
Bernhard Rumpe

Modeling
with UML
Language, Concepts, Methods

Modeling with UML

Bernhard Rumpe

Modeling with UML
Language, Concepts, Methods

123

Bernhard Rumpe
Software Engineering
RWTH Aachen University
Aachen
Germany

ISBN 978-3-319-33932-0 ISBN 978-3-319-33933-7 (eBook)
DOI 10.1007/978-3-319-33933-7

Library of Congress Control Number: 2016940125

Translation from theGerman language edition:Modellierungmit UML – Sprache, Konzepte undMethodik
by B. Rumpe, © Springer-Verlag Berlin Heidelberg 2004, 2011. All Rights Reserved.

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword1

Designing large software systems is one of the big technical challenges of our time.
The scope and complexity of software have now reached dimensions that push all
established approaches and methods for its development to its limits.

In this situation, software developers have increasingly discovered the estab-
lished concept of model creation in the engineering sciences. In the past, a large
number of different approaches have worked out under the concept model-based
software development, which aims at extensive model creation to support devel-
opment of software systems. Model creation enables specific representations of
important properties and aspects of a software system to be analyzed or designed.
One objective is an appropriate abstraction leading to decreased complexity and
improved controllability of software systems. Despite all the progress made in this
field and its clear practical maturity, there are still many questions that need to be
answered by research.

The additional development effort required is certainly a critical factor in model
creation. The question here is how much effort should be invested in model creation
and how model-based procedures, which are often heavyweight, can be made
flexible enough to better consider the profiles of the development projects.

Besides model orientation, use of so-called agile methods has become another
trend in software engineering in recent years, especially around the concept of
“Extreme Programming”. This term encompasses lightweight process models for
software development that secure a reduction of software bureaucracy and support a
much greater flexibility in software development. For projects with a certain profile,
agile methods can facilitate a considerably more effective process. However, pre-
conditions for this are sufficiently competent developers as well as a clearly limited
project size. Thus, such agile methods can only be used successfully in small
projects with a handful of developers over a manageable period of time so that
feedback can actually work to achieve faster communication within the project.

1Translated from the Foreword of the German Edition.

v

At first sight, it seems that model-based approaches, with their strong system-
atics and their modeling techniques explicitly detached from the actual coding, are
not compatible with agile methods, which are usually code-centered. This book
impressively shows that it is still possible to combine model-based approaches with
agile methods by using well-known modeling languages such as UML. However,
one must then carefully consider which UML constructs can be used as modeling,
testing, and implementation description tools and what the methodical procedure
should look like.

This book provides an answer to this question, aiming to use relevant practical
approaches such as the agile approach and the widespread language UML without
leaving out a proper scientific foundation and well-documented process. In par-
ticular, it is clearly shown which UML constructs are suitable for, e.g., rigorously
developing test cases or launching an evolution by applying perfect transformation
rules.

The book demonstrates how the quite different paradigms of agile methods and
model orientation correspond to and supplement each other. The result is an
approach that equally satisfies the requirements for a practically relevant,
well-usable procedure as well as the demand of a precise scientific foundation.

This text reads very well without giving up the claim of providing a solid content
and technical representation. Bernhard Rumpe has successfully tested the process
suggested in this book in a number of smaller projects.

Thus, this work represents a valuable contribution, providing useful guidance for
practitioners and additional information on how to combine current trends in
software engineering—such as agile procedures and model-based development—
successfully and with reasonable additions. Students will receive a comprehensive
introduction to the topic, and the book serves as a sound foundation.

This, as well as the consecutive book “Agile Modeling with UML” are equally
well suited for practitioners interested in such an approach for their development
projects as well as for lectures dealing with practical questions while not neglecting
a fundamental scientific foundation.

Garching, Germany Manfred Broy
February 2004

vi Foreword

Preface to the Second Edition2

Ten years ago, it could be foreseen that agile methods would prevail, at least for a
substantial subdomain of software development, even though they were smiled at
by many developers at that time. Today, agile methods have become an established
part of the software engineering portfolio. In many places, they have been extended
and adjusted to specific domains.

At the same time, the Unified Modeling Language started its triumph and has
since practically absorbed or eliminated all other wider used modeling languages,
with the exception of Matlab/Simulink, which we do not see as a proper modeling
language but as a graphical programming language. UML is quite large and still
suffers from the multiple options and interpretation possibilities that, due to its
various fields of application, cannot be clarified that easily. Instead, it might be
better to create a more explicit variability model for syntactical, methodical, and
semantic differences and to configure UML for single projects by suitable selection
[Grö10].

The programming language Java has prevailed even more successfully as the
primary web and business system language, as well as a teaching language for
computer science students.

Therefore, in this as well as the second book “Agile Modeling with UML” UML
and Java are consolidated, moderately supplemented and enhanced to allow smooth
and integrated use. UML is available in version 2.3 and Java in version 6. UML/P
introduced in this book represents a relatively independent and adapted version, a
so-called profile of UML, but this profile has been adjusted in some parts by
modifications from UML 1.4 to UML 2.3. Because we use Java as the target of
generation and test activities, it is certainly of interest to refer to new concepts in
Java such as the generics and the assert statement.

Despite or maybe particularly because of the success of both approaches, the gap
between the worlds of the model-based software development with UML and agile
methods has not really decreased. While agile methods definitely prefer to generate

2Translated from the Preface of the German Edition.

vii

code instead of writing it manually, many developers regard the hurdle to successful
generation to remain relatively high. Often, the reason for this is the inconvenient
and the heavyweight character of the generation process and the relatively high
initial effort required to introduce generation tools into the development process.
This gap still needs to be closed.

A number of people have directly or indirectly contributed to the creation of the
first, and the revision to the second, version of this book. My particular thanks go to
Manfred Broy, whose support made this book possible. I would also like to thank
my employees and students, especially Christian Berger, Marita Breuer, Angelika
Fleck, Hans Grönniger, Sylvia Gunder, Tim Gülke, Arne Haber, Christoph
Herrmann, Roland Hildebrandt, Holger Krahn, Thomas Kurpick, Markus Look,
Shahar Maoz, Philip Martzok, Antonio Navarro Pérez, Class Pinkernell, Dirk Reiss,
Holger Rendel, Jan Oliver Ringert, Martin Schindler, Mark Stein, Christopher
Vogt, Galina Volkova, Steven Völkel, and Ingo Weisenmöller who used this book
as a basis for their work or who helped to supplement and improve it for the second
edition. I would like to thank the former Bavarian Minister for Science, Research,
and the Arts, Hans Zehetmair, for the habilitation scholarship award and my
appreciated colleague and predecessor Prof. Dr. -Ing. Manfred Nagl for his
benevolent support in establishing the chair at Aachen.

My sincere thanks are due to my friends and colleagues, my scientific staff, and
the students from Munich for constructive discussions, collaboration in the appli-
cation examples and reviews of intermediate results of this book in its first edition:
Samer Alhunaty, Hubert Baumeister, Markus Boger, Peter Braun, Maria Victoria
Cengarle, David Cruz da Bettencourt, Ljiljana Döhring, Jutta Eckstein, Andreas
Günzler, Franz Huber, Jan Jürjens, Ingolf Krüger, Konstantin Kukushkin, Britta
Liebscher, Barbara Paech, Jan Philipps, Markus Pister, Gerhard Popp, Alexander
Pretschner, Mattias Rahlf, Andreas Rausch, Stefan Rumpe, Robert Sandner,
Bernhard Schätz, Markus Wenzel, Guido Wimmel, and Alexander Wisspeintner.

Aachen, Germany Bernhard Rumpe
June 2011

viii Preface to the Second Edition

Preface to the English Edition

Colleagues have asked when the English version of this book would be published.
Finally, here it is. I wish all the readers, students, teachers, and developers fun and
inspiration for their work.

I would like to thank all the people that helped me translating and quality
checking this book, namely Sabine Blumensath, Robert Eikermann, Timo
Greifenberg, Julia Gunder, Sylvia Gunder, Arne Haber, Robert Heim, Lars
Hermerschmidt, Gabi Heuschen, Katrin Hölldobler, Andreas Horst, Steffi Kaiser,
Carsten Kolassa, Thomas Kurpick, Achim Lindt, Markus Look, Klaus Müller,
Antonio Navarro Pérez, Pedram Mir Seyed Nazari, Dimitri Plotnikov, Alexander
Roth, Christoph Schulze, Michael von Wenckstern, and Andreas Wortmann.

Aachen, Germany Bernhard Rumpe
February 2016

ix

Contents

1 Introduction . 1
1.1 Goals of Book 1 and 2 . 2
1.2 Overview . 3
1.3 Notational Conventions . 4
1.4 Placement of UML/P . 5

1.4.1 Importance and Scope of UML . 5
1.4.2 UML Language Profiles . 6
1.4.3 Notations in UML/P . 7
1.4.4 The Terms “Modeling” and “Model-Based

Development” . 8
1.5 The Future: Agile Modeling with UML . 11

2 Class Diagrams . 13
2.1 Relevance of Class Diagrams . 14
2.2 Classes and Inheritance . 17

2.2.1 Attributes . 18
2.2.2 Methods . 19
2.2.3 Inheritance . 20
2.2.4 Interfaces . 21

2.3 Associations . 22
2.3.1 Roles . 22
2.3.2 Navigation . 23
2.3.3 Cardinality . 23
2.3.4 Composition . 24
2.3.5 Derived Associations . 25
2.3.6 Tags for Associations . 25
2.3.7 Qualified Associations . 26

2.4 View and Representation . 27
2.5 Stereotypes and Tags . 30

2.5.1 Stereotypes . 31
2.5.2 Tags . 33

xi

2.5.3 Introduction of New Elements . 34

3 Object Constraint Language . 37
3.1 Overview of OCL/P . 39

3.1.1 The Context of a Constraint . 40
3.1.2 The let Construct . 42
3.1.3 Conditional Expression . 43
3.1.4 Basic Data Types . 44

3.2 The OCL Logic . 45
3.2.1 The Boolean Conjunction . 45
3.2.2 Two-Valued Semantics and Lifting 47
3.2.3 Control Structures and Comparisons 49

3.3 Container Data Structures . 50
3.3.1 Representation of Sets and Lists . 51
3.3.2 Set and List Comprehensions . 53
3.3.3 Set Operations . 56
3.3.4 List Operations . 59
3.3.5 Container Operations . 60
3.3.6 Flattening of Containers . 62
3.3.7 Typing of Containers . 63
3.3.8 Set- and List-Valued Navigation . 65
3.3.9 Qualified Association . 68
3.3.10 Quantifiers . 70
3.3.11 Special Operators . 75

3.4 Functions in OCL . 77
3.4.1 Queries . 78
3.4.2 �OCL� Methods . 81
3.4.3 Method Specification . 82
3.4.4 Libraries of Queries . 94

3.5 Expressiveness of OCL . 95
3.5.1 Transitive Closure . 96
3.5.2 The Nature of an Invariant . 99

3.6 Summary . 101

4 Object Diagrams . 103
4.1 Introduction to Object Diagrams . 105

4.1.1 Objects . 106
4.1.2 Attributes . 107
4.1.3 Links . 108
4.1.4 Qualified Links . 110
4.1.5 Composition . 110
4.1.6 Tags and Stereotypes . 112

4.2 Meaning of an Object Diagram . 114
4.2.1 Incompleteness and Exemplaricity 114
4.2.2 Prototypical Objects . 115

xii Contents

Contents xiii

4.2.3 Instance Versus Model Instance . 116
4.3 Logic of Object Diagrams . 118

4.3.1 Name for a Diagram . 118
4.3.2 Binding of Object Names . 119
4.3.3 Integration of Object Diagram and OCL 120
4.3.4 Anonymous Objects . 121
4.3.5 OCL Constraints in Object Diagrams 122
4.3.6 Abstract Object Diagrams . 124

4.4 Methodical Use of Object Diagrams . 125
4.4.1 Composition of Object Diagrams . 126
4.4.2 Negation . 127
4.4.3 Alternative Object Structures . 127
4.4.4 Object Diagrams in a Method Specification 128
4.4.5 Object Creation . 129
4.4.6 Validity of Object Diagrams . 130
4.4.7 Initialization of Object Structures . 131

4.5 Summary . 133

5 Statecharts . 135
5.1 Properties of Statecharts . 136
5.2 Automaton Theory and Its Interpretation 138

5.2.1 Recognizing and Mealy Automata 138
5.2.2 Interpretation . 141
5.2.3 Nondeterminism as Underspecification 141
5.2.4 ε-Transitions . 143
5.2.5 Incompleteness . 143
5.2.6 Lifecycle . 144
5.2.7 Expressiveness . 145
5.2.8 Transformations on Automata . 146

5.3 States . 146
5.3.1 State Invariants . 148
5.3.2 Hierarchical States . 153
5.3.3 Initial and Final States . 155

5.4 Transitions . 156
5.4.1 State Invariants Within the State Hierarchy 156
5.4.2 Initial and Final States in the State Hierarchy 157
5.4.3 Stimuli for Transitions . 159
5.4.4 Enabledness . 161
5.4.5 Incomplete Statechart . 163

5.5 Actions . 167
5.5.1 Procedural and Descriptive Actions 167
5.5.2 State Actions . 169
5.5.3 State-Internal Transitions. 173
5.5.4 Do-Activity . 173

5.6 Statecharts in the Context of UML . 174

5.6.1 Inheritance of Statecharts . 175
5.6.2 Transformations on Statecharts . 175
5.6.3 Mapping to OCL . 186

5.7 Summary . 188

6 Sequence Diagrams . 191
6.1 Concepts of Sequence Diagrams . 193
6.2 OCL in Sequence Diagrams . 196
6.3 Semantics of a Sequence Diagram . 198
6.4 Special Cases and Extensions for Sequence Diagrams 203
6.5 Sequence Diagrams in UML . 206
6.6 Summary . 208

7 Further Reading . 209

A Language Representation with Syntax Class Diagrams 215

B Java . 223

C The Syntax of UML/P . 231
C.1 UML/P Syntax Overview . 231
C.2 Class Diagrams . 232

C.2.1 Core Parts of a Class Diagram . 232
C.2.2 Text Parts of a Class Diagram . 233
C.2.3 Tags and Stereotypes . 235
C.2.4 Comparison with the UML Standard 237

C.3 OCL . 239
C.3.1 Syntax of OCL . 239
C.3.2 Differences From the OCL Standard 243

C.4 Object Diagrams . 246
C.4.1 Context-Free Syntax . 246

C.5 Statecharts . 248
C.5.1 Abstract Syntax . 248
C.5.2 Comparisons with the UML standard 252

C.6 Sequence Diagrams . 253
C.6.1 Abstract Syntax . 253
C.6.2 Comparison with the UML Standard 255

D Sample Application: Internet-Based Auction System 257
D.1 Auctions as an E-Commerce Application 258
D.2 The Auction Platform . 259

References . 263

Index . 277

xiv Contents

1

Introduction

The quest for knowledge is a natural
tendency of all human beings.

Aristotle

In recent years, software engineering has become an effective engineering
discipline. Due to the constantly increasing complexity of its tasks and the
diversity of its application domains, a portfolio of software engineering tech-
niques has been constructed, offering a customized range of suitable meth-
ods and concepts for the application domain, criticality, and complexity of
each system to be developed. Techniques for management of projects, con-
figuration, variant and quality, as well as software product lines, develop-
ment processes, specification techniques, analysis and design patterns, and
best practices for specific tasks are only some elements of this portfolio.

On the one hand, this portfolio offers competing approaches with prob-
lem-specific advantages. On the other hand, the evolution of the languages,
frameworks, and tools used allows and requires continual supplementation
and enlargement of this portfolio. Today, programming languages such as
Java, well-engineered class libraries, and permanently improving software
development tools admit methods which were inconceivable just a few years
ago. For example, tool-based evolution or modification of a software archi-
tecture already in operation has become considerably easier in the meantime.

Further material:

http://www.se-rwth.de/

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7_1

1

2 1 Introduction

The rapidly changing technology, the flexibility expected by users, e.g.,
in the E-service domain, and the extensibility of systems as well as the high
criticality of business applications require constant optimization and adjust-
ment of development processes and their associated methods. Only by using
available software development techniques can a high-quality system which
suits the desires of the customer be developed in an agile way and comple-
mented steadily with regard to given temporal and personnel resources.

The widespread use of the Internet also facilitates increasing integration
of business applications across company boundaries together with user inte-
gration through feedback mechanisms via social networks. Thus, complex
networks of E-service and E-business applications arise, especially in the
field of Internet-based software. This requires appropriate software engineer-
ing techniques. In this domain, mainly object technology is used, and the
Unified Modeling Language (UML) standard is applied for modeling pur-
poses.

1.1 Goals of Book 1 and 2

Mission Statement: The primary goal is to provide foundational model-
based development techniques for the mentioned portfolio. In doing so, this
book presents a variant of UML which is especially suitable for efficient de-
velopment of high-quality software and software-based systems.

UML Standard: The UML standard has to meet many requirements re-
sulting from differing circumstances and is, thus, inevitably overloaded.
Many elements of the standard are not useful for our purpose, or they are not
applicable in their given form, while other language concepts are missing.
Hence, an adjusted language profile of UML, called UML/P, is introduced in
this book. In this regard, UML/P is being optimized for the recommended
development techniques in terms of its design, implementation, and mainte-
nance to facilitate its application in agile development methods.

This book focuses mainly on introduction of the language profile. In a
second book called “Agile Modeling with UML,” we concentrate on model-
based methods for generation, test case definition, and evolution.

UML/P resulted from several basic research and application projects. The
application described in Appendix D, for example, was developed using the
principles described in this book as far as practicable. The delineated auction
system is ideal for demonstrating the techniques developed in the two books,
as changes of the business model or environment occur particularly often
in this application domain. Flexible yet high-quality software engineering is
essential for this sector.

Object Orientation and Java: Today, object technology is primarily used
for new business applications. Its existing varieties of class libraries and
frameworks, available tools, and not least the largely successful language
design explain the prosperity of the programming language Java. The UML

1.2 Overview 3

language profile UML/P explained in this book and the development tech-
niques based thereon are thus based on Java.

Bridge Between UML and Agile Methods: At the same time, both books
form an elegant link between the approaches of agile methods not yet inte-
grated optimally and the modeling language UML. Agile methods such as
Extreme Programming are equipped with a range of interesting techniques
and principles enriching the software engineering portfolio for certain types
of projects. Characteristics of these techniques include sparse use of docu-
mentation, concentration on flexibility, optimization of time to market and,
minimization of necessary personnel resources together with concurrent re-
tention of the desired quality. Therefore, agile methods are well suited as a
foundation for the targets of this book.

Agile Methods Based on UML/P: UML is used as a notation for a num-
ber of activities such as use case modeling, target performance analysis, as
well as architectural and detailed design at different levels of granularity.
UML artifacts represent an essential foundation for planning and controlling
milestone-driven software engineering projects. Therefore, UML is mostly
implemented in plan-driven projects with relatively high documentation and
the inflexibility resulting from that. However, UML is more compact, seman-
tically more ample, and better suited to describe complex facts than a pro-
gramming language. That is why it has crucial advantages for modeling of
test cases and transformational evolution of software systems. Based on a
discussion of agile methods and the concepts contained therein, the second
book will outline an agile method which uses the UML/P language profile
as a base for several activities without importing the inflexibility of typical
UML-based methods.

1.2 Overview

Chapter 2 includes a definition of the components of class diagrams, a dis-
cussion on the deployment of views and representations, and a proposal for
the definition of stereotypes and tags.

Chapter 3 introduces the design of the Object Constraint Language (OCL)
in all its semantic facets and syntactically adjusted to Java. For specification
purposes, a two-valued logic is introduced and the expressiveness of OCL
discussed. Constructs for set comprehension, introduction of local functions,
and special OCL operators for flattening of data structures and transitive
closure of an association are presented.

Chapter 4 contains the introduction of object diagrams as an independent
notation in UML/P. A bilateral integration of OCL and object diagrams per-
mits use of diagrams as OCL predicates and also the description of complex
constraints within a diagram through OCL. OCL logic operators are used to
describe unwelcome situations, alternatives, and the composition of object
diagrams.

4 1 Introduction

Chapter 5 gives a detailed introduction to the Statecharts of UML/P.
Here, first of all, simple automata are studied as a semantic model. The re-
sults gained from this study are transferred to UML/P Statecharts with re-
gard to nondeterminism, subspecification, completion, and expressiveness.
For the description of the preconditions, we use OCL; for actions we use
either OCL or Java. By using a collection of transformation rules, we can de-
rive simplified Statecharts which can be translated into OCL or are suitable
for code generation.

Chapter 6 describes a simple form of sequence diagrams for description
of linear processes.

Appendixes A–C describe the abstract syntax of UML/P.
Appendix D describes the application example from the E-commerce do-

main. In parts of the book, the Internet-based auction system will be inten-
sively referred to for examples.

1.3 Notational Conventions

This book introduces several types of diagrams and textual notations. In or-
der to immediately realize which diagram or textual notation is shown, a
label is given at the top right. Deviating from UML 2.3., this label is given in
one of the forms depicted in Fig. 1.1. This form can also be used for marking
textual parts and is more flexible than UML 2.3 markings. On the one hand, a
label is used as a guideline and on the other hand as part of UML/P as the di-
agram’s name, and properties in the form of stereotypes can be added. Occa-
sionally, special forms of labels are used, which are mostly self-explanatory.

Figure 1.1. Labels for diagrams and text parts

Textual notations such as Java code, OCL descriptions, and textual parts
in diagrams are all based on the ASCII character set. For better legibility,

1.4 Placement of UML/P 5

single keywords are highlighted or underlined. For stereotypes, transforma-
tions, test patterns, and refactoring rules, a template is presented in Table
2.19, which allows for a systematic description of the element introduced.
The following additional characters are used in the text:

• The representation indicators “. . . ” and “ c©” are formal parts of UML/P
and describe whether the representation shown in a diagram is complete
or not.

• Stereotypes are given in the form �StereotypeName�. Tags have the form
{TagName=Value} or {TagName}.

• Nonterminals are shown as 〈Name〉. We add the definition number of the
nonterminal, as in 〈OCLConstraintC.7〉, when we use a nonterminal in
another section.

1.4 Placement of UML/P

1.4.1 Importance and Scope of UML

Especially for developer communication, there are a number of advantages
of graphical notations compared with textual forms of expression. They en-
able the viewer to get a quick overview and simplify the perception of the
system’s parts and their relations. But due to their two-dimensional charac-
ter, graphical description methods also have disadvantages. They need, for
instance, considerably more space when shown or printed. This lower infor-
mation density easily leads to a lack of overview, especially with regard to
large models. Furthermore, precise definition of the syntax and semantics of
a graphical language is generally regarded to be more difficult.

With the dominance of the object-oriented programming paradigm in al-
most every field of software and system development, and systems becom-
ing increasingly complex, quite a number of object-oriented modeling ap-
proaches have been defined.

The Unified Modeling Language (UML) [OMG10a] was successful in in-
tegrating different notations and, thus, became a standard modeling lan-
guage for software engineering. UML is now widely used. To allow this, the
separation of methodological considerations and the notations used within
methods was crucial. The aim of UML is to offer a modeling technique
for preferably all application domains in software engineering. Accordingly,
UML/P language profile defined in this book is partly methodically neu-
tral, although it is especially suited for generative projects with Java as tar-
get language. Similar approaches are shown in recent books working on
the relationship between UML and a programming language such as Java
[Lan09, Lan05].

With UML, integration of several existing modeling languages has been
achieved. Syntactic differences have been harmonized and concepts from dif-

6 1 Introduction

fering fields have been integrated into the core language. Although this cre-
ated a rather large and partly overloaded language, it can be expected that
UML will claim to be the essential language standard for at least one more
decade.

1.4.2 UML Language Profiles

UML is no longer understood as a language defined completely in all its syn-
tactic and semantic details but as a language framework or language family
[CKM+99, Grö10, GRR10] which allows, due to extension mechanisms and
semantic variation possibilities, creation of language profiles that can be ad-
justed to the respective purpose of the application. Thus, UML has the char-
acteristic of a colloquial language such as English which also allows for ad-
justing the vocabulary in the form of technical language and dialects.

[OMG99] already defined the essential requirements for UML profile con-
cept, and [CKM+99] discussed how this affects the manifestation of business-
or project-specific language profiles.

[Grö10, GRR10] reveal how the organization of syntactic and semantic
variations of a part of UML in the form of features and language configu-
rations can be shown and how it can be applied for the configuration of a
language which suits the project.

Example language profiles include the specialization of UML to real-
time systems [OMG09], Enterprize Distributed Object Computing (EDOC)
[OMG04], multimedia applications [SE99b, SE99a], and frameworks [FPR01].
The [SE99b, SE99a], and frameworks [FPR01]. vocabulary is introduced di-
rectly into the model through the definition of classes, methods, attributes or
states. In addition, profiles offer lightweight extension capabilities for UML
syntax, such as the stereotypes and tags discussed in Fig. 2.17, and heavy-
weight extensions with new modeling constructs.1

According to [OMG99], the concept for defining a UML profile has,
among others, the following purposes:

• Precise definition of tags, stereotypes, and constraints is possible.
• Description of semantics using natural language is allowed.
• A more specific profile can adjust a more general profile to the desired

form.
• The combination of profiles allows for simultaneous use of multiple pro-

files.
• Mechanisms for managing the profiles’ compatibility are provided.

However, the goal of simple exchangeability and combinability of lan-
guage profiles cannot be fulfilled that easily. On the contrary, tool-based lan-

1 Common languages also allow for the imprint of new vocabulary through the def-
inition of terms. New modeling constructs would correspond to grammatical ex-
tension but are not common in other languages.

1.4 Placement of UML/P 7

guage profiles can usually be combined only when they are explicitly aligned
with one another.

1.4.3 Notations in UML/P

UML/P consists of six subnotations (see Fig. 1.2). Thereby, some subnota-
tions of the UML standard are left out. UML/P is a language profile which in
particular supports the activities of design, implementation, and evolution, be-
cause UML/P can also be used as a complete programming language. This
explains the suffix “/P”, which stands for “usable for programming.”

Figure 1.2. The sublanguages of UML/P

Not least, the programming language’s applicability can be ascribed to
the integration of Java code snippets into UML/P and the harmonization of
textual parts of UML/P with the Java syntax.

The necessity of introducing further specializing language profiles dis-
cussed in the previous paragraph is facilitated in UML/P through the con-
crete definition of stereotypes and tags. Both forms of adapting language el-
ements are used for defining UML/P itself but are also available for further
adjustments, so that UML/P can act as a starting point for defining further
application-, domain- or technology-specific language profiles.

8 1 Introduction

1.4.4 The Terms “Modeling” and “Model-Based Development”

The Term “Modeling”

In software engineering, the term “model” is used for several different con-
cepts. Among others, there are product models, process models, and test
models. For a thorough classification, please see [SPHP02, Sch00]. Figure 1.3
gives an overview on some general definitions of the term “model.” It is gen-
erally accepted that a model is an abstraction of a modeled item, for instance,
by reduction in detail. Furthermore, it is reasonable, although not in all defi-
nitions present, to demand that a model has a purpose.

The definition of “modeling” in the literature:

• By its nature, a model is a reduced or abstracted representation of the original
system in terms of scale, precision, and/or functionality (see [Sta73]).

• A model is an abstraction of a system that aims to simplify the reasoning about a
system by omission of irrelevant details (see [BD00],

• A model is a simplified, goal-oriented representation of the function, of an item
or a sequence of events that makes their examination or study easier or even
possible at all (see [Bal00]).

• In software engineering, a model is the idealized, simplified, and in a way, sim-
ilar presentation of an item, system or other part of the world with the aim of
enabling the better study of certain properties of the original (see [HBvB+94]).

Figure 1.3. Definition: model

However, there is disagreement about the granularity of a model. [Bal00],
on the one hand, talks about a complete product model and associates it with a
collection of diagrams; on the other hand, he regards the model as an artifact
which equates a model with a single diagram. We also use the term “model”
in a broader sense and regard a class diagram or a Statechart as a model of a
part of the system to be realized.

Principally, a model is a model of an ideal or an original. In software en-
gineering, however, models are often designed prior to the original. Besides,
due to the immateriality of software, it is possible to create a complete system
out of a model without manual support but by automated adding of details.

Model-Based Software Engineering

In Sect. 2.4, the term “view” is identified as a representation of, e.g., a product
model accessible to the developer. The two-stage model abstraction from the
system to the complete model and, in the end, to the developer view taking
place in this process is caused by the size and complexity of the modeled
system. Usually, a complete product model has a complexity which does not

1.4 Placement of UML/P 9

easily allow one to understand its relationships. Thus, extracts of the prod-
uct model are created using views that highlight certain aspects but leave
out others at the same time. A view is also a model and therefore has a pur-
pose. A view is created in order to communicate a “story.” A product model
can be understood as the sum of its views. In comparison, [SPHP02], for ex-
ample, defines the term “model concept” more restrictively by not regarding
views as independent models. Correspondingly, all test and refactoring tech-
niques discussed there are formulated directly on the product model, which
contains everything.

While these levels of abstraction of modeling are generally accepted by
developers, two approaches for their technical realization nowadays prevail
among toolmakers:

• The model-based approach requires administration of a complete and con-
sistent model of the system in the respective tool and only allows devel-
opment of steps that are consistently carried out on this model and all the
views contained therein.

• The document-oriented approach permits editing of each single view as an
autonomous document. Inconsistencies among as well as between docu-
ments are accepted at first and only recognized using respective analysis
tools.

Both approaches show specific advantages and disadvantages. The ad-
vantages of the model-based approach are as follows:

• A model’s consistency can only be preserved automatically in a model-
based form. In the document-oriented approach, the analysis is time-
consuming and therefore, for instance, slows down code generation.

• Due to the fact that tools need not offer techniques such as weaving of
several class diagrams or Statecharts for the same class, their implemen-
tation is easier.

On the other hand, there are certain benefits of the document-oriented
and drawbacks of the model-based approach:

• Experiences with syntax-driven editors for programming languages have
shown that support is helpful while syntax-driven editors disturb the
developer’s flow of thought and efficiency. The document-oriented ap-
proach better tolerates temporary inconsistencies and syntactically defi-
cient documents.

• In large projects with many developers, model-based tools are necessary
to take measures in order to ensure consistency of the model that is han-
dled in parallel. This includes a shared repository with synchronization
or locking mechanisms. While synchronization implies inefficiency, the
locking prevents common model ownership and prohibits agility.

• Permanent model synchronization using a repository forbids local testing
of alternatives. Hence, a transaction concept, version control or a similar

10 1 Introduction

mechanism has to be provided by the repository. But this also leads to the
de facto problem of integrating model versions.

• In comparison, the document-oriented approach requires the usage of in-
tegration techniques for model parts modified in parallel, such as those
used in version control systems. This integration becomes necessary when
the developer commits the locally modified version into the version con-
trol system and, thus, makes it accessible to other project participants.
Therefore, local experiments do not have consequences when they remain
unpublished.

• For self-developed special tools, it is generally easier to process single,
file-based documents instead of the complete models which are held in
the repository and are subject to version or transaction control.

