.5
Perimeter: 31.4

Information about an ellipse
Ellipse of radii: 5 X 4
area: 62.8
Perimeter 28.4339

12.2.2 Multiple Inheritance
C++ allows multiple inheritance, the derivation of a class from more than one class. As
a simple example, we can have a class named TA (teaching assistant) that is inherited from
two classes: Student and Professor (Figure 12.8). The figure shows the UML diagram and
the object of each class.

Unfortunately, the inheritance fails when we code these classes because the TA class
inherits the data member name from both the Student and Professor classes. In the object
of the TA class, we have two copies of this data member, which is not acceptable in C++.

The Person class defines one single data member, name. This data member is inher-
ited in both the Student object and the Professor object. Since the TA (teaching assistant)
class inherits the Student and Professor classes, the data member name is duplicated in
the TA class. We cannot use inheritance in this case without removing the duplicate data
member.

for23380_ch12_553-596.indd 579 06/11/18 2:46 pm

580 Chapter 12 Polymorphism	and	Other	Issues

Virtual Base
One solution for the problem of duplicated shared data members in multiple inheritance is
to use virtual base inheritance. In this type of inheritance, two classes can inherit from a
common base using the virtual keyword. Figure 12.9 shows this approach.

In this case, we have the following four classes.

class Person {…};
class Student: virtual public Person {…};
class Professor: virtual public Person {…};
class TA: public Student, public Professor {…};

When we use virtual base inheritance, the object of the virtual base class is not stored
in each object of the derived class. The object of the virtual base class is stored separately,
and each derived class has a pointer to this object.

When using the virtual base technique, we must avoid delegation, as discussed in
Chapter 11. In other words, we cannot define a print function in the TA class by calling the
corresponding print functions in the Student and Professor classes because the data member
name would be printed three times. There is more than one solution to this dilemma; the
one that we recommend is to make the common data members protected and thus seen in all
derived classes and to avoid using delegated member functions.

name

name

gpa

name

gpa

name

salaray

name

salaray

 Person

Student Professor

TA

Classes
Objects

Student
−gpa: double

Person
−name: string

Professor

TA

−salary: double

−prfName: string

Figure 12.8	 Classes	and	objects	in	multiple	inheritance	

name

gpa

salaray

gpa
salaray

 Person

Student

Professor

TA

po
in

te
rs

 to
 b

as
e

cl
as

s

Objects

Person

Student Professor

<<virtual>> <<virtual>>

Classes
TA

Figure 12.9	 Classes	and	objects	in	virtual	base	inheritance

for23380_ch12_553-596.indd 580 06/11/18 2:46 pm

12.2 Other	Issues 581

EXAMPLE 12.4
In this example we give the interface files, the implementation files, and the application file
for the class in Figure 12.9.

Program 12.22 shows the interface file for the Person class. Note that the data member
name has a protected accessibility.

Program 12.23 shows the implementation file for the Person class.

Program 12.22	 File	person.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file for the Person class *
***/

#ifndef PERSON_H
#define PERSON_H
#include <iostream>
#include <cassert>
using namespace std;

class Person
{

protected:
string name; // Protected data member

public:
Person (string name);
~Person ();
void print ();

};
#endif

Program 12.23	 File	person.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***
* The implementation file for the Person class *
***/

#include "person.h"

// Constructor
Person :: Person (string nm)
: name (nm)
{
}
// Destructor
Person :: ~Person ()
{
}

(continued)

for23380_ch12_553-596.indd 581 06/11/18 2:46 pm

582 Chapter 12 Polymorphism	and	Other	Issues

Program 12.23	 File	person.cpp	(Continued)

15
16
17
18
19
20

// Print member function
void Person :: print ()
{

cout << "Person" << endl;
cout << "Name: " << name << endl << endl;

}

Program 12.24 shows the interface file for the Student class that is virtually inherited
from the Person class. Note that the data member gpa has a protected accessibility.

Program 12.25 shows the implementation of the Student class. Note that the print func-
tion does not call the print function of the Person class (no delegation).

Program 12.24	 File	student.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The interface file for the Student class *
***/

#ifndef STUDENT_H
#define STUDENT_H
#include "person.h"

class Student: virtual public Person // Virtual inheritance
{

protected:
double gpa; // Protected data member

public:
Student (string name, double gpa);
~Student ();
void print ();

};
#endif

Program 12.25	 File	student.cpp

1
2
3
4
5
6
7
8
9

/***
* The implementation file for the Student class *
***/

#include "Student.h"

// Constructor
Student :: Student (string name, double gp)
: Person (name), gpa (gp)
{

(continued)

for23380_ch12_553-596.indd 582 06/11/18 2:46 pm

12.2 Other	Issues 583

Program 12.26	 File	professor.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The interface file for the Professor class *
***/

#ifndef PROFESSOR_H
#define PROFESSOR_H
#include "person.h"

class Professor: virtual public Person // Virtual inheritance
{

protected:
double salary; // Protected data member

public:
Professor (string name, double salary);
~Professor ();
void print ();

};
#endif

Program 12.27	 File	professor.cpp

1
2
3
4

/***
* The implementation file for the Professor class *
***/

#include "professor.h"

Program 12.25	 File	student.cpp	(Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22

assert (gpa <= 4.0);
}
// Destructor
Student :: ~Student()
{
}
// Print member function uses a protected data member (name)
void Student :: print ()
{

cout << "Student " << endl;
cout << "Name: " << name << " ";
cout << "GPA: " << gpa << endl << endl;

}

(continued)

Program 12.26 shows the interface file for the Professor class. Note that the data mem-
ber salary has a protected accessibility.

Program 12.27 shows the implementation for the Professor class. Note that the print
function does not call the print function of the Person class (no delegation).

for23380_ch12_553-596.indd 583 06/11/18 2:46 pm

584 Chapter 12 Polymorphism	and	Other	Issues

Program 12.27	 File	professor.cpp	(Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// Constructor
Professor :: Professor (string nm, double sal)
: Person (nm), salary (sal)
{
}
// Destructor
Professor :: ~Professor ()
{
}
// Print member function
void Professor :: print ()
{

cout << "Professor " << endl;
cout << "Name: " << name << " ";
cout << "Salary: " << salary << endl << endl;

}

Program 12.28 shows the interface file for the Teaching Assistance class. Note that this
class has no data member.

Program 12.29 shows the implementation file for the TA class. Note that the print
function does not call the print function of the Student class (no delegation) or the print
function of the Professor class (no delegation).

Program 12.28	 File	ta.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The interface file for the TA class *
***/

#ifndef TA_H
#define TA_H
#include "student.h"
#include "professor.h"

class TA: public Professor, public Student // Double inheritance
{

public:
TA (string name, double gpa, double sal);
~TA ();
void print ();

};
#endif

for23380_ch12_553-596.indd 584 06/11/18 2:46 pm

12.2 Other	Issues 585

Program 12.30 shows the application file for testing all four classes.

Program 12.30	 File	application.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The application to test all four classes (Person, Student, *
* Professor, and TA). *
***/

#include "ta.h"

int main ()
{

// Testing Person class
Person person ("John");
person.print ();
// Testing Student class
Student student ("Anne", 3.9);
student.print ();
// Testing Professor class
Professor professor ("Lucie", 78000);
professor.print ();

Program 12.29	 File	ta.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The implementation file for the TA class *
***/

#include "ta.h"

// Constructor
TA :: TA (string nm, double gp, double sal)
: Person (nm), Student (nm, gp), Professor (nm, sal)
{
}
// Destructor
TA :: ~TA ()
{
}
// Print member function
void TA :: print ()
{

cout << "Teaching Assistance: " << endl;
cout << "Name: " << name << " ";
cout << "GPA: " << gpa << " ";
cout << "Salary: " << salary << endl << endl;

}

(continued)

for23380_ch12_553-596.indd 585 06/11/18 2:46 pm

586 Chapter 12 Polymorphism	and	Other	Issues

Program 12.30	 File	application.cpp (Continued)

18
19
20
21
22

// Testing TA class
TA ta ("George", 3.2, 20000);
ta.print ();
return 0;

}

Run:
Person
Name: John

Student
Name: Anne GPA: 3.9

Professor
Name: Lucie Salary: 78000

Teaching Assistance:
Name: George GPA: 3.2 Salary: 20000

Mixin Classes
Another solution for the problem of common base classes in multiple inheritance is the use
of mixin classes. A mixin class is never instantiated (it has some pure virtual functions), but
it can add data members to other classes. For example, we can think of a Student object as
a Person object with one extra data member, gpa. We can think of a Professor object as a
Person object with one extra data member, salary. We can also think about a TA object as
a person with two extra data members, gpa and salary. These extra data members can be
added to these classes with the help of mixin classes, as shown in Figure 12.10.

Figure 12.10 shows us that a student, a professor, and a teaching assistant are all in-
stances of the Person class. A Student object has one more qualification (taking courses), a
Professor object has one more qualification (teaching courses), and a TA object has two qual-
ifications (taking courses and teaching courses). Note that there is still multiple inheritance

name

name
gpa

name
salaray

name
gpa

salaray

 Person

Student

Professor

TA

Classes

Objects

Person PrfTypeStdType

Student ProfessorTA

Mixin class

Concrte class Regular inheritance

Mxin inheritance

Legend:

Figure 12.10	 Multiple	inheritance	using	mixin	classes

for23380_ch12_553-596.indd 586 06/11/18 2:46 pm

12.2 Other	Issues 587

in this case (TA class inherits from StdType and PrfType), but there is no common base class
and StdType and PrfType are not instantiated to create the problem we mentioned for mul-
tiple inheritance.

An analogy may help here. Consider an ice cream parlor that sells one type of ice
cream and that allows customers to buy up to two extra toppings. A person object gets no
topping, a student or a professor object gets one topping, and a teaching assistant object gets
two toppings. We assume toppings are not sold without ice cream.

EXAMPLE 12.5
In this example we develop the code for the mixin classes shown in Figure 12.10. We
give the code for five interface files, three implementation files, and one application file.
Note that the mixin classes are abstract classes (interfaces) and have no implementations.
Program 12.31 shows the interface file the StdType class.

Program 12.32 shows the interface file the PrfType class.

Program 12.31	 File	stdtype.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The interface file for StdType abstract class *
***/

#ifndef STDTYPE_H
#define STDTYPE_H
#include <iostream>
using namespace std;

class StdType
{

protected:
double gpa;

public:
virtual void printGPA() = 0 ;

};
#endif

Program 12.32	 File	prftype.h

1
2
3
4
5
6
7
8
9

10

/***
* The interface file for PrfType abstract class *
***/

#ifndef PRFTYPE_H
#define PRFTYPE_H
#include <iostream>
using namespace std;

class PrfType
{

(continued)

for23380_ch12_553-596.indd 587 06/11/18 2:46 pm

588 Chapter 12 Polymorphism	and	Other	Issues

Program 12.33 shows the interface file the Person class.
Program 12.34 shows the interface file the Student class. Note that this class has no

data members of its own; it only inherits data members from the Person class and StdType
class.

Program 12.32	 File	prftype.h (Continued)

11
12
13
14
15
16

protected:
double salary;

public:
virtual void printSalary () = 0;

};
#endif

Program 12.33	 File	person.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The interface file for Person concrete class *
***/

#ifndef PERSON_H
#define PERSON_H
#include <iostream>
#include <string>
#include <iomanip>
using namespace std;

class Person
{

private:
string name;

public:
Person (string name);
void print ();

};
#endif

Program 12.34	 File	student.h

1
2
3
4
5
6
7

/***
* The interface file for Student concrete class. This class *
* inherits from two classes: Person and StdType. *
***/

#ifndef STUDENT_H
#define STUDENT_H
#include "person.h"

(continued)

for23380_ch12_553-596.indd 588 06/11/18 2:46 pm

12.2 Other	Issues 589

Program 12.35 shows the interface file the Professor class. Note that this class has no
data members of its own; it only inherits data members from the Person class and PrfType
class.

Program 12.36 shows the interface file for the TA class. Note that this class has no data
members of its own; it only inherits data members from the Person class, StdType class, and
PrfType class.

Program 12.35	 File	professor.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The interface file for Professor concrete class. This class *
* inherits from two classes: Person and PrfType. *
***/

#ifndef PROFESSOR_H
#define PROFESSOR_H
#include "person.h"
#include "prftype.h"

class Professor : public Person, public PrfType
{

public:
Professor (string name, double salary);
void printSalary();
void print ();

};
#endif

Program 12.36	 File	ta.h

1
2
3
4

/***
* The interface file for TA concrete class. This class *
* inherits from tree classes: Person and StdType and PrfType. *
***/

Program 12.34	 File	student.h (Continued)

8
9

10
11
12
13
14
15
16
17

#include "stdtype.h"

class Student: public Person, public StdType
{

public:
Student (string name, double gpa);
void printGPA();
void print();

};
#endif

(continued)

for23380_ch12_553-596.indd 589 06/11/18 2:46 pm

590 Chapter 12 Polymorphism	and	Other	Issues

Program 12.36	 File	ta.h (Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

#ifndef TA_H
#define TA_H
#include "person.h"
#include "stdtype.h"
#include "prftype.h"

class TA: public Person, public StdType, public PrfType
{

public:
TA (string name, double gpa, double salary);
void printGPA ();
void printSalary();
void print ();

};
#endif

Program 12.37 shows the implementation file for the Person class.
Program 12.38 shows the implementation file for the Student class. Note that it inherits

the gpa data member as a protected data member from the StdType class. This data member
is accessible in the Student class but cannot be initialized in this class. We must assign a
value to it in the constructor.

Program 12.37	 File	person.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* The implementation file for Person concrete class *
***/

#include "person.h"

// Constructor
Person :: Person (string nm)
: name(nm)
{
}
// Print member function
void Person :: print ()
{

cout << "Name: " << name << endl;
}

Program 12.38	 File	student.cpp

1
2
3

/***
* The implementation file for Student concrete class *
***/

(continued)

for23380_ch12_553-596.indd 590 06/11/18 2:46 pm

12.2 Other	Issues 591

Program 12.39 shows the implementation file for the Professor class. Note that it
inherits the salary data member as a protected data member from the PrfType class. This
data member is accessible in the Professor class but cannot be initialized in this class; we
must assign a value to it in the constructor.

Program 12.38	 File	student.cpp (Continued)

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

#include "student.h"

// Constructor
Student :: Student (string na, double gp)
:Person (na)
{

gpa = gp; // Assignment, not initialization
}
// PrintGPA member function
void Student :: printGPA ()
{

cout << "GPA: " << fixed << setprecision (2) << gpa << endl;
}
// Print member function
void Student :: print ()
{

Person :: print();
printGPA ();

}

Program 12.39	 File	professor.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* The implementation file for Professor concrete class *
***/

#include "professor.h"

// Constructor
Professor :: Professor (string nm, double sal)
: Person (nm)
{

salary = sal; // Assignment, not initialization
}
// PrintSalary member function
void Professor :: printSalary ()
{

cout << "Salary: ";
cout << fixed << setprecision (2) << salary << endl;

}

(continued)

for23380_ch12_553-596.indd 591 06/11/18 2:46 pm

592 Chapter 12 Polymorphism	and	Other	Issues

Program 12.39	 File	professor.cpp (Continued)

18
19
20
21
22
23

// General print function
void Professor :: print ()
{

Person :: print();
printSalary();

}

Program 12.40 shows the implementation file for the TA class. Note that it inherits
the salary data member as a protected data member from the PrfType class and the gpa data
member as a protected data member from the StdType class. These data members are acces-
sible in the TA class but cannot be initialized in this class. We must assign values to them in
the constructor.

Program 12.40	 File	ta.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* The implementation file for TA concrete class *
***/

#include "ta.h"

// Constructor
TA :: TA (string nm, double gp, double sal)
: Person (nm)
{

gpa = gp; // Assignment, not initialization
salary = sal; // Assignment, not initialization

}
// member function to print GPA
void TA :: printGPA ()
{

cout << "GPA: " << gpa << endl;
}
// member function to print salary
void TA :: printSalary ()
{

cout << "Salary: ";
cout << fixed << setprecision (2) << salary << endl;

}
// General print function
void TA :: print ()
{

Person :: print();
printGPA ();
printSalary();

}

for23380_ch12_553-596.indd 592 06/11/18 2:46 pm

12.2 Other	Issues 593

Program 12.41 shows a very simple application file for testing the idea of mixin
classes. The user defines the application program.

Program 12.41	 File	application.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/***
* The application file to test the three classes *
***/

#include "student.h"
#include "professor.h"
#include "ta.h"

int main ()
{

// Instantiation of four objects
Person per ("John");
Student std ("Linda", 3.9);
Professor prf("George", 89000);
TA ta ("Lucien", 3.8, 23000);
// Printing information about a person
cout << "Information about person" << endl;
per.print();
cout << endl << endl;
// Printing information about a student
cout << "Information about student" << endl;
std.print ();
cout << endl << endl;
// Printing information about a professor
cout << "Information about professor" << endl;
prf.print();
cout << endl << endl;
// Printing information about a teaching assistant
cout << "Information about teaching assistance " << endl;
ta.print();
cout << endl << endl;
return 0;

}

Run:
Information about person
Name: John

Information about student
Name: Linda
GPA: 3.90

(continued)

for23380_ch12_553-596.indd 593 06/11/18 2:46 pm

594 Chapter 12 Polymorphism	and	Other	Issues

Program 12.41	 File	application.cpp (Continued)

Information about professor
Name: George
Salary: 89000.00

Information about teaching assistance
Name: Lucien
GPA: 3.80
Salary: 23000.00

K e y T e r m s

abstract class
concrete class
dynamic binding
mixin class
multiple inheritance

polymorphism
pure virtual function
static binding
virtual base inheritance

Polymorphism gives us the ability to write several versions of a function, each in a separate
class. Then, when we call the function, the version appropriate for the object being refer-
enced is executed. We need three conditions for polymorphism: pointers or references, in-
heritance hierarchy, and virtual functions. An issue related to polymorphism is binding: We
can have static binding and dynamic binding.

In C++ we can have concrete classes and abstract classes. A concrete class can be in-
stantiated and can create objects of its type.

An abstract class can be used as a general base for concrete classes to follow. An abstract
class must have at least one pure virtual function whose declaration is set to 0 and there is
no definition for it. We cannot instantiate an object from an abstract class, but it can be in-
herited. An interface is a special case of an abstract class in which all member functions are
pure virtual functions.

S u m m a r y

P r o b l e m s

PR-1. Assume we have a class named Base and two classes named Derived1 and
Derived2 that are inherited from the Base class. We want to use these classes in
a polymorphic relationship. If each class has a virtual print function and a virtual
destructor, show the virtual table entries for these classes.

PR-2. Assume we have the following two classes. Show how we can use stack memory
to instantiate objects of these two classes polymorphically.

for23380_ch12_553-596.indd 594 06/11/18 2:46 pm

Problems 595

class First
{

private:
int fr;

public:
First (int fr);
virtual ~First ();
virtual void print () const;

};

class Second : public First
{

private:
int se;

public:
Second (int fr, int se);
~Second ();
void print () const;

};

PR-3. Repeat PR-2, but let the objects be created in heap memory.
PR-4. Assume we have a class named Base and a class named Derived. The base class

composes another class named Base1 as a private data member. Show the UML
diagram for these classes.

PR-5. Consider the following lines of code. What do we need to impose on function
print () so that classes A and B can be used polymorphically?

class A {...};
class B: public A {...};

int main()
{

A* ptr
ptr = new A ();
ptr −> print ();
ptr = new B ();
ptr −> print ();
return 0;

}

PR-6. Assume we have the following classes. Do we need to use virtual base or mixin
classes in this case? Explain your answer.

AA AB BB

A B

PR-7. Assume we have the following classes. Do we have the problem of multiple
inheritance in this case?

AA

ABC

AB BB

A B

for23380_ch12_553-596.indd 595 06/11/18 2:46 pm

596 Chapter 12 Polymorphism	and	Other	Issues

P r o g r a m s

PRG-1. Modify Program 12.10 through Program 12.14 so they can be used
polymorphically.

PRG-2. Modify Program 12.25 through Program 12.35 so they can be used
polymorphically.

PRG-3. Assume we have the following classes in a polymorphic relationship.

Employee

HourlyEmployeeSalaryEmployee

 The Employee class is an abstract class. An employee has a first name, an initial,
and a last name. A salary employee receives a fixed salary per month. An hourly
employee receives wages based on the number of hours worked per month and
a fixed rate/hour. Write the interface files and the implementation files for all
three classes and then test them in an application file.

PRG-4. Modify PRG-4 to add another class named SalaryHourlyEmployee whose object
receives a fixed amount of salary per month and extra pay if she works more
than 180 hours per month using the same rate received by an hourly employee.
Use two more abstract classes, SalaryType and HourlyType, to avoid multiple
inheritance (mixin classes) as shown below. Write the interface files and the
implementation files for all classes and then test them in an application file.

SalaryType Employee HourlyType

HourlyEmployeeSalaryHourlyEmployeeSalaryEmployee

for23380_ch12_553-596.indd 596 06/11/18 2:46 pm

597

13.1 THREE ROLES OF AN OBJECT
Objects of user-defined types can play three different roles in a function: host object, param-
eter object, and returned object. We must carefully study the issues related to objects in each
role to understand the process of writing a function or overloading operators.

13.1.1 Host Object
When we define a nonstatic member function for a class, the function must be called through
an instance of the class. For example, we can have functionOne as a nonstatic member func-
tion of the class Fun as shown in Table 13.1.

We have defined and used several classes in the last few chapters. If we want to treat the
user-defined types the same as fundamental types, we must use on them the same opera-
tions we used on fundamental types. For example, we know that we can add two objects of
fundamental type such as (x + y) when both x and y are variables of type integer or floating
point. We should be able to add two fractions (fract1 + fract2) if both are of type Fraction.
Of course the operations on objects of user-defined types should make sense. We know from
mathematics that we can add two fractions; on the other hand, adding two loans does not
make sense.

Objectives

After you have read and studied this chapter, you should be able to:

•	Explain how host objects, parameter objects, and returned objects are handled during operator
overloading.

•	Distinguish between overloadable and non-overloadable operators.

•	Understand the role of operator functions and how they can be used as member and
nonmember functions.

•	Show how to overload unary operators as member operator functions in which the only
operand becomes the host object.

•	Show how to overload combined binary operators as member operator functions.

•	Show how to overload binary operators as friend functions.

•	Show how to convert from a fundamental type to a user-defined type using a constructor.

•	Show how to convert from a user-defined type to a fundamental type using a conversion
function.

13 Operator Overloading

for23380_ch13_597-656.indd 597 06/11/18 2:47 pm

598 Chapter 13 Operator	Overloading

The member function functionOne operates on fun1 in the first call, on fun2 in the second
call, and on fun3 in the third call. The object the function operates on in each case is called
the host object. The host object in the first call is fun1, in the second call is fun2, and in the
third call is fun3.

If you have written instance member functions, you may be wondering why there was
no reference to the host object inside the body of the function. The reason is that the host ob-
ject, as mentioned above, is changing all of the time. In the first call it is fun1; in the second
call it is fun2; and in the third call it is fun3. This means that the definition of the function
cannot include the name of the host object because it is changing. The solution is to use a
pointer, named this, as we discussed in Chapter 7, to point to the host object. In other words,
the member function accesses the host object indirectly through the this pointer. In the first
call, the system makes the this pointer point to fun1, in the second call to fun2, and in the
third call to fun3. In other words, in each call the host object is *this object.

The host object is the one that is pointed to by the this pointer.

EXAMPLE 13.1
Assume that the Fun class has only one integer member function named num. In Table 13.2,
the left section shows how we normally define the multiplyByTwo function; the right section
shows how the compiler changes it to access the host object pointed to by the this pointer.

We can directly use the code on the right-hand side to define this function, but it is
easier to write it as shown on the left-hand side. In other words, the host object is always
the object pointed to by the this pointer. We can access the host function using the asterisk
operator (or the −> operator).

void Fun :: functionOne (...)
{

...
}
int main ()
{

fun1.functionOne (...); // fun1 is the object affected by functionOne
fun2.functionOne (...); // fun2 is the object affected by functionOne
fun3.functionOne (...); // fun3 is the object affected by functionOne
...

}

Table 13.1 Example of host objects

// Written by the user // Changed by the compiler

void Fun :: multiplyByTwo ()
{

cout << num * 2;
}

void Fun :: multiplyByTwo ()
{

cout << (this −> num) * 2;
}

Table 13.2 Two formats for a member function

for23380_ch13_597-656.indd 598 06/11/18 2:47 pm

13.1 Three	Roles	of	an	Object 599

Protection
The nature of some member functions requires change in the host object; some other func-
tions should not change the host object. For example, if we are writing a member function
to input values for data members, the host object must be changed (mutator function). On
the other hand, if we are writing a member function that outputs the values of data members,
the host object should not change (accessor function). To prevent a member function from
changing the host object, we must show that we want the host object to be constant. Since the
host object is invisible in the member function, we must use the const modifier at the end of
the function header to warn the compiler that we do not want the host object to be changed.
We must do this in both the function declaration and function definition, but the function
call is the same in both cases.

The host object must be constant if the function is not supposed
to change it; it must be nonconstant otherwise.

EXAMPLE 13.2
Table 13.3 shows two cases of a host object: one nonconstant and the other constant.

The input function is supposed to get values for the data member of the host object,
which means the host object will be changed by the function. On the other hand, the output
function is supposed to print the copy of the members of the host object, which means the
host object should not be changed.

13.1.2 Parameter Objects
A parameter object is different from a host object. The host object is the hidden part of the
member function; a parameter object must be passed to the member function.

Three Ways to Pass
As we have discussed in Chapter 6, a parameter can be passed to a function in three ways:
pass-by-value, pass-by-reference, and pass-by-pointer.

Pass-by-Value The first method, pass-by-value, is normally not used when the parameter
is an object of a user-defined type because it involves calling the copy constructor, making a
copy of the object, and then passing it to the function. It is very inefficient.

// The host object can be changed //The host object cannot be changed

// Declaration
void input (...);
// Definition
void Fun :: input (...)
{

... ;
}

// Declaration
void output (...) const;
// Definition
void Fun :: output (...) const
{

... ;
}

// Call
fun1.input (...);

// Call
fun1.output (...);

Table 13.3 Two cases of host objects

for23380_ch13_597-656.indd 599 06/11/18 2:47 pm

600 Chapter 13 Operator	Overloading

Pass-by-Reference The second method, pass-by-reference, is the most common method
we encounter in practice. We do not copy the object; we just define an alias name in the func-
tion header so we can access the object. The function can use this name to access the original
object and operate on it. There is no cost of copying.

Pass-by-Pointer The third method, pass-by-pointer, is not very common unless we al-
ready have a pointer pointed to the object (such as when the object was created in the heap)
and we pass the pointer to the function.

The most common way to pass a user-defined object to
a function is pass-by-reference.

Protection
Since we normally use pass-by-reference to pass an object of user-defined type to a function,
the function can change the original object. If we want to prevent this change (most of the
time), we should insert the const modifier in front of the parameter, which means that the
function cannot change the original object. There are occasions, however, when the function
needs to change the parameter (such as a stream that is passed to an input function). In this
case, the parameter object should not be constant (Table 13.4).

13.1.3 Returned Objects
A constructor and a destructor do not return an object; they create or destroy the host object.
Other functions may return an object. We can have a function that returns an instance of an
object.

Three Ways to Return
We can return an object from a function in three ways: return-by-value, return-by-reference,
and return-by-pointer.

Return-by-Value In return-by-value, the function calls the copy constructor, creates a
copy of object, and returns the copy. As we know, this is expensive, but we have no choice
if the object to be returned is created inside the function because the other two methods
(return-by-reference and return-by-pointer) do not work in this case.

// The parameter can be changed // The parameter cannot be changed

// Declaration
void one (Type& para);

// Declaration
void two (const Type& para);

// Definition // Definition

void Fun :: one (Type& para)
{

... ;
}

void Fun :: two (const Type& para)
{

... ;
}

// Call
fun1.one (para);

// Call
fun1.two (para);

Table 13.4 Two types of parameter objects

for23380_ch13_597-656.indd 600 06/11/18 2:47 pm

13.1 Three	Roles	of	an	Object 601

We must use return-by-value if the returned object is created in
the body of the function.

Return-by-Reference Return-by-reference eliminates the cost of copying, but it is not
possible to use it when the object is created inside the body of the function. When the
function terminates, the object created inside the body is destroyed, and we cannot make a
reference to a destroyed object. However, we can do so when the object to be returned is a
parameter object passed by reference (or pointer) or it is the host object. The origin of an
object passed by reference (or by pointer) exists even when the object is terminated. We can
make a reference to it. A host object also exists when the function terminates.

Return-by-Pointer Return-by-pointer has the same limitation and advantage of pass-by-
reference but is seldom used unless the original object is created in the heap.

We must use return-by-reference or by pointer if the returned object
is passed as the parameter to the function.

Protection
The next issue is to allow or prevent a returned object from being changed after it is returned
to the application program. The answer depends on how we want to use the returned object.
If the returned object is to be used only as an rvalue, it should be protected from change by
using the const specifier. On the other hand, if the returned object is to be used as an lvalue,
there should not be a const specifier. When the returned object can be used in both cases,
we must make two versions of the function: one with and one without the const modifier.

EXAMPLE 13.3
Table 13.5 shows an example of returning by value using two approaches: return-by-constant-
value and return-by-value.

EXAMPLE 13.4
Table 13.6 shows two examples of return-by-reference in which the host object is returned.

//The object can be changed //The object cannot be changed

// Declaration
Fun one (int value);
// Definition
Fun Fun :: one (int value)
{

...
Fun fun (value);
return fun;

}

// Declaration
const Fun functOne (int value);
// Definition
const Fun Fun :: two (int value)
{

...
Fun fun (value);
return fun;

}

// Call // Call

fun1.one (value) = ...; fun1.two (value);

Table 13.5 Two types of return-by-value

for23380_ch13_597-656.indd 601 06/11/18 2:47 pm

602 Chapter 13 Operator	Overloading

13.2 OVERLOADING PRINCIPLES
Operator overloading is the definition of two or more operations using the same operator.
C++ uses a set of symbols called operators to manipulate fundamental data types such as in-
tegers and floating points. Most of these symbols are overloaded to handle several data types.
For example, the symbol for the addition operator of two fundamental data types (x + y)
can be used to add two values of type int, long, longlong, double, and long double. This
means that the following two expressions in C++ use the same symbol with two distinct
interpretations. The first symbol means add two integers; the second symbol means add two
reals.

14 + 20 14.21 + 20.45

If we think about how C++ uses two different processes for adding two integers and
two floating-point types, we can better understand the meaning of overloading. The addition
symbol in each expression means a different process. In the following example, the compiler
changes the first operand to 14.0 to do the operation:

14 + 20.35

The C++ language goes one step further when it uses the symbol << to mean two dif-
ferent things when applied to an integer data type and the ostream class. The following two
expressions give two different interpretations for this symbol:

x << 5; cout << 5;

In the expression on the left, the symbol << means to shift the bits in the integer object five
positions to the left (we discuss bit operations in Appendix D); in the expression on the right, it
means apply the insertion operator on the cout object to print the value of the fundamental data
type 5 (the cout object overloaded in the class ostream that we discuss later in the chapter).

Overloading is a powerful capability of the C++ language that allows the user to rede-
fine operators for user-defined data types, possibly with a new interpretation. For example,
instead of using a function call to add two fractions, we can overload the addition symbol
(+) to do the same thing.

// The object can be changed // The object cannot be changed

// Declaration
Fun& one ();
// Definition
Fun& Fun :: one()
{

...
return *this;

}

// Declaration
const Fun& two ();
// Definition
const Fun& Fun :: two ()
{

...
return *this;

}

// Call // Call

fun1.one () = ...; fun1.two ();

Table 13.6 Two examples of return-by-reference

for23380_ch13_597-656.indd 602 06/11/18 2:47 pm

13.2 Overloading	Principles 603

add (fr1, fr2) fr1 + fr2

The expression on the right looks more concise and more natural. However, we must care-
fully redefine the interpretation of the addition symbol (+) for our fraction objects.

13.2.1 Three Categories of Operators
We can divide the operators in C++ (see Appendix D) into three categories: non-overload-
able, not recommended for overloading, and overloadable, as shown in Table 13.7.

Operator Arity Name Overloadability

::
[]
()
.
->
++
−−
++
−−
~
!
+
−
*
&
new
new []
delete
delete[]
type
.*
-> *
*
/
%
+
−
<<
>>
<
<=
>
>=

primary
postfix
postfix
postfix
postfix
postfix
postfix
prefix
prefix
unary
unary
unary
unary
unary
unary
unary
unary
unary
unary
unary
unary
unary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary

scope
array subscript
function call
member selector
member selector
postfix increment
postfix decrement
prefix increment
prefix decrement
bitwise not
logical not
plus
minus
dereference
address-of
allocate object
allocate array
delete object
delete array
Type conversion
ptr to member select
ptr to member select
multiply
divide
modulo (remainder)
add
subtract
bitwise shift left
bitwise shift right
less than
less or equal
greater
greater or equal

Non-overloadable
Overloadable
Overloadable
Non-overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Not recommended
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Non-overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable
Overloadable

Overloadable
Overloadable

Table 13.7 Operators in C++ and their overloadability

(continued)

for23380_ch13_597-656.indd 603 06/11/18 2:47 pm

604 Chapter 13 Operator	Overloading

Operator Arity Name Overloadability

==
!=
&
^
|
&&
||
? :
=
oper=
,

binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
ternary

equal
not equal
bitwise and
bitwise ex or
bitwise or
logical and
logical or
conditional
simple assignment
comp. assignment
comma

Overloadable
Overloadable
Not recommended
Overloadable
Not recommended
Not recommended
Not recommended
Not overloadable
Overloadable
Overloadable
Not recommended

Table 13.7 Operator in C++ and their overloadability (Continued)

Non-Overloadable Operators
The C++ language does not allow us to overload the operators marked as not overloadable
in Table 13.7. The reason behind this decision is beyond the scope of this book, but we must
try not to overload them.

Not Recommended for Overloading
There are six operators that can be overloaded, but C++ strongly recommends that we do
not overload them. The reason for not overloading the address-of operation is that C++
defines a very special meaning to this operator and there is no guarantee that this special
meaning will be implemented by the user. The reason for the next five recommendations is
that the built-in version of these operators evaluates the two operands in predefined order
(left operand first and right operand next). A member function cannot guarantee this order.
In addition, the fourth and fifth operators have short-circuit behavior, as we discussed in
Chapter 4, which also cannot be guaranteed by a member function.

Overloadable Operators
The rest of the operators as defined in Table 13.7 can be overloaded, and the overloading
follows the natural behavior of the operators as defined in C++. We do not discuss all of the
operators; here; we discuss only the most common ones.

13.2.2 Rules of Overloading
Before we try to overload operators for our user-defined data types, we must be aware of the
rules for and restrictions on overloading:

 ∙ Precedence. Overloading cannot change the precedence of the operator. Good ex-
amples are the insertion (<<) and the extraction (>>) operators. These are actually
bitwise operators and have a very low-level precedence (2). When we use an operator
for our user-defined classes, we must pay attention to the precedence of the operator as
defined in the precedence list.

 ∙ Associativity. Overloading cannot change the associativity of the operator. Most op-
erators have left-to-right associativity, but there are a few with right-to-left associativ-
ity. When we overload an operator, the operator keeps its associativity.

for23380_ch13_597-656.indd 604 06/11/18 2:47 pm

13.3 Overloading	as	a	Member 605

 ∙ Commutativity. Overloading cannot change the commutativity of the operator. For
example, the addition operator (+) is commutative: (a + b) is the same as (b + a); while
the subtraction operator is not: (a − b) is not the same as (b − a). When we overload the
operator, we must pay careful attention to this rule.

 ∙ Arity. Overloading cannot change the arity of the operator. If a native operator is unary
(taking only one operand), then the overloaded definition must also be unary. If the
native operator is binary (taking two operands), then the overloaded definition must
also be binary. We don’t need to worry about the only ternary operator (? :) because it
is not overloadable.

 ∙ No new operators. We cannot invent operators; we can only overload the existing
overloadable operators. For example, we cannot use the symbol # as a new operator
because this symbol is not defined in the list of operators for the C++ language.

 ∙ No combination. We cannot combine two operator symbols to create a new one. For
example, we cannot use the combination of two asterisks (**) to define a new operator,
such as the one used in some other languages for power.

13.2.3 Operator Function
To overload an operator for a user-defined data type, we must write a function named
operator function, a function that acts as an operator. The name of this function starts
with the reserved word operator and is followed by the symbol of the operator that we
need to overload. Figure 13.1 shows the general form of an operator function prototype.

Member versus Nonmember Functions
Most of the overloadable operators can be defined either as a member function or a non-
member function. A few can be overloaded only as member functions; a few need to be
overloaded only as nonmember functions. Since the syntax for member and nonmember
operator functions is different, we discuss the functions separately.

Using Operators or Operator Functions
After overloading, we can either use the operator itself or the function operator. For example,
imagine we have overloaded the unary minus operator for our Fraction class as a member func-
tion. We can then apply the operator on a fraction object or invoke the fraction operator as shown
below. The version on the left is more concise and intuitive. The whole purpose of operator over-
loading is to use the operator itself to mimic the behavior of built-in types.

−fr //operator fr.operator− () // function

13.3 OVERLOADING AS A MEMBER
Although all overloadable operators (except for insertion and extraction) can be overloaded
as member functions, some operators are better suited to being overloaded as member func-
tions than others.

return_type operator symbol (parameter lists)
function name

Figure 13.1	 Format	of	the	function	
operator

for23380_ch13_597-656.indd 605 06/11/18 2:47 pm

606 Chapter 13 Operator	Overloading

13.3.1 Unary Operators
In a unary operator, the only operand becomes the host object of the operator function. We
have no parameter object. This means that we should only think about two objects: the host
object and the returned object, as shown in Figure 13.2.

Plus and Minus Operators
We first overload the plus and minus operators as shown in Figure 13.3.

Example
To define the plus and minus operators for a class, we must first define the meaning of
these operators when applied to an object of a class. Although these two operators make
sense when applied to a Fraction object, they do not make sense when applied to a Loan
object. Based on this guideline, we can define the declaration and the definition of the plus/
minus overloaded operator for our Fraction class that we defined in Chapter 7, as shown in
Table 13.8.

We need to know that there is no parameter object in this case. Both operators are unary
operators, and the host object serves as the only operand. The host object is not supposed
to be changed (no side effect) and the returned object is the host object after modification.

As 13.8 shows, the meaning of plus and minus operators for the Fraction class means
to apply the plus or minus operator to the nominator. We can construct a new object in the
body of the function and apply these operators to the numerator data member of the host
object. The function then returns the temporary function as a constant value. We return the
object as a value because the returning object is created inside the body of the function and

const type & operator oper () const

Checklist

Prototype

2. The returned object is the result. Can it be returned by reference? Can it be constant?

1. The only operand is the host object. Can it be constant?

Check for
returned object

Check for
host object

Figure 13.2	 Guidelines	for	overloading	unary	operators

+ −

Host
object

Retuned
object

Prototye

1. Host object does not change (constant).
2. Returned object
 a. is created as a new object (no reference).
 b. is used as rvalue (constant).

const type operator ± () const

2

1

Checklist

Figure 13.3	 Overloading	plus/minus	operators

for23380_ch13_597-656.indd 606 06/11/18 2:47 pm

13.3 Overloading	as	a	Member 607

does not exist when the function terminates (we cannot return it as a reference). We also re-
turn the object with a constant modifier because the returning object can only be used as an
rvalue (we cannot uses it as an lvalue such as at the left-hand side of the assignment opera-
tor). An object with a constant modifier cannot be chained either.

Pre-Increment and Pre-Decrement Operators
We now overload the pre-increment and the pre-decrement operators. Each operator has
a side effect that changes its operand; the returned object is a copy of the changed object.
C++ allows the chaining of these two operators, which means that we can have ++++x or
−−−−x. This means that the returned value must be an lvalue (Figure 13.4).

Based on the checklist in Figure 13.4, we can define the declaration and the defi-
nition of the pre-increment/pre-decrement overloaded operators for our Fraction class in
Table 13.9. Each of these two operators has two tasks to perform. The operator must change

a
b

+ a
 b

+ a
b

− a
 b

−

// Declarations
const Fraction operator+() const;
const Fraction operator−() const;
// Definition of plus operator
const Fraction Fraction :: operator+ () const
{

Fraction temp (+numer, denum); // a new object
return temp;

}
// Definition of minus operator
const Fraction Fraction :: operator− () const
{

Fraction temp (−numer, denum); // a new object
return temp;

}

Table 13.8 Unary operator plus or minus

Side
effect

Return host object
after side effect

++ −−
Checklist

Prototype

type & operator ±± ()

Host object

Retuned object

1

2

3
1. Host object has a side effect (no constant).
2. Returned object is
 a. a copy of the host object after side effect (reference).
 b. used as lvalue (no constant).

Figure 13.4	 Overloading	the	pre-increment	and	pre-decrement	operators

for23380_ch13_597-656.indd 607 06/11/18 2:47 pm

608 Chapter 13 Operator	Overloading

a
b

a + b
 b

++ a
b + 1

a − b
 b

a
b − 1a

b−−

// Declaration of pre-increment operator
Fraction& operator++ ();
// Definition of pre-increment operator
Fraction& Fraction :: operator++ ()
{

numer = numer + denom;
this -> normalize ();
return *this;

}
// Declaration of pre-decrement operator
Fraction& operator−− ();
// Definition of pre-decrement operator
Fraction& Fraction :: operator−− ()
{

numer = numer − denom;
this -> normalize ();
return *this;

}

Table 13.9 Pre-increment/pre-decrement operators

the host object and then return the changed host object (host object cannot be constant). This
means that instead of creating a new object from the host object, we should change the host
object and then return it. Since the returned object is the changed version of the host object,
we can return by reference instead of by value (which is more expensive). The C++ allows
chaining of this operator (++++x and −−−−x), which means that the return object cannot
be constant.

Post-Increment and Post-Decrement Operators
We now overload the post-increment and the post-decrement operators. The returned object
is created before the side effect (Figure 13.5).

Side
effect

2

++ or −−
host object

returned
object

3

1
Prototye

const type operator ±± (int)

Checklist
1. Host object has a side effect (no constant).
2. Returned object
 a. needs to be created as a temporary object (no reference).
 b. is used as rvalue (constant).

Figure 13.5	 Overloading	the	post-increment	and	post-decrement	operators

for23380_ch13_597-656.indd 608 06/11/18 2:47 pm

13.3 Overloading	as	a	Member 609

Since we cannot return the host object before changing it, we need to create a tempo-
rary object out of the host object, apply the side effect to the host object, and then return the
temporary object. The dummy integer parameter creates a unique signature to distinguish
between the prototype of the pre-operator and post-operator; it is ignored.

 Based on the checklist in Figure 13.5, we can define the declaration and the defini-
tion of the post-increment/post-decrement overloaded operators for our Fraction class in
Table 13.10. The returned object is the temporary object created before change, which means
that we cannot return it by reference. The returned object is constant because C++ does not
allow chaining of the operation such as (x++++) or (x−−−−). Also note that since the side
effect of a prefix and a postfix operator is the same, we can call the postfix operator to change
the host object.

13.3.2 Binary Operators
A binary operator has two operands (left operand and right operand). If we want to overload
a binary operator as a member function, we must consider one of the operands as the host
object and the other as the parameter object. It is more natural to use the left operand as the
host object and the right operand as the parameter object. For this reason, it is common to
overload only those binary operators as member functions in which the left operand (which
becomes the host object) has a different role than the right operand (which becomes the
parameter object). Among the binary operators, the assignment and compound assignment
operators (= , += , −= , *= , /= , and %=) are the best candidate for this purpose. In each

a
b

a + b
 b

++ a
b + 1

a
b

a − b
 b

−− a
b − 1

// Declaration of post-increment operator
const Fraction operator++ (int);
// Definition of post-increment operator
const Fraction Fraction :: operator++ (int dummy)
{

Fraction temp (numer, denom);
++(*this);
return temp;

}
// Declaration of post-increment operator
const Fraction operator−− (int);
// Definition of post-decrement operator
const Fraction Fraction :: operator−− (int dummy)
{

Fraction temp (numer, denom);
−−(*this);
return temp;

}

Table 13.10 Post-increment/post-decrement operators

for23380_ch13_597-656.indd 609 06/11/18 2:47 pm

610 Chapter 13 Operator	Overloading

of these operators, the left operand plays a different role from the right operand. The left op-
erand represent an lvalue, but the right operand is an rvalue. This means that we have three
objects to consider. The left operand becomes the host object, the right operand becomes the
parameter object, and the returned value of the operation is the value of the host object after
the side effect. Figure 13.6 shows the general prototype for the binary operator implemented
as a member function.

Assignment Operator
The first candidate in this category is the assignment operator. This is an asymmetric opera-
tion in which the nature of the left and right operands is different. The left operand is an
lvalue object that receives the side effect of the operation; the right operand is an rvalue
object that should not be changed in the process. Before we proceed with this operator, we
must mention that to use this operator, the left and the right operands must already exist. In
other words, this operator is different from the copy constructor, which creates a new object
from an existing object. Both objects must exist; we only change the left object so it is an
exact copy of the right object.

In an assignment operator, both the left object (host) and
right object (parameter) must already exist.

Figure 13.7 shows the simple assignment operator. First, the host object (left operand)
cannot be constant because of the side effect. Second, the returned object cannot be constant
because we can chain this operator (x = y = z).

const type & operator oper (const type &) const

Checklist

Prototype

1. The right object is the parameter object. Can it be passed by reference? Can it be constant?
2. The left object is the host object. Can it be constant?
3. The returned object is value of the operation. Can it be returned by reference? Can it be constant?

Check for
returned object

Check for
right object

Check for
left object

Figure 13.6	 Guidelines	for	binary	operators

Side
effect

=
4

3

21

Left object
(host)

Reurned object

Right object (parameter) Prototype

type & operator = (const type &)

Checklist
1. Host object has a side effect (no constant).
2. Returned object
 a. is created from the right object (reference).
 b. can be chained (no constant).

Figure 13.7	 Overloading	the	assignment	operator

for23380_ch13_597-656.indd 610 06/11/18 2:47 pm

13.3 Overloading	as	a	Member 611

There is another important point we must mention about this operator. If we do not
define an assignment operator for our class, the system provides one (synthetic assignment
operator). However, the synthetic operator may not be the one we need. Furthermore, the
following warnings apply to overloaded operators:

 ∙ We should verify that the host and the parameter objects are not the same object (do
not have the same address). This is particularly important if the objects are created in
heap memory. Since we must delete the host object before we copy the contents of the
parameter object, if the two objects are the same, the parameter object, which is physi-
cally the same as the host object, is deleted and there is nothing to be copied.

 ∙ We know that the assignment object is associative from right to left. In other words, if
we have y = x, then we can assign the result of operation to another object z = y = x,
which is interpreted as z = (y = x). However, C++, requires that z be considered as a
reference to y. This is why the returned object must be returned by reference.

EXAMPLE 13.5
Table 13.11 shows the declaration and definition of the assignment operator for the Fraction
class.

Compound Assignment Operators
Another set of operators that we can overload is the compound assignment operators (+=,
−=, *=, /=, and %=). We know the meanings of the compound assignments.

fract1 += fract2
fract1 −= fract2
fract1 *= fract2
fract1 /= fract2
fract1 %= fract2

means
means
means
means
means

fract1 = fract1 + fract2
fract1 = fract1 − fract2
fract1 = fract1 * fract2
fract1 = fract1 / fract2
fract1 = fract1 % fract2

c
d

a
b

c
d=

// Declaration of assignment operator
Fraction& operator= (const Fraction& right)
// Definition of assignment operator
Fraction& Fraction :: operator= (const Fraction& right)
{

if (*this != right) // or check inequality in another way
{

numer = right.numer;
denom = right.denom;

}
return *this;

}

Table 13.11 Assignment operator

for23380_ch13_597-656.indd 611 06/11/18 2:47 pm

612 Chapter 13 Operator	Overloading

In this operation, fract1 is the host object and fract2 is the parameter object. The process is
the same as for the assignment operator except that we must define carefully the numerator
and denominator of the host object. The returned object is the host object after change.

EXAMPLE 13.6
Table 13.12 shows the declaration and definition of the compound assignment operator for
the Fraction class.

a
b

c
d

a * d + b * c
 b * d

+= a
b

a
b

c
d= +

a
b

c
d

a * d − b * c
 b * d

−= a
b

a
b

c
d= −

a
b

c
d

a * c
b * d

*= a
b

a
b

c
d= *

a
b

c
d

a * d
b * c

/= a
b

a
b

c
d= /

// Declaration of += operator
Fraction& operator+= (const Fraction& right)
// Definition of += operator
Fraction& Fraction :: operator+= (const Fraction& right)
{

numer = numer * right.denom + denom * right.numer;
denom = denom * right.denom;
normalize ();
return *this;

}

// Declaration of −= operator
Fraction& operator−= (const Fraction& right)
// Definition of −= operator
Fraction& Fraction :: operator−= (const Fraction& right)
{

numer = numer * right.denom − denom * right.numer;
denom = denom * right.denom;
normalize ();
return *this;

}

// Declaration of *= operator
Fraction& operator*= (const Fraction& right)
// Definition of *= operator
Fraction& Fraction :: operator*= (const Fraction& right)
{

Table 13.12 Overloading compound assignment operators

(continued)

for23380_ch13_597-656.indd 612 06/11/18 2:47 pm

13.3 Overloading	as	a	Member 613

numer = numer * right.numer;
denom = denom * right.denom;
normalize ();
return *this;

}

// Declaration of /= operator
Fraction& operator/= (const Fraction& right)
// Definition of /= operator
Fraction& Fraction :: operator/= (const Fraction& right)
{

numer = numer * right.denom;
denom = denom * right.numer;
normalize ();
return *this;

}

Table 13.12 Overloading compound assignment operators (Continued)

In Table 13.12, the right operand does not need to be of the same object type as the left oper-
and as long as the operation is well defined. For example, we can use any compound assign-
ment operator to add, subtract, multiply, or divide a fraction by an integer. The operation is
well defined. The rules of overloading do not require that the host object and the parameter
object are of the same type.

13.3.3 Other Operators
There are other operators that can be implemented as member functions. We discuss some
of them next.

Indirection and Member-Selector Operators
In C++, we often use the indirection (*) or the member-selector (->) operator to access an
object or a member of an object stored in stack memory or heap memory. Before overload-
ing these two operators, we must mention some points about them.

 ∙ Both operators are unary operators, which means both have only one operand, which
must be a pointer to the corresponding object. The indirection operator returns the
object pointed to by the operand; the member-selector operator changes the pointer
operand to a pointer that can point to any member of the corresponding object and
returns the member. In the first, the operator comes before the operand (prefix); in the
second, the operator comes after the operand (suffix) as shown below:

// Returns object
*ptr

// Returns member
ptr ->

 ∙ If we want to overload these two operators, we need a class that acts as a pointer be-
cause the operand (host object) must be a pointer.

for23380_ch13_597-656.indd 613 06/11/18 2:47 pm

614 Chapter 13 Operator	Overloading

Smart Pointers When we use a pointer to point to an object in the stack, we do not
need to overload the indirection and member-selector operators (* and ->). We can use
a pointer, as a compound data type, to point to our object. When the object goes out of
scope, it is automatically popped out of the stack and there is no memory leak. However,
when we create an object in the heap, we must remember to delete it to avoid a memory
leak, as we discussed in Chapter 9. To do this, we create a smart pointer as shown in
Figure 13.8.

The smart pointer object is an object with one single data member: a pointer to the
desired type (such as Fraction). When the constructor of this object is called, it creates a
pointer to the desired type. The two operators * and -> are also overloaded for the class
SmartPtr, which can point to the desired object and to a member of the desired object.

EXAMPLE 13.7
We create a smart pointer class called SmartPtr whose interface is shown in Program 13.1.

smart
pointer
object

Stack memory Heap memory

ptr pointed
object

Figure 13.8	 Smart	pointer

Program 13.1	 File	smartptr.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The interface file for the SmartPtr class *
 ***/

#ifndef SMARTPTR_H
#define SMARTPTR_H
#include <iostream>
using namespace std;

class Fraction; // Forward declaration
class SmartPtr
{

private:
Fraction* ptr;

public:
SmartPtr (Fraction* ptr);
~SmartPtr ();
Fraction& operator* () const;
Fraction* operator−>() const;

};
#endif

for23380_ch13_597-656.indd 614 06/11/18 2:47 pm

13.3 Overloading	as	a	Member 615

Note that we added a forward declaration in line 9 to tell the header file that the name
Fraction in the declaration of SmartPtr is a type. The declaration and the definition of the
Fraction class are in other files, as we discussed in Chapter 7 regarding in the principle of
separate compilation.

Now we create the implementation for the SmartPtr class (Program 13.2). Note that
the destructor deletes the memory allocated by ptr member (line 15).

Now we create our application program to test the class SmartPtr (Program 13.3).

Program 13.2	 File	smartptr.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* The implementation file for the SmartPtr class *
 ***/

#include "smartptr.h"

// Constructor
SmartPtr :: SmartPtr (Fraction* p)
: ptr (p)
{
}
// Destructor
SmartPtr :: ~SmartPtr ()
{

delete ptr;
}
// Overloading of indirection operator
Fraction& SmartPtr :: operator* () const
{

return *ptr;
}
// Overloading of the arrow operator
Fraction* SmartPtr :: operator−> () const
{

return ptr;
}

Program 13.3	 File	app.cpp

1
2
3
4
5
6

/***
* The application file to test the SmartPtr class *
 ***/

#include "smartptr.h"
#include "fraction.h"

(continued)

for23380_ch13_597-656.indd 615 06/11/18 2:47 pm

616 Chapter 13 Operator	Overloading

Program 13.3	 File	app.cpp (Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20

int main ()
{

// Creating a smart Pointer object
SmartPtr sp = new Fraction (2, 5);
// Accessing the member through the * operator
cout << "Fraction: " << endl;
(*sp).print ();
cout << endl;
// Accessing the member through -> operator
cout << "Fraction: " << endl;
sp −> print ();
cout << endl;
return 0;

}

Run:
Fraction: 2 / 5
Fraction: 2 / 5

Note that we could have used the following statements in the application to create a
fraction in the heap without using a smart pointer.

Fraction* ptr = new Fraction (2, 5);
(*ptr).print ();
ptr −> print ();

The difference is that the fraction object created in the heap will not automatically be deleted
and we must delete it in the application program to avoid a possible memory leak. The smart
pointer does this task for us.

Subscript Operator
Another operator that can be overloaded as a member function is the subscript operator
([]). However, we must be careful not to change the semantics of this operator. The sub-
script operator is a binary operator in which the left operand is the name of an array and the
right operand is a type that defines the index of the element in the array. This means that we
should overload this operator only when our type is an array or something behaving like an
array (such as string or a list).

If we want to overload this operator correctly, we need two versions. In the first ver-
sion, the operator is overloaded as an accessor function; in the second version, it is over-
loaded as a mutator function. Figure 13.9 shows the design of subscript operators.

Assume that we want a class named Array in which we have control over the size of
the array and the whole array is created in the heap memory. Program 13.4 shows the inter-
face file.

for23380_ch13_597-656.indd 616 06/11/18 2:47 pm

13.3 Overloading	as	a	Member 617

Returned
element

[]

Host object

index

a pointer to
first element

Note:
The first version is used as an accessor (no side effect).
The second version is used as a mutator (return-by-reference).

type operator[] (int index) const

type & operator[] (int index)

Side
effect

in second
version

Figure 13.9	 Overloading	the	subscript	operator

Program 13.4	 File	array.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* The interface file for an Array class *
 ***/

#ifndef ARRAY_H
#define ARRAY_H
#include <iostream>
#include <cassert>
using namespace std;

class Array
{

private:
double* ptr;
int size;

public:
Array (int size); // Constructor
~Array(); // Destructor
double& operator[] (int index) const; // Accessor
double& operator[] (int index) ; // Mutator

};
#endif

Program 13.5	 File	Array.cpp	

1
2
3
4
5

/***
* The implementation file for Array class *
 ***/

#include "array.h"

Program 13.5 shows the implementation file.

(continued)

for23380_ch13_597-656.indd 617 06/11/18 2:47 pm

618 Chapter 13 Operator	Overloading

Program 13.5	 File	Array.cpp (Continued)

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

// Constructor (allocating memory in the heap)
Array :: Array (int s)
:size (s)
{

ptr = new double [size];
}
// Destructor (freeing memory in the heap)
Array :: ~Array()
{

delete [] ptr;
}
// Accessor subscript
double& Array :: operator[] (int index) const
{

if (index < 0 || index >= size)
{

cout << "Index is out of range. Program terminates.";
assert (false);

}
return ptr [index];

}
// Mutator subscript
double& Array :: operator[] (int index)
{

if (index < 0 || index >= size)
{

cout << "Index is out of range. Program terminates.";
assert (false);

}
return ptr [index];

}

 Program 13.6 shows a simple application.

Program 13.6	 File	app.cpp	

1
2
3
4
5
6
7

/***
* The application file to test the Array class *
 ***/

#include "array.h"

int main ()
{

(continued)

for23380_ch13_597-656.indd 618 06/11/18 2:47 pm

13.3 Overloading	as	a	Member 619

Program 13.7	 File	smallest.h	 	

1
2
3
4

/***
* The implementation file for the SmartPtr class *
 ***/

#ifndef SMALLEST_H

(continued)

Program 13.6	 File	app.cpp (Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20

// Instantiation of array object with three elements
Array arr (3);
// Storing values using mutator operator []
arr[0] = 22.31;
arr[1] = 78.61;
arr[2] = 65.22;
// Retrieving values using accessor operator []
for (int i = 0; i < 3; i++)
{

cout << "Value of arr [" << i << "]: " << arr[i] << endl;
}
return 0;

}

Run:
Value of arr [0]: 22.31
Value of arr [1]: 78.61
Value of arr [2]: 65.22

Function Call Operator
Another unary operator that can be overloaded is the function call operator, as shown below:

name (list of arguments)

The overloading of the function call operator allows us to create a function object (some-
times called a functor): an instance of an object that acts like a function. If a class overloads
the function call operator, the compiler allows us to instantiate an object of this class as
though we are calling a function. We are actually wrapping a function in a class that has the
benefit of being used in different applications. We can instantiate an object of the class to
invoke the function embedded in the class.

The difference between a function object and a function is that the function object can
hold its state (a function has no state). For example, a function object called smallest can
hold the smallest value from the previous call (as a data member). In this way, we can call
the function object as many times as we want, and it always gives us the smallest value as
long as the object is in scope.

EXAMPLE 13.8
Program 13.7 shows the interface file that declares a class called Smallest.

for23380_ch13_597-656.indd 619 06/11/18 2:47 pm

620 Chapter 13 Operator	Overloading

Program 13.7	 File	smallest.h (Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17

#define SMALLEST_H
#include <iostream>
using namespace std;

class Smallest
{

private:
int current;

public:
Smallest ();
int operator () (int next); // function call operator

};
#endif

Program 13.8 shows the implementation of the class Smallest.
Program 13.9 shows the application file for testing the function object.

Program 13.8	 File	smallest.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* The implementation file for the Smallest class *
 ***/

#include "smallest.h"

// Constructor
Smallest :: Smallest ()
{

current = numeric_limits <int> :: max();
}
// Overloaded function call operator
int Smallest :: operator() (int next)
{

if (next < current)
{

current = next;
}
return current;

}

Program 13.9	 File	app.cpp

1
2
3

/***
* The application file to test the Smallest class *
 ***/

(continued)

for23380_ch13_597-656.indd 620 06/11/18 2:47 pm

13.4 Overloading	as	a	Nonmember	 621

In Chapter 19 we discuss more about function objects (functor) when we show how
C++ uses them in the Standard Template Library (STL).

An interesting point about a function object is that C++ does not limit the number
of arguments in a function call. This means that we can overload this operator with more
than one argument. One application is to use it to get an element in a class defining a two-
dimensional array (or even an array with more dimensions). The first argument can define
the index of the first dimension (row), and the second argument can define the index of the
second dimensional (column).

13.4 OVERLOADING AS A NONMEMBER
When we overload a binary operator as a member function, one of the operands needs to be
the host object. This is fine when each operand has a different role in the operation. How-
ever, in some operators, such as (a + b) or (a < b), the two operands play the same role and
neither of them is related to the result. In these cases, it is better to use a nonmember func-
tion. We have two choices: global functions or friend functions.

There is nothing to prevent us from using a global function for overloading binary
operators. Although there are many advocates for this strategy, there is one drawback. The
definition of the operator function is longer and more complicated because it needs to use
the accessor and mutator functions of the class to access data members of the class. We do
not develop these types of functions.

C++ allows functions to be declared as friend functions of the class. A friend function
has no host object, but it is granted friendship so that it can access the private data members
and member functions of the class without calling the public member functions. We use
friend functions to overload selected operators.

Program 13.9	 File	app.cpp (Continued)

4
5
6
7
8
9

10
11
12
13
14
15
16

#include "smallest.h"
#include <iostream>

int main ()
{

// Instantiation of an smallest object
Smallest smallest;
// Applying the function call operator to objects
cout << "Smallest so far: " << smallest (5) << endl;
cout << "Smallest so far: " << smallest (9) << endl;
cout << "Smallest so far: " << smallest (4) << endl;
return 0;

}

Run:
Smallest so far: 5
Smallest so far: 5
Smallest so far: 4

for23380_ch13_597-656.indd 621 06/11/18 2:47 pm

622 Chapter 13 Operator	Overloading

13.4.1 Binary Arithmetic Operators
We have postponed until now our discussion of overloading binary arithmetic operators
because it is more appropriate to overload them as friend functions. Figure 13.10 shows the
design. The two operands must already exist. We create a new object inside the function
and return it as a constant object. We can pass the two operands as reference, but the return
object cannot be a reference type because it is created inside the function definition.

Table 13.13 shows arithmetic operators for the Fraction class. Note that the modulo
operator (%) cannot be applied to the Fraction class, because this operation does not make
sense with fractions. We give the declaration and definition for the first operator; the rest are
similar. Note that friend qualifier is needed only for declaration.

Note that the results are rvalues, which means that they can only be used when rval-
ues are needed. However, we can instantiate an object and then assign the results to that
object if needed (fract = fract1 + fract2). We must make sure that the assignment operator
is overloaded.

Prototye

Right object

Returned object

Left object

+ − * / % oper

friend const type operator oper (const type & left, const type & right)

Figure 13.10	 Overloading	binary	arithmetic	operators

a
b

c
d

a * d + b * c
 b * d

+

a
b

c
d

a * d − b * c
 b * d

−

a
b

c
d

a * c
b * d

*

a
b

c
d/ a * d

b * c

// Declarations of addition operator
friend const Fraction operator+ (const Fraction& left,
 const Fraction& right);
// Definition of addition operator
const Fraction operator+ (const Fraction& left,
 const Fraction& right)
{

int newNumer = left.numer * right.denom + right.numer* left.denom;
int newNumer = left.numer * right.denom + right.numer* left.denom;
int newDenom = left.denom * right.denom;
Fraction result (newNumer, newDenom);
return result;

}

Table 13.13 Binary arithmetic operators for the Fraction class

for23380_ch13_597-656.indd 622 06/11/18 2:47 pm

13.4 Overloading	as	a	Nonmember	 623

13.4.2 Equality and Relational Operators
We can also overload the two equality (== and !=) and four relational operators (<, <=,
>, and >=) using friend functions. The structure of the operator function is the same as the
arithmetic operators except that the return value is of type Boolean (true or false).

Figure 13.11 shows the design. The two operands must already exist. We pass the two
parameter functions as constant references. We return a Boollean value, which is automati-
cally constant and can be used only as an rvalue.

Table 13.14 shows the code only for the equality operator; the code for the other five
operators is similar.

13.4.3 Extraction and Insertion Operators
The value of a fundamental type can be extracted from an input stream object using the
extraction operator (>>) or inserted into an output stream using the insertion operator (<<).
We can overload these two operators for our class types as shown in Figure 13.12.

a * d >= b * c
a
b

c
d>=

a
b

c
d a * d != b * c!=

a * d <= b * c
a
b

c
d<=

a
b

c
d a * d == b * c==

a * d < b * c
a
b

c
d<

a * d > b * c
a
b

c
d>

// Declaration of equality operator
friend bool operator== (const Fraction& left, const Fraction& right);
// Definition of equality operator
bool operator== (const Fraction& left, const Fraction& right)
{

return (left.numer * right.denom == right.numer * left.denom) ;
}

Table 13.14 Equality and relational operators for the Fraction class

Prototye

Return value
(Boolean type)

== != < <= > >=

Right objectLeft object

oper

friend bool operator oper (const type & left, const type & right)

Figure 13.11	 Overloading	the	equality	and	relational	
operators

for23380_ch13_597-656.indd 623 06/11/18 2:47 pm

624 Chapter 13 Operator	Overloading

Each of these operators is a binary operator, but the left operand is an object of the
istream class in the case of the extraction operator and the object of the ostream class in the
case of the insertion operator. In other words, the left operand in both cases is an object of a
library class, not the class that we want to overload for these operators. The right operand,
on the other hand, is the class object. Note that if we want to use the keyboard as the input
stream, the input stream object is cin; if we want to use the monitor as the output stream,
the output stream object is cout. Otherwise, the left parameter should be a file declared as
istream or ostream type.

EXAMPLE 13.9
In this example we create extraction and insertion assignment operators for the Fraction
class. See Table 13.15.

Right object

Side
effect

Return object

Left object
stream

stream

>> <<

Prototyes

Note:
The >> operator changes the right
object, which means it cannot be
passed as constant reference.

friend istream & operator >> (istream & left, type & right)
friend ostream & operator << (ostream & left, const type & right)

Figure 13.12	 Overloading	insertion	or	extraction	operators

// Declaration of >> operator
friend istream& operator >> (istream& left, Fraction& right) ;
// Definition of >> operator
istream& operator >> (istream& left, Fraction& right)
{

cout << "Enter the value of numerator: " ;
left >> right.numer;
istream << "Enter the value of denominator: " ;
left >> right.denom;
right.normalized();
return left ;

}
// Definition of << operator
friend ostream& operator << (ostream& left, const Fraction& right) ;
// Definition of << operator
ostream& operator << (ostream& left, const Fraction& right)
{

left << right.numer << "/" << right.denom << endl;
return left;

}

Table 13.15 Overloaded extraction and insertion operator

for23380_ch13_597-656.indd 624 06/11/18 2:47 pm

13.5 Type	Conversion 625

13.5 TYPE CONVERSION
When we are working with fundamental data types, we sometimes use mixed types in a
an expression and expect the system to make them the same type according to the rules of
conversion. For example, in the following expression statement, which finds the perimeter
of a circle with radius 5, the system does two conversions from integer 5 to double 5.0 and
integer 2 to 2.0 to find the perimeter:

double perimeter = 2 * 5 * 3.1415;

We can do the same, with some limitation, to change a fundamental type to a user-defined
type and vice versa.

13.5.1 Fundamental Type to Class Type
If we need to change a fundamental type to a class type (when it makes sense), we create a
new parameter constructor (also referred to as conversion constructor). For example, we can
convert an integer to a fraction and we can convert a real number to a fraction. In both cases,
we create a constructor with one parameter.

Converting an Integer to a Fraction
This can be done easily using a constructor that takes one integer parameter that is set as
numerator; the denominator is set to 1.

EXAMPLE 13.10
Table 13.16 shows how we can convert an integer to a Fraction object.

We can add a fraction to an integer because the compiler changes the integer 4 to the
fraction 4/1 before addition.

Fraction fract1 (2, 5);
Fraction fract2 = fract1 + 4

Converting a Real Number to a Fraction
We can use a constructor to convert a real number to a fraction. A fraction can be a real
number. For example, the fraction 7/4 is the real number 1.75. This means that we can also
convert a real number, such as 1.75, to its corresponding fraction representation. Given the
value 1.75, we can rewrite it as 175/100 and then normalize it to get 7/4.

// Declaration
Fraction (int n);
// Definition
Fraction :: Fraction (int n)
: numer (n), denom (1)
{
}

Table 13.16 Converting an integer value to a fraction

for23380_ch13_597-656.indd 625 06/11/18 2:47 pm

626 Chapter 13 Operator	Overloading

Table 13.17 shows how this is done. The constructor accepts the a real number (value)
that becomes the numerator. We set the denominator to 1 and continuously multiply the real
value and the denominator until the fraction part of the value disappears. The numerator is
then the integer cast of the value. A fraction object is made after normalizing the numerator
and the denominator.

13.5.2 Class Type to Fundamental Type
Sometimes we need to convert a class type into a fundamental type. We can do this using a
conversion operator, an operator function in which the term operator and the operator sym-
bol are replaced with a fundamental data type, as shown in Table 13.18.

The syntax of the operator looks strange (no return value), but we must think of it as a
constructor for the double type. It takes a fraction and constructs a double value. We know
that a constructor has no return value; it constructs a type.

13.6 DESIGNING CLASSES
In this section we create four classes to show the importance of overloading operators in
some applications. We re-create the Fraction class using overloaded operators. We define a
Date class by overloading appropriate operators. We design and define a Matrix class with
some simple operators defined for a matrix. We also design and implement a Polynomial
class that can be used in many areas of computer science.

// Declaration
Fraction (double value);
// Definition
Fraction :: Fraction (double value)
{

denom = 1;
while ((value − static_cast <int> (value)) > 0.0)
{
 value *= 10.0;
 denom *= 10;
}
numer = static_cast <int> (value);
normalize ();

}

Table 13.17 Converting a real value to a fraction

// Declaration
operator double ();
// Definition
Fraction :: operator double ()
{

double num = static_cast <double> (numer);
return (num / denom);

}

Table 13.18 Converting class type to fundamental type

for23380_ch13_597-656.indd 626 06/11/18 2:47 pm

13.6 Designing	Classes 627

13.6.1 Fraction Class with Overloaded Operators
We created a Fraction class in Chapter 7. In this section we show how we can overload
several operators for this class.

Interface File
Program 13.10 shows the interface file.

Program 13.10	 File	fraction.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/***
* The interface file for the Fraction file *
 ***/

ifndef Fraction_H
define Fraction_H
include <iostream>
include <cassert>
include <iomanip>
include <cmath>
using namespace std;

// Fraction class definition
class Fraction
{

private:
int numer;
int denom;
int gcd (int n, int m = 1); // Helper function
void normalize (); // Helper function

public:
Fraction (int numer, int denom); // Parameter constructor
Fraction (double value); // Parameter constructor
Fraction (); // Default constructor
Fraction (const Fraction& fract); // Copy constructor
~Fraction (); // Destructor

 // Member operators
operator double (); // Conversion
const Fraction operator+() const; // Unary plus
const Fraction operator-() const; // Unary minus
Fraction& operator++ (); // Prefix increment
Fraction& operator-- (); // Prefix decrement
const Fraction operator++ (int); // Postfix increment
const Fraction operator-- (int); // Postfix decrement
Fraction& operator= (const Fraction& right); // Assign
Fraction& operator+= (const Fraction& right); // Compound Assign
Fraction& operator-= (const Fraction& right); // Compound Assign
Fraction& operator*= (const Fraction& right); // Compound Assign
Fraction& operator/= (const Fraction& right); // Compound Assign

(continued)

for23380_ch13_597-656.indd 627 06/11/18 2:47 pm

628 Chapter 13 Operator	Overloading

Program 13.10	 File	fraction.h (Continued)

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 // Friend arithmetic operators
friend const Fraction operator+

(const Fraction& left, const Fraction& right); //Addition
friend const Fraction operator-

(const Fraction& left, const Fraction& right); //Subtraction
friend const Fraction operator*

(const Fraction& left, const Fraction& right); //Multiplication
friend const Fraction operator/

(const Fraction& left, const Fraction& right); //Divsion
 // Friend relational operators

friend bool operator==
(const Fraction& left, const Fraction& right);

friend bool operator!=
(const Fraction& left, const Fraction& right);

friend bool operator<
(const Fraction& left, const Fraction& right);

friend bool operator<=
(const Fraction& left, const Fraction& right);

friend bool operator>
(const Fraction& left, const Fraction& right);

friend bool operator>=
(const Fraction& left, const Fraction& right);

 // Insertion and extraction operators
friend istream& operator >> (istream& left, Fraction& right) ;
friend ostream& operator << (ostream& left, const Fraction& right) ;

};
#endif

Implementation File
Program 13.11 shows the implementation file for the Fraction class.

Program 13.11	 File	fraction.cpp	

1
2
3
4
5
6
7
8
9

/***
* The implementation file for the Fraction class *
 ***/

#include "fraction.h"

// Parameter Constructor
Fraction :: Fraction (int num, int den = 1)
: numer (num), denom (den)
{

(continued)

for23380_ch13_597-656.indd 628 06/11/18 2:47 pm

13.6 Designing	Classes 629

Program 13.11	 File	fraction.cpp (Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

normalize ();
}
// Parameter Constructor
Fraction :: Fraction (double value)
{

denom = 1;
while ((value - static_cast <int> (value)) > 0.0)
{

value *= 10.0;
denom *= 10;

}
numer = static_cast <int> (value);
normalize ();

}
// Default Constructor
Fraction :: Fraction ()
: numer (0), denom (1)
{
}
// Copy Constructor
Fraction :: Fraction (const Fraction& fract)
: numer (fract.numer), denom (fract.denom)
{
}
// Destructor
Fraction :: ~Fraction ()
{
}
// Conversion operator
Fraction :: operator double ()
{

double num = static_cast <double> (numer);
return (num / denom);

}
// Unary plus operator
const Fraction Fraction :: operator+ () const
{

Fraction temp (+numer, denom);
return temp;

}
// Unary minus operator
const Fraction Fraction :: operator− () const
{

(continued)

for23380_ch13_597-656.indd 629 06/11/18 2:47 pm

630 Chapter 13 Operator	Overloading

Program 13.11	 File	fraction.cpp (Continued)

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Fraction temp (−numer, denom);
return temp;

}
// Pre-increment operator
Fraction& Fraction :: operator++ ()
{

numer = numer + denom;
this −> normalize ();
return *this;

}
// Pre-decrement operator
Fraction& Fraction :: operator−− ()
{

numer = numer − denom;
this −> normalize ();
return *this;

}
// Post-increment operator
const Fraction Fraction :: operator++ (int)
{

Fraction temp (numer, denom);
++(*this);
return temp;

}
// Post-decrement operator
const Fraction Fraction :: operator−− (int)
{

Fraction temp (numer, denom);
−−(*this);
return temp;

}
// Assignment operator
Fraction& Fraction :: operator= (const Fraction& right)
{

if (*this != right)
{

numer = right.numer;
denom = right.denom;

}
return *this;

}
// Compound Assignment operator (+=)
Fraction& Fraction :: operator+= (const Fraction& right)

(continued)

for23380_ch13_597-656.indd 630 06/11/18 2:47 pm

13.6 Designing	Classes 631

Program 13.11	 File	fraction.cpp (Continued)

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

{
numer = numer * right.denom + denom * right.numer;
denom = denom * right.denom;
normalize ();
return *this;

}
// Compound Assignment operator (-=)
Fraction& Fraction :: operator−= (const Fraction& right)
{

numer = numer * right.denom − denom * right.numer;
denom = denom * right.denom;
normalize ();
return *this;

}
// Compound Assignment operator (*=)
Fraction& Fraction :: operator*= (const Fraction& right)
{

numer = numer * right.numer;
denom = denom * right.denom;
normalize ();
return *this;

}
// Compound Assignment operator (/=)
Fraction& Fraction :: operator/= (const Fraction& right)
{

numer = numer * right.denom;
denom = denom * right.numer;
normalize ();
return *this;

}
// Addition operator (friend)
const Fraction operator+ (const Fraction& left, const Fraction& right)
{

int newNumer = left.numer * right.denom + right.numer * left.denom;
int newDenom = left.denom * right.denom;
Fraction result (newNumer, newDenom);
return result;

}
// Subtraction operator (friend)
const Fraction operator− (const Fraction& left, const Fraction& right)
{

int newNumer = left.numer * right.denom − right.numer * left.denom;
int newDenom = left.denom * right.denom;

(continued)

for23380_ch13_597-656.indd 631 06/11/18 2:47 pm

632 Chapter 13 Operator	Overloading

Program 13.11	 File	fraction.cpp (Continued)

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

Fraction result (newNumer, newDenom);
return result;

}
// Multiplication operator (friend)
const Fraction operator* (const Fraction& left, const Fraction& right)
{

int newNumer = left.numer * right.numer;
int newDenom = left.denom * right.denom;
Fraction result (newNumer, newDenom);
return result;

}
// Division operator (friend)
const Fraction operator/ (const Fraction& left, const Fraction& right)
{

int newNumer = left.numer * right.denom;
int newDenom = left.denom * right.numer;
Fraction result (newNumer, newDenom);
return result;

}
// Equality operator (friend)
bool operator== (const Fraction& left, const Fraction& right)
{

return (left.numer * right.denom == right.numer * left.denom) ;
}
// Inequality operator (friend)
bool operator!= (const Fraction& left, const Fraction& right)
{

return (left.numer * right.denom != right.numer * left.denom) ;
}
// Less-than operator (friend)
bool operator< (const Fraction& left, const Fraction& right)
{

return (left.numer * right.denom < right.numer * left.denom) ;
}
// Less-than or equal operator (friend)
bool operator<= (const Fraction& left, const Fraction& right)
{

return (left.numer * right.denom <= right.numer * left.denom) ;
}
// Greater-than operator (friend)
bool operator> (const Fraction& left, const Fraction& right)
{

return (left.numer * right.denom > right.numer * left.denom) ;
}

(continued)

for23380_ch13_597-656.indd 632 06/11/18 2:47 pm

13.6 Designing	Classes 633

Program 13.11	 File	fraction.cpp (Continued)

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

// Greater-than or equal operator (friend)
bool operator>= (const Fraction& left, const Fraction& right)
{

return (left.numer * right.denom >= right.numer * left.denom) ;
}
// Extraction operator (friend)
istream& operator >> (istream& left, Fraction& right)
{

cout << "Enter the value of numerator: " ;
left >> right.numer;
cout << "Enter the value of denominator: " ;
left >> right.denom;
right.normalize();
return left ;

}
// Insertion operator (friend)
ostream& operator << (ostream& left, const Fraction& right)
{

left << right.numer << "/" << right.denom ;
return left;

}
// Helper function (greatest common divisor)
int Fraction :: gcd (int n, int m)
{

int gcd = 1;
for (int k = 1; k <= n && k <= m; k++)
{

if (n % k == 0 && m % k == 0)
{

gcd = k;
}

}
return gcd;

}
// Helper function (nomalizing a fraction)
void Fraction :: normalize ()
{

if (denom == 0)
{

cout << "Invalid denomination in fraction. Need to quit." << endl;
assert (false);

}
if (denom < 0)
{

(continued)

for23380_ch13_597-656.indd 633 06/11/18 2:47 pm

634 Chapter 13 Operator	Overloading

Program 13.11	 File	fraction.cpp (Continued)

227
228
229
230
231
232
233

denom = −denom;
numer = −numer;

}
int divisor = gcd (abs (numer), abs (denom));
numer = numer / divisor;
denom = denom / divisor;

}

Program 13.12	 File	app.cpp	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/***
* The interface file date.h defining the class Date *
 ***/

include "fraction.h"

int main ()
{

// Creation of two objects and testing the plus and minus operator
Fraction fract1 (2, 3);
Fraction fract2 (1, 2);
cout << "fract1: " << fract1 << endl;
cout << "fract2: " << fract2 << endl;
cout << "Result of +fract1: " << +fract1 << endl;
cout << "Result of −fract2: " << −fract2 << endl << endl;
// Creation of four objects and testing the ++ and -- operators
Fraction fract3 (3, 4);
Fraction fract4 (4, 5);
Fraction fract5 (5, 6);
Fraction fract6 (6, 7);
cout << "fract3: " << fract3 << endl;
cout << "fract4: " << fract4 << endl;
cout << "fract5: " << fract5 << endl;
cout << "fract6: " << fract6 << endl << endl;
++fract3;
−−fract4;
fract5++;
fract6−−;
cout << "Result of ++fract3: " << fract3 << endl;
cout << "Result of −−fract4: " << fract4 << endl;
cout << "Result of fract5++: " << fract5 << endl;
cout << "Result of fract6−−: " << fract6 << endl << endl;

Application File
Program 13.12 shows the application file for testing operations in the Fraction class.

(continued)

for23380_ch13_597-656.indd 634 06/11/18 2:47 pm

13.6 Designing	Classes 635

Program 13.12	 File	app.cpp (Continued)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

// Testing compound assignment operators
Fraction fract7 (3, 5);
Fraction fract8 (4, 7);
Fraction fract9 (5, 8);
Fraction fract10 (7, 9);
fract3 += 2;
fract4 −= 3;
fract5 *= 4;
fract6 /= 5;
cout << "Result of fract7 += 2: " << fract7 << endl;
cout << "Result of fract8 −= 3: " << fract8 << endl;
cout << "Result of fract9 *= 4: " << fract9 << endl;
cout << "Result of fract10 /= 5: " << fract10 << endl << endl;
// Creation of two new objects and testing friend arithmetic operations
Fraction fract11 (1, 2);
Fraction fract12 (3, 4);
cout << "fract11: " << fract11 << endl;
cout << "fract12: " << fract12 << endl;
cout << "fract11 + fract12 : " << fract11 + fract12 << endl;
cout << "fract11 − fract12 : " << fract11 − fract12 << endl;
cout << "fract11 * fract12 : " << fract11 * fract12 << endl;
cout << "fract11 / fract12 : " << fract11 / fract12 << endl << endl;
// Creation of two new objects and testing relational operators
Fraction fract13 (2, 3);
Fraction fract14 (1, 3);
cout << "fract13: " << fract13 << endl;
cout << "fract14: " << fract14 << endl;
cout << "fract13 == fract14: " << boolalpha;
cout << (fract13 == fract14) << endl;
cout << "fract13 != fract14: " << boolalpha;
cout << (fract13 != fract14) << endl;
cout << "fract13 > fract14: " << boolalpha;
cout << (fract13 > fract14) << endl;
cout << "fract13 < fract14: " << boolalpha;
cout << (fract13 < fract14) << endl << endl;
// Using convertor constructor to create two new objects
Fraction fract15 (5); // Changing an integer to a fraction
Fraction fract16 (23.45); // Changing a double value to a fraction
cout << "fract15: " << fract15 << endl;
cout << "fract16: " << fract16 << endl << endl;
// Changing a fraction to a double
Fraction fract17 (9, 13);
cout << "double value of fract17 (9, 13): ";
cout << setprecision (2) << fract17.operator double () << endl << endl;

(continued)

for23380_ch13_597-656.indd 635 06/11/18 2:47 pm

636 Chapter 13 Operator	Overloading

Program 13.12	 File	app.cpp (Continued)

76
77
78
79
80
81

// Testing extraction operator
Fraction fract18;
cin >> fract18;
cout << "fract18: " << fract18 << endl;
return 0;

}

Run:
fract1: 2/3
fract2: 1/2
Result of +fract1: 2/3
Result of −fract2: −1/2

fract3: 3/4
fract4: 4/5
fract5: 5/6
fract6: 6/7

Result of ++fract3: 7/4
Result of −−fract4: −1/5
Result of fract5++: 11/6
Result of fract6−−: −1/7

Result of fract7+= 2: 13/5
Result of fract8 −= 3: −17/7
Result of fract9 *= 4: 5/2
Result of fract10 /= 5: 7/45

fract11: 1/2
fract12: 3/4
fract11 + fract12 : 5/4
fract11 − fract12 : −1/4
fract11 * fract12 : 3/8
fract11 / fract12 : 2/3

fract13: 2/3
fract14: 1/3
fract3 == fract14: false
fract13 != fract14: true
fract13 > fract14: true
fract13 < fract14: false

fract15: 5/1
fract16: 469/20

(continued)

for23380_ch13_597-656.indd 636 06/11/18 2:47 pm

13.6 Designing	Classes 637

Program 13.12	 File	app.cpp (Continued)

double value of fract17 (9, 13): 0.69

Enter the value of numerator: 6
Enter the value of denominator: 7
Fract18 : 6/7

13.6.2 Date Class
We create a new class, Date, that represents a date as the combination of three integers:
month, day, and year (such as 2/5/2016). Although there is a library class that can be used to
find the date and time in C++, it is used to define the current date and time. We want a type
that shows a date in the past or the future.

A date defines the number of days passed from an origin day, which varies from one
calendar to another. In our culture, it is based on the first day of Gregorian calendar, 1/1/1.
However, instead of giving the count of days (which is a number close to 800,000), a date
is defined in terms of month, day, and year to make the values smaller. Since the number of
days in each month is not fixed and we have leap years with 366 days instead of 365 days,
the calculation of dates is complicated.

Strategies
To overcome these complications, we have used several strategies in designing this class.

a. We have set the origin of the calendar to 1/1/1900 instead of 1/1/1 because of the
changes made to the calendar in the 16th century to fix leap years.

b. To follow a principle of object-oriented programming—that data members stored in an
object must be independent of each other with no redundant data members that can be
calculated from other data members—we store only month, day, and year. Although
we need the total days passed from the origin to calculate dates and also to find the
week day, we can use member functions to calculate the extra information.

c. To determine the day of the week for a date, we use a function called findTotalDays()
to calculate the total number of days from the origin date. We know that the first day
of January in 1900 was Monday.

d. We use the increment and decrement operators to go to the next day or previous day.
However, since this may change the month or year of the date, we use two functions,
called plusReset() and minusReset(), to adjust the new date when necessary.

e. To find a new date when we add or subtract days, we use compound assignment operators,
but to make the adjustment easier, we define the function in terms of increment or decre-
ment. In other words, instead of adding 20 days to a date, we increment the date 20 times.

f. To find the number of days elapsed between the two days, we apply the function find-
TotalDays() on each date and then subtract.

Invariants
Class invariants are the first thing we must consider, as we discussed Chapter 7. The invari-
ants that we need to worry about for date objects are as follows:

a. The month should be between 1 and 12 (January to December).
b. The day in each month should be between 1 and the days in the month (28, 30, 31) and

between 1 and 29 if the month is February and the year is a leap year.
c. The year should be greater than or equal to the starting year (the year that we set as the

origin of our data calendar).

for23380_ch13_597-656.indd 637 06/11/18 2:47 pm

638 Chapter 13 Operator	Overloading

Files
We create separate interface, implementation, and application files.

Interface File We create the interface file, date.h, as shown in Program 13.13.

Program 13.13	 File	date.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/***
* The interface file date.h defining the class Date *
 ***/

#ifndef DATE_H
#define DATE_H
#include <iostream>
#include <cmath>
#include <cassert>
#include <string>
using namespace std;

class Date
{

private:
// Instance Data Members
int month;
int day;
int year;
// Static Data Members and member functions
static const int startWeekDay;
static const int startYear;
static const int daysInMonths [];
static const string daysOfWeek [];
static const string monthsOfYear [];
static bool isLeap (int year);
// Private helper function
bool isValid () const;
string findWeekDay ();
int findTotalDays() const;
void plusReset ();
void minusReset ();

public:
// Constructors and destructor
Date (int month, int day, int year);
Date ();
~Date ();
// Member operator functions
Date& operator++();
Date& operator--();

(continued)

for23380_ch13_597-656.indd 638 06/11/18 2:47 pm

13.6 Designing	Classes 639

Program 13.14	 File	date.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* The implementation file date.cpp defining the instance *
* member functions and helper functions for the Date class *
 ***/

#include "date.h"

// Parameter constructor
Date :: Date (int m, int d, int y)
: month (m), day (d), year (y)
{

if (!isValid ())
{

cout << "Date is not valid; program terminates!" << endl;
assert (false);

}
}
// Default constructor
Date :: Date ()
: month (1), day(1), year(1900)
{
}
// Destructor
Date :: ~Date ()
{
}

Program 13.13	 File	date.h (Continued)

40
41
42
43
44
45
46
47
48
49
50
51

Date operator++ (int);
Date operator−−(int);
Date& operator+= (int days);
Date& operator−= (int days);
bool operator== (const Date& right) const;
bool operator!= (const Date& right) const;
Date& operator= (const Date& right);
// Friend operator functions
friend int operator- (const Date& date1, const Date& date2);
friend ostream& operator<< (ostream& output , const Date& date);

};
#endif

(continued)

Implementation File We give the implementation file for all member functions defined
in the interface file. We also initialize the static data members declared in the interface file.
Program 13.14 shows the implementation file.

for23380_ch13_597-656.indd 639 06/11/18 2:47 pm

640 Chapter 13 Operator	Overloading

Program 13.14	 File	date.cpp (Continued)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

// Pre-increment operator
Date& Date :: operator++()
{

day++;
plusReset ();
return *this;

}
// Pre-decrement operator
Date& Date :: operator−−()
{

day--;
minusReset ();
return *this;

}
// Post-increment operator
Date Date :: operator++ (int)
{

Date temp (month, day, year);
++(*this);
return temp;

}
// Post-decrement operator
Date Date :: operator−−(int)
{

Date temp (month, day, year);
−−(*this);
return temp;

}
// Compound addition operator
Date& Date :: operator+= (int days)
{

for (int i = 1; i <= days; i++)
{

++(*this);
}
return *this;

}
// Compound subtraction operator
Date& Date :: operator−= (int days)
{

for (int i = days; i >= 1; i−−)
{

−−(*this);
}

(continued)

for23380_ch13_597-656.indd 640 06/11/18 2:47 pm

13.6 Designing	Classes 641

Program 13.14	 File	date.cpp (Continued)

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

return *this;
}
//Operator ==
bool Date :: operator== (const Date& right) const
{

bool fact1 = (month == right.month);
bool fact2 = (day == right.day);
bool fact3 = (year == right.year);
return (fact1 && fact2 && fact3);

}
// Operator !=
bool Date :: operator!= (const Date& right) const
{

return !(*this == right);
}
// Assignment operator
Date& Date :: operator= (const Date& right)
{

if (*this != right) // Check for self-assignment
{

month = right.month;
day = right.day;
year = right.year;

}
return *this;

}
// Subtraction operator (friend function)
int operator−(const Date& date1, const Date& date2)
{

return (date1.findTotalDays() - date2.findTotalDays());
}
// Output operator (friend function)
ostream& operator<< (ostream& output , const Date& date)
{

cout << Date :: daysOfWeek [(date.findTotalDays()
 + Date :: startWeekDay)% 7] << " ";
cout << Date :: monthsOfYear [date.month] << " ";
cout << date.day << " ";
cout << date.year << endl;

}
// Private function for validation
bool Date :: isValid () const
{

bool validMonth = (month >= 1) && (month <=12);

(continued)

for23380_ch13_597-656.indd 641 06/11/18 2:47 pm

642 Chapter 13 Operator	Overloading

Program 13.14	 File	date.cpp (Continued)

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

bool validYear = (year >= startYear);
bool validDay = (day >= 1) && (day <= (Date:: daysInMonths[month]
 + (isLeap (year) && month == 2)));
return (validMonth && validYear && validDay);

}
// Private function for resetting after increment
void Date :: plusReset ()
{

bool extraDay = (isLeap (year) && month == 2);
if (day > daysInMonths[month] + extraDay)
{

day = 1;
month++;

}
if (month > 12)
{

month = 1;
year++;

}
}
// Private function for resetting after decrement
void Date :: minusReset ()
{

if (day < 1)
{

month−−;
if (month < 1)
{

month = 12;
year−−;

}
bool extraDay = isLeap (year) && (month == 2);
day = daysInMonths[month] + extraDay ;

}
}
// Private function to find total days
int Date :: findTotalDays() const
{

int totalDays = 0;
int currentYear = startYear;
while (year > currentYear)
{

totalDays += 365 + isLeap(currentYear);
currentYear++;

(continued)

for23380_ch13_597-656.indd 642 06/11/18 2:47 pm

13.6 Designing	Classes 643

Program 13.14	 File	date.cpp (Continued)

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

}
int currentMonth = 1;
while (month > currentMonth)
{

totalDays += daysInMonths [currentMonth];
if (currentMonth == 2)
{

totalDays += isLeap(year);
}
currentMonth++;

}
totalDays += day - 1;
return totalDays;

}
// Initialization of static data members
const int Date :: startWeekDay = 1;
const int Date :: startYear = 1900;
const int Date :: daysInMonths [] = {0, 31, 28, 31, 30, 31,
 30, 31, 31, 30, 31, 30, 31};
const string Date :: daysOfWeek [] = {"Sun", "Mon", "Tue", "Wed",
 "Thr", "Fri", "Sat"};
const string Date :: monthsOfYear [] = {"", "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
// Definition of static member function
bool Date :: isLeap (int year)
{

return (year % 400 == 00) || ((year % 4 == 0)&& (year % 100 != 0));
}

Application File The application file must create objects of the Date type and manipu-
late them. Users need to see the public interface so they can include it in their programs;
they also need the compiled version of the implementation file so they can create their own
version of the application file. Program 13.15 is a sample.

Program 13.15	 File	app.cpp	 	

1
2
3
4
5
6
7

/***
* The application file date.cpp uses the Date objects. *
 ***/

#include "date.h"

int main ()
{

(continued)

for23380_ch13_597-656.indd 643 06/11/18 2:47 pm

644 Chapter 13 Operator	Overloading

Program 13.15	 File	app.cpp (Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Create two dates and print them
Date date1 (2, 8, 2014);
Date date2 (10, 15, 1944);
cout << "date1: " << date1;
cout << "date2: " << date2;
// Create two more dates, increment them, and print them
Date date3 = date1;
Date date4 = date2;
date3++;
date4++;
cout << "date3: " << date3;
cout << "date4: " << date4;
// Add and subtract days to and from the previous dates
date3 += 20;
date4 -= 130;
cout << "date3 after change: " << date3;
cout << "date4 after change: " << date4;
// Find the difference and print the number of days
cout <<"Difference between date3 and date4: "
 << date3 - date4 << " days.";
return 0;

}

Run:
date1: Sat Feb 8 2014
date2: Sun Oct 15 1944
date3: Sun Feb 9 2014
date4: Mon Oct 16 1944
date3 after change: Sat Mar 1 2014
date4 after change: Thr Jun 8 1944
Difference between date3 and date4: 25468 days.

13.6.3 Polynomials
Polynomials are one of the basic mathematical structures that we encounter in many differ-
ent areas of computer science, such as networking and network security. A polynomial with
one variable can be defined as shown below, in which the n’s are the exponents and the a’s
are the coefficients of terms.

anxn + an−1 xn-1 + ... + a2x2 + a1x + a0

Representation
To perform mathematical operations on polynomials, we use two values for each term. For
example, the term 3.0x5 has 3.0 as the coefficient and 5 as the exponent. The largest ex-
ponent is called the degree of the polynomial. In our implementation, we assume that the

for23380_ch13_597-656.indd 644 06/11/18 2:47 pm

13.6 Designing	Classes 645

coefficient is of type double and the exponent is of type unsigned int. With these assump-
tions, we can store a polynomial in a computer in at least three ways.

In the first approach, we can define an array of any size to handle the largest degree
of a polynomial and let the exponents be the index of the array and each coefficient the cor-
responding value. This approach is not very efficient. If we have multiple polynomials and
they have different degrees, we create the same large array for each.

In the second approach, which is very efficient, we use a struct with two data mem-
bers: coefficient and degree. We store only those terms in which the coefficient is not 0.0.
This implementation can be done using a linked list (discussed in Chapter 18) in which each
term is linked to the next through a pointer.

The third approach, which we use in this chapter, is more efficient than the first but
less efficient than the second. It can be implemented as an array in which the array size
is the degree plus 1 of the correspond polynomial. For example, if we want to multiply a
polynomial of degree 3 by one of degree 5, we create three arrays of sizes 4, 6, and 16 in-
stead of three arrays of size 16 (the first case). The index of the array defines the exponent.
We may still have some terms with coefficient zeros, but each object has its own size.
Figure 13.13 shows the heap memory at the left side of the stack to let the term with the
highest exponent be at the left side and the term with the lowest exponent be at the right
side. Note that the degree of the polynomial is 5; size of the array is 6 because the degree
goes from 0 to 5.

Operations
We define five operations for our polynomial class as defined in mathematics: addition,
subtraction, multiplication, division, and remainder. Assume we have the following two
polynomials (Poly1 and Poly2):

Poly1 = +4.00x5 +2.00x3 +5.00x2 +1.00x1 +4.00
poly2 = +2.00x2 + 6.00

Mathematics defines five operations on these polynomials as shown below:

Poly1 + poly2 = +4.00x5 +2.00x3 +7.00x2 +1.00x1 +10.00
poly1 - poly2 = +4.00x5 +2.00x3 +3.00x2 +1.00x1 −2.00
poly1 * poly2 = +8.00x7 +28.00x5 +10.00x4 +14.00x3 +38.00x2 +6.00x1 +24.00
poly1 / poly2 = +2.00x3 −5.00x1 +2.50
poly1 % poly2 = +31.00x1 −11.00

ptr

heap stack

polynomial: 4.0x5 + 2.1x4 + 3.6x2 + 1.0

012345

2.1 3.60.0 0.0 1.04.0

Figure 13.13	 Representation	of	a	polynomial	
with	degree	5

for23380_ch13_597-656.indd 645 06/11/18 2:47 pm

646 Chapter 13 Operator	Overloading

Polynomial Class
We define a Polynomial class based on the preceding discussion.

Interface File Program 13.16 shows the interface file for the Poly class. We define
three constructors (the third is a one-term constructor used in division), a destructor,
a copy constructor, and an assignment operator. We overload the addition, subtraction,
multiplication, division, and quotient operators for this class. We also overload the ex-
traction operator. We use one member function that allows us to enter the coefficient of
a constructed polynomial. The max function is used to find the maximum degree of two
polynomials.

Program 13.16	 File	poly.h		

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/***
* The interface file for the Poly class *
 ***/

#ifndef POLY_H
#define POLY_H
#include <iostream>
#include <string>
#include <cassert>
#include <iomanip>
using namespace std;

// Definition for the Poly class
class Poly
{

private:
int degree;
double* ptr;

public:
Poly ();
Poly (int degree);
Poly (int degree, double coef); // One-term polynomial
~Poly ();
Poly (const Poly& origin);
Poly& operator= (const Poly& right);
void fill ();
int max (int x, int y);
friend const Poly operator+ (const Poly& left, const Poly& right);
friend const Poly operator− (const Poly& left, const Poly& right);
friend const Poly operator* (const Poly& left, const Poly& right);
friend const Poly operator/ (const Poly& left, const Poly& right);
friend const Poly operator% (const Poly& left, const Poly& right);
friend ostream& operator << (ostream& left, const Poly& poly);

};
#endif

for23380_ch13_597-656.indd 646 06/11/18 2:47 pm

13.6 Designing	Classes 647

Implementation Program 13.17 shows the implementation for functions declared in the
Poly class.

Program 13.17	 File	poly.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

/***
* The implementation file for the Poly class *
 ***/

#include "poly.h"

// Default constructor
Poly :: Poly ()
:degree (0)
{

ptr = 0;
}
// Parameter constructor
Poly :: Poly (int deg)
:degree (deg)
{

ptr = new double [degree + 1];
for (int i = degree; i >=0 ; i−−)
{

ptr [i] = 0.0;
}

}
// A constructor that creates an object of one term
Poly :: Poly (int deg, double coef)
:degree (deg)
{

ptr = new double [degree + 1];
for (int i = degree; i >=0 ; i−−)
{

ptr [i] = 0.0;
}
ptr [degree] = coef;

}
// Destructor
Poly :: ~Poly ()
{

delete [] ptr;
}
// Copy constructor
Poly :: Poly (const Poly& origin)
{

ptr = new double [degree + 1];

(continued)

for23380_ch13_597-656.indd 647 06/11/18 2:47 pm

648 Chapter 13 Operator	Overloading

Program 13.17	 File	poly.cpp (Continued)

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

for (int i = origin.degree ; i >= 0 ; i−−)
{

ptr [i] = origin.ptr [i];
}

}
// Assignment operator
Poly& Poly :: operator= (const Poly& right)
{

this −> degree = right.degree;
this −> ptr = new double [degree + 1];
for (int i = right.degree; i >= 0; i−−)
{

(this −> ptr) [i] = right.ptr [i];
}
return *this;

}
// Addition operator
const Poly operator+ (const Poly& left, const Poly& right)
{

Poly result (max (left.degree , right.degree));
for (int i = result.degree; i >= 0; i−−)
{

if (i <= left.degree && i <= right.degree)
{

result.ptr [i] = left.ptr [i] + right.ptr[i];
}
else if (i <= left.degree && i > right.degree)
{

result.ptr [i] = left.ptr [i];
}
else
{

result.ptr [i] = right.ptr [i];
}

}
return result;

}
 // Subtraction operator
const Poly operator− (const Poly& left, const Poly& right)
{

Poly result (max (left.degree , right.degree));
for (int i = result.degree; i >= 0; i−−)
{

if (i <= left.degree && i <= right.degree)

(continued)

for23380_ch13_597-656.indd 648 06/11/18 2:47 pm

13.6 Designing	Classes 649

Program 13.17	 File	poly.cpp (Continued)

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

{
result.ptr [i] = left.ptr [i] - right.ptr[i];

}
else if (i <= left.degree && i > right.degree)
{

result.ptr [i] = left.ptr [i];
}
else
{

result.ptr [i] = -right.ptr [i];
}

}
return result;

}
// Multiplication operator
const Poly operator* (const Poly& left, const Poly& right)
{

int degree = left.degree + right.degree;
Poly result (degree);
for (int i = result.degree ; i >= 0; i−−)
{

result.ptr [i] = 0;
}
for (int i = left.degree; i >= 0; i−−)
{

for (int j = right.degree; j >= 0; j−−)
{

result.ptr [i + j] += (left.ptr [i] * right.ptr [j]);
}

}
return result;

}
// Quotient operator
const Poly operator/ (const Poly& left, const Poly& right)
{

Poly result (left.degree − right.degree);
Poly temp (left.degree);
temp = left;
int i = temp.degree;
int j = right.degree;
int k = i − j;
while (i >= j)
{

double coef = temp.ptr [i] / right.ptr [j];

(continued)

for23380_ch13_597-656.indd 649 06/11/18 2:47 pm

650 Chapter 13 Operator	Overloading

Program 13.17	 File	poly.cpp (Continued)

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Poly poly (k , coef);
temp = temp − (poly * right);
result = result + poly;
i−−;
k = i − j;

}
return result;

}
// Remainder operator
const Poly operator% (const Poly& left, const Poly& right)
{

Poly result (left.degree − right.degree − 1);
Poly temp (left.degree);
temp = left;
result = temp − (temp /right) * right;
return result;

}
// The << operator
ostream& operator<< (ostream& output, const Poly& poly)
{

string sign;
for (int i = poly.degree; i >= 0 ; i−−)
{

if (poly.ptr[i] > 0.0 || poly.ptr[i] < 0.0)
{

cout << fixed << showpos << setprecision (2);
cout << poly.ptr[i];
cout << noshowpos;
if (i != 0)
{

cout << "x^";
cout << i;

}
cout << " " ;

}
}
cout << endl;
return output;

}
// Helper function
int max (int x, int y)
{

if (x >= y)
{

(continued)

for23380_ch13_597-656.indd 650 06/11/18 2:47 pm

13.6 Designing	Classes 651

Program 13.17	 File	poly.cpp (Continued)

174
175
176
177
178
179
180
181
182
183
184
185
186
187

return x;
}
return y;

}
// A function to fill the coefficient of a polynomial
void Poly :: fill ()
{

for (int i = degree; i >= 0 ; i--)
{

cout << "Enter coefficient for exponent " << i << ": " ;
cin >> ptr[i];

}
cout << endl;

}

Application Program 13.18 shows an application for testing the operations we defined for
polynomials.

Program 13.18	 File	app.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The application file to test the Poly class *
 ***/

#include "poly.h"

int main ()
{

 // Constructing and filling two polynomials
Poly poly1 (5);
poly1.fill ();
Poly poly2 (2);
poly2.fill ();
 // Printing the value of the two polynomials
cout << "Printing the first two polynomials: " << endl;
cout << "Poly1 : " << poly1 << endl;
cout << "Poly2 : " << poly2 << endl;
 // Applying five operations to the two created polynomials
Poly poly3 = poly1 + poly2;
Poly poly4 = poly1 − poly2;
Poly poly5 = poly1 * poly2;
Poly poly6 = poly1 / poly2;
Poly poly7 = poly1 % poly2;
// Printing the result of operations

(continued)

for23380_ch13_597-656.indd 651 06/11/18 2:47 pm

652 Chapter 13 Operator	Overloading

Program 13.18	 File	app.cpp	

24
25
26
27
28
29
30
31

cout << "Printing the results of operations: " << endl;
cout << "Poly1 + Poly2: " << poly3 << endl;
cout << "Poly1 - Poly2: " << poly4 << endl
cout << "Poly1 * Poly2: " << poly5 << endl;
cout << "Poly1 / Poly2: " << poly6 << endl;
cout << "Poly1 % Poly2: " << poly7 << endl;
return 0;

}

Run:
Enter coefficient for degree 5: 4
Enter coefficient for degree 4: 0
Enter coefficient for degree 3: 2
Enter coefficient for degree 2: 5
Enter coefficient for degree 1: 1
Enter coefficient for degree 0: 4

Enter coefficient for degree 2: 2
Enter coefficient for degree 1: 0
Enter coefficient for degree 0: 6

Printing the first two polynomials:
Poly1 : +4.00x^5 +2.00x^3 +5.00x^2 +1.00x^1 +4.00
Poly2 : +2.00x^2 +6.00

Printing the result of operations:
Poly1 + Poly2: +4.00x^5 +2.00x^3 +7.00x^2 +1.00x^1 +10.00
Poly1 − Poly2: +4.00x^5 +2.00x^3 +3.00x^2 +1.00x^1 −2.00
Poly1 * Poly2: +8.00x^7 +28.00x^5 +10.00x^4 +14.00x^3 +38.00x^2 +6.00x^1 +24.00
Poly1 / Poly2: +2.00x^3 −5.00x^1 +2.50
Poly1 % Poly2: +31.00x^1 −11.00

Note that multiplying the quotient (Poly1 / Poly2) by divisor (Poly2) and adding the
result to remainder (Poly1 % Poly2) should give us the dividend (Poly1).

K e y T e r m s

friend function
function call operator
host object
operator function
operator overloading
parameter object
pass-by-pointer

pass-by-reference
pass-by-value
return-by-pointer
return-by-reference
return-by-value
smart pointer
this pointer

for23380_ch13_597-656.indd 652 06/11/18 2:47 pm

Problems 653

Objects of user-defined types can play three different roles in a function: host object, param-
eter object, and returned object. A non-static member function needs to be called through an
instance of the class, which is named the host object. A parameter object can be passed to
the member function using pass-by-value, pass-by-reference, or pass-by-pointer. A member
function can also return an object.

We can divide the operators in C++ into three categories: non-overloadable, not rec-
ommended for overloading, and overloadable. We need be aware that we cannot change
the precedence, the associativity, the commutativity, and the arity of the operator to be
overloaded. We also need to know that we cannot create new operator symbols or combine
the symbols of existing operators to create a new one. To overload an operator for a user-
defined data type, we need to write a function named operator function, a function that acts
as an operator.

We showed how to overload some operators as a member function. To overload an
operator as a non-member function, we have two choices: overloading as a global func-
tion or as a friend function. We used the second option. A friend function is a function
that is granted friendship from a class; it can access the private data members of the
class.

S u m m a r y

P r o b l e m s

PR-1. Given that Fun is the name of a class, identify any errors in the following
prototype unary operator function:

Fun operator+ ();

PR-2. Given that Fun is the name of a class, identify any errors in the following
prototype unary function:

Fun operator? (int x, int y, int z)

PR-3. Given that Fun is the name of a class, identify any errors in the following
prototype binary operator function:

void operator+ (const Fun& fun, const Fun& fun);

PR-4. Given that Fun is the name of a class, identify any errors in the following operator
overloading prototype:

double operator [] (int x, int y);

PR-5. Given that Fun is the name of a class, identify any errors in the following operator
overloading prototype:

void operator() (int x, int y);

PR-6. Given that Fun is the name of a class, what is the difference between the
prototypes of two overloaded operators shown below? Can they both be present in
the Fun class?

Fun operator += (const Fun& fun);
Fun operator += (int x);

for23380_ch13_597-656.indd 653 06/11/18 2:47 pm

654 Chapter 13 Operator	Overloading

PR-7. Assume that fun1, fun2 are objects defined in class Fun. Write the operator
function declaration for the following operations.

a. fun1 += fun2
b. fun2 = fun1
c. fun1++
d. fun1 (a)

PR-8. Write a function that overloads the compound addition operator (+=) for the
following class.

class Sample
{

private:
int value;

public:
Sample (int value);
~Sample();
…

}

PR-9. Write the declarations for the interface file in the class Matrix (Program 13.16) to
overload the +=, −=, *= operators. The first operator adds a given integer to each
element. The second operator subtracts the given integer from each element. The
third operator multiplies each element by the given integer.

PR-10. Give the extra code for the implementation file in the class Matrix (Program 13.17)
to add the operators defined in PR-9.

PR-11. Write the code for the application file in the class Matrix (Program 13.18) to add
the operators defined in PR-10.

P r o g r a m s

PRG-1. Create a class named Time that defines a point in time in terms of hours,
minutes, and seconds and specifies AM or PM. Hours can be between 1 and
12, minutes can be between 1 and 59, and seconds can also be between 1 and
59. Also define an integer that can be 0 or 1 to represent AM or PM. Create a
default constructor that sets the time to midnight. Overload the prefix ++ to
add one second to the time (representing each tick of the clock). Overload the
operator() to find the duration of time from midnight in seconds. Overload the
operator += to add a duration of times (in seconds) to get a new point of time.

PRG-2. Design a Complex class representing complex numbers. A complex number in
mathematics is defined as x + iy where x defines the real part of the number
and y is the imaginary part. The letter i represents the square root of −1 (which
means i2 is −1). Include operator functions to overload the operators +=, −=,
*=, /= and the << operator for the class. Note that the following relationships
exist between two complex numbers:

(x1 + i y1) + (x2 + i y2) = (x1 + x2) + i (y1 + y2)
(x1 + i y1) − (x2 + i y2) = (x1 − x2) + i (y1 − y1)
(x1 + i y1) * (x2 + i y2) = (x1x2 − y1y2) + i (x1y2 + x2y1)
(x1 + i y1) / (x2 + i y2) = ((x1x2 + y1y2) + i (−x1y2 + x2y1)) / denominator
denominator = x2

2 + y2
2

for23380_ch13_597-656.indd 654 06/11/18 2:47 pm

Programs 655

PRG-3. Redesign the Complex class (see PRG-2), but overload only the operators +, −,
*, /, and << for the class.

PRG-4. Declare and define a class Set representing a set of integers. A set is a collection
of data without repetition or ordering. The class should have only private data
members: a pointer to a dynamically allocated array of integers and an integer
that holds the size of the set. The following shows the operators to be defined
for a set.

set_union (first, second)

set_difference (first, second) set_difference (second, first)

set_intersection (first, second)

first second

11 13 14 16 20

11 16 20

11 16 20

10 13 14 17 19

1413 141310 17 19

10 17 19

 Your solution must include an interface file, an implementation file, and an
application file. It should have the following methods:

a. A constructor to create an empty set.
b. A destructor.
c. A function to add an element to the set (overload the += operator).
d. A function to remove an element from the set (overload the −= operator).
e. A binary friend function to get the intersection of two sets (overload the

* operator).
f. A binary friend function to get the union of two sets (overload the +

operator).
g. A binary friend function to determine the difference of two sets (overload

the – operator).
h. A function to print the contents of a set.

PRG-5. Create a class Money that represents a money valuer (combination of dollars and
cents). Overload the binary plus operator to add two money values to get a new
one. Overload the binary minus operator to subtract a money value from a larger
value to get a new one. Also overload the *= operator to multiply a money value
by an integer and /= operator to divide a money value by an integer.

PRG-6. Redesign the Money class by overloading only the relational operators (<, >,
==, and !=) to compare the two Money objects.

PRG-7. In Chapter 9 we designed a class Pascal to define the value of all terms for a
given n. Another approach is to overload the function call operator to find the
coefficient of any term. For example, the coefficient of x5y3 can be found using
the call to operator() (5, 3). Use the fact that the coefficient of a term can be
found as shown below:

coefficient of xiyj = factorial (i + j) / (factorial (i) * factorial (j))

for23380_ch13_597-656.indd 655 06/11/18 2:47 pm

656 Chapter 13 Operator	Overloading

PRG-8. Design a BigInteger class that handles integers of arbitrary sizes given as a
string of digits such as “345672134579098765”. Use the following guide lines:

a. Use the popBack and pushFront functions we defined for strings in Chapter 10
to extract the rightmost digit of a big integer or to insert a digit at the left of an
integer.

b. Overload the << operator to print a big integer.
c. Overload the + operator to add two big integers. Note that when we add two

digits in mathematics, we may have a carry (digit 1). For example, adding
integers 7 and 8 results in 5 with a carry to be added to the next column.

d. Overload the − operator to subtract one integer from another. Note that when
we subtract one digit from another one, we may have a borrow (digit 1). For
example, subtracting integers 7 from 5 results in 8 with a borrow to be used
in the next column. Note that if the first integer is smaller than the second,
the result of subtraction must be complemented to give a negative integer.

e. It is easier to add leading zeros to integers to make their size the same in add-
ing and subtracting and to remove leading zeros when printing the result.

for23380_ch13_597-656.indd 656 06/11/18 2:47 pm

657

14.1 INTRODUCTION
When we write source code, we expect that there could be some errors during the compilation.
Many new programmers, however, think that if a program compiles successfully, everything
is fine. Experienced programmers, on the other hand, are not happy until they test each pro-
gram with a predetermined set of test data. Even when a complete scheduled testing phase is
used, an occasional error can occur when the program is run. An error like this is referred to as
an exception because it is rare. The subject of this chapter is how to handle these exceptions.

14.1.1 Traditional Approaches to Error Handling
Run-time errors are problematic. If there are no syntactical errors, the program will be com-
piled, but a run-time error occurs that prevents the continuation of the program with the
result that the program must be aborted. There are several approaches that are often used to
deal with run-time errors. We discuss four here.

In this chapter we concentrate on exception handling, which is the C++ terminology for
error handling. We define the concept and then show how it can be implemented using
classes. We also discuss library exceptional classes, which can be used in our programs.

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss traditional approaches to error handling.

•	Discuss exception handling in a function using three different patterns that use try-catch
block and throw statements.

•	Discuss exception specifications to define what type of an exception a function can throw,
including any exception, predefined exceptions, and no exception.

•	Discuss the process of stack unwinding and its effect on catching exceptions.

•	Discuss exceptions in classes and how exceptions should be handled in constructors using a
version of try-catch block called function-try block.

•	Emphasize that we should avoid exceptions in destructors because they undermine the
process of stack unwinding.

•	Discuss the general layout and format of standard exception classes in C++, and discuss their
public interfaces and their purposes.

•	Show how we can create our own exception classes that are inherited from the standard
exception classes.

14 Exception Handling

for23380_ch14_657-692.indd 657 02/11/18 5:20 pm

658 Chapter 14 Exception	Handling

Let Run-Time Environment Abort the Program
The first approach is to do nothing and let the program terminate when there is an exception.

EXAMPLE 14.1
In this example we write a simple program that takes two integers from the user, divides
the first by the second, and prints the result. The program repeats the calculations up to five
times, as shown in Program 14.1.

The program compiles with no errors because there are no compile-time errors.
When we run the program, the loop is supposed to repeat five times, taking five pairs of
integers, dividing the first by the second, and printing the result. Everything goes well
with the first and second iterations, but in the third iteration, the program aborted (with-
out an error message) because we entered 0 for the second integer and the C++ run-time
system does not allow division by 0. The loop is prematurely terminated and the program
is aborted.

Program 14.1	 Dividing	two	integers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The program shows how division by zero aborts the program. *
 ***/

#include <iostream>
using namespace std;

int main ()
{

int num1, num2, result;
for (int i = 0; i < 5; i++)
{

cout << "Enter an integer: ";
cin >> num1;
cout << "Enter another integer: ";
cin >> num2;
result = num1 / num2; // The statement that may create exception.
cout << "The result of division is: " << result << endl;

}
return 0;

}

Run:
Enter an integer: 12
Enter another integer: 5
The result of division is: 2
Enter an integer: 10
Enter another integer: 3
The result of division is: 3
Enter an integer: 6
Enter another integer: 0

for23380_ch14_657-692.indd 658 02/11/18 5:20 pm

14.1 Introduction 659

Ask Run-Time Environment to Abort the Program
A second approach is to test for possible errors. The advantage of this approach is that a
message can be printed to explain what caused the program to abort.

EXAMPLE 14.2
In this example we repeat the previous program but check the value of the divisor in each
iteration and abort the program with a message if the divisor is zero (Program 14.2).

Program 14.2	 Forcing	abortion	in	division

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* A program that aborts with an error message *
 ***/

#include <iostream>
#include <cassert>
using namespace std;

int main ()
{

int num1, num2, result;
for (int i = 0; i < 5; i++)
{

cout << "Enter an integer: ";
cin >> num1;
cout << "Enter another integer: ";
cin >> num2;
if (num2 == 0)
{

cout << "No division by zero!. Program is aborted." << endl;
assert (false);

}
result = num1 / num2;
cout << "The result of division is: " << result << endl;

}
return 0;

}

Run:
Enter an integer: 8
Enter another integer: 3
The result of division is: 2
Enter an integer: 9
Enter another integer: 6
The result of division is: 1
Enter an integer: 7
Enter another integer: 0
No division by zero. Program is aborted.

for23380_ch14_657-692.indd 659 02/11/18 5:20 pm

660 Chapter 14 Exception	Handling

After two iterations, the program is aborted, but we print a message that explains what
happened. Again the program is aborted by the run-time environment, but we told the run-
time system to abort it by using the assert macro.

Use Error Checking
A third approach is to check the value of the second number in each iteration and skip the
division if it is zero. This is preferred to the previous two methods because we can skip the
cases in which the second number is zero and continue with the other cases.

EXAMPLE 14.3
Since we know that the program will be aborted if the divisor is zero, we can use an ifelse
statement and perform the division only if the divisor is not zero. Program 14.3 shows this
approach.

Program 14.3	 A	traditional	error-checking	program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* A program that uses traditional error checking to prevent *
* program abortion *
 ***/

#include <iostream>
using namespace std;

int main ()
{

int num1, num2, result;
for (int i = 0; i < 4; i++)
{

cout << "Enter an integer: ";
cin >> num1;
cout << "Enter another integer: ";
cin >> num2;
if (num2 == 0)
{

cout << "Division cannot be done in this case." << endl;
}
else
{

result = num1 / num2;
cout << "The result of division is: " << result << endl;

}
}
return 0;

}

(continued)

for23380_ch14_657-692.indd 660 02/11/18 5:20 pm

14.1 Introduction 661

Program 14.4	 Error	checking	using	a	function		

1
2
3
4
5
6
7
8
9

10

/***
* A program that uses the return value of a function to show *
* the occurrence of a run-time error *
 ***/

#include <iostream>
using namespace std;

// Function declaration
int quotient (int first, int second);

Program 14.3	 A	traditional	error-checking	program (Continued)

Run:
Enter an integer: 8
Enter another integer: 2
The result of division is: 4
Enter an integer: 7
Enter another integer: 1
The result of division is: 7
Enter an integer: 8
Enter another integer: 0
Division cannot be done in this case.
Enter an integer: 9
Enter another integer: 7
The result of division is: 1

The calculation is done in the highlighted section of the program (lines 17 to 25). If
the calculation cannot be done, it is skipped. The loop continues with the rest of the data.

Using Function Return Value for Error Checking
A fourth approach involves functions. Execution of a statement in a C++ program always
occurs in a function, not outside a function. We may initialize variables outside a function (in
the global area), but initialization is not execution; if there is a problem with the initialization,
it is detected by the compiler. Since execution always occurs in a function, we can say that
the run-time error always occurs in a function. In procedural programming in the past, it was
customary to perform each calculation in a function and to check for errors by checking the
return value of the function. An example is the main function, which returns 0 if there is no
problem and returns other values if there is a problem. Programmers in the past used this idea
and designed programs in which each function returned a specific value if there was an error.

EXAMPLE 14.4
In this example we rewrite out previous program using the return value of a function for
error checking, as shown in Program 14.4.

(continued)

for23380_ch14_657-692.indd 661 02/11/18 5:20 pm

662 Chapter 14 Exception	Handling

Program 14.4	 Error	checking	using	a	function (Continued)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

int main ()
{

int num1, num2, result;
for (int i = 0; i < 3; i++)
{

cout << "Enter an integer: ";
cin >> num1;
cout << "Enter another integer: ";
cin >> num2;
result = quotient (num1, num2);
if (result == −1)
{

cout << "Error, division by zero." << endl;
}
else
{

cout << "Result of division is: " << result << endl;
}

}
return 0;

}

// Function definition
int quotient (int first, int second)
{

if (second == 0)
{

return −1;
}
return (first / second);

}

Run:
Enter an integer: 6
Enter another integer: 5
The result of division is: 1
Enter an integer: 7
Enter another integer: 0
Error, division by zero.
Enter an integer: 8
Enter another integer: 2
The result of division is: 4

Note that when the quotient is zero, the program prints an error message instead of
printing the result of the calculation.

for23380_ch14_657-692.indd 662 02/11/18 5:20 pm

14.1 Introduction 663

Problems with Traditional Approaches
We analyze these approaches to see why we need a new approach (exception handling).

1. The first approach is the worst. We let the program abort without any warning.
2. The second approach is better; the program will still abort, but the user will be

notified.
3. The third approach is better than the first two because the pair that would cause the

program to abort is ignored, and the program continues with the rest of the data. The
problem with this approach is that the code for handling an error is mingled with
the productive code of the program. In other words, the problem here is coupling.
The error-handling code is so coupled with the code to do the job that it is difficult
to distinguish between them.

4. The fourth approach is the best, but it cannot be applied in all cases. In addition, the
principle of modular programming dictates that the return value of a function be used
only for one purpose, not two. In this case, one value (−1) is used to report an error;
other values are used to return the result of the calculation.

14.1.2 Exception Handling Approach
To avoid the four problems mentioned in the previous section, C++ developed the exception
handling approach. In this approach, the run-time system detects the error, but it does not
abort the program. It lets the program handle the error.

In the exception handling approach, the run-time error is detected, but
the program handles the error and aborts the program only if necessary.

When using this approach, we still need to add extra code, but the code for error han-
dling is not coupled with code that helps us follow the logic of the program. The code to
detect and handle errors has a standard pattern that must be followed, and every C++ pro-
grammer should know how to handle it.

Try-Catch Block
The exception handling approach in C++ uses what is called the try-catch block. This block
is made of two clauses. The first clause, which is called the try clause, includes the code that
may cause the program to abort. The run-time environment tries to execute the code. If the
code can be executed, the program flow continues. If the code cannot be executed, the sys-
tem throws an exception (an object of a fundamental type or a class), but it does not abort the
program. The second clause, called the catch clause, lets the program handle the exception
and continue with the rest of program if possible.

Figure 14.1 shows the simple try-catch block. Later in the chapter, we will see that
try-catch blocks can have more than one catch clause.

Figure 14.2 shows the two versions of the throw operator. The first is used to throw an
exception; the second is used to rethrow an exception (we will discuss the second version
later in this chapter).

Note that the expression shown in Figure 14.2 has no return value. It is called only for
its side effect, which is throwing an exception. It is usually changed to an expression state-
ment by adding a semicolon after the expression.

for23380_ch14_657-692.indd 663 02/11/18 5:20 pm

664 Chapter 14 Exception	Handling

Three Patterns
There are three patterns commonly used with exception handling approaches.

First Pattern In the first pattern, the try-catch block is completely contained in one func-
tion. If an exception is thrown, the rest of the try clause after the throw statement is ignored
and control moves to the catch clause. The function continues after the catch clause unless
the program is aborted in the catch clause. Figure 14.3 shows this pattern.

try
Notes:
The try clause detects the possibility
of error and throws an exception object.
The catch clause handles the exception
to prevent abortion.
The two clauses must be one after
the other without any code in between;
they belong to the same block.

{

}

catch (Type variable)
{

}

Code that may create exception

Code that handles exception

Figure 14.1	 A	simple	try-catch	block

throwthrows
object

expression

It throws an object
passed as its operand.

throwrethrows
object

It rethrows the object
received in the block.

Figure 14.2	 Using	a	throw	expression	to	throw	an	object	
(exception)

Figure 14.3	 Try-catch	block	in	the	calling	function

Legend:int main ()

return 0;
}

{

}

{
catch (type variable)

try

throw value;
}

{ Exception

Note:
The throw statement is directly
enclosed in the try block.

No exception

for23380_ch14_657-692.indd 664 02/11/18 5:20 pm

14.1 Introduction 665

Note that in this case the throw statement is enclosed in a try clause. This pattern
is rare.

EXAMPLE 14.5
We repeat Program 14.3 using the try-catch block to see the similarity between the tra-
ditional error checking and the exception handling approach (Program 14.5). Note that
exception handling in this case means ignoring only the pair of integers that caused excep-
tion and continuing with the program. Later in this chapter we see that exception handling
may need other actions.

Program 14.5	 Using	a	try-catch	block	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/***
* A program that uses the try-catch block to detect an error *
* and throw it to be caught and handled by the program *
 ***/

#include <iostream>
using namespace std;

int main ()
{

int num1, num2, result;
for (int i = 0; i < 3; i++)
{

cout << "Enter an integer: ";
cin >> num1;
cout << "Enter another integer: ";
cin >> num2;
// The try-catch block
try
{

if (num2 == 0)
{

throw 0; // An object of type integer is thrown
}
result = num1 /num2;
cout << "The result is: " << result << endl;

}
catch (int x)
{

cout << "Division by zero cannot be performed." << endl;
}

}
return 0;

}

(continued)

for23380_ch14_657-692.indd 665 02/11/18 5:20 pm

666 Chapter 14 Exception	Handling

Program 14.5	 Using	a	try-catch	block (Continued)

Run:
Enter an integer: 6
Enter another integer: 5
The result is: 1
Enter an integer: 7
Enter another integer: 0
Division by zero cannot be performed.
Enter an integer: 8
Enter another integer: 2
The result is: 4

In this program, the try-catch block (lines 18 to 30) is highlighted. There are several
points that we must explain. The try clause includes the code that we suspect will create a
run-time error. We provide the logic, in this case a decision statement, to throw the excep-
tion. If an exception is thrown, control transfers to the catch clause. If this happens. the
exception must be an object of a built-in type or user-defined type. We have decided to
throw an object of type int in this case (of value 0). If no exception is thrown, lines 24 and
25 are executed and the catch clause is ignored. Also note that the catch clause looks like a
function with one parameter of the type of the exception object, but it is not a function. It is
a clause in the try-catch block. Its parameter (x) is a variable of type integer. The program
output follows Program 14.4.

Second Pattern In the second pattern, the try-catch block is still in main, but the excep-
tion is thrown in another function that is called in the try clause. The throw statement in this
case is in the called function. When an exception is thrown, the rest of the code in the called
function is ignored and the program flow moves to the catch block in the calling function.
Figure 14.4 shows this pattern.

int main

return 0;
}

{

}

{
catch (type variable)

try

aFunction (...);
}

{

}

{

throw exception_value;

type aFunction (. . .)

return type_value;

Calling function

Called function

Legend:
Function call
Normal return
Exception thrown

Figure 14.4	 Second	pattern	(throw	in	called	function)

for23380_ch14_657-692.indd 666 02/11/18 5:20 pm

14.1 Introduction 667

The second pattern is preferred because it follows the structural programming prin-
ciple of dividing the tasks. The task of the operation is defined in the called function, and it
will throw an exception if there is a problem. The task of exception handling is in the calling
function.

When we put the throw statement in a function, we create two different return points in
the called function. If no exception is thrown, the called function will return when it reaches
the return statement and the program flow goes back to the calling function. In this case, the
catch clause is ignored. If an exception is thrown, the called function is terminated prema-
turely and the program flow returns to the catch clause in the calling function.

Figure 14.4 demonstrates another advantage of using exception handlers. We do not
have to return two values from a function, one for success and one for error. In the case of
an error, the exception is thrown and the function is terminated.

Is the throw statement in this pattern also enclosed in a try clause? The answer is yes,
but the inclusion is indirect. The try clause encloses the called function, and the called func-
tion encloses the throw statement.

EXAMPLE 14.6
In this example we rewrite the previous program using the second pattern. The task of calculat-
ing the quotient belongs to a function called quotient, which throws an exception of type int if
there is a problem. The main function is only responsible for calling the quotient and catching
and handling the exception if thrown. Note that in this case catching the exception just means
ignoring the pair of integers and continuing with the next pair. Program 14.6 shows the case.

Program 14.6	 Detecting	an	exception	thrown	by	a	function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* A program that uses the try-catch block to detect an error *
* thrown by a function *
 ***/

#include <iostream>
using namespace std;

int quotient (int first, int second); // Function declaration

int main ()
{

int num1, num2, result;
for (int i = 0; i < 3; i++)
{

cout << "Enter an integer: ";
cin >> num1;
cout << "Enter another integer: ";
cin >> num2;
// The try-catch block
try
{

cout << "Result: " << quotient (num1, num2) << endl;

(continued)

for23380_ch14_657-692.indd 667 02/11/18 5:20 pm

668 Chapter 14 Exception	Handling

Program 14.6	 Detecting	an	exception	thrown	by	a	function (Continued)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

}
catch (int ex)
{

cout << "Division by zero cannot be performed." << endl;
}

}
return 0;

}
// Function definition
int quotient (int first, int second)
{

if (second == 0)
{

throw 0;
}
return first / second;

}

Run:
Enter an integer: 12
Enter another integer: 4
Result: 3
Enter an integer: 16
Enter another integer: 0
Division by zero cannot be performed.
Enter an integer: 7
Enter another integer: 2
Result: 3

This pattern allows a function to throw an exception to its caller. In other words, the
responsibility for throwing an exception and handling an exception is divided between the
called function and the calling function. We create a function; we do not need to reveal its
code; we can just tell users what it does (public interface) and tell them what possible excep-
tions it may throw. The responsibility of the users is to catch and handle the exception. This
benefit is evident in the case of library functions.

One of the advantages of the exception handling approach
is that we can design functions that can throw an exception. It is

the responsibility of the caller to handle the exception.

Third Pattern Sometimes we need a try-catch block in the called function. This may occur
when the called function belongs to an independent entity (such as a member function in a
class). When a function is called by another function, if an exception is caught and handled,
we have two cases.

for23380_ch14_657-692.indd 668 02/11/18 5:20 pm

14.1 Introduction 669

1. The called function can continue with the rest of its code and return to the calling
function when it is finished. This is the first pattern in which the called function acts
independently with relation to exception handling.

2. The called function cannot continue with the rest of its code. The control, however,
must return to the calling function. Otherwise, the program must be aborted. This is the
third pattern. We need to have the try-catch block in both functions. The catch clause
rethrows the exception to the calling function so it can be caught there. Figure 14.5
shows this pattern.

Position of Throw Statement
A throw statement must be enclosed in a try clause, either directly or indirectly, to catch
the exception. When the throw statement is explicitly inside a try clause, the enclosure is
direct (first pattern); when it is inside a function that is called in a try clause, the enclosure
is indirect (second pattern). The third pattern we discussed is a special case in which there
are two throw statements. Figure 14.6 shows the difference between the direct and indirect
try clauses.

Calling function Called function

int main

return 0;
}

{

}

{
catch (type variable)

try

aFunction (...);

}

{

type aFunction (. . .)

return type_value;
}

{

}

{
catch (type variable)

try

}

{

throw value;

throw;

Note:
We have only one actual throw statement, which is enclosed in its own try block.
The second throw statement simply rethrows the previous one.

Legend:
Normal return Exception thrownFunction call

Figure 14.5	 Third	pattern	(try-catch	block	in	both	the	calling	and	called	
functions)

Direct enclosure Indirect enclosure

}

type aFunction (. . .)
{

throw value;

try

}

{
throw value;

try

}

{
aFuntion ();

Figure 14.6	 Direct	and	indirect	enclosure	of	the	throw	statement	

for23380_ch14_657-692.indd 669 02/11/18 5:20 pm

670 Chapter 14 Exception	Handling

Hidden Throw Statement
Sometimes we see a try-catch block, but we cannot see the throw statement. This happens
when we use a predefined or a library function whose definition we cannot see. We just see
the function call in a try clause, but the function definition contains a throw statement. For
example, some string member functions, such as the at() function, throws an exception if the
index is out of range. When we call this function in our program, we may need to enclose the
call in a try-catch block to catch the exception and prevent program abortion.

Multiple Catch Clauses
Figure 14.7 shows a situation in which a function may throw two different types of excep-
tions. Since the handling for each type may be different, we can have two types of catch
clauses.

Generic Catch Clause
A catch clause may only catch exceptions of its parameter type. A catch clause of an
integer type cannot catch an exception of a floating-point type when it is thrown. If we
want to catch any type of exception, we can use an ellipsis as the parameter in the catch
clause. In this case, if specific exception types need to be handled differently, the generic
(any type) catch clause is coded as the last catch clause. The following shows such a
try-catch block.

try
{

…
}
catch (int x) // Specific type catch
{

…
}
catch (…) // Ellipsis means any exception type
{

…
}

Note:

If a value of type1 is thrown, only
the first catch clause is executed and
the second is skipped. If a type2 value
is thrown, the first catch clause is
skipped and the second catch clause
is executed.

try
{

}

catch (type1 obj1)
{

}

throw value1;

throw value2;

Handle exception

catch (type2 obj2)
{

}
Handle exception

Legend:
value1 is thrown
value2 is thrown

Figure 14.7	 A	try-catch	block	with	multiple	catch	clauses

for23380_ch14_657-692.indd 670 02/11/18 5:20 pm

14.1 Introduction 671

Exception Propagation
A function may throw an exception, but this does not mean that the exception should be
necessarily caught and handled in the same function where it has been thrown. If an excep-
tion is not caught and handled where it has been thrown, it will be automatically propagated
to the previous function in the hierarchy of function calls until one of the functions in the
path captures and handles it. The last function in which a thrown exception can be caught
and handled is the main function. If the exception is not caught and handled by the main
function, it will be propagated to the run-time system, where it is caught and causes the
main function to be aborted, which aborts the whole program. This process is known as
exception propagation. Figure 14.8 shows the path of function calls and the path of ex-
ception propagation in three functions: main is called by run-time system, first is called by
main, and second is called by first.

An exception is thrown (explicitly or implicitly) in second and is not caught. The
exception is propagated to first, where it is not caught. The exception is finally propagated to
the run-time system, where it is caught and the program is terminated. If any of the functions
(second, first, or main) use the try-catch block and handle the propagation, the exception
does not reach the run-time system and the program is not aborted.

Note that second is terminated where the exception is thrown, first is terminated
at the point where second is called, and main is terminated where first is called. This
means that somewhere in the backward path we must have the try-catch block to handle
the exception before it reaches the run-time system. That is exactly what we did in
Program 14.6. The exception was thrown in the quotient function, but we caught and
handled it in the main function before it reached the run-time systems, which would
have aborted the program.

Rethrowing an Exception
We briefly discussed rethrowing an exception in Pattern 3. It is possible that a catch
clause cannot or does not want to handle the exception either partially or totally. In this
case, the exception can be rethrown to the function one level up. This may happen when
we need to free memory, close a network connection, or perform another maintenance
activity before handling the exception. We perform the maintenance and then rethrow
the exception to be handled by the calling function. To rethrow an exception, we use
the throw operator without any operand. The following is an example of rethrowing an
exception.

Run-
time

system

void second (...)

throw exception

{

}

void first (...)

second ()

{

}

int main ()

first ()

{

}

1
2

3

Legend:
Function call Exception propagation

Figure 14.8	 Exception	propagation

for23380_ch14_657-692.indd 671 02/11/18 5:20 pm

672 Chapter 14 Exception	Handling

try
{

…
}
catch (type variable)
{

… // Some work
throw; // Re-throw the exception to the calling function

}

14.1.3 Exception Specification
When we write a function for our own use, we know what type of exception can be thrown in
the function and we can create the appropriate try-catch block in the calling function. How-
ever, if we write a function to be used by others, we normally give the user only the signature
of the function as the public interface. In other words, the user has no knowledge of the body
of the function and what exceptions can be thrown. In this case, it is recommended that an
expression in the function header be added to tell the user what type of thrown objects to
use if she wants to catch an exception in the calling function. For this purpose, we can say
that a function can be designed in one of three ways: any exception, predefined exceptions.

Any Exception
If there is no specification, the function looks like the ones we have written so far. This
means that the function can throw any exception. To find out what exception is thrown, we
look at the body of the function. This is not suitable for functions that are designed by one
entity and used by another such as a library function. The following shows the format of the
prototype for this type of a function.

type functionName (parameters); // Prototype with no specification

In Program 14.6 we used this type of function. The quotient function can throw any
exception. Since we have designed and used the function, we know that it throws an excep-
tion of type int.

int quotient (int first, int second); // Function declaration

Predefined Exceptions
If the designer and the user of the function are different, we must define the exceptions
thrown by the function in the header of the function (which is copied in the declaration).
The syntax for this type of a function is shown below. The header of the function defines the
types of all exception objects that may be thrown from the function.

type functionName (parameters) throw (type1, type2, ..., typen);

We could have added a predefined specification to show that our quotient function may
throw an exception of type int as shown below:

int quotient (int first, int second) throw (int); // Function declaration

for23380_ch14_657-692.indd 672 02/11/18 5:20 pm

14.1 Introduction 673

No Exception
The third possibility is to declare to the user that this function does not throw an exception,
which means that the user does not need to use a try-catch block. The syntax for this type
of a function is shown below. The header of the function uses the throw keyword, but the
parentheses are empty.

type functionName (parameters) throw ();

The following shows an example of this specification. If a function is supposed to print two
integers, there are no error conditions and exception handling is unnecessary.

int print (int first, int second) throw (); // Function declaration

14.1.4 Stack Unwinding
One of the most important concepts in exception handling is stack unwinding. Stack un-
winding is closely related to managing the memory assigned to a program.

Program Memory
In Chapter 9 we discussed that when a C++ program starts running, the runtime system des-
ignates four areas of memory for the program: code memory, static memory, stack memory,
and heap memory. The code memory (program memory) holds the instructions of the pro-
gram executed during the program run time. The static memory stores the value of static
variables and global variables. These values are separated from the local variables. The stack
memory is a last-in-first-out memory similar to the stacks of trays we see in a restaurant.
The last tray pushed into the stack is the first one to be popped out. The stack memory is
responsible for keeping track of three types of information about each function: values of
parameters, values of local variables, and the return address of the calling function in code
memory. The heap memory is free memory that is used by a program to store information
that may outlast the life of a function.

Pushing and Popping Stack Memory
Exception handling is based on the behavior of stack memory. Each program is made of
a set of functions that may call each other. During a function call, data about the calling
function, such as parameters, local variables, and the return address, are pushed into stack
memory. The return address is used when the function terminates normally or abnormally
(by throwing an exception). Figure 14.9 shows how data are pushed into the stack during a
function call.

In the example shown in Figure 14.9, the main function is pushed into the stack, there
are no parameters except the local variable (x), and the address of the instruction that called
the main function in the RTE is pushed in the stack. When the main function calls function1,
the parameter of the function1 (xx), the local variable (y), and the address of the function
call instruction (107) are pushed into the stack. Similarly, when function1 calls function2,
the parameter of function2 (yy), the local variable of function2 (z), and the address of the
function call (244) are stored in the stack. Now the stack has three entries because of three
function calls. Note that each parameter entry can have zero or more parameters and each
local-variable record can have zero or more variables.

for23380_ch14_657-692.indd 673 02/11/18 5:20 pm

674 Chapter 14 Exception	Handling

Figure 14.10 shows how the information is popped from the stack during the return
from each function. This is referred to as stack unwinding.

Stack unwinding also occurs when an exception is thrown and control returns to the
calling function. In other words, the running function immediately pops the last entry on the
stack when an exception is thrown instead of waiting to reach the end of the function.

Effects of Stack Unwinding
The most important effect of stack unwinding is that when a function returns or terminates,
the corresponding entry is popped from the stack and the parameters and local objects are
destroyed. If the parameters or objects are instances of classes, their destructors are auto-
matically called for destruction.

 This makes a big difference when we design our objects in a program. If an object is
created as a parameter or local object, we do not have to worry about its destruction after a
function ends or is terminated due to an exception. But if we design our object in the heap,
the object may not be deleted after a termination and we will end up with a memory leak.

}

{
int main ()

return 0;

function1 (x);

int x;

push
push

push
}

{
int function1 (int xx)

return ... ;

function2 (y);

int y;

}

{

return ... ;

int function2 (int yy)

int z;

Stack Stack Stack

RTE: Run-time environment

10
7

107 and 244 addresses in code memory

24
4 RTE

RTEx RTEx
107yxx

RTEx
107y xx

z yy 244

Direction of pushing into stack

Figure 14.9	 Pushing	function	information	into	the	stack

}

{
int main ()

return 0;

function1 (x);

int x;

pop
poppop

}

{
int function1 (int xx)

return ... ;

function2 (y);

int y;

}

{

return ... ;

int function2 (int yy)

int z;

Stack Stack Stack

RTE: Run-time environment

Direction of popping from stack

10
7

107 and 244 addresses in code memory

24
4 RTE

RTEx RTEx

107yxx

RTEx

107yxx

zyy 244

Figure 14.10	 How	information	is	popped	up	from	the	stack	

for23380_ch14_657-692.indd 674 02/11/18 5:20 pm

14.2 Exceptions	in	Classes 675

Popping of entries from stack memory due to a function return
or a thrown exception is referred to as stack unwinding.