• An incremental, modular approach for model processing, especially for
generation, can considerably increase the efficiency of the development
because models only need to be loaded and code generated if the mod-
els have changed. But this requires a modularity of UML models in the
sense that information that is to be exchanged between models has to be
clarified in terms of interfaces and also separately filed analogously to
programming languages.

In practice, a synergistic compromise of both approaches might prove to
be the ideal approach. This already becomes apparent in integrated devel-
opment environments (IDEs) for programming languages. An IDE contains
an editor with syntax-driven highlighting, navigation, and replacement pos-
sibilities up to automatic analyses and code generation in the background.
But storage of information happens in an artifact-based way in single files
supported by additional and automatically calculated tables where applica-
ble. Thus, single files remain accessible to other tools, but the developer gets
the impression of a model-based development environment. It is also bene-
ficial that developers can choose which files and, therefore, which part of the
“model” they want to load and manipulate in the tool.

Model-Driven Architecture (MDA)

The model-driven architecture (MDA) approach [OMG03, PM06, GPR06] is
a continuation of the standardization ideas of the Object Management Group
(OMG) based, among others, on UML. One of the key ideas of this approach
is to define platform-independent models of business applications with UML in
the first step of the development. A second step follows with mapping of this
platform-independent model to an implementation on concrete hardware, a
given operating system, middleware, and framework components.

As a result, the development of the platform-independent UML model
is decoupled from platform-specific concepts. The implementation then con-
sists of a mapping of the platform-independent to a platform-specific UML
model formulated in a distinctive UML language profile. For this purpose,

1.5 The Future: Agile Modeling with UML 11

for example, Common Object Request Broker Architecture (CORBA)-specific
UML profiles should be available. Next, a preferably automated mapping
of this model onto an implementation and corresponding interface defini-
tions follows. Beside technology-specific mappings, MDA also involves stan-
dardization efforts for application domains. This, e.g., includes XML-based
communication standards for E-commerce, telecommunications, or the data
model for the finance industry.

On the one hand, MDA is based on the observation that business applica-
tions have, on average, a much longer lifespan than technological platforms
and that, thus, quite often migration of applications is necessary. On the other
hand, MDA is grounded on the hope that this observation will simplify the
reutilization or evolution of application-specific models for similar applica-
tions and the interoperability between systems.

As a whole, MDA is an approach that intends to revolutionize the tools
for software engineering as well as the process of their definition, and that
especially deals with company-wide and cross-company interconnection of
systems [DSo01, GPR06]. Interestingly, a significant reduction of effort for
software development through generation is intended, but suitable methods
to achieve this goal are discussed only very little.

The approach discussed in the second volume can also be understood as
a concretization of a part of MDA. In contrast to MDA, we do not present
an all-embracing approach, taking into account, e.g., metamodeling, avail-
able middleware techniques or the interoperability between applications. In-
stead, we suggest the simple but more effective solution here in the sense of
XP, in which only those interfaces are served, those middleware components
used, and those operating systems taken into account for which the system
is to be developed now. We have to take into account that the availability of
standardized mappings of platform-independent models on the respective
technology will be unlikely for many areas. In general, those mappings are
to be developed on the basis of predefined patterns by the developers them-
selves, and thus, the code generators need to be parameterized correspond-
ingly. Accordingly, simplicity, and not the attempt to meet many unnecessary
standards, should come first.

1.5 The Future: Agile Modeling with UML

In order to increase the efficiency of a project, it is necessary to provide ef-
fective notations, techniques, and methods for the developer. As the primary
goal of every software development process is the executable and correctly
implemented product system, UML should not only serve for documenta-
tion of drafts. Instead, the automated transformation into code through code
generators, the definition of test cases with UML/P for quality management
purposes, and the evolution of UML models with refactoring techniques are
essential.

12 1 Introduction

The combination of code generation, test case modeling, and refactoring
presents considerable synergetic effects. Therefore, these techniques are de-
scribed based on UML/P in the second book “Agile Modeling with UML”
published by Springer. Both books complement each other.

Agile Modeling: Some essential foundational elements of agile software
engineering methods are elaborated, and an agile model-based developing
method is outlined. The core of agile developing methods is the usage of
models for a representation and discussion, but also especially for program-
ming purposes and the definition of test cases through code generation and
for the planning of evolution through model-based refactoring.

Code Generation: A well-parameterized code generation based on ab-
stract models is crucial for efficient development of a system. The discussed
form of code generation allows the compact and mostly technology-inde-
pendent development of application-specific models. Only during genera-
tion are technology-dependent aspects such as database connections, com-
munication, or graphical user interface (GUI)-mapping added. As a result,
UML/P can be used as a programming language and there is no conceptual
breach between modeling and programming language. However, it is impor-
tant to explicitly distinguish executable and abstract models in the software
engineering process and to use them adequately.

Modeling Automated Tests: Systematic and efficient testing is an essen-
tial part of the quality management of a system. The goal is that tests can
run automatically after their generation. Code generation is not only used
for developing production systems but also especially for test cases in order
to check whether specification and implementation are consistent. Thus, the
usage of UML/P in test case modeling is a fundamental element of an agile
methodology. For this purpose, mainly object diagrams, OCL, and sequence
diagrams are used.

Evolution by Using Refactoring: The discussed flexibility to react quickly
to changing requirements or technology requires a technique for systematic
evolution of the already existing model and its implementation. The evolu-
tion of a system because of new requirements or a new field of application as
well as the correction of structural deficits of the software architecture ideally
happen through refactoring techniques. A further focus is on the foundation
and embedding of refactoring techniques into the more general methods of
model transformation and the discussion of which refactoring rules can be
developed for UML/P or carried over from other approaches. There, espe-
cially class diagrams, Statecharts, and OCL are taken into account.

In terms of test case modeling as well as refactoring techniques, insights
originating from some theoretical approaches are outlined and transferred
to UML/P. This book explains these concepts by means of numerous practi-
cal examples and prepares them in the form of test patterns and refactoring
techniques for UML diagrams.

2

Class Diagrams

A fact is conceivable, means
we can picture it.

Ludwig Wittgenstein

Class diagrams form the architectural backbone of many system modeling
processes. Hence, this chapter introduces class diagrams defined in UML/P
with the core elements class, attribute, method, association, and composition. The
section about views and representations discusses forms of use for class di-
agrams. Furthermore, it is shown how modeling concepts are adapted for
project-specific demands using stereotypes and tags.

2.1 Relevance of Class Diagrams . 14
2.2 Classes and Inheritance . 17
2.3 Associations . 22
2.4 View and Representation . 27
2.5 Stereotypes and Tags . 30

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7_2

13

14 2 Class Diagrams

Class diagrams still represent by far the most important and widely used
modeling technique of UML. Historically, class diagrams originated from the
ideas of entity/relationship modeling [Che76] and the graphical representa-
tion of modules, which themselves were influenced by data flow diagrams
[DeM79]. Class diagrams describe the structure of a software system and
thus form the first discussed core notation for object-oriented modeling.

Appendix C.2 additionally compares the kind of class diagrams intro-
duced here with the UML standard and specifies the syntax of class dia-
grams.

2.1 Relevance of Class Diagrams

Object-oriented systems are highly dynamic. This makes the modeling of a
system’s structures a complex task in object-oriented software development.
Class diagrams describe this structure, or architecture, of a system, forming
the basis for nearly all other description techniques. However, class diagrams
and the modeled classes fulfill various tasks.

Structure Modeling

In any object-oriented implementation, the code is organized into classes.
Therefore, a class diagram constitutes an overview of the code structure and
its internal relations. As programmers are familiar with the concept of class
from programming, class diagrams used in modeling can be understood and
communicated rather easily. Class diagrams are used for showing structural
relations of a system and for that reason form the skeleton for almost all other
notations and types of diagrams, as these rely on the classes and methods de-
fined in class diagrams. Therefore, they also represent an essential—although
not the only—form of description for modeling of software architectures and
frameworks.

Classes During Analysis, Design, and Implementation

In analysis, class diagrams are used in order to structure real-world concepts.
In contrast, in design and implementation documents, class diagrams are es-
pecially used to depict a structural view of the software system. The classes
presented in the implementation view can actually be found in implemented
systems too. But classes from analysis are often significantly modified, sup-
plemented by technical aspects, or fully omitted when they only belong to
the system context.

One of the deficits of UML arises from the less-than-ideal option to ex-
plicitly ascribe diagrams a purpose. Assuming that a class diagram reflects
an implementation, the semantics of a class diagram can be explained rela-
tively easily and understandably. A number of introductory textbooks about

2.1 Relevance of Class Diagrams 15

class modeling or UML take this position [Mey97, Fow00]. Besides, this
point of view is often implied by tools. Fusion [CAB+94], however, clearly
distinguishes between classes belonging to the system and external classes
and, thus, demonstrates that modeling of non-software-engineering concepts
with class diagrams is feasible and reasonable.

The language profile UML/P is implementation oriented. This is why
the following semantics of class diagrams based on the Java code modeled
thereby is perfect for this purpose.

Variety of Tasks for a Class

In object-oriented programming and even more so in modeling, classes have
numerous tasks. Primarily, they serve to group and encapsulate attributes and
associated methods to create a conceptual unity. By assigning a class name,
instances of the class can be created, saved, and passed on at arbitrary places
in the code. Hence, class definitions at the same time act as type system and
implementation description. They can (in general) be instantiated any number
of times in the form of objects.

In modeling, a class is also understood as the extension, i.e., the number of
all objects existing at a certain point in time. Due to the explicit availability of
this extension in modeling, invariants for each existing object of a class can,
for example, be described.

The potential unlimitedness of the number of objects in a system makes
cataloging these objects into a finite number of classes necessary. Only this
makes a finite definition of an object-oriented system possible. For this reason
classes present a characterization of all possible structures of a system. This char-
acterization at the same time also describes necessary structural constraints
without determining a concrete object structure. As a result, there are usually
an unlimited number of different object structures that conform to a class di-
agram. In fact, each correctly running system can be regarded as an evolving
sequence of object structures where at each point in time the current object
structure conforms to the class diagram.

In contrast to objects, classes, however, in many programming languages
have no directly manipulable representation during the runtime of a system.
One exception is, for example, Smalltalk, which represents classes as objects
and therefore allows for unrestricted reflective programming.1 Java is more
restrictive, as it allows read-only access to the class code. Generally, reflective
programming should be used only very reluctantly because maintenance of
such a system gets far more complex due to reduced understandability. This
is why reflective programming is ignored in the rest of the book.

1 In Smalltalk, a class manifests as a normal object during runtime being manipula-
ble like any other object. However, the content of such an object is a description of
the structure and behavior of the instances assigned to this class object. See [Gol84].

16 2 Class Diagrams

Classes fulfill the following tasks:

• Encapsulation of attributes and methods in order to create a conceptual unity
• Manifestation of instances as objects
• Typing of objects
• Description of the implementation
• Class code (translated, executable form of the implementation)
• Extension (set of all objects existing at a certain time)
• Characterization of all possible structures of a system

Figure 2.1. Task variety of a class

Metamodeling

Due to the two-dimensional form of model representations, metamodeling
[CEK+00, RA01, CEK01, Béz05, GPHS08, JJM09, AK03] has prevailed as a
form of description of a diagrammatic language and thus replaced the gram-
mars commonly used for text. A metamodel defines the abstract syntax of a
graphical notation. At least since UML standardization, it is customary to
use a simplified form of class diagrams as the metamodel language. This
approach has the advantage that only one language needs to be learnt. We
discuss metamodeling in Appendix A and use a variant of the class diagrams
in order to represent the graphical parts of UML/P.

Further Concepts for Class Diagrams

UML offers further concepts that should be mentioned here for the sake of
completeness. Association classes, for example, are classes that are attached
to the associations that are subsequently introduced to store information that
cannot be assigned to any of the classes participating in the association but
only to the relation itself. But there are standard processes for modeling such
data without association classes.

Modern programming languages such as C++ and Java [GJSB05] as well
as UML since version 2.3 [OMG10a] now offer generic types first introduced
by functional languages such as Haskell [Hut07]. In Java, this introduction
has been integrated nicely [Bra04]. In UML, this has to be done carefully, be-
cause types appear in nearly all kinds of diagrams. As generics do not play
such an important role in modeling but are applied for reuse of generic com-
ponents especially in implementation, UML/P waives the full generality of
generic classes with wildcards, bound typecasts, etc., and only the most im-
portant container classes are offered in a generically realized form, i.e., with
type parameters. Thus, UML/P class diagrams do not provide mechanisms
for defining generics. OCL/P, however, as well as the code generation allow
us to use generics.

2.2 Classes and Inheritance 17

2.2 Classes and Inheritance

When introducing classes, attributes, methods, and inheritance, an imple-
mentation view—as already discussed—is taken as a basis in this section.
Figure 2.2 contains a classification of the most important terms for class dia-
grams.

Class A class consists of a collection of attributes and methods that determine the
state and the behavior of its instances (objects). Classes are connected to each other
by associations and inheritance relations. The class name identifies the class.

Attribute State components of a class are called attributes. An attribute is described
by its name and type.

Method. The functionality of a class is stored in methods. A method consists of a sig-
nature and a body describing the implementation. In case of an abstract method,
the body is missing.

Modifier. For the determination of visibility, instantiatability, and changeabil-
ity of the modified elements, the modifiers public, protected, private,
readonly, abstract, static, and final can be applied to classes, methods,
roles, and attributes. UML/P offers the following iconic variants for the first four
modifiers of these: “+”, “#”, “-”and “?”.

Constants are defined as special attributes with the modifiers static and final.
Inheritance. If two classes are in an inheritance relation to each other, the subclass

inherits its attributes and methods from the superclass. The subclass can add fur-
ther attributes and methods and redefine methods—as far as the modifiers allow.
The subclass forms a subtype of the superclass that, according to the substitution
principle, allows use of instances of the subclass where instances of the superclass
are required.

Interface. An interface describes the signatures of a collection of methods. In con-
trast to a class, no attributes (only constants) and no method bodies are specified.
Interfaces are related to abstract classes and can also be in an inheritance relation
to each other.

Type is a basis data type such as int, a class or an interface.
Interface implementation is a relation between an interface and a class, similar to

inheritance. A class can implement any number of interfaces.
Association is a binary relation between classes that is used for the realization of

structural information. An association is described by an association name, a role
name for each end, a cardinality, and information about the directions of navigation.

Cardinality. The cardinality (also called multiplicity) is given for each end of the
association. It has the form “0..1”, “1” or “*” and describes whether an associ-
ation in this direction is optional or mandatory, or allows for multiple bindings.

Figure 2.2. Definitions for class diagrams

Figure 2.3 shows a simple class diagram that consists of a class and a com-
ment attached. The explanation in italics and the curved arrows do not be-
long to the diagram itself. They serve to describe the elements of the diagram.

18 2 Class Diagrams

Usually, the representation of a class is divided into three compartments. In
the first compartment, the class name is given.

Figure 2.3. Class Auction in the class diagram

2.2.1 Attributes

The middle compartment of a class definition describes the list of attributes
that are defined in this class. The information on attributes can be incom-
plete in many respects. First, an attribute can be indicated with or with-
out its type. In the example in Fig. 2.3, the data types of all four attributes
are shown. As we use Java as target language, the default notation for the
UML “attribute: Type” has been replaced by the Java-compliant ver-
sion “Type attribute”.

A number of modifiers are available for attributes, defining the attribute’s
properties more precisely. As compact forms, UML provides “+” for public,
“#” for protected, and “-” for private in order to describe the visibil-
ity of the attribute to foreign classes. “+” allows for general access, “#” for
subclasses, and “-” allows access only within the defining class. The UML
standard does not contain a fourth visibility declaration “?”, which is only
offered by UML/P to mark an attribute as readonly. An attribute marked in
this way is generally readable but can only be modified in subclasses and the
class itself. This visibility thus has the same effect as public while reading
and protected while modifying. It proves helpful in modeling in order to
define access rights even more precisely.

Further modifiers offered by the programming language Java such as
static and final for the description of static and nonmodifiable attributes
can also be used in the class diagram. In combination, these modifiers serve
for defining constants. However, constants are often omitted in class dia-
grams. An attribute marked static is also called a class attribute and can be
marked alternatively by an underscore (see Fig. 2.4).

2.2 Classes and Inheritance 19

Figure 2.4. Class attribute and static method

UML provides derived attributes that are marked with “/” (see Fig. 2.5). In
case of a derived attribute, its value can be calculated (“derived”) from other
attributes of the same or other objects and associations. Usually, the calcu-
lation formula is defined in the form of a constraint attr==... . UML/P
provides OCL that is introduced in Chap. 3 for this purpose.

Figure 2.5. Derived attributes

2.2.2 Methods

In the third compartment of a class representation, methods are shown with
names, signatures, and if any, modifiers for methods. Here, also the nota-
tion in line with Java Type method (Parameter) is used instead of the
official UML notation method (Parameter): Type. While attributes store
the state of an object, methods serve for the execution of tasks and data cal-
culation. For this purpose, they use data stored in attributes and call other
methods of the same or other objects. Like Java, UML/P also provides meth-
ods with variable arity that, e.g., are given in the form Type method(Type

variable ...). The access rights for methods can be defined analogously
to the visibilities for attributes with “+”, “#”, and “-”.

Further modifiers for methods are:

• static in order to make the method accessible even without an instan-
tiated object

• final in order to make the method unchangeable for subclasses
• abstract in order to indicate that the method is not implemented in this

class

Just like class attributes, UML prefers to outline static methods alterna-
tively by underlining. Constructors are shown like static methods in the

20 2 Class Diagrams

form class(arguments) and are underlined. If a class contains an abstract
method, the class itself is abstract. Then, the class cannot instantiate objects.
In subclasses, however, abstract methods of a class can be implemented ap-
propriately.

2.2.3 Inheritance

In order to structure classes into hierarchies, the inheritance relation can be
used. If multiple classes with partly corresponding attributes or methods ex-
ist, these can be factorized in a common superclass. Figure 2.6 demonstrates
this by means of similarities of several messages occurring in the auction
system.

If two classes are in an inheritance relation, the subclass inherits its at-
tributes and methods from the superclass. The subclass can extend the list of
attributes and methods as well as redefine methods—as far as the modifiers
of the superclass permit. At the same time, the subclass forms a subtype of
the superclass that, according to the substitution principle, allows for the use
of instances of the subclass where instances of the superclass are required.

Figure 2.6. Inheritance and interface implementation

In Java, each class (except Object) inherits from exactly one superclass.
However, a superclass can have many subclasses that in turn can have fur-
ther subclasses. By using inheritance as a means of structuring, we define an
inheritance hierarchy. A superclass can be regarded as a generalization of its
subclasses, as its attributes and method signatures determine the similarities

2.2 Classes and Inheritance 21

of all subclasses. If in an inheritance hierarchy the code inheritance is less im-
portant than structuring, we speak of a generalization hierarchy. Especially for
requirements elicitation and the architectural design, generalization plays a
vital role to structure the system.

In object-oriented modeling, inheritance is an essential structuring mech-
anism, but deep inheritance hierarchies should be avoided as inheritance
couples the classes and, thus, the code contained. To fully comprehend a sub-
class, its direct as well as all other superclasses have to be understood.

2.2.4 Interfaces

Java offers a special form of class, the interface. An interface consists of a
collection of method signatures and constants and is applied especially for
defining the usable interface between parts of the system, respectively its
components. In Fig. 2.6, the interface Serializable is used in order to en-
force a certain functionality from all classes that implement this interface.

An interface, like a class, is depicted by a rectangle but marked with the
stereotype �interface�. Objects can be instantiated neither directly from an
interface nor from an abstract class. Instead, the given method signatures
have to be realized in classes which implement the interface. Furthermore,
interfaces can only contain constants but no attributes.

While in Java a class is only allowed to inherit from one superclass, it
can implement any number of interfaces. An interface can extend other in-
terfaces and, hence, have a subtype relation to these interfaces. In this case, the
subinterface includes the method signatures defined by the superinterface in its
own definition and extends these by additional methods. Figure 2.7 shows
this by means of an extract of the Java class library.

Figure 2.7. Interface implementation and extension

Technically, interfaces and classes as well as inheritance and interface im-
plementation are similar concepts. That is why hereinafter, for the sake of
simplification, the term class is often used as a generic term for classes and

22 2 Class Diagrams

interfaces as well as inheritance for the inheritance between classes, the im-
plementation relation between interfaces and classes, and for the subtype
relation between interfaces. This simplification is reasonable especially with
regard to analysis and early design if the decision of whether a class can be
instantiated, is abstract, or becomes an interface as not yet been made.

2.3 Associations

An association has the purpose of relating objects of two classes. Using asso-
ciations, complex data structures can be formed and methods of neighboring
objects can be called. Figure 2.8 describes a part of the auction system with
three classes, two interfaces, and five associations in different forms.

Figure 2.8. Class diagram with associations

Usually, an association has an association name and an association role for
each of the two ends as well as information about the cardinality and a de-
scription of possible navigation directions. Details can also be omitted from
the model if they are not important for the representation of the desired facts
and if no ambiguity occurs. Association names, e.g., often serve only to dis-
tinguish associations, especially between the same classes. In case of a lack of
the association or role name, there are standard rules for obtaining a surro-
gate name as outlined in the next section and further discussed in Sect. 3.3.8.

Just like a class, an association is a modeling concept in the class diagram.
During the system’s runtime, an association manifests through links between
the connected objects. The number of links is limited by the association’s
cardinality. If an association is navigable in one direction, the implementation
provides mechanisms to efficiently realize this navigability.

2.3.1 Roles

A role name is used to navigate to objects that are connected through an as-
sociation or its links. In this way, one can access the auctions from an object of

2.3 Associations 23

the class Person by using the role name auctions. If no explicit role name
is given, we use the name of the association or that of the target class as role
name, provided that these unambiguously describe the intended navigation.
In the example in Fig. 2.8, one can access the respective objects from an object
of the class Auction with the names biddingPolicy and messages. Ac-
cording to the programming language used for the implementation and the
cardinalities given in the class diagram, schematic conversions of the first
letter in the name are made. Role names in UML/P always begin with a
lower-case letter while class names begin with an upper-case letter.

If both ends of the association are connected to the same class, it is called a
reflexive association. Reflexive associations enable the realization of a number
of design patterns [GHJV94, BMR+96] such as a part–whole relationship. In
a reflexive association, it is necessary to furnish at least one end with role
names. By doing so, a distinction of the participating objects by their roles is
possible.

Figure 2.10 shows a reflexive association fellow in which each observer is
assigned to the bidder he can “observe.” Although that leads to a reflexive
structure, the recursion depth is limited to 1 because bidders themselves are
not observers and observers have direct connection to the bidders. This can
be expressed through appropriate OCL conditions (see Chap. 3).

2.3.2 Navigation

During design and implementation activities, the navigation arrows of an
association play an important role in a class diagram. The example in Fig. 2.8
describes the access of a Person object to its linked Message objects. Vice
versa, (direct) access from a Message object to the Persons to which the
object is linked is not possible. Therefore, the model allows the distribution of
a message, e.g., using broadcasting, to several persons without duplication.

Basically, associations can be uni- or bidirectional. If no explicit arrow
direction is given, a bidirectional association is assumed. Formally, the nav-
igation possibilities are regarded as unspecified, and thus, no restriction is
given in this situation.

If the fundamental navigability is modeled by the arrow, the role name
determines how the association or the linked objects can be addressed. The
modifiers public, protected, and private can be used for roles in order
to correspondingly restrict the visibility of this navigation.

2.3.3 Cardinality

A cardinality can be indicated at each end of an association; For example, the
association participants enables a person to participate in multiple auc-
tions and allows various persons to place bids in the same auction, but only
exactly one TimingPolicy is linked to each auction. The three cardinal-
ity specifications “*”, “1”, and “0..1” permit linking any number of objects,

24 2 Class Diagrams

exactly one, and at most one object respectively (see Fig. 2.8). More general car-
dinalities are of the form m..n or m..*, and they could even be combined in
the earlier UML 1.x versions (example 3..7,9,11..*). However, especially
the three forms mentioned first can be directly implemented. Because of this,
we abstain from discussing the general forms of cardinalities here. OCL in-
variants introduced in Chap. 3 allow for the description and methodical use
of generalized cardinalities.

In the UML literature, a distinction is sometimes made between cardinal-
ity and multiplicity. In this case, cardinality designates the number of actual
links of an association while multiplicity indicates the scope of potential car-
dinalities. The entity/relationship models do not make this distinction and
consistently use the term cardinality.

2.3.4 Composition

Composition is a special form of association. It is indicated by a filled dia-
mond at one end of the association. In a composition, the subobjects are
strongly dependent on the whole. In the example in Fig. 2.8, BiddingPolicy
and TimingPolicy are dependent on the Auction object in their lifecy-
cle. This means that objects of these types are instantiated together with the
Auction object and become obsolete at the end of the auction’s lifecycle. As
BiddingPolicy and TimingPolicy are interfaces, suitable objects which
implement these interfaces are used instead.

An alternative form of representation expresses the nature of the compo-
sition of an association better by using graphic containedness instead of a
diamond. Figure 2.9 shows two alternatives differing only in details. In class
diagram (a), the association character of the composition is highlighted. It
also describes navigation possibilities. In class diagram (b), navigation direc-
tions are not directly shown but both classes have a role name that describes
how to access the components from the containing Auction object. The car-
dinality is indicated in the upper-right corner of the class. Representation (b)
seems on the one hand more intuitive but is on the other hand less expres-
sive. It is possible neither to clarify the backwards direction of the navigation
nor to add further tags to the composition associations. The cardinality on
the composition side is “1” by default but can be adjusted to “0..1”, i.e.,
one object is assigned to at most one composite.

There are a number of interpretation variants regarding the possibility to
exchange objects and for the lifecycle of dependent objects in a composite.2

Thus, a precise definition of a composite’s semantics should always be deter-
mined project specifically. This can, for instance, be done by stereotypes in-
troduced in Sect. 2.5, which accompany supplementary project- or company-
specific, informal explanations or by self-defined stereotypes.

2 A detailed discussion on this topic is, e.g., provided by [HSB99] and [Bre01].

2.3 Associations 25

Figure 2.9. Alternative representations of composition

2.3.5 Derived Associations

Besides derived attributes, there are also derived associations in UML/P.
They are also marked by a “/” in front of the association’s name. An associa-
tion is considered derived if the set of its links can be calculated (“derived”)
from other state elements. Other attributes and associations can be used for
the calculation. In the example in Fig. 2.10, two associations are given, de-
scribing which persons are allowed to place bids in an auction and which
persons can observe the behavior of a bidding colleague (“fellow”). The de-
rived association /observers is calculated from these two associations. For
this purpose, e.g., the OCL characterization given in Fig. 2.10 (see Chap. 3)
can be used.

OCL

context Person p inv:

p.observedAuctions == p.fellowOf.auctions.union(p.auctions)

Figure 2.10. Derived association

2.3.6 Tags for Associations

The UML standard offers a variety of additional tags for associations that
concretize the properties of associations more precisely. Figure 2.11 contains
three tags that are interesting in this context. {ordered} indicates that an
association with cardinality “*” allows ordered access. In the case shown,
the order of the messages of an auction is relevant. {frozen} indicates that

26 2 Class Diagrams

the two associations to the policy objects can no longer be changed after
the initialization of an Auction object is completed. In this way, the same
policies are available throughout the whole lifetime of an Auction object.
{addOnly} models that objects can only be added to the association and
that removing them is prohibited. Thus, the model in Fig. 2.11 expresses that
messages that have been sent in an auction cannot be withdrawn.

Figure 2.11. Tags for associations

An association that is tagged with {ordered} on one end certainly has to
provide a mechanism that allows access according to this order. Associations
with the tag {ordered} present a special case of qualified associations.

2.3.7 Qualified Associations

In their most general form, qualified associations provide an opportunity to
select a single object from a set of assigned objects by means of a qualifier. Fig-
ure 2.12 shows several associations qualified in different ways. In addition,
it is possible to qualify a composition or to use qualification at both ends of
an association.

In the auction system, an object of the class AllData is used in order to
store all currently loaded auctions and their participants. The qualified ac-
cess via the auction identifier auctionIdent is understood as a mapping,
and thus, the functionality of the interface Map<long, Auction> is pro-
vided, but this does not determine the form in which the qualified associa-
tion is implemented. During code generation, a transformation into an alter-
native data structure can be applied or further functionality, e.g., from the
NavigableMap, can be added.

As the key for the mapping, the auction identifiers already existing in
the auction are used in the example. Analogously, persons can be selected
via their name, which is of the type String. However, there is a significant
difference between the cases where the qualifier is a type (in the example:
String) or an attribute name of the associated class. While in the first case
any object or value of the given type can be used as a key, only the actual

2.4 View and Representation 27

Figure 2.12. Qualified associations

attribute content is legitimate as a qualifier in the second case. This prop-
erty can be formulated with OCL, which we will introduce in Chapter 3, as
follows:

OCLcontext AllData ad inv:

forall k in long:

auction.containsKey(k) implies

auction.get(k).auctionIdent == k

While in explicitly qualified associations the type of qualifier can be freely
chosen, ordered associations use integer intervals starting with 0.3

Wherever an explicit qualifier is used, only one object is reached by the
qualified access even if another cardinality is given. Usually, the target object
is uniquely identified only in terms of the source object and the qualifier; For
example, each auction can store a different message at index 0. The quali-
fier allIdent is only unique system-wide as it presents at the same time
an unambiguous key of the target object. In case the qualifier is not set, ac-
cess requests have to react appropriately, e.g., with a null pointer as in Java
maps or an exception. In an ordered association (tag {ordered}), the quali-
fier remains implicit and is not indicated in a respective box at the end of the
association.

2.4 View and Representation

A class diagram is mainly used to describe the structure and the relations
necessary for a certain task. A complete list of all methods and attributes
is often obstructive in this case. Instead, only those methods and attributes
that are helpful for presenting a “story” should be illustrated. “Story” is a

3 As common in Java, indexing starts with 0.

28 2 Class Diagrams

metaphor that is deliberately used to indicate that a diagram has a focus
highlighting significant and omitting unimportant information. Diagrams
can, e.g., model different parts of the system or particular system functions.

Hence, a class diagram often represents an incomplete view of the whole
system. Some classes or associations can be missing. Within classes, at-
tributes and methods can be omitted or presented incompletely. For example,
the argument list and the return type of a method can be omitted.

Unfortunately, in general it is not evident from a UML diagram whether
the information contained therein is complete or not. Therefore, “ c©” has
been taken over from [FPR01] for the display of complete information. It sup-
plements the representation indicator “. . .”already offered by UML to mark
incomplete information.

Figure 2.13. Complete class representation

Figure 2.13 shows how the two indicators “. . .” and “ c©” can be used.
The indicators “ c©” and “. . .” do not have any effect on the class itself but on
their representation within the class diagram. A “ c©” in the class name shows
that the attribute as well as the method list is complete. In contrast, the in-
completeness indicator “. . .” means that the presentation can be incomplete.
Due to the dualism between associations and attributes later discussed, it is
implied that all associations that can be navigated from this class are also
modeled when the attribute list is marked as incomplete.