During stack unwinding, the parameters and local objects of the
function are automatically destroyed by calling their destructors.

To avoid memory leak, we must make our objects local
to the function in which they are defined.

In the next section, we will see that we wrap objects created in the heap inside a local
object to ensure that heap objects are destroyed.

14.2 EXCEPTIONS IN CLASSES
An exception may be thrown in any function defined in a class. Although handling excep-
tions in member functions other than constructors and destructors is the same as handling
the exceptions in a stand-alone function, we must be careful about exceptions in constructors
and destructors.

14.2.1 Exception in Constructors
A constructor is a function, but it is different from a regular function in that it is designed to
create and initialize an object. Before we learn how to catch an exception in a constructor, let
us see what happens when an exception is thrown in a constructor. We consider two cases.
In the first, the object is totally created in stack memory; in the second, it is partially created
in heap memory.

Creation of Objects in the Stack
We consider two cases. In the first case, no exception is thrown in the constructor. In the sec-
ond case, an exception is thrown in the constructor. We assume that we have a class named
Integer that stores one single integer. This type of a class is referred to as a wrapper class and
is common in object-oriented programming.

Case 1: No Exception Is Thrown in Constructor When we are using stack memory for
storing an object, the object is created on the top of the stack when the constructor is called
and it is destroyed when the destructor completes. Calling the constructor creates the object
on the top of the stack; the execution of the constructor initializes the object and allocates
resources, if any. On the other hand, when the destructor is called, the resources are released
during the execution of the destructor and then the object is popped and destroyed. In other
words, the object comes into existence before execution of the constructor; the object ceases
to exist after the execution of the destructor, as shown in Figure 14.11. Pushing the object
into the stack is the first step; popping is the last one.

Case 2: An Exception Is Thrown in the Constructor Assume that an exception is thrown
in the constructor body. C++ is designed such that if the constructor of a class cannot fully
do its job, the destructor for that object is never called. Figure 14.12 shows the same scenario
as case 1, but the constructor throws an exception and the program terminates. All memory
allocated in the stack is released.

for23380_ch14_657-692.indd 675 02/11/18 5:20 pm

676 Chapter 14 Exception	Handling

Destructor

Stack
}

{
int main ()

return 0;

Integer obj (5);

obj
value

pop

Notes:
1. An object is created and pushed into the stack when the constructor is called.
2. Execution of the constructor initializes the object and allocates resources, if any.
3. The initilized object is returned to the main function for use.
4. The main function uses the object.
5. When the object goes out of scope, the destructor is called.
6. The destructor deallocates the resources, if any.
7. The object is popped from the stack.

push

Constructor

}
{ ...

}

{
Integer :: ~Integer ()

Integer :: Integer (int v)
: value (v)

...

1

23

4

5 6
7

Figure 14.11	 Construction	and	destruction	when	no	exception	is	thrown

Destructor
Unwinding}

{
int main ()

return 0;

Integer obj (5);
pop

Notes:
1. An object is created and pushed into the stack when the constructor is called.
2. An exception occurs in the consturctor during initialization (or allocating resources).
3. Throwing an exception terminates the constructor. The destructor is never
 called, but stack unwinding pops the object and it is destroyed at this point.

push

Constructor

}

{
Integer :: ~Integer ()

...

1
2

3

}
{

Integer :: Integer (int v)

...

Stack

obj
value

exception

Figure 14.12	 When	an	exception	is	thrown	in	the	constructor

Partial Creation of Object in the Heap
Assume that the Integer object has a pointer to an integer created in heap memory. Again,
we consider two cases.

Case 1: No Exception Is Thrown in Constructor Figure 14.13 shows the case when no
exception is thrown in the constructor. We assume that the constructor creates the object in
the heap during the initialization and then stores a value in the object during the execution of
the body. When the Integer object goes out of scope, the destructor is called and it frees the
memory. After memory is freed, the Integer object is popped from stack memory.

Case 2: An Exception Is Thrown in Constructor Assume that an exception is thrown in
the constructor body when the value is stored in the variable created in the heap. In this case,
the constructor is terminated without finishing its job. Since the object is not completely

for23380_ch14_657-692.indd 676 02/11/18 5:20 pm

14.2 Exceptions	in	Classes 677

constructed, the destructor is not called, which means the memory allocated in the heap is never
deleted. We may have memory leak. Although the Integer object is popped up from the stack
during unwinding, the destructor is never called and the memory in the heap is never released
(Figure 14.14).

The problem here is that we separated the two related tasks of allocating memory and
releasing memory by another task (storing data in the allocated memory). Because this third
task failed (an exception is thrown), the constructor has allocated memory, but its work is
not finished. This means that the destructor is not called to release the memory. The two re-
lated tasks of allocating and releasing memory are partially done. Memory is allocated, but
not released. We may have memory leak.

Destructor
Heap

}

{
int main ()

return 0;

Integer obj (...);
pop

Notes:
1. An object is created and pushed in the stack when the constructor is called.
2. Initialization allocates memory in the heap and the value is stored in it during the
 execution of the constructor body.
3. The constructor is terminated and an object is available to the main function.
4. The main function uses the object.
5. When the object goes out of scope, the destructor is called.
6. The destructor deletes the integer in the heap.
7. The object goes out of scope after the destructor returns and the object is popped.

push

Constructor

}

Integer :: Integer (int v)
ptr = new int;
{

}

{
Integer :: ~Integer ()

delete ptr;

*ptr = v;

1

23

4

5 6

7

Stack

obj
ptr

Figure 14.13	 Construction	and	destruction	when	no	exception	is	thrown

Stack

Heap

Notes:
1. An object is created and pushed into the stack when the constructor is called.
2. Allocation of the location in the heap memory is done, but an exception occurs
 when the constructor needs to store values in the object allocated in the heap.
3. An exception is thrown that terminates the main function. Stack unwinding
 pops the Integer object from the stack, but the memory in the heap is not released
 because the destructor is not called.

pushpop

Unwinding Destructor

Constructor

}
{

Integer :: Integer (int v)

}

{
Integer :: ~Integer ()

delete ptr;

ptr = new int;

exception

}

int main ()
{
Integer obj (5);

return 0;

*ptr = v;

1
2

3

obj
ptr

Figure 14.14	 Construction	and	destruction	when	an	exception	is	thrown

for23380_ch14_657-692.indd 677 02/11/18 5:20 pm

678 Chapter 14 Exception	Handling

The solution is to combine the allocation and release of memory into one atomic task
and let one object be responsible for the allocation and release of memory. This is where
the smart pointers that we discussed in Chapter 13 come to mind. We need a smart pointer
to handle allocation and de-allocation without worrying about storing data in the allocated
memory.

Using a Smart Pointer for Memory Management To link the allocation and release
of memory, we use a smart pointer instead of a raw pointer. The smart pointer allocates
memory when its constructor is called and releases memory when its destructor is called.
However, the constructor has no other duty, which means that when allocation is over, the
construction is complete and the destructor will be called by the unwinding if any exception
is thrown. In other words, since the constructor of the smart pointer is doing only one job, its
destructor is always called and we do not have any problem releasing memory. Figure 14.15
shows the same scenario but using smart pointer instead of raw pointer. You may wonder
what happens if the allocation of memory in the heap fails. The answer is that there is no
allocated memory that we should worry about.

Try-Catch Block in Constructor: Function-Try Block
In the examples we have discussed so far, the exception was implicitly thrown in the body
of the constructor and propagated to the main function. We can also explicitly throw an
exception and let it be caught and handled in main. We can also use a try-catch block to
handle the exception in the constructor or rethrow it to main. What C++ does not allow us
to do is to throw, implicitly or explicitly, an exception in the initializer list. To throw an
exception that happens in the initializer list, we use a function-try block, which combines a
try-catch block with an initialization list as shown in Figure 14.16. The function-try block
allows the initialization to be added after the keyword try and a colon.

sp

Notes:
1. An Integer object is created in the stack, which in turn creates an SP object and pushes
 it into the stack.
2. In the constructor, the SP object creates a location in the heap, but during filling the
 location, an exception is thrown, which means the constructor of the Integer class has not
 totally constructed the object.
3. The main function termainates, and unwinding pops the SP object from the stack.
 Since the SP object was fully constructed, the destructor of the SP object is called,
 which deletes the memory on the heap. The destructor of the Integer object is not called,
 but we do not have a memory leak because the SP object released the memory.

Stack

Heap

push
1

pop

Unwinding Destructor

Constructor

}

Integer :: Integer (int v)
sp (new int);
{

}

{
Integer :: ~Integer ()

delete ptr;

exception

}

{
int main ()

return 0;

Integer obj (5);

*sp = v;

2

3
obj

Figure 14.15	 Using	a	smart	pointer

for23380_ch14_657-692.indd 678 02/11/18 5:20 pm

14.2 Exceptions	in	Classes 679

An Example
We give a simple example of the Integer class. Program 14.7 shows the interface file for the
smart pointer (SP) class that is used in the Integer class.

Program 14.8 shows the implementation file for the SP class.

Application

try

call constructor

int main ()

return 0;

}

}

{

{

catch (Type)
{
}

Constructor

try: initialization

catch (Type)

ClassName :: ClassName (...)

throw exception

{

{
// Handle Exception

// Constructor body

}

}

Figure 14.16	 Using	the	function-try	block

Program 14.7	 File	sp.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The interface file for SP class *
 ***/

#ifndef SP_H
#define SP_H
#include <iostream>
using namespace std;

// Definition of class SP
class SP
{

private:
int* ptr;

public:
SP (int* ptr);
~SP ();
int& operator* () const;
int* operator-> () const;

};
#endif

Program 14.8	 File	sp.cpp		

1
2
3

/***
* The implementation file for SP class *
 ***/

(continued)

for23380_ch14_657-692.indd 679 02/11/18 5:20 pm

680 Chapter 14 Exception	Handling

Program 14.8	 File	sp.cpp (Continued)

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include "sp.h"

// Constructor
SP :: SP (int* p)
: ptr (p)
{
}
// Destructor
SP :: ~SP ()
{

delete ptr;
}
// Overloading of the * operator
int& SP :: operator* () const
{

return *ptr;
}
// Overloading of the -> operator
int* SP :: operator-> () const
{

return ptr;
}

Program 14.9	 File	integer.h	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* The interface file for the Integer class *
 ***/

#ifndef INTEGER_H
#define INTEGER_H
#include "sp.h"

// Definition of the Integer class
class Integer
{

private:
SP sp;

public:
Integer (int value);
~Integer ();
int getValue();

};
#endif

Program 14.9 shows the interface file for the Integer class.

for23380_ch14_657-692.indd 680 02/11/18 5:20 pm

14.2 Exceptions	in	Classes 681

Program 14.10 shows the implementation file for the Integer class.
Program 14.11 shows the application file.

Program 14.10	 File	integer.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* The implementation file for the Integer class *
 ***/

#include "integer.h"

// Constructor using function-try block
Integer :: Integer (int v)
try: sp (new int)
{

*sp = v;
}
catch (...)
{

throw;
}
// Destructor
Integer :: ~Integer ()
{
}
// Accessor function
int Integer :: getValue()
{

return *sp;
}

Program 14.11	 File	app.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***
* The application to test the Integer class *
 ***/

#include "integer.h"

int main ()
{

for (int i = 0; i < 1000000; i++)
{

try
{

Integer integer (i);
cout << integer.getValue() << endl;

}

(continued)

for23380_ch14_657-692.indd 681 02/11/18 5:20 pm

682 Chapter 14 Exception	Handling

Program 14.11	 File	app.cpp (Continued)

15
16
17
18
19
20
21

catch (...)
{

cout << "Exception is thrown" << endl;
}

}
return 0;

}

Run:
0
1
2
3
4
5
6
...
87245
Exception is thrown
87247
...
92101
Exception is thrown
92103
...
99999

To save space, we have not shown all outputs, but we can see that an exception is
thrown for the integers 87246 and 92102.

14.2.2 Exception in Destructors
Destructors are invoked during stack unwinding. If destructor is interrupted by throwing
an exception, the unwinding process is stopped. For this reason, if any exception is thrown
in the destructor, C++ calls a global function named terminator that terminates the whole
program.

Exception throwing in a destructor must be avoided.

14.3 STANDARD EXCEPTION CLASSES
The exceptions discussed in previous sections of this chapter have involved exceptions of
fundamental data types. C++ defines a set of standard exception classes that are used in its
library, as shown in Figure 14.17. C++ contains standard exception classes that are derived
from a class named exception.

for23380_ch14_657-692.indd 682 02/11/18 5:20 pm

14.3 Standard	Exception	Classes 683

Studying the purposes and formats of the classes shown in Figure 14.17 can help us
learn how to handle an exception when it is thrown in a library function and use them or
inherit from them to create our own exception classes.

At the top of the hierarchy in Figure 14.17 is the exception class defined in the <excep-
tion> header. Table 14.1 shows the public interface for the exception class.

All of the functions defined in the exception class have the exception specification,
which defines that no exception is thrown inside the function. The what member function is
a virtual function that returns a C string that describes the error that occurred. The derived
classes provide the implementation for this class.

14.3.1 Logical Errors
As shown in Figure 14.17, C++ defines a class named logic_error. This is the base class
for four other classes related to logic errors, errors that are related to the precondition for a
function; these errors cannot be detected during compilation time.

Logical errors are related to the preconditions of a function.

Table 14.2 shows the public interface for the logic_error class. These classes also
inherit the what member function from the exception class.

exception
<exception>

logic_error
<stdexcept>

runtime_error
<stdexcept>

ios_base :: failure
<ios>

bad_alloc
<new>

bad-typeid
<typeinfo>

bad_exception
<exception>

bad_cast
<typeinfo>

range_error
<stdexcept>

overflow_error
<stdexcept>

underflow_error
<stdexcept>

domain_error
<stdexcept>

out_of_range
<stdexcept>

invalid_argument
<stdexcept>

length_error
<stdexcept>

The text in brackets shows
the corresponding header file.

The exceptions in yellow
boxes are inherited and
need the <stdexception>
header.

Figure 14.17	 Hierarchy	of	standard	exception	classes

exception () throw () // constructor
exception (const exception&) throw () // copy constructor
exception& operator = (const exception&) throw () // Assignment operator
virtual ~exception () throw () // destructor
virtual const char* what () const throw () // member function

Table 14.1 Public interface of the exception class

for23380_ch14_657-692.indd 683 02/11/18 5:20 pm

684 Chapter 14 Exception	Handling

There are four classes derived from this class: domain_error, length_error, out_of_range,
and invalid_argument. The constructors of all of these classes have the same pattern as the
logic_error class, but the names are different. Table 14.3 shows the constructor of the four
exception classes inherited from the logic_error class.

To use logical error classes, we need the <stdexcept> header file.

The domain_error Class
The domain_error exception is thrown when the given data is out of domain. For example,
if a function requires an argument between 0.0 and 4.0 (for example, a grade point average,
GPA), then this exception is thrown if we pass a value that is not in this domain.

The length_error Class
The length_error exception is thrown if the length of an object is greater or smaller than the
predefined length. For example, the string class throws an exception if the size of a string
exceeds the value returned by the max_size member function. We can use this class to throw
an exception if the size of the array goes beyond its predefined size.

The out_of_range Class
The out_of_range exception is thrown if an index goes out of range for a library class. For
example, the string class has a function named at(. . .) that returns a value at the index defined
as its parameter. If an integer is passed that is beyond the index of the current string object,
an exception of this type is thrown. We can use this class to throw an exception if the index
of array is out of range.

The invalid_argument Class
The invalid_argument exception normally occurs when there is a logical error but the nature
of the exception does not match any of the previously defined three classes. An example is
when we have a bit set in which each bit should have a value of either 0 or 1.

explicit logic_error (const string& whatArg) // constructor
virtual const char* what () const throw () // member function

Table 14.2 Public interface for the logic_error class

Table 14.3 Classes inherited from the logic_error class

class constructor

domain_error
length_error
out_of_range
invalid_argument

explicit domain_error (const string& whatArg)
explicit length_error (const string& whatArg)
explicit out_of_range (const string& whatArg)
explicit invalid_argument (const string& whatArg)

for23380_ch14_657-692.indd 684 02/11/18 5:20 pm

14.3 Standard	Exception	Classes 685

14.3.2 Run-Time Errors
As shown in Figure 14.17, C++ defines a class named runtime_error class. A run-time
error is normally related to the postcondition of a function such as overflow, underflow, or
an out-of-range return value.

To use the run-time error classes, we need the <stdexcept> header file.

Table 14.4 shows that the public interface for the runtime_error class also inherits the
what member function from the exception class.

Three classes are derived from this class: underflow_error, overflow_error, and
range_error (see Figure 14.17). The constructors of all of these classes have the same pat-
tern as the runtime_error class, but the names are different. The what function is inherited
in all classes. Table 14.5 shows the constructor of the three exception class inherited from
the runtime_error class.

Run-time errors are related to the postconditions of a function.

The underflow_error Class
We discussed the underflow concept in Chapter 3. The underflow_error condition occurs in
arithmetic calculations. However, this type of error is not normally defined for any arithme-
tic operator. It can be used to throw an exception in a user-defined function.

The overflow_error Class
We also discussed the overflow concept in Chapter 3. The overflow_error condition also
occurs in arithmetic calculations. However, this type of error is not normally defined for any
arithmetic operator. It can be used to throw an exception in a user-defined function.

The range_error Class
The range_error exception is designed to throw an exception when the result of a function
is out of the predefined range (compare with out_of_range error, which is related to the
error in the range of a function argument). The predefined mathematical functions in the
<cmath> header do not throw any of these errors, but some functions designed by other
sources may.

explicit runtime_error (const string& whatArg) // constructor
virtual const char* what () const throw () // member function

Table 14.4 Public interface for the runtime_error class

Table 14.5 Classes inherited from runtime_error class

class constructor

underflow_error
overflow_error
range_error

explicit underflow_error (const string& whatArg)
explicit overflow_error (const string& whatArg)
explicit range_error (const string& whatArg)

for23380_ch14_657-692.indd 685 02/11/18 5:20 pm

686 Chapter 14 Exception	Handling

14.3.3 Five Other Classes
There are five other classes derived directly from the exception class as shown in Figure 14.17.
These classes have the same member functions as the exception class except that the construc-
tor, copy constructor, assignment operator, and destructor have the name of the correspond-
ing class. The at() function is the same in all four.

The bad_exception Class
A bad_exception class object is thrown from a function with an exception specification that
the function will not throw exceptions; however, something happens in the function and it
throws one.

The bad_alloc Class
The <new> header defines types and functions related to dynamic memory allocation. The
operator new throws an object of type bad_alloc class if the requested memory cannot be
allocated.

The bad_typeid Class
The bad_typeid exception is thrown when we define a type that cannot be fulfilled. For
example, if we try to dereference a pointer (*P) that is null, an exception of this type will be
thrown.

The bad_cast Class
The bad_cast class is used to throw an exception when a dynamic cast operation fails.

The failure Class
The <ios> header defines a class that can be used as the base class for exceptions thrown in
all input/output classes. Note that the name of the class is failure but its scope is ios_base.
The only parameter in the constructor is used to customized the message shown by the at()
function (Table 14.6).

The input/output classes in C++ were defined before the language supported excep-
tion handling. However, after the exception class was added to the language, the class failure
was added to the hierarchy of exception classes.

The input/output classes, as we discussed before, hold states that can show if any error
has occurred in the corresponding stream. To enable the use of exceptions in input/output
operations, C++ added two functions named exception(), as shown in Table 14.7.

The first signature shown in Table 14.7 defines which flags, when triggered, will
throw an exception of type failure. The second signature returns the flags that have been
defined to throw exceptions.

explicit failure (const string& mesg) // constructor
virtual ~failure () // destructor
virtual const char* what () const throw () // member function

Table 14.6 The interface for the failure class

for23380_ch14_657-692.indd 686 02/11/18 5:20 pm

14.3 Standard	Exception	Classes 687

14.3.4 Using Standard Exception Classes
Instead of creating our own exception objects, we can use an object of one of the standard
exception classes defined in the <exception> or <stdexcept> headers for this purpose.

EXAMPLE 14.7
Program 14.12 shows how we can use the invalid_argument class to handle the quotient
problem defined in Program 14.6.

void exception (iostate flags) // set the flags that triggered exception
iostate exception() const // Returns flags candidate for exception

Table 14.7 Interface for input/output exception classes

Program 14.12	 Use	of	invalid_argument	class	 	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* This program shows how to use an object of invalid_argument *
* to detect division by zero in a function. *
 ***/

#include <stdexcept>
#include <iostream>
using namespace std;

// Function declaration
int quotient (int first, int second);

int main ()
{

int num1, num2, result;
for (int i = 0; i < 3; i++)
{

cout << "Enter an integer: ";
cin >> num1;
cout << "Enter another integer: ";
cin >> num2;
// Try-Catch block
try
{

cout << "Result of division: " << quotient (num1, num2);
cout << endl;

}
catch (invalid_argument ex)
{

cout << ex.what () << endl;
}

(continued)

for23380_ch14_657-692.indd 687 02/11/18 5:20 pm

688 Chapter 14 Exception	Handling

Program 14.12	 Use	of	invalid_argument	class (Continued)

31
32
33
34
35
36
37
38
39
40
41
42

}
return 0;

}
// Function definition
int quotient (int first, int second)
{

if (second == 0)
{

throw invalid_argument ("Error! Divide by zero!");
}
return first / second;

}

Run:
Enter an integer: 20
Enter another integer: 4
Result of division: 5
Enter an integer: 12
Enter another integer: 0
Error! Divide by zero!
Enter an integer: 14
Enter another integer: 5
Result of division: 2

K e y T e r m s

catch clause
exception classes
exception propagation

run-time error
stack unwinding
try-catch block

We discussed four approaches to traditional error handling. The first is to do nothing and let
the program be aborted without any warning when there is an error. The second is to test
for possible errors and print a message when an error occurs. The third is to use error
checking. The fourth is to use a function return value for error checking.

To avoid problems with these four approaches, C++ has developed the exception
handling approach. In this approach, the run-time system detects the error, but it does
not abort the program. It lets the program handle the error. The exception-handling
approach uses try-catch blocks. We discussed three patterns for the try-catch block.
In the first pattern, the try-catch block is entirely in one function. In the second pat-
tern, the try-catch block is in one function, but the exception is thrown in the function
that is called in the try clause. In the third pattern, the try-catch block is in the called
function.

S u m m a r y

for23380_ch14_657-692.indd 688 02/11/18 5:20 pm

Problems 689

We need to be careful about exceptions in constructors and destructors. If an object
cannot be fully formed by the constructor, the corresponding destructor is not called.
This can create a serious problem if the object is totally or partially created in the heap.
Throwing an exception in this case may create a memory leak. To link the allocation
and releasing of the memory together, we use a smart pointer instead of a raw pointer.
The smart pointer allocates memory when its constructor is called and releases memory
when its destructor is called. Standard exception classes are defined in the C++ library
and are derived from the exception class. They are divided into logical errors and run-
time errors.

P r o b l e m s

PR-1. What happens when the following short program is run?

#include <iostream>
using namespace std;

int main ()
{

int value = 30;
if (value > 20) throw value;
cout << value;
return 0;

}

PR-2. What happens when we try to compile the following short program?

#include <iostream>
using namespace std;

int main ()
{

int value = 30;
try
{

if (value > 30) throw value;
}
cout << value;
return 0;

}

PR-3. What happens when the following short program is run?

#include <iostream>
using namespace std;

int main ()
{

int value = 30;
try
{

if (value < 20) throw value;

for23380_ch14_657-692.indd 689 02/11/18 5:20 pm

690 Chapter 14 Exception	Handling

}
catch (int value)
{

cout << "In the catch clause." << endl;
}
cout << value << endl;
return 0;

}

PR-4. What happens when the following short program is run?

#include <iostream>
using namespace std;

void fun (int x)
{

if (x < 10) throw 10.0;
}

int main ()
{

try
{

fun (5);
}
catch (int value)
{

cout << value << endl;
}
return 0;

}

PR-5. What is wrong with the following function definition?

void fun (int x) throw ()
{

if (x < 10) throw 10.0;
}

PR-6. What is wrong with the following function definition?

void fun (double x) throw (double)
{

if (x < 10.0) throw 10.0;
}

PR-7. What is printed from the following program?

#include <iostream>
using namespace std;

void fun (int x) throw (int)
{

for23380_ch14_657-692.indd 690 02/11/18 5:20 pm

691

if (x > 1000) throw 10000;
}

int main ()
{

try
{

fun (1002);
}
catch (int value)
{

cout << value << endl;
}
return 0;

}

PR-8. What is printed from the following program?

#include <iostream>
using namespace std;

void second (int x) throw (int)
{

if (x > 1000) throw x;
}

void first (int x)
{

try
{

second (1200);
}
catch (...)
{

throw x * 10;
}

}

int main ()
{

try
{

first (10);
}
catch (int value)
{

cout << value << endl;
}
return 0;

}

Problems

for23380_ch14_657-692.indd 691 02/11/18 5:20 pm

692 Chapter 14 Exception	Handling

P r o g r a m s

PRG-1. Instead of using fundamental data types as the type of exception to be thrown,
we can use objects of a class type. Rewrite Program 14.5, and use a class named
DivByZero to throw an exception object instead of an integer. The class does not
need any data member or member functions.

PRG-2. Rewrite PRG-1, but define a constructor and a member function what() for the
class DivByZero.

PRG-3. Rewrite PRG-2 with the DivByZero class inherited from the standard exception
class invalid_argument, which is an appropriate class for this purpose. When
we divide two integers, we are calling the library operator (/), in that the second
argument is an integer which should not be zero.

PRG-4. Write a program that prompts the user to enter a duration of time in the form
hours, minutes, and seconds. The program then calculates the duration in
seconds. The program must throw three different exceptions objects: HExcept
(if hours is negative), MExcept (if minutes are not between 0 and 59), and
SExcept (if seconds are not between 0 and 59). Create three exceptional classes
that inherit from the out_of_range standard exception class. Use polymorphism
(catch-by-reference) and one catch clause to handle all cases.

PRG-5. The <string> library throws an exception of type out_of_range when the
at function tries to access a character not in the range. Write a program that
creates a string out of uppercase letters in English and prints the character when
the index is given. Use the try-catch block to catch an error if the user enters
an index less than 1 or greater than 26. Note that we do not need the throw
statement in this case because the library throws an exception; we just need to
catch it.

for23380_ch14_657-692.indd 692 02/11/18 5:20 pm

693

15.1 FUNCTION TEMPLATE
When programming in any language, we sometimes need to apply the same code to differ-
ent data types. For example, we may have a function that finds the smaller of two integer
data types, another function that finds the smaller of two floating-point data types, and so
on. First, we should think about the code (program logic) and then about the data type to be
used. We can separate these two tasks. We can write a program to solve a problem with a
generic data type. We can then apply the program to the specific data type we need. This is
known as generic programming or template programming.

A function in C++ is an entity that applies operations on zero or more objects and
creates zero or more objects. Using function templates, actions can be defined when
we write a program, and the data types can be defined when we compile the program. In
other words, we can define a family of functions, each with one or more different data
types.

In this chapter we concentrate on generalization, which means to write a general program
that can be used in several special cases. C++ calls this process template programming. We
first discuss how to write general functions (called function templates) and then we discuss
general classes (called class templates).

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss function templates as a tool for creating a set of functions that have the same code
logic but whose code can be applied to different data types.

•	Give the syntax of a function template and show how the compiler generates a set of
nontemplate functions during compilation.

•	Discuss several issues in function templates, including nontemplate parameters, explicit type
determination, predefined operations, specialization, and overloading.

•	Discuss how to create separate interface and application files for a template function.

•	Discuss class templates as a tool for creating a set of classes that differ only in the type of
data members they hold.

•	Discuss two methods for compiling programs that involve class templates: the inclusion
approach and separate compilation.

•	Discuss template friend functions and the idea of templates in inherited classes.

15 Generic Programming:
Templates

for23380_ch15_693-715.indd 693 06/11/18 2:48 pm

694 Chapter 15 Generic	Programming:	Templates

15.1.1 Using a Family of Functions
If we do not use template and generic programming, we must define a family of functions.
Assume we need to compare and find the smaller data item for a variety of data types in a
program. For example, assume that we need to find the smaller between two characters, two
integers, and two floating-point numbers. Since the types of the data are different, without
templates we would need to write three functions as shown in Program 15.1. Note that in
ASCII uppercase letters come before lowercase letters, which means ‘B’ is smaller than ‘a’.

Program 15.1	 Using	three	overloaded	functions

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

/***
* A program to find the smaller between three types of data *
 ***/

#include <iostream>
using namespace std;

// Function to find the smaller between two characters
char smaller (char first, char second)
{

if (first < second)
{

return first;
}
return second;

}
// Function to find the smaller between two integers
int smaller (int first, int second)
{

if (first < second)
{

return first;
}
return second;

}
// Function to find the smaller between two doubles
double smaller (double first, double second)
{

if (first < second)
{

return first;
}
return second;

}

int main ()
{

(continued)

for23380_ch15_693-715.indd 694 06/11/18 2:48 pm

15.1 Function	Template 695

Program 15.1	 Using	three	overloaded	functions (Continued)

37
38
39
40
41

cout << "Smaller of 'a' and 'B': " << smaller ('a', 'B') << endl;
cout << "Smaller of 12 and 15: " << smaller (12, 15) << endl;
cout << "Smaller of 44.2 and 33.1: " << smaller (44.2, 33.1) << endl;
return 0;

}

Run:
Smaller of 'a' and 'B': B
Smaller of 12 and 15: 12
Smaller of 44.2 and 33.1: 33.1

Writing three similar functions can be avoided if we use templates and write only one
function.

15.1.2 Using Function Template
We first give the syntax of a function template to be defined and then the concept of instan-
tiation, which is the way the compiler handles instantiations.

Syntax
To create a template function, we can use a placeholder for each generic type. Table 15.1
shows the general syntax for a generic function, in which T, U, …, and Z are replaced by
actual types when the function is called.

As shown in Table 15.1, the template header contains the keyword template fol-
lowed by a list of symbolic types inside two angle brackets. The template function header
follows the rules for function headers except that the types are symbolic as declared in
the template header. While multiple generic types are possible, a function template with
more than two generic types is rare. Some older code uses the term class rather than
typename. We use the keyword typename because it is the current standard and is used
in the C++ library.

We change Program 15.1 using a function template as shown in Program 15.2. In this
program we have only one generic type, but the type is used three times: twice as parameters
and once as the return type. In this program the type of the parameters and the returned value
are the same.

We can see that the result is the same as in Program 15.1. We have saved code by
writing only one template function instead of three overloaded functions. Note that we have

template <typename T, typename U, ..., typename Z>
T functionName (U first, ... Z last)
{

...
}

Table 15.1 Syntax of a template function

for23380_ch15_693-715.indd 695 06/11/18 2:48 pm

696 Chapter 15 Generic	Programming:	Templates

Program 15.2	 Using	one	function	template	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* A program that uses a template function to find the smaller *
* of two values of different types *
 ***/

#include <iostream>
using namespace std;

// Definition of a template function
template <typename T>
T smaller (T first, T second)
{

if (first < second)
{

return first;
}
return second;

}

int main ()
{

cout << "Smaller of a and B: " << smaller ('a', 'B') << endl;
cout << "Smaller of 12 and 15: " << smaller (12, 15) << endl;
cout << "Smaller of 44.2 and 33.1: " << smaller (44.2, 33.1) << endl;
return 0;

}

Run:
Smaller of a and B: B
Smaller of 12 and 15: 12
Smaller of 44.2 and 33.1: 33.1

Program 15.3	 Swapping	two	values

1
2
3

/***
* A program that uses a template function to swap two values *
 ***/

(continued)

used only one single type name, T, which is used to define the two parameters and the return
value. We did that because the type of the two parameters and the return type are the same.
Note also that we have used T& instead of T to allow the objects of the user-defined type to
be passed and returned by reference instead of value.

Program 15.3 shows how we can create a generic swap function to exchange two inte-
gers, two doubles, and so on. We have named the function exchange to avoid confusion with
a library function named swap.

for23380_ch15_693-715.indd 696 06/11/18 2:48 pm

15.1 Function	Template 697

Program 15.3	 Swapping	two	values (Continued)

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include <iostream>
using namespace std;

// Definition of template function
template <typename T>
void exchange (T& first, T& second)
{

T temp = first;
first = second;
second = temp;

}

int main ()
{

// Swapping two int types
int integer1 = 5;
int integer2 = 70;
exchange (integer1, integer2);
cout << "After swapping 5 and 70: ";
cout << integer1 << " " << integer2 << endl;
// Swapping two double types
double double1 = 101.5;
double double2 = 402.7;
exchange (double1, double2);
cout << "After swapping 101.5 and 402.7: ";
cout << double1 << " " << double2 << endl;
return 0;

}

Run:
After swapping 5 and 70: 70 5
After swapping 101.5 and 402.7: 402.7 101.5

Instantiation
Using template functions postpones the creation of nontemplate function definitions until
compilation time. This means that when a program involving a function template is com-
piled, the compiler creates as many versions of the function as needed by function calls.
In Program 15.2, the complier creates three versions of the function named smaller to handle
the three function calls with their parameters, as shown in Figure 15.1. This process is re-
ferred to as template instantiation, but it should not be confused with instantiation of an
object from a type.

15.1.3 Variations
There are several variations from the basic function template syntax that we discussed in the
previous section.

for23380_ch15_693-715.indd 697 06/11/18 2:48 pm

698 Chapter 15 Generic	Programming:	Templates

Figure 15.1	 A	function	template	is	instantiated	into	several	functions

Before compilation

After compilation

template <typename T>
T smaller (T& first, T& second)
{
 ...
}

char smaller (char first, char second)
{
 ...
}

int smaller (int first, int second)
{
 ...
}

double smaller (double first, double second)
{
 ...
}

Program 15.4	 Printing	an	array	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* A program that uses a template function to print elements of *
* any array of any type *
 ***/

#include <iostream>
using namespace std;

// Definition of the print template function
template <typename T, int N>
void print (T (&array) [N])
{

for (int i = 0; i < N ; i++)
{

cout << array [i] << " ";
}
cout << endl;

}

int main ()
{

// Creation of two arrays
int arr1 [4] = {7, 3, 5, 1};
double arr2 [3] = {7.5, 6.1, 4.6};
// Calling template function
print (arr1);

(continued)

Nontype Template Parameter
Sometimes we need to define a value instead of a type in our function template. In other
words, the type of a parameter may be the same for all template functions that we want to
use. In this case, we can define a template, but the type cannot be specifically defined.

Assume we want a function that prints the elements of any array regardless of the type
of the element and the size of the array. We know that the type of each element can vary
from one array to another, but the size of an array is always an integer (or unsigned integer).
We do so using Program 15.4. We have two template parameters, T and N. The parameter T
can be any type; the parameter N is a nontype (the type is predefined as integer).

for23380_ch15_693-715.indd 698 06/11/18 2:48 pm

15.1 Function	Template 699

Program 15.4	 Printing	an	array (Continued)

26
27
28

print (arr2);
return 0;

}

Run:
7 3 5 1
7.5 6.1 4.6

Explicit Type Determination
If we try to call the function template to find the smaller between an integer and a floating-
point value such as the following, we get an error message.

cout << smaller (23, 67.2); // Errors! Two different types for the same template type T.

In other words, we are giving the compiler an integral value of 23 for the first argument of
type T and a floating-point value of 67.2 for the second argument of type T. The type T is one
template type, and the values for it must always be the same as each other. The error with the
previous case can be avoided if we define the explicit type conversion during the call. This
is done by defining the type inside the angle brackets as shown below:

cout << smaller <double> (23, 67.2); // 23 will be changed to 23.0

We are telling the compiler that we want to use the version of the smaller programs in which
the value of T is of type double. The compiler then creates that version and converts 23 to
23.0 before finding the smaller.

Predefined Operation
We can compare two integers, two doubles, or two characters using the smaller function
because the less-than operator (<) is defined for these types. This means that we can use a
function template for any type for which the overloaded operator less than (<) is defined.
For example, we know that the library string class has overloaded this operator. We can tell
the compiler to replace T by a string and then call the function. This means that the following
statement is valid and the result is the string “Bi”.

cout << smaller ("Hello" , "Bi"); // The result is "Bi"

The C-string type and the Rectangle type have not been overloaded for this operator, and
we will get a compilation error if we do overload it. The solution is specialization, as we
discuss next.

Specialization
The operator less than (<) is not defined for a C-style string. This means that we cannot use
the template function to find the smaller of two C-style strings. However, there is a solution,
which is called template specialization. We can define another function with a specific type
(instead of the template type), as shown in Program 15.5. There are two important points
about this program.

for23380_ch15_693-715.indd 699 06/11/18 2:48 pm

700 Chapter 15 Generic	Programming:	Templates

Program 15.5	 Specialization

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

/***
* Template function definition with specialization *
 ***/

#include <iostream>
#include <string>
#include <cstring>
using namespace std;

// Template Function
template <typename T>
T smaller (const T& first, const T& second)
{

if (first < second)
{

return first;
}
return second;

}
// Specialization of template function
template <>
const char* smaller (const (const char*) & first, const (const char*) & second)
{

if (strcmp (first, second) < 0)
{

return first;
}
return second;

}

int main ()
{

// Calling template with two string objects
string str1 = "Hello";
string str2 = "Hi";
cout << "Smaller (Hello , Hi): " << smaller (str1, str2) << endl;
//Calling template function with two C-string objects
const char* s1 = "Bye";
const char* s2 = "Bye Bye";
cout << "Smaller (Bye, Bye Bye)" << smaller (s1, s2) << endl;
return 0;

}

Run:
Smaller (Hello , Hi): Hello
Smaller (Bye, Bye Bye): Bye

for23380_ch15_693-715.indd 700 06/11/18 2:48 pm

15.1 Function	Template 701

Program 15.6	 The	program	for	overloaded	smaller	function	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* Overloaded version of the smaller template function *
 ***/

#include <iostream>
using namespace std;

// Template function with two parameters
template <typename T>
T smallest (const T& first, const T& second)
{

if (first < second)
{

return first;
}
return second;

}
// Template function with three parameters
template <typename T>
T smallest (const T& first, const T& second, const T& third)
{

return smallest (smallest (first, second), third);
}

int main ()
{

// Calling the overloaded version with three integers
cout << "Smallest of 17, 12, and 27 is ";
cout << smallest (17, 12, 27) << endl;

(continued)

1. We must use the template < > before the header to show that this is the specialization
of a template function previously defined.

2. We must be careful about replacing T with a specialized type. A C-style string is
of type const char*, which means every time we have T, we must replace it with
const char*.

Overloading
We discussed overloading of regular (nontemplate) functions in Chapter 7. We can apply
the same concept to function templates. We can overload a function template to have several
functions with the same name but different signatures. Normally, the template type is the
same, but the number of parameters is different.

As an example, we overload the smaller template function to accept two or three pa-
rameters (we call it smallest because it uses more than two arguments). Program 15.6 shows
the interface. Note that we have defined the second function in terms of the first one. This is
why the second function is shorter.

for23380_ch15_693-715.indd 701 06/11/18 2:48 pm

702 Chapter 15 Generic	Programming:	Templates

Program 15.7	 Definition	of	a	function	template

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* The interface file for the function template named smaller *
 ***/

#ifndef SMALLER_H
#define SMALLER_H
#include <iostream>
using namespace std;

template <typename T>
T smaller (const T& first, const T& second)
{

if (first < second)
{

return first;
}
return second;

}
#endif

Program 15.6	 The	program	for	overloaded	smaller	function (Continued)

29
30
31
32
33

// Calling the overloaded version with three doubles
cout << "Smallest of 8.5, 4.1, and 19.75 is ";
cout << smallest (8.5, 4.1, 19.75) << endl;
return 0;

}

Run:
Smallest of 17, 12, and 27 is 12
Smallest of 8.5, 4.1, and 19.75 is 4.1

Program 15.8	 Using	the	function	template

1
2
3
4
5

/***
* The application file to test a function template *
 ***/

#include "smaller.h"

(continued)

15.1.4 Interface and Application Files
The definition of a template function can be put in an interface file, and the header can
be included in an application file. This means that we can write one definition for a tem-
plate function and then use it in different programs. The interface file in this case must
include the definition of the function, not only the declaration. Program 15.7 shows how
we can create an interface file, smaller.h, and put the definition of the function template
in it. Any program can include this interface and use the function (Program 15.8).

for23380_ch15_693-715.indd 702 06/11/18 2:48 pm

15.2 Class	Template 703

Program 15.8	 Using	the	function	template (Continued)

6
7
8
9

10
11
12

int main ()
{

cout << "Smaller of 'a' and 'B': " << smaller ('a', 'B') << endl;
cout << "Smaller of 12 and 15: " << smaller (12, 15) << endl;
cout << "Smaller of 44.2 and 33.1: " << smaller (44.2, 33.1) << endl;
return 0;

}

Run:
Smaller of a and B: B
Smaller of 12 and 15: 12
Smaller of 44.2 and 33.1: 33.1

template <typename T>
class Name
{

private:
T data;

public:
Name (); // default constructor
T get () const; // accessor
void set (T data); // mutator function

};

Table 15.2 Syntax of a simple class template

15.2 CLASS TEMPLATE
The concept of a class template makes the C++ language very powerful. We have learned
in the last few chapters that a class is a combination of data members and member functions.
We may also have a class with data types and another class with the same functionality but
with different data types. In these cases, we can use a class template. Templates are used in
C++ libraries such as string and stream classes. They are also used in the Standard Template
Library, STL, that we study in Chapter 19. To create a class template, we must make both
the data members and the member functions generic.

15.2.1 Interface and Implementation
As we know, a class has an interface and an implementation. When we need to create a class
template, we must have generic parameters in both the interface and the implementation.

Interface
The interface of a class must define the typename for both data members and member func-
tions that use the parameterized type. Table 15.2 shows the syntax of a simple class tem-
plate. We use only one data member, one default constructor, and two member functions.
The constructor does not use the data member in this case. The accessor function returns a
value of type T. The mutator function has one parameter of type T.

for23380_ch15_693-715.indd 703 06/11/18 2:48 pm

704 Chapter 15 Generic	Programming:	Templates

// Implementation of the get function
template <typename T>
T name <T > :: get () const
{

return data;
}
// Implementation of the set function
template <typename T>
void name < T > :: set (T d)
{

data = d;
}

Table 15.3 Implementation for the class defined in Table 15.2

Program 15.9	 The	interface	file	for	class	Fun

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
* The interface file for a class named Fun *
 ***/

#ifndef FUN_H
#define FUN_H
#include <iostream>
using namespace std;

template <typename T>
class Fun
{

private:
T data;

(continued)

Implementation
In the implementation, we must mention the typename for each member function that uses
the generic type. Table 15.3 shows the syntax of the implementation for the simple class we
defined in Table 15.2.

Note that the name of the class that is used before the resolution operator (::) should be
Name <T>, not just Name.

To concentrate on the syntax, we define a very simple class, which we call Fun, with
only one data member (which can be of type int, double, char, or even string). We want to
show how the syntax is actually used in defining the interface, the implementation, and the
application files of the class. We will present more sophisticated classes later in the chapter.
At the end of this chapter, we create a more involved class (a generic array) to better show
the usefulness of templates in C++.

Program 15.9 shows the interface for the Fun class. Note that every time we need to
define a type (line 13), we must use the typename (T in this case). We also must use the dec-
laration of the template <typename T> at the beginning of the class definition.

for23380_ch15_693-715.indd 704 06/11/18 2:48 pm

15.2 Class	Template 705

Program 15.9	 The	interface	file	for	class	Fun (Continued)

14
15
16
17
18
19
20

public:
Fun (T data);
~Fun ();
T get () const;
void set (T data);

};
#endif

Program 15.10	 The	implementation	file	for	class	Fun

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/***
* The implementation file for the template class Fun *
 ***/

#ifndef FUN_CPP
#define FUN_CPP
#include "fun.h"

// Constructor
template <typename T>
Fun <T> :: Fun (T d)
: data (d)
{
}
// Destructor
template <typename T>
Fun <T> :: ~Fun ()
{
}
// Accessor Function
template <typename T>
T Fun <T> :: get () const
{

return data;
}
// Mutator Function
template <typename T>
void Fun <T> :: set (T d)
{

data = d;
}
#endif

Program 15.10 shows the implementation file for the template class Fun. Note that
each function definition should use a template function with the template <typename T>
declaration. Every time we need a type declaration, we use T as a generic type.

for23380_ch15_693-715.indd 705 06/11/18 2:48 pm

706 Chapter 15 Generic	Programming:	Templates

A very important difference we notice in the implementation of a nontemplate
class and the one for a template class is that the compiler needs to see the parameterized
version of the template function when it compiles the application file. In other words,
the application file (defined later) needs to have the implementation file as a header
file, which means we need to add the macros ifndef, define, and endif to the implemen-
tation file.

Program 15.11 shows the application that uses the template class Fun. Note that we
have included fun.cpp as a header file to help the compiler create different versions of the
class. Also note that to instantiate template classes (lines 10 to 13), we must define the actual
type that replaces the typename T.

The actual type for the data member of class Fun1 is int, the one for Fun2 is double,
the one for Fun3 is char, and the one for Fun4 is a string.

Program 15.11	 The	application	file	using	class	Fun

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* The application file to test the template class Fun *
 ***/

#include "fun.cpp"

int main ()
{

// Instantiation of four classes each with different data type
Fun <int> Fun1 (23);
Fun <double> Fun2 (12.7);
Fun <char> Fun3 ('A');
Fun <string> Fun4 ("Hello");
// Displaying the data values for each class
cout << "Fun1: " << Fun1.get() << endl;
cout << "Fun2: " << Fun2.get() << endl;
cout << "Fun3: " << Fun3.get() << endl;
cout << "Fun4: " << Fun4.get() << endl;
// Setting the data values in two classes
Fun1.set(47);
Fun3.set ('B');
// Displaying values for newly set data
cout << "Fun1 after set: " << Fun1.get() << endl;
cout << "Fun3 after set: " << Fun3.get() << endl;
return 0;

}

Run:
Fun1: 23
Fun2: 12.7
Fun3: A
Fun4: Hello
Fun1 after set: 47
Fun3 after set: B

for23380_ch15_693-715.indd 706 06/11/18 2:48 pm

15.2 Class	Template 707

15.2.2 Compilation
We can compile and link different files related to a program when there are several function
templates or class templates in our project. There are basically two ways to do so.

Inclusion Approach
The first approach is called inclusion and is shown in Figure 15.2. In this approach we put
the declaration and definition in header files and then include the header files in the our ap-
plication program. Of course, it is always recommended to use separate header files, one for
the declaration and one for the definition. The separation of these two files allows us to move
to other approaches quickly. We can put the declaration in a (.h) file and the definition in a
(.cpp) file. We do not compile the definition file separately; we just include it in the applica-
tion file and compile only the application file. Note that the declaration file must be included
in the definition file and the definition file must be included in the application file. We only
compile the application file.

Separate Compilation
All of the programs we have designed based on object-oriented programming have used
the separate compilation concept that we discussed in a Chapter 7. In this model we
have three different files: interface files, implementation files, and one application file,
as shown in Figure 15.3. As we discussed in Chapter 7, separate compilation has the
advantage of hiding the implementation from the end user and thus promotes the concept
of encapsulation.

 Although this approach has been used with nontemplate functions and classes, it needs
modifications if our program has template functions or template classes. The problem is that
the implementation file cannot be compiled independently because the compiler needs the
application file to figure out which instances of each template function or template class
must be used in the compilation.

The C++ standard has found the solution. We must use the keyword export to ex-
port each template declaration or definition. We insert the keyword export in front of each
typename. For example, in the definition of class Fun, we add this keyword as shown

Figure 15.2	 Compilation	using		
inclusion

include

include

file.h

file.cpp

app.cpp

Executable file

Compiler

C
om

pi
le

d
by

 u
se

r

declaration

definition

Application

for23380_ch15_693-715.indd 707 06/11/18 2:48 pm

708 Chapter 15 Generic	Programming:	Templates

below. For each member function, we also need to add the keyword as shown for the
constructor below:

// fun.h
export template <typename T>
class Fun
{

…
};

// fun.cpp
export template <typename T>
Fun <T> :: Fun (T d)
: data (d)
{
}

If your compiler has not implemented the export keyword, you will have to use the
inclusion approach.

Not all compilers support the use of the export
keyword for separate compilation.

Example
In this example we create a class template that simulates a stack. As we mentioned before,
a stack is a structure in which the last item pushed into the stack is the first item that will be
popped from the stack, as shown in Figure 15.4.

To simulate a stack, we use an array of type T, but we provide only the operations
that can insert at the end of the array (push) and remove the element at the end of the
array (pop). When an item is popped, its value can be retrieved. Program 15.12 shows the
interface file.

Figure 15.3	 Separate	compilation

include include

Implementation Application

Se
pa

ra
te

ly
 c

om
pi

le
d

by
 d

es
ig

ne
r

Se
pa

ra
te

ly
 c

om
pi

le
d

by
 u

se
r

Interface

Object file

Compiler

Linker

Object file

Executable file

Compiler

for23380_ch15_693-715.indd 708 06/11/18 2:48 pm

15.2 Class	Template 709

Item
ItemItem Item

Item

Item

Item

Item Item

Item
Item

Item

Empty push push pop

push push

Note:
The push operation inserts an item in the stack.
The pop operation erases the item at the top of the stack.
We have simulated the stack as an upside-down array in the heap.

Ptr

heap

stack

pop pop Simulation

top

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15.4	 Operations	on	a	stack

Program 15.12	 File	stack.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* The interface file for the class template stack *
 ***/

#ifndef STACK_H
#define STACK_H
#include <iostream>
#include <cassert>
using namespace std;

template <typename T>
class Stack
{

private:
T* ptr;
int capacity;
int size;

public:
Stack (int capacity);
~Stack ();
void push (const T& element);
T pop ();

};
#endif

In this program we have defined the stack as an array (line 14), but the operations
defined for the array allow only pushing and popping of the top element. Accessing or
changing other elements is not allowed.

for23380_ch15_693-715.indd 709 06/11/18 2:48 pm

710 Chapter 15 Generic	Programming:	Templates

Program 15.13 shows the implementation file. Note that we defined the implementa-
tion file as a separate file as though we want to use separate compilation, but in fact it is
a header file. We include it in the application file. The separation of two files organizes
the code, and we can always switch to separate compilation when we have a compiler that
accepts the export keyword.

Program 15.13	 File	stack.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/***
* The implementation file class template stack *
 ***/

#ifndef STACK_CPP
#define STACK_CPP
#include "stack.h"

// Constructor
template <typename T>
Stack <T> :: Stack (int cap)
: capacity (cap), size (0)
{

ptr = new T [capacity];
}
// Destructor
template <typename T>
Stack <T> :: ~Stack ()
{

delete [] ptr;
}
// Push function
template <typename T>
void Stack <T> :: push (const T& element)
{

if (size < capacity)
{

ptr[size] = element;
size++;

}
else
{

cout << "Cannot push; stack is full." << endl;
assert (false);

}
}
// Pop function
template <typename T>
T Stack <T> :: pop ()

(continued)

for23380_ch15_693-715.indd 710 06/11/18 2:48 pm

15.2 Class	Template 711

Program 15.13	 File	stack.cpp (Continued)

39
40
41
42
43
44
45
46
47
48
49
50
51
52

{
if (size > 0)
{

T temp = ptr [size − 1];
size−−;
return temp;

}
else
{

cout << "Cannot pop; stack is empty." << endl;
assert (false);

}
}
#endif

Program 15.14 shows the application file. We have instantiated the application file
with an integer replacing the typename, but the integer can be of type double, char, or
even a user-defined type.

15.2.3 Other Issues
There are other issues that we briefly discuss here. In future chapters we explore these issues
in more detail.

Program 15.14	 Application	file	to	instantiate	the	stack	class	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* The application file to test the stack class with integers *
 ***/

#include "stack.cpp"

int main ()
{

Stack <int> stack (10);
stack.push (5);
stack.push (6);
stack.push (7);
stack.push (3);
cout << stack.pop () << endl;
cout << stack.pop ();
return 0;

}

Run:
3
7

for23380_ch15_693-715.indd 711 06/11/18 2:48 pm

712 Chapter 15 Generic	Programming:	Templates

Friends
The declaration of a template class can include friend functions. There are three ways to
implement friend functions. A template class can have a nontemplate function as a friend.
A template class can have a template function as a friend. A template class can also have a
specialized template function as a friend.

Aliases
It is sometimes easier to define aliases for template classes using the key term typedef.
This allows us to use the alias as the full definition of the class in the program. For example,
we can have the following aliases for the stack template stack class we defined previously:

typedef stack <int> iStack;
typedef stack <double> dStack;
typedef stack <string, int> siStack;

Then we can use the type definitions in our program as shown below:

iStack s1;
dStack s2;
siStack s3;

15.2.4 Inheritance
We can derive a template class from another template class or from a nontemplate class. For
example, assume we have defined the class First as a template class:

template < typename T >
class First
{
...
}

We can then define another class, Second, which is publicly derived from the First class as
shown below:

template < typename T >
class Second : public First <T>
{

…
}

There is nothing special about inherited template classes, and they are not very com-
mon. We do not discuss them further.

15.2.5 In Retrospect
We have discussed some classes that were actually template classes. In this section we look
at these classes as generic classes.

for23380_ch15_693-715.indd 712 06/11/18 2:48 pm

Summary 713

String Classes
In Chapter 10 we discussed the string class. The string class is a specialization of a template
class named basic_string. The following shows the general layout of this class.

template < typename charT >
class basic_string
{

…
};

The library class defines two specializations from this class, one for a char type and
another for a wchar_t type, as shown below. In Appendix A we use the first specialization;
the second is similar.

typedef basic_string <char> string;
typedef basic_string <wchar_t> wstring;

Input/Output Classes
Another set of classes that are actually generic classes are the input/output classes. All of
the input classes we discussed before are actually specializations of the template classes.
For example, the istream class is a specialization of the basic_istream class as shown
below:

typedef basic_istream <char> istream;
typedef basic_istream <wchar_t> wistream;

K e y T e r m s

class template
function template

template specialization

Function templates allow us to define a function but defer the definition of the types until
the program is compiled. When the program is compiled, the compiler creates as many ver-
sions of the function as there are function calls with different types. The syntax includes the
reserved words template and typename in angle brackets. To facilitate sharing, function tem-
plates are placed in an interface file that is included in the program being compiled. There
are three rules for type determination in a function template: (1) We cannot mix the types.
(2) If mixed types are required, the secondary types must be explicitly typed. (3) The opera-
tions in the function, such as compare, must be valid for the types being specified. If they
are not, we can use specialization; that is, we can define another function with the specific
type to handle the exception. We can overload a template function as long as the signatures
are different.

S u m m a r y

for23380_ch15_693-715.indd 713 06/11/18 2:48 pm

714 Chapter 15 Generic	Programming:	Templates

Class templates can be created by using generic parameters in both the interface and the
implementation. The interface of a class must define the typename for both data members
and member functions that use the parameterized type. In the implementation, we must
use the typename for each member function that involves the generic type. However, the
compiler must see the parameterized version of the template function when it compiles the
application file, which means that the implementation file must be included as a header
file. While the implementation file can be included using either the inclusion approach or
by separate compilations, separate compilation is not yet available for all compilers. Class
templates can include multiple types as long as each typename is specified with a different
identifier.

P r o b l e m s

PR-1. How many versions of the following function are instantiated during the
compilation?

template <typename T>
void fun (T x)
{

...
}
int main ()
{

fun (7);
fun (12.5);
fun ("Hello");
return 0;

}

PR-2. How many versions of the following function are instantiated during the
compilation?

template <typename T>
void fun (T x)
{

...
}
int main ()
{

Sample (7);
Sample (9) ;
return 0;

}

PR-3. Write a function template that computes the average of two numbers, such as
integers, long integers, doubles, or long doubles.

PR-4. Overload the function written in PR-3 to find the average of three numbers.
PR-5. Write a template for a struct called Pair that creates a struct of any two data items

of any type. We can have a pair of an integer and a double, a pair of a double and a
character, and so on.

for23380_ch15_693-715.indd 714 06/11/18 2:48 pm

Programs 715

P r o g r a m s

PRG-1. Write a templated function to find the index of the smallest element in an array
of any type. Test the function with three arrays of type int, double, and char.
Then print the value of the smallest element.

PRG-2. If we can find the smallest element in an array, we can sort an array using the
selection sort algorithm. In this algorithm, we find the smallest element in the
array and swap it with the first element. We then find the smallest in the rest of
the array and exchange it with the second element. We continue until the array
is completely sorted. Write a program that sorts three arrays of type int, double,
and char.

PRG-3. Write a templated function to search an array for a value. Test the function with
two arrays of type int and char. Note that searching for a double value may not
give the correct response because the equality operator is not well defined for
floating-point values.

PRG-4. Define a function to reverse the order of elements in an array of any type. Test
your program with an array of integers, doubles, characters, and strings. Use a
swap helper function to swap any two elements. Use a print helper function to
print the contents of the arrays before and after swapping.

PRG-5. Create a templated class Array that can handle an array of objects of any type
and any size in the heap. Define an add member function to add elements to the
end of the array. Define a print function to print all elements in the array. Test
your program with arrays of type int, double, and char.

PRG-6. A queue is a first-in, first-out structure. An example of a queue is a line of
people waiting to be served. We can implement a queue using an array in
which the items are inserted (enqueued) at the end of the array and removed
(dequeued) from the front. Create a templated class and a queue of any type.
Then test the queue in two separate application files: one as a queue of integers,
the other as a queue of strings. Add appropriate try-catch blocks to catch adding
to the full queue or removing from an empty queue.

for23380_ch15_693-715.indd 715 06/11/18 2:48 pm

716

C++ treats input/output operations as library classes called streams. In this chapter, we first
introduce sources and sinks of data. We then discuss streams, which are classes that connect
our programs to those sources and sinks. We discuss console streams, file streams, and string
streams. Finally, we discuss data formatting as it pertains to streams.

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss communication between a program and a source or sink of data using stream objects.

•	Discuss the hierarchy of stream classes.

•	Emphasize that the ios class, as a virtual base for all the classes in the hierarchy, cannot
be instantiated, but it defines data members that are inherited by all classes throughout the
hierarchy.

•	Discuss the console streams (istream, ostream, and iostream classes) and emphasize that
users cannot instantiate objects from these classes.

•	Show that C++ has already instantiated one object from the istream and three objects from
the ostream class and stored them in the <iostream> header file.

•	Show that we can use the member functions defined in the console streams to read from the
keyboard and write to the monitor.

•	Discuss file streams (ifstream, ofstream, and fstream) as three classes that are used to connect
to files as sources or sinks of data.

•	Show that file streams are capable of both text and binary input/output.

•	Show how we can access a source or sink of data both sequentially and randomly.

•	Discuss string streams (istringstream, ostringstream, and stringstream) as adapters to be used
between an application and the string class.

•	Show how we use the flags and fields defined in the ios class to directly format data and how
we can use standard or customized manipulators to do so.

16.1 INTRODUCTION
When we run a program, data must be stored in memory. The data stored in memory for
processing comes from an external source and goes to an external sink. This means that we
must consider the source and the sink of our data. A source can be a keyboard, a file, or a
string. A sink can be a monitor, a file, or a string. Figure 16.1 shows the relationship between
the input/output data and a program.

16 Input/Output Streams

for23380_ch16_716-775.indd 716 06/11/18 2:48 pm

16.1 Introduction 717

So far we have used the keyboard (as the source) and the monitor (as the sink) for data.
The keyboard is a temporary source and the monitor is a temporary sink of data. When we
run a program, the input data must be entered again and the output data will be created anew
on the monitor.

Files, on the other hand, are permanent sources and sinks of data. They can be saved.
They can be physically transferred to another computer. And they can be used over and over
again.

Strings as internal sources or sinks of data have been designed for special purposes, as
we will see later in the chapter.

The source or sink of data can be the console, a file, or a string.

16.1.1 Streams
A source and a sink of data cannot be directly connected to a program. We need a media-
tor to stand between them and the program to control the flow of data and at the same time
interpret data when reading or writing. We have input streams and output streams. An input
stream stands between a source and the program; an output stream stands between the pro-
gram and a sink.

Figure 16.2 shows the way we normally think of a stream: a sequence of bytes flow-
ing in or out of a program. The bytes are extracted from an input stream and inserted into an
output stream. An input/output stream can be bidirectional, but this not shown in the figure.

16.1.2 Data Representation
Although, we can receive data from a source and we can send data to a sink in text or binary
format, the sink and source of data are part of the computer system and are organized as a
sequence of bytes (8-bit chunks). We can only send a sequence of bytes to a sink or receive
a sequence of bytes from the source. Understanding this fact makes it easier to deal with
different sources and sinks.

A sink can receive only a sequence of bytes;
a source can only send a sequence of bytes.

Program

Input data

Output data

Souce: keyboard, file, string

Sink: monitor, file, string

Source

Sink

Figure 16.1	 A	program	related	to	a	source	and	a	sink

Program

Output stream

Input stream
Source

Sink

. e
 g a s s e m A

R e c i e v e d .

Figure 16.2	 Conceptual	representation	of	input	and	output	streams

for23380_ch16_716-775.indd 717 06/11/18 2:48 pm

718 Chapter 16 Input/Output	Streams

Role of Streams
One of the reasons that the C++ standard created input/output streams is to change bytes
of data that are received from a source to the data type the program needs and to change the
data types that the program sends to a sink into bytes that the sink can store. In other words,
the main job of streams can be thought of as converting bytes to data types and data types to
bytes. Of course streams have other jobs, such as controlling the flow of bytes in and out of
the computer, as we will see gradually in this chapter. Figure 16.3 shows this idea.

Text versus Binary Input/Output
When we input or output data, we must understand that three locations are involved: memory,
a stream, and a source/sink. We now examine how data are stored in these three locations.

Storage of Data in Memory The memory of a computer is a collection of bytes (8-bit)
chunks, but we do not store data as individual bytes; we store data as a set of contiguous
bytes. For example, each data object of type int occupies 4 bytes of memory no matter what
the value of the variable is. In other words, a small integer of value 23 and a large integer of
value 4,294,967,294 both occupy 4 bytes of memory or 32 bits of binary data.

Data in memory are stored in binary form.

Storage of Data in Sources or Sinks Sources and sinks of data also store data in a chunk
of bytes, but data can be either binary or text. If a data item is stored as binary, the type of
the data defines the number of bytes; if a data item is stored as text, the value of the data
defines the number of bytes. For example, the integer 23 can be stored as four bytes (binary)
or it can be stored as two characters ‘2’ and ‘3’ (text). The integer 4294967294 can be stored
as 4 bytes in binary but 10 bytes in text.

The question is which method of storage we need to use. The following considerations
may help us decide.

 ∙ The keyboard as a source of data can accept data only as text. Similarly, the monitor as
a sink of data shows data only as a set of characters.

 ∙ Files as sources or sinks of data can handle both text and binary input/output. The
question is how we store data in a file: as binary or as text. If we want to store an object
in a file, the format should be binary.

 ∙ Strings as sources or sinks of data must be input/output as text; a string is a collection
of characters (we discuss this in more detail later in the chapter).

Storage of Data in Buffer of Streams Streams deliver data to a sink or receive data from
a source in bulk. This means the stream buffer should exactly match the sink or source it is

Output stream

Input stream
Bulk of bytes Data types

Data types

Bulk of bytes

Source

Sink

Converts bytes
to data types

Converts data
types to bytes

Program

Figure 16.3	 Main	role	of	streams	as	convertors

for23380_ch16_716-775.indd 718 06/11/18 2:48 pm

16.1 Introduction 719

connected to. In other words, if the source or sink is using text data, the stream must use text
data; if the source or sink is using binary data, the source or the sink must use binary data.
As we will see later, the streams are designed to operator in text mode by default; if we want
them to operate in binary mode, the stream object must be instantiated as binary. A question:
If memory operates in binary and the stream operates in text or binary (based on the source
or sink it is connected to), how is this disparity resolved? This is one of the main purposes
of using streams. A stream always accepts data or delivers data to memory in binary, but it
converts the data as necessary to match the need of the source or sink. Figure 16.4 shows
this responsibility.

16.1.3 Stream Classes
To handle input/output operations, the C++ library defines a hierarchy of classes (Figure 16.5).

The ios Class
At the top of the hierarchy is the ios class, which serves as a virtual base class. The ios class
is the base class for all input/output classes. It defines data members and member functions
that are inherited by all input/output stream classes. Since the ios class is never instantiated, it
does not use its data members and member functions. They are used by other stream classes.

The ios class cannot be instantiated.

Text/Binary Text/Binary Binary

Note:
The stream is responsible for changing data from text to binary and vice versa.

Bulk
delivery

Bulk
delivery

Stream

Source
or

Sink
Memory

Buffer

Figure 16.4	 Responsibility	of	streams	

ios

iostream
istringstream

stringstream

ostringstream

istream

console stream string stream

Legend:

base stream file stream

ifstream

fstream

ofstream

ostream

virtualvirtual

Figure 16.5	 Basic	stream	hierarchy	in	C++

for23380_ch16_716-775.indd 719 06/11/18 2:48 pm

720 Chapter 16 Input/Output	Streams

Other Classes
For convenience, we refer to istream, ostream, and iostream as console classes (they are
used to connect our program to the console); we refer to ifstream, ofstream, and fstream as
file streams (they are used to connect our program to files); and we refer to istringstream,
ostringstream, and stringstream as string streams.

Using Streams
To use any streams, we must consider the chain of five actions shown in Table 16.1. An
appropriate stream object is constructed, the object is connected to the source or sink, data
are read from the source or written to the sink, the source or sink is disconnected from the
stream, and the stream is destroyed.

Characteristics of Stream Objects
When we work with stream objects, we need to know that none of the classes in the hierar-
chy have provided a copy constructor or assignment operators. We should also know that the
objects of these classes will change when they are used. This means that we should remem-
ber three facts about the objects instantiated from these classes:

 ∙ We can never pass an object of any stream class to a function by value (doing so
requires a copy constructor). Passing these objects must be by reference.

 ∙ We can never return an object of any stream class from a function by value (doing so
requires a copy constructor); returning must be done by reference.

 ∙ We cannot pass or return an object of any stream class using a constant modifier; the
nature of these objects requires change.

16.2 CONSOLE STREAMS
In this section we discuss the console streams: istream, ostream, and iostream. We can use
the first two, but the iostream class cannot be instantiated. It is defined as a superclass for
other classes in the hierarchy, as we will see later in the chapter.

16.2.1 Console Objects
We first discuss the objects created from the two console stream classes.

The istream Object: cin
The istream class defines a class that allows us to read data from the keyboard into our
program. We cannot instantiate this class. However, the system has created an object of this
class, named cin, which is stored in the <iostream> header file. The system also connects
the cin object to the keyboard as shown in Figure 16.6.

1. Construct the stream
2. Connect the stream to the source or sink
3. Read or write from the stream
4. Disconnect the source or the sink
5. Destroy the stream

Table 16.1 Five steps in using a stream

for23380_ch16_716-775.indd 720 06/11/18 2:48 pm

16.2 Console	Streams 721

When our program goes out of scope, the cin object is destroyed and is automati-
cally disconnected from the keyboard. This means that four out of five tasks, as defined in
Table 16.1, are automatically done for us by the system; we simply use the member func-
tions defined in this class to read data from the keyboard.

The system has created an object from istream class,
named cin, and stored it in the <iostream> header.

The ostream Objects: cout, cerr, and clog
The ostream class defines a class that allows us to write data from our program to the monitor.
We cannot instantiate this class. However, the system has created three objects of this class
(named cout, cerr, and clog) that are stored in the <iostream> header file. The system also
connects all three classes to the monitor. When our program goes out of scope, these objects
are automatically destroyed and are automatically disconnected from the monitor. This means
that four out of five tasks, as defined in Table 16.1, are automatically done for us by the sys-
tem. We can only use the member functions defined in this class to write data to the monitor.
Figure 16.7 shows the connection of these objects to the monitor and our program.

There are important points about these objects. First, cout is tied to the cin object,
which means every time we want to input data through the cin object, the cout object is
flushed (emptied). Second, both cerr and clog are designed to send errors to the console.
The difference is that the cerr object flushes its contents immediately after each operation;
the clog object collects the error messages and is flushed whenever the program terminates
or when it is explicitly flushed.

Buffer
Keyboard

cin

Program

Bulk
delivery

Deliver
data

Note:
The marker is at the beginning of the buffer when the keyboard is connected to the stream.
After a read operation, the marker moves to the right.

functions

byte marker

Legend:

Figure 16.6	 The	cin	object	in	relation	to	our	program	and	keyboard

Note:
There are three simulatneous objects.
The marker is at the beginning of the buffer when the monitor is connected to the streams.
After a write operation, the marker moves to the right.

Monitor cout, cerr, and clog

Bulk
delivery

Buffer
functions

get
data Program

byte marker

Legend:

Figure 16.7	 The	cout,	cerr,	and	clog	objects	in	relation	to	our	program	and	
monitor

for23380_ch16_716-775.indd 721 06/11/18 2:48 pm

722 Chapter 16 Input/Output	Streams

The system has created the cout, cerr, and clog objects from the
ostream class and stored them in the <iostream> header.

16.2.2 Stream State
When we read text data from the keyboard, we must use an istream object (cin); when we
write text data to the monitor, we must use an ostream object (cout, cerr, or clog). These
objects are different from the ones we have used so far. The member functions that we need
to apply to these objects may not be able to do their job. We may try to read from an empty
buffer or write to a full buffer. The current position from which we need to read a byte may
not contain what we need to read (we may need to read a digit as part of an integer, but the
current position may contain a character that is not a digit).

For these reasons, a stream must keep track of its state. The stream state is stored in
a data member that shows the status of the stream object. The stream also needs member
functions to test its state. Since the state of a stream is the same for console streams, file
streams, and string streams, the state data member and the corresponding member functions
are defined in the ios class, which is inherited by all stream classes.

Data members and member functions related to the state of a strem
are defined in the ios stream class but inherited by all stream classes.

State Data Member
The ios stream defines a type called iostate (input/output state). The implementation of this
type is system dependent, but we know that it defines three constants: eofbit, failbit, and
badbit. We can think about the iostate data member as a bit set made of three bits, as shown
in Figure 16.8.