Both indicators can also be applied to the list of attributes and methods
individually. The incompleteness indicator “. . .” acts as default when no in-
dicators are given. This corresponds to the usual assumption that a diagram
presents an abstraction of the system.

To explain the use of these indicators precisely, the three model levels il-
lustrated in Fig. 2.14 are to be distinguished: the system itself, the complete

2.4 View and Representation 29

Figure 2.14. Illustration of the three model levels

UML model of the system, and a graphic, incomplete representation of the
model, e.g., on screen. In most cases, the representation is also called a view
but is itself a model. Both indicators “ c©” and “. . .” describe a relation be-
tween the view and the incomplete UML model on which the view is based.
As Fig. 2.13 shows, there are a number of different views for the same class.
The two marks are thus called representation indicators.

If a software system reaches a certain size, a complete class diagram can
seem quite overloaded. Due to the many details, the story is concealed rather
than presented. Because of this, in software development it is reasonable to
work with multiple smaller class diagrams. Necessarily, class diagrams that
each show an extract of the system have overlaps. Through these overlaps,
the correlation between the individual models is established. Figure 2.15
shows two extracts of the auction system in which the class Auction is rep-
resented in different forms. Here, the indicator “. . .” allows one to explicitly
describe that only the information necessary for the respective story is illus-
trated.

Through fusion, a complete class diagram can be obtained from a collec-
tion of single class diagrams. As discussed in Sect. 1.4.4, some tools always
use a complete class diagram internally as their model and the user gets ex-
tracts in the form of views. A fusion of class diagrams is basically a unifi-
cation of all the class, association, and inheritance relations, whereas in the
case of a repeatedly occurring class, attribute and method lists are also con-
solidated. There are of course a number of consistency conditions to be fol-

30 2 Class Diagrams

Figure 2.15. Overlapping of class diagrams

lowed. These include conforming types for attributes and methods, compat-
ible navigation roles and multiplicity specifications for associations, as well
as prevention of cyclical inheritance relations.

2.5 Stereotypes and Tags

Although UML is designed as a graphic language for the implementation,
it has a lot in common with natural languages. UML has a core structure
that corresponds to a grammar, and its sentences are built in the form of dia-
grams. Similar to natural languages, there are mechanisms to extend and ad-
just the language vocabulary according to the respective necessary require-
ments. These mechanisms form the basis for project- and company-specific
dialects or profiles of UML.

However, the introduction of a new class already extends the available
vocabulary, as we can then use this class in other places. From this perspec-
tive, programming is a steady expansion of the vocabulary at hand in the
system. But while in a programming language the introduction of a new
control structure is not possible, UML allows, in a restricted form, the in-
troduction of new kinds of model elements by offering stereotypes and tags
by means of which existing model elements can be specialized and adjusted
(see Fig. 2.16).

Without providing an explicit mechanism, UML allows on the one hand
for modification of the syntactic appearance through restriction or expan-
sion, but on the other hand also to change the semantics of the language.
As UML is designed as a “universal” language, its forms of use can im-
pose a certain bandwidth for its semantics. This so-called semantic variability
[Grö10] enables project-specific adjustment of the semantics and tools. “Se-
mantic variation points” cannot be described in standard UML itself. This is

2.5 Stereotypes and Tags 31

why, in [GRR10, CGR09], an independent mechanism on the basis of feature
diagrams is defined and can be used for profile creation. The generally possi-
ble adaptations go far beyond the concept of stereotypes and tags introduced
here.

Stereotype. A stereotype classifies model elements such as classes or attributes.
Through a stereotype, the meaning of the model element is specialized and can
thus, e.g., be treated more specifically in code generation. A stereotype can have
a set of tags.

Tag. A tag describes a property of a model element. A tag is denoted as a pair con-
sisting of a keyword and value. Several such pairs can be combined in a comma-
separated list.

Model elements are the (fundamental) parts of UML diagrams. For instance, the
class diagram has classes, interfaces, attributes, methods, inheritance relations,
and associations as model elements. Tags and stereotypes can be applied to
model elements, but they themselves are not model elements.

Figure 2.16. Definition: tag and stereotype

In the previous examples in this chapter, stereotypes, tags,4 and related
mechanisms have already been used occasionally. In the class shown in
Fig. 2.3, the visibility markers “+”, “#”, “?”, and “-” were introduced. Fig-
ure 2.13 shows the two representation indicators “ c©” and “. . .” referring
to the representation of a view of the model. Figure 2.6 shows the stereo-
type �interface� that marks a “special” class, namely an interface. The tags
{ordered}, {frozen}, and {addOnly} exclusively serve to mark the ends
of associations, as shown in the example in Fig. 2.11.

2.5.1 Stereotypes

Figure 2.17 exhibits three kinds of stereotypes. While the stereotype �inter-
face� is provided by default by UML, the two stereotypes on the right �Jav-
aBean� and �Message� are to be defined in the project, tool or framework
itself.

Stereotypes are normally indicated in French quotation marks (guille-
mots) with reversed tips. In principle, each UML model element can be
equipped with one or several stereotypes. However, stereotypes are often
used in order to assign special properties to classes.

The stereotype �interface� tags an interface, which is regarded as a spe-
cial form of class. The stereotype �JavaBean� acts as an indicator for the fact
that the class tagged provides the functionality required by JavaBeans. The
stereotype �Message� is used in the auction project in order to record in

4 In the UML definition, the terms tagged values and properties are used, being sum-
marized, among others, as tags in [Bal99].

32 2 Class Diagrams

Figure 2.17. Types of stereotypes for classes

compact form that the class tagged is a subclass of Message and thus serves
for the transfer of information.

Hence, there are a multitude of application possibilities for stereotypes.
They can classify model elements, e.g., in order to specify additional prop-
erties or functionalities or to impose restrictions. The UML standard offers a
metamodel-based and a tabular approach for informal definition of stereo-
types. Depending on the stereotype’s intention, restrictive conditions can
also be formulated more precisely, or mechanisms for a specific code genera-
tion can be indicated. The following list shows some application possibilities
for stereotypes:

• A stereotype describes syntactic properties of a model element by de-
manding additional properties or specializing already existing proper-
ties.

• A stereotype can describe the representation of a model provided to the
user. The indicator “ c©” can be considered such a special form.

• A stereotype can describe application-specific requirements. The �per-
sistent� stereotype, for example, can specify that objects of this class are
persistently stored, although it is not explained how this storage is to
happen.

• A stereotype can describe a methodical relation between model elements.
For instance, the stereotype �refine� in the UML standard is designed for
this purpose.

• A stereotype can reflect the modeler’s intention describing how a pro-
grammer should use a certain model element. A class can, e.g., be tagged
as �adaptive� in order to imply that this class is well suited to extension.
Such stereotypes are especially suited for frameworks (see [FPR01]). With
stereotypes of the form �Wrapper�, the role of a class in a design pattern
can be documented.

Of course, there are a number of overlaps between the mentioned and
further application options for stereotypes.

To allow the developer to specify properties in a more detailed form, a
stereotype can be equipped with a variety of tags. Then, the application of a
stereotype in a model element implies that its assigned tags are also defined
on the model element.

2.5 Stereotypes and Tags 33

2.5.2 Tags

Figure 2.18 shows a test class of the auction system marked by a correspond-
ing stereotype. Information on the indicated test and its execution is stored
in the form of tags.

Figure 2.18. Tags applied on a test class

Tags can be attached to basically each model element. In addition, tags,
as shown in Fig. 2.18, can be bound to a stereotype and thus applied together
with the stereotype to model elements. In the example, the existence of the
last three tags is demanded by the use of the stereotype �Testclass�, as in the
auction project these three tags are assigned to the stereotype.

A tag is usually denoted in the form {name = value}. Principally,
strings and numbers are accepted as values. An explicit typing of the tag
values would be desirable, but up to now it is supported by neither the
UML language standard nor the tools. If the value is not relevant or it is the
Boolean value true, it can also be omitted; For example, {are Tests OK =

true} and {are Tests OK} are alternative representations. The UML stan-
dard [OMG10a] by default offers tags for associations such as {ordered}
but also allows one to define new, situation-specific tags.

Even if a tag is added to a class, it considerably differs from an attribute.
A tag assigns a property to the model element, while an attribute has an inde-
pendent value in each instance of the class. Attributes appear at the runtime
of a system while tags do not exist there. Tags, however, can have effects on
the system if they influence the properties of the model element with regard
to its implementation. Among others, tags qualify for the presentation of the
following properties:

• The initial value of an attribute can be specified.
• Figure 2.18 shows how project information is presented in the form of

tags. This includes the name of the author of a class, the date of the most
recent change, the current version number, and suchlike.

• Informal comments can be indicated by tags.

34 2 Class Diagrams

• Designated techniques for data storage or transfer via a network can be
filed, e.g., in the model.

• For graphic representation in a tool, a suitable graphic symbol can be
assigned to a model element whose file name is stored in the tag.

2.5.3 Introduction of New Elements

The variety of application options for stereotypes and tags makes it nearly
impossible to describe the meaning of such elements directly within UML.
Hence, when defining a tag or stereotype, usually an informal description
is given. By doing so, not only the concrete appearance but especially the
intention and the application domains are described.

The most important reason for the introduction of a stereotype is the me-
thodical, tool-supported handling during software development. As there
are many different application possibilities for stereotypes, ranging from
controlling code generation to documentation of unfinished pieces in the
model, one can in general say little about the meaning of stereotypes. There-
fore, Table 2.19 only gives a general notation proposal for the definition of
stereotypes that can be adjusted and extended by appropriate tools for con-
crete tasks.

Stereotype �Name�

Model
element

To which element is the stereotype applied?
If applicable, pictures can illustrate the concrete form of pre-
sentation.

Motivation What is the purpose of the stereotype?
Why is it necessary?
How does it support the developer?

Glossary Concept formation—as far as necessary.
Usage
condition

When can the stereotype be applied?

Effect What is the effect?
Example(s) Illustrations through application examples, mostly under-

pinned with diagrams.
Pitfalls Which special problems can occur?
See also What other model elements are similar or supplement the

stereotype defined here?
Tags Which tags (name and type) are associated with the stereo-

type? Which ones are optional? Are there default values?
What is the meaning of a tag (unless defined in a separate ta-
ble)?

(continued on the next page)

2.5 Stereotypes and Tags 35

(continues Table 2.19.: Stereotype �Name�)

Extendable
to

The stereotype can often be applied to a superior model ele-
ment or a whole diagram in order to be applied element-wise
on all subelements.

Table 2.19. Stereotype �Name�

The definition of a stereotype follows the general form of design pat-
terns [GHJV94], recipes [FPR01], and process patterns [Amb98] by discussing
motivation, requirements, application form, and effects on an informal ba-
sis. However, the template should not be regarded as rigid but, as needed,
should be extended as appropriate or shortened by removing unnecessary
sections. In principle, the same template can be used for tags.

Tags, however, are basically more easily structured and easier to under-
stand, so that such a detailed template often seems unnecessary.

UML offers a third form of adaptations for model elements. Constraints
are an instrument for the detailed specification of properties. As constraint
languages, OCL introduced in Chap. 3 or informal text is suggested. A con-
straint is generally given in the form {constraint}. The UML standard
by default provides some constraints. These include the already known con-
straint {ordered} for associations that, however, can also be defined as a
tag with Boolean type. This example illustrates in particular that the differ-
ences between constraints, tags, and stereotypes cannot always be clarified
precisely. It also makes little sense to introduce a stereotype consisting of ex-
actly one tag, as this tag could also be attached directly to a model element.
When introducing new stereotypes, tags or constraints, certain creative free-
dom is given that can be used by the modeler in order to design a suitable
model.

3

Object Constraint Language

Mathematics is a condition
of all exact insight.

Immanuel Kant

The Object Constraint Language (OCL) is a property-orientated modeling
language that is used to model invariants as well as pre- and postconditions
of methods. In this book, an extended variant of OCL called OCL/P, which
is adjusted to Java, is introduced. After giving an overview of OCL, the logic
used and the concepts for modeling container data structures and functions
in OCL are described. Considerations regarding the expressiveness of OCL
conclude this chapter.

3.1 Overview of OCL/P . 39
3.2 The OCL Logic . 45
3.3 Container Data Structures . 50
3.4 Functions in OCL . 77
3.5 Expressiveness of OCL . 95
3.6 Summary . 101

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7_3

37

38 3 Object Constraint Language

Graphic notations are especially suited for giving the reader a quick overview
of the modeled system. However, in order to achieve lucidity, it is necessary
to abstract from details. That is why, e.g., class diagrams are not able to depict
many structural and behavioral constraints.

In general, due to their two-dimensional nature, graphic notations are
only partly suited for the representation of any kind of constraints for a sys-
tem. Pure visual programming languages such as VISTA [Sch98a] attempt
this, thus revealing an interesting approach but are not widespread. Hence,
it can be expected that programming languages in the near future will con-
tinue to be text-based or contain tight interlocking of graphic and textual
elements.

A textual notation that conceptually leans on known mathematics is rea-
sonable, particularly for constraints. Graphic abbreviations can, of course, be
defined for certain kinds of properties that occur frequently. For example,
UML provides cardinalities for associations as shortcuts for constraints. Also
the type system of a language such as Java can be understood as a restric-
tion regarding a system’s properties. [GHK99] introduces visual concepts for
further kinds of constraints.

Textual modeling of constraints allows one to model system properties
that cannot be described with a graphic notation or often clumsily only. The
compactness of a textual notation in contrast to a graphic description tech-
nique has the effect that the former is generally regarded as less comprehen-
sible. Therefore, good modeling consists of comprehensible as well as com-
pact and, thus, concisely formulated constraints. Furthermore, it is important
to use the formulated constraints constructively in the software engineering
process. Therefore, tools such as a parser or a checker for type correctness are
helpful. In addition, the executability and, hence, the automated verifiability
of a constraint is an essential prerequisite for the use of a constraint language
for test definition.

The Object Constraint Language (OCL) is defined by the UML standard and
provides a textual notation that can be used for the definition of constraints in
the form of invariants as well as for pre- and postconditions of methods. Fur-
thermore, [OMG10b] gives the precise definition of its syntax and meaning.
[WK98] presents an introduction to OCL.

The history of the definition of programming and specification languages
shows that it is very difficult to design a generally satisfying and sufficiently
well-defined language on the first attempt. OCL offered in the UML stan-
dard is not derived from a widespread programming language. For this very
reason, it has a rather unusual syntactic appearance that exacerbates the diffi-
cult access to OCL for many developers. Hence, a syntactic form of OCL that
is derived from Java was proposed in [Rum02b] . This chapter contains an
extension of that proposal, which in the following is called OCL/P or short
OCL.

Apart from the adaption of the syntactic form of OCL, a number of con-
ceptual improvements have been integrated in the form of OCL/P as pre-

3.1 Overview of OCL/P 39

sented here. Some of these improvements have already been described in
[CKM+02], and some have been taken over from functional programming
languages.

After introducing the reader to OCL/P in the next section, technical de-
tails of OCL are informally discussed in the following sections. This includes
the presentation of a reasonable logic for OCL, the introduction of contain-
ers, and a demonstration of how operations are modeled in OCL. Finally, the
expressiveness of OCL is studied, and OCL is compared with the complete
algebraic specification language Spectrum [BFG+93]. Appendix C.3 presents
the context-free syntax of OCL. The essential differences between the OCL
standard and OCL/P are introduced here as well as their motivations are
summarized in Appendix C.3.2.

3.1 Overview of OCL/P

Figure 3.1 explains the most important expressions in OCL.

Constraint. A constraint is a Boolean statement about a system. It describes a prop-
erty that a system or a result shall have. Its interpretation always yields one of
the logical values true or false.

Context. A constraint is embedded in a context. Thus, a constraint includes state-
ments about this context. The context is defined by a set of names used in the
constraint and their signatures. That includes names of classes, methods, and at-
tributes of the model and especially variables explicitly introduced in the context
of a constraint.

Interpretation of a constraint is carried out based on a concrete object structure. The
variables introduced in the context are assigned values or objects.

Invariant describes a property which must hold in a system at each (observed) point
in time. The points in time of observation can be restricted in order to allow time-
limited violations, e.g., during the execution of a method.

Precondition of a method characterizes the properties that need to be valid to en-
sure that the method produces a defined and correct result. If the precondition
does not hold, nothing is known about the result.

Postcondition of a method describes which properties hold after the execution of
the method has finished. Here, it is possible to refer to objects in the state which
was valid directly before the method call (at the “time” of the interpretation of
the precondition). Postconditions are interpreted by means of two object struc-
tures showing the situations before and after the method call.

Method specification is a pair of pre- and postconditions.
Query is a method offered by the implementation whose call does not affect the

system’s state. New objects may be created as a result of the call. However, these
must not be connected to the state of the system by links. So, queries do not have
side-effects and can be used in OCL constraints.

Figure 3.1. Term definitions for OCL

40 3 Object Constraint Language

The abilities of OCL for describing constraints are demonstrated in this
section by means of examples from the auction system. These and further
OCL constructs are explained in detail in the following sections. The com-
plete OCL grammar can be found in Appendix C.3.

3.1.1 The Context of a Constraint

One of the prominent properties of OCL constraints is their embedding in a
context consisting of UML models. Usually, this context is given by a class
diagram. The class diagram in Fig. 3.2 provides such a context in the form
of two classes and a number of attributes partly dependent on each other,
modeling a part of the auction system. These attribute dependencies can be
defined by means of OCL/P constraints.

Figure 3.2. Part of the auction system

A simple constraint, for example, is the following: an auction always
starts before it is completed. This constraint is described by explicitly includ-
ing an Auction object in the context. The explicitly stated context of an OCL
constraint consists of one or more objects whose name is declared by refer-
encing them in the context of the constraint. The constraint uses a method of
the Java class Time for comparison:

OCLcontext Auction a inv:

a.startTime.lessThan(a.closingTime)

This constraint requires that the signature of class Auction is provided
in the context. The variable name a is locally introduced by the context

statement and acts like a variable definition. An alternative is to explicitly
import variables, for example, if they have already been defined in another
constraint or diagram. Using this importing form of the context, OCL con-
straints are combined and connected to object diagrams in Chap. 4. By doing
so, the objects named in the object diagrams can be used explicitly in the OCL
constraints. Thus, the contexts defined by import are discussed in more de-
tail in Chap. 4. The following context, for instance, characterizes a property
of the Auction object a that might come from an object diagram:

3.1 Overview of OCL/P 41

OCLimport Auction a inv:

a.startTime.lessThan(a.closingTime)

Objects connected in associations can be included by using navigation ex-
pressions. The expression a.bidder provides a set of persons, i.e., a value
of the type Set<Person>, whose size can be determined with the attribute
size. To ensure that the number of active participants is not larger than the
number of persons actually participating in an auction, the following con-
straint is formulated:

OCLcontext Auction a inv Bidders1:

a.activeParticipants <= a.bidder.size

As this example shows, a constraint can be given its own name (like
Bidders1) so that it is possible to refer to it at another point. Navigation
expressions can be chained. To navigate along an association, the role names
opposite to the initial object are used. If the association participants is
implemented properly, the following constraint is correct:

OCLcontext Auction a inv:

a in a.bidder.auctions

Refining the second last constraint Bidders1, it is now required that the
number of active participants of an auction be the same as the number of its
assigned persons whose attribute isActive is set:

OCL

context Auction a inv Bidders2:

a.activeParticipants == { p in a.bidder | p.isActive }.size

The set comprehension used here is a convenient extension not present in
the OCL standard. It is further discussed in several forms later. If in a context
only the class is defined instead of an explicit name, the name this is used
by default. In this case, there is direct access also to attributes. This is shown
by the following condition in which logic conjunctions are used as well:1

OCLcontext Auction inv:

startTime.greaterThan(Time.now()) implies

numberOfBids == 0

This constraint is equivalent to the version with explicit use of the name
this:

OCLcontext Auction inv:

this.startTime.greaterThan(Time.now()) implies

this.numberOfBids == 0

1 Auctions can already exist but may not be open yet in the described auction sys-
tem.

42 3 Object Constraint Language

The context of closed constraints, such as the following, is empty. A context
can always be replaced by quantifiers that are defined from the context over
all existing objects of the class. The following constraint with empty context
is, thus, equivalent to the previous one:

OCLinv:

forall a in Auction:

a.startTime.greaterThan(Time.now()) implies

a.numberOfBids == 0

3.1.2 The let Construct

Intermediate results can be assigned to an auxiliary variable using the let
construct in order to reuse them in the body of the construct, possibly several
times. The subsequent constraint demands that the initial and final time of
each auction obey the right relation. Here, the if-then-else known from Java
is used in the compact form .?.:. as shown here:

OCLcontext Auction a inv Time1:

let min = startTime.lessThan(closingTime)

? startTime : closingTime

in

min == startTime

The let construct introduces locally usable variables and operations
which are only visible within the expression. The type of such a variable
is inferred by the given expression on the right but can also be defined ex-
plicitly.

In a let clause, several local variables and operations can be defined. A
definition can use all variables defined before.2

To ensure that, in the auction system, the latest possible auction end obeys
the right relation with the initial time, the following can be formulated:

OCLcontext Auction a inv Time2:

let min1 = a.startTime.lessThan(a.closingTime)

? a.startTime : a.closingTime;

min2 = min1.lessThan(a.finishTime) ? min1 : a.finishTime

in

min2 == a.startTime

2 As described in [CK01], the simultaneous (recursive) use of a previously defined
element increases the complexity of the typing in the body of the definition (com-
pare Gofer [Jon96] and SML [MTHM97]). Furthermore, a recursive equation in
general has multiple solutions in a specification language such as OCL (compare
Sect. 3.5). As recursive definitions also become possible through the basic object
system, the possibility of a recursive definition is relinquished.

3.1 Overview of OCL/P 43

Here, two intermediate results with the same structure but different pa-
rameters are defined. To simplify this, the let construct can also be used to
define auxiliary functions. The following example illustrates the usage of an
auxiliary function for calculating the minimum of timestamps and is, thus,
equivalent to the constraint Time2:

OCLcontext Auction a inv Time3:

let min(Time x, Time y) = x.lessThan(y) ? x : y

in

min(a.startTime, min(a.closingTime,a.finishTime))

== a.startTime

When defining an auxiliary function, arguments have to be specified to-
gether with their types, as in usual Java methods. Operations are given in
functional style that, at the same time, corresponds to object-oriented style
for methods of the same object, as known from Java.

If an auxiliary function is required more often, it is expedient to place it
in a class of the underlying model or in a library specially provided for this
purpose. Such a library is discussed in Sect. 3.4.4.

Intermediate variables and auxiliary functions can also be regarded as at-
tributes or methods, respectively, of an anonymous class that, in case of a
let construction, is implicitly included into the context. This is further ex-
plained in Sect. 3.4.3 by means of an example after having introduced the
method specifications. A special case, which is further discussed in the next
section, is, however, the handling of undefined results. The let construct al-
lows undefined intermediate results and can provide a defined overall result
if intermediate results do not occur there.3 For instance, the following holds:

OCLinv:

5 == (let x = 1/0 in 5)

3.1.3 Conditional Expression

In contrast to an imperative programming language, a specification language
has no control structures for steering the control flow. However, some opera-
tions oriented towards imperative constructs are offered. This, e.g., includes
the conditional expression if-then-else or the equivalent form .?.:.

already used in condition Time1. On the basis of the first argument, it is
determined which of the two other arguments is evaluated and accepted as
the result of the conditional expression. Contrary to imperative conditional
expression, the then and the else path always need to be included. Both
paths contain expressions of the same data type. A conditional expression
then has the data type of the first expression; i.e., the second expression has
to be a subtype of the first expression’s type.

3 If the OCL condition is evaluated, the demand-oriented (“lazy”) evaluation of the
expressions in let constructs is to be used.

44 3 Object Constraint Language

A special form of conditional expression allows the treatment of type con-
versions such as those occasionally occurring in case of subtype hierarchies.
For this, OCL/P offers a type-safe construction using a combination of a type
conversion and a conditional expression regarding its convertibility. Accord-
ing to Fig. 2.6, the bidder can be extracted from the bids as follows:

OCLcontext Message m inv:

let Person p =

typeif m instanceof BidMessage then m.bidder else null

in ...

Equivalently, a more compact form of the case differentiation can be cho-
sen, as follows:

OCL

context Message m inv:

let Person p = m instanceof BidMessage ? m.bidder : null

in ...

In both forms, the type of the variable m is, in addition to a normal con-
ditional expression, cast to BidMessage in the then path of the case dis-
tinction. Variable m temporarily switches to this type and thus allows for the
selection m.bidder. In contrast to the type conversion with (BidMessage)
common in Java, type safety is guaranteed with this construction; i.e., a con-
version error leading to an exception in Java and to an undefined value in
OCL cannot arise.

3.1.4 Basic Data Types

The basic data types are those known from Java: boolean, char, int, long,
float, byte, short, and double. Also, operators known from Java such
as + or - are used in OCL/P. Table 3.3 contains a list of the infix and prefix
operators available in OCL/P, including their priorities.4 This list also con-
tains the subset of the operators of Table B.7 which may be used in OCL as
they have no side-effects. Therefore, the increment operators ++ and -- as
well as all assignments are excluded. Newly introduced are the Boolean op-
erators implies and <=>, which denote implications and equivalence, and
the postfix operators @pre and **.

Like in Java the data type String is not a primitive data type but
as a class available by default. From the Java class libraries and packages
java.util and java.lang, a number of such classes are available.

Among the primitive data types, the type of logical values boolean has
a special role because it is also used for interpreting OCL conditions. As in

4 The priorities are taken over from Java, thus the new operators implies and <=>

contain a decimal point in priorities.

3.2 The OCL Logic 45

Priority Operator Associativity Operand(s), meaning

14 @pre Left Value of the expression in the precondition

** Left Transitive closure of an association
13 +, -, ˜ Right Numbers

! Right Boolean: negation
(type) Right Type conversion (cast)

12 *, /, % Left Numbers
11 +, - Left Numbers, String (only +)
10 <<, >>, >>> Left Shifts
9 <, <=, >, >= Left Comparisons

instanceof Left Type comparison
in Left Element of

8 ==, != Left Comparison
7 & Left Numbers, Boolean: strict and
6 ˆ Left Numbers, Boolean: xor
5 | Left Numbers, Boolean: strict or
4 && Left Boolean logic: and
3 || Left Boolean logic: or
2.7 implies Left Boolean logic: implies
2.3 <=> Left Boolean logic: equivalence
2 ? : Right Conditional expression (if-then-else)

Table 3.3. Priorities of the OCL Operators

(classic) logic, only two logical values are used, and as the treatment of non-
terminating or interrupting interpretations causes some problems, the corre-
lation between the data type boolean and the logic which is to be used in
OCL is studied in detail in Sect. 3.2.

3.2 The OCL Logic

For practical usage of a constraint language, it is important to define the un-
derlying logic correctly. Therefore, in this section we first introduce potential
variants by means of an example and then define the OCL logic.

3.2.1 The Boolean Conjunction

In Java, an expression of the type boolean can have three different “values”:
it can evaluate towards the defined values true or false or have an unde-
fined pseudovalue. This pseudovalue models that an exception is thrown or the
calculation does not terminate. There are several possibilities to handle this
third value. This can be discussed very well on the basis of possible semantics
of the Boolean conjunction (&&). Figure 3.4 shows five distinct possibilities to
define the conjunction. In this figure, it is assumed that the pseudovalue is

46 3 Object Constraint Language

indicated by undef. The five given interpretations for the conjunction each
differ in their handling of this pseudovalue.

Figure 3.4. Interpretations of the OCL Conjunction

If the classic two-valued case 3.4(a) should be taken, the logical values of
the logic and the Boolean data type need to be strictly separated from each
other. The CIP [BBB+85] example shows that this leads to a duplication of
the logic operators and, hence, becomes unwieldy in practice. Beside this
approach, there are four sensible possibilities to extend the && operator to
handle the undefined value.

For the logic, mapping the undefined value onto the logical value false
is the easiest, as this de facto leads to the two-valued logic again (case 3.4(e)).
Specifications as well as reasoning become particularly easy as a third case
does not exist and, thus, need not be taken into consideration in conditional
expressions. This is, at least, a remarkable reduction from nine to four cases
that need to be taken into consideration. This semantics for the conjunction
is quite comfortable for the specification but, unfortunately, cannot be fully
implemented because one needs to determine whether a calculation does not
terminate and then assign false as the output.5

In contrast, all other semantics in 3.4(b,c,d) can be implemented and also
find practical utilization. The strict implementation (b) already provides an
undefined value when one of the arguments is undefined. This corresponds
to the Java operator &, always evaluating both arguments. However, this op-
erator is slow as well as inappropriate for many conditions, as in Java the first
expression often serves as a guard for the second one, which is to be evalu-
ated only when the first one results true. This order of evaluation manifests

5 The termination problem, however, is undecidable.

3.2 The OCL Logic 47

itself in the asymmetric sequential conjunction that can be used with the Java
operator && while programming. For example, for an Auction object a,

OCLa.bestBid != null && a.bestBid.value > 0

is a Java expression that can always be evaluated. For programming pur-
poses, the sequential conjunction is a good compromise between evaluation
efficiency and expressiveness. Its severe disadvantage, however, is that

OCLx && y <=> y && x

is not always valid and, thus, refactoring (i.e., a transformation meeting the
laws of logic) is considerably aggravated.

In the UML standard, the Kleene logic is suggested for the conjunction’s
semantics (case (c)) and formalized in HOL in, e.g., [BW02a, BW02b]. There
it is assumed that, if one argument evaluates to false, then the whole ex-
pression evaluates to false. Kleene logic has the very pleasing advantage
that fundamental laws of Boolean logic such as the commutativity and as-
sociativity of the conjunction remain valid.6 But the conjunction can only be
implemented with great effort in this logic, by evaluating both arguments in
parallel. If an evaluation terminates with false, the other evaluation needs
to be stopped. Unfortunately, this form of implementation is computation-
ally intensive for programming languages such as Java.

3.2.2 Two-Valued Semantics and Lifting

Due to the considerations in the previous section, the following questions
arise for the semantics of the expressions of a specification language:

1. Which semantics is chosen for the logic operators?
2. Which Boolean laws hold or are violated?
3. Does the official (denotational) semantics correspond to the evaluation

strategy implemented in a tool? What effects do differences have?

For the abstract specification of functionality, the two-valued logic seems
to be the best. It alone does not force the modeler to perpetually consider the
third, undefined case. This is why lifting is introduced for the semantics of
OCL constraints when it comes to handling undefined subexpressions.

Lifting means that an OCL expression is interpreted as not fulfilled also
when it evaluates the pseudovalue undef. As a consequence, the OCL op-
erator && cannot be implemented and correct code generation from OCL ex-
pressions is not possible. This poses a problem for test procedures and simu-
lations, but it shows that in practice this problem is only rarely of significance
as there are only two kinds of situations in the programming language Java

6 The OCL standard [OMG10b] describes only in the noncommittal, informative ap-
pendix that the Kleene logic should apply.

48 3 Object Constraint Language

where the pseudovalue undef manifests itself. On the one hand, exceptions
are thrown, on the other hand it can be a nonterminating calculation.

In the first case, this exception can be caught and evaluated as false.
The constraint a&&b, for example, can be implemented with the following
piece of code:

Javaboolean res;

try {
res = a; // Evaluation of expression a

} catch(Exception e) {
res = false;

}
if(res) { // Efficiency: only evaluate b if a is true

try {
res = b; // Evaluation of expression b

} catch(Exception e) {
res = false

}
}

Nonterminating calculations occur relatively rarely in object-oriented
practice. Apparently, nonterminating calculations such as infinite while-
loops can be avoided quite easily. Due to the restrictedness of the resources
in Java, less apparent situations such as nonterminating recursions usually
also lead to exceptions (e.g., stack overflow). Thus, all in all, it can be ob-
served that there exists an evaluation strategy for OCL expressions that is
sufficient for pragmatic purposes and nearly identical to the two-valued se-
mantics. This is why, after this digression into the evaluability of OCL ex-
pressions, the semantics for Boolean operators will be determined according
to the truth tables in Fig. 3.5. In accordance with [HHB02], we demand use
of a two-valued logic for OCL.

Figure 3.5. The Boolean operators

3.2 The OCL Logic 49

For this semantics definition, there is an alternative explanatory approach,
namely the usage of a lifting operator ↑ that is applied to each argument of a
Boolean operator.

This operator ↑ has the interesting property to lift ↑undef==falsewhile
the normal Boolean values ↑true==true and ↑false==false remain un-
changed.

Thus, a&&b corresponds to the expression (↑a)&&(↑b), and the Boolean
operators remain two-valued. The lifting operator ↑ must not be provided
explicitly in OCL as it can be added implicitly by a parser. However, the lift-
ing operator cannot be implemented completely. A workaround uses catch
exceptions as described above.

3.2.3 Control Structures and Comparisons

Some of the operators provided by OCL/P describe comparisons between
objects or values. Like the data type boolean, all data types contain an un-
defined pseudovalue. Therefore, comparison operators are extended by this
undefined value. For reasons of convenience, it is determined that all OCL
constructs on undefined values—despite the already described logic opera-
tors, the two case distinctions and the let construct—are always strict, i.e.,
always yield undefined if they receive an undefined argument. In particular,
a==b is undefined when a or b are undefined. This also means that, even if
both expressions a and b are undefined, they are not equal. Figure 3.6 shows
the definition of the conditional expression.

Figure 3.6. Conditional expression in two syntactical forms

Each of the two arguments of the then-else expression can have unde-
fined values that, however, have no effects if the other expression is chosen
and evaluated. Also, the Boolean condition of the case differentiation may be
undefined. In this case, the else expression is evaluated.

The comparison == used in OCL is, with the above-described convention,
identical to the comparison == available in Java. On primitive data types it
compares values, and on object classes it compares the objects’s identity. Fur-
thermore, the comparison equals() offered by the data model is provided
as a normal query in OCL. The usage of comparisons on containers is dis-
cussed in the following section.

50 3 Object Constraint Language

The strictness of the comparison == on all data types has a consequence
that is not so convenient for the logic but which improves the handling of the
undefined pseudovalue. In general, it does not hold that

OCL(a == b) || (a != b),

as if one of the two expressions is undefined, both sides of the disjunction
evaluate to false. But in this way, undefined values can be recognized in the
OCL logic because !(a==a) is exactly true when a is undefined. This effect
is used as a characterizing property for the defined operator introduced in
Sect. 3.3.11.

3.3 Container Data Structures

In OCL, navigation via associations is an essential concept for the compact
description of constraints. Starting from a single object, a set or a list of reach-
able objects can be described by a navigation expression, and certain proper-
ties can be attached to its elements.

These two data structures serve for the management of collections of ob-
jects and are therefore summarized under the expression collection in OCL.
Quite similar to the generic types from Java, OCL/P offers three type con-
structors for containers, which are summarized in Fig. 3.7. However, OCL
does not provide the full genericity of Java [Bra04].

Set<X> describes sets over a data type X. On these sets, the usual operators such
as unification or addition are provided. For the type X, each primitive data type,
class, and container type can be used. For checking equality, value comparison
for primitive data types and object identity for classes are used, although ob-
jects of selected classes such as String can use and overwrite the comparison
equals() and, thus, also provide a value comparison via their attributes.

List<X> describes ordered lists and their viable operations. List<X> allows the
administration of its objects in linear order, starting with the index 0.

Collection<X> is a supertype for both above-mentioned types Set<X> and
List<X>. It provides their common functionality.

Figure 3.7. Type constructors of OCL

Comparison of containers requires a binary operation executing an equal-
ity test on the elements. If the elements are primitive data types or again
containers, the comparison == is used for the elements. But if the elements
are objects, the comparison equals() is used. This is equivalent to a value
comparison for basic data types and containers7 as well as to a comparison

7 In OCL, containers have no object identity. The OCL comparison ==, thus, corre-
sponds to the Java operation equals() on containers.

3.3 Container Data Structures 51

of object identity on objects in most cases. For special types—Strings, for in-
stance—equals(), however, is overwritten so that a value comparison is
offered.8

The subtype relation of Set<X> and List<X> towards Collection<X>
allows for use of values of types Set<X> or List<X> instead of values of
type Collection<X> for any type X. Containers can be nested in more com-
plex type structures. So the following data types are, for instance, allowed in
OCL/P:

OCLinv:

let Set<int> si = { 1, 3, 5 };
Set<Set<int>> ssi = { {}, {1}, {1,2}, si };
List<Set<int>> lsp = List{ {1}, {} }

in ...

The type constructor Set<X> allows to use an arbitrary data type for
the element type X. However, experience shows that nested data structures
strongly increase the complexity of a model and should, hence, be used only
to a very limited extent. This complexity can be isolated, e.g., by embed-
ding complex data structures in classes specifically designed for this pur-
pose. In OCL/P, nested container structures are avoided as navigation along
associations only has flattened container structures as results. For details, see
Sect. 3.3.8.

Regarding containers, OCL/P shows some differences compared with the
OCL standard. Instead of the original Sequence from OCL, the type con-
structor List was taken over from Java. Furthermore, a type constructor for
multisets (also called bags) was waived. This was done for mere pragmatic
reasons as practice has shown that multisets are a rarely used concept that
rather contributes to the increase of complexity.

3.3.1 Representation of Sets and Lists

In OCL, a class (or an interface) can be used as a type and, at the same time,
as extension, i.e., the set of all currently existing objects; For example,

OCLinv:

Auction.size < 1700

describes the maximum number of simultaneous auctions in a system. So,
the expression Auction indicates the set of all currently existing objects
of the type Auction. This set has the type Set<Auction>. It contains all
objects belonging to the class Auction or its subclass. Only object-valued

8 The redefinition of equals() must be used by the modeler only with great pre-
caution as it has considerable effects on the OCL logic. However, practice has
proven that responsible handling leads to specification and implementation ad-
vantages.

52 3 Object Constraint Language

classes and interfaces may be used for building an extension; Neither primi-
tive data types nor container types constitute extensions.

A second possibility for the description of sets is direct enumeration in
the form Set{...} with a list of object expressions separated by commas.
Set{}, e.g., is the empty set, Set{8,5,6,8} a set of three integers, and
Set{"text",(Auction)a} consists of a string and an Auction object.
Optionally, the indicator Set can also be left out, as {}, {8,5,6,8}, and
{"text",(Auction)a} describe the same sets.

As the last example shows, type correctness has to be guaranteed when
enumerating sets with heterogeneous (i.e., differently typed) arguments. In
explicitly enumerated sets, the type of the first argument X determines the
type of the whole expression Set<X>. All other arguments of the list have
to be subtypes of X. If the explicit enumeration is heterogeneous, the desired
result type can be enforced by explicitly adding the of the element type in the
set comprehension: Set<Object>{"text",(auction)a} is typed with
Set<Object>.

The empty set can also be typed, e.g., as Set<Person>{}. If no type is
indicated, the elementary type is left open, i.e., an anonymous type variable
is assumed.

Figure 3.8. Excerpt of an auction system

The extract of the auction system in Fig. 3.8 serves as a basis for further
OCL examples. Using the extensions of the class AllData and a one-element
set, the following condition describes that the class AllData instantiates ex-
actly one object, i.e., represents a Singleton [GHJV94]:

OCLcontext AllData ad inv AllDataIsSingleton:

AllData == {ad}

3.3 Container Data Structures 53

3.3.2 Set and List Comprehensions

In contrast to the OCL standard, OCL/P offers a comprehensive number
of possibilities for property-oriented and enumerating description of sets
and lists. These were taken over from the functional programming language
Haskell [Hut07]. They allow compact handling of containers and have a pre-
cise and elegant semantics. As for sets generally, the following transforma-
tion for a correct body “characterization” applies (the description is explained
for lists):9

OCLSet{ characterization } == List{ characterization }.asSet

Enumerations of lists of integers and characters can be described by
means of List{n..m}. Examples are:

OCLinv:

List{-3..3} == List{-3,-2,-1,0,1,2,3};
List{1..1} == List{1};
List{9..5} == List{};
List{1,3..9} == List{1,3,5,7,9};
List{9,8..5} == List{9,8,7,6,5};
List{’a’..’c’} == List{’a’,’b’,’c’};
List{3..5,7..9} == List{3,4,5,7,8,9};
List{3..(2+5)} == List{3,4,5,6,7};

In an enumeration, the first as well as the last element in the list are in-
cluded. Lists can use increments. Enumerations and single elements can be
used in a mixed way. The given limits do not necessarily have to be constants.

While enumerations are only suited for the enumeration types numbers
and characters, list comprehensions can be used more generally. The com-
mon syntax of a list comprehension is in the form

OCLList{ expression | characterization }

Here, new variables are defined in the characterization (right) that can be
used in the expression (left). For this purpose, the characterization consists
of multiple, comma separated variable definitions and filter conditions. The
expressiveness of such list comprehension lies precisely in the combination
of the three mechanisms introduced below: the generator, the filter, and the
local variable definition.

A generator v in list lets a new variable v vary over a list list. In this
way, e.g., square numbers can be described:

OCLinv:

List{ x*x | x in List{1..5} } == List{1,4,9,16,25}

9 characterization is a scheme variable (a place holder) for an OCL subexpression.
Scheme variables are usually written in natural language.

54 3 Object Constraint Language

The type of variable x equals the element type of the list over which the
variation takes place. It can, however, explicitly be defined, as in the case
of other local variable definitions. In the following example, messages are
converted into milliseconds:

OCLcontext Auction a inv:

let List<long> tlist =

List{ m.time.asMsec() | Message m in a.message }
in ...

The filter describes a restriction on a list of elements. Such a filter evaluates
to a truth value which decides whether an element is included in a list. In its
pure form, without combination with a generator, its characterization is as
follows:

OCLList{ expr | condition } ==

if condition then List{ expr } else List{}

In combination with a generator, filters can be described to select sublists;
For example, a list with odd square numbers can be described with:10

OCL

inv:

List{ x*x | x in List{1..8}, !even(x) } == List{1,9,25,49}

Analogously, a list of messages can be filtered by timeframes:

OCLcontext Auction a inv MessageTimes:

let List<long> tlist = List{ m.time.asMsec()

| m in a.message, m.time.lessThan(a.startTime) }
in ...

For further convenience of the description, intermediate results can be
calculated and assigned to local variables. The definition of a new variable
has the form v=expression and is considered the same as the introduction
of a new variable by means of the let construct. The type of the variable
can be defined explicitly, or it is inferred from the type of the expression as
in case of the let construct. The set of all odd square numbers can therewith
also be described as follows:

OCLinv:

List{ y | x in List{1..8}, int y = x*x, !even(y) } ==

List{1,9,25,49}

The definition MessageTimes can, thus, be modified to

OCLcontext Auction a inv MessageTimes2:

let List<long> tlist = List{ t | m in a.message,

t = m.time.asMsec(), t < a.startTime.asMsec() }
in ...

10 The method even comes from the OCL library introduced in Sect. 3.4.4.

3.3 Container Data Structures 55

This example also shows how helpful the combination of filters, gener-
ators, and variable definitions is. Multiple generators can also be used for
example for the generation of concatenated strings:

OCLinv:

List{ z+"?" | x in List{"school","team","play"},
y in List{"mate","grounds"},
String z = x+y,

z != "teamgrounds" }
==

List{ "schoolmate?", "schoolgrounds?",

"teammate?",

"playmate?", "playgrounds?" }

Here, the order of the emerging list is precisely determined. The genera-
tors are varied from the right to the left. Thus, all elements of the right gener-
ators are iterated first. In addition, the characterizations being further to the
right, typically constraints, are allowed to access the variables of the charac-
terizations on the left, i.e., generators and local definitions.

Up to now, only list-valued data types have been discussed for genera-
tors, but a generator can also be set-valued and yet used in a list compre-
hension. The chronology of the list, however, is not uniquely defined for the
user:

OCLinv:

let la = List{ a | a in Set{1,2} }
in la == List{1,2} || la == List{2,1}

The ambiguity of this description has the advantage that certain degrees
of freedom remain for a realization. But it is essential that, despite the ambi-
guity of the description of the result, the result is determined, i.e., the same
OCL expression always has the same value in the same context. According
to this convention the following applies:

OCLinv:

let la = List{ a | a in Set{1,2} };
lb = List{ a | a in Set{1,2} }

in la == lb

When using a set as a generator of a list comprehension, a conversion by
means of asList is implicitly conducted. As a consequence, the following
property can be regarded as characterizing:

OCLinv:

List{ a | a in Set{1,2} } ==

Set{ a | a in Set{1,2} }.asList

In the opposite case, list generators are converted to sets. This conversion,
however, is unambiguous. As each class represents its extension at the same
time in OCL, access to all objects of a class is particularly easy. So, the set of
all running or completed auctions can be described by

56 3 Object Constraint Language

OCLinv:

let Set<Auction> sa =

Set{ a | a in Auction, Time.now().lessThan(a.startTime) }
in ...

As the combination of a generator a in Auction with a filter occurs
particularly often, a shortcut applies where the first generator can already be
defined on the left side:

OCLinv:

let Set<Auction> sa =

Set{ a in Auction | Time.now().lessThan(a.startTime) }
in ...

3.3.3 Set Operations

The operations available for sets are listed in Fig. 3.9. This signature outlines
an integration of sets known from the Java realization and the functionality
offered by the OCL standard, and is defined as a collection of method signa-
tures. When operator names with the same functionality were contradictory,
Java names were chosen. In OCL, the operatorssize, isEmpty, and asList
can, like attributes, be written without brackets because a query without ar-
guments can be treated as an attribute. Notation as a query with brackets is
also possible due to the compatibility with Java.

SignatureSet<X> add(X o);

Set<X> addAll(Collection<X> c);

boolean contains(X o);

boolean containsAll(Collection<X> c);

int count(X o);

boolean isEmpty;

Set<X> remove(X o);

Set<X> removeAll(Collection<X> c);

Set<X> retainAll(Collection<X> c);

Set<X> symmetricDifference(Set<X> s);

int size;

X flatten; // only for Collection type X
List<X> asList;

Figure 3.9. Signature of type Set<X>

All set operators, other than the flatten operator discussed in Sect. 3.3.6,
are analogous to Java and need no detailed description. This is why only
some points are highlighted here.

In contrast to a Java implementation, there is no concept of exceptions
for OCL expressions. Instead, all OCL operators are robust in the sense

3.3 Container Data Structures 57

that their interpretation always yields reasonable results. The expression
Set{e}.add(e), for instance, has Set{e} as the result.

Equality on Sets and Elements

In Java, there is the equality on identifiers == and the equality on content
equals() individually definable for each class. The latter is used within
Java containers for comparing elements and thus allows a flexibilization of
the element comparison in the implementation. This distinction also exists in
some specification languages [BFG+93] which allow a freely definable equal-
ity besides the built-in equality. As in OCL containers have no object identity,
both operators == and equals are identical on containers:

OCLcontext Set<X> sa, Set<X> sb inv:

sa.equals(sb) <=> sa==sb

By definition, the equality of two sets exactly applies when both have
pairwise the same elements. When comparing the elements, equals is used
for objects and == for primitive data types. So, if X is a primitive data type or
a container, the following applies:

OCLcontext Set<X> sa, Set<X> sb inv:

sa==sb <=> (forall a in sa: exists b in sb: a==b) &&

(forall b in sb: exists a in sa: a==b)

For object types X, the following holds:

OCL

context Set<X> sa, Set<X> sb inv:

sa==sb <=> (forall a in sa: exists b in sb: a.equals(b))

&& (forall b in sb: exists a in sa: a.equals(b))

Hence, in OCL, == for containers is dependent on the freely definable
equality equals on elements and differs from the comparison in Java.

Type Inference in Heterogeneous Sets

A comfortable feature of OCL is automatic type conversion of arguments of
set operators. If Guest is a subclass of Person, Fig. 3.10 shows a part of the
induced subtype hierarchy for containers. Here, OCL differs from the type
system in Java [GJSB05], which cannot provide a subtype relation between
Set<Guest> and Set<Person>. This is restricted in Java, because Sets are
implemented as modifiable, identity-aware objects. One could, otherwise,
add Person objects to Set<Guest> sets. In OCL, containers basically do
not have an identity. In the strict sense, they are not modified either; rather
when, for example, objects are added, new containers are always created.
Therefore, the subtype relation can be established here.

58 3 Object Constraint Language

Figure 3.10. Type conformity of container types

This means in particular that merging of a set of persons with a list
of guests is possible, as the latter can implicitly be converted to the type
Collection<Person>. According to Fig. 3.9, the result of this merge (with
the function addAll) is again a set of persons:

OCLlet Set<Person> pset = ...;

List<Guest> glist= ...

in

pset.addAll(glist) // has the type Set<Person>

So, for heterogeneous usage of set operators, the types of arguments are
converted, if necessary. The set on which the operator is applied is not con-
verted, though. Thus, the last line in the following condition is not type-
correct:

OCLlet Set<Person> pset = ...;

Set<Guest> gset = ...

in

gset.addAll(pset) // not type-correct

The authors of [Sch02] point out that the typing rules can be generalized
for OCL in order to assign a correct type to the last expression. In principle,
even further type information could be gained from the knowledge about
the result of an operation. So, the following intersection of two sets:

OCLlet Set<Person> pset = ...;

Set<Guest> gset = ...

in

pset.retainAll(gset)

contains only objects of the class Guest and could, hence, not only have
the type Set<Person> calculated by the type system but even the subtype
Set<Guest>.

An unambiguous assignment of a type as in Java, however, is not always
possible in the presence of multiple inheritance or multiple instantiation of
interfaces. The restrictive typing for the first argument can also be under-
stood here as protection, forcing the modeler to carry out an explicit type
conversion of the first argument, if applicable.

3.3 Container Data Structures 59

3.3.4 List Operations

There are a number of operations for selecting, combining, and modifying
lists as well. As in the case of sets, the interpretation of container expressions
is free from side-effects and, thus, differs from lists offered in Java.

The list operations are given in Fig. 3.11. As in the case of sets (see
Fig. 3.9), an integration of the functionality known from the Java realization
of lists and offered by the OCL standard has been carried out here as well.

SignatureList<X> add(X o);

List<X> add(int index, X o);

List<X> prepend(X o);

List<X> addAll(Collection<X> c);

List<X> addAll(int index, Collection<X> c);

boolean contains(X o);

boolean containsAll(Collection<X> c);

X get(int index);

X first;

X last;

List<X> rest;

int indexOf(X o);

int lastIndexOf(X o);

boolean isEmpty;

int count(X o);

List<X> remove(X o);

List<X> removeAtIndex(int index);

List<X> removeAll(Collection<X> c);

List<X> retainAll(Collection<X> c);

List<X> set(int index, X o);

int size;

List<X> subList(int fromIndex, int toIndex);

List<Y> flatten; // X has the form Collection<Y>

Set<X> asSet;

Figure 3.11. Signature of lists of the type List<X>

Regarding practical issues, it is convenient, i.e., more systematic, to start
the indexing of the list elements with 0 as known from Java and to exclude
the upper border at subList. The properties of lists can be demonstrated by
means of some valid statements:

OCLList{0,1} != List{1,0};
List{0,1,1} != List{0,1};
List{0,1,2}.add(3) == List{0,1,2,3};
List{’a’,’b’,’c’}.add(1,’d’) == List{’a’,’d’,’b’,’c’};
List{0,1,2}.prepend(3) == List{3,0,1,2};
List{0,1}.addAll(List{2,3}) == List{0,1,2,3};

60 3 Object Constraint Language

List{0,1,2}.set(1,3) == List{0,3,2};
List{0,1,2}.get(1) == 1;

List{0,1,2}.first == 0;

List{0,1,2}.last == 2;

List{0,1,2}.rest == List{1,2};
List{0,1,2,1}.remove(1) == List{0,2};
List{0,1,2,3}.removeAtIndex(1) == List{0,2,3};
List{0,1,2,3,2,1}.removeAll(List{1,2}) == List{0,3};
List{0..4}.subList(1,3) == List{1,2};
List{0..4}.subList(3,3) == List{};

Adding elements of a container to a list with the aid of addAll has an
unambiguous result only when this container is itself a list. Otherwise, the
order of newly added elements is not fixed. By convention, however, it is
guaranteed that an OCL expression is deterministic, i.e., the same OCL ex-
pression always describes the same values in the same context. In particular,
the following applies:

OCLinv:

forall s1 in Set<X>, s2 in Set<X>:

s1 == s2 implies s1.asList == s2.asList

The operations remove and removeAll each eliminate all appearances
of their arguments from the list on which they operate. For comparison, the
equality equals is used for objects and == for primitive data types. Different
than in Java, the removal of an element at a certain index cannot also be called
remove, as lists can directly be occupied with elements of primitive data
types, i.e., also with int. This is why removeAtIndex has been introduced.

3.3.5 Container Operations

A container is either a set or a list. Thus, the signature assigned to containers
consists of all operations common to sets and lists. Figure 3.12 summarizes
the signature for containers.

The conversion functions asSet and asList allow for transformation
of arbitrary containers into sets and lists, respectively. When applying one of
these operations, a real transformation takes place. On the contrary, type con-
versions using (Set<X>), (List<X>), and (Collection<X>) have the
purpose of changing type information without modifying the fundamental
data structure. For a list l, a transformation into a set l.asSet is, therefore,
reasonable but the type conversion (Set<X>)l is forbidden. The interaction
of the conversions can be illustrated by the following example:

OCLlet Collection<int> ci = List{1,2,1};
in

ci.asSet == {1,2} &&

ci.asList == List{1,2,1} &&

ci.asSet.asList.size == 2 &&

3.3 Container Data Structures 61

SignatureCollection<X> add(X o);

Collection<X> addAll(Collection<X> c);

boolean contains(X o);

boolean containsAll(Collection<X> c);

boolean isEmpty;

int count(X o);

Collection<X> remove(X o);

Collection<X> removeAll(Collection<X> c);

Collection<X> retainAll(Collection<X> c);

int size;

Collection<Y> flatten; // X has the form Collection<Y> or Set<Y>
List<Y> flatten; // X has the form List<Y>

Set<X> asSet;

List<X> asList;

Figure 3.12. Signature of containers of the type Collection<X>

(List<int>) ci == List{1,2,1} &&

!((Set<int>) ci == {1,2}) // as left side is undefined

To prevent an undefined conversion, the operator instanceof can be
used to check whether an object or value has a certain type.

OCLlet Collection<int> ci = List{1,2,1};
in

(ci instanceof Set<int> <=> false) &&

(ci instanceof List<int> <=> true) &&

(ci instanceof Collection<int> <=> true)

In combination with the typeif operator, this enables safe type conver-
sion that prohibits explicit type conversion and possible emerging failures
and makes the specifier explicitly think about the case of erroneous type con-
version. If, e.g., the second element from the above-mentioned list ci is to be
selected with the type Collection<int>, this can be done as follows (-42
is a chosen replacement value):

OCLlet Collection<int> ci = List{1,2,1};
in result ==

typeif ci instanceof List<int> then ci.get(0) else -42

The above expression represents a shortcut for

OCLlet Collection<int> ci = List{1,2,1};
in result ==

if ci instanceof List<int> then

let List<int> cinew = (List<int>) ci

in cinew.get(0)

else -42

62 3 Object Constraint Language

The auxiliary variable cinew is required in order to assign another type
to the value stored in ci that allows access as a list element.

3.3.6 Flattening of Containers

Deeply nested container structures contain certain structuring information
that, in some cases, is helpful for specifying systems. Thus, a grouping of
persons can be described with the type Set<Set<Person>>, e.g.,

OCLlet Set<Set<Person>> ssp = { a.bidder | a in Auction }
in ...

describes the groups of persons each participating in an auction.
However, such deep structuring is often not desired and a simple set or

list is already sufficient. Therefore, the operator flatten is used to flatten
nested container structures.

The constraints for this operator given in Figs. 3.9, 3.11, and 3.12 show
that it can only be applied on nested container structures. Depending on the
type of the container, either a set or a list emerges when flattening. But if only
the type Collection is known from the argument, the type Collection
may be the only information about the result. The different variants of the
flatten operator have the signatures indicated in Fig. 3.13, with the result
given on the left and the type of the argument given in front of the dot.

SignatureSet<X> Set<Set<X>>.flatten;

List<X> Set<List<X>>.flatten;

Collection<X> Set<Collection<X>>.flatten;

List<X> List<Set<X>>.flatten;

List<X> List<List<X>>.flatten;

List<X> List<Collection<X>>.flatten;

Collection<X> Collection<Set<X>>.flatten;

List<X> Collection<List<X>>.flatten;

Collection<X> Collection<Collection<X>>.flatten;

Figure 3.13. Flattening of containers in OCL/P

The flatten operator merges only the two “upper” container levels
without taking into consideration the internal structure of the element type
X contained therein. This is also referred to as shallow flattening. Complete
flattening to a set or a list of simple objects can be achieved through repeated
use.

When flattening containers, generally the tenet was followed that a list
is created if a list is involved (i.e., lists dominate). If no list but a container is
involved, a container results. Only nested sets become sets again.11

11 This flattening rule can be comprehended more easily than the one used in the
OCL standard, where a less intuitive typing emerges due to the usage of multisets.

3.3 Container Data Structures 63

Figure 3.14 shows some applications of the flatten operator.

Figure 3.14. Flattening of nested sets and lists

The use of nested containers partly leads to conditions formulated more
complicatedly than the problem requires. Hence, the flatten operator is
implicitly used in navigation chains so that the result of such a chain never
represents a container structure which is nested more deeply than the initial
structure. The only exception is the navigation chain starting from a single
object, which can result in a set or sequence.

3.3.7 Typing of Containers

In the previous sections, the problem of correct typing of OCL expressions
has already been discussed occasionally. This section now gives an overview,
in which the already discussed aspects are briefly repeated:

• There is a collection of primitive data types known from Java. Subtypes
only exist between numbers in the familiar form.

• Each class and each interface of the model underlying OCL is a type. This
includes in particular classes of the Java library and all type instantiations
of generic classes. The inheritance relations from the class diagram are
taken over. The special type Object is the common superclass of all these
types (primitive data types and containers excluded).

• By using type constructors, set- and list-valued types as well as types for
collections are built. For all types X, the generic terms Set<X>, List<X>,
and Collection<X> again denote types.

64 3 Object Constraint Language

• For operations with several arguments with the same type and a con-
tainer as the result, usually the first argument is used to determine the el-
ement type of the container. This also includes enumerations. If necessary,
the first argument can be typed, e.g. Set{(Object)"Text", person}.

Figure 3.10 shows the effect of the subtype hierarchy of classes on the
corresponding container types. As container types can be nested arbitrarily,
further types and subtype relations are induced, as illustrated in Fig. 3.15.

Figure 3.15. Excerpt of the induced type hierarchy

In Java, the class Object is, just like in OCL/P, the most general super-
class which contains all other classes and interfaces. This means that the ex-
tension of Object contains all objects of the system. In contrast to Java, con-
tainers are not classes in OCL. This is why an inheritance relation between
Set<Person> and Object does not exist. By strictly separating the type hi-
erarchy for objects and sets of objects, some semantically unpleasant implica-
tions are prohibited. Set<Object>, for example, is not a subtype of Object
and the typing ensures that a set cannot contain itself as an element.12 This
separation continues on further levels; for instance, Set<Set<Object>> is
not a subtype of Set<Object>, and List<Object> is not a subtype of
Object.

Therefore, the creation of the following set illustrating the anomaly in set
theory is not type-correct:13

12 The problem of a set that contains itself is well studied in mathematics and leads
to some surprising anomalies of the previously used logic theory. Among others,
the hierarchical type theory of B. Russell, that has, concerning typing, finally been
taken over into programming languages, offers a solution.

13 The question of whether x contains itself would cause contradictions, but it cannot
be asked, as either the conversion or the instanceof inquiry is not type-correct.

3.3 Container Data Structures 65

OCLlet Set<Object> x =

{ Object y | y instanceof Set<Object>

&& !(y in (Set<Object>)y) }
in ...

Set{3,Set{1,2}} is not type-correct either.

3.3.8 Set- and List-Valued Navigation

Navigation along a chain of associations attracts particular attention in OCL
as, with this construct, states of a whole object group can be described even
if the explicitly indicated context only consists of one object. The extract of
the auction system in Fig. 3.8 serves as a basis for explaining the navigation
possibilities of OCL/P. To make sure that employees of the company “BAD”
do not participate in auctions, the following constraint can be imposed:

OCLcontext Auction a inv:

!("BAD" in a.bidder.company.name)

In doing so, a navigation chain with three steps is applied, according to
Fig. 3.8. While a represents a single object of the type Auction, the naviga-
tion over a.bidder provides a number of objects of the type Set<Person>,
as the association participants in this navigation direction has the cardi-
nality *. Beginning with the set of persons, the set of companies assigned
to these persons can be described with .company. The result is still a set in
which the company of each person previously detected is contained. Finally,
the whole navigation expression a.bidder.company.name provides a set
of company names belonging to the type Set<String>.

In the following example, the association between persons and compa-
nies is passed through against the given navigation direction. In a specifica-
tion, this is allowed without further ado even if the implementation would
not facilitate it:

OCLcontext Company co inv:

co.name == "BAD" implies co.person.auctions == {}

The navigation along an association can be formulated in three ways.
Starting from the object a of the class Auction, the navigation towards the
persons usually takes place with the role name bidder opposite the initial
class in the class diagram in Fig. 3.8. However, it is also possible to use the
association name (a.participants) if it is given and, e.g., the role name
is lacking. If there is only one association between the two classes and if the
role name is missing, the opposite class name can be used in decapitalized form:
p.message.

A specification language such as OCL is used in several activities of the
software development process. Especially regarding the specification and the
design of a system, it is thus of interest to access encapsulated attributes of

66 3 Object Constraint Language

a class, even if the constraint was not defined in the class context. Therefore,
the modifiers protected and private are ignored when defining OCL
constraints, so that attributes and methods with these modifiers can be used
in OCL constraints as well. This is quite convenient.