Table 16.2 shows the bits defined in the iostate type. Note that the eofbit does not
apply to the output stream.

badbit
Note:
A stream can contiue to read
or write only in the good state.

goodstate
None of the
iostate bits

are set.

failbit

eofbit

iostate

ba
db

it

eo
fb

it
fa

ilb
it

Figure 16.8	 State	of	a	stream

Constants Input stream Output stream

ios :: eofbit No more characters to extract. Not applicable.

ios :: failbit An invalid read operation. An invalid write operation.

ios :: badbit Stream integrity is lost. Stream integrity is lost.

ios :: goodbit Everything is fine. Everything is fine.

Table 16.2 Constant values used with iostate

for23380_ch16_716-775.indd 722 06/11/18 2:48 pm

16.2 Console	Streams 723

The eofbit is set when we try to extract a byte that does not exist in the stream buffer (the
stream position has reached the end of the buffer and there is no character to read). The
failbit is set when we try to extract a byte that does not correspond to what we want. For
example, if we try to read an integer, we must extract digits (or white space that defines the
end of a set of digits), not any other character. Note that if one of the two bits (eofbit or fail-
bit) is set, the badbit is automatically set. The badbit is set when the integrity of the stream
is lost, such as when there is a memory shortage, when there is a conversion problem, when
an exception is thrown, and so on. As is said, no news is good news: When none of the three
bits are set, the stream is in a good state and can be used.

State-Related Member Functions
The ios class also provides member functions to check the condition of the state. Several
member functions have been defined; most of them are system dependent. For example,
there is a member function called rdstate that returns the current bit values of the iostate
data member. We can use the member functions defined in Table 16.3 to check the input/
output status.

The first four functions in Table 16.3 are straightforward. Each returns the status of
the corresponding bit in the iostate data member. The fifth one, clear, resets all three bits
to zero (false). The interesting ones are the sixth and the seventh. The sixth function is a
conversion constructor, as we discussed in Chapter 6. with regard to overloaded operators.
For example, we defined a conversion constructor that changes an instance of a Fraction
object to a double value. The conversion constructor changes the host object (an instance
of a stream) to a pointer to void (instead of a Boolean value) because a pointer to void, as
we know, can be used in any expression. When the pointer is null, its value is 0, which is
interpreted as false in a Boolean expression; when it is not null, it is interpreted as true in a
Boolean expression. The last function is an overloaded operator that returns true if the failbit
or badbit is set. It does not check the eofbit. The last two functions are very useful because
we can apply them to the stream object (without any operator) or apply them to the returned
object from an operation. Note that most operations in istream and ostream, including the
extraction and insertion operators, return an object of type stream.

Program 16.1 shows some of the points we discussed.

Functions Return values

bool eof () true if eofbit is set; false otherwise.

bool fail () true if failbit or badbit is set; false otherwise.

bool bad () true if badbit is set; false otherwise.

bool good () true if the stream is in good condition; false otherwise.

clear (); It clears all three bits (sets to zero).

operator void* (); It returns a pointer; interpreted true if not null.

const bool operator! (); It returns true if badbit or failbit is set.

Table 16.3 Member functions for checking the state of a stream

for23380_ch16_716-775.indd 723 06/11/18 2:48 pm

724 Chapter 16 Input/Output	Streams

In line 11 we use the expression cin >> n. Although we have not discussed the operator
>> formally, we have used it in the past. It reads an integer from the cin object connected
to the keyboard. We will see later that this operator reads an integer into its argument and
returns a reference to the cin object. The expression inside the while statement needs to see
a Boolean value, but what is returned from the statement (cin >> n) is an instance of the cin
object. A conversion must occur to change the cin object to a Boolean value. This is done by
calling operator void*(), which returns a pointer (true) if the previous operation is success-
ful and a null pointer (false) if it is not successful. This means that the loop continues until
one of the three bits are set. When we type ^Z on the keyboard, it means that we terminate
inputting data into the cin buffer and the eofbit is set.

16.2.3 Input/Output
Since the objects of the istream and ostream classes have already been instantiated for us
and connected to the console, our only task is to use the member functions defined in these
two stream classes to read data from the buffer or write data to the buffer. As we mentioned,
the keyboard, which is connected to the only istream object, and the monitor, which is con-
nected to the three ostream objects, can accept only text data. These means that the buffers
in the istream and ostream objects store only a set of 8-bit bytes interpreted individually as
characters. Since the memory of the computer stores data in binary, the member functions of
the ostream object must change binary data to individual characters. Similarly, the member
functions of the istream object must read a set of characters and interpret them as binary data.

Character Member Functions
The istream and ostream classes provide several character member functions and overloaded
operators to read characters from the keyboard and write characters to the monitor.

Program 16.1	 Testing	the	cin	state	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* A program to show how to test the state of a stream *
***/

#include <iostream>
using namespace std;

int main ()
{

int n;
cout << "Enter a line of integers and eof at the end: " << endl;
while (cin >> n)
{

cout << n * 2 << " ";
}
return 0;

}

Run:
Enter a line of integers and eof at the end:
14 24 11 78 19 32 ^Z
28 48 22 156 38 64

for23380_ch16_716-775.indd 724 06/11/18 2:48 pm

16.2 Console	Streams 725

Reading and Writing a Single Character Table 16.4 shows two member functions to
read a single character from the keyboard and one member function to write a single char-
acter to the monitor. The istream class provides two versions of the get function. The first
returns an integer (the ASCII) value of the character in the buffer; this character is stored
in memory as an integer (converted to 4 bytes). Since this function does not return a refer-
ence to the istream object, we cannot test the state of the stream at the time that we call the
function. The second function reads a character that is stored in its parameter. The ostream
object, however, provides only one put function, which writes a copy of a character defined
in its parameter to the buffer.

Program 16.2 shows how we can use the first get function to print the ASCII value
of five characters. Note that the loop is controlled by the value of i, not by the state of the
stream.

Note that we type a set of five characters that are stored in the buffer of the cin object.
The program reads them, one by one, and sends them to the monitor using the insertion
operator (<<).

The istream class The ostream class

int get() None

istream& get (char& c) ostream& put (char& c);

Table 16.4 Reading and writing a single character

Program 16.2	 Testing	the	first	get	function	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* A program to read characters and print their ASCII values *
***/

#include <iostream>
using namespace std;

int main ()
{

int x;
cout << "Enter five characters (no spaces): ";
for (int i = 0; i < 5; i++)
{

x = cin.get ();
cout << x << " ";

}
return 0;

}

Run:
Enter five characters (no spaces): ABCDE
65 66 67 68 69

for23380_ch16_716-775.indd 725 06/11/18 2:48 pm

726 Chapter 16 Input/Output	Streams

Now we use the get function in the istream class and the put function in the ostream
class to make the first letter of each word uppercase (see Program 16.3).

Note that in Program 16.3 we define two variables: the current character, c, and the
previous character, pre. If the previous character is a space or return (‘\n’) character, we capi-
talize the current character. To capitalize the first word, we set pre to the return character.
After each iteration, we store the current character as the previous character.

Reading a C String The istream class provides two member functions to read a set of
characters and create a C string out of them. The first function, get, reads n − 1 characters
from the keyboard and stores them as a C string (a null character is added to the end of the
array). The second function, getline, reads n − 1 characters or a set of characters terminated
by a delimiter, which is defaulted to ‘\n’, whichever comes first. Note that the delimiter is

Program 16.3	 Testing	the	get	and	put	functions	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* A program that capitalizes the first letter of each word *
***/

#include <iostream>
using namespace std;

int main ()
{

char c;
cout << "Enter a multi-line text and EOF as the last line." << endl;
char pre = '\n';
while (cin.get(c))
{

if (pre == ' ' || pre == '\n')
{

cout.put (toupper (c));
}
else
{

cout.put (c);
}
pre = c;

}
return 0;

}

Run:
Enter a multi-line text and EOF as the last line.
This is the text that we want to capitalize
This Is The Text That We Want To Capitalize
each word.
Each Word.
^Z

for23380_ch16_716-775.indd 726 06/11/18 2:48 pm

16.2 Console	Streams 727

removed from the stream, but it is not added to the array. The prototypes of these functions
are shown in Table 16.5.

Note that in both cases shown in the table, when n characters are read or the delimiter
is reached, the eofbit is set and no more characters can be read from the stream.

We test the second function in Program 16.4. We create an array of 80 characters to
accept a line. We then type a line and enter the return key. The program creates a string out
of the line (without the ‘\n’ character) and adds a null character at the end.

Input/Output of Fundamental Data Types
The istream and ostream classes are basically character stream classes, but this does not
mean that we cannot extract the value of a fundamental type from an input stream or insert
the value of a fundamental data type into an output stream. Inputting and outputting of
fundamental data types is also considered text input/output because the function extracts
several characters and puts them together to get a fundamental data type or the function cre-
ates several characters from a fundamental data type and inserts them into the output stream.
This is done by two overloaded operators called the insertion operator and the extraction
operator. Table 16.6 shows the general declaration of these two operators in which the type
can be bool, char, short (signed and unsigned), int (signed and unsigned), long (signed and
unsigned), float, double, long double, or void*.

The istream class The ostream class

istream& get (char* s, int n)

istream& getline (char* s, int n, char d = '\n')

Table 16.5 Reading a C string

Program 16.4	 Testing	getline	

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
* A program to test the getline functions *
***/

#include <iostream>
using namespace std;

int main ()
{

char str2 [80];
cin.getline (str2, 80, '\n');
cout << str2;
return 0;

}

Run:
This is a line to make a string out of it.
This is a line to make a string out of it.

for23380_ch16_716-775.indd 727 06/11/18 2:48 pm

728 Chapter 16 Input/Output	Streams

The behavior of the extraction and insertion operators is different for fundamental data
types. We review these operations briefly.

Extracting Fundamental Data Types The extraction operator for the fundamental data
types uses the following four rules when it encounters a statement such as cin >> variable.
The operator reads the characters one by one until it finds a character that does not belong to
the syntax of the corresponding type:

a. If it is extracting a Boolean value, it must see a value that can be interpreted as 0 or 1.
b. If it is extracting a character value, it reads the next character in the input stream

(including a whitespace character) and stores it in the corresponding variable.
c. If it is extracting an integral value, it reads digits until it encounters a nondigit charac-

ter. It makes an integer value of the extracted characters. The unextracted characters
remain in the stream.

d. If it is extracting a floating-point value, it reads digits with only one decimal point
between them. If it encounters a second decimal point or a nondigit character, it stops
and makes the floating-point value.

Inserting Fundamental Data Types Fundamental data types can be inserted into streams
using the insertion operator (<<). The value is considered a set of characters and inserted
into the stream. For example, the integer 124 is inserted as three characters (1, 2, and 4) into
the stream.

Input/Output of C-Type Strings
When we use the cin object to input a C string, we must be careful that we do not exceed
the size of array; otherwise, a run-time error occurs and the program is aborted. There is no
problem when we output a C string.

Input/Output of C++ Strings
The extractor and the inserter operator are overloaded for the string class; they can be used
as they have been defined. However, the input stops when the first whitespace is encounterd.
If we want to read the whitespace characters (the whole line), we must use the getline func-
tion (a global function) defined in the <string> header. It has the following signature:

istream& getline (istream& in, string& str);

Other Member Functions
There are other member functions defined in istream and ostream classes, but they are not
used by the objects instantiated from these classes. They are, however, inherited by the other
stream classes in the hierarchy; we discuss these classes in the next sections.

istream& operator >> (type& x);
ostream& operator << (type& x);

// Extracting next data item
// Inserting next data item

Table 16.6 Extracting and inserting a fundamental data type

for23380_ch16_716-775.indd 728 06/11/18 2:48 pm

16.3 File	Streams 729

16.3 FILE STREAMS
In the previous section we used the keyboard and monitor as the source and sink for data, but
they are temporary. After the program terminates, the data do not exist and cannot be used
again; if needed, the data must be re-created. A file is a permanent source or sink for data.
After creation, it can be used by another program. Files can be saved for future use.

To use files, we must use the file stream classes defined in the <fstream> header;
doing so allows us to connect the files to our program so we can read or write them.

We must include the <fstream> header to use file streams.

As shown in Figure 16.5, file stream classes are made from three classes: ifstream,
ofstream, and fstream. These classes are used to input data from or output data to files or to
input and output to the same file. They are inherited, respectively, from the istream, ostream,
and iostream classes, and they inherit all member functions of these classes. The file stream
classes define some new functions, mostly for instantiation and opening files.

All of the member functions defined in the console
streams are inherited in the file streams.

16.3.1 File Input/Output
The source or the sink of data is always an entity that must be connected to a stream object.
In the case of file input/output, the source is a file and the sink is a file. Files are entities
that reside on disk (auxiliary storage). In other words, we have files and we have stream
objects that must be connected to the files as shown in Figure 16.9. This means that we must
construct a stream, connect the stream to the corresponding file, read or write from the file,
disconnect the file, and destruct the stream.

Construct the Stream
We can instantiate any of the three streams as shown below. To do so we must include the
<fstream> header file in our program.

inFile

Bulk
delivery

ifstream object

Programfunctions
extract

buffer

outFile

Bulk
delivery

ofstream object

Programfunctions
insert

buffer

inOutFile

Bulk
delivery

fstream object

Programfunctions

insert/
extract

buffer

Figure 16.9	 A	file	stream	object	connecting	our	program	to	a	file

for23380_ch16_716-775.indd 729 06/11/18 2:48 pm

730 Chapter 16 Input/Output	Streams

ifstream inStream ;
ofstream outStream ;
fstream inOutStream ;

Connect the File (Open)
Instantiation of a stream just creates an object of that type. To read from or write to a file, we
must connect the instantiated stream to the corresponding file. This step is also referred to as
the file-opening step because it is done using a member function named open in the corre-
sponding stream class. The open function uses the file name (a C string) as the first parameter
and an open mode as the second. For now, we ignore the open modes and use the default. The
parameters inFile, outFile, and inOutFile are file names.

inStream.open (const char* inFile, ...);
outStream.open (const char* outFile, ...);
inOutStream.open (const char* inOutFile, ...);

Read and Write
After a stream is instantiated and the file is opened, we can read from a file opened for input
or write to a file opened for output, or we can read and write to a file opened for read/write.
There are no new read and write member functions defined for the file streams; these streams
inherit the member functions defined for the console streams as discussed previously.

Disconnect the File (Close)
When we are done with the files, we must close them using the close member function de-
fined in the file stream. Since a stream can be connected to only one file at a time, the close
member function has no parameter.

inStream.close ();
outStream.close ();
inOutStream.close ();

Destruct the Stream
This step is done automatically when the stream object goes out of scope.

Testing Opening Success
We know that a file is an external entity to our program. The open member function connects
the file whose name is given as a parameter. What happens if the operating system does not
or cannot open the file? For example, an input file may have been deleted or corrupted or an
output file cannot be opened because the disk is full. The three file stream classes provide a
function to test that the file was opened successfully and connected to the stream. The result
is a Boolean true or false value.

inStream.is-open ()
outStream.is-open ()
inOutStream.is-open ()

for23380_ch16_716-775.indd 730 06/11/18 2:48 pm

16.3 File	Streams 731

Two Examples
Program 16.5 shows how we can use the steps described above to instantiate a stream, open
a file and test if it is open, write to the file, and close the file (destruction of the stream object
is done in the background).

In Program 16.6, we instantiate an ifstream class and connect it to the integerFile
we created in Program 16.5. We then read the integers one by one and display them. Note
that we are using two streams: the ifstream, which is connected to the integerFile, and the
ostream, which is automatically connected to the monitor. As we said, the ostream is instan-
tiated automatically by the system (cout object).

Nothing will be output to the monitor from Program 16.5 when it is run, but we can
check the contents of a file named integerFile (a data file) with a text editor to find that the
following line was stored in it.

10 20 30 40 50 60 70 80 90 100

Program 16.5	 Testing	the	five	steps	in	outputting	to	a	file	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* A program to create an output file and write to it *
***/

#include <iostream>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

// Instantiation of an ofstream object
ofstream outStrm;
// Creation of a file and connecting it to the ofstream object
outStrm.open ("integerFile");
if (!outStrm.is_open())
{

cout << "integerFile cannot be opened!";
assert (false);

}
// Writing to the file using overloaded insertion operator
for (int i = 1; i <= 10; i++)
{

outStrm << i * 10 << " ";
}
// Closing the file
outStrm.close ();
// The ofstream object is destroyed after return statement
return 0;

}

for23380_ch16_716-775.indd 731 06/11/18 2:48 pm

732 Chapter 16 Input/Output	Streams

Note that this time we can see the integers printed on the monitor. We read from the
integerFile using the extraction operator. This operator skips whitespace and reads the data.
After each read, we write the data to the cout object (monitor).

16.3.2 Opening Modes
In Programs 16.5 and 16.6, we ignored the opening modes. We used the default opening
mode for the integerFile in both cases (when connected to the ofstream and when con-
nected to the ifstream). The opening mode is a type defined in the ios class and inherited
by all classes in the hierarchy of stream classes. Opening modes are not used in the con-
sole streams or string streams because we do not open them; they are used only in the file

Program 16.6	 Reading	from	an	existing	file	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/***
* A program to read from an existing file and display data on *
* the monitor *
***/

#include <iostream>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

int data;
// Instantiation of an ifstream object
ifstream inStrm;
// Connection of the existing file to the ifstream object
inStrm.open ("IntegerFile");
if (!inStrm.is-open())
{

cout << "integerFile cannot be opened!";
assert (false);

}
// Reading from the ifstream object and writing to the cout object
for (int i = 1; i <= 10; i++)
{

inStrm >> data ;
cout << data << " " ;

}
// Disconnection of the IntegerFile from the ifstream
inStrm.close ();
// Destruction of the ifstream object is done after return
return 0;

}

Run:
10 20 30 40 50 60 70 80 90 100

for23380_ch16_716-775.indd 732 06/11/18 2:48 pm

16.3 File	Streams 733

streams. The opening mode is defined as a type, but its implementation is system dependent.
Most of the time it is implemented as a bitfield (see Appendix E) with six bits that are used
independently or in conjunction with the other bits. It is shown in Table 16.7.

Some of these modes can be combined as shown in Figure 16.10. The binary mode can
be combined with all other modes (not shown in the figure).

Opening Modes for Input
Normally we use one of the two modes for an input file. The first (ios :: in) opens the file for
input and puts the marker at the first byte of the buffer. This allows us to start reading the
file from the first byte. With each read the marker moves to the next byte until we reach an
empty position. In this case the eofbit is set and the file can no longer be read.

In the second mode (ios :: in | ios :: ate), the file is opened for reading, but the marker
goes to the position after the last byte. This means the eofbit is set and we cannot read.

ios :: in

ios :: in ∣ ios :: ate
if

st
re

am

ios :: out

of
st

re
am

ios :: out ∣ ios :: app

ios :: in ∣ ios :: out

fs
tr

ea
m

ios :: in ∣ ios :: out ∣ ios :: trunc

Legend:
data location marker

Figure 16.10	 Common	combinations	of	opening	modes

openmode
in out app trunc binaryate

ios :: in
ios :: out
ios :: app
ios :: ate
ios :: trunc
ios :: binary

open for input
open for output; the contents are destroyed
open for output and write at the end (append)
move to the end immediately after opening (at end)
truncate the file to zero length
read and write in binary mode (default is text)

Table 16.7 The open modes used with file streams

for23380_ch16_716-775.indd 733 06/11/18 2:48 pm

734 Chapter 16 Input/Output	Streams

However, it has other applications, such as allowing us to read the bytes in reverse by mov-
ing the marker toward the beginning. Another application is that we can find the size of the
file, as we demonstrate later.

We can use the first mode (ios :: in) to read the contents of a file named file1 whose
contents are shown below:

This is the file that we want to open
and read its contents.

Program 16.7 reads the file, character by character, and writes the characters on the
monitor until the eofbit is set.

Program 16.7	 Using	the	first	input	mode	to	read	a	file	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/***
* A program to open a file, read its contents, character by *
* by character, and write each character to the monitor *
***/

#include <iostream>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

// Variable declaration
char ch;
// Instantiation of an ifstream object
ifstream istrm ;
// Opening file1 and testing if it is opened properly
istrm.open ("file1", ios :: in);
if (!istrm.is_open())
{

cout << "file1 cannot be opened!" << endl;
assert (false);

}
// Reading file1 character by character and writing to monitor
while (istrm.get (ch))
{

cout.put(ch);
}
// Closing stream
istrm.close ();
return 0;

}

Run:
This is the file that we want to open
and read its contents.

for23380_ch16_716-775.indd 734 06/11/18 2:48 pm

16.3 File	Streams 735

Opening Modes for Output
As Figure 16.10 shows, we can use two output modes to write to a file. In the first mode
(ios :: out) we open the file for output. If the file contains any data, they are deleted. In the
second mode (ios :: out | ios :: app) we open the file and write at the end of the file (append).
The existing data are preserved.

We create a file named file2 and copy the contents of file1 into it. Note that we open
file1 for input using opening mode (ios :: in), which means the marker is set on the first byte
of the buffer. We open file2 using the opening mode (ios :: out), which means the buffer is
emptied and the marker is set to the first byte. In Program 16.8 we read a character at a time
from file1 and write it to file2. The file markers in both files are moving in sequence.

(continued)

Program 16.8	 Using	input	and	output	modes	to	copy	a	file	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/***
* A program to open a file, read its contents character by *
* by character and write each character on another file *
***/

include <iostream>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

// Variable declaration
char ch;
// Instantiation of an ifstream and an ofstream object
ifstream istr;
ofstream ostr;
// Opening file1 and file2 and testing if they are open
istr.open ("file1", ios :: in);
if (!istr.is_open())
{

cout << "file1 cannot be opened!" << endl;
assert (false);

}
ostr.open ("file2", ios :: out);
if (!ostr.is_open())
{

cout << "file2 cannot be opened!" << endl;
assert (false);

}
// Reading file1 character by character and writing to file2
while (istr.get (ch))
{

ostr.put(ch);
}

for23380_ch16_716-775.indd 735 06/11/18 2:48 pm

736 Chapter 16 Input/Output	Streams

If we compare Program 16.7 and Program 16.8, we will see that both programs are doing
the same thing, copying, but with some differences. Program 16.7 copies the contents of file1
to the monitor; Program 16.8 copies the contents of file1 to file2. In the first program, we have
only one stream to instantiate (cout is already done for us); in the second program, we must in-
stantiate two streams. In the first, we must open only one file (cout is done for us); in the second
program, we must open two files. In the first program, we close only one file (cout is automati-
cally done for us). In the second program, we must close both files. In the first program, the copy
created on the monitor is temporary (but we can see the data when we run program). In the sec-
ond program, we can see nothing, but we can open file2 to see that it is the exact copy of file1.

The opening mode (ios :: out | ios :: app) can be used to open an existing file for ap-
pending. The contents of the file are not affected; we add at the end of the file. For example,
assume that we decided to add the date at the end of file1. As seen in Program 16.9, we
simply open the file and append the date, as a C string, at the end of the file.

Program 16.8	 Using	input	and	output	modes	to	copy	a	file	(Continued)

35
36
37
38
39

// Closing file1 and file2
istr.close ();
ostr.close ();
return 0;

}

Program 16.9	 Appending	to	a	file	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* A program to open a file, append the current date at the *
* end of the file and close it *
***/

#include <iostream>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

// Instantiate a ostream object
ofstream ostr;
// Open file1 and connect it to the ostream object
ostr.open ("file1", ios :: out | ios :: app);
if (!ostr.is_open())
{

cout << "file1 cannot be opened!";
assert (false);

}
// Append the date as a C-string to file1
ostr << "\nOctober 15, 2016.";
// Close the file
ostr.close ();
return 0;

}

for23380_ch16_716-775.indd 736 06/11/18 2:48 pm

16.3 File	Streams 737

When we open file1 with a text editor, we see that the date has been added at the end
of the file (in a new line) as shown below:

This is the file that we want to open
and read its contents.
October 15, 2015.

Opening for Input/Output
We can open a file for input/output if we connect our file to an fstream object using the mode
(ios :: in | ios :: out). Assume that we have a file of integers. We decide to add the sum of the
integers at the end of the file. We can open the file for both read and write (ios :: in | iso ::
out). Note that this situation is different from the previous example. We must read the inte-
gers, one by one (input), and then write the sum at the end of the file (output). The contents
of our file before the change is shown below:

12 14 17 20 21 25 32 27 56 18

Program 16.10 shows the solution.

(continued)

Program 16.10	 Opening	a	file	for	both	input	and	output	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* A program that opens a file, sums its contents, and writes *
* the sum at the end of the file. *
***/

#include <iostream>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

// Instantiate an fstream object
fstream fstr;
// Open the intFile and connected to the fstream object
fstr.open ("intFile", ios :: in | ios :: out);
if (!fstr.is_open())
{

cout << "intFile cannot be opened!";
assert (false);

}
// Read all integers and add to the sum until end of file is detected
int num;
int sum = 0;
while (fstr >> num)
{

sum += num;
}

for23380_ch16_716-775.indd 737 06/11/18 2:48 pm

738 Chapter 16 Input/Output	Streams

When the loop (lines 24 to 27 in Program 16.10) terminates, the eofbit is set and we
cannot use the stream. In line 29 we clear the stream and then write the message and the sum
to the end of the file. The result is a file with the following contents:

12 14 17 20 21 25 32 27 56 18
The sum of the numbers is: 242

EXAMPLE 16.1
The last file mode in Figure 16.10 (ios: in | ios: out | ios : trunc) allows us to open the file,
truncate its contents, and write new data to it. This is the same as the mode (ios :: out) with
one difference. In the second mode, we create a new file; in the first we delete the contents
of an old file and replace it with new data. The second method is used when we want to keep
the name of the file, but with new contents.

Other Opening Modes
We have not used the last three modes listed in Table 16.7, but we use them later in the chapter.

16.3.3 Other Member Functions
There are additional member functions that have been defined for the istream class, but they
have more applications in the ifstream class (Table 16.8).

The function gcount gives the count of the number of characters extracted in the last
input. The function unget puts the last character extracted from the stream back into the
stream. The function putback does the same as unget. The function peak looks at the value
of the next character without removing it. The function ignore skips over a number of char-
acters without extracting them. We show how to use the unget function; we leave the rest
as exercises.

Assume we have a file that includes only text and integers as shown below:

We have 7, 12, 23, and 442 in this file.

int gcount () const // counts the number of characters

istream& unget () // put back the last character in stream

istream& putback (char c) // same as unget

int peak () // look without extracting

istream& ignore (int n = 1, int d = eof) // ignore some characters

Table 16.8 Other member functions used in file streams

Program 16.10	 Opening	a	file	for	both	input	and	output	(Continued)

28
29
30
31
32
33
34
35

// Clear the file and add the message and the sum to the file
fstr.clear ();
fstr << "\nThe sum of the numbers is: ";
fstr << sum;
// Close the stream
fstr.close ();
return 0;

}

for23380_ch16_716-775.indd 738 06/11/18 2:48 pm

16.3 File	Streams 739

We want to extract the integers from this file and ignore the text. Program 16.11 shows how
we can use the unget function to do so.

The program goes through the whole file, character by character. If the character is
a nondigit, it is thrown away. If the character is a digit, it is put back into the stream to be
extracted again as an integer.

Program 16.11	 Using	the	unget	function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

/***
* A program that extracts only integers from an input file *
* that contains both integer and character data types *
***/

#include <iostream>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

// Instantiation of an ifstream object and connection to the file
ifstream ifstr;
ifstr.open ("mixedFile" , ios :: in);
if (!ifstr.is_open())
{

cout << "The file mixedFile cannot be opened for reading!";
assert (false);

}
// Reading only integers by putting back the non-digit characters
char ch;
int n;
while (ifstr.get (ch))
{

if (ch >= '0' && ch <= '9')
{

ifstr.unget();
ifstr >> n;
cout << n << " ";

}
}
// Closing the file
ifstr.close ();
return 0;

}

Run:
7 12 23 442

for23380_ch16_716-775.indd 739 06/11/18 2:48 pm

740 Chapter 16 Input/Output	Streams

16.3.4 Sequential versus Random Access
A file is a sequential collection of 8-bit bytes. We do not read or write to a file directly; we
read from or write to the buffer in the stream object. In reading, the contents of the file are
copied to the buffer by the system in bulk movement; in writing, the contents of the buffer
are moved from the buffer to the file in bulk movement. Transferring bytes from the file to
the buffer or from the buffer to the file is out of our control.

When we talk about sequential access or random access, we do not mean that the
file is arranged sequentially or randomly (a file is always a sequence collection of bytes),
we are referring to how we access the buffer in the stream object: sequentially or randomly.
If we think about the buffer, we see that it is like an array; we can always access an array
either sequentially (element after element) or randomly (any element we want). In fact, the
buffer in a stream is made of elements, and the elements are indexed from 0 to n − 1, where
n is the size of the buffer defined by the system.

The buffer in an ifstream has a marker that points to the next byte to be read. The buf-
fer in an ofstream has a marker that points to the next byte to be written. The buffer in an
fstream has only one marker for read or write.

Each stream has only one marker that indicates whether the next byte should be
read or written.

Sequential Access
All of the examples we have shown so far have used sequential access. In sequential access,
the movement of the stream marker is controlled by the read/write functions. The marker
starts at the beginning of the buffer (index 0) when the file is opened. It moves toward the
end of the buffer with each read or write. The marker is pointing to the next byte to be read
or written, but the number of bytes in each read or write depends on the type of data. If we
are reading or writing characters, movement is one byte at a time; if we are reading or writ-
ing formatted data (fundamental type or class type), the movement can be a number of bytes
for each read or write.

Random Access
Reading or writing using the console system can be done only sequentially, but we can use
random access when we use the file stream or stream streams. In random access, we can read
data from any location and we can write data to any location. We simply move the stream
marker to the corresponding character. The istream and ostream classes provide member func-
tions that allow us to find the location of the marker and to move the marker to the desired
location. Table 16.9 shows the six member functions used for this purpose.

direction (dir) values
ios :: beg ios :: cur ios :: end

Input output

int tellg ();
istream& seekg (int pos);
istream& seekg (int off, ios :: dir);

int tellp ();
ostream& seekp (int pos);
ostream& seekp (int off, ios :: dir);

Table 16.9 Member functions for random access

for23380_ch16_716-775.indd 740 06/11/18 2:48 pm

16.3 File	Streams 741

Finding the Index of Current Location The first functions in each category, tellg or
tellp, give the index of the current byte pointed to by the marker. Although there is only one
marker, we must use tellg (g is for get) when we are using an istream object and tellp (p is
for put) when we are using an ostream object.

Program 16.12 shows how we print the location of the marker and the value of the cor-
responding character in a file that has one word in it (“Hello!”).

Moving the Marker Using the other four member functions in Table 16.9, we can
move the marker to point to the byte we want to read or write next. Movement can be
absolute or relative. If we know the index of the byte we want to move to, we can use

Program 16.12	 	 Printing	location	and	value	of	characters	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* A program to print characters and their locations in a file *
***/

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{

// Declaration of variables
char ch;
int n;
// Instantiation of stream and opening the file
ifstream istr;
istr.open ("sample", ios :: in);
// Getting characters and their locations
n = istr.tellg ();
while (istr.get(ch))
{

cout << n << " " << ch << endl;
n = istr.tellg ();

}
// Closing the file
istr.close ();
return 0;

}

Run:
0 H
1 e
2 l
3 l
4 o
5 !

for23380_ch16_716-775.indd 741 06/11/18 2:48 pm

742 Chapter 16 Input/Output	Streams

the two member functions with one argument: seekg (location) and seekp (location). If
we want to move the marker to another position relative to the beginning, current, or
the end of the buffer, we can use the relative member functions seekg (off, dir), or seekp
(off, dir), where the offset (off) is a positive or negative integer and dir is the start posi-
tion: cur for the current position, beg (for the beginning of the buffer), and end (for the
end of the buffer).

Assume we have a simple file with the contents shown below:

There are wonderful things to do in life.

We want to change the contents of the file so each word is on a line by itself. Program 16.13
does the job. Note that we read a character at a time (sequential access). We then check the
value of the character. If it is a space, we change it to carriage return character (‘\r’), not the
new line (‘\n’) because the new line is normally made of two characters and will replace the
space and the first character of the next word. After reading a character and finding that it
is a space, we must change it. However, the marker has already advanced to the beginning
of the next word. We must move the marker back before putting a carriage return in place
of the space character. We do this by using the seekp function to move the marker back one
position.

Program 16.13	 Changing	a	space	to	a	carriage	return	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* A program to put each word in the file on a new line *
***/

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{

fstream fstr;
fstr.open ("file3" , ios :: in | ios :: out);

char ch;
while (fstr.get(ch))
{

if (isspace (ch))
{

fstr.seekp (−1 , ios :: cur);
fstr.put ('\r');

}
}
fstr.close ();
return 0;

}

for23380_ch16_716-775.indd 742 06/11/18 2:48 pm

16.3 File	Streams 743

After running the program, the file looks like the following:

There
are
wonderful
things
to
do
in
life.

As another example, we can find the size of a file in bytes if we open the file using the ate
(at the end) opening mode, which puts the marker after the last character in the file. We can
then use the tellg member function to tell us the index of the character after the last character,
as shown in Program 16.14.

The following shows the contents of the file we have used. Note that when we check
the value returned by tellg, it gives the index of the character after the period in the file (43),
but since the indexes start from 0 and not 1, we know that there are exactly 43 characters in
the file with indexes 0 to 42.

This is the file whose size we want to find.

Program 16.14	 Finding	the	size	of	a	file	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* A program to find the length of the file *
***/

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{

// Instantiation of stream and connection to the file
ifstream ifstr;
ifstr.open ("file4" , ios :: in | ios :: ate);
// Finding the marker value after the last character
cout << "File size: " << ifstr.tellg ();
// Closing the file
ifstr.close ();
return 0;

}

Run:
File size: 44

for23380_ch16_716-775.indd 743 06/11/18 2:48 pm

744 Chapter 16 Input/Output	Streams

16.3.5 Binary Input/Output
The console streams are not used for binary data because neither the source nor the sink
(keyboard or monitor) can handle them. On the other hand, files connected to a file stream
can be used to input and output binary data in which 8 bits (a byte) are treated as a byte
without being related to any character code (ASCII or Unicode). This is important when we
want to input or output data that should be interpreted as bytes. For example, we may write
a program that reads a file that has stored audio/video information. Each picture element
(pixel) in a video file can be 8 bits, which may be stored as a byte. We may also need to
store objects of user-defined types as a set of bytes. In these cases, we can store data in a file
as a sequence of bytes. To do so, the file should be opened in the binary mode.

File streams are capable of holding text and binary data.

As we discussed at the beginning of the chapter, data are stored in 8-bit bytes in
memory, in a stream, and in a file. The difference is how we interpret data stored in the
stream and file (which are images of each other). In text input/output, values are converted
to bytes; in binary input/output, the exact pattern of bits is converted to bytes. We show
how a large integer, 1,464,740,402, is stored in memory, in a stream, and in a file both as
text and binary (Figure 16.11).

Figure 16.11 shows that in text output, we must store each digit of the integer as a
character (text) in the stream and in the file; in binary output we use only 4 bytes (the image
of data in memory). It is obvious that in the case of text output, the file can be opened by a
text editor and we can see the value of the integer; in the case of binary input, we can see the
characters 2*NE, which are definitely not the value of the integer stored in memory. We can
see the benefit of binary output from the figure when our integer is big. In text output, the
file stores 10 bytes; in binary output, the file stores only 4 bytes.

Member Functions
To read and write binary data, the library defines three member functions as shown in
Table 16.10. These member functions are defined in the istream and ostream classes, but
they are not used there. The ifstream and ofstream class inherit them and use them.

In Table 16.10, the read function reads up to n characters from the stream buffer and
fills an array of characters named s. If the number of characters available in the stream is less

Text output

Binary output

file content

file content

write ()

<<

Note:
The insertion operator changes each digit to a byte.
The function write() copies the image of memory to the stream.

1, 464, 740, 402
00110010

1 4 6 7 4 0 44 0 21464740402 00101010
01001110
01010111

2
*
N
E

00110010

2 * N E2*NE 00101010
01001110
01010111

Memory

Memory

Figure 16.11	 Difference	between	text	and	binary	output

for23380_ch16_716-775.indd 744 06/11/18 2:48 pm

16.3 File	Streams 745

than the size of the array, the eofbit is set. To prevent this, the second function (readsome)
reads characters until no character is available or n characters are read. None of the functions
add a null character to the array, which means they cannot be used as a C string. The write
function writes exactly n characters from an array of characters to the stream buffer.

Conversion of Fundamental Types
You may have noticed that the three input/output functions actually read characters into
and write characters from the stream buffer; no conversion occurs between bytes stored
in memory and the bytes stored in the stream buffer. We need a conversion mechanism to
change the integer 1,464,740,402 to an array of four characters (2, *, N, E), and vice versa
(Figure 16.12).

The conversion is done using the reinterpret-cast of the form:

reinterpret_cast <type2*> (&type1)

In the cast operator, type1 is a fundamental type (or class type) and type2 is a char type.
This means that we need to rewrite the read and write functions as shown below:

ifstream& read (reinterpret_cast <char*> (&type), sizeof (type))
ifstream& readsome (reinterpret_cast <char*> (&type), sizeof (type))
ofstream& write (reinterpret_cast <char*> (&type), sizeof (type))

Program 16.15 shows how we can write the value of an int and a double to a file and read them
to be sure the values are stored correctly. Note that we use the ofstream object to create a new
file and then the ifstream object to check the file: in this example, we write before we read.

Input Output

ifstream& read (char* s, int n)
ofstream& readsome (char* s, int n)

ifstream& write (char* s, int n)

Table 16.10 Read and write member functions

Reading binary data

Writing binary data

array
of char

integer
type

reinterpret
castwrite ()2 * N E

array
of char

integer
type

reinterpret
castread ()2 * N E

file content

file content

2*NE

2*NE

00110010
00101010
01001110
01010111
Memory

00110010
00101010
01001110
01010111
Memory

Figure 16.12	 Conversion	in	binary	input/output

for23380_ch16_716-775.indd 745 06/11/18 2:48 pm

746 Chapter 16 Input/Output	Streams

Program 16.15	 Writing	and	reading	binary	data

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

/***
* A program that shows how to write binary data to a file *
* and how to read the same binary data from the file *
***/

#include <iostream>
#include <string>
#include <fstream>
#include <cassert>
using namespace std;

int main ()
{

int int1 = 12325;
double double1 = 45.78;
// Creating a new file for output and write the two data types
ofstream strmOut ("Sample", ios :: out | ios :: binary);
if (!strmOut.is_open())
{

cout << "The file Sample cannot be opened for writing!";
assert (false);

}
strmOut.write (reinterpret_cast <char*> (&int1), sizeof (int));
strmOut.write (reinterpret_cast <char*> (&double1), sizeof (double));
strmOut.close ();

int int2;
double double2;
// Opening the same file for input and reading the two data types
ifstream strmIn ("Sample", ios :: in | ios :: binary);
if (!strmIn.is_open())
{

cout << "The file Sample cannot be opened for reading!";
assert (false);

}
strmIn.read (reinterpret_cast <char*> (&int2) , sizeof (int));
strmIn.read (reinterpret_cast <char*> (&double2) , sizeof (double));
strmIn.close ();
// Testing the value of stored data types
cout << "Value of int2: " << int2 << endl;
cout << "Value of double2: " << double2 << endl;
return 0;

} // End main

Run:
Value of int2: 12325
Value of double2: 45.78

for23380_ch16_716-775.indd 746 06/11/18 2:48 pm

16.3 File	Streams 747

In line 22 of Program 16.15, we take the address of a variable of type int, interpret it
as a pointer to character, and write its contents, as characters, to the file. We do the same in
line 23, but the variable is of type double.

In line 35, we take the address of a variable of type int, interpret the location reserved
in memory as a pointer to character, and store characters extracted from the file in it. We do
the same in line 36, but the location is of type double.

Note that in both cases (reading and writing), we interpret the address of a fundamental
data type as a pointer to characters.

Conversion of User-Defined Objects
The conversion can be performed because an object of a fundamental data type is stored in
memory as a sequence of bits (or bytes). The only thing we must do is change the read/write
function to access a variable of type class instead of a variable of a fundamental data type.

When reading, we need an empty object (created from a default constructor) to be
filled by characters from the file. When we write, we need a filled object (created from the
parameter constructor) to be changed to characters and written to the file as shown below:

istream& read (reinterpret_cast <char*> (&object) , sizeof (class))
istream& write (reinterpret_cast <char*> (&object), sizeof (class))

We can create a class representing information about a student (identity, name, and
GPA) and write the instances of the class to a file and then read the instances from the file.
We show the interface, implementation, and the application files next. Program 16.16 shows
the interface file.

(continued)

Program 16.16	 File	student.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The program defines the interface file for the Student class *
* to be used to store student records in a binary file *
***/

#ifndef STUDEN_H
#define STUDEN_H
#include <iostream>
#include <fstream>
#include <cassert>
#include <iomanip>
#include <cstring>
#include <string>
using namespace std;

class Student
{

private:
int stdId;
char stdName [20];
double stdGpa;

for23380_ch16_716-775.indd 747 06/11/18 2:48 pm

748 Chapter 16 Input/Output	Streams

Program 16.17 shows the implementation file for the student class. Note that we use
the accessor functions to get the value of the data members, but we could have overloaded
the insertion operator for the class.

(continued)

Program 16.16	 File	student.h	(Continued)

21
22
23
24
25
26
27
28
29

public:
Student (int, const string&, double);
Student ();
~Student ();
int getId() const;
string getName() const;
double getGpa () const;

};
#endif

Program 16.17	 File	student.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* The implementation file for Student class *
***/

#include "student.h"

// Parameter Constructor
Student :: Student (int id, const string& name, double gpa)
: stdId (id), stdGpa (gpa)
{
strcpy (stdName, name.c_str());

if (stdId < 1 || stdId > 99)
{

cout << "Identity is out of range. Program aborted.";
assert (false);

}
if (stdGpa < 0.0 || stdGpa > 4.0)
{

cout << "The gpa value is out of range. Program aborted.";
assert (false);

}
}
// Default Constructor
Student :: Student ()
{
}
// Destructor
Student :: ~Student ()
{
}

for23380_ch16_716-775.indd 748 06/11/18 2:48 pm

16.3 File	Streams 749

Program 16.18 shows the application file for writing and reading objects to a file. We
first change several objects to binary data and write them to the file. We then open the same
file and read student objects one after another.

(continued)

Program 16.17	 File	student.cpp (Continued)

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// Accessor function
int Student :: getId() const
{

return stdId;
}
// Accessor function
string Student :: getName() const
{

return stdName;
}
// Accessor function
double Student :: getGpa () const
{

return stdGpa;
}

Program 16.18	 File	app.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The application file to write students record to a binary *
* file and then read the records sequentially *
***/

#include "student.h"

int main ()
{

// Opening File.dat for binary output
fstream stdStrm1;
stdStrm1.open ("File.dat", ios :: binary | ios :: out);
if (!stdStrm1.is_open())
{

cout << "File.dat cannot be opened for writing!";
assert (false);

}
// Instantiation of five objects
Student std1 (1 , "John", 3.91);
Student std2 (2 , "Mary", 3.82);
Student std3 (3 , "Lucie", 4.00);
Student std4 (4 , "Edward", 3.71);
Student std5 (5 , "Richard", 3.85);

for23380_ch16_716-775.indd 749 06/11/18 2:48 pm

750 Chapter 16 Input/Output	Streams

Random Access
We can also read from or write to binary files randomly. In other words, instead of reading
the record of all students, we can read the record of a specific student using her identity.
However, this involves two precautions.

Program 16.18	 File	app.cpp (Continued)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

// Writing the five objects to the binary file and close it
stdStrm1.write(reinterpret_cast <char*> (&std1), sizeof (Student));
stdStrm1.write(reinterpret_cast <char*> (&std2), sizeof (Student));
stdStrm1.write(reinterpret_cast <char*> (&std3), sizeof (Student));
stdStrm1.write(reinterpret_cast <char*> (&std4), sizeof (Student));
stdStrm1.write(reinterpret_cast <char*> (&std5), sizeof (Student));
stdStrm1.close ();
// Opening File.dat for input
fstream stdStrm2;
stdStrm2.open ("File.dat", ios :: binary | ios :: in);
if (!stdStrm2.is_open())
{

cout << "File.dat cannot be opened for reading!";
assert (false);

}
// Read Student objects, display them, and close the File.data
cout << left << setw (4) << "ID" << " ";
cout << setw(15) << left << "Name" << " ";
cout << setw (4) << "GPA" << endl;
Student std;
for (int i = 0; i < 5; i++)
{

stdStrm2.read(reinterpret_cast <char*> (&std), sizeof (Student));
cout << setw (4) << std.getId() << " ";
cout << setw(15) << left << std.getName() <<" ";
cout << fixed << setw (4) << setprecision (2) << std.getGpa ();
cout << endl;

}
stdStrm2.close();
return 0;

}

Run:
ID Name GPA
1 John 3.91
2 Mary 3.82
3 Lucie 4.00
4 Edward 3.71
5 Richard 3.85

for23380_ch16_716-775.indd 750 06/11/18 2:48 pm

16.4 String	Streams 751

First, we must be sure that all of the objects stored in the file are of the same size
so we can use the seekg() and seekp() functions. In the case of the object with only data
members of fundamental data types, the size of each object is the sum of the size of its
data members. In the case of the Student class, the size of array representing the name is
also fixed.

Second, we must use some precautions to find the location of the object, given some
information about it. For example, we can use the identity of a student in the previous ex-
ample to find the location of the Student object using:

seekg ((id − 1) * sizeof (Student))

But if the identity does not start from 1, we must transform the identity to the student record
number.

16.4 STRING STREAMS
String streams use three classes: istringstream, ostringstream, and stringstream. These
classes are used to input data from or output data to strings. They are inherited, respectively,
from istream, ostream, and iostream. With a couple of exceptions, all member functions
discussed in their superclasses can be used in these classes and can add more classes. String
stream classes are defined in the <sstream> header file, which must be included in our pro-
gram when we use them.

To use string streams, we need the <sstream> header file.

The source or destination of string streams is different from that of console streams
or file streams. In console streams, the source or destination is a physical device outside
the program. In file streams, the source or destination is a file, an entity that exists out-
side the program. In string streams, the source or destination is in fact a string inside the
program itself. In other words, we read from an existing string in the program; we write
to a string in the program. For the sake of clarity, in the figures we use in this section,
we show the source or sink as a string outside the program, but we must remember that
it is part of the program.

We cannot open or close these streams because the source or sink entities connected to
these streams are not external; they are created and destroyed inside our programs. For this
reason, there are no open() or close() functions for these streams.

The open() and close() functions are not defined for string streams.

16.4.1 Instantiation
Similar to file streams, each string stream is instantiated using constructors. We show the
constructors for the istringstream, ostringstream, and stringstream classes in Table 16.11;
we show the default values for the open modes.

Each constructor instantiates an object of type istringstream, ostringstream, or string-
stream and connects the object to the string object defined as the first parameter. Note that a
string object must be included, but it can be a null string.

for23380_ch16_716-775.indd 751 06/11/18 2:48 pm

752 Chapter 16 Input/Output	Streams

Figure 16.13 shows three string stream objects graphically.

Member Functions
The istringstream class inherits all the member functions for sequential and random access
defined in the superclass istream (except for the open and close functions). The ostring-
stream does the same, but it inherits from the superclass ostream. The stringstream class
also does the same, but it inherits from the superclass ostream.

In addition, each class provides two versions of a new member function called str.
The first version replaces the string connected to the stream; the second version returns
a copy of the string connected to the stream. Table 16.12 shows the prototype for these
functions.

Program 16.19 is a trivial string example. In the first section, we create an object of
istringstream connected to a string and print the string. We then change the string connected
to the same istringstream and print the string. In the second section, we do the same with
ostringstream.

istringstream

ostringstream

Programfunctions
extract

buffer

Programfunctions
insert

buffer

marker

marker

stringstream object

Programfunctions

insert/
extract

buffer

Note:
The marker is at the beginning of the buffer when the string is connected to the stream.
The marker moves with each read or write operation or with other member functions.

Bulk
delivery

Bulk
delivery

strg

strg

Bulk
delivery

strg

marker

Figure 16.13	 The	string	stream	objects	connected	to	strings	and	programs

void str (string strg); //Connect the parameter to the host object
string str () const; // Returns the string connected to the host object

Table 16.12 Two versions of the str function

istringstream (const string strg, ios :: openmode mod = ios :: in);
ostringstream (const string strg, ios :: openmode mod = ios :: out);
stringstream (const string strg, ios :: openmode mod = ios :: in |ios :: out);

Table 16.11 Constructors for all three string stream classes

for23380_ch16_716-775.indd 752 06/11/18 2:48 pm

16.4 String	Streams 753

16.4.2 Application: Adapter
The most common application of a string stream class is to act as an adapter for the string
class. As we know, the string class has no constructor to wrap values of fundamental types
(except char) and make a string out of them. It also does not have a member function to
unwrap a string and take the values of fundamental data types out of it.

In programming we sometimes need to convert a fundamental data type to a string and
a string to a fundamental data type. To do so we use an object of a stringstream class as an
adapter.

In wrapping, we insert the fundamental data type(s) into an ostringstream object and
then change the ostringstream object to a string object. In unwrapping, we change the string
to an istringstream object and extract the fundamental data type from the istringstream ob-
ject. Both operations are shown in Figure 16.14.

We can create a function template to convert any fundamental data type to a string.
We can also create a function template to return the fundamental data type embedded in
a string. We include both template functions in a header file called convert.h as shown in

Program 16.19	 Testing	string	stream	classes	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* A program to show how to use string stream classes *
***/

#include <iostream>
#include <string>
#include <sstream>
using namespace std;

int main ()
{

// Using istringstream object
istringstream iss ("Hello friends!");
cout << iss.str () << endl;
iss.str ("Hello world!");
cout << iss.str () << endl << endl;
// Using ostringstream object
ostringstream oss ("Bye friends!");
cout << oss.str () << endl;
oss.str ("Bye world!");
cout << oss.str () << endl;
return 0;

}

Run:
Hello friends!
Hello world!

Bye friends!
Bye world!

for23380_ch16_716-775.indd 753 06/11/18 2:48 pm

754 Chapter 16 Input/Output	Streams

ostringstream
object

string
Adapter

Adapter

string

fundamental
type

change to insert (<<)

extract (>>) change to fundamental
type

istringstream
object

Figure 16.14	 The	stringstream	objects	as	adapters

Program 16.20	 File	convert.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* The header file defines two template functions. The first *
* inserts a fundamental type into a string. The second extracts *
* a fundamental type embedded in a string. *
***/

#ifndef CONVERT_H
#define CONVERT_H
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

// toString function changes any data type to string
template <typename T>
string toString (T data)
{

ostringstream oss ("");
oss << data;
return oss.str ();

}
// toData function takes out the data embedded in a string
template <typename T>
T toData (string strg)
{

T data;
istringstream iss (strg);
iss >> data;
return data;

}
#endif

Program 16.20. Note that in line 13 we must use specialization, as discussed in Chapter 15,
because the template function toData uses the template type only as the returned type. With-
out specialization, the template function cannot detect the return type.

for23380_ch16_716-775.indd 754 06/11/18 2:48 pm

16.5 Formatting	Data 755

16.5 FORMATTING DATA
In Chapter 3 we discussed manipulators and used some of them. Manipulators use the
formatting data members (formatting flags, formatting fields, and formatting variables)
defined in the ios class. Since all stream classes inherit from the ios class, they all
inherit these data members and the corresponding member functions to set and unset
fields and store values in variables. To create customized manipulators, we must under-
stand how we can directly use these flags, fields, and variables.

16.5.1 Direct Use of Flags, Fields, and Variables
Understanding how to use flags, fields, and variables will help us create customized manipu-
lators later in the chapter.

Formatting Flags
As we see in Table 16.13, the ios class defines a type named fmtflags, which can take a com-
bination of any of the seven values. Each bit can be set (value 1) or unset (value 0). These
flags are independent, and we can use one or more of them to format our data.

We can set or unset them using the setf() or unsetf() function as shown in Table 16.14.

Formatting Fields
The ios class also defines a group of three fields for formatting data. Each field has two or
three fields that can be exclusively set or unset. Only one bit at a time can be set. Table 16.15
shows the three fields defined in this category.

Program 16.21	 File	app.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* A simple application program that uses toString and toData *
* template functions *
***/

#include "convert.h"

int main ()
{

// Converting integer 12 to a string
string strg = toString (12);
cout << "String: " << strg << endl;
// Converting string "15.67" to double
double data = toData <double> ("15.67");
cout << "Data: " << data;
return 0;

}

Run:
String: 12
Data: 15.67

16.21 demonstrates the use of the convert.h template functions.

for23380_ch16_716-775.indd 755 06/11/18 2:48 pm

756 Chapter 16 Input/Output	Streams

fmtflags

sk
ip

w
s

sh
ow

ba
se

sh
ow

po
in

t

sh
ow

po
s

un
itb

uf

bo
ol

al
ph

up
pe

rc
as

e

Flag Description

ios :: boolalpha Show representation of boolean data (true or false).

ios :: skipws Skip white space characters (default for input).

ios :: showbase Skip numeric base when printing integral values.

ios :: showpoint Show the decimal point for floating-point values.

ios :: showpos Show positive sign (plus sign) for positive values.

ios :: unitbuf Flush the stream after each action.

ios :: uppercase Show A-F for hexadecimal and E for scientific (in uppercase).

Table 16.13 Values in fmtflags type

basefield

de
c

he
x

oc
t

floatfield

fix
ed

sc
ie

nt
ifi

c

adjustfield

ri
gh

t
le

ft
in

te
rn

al

default field

Legend:

Flags Values Description

ios :: basefield ios :: dec
ios :: hex
ios :: oct

Set integral values in decimal.
Set integral values in hexadecimal.
Set integral values in octal.

ios :: floatfield ios :: fixed
ios :: scientific

Show the floating-value in fixed format.
Show the floating-value in scientific format.

ios :: adjustfield ios :: right
ios :: left
ios :: internal

Right justify the data in the field.
Left justify the data in the field.
Add fill character after the sign.

Table 16.15 Format fields working in group

fmtflags ios :: setf (flag) // It sets the corresponding flag
fmtflags ios :: unsetf (flag) // It unset the corresponding flag

Table 16.14 Member functions to set or unset format flags

for23380_ch16_716-775.indd 756 06/11/18 2:48 pm

16.5 Formatting	Data 757

The fields in each group are not independent, and only one of them can be set at a time.
The default setting is shown in color, but note that floatfield has no default value (the best is
selected by the system if none is explicitly selected).

The setting of any of these fields is different from the methods used for fmtflags be-
cause it guarantees that only one of the values in each category is set (Table 16.16).

To set a field, we must use two parameters. The second parameter (field) unsets all of
the fields in the field; the first parameter then sets the desired field.

Formatting Variables
The formatting variables, shown in Table 16.17, are named width (of type int), precision (of
type int), and fill (of type char).

These formatting variables are used to define how many positions are set aside for a value,
how many positions are set aside after a decimal point, and what character should be used to fill
the unused positions. There are six member functions that are used to set and unset these flags,
as shown in Table 16.17. Note that if the fill field is not set, the fill character defaults to a space.

Program 16.22 shows how we can directly format three data items of type boolean,
integer, and floating-point. We have two goals in this program: (1) to show that it is pos-
sible to format data using the formatting flags, fields, and variables; and (2) to show how
lengthy and involved this process is. Later, we show that we can achieve the same goal using
manipulators.

fmtField ios :: setf (addingField, field) // It sets the corresponding field
fmtField ios :: unsetf (field) // It unsets the corresponding field

Table 16.16 Member function to set or unset fields

width
int int char

precision fill

Member function Description

int ios :: width (int n)
int ios :: width ()
int ios :: precision (int n)
int ios :: precision ()
int ios :: fill (char c)
int ios :: fill ()

Set the number of position to be used by a value.
Reset the width field to 0.
Set the number of position after the decimal point.
Unset the precision field.
Set the type of character to fill the empty position.
Unset the fill field.

Table 16.17 Setting and unsetting variable fields

Program 16.22	 Printing	three	data	items	

1
2
3
4
5

/***
* A program to show how to format three data types using the *
* formatting flags, fields and variables *
***/

#include <iostream>

(continued)

for23380_ch16_716-775.indd 757 06/11/18 2:48 pm

758 Chapter 16 Input/Output	Streams

Program 16.22	 Printing	three	data	items (Continued)

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

using namespace std;

int main ()
{

// Declaration and initialization of three variables
bool b = true;
int i = 12000;
double d = 12467.372;
// Printing values
cout << "Printing without using formatting" << endl;
cout << "Value of b: " << b << endl;
cout << "Value of i: " << i << endl;
cout << "Value of d: " << d << endl << endl;
// Formatting the Boolean data and print it again
cout << "Formatting the Boolean data" << endl;
cout.setf (ios :: boolalpha);
cout << b << endl << endl;
// Formatting the integer data and print it again
cout << "Formatting the integer data type" << endl;
cout.setf (ios :: showbase);
cout.setf (ios :: uppercase);
cout.setf (ios :: hex, ios :: basefield);
cout.setf (ios :: right, ios :: adjustfield);
cout.width (16);
cout.fill ('*');
cout << i << endl << endl;
// Formatting the floating-point data and print it again
cout << "Formatting the floating-point data type" << endl;
cout.setf (ios :: showpoint);
cout.setf (ios :: right, ios :: adjustfield);
cout.setf (ios :: fixed, ios :: floatfield);
cout.width (16);
cout.precision (2);
cout.fill ('*');
cout << d << endl;
return 0;

}

Run:
Printing without using formatting
Value of b: 1
Value of i: 12000
Value of d: 12467.4

(continued)

for23380_ch16_716-775.indd 758 06/11/18 2:48 pm

16.5 Formatting	Data 759

Program 16.22	 Printing	three	data	items (Continued)

Formatting the Boolean data
true

Formatting the integer data type
**********0X2EE0

Formatting the floating-point data type
********12467.37

Flag Manipulator Effect In Out

boolalpha noboolalpha Show Boolean values as 0/1. ✓ ✓

boolalpha Show Boolean values false/true. ✓ ✓

skipws noskipws Do not skip whitespace in input. ✓

skipsws Skip whitespace in input. ✓

showbase noshowbase Do not show the base of decimal. ✓

showbase Show the base of decimal. ✓

showpoint noshowpoint Do not show the decimal point. ✓

showpoint Show the decimal point. ✓

showpos noshowpos Do not show the positive sign (+). ✓

showpos Show the positive sign (+). ✓

unitbuf nounitbuf Do not flush the output. ✓

unitbuf Flush output after write. ✓

uppercase nouppercase Do not show char in uppercase. ✓

uppercase Show char in uppercase. ✓

Table 16.18 Manipulators using formatting flags

16.5.2 Predefined Manipulators
In this section we discuss the standard manipulators that we have used many times in this
text. Our goal is to review them in more depth and find how they have been written to ac-
complish their goals. Doing so will help us write our own manipulators.

Manipulators Related to Formatting Flags
In Table 16.13 we listed seven formatting flags. We list them again in Table 16.18. We have
exactly fourteen formatting-flag manipulators (one each for setting and unsetting) of those
seven flags. The ones in color are the defaults.

Manipulators Related to Formatting Fields
In Table 16.15 we listed three formatting fields. We have exactly eight manipulators related
to the flags in these fields. The ones in color are the default (Table 16.19).

for23380_ch16_716-775.indd 759 06/11/18 2:48 pm

760 Chapter 16 Input/Output	Streams

Flag Manipulator Effect In Out

basefield dec Show integers in decimal. ✓ ✓

hex Show integers in hexadecimal. ✓ ✓

oct Show integers in octal. ✓ ✓

floatfield fixed Show type in fixed format. ✓

scientific Show type in scientific format. ✓

adjustfield right Right justify the data in the field. ✓

left Left justify the data in the field. ✓

internal Justify data internally in the field. ✓

Table 16.19 Manipulators using formatting fields

Variables Manipulator Effect In Out

width setw (n) Set n character as the field. ✓ ✓

precision setprecision (n) Set n characters for precision. ✓

fill setfill (c) Use c as the fill character. ✓ ✓

Table 16.20 Manipulators using variable fields

Manipulator Effect In Out

ws Extract white spaces. ✓

endl Insert new line and flush the buffer. ✓

ends Insert end of string character. ✓

flush Flush stream buffer. ✓

Table 16.21 Manipulators using no flags or fields

Manipulators Related to Formatting Variables
In Table 16.17 we mentioned three sets of member functions to set variable fields. We have
three manipulators that look like a function with parameters (Table 16.20).

Manipulator Not Related to Flags or Fields
There are four manipulators that are not related to any flag or field. They perform specific
actions on the stream (Table 16.21).

We repeat the program but use manipulators instead of formatting flags, fields, and
variables to achieve the same goal as shown in Program 16.23. Note that we need to include
the header file <iomanip> for manipulators related to the formatting variables,

16.5.3 Manipulators Definition
If we want to create new manipulators, we must first learn how predefined manipulators are
defined.

for23380_ch16_716-775.indd 760 06/11/18 2:48 pm

16.5 Formatting	Data 761

Program 16.23	 Using	manipulators	for	formatting	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/***
* A program to show how predefined manipulators can achieve *
* the same goal as using flags, fields, and variables *
***/

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

// Declaration and initialization of three variables
bool b = true;
int i = 12000;
double d = 12467.372;
// Printing values
cout << "Printing without using formatting" << endl;
cout << "Value of b: " << b << endl;
cout << "Value of i: " << i << endl;
cout << "Value of d: " << d << endl << endl;
// Formatting the boolean data and print it again
cout << "Formatting the Boolean data" << endl;
cout.setf (ios :: boolalpha);
cout << boolalpha << b << endl << endl;
// Formatting the integer data and print it again
cout << "Formatting the integer data type" << endl;
cout << showbase << uppercase << hex << right
 << setw (16) << setfill ('*') << i << endl << endl;
// Formatting the floating-point data and print it again
cout << "Formatting the floating-point data type" << endl;
cout << showpoint << right << fixed << setw (16)
 << setprecision (2) << setfill ('*') << d << endl << endl;
return 0;

}

Run:
Printing without using formatting
Value of b: 1
Value of i: 12000
Value of d: 12467.4

Formatting the Boolean data
true

Formatting the integer data type
**********0X2EE0
Formatting the floating-point data type
********12467.37

for23380_ch16_716-775.indd 761 06/11/18 2:48 pm

762 Chapter 16 Input/Output	Streams

Manipulator without Arguments
It is not very difficult to find out how manipulators without arguments (Table 16.18, Table
16.19, and Table 16.21) are implemented. The system has two overloaded operators with
one argument that takes a pointer to function as shown below:

istream& istream :: operator >> (istream& (*pf) (istream&));
ostream& ostream :: operator << (ostream& (*pf) (ostream&));

The first overloaded operator uses a pointer to a function that takes a reference to an istream
object and returns a reference to an istream object (for chaining). The second overloaded
operator uses a pointer to a function that takes a reference to an ostream object and returns a
reference to an ostream object (for chaining).

Each manipulator without an argument can be implemented as a function as shown
below. The name of the function is passed as a pointer to function to the previous overloaded
operators.

istream& name (itream& is)
{

action;
return is;

}

ostream& name (ostream& os)
{

action;
return os;

}

A manipulator with no argument can be created using
a function that takes a stream parameter and returns a stream.

We simulate the manipulators boolalpha and noboolalpha to see if we understand how
to write a new manipulator. We call our manipulators alpha and noalpha. Program 16.24
defines and uses these two simulated manipulators.

Program 16.24	 A	program	with	two	customized	manipulators	

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***
* A program to simulate boolalpha and noboolalpha manipulators *
***/

#include <iostream>
using namespace std;

// Defining a function named alpha
ostream& alpha (ostream& os)
{

os.setf (ios :: boolalpha) ;
return os;

}
// Defining a function named noalpha
ostream& noalpha (ostream& os)

(continued)

for23380_ch16_716-775.indd 762 06/11/18 2:48 pm

16.5 Formatting	Data 763

Knowing how to simulate a system manipulator helps us create our own manipula-
tors. Assume we want to have a manipulator (with no arguments) called currency that
prints values with $, followed by the leading asterisks to fill the beginning of the field
and two decimal digits after the decimal point. Program 16.25 shows such a custom
manipulator.

Program 16.25	 Creating	and	testing	a	customized	manipulator	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* A program that uses a customized manipulator *
***/

#include <iostream>
#include <iomanip>
using namespace std;

ostream& currency (ostream& stream)
{

cout << '$';
stream.precision (2);
stream.fill ('*');
stream.setf(ios:: fixed, ios:: floatfield);
return stream;

}

(continued)

Program 16.24	 A	program	with	two	customized	manipulators (Continued)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

{
os.unsetf (ios :: boolalpha) ;
return os;

}

int main ()
{

// Declaration and initialization of two boolean variables
bool b1 = false;
bool b2 = true;
// Printing values of variables with alpha and noalpha manipulators
cout << alpha << b1 << " " << b2 << endl;
cout << noalpha << b1 << " " << b2 << endl;
return 0;

}

Run:
false true
0 1

for23380_ch16_716-775.indd 763 06/11/18 2:48 pm

764 Chapter 16 Input/Output	Streams

The values are printed as normally done on checks to fill the empty spaces with asterisks and
thereby prevent someone from changing the check value.

Manipulator with Arguments
Simulation of manipulators with arguments is a little more involved. A pointer to function
cannot have an argument. In other words, we cannot have a pointer to a function with a pa-
rameter, such as setw(4); the pointer can only be named setw. This means we must change
our strategy. Instead of a pointer to function, we can consider the phrase setw (4) as a call
to a constructor of a class with only one data member of type integer. In other words, we
interpret the statement

cout << setw (4);

as an operator with two operands. The first operand is an instance of type ostream; the sec-
ond is an instance of type setw. Now we can create a manipulator with an argument using
the following steps:

1. We need a class whose name is the same as the name of the manipulator and with one
data member of the same type as the type of manipulator argument.

2. We need to overload the insertion or extraction operator for the class in which the first
parameter is of type stream (ostream or istream) and the second parameter is the same
as the class in step 1.

3. In the body of the overloaded operator, we code the action to achieve the purpose of
the manipulator.

A manipulator with an argument can be created by defining
a class with one data member in which the insertion

or extraction operator is overloaded.

We simulate the manipulator setw(n), but we call it length (n) so it will be treated as a new
manipulator. Program 16.26 shows the interface for the class length (we use a lowercase
letter for the name of the class for consistency with the manipulator).

Program 16.25	 Creating	and	testing	a	customized	manipulator (Continued)

16
17
18
19
20
21
22

int main ()
{

cout << currency << setw (12) << 12325.45 << endl;
cout << currency << setw (12) << 0.36 << endl;
return 0;

}

Run:
$****12325.45
$********0.36

for23380_ch16_716-775.indd 764 06/11/18 2:48 pm

16.5 Formatting	Data 765

We also implement the class length as shown in Program 16.27. Note that we want
the operator << to set the width formatting variable with the value of data member n in the
class length.

We write Program 16.28 to apply the new manipulator and test it.

Program 16.26	 The	interface	file	(length.h)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* Interface file for a class named length *
***/

#ifndef LENGTH_H
#define LENGTH_H
#include <iostream>
using namespace std;

class length
{

private:
int n;

public:
length (int n);
friend ostream& operator << (ostream& stream, const length& len);

};
#endif

Program 16.27	 The	implementation	file	(length.cpp)	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* Implementation of the class length *
***/

#include "length.h"

// Definition of the length member function
length :: length (int n1)
: n (n1)
{
}
// Overloaded operator <<
ostream& operator << (ostream& stream, const length& len)
{

stream.width (len.n);
return stream;

}

for23380_ch16_716-775.indd 765 06/11/18 2:48 pm

766 Chapter 16 Input/Output	Streams

16.6 PROGRAM DESIGN
In this section we design three programs to show the applications of the input/output streams.

16.6.1 Merging Two Sorted Files
We want to create a merge sort on two files of integers. Assume we have two files of inte-
gers in which the integers are sorted (arranged from the smallest to the largest). We want to
merge the two files to create a new file in which the integers are still sorted and any dupli-
cates are maintained. Figure 16.15 shows the contents of infile1, infile2, and outfile.

Program 16.28	 The	application	file	(application.cpp)	

1
2
3
4
5
6
7
8
9

10
11

/***
* An application program to use the manipulator length(n) *
***/

#include "length.h"

int main ()
{

cout << length (10) << 123 << endl;
cout << length (20) << 234 << endl;
return 0;

}

Run:
 123
 234

Figure 16.15	 Data	flow	in	a	merge	sort

infile outfile Copy to outfileWaiting

Legend:

Note:
There is only one variable named first and one named second,
but their values and conditions change as the sort progresses.

outfile
65
92

101

214

881

960
1050

123

565
565
234

789

892

65
92

101
214
214
565
565
881
881
881
960
960

1050

secondfirst
123
123
123
123

565
565

234
234

789
892
892

65
92

101
214
565
881
960

1050

infile2infile1
123

565
234

789
892

for23380_ch16_716-775.indd 766 06/11/18 2:48 pm

16.6 Program	Design 767

The process of merging these files takes 13 iterations. In each iteration, either the con-
tents of variable first or variable second, but not both, is moved to the outfile. Some integers
remain in the corresponding variable for a few iterations before they can move to the output
file. Note that the comparison and the decision to move an integer to the output file is always
based on the contents of the variables first and second.

Program 16.29 shows the code. In line 14 we declare two variables, first and second,
to hold an integer of the first and second input files during processing. In line 15 we create a
sentinel (a very large integer, as we learned in previous chapters).

Program 16.29	 Merge	sort	process	applied	to	two	files

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

/***
* A program to merge two files of sorted integer to create *
* a file of sorted integers *
***/

#include <iostream>
#include <fstream>
#include <assert.h>
#include <limits>
using namespace std;

int main ()
{

// Declaration and Initialization
int first, second;
int sentinel = numeric_limits <int> :: max();
// Instantiating streams and opening files
ifstream strm1 ("infile1");
ifstream strm2 ("infile2");
ofstream strm3 ("outfile");
if (!strm1.is_open())
{

cout << "Error opening infile1!" << endl;
assert (false);

}
if (!strm2.is_open())
{

cout << "Error opening infile2!" << endl;
assert (false);

}
if (!strm3.is_open())
{

cout << "Error opening outfile!" << endl;
assert (false);

}
// Processing

(continued)

for23380_ch16_716-775.indd 767 06/11/18 2:48 pm

768 Chapter 16 Input/Output	Streams

Program 16.29	 Merge	sort	process	applied	to	two	files (Continued)

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

strm1 >> first;
strm2 >> second;
while (strm1 || strm2)
{

if (first <= second)
{

strm3 << first << " ";
strm1 >> first;
if (!strm1)
{

first = sentinel;
}

}
else
{

strm3 << second << " ";
strm2 >> second;
if (!strm2)
{

second = sentinel;
}

}
}
// Closing files
strm1.close();
strm2.close();
strm3.close();
return 0;

}

16.6.2 Symmetric Ciphers
Transmission of information using files must be handled in a secure way. One of the com-
mon techniques used for this purpose is cryptography. Cryptography, a word with Greek
origins, means “secret writing.” It involves two distinct mechanisms: symmetric-key and
asymmetric-key cryptography. Cryptography uses keys to change an original message,
called plaintext, to a secret message, called ciphertext.

There are two broad categories of cryptography: symmetric and asymmetric. We dis-
cuss and use an example of the first in this section; we use an example of the second in the
next section.

In symmetric-key cryptography we use the same key for both encryption and decryp-
tion. The key can be used for bidirectional communication, which is why it is called symmet-
ric. Figure 16.16 shows the general idea behind a symmetric-key cipher.

In Figure 16.16, an entity, Alice, sends a message to another entity, Bob, over an in-
secure channel with the assumption that an adversary cannot understand the contents of the
message by simply eavesdropping over the channel.

for23380_ch16_716-775.indd 768 06/11/18 2:48 pm

16.6 Program	Design 769

The original message from Alice to Bob is plaintext; the message that is sent through
the channel is ciphertext. To create the ciphertext from the plaintext, Alice uses an encryp-
tion algorithm and a shared secret key.

Symmetric-key ciphers are also called secret-key ciphers.

To create the plaintext from ciphertext, Bob uses a decryption algorithm and the same
secret key. We refer to encryption and decryption algorithms as ciphers. A key is a value or
a set of values that the cipher, as an algorithm, uses.

Symmetric-key ciphers can be divided into traditional ciphers and modern ciphers.
Traditional ciphers are simple, character-oriented ciphers that are not secure based on to-
day’s standards. Modern ciphers, on the other hand, are complex, bit-oriented ciphers that
are more secure. Our program uses one of the traditional ciphers. The modern ciphers, such
as DES (Data Encryption Standard), are extremely involved and require a high-level of
cryptography and number theory knowledge (see Cryptography and Network Security 2008,
by Behrouz A. Forouzan, published by McGraw-Hill).

One of the traditional symmetric ciphers is called the monoalphabetic cipher, in which
a character (or a symbol) in the plaintext is always changed to the same character (or sym-
bol) in the ciphertext regardless of its position in the text. For example, if the algorithm says
that letter A in the plaintext is changed to letter D, every letter A is changed to letter D. In
other words, the relationship between letters in the plaintext and the ciphertext is one-to-one.
One of the common monoalphabetic ciphers uses a two-dimensional table for encryption
and decryption. Figure 16.17 shows an example of such a mapping and Program 16:30
demonstrates it use.

The key in this case is different for each character in the plaintext and ciphertext. If
the character in the plaintext is ‘a’, the corresponding character in the ciphertext would be
‘N’, and so on. Note that we show the plaintext in lowercase and the ciphertext in uppercase
letters.

Figure 16.16	 General	idea	of	a	symmetric-key	cipher

Alice

Plaintext

Ciphertext

Shared
secret key

Encryption
algorithm

Bob
Plaintext

Ciphertext
Insecure channel

Secure key-exchange channel

Shared
secret key

Decryption
algorithm

Encryption

lock unlock

Decryption

Figure 16.17	 An	example	key	for	a	monoalphabetic	substitution	cipher

Plaintext
Ciphertext

a b
A
c

O
d

RT
e

B
f

E
g

C
h

U
j

X
k

D
l

Q
m

G
n

Y
o

L
p

K
q

H
r

F
i

V
s

I
t

J
u

N M
v

P
w

Z
x

S
y

W
z

for23380_ch16_716-775.indd 769 06/11/18 2:48 pm

770 Chapter 16 Input/Output	Streams

We create a class named MonoAlpha that includes the secret key, a static two-dimensional
array. The class has two public member functions, encrypt and decrypt. There are also two pri-
vate member functions that change one character in plaintext to ciphertext and vice versa. They
are called by the public encryption and decryption functions.

Implementation File The implementation file is based on the interface file. The encrypt
function extracts characters, one by one, from the plaintext file. The function then calls the
searchEncrypt function to change each character to a new character according to the key
table. After each character is changed, it is inserted into the cipher file. The decrypt function
reverses the process. Program 16.31 shows the implementation.

Program 16.30	 The	file	monoalph.h	as	the	interface	file

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

/***
* The interface for the MonoAlpha class *
***/

#ifndef MONOALPHA_H
#define MONOALPHA_H
#include <iostream>
using namespace std;

class MonoAlpha
{

private:
static const char key [][2];
char searchEncrypt (char c);
char searchDecrypt (char c);

public:
MonoAlpha ();
~MonoAlpha ();
void encrypt (const char* plainFile, const char* cipherFile);
void decrypt (const char* cipherFile, const char* plainFile);

};
#endif

Program 16.31	 The	file	monoalpha.cpp	as	the	implementation	

1
2
3
4
5
6
7
8

/***
* The implementation file for the MonoAlpha class *
***/

#include "monoalpha.h"
#include <fstream>

// Constructor
MonoAlpha :: MonoAlpha ()

(continued)

for23380_ch16_716-775.indd 770 06/11/18 2:48 pm

16.6 Program	Design 771

(continued)

Program 16.31	 The	file	monoalpha.cpp	as	the	implementation (Continued)

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

{
}
// Destructor
MonoAlpha :: ~MonoAlpha ()
{
}
// Public member function
void MonoAlpha :: encrypt (const char* plainFile, const char* cipherFile)
{

ifstream istrm (plainFile, ios :: in);
ofstream ostrm (cipherFile, ios :: out);
char c1, c2;
while (istrm.get (c1))
{

c2 = searchEncrypt (c1);
ostrm.put(c2);

}
istrm.close ();
ostrm.close ();

}
// Public member function
void MonoAlpha :: decrypt (const char* cipherFile, const char* plainFile)
{

ifstream istrm (cipherFile, ios :: in);
ofstream ostrm (plainFile, ios :: out);
char c1, c2;
while (istrm.get (c1))
{

c2 = searchDecrypt (c1);
ostrm.put(c2);

}
istrm.close ();
ostrm.close ();

}
// Private member function
char MonoAlpha :: searchEncrypt (char c)
{

int i = 0;
while (true)
{

if (key[i][0] == c)
{

return key[i][1] ;
}

for23380_ch16_716-775.indd 771 06/11/18 2:48 pm

772 Chapter 16 Input/Output	Streams

Program 16.31	 The	file	monoalpha.cpp	as	the	implementation (Continued)

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

i++;
}

}
// Private member function
char MonoAlpha :: searchDecrypt (char c)
{

int i = 0;
while (true)
{

if (key[i][1] == c)
{

return key[i][0];
}
i++;

}
}
// Definition of the static key array
const char MonoAlpha :: key [][2] = {{'a', 'N'}, {'b', 'N'},

{'c', 'A'}, {'d', 'T'}, {'e', 'R'}, {'f', 'B'}, {'g', 'E'}, {'h', 'C'},
{'i', 'F'}, {'j', 'U'}, {'k', 'X'}, {'l', 'D'}, {'m', 'Q'}, {'n', 'G'},
{'o', 'Y'}, {'p', 'L'}, {'q', 'K'}, {'r', 'H'}, {'s', 'V'}, {'t', 'I'},
{'u', 'J'}, {'v', 'M'}, {'w', 'P'}, {'x', 'Z'}, {'y', 'S'}, {'z', 'W'} };

Application File at Encryption Site We need two application files, one at the encryption
site and the other at the decryption site. Alice and Bob, however, need to share the inter-
face and the implementation files and hide them from other people. Program 16.32 shows

Program 16.32	 The	file	app1.cpp	used	at	the	sender	site

1
2
3
4
5
6
7
8
9

10
11

/***
* The application file used to encrypt the message *
***/

#include "monoalpha.h"

int main ()
{

MonoAlpha monoalpha;
monoalpha.encrypt ("plainFile", "cipherFile");
return 0;

}

Contents of Plaintext File:
thisisthefiletoencrypt
Contents of Ciphertext File:
ICFVFVICRBFDRIYRGAHSLI

for23380_ch16_716-775.indd 772 06/11/18 2:48 pm

Summary 773

the application at the encryption site. Alice needs to change the plaintext to the ciphertext
and send it to Bob. Note that we have used only lowercase letters in the plaintext and up-
percase letters in the ciphertext to make the transformation easier and the code more secure.
Also, the use of punctuation should be avoided because it gives more clues to hackers.

Application File at Decryption Site Program 16.33 shows the application at the decryp-
tion site. Bob must change the ciphertext received from Alice to create the plaintext.

The monoalphabetic program is only for educational purposes;
it is not secure for use in real systems.

Program 16.33	 The	file	app2.cpp	used	at	the	receiver	site

1
2
3
4
5
6
7
8
9

10
11

/***
* The application file used to decrypt the message *
***/

#include "monoalpha.h"

int main ()
{

MonoAlpha monoalpha;
monoalpha.decrypt ("cipherFile", "plainFile");
return 0;

}

Contents of Ciphertext File:
ICFVFVICRBFDRIYRGAHSLI
Contents of Plaintext File:
thisisthefiletoencrypt

K e y T e r m s

console streams
cryptography
ios class

random access
sequential access
stream state

A source or a sink of data cannot be directly connected to a program. We need a mediator to
stand between the sources/sinks and the program to control the flow of data and to interpret
data elements when reading or writing. This is done using streams. One of the main purposes
of using streams is to convert the format of data as stored in a sink or source to their format
in memory. C++ defines a hierarchy of streams in which the ios class is the base class for
all input/output classes.

Console streams are made of three classes istream, ostream, and iostream. We can use
the first two, but the iostream class cannot be instantiated.

S u m m a r y

for23380_ch16_716-775.indd 773 06/11/18 2:48 pm

774 Chapter 16 Input/Output	Streams

We can also read and write to files using file streams. File streams are made of three
classes: ifstream, ofstream, and fstream. To use them, we must construct the stream, connect
the file to the stream (open the file), do input or output, disconnect the file from the stream
(close the file), and destruct the stream (which is done automatically).

The C++ library defines three classes to input or output strings. The most common ap-
plication of a string stream class is to act as an adapter for the string class.

An issue in input/output is formatting data. The ios class defines flags, fields, and vari-
ables to be used for formatting data. They can be used directly or under the umbrella of
manipulators, which are member functions or classes that use them. In addition to the pre-
defined manipulators, we can define our own manipulators.

P r o b l e m s

PR-1. Write a function, openInput, that opens a file in the input mode. The name of the
file is passed as a parameter.

PR-2. Write a function, openOutput, that opens a file in the output mode. The name of
the file is passed as a parameter.

PR-3. Write a function that returns a character in a file when the file name and the
location of a character in the file are given as parameters.

PR-4. Write a function that changes the value of a character in a file when the file name,
the location of a character in the file, and the new character to be replaced are
given as parameters.

PR-5. Write a function that copies the contents of a file to a new file.
PR-6. Write a function that compares two files and returns true if the files are identical

and false if their contents vary.
PR-7. Write a function that appends one file to the end of another.
PR-8. Write a function that, given a file, copies the odd-numbered characters to a second

file and the even-numbered items to a third file.
PR-9. Write a function that takes a file of characters and appends the number of

characters in the file to the end of the file after a blank.
PR-10. Write a function that reads items from an array of characters and creates a file of

characters.
PR-11. Show how we can read a line of records of student data consisting of an id (integer),

name (string), and gpa (double) and store the data in appropriate variables.
PR-12. Show how we can combine three variables made of an id (integer), a name

(string), and a gpa (double) and store them in a single string.

P r o g r a m s

PRG-1. Write a program that reads a text file and changes each character in the file to
uppercase. Let the user enter the name of the file as a C++ string (remember to
change the name to C string for opening the file). Test your program with a file
of the following contents:

This is a file of characters to be changed.

PRG-2. Use a text editor to create a file of integers separated by one space character as
shown below. Then use a program to find if a given integer is in the file.

for23380_ch16_716-775.indd 774 06/11/18 2:48 pm

Programs 775

14 17 24 32 11 72 43 88 99

PRG-3. Searching for a target can be faster if the elements in the file are sorted (are
in order). Use a text editor to create a file of integers separated by one space
character as shown below. Then use a program to find if a given integer is in the
file. Note that searching time makes a lot of difference if the file is very large,
although we test with a small file.

14 17 24 32 48 52 64 74 81 92

PRG-4. We can erase data elements from a random file because the connected stream in
memory is in fact an array. We erase a data item by shifting the rest of the items
one position toward the beginning of the stream. However, shifting creates a
duplicate data item at the end. In an array, we reduce the size to avoid using that
duplicate. In the case of a stream, we must change the last element to a dummy.
We know that a file of characters can be accessed randomly because the size of a
character is fixed. Assume that you have the following file of characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

 Write a program that erases any character in the file given its position (0 to 25).
Remember to change the duplicate character in the end to a null character.

PRG-5. We can access the elements of an array randomly using an index. An array,
however, is not permanent. When the program terminates, the contents of
the array are destroyed. We can simulate an array with a binary file using
random access. Create two programs. In the first program, store 10 different
double values in a file. In the second program, randomly retrieve some of the
values stored in the file by the first program. Note that we use two application
programs to show that after the first program terminates, the file exists and can
be accessed by the second program.

PRG-6. The question arrises, “How can we create a random-access file of strings (such
as names)”? This cannot be done by simply using the string class because the
size of a string object is not predefined. In a random-access file, the size of all
items must be the same. A solution is to create a new class with only one data
member of type String. We know that when C++ creates objects of user-defined
type, it pads the objects to make them of equal size. Write a program to store
some names in a binary file, and then access one of them randomly.

PRG-7. One way to create a record of information that is stored in a file and can be
accessed randomly is to create a string out of it. We can use a toString function to
change a record of variable size and different data type to a string and add padding
to make the size of all strings the same. Write a program that creates records of
five students in which each record is made of three parts: id (an integer between
0 and 100), name (a string of various size), and gpa (a double value less than or
equal 4.0). Make the size of the strings the same (18 characters) and add a new line
at the end of each record so you can read each line using getline function. Write a
program to store five records in a file. Write another program to access records.

PRG-8. Write a program that updates a binary file for customers in a bank. The data consist
of a customer identity (an integer) and customer balance (a double value). Write two
application files. In the first application program, create the binary file with identity
(starting with 1000) and balances for five customers. In the second application
program, let the balance be changed (using deposit or withdrawal) for some
customers (update the file) and then print the contents of the file after updating.

for23380_ch16_716-775.indd 775 06/11/18 2:48 pm

776

17.1 INTRODUCTION
In previous chapters, we learned to write functions to solve problems. When the function
required that we do something over and over, we used iteration (loops). In this chapter, we
show that we can also solve repetitive problems using recursion.

17.1.1 Repetition versus Recursion
In a simple iteration, we use a counter to repeat a task n times; in recursion, the function
does the task only once, but then calls itself n − 1 times to achieve the same goal. The ap-
proaches to void recursive functions and value-returning recursive functions are different,
so we discuss them separately.

Void Recursive Functions
Assume that we need to print n asterisks on a line and the value of n is known. We can use
either an iterative or a recursive solution as shown below. We have chosen the while loop
for the iterative solution because it makes the comparison between the two easier; we have
only one variable, n, in both functions.

We know that computer programs involve iteration (repetition). In this chapter, we introduce
a new approach called recursion that can make some categories of programs easier to solve.
In particular, we show how recursion can be used to solve some sorting and searching prob-
lems. Finally, we show how to solve a classical problem, Towers of Hanoi, using recursion.

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss the concept of recursion and compare it to repetition.

•	Distinguish between a void and a value-returning recursive function.

•	Show how some repetitive functions can be changed to recursive functions.

•	Distinguish between tail recursion and nontail recursion and how the second can be changed
to the first for efficiency.

•	Discuss the use of helper functions to improve the efficiency of some recursive functions.

•	Discuss list sorting and show how to write an efficient recursive sorting function such as
quick sort.

•	Discuss searching and show how to write a recursive search function such as a binary search.

•	Discuss the Towers of Hanoi as a classical recursive algorithm.

17 Recursion

for23380_ch17_776-812.indd 776 02/11/18 5:22 pm

17.1 Introduction 777

// Iterative
void line (int n)
{

while (n >= 1)
{

cout << "*";
n−−;

}
return;

}

// Recursive
void line (int n)
{

if (n < 1)
{

return;
}
cout << "*";
line (n − 1);

}

There is an implicit condition in the iterative version. If n is less than 1, we never enter
the while loop and the function returns. In each iteration, we reduce the value of n by 1 until
it becomes less than 1 and we return from the function.

In the recursive version, we use an explicit condition to return from the function when
n is less than 1. However, instead of repeating the loop with n − 1, we call the function again
with the parameter n − 1.

 If we compare the two approaches, we see that they are doing the same thing. A
condition, implicit or explicit, is needed to return from the function. In the iterative version,
we reduce the value of the variable n one by one using the statement n−−; in the recursive
version, we call the function again with a reduced parameter (n − 1).

In the repetitive version, the statement (cout << “*”) is called n times, each time in one
iteration in the loop. In the recursive version, the same statement is executed once in each
call to the function.

In the repetitive version, we have only one function call; in the recursive version, we
have n − 1 function calls. In each call except the last, we print one asterisk; in the last we
print nothing. The first three calls are referred to as the general case; the last call is referred
to as the base case. The general case is related to those calls that do something; the base
case is related to the case that terminates recursion.

Figure 17.1 symbolically shows the iterative and recursive calls.

Figure 17.1	 Iterative	versus	recursive	call	of	a	void	function

recursive function, general case
recursive function, base case
iterative function
main function
calling cout

function call

after first call

after third call

line (3) line (3)

line (2)

line (1)

line (0)

after the loop
is terminated

Legend:

Iterative solution

Recursive solution

int main ()

void line (int)

void line (int)

void line (int)

void line (int)

int main ()

void line (int) * * * *

after second call

* *

* * *

for23380_ch17_776-812.indd 777 02/11/18 5:22 pm

778 Chapter 17 Recursion

Value-Returning Recursive Functions
Assume that we need to find the sum of all numbers from 0 to n (generally referred to as
summation). We can write two functions, one iterative and one recursive. The functions,
however, are not void functions; each must return the value of the sum.

We show two functions side by side to see the difference between the iterative version
and the recursive version. Again, we use the while loop, which makes the comparison easier.

// Iterative
int sum (int n)
{

int result = 0;
while (n >= 0)
{

result += n;
n−−;

}
return result;

}

// Recursive
int sum (int n)
{

if (n <= 0)
{

return 0;
}
return sum (n − 1) + n;

}

In both cases we are summing the numbers backward, from n to 0. In other words, we
are finding sum = n + n − 1 + n −2, + … + 1 + 0. In the case of iteration, the function skips
the loop if n < 0 (the terminating case). In case of recursion, the function explicitly returns
from the function. This means that the condition (n <= 0) is the base case or termination
case for both functions. The iterative function reduces the value of n in each iteration; the
recursive function calls the same function with value n − 1. Figure 17.2 symbolically shows
the behavior of each function.

Comparison
When we compare the recursive line function (Figure 17.1) and the recursive sum func-
tion (Figure 17.2), we can deduce the difference between a void recursive function and a

Figure 17.2	 Iterative	versus	recursive	call	of	a	value-returning	function

recursive function, general case
recursive function, base case
iterative function
main function

function call
function return

sum (3) 6

Legend:

Note:
In the recursion version, the base case returns
the argument of the function call. The general
case returns the value of the argument (first
number) plus the value received from the next call.

Iterative solution

Recursive solution

int main ()

int sum (int)

int sum (int)

int sum (int)

int sum (int)

sum (3) 3 + 3 = 6

sum (2)

sum (1) 1 + 0 = 1

2 + 1 = 3

sum (0) 0

int main ()

int sum (int)

for23380_ch17_776-812.indd 778 02/11/18 5:22 pm

17.1 Introduction 779

value-returning recursive function. In the case of a void recursive function, general cases are
continuously called until a base case is reached; the general case does not have to hold any
information. In the case of a value-returning function, the general cases are called until the
base case is reached. Each general case must hold some information (the value of n) until the
call to the next step is returned. The base case then returns the value of sum(0) to the previ-
ous general case, which returns the value of sum(1) to the previous general case, and so on.

17.1.2 Recursive Algorithms
In this section we solve simple recursive algorithms.

Sum and Factorial
We discussed how to solve the sum(n) problem recursively. A sibling of the sum(n) function
is the factorial(n) function (also called product). In the sum function, we must add numbers
from n to 0; in the factorial function, we must multiply numbers from n to 1.

// Sum function
int sum (int n)
{

if (n =< 0)
{

return 0;
}
return sum (n − 1) + n;

}

// Factorial function
int factorial (int n)
{

if (n =< 1)
{

return 1;
}
return factorial (n − 1) * n;

}

Note that sum(0) is 0, while factorial(1) is 1. In the sum function, we use the addition
operator; in the factorial function, we use the multiplication operator. Note that in the sum
function, sum(n − 1) is the value returned from the next call and in the factorial function,
factorial(n − 1) is the value returned from the next call.

Program 17.1 tests the value of sum(n) and factorial(n) using the same value for n in
each call. We can see that the sum grows slowly, but the factorial grows rapidly.

Program 17.1	 Testing	recursive	sum	and	factorial

1
2
3
4
5
6
7
8
9

10
11
12

/***
* A program to find the sum and factorial of an integer *
***/

#include <iostream>
using namespace std;

// Declaration of sum function
int sum (int n);
// Declaration of factorial function
int factorial (int n);

int main ()

(continued)

for23380_ch17_776-812.indd 779 02/11/18 5:22 pm

780 Chapter 17 Recursion

Greatest Common Divisor
One function often needed in mathematics and computer science is the greatest common
divisor, gcd, of two positive integers. An integer y is a divisor of x if x % y = 0. Two
positive integers may have many common divisors but only one greatest common divisor.

Program 17.1	 Testing	recursive	sum	and	factorial	(Continued)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

{
// Testing sum (0) and factorial (1)
cout << "sum (0) = " << sum (0) << endl ;
cout << "factorial (1) = " << factorial (1) << endl << endl;
// Testing sum (3) and factorial (3)
cout << "sum (3) = " << sum (3) << endl;
cout << "factorial (3) = " << factorial (3) << endl << endl;
// Testing sum (7) and factorial (7)
cout << "sum (7) = " << sum (7) << endl;
cout << "factorial (7) = " << factorial (7);
return 0;

}
// Recursive definition of sum (n)
int sum (int n)
{

if (n <= 0)
{

return 0;
}
return n + sum (n − 1);

}
// Recursive definition of factorial (n)
int factorial (int n)
{

if (n <= 1)
{

return 1;
}
return n * factorial (n − 1);

}

Run:
sum (0) = 0
factorial (1) = 1

sum (3) = 6
factorial (3) = 6

sum (7) = 28
factorial (7) = 5040

for23380_ch17_776-812.indd 780 02/11/18 5:22 pm

17.1 Introduction 781

For example, the divisors of 12 are 1, 2, 3, 4, 6, 12. The divisors of 140 are 1, 2, 4, 7, 10, 14,
20, 28, 35, 70, and 140. The common divisors of 12 and 140 are 1, 2, 4. However, the great-
est common divisor is 4. This is shown in Figure 17.3.

More than 2000 years ago, a mathematician named Euclid developed an algorithm
that finds the greatest common divisor between two positive integers recursively. Table 17.1
shows the base and general case of the Euclidean algorithm.

Figure 17.4 shows how the recursive gcd function calls another version until it finds
the greatest common divisor of its two arguments.

Program 17.2 shows how we can find the greatest common divisor of several pairs
using the recursive definition.

Figure 17.3	 Greatest	common	divisor	of	12	and	140

Divisors of 140

Common divisors

Greatest common divisor (gcd) : 4

Divisor of 121
3

2 6
4

12
7

5

35

14

1070
28

20
140

Base case General case

gcd (x, 0) = x gcd (x, y) = gcd (y, x % y)

Table 17.1 The base and general cases of the Euclidean algorithm

Figure 17.4	 The	recursive	calls	in	gcd	(9,	12)

general case
base case
main function

function call
return value

Legend:

gcd (3, 0)

int gcd (int first , int second)

3

int main ()

gcd (9, 12)

int gcd (int first , int second)

gcd (12, 3)

int gcd (int first , int second)

Program 17.2	 Greatest	common	divisor

1
2
3
4
5
6

/***
* A program to find the greatest common divisor of some pairs *
***/

#include <iostream>
using namespace std;

(continued)

for23380_ch17_776-812.indd 781 02/11/18 5:22 pm

782 Chapter 17 Recursion

Fibonacci Numbers
Named after an Italian mathematician, Fibonacci numbers are a series in which each number
is the sum of the previous two numbers. Unlike the previous recursive problem, this problem
has two bases, as shown in Table 17.2.

Figure 17.5 shows how we can calculate fib(4) using recursive calls. Note that we
cannot find the return value of fib(4) until we find the return value of fib(3) and fib(2).

Program 17.2	 Greatest	common	divisor	(Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// Declaration of gcd function
int gcd (int first, int second);

int main ()
{

// Checking gcd of five pairs
cout << "gcd (8, 6) = " << gcd (8, 6) << endl;
cout << "gcd (9, 12) = " << gcd (9, 12) << endl;
cout << "gcd (7, 11) = " << gcd (7, 11) << endl;
cout << "gcd (21, 35) = " << gcd (21, 35) << endl;
cout << "gcd (140, 12) = " << gcd (140, 12);
return 0;

}
// Recursive definition of greatest common divisor
int gcd (int first, int second)
{

if (second == 0)
{

return first;
}
else
{

return gcd (second, first % second);
}

}

Run:
gcd (8, 6) = 2
gcd (9, 12) = 3
gcd (7, 11) = 1
gcd (21, 35) = 7
gcd (140, 12) = 4

Base case General case

fib (0) = 0, fib (1) = 1 fib (n) = fib (n−1) + fib (n−2)

Table 17.2 The base and general cases of Fibonacci numbers

for23380_ch17_776-812.indd 782 02/11/18 5:22 pm

17.1 Introduction 783

We cannot find fib(3) until we find fib(2) and fib(1). We cannot find fib(2) until we find
fib(1) and fib(0). Finally, we find the answer to fib(0) and fib(1), which are the base cases.

Based on the definition of the Fibonacci numbers in Table 17.2, we write a recursive
function to calculate any of them, as shown in Program 17.3.

Figure 17.5	 Recursive	trace	of	Fibonacci	number	fib(4)

fib (2)

fib (2)

fib (1)

fib (1)fib (1) fib (0)

fib (0)

fib (3)

fib (4)

0

0

1

1

1

1

2

1

3

long fib (long)long fib (long) long fib (long)long fib (long)

long fib (long)long fib (long)

long fib (long) long fib (long)

long fib (long)

int main ()

general case
base case
main function

function call
return value

Legend:

Program 17.3	 Recursive	solution	to	Fibonacci	numbers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* A program to find the Fibonacci values *
***/

#include <iostream>
using namespace std;

// Function declaration
long long fib (int n);

int main ()
{

// Testing Fibonocci 0 to 10
cout << "Fibonacci numbers from 0 to 10" << endl;
for (int i = 0; i <= 10; i++)
{

cout << "fib (" << i << ") = " << fib(i) << endl;
}
cout << endl;

(continued)

for23380_ch17_776-812.indd 783 02/11/18 5:22 pm

784 Chapter 17 Recursion

Program 17.3	 Recursive	solution	to	Fibonacci	numbers (Continued)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

// Testing Fibonacci numbers of 35 and 36
cout << "Fibonacci numbers of 35 and 36" << endl;
cout << "fib (35) = " << fib(36) << endl;
cout << "fib (36) = " << fib(36) << endl;
return 0;

}
// Function Definition
long long fib (int n)
{

if (n == 0 || n ==1)
{

return n;
}
else
{

return (fib (n - 2) + fib (n - 1));
}

}

Run:
Fibonacci numbers from 0 to 10
fib (0) = 0
fib (1) = 1
fib (2) = 1
fib (3) = 2
fib (4) = 3
fib (5) = 5
fib (6) = 8
fib (7) = 13
fib (8) = 21
fib (9) = 34
fib (10) = 55

Fibonacci numbers of 35 and 36
fib (35) = 9227465
fib (36) = 14930352

We can see that each Fibonacci number is the sum of the two previous ones.

Reversing a String
Another problem that can be solved recursively is to reverse a string. We can define the base
and general case as shown in Table 17.3. In other words, if the string is made of zero or one
character, the reverse string is itself. Otherwise, we need to find the reverse of the substring

for23380_ch17_776-812.indd 784 02/11/18 5:22 pm

17.1 Introduction 785

minus the first character and then concatenate it with the substring that holds only the first
character. Figure 17.6 shows how we find the reverse of a string recursively.

Each general case calls another general case, passing the substring of the argument
(without the first character). It holds the first character in a substring until the reversed string
is returned. It then concatenates the two strings and returns the result to the calling function.
In other words, given the string “ABCD”, the first call holds “A” as a substring and passes
“BCD” to the next call. When the string “DCB” is returned, it concatenates it with the string
“D” to create “DCBA”.

Program 17.4 shows the recursive solution to this problem.

Base case General case

if (length <= 1), return strg return reverse (substr (1, length − 1)) + subtr (0, 1)

Table 17.3 The base and general cases of string reverse

Figure 17.6	 The	steps	involved	in	calling	reverse	(“ABCD”)

general case
base case
main function

function call
return value

Legend:

Note:
Each general case holds the leftmost character
as a substring, which is concatenated to the right
of the reversed string returned from the next call.

Solving reverse ("ABCD")

holds "A"

holds "B"

holds "C"

string reverse (string strg)

int main ()

reverse ("BCD") "DCB"

string reverse (string strg)

reverse ("CD") "DC"

string reverse (string strg)

reverse ("ABCD") "DCBA"

string reverse (string strg)

reverse ("D") "D"

Program 17.4	 Recursively	reversing	a	string

1
2
3
4
5
6
7
8
9

/***
* A program that reverses a string recursively *
***/

#include <iostream>
#include <string>
using namespace std;

// Declaration of recursive function
string reverse (string str);

(continued)

for23380_ch17_776-812.indd 785 02/11/18 5:22 pm

786 Chapter 17 Recursion

Checking for Palindromes
A string is a palindrome if it reads the same forward and backward. We can solve this prob-
lem using a recursive function called isPalidrome that has two base cases and one general
case, as shown in Table 17.4.

The first base case is related to an empty string or a string with only one charac-
ter, which is obviously a palindrome. The second base case is related to the string in
which the first character and the last character are different, which is obviously not a
palindrome.

Figure 17.7 shows how we can use the base and general cases to find if a string is a
palindrome.

Program 17.5 shows the code for the recursive function isPalindrome.

Program 17.4	 Recursively	reversing	a	string (Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

int main ()
{

// Calling reverse function using some strings
cout << "Reverse of 'ABCD': " << reverse ("ABCD") << endl;
cout << "Reverse of 'Hello': " << reverse ("Hello") << endl;
cout << "Reverse of 'Bye': " << reverse ("Bye") << endl;
return 0;

}
// Definition of recursive function
string reverse (string str)
{

if (str.length () <= 1)
{

return str;
}
else
{

return reverse (str.substr (1, str.length() − 1)) + str.substr (0, 1);
}

}

Run:
Reverse of 'ABCD': DCBA
Reverse of 'Hello': olleH
Reverse of 'Bye': eyB

Base case if (length <= 1), return true
else if (strg[0] != strg [strg.size() - 1]) return false

General case return isPalindrome (strg.substr (1, strg.size () - 2));

Table 17.4 The base cases and the general case of the isPalindrome function

for23380_ch17_776-812.indd 786 02/11/18 5:22 pm

17.1 Introduction 787

Figure 17.7	 Cases	of	recursive	isPalindrome	function

Legend:
Note:
We have two base cases:
one returning true and
one returning false.

A true base case

A false base case A true general case

bool isPalindrome (string strg)

int main ()

isPalindrome
("A") true

bool isPalindrome (string strg)

isPalindrome
("ABCBA")

bool isPalindrome (string strg)

isPalindrome
("BCB")

true

bool isPalindrome (string strg)

isPalindrome
("C")

bool isPalindrome (string strg)

int main ()

isPalindrome
("A ... D") false

int main ()

general case
base case
main function

function call
return value

Program 17.5	 Using	the	recursive	isPalindrome	function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* A program that checks if a string is a palindrome *
***/

#include <iostream>
#include <string>
using namespace std;

// Declaration of recursive function
bool isPalindrome (string strg);

int main ()
{

// Instantiation of some strings
string strg1 ("");
string strg2 ("rotor");
string strg4 ("hello");
// Checking for palindromes
cout << boolalpha;
cout << "Is '' a palindrome? " << isPalindrome (strg1) << endl;
cout << "Is 'rotor' a palindrome? " << isPalindrome (strg2) << endl;
cout << "Is 'hello' a palindrome? " << isPalindrome (strg3);
return 0;

}
// Definition of recursive function
bool isPalindrome(string strg)
{

(continued)

for23380_ch17_776-812.indd 787 02/11/18 5:22 pm

788 Chapter 17 Recursion

Program 17.5	 Using	the	recursive	isPalindrome	function (Continued)

27
28
29
30
31
32
33
34
35
36

if (strg.size () <= 1)
{

return true;
}
else if (strg[0] != strg [strg.size() − 1])
{

return false;
}
return isPalindrome (strg.substr (1, strg.size () − 2));

}

Run:
Is '' a palindrome? true // empty string
Is 'rotor' a palindrome? true
Is 'hello' a palindrome? false

Figure 17.8	 Difference	between	a	tail	and	a	nontail	function

general case
base case
main function function call

stack

return value

Legend:
A tail recursion

recursive function (...)

recursive function (...)

recursive function (...)

int main ()

A nontail recursion

recursive function (...)

recursive function (...)

recursive function (...)

int main ()

17.1.3 Tail and Nontail Recursive Functions
We encountered two types of recursion in the examples that we discussed in the previous
sections: tail recursion and nontail recursion (Figure 17.8).

Tail Recursion
In tail recursion, each general case terminates after calling the next general case or the base
case. In other words, the duty of the general case is just to call the next general function or
the base function. The duty of the base case is to return the result of the whole operation to
the main function. In tail recursion, the stack that holds the record of the next function call
has only one record because when the next function is called, the current function terminates

for23380_ch17_776-812.indd 788 02/11/18 5:22 pm

17.1 Introduction 789

and its record is popped from the stack. Examples of tail recursive functions that we have
seen so far are gcd and isPalindrome. Note that if we design a void recursive function, it is
a tail recursive function in which even the base case does not return anything to the main
function.

Nontail Recursion
In nontail recursion, the duty of a general-case call is not terminated until the next call re-
turns. The current function then combines the information it is holding with what is written
from the next call and passes it to the previous call. The final information is returned to the
main function by the first general case. In nontail recursion, the stack holds the record of the
next recursive call until the call is returned. Examples of nontail recursive functions that we
discussed are sum, factorial, fibonacci, and reverse.

17.1.4 Helper functions
A recursive function can be inefficient. In particular, a nontail recursive function can be
inefficient for two reasons. First, each general case must hold information until the result
of the next call is returned. In addition, the stack eventually holds many records, which can
require a large amount of memory. To improve efficiency, we can use a helper function. A
helper function is a tail recursive function with more parameters than the nontail recursive
function. We can use a nonrecursive function to call the helper function. Figure 17.9 shows
the design.

We know that the sum function is not a tail function and is inefficient when its
argument is large. We can create a tail recursive function as a helper function with an
extra parameter (result) that holds the value of n, which would otherwise be held as
a variable. Since each recursive call passes this parameter as a value to the next call,
there is no extra usage of memory. Since the helper function is also a tail recursive
function, the stack inefficiency is also removed. Program 17.6 shows this version of
sum function.

Figure 17.9	 Using	a	helper	function	to	remove	inefficiency

nonRecursive (...)

recursive (... , type par)

recursive (... , type par)

int main ()

nonrecursive function
recursive function, general case

recursive function, base case
main function

function call
return value

Legend:

Notes:
We have shown only three recursive calls
for simplicity.
The recursive function is now a tail function.
The type par is an additional parameter.recursive (... , type par)

for23380_ch17_776-812.indd 789 02/11/18 5:22 pm

790 Chapter 17 Recursion

Program 17.6	 Using	the	helper	function	with	the	sum	function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/***
* A program using a helping function to create a tail recursive *
* function that is more efficient than a non-tail function *
***/

#include <iostream>
using namespace std;

// Functions declaration
int sum (int n);
int sum (int n, int result);

int main ()
{

// Calling the non-recursive function four times
cout << "Sum (0) = " << sum (0) << endl;
cout << "Sum (1) = " << sum (1) << endl;
cout << "Sum (3) = " << sum (3) << endl;
cout << "Sum (7) = " << sum (7);
return 0;

}
// Non-recursive
int sum (int n)
{

return sum (n, 0);
}
// Recursive
int sum (int n, int result)
{

if (n == 0)
{

return result;
}
return sum (n − 1, n + result);

}

Run:
Sum(0) = 0
Sum(1) = 1
Sum(3) = 6
Sum(7) = 28

As another example, we redesign the isPalindrome function using a helper function.
Note that isPalindrome is already a tail recursive function, but redesigning it removes the
inefficiency of creating a substring each time we call the function.

for23380_ch17_776-812.indd 790 02/11/18 5:22 pm

17.1 Introduction 791

Program 17.7	 The	isPalindrome	function	with	a	helper	function

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/***
* A program that checks if a string is a palindrome by using *
* a helper function to avoid creating substring objects *
***/

#include <string>
#include <iostream>
using namespace std;

// Function declaration
bool isPalindrome (const string& strg);
bool isPalindrome (const string& strg, int left, int right);

int main ()
{

// Checking if the strings are palindromes
cout << boolalpha;
cout << "Is 'rotor" a palindrome? " << isPalindrome ("rotor") << endl;
cout << "Is 'madam' a palindrome? " << isPalindrome ("madam") << endl;
cout << "Is 'Hello' a palindrome? " << isPalindrome ("Hello");
return 0;

}
// Function definition for non-recursive isPalindrome
bool isPalindrome(const string& strg)
{

return isPalindrome (strg, 0, strg.size () − 1);
}
// Function definition for helper recursive isPalindrome
bool isPalindrome(const string& strg, int left, int right)
{

if (right <= left)
{

return true;
}
else if (strg [left] != strg [right])
{

return false;
}
return isPalindrome (strg, left + 1 , right − 1);

}

Run:
Is 'rotor' a palindrome? true
Is 'madam' a palindrome? true
Is 'hello' a palindrome? false

for23380_ch17_776-812.indd 791 02/11/18 5:22 pm

792 Chapter 17 Recursion

17.2 RECURSIVE SORT AND SEARCH
In computer science we often need to sort a list and search a list. When a list is sorted, the
search can be very fast.

17.2.1 Quick Sort
To sort means to rearrange the elements of a list (such as an array) so that the values are
in sequence. The sorting algorithm that we introduce in this section is called quicksort (a
recursive algorithm). This is a fast and efficient algorithm that is used in most libraries.
The quicksort algorithm uses a nonrecursive algorithm called partition, which we discuss
next.

Partition Algorithm
The partition algorithm rearranges an array around a pivot, one of the elements of the array,
so that all elements larger than or equal to pivot move after it and all elements smaller than
pivot move before it. The pivot is normally selected as the first element.

The following shows the partition algorithm.

int partition (int arr[], int i, int j) // i and j are partition indexes
{

int p = i; // p is the pivot
while (i < j) // outer loop
{

while (arr [j] > arr[p]) // first inner loop
{

j−−;
}
swap (arr[j], arr[p]);
p = j;
j−−;
while (arr [i] < arr [p]) // second inner loop
{

i++;
}
swap (arr[i], arr [p]);
p = i;
i++;

}
return p;

}

In each execution of the outer loop, we perform the following two sets of actions.

 ∙ We move j to the left as long as arr[j] is larger than the arr[p]. We then swap the
values of arr[j] and arr[p] and set p = j. Then we move j one more element to the left.

 ∙ We move i to the right as long as arr[i] is smaller than arr[p]. We then swap the values
of arr[i] and arr[p] and set p = i. Then we move i one more element to the right.

The pivot p is set to the first element, but it moves to its final position in the array.
Note that after the second iteration, i moves to the right of j and the outer loop terminates.

for23380_ch17_776-812.indd 792 02/11/18 5:22 pm

17.2 Recursive	Sort	and	Search 793

Figure 17.10 shows an array of 10 elements and the changes that occur during two iterations
of the outer loop.

Quick Sort Algorithm
The quick sort algorithm is a void recursive algorithm, which means it does not return any-
thing to its caller. It moves recursively down left and down right until it reaches an empty
partition array. Figure 17.11 shows the idea behind the quick sort algorithm.

Program 17.8 demonstrates quick sort with a small array of 10 elements.

17.2.2 Binary Search
We often need to search an array to find the location of a element. It is much easier to search a
sorted array than an unsorted array. We know that when items are in order, we can find them

Figure 17.10	 Applying	the	partition	algorithm	on	an	array

M
ov

e
ri

gh
t

an
d

sw
ap

M
ov

e
ri

gh
t

an
d

sw
ap

M
ov

e
le

ft
 a

n
d

sw
ap

M
ov

e
le

ft
 a

n
d

sw
ap

Array before partition

Array after partition

Se
co

nd
 o

ut
er

 it
er

at
io

n
Fi

rs
t o

ut
er

 it
er

at
io

n

27 22 11 94 83 14 30 19 46 33
i jp

2722 11 948314 30 46 33

Move j

Swap

Move j

27 22 11 94 83 14 30 19 46 33
i jp

pi j

2722 11 94 83 14 3019 46 33

pi j
2722 11 94 83 14 3019 46 33

Move i

Swap

Move i

i pj
2722 11 94 83 14 3019 46 33

i p j
2722 11 83 14 3019 46 3394

ip j
2722 11 83 14 3019 46 3394

Move j

Swap

Move j

ip j
2722 11 83 14 3019 46 3394

i pj
2722 11 8314 3019 46 3394

i pj
2722 11 8314 3019 46 3394

Swap

Move i

Move i

i pj
2722 11 8314 3019 46 3394

33

i pj
2722 11 8314 3019 46 3394

ipj
2722 11 8314 3019

19

4694

for23380_ch17_776-812.indd 793 02/11/18 5:22 pm

794 Chapter 17 Recursion

Figure 17.11	 The	idea	of	the	quick	sort	algorithm

qsort (arr, beg, p − 1) qsort (arr, p + 1 , end)

qsort (arr, beg, end)

void qsort (int [], int, int);
p = partion (...);

int main ()

void qsort (int [], int, int);
p = partion (...);

void qsort (int [], int, int);
p = partion (...);

recursive call

main function

call

p: pivot

Legend:
Note:
The base case in each branch is reached when
the corresponding partition is empty.

Program 17.8	 Quick	sort	program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* A program that uses the quicksort algorithm to sort an array *
* by calling the partition algorithm recursively *
***/

#include <iostream>
using namespace std;

// Function declarations
void swap (int& x, int& y);
void print (int array[], int size);
int partition (int arr[], int beg, int end);
void quickSort (int arr[], int beg, int end);

int main ()
{

// Declaration of an unsorted array
int array [10] = {27, 22, 11, 94, 83, 14, 30, 19, 46, 33};
// Printing unsorted array
cout << "Original array: " << endl;
print (array, 10);
// Calling quickSort function
quickSort (array, 0, 9);
// Printing sorted array
cout << "Sorted array: " << endl;

(continued)

for23380_ch17_776-812.indd 794 02/11/18 5:22 pm

17.2 Recursive	Sort	and	Search 795

Program 17.8	 Quick	sort	program (Continued)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

print (array, 10);
return 0;

}
// Swap function
void swap (int& x, int& y)
{

int temp = x;
x = y;
y = temp;

}
// Print-array function
void print (int array[], int size)

{
for (int i = 0; i < size; i++)
{

cout << array [i] << " ";
}
cout << endl;

}
// Partition function
int partition (int arr[], int beg, int end)
{

int p = beg ; // Initializing pivot
int i = beg; // Initializing i
int j = end; // Initializing j

while (i < j)
{

// Moving j to the left
while (arr [j] > arr[p])
{

j--;
}
swap (arr[j], arr[p]);
p = j;
// Moving i to the right
while (arr [i] < arr [p])
{

i++;
}
swap (arr[i], arr [p]);
p = i;

}

(continued)

for23380_ch17_776-812.indd 795 02/11/18 5:22 pm

796 Chapter 17 Recursion

Program 17.8	 Quick	sort	program (Continued)

68
69
70
71
72
73
74
75
76
77
78
79
80

return p;
}
// Quick sort function
void quickSort (int arr[], int beg, int end)
{

if (beg >= end || beg < 0)
{

return;
}
int pivot = partition (arr, beg, end);
quickSort (arr, beg, pivot − 1);
quickSort (arr, pivot + 1, end);

}

Run:
Original array:
27 22 11 94 83 14 30 19 46 33
Sorted array:
11 14 19 22 27 30 33 46 83 94

much easier. For example, it would be very difficult to search for an entry in the telephone book
if the entries were not sorted. The binary search algorithm is designed to find a value in a sorted
array. The binary search starts by looking at the middle element. We can have three cases:

 ∙ If the value is equal to the middle element, the search stops. The index has been found.
 ∙ If the value is greater than the middle element, the search continues with the right half

of the array.
 ∙ If the value is less than the middle element, the search continues with the left half of

the array.

Figure 17.12 shows an example of a binary search. We search for the value 30 in a sorted
array of 10 elements. After three attempts, the index of the value, 5, is returned.

Figure 17.12	 Example	of	a	binary	search

11
low mid

value to search: 30

Legend:

high

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
14 19 22 27 30 33 46 83 94

11
low mid

mid
low

high

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
14 19 22 27 30 33 46 83 94

11
high

Value is found at index 5

searched
not searched
mid element

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
14 19 22 27 30 33 46 83 94

for23380_ch17_776-812.indd 796 02/11/18 5:22 pm

17.2 Recursive	Sort	and	Search 797

Recursive Binary Search
Figure 17.13 shows the recursive binary search algorithm using a helper function.

As noted in Figure 17.13, we have two base cases. In the first, the value is not found,
and in the second, it is found.

In a traditional binary search, an application calls the search function using the array
name, the size, and the value to be found, such as binarySearch (arr, size, value). If the value
is not the middle element, we must call again, but the new call must search only the left or
right part of the array. If we want to search the left part, the array pointer does not need to be
changed, but the size must be changed. If we want to search the right part, we must move the
array pointer after the middle element and adjust the size. It is convenient and more efficient
to use a helper function that does not move the array pointer but in each call uses a subpart
of the array starting from low to high. The helper recursive call has the format binarySearch
(arr, low, high, value). In each call only the value of low or high changes; the arr pointer and
search arguments remain the same.

Program 17.9 shows how to implement the recursive binary search using a helper
function.

Figure 17.13	 Design	of	binary	search	algorithm

binarySearch (...)

binarySearch (...)

binarySearch (...) binarySearch (...)binarySearch (...)

int main ()

nonrecursive

recursive base case
recursive general

main function

function call
return value

Legend:

Note: We have two base cases.

Program 17.9	 Recursive	binary	search

1
2
3
4
5
6
7
8
9

10
11
12
13

/***
* A program that uses the recursive binary search to search *
* an array for a value *
***/

#include <iostream>
using namespace std;

// Declaration of non-recursive and recursive search functions
int binarySearch (const int arr[], int size, int value);
int binarySearch (const int arr[], int low, int high, int value);
// Declaration of array to be searched
const int size = 10;
int array [size] = {11, 14, 19, 22, 27, 30, 33, 46, 63, 94};

(continued)

for23380_ch17_776-812.indd 797 02/11/18 5:22 pm

798 Chapter 17 Recursion

Program 17.9	 Recursive	binary	search (Continued)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

int main ()
{

// Inputting the value to be found
int value;
cout << "Enter the value to be found: ";
cin >> value;
// Calling the non-recursive search function
int index = binarySearch (array, size, value);
if (index == −1)
{

cout << "The value is not in the array!";
}
else
{

cout << "The value was found at index: " << index;
}
return 0;

}
// Definition of non-recursive search function
int binarySearch (const int arr[], int size, int value)
{

int low = 0;
int high = size − 1;
return binarySearch (arr, low, high, value);

}
// Definition of recursive search function
int binarySearch (const int arr[], int low, int high, int value)
{

int mid = (low + high) / 2;
if (low > high)
{

return −1;
}
else if (value == arr [mid])
{

return mid;
}
else if (value < arr[mid])
{

return binarySearch (arr, low, mid − 1, value);
}
else

(continued)

for23380_ch17_776-812.indd 798 02/11/18 5:22 pm

17.2 Recursive	Sort	and	Search 799

17.2.3 The Towers of Hanoi
We discuss one more classic recursive problem, the Towers of Hanoi. It is normally solved
using a recursive approach. In the problem, there are three pegs (towers). Stacked on the
first peg is a set of disks with the smallest at the top. Figure 17.14 shows the situation with
four disks.

We must move the disks from the first peg (A) to the third peg (C). The second peg
(B) is used to temporarily store disks during the process. The task uses the following rules:

 ∙ Only one disk can be moved at a time.
 ∙ A larger disk must never be stacked above a smaller one.
 ∙ One temporary peg (B) is used for the intermediate storage of disks.

This problem is interesting for two reasons. First, the recursive solution is much easier to
code than the iterative solution. Second, the solution pattern for this problem is different
from the simple examples we have been discussing.

Program 17.9	 Recursive	binary	search (Continued)

57
58
59
60

{
return binarySearch (arr, mid + 1, high, value);

}
}

Run:
Enter the value to be found: 11
The value was found at index: 0

Run:
Enter the value to be found: 27
The value was found at index: 4

Run:
Enter the value to be found: 94
The value was found at index: 9

Run:
Enter the value to be found: 10
The value is not in the array!

Run:
Enter the value to be found: 95
The value is not in the array!

Figure 17.14	 Towers	of	Hanoi	with	only	four	disks

A B C

for23380_ch17_776-812.indd 799 02/11/18 5:22 pm

800 Chapter 17 Recursion

Base Case
We first find the solution to the simplest case (base case). We assume that we have only one
disk. The solution is simple. We move the disk from the source peg (A or B) to the destina-
tion peg (C). We do not need the auxiliary peg.

General Case
Now we see how we can solve the problem if we have n disks (general case). We can do it
in three steps:

a. We must move the first n − 1 disks from peg A to peg B so they are out of the way and
the next step is possible.

b. We move the last disk from the source peg to the destination peg (the base case).
c. We need to move n − 1 disks from peg B to peg C (the ones that were stored temporar-

ily on peg B).

To fully understand the case, we show the steps graphically. Figure 17.15 shows the case
with four disks.

The original call to the function knows that there are four disks, the source peg is A,
the destination peg is C, and the auxiliary peg is B. In the first recursive call, we assume
that the source peg is A, destination peg is B, and the auxiliary peg is C. In the second re-
cursive call, we assume that the source peg is B, the destination peg is C, and the auxiliary
peg is A.

Algorithm
The general case can be changed to a recursive algorithm easily. The signature of the func-
tion to solve the problem is towers (n, source, destination, auxiliary). The algorithm is
shown below:

towers (n, source, destination, auxiliary)
{

Call towers (n – 1, source, auxiliary, destination)
Move one disk from source to destination // Base case
Call towers (n – 1, auxiliary, destination, source)

}

Figure 17.15	 The	base	and	recursive	cases	in	the	Towers	of	Hanoi

Recursive call
One move

Recursive call

A B C

A B C A B C A B C

Original

for23380_ch17_776-812.indd 800 02/11/18 5:22 pm

17.2 Recursive	Sort	and	Search 801

Program
Using the towers algorithm above, we have written Program 17.10 to solve this problem
for any number of disks. Note that we use a separate function to handle the base case for
clarity.

Program 17.10	 Towers	of	Hanoi

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/***
* A program to solve the problem of Tower of Hanoi *
***/

#include <iostream>
using namespace std;

// Function declaration
void towers (int, char, char, char);
void moveOneDisk (char, char);

int main ()
{

// Variable declaration
int n;
// Input
do
{

cout << "Enter number of disks (1 to 4): ";
cin >> n;

} while ((n < 1) || (n > 4));
// Function call
towers (n, 'A', 'C', 'B');

}

// Definition for towers function
void towers (int num, char source, char dest, char aux)
{

if (num == 1)
{

moveOneDisk (source, dest);
}
else
{

towers (num − 1, source, aux, dest);
moveOneDisk (source, dest);
towers (num − 1, aux, dest, source);

}
}
// Definition for moveOneDisk function
void moveOneDisk (char start, char end)

(continued)

for23380_ch17_776-812.indd 801 02/11/18 5:22 pm

802 Chapter 17 Recursion

Program 17.10	 Towers	of	Hanoi (Continued)

41
42
43

{
cout << "Move top disk from " << start << " to " << end << endl;

}

Run:
Enter number of disks (1 to 4): 1
Move top disk from A to C

Run:
Enter number of disks (1 to 4): 2
Move top disk from A to B
Move top disk from A to C
Move top disk from B to C

Run:
Enter number of disks (1 to 4): 3
Move top disk from A to C
Move top disk from A to B
Move top disk from C to B
Move top disk from A to C
Move top disk from B to A
Move top disk from B to C
Move top disk from A to C

The first run is trivial; we have one disk, which we move from A to C. The second run
is simple; we move the top disk from A to B (auxiliary), we move the second disk to the
destination, and we move the first disk from B to C. The third run takes seven moves. The
first three steps move the top two disks from A to B (auxiliary). The fourth step moves
the last disk from A to C. The last three steps move the two disks from B to C (using A as an
auxiliary). Figure 17.16 shows the original and seven steps to move three disks.

Figure 17.16	 Steps	to	move	three	disks	

A

Original

Step 1 Step 2 Step 3

Step 4

Step 5 Step 6 Step 7

B C

A B C A B C A B C

A B C

A B C A B C A B C

for23380_ch17_776-812.indd 802 02/11/18 5:22 pm

17.3 Program	Design 803

17.3 PROGRAM DESIGN
In this section we develop recursive solutions to two problems in which recursion gives a
shorter and more elegant solution than iteration.

17.3.1 String Permutation
Permutation of a string finds all possible arrangements of characters in a string. Given a
string of n characters, there are factorial(n) permutations. For example, when n = 3 and the
given string is “abc”, we have the following six strings:

"abc" "acb" "bac" "bca" "cab" "cba"

Permutation of any length can be solved using a combination of iteration and recursion.

Iteration
In any recursive solution for the problem, we must first choose a letter and then permute the
rest. For example, in the three-character permutation, we must choose character ‘a’ as the
first character and then apply permutation to the rest. We then need to choose character ‘b’
and permute the rest, and so on. Selection of the first character can be done using iteration,
which first swaps the first letter with one of the letters in the string before calling the recur-
sive solution as shown below:

for (int i = 0; i < str.length () ; i++)
{

swap (str [0], str[i]);
permute (...);

}

Recursive Function
Now we can define the whole recursive function that permutes a string. The recursive per-
mute function has two parameters: the left parameter is the string to be permuted; the right
parameter is the one that is partially permuted. The recursive function removes one character
from the left string and adds it to the end of the right string and permutes again. The base case
is called when the left string is empty. The following shows the recursive permute function:

void permute (string str, string p)
{

if (str.length () == 0)
{

cout << p;
}
else
{

for (int i = 0; i < str.length(), i++)
{

swap (str[0], str[1]);
permute ((str.substr (1, str.length() − 1), p + str.substr (0, 1);

}
}

}

for23380_ch17_776-812.indd 803 02/11/18 5:22 pm

804 Chapter 17 Recursion

Adding a Nonrecursive Function
We use the recursive function developed above as a helper function and use a nonrecursive
function with only one parameter, the string to be permuted. In other words, we have a
nonrecursive function that calls the recursive function with two parameters as shown below.
Note that the second parameter is a null string.

void permute (string s)
{

permute (s, "");
}

In this way, the user must call only the nonrecursive function, permute(str), to display all
permutations of the function.

Program 17.11 displays the permutation of any string.

Program 17.11	 Permutation	of	a	string	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* A program to create all permutations of a given string *
***/

#include <iostream>
#include <string>
using namespace std;

// Function declarations
void permute (string);
void permute (string, string);
void swap (char&, char&);

int main ()
{

// Permuting the string "xy"
cout << "Permutation of xy: ";
permute ("xy");
cout << endl;
// Permuting the string "abc"
cout << "Permutation of abc: ";
permute ("abc");
cout << endl;

}
// Definition of non-recursive permute function
void permute (string s)
{

permute (s, "");
}

(continued)

for23380_ch17_776-812.indd 804 02/11/18 5:22 pm

17.3 Program	Design 805

Program 17.11	 Permutation	of	a	string (Continued)

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// Definition of recursive (helper) permute function
void permute (string str, string p)
{

if (str.length () == 0)
{

cout << p << " " ;
}
else
{

for (int i = 0; i < str.length (); i++)
{

swap (str[0], str[i]);
permute (str.substr (1, str.length() − 1), p + str.substr (0, 1)) ;

}
}

}
// Definition of swap function
void swap (char& c1, char& c2)
{

char temp = c1;
c1 = c2;
c2 = temp;

}

Run:
Permutation of xy: xy yx
Permutation of abc: abc acb bac bca cab cba

17.3.2 Prime Numbers
Mathematicians divide the positive integers into three groups:

1. Integer 1
2. Primes
3. Composites

The integer 1 is neither prime nor composite. A prime number is divisible by 1 and it-
self. A composite number is divisible by 1, itself, and other integers. In other words, the
integer 1 has only one divisor (itself), a prime has two divisors (integer 1 and itself), and
a composite has more than two divisors (integer 1, itself, and other integers smaller than
itself). We can see that the smallest prime is integer 2. The primes less than 10 are 2, 3,
5, and 7.

Checking Primeness
Given a number n, how can we find out if it is a prime? It is axiomatic that a number is prime
if it is not divisible by any prime in the range (2 ... floor(sqrt(n)).

for23380_ch17_776-812.indd 805 02/11/18 5:22 pm

806 Chapter 17 Recursion

EXAMPLE 17.1
We can check the primeness of 97 using the above rule. The floor(sqrt(97) = 9. We need
only to check all primes less than or equal 9, which are 2, 3, 5, and 7. Since none of these
integers divides 97, the integer 97 is a prime.

EXAMPLE 17.2
We can check the primeness of 301 using the above rule. The floor(sqrt(301) = 17. We need
only to check all primes less than or equal 17, which are 2, 3, 5, 7, 11, 13, 17. The integer 7
divides 301 (301 / 7 = 43). This means that 301 is not a prime.

Recursive Function
Based on the above observations, we can write a recursive function to find out if a number
is prime. We can continuously check to see if the number is divisible by its prime divisors.
However, this implies that we have already created a list of prime divisors, which means that
we already know how to find if a number is prime. We can relax this condition and check if
the given number is divisible by all numbers in the range 2 ... floor(sqrt(number)).

The following shows the recursive function used to determine if a number is a prime.
It has two base cases and one general (recursive case). The first base case returns false and
terminates the function if the number is divisible by the first argument. The second base case
returns true and terminates the function when all integers less than (floor(sqrt(number)) are
checked and no divisor is found. The general case calls the function again with the next pos-
sible divisor in the range.

bool isPrime (int div, int num)
{

if (num % div == 0)
{

return false;
}
else if (div >= floor (sqrt (num)))
{

return true;
}
return isPrime (div + 1, num);

}

Adding a Nonrecursive Function
You may have noticed that the previous recursive function does not correctly handle two
special cases. First, if num is 1, it incorrectly returns true. Second, if num is 2, it incorrectly
returns false. These two cases cannot be included in the recursive function, but they can be
tested in a nonrecursive function that calls the recursive function, as shown below:

bool isPrime (int num)
{

if (num <= 1)
{

return false;

for23380_ch17_776-812.indd 806 02/11/18 5:22 pm

17.3 Program	Design 807

}
else if (num == 2)
{

return true;
}
return isPrime (2, num);

}

Note that after taking care of the two special cases, the nonrecursive function calls the recur-
sive function with divisor 2 to start.

Program 17.12 shows the complete program using the two functions.

Program 17.12	 Testing	the	primeness	of	an	integer

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/***
* A program to test the primeness of an integer *
***/

#include <iostream>
#include <cmath>
using namespace std;

// Declaration of a non-recursive and a recursive function
bool isPrime (int num);
bool isPrime (int div, int num);

int main ()
{

// Testing the primeness of some integers
cout << "Is 1 prime? " << boolalpha << isPrime(1) << endl;
cout << "Is 2 prime? " << boolalpha << isPrime(2) << endl;
cout << "Is 7 prime? " << boolalpha << isPrime(7) << endl;
cout << "Is 21 prime? " << boolalpha << isPrime(21) << endl;
cout << "Is 59 prime? " << boolalpha << isPrime(59) << endl;
cout << "Is 97 prime? " << boolalpha << isPrime(97) << endl;
cout << "Is 301 prime? " << boolalpha << isPrime(301) << endl;
return 0;

}
// Definition of non-recursive function calling the recursive function
bool isPrime (int num)
{

if (num <= 1)
{

return false;
}
else if (num == 2)
{

(continued)

for23380_ch17_776-812.indd 807 02/11/18 5:22 pm

808 Chapter 17 Recursion

Program 17.12	 Testing	the	primeness	of	an	integer (Continued)

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

return true;
}
return isPrime (2, num);

}
// Definition of the recursive (helper) function
bool isPrime (int div, int num)
{

if (num % div == 0)
{

return false;
}
else if (div >= floor (sqrt (num)))
{

return true;
}
return isPrime (div + 1, num);

}

Run:
Is 1 prime? false
Is 2 prime? true
Is 7 prime? true
Is 21 prime? false
Is 59 prime? true
Is 97 prime? true
Is 301 prime? false

K e y T e r m s

base case
binary search
general case
helper function

nontail recursion
Sort
tail recursion

We can solve an iteration problem using either repetition or recursion. In repetition, we let a
function repeat itself until a terminating condition occurs. In recursion, we let a function call
itself until the same terminating condition occurs.

We have two types of recursion: tail recursion and nontail recursion. Tail recursion is
normally more efficient and uses less computer resources than nontail recursion. We can
change a nontail recursion to a tail recursion by defining more parameters.

Two areas in which we encounter recursion are sorting and searching a list such as an
array of items.

The Towers of Honoi is a classical recursive algorithm that uses many aspects of recursion.

S u m m a r y

for23380_ch17_776-812.indd 808 02/11/18 5:22 pm

Problems 809

P r o b l e m s

PR-1. What is printed from fun(‘G’) as coded below? Explain what the function does.

void fun (char c)
{

if (c < 'A' || c > 'Z')
{

return;
}
cout << c << " ";
fun (c + 1);

}

PR-2. What is returned from fun(5, 12) and fun(12, 5) as coded below? Explain what the
function does.

int fun (int n, int m)
{

if (n == m)
{

return 0;
}
else if (n > m)
{

return 1;
}
else
{

return fun (m, n);
}

}

PR-3. What is printed from fun(5) as coded below? Explain what the function does.

void fun (int n)
{

if (n < 0)
{

return;
}
cout << n << " ";
fun (n − 1);

}

PR-4. What is returned from fun(5) as coded below? Explain what the function does.

double fun (int n)
{

if (n <= 1)
{

return 0;
}
return fun (n - 1) + 1.0 / n;

}

for23380_ch17_776-812.indd 809 02/11/18 5:22 pm

810 Chapter 17 Recursion

PR-5. What is returned from fun(4) as coded below? Explain what the function does.

double fun (int n)
{

if (n <= 1)
{

return 0;
}
return fun (n - 1) + (double) n / (n + 2);

}

PR-6. What is returned from fun(4) as coded below? Explain what the function does.

double fun (int n)
{

if (n <= 1)
{

return 0;
}
return fun (n − 1) + double (n) / (2 * n - 1);

}

PR-7. What is returned from fun(4) as coded below? Explain what the function does.

double fun (int n)
{

if (n <= 1)
{

return 0;
}
return fun (n − 1) + double (n) / (3 * n − 1);

}

PR-8. What is printed from fun(164) as coded below? Explain what the function does.

int fun (int n)
{

if (n < 10)
{

return n
}
else
{

cout << (n % 10);
return fun (n / 10);

}
}

PR-9. Explain what the following function does and what is returned when n is 3 and m
is 4.

int fun (int n, int m)
{

if (n == 0 || m == 0)

for23380_ch17_776-812.indd 810 02/11/18 5:22 pm

Programs 811

{
return 1;

}
else
{

return fun (n, m − 1) + fun (n − 1, m);
}

}

PR-10. What is printed from fun(19) as coded below? Explain what the function does.

void fun (int n)
{

if (n > 0)
{

fun (n / 2);
cout << n % 2;

}
}

P r o g r a m s

PRG-1. Write a tail version of the factorial function and add a nonrecursive function to
call it. Test the function in a program.

PRG-2. Write a recursive function to find the number of permutations of n objects k at a
time and then write a program to test it. The formula is given below:

P (n, k) = factorial (n) / factorial (n − k)

PRG-3. Write a recursive function to find the combination of n objects k at a time. Then
write a program to test it. The formula is given below:

C (n, k) = factorial (n) / ((factorial (n − k) * (factorial (k))

PRG-4. Write a recursive tail function that reverses the digits in its argument. For
example, given the integer 12789, the function returns 98721. Then use a
nonrecursive function to call it. Test the functions in a program.

PRG-5. Write a tail recursive function to convert a decimal integer to a binary string and
then use a nonrecursive function to call it. For example, the decimal 78 will be
changed to “1001110”. Test your functions in a program.

PRG-6. Write a tail recursive function to convert a decimal integer to a string of
hexadecimal characters and use a nonrecursive function to call it. For example,
the decimal 78 will be changed to “4E”. Test your functions in a program.

PRG-7. Write a tail recursive function to find the smallest integer in an array of integers.
Then use a nonrecursive function to call it. Test your function in a program
with at least three arrays of 10 integers. Note that when we look for the smallest
element in an array, we must keep track of the smallest element and the next
index to check. This means that your helper function must have two extra
parameters.

for23380_ch17_776-812.indd 811 02/11/18 5:22 pm

812 Chapter 17 Recursion

PRG-8. Write a program that finds all the factors of a given number. A factor is a
number less than or equal to the given number that divides the number with
remainder zero. Note that any number has at least two factors: 1 and itself.
Test your function with the factors of a few numbers and tabulate the results
in a program. Write a recursive (helper) function that finds the divisor of two
numbers. Then use a nonrecursive function to call it.

PRG-9. Write a tail recursive function and the corresponding nonrecursive function
to test if an integer is prime. Remember that a prime number is only divisible
by 1 and itself, but we can check the numbers from 1 to the square root of
that number to be sure that it is prime. Remember that 1 is not a prime.
Mathematicians divide the positive integers into three groups: composite, prime,
and 1.

PRG-10. Write a program to find all prime factors of a given number. A prime factor is an
integer that is a factor and is also a prime. Prime factors have many applications
in the field of security and cryptography. In writing your program, feel free to
use the ideas presented in PRG-8 and PRG-9.

PRG-11. Write a recursive function that counts and prints the number of a given character
in a string. Test the function in a program.

for23380_ch17_776-812.indd 812 02/11/18 5:22 pm

813

18.1 INTRODUCTION
In previous chapters we discussed the fundamentals of object-oriented programming using
the C++ language. We studied the fundamental and user-defined data types. We learned
how to apply system-defined operations (operators) and user-defined operations (functions)
to objects of any type. We learned how to select which operation should be applied to objects
and how to repeat operations. We learned how to make user-defined objects and operations
generic by using template types. In other words, we learned how handle objects in C++
individually.

In computer science, objects are often collections. This means that we need to handle
a collection of objects instead of individual objects. The techniques we have learned so far
can be applied to each object in the collection, but we also need to think about the collec-
tion as an object of objects. We have learned how to apply operations to individual objects,
such as accessing or changing parts; now we learn how to apply operations to collections.
We learn how to insert an object, how to erase an object, and how to access an object in
a collection.

In this chapter, we give a general view of data structures, a topic that is normally taught in a
second course of C++ programming. An understanding of the basic data structures is neces-
sary to understand the Standard Library Template (STL), which we discuss in Chapter 19.

Objectives

After you have read and studied this chapter, you should be able to:

•	Discuss collections as an object of objects.

•	Discuss the difference between linear and nonlinear collections.

•	Explain that a collection can be implemented using an array or a linked list.

•	Discuss one implementation of a linear collection, a singly linked list.

•	Show how a stack class, as a last-in-first-out structure, can be implemented using a linked list
class.

•	Show how a queue class, as a first-in-first-out structure, can be implemented using a linked
list class.

•	Demonstrate a nonlinear collection by creating a binary search tree using a linked list
framework.

18 Introduction to Data
Structures

for23380_ch18_813-851.indd 813 02/11/18 5:23 pm

814 Chapter 18 Introduction	to	Data	Structures

18.1.1 Objects Relationship
Operations on a collection, as an object of objects, depend on the relationship between the
objects in the collection. We normally encounter two general relationships in a collection:
linear and nonlinear.

Linear Collection
A collection may impose a linear relationship between objects in a collection, which means
that each object is somehow connected to the previous and next object. Figure 18.1 shows
the basic concept of a linear collection.

Nonlinear Collection
In a nonlinear collection, each object can be connected to a group of objects. We do not have
a collection of objects that come one after another. The objects can be related to each other
in a tabular relationship, in which an object is connected to two objects in the same row
and to two objects in the same column. We can also have a collection in which the objects
are related to each other the way branches of a tree are connected. We can have a root and
branches, each with a number of objects, in an upside-down tree. Figure 18.2 shows these
two types of relationships in a nonlinear collection.

18.1.2 Interface versus Implementation
As we discussed in the case of individual objects, we need to think about two aspects of an
object in object-oriented programming: interface and implementation. This statement is also
true for a collection, which is an object of objects.

Interface
We learned that the interface of an individual object simply gives the list of operations that
we can use without revealing how the object is created and its contents. This is true for both
fundamental and user-defined objects. Since a collection is normally implemented as a tem-
plate entity, we can define the type of the objects in the collection, but how the collection

Linear list

Legend:

Connection
Object
Collection

Figure 18.1	 Linear	collection	of	objects

Tabular nonlinear list Tree-like nonlinear list
Legend:

ConnectionObject Collection

Figure 18.2	 Nonlinear	collection	of	objects

for23380_ch18_813-851.indd 814 02/11/18 5:23 pm

18.2 Singly	Linked	List 815

is implemented is hidden from the user. We have only the interface, which shows how to
insert, how to remove, how to access, and how to rearrange the objects. This is the case with
the STL. The STL provides a rich set of collections for us and gives the interface to use the
collections’ corresponding operations, but the implementation is hidden.