If an association has a cardinality other than 1 or 0..1, the navigation re-
sult based on an object is set-valued. If the end of an association, furthermore,
has the tag {ordered}, the result is a list. If the navigation already starts us-
ing a set, the navigation is applied pointwise and the result is a union of the
pointwise results. In the class diagram in Fig. 3.8, it can, e.g., be specified that
a person does not participate in more than 20 auctions using the set-valued
navigation expression ad.auction.bidder:

OCLcontext AllData ad inv:

forall p in ad.auction.bidder:

p.auctions <= 20

For pragmatic reasons, nested sets are not used in the OCL standard
[OMG10b] while navigating.14 In case of set-valued navigation chains, flat-
tening leads to clearer and easier data structures, but it has the disadvantage
that structural information gets lost.

So, in case of a navigation chain along multivalued associations, flatten-
ing happens according to given rules using the flatten operator. These
rules are explained by means of the following examples, which are formu-
lated depending on the class diagram in Fig. 3.8:

OCLcontext AllData ad, Person p inv:

let

Company c = p.company; // 1: simple type
Set<Auction> sa = p.auctions; // 2: set-valued
Set<Person> competitors = p.auctions.bidder;

// 3: chain remains set-valued
List<Message> lpm = p.message; // 4: due to tag {ordered}
List<Message> lam = p.auctions.messages; // 5
List<Auction> lma = p.messages.auctions; // 6

in ...

Examples 1, 2, and 4 show how, through a navigation chain, a set or a list
emerges from a one-element origin. In example 3, a chain of two set-valued
navigations is conducted, where the result is again a set. In example 5, an
ordered navigation from auctions to messages is performed, starting from
the set p.auctions. The result of this operation is a list of messages whose
order, however, is partly unspecified. The characterization

OCLcontext Person p inv:

p.auctions.messages == p.auctions.asList.messages;

14 The OCL standard has no mechanism for representation of nested containers, sets
of sets, for example. Through “flattening,” navigation results instead become again
a simple set, or at most a multiset.

3.3 Container Data Structures 67

acts as definition for this navigation expression and shows that the unspec-
ified order emerges from the transformation of the set into a list. In a navi-
gation chain in which first a list emerges and then a set-valued navigation is
conducted, the result also is a partly underspecified list (Example 6).

The expression ad.auction.message should represent a set of lists,
but it results in a data structure of type List<Message>. Here, one may as-
sess, for example, how often a message occurs in total but not if it would have
occurred in the first place in each list, as the information about the beginning
of the single lists was lost during flattening. To ensure that the welcome mes-
sage is sent in all auctions in the same form, a nesting of quantifiers can be
used, where each single list becomes accessible, instead of a chain of naviga-
tions:

OCLcontext AllData ad inv WelcomeMessage1:

forall a in ad.auction:

let List<Message> lmsg = a.message

in

lmsg.isEmpty || lmsg.get(0) == WelcomeMessage

As nested sets are available in OCL, the following expression shows how
the structure information can be retained during the navigation:

OCL

context AllData ad inv:

let Set<List<Message>> slm = {a.message | a in ad.auction}
in

ad.auction.message == slm.flatten

The typing of a navigation along an association can be characterized by
the following specification based on the situation shown in Fig. 3.16. Starting
from a single object, the result depends on the association’s cardinality:

OCLlet Auction a = ...;

Policy po = a.policy;

Set<Person> spe = a.person;

List<Message> lm = a.message

in ...

Figure 3.16. Abstract model for explaining navigation results

68 3 Object Constraint Language

When starting from a set of objects, the flatten operator is used for
keeping the nesting depth. As the association towards Policy is not set-
valued itself, the flatten operator is not necessary here. All three subse-
quent statements compare sets:

OCLlet Set<Auction> sa = ...;

in

sa.policy == { a.policy | a in sa } &&

sa.person == { a.person | a in sa }.flatten &&

sa.message == { a.message | a in sa }.flatten

More deeply nested structures keep the nesting depth. This means in par-
ticular that flattening is not applied completely down to the lowest level. The
following equations compare sets of sets Set<Set<X>>:

OCLlet Set<Set<Auction>> ssa = ...;

in

ssa.policy == { elem.policy | elem in ssa } &&

ssa.person == { elem.person | elem in ssa } &&

ssa.message == { elem.message | elem in ssa }

The flatten operator is already contained implicitly in the expressions
elem.person and elem.message, but is not necessary in elem.policy

due to the cardinality 1. The next example shows a list where the inner flat-
tening is once again explicitly depicted:

OCLlet List<Set<Auction>> lsa = ...;

List<Set<Person>> lsp = lsa.person

in

lsp == List{ {a.person | a in sa}.flatten | sa in lsa }

As the example of Fig. 3.17 illustrates, the difference between an applica-
tion of the flatten operator inside and outside is only relevant at nesting
depth of at least three.

This example also demonstrates the sometimes subtle problems leading
to complexities during specification that a modeler should only take on in
exceptional cases. Thus, we suggest to avoid nested container structures.

3.3.9 Qualified Association

In Sect. 2.3.6, qualifiers were introduced to facilitate access to single objects
via a set-valued association. An example in analogy to the class diagram
shown in Fig. 3.8 is shown in Fig. 3.18 using qualifiers.

Starting from the AllData object ad, the set of auctions can be reached
by normal (unqualified) navigation in the form ad.auction. The result is of
the type Set<Auction>. A qualified navigation allows the use of a selector
to describe a specific auction. If acIdent denotes an auction identifier, the

3.3 Container Data Structures 69

OCLinv:

let Set<Set<Auction>> ssa = { {a1}, {a1,a2} };
Set<Set<Person>> ssp1 = ssa.person;

Set<Set<Person>> ssp2 =

{ {a.person | a in sa} | sa in ssa }.flatten
in

ssp1 == { {p1,p2}, {p1,p2,p3} } &&

ssp2 == { {p1,p2}, {p2,p3} }

Figure 3.17. Example for flattening versus flat navigation

Figure 3.18. Qualified associations

corresponding auction is selected with ad.auction[acIdent].15 This ex-
pression evaluates to an object of the type Auction. If the auction does not
exist, the expression has the value null. For further processing of a quali-
fied association, methods of the type Map are available, for example, to allow
determination of the set of used qualifier values.

The constraint below describes that, based on the singleton ad of the class
AllData (cf. constraint AllDataIsSingleton), each Auction object is
registered under the correct auction identifier:16

15 auction[acIdent] is identical to auction.get(acIdent) also offered in
Java, which is provided by the interface Map.

16 As the attribute name auctionIdent is given as a qualifier in Fig. 3.18, this con-
straint is redundant due to Sect. 2.3.7.

70 3 Object Constraint Language

OCLcontext AllData ad, Auction a inv:

ad.auction[a.auctionIdent] == a;

The result of a qualified navigation has an element type (here: Auction)
because the initial expression (here: ad) had an element type, and qualified
associations in the navigation direction are distinctly marked with a cardi-
nality 1 or 0..1.

The tag {ordered} describes that both associations marked by it can
also be used as qualified associations. Then, an integer from the interval
0..message.size-1 is used as qualifier. The result of a qualified access
has an element type, as shown by the following statement equivalent to
WelcomeMessage1:

OCLcontext AllData ad inv WelcomeMessage2:

forall a in ad.auction:

a.message.size > 0 implies a.message[0] == WelcomeMessage

Qualified access via an association is also possible if already starting from
a container. In this case, the selection by the qualifier is carried out element-
wise. The following example characterizes how such a navigation is to be
understood:

OCLinv:

let Set<Auction> sa = ...;

in

sa.message[n] == { a.message[n] | a in sa }

For the qualified navigation starting from the container structures con-
tainer, the following holds:

OCLcontainer.role[qualifier] ==

{ elem.role[qualifier] | elem in container }

3.3.10 Quantifiers

The two quantifiers forall and exists allow the description of properties
that have to be valid for all or at least one element from a given set, respec-
tively.

Universal Quantifier forall

Quantifiers can be combined over multiple variables. Several universal quan-
tifiers can, e.g., be summarized into one:17

17 The OCL standard uses the form set.forall(body) and is, thus, not suited for
summarizing quantifiers. Furthermore, the quantified variable remains optionally
undesignated, and as default, the variable self is assumed.

3.3 Container Data Structures 71

OCLinv Message1:

forall a in Auction, p in Person, m in a.message:

p in a.bidder implies m in p.message

In doing so, one can refer to previously introduced variables in subse-
quent indications of sets, as formally the above invariant Message1 is equiv-
alent to:

OCLinv Message2:

forall a in Auction:

forall p in Person:

forall m in a.message:

p in a.bidder implies m in p.message

The third quantifier of this example also shows that the initial set, which
is quantified, will be not only the extension of a class but also an arbitrary
set- or list-valued expression. The body of the quantification is a Boolean ex-
pression. According to the chosen logic, the interpretation of this expression
may return undefined values that are interpreted as false. The constraint

OCLinv:

forall a in Auction: even(1/0)

is thus a syntactically correct OCL formula. At first sight, this formula seems
unfulfillable, as it is semantically equivalent to

OCLinv:

forall a in Auction: false

However, this constraint can be fulfilled by object structures which do not
contain any object of the type Auction. In general, the following applies for
empty sets:

OCLinv:

(forall x in Set{}: false) <=> true

The universal quantifier introduces one or more new variables whose val-
ues vary over a set or list. Hence, it allows statements to be made about these
values or objects. In complex expressions, an explicit typing should be added
to such a variable, because the expression var in class is formally not
a typing, although it almost seems like one. The constraint Message1 can,
thus, also be formulated as

OCLinv Message3:

forall Auction a:

forall p in Person:

forall Message m in a.message:

p in a.bidder implies m in p.message

72 3 Object Constraint Language

In the first quantifier, only the type was given, at the same time acting as
an extension. In the second quantifier, an explicit typing was left out, and in
the third quantifier, both were used. This condition makes it apparent that
the universal quantifier is an alternative notation for the formulation of a
constraint’s context. The above constraint Message3 can, therefore, also be
formulated using context as:

OCLcontext Auction a, Person p inv Message4:

forall m in a.message:

p in a.bidder implies m in p.message

Here, the difference between a context definition with context versus
import becomes very clear. The condition

OCLimport Auction a, Person p inv Message5:

forall m in a.message:

p in a.bidder implies m in p.message

needs to be valid only for the external objects a and p; i.e., it is dependent on
the context of its use. On the contrary, the body of Message4 holds for all
Auction objects a and for all person objects p.

It is always possible to express contexts introduced with the keyword
context by universal quantifiers. The inversion for universal quantifiers,
however, does not always hold, as the basic set of a quantifier can be de-
scribed by a real expression instead of only an extension. The following in-
variant demands the existence of a test auction where all auction participants
can practice:

OCLinv TestAuction:

exists Auction testauction:

testauction.startTime.lessThan(Time.now()) &&

Time.now().lessThan(testauction.closingTime) &&

(forall Person p: !p.auctions.isEmpty

implies p in testauction.bidder)

Note that this is an interesting constraint regarding its implications with
regards to time, as the invariant requires that such a test auction be open at
any time. Since auctions close at a certain time, new test auctions have to be
set up regularly to fulfill the above-mentioned condition.

Existential Quantifier exists

The existential quantifier is dual to the universal quantifier. It demands that
a property be fulfilled by at least one element. The invariant TestAuction
has already demonstrated the application of the existential quantifier. These
quantifiers can also be nested. The existential quantifier can be characterized
using the universal quantifier as follows:

3.3 Container Data Structures 73

OCLinv:

(exists var in setExpr: expr) <=>

!(forall var in setExpr: !expr)

An existential quantification over an empty set has the expected effect:

OCLinv:

(exists x in Set{}: expr) <=> false

Finite and Infinite Quantifiers

Up to now, both quantifiers have only been applied to finite container struc-
tures. In fact, OCL is defined to work with finite sets and lists. This has
several consequences that need to be taken into consideration when using
quantifiers. The finiteness of the quantified set has the advantage of (at least
theoretical) computability by assigning all values or objects to the quantified
variable and, thus, interpreting the body. It is essential for the quantified set
that the extension in the form of all currently existing objects assigned to
classes such as Person is unrestricted but finite. If, instead, the set of all po-
tential objects were assigned, a quantifier would not be testable. Thus, a side-
effect is that a quantified variable quantifies neither over the pseudovalue
undef for undefined expressions nor over the replacement value null but
only over actually existing objects. It holds that:

OCLinv:

forall A a: a!=null

From the logic’s point of view, OCL is no more powerful than without
these finite quantifiers. In principal, a finite universal quantifier can also be
expressed by a conjunction. However, besides the explicitly used quantifiers
and the context definition, which also acts as a universal quantifier, there is
another, implicit universal quantification: An invariant is equally valid for all
occurring object structures of all system runs. This is illustrated in Fig. 3.19.
The quantification over all potential object structures remains implicit. How-
ever, it is exactly this quantifier that is infinite and leads to the fact that an
invariant cannot be completely verified by tests but new system runs with
new object structures can always arise. The correctness of an invariant over
this quantification had, therefore, to be verified.

Besides finite sets of objects, OCL/P also allows use of quantifiers over
primitive data types; For example, a quantification over the data type int is

OCLinv:

exists int x: x*x > 5

An implementation, e.g., with exhaustive search will usually be slow and
cannot terminate in case of a nonexisting suitable value. This is why the
quantification over primitive data types and set- or list-valued data types
is rejected in the OCL standard [OMG10b]. A constraint of the form

74 3 Object Constraint Language

Figure 3.19. The system as a sequence of object structures

OCLinv:

forall int x: x != 5

can have two meanings. If int is the set of all integers existing at a certain
time in a system, the above constraint only means that 5 must not be used in
the system. This semantics, however, is far less intuitive for a quantifier over
integers and contradicts the mathematical usage of a quantifier. In the usual
mathematical interpretation, instead, the above invariant is not satisfiable.

For specification purposes, OCL/P allows quantification over infinite
sets. However, these cannot be used for a direct mapping to code or tests
without adaptation. The same holds for the processing of infinite sets in set
comprehensions.

OCLinv:

let Set<int> squares =

{ int x | exists y in int: y*y = x && x <= 400 }
in ...

As an alternative, finite generators processing a finite extract are suitable:

OCLinv:

let Set<int> squares = { y*y | y in Set{1..20} }
in ...

The use of a quantification over sets of objects requires special attention.
The example

OCLinv ListQuantor:

forall List<Person> lp: lp.size != 5

allows multiple interpretations for the variable lp:

1. All potential lists of potentially existing Person objects. This is the math-
ematical interpretation that has already been rejected for objects.

3.3 Container Data Structures 75

2. All lists actually existing in a system at a certain time. Similar to the quan-
tification over classes, this can lead to surprises if the system is extended
and lists of this type are also used in a new location.

3. All potential lists about all objects actually existing at a certain time.

As containers show strong characteristics of primitive data types (such as
value orientation and no object identity), the interpretation over all potential
sets, i.e., variant 3, is also used for set-valued quantifiers. So, a quantification
over Set<Person> represents a combination of the interpretation of an infi-
nite quantifier on a primitive data type and finite quantifier over a reference
type. Accordingly, quantifiers over lists are infinite and, hence, can be used
only for specification. As the power set of a finite set is also finite, the quan-
tification, e.g., over Set<Person> is finite and can, thus, be implemented,
but an exhaustive search is not recommendable.

3.3.11 Special Operators

The Operator one

Many constraints can be conveniently formulated with the operations de-
scribed so far. Therefore, OCL/P waives an operator for the description of
the unambiguity of a set-valued expression and, instead, shows how these
can be defined by given constructs. The following constraint describes that
the login of each person is unambiguous:

OCLcontext AllData ad inv:

forall String lg in Person.login:

{ Person p | p.login == lg }.size == 1

Operator any

For selecting an element from a container structure, we use the special op-
erator any. This operator is not clearly determined for sets, as the following
defining equations show:

OCL(any listExpr) == listExpr.get(0);
(any setExpr) == any setExpr.asList;
(any var in collection: expr) == any { var in collection | expr }

Operator iterate

An element-wise processing of sets and lists can be described very easily
by the existing forms of comprehension. A multiplication of a given set of
numbers mwith 2 can, e.g., be formulated easily with {2*x | x in m}. For
more general cases, OCL offers the iterate operator which mimics a loop
with state storage from functional as well as from imperative programming.
The iterate operator can, e.g., be used for calculating the sum of a set of
numbers as follows:

76 3 Object Constraint Language

OCLinv Sum:

let int total =

iterate { elem in Auction;

int acc = 0 :

acc = acc+elem.numberOfBids

}
in ...

The locally defined variable elem iterates over the given set Auction.
The also locally introduced variable acc acts as an “intermediate” storage
for the accumulation of the results. It is initialized with 0. The expression
acc+elem.numberOfBids is executed iteratively for all elements and the
current stored value respectively. The general structure of the iterate op-
erator can be characterized by

OCLiterate { elementVar in setExpr;
Type accumulatorVar = initExpr :

accumulatorVar = expr
}

An iteration’s result over a set can be ambiguous, as it, like a conversion
into a list, depends on the order of processing. Implicitly, in case of sets, again
a transformation into a list is applied. Therefore, the following holds:

OCLinv:

iterate { elementVar in setExpr;
Type accumulatorVar = initExpr :

accumulatorVar = expr
}

==

iterate { elementVar in setExpr.asList;
Type accumulatorVar = initExpr :

accumulatorVar = expr
}

However, in the case where the accumulation is commutative and asso-
ciative, the result is determined unambiguously anyway. In the example Sum,
addition was used, which also fulfills these properties.

The iterate operator is a relatively powerful but also implementation-
related and less intuitive operator.18 It is recommended not to use this oper-
ator, if possible.

Operator defined

Dealing with undefined values leads to additional effort in both a program-
ming and a specification language and should, thus, be avoided to a large

18 Due to its implementation-specific character, this operator is not part of the usual
functional or specification-oriented flavor of OCL. This is why a syntax similar to
the assignment was explicitly chosen.

3.4 Functions in OCL 77

extent, but at some points it is helpful or even necessary to handle undefined
values. For this purpose, the particular operator defined is introduced,
evaluating to true exactly when its argument is a defined value. For un-
defined arguments, this operator evaluates to false.

As an example, the existence of an object specified with a let construct
can be checked therewith as follows:

OCLcontext Auction a inv:

let Message mess = a.person.message[0]

in

defined(mess) implies ...

The defined operator can decide whether an expression is defined. For
this reason, this specification operator cannot be (fully) implemented. Due to
the approach regarding handling of undefined values discussed in Sect. 3.2.2,
however, a good approximation for this operator can be realized by using
try-catch statements from Java. So, this operator is suited as an alternative
to typeif in order to, for example, recognize elements from subclasses:

OCLcontext Auction a inv:

let BidMessage bm =(BidMessage) a.person.message[2]

in

defined(bm) implies ...

In some cases, the evaluation of the right side of the let assignment
throws an exception that is stored in the variable bm and constitutes a rep-
resentation for an undefined value. defined(bm) allows us to react to this
undefined value.19

3.4 Functions in OCL

So far, only OCL invariants have been defined, which characterize a property
over a system state consisting of a collection of objects. In doing so, prede-
fined methods of OCL for processing of container data structures were used.
While OCL, on the one hand, cannot define its own functions or methods
outside the let construct, it is, on the other hand, perfectly suited for speci-
fication of effects of methods of the underlying models by means of pairs of
pre- and postcondition. Vice versa, the model can also provide methods for
specification of OCL conditions.20

19 An extension of OCL could allow one to access exceptions also in the logical lan-
guage and, hence, to handle different “undefined values.” For the Statecharts in
Chap. 5, for instance, exception stimuli are discussed.

20 OCL/P offers methods in libraries which have been defined within the language in
the OCL standard. Thus, OCL/P is on the one hand leaner and shows on the other
hand how other functions of this kind can be defined by modelers themselves.

78 3 Object Constraint Language

Such specification of methods by using pre/postcondition pairs corre-
sponds to the specification of behaviors with contracts propagated by [Mey97].
This approach is refined in [PH97] on the basis of an independent core
language called “Aicken,” where also a theory including side-effects is de-
signed. [MMPH99, MPH00] transfer parts of these results onto Java. The
“observer” functions used are consistent with the subsequently introduced
queries but do not allow creation of new objects.

3.4.1 Queries

In the hitherto formulated constraints, we have mostly used functions of-
fered by OCL itself. However, in many places, it is helpful to access the meth-
ods provided by the implementation in order to compactly formulate a con-
dition. Such a method is called a query and is characterized by the stereotype
�query�. As an extension of the class diagram in Fig. 3.8, a detailed descrip-
tion of the message structure is given in Fig. 3.20. Among others, it contains
two query methods.

Figure 3.20. Query methods

These queries allow selection of a set of messages assigned to a specific
auction. These can, thus, be compared with the messages contained in an
auction to ensure that messages for distinctive auctions are forwarded cor-
rectly and in the right order to their participants.

OCLcontext Auction a inv:

forall p in a.bidder:

a.message == { m in p.message |

m.isAuctionSpecific() && m.getAuction()== a }

3.4 Functions in OCL 79

Due to the chosen two-valued logic, however, it is possible to formulate
this in a shorter form if one assumes that the call getAuction() provides
an undefined value or null in case the message is not auction specific:

OCLcontext Auction a inv:

forall p in a.bidder:

a.message == { m in p.message | m.getAuction()==a }

Stereotype �query�

Model
element

Abstract and implemented methods; method signatures

Motivation Conditions are not allowed to cause side-effects if they are
evaluated during a system run, e.g., for test purposes. This is
why methods of the underlying model cannot be called arbi-
trarily in constraints. �query� marks methods that are free of
side-effects and, thus, applicable in constraints.

Glossary A method marked with �query� is called a query.

Usage
condition

A query computes a result without changing the state of the
system. Neither foreign nor object-local attributes can be ma-
nipulated. However, the result can consist of newly created
objects if these are not accessible from the original system (see
Fig. 3.22).
�query� is inherited and carries over from interfaces to their
implementations. A query can be overwritten, but a new im-
plementation also has to avoid state changes.

Effect Methods marked with �query� can be used for formulating
constraints in OCL.

Example(s) According to coding standards common for Java, queries
mostly begin with a prefix in the form get, is, has, or give.
Example: see Fig. 3.20.

Pitfalls Queries may call other methods. However, it is only ensured
that there are no side-effects if these methods are also queries.
The creation of new objects requires calling a constructor. If a
constructor has side-effects on other objects, it cannot be used
in a query (but according to the coding standards, this should
not be the case).

See also �OCL� for queries that are not implemented in the produc-
tion system.

(continued on the next page)

80 3 Object Constraint Language

(continues Table 3.21.: Stereotype �query�)

Extendable
to

Classes and interfaces if each method defined therein or inher-
ited by a subtype relation is a query. �query� then distributes
to all methods of the class or interface.

Table 3.21. Stereotype �query�

As the description of the stereotype �query� in Table 3.21 explains, it
is an essential property of queries that they do not modify the underlying
object structure. This means that neither attributes are modified nor associa-
tions changed in existing objects. Only in this way can it be ensured that an
evaluation of a condition at runtime does not change the system itself. The
allocation of the stereotype �query� to a method, thus, means an obligation
of the programmer to not make any modifications of object states. The stereo-
type �query� is inherited to the methods of the subclasses. Queries can be
overwritten, but in subclasses they must also be implemented as queries.
Nowadays, it is good programming style and advised by coding standards
to let query methods begin with the prefixes get, is, has, or give.

However, a query may create new objects and return these to the caller
as long as new objects are not accessible from the previous data structure. In
an implementation, these “temporary” objects are automatically removed by
the Java runtime system. These new objects can be connected to each other
and can have links into the original object structure (see Fig. 3.22).

Unfortunately, the creation of objects is not completely free of side-effects,
as the set of all objects of a class (the extension) changes. If a query generates
new objects, it is called impure.

If an impure query is applied in a specification, the generated objects are
not included in the extension.21

If a query were not allowed to modify these objects after their creation,
queries would be recognizable by static program analysis. The Java imple-
mentation of a query would then only be allowed to assign values to local
variables, perform computations, and call other queries. However, a tech-

21 Impure queries have been allowed for pragmatic reasons. Potential problems can
be recognized by suitable data and control flow analysis techniques.

3.4 Functions in OCL 81

Figure 3.22. Query method may create objects

nique based on data and control flow analysis, which can statically check
method bodies for being queries, is also conceivable here. Such an algorithm
cannot recognize all cases as correct, but it is already sufficient if it conser-
vatively rejects all implementations that are doubtful without excluding too
many query implementations.

A query is an ordinary method of a class of the UML class diagram. Like
other methods, a query is usually designed for use in an implementation.
The result of a query, for example, can be integrated into the existing object
structure by a calling method.

3.4.2 �OCL� Methods

For modeling more complex properties, it is often reasonable or even neces-
sary to define additional queries. However, such queries are usually not de-
signed for implementation but exclusively for specification. Therefore, they
are not available in a product installation. In order to tag pure specification
queries, the stereotype �OCL� is introduced in Table 3.23. In its meaning, it
differs from �query� only by the fact that an implementation is not desig-
nated in the production system.22 Figure 3.24 shows two such methods that
have been added to the class Person.

22 The OCL standard [OMG10b] does not store these methods in a class diagram but
offers a definition clause similar to an OCL constraint.

82 3 Object Constraint Language

Stereotype �OCL�

Model
element

Abstract and implemented methods; method signatures.

Motivation The same as in �query�: the use of the method is allowed
in constraints. However, these methods are available only in
specifications and are not realized in the production system.

Glossary A method marked with �OCL� is called a specification query.

Usage
condition

Specification queries have the same restrictions as queries.
Furthermore, they must not be used in the implementation
code.

Effect Methods marked with �OCL� can be used in OCL.

Example(s) Like queries, these mostly begin with a prefix in the form get,
is, has, or give. Example: see Fig. 3.24.

Pitfalls The same as in �query� methods.

Also see Stereotype �query�.

Expandable
to

Can be used on classes and interfaces if each method defined
therein or inherited by a subtype relation is a specification
query. �OCL� then spreads onto all methods. Usually, such
classes belong to a specification library and are not included
in a product installation.

Table 3.23. Stereotype �OCL�

Like the properties of queries or ordinary methods, these functions can
be defined by a method specification or by a direct implementation in Java.
However, a direct implementation in Java can only be realized if the signa-
ture does not contain OCL data types.

3.4.3 Method Specification

The goal of a software system is especially the adequacy of the behavior vis-
ible to the user. This behavior is mostly realized by complex interaction of
methods. The data structure on which these methods work is, thus, actu-
ally only a means to an end. Correspondingly, it is interesting not only to
characterize invariants with OCL but particularly to specify the behavior of

3.4 Functions in OCL 83

Figure 3.24. OCL-specific queries

methods. Hence, we introduce the pre/postcondition style particularly suit-
able for method specifications. The context of a method specification is deter-
mined by the method, which is usually qualified with the containing class as
well as by its parameters. Two constraints, the precondition and the postcon-
dition, which can both be decorated with names, characterize the method’s
effect. The method isAuctionSpecific from Fig. 3.24 can be specified in
the subclass BidMessage as follows:

OCLcontext boolean BidMessage.isAuctionSpecific()

pre IAS1: true

post IAS2: result == true

The precondition with the name IAS1 states that the method can be
called at any time. The postcondition IAS2, in the variable result, char-
acterizes the result of the method call. It states that each message of the type
BidMessage is auction specific. As the next constraint shows, the auction
concerned can be queried by messages of this type:

OCLcontext Auction Message.getAuction()

pre: isAuctionSpecific()

post: exists p in result.bidder: this in p.message

The postcondition describes that a person p that has received this mes-
sage participates in the auction delivered as the result (result).

The restriction in the precondition of a method describes that, in case the
precondition is fulfilled, the postcondition is guaranteed. It especially en-
sures that the method does not terminate with an exception. This contract in
the sense of [Mey97], however, makes no statement about what can happen
if the precondition is not fulfilled. A robust implementation should, also in
this case, respond with a defined reaction. [HHB02] describes four different
interpretations for method specifications for which the total correctness used
here also enforces termination in case of a fulfilled precondition.

84 3 Object Constraint Language

In the above condition, the keyword this is used in order to make a
reference to the object on which the method is applied. The keyword is only
available if the specified method is to be applied to an object, i.e., if it does
not have the tag static. The static methods for creating message objects
(compare Fig. 3.20) can, thus, be described as follows:

OCLcontext �static� StatusMessage

MessageFactory.createStatusMessage(Time time,

Auction auction, int newStatus)

pre: true

post: result.time == time &&

result.auction == auction &&

result.newStatus == newStatus

If the class MessageFactory, which this static method belongs to, is of
subordinate significance or if this is not yet determined, the class can also
be omitted. This is of interest particularly for the specification queries intro-
duced in the last section, as these are usually not implemented and, thus, not
assigned to a class.

The above and the following specification show that, besides the result
variable result, also parameters of the method can be used in pre- and
postconditions:

OCLcontext List<Message> Person.getMsgOfAuction(Auction a)

pre: true

post: result == List{ m in p.message |

m.isAuctionSpecific() && m.getAuction()== a }

The used list comprehension selects all messages that are assigned to an
auction a. This example also shows that the specification queries attributed
with the stereotype �OCL� are characterized with the presented specifica-
tion technique without the need to indicate an implementation.

Figure 3.25. Excerpt of the Person class

Figure 3.25 contains a method addMessage that serves for adding an-
other message to a person. The postcondition of the method specification
contains an explicit reference to the state before the method call by using the
postfix @pre:

3.4 Functions in OCL 85

OCLcontext Person.addMessage(Message m)

pre: m.time >= messageList.last.time

post: messageList == messageList@pre.add(m)

Like in Java, it is possible to define methods with variable arity, as
shown in the following example. The method addMessages can be called
with many variable messages. Its parameter ml is, like in Java, of type
[Message]:

OCLcontext Person.addMessages(Message ml ...)

pre: forall t in ml.time: t >= messageList.last.time

&& ml.time.isSorted()

post: messageList == messageList@pre.addAll(ml)

@pre in Postconditions

The operator @pre can only be applied to single attributes or navigation el-
ements. Already syntactically, an expression of the form (a.b)@pre is pro-
hibited. However, the detailed meaning of @pre is to be defined precisely.
Therefore, we show, using the example taken from [RG02, Ric02] and illus-
trated in Fig. 3.26, what effects the operator @pre has in dynamically chang-
ing object structures.

Figure 3.26. A situation for changeCompany

Figure 3.26(a) contains an extract of the auction model showing that per-
sons can change their company. The object diagram23 in Fig. 3.26(b) shows
that john and three colleagues of his company are registered in the auction
system. In the example, it is assumed that he is headhunted by a new com-
pany that so far has been undocumented in the auction system. The change

23 Object diagrams are explained in detail in Chap. 4.

86 3 Object Constraint Language

leads to the situation shown in Fig. 3.26(c) with the new object c2. In the
postcondition, the operator @pre can be used in various ways when the ex-
pression is in the form john.company.employees:

john.company.employees == 1, as this expression is completely eval-
uated in the state after the method call. The navigation through company
leads to the project c2 with the corresponding attribute content.

john@pre.company.employees == 1, as the reference to object john
has not changed during the method call. It holds that john==john@pre.
Only through consideration of the attributes do the changes in object
john become apparent.

john.company@pre.employees == 3; as with company@pre, one ac-
cesses the original state of the object john, and this subexpression evalu-
ates to the object c1. But then, the current state of c1 is reached by means
of access via employees.

john.company@pre.employees@pre == 4, as, here, the evaluation ac-
cesses the original object c1 in its original state.

john.company.employees@pre is undefined as john.company evalu-
ates to c2 and this object did not exist in the original state.