Implementation
If we want to create a personal collection with some features that are not defined in the STL,
we can write our own collection class and provide the functions we need. Another solution
is to inherit from the STL class and customize the operations we need.

18.1.3 Implementation Choices
Whether we create our own implementation or we use STL collections, we find out that we
have two choices: using an array or using a linked list.

Array Implementation
We can use a one-dimensional array to implement a linear collection or a two-dimensional
array to create a nonlinear collection. An array can be implemented in stack memory or heap
memory. During execution, if the array size needs to be increased, we can create a larger
array, copy the values of the previous array into the new array, and then destroy the original
array. In Chapter 19, we will see that the STL uses this technique when it implements a col-
lection as an array. In the array implementation, the connection between objects is established
via the array index. An object in a higher index is located after an object of a lower index.

Linked-List Implementation
In a linked-list implementation, the connection between objects in the collection is provided
through pointers instead of indexes. An object may have one or more pointers to other ob-
jects in the collection. In other words, the objects are linked through pointers. Although the
linked-list implementation involves more effort from the designer, it has two major advan-
tages over the array implementation: The size of the collection does not have to be defined
during compilation, and the size can be changed without the need to copy the whole collec-
tion to a new collection.

18.1.4 Chapter Goal
Our main goal in this chapter is to learn how to implement simple collections. Although sev-
eral collections have been implemented in the STL library for us, if we learn how to create
our own collections, it will be easier for us to understand the relationship between objects
in STL collections and how to derive our own collection from the STL. This chapter also
prepares us for a second course in C++ programming: data structures, in which we design
and create collections.

18.2 SINGLY LINKED LIST
In this section we develop a linear implementation collection of objects using a singly linked
list. In this implementation, each object in the collection is related only to the next object in the
collection (thus the term singly). The object in a singly linked list is called a node and is made
of two parts: data and a pointer. The data section defines the value of the object; the pointer
section points to the next node. In a singly linked list we can go to the next node from any node,
but we cannot go back to the previous node. There is another implementation, called doubly
linked list, that allows going forward and backward, but we leave it as an exercise.

for23380_ch18_813-851.indd 815 02/11/18 5:23 pm

816 Chapter 18 Introduction	to	Data	Structures

18.2.1 Design
To design a container as a singly linked list, we use two different object types: list and node.

List and Node Objects
Figure 18.3 shows a list and a node object.

Creation of Objects
The list object is created in stack memory because we use only one instance of it; the nodes
are created in heap memory because the number of nodes changes as we insert or erase
nodes. Figure 18.4 shows the general idea behind a singly linked list.

In the design shown in Figure 18.4, the list object has a pointer, begin, that points to the
front node and an integer data type, count, that holds the number of nodes in the linked list.
To access the data and the next members of a node from the list object, we define a node as a
struct instead of a class because we can access its data members from the list class directly;
the members of a struct are public by default.

18.2.2 Implementation
We show how we implement our linear collection of objects using a singly linked list. To
better understand the implementation, we first develop the code for three files and then ex-
plain the operations graphically.

The Code
The code for the interface file, implementation file, and the application file follows. In this
section we develop the interface file, implementation file, and application file for our linear
collection, implemented as a singly linked list. There are two definitions in the file: the defi-
nition of a Node, struct, and the definition of a List, class. The Node has only two public data
members: a template data type and a pointer to the next node. The class list has two private
data members, begin and count, and one private member function, makeNode, which is used to

A node object

A list object Note:
We refer to the link in a
singly linked list as next.to next node

to first node

data next

count begin

Figure 18.3	 A	node	and	a	list	object

Note:
The variable begin is a pointer to the front node.

Heap memory
front
node

back
node

Stack memory
node object
list object

count begin
Legend:

Figure 18.4	 List	implementation	as	a	singly	linked	list.

for23380_ch18_813-851.indd 816 02/11/18 5:23 pm

18.2 Singly	Linked	List 817

create a new node for insertion into the list. We have created seven public member functions,
including the constructor and the destructor. The public members insert a node in a list, erase
a node from a list, get the data value of a node at a specific position, print the data contents of
all nodes, and return to the number of nodes in the list. Our list is not a sorted list because it is
not common to have a sorted list using a singly linked list; other structures, such as a binary
search tree, are used for this purpose. Although the list structure in the STL uses specific
operations, such as inserting, erasing, and retrieving data in the elements at the front and
back of the list, we use only the basic operations described above at this stage. Program 18.1
contains the interface file.

Program 18.1	 File	list.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/***
* The interface file for a List class as a singly linked list *
 ***/

#ifndef LIST_H
#define LIST_H
#include <iostream>
#include <cassert>
using namespace std;

// Definition of the Node as a struct
template <typename T>
struct Node
{

T data;
Node <T>* next;

};
// Definition of the class List
template <typename T>
class List
{

private:
Node <T>* begin;
int count;
Node <T>* makeNode (const T& value);

public:
List ();
~List ();
void insert (int pos, const T& value);
void erase (int pos);
T& get (int pos) const;
void print () const;
int size () const;

};
#endif

for23380_ch18_813-851.indd 817 02/11/18 5:23 pm

818 Chapter 18 Introduction	to	Data	Structures

Implementation File Program 18.2 is the implementation file.

Program 18.2	 File	list.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

/***
* The implementation file for a List class *
 ***/

#ifndef LIST_CPP
#define LIST_CPP
#include "List.h"

// Constructor
template <typename T>
List <T> :: List ()
:begin (0), count (0)
{
}
// Destructor
template <typename T>
List <T> :: ~List ()
{

Node <T>* del = begin;
while (begin)
{

begin = begin −> next;
delete del;
del = begin;

}
}
// Insert member function
template <typename T>
void List <T> :: insert (int pos, const T& value)
{

if (pos < 0 || pos > count)
{

cout << "Error! The position is out of range." << endl;
return;

}
Node <T>* add = makeNode (value);
if (pos == 0)
{

add −> next = begin;
begin = add;

}
else
{

(continued)

for23380_ch18_813-851.indd 818 02/11/18 5:23 pm

18.2 Singly	Linked	List 819

Program 18.2	 File	list.cpp	(Continued)

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Node <T>* cur = begin;
for (int i = 1; i < pos; i++)
{

cur = cur −> next;
}
add −> next = cur −> next;
cur −> next = add;

}
count++;

}
// Erase member function
template <typename T>
void List <T> :: erase (int pos)
{

if (pos < 0 || pos > count − 1)
{

cout << "Error! The position is out of range." << endl;
return;

}
if (pos == 0)
{

Node <T>* del = begin;
begin = begin −> next;
delete del;

}
else
{

Node <T>* cur = begin;
for (int i = 0; i < pos − 1; i++)
{

cur = cur −> next;
}
Node <T>* del = cur −> next;
cur −> next = cur −> next −> next;
delete del;

}
count−−;

}
// Get member function
template <typename T>
T& List <T> :: get (int pos) const
{

if (pos < 0 || pos > count −1)
{

(continued)

for23380_ch18_813-851.indd 819 02/11/18 5:23 pm

820 Chapter 18 Introduction	to	Data	Structures

Program 18.2	 File	list.cpp	(Continued)

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

cout << "Error! Position out of range.";
assert (false);

}
else if (pos == 0)
{

return begin −> data;
}
else
{

Node <T>* cur = begin;
for (int i = 0 ; i < pos ; i++)
{

cur = cur −> next;
}
return cur −> data;

}
}
// Print member function
template <typename T>
void List <T> :: print () const
{

if (count == 0)
{

cout << "List is empty!" << endl;
return;

}
Node <T>* cur = begin;
while (cur != 0)
{

cout << cur −> data << endl;
cur = cur −> next;

}
}
// Size member function
template <typename T>
int List <T> :: size () const
{

return count;
}
// MakeNode member function (private)
template <typename T>
Node <T>* List <T> :: makeNode (const T& value)
{

Node <T>* temp = new Node <T>;

(continued)

for23380_ch18_813-851.indd 820 02/11/18 5:23 pm

18.2 Singly	Linked	List 821

Program 18.2	 File	list.cpp	(Continued)

131
132
133
134
135

temp −> data = value;
temp −> next = 0;
return temp;

}
#endif

Application File We use a small application file to test our singly linked list. We create a list
of names and test the operations defined in the implementation file. Note that we use the inclu-
sion process instead of the separate compilation process because we want to allow compilers
that do not support the separate compilation process of template objects to compile the file.
Program 18.3 demonstrates the concept.

Program 18.3	 File	application.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
* The application file to test some operations in our list *
 ***/

#include "list.cpp"
#include <string>

int main ()
{

// Instantiation of a list object
List <string> list;
// Inserting six nodes in the list
list.insert (0, "Michael");
list.insert (1, "Jane");
list.insert (2, "Sophie");
list.insert (3, "Thomas");
list.insert (4, "Rose");
list.insert (5, "Richard");
// Printing the values of nodes
cout << "Printing the list" << endl;
list.print ();
// Printing the values of three nodes
cout << "Getting data in some nodes" << endl;
cout << list.get (0) << endl;
cout << list.get (3) << endl;
cout << list.get (5) << endl;
// Erasing three nodes from the list
cout << "Erasing some nodes and printing after erasures" << endl ;
list.erase (0);
list.erase (3);
list.print ();

(continued)

for23380_ch18_813-851.indd 821 02/11/18 5:23 pm

822 Chapter 18 Introduction	to	Data	Structures

Program 18.3	 File	application.cpp (Continued)

31
32
33
34
35

// Printing the list after erasures
cout << "Checking the list size" << endl ;
cout << "List size: " << list.size () ;
return 0;

}

Run:
Printing the list
Michael
Jane
Sophie
Thomas
Rose
Richard
Getting data in some nodes
Michael
Thomas
Richard
Erasing some nodes and printing after erasures
Jane
Sophie
Thomas
Richard
Checking the list size
List size: 4

Explanations of Operations
Most of the operations are straightforward. Others require that we explain how the list is
modified.

Constructor We have used a default constructor by storing 0 in the count member and a
null pointer (0) in the begin member.

Destructor The destructor deletes all nodes one by one and frees the heap memory.
Figure 18.5 shows the case of a linked list with two nodes.

Insertion Insertion is done at a specified location. We can have three cases: insertion at the
front, insertion at the middle, or insertion at the end. Insertion at the beginning can be done
using two operations (after making a node), as shown in Figure 18.6.

Insertion at the middle is more involved, as shown in Figure 18.7. We must have a cur
pointer and move it to the node located before the position of insertion. We then can insert
the node.

for23380_ch18_813-851.indd 822 02/11/18 5:23 pm

18.2 Singly	Linked	List 823

begin = begin -> next

 begin

del
delete del

 begin

del
del = begin

 begin

del

begin = begin -> next

 begin
del

del = begin

del
 begin

delete del

 begin
del

 begin

del

del = begin

First iteration

Initialization

Second iteration

Figure 18.5	 Destructor

begin = add

add -> next = begin

 begin

add

 begin

add

add = makeNode (...)

node to be added

 begin

add

Figure 18.6	 Insertion	at	the	beginning

Insertion at the end is a special case of insertion at the middle in which the cur pointer
should move to the last node. The new node is inserted after the last node. We leave this as
an exercise.

Erasure Erasure is applied to a specific node. If the list is not empty, we have three cases:
erasure of the first node, erasure of a middle node, or erasure of the last node. Erasure of the
first node is very simple and can be done as shown in Figure 18.8.

The erasure of a middle node is more involved. We must have a cur pointer to point to
the node before the one to be deleted. We can then use another pointer, del, to point to the
node to be erased. We can then erase the node. Figure 18.9 shows the operations involved
in erasing a middle node.

Erasure at the end involves a similar process, but we must move the cur pointer to the
node before the last node.

for23380_ch18_813-851.indd 823 02/11/18 5:23 pm

824 Chapter 18 Introduction	to	Data	Structures

del = begin

begin = begin -> next

delete del

node to be
deleted

 begin

 begin

del

 begin

del

del

Figure 18.8	 Erasure	of	the	first	node

cur = begin

add = makeNode (...)

cur -> next = add

node to
be added

add-> next = cur -> next

move cur to the previous node

 begin

add

cur

 begin

add

cur

 begin

add

cur

 begin

add

cur

 begin

add

insertion
position

insertion
position

insertion
position

Figure 18.7	 Insertion	at	the	middle

for23380_ch18_813-851.indd 824 02/11/18 5:23 pm

18.3 Stacks	and	Queues 825

18.3 STACKS AND QUEUES
Often we need a linear list, but we do not need the whole interface of the linked list class we
defined in the previous implementation. We can adapt the interface to our use. For example,
we can adapt the linked list to create two more restricted collections called a stack and a
queue. We discuss these two implementations here as a practice in adapting general collec-
tions to specific ones.

18.3.1 Stacks
A stack is a container implemented as a linear list in which all additions and deletions are re-
stricted to one end, called the top. If we insert data items into a stack and then remove them,
the order of the data items would be reversed. Data input as {5, 10, 8, 20} would be removed
as {20, 8, 10, 5}. This reversing attribute is why stacks are known as a last-in-first-out
(LIFO) data structure.

We use many different types of stacks in our daily lives. We often talk of a stack of
coins or a stack of books. Any situation in which you can only add or remove an object
at the top is a stack. If you want to remove any object other than the one at the top, you
must first remove all objects above it. A graphic representation of stacks is shown in
Figure 18.10.

node to
be deleted

 begin

 begin

del

 begin
cur

del

 begin

cur

cur

cur

cur

cur = begin

move cur to the node before the one to be deleted

del = cur -> next

cur -> next = cur -> next -> next

delete del

del

 begin

cur

Figure 18.9	 Erasure	of	a	middle	node

for23380_ch18_813-851.indd 825 02/11/18 5:23 pm

826 Chapter 18 Introduction	to	Data	Structures

Stack Operations
We normally encounter three basic operations for a stack data structure, as shown in
Figure 18.11.

The operation to insert an element at the top of the stack is referred to as push. The
operation to delete an element from the top is referred to as pop. The operation that only ac-
cesses the top element without removing it is referred to as top.

Stack Implementation
A stack can be implemented either as an array or a linked list. Although the array implemen-
tation is easier, the size of the array must be fixed at compilation time. A linked-list imple-
mentation allows the size of the stack to grow and shrink dynamically. Figure 18.12 shows
how we normally implement a stack as a linked list.

Stack of disks Stack of books Stack of data items

push pop

top

Figure 18.10	 Stacks

push
operation push

before after

pop

before after

pop
operation

top
operation top

before after
copy

Legend:

element not affected

element affected

operation

stack

Figure 18.11	 The	three	basic	operations	on	stack

Legend:

Heap memoryStack memory

node object
stack object

size begin

Figure 18.12	 Stack	implementation	as	a	
linked	list

for23380_ch18_813-851.indd 826 02/11/18 5:23 pm

18.3 Stacks	and	Queues 827

In Figure 18.12 we have one stack object and a number of node objects. The stack ob-
ject is created in stack memory. It has one integer variable to hold the size of the stack and a
pointer that points to the top node. We also have a number of node objects. Each node object
has a data section and a pointer section. The data section can be of any type. The nodes are
created in the heap because the number of nodes grows with each push operation and shrinks
with each pop operation. Note that we have used the same terminology as we did for a linked
list. We call the pointer that points to the top element begin. Also note that the top of the
stack is the front of the underlying linked list.

The Code
We could create a new interface and implementation file for our Stack class, but it is more
efficient to reuse the code created for the List class. A Stack class is a special List class with
limited operations. However, we should remember that a Stack object is not a List object. A
Stack object has less features than a List object. The Liskov substitution principle that we
discussed in Chapter 11 dictates that the public and protected inheritance should not be used
in this case. We can, however, use private inheritance. The private inheritance is designed
for this purpose: to reuse the code. However, since we are using a template class, the private
inheritance in this case may create some compilation problems. Another solution is to use
composition. A stack object composes a list object and uses only limited operations defined
in the list. We implement the Stack class using composition.

We use composition to implement the Stack class.

Interface File Program 18.4 shows the interface file for our Stack class. Note that the Stack
class has an instance of the List class as a private data member. There is no constructor and
destructor. The Stack class uses the synthesized default constructor and destructor, which
use the constructor and destructor of the List class. Since we have already provided the con-
structor and destructor for our List class, we call them to initialize the object of the List class
as the only data member.

Program 18.4	 The	interface	file	for	the	Stack	class	

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***
* The interface file for the Stack that composes an object *
* of the List class *
 ***/

#ifndef STACK_H
#define STACK_H
#include "list.cpp"

// Stack class definition composing a list object
template <typename T>
class Stack
{

private:
List <T> list;

(continued)

for23380_ch18_813-851.indd 827 02/11/18 5:23 pm

828 Chapter 18 Introduction	to	Data	Structures

Implementation File In the implementation file, we define the public member functions
of the Stack class in terms of the List class as shown in Program 18.5.

Program 18.4	 The	interface	file	for	the	Stack	class (Continued)

15
16
17
18
19
20
21

public:
void push (const T& data);
void pop ();
T& top() const;
int size() const;

};
#endif

Program 18.5	 Implementation	file	for	the	Stack	class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/***
* The implementation file for the Stack using the definition *
* of member function defined in the list class *
 ***/

#ifndef STACK_CPP
#define STACK_CPP
#include "stack.h"

// Definition of the push member function
template <typename T>
void Stack <T> :: push (const T& value)
{

list.insert (0, value);
}
// Definition of the pop member function
template <typename T>
void Stack <T> :: pop ()
{

list.erase (0);
}
// Definition of the top member function
template <typename T>
T& Stack <T> :: top () const
{

return list.get(0);
}
// Definition of the size member function
template <typename T>
int Stack <T> :: size () const
{

return list.size ();
}
 #endif

for23380_ch18_813-851.indd 828 02/11/18 5:23 pm

18.3 Stacks	and	Queues 829

Application File Program 18.6 is a simple application file for testing the operations de-
fined in the Stack class.

Stack Applications
A stack can be used anywhere we need to reverse the order of a set of data items. We show
two examples: changing a decimal number to its equivalent hexadecimal string and revers-
ing characters in a string.

Converting a Decimal Number to Hexadecimal We can convert a decimal number to
its equivalent hexadecimal number if we continuously divide the number by 16. The remain-

Program 18.6	 A	simple	application	for	testing	the	Stack	class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* The application file to test the operations in the Stack *
 ***/

#include "stack.cpp"

int main ()
{

// Instantiation of a Stack object
Stack <string> stack;
// Pushing four nodes into the stack
stack.push ("Henry");
stack.push ("William");
stack.push ("Tara");
stack.push ("Richard");
// Testing the size of the stack after four push
cout << "Stack size: " << stack.size () << endl;
// Continuously get the value of the top node and pop it from the stack
while (stack.size () > 0)
{

cout << "Node value at the top: " << stack.top () << endl;
stack.pop ();

}
// Recheck the size after all elements are popped out
cout << "Stack size: " << stack.size ();
return 0;

}

Run:
Stack size: 4
Node value at the top: Richard
Node value at the top: Tara
Node value at the top: William
Node value at the top: Henry
Stack size: 0

for23380_ch18_813-851.indd 829 02/11/18 5:23 pm

830 Chapter 18 Introduction	to	Data	Structures

der is the value of the current hexadecimal digit, and the quotient is used to create the next
digit. The process is repeated until the quotient is zero. However, the hexadecimal digits
created are in the reverse order. We can push them into a stack and then pop them from the
stack to put them in order, as shown in Figure 18.13.

Program 18.7 is a simple program for changing a decimal number to a hexadecimal
number. To print the hexadecimal number, we must insert it in a string because the char-
acters A to F are not digits in C++. We also use a string object named converter that holds
the characters that can be found in a hexadecimal number. This string avoids a switch
statement with 16 cases. We use the value created as the remainder as the index to the
converter string.

quotients

remainers

After popping: 315A

12364

A

A A A A

5

5 5 5

789

1

1 1

49

3

3

3 0

Figure 18.13	 Converting	a	decimal	number	to	a	
hexadecimal	number

Program 18.7	 Converting	from	decimal	to	hexadecimal

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

/***
* The application program to change a decimal number to its *
* hexadecimal equivalent *
 ***/

#include "stack.cpp"

int main ()
{

// Instantiation of a Stack object
Stack <char> stack;
// Instantiation of two string objects and two integer variables
string converter ("0123456789ABCDEF");
string hexadecimal;
int decimal;
int index;
// Input the decimal number
do
{

cout << "Enter a positive integer: ";
cin >> decimal;

} while (decimal <= 0);
cout << "The decimal number: " << decimal << endl;

(continued)

for23380_ch18_813-851.indd 830 02/11/18 5:23 pm

18.3 Stacks	and	Queues 831

Program 18.8	 Reversing	a	string	using	a	stack

1
2
3
4
5
6

/***
* The application program to reverse a string using a stack *
* instead of recursion *
 ***/

#include "stack.cpp"

Program 18.7	 Converting	from	decimal	to	hexadecimal (Continued)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// Creation of hexadecimal characters and push them into stack
while (decimal != 0)
{

stack.push (converter [decimal % 16]);
decimal = decimal / 16;

}
// Pushing the characters from the stack into the hexadecimal string
while (stack.size () > 0)
{

hexadecimal.push_back (stack.top());
stack.pop ();

}
// Printing the hexadecimal number
cout << "The hexadecimal number : " << hexadecimal;
return 0;

}

Run:
Enter a positive integer: 124
The decimal number: 124
The hexadecimal number : 7C

Run:
Enter a positive integer: 1345
The decimal number: 1345
The hexadecimal number : 541

Run:
Enter a positive integer: 11
The decimal number: 11
The hexadecimal number : B

Reversing a String The nature of a stack, as a reverser, can help us in many applications.
We used recursion to reverse the order of characters in a string. We can use a stack instead.
We can get the characters in the input string, one by one, and push them in a character stack.
Then we can remove the characters from the stack and create the output string, as shown in
Program 18.8.

(continued)

for23380_ch18_813-851.indd 831 02/11/18 5:23 pm

832 Chapter 18 Introduction	to	Data	Structures

Program 18.8	 Reversing	a	string	using	a	stack (Continued)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

int main ()
{

// Instantiation of a stack object and two string objects
Stack <char> stack;
string origin;
string reversed;
// Input a string
cout << "Enter a string to be reversed: ";
getline (cin, origin);
// Pushing the copy of characters in the origin string into the stack
for (int i = 0; i < origin.size() ; i++)
{

stack.push (origin [i]);
}
// Popping the stack and adding characters to the reversed string
while (stack.size () > 0)
{

reversed.push_back (stack.top());
stack.pop ();

}
// Printing both string for comparison
cout << "Original string: " << origin << endl;
cout << "Reversed string: " << reversed;
return 0;

}

Run:
Enter a string to be reversed: Hello my friends.
Original string: Hello my friends.
Reversed string: .sdneirf ym olleH

Run:
Enter a string to be reversed: rotor
Original string: rotor
Reversed string: rotor

18.3.2 Queues
A queue is a linear list in which data can only be inserted at one end, called back, and
deleted from the other end, called front. These restrictions ensure that the data are output
through the queue in the order in which they are input. In other words, a queue is a first-in-
first-out (FIFO) structure.

A queue is the same as a line. A line of people waiting for the bus in a bus station is a
queue; a list of calls put on hold to be answered by a telephone operator is a queue; and a list
of jobs waiting to be processed by a computer is a queue.

Figure 18.14 shows two representations of a queue: one a queue of people and the
other a queue of data items. Both people and data enter the queue at the back and progress
through the queue until they arrive at the front. Once they are at the front of the queue, they
can leave the queue.

for23380_ch18_813-851.indd 832 02/11/18 5:23 pm

18.3 Stacks	and	Queues 833

Although the literature sometimes refers to the push operation as enqueue and the pop
operation as dequeue, we use the same terminology as used in the STL library. We also use
front and back to define accessing the front element and the back element.

Implementation
A queue can be implemented either as an array or a linked list. Although the array imple-
mentation is easier, the size of the array must be fixed at compilation time. A linked-list
implementation allows the size of the queue to grow and shrink dynamically. Figure 18.15
shows how we implement a queue as a linked list.

Figure 18.15 suggests that we can use the code we developed for the linked-list class
to create a queue class. A queue class cannot be derived from a linked-list class, because a
queue is not a linked list; it has less features. We either derive the queue class from the linked
list privately (code reuse) or let a queue class compose a linked-list object. The first choice,
as we mentioned in the case of a stack, may be troublesome when using a template class. We
use the second choice, composition.

The Code
We create the interface file, the implementation file, and a simple application file for queue
objects.

Interface File Program 18.9 shows the interface file. Note that we include the interface file
of our List class.

Queue of people Queue of data

pushpop

front back

Figure 18.14	 Queue

Legend:

Heap memory

backfront

Stack memory

node object
queue objectcount begin

Figure 18.15	 Queue	implementation	as	a	linked	list

Program 18.9	 File	queue.h	

1
2
3
4

/***
* The interface file to define a Queue class using a List *
* object as the only data member *
 ***/

(continued)

for23380_ch18_813-851.indd 833 02/11/18 5:23 pm

834 Chapter 18 Introduction	to	Data	Structures

Program 18.9	 File	queue.h (Continued)

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

#ifndef QUEUE_H
#define QUEUE_H
#include "list.cpp"

template <class T>
class Queue
{

private:
List <T> list;

public:
void push (const T& data);
void pop ();
T& front() const;
T& back() const;
int size() const;
void print() const;

};
#endif

As we discussed in the case of the Stack class, the Queue class uses one single data
member, an instance of the List class. Again, there is no need to declare a constructor and a
destructor. The Queue class uses the synthesized default ones.

Implementation File The implementation file for the Queue class is very simple; the defi-
nitions of member functions are given in terms of the definition of member functions for the
List class as, shown in Program 18.10.

Program 18.10	 File	queue.cpp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* The implementation for the Queue class in terms of operations *
* defined for the List class *
 ***/

#ifndef QUEUE_CPP
#define QUEUE_CPP
#include "queue.h"
#include "list.cpp"

// Definition of push operation
template <typename T>
void Queue <T> :: push (const T& value)
{

list.insert (list.size (), value);
}

(continued)

for23380_ch18_813-851.indd 834 02/11/18 5:23 pm

18.3 Stacks	and	Queues 835

Program 18.10	 File	queue.cpp (Continued)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

// Definition of pop operation
template <typename T>
void Queue <T> :: pop ()
{

list.erase (0);
}
// Definition of front operation
template <typename T>
T& Queue <T> :: front () const
{

return list.get(0);
}
// Definition of back operation
template <typename T>
T& Queue <T> :: back () const
{

return list.get (list.size () − 1);
}
// Definition of size operation
template <typename T>
int Queue <T> :: size () const
{

return list.size ();
}
// Definition of print operation
template <typename T>
void Queue <T> :: print () const
{

list.print ();
}
 #endif

(continued)

Application File We use a very simple application to test the interface and implementation
file, as shown in Program 18.11.

Program 18.11	 Application	file	for	testing	the	Queue	class

1
2
3
4
5
6
7

/***
* The application to test the Queue class *
 ***/

#include "queue.cpp"

int main ()
{

for23380_ch18_813-851.indd 835 02/11/18 5:23 pm

836 Chapter 18 Introduction	to	Data	Structures

Program 18.11	 Application	file	for	testing	the	Queue	class (Continued)

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Instantiation of a queue object
Queue <string> queue;
// Pushing four nodes into the queue
queue.push ("Henry");
queue.push ("William");
queue.push ("Tara");
queue.push ("Richard");
// Checking the element at the front and the back of the queue
cout << "Checking front and back elements";
cout << "after four push operations:" << endl;
cout << "Element at the front: " << queue.front () << endl;
cout << "Element at the back: " << queue.back () << endl << endl;
// Popping two elements from the queue
queue.pop ();
queue.pop ();
// Checking the front and the back node after two pop operations
cout << "Checking front and back elements";
cout << "after two pop operations:" << endl;
cout << "Element at the front: " << queue.front () << endl;
cout << "Element at the back: " << queue.back () << endl;
return 0;

}

Run:
Checking front and back elements after four push operations:
Element at the front: Henry
Element at the back: Richard

Checking front and back elements after two pop operations:
Element at the front: Tara
Element at the back: Richard

Queue Applications
Queues are one of the most common of all data-processing structures. They are found in
virtually every operating system and network and in countless other areas. For example,
queues are used in business online applications such as processing customer requests, jobs,
and orders. In a computer system, a queue is necessary for job processing and for system
services such as print spools.

Event Simulation The nature of a queue, as a first-in-first-out structure, makes it very help-
ful in applications in which entities are waiting to be served by servers. For example, in a bank
the customers form a line (queue) to be served by one or more tellers. Program 18.12 shows a
simulation using a queue. We simulate a bank with only one teller. The customers arrive and
form a line (queue) to be served by the teller. The only two pieces of information we need for
the simulation are the arrive time and service period. However, to avoid using the time for ar-
rival, we assume that the time starts with the arrival of the first customer. We assume that the

for23380_ch18_813-851.indd 836 02/11/18 5:23 pm

18.3 Stacks	and	Queues 837

second customer arrives a random number of minutes after the previous customer. The service
time is also a random number. In other words, each customer is defined with two randomly
generated integers. The two random numbers are encapsulated in a pair object, which is de-
fined in the <utility> header. The queue object in this case uses a pair object as the data part.

Program 18.12	 Using	a	queue	object	to	simulate	a	waiting	line	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/***
* A program to use a queue to simulate the queue of customers *
* in a bank and find the corresponding statistics *
 ***/

#include "queue.cpp"
#include <cstdlib>
#include <ctime>
#include <iomanip>
#include <utility>

// Definition of a randNum function
int randNum (int low, int high)
{

int temp = rand();
int num = temp % (high - low + 1) + low;
return num;

}

int main ()
{

// Declaration of variables
int size = 15;
int arriveDelay;
int serveTime;
int arrive = 0;
int start = 0;
int leave = 0;
int wait = 0;
int totalServeTime = 0;
int totalWait = 0;
// Instantiation of a queue object called line
Queue <pair <int, int > > line;
// Simulation of customer arrivals and push the information into queue
srand (time (0));
for (int i = 0; i < size; i++)
{

pair < int, int> p (randNum(1, 6), randNum (5, 10));
line.push (p);

}

(continued)

for23380_ch18_813-851.indd 837 02/11/18 5:23 pm

838 Chapter 18 Introduction	to	Data	Structures

Program 18.12	 Using	a	queue	object	to	simulate	a	waiting	line (Continued)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

// Printing the header for statistical data
cout << left << setw (10) << "Arrive" << setw (10) << "Start" ;
cout << left << setw (10) << "Delay" << setw (10) << "Leave" ;
cout << left << setw (10) << "Serve time" <<endl;
// Calculation and printing statistics
while (line.size () > 0)
{

arriveDelay = line.front().first;
serveTime = line.front().second;
arrive = arrive + arriveDelay;
if (arrive >= leave)
{

start = arrive;
}
else
{

start = leave;
}
leave = start + line.front().second;
wait = start − arrive;
cout << left << setw (10) << arrive << setw (10) << start;
cout << left << setw (10) << wait;
cout << setw (10) << leave;
cout << left << setw (12) << serveTime << endl;
totalServeTime += serveTime;
totalWait += wait;
line.pop();

}
// Printing the summary
double averageWait = static_cast <double> (totalWait) / size;
cout << "---" << endl;
cout << "Total serve time: " << totalServeTime << endl;
cout << "Average Delay: " << averageWait << endl;
return 0;

}

Run:
Arrive Start Delay Leave Serve time
5 5 0 12 7
6 12 6 22 10
8 22 14 32 10
10 32 22 39 7
13 39 26 48 9
16 48 32 54 6
20 54 34 63 9

(continued)

for23380_ch18_813-851.indd 838 02/11/18 5:23 pm

18.3 Stacks	and	Queues 839

The statistics show that the total serve time is 116 minutes, which means that the teller
has been busy for 116 minutes serving 15 customers. This gives a clue to the manager to
determine how many tellers she needs. The statistics also show that the average delay time
for each customer is almost 37 minutes, which is not acceptable. The manager must add tell-
ers reduce customer wait times.

Categorizing Data It is often necessary to rearrange data without destroying their basic se-
quence. As a simple example, consider a list of numbers. We want to group the numbers while
maintaining their original order in each group. This is an excellent multiple queue applica-
tion. For example, assume a charity organization asks its advocates to donate between 0 and
49 dollars to a charity event. The donations come in order, but the organization must arrange
them into five categories based on the dollar values: 0 to 9, 10 to 19, 20 to 29, 30 to 39, and
40 to 49. A program using multiple queues can help. Program 18.13 uses a random number
generator that simulates the amount of the donation. It then pushes each donation into the cor-
responding queue based on the donation value. The program then prints the contents of each
queue. The printout shows the order in which the donations are received in each category.

Program 18.12	 Using	a	queue	object	to	simulate	a	waiting	line (Continued)

24 63 39 73 10
29 73 44 78 5
34 78 44 85 7
38 85 47 93 8
39 93 54 102 9
45 102 57 108 6
47 108 61 116 8
49 116 67 121 5

Total serve time: 116
Average Delay: 36.4667

(continued)

Program 18.13	 Using	queues	to	categorize	data

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/ ***
* The program to simulate receiving donations and categorize *
* into five groups based on the value using queues *
 ***/

#include "queue.cpp"
#include <cstdlib>
#include <ctime>

int main ()
{

// Instantiation of queues and declaration of variables
Queue <int> queue1, queue2, queue3, queue4, queue5;
int num;
int donation;

for23380_ch18_813-851.indd 839 02/11/18 5:23 pm

840 Chapter 18 Introduction	to	Data	Structures

Program 18.13	 Using	queues	to	categorize	data (Continued)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// Simulation of donations arrival and pushing into queues
srand (time (0));
for (int i = 0; i < 50; i++)
{

num = rand ();
donation = num % (50 - 0 + 0) + 0;
switch (donation / 10)
{

case 0: queue1.push (donation);
break;

case 1: queue2.push (donation);
break;

case 2: queue3.push (donation);
break;

case 3: queue4.push (donation);
break;

case 4: queue5.push (donation);
break;

}
}
// Print the queue to see different categories
cout << "Donations between 0 and 9: ";
queue1.print ();
cout << endl;
cout << "Donations between 10 and 19: ";
queue2.print ();
cout << endl;
cout << "Donations between 20 and 29: ";
queue3.print ();
cout << endl;
cout << "Donations between 30 and 39: ";
queue4.print ();
cout << endl;
cout << "Donations between 40 and 49: ";
queue5.print ();
cout << endl;
return 0;

}

Run:
Donations between 0 and 9: 3 6 9 4 8 1 7 6 7 0 5 5 9
Donations between 10 and 19: 14 13 12 16 13
Donations between 20 and 29: 23 22 24 20 20 26 21 26 21 25 26 20
Donations between 30 and 39: 34 31 39 32 36 37
Donations between 40 and 49: 43 48 41 45 42 46 44 40 45 42 41 44 43 44

for23380_ch18_813-851.indd 840 02/11/18 5:23 pm

18.4 Binary	Search	Trees 841

The output of the program shows that although the donations arrived randomly, we can
organize them into five categories. We could also add some code to find the total and aver-
age of donation value in each category, but we leave that as an exercise.

18.4 BINARY SEARCH TREES
Linked lists, stacks, and queues are linear collections; a tree is a nonlinear one. In a general
tree, each node can have two or more links to other nodes. Although general trees have many
applications in computer science (such as directories), we encounter more binary trees, trees
with a maximum of two subtrees. A special case of a binary tree is called a binary search tree
in which the values in the nodes in the left subtree are less than the value in the root, and values
in the right subtree are greater than the value in the root. Figure 18.16 shows a binary search tree.

18.4.1 Traversals
A binary search tree traversal requires that each node of the tree be processed once and
only once in a predetermined sequence. We discuss three common traversals: pre-order,
in-order, and post-order.

Pre-Order Traversal
In the pre-order traversal, the root node is processed first, followed by all the nodes in the
left subtree traversed in pre-order, and then all the nodes in the right subtree traversed in pre-
order. The pre-order traversal of the subtree in Figure 18.16 gives us the following sequence.
Note that the root comes at the beginning.

80 62 45 72 84 − 86

The pre-order traversal is useful whenever we want to access the root in the tree or in
the subtree first.

In-Order Traversal
In the in-order traversal, the processing of the root comes between the two subtrees. In other
words, we need to traverse the whole left subtree first, then the root, then the right subtree. This
rule should be followed in each subtree. The in-order traversal of the subtree in Figure 18.16
gives us the following sequence. The root of the whole tree comes in the middle. Note that in
the in-order traversal of a binary search tree, the values are processed in ascending sequence.

45 62 72 80 − 84 86

root

left

left right right

right

80

62

72

84

45 86

Figure 18.16	 A	binary	search	tree	of	integers

for23380_ch18_813-851.indd 841 02/11/18 5:23 pm

842 Chapter 18 Introduction	to	Data	Structures

Post-Order Traversal
In the post-order traversal, the processing of the root comes after the processing of two
subtrees. In other words, we need to traverse the left subtree first, then the right subtree, and
finally the root. This rule should be followed in each subtree. The post-order traversal of the
subtree in Figure 18.16 gives us the following sequence. Note that the root of the whole tree
comes at the end.

45 72 62 − 86 84 80

18.4.2 Implementation
We discuss three traversals for a binary search tree. When a binary search tree is implemented
correctly, the data values in the binary search tree are sorted, which means that we can search
the tree more easily (hence the name binary search tree). The three traversals help us build a
binary search tree, search a binary search tree, and destroy a binary search tree. However, for
each activity, we must use the correct traversal.

Insertion
How do we insert nodes in a binary search tree? The answer is that we must find the position
of the node to be inserted. The search for the position should start from the root. We must
insert the root and then insert the left subtree or the right subtree. In each subtree, we do the
same. This means we can write a recursive algorithm as shown below:

If the tree is empty, insert as the root.
Insert at the left subtree if value is less than root value.
Insert at the right subtree if value is greater than root value.

// Base case
// General case
// General case

Destruction
How do we destroy a binary search tree? The answer is that we do it node by node. How-
ever, to delete a node, the left subtree and right subtree must be empty. This suggests
that destroying a binary search tree requires post-order traversal because the last node
that must be destroyed is the root. We must destroy the left subtree, then destroy the right
subtree, and finally destroy the root. This means we can write a recursive algorithm as
shown below:

Destroy the left subtree.
Destory the right subtree.
Delete data item in the root.

// General case
// General case
// Base case

Printing
How do we print the items in a binary search tree to get a sorted list? The answer is that we
do it node by node. The left subtree is processed before the node, and the right subtree is
processed after the node. This suggests that printing the value of all the nodes is a recursive
process, as shown below:

Print items at the left subtree.
Print the root.
Print the items in right subtree.

// General case
// Base case
// General case

for23380_ch18_813-851.indd 842 02/11/18 5:23 pm

18.4 Binary	Search	Trees 843

The Code
Based on previous discussions, we create the interface file, the implementation file, and a
simple application file for binary search tree objects.

Interface File Program 18.14 shows the interface for our binary tree.

Program 18.14	 File	binarysearchtree.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/***
* The interface for a binary search tree that uses a recursive *
* member function to insert, erase, search, and traverse nodes *
 ***/

#ifndef BINARYSEARCHTREE_H
#define BINARYSEARCHTREE_H
#include <iostream>
#include <cassert>
using namespace std;

// Definition of Node struct
template <class T>
struct Node
{

T data;
Node <T>* left;
Node <T>* right;

};
// Definition of BinarySearchTree class
template <class T>
class BinarySearchTree
{

private:
Node <T>* root;
int count;
Node <T>* makeNode (const T& value);
void destroy (Node <T>* ptr); // Helper
void insert (const T& value, Node <T>*& ptr); // Helper
void inorder (Node <T>* ptr) const; // Helper
void preorder (Node <T>* ptr) const; // Helper
void postorder (Node <T>* ptr) const; // Helper
bool search (const T& value, Node <T>* ptr) const; // Helper

public:
BinarySearchTree ();
~BinarySearchTree ();
void insert (const T& value);
void erase (const T& value);
bool search (const T& value) const;

(continued)

for23380_ch18_813-851.indd 843 02/11/18 5:23 pm

844 Chapter 18 Introduction	to	Data	Structures

Program 18.14	 File	binarysearchtree.h (Continued)

39
40
41
42
43
44
45

void inorder () const;
void preorder () const;
void postorder () const;
int size () const;
bool empty () const;

};
#endif

Note that we have some public member functions and some private member functions.
The public member functions are the nonrecursive functions called by the user (or the sys-
tem in the case of the destructor). These functions are called with the minimum number of
parameters. The private member functions are recursive helper functions called by the cor-
responding nonrecursive member function. For example, we have a nonrecursive member
function that is called by the system when the tree object goes out of scope, but it calls the
destroy member function to destroy the whole tree using post-order traversal. We also have
an insert function that is called by the user, who gives only the value of the node data, but it
calls a recursive helper function to insert the node at the appropriate position and maintain
the properties of the binary search tree (sorted set of data items). We have also created three
traversal functions that in turn call the recursive helper functions.

Implementation File Program 18.15 shows the implementation file for the interface file
in Program 18.14.

Program 18.15	 The	implementation	file	for	a	binary	search	tree

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
* The implementation file to define the member function *
* declared in the interface file *
 ***/

#ifndef BINARYSEARCHTREE_CPP
#define BINARYSEARCHTREE_CPP
#include "binarySearchTree.h"

// Constructor
template <class T>
BinarySearchTree <T> :: BinarySearchTree()
:root (0), count (0)
{
}
// Destructor
template <class T>
BinarySearchTree <T> :: ~BinarySearchTree ()
{

destroy (root);
}

(continued)

for23380_ch18_813-851.indd 844 02/11/18 5:23 pm

18.4 Binary	Search	Trees 845

Program 18.15	 The	implementation	file	for	a	binary	search	tree (Continued)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

// Insert member function
template <class T>
void BinarySearchTree <T> :: insert (const T& value)
{

insert (value, root);
count++;

}
// Search member function
template <class T>
bool BinarySearchTree <T> :: search (const T& value) const
{

return search (value, root);
}
// Preorder traversal function
template <class T>
void BinarySearchTree <T> :: preorder () const
{

preorder (root);
}
// Inorder traversal function
template <class T>
void BinarySearchTree <T> :: inorder () const
{

inorder (root);
}
// Postorder traversal function
template <class T>
void BinarySearchTree <T> :: postorder () const
{

postorder (root);
}
//Size member function
template <class T>
int BinarySearchTree <T> :: size () const
{

return count;
}
// Empty member function
template <class T>
bool BinarySearchTree <T> :: empty () const
{

return (count == 0);
}

(continued)

for23380_ch18_813-851.indd 845 02/11/18 5:23 pm

846 Chapter 18 Introduction	to	Data	Structures

Program 18.15	 The	implementation	file	for	a	binary	search	tree (Continued)

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108

// Recursive helper member function called by the destructor
template <class T>
void BinarySearchTree <T> :: destroy (Node <T>* ptr)
{

if (!ptr)
{

return;
}
destroy (ptr -> left);
destroy (ptr -> right);
delete ptr;

}
// Recursive helper member function called by insert member function
template <class T>
void BinarySearchTree <T> :: insert (const T& value, Node <T>*& ptr)
{

if (!ptr)
{

ptr = makeNode (value);
return;

}
else if (value < ptr -> data)
{

insert (value, ptr -> left);
}
else
{

insert (value, ptr -> right);
}

}
// Recursive helper member function called by preorder function
template <typename T>
void BinarySearchTree <T> :: preorder (Node <T>* ptr) const
{

if (!ptr)
{

return;
}
cout << ptr -> data << endl;
preorder (ptr -> left);
preorder (ptr -> right);

}
// Recursive helper member function called by the inorder function
template <class T>
void BinarySearchTree <T> :: inorder (Node <T>* ptr) const

(continued)

for23380_ch18_813-851.indd 846 02/11/18 5:23 pm

18.4 Binary	Search	Trees 847

Program 18.15	 The	implementation	file	for	a	binary	search	tree (Continued)

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

{
if (!ptr)
{

return;
}
inorder (ptr -> left);
cout << ptr -> data << endl;
inorder (ptr -> right);

}
// Recursive helper member function called by the postorder function
template <class T>
void BinarySearchTree <T> :: postorder (Node <T>* ptr) const
{

if (!ptr)
{

return;
}
postorder (ptr -> right);
postorder (ptr -> left);
cout << ptr -> data << endl;

}
// Recursive helper member function called by the search function
template <typename T>
bool BinarySearchTree <T> :: search (const T& value, Node <T>* ptr) const
{

if (!ptr)
{

return false;
}
else if (ptr -> data == value)
{

return true;
}
else if (value < ptr −> data)
{

return search (value, ptr -> left);
}
else
{

return search (value, ptr -> right);
}

}
// Recursive helper member function called by the makeNode function
template <typename T>
Node <T>* BinarySearchTree <T> :: makeNode (const T& value)

(continued)

for23380_ch18_813-851.indd 847 02/11/18 5:23 pm

848 Chapter 18 Introduction	to	Data	Structures

Program 18.15	 The	implementation	file	for	a	binary	search	tree (Continued)

154
155
156
157
158
159
160
161

{
Node <T>* temp = new Node <T>;
temp -> data = value;
temp -> left = 0;
temp -> right = 0;
return temp;

}
 #endif

Application File Program 18.16 shows how to use the implementation file to create a bi-
nary search tree and then print the data items in pre-order, in-order, and post-order sequence.
Note that only the in-order gives us the sorted list of data value (from smallest to largest).
The other two traversals give the structure of the tree (which element is the root, which ele-
ments are in the left subtree, and which elements are in the right subtree).

Program 18.16	 The	application	file	for	testing	the	binary	search	tree

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* The application file that tests the binary search tree class *
 ***/

#include "binarySearchTree.cpp"

int main ()
{

// Instantiation of a binary search tree object
BinarySearchTree <string> bct;
// Inserting six nodes in the tree
bct.insert ("Michael");
bct.insert ("Jane");
bct.insert ("Sophie");
bct.insert ("Thomas");
bct.insert ("Rose");
bct.insert ("Richard");
// Printing values using preorder traversal
cout << "Using preorder traversal" << endl;
bct.preorder ();
cout << endl << endl;
// Printing values using inorder traversal
cout << "Using inorder traversal" << endl;
bct.inorder ();
cout << endl << endl;
// Printing values using postorder traversal
cout << "Using postorder traversal" << endl;
bct.postorder ();
cout << endl << endl;

for23380_ch18_813-851.indd 848 02/11/18 5:23 pm

Key	Terms 849

Program 18.16	 The	application	file	for	testing	the	binary	search	tree (Continued)

29
30
31
32
33
34
35
36

// Searching for a two values
cout << "Searching: " << endl ;
cout << "Is Sophie in the tree? " << boolalpha;
cout << bct.search ("Sophie") << endl;
cout << "Is Mary in the tree? " << boolalpha;
cout << bct.search ("Mary") << endl;
return 0;

}

Using preorder traversal
Michael
Jane
Sophie
Rose
Richard
Thomas

Using inorder traversal
Jane
Michael
Richard
Rose
Sophie
Thomas

Using postorder traversal
Thomas
Richard
Rose
Sophie
Jane
Michael

Searching:
Is Sophie in the tree? true
Is Mary in the tree? false

K e y T e r m s

binary search tree
binary tree
doubly linked list
in-order traversal
post-order traversal

pre-order traversal
queue
singly linked list
stack

for23380_ch18_813-851.indd 849 02/11/18 5:23 pm

850 Chapter 18 Introduction	to	Data	Structures

In computer science, objects are normally presented in collections: linear and non-linear.
To implement a collection, we normally have two choices: using an array or using a linked list.

To implement a container as a singly linked list, we use two different object types: list
and node. The list object is implemented in stack memory; the nodes are implemented in heap
memory. Two common adaptations of a list are stack and queue. A stack is a linear list in which
all additions and deletions are restricted to one end, called the top. A queue is a linear list in
which data can only be inserted at one end, called the back, and deleted from the other end,
called the front.

As an example of a non-linear collection, we introduced the binary search tree in which all
elements in the left subtree have values smaller than the root and all elements in the right sub-
tree have values larger than the root. To use a binary search tree, we need three traversals. The
pre-order traversal is used to create a binary search tree. The in-order traversal is used to get the
values of nodes in a sorted list, and the post-ordertraversal is used to erase the nodes in the tree
when we destroy it.

S u m m a r y

P r o b l e m s

PR-1. Assume we decide to use a doubly linked list as shown below (only three nodes
are shown for simplicity). Give the step-by-step operations needed to add a node
to an empty list.
begin end

PR-2. Repeat PR-1 for the case of inserting a node at the beginning of the list.
PR-3. Repeat PR-1 for the case of inserting a node at the end of the list.
PR-4. Repeat PR-1 for the case of adding a node at the middle (between the second and

the third node).
PR-5. Using the doubly linked list in PR-1, show how we can erase the first node.
PR-6. Using the doubly linked list in PR-1, show how we can erase the last node.The

following shows the operations and their effects in erasing the last node of a linked list.
Before

begin end

del = end
begin

del

end

end = end -> prev

end -> next = 0

begin

del

end

begin

del

end

begin

del

end

delete del

for23380_ch18_813-851.indd 850 02/11/18 5:23 pm

Programs 851

PR-7. Using the doubly linked list in PR-1, show how we can erase a middle node.
PR-8. Assume that we have a stack of five elements. We need to delete the third element

from the top. Show the operations using another stack as a helper container.
PR-9. Assume that we have a queue of five elements. We need to delete the third

element. Can we use another queue to hold the two elements at the front of the
queue, delete the third element, and then push back the top elements?

PR-10. What do you think is the solution to deleting an element from the middle of the
queueing and keeping the original order of the element?

PR-11. What is the output from the pre-order, in-order, and post-order traverals of the
following binary search tree?

70

8060

7358 82

41 90

62

PR-12. Create a binary search tree from the following list.

32 45 47 23 24 41 39 15 26 47

P r o g r a m s

PRG-1. Add a void tail recursive function and nonrecursive functions to the List class
so that we can print the contents of the linked list in reverse order. The recursive
function starts from the first node and moves to the end of the list. When it
returns, it prints the data value of each node as shown below.

begin

Recursive calls Recursive returns

17

17

23

23

11
11

18
18

PRG-2. Assume we decide to change our singly linked list in Figure 18.4 to a
doubly linked list as shown below. Rewrite and test the interface file, the
implementation file, and the application files (Programs 18.1, 18.2, and 18.3) to
use this new design. Also show how we can print the list in reverse order using
this design.

begin end

PRG-3. Modify Program 18.7 to let the program change any decimal number to its
equivalent binary number.

PRG-4. Change the code in Program 18.7 to let the program change any decimal number
to its equivalent octal number.

PRG-5. Rewrite the interface file, the implementation file, and the application file for
the Stack class using an array created in the heap. One approach is to use a
larger array and an index to serve as the top of the stack indicator.

PRG-6. Rewrite the interface file, the implementation file, and the application file for
the Queue class using an array created in the heap. One approach is to use two
indexes to serve as the front and rear of the queue.

for23380_ch18_813-851.indd 851 02/11/18 5:23 pm

852

19.1 INTRODUCTION
The Standard Template Library (STL) is the result of years of research aimed at solving two
important issues: reusability of software and separation of functionality.

19.1.1 Components
STL is comprised of four components, as shown in Figure 19.1.

Containers
Containers are the heart of the STL. The library defines four categories of containers, each
for a different purpose: sequence containers, associate containers, container adapters, and
pseudo-containers. Each container category has been defined for a group of applications.
Each container in each category is used for a specific purpose. We discuss only the first three
categories in this chapter. For the fourth category, pseudo-containers, we discuss only the
bitset class (see Appendix R).

In this chapter we give an overview of the Standard Template Library (STL) in C++. This
library is large, and a thorough discussion of it would fill a book, but we devote a chapter to
it so you will be familiar with its principal ideas.

Objectives

After you have read and studied this chapter, you should be able to:

•	List the four components of the STL: containers, algorithms, iterators, and function objects.

•	Discuss iterators and explain their different types.

•	Discuss sequence containers (vector, deque, and list) that define collections of items
organized as sequences.

•	Discuss container adapters (stack, queue, and priority_queue) as special cases of sequence
containers in which items can be accessed, inserted, or erased only from the front or the back
of the container.

•	Discuss associate containers (set and map) as sorted elements in which an element can be
accessed using a key.

•	Discuss functions and function objects and how to customize them for use in the algorithms
that we discuss in this chapter.

•	Discuss selected generic algorithms defined in the STL such as non-mutating algorithms,
mutating algorithms, sorting and related algorithms, and numeric algorithms.

19 Standard Template
Library (STL)

for23380_ch19_852-914.indd 852 11/6/18 3:34 PM

19.2 Iterators 853

Algorithms
Algorithms are operations that we apply to the container elements. They are divided into
four categories: non-mutating algorithms, which do not change the container structure; mu-
tating algorithms, which change the structure; sorting algorithms, which reorder elements in
a container; and numeric algorithms, which apply mathematical operations to the elements.

Iterators
Research and experience have shown that the operations we perform on the elements of a
container are independent from the type of the element and the type of the container. We
have learned from childhood that if we want to count a collection of items, it does not matter
if the items are pebbles, balls, or anything else. It also does not matter if the items are given
to us in a bag, in a box, ordered, or unordered. We access the elements in the container one
by one. An iterator allows us to access each element individually and apply the desired op-
eration to it. This means that we do not need one algorithm that counts one type and another
that counts another type. An algorithm can be applied to any container that provides the type
of iterators that the container supports.

Functions and Function Objects
To apply algorithms to the container, STL uses functions or function objects in the algorithm
definition. They allow the STL to define a generic algorithm and use functions or function
objects to make the algorithm specific. In the first case, we need a function definition; in the
second case, we need a class for which the operator() is defined. The user defines a function
for the first case, but the class is normally defined in the STL library and the user can only
call the constructor of the class.

19.1.2 Applications
The applications we present in this chapter use STL. Some of these applications have been
defined in previous chapters without using STL. Some are new to this chapter.

19.2 ITERATORS
In previous chapters, we learned that we can declare a pointer, a system-defined type with a
number of operations, that points to an element of a container, such as an array or a linked
list. We can then use the operations defined for pointers to access the elements of the con-
tainer one by one.

19.2.1 Introduction
An iterator is an abstraction of a pointer. It is a class type that has a pointer as a data mem-
ber and predefined operations that can be applied to the pointer member. We can instantiate
an object of an iterator and then apply the operations defined for it.

Figure 19.1	 STL	components

Functions or
function objects

IteratorsContainers

Four components of STL

Algorithms

for23380_ch19_852-914.indd 853 11/6/18 3:34 PM

854 Chapter 19 Standard	Template	Library	(STL)

One benefit of an iterator over a pointer is that we cannot limit the operations defined
for a pointer, nor can we augment the operations defined for a pointer. But we can do both
for an iterator. For example, we can define an iterator that can move only forward by includ-
ing the ++ operator and excluding the −− operator. We can define an iterator that cannot
jump from one object in a container to another by not defining the plus (+) or the minus (−)
operator for the class. We can say that an iterator can only access an element or can only
change an element, or can do both.

Another advantage of an iterator is that it can hide the internal structure of a container.
Each container can define its own iterator type whose design is hidden from the user, but the
user can create an iterator of that type and access the objects in the container.

The way iterators work with most containers is that the STL defines several internal
iterators that are fixed and cannot move. They are used to control the external iterators in-
stantiated by the applications. Figure 19.2 shows an example.

In the figure, the left internal iterator is pointing to the first object in the container. The
external iterator is initialized to point where the left internal iterator is pointing. The applica-
tion can move the external iterator through the container until it reaches the right internal
iterator, which is pointing to a nonexistent object at the end. In this way, the external iterator
can access all of the objects in the container without knowing anything about the structure
of the container.

19.2.2 Five Types of Iterators
We can categorize iterators into five types: input iterator, output iterator, forward iterator,
bidirectional iterator, and random-access iterator, as shown in Figure 19.3.

Table 19.1 shows five iterator types and their supported operations.

Input Iterator
An input iterator can use the dereference operator only to read from a container; it is not
allowed to write to it. In other words, an input iterator treats the container as a source of data
items to read.

Object in a container

Imaginary object
Internal iterator
External iterator

Legend:

Container

Application

Figure 19.2	 Internal	and	external	iterators

forward
bidirectional

random-access

BidIter bidirectional
FwdIter forward

InIter input
OutIter output

RandIter random-access

Abbreviations

input output

Figure 19.3	 Hierarchy	of	iterator	types

for23380_ch19_852-914.indd 854 11/6/18 3:34 PM

19.2 Iterators 855

Output Iterator
An output iterator can use the dereference operator to only write to a container; it is not
allowed to read from it.

Forward Iterator
A forward iterator can read or write elements. Its functionality is the combination of the
input and output iterators.

Bidirectional Iterator
A bidirectional iterator can move in both directions: backward and forward. The ++ and
−− operators are defined for this iterator. In the following section we discuss the meaning
of forward and backward movements in a container.

Random-Access Iterator
A random-access iterator has the capabilities of a bidirectional iterator, and in addition it
supports the add (+) operator and the subtract operator (−). It also provides four relational
operators (<, <=, >, and >=) that are not provided by the other iterators. These operators
allow us to use the index operator [], which requires the +, −, and relational operators for
forward or backward movement.

19.2.3 Moving Directions
A container normally defines two categories of iterators: regular (called iterator) and reverse
(called reverse_iterator). The moving directions for these two types of iterators are shown
in Figure 19.4.

In a regular iterator, the operators ++ and + mean moving toward the back; the
operators −− and − mean moving toward the front. In a reverse iterator, the operators ++
and + mean moving toward the front; the operators −− and − mean moving toward the
back. We can think of a reverse operator as similar to making a U-turn when driving.

Iterator read write * ++ − − == != <, <=, >, >= + −

input ✓ ✓ ✓ ✓

output ✓ ✓ ✓ ✓

forward ✓ ✓ ✓ ✓ ✓

bidirectional ✓ ✓ ✓ ✓ ✓ ✓

random-access ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 19.1 Iterator types

Figure 19.4	 Moving	directions	of	a	regular	and	a	reverse	iterator

Container

iterator
+ + and +

− − and −

reverse_iterator
+ + and +

− − and −

for23380_ch19_852-914.indd 855 11/6/18 3:34 PM

856 Chapter 19 Standard	Template	Library	(STL)

19.2.4 Constantness
A container can also define two types of iterators: const iterator and const_iterator.

Type: const iterator
The type const iterator defines an iterator type that is a constant object. In other words, it
cannot be changed after it is created. We cannot move the const iterator to point to another
element. It is like the name of an array that is a constant pointer.

Type: const_iterator
The type const_iterator defines an iterator type in which the dereferenced item is an rvalue
(cannot be changed by the iterator). This is similar to when we declare an array whose ele-
ments are constants.

19.3 SEQUENCE CONTAINERS
A sequence container is a collection of objects in which the programmer controls the order
of storing and retrieving elements. The STL provides three sequence containers: vector,
deque, and list. The first two are normally implemented as dynamic arrays; the third is nor-
mally implemented as a doubly linked list.

19.3.1 Public Interface
Before discussing sequence containers, we provide a general public interface for them in
Table 19.2. The abbreviation SC must be replaced with one of the three sequence containers
(vector, deque, or list) when the corresponding column is ticked. Each of these containers is
a template class in which T defines the type of the element in the container. The typename T
can be any built-in or user-defined type. We have used iter for an iterator, inIter for an input
iterator, and pred for a Boolean function returning true or false. The abbreviation V stands
for vector, D for deque, and L for list.

Table 19.2 Interface of sequence containers classes

Constructors, assignment, and destructor V D L

SC <T> :: SC()
SC <T> :: SC(size_type n, const T& value = T())
SC <T> :: SC(const_iter first, const_iter last)
SC <T> :: SC(const SC <T>& other)
SC <T>& SC <T> :: operator =(const SC <T> & other)
SC <T> :: ~SC()

✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓

Size and capacity

size_type SC <T> :: size() ✓ ✓ ✓

size_type SC <T> :: max_size() ✓ ✓ ✓

void SC <T> :: resize(size_type n, T value = T()) ✓ ✓ ✓

bool SC <T> :: empty() ✓ ✓ ✓

size_type SC <T> :: capacity() ✓

void SC <T> :: reserve(size_type, n) ✓

Accessing elements (constant and nonconstant versions)

(continued)

for23380_ch19_852-914.indd 856 11/6/18 3:34 PM

19.3 Sequence	Containers 857

T& SC <T> :: front() ✓ ✓ ✓

T& SC <T> :: back() ✓ ✓ ✓

T& SC <T> :: operator[]()(size_type index) ✓ ✓

T& SC <T> :: at(size_type index) ✓ ✓

Iterators (regular and constant_ iterator versions)

iter SC <T> :: begin() ✓ ✓ ✓

iter SC <T> :: end() ✓ ✓ ✓

reverse_iter SC <T> :: rbegin() ✓ ✓ ✓

reverse_iter SC <T> :: rend() ✓ ✓ ✓

Insertion

void SC <T> :: push_front(const T& value) ✓ ✓

void SC <T> :: push_back(const T& value) ✓ ✓ ✓

iter SC <T> :: insert(iter pos, const T& value) ✓ ✓ ✓

void SC <T> :: insert(iter pos, size_type n, const T& value) ✓ ✓ ✓

void SC <T> :: insert(iter pos, InIter first, inIter last) ✓ ✓ ✓

Erasure

void SC <T> :: pop_front() ✓ ✓

void SC <T> :: pop_back() ✓ ✓ ✓

iter SC <T> :: erase(iter pos) ✓ ✓ ✓

iter SC <T> :: erase(iter first, iter second) ✓ ✓ ✓

void SC <T> :: clear() ✓ ✓ ✓

void SC <T> :: remove(const T& value) ✓

void SC <T> :: remove_if(pred p) ✓

void SC <T> :: unique(pred p) ✓

Splice, merge, and sort

void SC <T>::splice(iter pos, SC<T> other) ✓

void SC <T>::splice(iter pos, SC<T> other, iter other) ✓

void SC <T>::splice(iter pos, SC<T> other, iter i, iter j) ✓

void SC <T>:: merge(SC<T> other) ✓

void SC <T> :: sort() ✓

Swapping

void SC <T> :: swap(SC<T>& other) ✓ ✓ ✓

Global functions (op means <, <=, >, >=, == or !=)

bool operator op(const SC<T> left, const SC<T> right) ✓ ✓ ✓

void swap(SC<T>& left, SC<T>& right) ✓ ✓ ✓

Table 19.2 Interface of sequence containers classes (Continued)

for23380_ch19_852-914.indd 857 11/6/18 3:34 PM

858 Chapter 19 Standard	Template	Library	(STL)

Note that each accessing member also has a constant version that creates an rvalue,
but to make the interface shorter we did not include them. Also note that each iterator has a
const_iterator version that we did not include for the same reason.

19.3.2 The vector Class
The vector class, defined in the <vector> header, implements a sequence container that
provides fast random access to any element and fast insertion and deletion at the back. This
means that if we need a sequence container with a lot of insertions and deletions at the front
or the middle, a vector is not the best choice. A vector is a sequence of elements with an open
end, as shown in Figure 19.5.

The vector class is implemented as an array allocated in heap memory but with addi-
tional features. Like an array, it has an indexing mechanism to access each element. Unlike
an array, a vector resizes itself whenever more elements are needed.

Operations
The syntax of member functions for the vector class can be obtained from the general public
interface (Table 19.2). In the next few sections, we discuss, some of these operations.

Constructors and Assignment Operator The vector class has one default constructor,
two parameter constructors, one copy constructor, and one assignment operator. The follow-
ing shows how we use these member functions.

vector <T> vec;
vector <T> vec(4 , value);
vector <T> vec[from,to);
vector <T> vec(otherVec);
vector <T> vec = otherVec;

// Constructs an empty vector
// Constructs a vector of 4 elements of given value
// A vector created from another sequence
// Copy constructor
// Assignment operator

The first line shows how to create an empty vector. The second line shows how to cre-
ate a vector of four elements, all of the same value. Note that if the second argument is
missing, it uses the default value (for example, zero for an integer). The third line shows
how to copy elements from another structure to make a vector. The arguments from and
to are iterators that copy those elements. Note that the copied sequence is an open-ended
sequence [from, to), which means the from is in the sequence, but the to is not. The next
line is a copy constructor that creates a copy of otherVec. Finally, the last line is the as-
signment operator, which does the same job as the copy constructor but for which the vec
object must be already instantiated.

Destructor The destructor is called automatically when a vector container goes out of
scope. The destructor is designed to delete the whole array from the heap.

A vector object of n elements

T T T T T TT T

op
en

 b
ac

k

[0] [1] [2] [3] [4] [5] [6] [n − 1]

front back

Figure 19.5	 A	vector	as	a	sequence	structure	with		
indexes

for23380_ch19_852-914.indd 858 11/6/18 3:34 PM

19.3 Sequence	Containers 859

Size and Capacity As the public interface (Table 19.2) shows, the vector class has six
member functions related to the size and capacity of a vector. The following shows how we
use them on an instance of the vector class (which we call vec).

vec.size();
vec.max_size();
vec.resize(n, value);
vec.empty();
vec.capacity();
vec.reserve(n);

// Returns the current size
// Returns the maximum size
// Resizes the vector
// Returns true if vector is empty
// Returns potential size
// Reserves more memory locations

The size function returns the number of elements currently in the vector. The max_size func-
tion defines the maximum number of elements the vector can have (a large number that is
defined in the STL). The empty function returns true if the size is 0. The resize(n, value)
function inserts elements to the back of the vector if n > size; it removes elements from the
back of the vector if n < size. If the value is not given, a default value is used. The capacity
function returns the number of allocated locations. In other words, capacity returns the po-
tential size before the vector resizes itself. The function reserve ensures that the capacity is
at least n. A vector normally estimates how many elements we must use and allocates mem-
ory from the heap based on that estimate. If, during the execution, more memory is needed,
the function allocates a bigger storage chunk, copies all elements to that chunk, destroys
the old object, and releases the memory used by the old chunk—a time-consuming activity.

Accessing Elements (for retrieve or change) As the public interface (Table 19.2) shows, the
vector class provides the following member functions to access elements already in the vector.

vec.front();
vec.back();
vec [i];
vec.at(i);

// Access the first element
// Access the last element
// Access the element at index i
// Access the element at index i

Although, we can use vec[i] or vec.at(i) to access an element at index i, we recommend vec.
at() because it controls the range and throws an exception when the index is out of range.

Iterators The vector class defines two regular iterators and two reverse iterators. We have
shown only the regular ones in Table 19.2. In each category, we can have a constant and a
nonconstant operator. Figure 19.6 shows these iterators.

Note that the iterators returned from begin(), end(), rbegin(), and rend() are fixed itera-
tors and cannot move. They are used as a controlling wall for the domain of the user-defined
iterators (iter and riter).

To use iterators in our program, we must first instantiate them. Since each container
has its own iterators, we must create one or both of the iterators for that specific class as
needed. We may need one or both of them depending on the application. We have called the
two iterators iter and riter for convenience.

vector <T> :: iterator iter;
vector <T> :: reverse_ iterator riter;

// A regular iterator
// A reverse iterator

After instantiating the user iterators, we must set them. The iterator iter must start
where the iterator returned from begin() is set; we must set the iterator riter to where the
iterator returned from rbegin() is set, as shown below:

for23380_ch19_852-914.indd 859 11/6/18 3:34 PM

860 Chapter 19 Standard	Template	Library	(STL)

iter = vec.begin();
riter = vec.rbegin();

// iter starts when the vec.begin() points to
// riter starts when the vec.rbegin() points to

We create a vector of size 10 and use regular and reverse iterators to access elements
(Program 19.1).

T T T T T T T T T

begin() end()

rbegin()rend()

existing element

nonexisting element
regular iterator
reverse iterator

Legend:

Notes:
The begin() function returns a regular iterator that points to the front element.
The end() function returns a regular iterator to a nonexisting element after the back element.
The rbegin() function returns a reverse iterator that points to the back element.
The rend() function returns a reverse iterator to a nonexisting element before the front element.
Both iterators are random-access iterators that can jump forward and backward.

Figure 19.6	 Iterators	and	reverse	iterators	in	a	vector

Program 19.1	 Testing	iterators	in	a	vector	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/***
* A simple program to test regular and reverse navigation *
 ***/

#include <vector>
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

// Constructing a vector of 10 elements and two iterators
vector <int> vec(10);
vector <int> :: iterator iter;
vector <int> :: reverse_iterator rIter;
// Changing the value of elements
for (int i = 0; i < 10; i++)
{

vec.at(i) = i * i;
}
// Printing the elements using the forward iterator
cout << "Regular navigation: ";
for (iter = vec.begin() ; iter != vec.end() ; ++iter)
{

cout << setw(4) << *iter;
}

(continued)

for23380_ch19_852-914.indd 860 11/6/18 3:34 PM

19.3 Sequence	Containers 861

We are using ++ operators for both the regular iterator and the reverse iterator. In the
first case, the iterator is moving from the front to the back of the vector; in the second case,
it is moving from the back to the front of the vector. At line 22, the regular iterator starts at
the element returned from vec.begin() and stops before the element returned from vec.end().
At line 29, the reverse iterator does the same but uses the iterators returned from vec.rbegin()
and vec.rend(). Note that we are using ++ in both cases. Both iterators are moving forward.

To show that the iterators for a vector are in fact random-access iterators (they can
jump in both directions), we create a vector with the following elements:

0 10 20 30 40 50 60 70 80 90

We first use a regular iterator to print 40 and come back and print the value of 20. We then
use a reverse operator to print 50 and then come back and print 70. In other words, we
randomly access the element in each direction (regular and reverse) using both operators
+ and − (see Program 19.2).

(continued)

26
27
28
29
30
31
32
33
34
35

cout << endl;
// Printing the elements using reverse iterator
cout << "Reverse navigation: ";
for (rIter = vec.rbegin() ; rIter != vec.rend() ; ++rIter)
{

cout << setw(4) << *rIter;
}
cout << endl;
return 0;

}

Run:
Regular navigation: 0 1 4 9 16 25 36 49 64 81
Reverse navigation: 81 64 49 36 25 16 9 4 1 0

Program 19.1	 Testing	iterators	in	a	vector (Continued)

Program 19.2	 Showing	the	random-access	nature	of	iterators	

1
2
3
4
5
6
7
8
9

10
11
12

/***
* A simple program to test random-access iterators in both *
* regular and reverse iterators *
 ***/

#include <iostream>
#include <vector>
using namespace std;

int main()
{
// Instantiation of a vector and two iterators

vector <int> vec;

for23380_ch19_852-914.indd 861 11/6/18 3:34 PM

862 Chapter 19 Standard	Template	Library	(STL)

Figure 19.7 shows how the regular and reverse iterators can move backward and for-
ward randomly.

Insertion The vector class defines several member functions that insert one or more items
into the container. The insertion at the back is very efficient and does not require relocation
of the items in the vector. Insertion in the middle and at the front require reallocation of items

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

vector <int> :: iterator iter1;
vector <int> :: reverse_iterator iter2;
// Filling the vector with 10 elements
for (int i = 0; i < 10; i++)
{

vec.push_back(i * 10);
}

// Using the regular iterator to print 40 followed by 20
cout << "Printing 40 followed by 20" << endl;
iter1 = vec.begin();
iter1 += 4;
cout << *iter1 << " ";
iter1 -= 2;
cout << *iter1 << endl;

// Using the reverse iterator to print 70 followed by 50
cout << "Printing 50 followed by 70" << endl;
iter2 = vec.rbegin();
iter2 += 4;
cout << *iter2 << " ";
iter2 -= 2;
cout << *iter2 << endl;
return 0;

}

Run:
Printing 40 followed by 20
40 20
Printing 50 followed by 70
50 70

Program 19.2	 Showing	the	random-access	nature	of	iterators (Continued)

0 10 20 30 40 50 60 70 80 90

iter1 += 4

iter1 −= 2
Using regular iterator Using reverse iterator

0 10 20 30 40 50 60 70 80 90

iter2 += 4

iter2 −= 2

Figure 19.7	 Movement	of	regular	and	reverse	iterators	in	a	vector	

for23380_ch19_852-914.indd 862 11/6/18 3:34 PM

19.3 Sequence	Containers 863

in memory. The following shows how we can use member functions to insert new elements
into a vector. Note that the last example copies the elements from the first to the next-to-last
element.

vec.push_back(value);
vec.insert(pos, value)
vec.insert(pos, n, value);
vec.insert(pos, first, last);

// Insert value at the back
// Insert value before pos
// insert n copies of value before pos
// Insert elements [first, last) before pos

The pos parameter is the position pointed to by the defined iterator. The first and last pa-
rameters are input iterators that define the range [first, last). They can be used to copy the
elements in the host vector or another container.

Erasure The vector class defines several member functions for erasure of one or more items
in the container. Erasure at the back is very efficient and does not require relocation of any
items. An erasure from the middle or from the front requires reallocation of memory and
should be avoided. The following shows the member functions we can use to erase elements
from a vector.

vec.pop_back();
vec.erase(pos);
vec.erase(first, second);
vec.clear();

// Erase the back (last) element
// Erase the element before pos
// Erase elements in the range [first, last)
// Erase all elements

Application
The vector class is designed to look like an array. It has the same functionality as an array,
but with some advantages. First, the vector is a class with built-in type operations. Second,
it is allocated in the heap and can be resized as needed. Third, it has a well-defined iterator
mechanism that allows us to access, insert, and erase elements. In summary, we can use a
vector anytime we need an array and benefit from its advantages.

In Chapter 8 we learned how to use a two-dimensional array. We can do the same
with a vector. We can create a two-dimensional vector, which is a vector of vectors. A
vector of vectors has the same advantages over a two-dimensional array that a vector has
over a one-dimensional array. In Program 19.3 we create a two-dimensional vector that
simulates the multiplication table that is taught in elementary schools. To understand the
instantiation, we show, step by step, how we code the definition of the two-dimensional
vector.

vector <type> table(rows, value);
vector <vector <int> > table(rows, value);
vector <vector <int> > table(rows, vector <int>(cols));

In the first line, we define a vector named table of rows elements, each initialized to value.
In the second line, we see that the type of the table is a vector of integers. In the third line,
we see the value of each row is a vector of type integer and we have cols number of them.
Note that a space between the two symbols (> >) is needed to show that the combination is
not the >> operator.

for23380_ch19_852-914.indd 863 11/6/18 3:34 PM

864 Chapter 19 Standard	Template	Library	(STL)

Program 19.3	 A	vector	of	vectors	(table)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/***
* A program to simulate a table using a vector of vectors *
 ***/

#include <vector>
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

// Creation of a vector of vectors
int rows = 10;
int cols = 10;
vector < vector <int> > table(rows, vector <int>(cols));
// Changing values from default
for (int i = 0; i < rows ; i++)
{

for (int j = 0 ; j < cols; j++)
{

table [i][j] = (i + 1) * (j + 1);
}

}
// Retrieving and printing values
for (int i = 0; i < rows ; i++)
{

for (int j = 0 ; j < cols; j++)
{

cout << setw(4) << table [i][j] << " ";
}
cout << endl;

}
return 0;

}

Run:
 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 4 8 12 16 20 24 28 32 36 40
 5 10 15 20 25 30 35 40 45 50
 6 12 18 24 30 36 42 48 54 60
 7 14 21 28 35 42 49 56 63 70
 8 16 24 32 40 48 56 64 72 80
 9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

for23380_ch19_852-914.indd 864 11/6/18 3:34 PM

19.3 Sequence	Containers 865

Program 19.4	 Using	a	ragged	vector	to	create	a	Pascal	triangle	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

/***
* A program to print Pascal coefficients *
 ***/

#include <vector>
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

// Declaration
int power = 5;
vector < vector <int> > pascal(power + 1, vector <int>());
// Creation of ragged vector
for (int i = 0; i <= power; i++)
{

for (int j = 0; j < i + 1; j++)
{

pascal[i].push_back(0);
}

}
// Filling ragged table to create a Pascal triangle
for (int i = 0; i <= power ; i++)
{

for (int j = 0 ; j < i + 1; j++)
{

if (j == 0 || i == j)
{

pascal [i][j] = 1;
}
else
{

pascal [i][j] = pascal [i−1] [j−1] + pascal [i−1][j];
}

}
}
// Printing the triangle
for (int i = 0; i <= power ; i++)
{

cout << "Coefficients of (x + y)^" << i << " =====> ";
for (int j = 0 ; j < i + 1; j++)

(continued)

In Chapter 8 we used a ragged array to create the coefficients of a polynomial (x + y)n.
We now solve the problem using a vector of vectors (Program 19.4).

for23380_ch19_852-914.indd 865 11/6/18 3:34 PM

866 Chapter 19 Standard	Template	Library	(STL)

Program 19.4	 Using	a	ragged	vector	to	create	a	Pascal	triangle	 (Continued)

45
46
47
48
49
50
51

{
cout << setw(4) << pascal [i][j] << " ";

}
cout << endl;

}
return 0;

} /

Run:
Coefficients of (x + y)^0 =====> 1
Coefficients of (x + y)^1 =====> 1 1
Coefficients of (x + y)^2 =====> 1 2 1
Coefficients of (x + y)^3 =====> 1 3 3 1
Coefficients of (x + y)^4 =====> 1 4 6 4 1
Coefficients of (x + y)^5 =====> 1 5 10 10 5 1

Note that in the constructor, we define the number of rows (power + 1), but the size of
the columns is set to zero. The column in each row grows as we insert new elements using
the push_back() operation. The values are set to 0 during insertion (line 19), but they change
in the inner for loop (lines 25 to 35).

19.3.3 The deque Class
The deque class, defined in the <deque> header file, is a sequence container similar to a
vector but with two open ends. The name deque (pronounced deck) is short for double-ended
queue. This means that we can insert and erase at both ends of a deque. Figure 19.8 shows
a deque of n elements.

The operations for inserting and erasing elements from both ends are fast. However,
the extra capability to insert at the beginning makes a deque less efficient than a vector be-
cause doing so requires that the system allocate extra memory to extend the deque at either
end. This means if we need a structure that does not need insertion and erasure in the front, it
is more efficient to use a vector than a deque. Insertion and erasure in the middle of a deque
have the same inefficiency as in the case of a vector.

Operations
The syntax of member functions for the deque class can be obtained from the general public
interface (Table 19.2). Its functions are very similar to the ones for the vector class with
some minor differences. We list only the differences.

Operations Added for deque The deque class uses the same set of operations as the vec-
tor but uses two additional operations.

op
en

 fr
on

t

A deque object of n elements

T T T T T TT T

op
en

 b
ac

k

[0] [1] [2] [3] [4] [5] [6] [n − 1]

front back

Figure 19.8	 A	deque	as	a	sequence	container

for23380_ch19_852-914.indd 866 11/6/18 3:34 PM

19.3 Sequence	Containers 867

deq.push_front(value);
deq.pop_front();

// Insert value at the front
// Delete value at the front

Operations missing in deque As the public interface (Table 19.2) shows, the capacity()
and reserve() member function are missing in the deque class. The reason is the implementa-
tion. Since a deque can grow or shrink from both ends, the standard normally implements the
deque as a set of blocks in heap memory.

Application
The deque class was designed to be the foundation for the queue adapter class that we dis-
cuss later. However, it can be used in any application that needs insertion and deletion at
both ends. One application that normally uses a deque is rotation, in which we have a list of
data items we want to rotate n times. Clockwise rotation requires that we remove an element
from the back and insert it at the front; counterclockwise rotation requires that we remove an
element from the front and insert it at the back.

Program 19.5 shows how we can rotate a list of names to the right and then to the left
to get the original list.

Program 19.5	 Using	deque	to	rotate	a	list	to	the	left	and	right

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
* A program to demonstrate rotation *
 ***/

#include <deque>
#include <string>
#include <iostream>
#include <iomanip>
using namespace std;

// Global print function
void print(deque <string> deq)
{

for (int i = 0; i < deq.size (); i++)
{

cout << deq.at(i) << " ";
}
cout << endl;

}

int main()
{

// Create a deque of five string and print it
deque <string> deq(7);
string arr [5]= {"John", "Mary", "Rich", "Mark", "Tara"};
for (int i = 0 ; i < 5; i++)
{

(continued)

for23380_ch19_852-914.indd 867 11/6/18 3:34 PM

868 Chapter 19 Standard	Template	Library	(STL)

In lines 23 to 29, we create a deque of five strings. In lines 31 to 33, we copy the front ele-
ment and push it at the back and then delete it. In lines 35 to 37, we copy the back element
and push it at the front and then delete it.

19.3.4 The list Class
The list class, defined in the <list> header file, is a sequence container with fast insertion and
deletion at any point. This means that we can insert or delete easily at any point in a list. On
the other hand, a list does not support random access for retrieving or changing the value of an
element using the index operator or the at() member function because the list is implemented
as a doubly linked list, not an array in the heap. If we want to access the list randomly, we must
use an iterator that moves to the desired element and then accesses it. Figure 19.9 shows a list
made of five elements. The figure shows that each node has a data section and two pointers,
one pointing to the previous node and the other pointing to the next node.

Program 19.5	 Using	deque	to	rotate	a	list	to	the	left	and	right	(Continued)

27
28
29
30
31
32
33
34
35
36
37
38
39

deq [i] = arr [i];
}
print(deq);
// Rotate the deque clockwise one element
deq.push_back(deq.front());
deq.pop_front();
print(deq);
// Rotate the deque counter-clockwise one element
deq.push_front(deq.back());
deq.pop_back();
print(deq);
return 0;

}

Run:
John Mary Rich Mark Tara
Mary Rich Mark Tara John
John Mary Rich Mark Tara

Figure 19.9	 A	list	of	elements

TTT TT

end()

rbegin()rend()

begin()

The list supports only bidirectional iterators.

regular iterator
reverse iterator
pointer

existing element

nonexisting element

Legend:

for23380_ch19_852-914.indd 868 11/6/18 3:34 PM

19.3 Sequence	Containers 869

Operations
The syntax of member functions for the list class can be obtained from the general public
interface (Table 19.2). These member functions are similar to the ones for the vector class
and deque class with some differences. We discuss only the differences.

Iterators The list class supports only bidirectional iterators (not random-access iterators).
This means that the list elements cannot be accessed using the index operator or the at() mem-
ber function because it requires the operators + and − defined for random-access iterators.

Capacity and Reserve The capacity() and reserve() member functions do not exist in the
list class because the system adds an element at the front, at the back, and in the middle using
the pointers in the doubly linked list.

Accessing Elements The operator [] and the at() function are not supported for the list
class because the list class does not support the random-access operator (only bidirectional).
We must explicitly use an iterator to access elements.

Erasure The list class provides three new operations to erase an element or elements from
the list as the public interface shows. The following shows how we call these operations.

remove(value);
remove_if(predicate);
unique(predicate);

// Erases all occurrences of value
// Erases all occurrences for which parameter is true
// Erases adjacent duplicates if parameter is true

Splice, Merge, and Sort The list class defines three other operations: splice(), merge(),
and sort() as defined in the public interface.

splice(pos, first, last);
merge(other);
sort();

// Inserts elements [first, last) from another list before pos
// Merges two sorted lists to a new sorted list
// Sorts the list

Figure 19.10 shows the idea behind splicing. The iterator firstIter defines the inser-
tion position in the first list; the iterators secondIter1 and secondIter2 define the range to be
moved in the second list.

Figure 19.10	 Splicing	of	two	lists

posBefore
splice

After
splice

first last

T T T T

TT T T T T

T T T T

T

T

T T T

T

for23380_ch19_852-914.indd 869 11/6/18 3:34 PM

870 Chapter 19 Standard	Template	Library	(STL)

Application
Since the list class can easily grow or shrink from both ends, it has many applications. We
give some examples next.

As a simple example, we create a list of five integers input by the user. We then print
the list in the forward and reverse directions. Program 19.6 shows the code.

Program 19.6	 Printing	list	elements

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/***
* The program that creates a list of five integers and prints *
* in both forward and reverse direction *
 ***/

#include <list>
#include <iostream>
using namespace std;

int main()
{

// Instantiation of a list object and declaration of a variable
list <int> lst;
int value;
// Inputting five integers and store them in the list
for (int i = 0; i < 5; i++)
{

cout << "Enter an integer: ";
cin >> value;
lst.push_back(value);

}
// Printing the list in forward direction
cout << "Print the list in forward direction. " << endl;
list <int> :: iterator iter1;
for(iter1 = lst.begin(); iter1 != lst.end(); iter1++)
{

cout << *iter1 << " " ;
}
cout << endl;
// Printing the list in backward direction
cout << "Print the list in reverse direction. " << endl;
list <int> :: reverse_iterator iter2;
for (iter2 = lst.rbegin(); iter2 != lst.rend(); iter2++)
{

cout << *iter2 << " " ;
}
return 0;

}

(continued)

for23380_ch19_852-914.indd 870 11/6/18 3:34 PM

19.3 Sequence	Containers 871

We can rewrite Program 19.2 without using the + or − operators, which are not de-
fined for bidirectional iterators. Program 19.7 shows a solution.

Run:
Enter an integer: 25
Enter an integer: 32
Enter an integer: 41
Enter an integer: 72
Enter an integer: 95
Print the list in forward direction.
25 32 41 72 95
Print the list in reverse direction.
95 72 41 32 25

Program 19.6	 Printing	list	elements	(Continued)

(continued)

Program 19.7	 Printing	some	elements	in	a	list	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* Rewrite of Program 19-2 using list instead of vector *
 ***/

#include <iostream>
#include <list>
using namespace std;

int main()
{

// Instantiation of the list container and defining two iterators
list <int> lst;
list <int> :: iterator iter1;
list <int> :: reverse_iterator iter2;
// Inserting 10 integers into the list
for (int i = 0; i < 10; i++)
{

lst.push_back(i * 10);
}
// Moving two steps forward and two steps backward using iter1
cout << "Printing 40 followed by 20" << endl;
iter1 = lst.begin();
iter1++;
iter1++;
iter1++;
iter1++;
cout << *iter1 << " ";
iter1−−;

for23380_ch19_852-914.indd 871 11/6/18 3:34 PM

872 Chapter 19 Standard	Template	Library	(STL)

Program 19.7	 Printing	some	elements	in	a	list		(Continued)

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

iter1−−;
cout << *iter1 << endl;
// Moving two steps forward and two steps backward using iter2
cout << "Printing 50 followed by 70" << endl;
iter2 = lst.rbegin();
iter2++;
iter2++;
iter2++;
iter2++;
cout << *iter2 << " ";
iter2−−;
iter2−−;
cout << *iter2 << endl;
return 0;

}

Run:
Printing 40 followed by 20
40 20
Printing 50 followed by 70
50 70

We create a big integer class that handles any integer with any arbitrary number of digits.
We provide only the addition operation of two big integers. Program 19.8 shows the in-
terface for a simple big integer class with only the addition (+) operation. We use a list in
which each element holds a digit. Another solution is to allow each element to hold three or
six digits, but the coding is more complicated.

Program 19.8	 The	file	bigInteger.h	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

/***
* The interface for the big integer class *
 ***/

#include <string>
#include <list>
#include <iostream>
#ifndef BIGINTEGER_H
#define BIGINTEGER_H
using namespace std;

class BigInteger
{

private:
list <int> lst;

public:

(continued)

for23380_ch19_852-914.indd 872 11/6/18 3:34 PM

19.3 Sequence	Containers 873

Program 19.9 shows the implementation file for the big integer class. We have coded
two constructors, one destructor, one addition operator, and one member function called to-
String(). It is customary in computer programming to define a toString function that creates
a string object out of a value so that the object can be exported to other programs.

Program 19.8	 The	file	bigInteger.h	(Continued)

16
17
18
19
20
21
22

BigInteger();
BigInteger(string str);
~BigInteger();
string toString();
friend BigInteger operator+(BigInteger first, BigInteger second);

};
#endif

(continued)

Program 19.9	 The	file	bigInteger.cpp	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* The implementation file for the BigInteger class *
 ***/

#include <iostream>
#include <string>
#include <iomanip>
#include "bigInteger.h"
using namespace std;

// Default constructor
BigInteger :: BigInteger()
:lst (list<int>())
{
}
// Parameter constructor
BigInteger :: BigInteger(string str)
:lst(list <int>())
{

for (int i = 0; i < str.length(); i++)
{

int num = str[i] − 48;
lst.push_back(num);

}
}
// Destructor
BigInteger :: ~BigInteger()
{
}
// Changing a list to a string for printing

for23380_ch19_852-914.indd 873 11/6/18 3:34 PM

874 Chapter 19 Standard	Template	Library	(STL)

Program 19.9	 The	file	bigInteger.cpp	

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

string BigInteger :: toString()
{

string strg;
list <int> :: iterator iter;
iter = lst.begin();
while (iter != lst.end())
{

strg.append(1, *iter + 48);
iter++;

}
return strg;

}
// Friend operator+
BigInteger operator+(BigInteger first, BigInteger second)
{

list <int> :: reverse_iterator iter1;
list <int> :: reverse_iterator iter2;
BigInteger result;
int num1, num2, sum;
int carry = 0;
iter1 = first.lst.rbegin();
iter2 = second.lst.rbegin();
while ((iter1 != first.lst.rend()) && (iter2 != second.lst.rend()))
{

num1 = *iter1;
num2 = *iter2;
sum = (num1 + num2 + carry) % 10;
carry = (num1 + num2 + carry) / 10;
result.lst.push_front(sum);
iter1++;
iter2++;

}
while ((iter1 != first.lst.rend()))
{

num1 = *iter1;
sum = (num1 + carry) % 10;
carry = (num1 + carry) / 10;
result.lst.push_front (sum);
iter1++;

}
while ((iter2 != second.lst.rend()))
{

num2 = *iter2;
sum = (num2 + carry) % 10;

(continued)

for23380_ch19_852-914.indd 874 11/6/18 3:34 PM

19.3 Sequence	Containers 875

In Program 19.9 the default constructor creates an empty list. The parameter construc-
tor takes a string representing a big integer, such as “4572349876509”, extracts the digits,
one by one as ASCII characters, subtracts 48 from the integer value of the ASCII character
to create a digit, and then pushes it to the back of the list. Note that the character is copied
from the front of the string, but it is pushed to the back of the list. The next digit pushes the
digit at the back of the list toward the front. When the big integer object is instantiated, we
have a list of integers in which each element holds one digit.

The next member function is the toString() function, which does the reverse. It copies
digits one by one from the list and appends them to a string.

The heart of the implementation is the friend operator+() function, which takes two big
integer objects, adds the digits from the right, and creates a sum and a carry. We need to use
three while loops. If the two lists are of the same size, the first loop does the job. If either of the
lists is exhausted, one of the other two loops continues. Note that if both loops are exhausted,
we may still have a carry from the last two digits added; the if statement at the end takes care
of this situation. Program 19.10 shows a sample application that uses our BigInteger class.

(continued)

Program 19.9	 The	file	bigInteger.cpp		(Continued)

74
75
76
77
78
79
80
81
82
83

carry = (num2 + carry) / 10;
result.lst.push_front(sum);
iter2++;

}
if (carry == 1)
{

result.lst.push_front(carry);
}
return result;

}

Program 19.10	 The	application	file	(app.cpp)	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/***
* Application file to test the BigInteger class *
 ***/

#include <iostream>
#include <iomanip>
#include "bigInteger.h"
using namespace std;

int main()
{

// Inputting two strings
string strg1, strg2;
cout << "Enter the first big integer: ";
cin >> strg1;
cout << "Enter the second big integer: ";
cin >> strg2;
// Creation of two objects of type BigInteger

for23380_ch19_852-914.indd 875 11/6/18 3:34 PM

876 Chapter 19 Standard	Template	Library	(STL)

Program 19.10	 The	application	file	(app.cpp)	(Continued)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

BigInteger first (strg1);
BigInteger second (strg2);
// Adding two big integers and storing the result in the third object
BigInteger result = first + second;
// Changing big integers to strings
strg1 = first.toString();
strg2 = second.toString();
string strg3 = result.toString();
string dashes(strg3.length(), '−');
// Printing the result
cout << "First big integer " << setw(strg3.length());
cout << right << strg1 << " + " << endl;
cout << "Second big integer" << setw(strg3.length());
cout << right << strg2 << endl;
cout << " " << dashes << endl;
cout << "Result " << setw(strg3.length());
cout << right << strg3 << endl;
return 0;

}

Run:
Enter the first big integer:346786543098762378
Enter the second big integer:78654329876

First big integer 346786543098762378 +
Second big integer 78654329876

Result 346786621753092254

Run:
Enter the first big integer: 3478654212345690
Enter the second big integer:7654329876534567

First big integer 3478654212345690 +
Second big integer 7654329876534567

Result 11132984088880257

Run:
Enter the first big integer: 356709876567
Enter the second big integer:19283848484848987654356

First big integer 356709876567 +
Second big integer 19283848484848987654356

Result 19283848485205697530923

In the first run, the first integer is longer; in the second run, the two integers are of
equal length and create an extra carry; in the third run, the first integer is shorter.

for23380_ch19_852-914.indd 876 11/6/18 3:34 PM

19.4 Container	Adapters 877

19.4 CONTAINER ADAPTERS
The Standard Template Library also defines three container adapters that have a smaller
interface for easier use. The container adapters defined in the library are stack, queue, and
priority_queue. We cannot apply the algorithms defined in the library to container adapters
because they lack iterators; they do not provide the member functions, such as begin and
end, to create iterators.

Container adapters cannot be used with algorithms
because they do not provide support for iterators.

19.4.1 Public Interface
Table 19.3 provides a general public interface for container adapters. The abbreviation Ad
can be replaced with one of the three adapters (stack, queue, or priority_queue) when the
corresponding column is ticked. Each of these adapters is a template class in which T de-
fines the type of the element in the container. The abbreviations are S (stack), Q (queue),
and P (priority queue).

Note that the interface for stack and priority_queue is similar although their purpose
and applications are different. We can only use the top() member function to access an
element in a stack or priority_queue. On the other hand, we can use the front() and back()
member functions to access the front or the back element in a queue.

19.4.2 The stack Class
The stack class, which is defined in the <stack> header file, is a container adapter class that is
designed for three simple operations: push, pop, and top. The stack class is designed for inser-
tion into and erasure from one end (the top). It is also referred to as a last-in-first-out (LIFO)
structure because the last item pushed into the stack is the first item popped from the stack.

Table 19.3 Public interface for the container adapter classes

Constructor S Q P

Ad <T> :: Ad () ✓ ✓ ✓

Checking size and emptiness

size_type Ad<T> :: size() const ✓ ✓ ✓

bool Ad <T> :: empty() const ✓ ✓ ✓

Accessing elements

T& Ad <T> :: front() ✓

T& Ad <T> :: back() ✓

T& Ad <T> :: top() ✓ ✓

Insertion

void Ad <T> :: push(const T& elem) ✓ ✓ ✓

Erasure

void Ad <T> :: pop() ✓ ✓ ✓

for23380_ch19_852-914.indd 877 11/6/18 3:34 PM

878 Chapter 19 Standard	Template	Library	(STL)

Program 19.11	 Coverting	a	decimal	to	hexadecimal	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

/***
* Using a stack to change a decimal number to hexadecimal *
 ***/

#include <stack>
#include <iostream>
using namespace std;

int main()
{

// Instantiation of a stack
stack <char> stk;
// Creation of two strings and a declaration of a variable
string converter("0123456789ABCDEF");
string hexadecimal;
int decimal;
// Inputting a decimal number
do
{

cout << "Enter a positive integer: ";
cin >> decimal;

} while (decimal <= 0);
// Creation of hexadecimal characters and push them into stack
while (decimal != 0)
{

stk.push(converter [decimal % 16]);
decimal = decimal / 16;

}
// Popping characters from stack and pushing into hex string
while (!stk.empty())
{

hexadecimal.push_back(stk.top(());
stk.pop();

}
cout << "The hexadecimal number : " << hexadecimal;
return 0;

}

Operations
The stack interface creates an empty constructor. We can check the size and emptiness of a
stack. The only member function that we can use to access the elements in the stack is the
top() member function. The push() and pop() operations are used to insert into and erase an
element from the stack, respectively.

Application
The last-in-first-out nature of a stack makes it ideal for applications in which the first object
we need to use in a collection of objects is the last one that we created.

In Chapter 10 we showed how to convert a decimal number to its equivalent hexadeci-
mal number using a user-defined stack class. We repeat that example using the stack class
defined in STL as shown in Program 19.11. Although the code is very similar to the one in

(continued)

for23380_ch19_852-914.indd 878 11/6/18 3:34 PM

19.4 Container	Adapters 879

Chapter 10, but we do not have to define a linked list and a stack class. We use the available
stack class in the STL library.

Another example is found in compiler design. The compiler must verify that the paren-
theses used in an expression are properly paired; every opening parenthesis must be paired
with a closing parenthesis. The following shows examples of paired and unpaired parentheses.

Paired parentheses Unpaired parentheses

(2 + 5) * (3 − 4)
4 + 5 * (6 + 7)

10 − (5 * (6 + 7)
8 − (5 * 6 + 7) + 4)

Note that we do not mean that the number of opening and closing parentheses should be the
same; we mean that each open parentheses must be paired with a closing parenthesis. For
example, in the expression

(3 + 4 (7 + 4))) 7 (8

the number of opening and closing parentheses are the same, but they are not paired. Pro-
gram 19.12 uses a stack to check if the parentheses are paired in an expression.

Run:
Enter a positive integer: 182
The hexadecimal number : B6

Run:
Enter a positive integer: 1234
The hexadecimal number : 4D2

Run:
Enter a positive integer: 23
The hexadecimal number : 17

Program 19.11	 Coverting	a	decimal	to	hexadecimal (Continued)

Program 19.12	 Checking	pairing	of	parentheses	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/***
* A program to check if parentheses are paired in an expression *
 ***/

#include <stack>
#include <string>
#include <iostream>
using namespace std;

int main()
{

// Declaration of a stack, a string, and a Boolean object
stack <char> stk;
string expr;
bool paired = true;
// Inputting an expression and pushing it into or popping the stack
cout << "Enter an expression: " ;

(continued)

for23380_ch19_852-914.indd 879 11/6/18 3:34 PM

880 Chapter 19 Standard	Template	Library	(STL)

Program 19.12	 Checking	pairing	of	parentheses	(Continued)

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

getline(cin, expr);
int i = 0;
while (i < expr.size() && paired)
{

char next = expr[i];
if (next == ' (')
{

stk.push(next);
}
else if (next == ')')
{

if (stk.empty())
{

paired = false; // If stack is empty here, no pairing
}
else
{

stk.pop();
}

}
i++;

}
// If stack is not empty at the end, parentheses are not paired
if (!stk.empty())
{

paired = false;
}
// Print the result
if (paired)
{

cout << "Parentheses are paired!" << endl;
}
else
{

cout << "Parentheses are not paired!" << endl;
}
return 0;

}

Run:
Enter an expression:3 + (4 + 7 + 6)
Parentheses are paired!

Run:
Enter an expression:2 + (4 + (6 + 7)
Parentheses are not paired!

Run:
Enter an expression: 6 + 7 + (10 * 2 - 4) + 8)
Parentheses are not paired!

for23380_ch19_852-914.indd 880 11/6/18 3:34 PM

19.4 Container	Adapters 881

19.4.3 The queue Class
The queue class, which is defined in the <queue> header file, is a container adapter class
that is designed for three simple operations: insertion at one end, erasure from the other
end, and accessing at both ends. It is also referred to as a first-in-first-out (FIFO) structure
because the first item pushed into the queue is the first item to be popped from the queue.

Operations
The queue interface allows us to create an empty queue. We can check the size and empti-
ness of a queue. The only two member functions that we can use to access the elements in
the queue are the front() and back() member functions, each in two versions. The push() and
pop() operations are used to insert an element into and erase an element from the queue,
respectively.

Application
The first-in-first-out nature of a queue makes it the best application for entities waiting to
be served by servers. For example, in a bank the customers form a line (queue), where they
wait to be served by one or more tellers. In a post office, the customers wait in a line to be
served by one or more employees. In a typical queue, the customers arrive randomly and
need a random amount of time (number of minutes, for example) to be served. We studied
an application of this nature earlier in the text.

In Chapter 18 we created a program to categorize charity donations to different groups
using a user-defined queue class. We repeat the problem using the STL queue class. Al-
though the application code is almost the same, we do not have to create a list and a queue
class to do so. We use the library-defined queue class instead (Program 19.13).

Program 19.13	 Grouping	charity	donations	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/***
 * Using a queue to categorize a list of donations *
 ***/

#include <queue>
#include <cstdlib>
#include <ctime>
#include <iostream>
using namespace std;

// Declaration of print function
void print(queue <int> queue);

int main()
{

// Instantiation of five queue objects and two variables
queue <int> queue1, queue2, queue3, queue4, queue5;
int num;
int donation;
// Random creation of donation values and push them in queues
srand(time(0));

(continued)

for23380_ch19_852-914.indd 881 11/6/18 3:34 PM

882 Chapter 19 Standard	Template	Library	(STL)

Program 19.13	 Grouping	charity	donations	(Continued)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

for (int i = 0; i < 50; i++)
{

num = rand();
donation = num % (50 - 0 + 0) + 0;
switch (donation / 10)
{

case 0: queue1.push(donation);
break;

case 1: queue2.push(donation);
break;

case 2: queue3.push(donation);
break;

case 3: queue4.push(donation);
break;

case 4: queue5.push(donation);
break;

}
}
// Printing the donations in each group
cout << "Donations between 00 and 09: ";
print(queue1);
cout << "Donations between 10 and 19: ";
print(queue2);
cout << "Donations between 20 and 29: ";
print(queue3);
cout << "Donations between 30 and 39: ";
print(queue4);
cout << "Donations between 40 and 49: ";
print(queue5);
return 0;

}
// Definition of the print function
void print(queue <int> queue)
{

while (!queue.empty())
{

cout << queue.front() << " ";
queue.pop();

}
cout << endl;

}

Run:
Donations between 00 and 09: 3 1 3 7 9 1 8 8 9 7 4 3
Donations between 10 and 19: 18 14 13 15 16 15
Donations between 20 and 29: 23 26 28 29 23 21 26 21 22 27 28 23
Donations between 30 and 39: 32 31 39 39 39 34 30 38 30 36 32
Donations between 40 and 49: 41 49 49 43 47 43 45 46 41

for23380_ch19_852-914.indd 882 11/6/18 3:34 PM

19.4 Container	Adapters 883

19.4.4 The priority_queue Class
The priority_queue class defined in the <queue> header file is a container adapter in which
each element has a priority level. The elements can be inserted into the priority_queue in any
order; the elements are retrieved based on their priority. In other words, the front element is
the element with the largest value in the container.

Operations
The interface of a priority_queue is given in Table 19.2. Like a queue, we push at the back
and pop in the front, but the access is limited only to the front, which is called top(), like a
stack; we cannot access elements at the back.

An implementation difference between a queue and a priority_queue is that the prior-
ity_queue does not support relational operators (see Table 19.3). In other words, two priority
queues cannot be compared.

Application
The priority_queue is the only structure available when we need to access the elements
in the order they enter the container while at the same time giving priority to those that
need faster access. For example, in a restaurant, people with reservations have seating
priority.

Although we can use a pair class, a tuple class, or a user-created class to define the
type of elements in a priority queue, all approaches require that we define the comparison
for the data type or use a function object to do so. We leave this until we learn about func-
tion objects. Program 19.14 shows a simple example of a priority queue application of type
integer that reorders the elements according to their integer values.

The result shows that the elements with a higher priority (value) are printed before the
elements with a lower priority (value).

Program 19.14	 Using	a	priority	queue	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/***
* A program to test the priority_queue class *
 ***/

#include <queue>
#include <iostream>
using namespace std;

int main()
{

// Create a priority_queue object
priority_queue <int> line;
// Push some elements
line.push(4);
line.push(7);
line.push(2);
line.push(6);
line.push(7);
line.push(8);
line.push(2);

(continued)

for23380_ch19_852-914.indd 883 11/6/18 3:34 PM

884 Chapter 19 Standard	Template	Library	(STL)

19.5 ASSOCIATIVE CONTAINERS
Elements in an associative container are stored and retrieved by a key. To access an element
in an associate container, we use the key of the element. Associative containers are normally
implemented as a binary search tree. Associate containers discussed in this chapter are di-
vided into two classes (set and map). The standard has recently added multiset and multimap
with duplicate values and duplicate keys, but we do not discuss them in this book.

 ∙ A set is an associative container in which the key and value are the same data item.
 ∙ A map is an associative container in which the key and the value are separate data

items.

19.5.1 Public Interface
Before discussing associative containers, we provide a general public interface for them in
Table 19.4. The abbreviation AS must be replaced with one of the two associative containers
(set or map) when the corresponding column (S or M) is ticked. S means set and M means
map. Each of these containers is a template class in which K defines the type of key for both
set and map and T defines the type of the value for map only. The abbreviation <...> means
<K> for the set and <K, T> for the map.

Program 19.14	 Using	a	priority	queue	(Continued)

20
21
22
23
24
25
26
27

// Print the elements according to their priorities
while (!line.empty ())
{

cout << line.top() << " ";
line.pop();

}
return 0;

}

Run:
8 7 7 6 4 2 2

Table 19.4 The public interface for the set and map classes

Constructors, assignment, and destructor S M
AS <...> :: AS() ✓ ✓

AS <...> :: AS(const_iterator first, const_iterator last) ✓ ✓

AS <...> :: AS(const AS <...>& s) ✓ ✓
AS <...>& AS <...> :: operator =(const AS <...> & right) ✓ ✓
AS <...> :: ~AS() ✓ ✓

Controlling size

size_type AS <...> :: size() ✓ ✓
size_type AS <...> :: max_size() ✓ ✓
bool AS <...> :: empty() ✓ ✓

(continued)

for23380_ch19_852-914.indd 884 11/6/18 3:34 PM

19.5 Associative	Containers 885

Iterators

iterator AS <...> :: begin() ✓ ✓

iterator AS <...> :: end() ✓ ✓

reverse_iterator AS <...> :: rbegin() ✓ ✓

reverse_iterator AS <...> :: rend() ✓ ✓

Accessing

T& AS <...> :: operator [](const K& k) const ✓

Searching

size_type AS <...> :: count(const K& k) const ✓ ✓

iterator AS <...> :: find(const K& k) const ✓ ✓

iterator AS <...> :: lower_bound(const K& k) const ✓ ✓

iterator AS <...> :: upper_bound(const K& k) const ✓ ✓

pair <iterator, iterator> AS <...> :: equal_range(const K& k) const ✓ ✓

Insertion

pair <iterator, bool> AS <...> :: insert(const K& k) ✓

pair <iterator, bool> AS <...> :: insert(const pair < const K, T > & p) ✓

iterator AS <...> :: insert(iterator hintpos, const K& element) ✓ ✓

void AS <...> :: insert(InputIterator first, InputIterator last) ✓ ✓

Erasure

size_type AS <...> :: erase(const K& k) ✓ ✓

void AS <...> :: erase(iterator pos) ✓ ✓

void AS <...> :: erase(iterator first, iterator last) ✓ ✓

void AS <...> :: clear() ✓ ✓

Swapping

void AS <...> :: swap(AS <...>& v) ✓ ✓

Global functions

bool operator oper(const AS <...> left, const AS <...> right) ✓ ✓

void swap(AS <...>& c1, AS <...>& c2) ✓ ✓

To discuss the classes set and map, we introduce a library struct named pair defined in
the <utility> header. A pair defines a template struct with two template data members possi-
bly of different types. The elements are called first and second, respectively, as shown below:

template <typename T1, typename T2>
struct pair
{

T1 first;
T2 second;

};

Table 19.4 The public interface for the set and map classes (Continued)

for23380_ch19_852-914.indd 885 11/6/18 3:34 PM

886 Chapter 19 Standard	Template	Library	(STL)

19.5.2 Set
The set class is defined in the <set> header file. In a set, each element in the container stores
one template value, which is referred to as the key. The elements are sorted in ascending
order, and duplicates are not allowed. Figure 19.11 shows an example of a set.

Although the objects in Figure 19.11 appear to be one after another, they are not lin-
early connected. There is a nonlinear relationship among them. Although the library does
not reveal the implementation, they are most likely implemented as a binary search tree.

Operations
We briefly discuss the operations that we can use with a set.

Constructors, Destructor, and Assignment We can create a new set using a default con-
structor (empty set). We can also create a new set using a parameter constructor by copying
the elements of another set in which the range is indicated by [first, last). We can also create
a set by using a copy constructor or an assignment operator. The following shows how to
create a set of integers.

set <type> set1
set <type>(pos1, pos2) set2
set <type>(set2) set3
set4 = set3

// Create an empty set
// Create a set copying elements of another set
// Create a set copying all elements of another set
// Create a set copying all elements of another set

Controlling Size There are three member functions that we can use to check size, maxi-
mum size, and emptiness. They are the same as discussed for sequence containers.

Iterators The set class uses bidirectional (not random-access) iterators because it is nor-
mally implemented as a nonlinear linked list. It provides the same eight internal iterators as
the sequence containers, in which four are constant and four nonconstant. Both constant and
nonconstant iterators have the same syntax.

set1.begin()
set1.end()
set1.rbegin()
set1.rend()

// Returns a regular iterator to the first element
// Returns a regular iterator to the element after the last
// Returns a reverse iterator to the last element
// Returns a reverse iterator to the element before the first

K K KK K K

Notes:
The keys are unique in a set.
The objects are in a nonlinear relationship with each other.
The set class uses bidirectional iterators.

begin() end()

rbegin()rend()

existing element

nonexisting element
regular iterator
reverse iterator

Legend:

Figure 19.11	 A	set

for23380_ch19_852-914.indd 886 11/6/18 3:34 PM

19.5 Associative	Containers 887

Searching Since the elements in a set are sorted, searching is possible and efficient. There
are five members for searching, as shown below:

set1.count(k)
set1.find(k)
set1.lower_bound(k)
set1.upper_bound(k)
set1.equal_range(k)

// Returns number of elements equal to k
// Returns an iterator pointing to the first k found
// Returns the first position where k can be inserted
// Returns the last position where k can be inserted
// Combination of lower and upper bound

Note that the count(k) for a set returns either 0 or 1. The find() member tries to find the value
in the set and returns the iterator to the value if it is found. If the value is not found in the
set, it returns the end(). The lower_bound() returns the first position where the value can be
inserted; the upper_bound() returns the last position where the value can be inserted. The
equal_range() returns a pair object showing the combination of lower_bound and upper_
bound. Note that the set has no operations to access the elements in the set using an index
operator or at() function. We must use the key to do so.

Insertion There are no push members to insert an element in a set. Insertion must be done
using the key or through iterators.

set1.insert(k)
set1.insert(hint, k)
set1.insert(pos1, pos2)

// Insert k and returns a pair <pos, bool>
// Returns an iterator to the element after the hint
// Returns a pair where k can be found

The first member function inserts the key k and returns an iterator showing the position and
a Boolean value (success or failure). The second member function also inserts k, but the
user can give a hint (iterator) to the position to reduce the search. The third member function
copies an open range [pos1, pos2) from another set and inserts it at the appropriate place.

Erasure There are no pop members for deleting an element from a set. Deletion must be
done through the value or iterator.

set1.erase(k)
set1.erase(pos)
set1.erase(first, last)
set1.clear()

// Erases k and returns a pair <pos, bool>
// Erases an element pointed to by pos
// Erases elements in the range [first, last)
// Returns an iterator to the element after the last

The first member deletes the element with the key k and returns the number of elements,
which can be 0 or 1 for a set. The second erases the item at pos. The third one erases a range.
The last one erases all elements.

Other Operations Just like the sequence containers, the swap() operation is defined for
sets. Also, we can compare two sets with relational operators.

Applications
We show two simple applications of sets in this section. In the first example we use a
program to show how we can create a set of integers, print in the ascending and descend-
ing order, and print an integer before a given integer and an integer after a given integer
(Program 19.15). In the second example we create a student set and overload the less-than

for23380_ch19_852-914.indd 887 11/6/18 3:34 PM

888 Chapter 19 Standard	Template	Library	(STL)

Program 19.15	 Handling	a	set	of	integers	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

/***
* Using a set to create a sorted container of integers *
 ***/

#include <set>
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

// Create an empty set of integers
set <int> st;
// Insert some keys in the set (with duplicates)
st.insert(47);
st.insert(18);
st.insert(12);
st.insert(24);
st.insert(52);
st.insert(20);
st.insert(24);
st.insert(92);
st.insert(53);
st.insert(77);
st.insert(98);
st.insert(87);
// Print the set elements from smallest to largest
cout << "Printing set elements from smallest to largest." << endl;
set <int> :: iterator iter;
for (iter = st.begin(); iter != st.end(); iter++)
{

cout << setw(4) << *iter;
}
cout << endl << endl;
// Print the set elements from largest to smallest
cout << "Printing set elements from largest to smallest." << endl;;
set <int> :: reverse_iterator riter;
for (riter = st.rbegin(); riter != st.rend(); riter++)
{

cout << setw(4) << *riter;
}
cout << endl << endl;
// Print the element after 52
set <int> :: iterator iter1 = st.find(52);
iter1++;
cout << "Element after 52: " << *iter1 << endl;
// Print the element before 20
set <int> :: iterator iter2 = st.find (20);

(continued)

for23380_ch19_852-914.indd 888 11/6/18 3:34 PM

19.5 Associative	Containers 889

Program 19.16	 The	interface	file	(student.h)	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/***
* The interface file for the Student class *
 ***/

#ifndef STUDENT_H
#define STUDENT_H
#include <string>
#include <set>
#include <iostream>
#include <iomanip>
using namespace std;

class Student
{

private:
int identity ;
string name;
double gpa;

public:
Student(int identity, string name, double gpa);
~Student();
void print() const;
bool friend operator< (const Student& left, const Student& right);

};
#endif

48
50
51
52

iter2−−;
cout << "Element before 20: " << *iter2 << endl;
return 0;

}

Run:
Printing set elements from smallest to largest.
 12 18 20 24 47 52 53 77 87 92 98

Printing set elements from largest to smallest.
 98 92 87 77 53 52 47 24 20 18 12

Element after 52: 53
Element before 20: 18

Program 19.15	 Handling	a	set	of	integers		(Continued)

operator for the Student class so we can list students according to their student identifica-
tion (Program 19.16, Program 19.17, and Program 19.18).

Program 19.16 shows the interface file for the Student set.

for23380_ch19_852-914.indd 889 11/6/18 3:34 PM

890 Chapter 19 Standard	Template	Library	(STL)

Program 19.17	 The	implementation	file	(student.cpp)	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/***
* The implementation file for the Student class *
 ***/

#include "student.h"

// Constructor
Student :: Student(int id, string nm, double gp)
: identity (id), name (nm), gpa (gp)
{
}
// Destructor
Student :: ~Student()
{
}
 // Print member function
void Student :: print() const
{

cout << setw(3) << right << identity << " " ;
cout << setw(12) << left << name << " " ;
cout << setw(6) << right << showpoint << setprecision(3) ;
cout << gpa << " " << endl;

}
// Friend less-than operator
bool operator<(const Student& left, const Student& right)
{

return (left.identity < right.identity) ;
}

Program 19.18	 The	application	file	(app.cpp)	

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***
* The application file for the Student class *
 ***/

#include "student.h"

int main()
{

// Creating six instance of the Student class
Student student1(120, "George", 3.78);
Student student2(185, "Mary", 3.95);
Student student3(110, "Richard", 4.00);
Student student4(245, "Alen", 3.70);
Student student5(172, "John", 3.00);
Student student6(195, "Lucie", 3.80);

Program 19.17 shows the implementation file for Student class.
The application file instantiates Student objects and inserts them in the set to be sorted

based on their identity. It then prints the information in each object (Program 19.18).

(continued)

for23380_ch19_852-914.indd 890 11/6/18 3:34 PM

19.5 Associative	Containers 891

19.5.3 Map
A map, which is also called a table, a dictionary, or an associate array, is defined in the
<map> header file. It is a container that stores a template pair of key and value. The
elements are sorted in ascending order based on the key. In a map, the keys are unique.
Figure 19.12 shows an example of a map.

Operations
The operations defined for the map class are very similar to the ones for the set class. The
main difference is the ability to access the elements in the map using the operator []. This

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// Insert the above six objects into the set
set <Student> stdSet ;
stdSet.insert(student1);
stdSet.insert(student2);
stdSet.insert(student3);
stdSet.insert(student4);
stdSet.insert(student5);
stdSet.insert(student6);
// Printing the contents of student objects
set <Student> :: iterator iter;
for (iter = stdSet.begin(); iter != stdSet.end(); iter++)
{

iter -> print();
}
return 0;

}

Run:
110 Richard 4.00
120 George 3.78
172 John 3.00
185 Mary 3.95
195 Lucie 3.80
245 Alen 3.70

Program 19.18	 The	application	file	(app.cpp)	(Continued)

Notes:
The keys are unique in a map.
The objects are in nonlinear relationship to each other.
The map class uses bidirectional iterators.

K

T

K

T

K

T

K

T

K

T

K

T

begin() end()

rbegin()rend()

existing pair

nonexisting pair
regular iterator
reverse iterator

Legend:

Figure 19.12	 A	map	

for23380_ch19_852-914.indd 891 11/6/18 3:34 PM

892 Chapter 19 Standard	Template	Library	(STL)

operator makes a map object look like an array in which the index is a key value instead of
an integer. In other words, if we know the value of the key in an element, we can access the
element using the expression map [key]. However, the operator [] does not act like the one
used for an array or a vector or a deque. It is just a notation to create a pair consisting of
key-value. A map uses only bidirectional iterators and cannot jump from one pair to another
using the + or − operator.

Applications
We discuss two applications that use a map. In the first, we create a map of student scores
in which each element is a pair of student name and student score on a test. We then find the
minium and maximum score (Program 19.19). In the second, we create a program that finds

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/***
* A program to create five pairs of student and score in a map *
 ***/

#include <map>
#include <iostream>
#include <iomanip>
#include <utility>
using namespace std;

int main()
{
// Creation of a map and the corresponding iterator

map <string, int > scores;
map <string, int > :: iterator iter;

// Inputting student name and score in the map
scores ["John"] = 52;
scores ["George"] = 71;
scores ["Mary"] = 88;
scores ["Lucie"] = 98;
scores ["Robert"] = 77;

// Printing the names and score sorted on names
cout << "Students names and scores" << endl;
for (iter = scores.begin (); iter != scores.end(); iter++)
{

cout << setw(10) << left << iter -> first << " ";
cout << setw(4) << iter -> second << endl;

}
return 0;

}

Run:
Students names and scores

Program 19.19	 A	student	table	(name	and	score)	

(continued)

for23380_ch19_852-914.indd 892 11/6/18 3:34 PM

19.5 Associative	Containers 893

George 71
John 52
Lucie 98
Mary 88
Robert 77

Program 19.19	 A	student	table	(name	and	score)	(Continued)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* A program to count the number of words in a text *
 ***/

#include <map>
#include <string>
#include <iomanip>
#include <iostream>
using namespace std;

int main()
{

// Declaration of map, iterator, and a string
map <string, int > freq;
map <string, int > :: iterator iter;
string word;
// Reading and storing words in the map
cout << "Enter a sentence to be parsed: " << endl;
while (cin >> word)
{

++freq [word];
}
// Printing the words and their frequency
for (iter = freq.begin(); iter != freq.end(); iter++)
{

cout << left << setw(10) << iter −> first << iter −> second << endl;
}
return 0;

}

Run:
Enter a sentence to be parsed:
we are in the world of this and that and this and that
^Z

Program 19.20	 Frequency	of	words	in	text

(continued)

the frequency of words in a string. We use a map object named freq in which the key is the
word encountered in the text and the value is the frequency of words. Note that we have used
the ctrl + Z character to signal the end of the input file (Program 19.20).

for23380_ch19_852-914.indd 893 11/6/18 3:34 PM

894 Chapter 19 Standard	Template	Library	(STL)

Note that we type all words in lowercase to make easier to see that the keys are sorted.
The words and frequency form an associative array, an array whose index does not have be
integers (Figure 19.13).

19.6 USING FUNCTIONS
We can use library algorithms or define our own algorithms. In each case, an algorithm
applies an operation to a number of elements in the container. The question is how this op-
eration can be defined as a parameter in the algorithm. It can be done in two ways: a pointer
to function or a function object (functor). We discuss each approach next.

19.6.1 Pointer to Function
We know that the definition of a function is stored in memory. Every entity that is stored in
memory has an address. In fact, the name of a function is a pointer to the first byte of memory
where the function is stored, just as the name of an array is a pointer to the first element of an
array. Figure 19.14 shows how the name of an array and the name of a function are pointers.
The figure also shows how a pointer to an array and a pointer to a function are declared.

We write an example of a pointer to function (Program 19.21). We want to use a
function, fun, that uses another function, print, as an argument. We define both functions.
In main, we call fun two times, which calls the print function in each call. Note that the
definition of fun does not define which function is to be called as the second parameter. The
calling statement passes a pointer to the print function (print is a pointer to the beginning of
the print function).

and 3
are 1
in 1
of 1
that 2
the 1
this 2
we 1
world 1

Program 19.20	 Frequency	of	words	in	text (Continued)

An associative array with string indexes
"we" "and" "are" "in" "of" "that" "the" "this" "world"

3 1 1 1 2 1 2 1 1

Figure 19.13	 A	map	serving	as	an	associative	array

arr

A pointer to an array

type* arr type (*print) (...)

A pointer to a function

print

arr statements
{

}

type print (...)

Figure 19.14	 Pointer	to	an	array	and	pointer	to	a	function

for23380_ch19_852-914.indd 894 11/6/18 3:34 PM

19.6 Using	Functions	 895

In Program 19.21 the declaration of a pointer to function, void(*f)(int), may look un-
usual, but the good news is that most algorithms in STL have already defined functions that
use a pointer to functions (such as print). We do not have to declare them. In other words, if
an STL algorithm uses a pointer to function, we need to give only the name of the function
in the call.

We use the STL generic algorithm, for_each, that applies a function to a range of items
in a container. The algorithm applies the function defined as the third parameter to the range
[first, last) as shown in Program 19.22. The algorithm defines that the third algorithm must

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* Using functions that call another function *
 ***/

#include <iostream>
using namespace std;

// Definition of print function
void print (int value)
{

cout << value << endl;
}
// Definition of fun function
void fun (int x, void(*f)(int))
{

f(x);
}

int main()
{

fun(24, print); // Calling function fun
fun(88, print); // Calling function fun
return 0;

}

Run:
24
88

Program 19.21	 Using	pointer	to	functions	

1
2
3
4
5
6

/***
* Applying a function to all elements in a range using the *
* algorithm for_each in the library *
 ***/

#include <vector>
#include <algorithm>

Program 19.22	 Using	for_each	with	a	user-defined	function	

(continued)

for23380_ch19_852-914.indd 895 11/6/18 3:34 PM

896 Chapter 19 Standard	Template	Library	(STL)

be a pointer to a function. We pass the name print and then we define a function named
print with one argument. The print function takes the value of its argument from the iterator
(*iterator).

19.6.2 Function Objects (Functors)
In Chapter 13 we learned that we can overload the function operator, a pair of parentheses,
to create a function object (sometimes called a functor). Figure 19.15 shows how we write a
regular function and a function object.

Program 19.23 shows how we can call a functor from another function (main). We
create a class named Print, overload the operator(), create an object of the class, and call the
operator. Note that calling the overloaded operator is simply calling the object instantiated
from the class and inserting the arguments inside the parentheses. In fact, we are calling
print.operator()(45) in line 16.

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <iostream>
using namespace std;

// Definition of the print function
void print(int value)
{

cout << value << " ";
}

int main()
{
// Instantiation of a vector object and storing three values

vector <int> vec;
vec.push_back(24);
vec.push_back(42);
vec.push_back(73);

// Using a print function to print the value of each element
for_each(vec.begin(), vec.end(), print);
return 0;

}

Run:
24 42 73

Program 19.22	 Using	for_each	with	a	user-defined	function	(Continued)

Regular
function

Function
object

{

}

void sample (...)

statements

{

{

}
};

class sample

public :

 statements

void operator () (...)

Figure 19.15	 A	regular	function	versus	a	function	object

for23380_ch19_852-914.indd 896 11/6/18 3:34 PM

19.6 Using	Functions	 897

We can see that the definition of a function object is longer than a regular function, but a
function object has advantages that justify its longer definition:

 ∙ As an object, a function object can be used wherever an object can be used. In par-
ticular, it can be passed to a function as an argument, and it can be returned from a
function.

 ∙ A function object can have a state, which means that it can hold information from one
call to another.

 ∙ We can define a class to be used as a function object and then inherit from it to create
other function objects.

Function Objects in STL Algorithms
To facilitate the use of algorithms, the STL library defines many function objects. They can
be divided into unary (taking one argument) and binary (taking two arguments). These func-
tion objects are defined in the <functional> header file and can be used in our programs.
Table 19.5 lists some of these functions.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* Calling a function object to print the same value *
 ***/

#include <iostream>
using namespace std;

class Print
{

public:
void operator()(int value) {cout << value;}

};

int main()
{

Print print; // Instantiation of an object of type Print
print(45); // calling operator()
return 0;

}

Run:
45

Program 19.23	 Using	a	functor	

Table 19.5 Function objects in STL

Function object Type Arity Operator

negate <T> arithmetic unary −

plus <T> arithmetic binary +

(continued)

for23380_ch19_852-914.indd 897 11/6/18 3:34 PM

898 Chapter 19 Standard	Template	Library	(STL)

Each function simulates one of the built-in operators. However, the naming is different from
what we have seen for built-in operators. For example, negate means the minus operator
(unary) and minus means the subtraction operator (binary).

We discuss algorithms in the next section. For the moment, we show how we use the
transform algorithm to negate all elements in a vector, as shown in Program 19.24. Note that
we do not see any object of type negate in the call to the transform algorithm. The reason is
that the transform function directly calls the default constructor of the negate class (with a
pair of parentheses). The algorithm then calls the operator() in the background and passes
the value returned from the dereferencing iterator to that operator. However, this happens in
the background and is hidden from the user.

minus <T> arithmetic binary −

multiplies <T> arithmetic binary *

divides <T> arithmetic binary /

modulus <T> arithmetic binary %

equal_to <T> relational binary ==

not_equal_to <T> relational binary !=

greater <T> relational binary >

greater_equal <T> relational binary >=

less <T> relational binary <

less_equal<T> relational binary <=

logical_not <T> logical unary !

logical_and <T> logical binary &&

logical_or <T> logical binary ||

Table 19.5 Function objects in STL (Continued)

Program 19.24	 Using	a	unary	functor	

1
2
3
4
5
6
7
8
9

10
11
12

/***
* A program to use a pointer to function and a functor *
 ***/

#include <vector>
#include <algorithm>
#include <iostream>
#include <functional>
using namespace std;

// User-defined print function
void print(int value)
{

(continued)

for23380_ch19_852-914.indd 898 11/6/18 3:34 PM

19.7 Algorithms 899

19.7 ALGORITHMS
Another piece of the STL is a set of generic algorithms. Instead of defining these opera-
tions inside each container type, the C++ language defines template global functions that
can be applied to any container type that supports the iterators required by the algorithm.
For our purpose, we divide generic algorithms into four groups based on their functionality:
non_mutating, mutating, sorting, and numeric.

Before discussing some of the algorithms in this group, we must mention a point that
is sometimes misunderstood: The algorithms are template global functions, but the template
type does not define the type of the elements in the container; it defines the type of the it-
erator the algorithm itself uses. In other words, if a container does not support the type of
iterator (or a higher one in the hierarchy of iterators) defined in the algorithm, that algorithm
cannot be applied to that container. A good example is the sorting algorithm, which we dis-
cuss later in this section. This algorithm requires a random-access iterator, but the list <T>
container does not provide this type of iterator, which means the generic sorting algorithm
cannot be applied to the list <T> class. This is why sorting is defined in the list <T> class as
a member function. Another example is that we cannot apply generic algorithms to container
adapters, because they do not support iterators.

Space does not allow discussion of all the algorithms defined in the STL. We dis-
cuss only some of them in this section and give a brief description of each with the type
of iterator it needs. Our purpose is to familiarize you with the use of containers.

Program 19.24	 Using	a	unary	functor	(Continued)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

cout << value << " ";
}

int main()
{

// Creation of a vector with four nodes
vector <int> vec;
vec.push_back(24);
vec.push_back(42);
vec.push_back(73);
vec.push_back(92);
// Printing the node using a pointer to user-defined function
for_each(vec.begin(), vec.end(), print);
cout << endl;
// Negating the values of all nodes and print them again
transform(vec.begin(), vec.end(), vec.begin(), negate <int>()());
for_each(vec.begin(), vec.end(), print);
return 0;

}

Run:
24 42 73 92
-24 -42 -73 -92

for23380_ch19_852-914.indd 899 11/6/18 3:34 PM

900 Chapter 19 Standard	Template	Library	(STL)

19.7.1 Non-Mutating Algorithms
Non-mutating algorithms, which are defined in the <algorithm> header file, do not change
the order of the elements in the container that they are applied to. They can be modifying or non-
modifying. The non-modifying algorithms do not change the value of elements in the container;
the modifying algorithms can change the values if the operation is designed for that purpose.
Table 19.6 shows some of the most commonly used algorithms in this category. Note that we
use InIter as an abbreviation for Input Iterator. A predicate is a function that returns a Boolean
value. In this category, the only algorithm that can be modifying or non-modifying is the last
one. If the function uses a reference to its argument and returns a reference, it can be modifying.

The first function counts the number of elements equal to value. The second function
counts the element if they meet the criteria in pred. The third function finds the position of
an element with a given value. The fourth function applies the parameter func to the member
elements in the range [first, last).

We apply some of these algorithms on a vector object of integers, as shown in
Program 19.25. We use for-each, count, and count_if algorithms. The for_each applies
a function to all elements. The function count counts some specific values, and count_if
applies a Boolean function to each element.

Program 19.25	 Testing	non-mutating	algorithms

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

/***
* A program to use some non-mutating algorithms *
 ***/

#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

// Definition of isEven
bool isEven(int value)
{

return (value % 2 == 0);
}
// Definition of timesTwo
void timesTwo(int& value)
{

value = value * 2;
}

(continued)

Table 19.6 Non-mutating algorithms

difference_type count(InIter first, InIter last, const T& value);

difference_type count_if(InIter first, InIter last, Predicate pred);

InIter find(InIter first, InIter last, const T& value);

Function for_each(InIter first, outIter last, Function func);

for23380_ch19_852-914.indd 900 11/6/18 3:34 PM

19.7 Algorithms 901

Program 19.25	 Testing	non-mutating	algorithms	(Continued)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

// Definition of print
void print(int value)
{

cout << value << " ";
}

int main()
{

// Instantiation of a vector of integers
vector <int> vec ;
// Pushing ten values into the vector
vec.push_back(17);
vec.push_back(10);
vec.push_back(13);
vec.push_back(13);
vec.push_back(18);
vec.push_back(15);
vec.push_back(17);
vec.push_back(13);
vec.push_back(13);
vec.push_back(18);
// Printing original values
cout << "Original values in vector" << endl;
for_each(vec.begin(), vec.end(), print);
cout << endl << endl;
// Counting number of 10's
cout << "Count of 10's: ";
cout << count(vec.begin(), vec.end(), 10);
cout << endl << endl;
// Counting the even values
cout << "Count of even values: ";
cout << count_if(vec.begin(), vec.end(), isEven);
cout << endl << endl;
// Doubling each value and printing vector
cout << "Values after multiplying by 2" << endl;
for_each(vec.begin(), vec.end(), timesTwo);
for_each(vec.begin(), vec.end(), print);
return 0;

}

Run:
Original values in vector
17 10 13 13 18 15 17 13 13 18

(continued)

for23380_ch19_852-914.indd 901 11/6/18 3:34 PM

902 Chapter 19 Standard	Template	Library	(STL)

Program 19.25	 Testing	non-mutating	algorithms	(Continued)

Count of 10's: 1

Count of even values: 3

Values after multiplying by 2
34 20 26 26 36 30 34 26 26 36

19.7.2 Mutating Algorithms
The mutating algorithms, which are defined in the <algorithm> header file, change the struc-
ture of the container they are applied to. The list of these algorithms is long, but we show three
of them in Table 19.7 (BdIter means bidirectional iterator and FwIter means forward iterator).

The first function in Table 19.7 creates a sequence with the result of running the gen
function. The second function reverses the order of elements in the container. The third func-
tion rotates the elements to the left so that the middle element becomes the first element
and the element before the middle element becomes the last. The random_shuffle function
changes the order in the container to a random order. The transform function changes the val-
ues from the member pointed to by first to second (using the oper function) and puts the result
starting from the element pointed to by start. It returns a pointer to the last modified element.

We use the three mutating algorithms in Program 19.26. We create a vector of integers,
we then reverse the elements in the vector, we then rotate the elements, and finally we create
a random shufflle of the vector.

Table 19.7 Some mutating algorithms

void generate(BdIter first, BdIter last, gen);

void reverse(BdIter first, BdIter last);

void rotate(FwIter first, FwIter middle, FwIter last);

void random_shuffle(BdIter first, BdIter last);

outIter transform(inIter first, inIter second, outIter start, oper);

Program 19.26	 Testing	mutating	functions

1
2
3
4
5
6
7
8
9

/***
* A program to use some mutating algorithms *
 ***/

#include <vector>
#include <algorithm>
#include <iostream>
#include <iomanip>
using namespace std;

(continued)

for23380_ch19_852-914.indd 902 11/6/18 3:34 PM

19.7 Algorithms 903

Program 19.26	 Testing	mutating	functions	(Continued)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

// Definition of print function
void print(int value)
{

cout << value << " ";
}

int main()
{

// Instantiation of a vector object
vector <int> vec ;
// Adding six values
vec.push_back(11);
vec.push_back(14);
vec.push_back(17);
vec.push_back(23);
vec.push_back(35);
vec.push_back(52);
// Printing original values
cout << "Original vector" << endl;
for_each(vec.begin(), vec.end(), print);
cout << endl << endl;
// Reversing the values and print the vector
cout << "Vector after reversing the order" << endl;
reverse(vec.begin(), vec.end());
for_each(vec.begin(), vec.end(), print);
cout << endl << endl;
// Rotate the values and print the vector
cout << "Vector after rotating the order" << endl;
rotate(vec.begin(), vec.begin() + 2, vec.end());
for_each(vec.begin(), vec.end(), print);
cout << endl << endl;
// Random shuffle the value print the vector
cout << "Vector after random shuffle" << endl;
random_shuffle(vec.begin(), vec.end());
for_each(vec.begin(), vec.end(), print);
cout << endl << endl;
return 0;

}

Run:
Original vector
11 14 17 23 35 52

(continued)

for23380_ch19_852-914.indd 903 11/6/18 3:34 PM

904 Chapter 19 Standard	Template	Library	(STL)

Program 19.26	 Testing	mutating	functions	(Continued)

Vector after reversing the order
52 35 23 17 14 11

Vector after rotating the order
23 17 14 11 52 35

Vector after random shuffle
23 14 35 52 17 11

19.7.3 Sorting and Related Algorithms
The <algorithm> header file also defines several algorithms that either sort the sequence or
apply operations that are related to sorting. We list eight of these algorithms in Table 19.8
and give some examples.

The first algorithm in Table 19.8 sorts a sequence, but we must be sure that the
sequence supports random-access iterators. The second uses the binary search algorithm
to find an element in a sequence. The third finds the first minium element, and the
fourth finds the first maximum element. The last four algorithms apply set operations
on sorted sequences. In other words, they take a sorted sequence as a set and apply
the set_difference, set_intersection, set_union, and set_symmeteric_difference to these
sorted sequences. Since a set container is already a sorted sequence, we can apply these
operations to the set associate.

In Program 19.27 we create a vector of integers and then sort them first in ascending
order and then in descending order. The sort algorithm is controlled by one of two function
objects: less <T> and greater <T>. To sort in ascending order, we use the default function
less <T>. To sort in descending order, we change the behavior of the sorting algorithm by
using the greater <T> function object as the third algorithm in the parameter list.

Table 19.8 Sorting and related algorithms

void sort(RndIter first, RndIter last);

bool binary_search(FwIter first, FwIter last, const T& value);

FwIter min_element(FwIter first, FwIter last);

FwIter max_element(FwIter first, FwIter last);

OutIter set_difference(InIter first1, InIter last1, InIter first2, InIter last2,
 OutIter result);

OutIter set_intersection(InIter first1, InIter last2, InIter first2, InIter last2,
 OutIter result);

OutIter set_union(InIter first1, InIter last1, InIter first2, InIter last2,
 OutIter result);

OutIter set_symmetric_difference(InIter first1, InIter last1, InIter first2,
 InIter last2, OutIter result);

for23380_ch19_852-914.indd 904 11/6/18 3:34 PM

19.7 Algorithms 905

Program 19.27	 Using	sorting	algorithms

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/***
* A program that sorts a vector using sort algorithm *
 ***/

#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

// Definition of print function
void print(int value)
{

cout << value << " ";
}

int main()
{

// Instantiation of a vector object
vector <int> vec ;
// Pushing six elements into the vector and print them
vec.push_back(17);
vec.push_back(10);
vec.push_back(13);
vec.push_back(18);
vec.push_back(15);
vec.push_back(11);
cout << "Original vector" << endl;
for_each(vec.begin(), vec.end(), print);
cout << endl << endl;
// Sorting the vector in ascending order and print it
cout << "Vector after sorting in ascending order" << endl;
sort(vec.begin(), vec.end());
for_each(vec.begin(), vec.end(), print);
cout << endl << endl;
// Sorting the vector in descending order and print it
cout << "Vector after sorting in descending order" << endl;
sort(vec.begin(), vec.end(), greater <int>());
for_each(vec.begin(), vec.end(), print);
cout << endl << endl;
return 0;

}

Run:
Original vector
17 10 13 18 15 11

(continued)

for23380_ch19_852-914.indd 905 11/6/18 3:34 PM

906 Chapter 19 Standard	Template	Library	(STL)

Program 19.27	 Using	sorting	algorithms	(Continued)

Vector after sorting in ascending order
10 11 13 15 17 18

Vector after sorting in descending order
18 17 15 13 11 10

We now test the binary_search() algorithm. The sequence must be sorted for this algorithm
to work correctly. Program 19.28 shows a simple example in which we create a vector of
integer values, we sort it, and then we search the vector for two values: one in the vector and
the other not in the vector.

Program 19.28	 Using	a	binary	search	algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/***
* A program that uses binary search on a vector *
 ***/

#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

int main()
{

// Instantiation of a vector object
vector <int> vec ;
// Adding six elements to the vector
vec.push_back(17);
vec.push_back(10);
vec.push_back(13);
vec.push_back(18);
vec.push_back(15);
vec.push_back(11);
// Sorting the vector
sort(vec.begin(), vec.end());
// Searching vector for two values
cout << "Found 10 in vector? " << boolalpha;
cout << binary_search(vec.begin(), vec.end(), 10) << endl;
cout << "Found 19 in vector? " << boolalpha;
cout << binary_search(vec.begin(), vec.end(), 19) << endl;
return 0;

}

Run:
Found 10 in vector? true
Found 19 in vector? false

for23380_ch19_852-914.indd 906 11/6/18 3:34 PM

19.7 Algorithms 907

Figure 19.16 shows union operations applied to first and second sets. The result is the
shaded area. The union is a set that includes all elements in first and second.

Program 19.29 shows how we can apply the union operation on the two sets (first and
second).

Program 19.29	 Finding	the	union	of	two	sets	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/***
* A program that finds the union of two sets *
 ***/

#include <set>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

// Print function
void print(int value)
{

cout << value << " ";
}

int main()
{

// Creation of the first set
set <int> first ;
first.insert(10);
first.insert(19);
first.insert(14);
first.insert(17);
first.insert(13);
cout << "Elements of first set" << endl;
for_each(first.begin(), first.end(), print);
cout << endl << endl;
// Creation of the second set
set <int> second;
second.insert(16);
second.insert(14);

set_union (first, second)

11 16 20

first second

11 13 14 16 2010 13 14 17 19

141310 17 19

Figure 19.16	 Graphical	representation	of	set	union

(continued)

for23380_ch19_852-914.indd 907 11/6/18 3:34 PM

908 Chapter 19 Standard	Template	Library	(STL)

Program 19.29	 Finding	the	union	of	two	sets		(Continued)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

second.insert(13);
second.insert(11);
second.insert(20);
cout << "Elements of second set" << endl;
for_each(second.begin(), second.end(), print);
cout << endl << endl;
// Finding the union of two sets and storing in a vector
vector <int> temp(10);
vector <int> :: iterator iter;
vector <int> :: iterator endIter;
endIter = set_union(first.begin(), first.end(), second.begin(),

second.end((), temp.begin());
// Copying elements from the vector to the result set
set <int> result;
for (iter = temp.begin(); iter != endIter; iter++)
{

result.insert(*iter);
}
cout << "Elements of result set" << endl;
for_each(result.begin(), result.end(), print);
cout << endl << endl;
return 0;

}

Run:
Elements of first set
10 13 14 17 19

Elements of second set
11 13 14 16 20

Elements of result set
10 11 13 14 16 17 19 20

In Program 19.29 the size of the target sequence must be large enough to accommodate
the result. This is not possible with a set because any set when created is empty. To solve
the problem, we have created a vector to temporarily hold the result of an operation and then
copied the part of the vector that holds the result to the resulting set. Figure 19.17 shows the
process we have used.