An alternative but equivalent approach for the comprehension of post-
conditions is possible by treating expressions in the form company@pre as
additionally existing attributes in which old values of the attribute company
are stored.

Characterization of Object Creation

Assuming that a person switches company, the method changeCompany

introduced in Fig. 3.26 can be characterized as follows:

OCLcontext Person.changeCompany(String name)

pre CC1pre: !exists Company co: co.name == name

post CC1post:

company.name == name &&

company.employees == 1 &&

company@pre.employees == company@pre.employees@pre -1 &&

isnew(company)

The operator isnew(.) has been used in order to indicate that company
is a new object. This operator is a shortcut for a comparison of object sets
existing before and after a method call. The operator isnew() can, thus, be
described in the following way:

OCLcontext ...

post: let X x = ...

in

isnew(x) <=> (x in X) && !(x in X@pre)

3.4 Functions in OCL 87

In OCL, the isnew(.) operator has only a descriptive function, while
with the new construct known from Java new objects are created. So, it
must be noted that the isnew operator checks within an OCL postcondi-
tion whether an object has been newly set up but does not create a new
one. Hence, for example, let X x = new X() is not possible. The let

construct, thus, is not suited for describing new objects but for storing in-
termediate results. The isnew operator has the signature

Signaturboolean isnew(Object o);

and can be applied to objects only but not to primitive data types or contain-
ers.

Specification of a Constructor

A special case of a method is a constructor. This method form is distin-
guished by the fact that it generates its own object. Some corresponding pe-
culiarities need to be considered when specifying a constructor. The keyword
this and attributes of the object are only allowed to be used in the postcon-
dition; i.e., the precondition can make statements only about the construc-
tor’s arguments. In the postcondition, it is furthermore prohibited to access
the attributes of the generated object with @pre, as these did not yet exist in
the prestate. The following specification shows an extract of the characteri-
zation for new Auction objects:

OCLcontext new Auction(Policy p)

pre: p != null

post: policy == p &&

status == INITIAL &&

messages.isEmpty;

In the case of constructors, result==this always holds. Therefore, one
can access the attributes of the result with result.status as well as with
this.status or with status alone.

Integration of Multiple Constraints

The method changeCompany was characterized in the constraint denoted
with CC1pre/CC1post, under the assumption that the new company does
not yet exist. Figure 3.27 now illustrates a case in which the company al-
ready exists and the precondition CC1pre does not apply. In this case, the
postcondition CC1post also need not be fulfilled. This means that the above
specification is incomplete. It can, hence, be supplemented in the following
way:

88 3 Object Constraint Language

Figure 3.27. Further situation for changeCompany

OCLcontext Person.changeCompany(String name)

pre CC2pre: company.name != name &&

exists Company co: co.name == name

post CC2post:

company.name == name &&

company.employees == company.employees@pre +1 &&

company@pre.employees == company@pre.employees@pre -1

This constraint describes another part of the behavior of the method
changeCompany by assuming that the company is already registered but
the person does not currently belong to the company. Such a case where two
method specifications exist for the same method can occur for several rea-
sons. For example, different developers can make demands in parallel on a
method. It is also possible that demands on the same method can be inherited
from two different interfaces or superclasses. In both cases, an integration of
the constraint is necessary. The two method specifications can be understood
as implications of the form24

CC1pre’ implies CC1post;
CC2pre’ implies CC2post;

If both pairs are supposed to be valid, these combine to a new statement
of the form

(CC1pre’ implies CC1post) && (CC2pre’ implies CC2post)

This means that, if both preconditions are fulfilled, both postconditions must
also be fulfilled. This causes inconsistencies if the two postconditions contra-
dict each other. Thus, postconditions are often defined orthogonally to each
other by dealing with different aspects of the method or if, like in the case
mentioned above, the preconditions are disjunctive. The possibility to com-
bine method specifications with overlapping preconditions can, e.g., be used
for separate modeling of different aspects of a method’s behavior.

24 CC1pre’ differs from CC1pre in the fact that all occurring attributes, variables, etc.
are furnished with @pre. So, the interpretation of CC1pre’ can take place after the
method call and, however, the original value of CC1pre can be determined.

3.4 Functions in OCL 89

In some cases, it is reasonable not only to place method specifications side
by side to determine by tests or inspection whether they are consistent but to
explicitly integrate them into a single characterization. This can happen, for
example, according to the following scheme also introduced in [HHB02]:

OCLcontext Person.changeCompany(String name)

pre: CC1pre || CC2pre
post: (CC1pre’ implies CC1post) && (CC2pre’ implies CC2post)

However, as different names were used for the method parameters, re-
namings are necessary. Often, a constraint combined in this way can be sim-
plified. Thus, in the example, we get the following specification:

OCLcontext Person.changeCompany(String name)

pre: company.name != name

post: company.name == name &&

company@pre.employees == company@pre.employees@pre -1 &&

(company.employees == company.employees@pre +1

|| (isnew(company) && company.employees == 1))

Inheritance of Method Specifications

Usually, the specification of a method’s behavior is inherited to subclasses;
i.e., a subclass of Person is allowed to override the method changeCompany

and, by doing so, change its behavior within the given method specification.
Further method specifications for subclasses may also be given. Here, the
described procedure for the integration of method specifications is used to
combine the inherited and added method specifications.

In frameworks, it is common to provide default implementations for
methods that are to be overwritten. Such a default implementation can be
comprehended in much more detail by a method specification if this is only
valid for the method of this class. Hence, in some situations, it is desirable not
to inherit a method implementation. For this purpose, the stereotype �not-
inherited� can be used, preventing the inheritance used as default.25

Figure 3.28 demonstrates the validity areas of inherited and non-inherited
method specifications. The explicitly given specifications supplement each
other and can be integrated by the already described procedure.

The stereotype �not-inherited� is introduced in Table 3.29. In the con-
trast to method specifications, the question concerning inheritance of invari-
ants does not arise because the context can consist of several objects and the
extension of a type given in the context contains the object of the subclasses.

25 The negatively formulated stereotype �not-inherited� is supposed to explicitly
indicate that this should rather be the exception.

90 3 Object Constraint Language

Figure 3.28. Specialization hierarchy for method specifications

Stereotype �not-inherited�

Model
element

OCL method specifications

Motivation The inheritance of a method specification is prevented with
�not-inherited�.

Glossary A method specification marked with �not-inherited� is called
an implementation description.

Effect An implementation description is valid for the implementa-
tion of this class but not for subclasses. Implementation de-
scriptions are especially suited for tests on a default method
that can be overridden.

Table 3.29. Stereotype �not-inherited�

Incomplete Characterizations

For constraint CC2post, there is an interesting implementation alternative
at first sight. Instead of changing the link of the person to the new company,
the implementation could also change the name of the old company object.

In general, a method specification does not provide a complete descrip-
tion of the favored behavior. This is because an implementation of the
method can modify further system parts which are not explicitly mentioned
at all. There are various approaches summarized by the expression frame con-
cept to explicitly control potential changes [GHG+93, BMR95].

3.4 Functions in OCL 91

The direct approach is to explicitly give a list of unchangeable objects or
attributes. In [MMPH99], e.g., the keyword unchanged is used for this pur-
pose. This negative list, however, can become very large, and, furthermore,
demands an overview of the whole system; i.e., it is not modular. A vari-
ant, thus, is to define a positive list of all changeable objects or attributes, as
well as the potentially newly created objects. A third variant implicitly ob-
tains this positive list from the set of objects and attributes mentioned in the
specification.

However, the last approach has the disadvantage that, usually in the case
of inherited methods, it is explicitly desired to alter new attributes that could
not be anticipated in the specification of the method of the subclass.

For verification purposes, however, it is indispensable to exclude all po-
tentially negative alterations in the specification. In a verification, we (im-
plicitly) have to assume a vicious developer team and have to show that,
for all potential implementations, the requested properties hold; i.e., the de-
velopers are forced to implement an innocuous system. In practice, this as-
sumption is not sensible, as developers are usually benevolent people and
each person in each phase of software development is able to make qual-
ified decisions that determine further design and implementation details.
The metaphor of the benevolent developer, in modeling, allows many details
to be left open. In particular, it can be assumed that, in the implementation,
the system state is modified to a minimum degree only in order to correctly
realize the pre/postconditions.

Here, of course, tensions arise between the necessity of determining prop-
erties in the specification and the trust in the developer to correctly com-
plete incomplete specifications with details. However, these tensions can be
reduced, for example, by specifiers and developers belonging to the same
group of people or by their closely intertwined cooperation.

The last case company.name==name for the method changeCompany

can serve as an example here. In this case, the person already belongs to the
company. This case is also specified separately and, if required, integrated
into the whole specification:

OCLcontext Person.changeCompany(String name)

pre CC3pre: company.name == name

post CC3post: company == company@pre &&

company.employees == company.employees@pre

It is striking that the accomplishment of the postcondition demands no
real activities but only ensures that activities taking place in the other cases
are prevented. It is explicitly determined that the attributes changed in other
cases are supposed to remain unchanged here. Further attributes are not
mentioned, as we assume a benevolent developer. However, he can possi-
bly make careless mistakes, which is why the third case modeled here can
help with the development of code and tests.

92 3 Object Constraint Language

Recursive Function Definition

If a method is described by a pre- and postcondition, this method can be
used recursively already during its definition. The OCL standard [OMG10b]
allows recursive definitions but does not precisely clarify their meaning. The
specification

OCLcontext foo(int a, int b)

post: result = if a <= 0 then b

else foo(a-1,b*b)

uses foo recursively. Due to the particular structure, with result on the
left-hand side of the equation, this specification can be read as a functional
implementation and, thus, obtains a clear meaning. The precise meaning be-
hind recursive functional definitions is relatively complex and shall not be
explained in detail here. The essential issue is that, in case of a recursive
equation, often many implementations are possible but, in case of special
forms of the specification, a unique meaning is determined by fixed-point
induction, exactly corresponding to the behavior of the implementation.

Let us give some examples that are correct in the sense of a specification
and can even be reasonable for certain cases of application but also have very
dangerous effects due to the recursive use of the defined function:

OCLcontext A.foo(a,b)

post: result = if a <= 0 then b

else foo(a,b)

would not necessarily terminate as an implementation. As a specification, for
the case a <= 0, a statement is made, while for a > 0 simply no statement
is made and, hence, every implementation is possible. A completely missing
statement carries this to extremes:

OCLcontext A.foo(a,b)

post: result = foo(a,b)

In contrast,

OCLcontext A.foo(a,b)

post: result*a = foo(result,b)

definitely does constrain the method but has diverse implementations, even
the rather simple foo(a,b)=0. However, none of the implementations is
favored. Multiple implementation alternatives are also offered by

OCLcontext A.foo(a,b)

post: a = foo(result,b)

Because only queries can be used in constraints, recursive method defini-
tions are possible only for queries. Thus, attribute manipulations disappear,
and in case of a suitable definition structure in a functional body-like form,

3.4 Functions in OCL 93

even a single and, hence, unique implementation can be described by using
inductive data structures such as natural numbers. In Sect. 3.5.1, we use this
in order to describe the transitive closure of a relation. As we generally apply
OCL a as specification language, definitions with recursively used functions
are allowed but remain property-oriented specifications.

Helper Variables and the let Construct

In complex method specifications, it is possible that a certain object, which is
supposed to be modified and, therefore, checked in the postcondition, needs
to be identified already in the precondition. In order to be able to introduce
common variables for the pre- and postcondition, the let construct has been
extended. It now allows the definition of variables which, then in both con-
straints, have the same assigned value. With this, the method specification
CC2pre/CC2post can be converted to

OCLcontext Person.changeCompany(String name)

let oldCo = company;

newCos = { co in Company | co.name == name };
newCo = any newCos

pre: oldCo.name != name && newCos.size == 1

post: newCo.employees == newCo.employees@pre +1 &&

oldCo.employees == oldCo.employees@pre -1

This extension of the let construct can be regarded as a double applica-
tion of the let construct:

OCLcontext Person.changeCompany(String name)

pre: let oldCo = company;

newCos = { co in Company | co.name == name };
newCo = any newCos

in oldCo.name != name && newCos.size == 1

post: let oldCo = company@pre;

newCos = { co in Company@pre | co.name@pre == name };
newCo = any newCos

in newCo.employees == newCo.employees@pre +1 &&

oldCo.employees == oldCo.employees@pre -1

The introduction of intermediate variables and helper functions by the
let construct can, however, also be regarded as a definition of attributes or
methods of an anonymous class that is implicitly integrated into the context.
Figure 3.30 illustrates this by means of the two examples Time2 and Time3

from Sect. 3.1.2. For describing the new attributes and new operation, we
also use OCL. As already discussed in [CK01], this form of illustration is,
however, not equivalent to the definition with the let construct itself. The
elements defined by let are only locally available and can, therefore, not
be used outside the definition scope. Furthermore, there is a difference in

94 3 Object Constraint Language

handling defined results as the let construct allows undefined intermediate
results and can yet deliver a whole result in a defined way.

As already mentioned in Sect. 3.1.2, the possibility of recursive defini-
tions increases the complexity of the typing (compare [CK01], Gofer [Jon96],
and SML [MTHM97]) within the let construct. It becomes less comprehen-
sible, as shown by the many incorrect recursive definitions of an association’s
transitive closure, that can be found in literature. As OCL is a specification
language, recursive definitions have to be regarded as equations and not as
operational definitions. However, as already shown and further discussed
in Sect. 3.5.1, equations are sometimes ambiguous. Recursive definitions are
also possible using the underlying object system, so we omit the possibility
of recursive definitions here.

OCLcontext LetExtensionClassForTime2, Auction a inv:

min1 = a.startTime.lessThan(a.closingTime)

? a.startTime : a.closingTime;

min2 = min1.lessThan(a.finishTime) ? min1 : a.finishTime

OCL

context Time LetExtensionClassForTime3.min(Time x, Time y)

pre: true

post: result = x.lessThan(y) ? x : y

Figure 3.30. let construct as extension of the context

3.4.4 Libraries of Queries

OCL is designed as a constraint language that, with the exception of local
definitions in let constructs, does not allow for the definition of its own data
types, methods, or variables. Instead, data types and methods of the under-
lying model as well as the stereotypes �query� and �OCL� are used. Thus,
the underlying model can offer predefined libraries of queries that enable a
compact definition of OCL constraints. As examples, some of these functions
are discussed in this section, and it is shown how libraries of this kind can be
compiled.

Formally, the specification queries defined here are offered by a class that,
for simplicity reasons, is called OCLlib. We assume that this class always
implicitly exists in a constraint’s context, so that its static queries can also
be used, like sum instead of OCLlib.sum. Figure 3.31 contains the signature

3.5 Expressiveness of OCL 95

of an extract of this small library. The queries contained therein are declared
static by underlining, so that they can be used without a reference to an ob-
ject.

Figure 3.31. OCL example library with static queries

For containers with integers, mathematical operations such as sum or
maximum are available:

OCLinv:

let Set<int> bids = { a.numberOfBids | a in Auction };
int total = sum(bids);

int highest = max(bids)

in ...

For sorting lists of integers in ascending order, the operator sort can be
used.

OCL

inv:

let Set<long> idents = { a.auctionIdent | a in Auction };
List<int> sortedIdents = sort(idents)

in ...

A variety of further predefined and domain- or project-specific opera-
tions are conceivable and should, similar to in programming languages, be
available for OCL.

3.5 Expressiveness of OCL

To use OCL successfully, it is reasonable to understand what OCL cannot de-
scribe or, at least, what it cannot describe adequately. Also, the nature of an

96 3 Object Constraint Language

invariant in object-oriented system runs and its field of application are to be
explained further. The question of executability also belongs to the investi-
gation of a language’s expressiveness. A comparison with a complete spec-
ification language such as Spectrum [BFG+93] provides further information
about the abilities of OCL.

3.5.1 Transitive Closure

A popular example for demonstrating OCL’s abilities is the modeling of a
transitive closure of a binary relation. For this, a self-referential association
of the underlying model is used as the basis relation. The whole–part rela-
tion used in compositions is a typical example of this. A further example is
the transitive closure of the inheritance relation used for modeling context
constraints at metamodel level in the UML standard [OMG10b]. Figure 3.32
shows the class Person and friends can also be stored in the system. The de-
rived association clique is now supposed to be specified in such a way that
it depicts the transitive closure of the friend association and, thus, makes
the set of all ancestors directly accessible.

Figure 3.32. Reflexive association and transitive closure

In the aforementioned examples, the transitive closure is specified accord-
ing to the following pattern:

OCLcontext Person inv TransitiveWrong:

clique = friend.addAll(friend.clique)

Unfortunately, this specification is incomplete. Indeed, it guarantees that
the association clique is a superset of the association friend and that the
association is transitive, but there are a variety of further realizations for the
clique association. Figure 3.33(a) shows an object structure with three ob-
jects and the association friend for which multiple solutions for the invari-
ant Transitive are given in Fig. 3.33(b–d).

In total, there are correct solutions for the object structure described in
Fig. 3.33(a), but only one should be described. The desired solution has one
vital characteristic in contrast to all other solutions: it is contained in all so-
lutions; i.e., it is the minimal solution. If the constraint Transitive was re-
garded as a logical program, exactly the minimal solution would be calcu-
lated. The minimality of the requested solution, hence, corresponds to the
interpretation of the constraint as a computation rule. However, OCL is not a

3.5 Expressiveness of OCL 97

Figure 3.33. Solutions for the transitive closure

programming language but a property-oriented specification language. The
problem in this characterization lies in the recursion embedded therein: it uses
the association clique already for its own definition. In specifications, such
a recursive situation should be avoided as far as possible, as it repeatedly
causes problems. Also, a variant defining the transitive closure in method
form has the same variety of implementation possibilities:

OCLcontext Person.clique() inv Transitive2:

post:

result = friend.addAll(friend.clique())

By relying on fixed-point theory, the minimality property of the transi-
tive closure can be cleverly used for a unique characterization. OCL, how-
ever, is only a first-order logical language and does not (directly) offer such
concepts. But there is a trick that can be used in OCL in order to describe
second-order operations such as inductive or recursive structures, transitive
closures, term generation, etc. by referring to nonnegative integers, which
are a fixed part of OCL. For completeness reasons, it should be mentioned
that nonnegative integers contain an inductive structure26 in their character-
ization, which says that each integer can be described by a finite expression
of the form 0+1+1+1. . . . Hence, the transitive closure can be characterized

26 The fifth Peano axiom serves as the basis for the term generation of nonnegative
integers.

98 3 Object Constraint Language

by a method that takes a step towards calculating the transitive closure and
that keeps count of the steps over a nonnegative integer parameter:

OCLcontext �query� Set<Person>

Person.cliqueUpToN(int n):

post:

result == if (n<=1) friend

else friend.addAll(friend.cliqueUpToN(n-1))

Now, the association clique can be determined by characterizing a suf-
ficient number of steps. The set of all participating objects is a suitable upper
limit.

OCLcontext Person inv Transitive3:

clique = cliqueUpToN(Person.size)

Sequences also have an inductive structure and can, thus, also be used for
defining a transitive closure, but this is often rather laborious.27

However, as in particular handling of the transitive closure of reflexive
associations occurs rather often, OCL/P offers a special operator **, charac-
terizing the transitive closure. This operator is applied in the following form:

OCLcontext Person inv Transitive4:

this.clique = this.friend**

The expression friend** itself can be regarded as a derived association
and can be used in OCL in exactly this form, whereby the additional associ-
ation clique becomes redundant.

The operator ** is only directly applied to a reflexive association.28 It
cannot be applied on chains of associations of the form (a.b.c)**. In order
to still be able to talk about nested associations, a derived association that
consists of a chain of associations can be introduced.

The transitive closure of an association is also calculated if the associa-
tion’s source and target are not identical or even if they are not subclasses of
each other. In that case, the transitive closure is identical to the initial asso-
ciation. Figure 3.34 illustrates that, in all four occurring cases, the transitive
closure has the same source and target class as the initial association. How-
ever, the cardinality of the transitive closure is always “*” (not shown in the
figure).

Likewise, the transitive closure and a number of similar constructions can
be cleverly modeled by functions of higher order. Functions of higher order
are functions that have other functions as arguments. However, in object-
oriented programming and modeling and, thus, also in OCL, functions of

27 [MC99, Ric02] use the procedural operator iterate and the data structure of the
sequences to describe the Warshall algorithm for calculating a transitive closure.

28 An association is called reflexive if both ends belong to the same class and are sub-
classes of each other. Reflexivity of the depicted relation at link level is not de-
manded.

3.5 Expressiveness of OCL 99

Figure 3.34. Typing of the transitive closure

higher order do not currently exist. Instead, functions are encapsulated as
methods in objects and these objects are passed onto other objects as argu-
ments, hence simulating functions of higher order. Several design patterns
such as Command [GHJV94] are based on this principle. This principle can be
used indirectly in OCL by defining suitable queries in the object system and
applying them in OCL constraints.

3.5.2 The Nature of an Invariant

OCL constraints are usually applied as invariants, pre- or postconditions. Al-
though there is an intuitive understanding that invariants hold at “each point
in time of the system run,” a detailed consideration of the actual validity of
an invariant is necessary.

Invariants of the system are primarily formulated by OCL constraints.
However, in Chap. 4, also object diagrams are used for defining invariants.
As well, several modeling concepts of class diagrams can be understood as
invariants. Extensions that cannot directly be expressed in class diagrams,
such as cardinalities of associations, can also be expressed as invariants. Cor-
respondingly, a cardinality of the form “3-7” can be depicted by

OCLcontext Class object inv:

let s = object.assoziation.size

in 3 <= s && s <= 7

A typical example for an invariant is the characterization of a relation be-
tween two or more attributes. A standard example is the redundantly stored
length of a list. Let us assume that a class A has two integer attributes x and
y;

OCLcontext A inv Equals:

x == y

100 3 Object Constraint Language

describes such a relation. If an attribute is changed, the second one must also
be changed. This can, e.g., happen by

Javavoid incX() {
x++;

// (1)
y++;

}

Due to the invariant Equals, developers may need to rely on the fact
that the values of both attributes actually are the same. As Java does not
have the possibility to atomically make a set of attribute modifications, the
invariant, however, does not hold at all times. In the case where another code
is executed in parallel and method incX is briefly interrupted at point (1),
this violation, in fact, can have effects on the system behavior. Basically, there
are two options where foreign code is executed: on the one hand, concurrent
processes (threads) can interact with the code; on the other hand, method
calls can be bound to other objects at point (1).

Although Java has no transaction concept, concurrent execution of code
can be controlled by synchronization of methods. In the implementation, an
invariant can then be violated “temporarily” without any effect because the
critical location is blocked. If an invariant is more complex, this can theo-
retically lead to system runs where it is permanently violated, although the
system works properly. The invariant could, for example, be alternately vio-
lated and restored by concurrent processes at different points.

In pure sequential systems without concurrency, control can be passed
on only be a method call. Therefore, a method call should only be conducted
very sparingly while an invariant is violated, as the called method may have
been overridden and, thus, behave in a different way than expected. This is
why method calls should be carried out before violation or after restoration
of the invariants. The conclusion of this discussion is that an invariant’s scope
of validity does not stretch across the total runtime of the system.

Thus, a precise approach is to explicitly determine the validity of an OCL
constraint in Java code. For example, the method incX can be formulated by
using a Java extension with the keyword ocl for invariants as follows:

Javavoid synchronized incX() {
ocl Equals;

x++;

ocl x==y+1;

y++;

ocl Equals;

}

The integration of OCL constraints with Java code bodies by using the
ocl statement for assertions, as presented in Appendix B, can form a ba-
sis for the Hoare logic for the programming language Java. Articles [vO01,

3.6 Summary 101

RWH01] show that, especially for the language Java which is spread on
the Internet and confronted with security problems, such a logical calculus
can be reasonably implemented. Another helpful tool is the Extended Static
Checker for Java (ESC/Java) [RLNS00] that allows, due to a number of an-
notations, for example, to formulate assertions and statically verify these.
However, the explicit annotation of code with assertions in larger systems
requires considerable effort as, at many places, invariants that only become
relevant in called methods have to be “dragged along.”

In development, invariants are practically used for the formulation of
properties that still need to be realized, in tests, for assertions that need to
be automatically verified, and for invariants in the code. Using assertions,
however, is also of interest when advancing models in which, e.g., an old
data structure is related to a new one.

3.6 Summary

In this section, OCL/P has been introduced as an integration of the OCL
standard from [OMG10b] and the programming language Java. By doing so,
semantic adjustments of the logic and syntactical modifications of the ap-
pearance of OCL have been carried out. In addition, elements of functional
languages such as Gofer [Jon96] have been integrated to allow smart han-
dling of sets and lists. The extended possibilities for the property-oriented
definition of containers, in particular, provide considerably elegant options
for the formulation of constraints.

The modified form of OCL provides a solid basis for the chapters to come.
It can be applied for the generation of tests as well as for the description of
functions and actions in Statecharts.

4

Object Diagrams

Things only have the significance
we assign to them.

Molière

In UML/P, object diagrams take on the role of modeling structures on an ex-
emplary basis. Thus, they are particularly suitable for depicting statically un-
changeable structures in otherwise dynamic object-oriented systems or spe-
cial situations that, e.g., are used as post- or preconditions in tests. In this
chapter, we introduce object diagrams and discuss their methodical use. The
integration with OCL results in a “logic for object diagrams.”

4.1 Introduction to Object Diagrams . 105
4.2 Meaning of an Object Diagram . 114
4.3 Logic of Object Diagrams . 118
4.4 Methodical Use of Object Diagrams 125
4.5 Summary . 133

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7_4

103

104 4 Object Diagrams

Object diagrams are wellsuited for modeling the structure of a software sys-
tem and, thus, complement class diagrams. An object diagram describes a
collection of objects and their relations at a point in time in the lifecycle of a
system. Therefore, object diagrams focus on instances and have exemplary
character. Several object diagrams can describe differing situations at differ-
ent points in time within the same part of the system.

An object diagram can, for instance, be used in order to characterize the
situation during the startup of a system, describe an initial or a desired sit-
uation for a test, or illustrate an imperfect situation. Due to their exemplary
nature, object diagrams lack expressiveness if the situation’s context is not
described. This is why we discuss in this chapter how to use object diagrams
and, in addition, how to integrate them with the OCL logic. On the one hand,
OCL constraints are used for characterizing additional properties of an object
diagram; on the other hand, the OCL logic is used in order to combine object
diagrams and use them as pre- and postconditions for method specifications.

In the UML standard [OMG10a], object diagrams are treated as stand-
alone notation. This has led to the situation that this kind of diagram still
receives too little attention and is only now escaping from its niche exis-
tence in form of better tool support and improved methodical use. Amongst
other things, an object diagram is perfectly suited for describing the initial
situation of a test. In the test framework JUnit [JUn16, BG98, BG99], special
methods for the setup of object structures that can be generated from object
diagrams are used.

By separating the notations for object diagrams and class diagrams, a
stand-alone kind of diagram emerges that can be used in a methodically
independent way. Still, object diagrams are less important than class dia-
grams, because class diagrams show and constrain the essential architectural
description of a system. Object diagrams mainly have illustrative character
and, due to their exemplary nature, are usually not able to completely de-
scribe a system. Nevertheless, object diagrams can be very important in sev-
eral different phases of software development, starting from the definition
of requirements up to the representation of erroneous situations in mainte-
nance.

Apart from the UML standard [OMG10a], there is hardly any indepen-
dent literature covering the use of object diagrams. But in [GHK99], for ex-
ample, extensions that are especially interesting due to a number of nota-
tional constructs for particular situations are discussed. An extension of ob-
ject diagrams for interface descriptions is introduced in [HRR98]. The ques-
tion of how to model large object structures has been dealt with in [Ber97].
There, an interesting expansion is discussed, breaking down objects into sub-
objects along the inheritance hierarchy and, thus, being able to present object-
internal call structures. This is particularly practical when using multiple
inheritance, as in C++. Additionally, relatively rich component diagrams in
which components can communicate via ports are introduced. Another form
of handling object-diagram-like structures can be found in graph grammars

4.1 Introduction to Object Diagrams 105

[Roz99, EEKR99, WKS10, AKRS06], where a grammar rule identifies a sub-
graph in an object structure where it applies structural and attribute changes.

Section 4.1 offers an example-oriented introduction to the usage of object
diagrams. The following section discusses the semantics of an object diagram
and, thus, the statements that can be described with an object diagram. The
integration of object diagrams with the OCL logic is carried out in Sect. 4.3,
and the resulting methodical application possibilities are demonstrated in
Sect. 4.4 by means of examples. Additionally, Appendix C.4 finally describes
the complete abstract syntax of object diagrams and their logic extension.

Object in an object diagram. An object is the instance of a class and contains the
attributes that the class defines. These attributes are initialized with a value (or
not initialized, if applicable). In the object diagram, prototypical objects are used in
order to illustrate exemplary situations. Usually, there is no 1:1 relation between
the prototypical objects visible in the diagram and the real objects of the system
(also see the discussion in Sect. 4.2).

Object name allows the unique identification of the object in the object diagram. As
the object name, a descriptive name is chosen that, usually, cannot be retrieved
in the real system, as system-specific object identifiers are used there.

Attribute describes a state component of an object. An attribute in the object dia-
gram is characterized by its name, the type, and a concrete value. Further char-
acteristics, such as visibility, can be attached to the attribute. In abstract object
diagrams, variable names or expressions can be used instead of concrete values.
For these variables the value remains “unspecified” in the diagram. The attribute
type or value can be omitted as well.

Link is an instance of an association between two objects whose classes are con-
nected through the association. The navigation directions and the names of as-
sociations and roles can also be depicted on the link.

Composition link is a special form of link where further dependencies of the sub-
object from the whole exist beside the mere connection. A composition link is an
instance of a composition.

Figure 4.1. Definitions for object diagrams

4.1 Introduction to Object Diagrams

Figure 4.1 contains a brief description of the most important concepts regard-
ing object diagrams. Subsequently, these concepts are explained in greater
detail.

Figure 4.2 shows a simple object diagram from the auction system that
consists of one object only. This object describes a power auction.

Object diagrams have to conform to the structure predefined by class di-
agrams. As most of the object diagrams in this chapter are taken from the

106 4 Object Diagrams

Figure 4.2. Single Auction object

auction system, the properties of the auction system that are essential for the
object diagrams in this chapter are summarized in the class diagram shown
in Fig. 4.3.

Figure 4.3. Excerpt of the auction system

4.1.1 Objects

Objects are the core elements of an object diagram. The object contained in
Fig. 4.2 shows crucial elements for depicting such an object. The graphic rep-
resentation of an object is very similar to that of a class. The first field includes

4.1 Introduction to Object Diagrams 107

the object name together with the type of the object. The object name is a freely
chosen identifier for this object that is unambiguous within the diagram. It
plays a role similar to that of the actual object identifier of objects in the real
system, but these two must not be confused. The real object identifier is an
anonymous entity that occurs explicitly neither in the model nor in the pro-
gram code.

The top right marker OD for object diagrams serves for the precise dis-
tinction of class and object diagrams. Furthermore, object names are under-
lined in the form name:Type. The name begins with a lower-case letter. If
the name of the object is of no further significance, it may be omitted. The
colon, however, before the type declaration is preserved (see Fig. 4.4(b)). If,
vice versa, the object type is already known from the context or if it can be
deduced from the attribute list, we can omit the type instead (see Fig. 4.4(c)).1

Figure 4.4. Forms of representation of the Auction object

This figure also shows that attributes obey the same rules for the usage
of visibility modifiers and other tags as in class diagrams. The attribute list
need not be complete. Accordingly, the two representation indicators “. . . ”
and “ c©” introduced in Fig. 2.4 are used.

Even if a type declaration exists, it does not necessarily describe the ob-
ject’s class. Instead, the object can also be an instance of a subclass. Hence,
it is a real type declaration. Therefore, abstract classes and interfaces are also
allowed as types for the objects of the object diagram.

4.1.2 Attributes

The second field in an object representation consists of a list of attributes.
This field closely resembles that of class diagrams. Attributes can be omitted
or visibilities, tags, and stereotypes attached to attributes. In contrast to the

1 According to Java, Type name would be common. Then, however, the optional
omission of the object name name or type Type would be ambiguous. Therefore,
the notation from the UML standard is used.

108 4 Object Diagrams

attribute description of a class, concrete values for the attributes are usually
also given. A completely described attribute without additional tags thus
consists of the attribute type, the attribute name and the attribute value in the
form Type name = value. A concrete value can be omitted if the content
of the attribute is not relevant for depicting the desired facts or if it is de-
scribed by another concept, e.g., an OCL constraint. The type of an attribute
can be omitted as well, as it can be found in a class diagram.

If required by the representation, not only attributes directly assigned to
the object can explicitly be listed in an object, but also class attributes, derived
attributes and inherited attributes. If the value of a class attribute is given,
it remains the same in all depicted objects of this class. Generally, derived
attributes are related to other attributes of the object by an invariant. Such
invariants need to be taken into consideration in an object diagram.

There is no representation of inheritance relations in an object diagram.
Instead, the attributes inherited from the superclass are usually explicitly
listed in the subclass. The inheritance structure between classes is thus “ex-
panded” in an object diagram.

While classes in class diagrams have a third field for methods, no meth-
ods are shown in the object diagram. Therefore, a method list does not exist
in the object diagram.

4.1.3 Links

A link brings two objects into relation. An object is an instance of a class,
so a link is an instance of an association. This is why there may be multiple
objects of the same type and multiple links of the same association in an
object diagram. Figure 4.5 shows an object structure for an auction where, at
least, the three given persons participate. One of them is permitted only as
an observer.

Usually, links are marked with the association name and, optionally, with
further tags of the association. Especially role names and the navigation di-
rection are expedient when it comes to links and can be taken over from the
association. Like associations, links can be bidirectional, unidirectional or de-
picted without explicitly defined direction.

If the association name is not given explicitly, role names can be used,
as in the case of an association. If the association can be identified from the
connected ends, the link does not need a name. In this case, however, the
types of both objects participating in a link must be given.

Links of derived associations are depicted like those of ordinary ones.
However, the invariant that characterizes a derived association must be
taken into account in order to obtain a valid object diagram.

The association tag {frozen} that, for instance, was used for associations
to message lists in Fig. 2.11, can, in object diagrams, be applied to links as
well. It shows that the link is already created and that it must not be changed
during the lifetime of the two objects.

4.1 Introduction to Object Diagrams 109

Figure 4.5. Object structure of an auction

Two prototypical objects depicted in a diagram represent two different
objects in the system. This also applies when both objects have the same type
and cannot be distinguished by their names or their attribute values. Fig-
ure 4.6 shows an object diagram with seven different anonymous Person
objects, all participating in the auction copper913. This rule for distinction
also applies for links.

Figure 4.6. Several anonymous objects

110 4 Object Diagrams

The level of detail for presenting an object is left to the modeler. The ex-
ample in Fig. 4.6 shows that even objects of the same type can be presented
in distinctly detailed forms.

In analogy to the class diagram, it is, of course, possible to depict objects
and links with some helpful icons. In object diagrams, the legibility can be
increased through appropriate application of icons as well.

4.1.4 Qualified Links

An association can have a qualifier at one end that is used to select a unique
target object from a number of objects. In an object diagram, the concrete
qualifier value can be added to each link of such an association. Figure 4.7
contains an object diagram with multiple auctions that can be reached using
a qualifier starting from the singleton of the class AllData.

Figure 4.7. Qualified links

The qualifiers in this example are always identical to the attribute of the
target object distinctly defining the target. If this attribute is defined in the
object, the qualifier value is redundant information. In these cases, the quali-
fier can also be omitted, or the link can name the qualifying attribute instead
of indicating a concrete qualifier value (see Fig. 4.8).

An association is regarded as qualified if it has the tag {ordered}. In this
case, integers can be used as qualifier values. Figure 4.9 shows a collection of
message objects that are assigned to an auction. The highest given qualifier
is 14 so that, due to the completeness of the interval available as qualifier
scope, at least 15 messages with the indexes 0 to 14 must be available. Here,
the 12 bids are not shown.

4.1.5 Composition

A composition is shown by a filled diamond at one end of the association in
the object diagram as well. This expresses a strong dependency of the subob-
jects from the whole. We have already seen in the example in Fig. 4.5 that, for

4.1 Introduction to Object Diagrams 111

Figure 4.8. Alternative representation of qualified links

Figure 4.9. Links of an ordered association

links, these diamonds can be taken over in a similar manner. The anonymous
objects shown with :BiddingPolicy and :TimingPolicy are in fact ob-
jects that implement respective interfaces. These are created together with
the Auction object and become obsolete at the end of its lifecycle. When it
comes to exchangeability and the lifecycle of dependent objects in a compos-
ite, there are, however, considerable differences in interpretation that have
already been discussed in Sect. 2.3.4.

While in class diagrams a class may occur in several compositions, it is
not allowed in the object diagram to assign a subobject to multiple compo-
sition links. This is demonstrated by the two valid diagrams (a) and (b) as
well as the illegal diagrams (c) and (d) in Fig. 4.10. The only exception is a
hierarchically nested composition in which a subobject belongs at the same
time to the subordinate composite and, thus, indirectly to the superior one.

In order to underline more strongly the dependency of the subobject on
the whole as well as the compositional character, there is, like in the case of
classes, an alternative form of representation that makes use of graphic con-
tainedness as a form of expression. Figure 4.11 shows two object diagrams
outlining an extract of the object diagram in Fig. 4.5 in two semantically
equivalent forms.

112 4 Object Diagrams

Figure 4.10. Subobjects in a composition

Figure 4.11. Alternative representation of a composition

In a composition, subobjects are often shown in anonymous form or given
a name that is identical to the attribute name of the contained object. The
object names bidPol and timePol were chosen in the object diagrams in
Fig. 4.11 accordingly.

The subobjects of a composition can, for their part, contain attributes,
have links to other objects (also to objects outside the composite), and them-
selves contain further subobjects. Thus, a complex composition structure can
arise, although it should not be nested too deeply as, otherwise, the clarity of
the representation is lost. Figure 4.12 shows an object composition with three
composition levels.

4.1.6 Tags and Stereotypes

In a class diagram, tags and stereotypes are used to specialize the semantics
of the marked element or to specify its usage. These tags and stereotypes can

4.1 Introduction to Object Diagrams 113

Figure 4.12. Composition with three levels

be transferred from the class to their objects and from associations to their
links. Therefore, it is possible to point to special properties of the depicted
objects or links, also outside the class diagram. This, for example, is helpful
for {frozen} in order to indicate that the link does not change during the
lifetime of both participating objects.

Figure 4.13 shows the repetition of the {frozen} tag for both policy ob-
jects.

Figure 4.13. Tags in object diagrams

However, tags can also be directly assigned to elements of the object dia-
gram without these being valid in the class diagram. The tag {addOnly} for
associations also has the effect that links, once established, are not changed.
Thus, the tag {frozen} can be assigned for their links without the associ-

114 4 Object Diagrams

ation itself having this tag (compare the object diagram in Fig. 4.13 and the
class diagram in Fig. 4.3).

Prototypical objects in an object diagram can also be marked with tags
which, as described in Sect. 2.5.3, belong to the project management. This,
e.g., includes tags for the creator and date of creation. Figure 4.14 shows a
test object of the auction system that refers to at least three further objects
used during the test execution.

Figure 4.14. Tags in object diagrams

4.2 Meaning of an Object Diagram

In order to correctly assess the methodical use of object diagrams, the exem-
plary character and the relation between the prototypical objects of the object
diagram and the real objects of the system need to be understood.

4.2.1 Incompleteness and Exemplaricity

Like class diagrams, object diagrams are also in general incomplete. Due to
the dynamic instantiation and destruction of objects, the number of objects in
a system is rapidly changing. In contrast to the number of classes, it is even
unrestricted.2 Moreover, links in object structures can change dynamically.
As a result, there is no limit on the number of object structures that emerge.
And these, of course, cannot be completely depicted.

Therefore, an object diagram models an excerpt of a system. This snippet
is valid for a limited period of time that is, in extreme cases, reduced to a
single point in time, a snapshot, for example, between two method calls. An

2 Here, we ignore dynamic loading of classes.

4.2 Meaning of an Object Diagram 115

object diagram illustrates this situation and contains all relevant data without
being overloaded. It is at the modeler’s discretion to find the correct level of
abstraction. In doing so, attribute values or types, links, tags or whole objects
can be omitted.

4.2.2 Prototypical Objects

The structures modeled with object diagrams have a prototypical, pattern-like
character. They exemplarily show a situation that does not necessarily need
to have a normative character. Because of this, the usage of object diagrams in
descriptions of design and architecture patterns [GHJV94, BMR+96, FPR01]
is popular.3 The situation described by the object diagram need not occur in
the actual system execution, but it can occur more than once, in a timely suc-
cession, or even at the same time. Different or (partly) the same objects can
participate in each of the occurring situations. Thus, object diagrams can rep-
resent overlapping structures in a system. Therefore, it is necessary to clearly
distinguish between the representation of an object in an object diagram and
the real object in a system. Hence, objects depicted in object diagrams are
called prototypical.

An object diagram, however, can be filled with concrete values such that,
as derivable from the context, it can occur at maximally one point in the
system. For example, the Auction objects of the previous figures always
contain an explicit value for their identifier auctionIdent. On the other
hand, the object diagram given in Fig. 4.15 can be applied to many of the
auctions. Actually, this diagram represents a pattern for many purchasing
auctions, as concrete values have been omitted at several places.

The attributes that are not specified in the object diagram can have ar-
bitrary values in the system. In order to specify the potential scope of an
attribute, we can use OCL to contain its values. In this way, it can be deter-
mined that, in this pattern, the minimal value is lower than the maximum
value and that the auction takes two to three hours.

OCLmin.amount < max.amount;

start.timeSec + 2*60*60 <= finish.timeSec;

finish.timeSec <= start.timeSec + 3*60*60;

This constraint needs to be considered in the context of the object diagram
in Fig. 4.15. Therefore, not only an object a of the type auction is nominally
available but also the objects min, bidPol, start, etc. Object min, for in-
stance, is identical to a.bidPol.min.

The integration of OCL constraints into object diagrams and the combi-
nation of object diagrams using the OCL logic is discussed in Sect. 4.3 more
precisely.

3 Occasionally, not only object diagrams (in the respective syntactic form) but also
their expansion by call structures in the form of communication diagrams are uti-
lized.

116 4 Object Diagrams

Figure 4.15. Object diagram as pattern for purchasing auctions

Based on the integration of the OCL logic into object diagrams (see
Sect. 4.3), a powerful notation emerges which is used for modeling and the
testing of systems. This notation also allows to describe under which con-
ditions the situations defined by object diagrams arise, whether they have
universal validity, whether they have a unique or pattern-like character, or
for how long they are valid.

4.2.3 Instance Versus Model Instance

A prototypical object of an object diagram is an element of a model and not
an element of the production system. There is, however, a kind of instance
relation between the prototypical object and its class that is similar to the in-
stance relation between a class and a system’s real objects. Figure 4.16 aims to
clarify this situation by distinguishing between system and model level. The
model level is further divided into layers between which a model instantia-
tion takes place. A class diagram is located one layer higher than the object
diagram. Hence, a prototypical object is a model instance of the class assigned
to it.

This triangular relationship can be extended if the manifestation of a class
at runtime is considered as an entity on its own. In Smalltalk, classes at run-
time are even separate objects that can be arbitrarily manipulated. Java also
represents classes as objects but only with restricted possibilities for their ac-
cess. Other programming languages, such as C++, also have structures that
correspond to the representation of a class, but usually, these are not acces-
sible by the programming code. We call the (accessible or inaccessible) man-

4.2 Meaning of an Object Diagram 117

Figure 4.16. Class, prototypical object and object

ifestation of a class at runtime class code. The result is the relation illustrated
in Fig. 4.17.

Figure 4.17. Model level and system level

In the system, there is exactly one class code for each class. In contrast,
there can be several different representations of the same class in the model.

118 4 Object Diagrams

In each class diagram, a separate representation can be given with a slightly
different focus that describes a part of the class code.

The number of prototypical objects of a class in a model is also unre-
stricted. Frequently, multiple objects of the same class occur within an object
diagram. Each of these prototypical objects must conform to each of the class
representations in the model.

The number of real objects is unrestricted as well. Their structure and
functionality, however, are determined by the class code and, thus, also con-
form to all class representations of the model. As prototypical objects contain
additional information in the form of concrete values and links, real objects
can intermittently conform to prototypical objects. Basically, it would also be
possible that the same real object takes over the roles of two prototypical ob-
jects in the same object diagram. This is only prevented by the corresponding
rule saying that, for reasons of clarity, two different prototypical objects in the
object diagram should be mapped to two individual objects in the system.

The distinction between objects, prototypical objects, classes, and class
code might seem rather artificial for practical application, but it leads to
a considerably clearer and, especially, simpler description than, e.g., meta-
modeling with its four-layer model could provide. There, model and system
level mingle and a clear distinction between syntax and semantics is consid-
erably aggravated. In practical use, however, these semantic details can often
be neglected provided that the users of a language can recall these differences
when necessary.

4.3 Logic of Object Diagrams

This and the following section introduce an essential expansion of object di-
agrams that facilitates their methodical application. For this purpose, we use
operators from OCL that allow one to precisely define when object diagrams
are valid and how they are interconnected. The integration of the object dia-
grams with the OCL operators results in a “logic of object diagrams.” Thus,
object diagrams can be integrated into OCL as statements but also combined
with each other in different ways.

4.3.1 Name for a Diagram

In order to be able to include object diagrams in OCL constraints, the dia-
grams are named. Figure 4.18 shows the object diagram called BidTime1.

This diagram can be referred to in OCL as a statement of the form
OD.BidTime1. This allows us to determine additional constraints that must
hold in an object structure described by BidTime1:

OCLOD.BidTime1 &&

timePol.start.lessThan(bid.biddingTime) &&

bid.biddingTime.lessThan(timePol.finish)

4.3 Logic of Object Diagrams 119

Figure 4.18. Object diagram BidTime1

However, in order to achieve the desired effect of the statement, one
needs to pay special attention to the names used in object diagrams and OCL
constraints.

The desired statement is of the form: “always when an object struc-
ture like the one in the object diagram BidTime1 occurs, the constraints
. . . additionally hold.” This statement is actually an invariant that, in part,
is graphically specified by the object diagram. The above-mentioned OCL
statement does not achieve the desired effect, as the quantification of the va-
cant variables is ambiguous.

4.3.2 Binding of Object Names

In object diagrams, usually several objects that can be referred to in the
OCL constraint are introduced by name. The binding scope of the names
a, timePol, and bid in the object diagram shown for BidTime1 are, hence,
to be determined outside the object diagram. The above OCL constraint can,
therefore, be embedded in a completing context:

OCLcontext Auction a, ConstantTimingPolicy timePol,

BidMessage bid inv BidTime1A:

OD.BidTime1 implies

timePol.start.lessThan(bid.biddingTime) &&

bid.biddingTime.lessThan(timePol.finish)

If an object diagram is used in an OCL constraint, one needs to pay atten-
tion to the fact that all names used in the object diagram are introduced in
the OCL constraint; i.e., the constraint has no free variables anymore. Using
the quantifier for binding object names allows flexible application of object
diagrams. With the following statement, it can be demanded that, in each
auction that has already started, a welcome message is sent. The two object
diagrams from Fig. 4.19 are used, where Welcome1A is the precondition for
the requirement Welcome1B.

120 4 Object Diagrams

Figure 4.19. Object diagrams for the welcome message

OCLinv Welcome1:

forall Auction a, TimingPolicy timePol:

OD.Welcome1A implies

exists Message welcome: OD.Welcome1B

Compared with the first example BidTime1A, not all objects of the
object diagrams are bound by a universal quantification here. Therefore,
both diagrams are used in different forms. The statement is: “if objects a

and timePol exist and fulfill the object diagram Welcome1A, then ob-
ject welcome exists and all properties formulated in the object diagram
Welcome1B hold.” The details of the first subdiagram need not be repeated.
Specifying the new relevant properties (i.e., the existence of the link with the
qualifier 0) is sufficient.

As a precondition for formulating the constraint Welcome1, it was de-
fined that the auction is already RUNNING. If the auction is closed, nothing is
said about the existence of a welcome message.

We note that the statement using two object structures has no tempo-
ral implications but is interpreted on only one snapshot of the system. The
used keyword implies results in a statement of the form: “if the state is
RUNNING, then a welcome message exists in the auction with the index 0.” A
similar statement would be: “if the state is set to RUNNING, then a welcome
message is to be sent.” This, however, cannot be be specified as an invariant
but, e.g., as a method specification (of a still unknown method to open auc-
tions), because this second statement contains a temporal implication. The
assertion Welcome1, in contrast, is truly weaker, as it allows implementation
alternatives by, for example, creating the welcome message already together
with the auction.

4.3.3 Integration of Object Diagram and OCL

Basically all structural properties of object diagrams and the attribute values
contained therein can also be expressed directly by OCL, because all con-
structs of an object diagram can be implemented in OCL statements. Hence,

4.3 Logic of Object Diagrams 121

the means for specifying properties can be chosen freely. As an example, the
statement Welcome1 can be specified as an OCL formula as follows:

OCLinv Welcome2:

forall Auction a, TimingPolicy timePol:

(Object)a != timePol &&

a.timePol == timePol &&

timePol.status == TimingPolicy.RUNNING

implies

exists Message welcome:

(Object)a != welcome &&

a.messages[0] == welcome

In OCL, the pairwise distinction of objects of an object diagram must be
defined explicitly using inequations. This can be achieved with inequations
of the form a != timePol.4,5

Practice shows that comprehensive specifications of object structures us-
ing OCL quickly become unclear. On the other hand, object diagrams have
restricted expressiveness. The synergy of both notations allows a powerful
and compact representation of object structures.

4.3.4 Anonymous Objects

The usage of explicit object names in an object diagram enables access to
these objects from outside the diagram. Anonymous objects show that such
objects must exist but only allow indirect access via links. The implementa-
tion of an anonymous object can be explained by a transformation introduc-
ing an existential quantification. Actually, the implementation of anonymous
objects is helpful as they reduce the dependence on the context of an object
diagram. Figure 4.20 shows anonymized versions of the object diagrams in
Fig. 4.19. As a result, two quantifications can be omitted in the following
statement which is equivalent to Welcome1:6

OCLinv Welcome3:

forall Auction a:

OD.Welcome3A implies OD.Welcome3B

4 In order to obtain syntactic correctness of the comparison, the type of the first ob-
ject needs to be converted, if applicable.

5 As a is of the type Auction and timePol of the type TimingPolicy, both ob-
jects seem to be necessarily different anyway. But it may occur that, later in the
project, a subclass of Auction is developed that directly implements the interface
TimingPolicy. Then, the inequation is no longer redundant.

6 In Welcome1, the object timePol is universally quantified, as it was moved out-
side the implication. It holds that ∀a : (X =⇒ Y) is equivalent to (∃a : X) =⇒ Y ,
as Y is independent of a.

122 4 Object Diagrams

Figure 4.20. Anonymized object diagrams from Welcome1

To understand anonymous objects better, we examine the example in
Fig. 4.21(a), which is equivalent to the conjunction of the object diagram in
Fig. 4.21(b) and the OCL formula InvA1214B (which does not yet bind the
variable ac1214).

OCLinv InvA1214B:

exists Person anon1, anon2: OD.A1214B

Figure 4.21. Anonymous objects

The only difference lies in the names not exported by A1214A, but by
A1214A. The anonymous objects of A1214A have explicit labels in diagram
InvA1214B (called anon1 and anon2) and bound by an existential quanti-
fier in the OCL part.

4.3.5 OCL Constraints in Object Diagrams

The previous examples have shown how object diagrams are embedded in
OCL constraints. That, of course, is possible vice versa. Thereby, the context

4.3 Logic of Object Diagrams 123

is defined by the object diagram and the OCL constraint can use the objects
modeled therein for defining its statement. This does not restrict the bind-
ing scope of the object names. The names are still usable outside the object
diagram and the OCL constraint. Therefore, the OCL constraint’s context is
defined by another keyword called import. As Fig. 4.22 shows, such OCL
constraints are part of the object diagram or are assigned to the object dia-
gram.

OCLimport Time start, Time finish inv TwoBids1:

start.timeSec <= finish.timeSec

OCLimport Time start, Time finish,

BidMessage bid1, BidMessage bid2

inv TwoBids2:

start.timeSec <= bid1.biddingTime.timeSec &&

bid1.biddingTime.timeSec <= bid2.biddingTime.timeSec &&

bid2.biddingTime.timeSec <= finish.timeSec

OCLimport Auction a inv TwoBids3:

auctionIdent == 800 &&

title in {"test","sample"}

Figure 4.22. Auction with two bids and OCL conditions

The given OCL constraints are of rather different nature. TwoBids1 is an
invariant universally valid for Auction objects. It could be formulated in
a class diagram as well. TwoBids2 is an invariant over both bids that rank
second and third in the message bar. This invariant could be generalized, as
it analogously holds for other bids in the list of messages. TwoBids3 is not
an invariant but a more detailed description of the appearance of a concrete
object structure. This is typical for the description of object structures for

124 4 Object Diagrams

tests. However, the value for the attribute auctionIdent could have been
entered directly into the object structure.

The example in Fig. 4.22, thus, already shows some application possibil-
ities for OCL constraints in object diagrams. However, the descriptive con-
venience of object diagrams ist further enhanced in the following section by
introducing abstract values and OCL expressions into the object diagram.

4.3.6 Abstract Object Diagrams

So far, modeling with object diagrams has been confined to either using a
constant or leaving the attribute value unspecified. Now, this is generalized
by the option of using free OCL expressions as attribute values. The object
diagram NBids in Fig. 4.23 containing abstract values as qualifiers shows
such an application.

OCLimport BidMessage bid1, BidMessage bid2,

int n, int m

inv nBids2:

0<n && n<=m && m<a.message.size implies

bid1.biddingTime.timeSec <= bid2.biddingTime.timeSec

Figure 4.23. Auction with bids and generalized OCL conditions

The concrete qualifiers for selection in the list of messages used in the
previous object diagram TwoBids have been replaced by abstract values in
NBids. These abstract values can be imported into an OCL constraint and
used for the specification of properties.

OCL expressions can describe constraints between single attributes and
qualifiers more precisely. In order to set up a test auction, for example, with

4.4 Methodical Use of Object Diagrams 125

100 persons, the simple object diagram NPersons in Fig. 4.24 can be used.
Here, the abstract value x is used in order to determine the appearance of the
individual person. The 100 persons in the test auction are determined by the
OCL constraint Test32.

OCLimport Auction test32 inv Test32:

forall int x in {1..100}: OD.NPersons

Figure 4.24. Auction with parameterized Person object

Because of the requirement that there is an incarnation of the object dia-
gram for each x from the set 1..100 and that the attributes of the Person
objects are set differently, there must be at least these 100 Person objects in
the auction test32.

The use of OCL expressions in object diagrams is also especially suited
for describing derived attributes. Therefore, OCL constraints for describing
derived elements can often be replaced by a representation in the object dia-
gram.

4.4 Methodical Use of Object Diagrams

The last section defined the basics for using object diagrams in different situ-
ations and for specifying them in combination with OCL constraints. In this
section, default situations are outlined by means of examples in order to give
better insight into the abilities and to illustrate the methodical use of object
diagrams.

The expressiveness of the notation integrated with OCL and object dia-
grams is the same as in OCL. The reason for this is that each object diagram
can be translated into an OCL formula, even though it is rather illegible.
Correspondingly, the resulting integration provides a higher level of con-
venience when compactly and understandably describing situations. Vice
versa, the expressiveness of object diagrams has increased as, for instance,
alternatives, combinations, or generalizations can be used through abstract
values.

The previous section showed how both notations, i.e., object diagrams
and OCL expressions, can be integrated into the other notation. Adding OCL
constraints to an object diagram has, e.g., been demonstrated in Fig. 4.22.

126 4 Object Diagrams

Conversely, it is possible to integrate object diagrams as short forms for ex-
pressions using OD.Name. The unassigned names of the object diagram, i.e.,
object names and variables for abstract values, can be referred to in the OCL
constraint. These references and the embedding into the OCL logic enable
flexible use of object diagrams. This is discussed for several methodical ap-
plications using examples.

Structural combinations of object diagrams, alternatives, or undesired sit-
uations can be modeled with the help of operators of the propositional logic
&&, ||, and !.

4.4.1 Composition of Object Diagrams

The && operator can combine multiple object diagrams and, thus, describe
a larger object structure. The elements where the object diagrams are com-
bined are the objects with common names. With this technique a larger ob-
ject structure can be decomposed into manageable pieces and illustrated by
suitable object diagrams. Figure 4.25 shows several individual diagrams that
are connected using a conjunction.

OCLinv PowerAuction:

OD.Auction && OD.Person && OD.Policies

Figure 4.25. Combination of object diagrams

The resulting OCL constraint PowerAuction can be understood as com-
posed object diagram. The Auction object named power serves as a con-
necting element because it occurs in all object diagrams.

A more complex decomposition of an object diagram with 100 similarly
looking persons has already been shown by the OCL statement Test32 in
Fig. 4.24. This example demonstrates how complex data structures can be
modeled out of relatively simple representations by combining OCL quanti-
fiers and parameterizing object diagrams. With this technique, complex ob-
ject structures can be decomposed into modular parts and these parts can
be reused in other combinations. For structuring tests, it is particularly With
this technique, complex object structures can be decomposed into situations.

4.4 Methodical Use of Object Diagrams 127

4.4.2 Negation

Apart from the conjunction, the other Boolean operators can also be used. For
example, undesirable situations can be depicted with negation. However, an
object diagram’s negation is relatively weak in its expressiveness as it only
states that the object diagram does not occur in exactly this form. This means
that only one detail has to be different. Figure 4.26 shows the constraint that
each message, except the first message (the “welcome”), belongs to at most
one auction, using an object diagram.

OCLinv TwoAuctions:

forall int n, int m:

n>0 || m>0 implies !OD.MsgIn2Auctions

Figure 4.26. Negated object diagram

Here, the local variables n and m of the object diagram are used while the
objects remain anonymous. As discussed for Fig. 4.21, anonymous objects
must internally be regarded as existentially quantified. In OCL, the statement
TwoAuctions is equivalent to

OCLinv:

forall int n, int m:

n>0 || m>0 implies

!exists Auction a, Auction b, Message msg:

a!=b && a!=msg && b!=msg &&

a.message[n] == msg &&

b.message[m] == msg

4.4.3 Alternative Object Structures

The disjunction is a suitable means for depicting alternatives. As our applica-
tion example uses two primary kinds of auctions that are characterized by a
rising or falling bidding curve, two classes are provided that realize the rules
for these auctions. Each auction possesses exactly one of these two policy
classes. Figure 4.27 models these alternatives.

128 4 Object Diagrams

OCLinv:

forall Auction a: OD.Upward || OD.Downward

Figure 4.27. Alternative object diagrams

4.4.4 Object Diagrams in a Method Specification

A method specification represents a contract between the calling method
and the method which is called: if the caller ensures that the called object
is in an appropriate state and provides a context that conforms to the pre-
condition, the calling method ensures that the postcondition is fulfilled after
the call. This enables, for example, an alternative description of the method
changeCompany defined in Sect. 3.4.3, shown in Fig. 4.28. In this precon-
dition, the new company is assumed to be already present in the system.
Contrary to the description in Sect. 3.4.3, the object diagram used here has
no illustrative function but is an essential element of the specification.

OCLcontext Person.changeCompany(String newName)

let c2 = any { Company c | c.name==newName }
pre: OD.BeforeChange

post: OD.AfterChange

Figure 4.28. Object diagrams in a method specification

An object diagram can, hence, describe a situation in the execution of a
software system and, thus, be used as a characterization of both the pre- as
well as the postcondition. Similar to the rules of graph grammars [Roz99,
EEKR99], two individual but in many details corresponding diagrams are

4.4 Methodical Use of Object Diagrams 129

necessary. Graph grammars often allow this characterization within a single
diagram by offering additional graphic concepts for depicting the deletion
or creation of objects and links. In the proposed form, object diagrams are
less expressive but at the same time less overloaded with syntactic concepts.
Graph grammars, however, are better suited for certain application forms
and can serve as an interesting extension of the introduced usage of object
diagrams for specifying methods.

If we use two object diagrams for the pre- and postcondition, it is not
necessary to repeat all objects of the precondition in the postcondition. As a
result, the postcondition becomes considerably smaller. In the object diagram
shown in Fig. 4.28(b), the old company object, for example, could have been
omitted. In graph grammars, this would have meant that the company object
was to be deleted.

The example in Fig. 4.28(b) also shows the technique applied for binding
shared variables in object diagrams. The object this is introduced by the
definition of the method context and, thus, is the same for the pre- and post-
condition. The objects of both object diagrams labeled c2 are identified by
making use of the let construct. This is not the case for the two anonymous
objects in the object diagrams BeforeChange and AfterChange. There-
fore, these two objects are not the same, although this is suggested by their
position in the respective object diagram. While the anonymous object in (a)
can still be clearly identified, the anonymous object in (b) can be an arbitrary
one (except c2).

A certain deficit of the specification style with pre- and postconditions
becomes apparent by this example. In the postcondition, there is no possi-
bility of accessing existentially quantified objects of the precondition. This
becomes especially clear when using object diagrams together with anony-
mous objects. Such an object, thus, has to be, like the object c2, explicitly
labeled and determined by the let construct outside both conditions. But
this is only possible if the object can clearly be characterized in the let con-
struct. Otherwise, the characterization in the pre- and postcondition must be
indicated twice, if necessary.