19.7.4 Numeric Algorithms
There are a few numeric algorithm, defined in the <numeric> header file, that perform
simple arithmetic operations on the elements of a container or containers. Note that these
algorithms do not have to be applied on arithmetic types (such as int or double); as long as
the corresponding operation is defined for a type, these algorithms can be applied to them.
Table 19.9 shows one commonly used numeric algorithm.

for23380_ch19_852-914.indd 908 11/6/18 3:34 PM

19.7 Algorithms 909

The accumulate algorithm finds the sum of the value in a range [first, last) and adds the
result to the init value.

Program 19.30 uses the accumulate algorithm.

10 13 14 17 1911 13 14 16 20 first set

temp vector

second set

begin() end() begin() end()

10 11 19 2016 1713 14

temp.begin() endIter

result set 10 11 19 2016 1713 14

Figure 19.17	 Using	the	set_intersection	operation	

Table 19.9 The accumulate algorithm

T accumulate(InIter first, InIter last, T init);

Program 19.30	 Testing	the	accumulate	algorithm	

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/***
* A program to test the numeric algorithm accumulate *
 ***/

#include <vector>
#include <numeric>
#include <iostream>
using namespace std;

// A print function
void print(int value)
{

cout << value << " ";
}

int main()
{

// Instantiate and print a vector
vector <int> vec ;
vec.push_back(17);
vec.push_back(10);
vec.push_back(13);
vec.push_back(13);
vec.push_back(18);

(continued)

for23380_ch19_852-914.indd 909 11/6/18 3:34 PM

910 Chapter 19 Standard	Template	Library	(STL)

Program 19.30	 Testing	the	accumulate	algorithm	(Continued)

24
25
26
27
28
29
30
31
32

vec.push_back(15);
vec.push_back(17);
for_each(vec.begin(), vec.end(), print);
cout << endl;
// Calculate the sum and print it
int sum = accumulate(vec.begin(), vec.end(), 0);
cout << "Sum of elements: " << sum;
return 0;

}

Run:
17 10 13 13 18 15 17
Sum of elements: 103

K e y T e r m s

algorithm
associative container
bidirectional iterator
container
container adapter
deque class
forward iterator
input iterator
iterator
list class
map
mutating algorithm

non-mutating algorithm
numeric algorithm
output iterator
priority_queue class
queue class
random-access iterator
sequence container
set
sorting algorithm
stack class
vector class

The Standard Template Library (STL) is the result of years of research to solve two impor-
tant issues: reusability of software and creation of components each with a distinct func-
tionality. STL is made of four components: iterators, containers, functions, and algorithms.

Iterators are tools that allow us to access objects in a container. They are based on the
pointer concept that allows us to reference objects using their addresses.

A sequence container preserves the original order of items added to the container. It
consists of three classes: vector, deque, and list. Container adapters include stack, queue, and
priority-queue classes. Associative containers hold elements stored and retrieved by a key.
We discussed two classes of associative containers: set and map.

STL uses either a pointer to function to a function object in algorithms. If an algorithm
uses a pointer to function, the user needs to provide the function definition. If an algorithm
uses a function object, it is normally defined in the collection.

Algorithms consist of template global functions that can be applied to any container
type that supports the iterators required by the algorithm. We have divided algorithms into
four groups: non-mutating, mutating, sorting, and numeric.

S u m m a r y

for23380_ch19_852-914.indd 910 11/6/18 3:34 PM

Programs 911

P r o b l e m s

PR-1. Write the definition of a generic function that prints the value of all elements in a
vector of any type.

PR-2. Write the definition of a generic function that prints the value of all elements in a
list of any type.

PR-3. Write the code to create a vector of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 values using the at()
member function.

PR-4. Write the code to create a list of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 values.
PR-5. Write the statements to swap the values at index 2 and index 3 in a vector of type

integer named vec.
PR-6. Write the statements to swap the values of second and third elements in a list of

type integer named lst.
PR-7. The push_front operation is not defined for a vector. Write code to insert a value at

the front of a vector of type integer.
PR-8. The pop_front operation is not defined for a vector. Write code to remove the first

element from a vector of type integer.
PR-9. The remove function is not defined for a vector. Write code to simulate the remove

function for a vector.
PR-10. Assume we insert the following integer values into an empty priority queue: 14, 24,

76, 18, 20, and 54. We then pop two integers. What is the next integer to be popped?
PR-11. Assume we insert the following values into a set: 20, 17, 20, 14, 15, 19, 17, and

10. What would be printed from the size() member function after all insertions?
PR-12. Assume we insert the following pairs into a map: (20, 10), (14, 40), and (17, 3).

What is the order of these items in the map?
PR-13. Assume we have the following items in a set named st: 20, 14, 18, 22, 76. Write

the code to print 18 and 22.
PR-14. Assume we have inserted the pairs (15, 10), (16, 10), (6, 16), and (12, 8) into a

map named mp. What would be printed from the following code?

cout << mp [6] << endl;
cout << mp [16] << endl;
cout << mp [10] << endl;

PR-15. Write the code to create a map and use the insert member function to insert the
following pairs in it: (3, 10), (5, 12), and (7, 8).

P r o g r a m s

PRG-1. Since the pointers in an array are compatible with random-access iterators, we
can use some algorithms defined in the STL with arrays. Write a program that
initializes an array of five elements, defines a print function, and uses the for_
each algorithm to print the values in the array.

PRG-2. The max and min functions defined in <algorithm> can be used to compare any
two objects for which the less-than (<) and greater-than (>) operators are defined.
Use these functions in a small program to compare two integers, two doubles, and
two strings. These two templated functions are defined as shown below:

for23380_ch19_852-914.indd 911 11/6/18 3:35 PM

912 Chapter 19 Standard	Template	Library	(STL)

const T& max (const T& first, const T& second)
const T& min (const T& first, const T& second)

PRG-3. Write a program that creates a vector of a few names. Then print the names, sort
the names, and print the sorted names.

PRG-4. Since a list does not support random-access iterators, we cannot apply the
generic sort algorithm to a list. The STL library, however, provides a customized
sort operation for a list. Write a program that creates a list of integers, and then
sort the list.

PRG-5. Since array pointers have random access capability, we can use the generic sort
algorithm with an array. Create an array of 10 characters and then sort and print
it.

PRG-6. Write a program to create a vector of 10 elements, and then create another
vector. Copy only elements at locations 2 to 6 to the new vector. Print the
elements of both vectors.

PRG-7. Create a vector of 10 random values, and then use the for_each and the
accumulate algorithms to print the values and the sum of them.

PRG-8. Another approach to store random values in a vector is to use the generate
algorithm to assign the return of a function to each member of a container. Write
a program to store 10 random values between 100 and 200 in a vector using a
function named randGen.

PRG-9. Use the min_element and max_element algorithms to find the minimum and
maximum elements in a vector.

PRG-10. One approach to sort an array is to make a set of the array and then copy the set
back to the array. Write a program to do so.

PRG-11. Program 19.29 finds the union of two sets. Design a program that finds the
intersection of two sets. The intersection of two sets is a set that includes only
common elements in the set as shown below:

first second

11 13 14 16 2010 13 14 17 19

set_intersection (first, second)

1413

PRG-12. Program 19.29 finds the union of two sets. Design a program that finds the
difference of two sets. We can have two set differences: first-second and second-
first. The set first-second contains all elements that are in the first but not in the
second. The set second-first contains all elements that are in the second but not
in the first, as shown below:

set_difference (first, second)

first second

11 13 14 16 20

set_difference (second, first)

11 16 20

10 13 14 17 19

10 17 19

for23380_ch19_852-914.indd 912 11/6/18 3:35 PM

Programs 913

PRG-13. Program 19.29 finds the union of two sets. Design a program that finds the
symmetric difference of two sets. The symmeteric difference of two sets contains
elements that are in the first or the second, but not in both.

set_symmetric_difference (first, second)

first second

11 13 14 16 20

11 16 20

10 13 14 17 19

10 17 19

PRG-14. We can use the generate algorithm with a function object to create a list of
items in which each item depends on the previous one. For example, we can
create a list of even integers using a functor named Even. The functor returns the
previous value plus 2. Write a class Even, overload the function operator, and
then use the generate algorithm to create a list of the first 10 even values.

PRG-15. One of the functions that is a good candidate for a function object is the
Fibonacci sequence. We know that fib(n) = fib(n − 1) + fib(n − 2). In other
words, we must keep the values of two previous terms to calculate the new term.
Write a program to design a class Fib, and overload the function operator for the
class. Then use the function object to store 11 Fibonacci numbers in a vector:
fib(0) to fib(10).

for23380_ch19_852-914.indd 913 11/6/18 3:35 PM

This page intentionally left blank

915

A
abs (...), 213
Abstract classes, 567

declaration of pure virtual functions, 568
definition of pure virtual functions, 568
without instantiation, 568
interfaces, 568
Shape Class, 568–579

Access modifiers, 279
for data members, 279–280
group modifier access, 280
for instance data member, 294
for instance member functions, 295
for member functions, 280

Accessor member function, 298
Accessors and mutators, 320
Accumulate algorithm, 909–910
Ada, 7
Adapter, 753–755
Add operator, 603
Addition, 66, 431
Additive expressions, 66–67
Address-of operator, 394, 395,

603, 604
Addresses, 391–393

in memory, 391–392
of variable, 392–393

Adjustfield, 760
Aggregation, 520–524
Algorithm, 11, 853, 899

generalization, 12–13
mutating, 902–904
non-mutating, 900–902
numeric, 908–910
sorting and related,

904–908
Aliases, 712
alignas, 33

alignof, 33
Allocate array operator, 603
Allocate object operator, 603
ALU. See Arithmetic-logical unit (ALU)
And, 33
AND expression, 128–129
and_eq, 33
Any exception, 672
Any or all queries, 201

developing algorithm, 201–202
problem, 201
writing program, 202–203

Application class program, 523–524
Application file, 312, 325–326, 331, 643–644,

821–822
for Course class, 426, 430
creation, 316–317
program, 835–836, 848–849

Application program, 532, 562–563
Application software, 5
Application-specific software, 5
Arguments, 212

manipulators with, 90–91
Arithmetic data types, 71
Arithmetic-logical unit (ALU), 1
Arity, 605
Array attributes, 338–339

capacity, 339
size, 339
type, 339

Array subscript operator, 603
Arrays, 338, 616

accessing operations, 349
declaration, 339–340
deleting element, 353–354
finding smallest and largest, 349–351
finding sum and average, 349
using functions with arrays, 354–359

Index

for23380_idx_915-942.indd 915 06/11/18 2:50 pm

916 Index

Arrays (Continued)
implementation, 815
inserting element, 354
modifying operations, 352
more on arrays, 349–363
multidimensional arrays, 363–369
one-dimensional arrays, 338–349
parallel arrays, 359–363
program design, 369–376
searching for value, 352
sorting array, 353
swapping, 352–353

Arrays and pointers, 405
one-dimensional arrays and pointers, 405–413
two-dimensional arrays and pointers, 413–414

ASCII encoding system, 44
Asin, 216
asm, 33
Assembler, 5
Assembly languages, 5
Assert function, 300
Assignment expressions, 67

compound assignments, 69–70
simple assignment, 67–68

Assignment operator, 31, 117, 505, 610–611
Associate array. See Map
Association, 519

aggregation, 520–524
composition, 524–527
between courses and students, 520
relationship, 519

Associative containers, 884
map, 891–894
public interface, 884–885
set, 886–891

Associativity, 60, 76, 79–81, 114, 604
Asymmetric-key cryptography, 768
Atan, 216
Attributes, 274
auto, 33
Automatic local variable, 253–254

B
BASIC, 7
bitand, 33
bitor, 33
Bitwise not operator, 603
Bitwise shift left operator, 603

Bitwise shift right operator, 603
Body, 22, 176–180
bool, 33
Bool, 47, 73
boolalpha, 86–87
Boolean, 392

expression, 161
use of floating-point values in, 174

literals, 47–48
manipulators for, 86–87

type, 46
value, 623
variables, 47

Braces
closing, 22
opening, 22

break statements, 33, 190
switch statement with, 137–139

Buffer, data storage in, 718–719
Bugs, 209
Built-in data types, 37
Bus, 1

C
C programming, 7
C strings, 50, 443

library, 444–445
operation on, 445

accessing characters, 452–453
comparing C strings, 456–457
concatenation, 457–458
construction, 445–447
copying, 448–449
destruction, 447
input and output, 449–452
problems with C strings, 460
searching for any character in set, 455
searching for character, 453–454
searching for substring, 454–455
tokenizing, 458–459

reading, 726–727
strcat() function, 457
strchr function, 453
strcmp function, 456
strcpy() function, 448

C-type strings, input/output of, 728
C++ 11 standard, 221–222
C++ language, 7, 213, 602, 603–604

for23380_idx_915-942.indd 916 06/11/18 2:50 pm

Index 917

paradigms in, 10
C++ programming, 19–26, 273, 276

components, 32–36
constants, 31–32
data types, 36–51
values, 27–31
variables, 26–27

C++ run-time environment, 212
C++ strings, 50

class, 460
general design idea, 460–461
input/output of, 728
library, 461–463
operations defined for, 463

accessing characters, 468–471
comparing strings, 475–480
construction, 463–464
conversion, 484
copy construction, 464
destruction, 464
input and output, 466–468
modifying operations, 480–481
overloaded operators, 481–484
partial or total erasure, 481
retrieving substring, 471–472
searching for character, 472–474
size and capacity, 464–466
tokenizing, 474–475

calcEarnings function, 244
Called function, 385
Calling function, 385
Calling static member functions,

304–311
Capacity() function, 869
Carriage return, 45, 742
case, 33
CASE. See Computer-assisted software engineering

(CASE)
Casting. See Explicit type conversion
catch, 33
Catch clause, 663, 664
cctype, 219
ceil, 213
Central processing unit (CPU), 1–2
cerr object, 721
Changing pointers, 398–399
Changing value, 384–385
char, 33, 44, 47, 73, 394

char16_t, 33
char32_t, 33
Character, 392
Character classification functions, 219

isalnum, 219
isalpha, 219
iscntrl, 219
isdigit, 219
isgraph, 219
islower, 219
isprint, 219
ispunct, 219
isspace, 219
isupper, 219
isxdigit, 219

Character conversion functions, 219
tolower, 219
toupper, 219

Character functions, 218–220
character classification functions, 219
character conversion functions, 219–220

Character literals, 44–46
Character member functions, 724–727
Character type, 44

character literals, 44–46
character variables, 44

Character variables, 44
Characteristics of stream objects, 720
cin object, 29–31, 721
Ciphertext, 768, 769
Class, 33, 37, 275, 392, 597

application, 282–283
association, 519–527
body, 278
course, 539–540
definition, 278–280
dependency, 528–532
designing, 319, 320

fraction class, 320–327
time class, 327–331

example, 276–278
exceptions, 675

in constructors, 675–682
in destructors, 682

header, 278
inline functions, 281–282
invariants, 299–302
member functions, 280–281

for23380_idx_915-942.indd 917 06/11/18 2:50 pm

918 Index

Class (Continued)
program design, 532–546
in programs, 274

data members, 274
member function, 275

relationship among, 496
scope, 281
structs, 283
type to fundamental type, 626

Class template, 703, 711. See also Function template
aliases, 712
compilation, 707–711
friend function, 712
implementation, 704–706
inheritance, 712
interface, 703–704
in retrospect, 712–713

clog object, 721
close() function, 751
closing braces, 22, 98, 208
COBOL. See Common Business-Oriented

Language (COBOL)
Code, 321–322, 328, 816–817

errors, 15, 16
Matrix class, 432–437
memory, 415, 673

Comments, 19, 35
multiple-line, 36
nesting, 36
single-line, 35

Common Business-Oriented Language
(COBOL), 6

Communication system, 3, 4
Commutativity, 605
Compact initializer, 447
Comparing pointers, 410
Comparison of loops, 143
Compilation, 6, 707

example, 708–711
inclusion approach, 707
separate compilation, 707–708

Compile programs, 14
Compile-time binding. See Static binding
Compile-time memory, 417
Compiler, 14, 240, 246
Compiling, linking, and running, 317, 326–327, 331
compl, 33
Complex decisions, 126

logical expressions, 126–134
Composition, 524–527
Compound addition and subtraction, 409
Compound assignments, 69–70

operators, 611–613
Compound statement, 96–97
Compound type, 381
Computer

hardware, 1
communication system, 3, 4
components, 2
CPU, 1–2
input system, 3
output system, 3
primary memory, 2–3
secondary storage, 3

languages, 5
evolution, 5
high-level, 6–7
machine, 5
symbolic, 5

memory, 391
software, 4

application, 5
system, 4

system, 1–5
Computer-Assisted Software Engineering

(CASE), 4
Concatenation, 457–458
Concrete class, 567
Conditional expressions, 142. See also Logical

expressions
comparison, 143–144
structure, 142–143

Console classes, 720
Console objects, 720–721
Console streams, 720. See also File streams
const, 33
const bool operator! (), 723
Const iterator, 856
Const modifier, 385, 599
const_cast, 33
Const_iterator, 856
Constant declaration, 95
Constant modifiers, 397

changing pointers, 398–399
controlling data change, 397–398

Constant pointer, 381

for23380_idx_915-942.indd 918 06/11/18 2:50 pm

Index 919

Constantness, 856
Constants, 31–32
constexpr, 33
Constructors, 283, 284, 285–286, 505, 506,

558–565, 822
declaration, 284–285
exception in, 675

creation of objects in stack, 675–676
partial creation of object in heap, 676–678
try-catch block in, 678–682

Container adapters, 877
priority_queue class, 883–884
public interface, 877
queue class, 881–882
stack class, 877–880

Containers, 852
Continue statement, 33, 190, 191
Control unit, 1
Controlling data change, 397–3987
Conversion

implicit type change, 73–75
operator, 626
type, 625–626

Converting decimal number to hexadecimal,
829–831, 878–879

Copy constructor, 284, 285, 287, 464
Copying, 448–449
count algorithm, 900
count_if algorithm, 900
Counter, 159
Counter-controlled loop, 162
Counter-controlled while statement, 162–167
Course class, 425

data members, 425, 426
input file, 426
interface, implementation, and application files,

426–430
member functions, 425

cout object, 29–31, 721
CPU. See Central Processing Unit (CPU)
Creating a delay, 174
Creating and destroying objects, 287–288
Cryptography, 768
cstdlib, 222
ctime, 220
Current date and time, 637
Customized functions, 484–487
customized.h, header file, 484

D
Dangling else, 123

problem, 123
Dangling pointer, 421
Data categorization, 839–841
Data Encryption Standard (DES), 769
Data exchange, 233

comprehensive example, 240–243
passing data, 233–239
returning data, 239–240

Data items, 7
Data members, 274, 321, 328, 425, 426

access modifiers for, 279–280
declaring, 278

Data representation, 717
role of streams, 718
text vs. binary input/output,

718–719
Data storage in memory, 718
Data structures, 813

binary search trees, 841–849
goal, 815
implementation, 815
interface, 814–815
objects relationship, 814
queues, 832–841
singly linked list, 815–825
stacks, 825–832

Data types, 36, 602
boolean type, 46–48
in C++, 37
character type, 44–46
floating-point type, 48–49
integer type, 37–44
String class, 50–51
void type, 49–50

Data validation, 182–183
Date class, 637

invariants, 637
strategies, 637

Day Number, 150–152
De Morgan’s law, 133
Debugging, 209
dec, 86, 87
Decimal point, manipulators for, 88
Decimal system, 488
Decimal to hexadecimal number conversion,

829–831

for23380_idx_915-942.indd 919 06/11/18 2:50 pm

920 Index

Decisions on specific values
decision-making processes, 134–135
switch statement, 135–142

Declaration, 230–233
of data members, 278, 313
of member functions, 280
statement, 93

constant declaration, 95
variable declaration, 94

static data members, 303
two-dimensional arrays, 364

decltype, 33
Decrement operators, 409
default case, 33, 139–141
Default constructor, 244–245, 285, 463, 463–464
Degree of polynomial, 644
Delay creating, 174
Delegation, 506

of duty, 504–505
Delete array operator, 603
Delete object operator, 603
Delete operator, 33, 418–420, 558
Delimiters, 532
Dependency, 528

comprehensive example, 528–532
UML diagrams, 528

Deque class, 866
application, 867–868
operations, 866–867

Dequeue, 833
Dereference, 395
Dereference operator, 603
Derived class, 497
DES. See Data Encryption Standard (DES)
Designing classes, 626

Date class, 637–644
files, 638–644
Fraction class with overloaded operators,

627–637
polynomials, 644–652

Destruction, 842
Destructors, 283, 286, 287, 505, 506, 558–565, 822

declaration, 286
exception in, 682

Dictionary. See Map
Divide operator, 603
Division, 65
do statement, 33

do-while loop, 180
analysis, 183–184

Do-while statement, 180
analysis of do-while loop, 183–184
event-controlled loop, 180–183

Domain_error class, 684
Double, 33
Double constant, 31
Double floating-point type, 48
Double quote, 46
Double type, 602, 645
Double variable, 394
Doubly linked list, 815
Duration, 101
Dynamic binding, 565–566
Dynamic memory, 418
Dynamic-cast operator, 567
dynamic_cast, 33

E
Early binding. See Static binding
Editor, text, 14
Else, dangling, 123
else statement, 33, 121
empty function, 465
Empty-body loop, 174
Encapsulation, 294, 318

design of class, 319
effect, 319
public interface, 319–320
use of class, 319

end() iterator, 859
endl manipulator, 23, 86
Enqueue, 833
enum, 33
Enumeration, 37
EOF-controlled loop, 169
EOF-controlled while loop, 169–171
eofbit, 722
Equality expressions, 112, 113

associativity, 114
equal, 113
not equal, 113
pitfall, 114
precedence, 114

Equality operator, 117, 623
Erasure, 823–825, 863, 869
Error, 15

for23380_idx_915-942.indd 920 06/11/18 2:50 pm

Index 921

checking, 209
code, 15, 16
logic, 16
specification, 15, 16

Error handling, traditional approaches to, 657
function return value for error checking,

661–662
problems with traditional approaches, 663
run-time environment 658–660
use error checking, 660–661
use function return value, 661–663

Euclidean algorithm, 781
Event simulation, 836–839
Event-controlled loop, 167, 180

data validation, 182–183
at least one iteration, 180–182

Event-controlled while loop, 167
creating delay, 174
EOF-controlled while loop, 169–171
flag-controlled while loop, 171–173
pitfalls, 173

empty-body loop, 174
infinite-iteration loop, 173–174
use of floating-point values in Boolean

expressions, 174
zero-iteration loop, 173

sentinel-controlled while loop, 168–169
Exception

in classes, 675–682
in constructors, 675–682
in destructors, 682
propagation, 671

Exception handling approach, 657, 663
exception propagation, 671
generic catch clause, 670
hidden throw statement, 670
multiple catch clauses, 670
position of throw statement, 669
rethrowing exception, 671–672
stack unwinding, 673–675
standard exception classes, 682–688
three patterns, 664–669
traditional approaches to error handling, 657–663
try-catch block, 663–664

Exception specification, 672
any exception, 672
no exception, 673
predefined exceptions, 672

Exchangeable objects, 554
Executable file, 14
Executable program, 14
exp, 213
Explicit, 33
Explicit initialization, 341
Explicit inline function, 282
Explicit type conversion, 71
Explicit type determination, 699
Exponent, 196
Export, 33
Expression statement, 95–96
Expressions, 59

additive, 66–67
assignment, 67–70
C++, 60
equality, 112–114
formatting data, 85–93
literal, 61
lvalue and rvalue, 70
multiplicative, 65

division, 65
remainder, 65

order of evaluation, 76–81
overflow and underflow, 81–85
postfix, 159
prefix, 159–161
primary, 61

name, 61
parenthetical, 62–63

relational, 112–114
type conversion, 71–76
unary, 63

minus, 63
plus, 63

Extern, 33, 94
Extracting fundamental data type, 728
Extraction operators, 605, 623–624

F
Factorial, 194

developing algorithm, 194
function, 779–780
problem, 194
writing program, 194–196

failbit, 722
Failure class, 686
fall through flow, 135

for23380_idx_915-942.indd 921 06/11/18 2:50 pm

922 Index

False, 33
False literal, 46, 47
Fibonacci numbers, 782

base and general cases, 782
checking for palindromes, 786–788
recursive solution to, 783–784
recursive trace, 783
reversing string, 784–786

FIFO. See First-in-first-out (FIFO)
File input/output, 729–732

connect file (Open), 730
construct stream, 729
disconnect file (Close), 730
opening for input/output, 737–738
opening modes, 732
read and write, 730
testing opening success, 730

File streams, 720, 729, 744. See also Console
streams

binary input/output, 744–751
member functions, 738–739
opening modes, 732–738
sequential vs. random access, 740–743

Files, 638
application, 643–644
implementation, 639–643
interface, 638–639

fill, 757
findGrade function, 243
findMultiplier function, 257
First-in-first-out (FIFO), 832, 881
Fixed format, 86, 88
Flag-controlled loop, 171
Flag-controlled while loop, 171–173
Float, data type, 33, 73
Float floating-point type, 48
Floating point, 392, 602
Floating-point literals, 49
Floating-point type, 48–49
Floating-point values

in Boolean expressions, 174
overflow and underflow in,

84–85
Floating-point variables, 48
floor, 213
for loop, 33, 183
for statement, 175

body, 176–180

header, 175–176
for-each algorithm, 900
Formatting data, 85, 755

direct use of flags, fields, and variables, 755–759
manipulators, 760–766

for input, 91–93
for output, 85–91

predefined manipulators, 759–760
Formatting fields, 755–757
Formatting flags, 755
Formatting variables, 757–759
Formula Translation (FORTRAN), 6
Forward iterator, 855
Fraction class, 320, 605, 622, 626

application file, 325–326
compiling, linking, and running, 326–327
implementation file, 322–325
interface file, 321–322
invariants, 321
with overloaded operators, 627

implementation file, 628–637
interface file, 627–628

Fraction type, 597
Free memory, 418
Frequency array, 369

developing algorithm, 370
understanding problem, 370
writing program, 370–372

Friend function, 33, 621, 712
friend operator+() function, 875
fstream class, 720, 729
Function call, 211–212
Function call operator, 603
Function declaration, 211
Function definition, 210–211
Function object, 619, 853
Function overloading, 245–248
Function prototype. See Function declaration
Function scope, 252
Function shadowing, 249
Function template, 693, 695. See also Class

template
family of functions, 693–695
instantiation, 697
interface and application files, 702–703
syntax, 695–697
variations, 697

explicit type determination, 699

for23380_idx_915-942.indd 922 06/11/18 2:50 pm

Index 923

nontype template parameter, 698–699
overloading, 701–702
predefined operation, 699
specialization, 699–701

Function-try block, 678–682
Functional paradigm, 9–10
FunctionOne, 597
Functions, 8, 22, 208, 853, 894

arguments and parameters, 212
with array parameters, 410–413
with arrays, 354
benefits, 209–210
body, 210
in C++, 208
call operator, 619–621
data exchange, 233–244
easier to write simpler task, 209
error checking, 209
header, 210
library, 210, 213–224
no returning array from, 358–359
objects, 896–899
objects in STL algorithms, 897–898
operator format, 605
parameters, 244–248
passing arrays to, 355–358
pointer to, 894–896
program design, 256–265
returns, 389

value for error checking, 661–662
reusability, 210
scope of function names, 252
scope of function parameters, 252–253
signature, 245
unary functor, 898–899
user-defined, 224–233

Functions, passing two-dimensional arrays to,
364–367

Functors, 896–899
Fundamental data types, 19
Fundamental type to class type, 625–626
Future value of fixed investment, 256

developing algorithm, 257
structure chart, 257
understanding problem, 257
writing program, 258–261

Future value of periodic investment, 261–265
developing algorithm, 261

understanding problem, 261
writing program, 262–265

G
GCD. See Greatest common divisor (GCD)
General case, 777
General-purpose software, 5
Generic catch clause, 670
Generic pointer, 400
Generic programming, 693–713
George Bool, 46
getData function, 227
getInput function, 257
getline function

in C strings, 451
in C++ strings, 451, 467–468

getRadius function, 282
getScore function, 243
Getter. See Accessor member function
Global functions, 621
Global objects, 415
Global scope, 250–252

scope resolution operator, 251–252
shadowing in, 250–251

Global variables, 94
GMT. See Greenwich mean time (GMT)
goodbit, 722
Goto statement, 33, 190–191
Greatest common divisor (GCD), 780–782
Greenwich mean time (GMT), 221
Greeting function, 225–226
Group modification, 280
Group modifier access, 280
Grouping, 288–294

H
Handling time, 220–221
Hard copy, 3
Hardware, 1

communication system, 3–4
CPU, 1–2
input system, 3
output system, 3
primary memory, 2–3
secondary storage, 3

Header, 22, 175
condition, 176
initialization, 176

for23380_idx_915-942.indd 923 06/11/18 2:50 pm

924 Index

Header (Continued)
updating, 176

Header files, 21
Heap memory, 418, 422, 673

C strings construction in, 447
issues, 420–421
new and delete, 418–420
partial creation of object, 676–678

Helper functions, 789–791
hex, 86, 87, 91
Hexadecimal, 87, 487

converting decimal number to, 829–831,
878–879

Hidden parameter, 297
Hidden throw statement, 670
High-level languages, 6–7
Histogram, 369–372
Hopper, G., 5, 6
Host object, 297, 597–599

I
Identifiers, 32

keyword, 33
Identity, 501
IEEE standard, 48
if statement, 33, 114–118
if-else statement, 118
ifstream class, 720, 729
Imperative paradigm. See Procedural paradigm
Implementation file, 312

for Course class, 427–430
creating, 314–316
date class, 639–643
for fraction class, 322–325
fraction class with overloaded operators,

628–637
program, 834–835, 844–848
stacks, 828–829
time class, 328–330

Implementation of class, 704–706
Implicit capacity, 341
Implicit inline function, 281–282
Implicit type conversion, 71

implicit type change, 73–75
implicit type promotion, 71–72

In-order traversal, 841
Increment operators, 409
Indirection operator, 395, 613–616

Infinite-iteration loop, 173–174
Inheritance, 496, 498, 517–519, 712

blocking, 512
class scope, 503–504
delegation of duty, 504–505
delegation vs. invocation, 506
derived class, 497
general idea, 497–498
Liskov substitution principle, 512–513
private, 518–519
private data members, 502
protected, 518
protected members, 511–512
public, 498–501, 518
public member functions, 502
separate compilation, 312–317
types, 517
UML diagram for, 497
virtual base, 580

Inheritance members not inherited, 505–506
Inheritance tree, 513
Initialization, 94, 255–256, 341

explicit, 341
implicit capacity, 341
partial default filling, 341–342
two-dimensional arrays, 364

accessing elements, 364
subscript operators, 364

Inline functions, 33, 281
explicit, 282
implicit, 281–282

Input file, 426
Input function, 233, 257
Input iterator, 854
Input manipulator

boolalpha, 91
dec, 91
noboolalpha, 91
oct, 91

Input system, 3
Input/output classes, 713, 716, 724

character member functions, 724–727
console streams, 720–724
data representation, 717–719
file streams, 729–751
formatting data, 755–766
of fundamental data types, 727–728
program design, 766

for23380_idx_915-942.indd 924 06/11/18 2:50 pm

Index 925

merging two sorted files, 766–768
symmetric ciphers, 768–773

program related to source and sink, 717
stream classes, 719–720
streams, 717
string streams, 751–755

Insertion operator, 605, 623–624, 822–823, 842,
862–863

Instance, 283
Instance data members, 294

access modifier, 294
Instance member function selectors, 295–296
Instance member functions, 295

access modifier, 295
accessor member function, 298
explicit use of pointer, 297
host object, 297
locking and unlocking, 296–297
mutator member function, 298–299
selectors, 295–296

Instance members, 294
hidden parameter, 297
host object, 297–298

Instances in real life, 273–274
int, 33, 37, 38, 41, 602
Integer, 219, 392
Integer addition or subtraction, 408–409
Integer literals, 41–44
Integer object, 676
Integer to fraction convertion, 625
Integer type, 37

finding size, 41
integer literals, 41–44
integer variables, 38–41

Integer variables, 38–41
Integers, overflow and underflow in, 81

in signed integers, 83–84
in unsigned integers, 81–83

Interface, 568, 814–815
of class, 703–704

Interface file, 312
for Course class, 426–427
creating, 313–314
date class, 638–639
fraction class, 321–322
fraction class with overloaded operators, 627–628
program, 827–828, 833–834, 843–844
time class, 327–328

internal, 86
Invalid_argument class, 684,

687–688
Invariants, 321, 327, 637
Invocation, 505–506
Invoice class program, 531–532
ios class, 719, 755
iostream file, 21, 720
isalpha functions, 219
iscntrl, 219
isdigit, 219
isgraph, 219
islower, 219
isPalidrome function, 786, 790, 791
ispunct, 219
isspace, 219
istream class, 713, 720, 727
istream object, 720–721
istringstream, 751–752
isupper, 219
isxdigit, 219
Iteration, 803
Iterators, 853, 859–862, 869

bidirectional, 855
constantness, 856
forward, 855
input, 854
internal and external, 854
moving directions, 855
output, 855
random-access, 855

J
Java, 7, 498

K
Key, 769
Keyboard, 3
Keywords, 33

and, 33
for, 33
using, 33
alignas, 33
alignof, 33
and_eq, 33
asm, 33
auto, 33
bitand, 33

for23380_idx_915-942.indd 925 06/11/18 2:50 pm

926 Index

Keywords (Continued)
bitor, 33
bool, 33
break, 33
case, 33
catch, 33
char, 33
char16_t, 33
char32_t, 33
class, 33
compl, 33
const, 33
const_cast, 33
constexpr, 33
continue, 33
decltype, 33
default, 33
delete, 33
do, 33
double, 33
dynamic_cast, 33
else, 33
enum, 33
explicit, 33
export, 33
extern, 33
false, 33
float, 33
friend, 33
goto, 33
if, 33
inline, 33
int, 33
long, 33
mutable, 33
namespace, 33
new, 33
noexcept, 33
not, 33
not_eq, 33
nullptr, 33
operator, 33
or, 33
or_eq, 33
private, 33
protected, 33
public, 33
register, 33

reinterpret_cast, 33
return, 33
short, 33
signed, 33
sizeof, 33
static, 33
static_assert, 33
static_cast, 33
struct, 33
switch, 33
template, 33
this, 33
thread_local, 33
throw, 33
true, 33
try, 33
typedef, 33
typeid, 33
typename, 33
union, 33
unsigned, 33
virtual, 33
void, 33
volatile, 33
wchar_t, 33
while, 33
xor, 33
xor_eq, 33

L
Language

assembly, 5
high-level, 6–7
machine, 5
symbolic, 5

Language paradigms, 7
in C++ language, 10
functional paradigm, 9–10
logic paradigm, 10
object-oriented paradigm, 8–9
procedural paradigm, 7–8

larger function, 229
Last-in-first-out (LIFO), 825, 877
Late binding. See Dynamic binding
left, 86
Left operand (lvalue), 610
Length_error class, 684
Library class, 484

for23380_idx_915-942.indd 926 06/11/18 2:50 pm

Index 927

Library functions, 212, 213
character functions, 218–220
handling time, 220–221
mathematical functions, 213–218
random number generation, 221–224

Library of functions, 210
Lifetime, 253

automatic local variable, 253–254
initialization, 255–256
static local variable, 254–255

LIFO. See Last-in-first-out (LIFO)
Line comment, 26
Linear collection of objects, 814
Linear search, 352
Linear transformation, 372

developing algorithm, 373
understanding problem, 372–373
writing program, 373–376

Linearization, 369
Link programs, 14
Linked-list implementation, 815
Linker, 14
Liskov substitution principle (LSP), 512–513, 827
List class, 868

application, 870–876
operations, 869

List objects, 816
Literal constant, 32
Literals, 34–35, 61–62
Loader, 14
Local scope, 248–250

nested blocks, 248–249
overlapped scopes, 248
shadowing in, 249–250

Local variables, 94
log, 213
log10, 213
Logic errors, 15, 16
Logic paradigm, 10
Logical AND operator, short-circuit behavior

with, 134
Logical errors, 683

domain_error class, 684
invalid_argument class, 684
length_error class, 684
out_of_range class, 684

Logical expressions, 126. See also Conditional
expressions

removal of not operator, 132–133
short-circuit behavior, 134
swapping if and else blocks, 133–134
and truth tables, 127

Logical not operator, 603
Logical OR operator, short-circuit behavior

with, 134
Logical-AND expressions, 126, 128–129
Logical-NOT expression, 126, 131–132
Logical-OR expressions, 126, 129–131
long, 33
Long double floating-point type, 48, 602
Long int, 37, 38, 41
Long type, 602
Longlong type, 602
Loops, 159, 184, 776

comparison, 184
data validation, 182–183
do-while statement, 183
nested loops, 184–188
post-test, 180
related statements, 188–191

LSP. See Liskov substitution principle (LSP)
lvalue, 70

M
Machine languages, 5
Main function, 208–209, 212, 225–226, 231, 233,

257, 295, 673
Main memory, 1, 14
makeNode, 816
Manipulators, 85, 760

for adjusting numbers in field, 89–90
without arguments, 762–764
with arguments, 764–766
for base of integers, 87–88
for base prefix, 87
boolalpha, 86–87
for Boolean literals, 86
dec, 86, 87
for different bases, 87
endl, 86
fixed, 86
for fixed or scientific notation, 88
floating-point, 89
for formatting, 761
hex, 86, 87
for input, 91–93

for23380_idx_915-942.indd 927 06/11/18 2:50 pm

928 Index

Manipulators (Continued)
input stream, 91
internal, 86
left, 86
noboolalpha, 86
noshowbase, 86, 87
noshowpoint, 86
noshowpos, 86
nouppercase, 86
oct, 86, 87
for output, 85

with arguments, 90–91
no-argument manipulators, 85–90

related to formatting fields, 759–760
related to formatting flags, 759
related to formatting variables, 760
right, 86
scientific, 86
setfill, 90
setprecision, 90
setw, 90
showbase, 86, 87
showing decimal point, 88
showing letters in uppercase, 89
showing positive sign, 89
showpoint, 86
showpos, 86
unrelated to flags or fields, 760
uppercase, 86

Map, 884, 885, 891
applications, 892–894
operations, 891–892

Mathematical functions, 213
abs, 213
ceil, 213
exp, 213
floor, 213
log, 213
log10, 213
numeric functions, 213–216
pow, 213
sqrt, 213
trigonometric functions, 216–218

Matrix, 413
Matrix class, 431, 626

code, 432–437
operation, 431–432

Max function, 646

Member, overloading as, 605
binary operators, 609–613
other operators, 613

function call operator, 619–621
indirection and member-selector operators,

613–616
subscript operator, 616–619

unary operators, 606–609
Member functions, 275, 280–281, 321, 328, 425,

598, 605, 668, 728
access modifiers for, 280
declaring, 279
grouping, 288–294
locking and unlocking, 296–297
requirement, 288

Member select operator, 283
Member selection, 283
Member selector operators, 295, 296,

603–616
Memory, addresses in, 391–392
Memory allocation, 340–341
Memory leak, 421
Memory management, 414

code memory, 415
heap memory, 418–421
stack memory, 416–417
static memory, 415–416
two-dimensional arrays, 421–425

merge() operation, 869
Merging two sorted files, 766–768
Minus expressions, 63
Minus operators, 603, 606–607
Mixin classes, 586–594
Modern ciphers, 769
Monitor, 3
MonoAlpha class, 770
Monoalphabetic cipher, 769
Monoalphabetic program, 773
Monthly payment of a loan, 256
Moving directions, 855
Multi-way selection, 125

if-else statement, 125
Multidimensional arrays, 363–369

three-dimensional arrays, 369
two-dimensional arrays, 363–369

Multiple catch clauses, 670
Multiple declaration, 94
Multiple inclusion, preventing, 317–318

for23380_idx_915-942.indd 928 06/11/18 2:50 pm

Index 929

Multiple inheritance, 579
classes and objects in, 580
Mixin classes, 586–594
virtual base, 580–586

Multiple-line comments, 36
Multiplication, 65

operation, 431–432
Multiplicative expressions, 65–66, 80
Multiplicity, 382–383, 519
Multiply operator, 603
Multiway if-else selection, 124
Multiway selection, 123–126
mutable, 33
Mutating algorithms, 902–904
Mutator function, 599
Mutator member function, 298–299

N
Name class, 524–525
Namespace, 26, 27, 33
Negate class, 898
Nested blocks, 248–249
Nested if-else statement, 121–123
Nested loops, 184–188
Nesting comments, 36
Networking and network security, 644
new, 33
New line, 23, 45
New operator, 418–420, 567
No binding to values, 383
No combination, 605
No exception, 673
No new operators, 605
No pointer addition, 409
No returning array from function, 358–359
No-argument manipulators, 85
noboolalpha, 86
Node objects, 816
noexcept, 33
Non-linear collection, 850
Non-mutating algorithms, 900–902
Non-overloadable operators, 604
Nonlinear collection of objects, 814
Nonmember, overloading as, 621

binary arithmetic operators, 622
equality and relational operators, 623
extraction and insertion operators, 623–624

Nonmember function, 605

Nonrecursive function, 804, 806–808
Nontail recursion, 789
Nontype template parameter, 698–699
Normalize function, 320
noshowbase, 86, 87
noshowpoint, 86
noshowpos, 86
not, 33
NOT expression, 131–132
not operator, 131

removal of, 132–133
Not recommended for overloading, 604
not_eq, 33
nouppercase, 86
Null pointer. See Pointer to nowhere
Null statement, 96
nullptr, 33
Numeric algorithms, 908–910
Numeric functions, 213–216

O
Object, 8

applying operation on, 282–283
creation, 816

and destroying, 287
in stack, 675–676

instantiation, 282
of objects, 813
in programs, 274–275
relationship, 814
roles, 597

host object, 597–599
parameter objects, 599–600
returned objects, 600–602

Object-oriented paradigm, 8–9
Object-oriented programming, 275, 311, 675

encapsulation, 318–320
preventing multiple inclusion, 317–318
separate compilation, 312–317
separate files, 311–312

oct, 86, 87
ofstream class, 720, 729
One-dimensional arrays, 338

accessing array elements, 342–349
array attributes, 338–339
array declaration, 339–340
declaration, allocation, and initialization,

339–342

for23380_idx_915-942.indd 929 06/11/18 2:50 pm

930 Index

One-dimensional arrays (Continued)
initialization, 341–342
memory allocation, 340–341
out-of-range error, 343
and pointers, 405

functions with array parameters, 410–413
pointer arithmetic, 408–410
program to check address of array element,

406–407
two uses of brackets, 343–349

One-way selection, 114–118
open() functions, 751
Opening modes, 732

for input, 733–734
for input/output, 737–738
for output, 735–737
with stream, 732–733

Operating system, 4
Operation on objects, applying, 282–283
Operations, 645
operator !, 126
operator !=, 126
Operators, 33, 60, 211

addition, 66–67
categories, 603–604
function, 605, 606
in C++, 603–604
logical-and, 126
logical-not, 126
logical-or, 126
non-overloadable, 603–604
not recommended for overloading, 603–604
or operator functions, 605
overloadable, 604
subtraction, 66–67

operator &&, 126
Operator ||, 126
operator ==, 113
operator >, 113
operator >=, 113
Operator function

member, 653
non-member, 653

Operator overloading
designing classes, 626–652
as member, 605–621
as nonmember, 621–624
principles, 602–605

roles of object, 597–602
type conversion, 625–626

Operator void* (), 723
Operator() function, 853
OR expression, 33, 129–131
or_eq, 33
Order of evaluation, 76–81

associativity, 79–81
precedence, 76–79

Original variable, 383
ostream class, 624, 720, 721, 727
ostringstream class, 720, 751–752
Out-of-range error, 343
Out_of_range class, 684
Output function, 233, 257–258
Output iterator, 855
Output system, 3
Overflow, 81

in floating-point values, 84–85
in integers, 81–84

Overflow_error class, 685
Overlapped scopes, 248
Overloadable operators, 604
Overloaded member functions, 503
Overloaded operators, 481–484
Overloading, 701–702

Assignment operator, 610
Binary arithmetic operators, 622–623
Binary operators, 609–610
Equality and relational operators, 623
Extraction and insertion, 623
Extraction and insertion operators, 623–624
Function call operator, 616–621
Indirection operator, 613
as member, 605–621
Member-selector operator, 613
as nonmember, 621–624
Using operators, 605
Plus and minus operators, 606–607
Post-increment and post-decrement operators,

608–609
Pre-Increment and pre-decrement operators,

607–608
principles, 602

operator function, 605
operators or operator functions, 605
rules of overloading, 604–605
three categories of operators, 603–604

for23380_idx_915-942.indd 930 06/11/18 2:50 pm

Index 931

Smart pointers, 614–616
Subscript operator, 616–619
Unary operators, 606

Overridden member functions, 503

P
Pair, 885
Palindrome, 479

checking for, 786–788
Parallel arrays, 359–363
Parameters, 212, 244

constructor, 284, 311
default, 244–245
function overloading, 245–248
list, 210
objects

pass-by-pointer, 600
pass-by-reference, 600
pass-by-value, 599

Parenthetical expression, 62–63
Partial creation of object in heap, 676–678
Partial default filling, 341–342
Partition algorithm, 792–793
Pascal, 7
Pascal coefficients, 424–425
Pass-by-pointer, 238, 401–403, 599, 600
Pass-by-reference, 234–238, 386, 599, 600

characteristics, 387
recommendation, 387
swap function with, 388–389

Pass-by-value, 234, 386, 599
characteristics, 386–387

Passing arrays to functions, 355–358
Passing data, 233

advantages and disadvantages, 238–239
pass-by-pointer, 238
pass-by-reference, 234–238
pass-by-value, 234

Passing pointer to function for array, 410–412
Passing two-dimensional arrays to functions,

364–367
pattern function, 227
Permanent binding, 381–382
Person class program, 522–523, 560–561
pFlag pointer, 394–395
Plaintext, 768, 769
Plus expressions, 63
Plus operators, 603, 606–607

Pointer, 296, 391, 405, 554, 853
addresses, 391–393
applications, 400
using constant modifiers, 397–399
explicit use of pointer, 297
to function, 894–896
to nowhere, 400
one-dimensional arrays and, 405–413
pass-by-pointer, 401–403
to pointer, 399
pointer to pointer, 399
retrieving value, 396–397
return-by-pointer, 403–405
two special pointers, 400
two-dimensional arrays and, 413–414
types, 391, 394–396
variables, 394, 399

indirection, 395
two related operators, 395–396

to void, 400
Pointer (ptr), 559
Pointer arithmetic, 408

comparing pointers, 410
compound addition and subtraction, 409
increment and decrement, 409
integer addition or subtraction, 408–409
no pointer addition, 409
pointer subtraction, 409, 410

Polymorphic variables, 554
Polymorphism, 553

abstract classes, 567–579
array of pointers in, 563–564
binding, 565–566
constructors and destructors,

558–565
exchangeable objects, 554
multiple inheritance, 579–594
in other languages, 564–565
pointers or references, 554
RTTI, 566–567
use, 563–564
virtual functions, 554–557
virtual modifier not necessary, 557

Polynomials, 644
operations, 645
polynomial class, 626, 646–652
representation, 644–645

Pop, 826

for23380_idx_915-942.indd 931 06/11/18 2:50 pm

932 Index

pop() operation, 878, 881
Popping stack memory, 673–674
pos parameter, 863
Positional number systems, conversion in, 487–488
Post-decrement operators, 608–609
Post-increment operators, 608–609
Post-order traversal, 842
Post-test loop, 180
Postfix decrement operator, 603
Postfix expressions, 159

postfix increment and postfix decrement
expressions, 159–160

values and side effects, 160
Postfix increment operator, 603
Pow function, 213
Power, 196

developing algorithm, 196
problem, 196
writing program, 196–198

Pre-decrement operators, 607–608
Pre-increment operators, 607–608
Pre-order traversal, 841
Pre-test loop, 174
Precedence, 60, 76–79, 114

overloading, 604
Predefined exceptions, 672
Predefined identifiers, 34
Predefined manipulators, 759–760
Predefined operation, 699
Predicate function, 900
Prefix decrement operator, 603
Prefix expressions, 159

comparison between postfix and prefix
expressions, 161

postfix increment and postfix decrement
expressions, 159–160

prefix increment and prefix decrement
expressions, 160

values and side effects, 160
Prefix increment operator, 603
Preprocessor, 21, 35

directive, 21
Preventing multiple inclusion, 317–318
Primary expressions, 61

literals, 61–62
parenthetical expression, 62–63

Primary memory, 2–3
Prime numbers, 805

checking primeness, 805–806
nonrecursive function, 806–808
recursive function, 806

Primeness, checking, 805–806
print function, 294, 565, 894
printData function, 257
Printer, 3
Printing, 842
printResult function, 243, 258
Priority_queue class, 883–884
Private

data members, 502–503, 511–512
inheritance, 518–519
member functions, 844

private, 33
Procedural paradigm, 7–8
Procedure, 8
Process function, 233, 257–258
Product class, 530
Program design, 10, 144–152, 191, 256–265, 369,

532, 803
any or all queries, 201–203
factorial, 194–196
frequency array and histogram, 369–372
future value of fixed investment, 256–261
future value of periodic investment, 261–265
linear transformation, 372–376
power, 196–198
prime numbers, 805–808
registration, 536–546
smallest and largest, 198–200
solution development, 11–13
string permutation, 803–805
summation and products, 191–194
Tokenizer class, 532–536
understanding problem, 10–11

Program development, 13–14
Program errors, 15–16
Program execution, 14, 566
Program memory, 673
Program testing, 15
Programming, 13
Programming languages, 5
Programs design, 425

Course class, 425–430
Matrix class, 431–437

Prompt, 28
protected, 33

for23380_idx_915-942.indd 932 06/11/18 2:50 pm

Index 933

Protected inheritance, 518
Protected members, 511–512
Prototype, 230, 752
pScore pointer, 394–395
public, 33
Public access modifier, 294
Public inheritance, 498–501, 518

blocking inheritance, 512
classes in inheritance relationship, 498
classes with both data members and member

functions, 499
delegation and invocation, 506
delegation of duty, 504–505
functions with same names in different

classes, 503
invocation, 505–506
LSP, 512–513
private data members, 502–503
program example, 513–517
protected members, 511–512
public member functions, 502
Scope (class), 503–504
separate compilation, 507–510
tree, 513

Public interface, 319–320, 856–858, 877, 884–885
for exception class, 683

Public member functions, 502, 621, 844
Pure virtual functions, 568
Push, 826
push() operation, 878, 881
push_back function, 480
Pushing stack memory, 673–674

Q
Queues, 832

applications, 836–841
class, 881–882
code, 833–836
implementation, 833
queue class, 833, 834, 881

Quick sort, 792–793
algorithm, 793, 794
program, 794–796

Quotient function, 671

R
Ragged array, 423–425
RAM. See Random access memory (RAM)

rand function, 222
Random access, 740–743, 750–751
Random access memory (RAM), 391
Random number generation, 221–224
Random-access iterator, 855
Random_shuffle function, 902
Range_error class, 685
Rational number. See Fraction class
rbegin() iterator, 859
rdstate function, 723
Real number to fraction convertion, 625–626
Recursion, 776

algorithms, 779–788
comparison, 778–779
Fibonacci numbers, 782–788
helper functions, 789–791
nontail recursion, 789
program design, 803–808
recursive sort and search, 792–802
repetition vs., 776–779
tail recursion, 788–789

Recursion Fibonacci numbers, 783
Recursive binary search, 797–799
Recursive function, 803, 806
Recursive sort and search, 792

binary search, 793–799
quick sort, 792–793
Towers of Hanoi, 799–802

Reference, 380, 554
relationship, 381
type, 381
variable, 380–381, 383

register, 33
Registration, 536

programs, 537–539
UML class diagram, 536
UML sequence diagram, 536–537

Regression testing, 15
reinterpret_cast, 33
Relational expression

greater, 603
greater or equal, 603
less or equal, 603
less than, 603

Relational expressions, 112, 113
Relational operator, 623
Remainder operator, 65
rend() iterator, 859

for23380_idx_915-942.indd 933 06/11/18 2:50 pm

934 Index

Repetition statements, 159, 161, 188–191
do-while statement, 180–184
loops, 184–188
prefix and postfix expressions, 159–161
program design, 191–203
for statement, 175–180
while statement, 161–175

Repetition vs. recursion, 776–779
Representation, 644–645
Required member functions, 288–294
Reserve() function, 869
Reserved word. See Keywords
resize function, 464
Rethrowing exception, 671–672
Retrieving value, 383–384, 396–397
return, 33
Return statement, 97–98, 188–190
Return-by-pointer, 240, 403–405, 601
Return-by-reference, 240, 385, 389, 601, 602

characteristics, 389–391
Return-by-value, 239–240, 389, 600
Returned objects, 600–602, 609
Returning an array from a function, 413
Returning data, 239–240

return-by-pointer, 240
return-by-reference, 240
return-by-value, 239–240

Reverse_iterator, 855
Reversing string, 784–786, 831–832
right, 86
Right operand (rvalue), 610
RTTI. See Run-time type information (RTTI)
Rules of overloading, 604

arity, 605
associativity, 604
commutativity, 605
no combination, 605
no new operators, 605
precedence, 604

Run-time binding. See Dynamic binding
Run-time environment abort program, 658–660
Run-time errors, 657, 685

overflow_error class, 685
range_error class, 685
underflow_error class, 685

Run-time type information (RTTI), 566–567
dynamic-cast operator, 567
typeid operator, 566–567

Runner, 24
rvalue, assignment operator, 70

S
Scheme, 7
Scientific format, 86, 88
Scope operator, 603
Scope(s), 248, 503–504

of function names, 252
of function parameters, 252–253
global, 250–252
local, 248–250
overlapped, 248
related to functions, 252–253
resolution operator, 251–252

Search argument, 352
Secondary storage, 3
Selection

complex decisions, 126–134
conditional expressions, 142–144
decisions on specific values, 134–142
program design, 144

day number, 150–152
finding tax for given income, 147–150
student’s score, 144–147

simple, 112–126
Sentinel, 168
Sentinel-controlled while loop, 168–169
Separate compilation, 312, 507–510

example, 313–317
preventing multiple inclusion, 317–318
step-by-step process, 313

Separate files, 311–312
Sequence containers, 856. See also Standard

template library (STL)
deque class, 866–868
list class, 868
public interface, 856–858
vector class, 858–866

Sequence of characters, 446
Sequential access, 740–743
Set, 884

applications, 887–891
assignment, 886
constructors, 886
controlling size, 886
destructor, 886
erasure, 887

for23380_idx_915-942.indd 934 06/11/18 2:50 pm

Index 935

insertion, 887
iterators, 886
operations, 886–887
searching, 887

set_difference, 904
set_intersection, 904
set_symmeteric_difference, 904
set_union, 904
setf(), 755
setfill, 90
setprecision, 90
Setter. See Mutator member function
setw, 90
Shadowing

in global scope, 250–251
in local scopes, 249–250

Shape Class, 568–579
Ellipse, 568
Square, 568

Shared secret key, 769
short, 33, 73

int, 37, 38
unsigned, 38

Short-circuit behavior, 134, 604
showbase, 86, 87, 759
showpoint, 86, 759

manipulator, 88
showpos, 86, 759

manipulator, 89
Side effect, 59
signed, 33
signed integer, 38, 40

overflow and underflow in, 83–84
Simple assignment, 67–68
Simple selection, 112

multiway selection, 123–126
one-way selection, 114–118
relational and equality expressions, 112–114
two-way selection, 118–123

sin, 216
Single declaration, 94
Single quotes, 44
Single-line comments, 35
Singleton pattern, 545
Singly linked list, 815

design, 816
implementation, 816–825

Sink, 717

data storage in, 718
sizeof operator, 33, 40–41, 63–65
skipws, 756, 759
Smallest and largest, 198

developing algorithm, 199
problem, 198–199
writing program, 199–200

Smart pointers, 614–616, 678
SmartPtr class, 614
Soft copy, 3
Software, 4

application, 5
application-specific, 5
general-purpose, 5
operating system, 4
system, 4
system development, 4
system support, 4

sort() operation, 869
Sorting

algorithms, 853, 899, 904–908
array, 353

Source, 717
code, 32
data storage in, 718
file, 14

Special characters, 45, 46
Specialization, 699–701
Specification errors, 15, 16
splice() operation, 869
sqrt, 213
srand function, 222
Stack class, 827, 877–880
Stack memory, 416–417, 421, 422, 673

effects of stack unwinding, 674–675
pushing and popping, 673–674

Stack unwinding, 673, 674
effects, 674–675
program memory, 673
pushing and popping stack memory, 673–674

Stacks, 825
applications, 829–832
code, 827–829
converting decimal number to hexadecimal,

829–831
implementation, 826–827
objects creation in, 675–676
operations, 826

for23380_idx_915-942.indd 935 06/11/18 2:50 pm

936 Index

Stacks (Continued)
reversing string, 831–832

Standard exception classes, 682, 687
invalid_argument class, 687–688
logical errors, 683–684
other classes, 686–687
run-time errors, 685

Standard Template Library (STL), 621, 813, 852
accumulate, 909–910
algorithms, 899–910
applications, 853
associative containers, 884–894
components, 852–853
container adapters, 877–884
count, 900
count_if, 900
find, 900
for-each, 900
function objects, 896–898
functions, 894–899
functors, 896–898
iterators, 853–856
mutating algorithms, 902–904
non-mutating algorithms, 900–902
numeric algorithms, 908–910
pointer to functions, 895
random_shuffle, 902
reverse, 902
rotate, 902
set_symmetric_difference, 904
sorting and related algorithms, 904–908
transform, 902

State-related member functions, 723–724
Statements, 93, 188

break, 190
compound, 96–97
continue, 190, 191
declaration, 93–95
expression, 95–96
goto, 190–191
if-else, 118
nested if_else, 121–123
null, 96
program design, 98

calculating average and deviation, 103–105
changing duration of time to components,

101–103
extracting first digit of integer, 100–101

extracting parts of floating-point number,
98–100

return, 97–98, 188–190
variable declaration, 94

static, 33
Static binding, 565
Static data members, 302

declaring, 303
initializing, 303

Static local variable, 254–255
Static members, 302–311

calling, 304–311
declaring, 303–304
defining, 304
functions, 303

Static memory, 415–416, 673
Static objects, 415
static_assert, 33
static_cast, 33, 75
STL. See Standard Template Library (STL)
Storage devices, 3
Storage of data in buffer of streams,

718–719
Storage of data in memory, 718
Storage of data in sources or sinks, 718
strcat() function, 457
strchr function, 453
strcmp function, 456
strcpy() function, 448
Streams, 717, 718

classes, 703, 719–720
data storage in, 718
responsibility, 719
state, 721
state data member, 721–723
state-related member functions, 723–724

string class, 50–51, 703, 713
String length, 449
String literal, 446–447
String permutation, 803–805

iteration, 803
nonrecursive function, 804
recursive function, 803

String streams, 751–755
adapter, 753–754
application, 753–755
instantiation, 751–753
member functions, 752

for23380_idx_915-942.indd 936 06/11/18 2:50 pm

Index 937

String tokens, 458
String type, 501
Strings

C strings, 443–460
C++ string class, 460–484
program design, 484

conversion in positional number systems,
487–492

customized functions, 484–487
Stringstream class, 720, 751–752
strlen() function, 449
strncat() function, 457
strncmp function, 456
strncpy() function, 448
strpbrk function, 455
strrchr function, 453
strstr function, 454
strtok function, 458–459
struct, 33, 283
Structure chart, 257
Student class program, 561–562
Student’s score, 144–147
StudentSchedule class, 540–546
Subclass, 497
Subscript operators, 342, 364, 616–619
Subtract operator, 603
Subtraction, 66

operation, 431
Sum function, 779–780, 789
Summation and products, 191, 778

developing algorithm, 192
problem, 191
writing program, 192–194

Superclass, 497
Swapping, 237, 352–353, 696–697

if and else blocks, 133–134
switch statement, 33, 135

adding default, 139–141
with breaks, 137–139
combining cases, 141–142
fall through, 135
structure, 135–137

Symbolic languages, 5
Symbols, 35
Symmetric ciphers, 768

application file
at decryption site, 773
at encryption site, 772–773

implementation file, 769–772
symmetric-key cryptography, 768–769

Symmetric-key cryptography, 768–769
Syntax, 695–697
Synthesized copy constructor, 288
Synthesized default constructor, 288
Synthetic destructor, 288
System development, 4
System software, 4
System support, 4

T
tab, 45
Table. See Map
Tail recursion, 788–789
tan, 216
tellg member function, 743
template, 33
Template programming, 693
Templates

aliases, 712
class, 703–714
friends, 712
function, 693–703
inheritance, 712
specialization, 699
string classes, 713

Terminator, 682
Ternary expression, 142
Test data designing, 15
Testing, 15–16
Text, 718–719

editor, 14
Text input/output, 727
The ios class, 719, 722, 723, 755
The return statement, 97, 148, 188–190
The size of expression, 63–65
The stack class, 827, 828, 829
this, 33
This pointer, 33, 598
thread_local, 33
Three categories of operators,

603–604
Three roles of objects, 597–602
Three types of inheritance, 517–519
Three-dimensional arrays, 369
throw, 33
Throw operator, 33, 663

for23380_idx_915-942.indd 937 06/11/18 2:50 pm

938 Index

Time class, 327
application file, 331
compiling, linking, and running, 331
implementation file, 328–330
interface file, 327–328
invariants, 327

time function, 220
Time representation

clock, 654
duration, 654
point of time, 654

Tokenizer class, 532
programs, 534–536
relationship among classes, 533
sequence diagram, 533–534

Tokenizing
in C strings, 458–459
in C++ strings, 474–475

Tokens, 19, 32, 532
identifiers, 32–34
literals, 34–35
symbols, 35

tolower function, 219
Top, 826
top() member function, 878
toString() function, 873, 875
toupper function, 219
Towers of Hanoi, 799

algorithm, 800
base and recursive cases in, 800
base case, 800
general case, 800
with only four disks, 799
program, 801–802

Traditional approaches to error handling,
657–663

Traditional ciphers, 769
Transform function, 902
Traversals, 841–842
Trigonometric functions, 216–218

acos, 216
asin, 216
atan, 216
cos, 216
sin, 216
tan, 216

true, 33
True literal, 46, 47

True-false condition, 112
Truth table, 33
try, 33
Try-catch block, 663–664

in constructor, 678–682
Two-dimensional arrays, 363–369, 421

using both stack and heap memory, 422
declaration and initialization, 364
folding, 367–368
linearizing, 369
using only heap memory, 422
using only stack memory, 421
operations, 367–369
passing two-dimensional arrays to functions,

364–367
and pointers, 413–414
ragged array, 423–425
transposing, 368

Two-way if-else statement, 143
Two-way selection, 118–123
Type

Boolean, 46–48
character, 44–46
floating-point, 48–49
void, 49–50

Type conversion, 71
class type to fundamental type, 626
explicit, 75–76
fundamental type to class type, 625–626
implicit, 71–75

type change, 73–75
type promotion, 71–72

operator, 603
Type variable, 380–381
typedef, 33
typeid operator, 33, 566–567
typename function, 703
Types in real life, 273

attributes, 274
behaviors, 274

U
UML. See Unified Modeling Language (UML)
Unary expressions, 63

plus and minus expressions, 63
sizeof expression, 63–65

Unary operators, 606, 613
plus and minus operators, 606–607

for23380_idx_915-942.indd 938 06/11/18 2:50 pm

Index 939

post-increment and post-decrement operators,
608–609

pre-increment and pre-decrement operators,
607–608

Underflow, 81
in floating-point values, 84–85
in integers, 81–84

Underflow_error class, 685
Unicode Consortium, 744
Unified Modeling Language (UML), 13, 497

class diagram, 528, 529, 536
diagrams, 528
sequence diagram, 528, 529, 536–537

union, 33, 907–908
unitbuf, 756, 759
Unnamed namespaces, 417
unsetf() function, 755
unsigned, 33
Unsigned integer, 38, 39, 645

overflow and underflow in, 81–83
Unsigned long, 38
Unsigned long int, 38
Unsigned short int, 38, 44, 73
Uppercase, 33, 41, 86, 89

manipulators for, 89
User-defined functions, 33, 213, 224

categories of functions, 224–230
using declarations, 230–233
value-returning function with no parameters,

227–229
value-returning function with parameters,

229–230
void function with no parameters,

225–226
void function with parameters,

226–227
User-defined identifiers, 34
User-defined types, 597

classes, 275–283
and objects in programs, 274–275

comparison, 275
constructors and destructors, 283–294
designing classes, 320–331
instance members, 294–302
and instances in real life, 273–274
object-oriented programming, 311–320
static members, 302–311

using, 33

V
Value-returning function with no parameters,

227–229
Value-returning function with parameters, 229–230
Value-returning recursive functions, 778
Values, 27–31
Variable(s), 26–27

address, 392–393
character, 44
declaration, 94
global, 94
initialization, 94
integer, 38–41
local, 94

Vector class, 858
accessing elements, 859
application, 863–866
assignment operator, 858
constructors, 858
destructor, 858
insertion, 862–863
iterators, 859–862
operations, 858–863
size and capacity, 859

Vector of vectors, 863–866
virtual, 33
Virtual base, 580–586

inheritance, 580
Virtual destructors, 558–563
Virtual functions, 554–557
Virtual modifier, 557
void, 33
Void check, 50
Void function, 239

with no parameters, 225–226
with parameters, 226–227

communication between main function and
pattern function, 228

Void recursive functions, 776–777
Void type, 49–50
volatile, 33

W
Warning message, 16
Water fall flow of switch statement, 135
wchar_t, 33
While loop, 161, 183, 776, 777, 778

creating delay, 174

for23380_idx_915-942.indd 939 06/11/18 2:50 pm

940 Index

While loop (Continued)
EOF-controlled, 169–171
flag-controlled, 171–173
pitfalls, 173–174
sentinel-controlled, 168–169

While statement, 33, 161, 174
analysis, 174–175
counter-controlled while statement, 162–167
event-controlled while loop, 167–174

Wrapper class, 675
Write and edit programs, 14

X
xor, 33
xor_eq, 33

Z
Zero-iteration loop, 173

for23380_idx_915-942.indd 940 06/11/18 2:50 pm

	Cover
	Title
	Copyright
	Brief Table of Contents
	Contents
	Preface
	What Is the C++ Language?
	Why This Book?
	Appendices
	Instructor Resources
	Acknowledgments

	1 Introduction to Computers and Programming Languages
	1.1 Computer System
	1.2 Computer Languages
	1.3 Language Paradigms
	1.4 Program Design
	1.5 Program Development
	1.6 Testing
	Key Terms
	Summary
	Problems

	2 Basics of C++ Programming
	2.1 C++ Programs
	2.2 Variable, Value, and Constant
	2.3 Components of a C++ Program
	2.4 Data Types
	Key Terms
	Summary
	Problems
	Programming Projects

	3 Expressions and Statements
	3.1 Expressions
	3.2 Type Conversion
	3.3 Order of Evaluation
	3.4 Overflow and Underflow
	3.5 Formatting Data
	3.6 Statements
	3.7 Program Design
	Key Terms
	Summary
	Problems
	Programs

	4 Selection
	4.1 Simple Selection
	4.2 Complex Decisions
	4.3 Decisions on Specific Values
	4.4 Conditional Expressions
	4.5 Program Design
	Key Terms
	Summary
	Problems
	Programs

	5 Repetition
	5.1 Introduction
	5.2 The while Statement
	5.3 The for Statement
	5.4 The do-while Statement
	5.5 More About Loops
	5.6 Other Related Statements
	5.7 Program Design
	Key Terms
	Summary
	Problems
	Programs

	6 Functions
	6.1 Introduction
	6.2 Library Functions
	6.3 User-Defined Functions
	6.4 Data Exchange
	6.5 More About Parameters
	6.6 Scope and Lifetime
	6.7 Program Design
	Key Terms
	Summary
	Problems
	Programs

	7 User-Defined Types: Classes
	7.1 Introduction
	7.2 Classes
	7.3 Constructors and Destructors
	7.4 Instance Members
	7.5 Static Members
	7.6 Object-Oriented Programming
	7.7 Designing Classes
	Key Terms
	Summary
	Problems
	Programs

	8 Arrays
	8.1 One-Dimensional Arrays
	8.2 More on Arrays
	8.3 Multidimensional Arrays
	8.4 Program Design
	Key Terms
	Summary
	Problems
	Programs

	9 References, Pointers, and Memory Management
	9.1 References
	9.2 Pointers
	9.3 Arrays and Pointers
	9.4 Memory Management
	9.5 Program Design
	Key Terms
	Summary
	Problems
	Programs

	10 Strings
	10.1 C Strings
	10.2 The C++ String Class
	10.3 Program Design
	Key Terms
	Summary
	Problems
	Programs

	11 Relationships among Classes
	11.1 Inheritance
	11.2 Association
	11.3 Dependency
	11.4 Program Design
	Key Terms
	Summary
	Problems
	Programs

	12 Polymorphism and Other Issues
	12.1 Polymorphism
	12.2 Other Issues
	Key Terms
	Summary
	Problems
	Programs

	13 Operator Overloading
	13.1 Three Roles of an Object
	13.2 Overloading Principles
	13.3 Overloading as a Member
	13.4 Overloading as a Nonmember
	13.5 Type Conversion
	13.6 Designing Classes
	Key Terms
	Summary
	Problems
	Programs

	14 Exception Handling
	14.1 Introduction
	14.2 Exceptions in Classes
	14.3 Standard Exception Classes
	Key Terms
	Summary
	Problems
	Programs

	15 Generic Programming: Templates
	15.1 Function Template
	15.2 Class Template
	Key Terms
	Summary
	Problems
	Programs

	16 Input/Output Streams
	16.1 Introduction
	16.2 Console Streams
	16.3 File Streams
	16.4 String Streams
	16.5 Formatting Data
	16.6 Program Design
	Key Terms
	Summary
	Problems
	Programs

	17 Recursion
	17.1 Introduction
	17.2 Recursive Sort and Search
	17.3 Program Design
	Key Terms
	Summary
	Problems
	Programs

	18 Introduction to Data Structures
	18.1 Introduction
	18.2 Singly Linked List
	18.3 Stacks and Queues
	18.4 Binary Search Trees
	Key Terms
	Summary
	Problems
	Programs

	19 Standard Template Library (STL)
	19.1 Introduction
	19.2 Iterators
	19.3 Sequence Containers
	19.4 Container Adapters
	19.5 Associative Containers
	19.6 Using Functions
	19.7 Algorithms
	Key Terms
	Summary
	Problems
	Programs

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

		2019-01-17T20:58:59+0000
	Preflight Ticket Signature