Figure 4.29 shows an alteration from Fig. 4.28 in which the anonymous
objects are labeled c1 and are, thus, identified. So accessing the number of
employees of the company is possible.

4.4.5 Object Creation

In Figures 4.28 and 4.29, the behavior for the method changeCompany is
specified when a company object c2 already exists. Analogous to the exam-
ple in Sect. 3.4.3, the creation of a new company object is modeled in Fig. 4.30.
Here, we model the creation of the object within the OCL constraint and not
in the object diagrams.

130 4 Object Diagrams

OCLcontext Person.changeCompany(String newName)

let c1 = this.company;

c2 = any { Company c | c.name==newName }
pre: OD.BeforeChange

post: OD.AfterChange

Figure 4.29. @pre in the object diagram of the postcondition

OCLcontext Person.changeCompany(String newName)

let c1 = this.company

pre: OD.BeforeChange

post: exists Company c2: isnew(c2) && OD.AfterChange

Figure 4.30. Object creation in the postcondition

4.4.6 Validity of Object Diagrams

An object diagram can describe an exemplary situation but can also, as
shown above, be applied as an invariant. However, if the structure of an
object diagram is not always valid, the invariant can be restricted by an OCL
constraint. Typical “scopes of validity” for object diagrams are:

1. Always (invariant)
2. At the beginning of a method call (precondition)
3. After a method call (postcondition)

4.4 Methodical Use of Object Diagrams 131

4. If a variable (usually a “state variable”) has a certain state
5. At the beginning of an object’s existence (initial structure)

The usage of object diagrams in invariants, pre- and postconditions has
already been fully discussed. We restrict the validity of an object diagram by
an OCL constraint illustrated in Fig. 4.31. Here, we look at the state of the
applets that the user sees in order to participate in auctions. The applet has
various states, whereas one of them is the initial state AppStatus.INITIAL.

OCLcontext WebBidding wb inv:

wb.status == AppStatus.INITIAL implies OD.WBInitial

Figure 4.31. Restriction of an object diagram

The applet is always in the initial state if the user is not logged in. In
this state, the user can already adjust general settings such as language and
signals via the option panel. However, some other panels are set to null.
Accordingly, the user can only access the two panels depicted top left and
bottom right in Fig. D.3

For any other state of the applet, another object diagram can be designed
to show the structure of this state. Some states also have the same structure
or, at least, a clear overlap and, thus, can share and reuse subdiagrams.

4.4.7 Initialization of Object Structures

During their own creation, many objects trigger the creation of further ob-
jects and combine these into a complex object structure. Figure 4.31 shows
an extract of the structure that exists in the initial state of objects of the
class WebBidding. This structure is already created during the creation of
WebBidding objects.

These subobjects are created in the constructor. Therefore, the initial object
structure can be described in the postcondition of the constructor. In applets,
however, the creation of the applet object and the initialization are imple-
mented separately. This is why the constructor basically has an empty body

132 4 Object Diagrams

and an independent method init conducts the initialization. Figure 4.32 de-
scribes an extract of the initialization result with some details where also the
values of attributes are characterized. For this purpose, parameters are deter-
mined with the function getParameter, which works as a query and, thus,
can be used here.

OCLcontext WebBidding.init()

let String language = getParameter("language");

String login = getParameter("login")

post: OD.WBinit

Figure 4.32. Initial object diagram

The object diagram WBinit is designed in such a way that each individ-
ual attribute can effectively be calculated therein and the link structure can
be generated automatically. Attribute values can, e.g., be omitted if, in the
class diagram, an initialization value is given for the attribute. Code genera-
tion for the creation of initial object structures is, in fact, a helpful technique
for efficiently developing object systems. However, this procedure is quickly
stretched to its limit if, in the initialization process, already existing object
structures are to be incorporated or, as in the auction example, effects on the
graphical user interface and the server system cannot be described by an ob-
ject structure. So, if the description of an initialization or structure change
by means of object diagrams is chosen, the decision is to be made whether
a complete (and, thus, for code generation suitable) modeling with an ob-
ject diagram is possible or whether an object diagram rather has illustrative
effects. In the latter case, objects can also be depicted incompletely and it
is possible to use derived attributes. In Fig. 4.12, for instance, a derived at-
tribute was used in the object max that allows inferences to the content of
multiple single attributes without directly depicting them.

Depicting new object structures is of particular interest if these objects
realize data structures. Thereby, the generation of a new person object with

4.5 Summary 133

its dependencies can be depicted as in Fig. 4.33. This constructor is used in
order to create personal data that are entered via a web form.

OCLcontext new Person(FormularResult fr)

pre: !(fr.get("company") in Company.name)

post: OD.PersonNew

Figure 4.33. Initial object diagram

The object diagram in Fig. 4.33 serves as a template for generating the
necessary object structures if a new person signs in. However, this object
diagram is only valid if the company is also new. This is ensured by the
precondition. Another diagram can be created accordingly to illustrate the
situation with an already existing company object.

4.5 Summary

Currently, object diagrams do not receive the attention in the UML standard
that they should, although they have been defined as an independent no-
tation since UML 2.0. UML/P upgrades object diagrams and improves the
methodical application of object diagrams in the software development pro-
cess. This includes techniques for:

• Illustrative representation of a situation (snapshot)
• Representation of negative situations
• Usage of an object diagram as an invariant
• Composition of object diagrams
• Representation of alternative possibilities for object structures
• Modeling of initial structures in object creation
• Modeling of defaults for test cases
• Modeling of design patterns

134 4 Object Diagrams

To facilitate precise methodical use of object diagrams, the notation has
been introduced and especially the semantics of language concepts in object
diagrams discussed in detail. The difference between the object in the system
and the prototypical object in the object diagram has been developed, and the
exemplary character of object diagrams explained.

As a consequence of the restricted expressiveness of object diagrams, we
combined object diagrams with the OCL logic. A “logic for object diagrams”
arose that not only expands object diagrams by logical statements; Instead,
it is possible to depict unsolicited situations, alternatives or compositions of
object diagrams with Boolean operations and, hence, increase their expres-
siveness from exemplary to universally valid statements. With the help of
quantifiers, object diagrams parameterized with variables can finally be used
also as patterns (similar to the design pattern [GHJV94]).

This methodical usage of object diagrams has been discussed in detail by
means of examples to demonstrate the benefit of this chapter.

5

Statecharts

All knowledge is memory.

Thomas Hobbes

Statecharts are an advancement of finite automata for the description of ob-
ject behavior. Each complex system has steering and controlling parts that
can be modeled with Statecharts. The Statechart variant introduced here uses
OCL as the constraint language and Java instructions as actions. In the first
two sections, fundamental properties of Statecharts are discussed. The next
three sections introduce Statecharts as a description technique. We discuss
the usage of Statecharts in the context of other UML diagrams to complete
the introduction of Statecharts.

5.1 Properties of Statecharts . 136
5.2 Automaton Theory and Its Interpretation 138
5.3 States . 146
5.4 Transitions . 156
5.5 Actions . 167
5.6 Statecharts in the Context of UML . 174
5.7 Summary . 188

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7_5

135

136 5 Statecharts

Automata, state transition diagrams, transition systems, as well as State-
charts constitute various manifestations of an elementary concept for state-
based representation of behavior. While the class and object diagrams de-
scribed in Chapters 2 and 4 basically focus on the structure of a software
system, state transition diagrams in their different manifestations constitute
the link between state and behavior of system components. There are various
manifestations of automata. Automata can be executable or used for recog-
nizing sequences of characters or messages, describing the state space of an
object, or specifying the response behavior to a stimulus. In UML, Statecharts
are used as a variant of hierarchical automata principally based on the State-
charts for embedded systems introduced in [Har87, HG97].

While in the original version [Har87] Statecharts were used for both the
structure and the behavior of communicating systems, the function of a Stat-
echart in the context of UML is reduced to modeling the objects’ behavior.
Despite the resulting simplification of a Statechart semantics, these are com-
plex enough to discuss the basics in the form of finite automata first and,
then, to introduce Statecharts with all their concepts. The overview given in
[vdB94] shows that there are a number of syntactic variants and semantic
interpretation possibilities for Statecharts which are adjusted to the respec-
tive fields of application. By profiling with suitable stereotypes, Statecharts
of UML/P can be used for modeling, code generation, and description of test
cases.

In Sect. 5.1, first some fundamental assumptions regarding Statecharts
are made, partly simplifying the definition of the syntax and the semantics
of Statecharts. It is recommended that the readers who are not familiar with
the notation of Statecharts first skip this section and start with the automaton
theory in Sect. 5.2, which contains a definition of Statecharts in Figures 5.8,
5.9, and 5.10. The state concept, the kinds of transitions existing, and the
describing and procedural actions are introduced in the subsequent Sections
5.3, 5.4, and 5.5. The use of Statecharts in the context of other UML diagrams
is discussed in Sect. 5.6. Thereby, we discuss inheritance, the transformation
of Statecharts into so-called simplified Statecharts, and the mapping to OCL.
Appendix C.5 additionally describes the abstract syntax of Statecharts and
compares UML/P Statecharts with the UML standard.

5.1 Properties of Statecharts

As already mentioned, there are numerous variants and fields of application
for Statecharts. In order to determine not only the notation but also the se-
mantics and the methodical usage of Statecharts precisely enough to benefit
software quality, development time, and work effort, it is important to make
some fundamental assumptions about the usage of Statecharts. Figure 5.1
contains a list of possible tasks of Statecharts.

5.1 Properties of Statecharts 137

Tasks of a Statechart can be (overlaps possible):

• Representation of an object’s lifecycle
• Implementation description of a method
• Implementation description of an object’s behavior
• Requirements for the (abstract) state space of an object
• Representation of the order of stimuli allowed to occur (sequence of invocation)
• Characterization of the possible or allowed behavior of an object
• Link between state and behavior description

Figure 5.1. Variety of tasks of a Statechart

One of the basic assumptions for using a Statechart is that a Statechart
describes only the behavior of a single object. For describing interaction pat-
terns between different objects, sequence diagrams are better suited.

A Statechart describes the response behavior of an object that emerges
when a stimulus triggers this object. For now, it is not important whether the
stimulus represents a method call, an asynchronous message, a timeout, or
something else. However, it is essential that the processing of the stimulus
takes place in atomic form, i.e., it is neither interruptible nor hierarchically
nested.

Thus, a transition is initiated by a stimulus and then executed without
interruption. In doing so, it is assumed that the behavior specified in the
transition does not lead to the immediate stimulation of further transitions
of the same object. If the stimuli of a Statechart are, for example, method
calls, the transition must not lead to further recursive method calls on the
same object described by the Statechart.

In the case of Statecharts, this required uninterruptibility is also called
“run to completion”. Some Statechart variants, however, have softened this
by allowing compound or prioritized transitions.

Statecharts process their stimuli in sequential order. This means that par-
allel processing of stimuli does not take place and that, therefore, synchro-
nization between transitions is not necessary. This concept corresponds to
the synchronization of object methods using the keyword synchronized

in Java.
Like any other UML diagram type, a Statechart presents a certain view on

an excerpt of the system to be implemented. While an object usually has an
infinite state space, a Statechart consists of a not only finite but typically even
very small set of diagram states. Hence, the diagram states (often five to ten)
necessarily represent an abstraction of the object state space. Depending on
the application area of the Statechart, the relation between diagram and ob-
ject states can be precisely defined by using OCL constraints. The like is true
for preconditions and effects of transitions. Therefore, a Statechart can be re-
garded as an executable implementation or abstract requirement description,
depending on the level of detail and the form of representation of these con-

138 5 Statecharts

straints. So the field of application of Statecharts stretches from requirement
analysis to the implementation. Statecharts can describe lifecycles of objects
as well as detailed object behavior.

One advantage of Statecharts is their intuitive form of representation of
the operational behavior description. Due to the additional use of hierar-
chy, it is possible to structure the state space of the objects described even
more intuitively. Unfortunately, such state hierarchy introduces some sub-
tile semantic problems and thus should be applied very carefully and not
too extensively. By giving up communication between substatecharts, hier-
archically structured states can be semantically dealt with more easily and
explained more understandably. Therefore, we do not apply the hierarchy
for the composition of subautomata of different objects, as was the case for
many original Statechart variants [vdB94, Har87].

5.2 Automaton Theory and Its Interpretation

Basically, the Statecharts used in UML are a form of finite automata extended
by hierarchy concepts where outputs may be produced by states and transi-
tions. Let us briefly introduce output-producing Moore and Mealy automata
[HU90] and discuss their properties. The finite automaton theory allows this
discussion in condensed form as, for example, the input and the output al-
phabet are not interpreted further. In practical use, these characters of the
alphabet are, e.g., replaced by complex method calls with arguments and ac-
tions formulated in Java.

The following compact introduction is essentially based on [Bra84, HU90,
Rum96].

5.2.1 Recognizing and Mealy Automata

Figure 5.2 contains the definition of recognizing automata. A transition always
connects a source state with a target state and carries either an input symbol
or the symbol ε. The latter transitions are called spontaneous, as they do not
depend on an input symbol while firing.

The semantics of a recognizing automaton consists of the set of all words
of the alphabet E for which there is a path through the automaton start-
ing from an initial state to a final state. Moreover, final states can also be
passed through repeatedly. Figure 5.3 contains three recognizing automata.
Automaton (a) recognizes whether a binary digit chain ends with 0, while
the other two automata (b) and (c) recognize decimal digits with or without
a decimal point. The semantics of a recognizing automaton is given by the set
of words that are accepted on a path from an initial state to a final state. The
two automata (b) and (c) thus have the same semantics even though they dif-
fer in their transitions. Besides, automaton (c) contains two nondeterministic

5.2 Automaton Theory and Its Interpretation 139

A recognizing automaton, also called a nondeterministic, alphabetic Rabin–Scott au-
tomaton (RSA) or nondeterministic finite automaton (NFA), consists of a quintuple
(S, I, t, S0, F) with the following components:

• A set of states S

• An alphabet I , also called the input alphabet

• A set of initial states S0 ⊆ S

• A set of final states F ⊆ S

• A transition relation t ⊆ S × Iε × S

Iε is the input alphabet I extended by the empty “sign” ε that is used for sponta-
neous transitions. Usually, all sets are regarded as finite and are not empty.
A transition is enabled if the automaton is in the source state and the corresponding
symbol is present or if the transition does not require an input symbol (i.e., if it is
spontaneous).

Figure 5.2. Definition of recognizing automata (RSA)

Figure 5.3. Examples for recognizing automata

places that—for example, in the case of the character string 21,0567—allow
several paths.

If an automaton is used for modeling object-oriented behavior, the recog-
nition of input sequences plays a minor role. Instead, the output as a reaction
to an input element and the destination state reached are considered rele-
vant. The automaton states can, e.g., correspond to the states of the graphical
user interface and thus be directly visible to the user of the modeled system.
Therefore, the nondeterminism in the automaton discussed in more detail

140 5 Statecharts

below has a totally different purpose than it does in the recognition of word
sets.

According to [Bra84], a Mealy automaton such as the one in Fig. 5.4 is
an extension of a recognizing automaton, because it can have an output at
each transition. Alternatively, it would also have been possible to extend the
recognizing automaton by an output at each state to a Moore automaton.
It is known from finite automaton theory that these two extensions do not
principally differ in their expressiveness but are convertible into each other.

An alphabetic (nondeterministic and incomplete) Mealy automaton is a sextuplet
(S, I,O, t, S0, F) that contains a recognizing automaton (S, I, t, S0, F) and in addi-
tion has:

• An output alphabet O
• A transition relation t ⊆ S × Iε ×Oε × S extended by an output

Figure 5.4. Definition of Mealy automaton

The semantics of the Mealy automaton consists of the relation describing
which input words lead to which output words. If in addition the state space
is of interest, as it is in object-oriented modeling, the semantics of an au-
tomaton can be extended to the set of possible paths through the automaton.
Figure 5.5 contains a Mealy automaton that replaces consecutive sequences
of the digit 0 in the input by a single X or several Y. The nondeterminism in
the automaton has an effect on the state transitions as well as the produced
output. For Mealy automata, final states often do not play a vital role and
are, thus, frequently not specified.

Figure 5.5. Example of Mealy automaton

5.2 Automaton Theory and Its Interpretation 141

5.2.2 Interpretation

A formalism, such as the theory of finite automata, concentrates on the repre-
sentation of structures that are important for the respective analysis. There-
fore, it is suited for studying capabilities and restrictions of automaton repre-
sentations, simplification rules, as well as sequential or alternative composi-
tions. Such a formalism is a closed mathematical structure that abstracts from
the real world and can, thus, be applied to many real-world phenomena. In
modeling, however, this relation to the real world is of great importance. In
order to establish this relation, each concept of a finite automaton has to be
interpreted by real-world elements, i.e., within object-oriented systems. A
possible interpretation is the following:

• Each state of the automaton corresponds to one state of an object.
• An initial state is the state of an object that directly eventuates after its

creation.
• A final state is irrelevant, because of the garbage collection in Java, which

removes unreachable objects in each state.
• An input symbol is a method call including its arguments.
• An output symbol is an action that is executed in the body of a method. It

can contain several method calls.
• A transition is the execution of a method body.

This interpretation permits transfer of the insights of automaton theory to
the state-based modeling of objectoriented systems. However, this is by far
not the only possible interpretation. For practical purposes, the set of states
as well as the input and output symbols in automata are infinite in this in-
terpretation. These infinite sets are, of course, not suited for representation
in a finite, concise diagram. The finite set of diagram states of a Statechart,
therefore, needs a better interpretation.

Therefore, we use a two-stage interpretation of a Statechart diagram in
analogy to [Rum96, Bro97]. Figure 5.6 illustrates that the finitely many dia-
gram states and transitions of a Statechart are primarily related to an infinite
Mealy automaton. This Mealy automaton describes the behavior of an object.

The interpretation of a diagram element by a set of states or a set of tran-
sitions introduces some effects that need to be considered when using State-
charts for modeling purposes. We discuss these effects below.

5.2.3 Nondeterminism as Underspecification

Considering, for instance, the interpretation of a single transition, we can see
that a large set of target states are possible, even though a concrete object state
with a given method call is assumed. Thus, a transition can be highly under-
specified. This is expressed in the fact that many object state changes that only
differ in the object’s target states are possible when interpreting a diagram
transition (see Fig. 5.6). In automaton theory, this form of underspecification

142 5 Statecharts

Figure 5.6. Interpretation of a diagram

is called nondeterminism. Indeed, this nondeterminism can be of methodical
interest, for example, if an object’s behavior cannot or should not be specified
in full detail. But if this nondeterminism is not wanted, it can be avoided by
additional OCL constraints, for example.

Nondeterminism, however, can also occur already in the diagram itself.
Several diagram transitions starting from the same source state can process
the same input symbol but produce different output symbols. This form of
nondeterminism can also be understood in various ways:

1. The developers have not yet decided exactly which transition should be
taken. They will either question the users or leave it to the implementa-
tion.

2. The automaton is an incomplete representation of the object state, and the
information that would be necessary to precisely decide which transition
to take has been abstracted in the diagram.

3. The compiler chooses (according to criteria that are not further defined)
one of the transitions and ignores all others.

4. In fact, the system is nondeterministic and can choose one transition each
time when at this state, depending on external factors or random gener-
ators.

The existence of nondeterminism always means a choice. Whether this
choice is made by the developer, the user, the compiler or, at least, by the
system is not determined. In particular, nondeterminism in the automaton
does not necessarily mean a occurring and constantly recurring nondeter-
ministic decision within the system. In contrast, in many systems, especially
in Java implementations, nondeterminism can only be realized with addi-
tional effort. Instead, this nondeterminism of the automaton can generally
be regarded as underspecification of the model.

5.2 Automaton Theory and Its Interpretation 143

5.2.4 ε-Transitions

ε-Transitions offer a special form of nondeterminism. They represent spon-
taneous transitions whose trigger is not modeled in the diagram. This also
offers a number of possible interpretations:

1. A timer has expired and causes the transition.
2. The automaton provides an incomplete representation of the object’s in-

teraction possibilities, and the message leading to this transition has not
been modeled. However, its occurrence has effects on the visible state of
the object.

3. The transition is a logical consequence of a previous transition and is au-
tomatically executed by the system. Thereby, long actions can be broken
down into sequences, intersections, and even iterations, and ε-transitions
can be interpreted as notational convenience.

In concurrent, time-controlled systems, alternative 1 is of interest, while
alternative 2 is used for representation of interface behavior. Alternative 3
can be used for modeling single complex methods. The function of these
Statecharts is not to represent the character of a lifecycle but to serve as a
control flow diagram.

The interconnection of several ε-transitions into an ε-loop is in principle
not forbidden, but it is not helpful either.

5.2.5 Incompleteness

Besides the option of defining several transitions for one situation, there
could also be no transition. Then, the automaton is incomplete (for exam-
ple, see Fig. 5.3 (b)). In state p, it is not described how to react to the input
symbol “ . ” (period). Such incompleteness can, for instance, be interpreted in
the following ways:

1. The incoming symbol is ignored by not carrying out an action or change
of state.

2. A chaotic reaction allows an arbitrary state transition and an arbitrary
action. Even a “crash” of the object or the whole system is possible.

3. The object transitions into an explicit error state that can only be left
through an explicit reset message.

4. An explicit error message in the mold of “Message not understood”
known from Smalltalk is displayed without carrying out a state change.

While alternatives 1, 3, and 4 are typical for dealing with incomplete au-
tomata in automatic code generation, the second alternative is methodically
interesting. As discussed in [Rum96], the loose approach that does not make

144 5 Statecharts

promises about what is not explicitly represented in the diagram is particu-
larly suited to urge the developer to model soundly. Thus, the modeler can-
not only rely on the code generator. Methodically, this approach is also in-
teresting, because adding transitions in order to reduce this incompleteness
represents a refinement in the sense of the precision of the described behav-
ior. The same loose approach is also used for class diagrams where the in-
completeness indicator “. . .” shows that other classes, methods, or attributes
which are not mentioned in the diagram can exist.

However, in order to be able to work with incomplete automata in pro-
totyping, respective defaults should exist for code generators to reasonably
realize code for incomplete situations or those underspecified by nondeter-
minism.

5.2.6 Lifecycle

The possibilities for interpreting the incompleteness of an automaton men-
tioned in Sect. 5.2.5 are closely related to the way in which an automaton can
be interpreted as a description of a lifecycle. As discussed in [EE97], it is pos-
sible to understand an automaton as the description of the set of all possible
sequences of method calls. This describes the external view of a fictional ob-
server of an object who determines whether the set of potential call sequences
described for that object has been adhered to.

Alternatively, there is also the possibility of regarding an automaton as
the set of possible sequences of calls. This describes the internal view on an
implementation that needs to be able to process the method call sequences
specified by the automaton. In a sound implementation, the implementer can
admit even more call sequences as required by the automaton. The imple-
menters’ and observers’ views are compatible, as observers behave correctly
as callers regarding the modeled permissible call sequences and ideally do
not require a robust implementation.

Crucial differences between these two interpretations arise if modifica-
tions are applied to automata to, e.g., specialize the behavior or to supple-
ment and inherit it. If an automaton describes guaranteed behavior, transfor-
mations, such as the conversions of Statecharts described in Sect. 5.6.2, are
only allowed to add and detail behavior. This is only possible in a flexible
way if the automaton is understood as underspecified, i.e., with chaos com-
pletion as the interpretation. In this sense, an automaton is a description of a
minimal set of lifecycles of the object, which can be extended.

If the automaton is completed with an error state or if unaccepted method
calls are ignored, the automaton describes a maximal set of lifecycles. This
means that it determines the set of all possible call sequences that do not lead
to an error state or to ignoring a method call. The choice of the interpretation
of incompleteness is thus a choice of whether the automaton is interpreted
as a minimally assured or maximally possible lifecycle.

5.2 Automaton Theory and Its Interpretation 145

In both interpretations, however, the behavior is identical for the call se-
quences described by the automaton, as it is processed by a predefined se-
quence of transitions.

In a nondeterministic automaton, it is possible to transit into different
target states as a reaction to the same input. Because of this, the subsequent
behavior can be different. Thus, there are sequences of method calls that can
be correctly processed by a sequence of transitions, but that can also lead
to incomplete situations. To prevent an object described by an automaton
from receiving an illegal input in a certain state, the calling environment has
to examine, e.g., through inquiry or internal calculation, whether a call is
possible.1

5.2.7 Expressiveness

We know that finite automata are restricted in their expressiveness. They are
suited to describe regular sets but are not able to specify bracket structures
such as those appearing in Java expressions, for example. The principal prob-
lem is that a finite automaton only has a finite state space, so that opening
brackets cannot be counted arbitrarily deeply and, thus, clearly assigned to
closing brackets. This restriction known from automaton theory also mani-
fests when using automata for modeling object-oriented systems, especially
when methods of an object call other methods of the same object. Recursion
does not necessarily have to take place in the same method (method recursion);
it already suffices if another method of the same object is called directly or
indirectly within the method. Such object recursion is shown in Fig. 5.7 but can
be illustrated even better with the sequence diagrams introduced in Chapt. 6
(see Fig. 6.17).

Figure 5.7. Object recursion

1 Objects realizing complex protocols typically contain state components that each
contain an abstraction of the state of the communication partners. Thus, both sim-
ulate an abstraction of the state space of the communication partner, as far as it is
possible for them to do so on the basis of the observed behavior. So, they know in
which state each communication partner can be.

146 5 Statecharts

Nesting of transitions cannot be adequately represented by the automa-
ton itself. It is, for example, not clear whether the state transition caused by
bar does lead to the fact that the target state T is taken. Generally, the re-
lation of the states S and T to the state Q remains unclear. In order to avoid
such problems, suitable restrictions must be made on the usage of Statecharts
when modeling object behavior in the case of nested method calls. In [HG97],
for instance, object recursion is prohibited.

In case that communication is based on asynchronous messages, finite
automata, however, are sufficient. In the example in Fig. 5.7, bar(a) only
represents the sending of a message but not its processing. This processing
only takes place after the current transition is finished, i.e., after reaching the
state Q. This discussion shows that the underlying communication mecha-
nism plays a role in the assignment of a semantics for Statecharts if objects
are allowed to send messages or method calls in recursive form to them-
selves.

5.2.8 Transformations on Automata

In automaton theory, possibilities for transformation, refinement, and com-
position of automata have been studied in detail. These transformations, pri-
marily introduced for minimization or removal of nondeterminism and in-
completeness in the automaton, have already been used in different variants
for modeling object-oriented or embedded systems [Rum96, RK99, KPR97,
SPTJ01]. The refactoring techniques [Fow99] that have become prominent in
the context of the Extreme Programming approach show the helpfulness of
manageable, systematically executed transformation steps on the notations
used in the software development process. While refactoring techniques in
Java are especially suited for maintaining the behavior, transformation steps
on automata can also be used for detailing the behavior. Some of these trans-
formation steps are further discussed in Sect. 5.6.2.

After having examined the basics of Statecharts in this section, the follow-
ing sections introduce Statecharts in detail and discuss their interpretation in
the context of object-oriented modeling. A compact overview of Statechart
constructs is summarized in Figures 5.8, 5.9, and 5.10.

5.3 States

Statechart notation is used to describe the behavior of an object on the basis of
its state spaces. Hence, states, transitions, and assigned actions are essential
elements of a Statechart. The compact definition given in Figures 5.8, 5.9, and
5.10 is now further discussed in the next sections.

According to the UML standard [OMG10a], a state is a situation for an
object in which the object meets a certain condition and, thereby, awaits an
event or executes an internal activity. Typically, an object remains in such

5.3 States 147

State. A state (synonym: diagram state) represents a subset of possible object states. A
diagram state is modeled by a state name and an optional state invariant, entry-
action, exit-action, and do-activity.

Initial state. Objects begin their lifecycle in an initial state. Multiple initial states
allow the representation of multiple forms of object creation. In a method State-
chart, the initial state marks the beginning of the method. The semantics of the
Statechart as part of another state is described in Sect. 5.4.2.

Final state. A final state describes that the object has fulfilled its duty in this state
and is not necessary anymore. However, final states can be left again, if transi-
tions emerge. In a method Statechart, the final state marks the end of the method
processing. The semantics of a final state as part of another state is described in
Sect. 5.4.2.

Substate. States can be nested hierarchically. A containing state contains several sub-
states.

State invariant is an OCL constraint that characterizes for a diagram state which
object states are assigned to it. State invariants of different states may generally
overlap.

Figure 5.8. Definition of Statechart terms, part 1: states

Stimulus is caused by other objects or the runtime environment and leads to the
execution of a transition. A stimulus can, e.g., be a method call, a remote procedure
call, the receipt of an asynchronously sent message, or a timeout.

Transition. A transition leads from a source state to a target state and contains a de-
scription of the stimulus as well as the reaction in the form of an action. Addi-
tional OCL constraints allow one to constrain the enabledness and the reaction
of a transition in great detail.

Enabledness of a Transition. A transition is enabled exactly if the object is in the
source state of a transition, the stimulus is correct, and the precondition of the
transition is true. If multiple transitions are enabled in the same situation, the
Statechart is nondeterministic, and it is not defined which transition is chosen.

Precondition of the Transition. In addition to the source state and the stimulus, it
is possible to restrict a transition’s enabledness via an OCL constraint using the
attribute and the stimulus values.

Postcondition of the Transition (also: action constraint). In addition to the opera-
tional description of the reaction to a stimulus, a property-oriented restriction
of the potential reaction can be given by an OCL constraint.

Figure 5.9. Definition of Statechart terms, part 2: transitions

an object state for a certain time. Figure 5.11 shows a single state which the
objects of class Auction can have.2 Apart from the name AuctionOpen, a

2 In this and the following examples, we use mostly the class Auction already
known from previous chapters, as it has a complex state concept that is able to
demonstrate many Statechart properties.

148 5 Statecharts

Action. An action is a change of an object’s state and its environment described
through operational code (for example, Java) or an OCL constraint. A transition
typically contains an action.

Entry Action. A state can contain an entry-action that is executed if the object enters
the state. If actions are described operationally, the entry-action is executed after
the transition action. If a property-oriented description is used, the conjunction
of both descriptions holds.

Exit-action. Analogous to the entry-action, a state can contain an exit-action. If op-
erational, the exit-action is executed before the transition action; if described as
properties, the conjunction holds.

Do-activity A permanently running activity contained in a state is called a do-
activity. By different mechanisms such as local threads for timers, its implemen-
tation can be executed and simulate parallelism.

Nondeterminism. If there are several alternative transition in one situations that are
enabled, this is called nondeterminism of the Statechart. Then, the object’s behavior
is underspecified. There are several methodically reasonable possibilities to use
and refine underspecification in the software design process.

Figure 5.10. Definition of Statechart terms, part 3: actions

state can have a state invariant, an entry-action, and an exit-action, as well as a
do-activity.

State names are unambiguous within the diagram.

Figure 5.11. A state of the class Auction with invariant and actions

5.3.1 State Invariants

As a diagram state corresponds to a set of object states, it is often necessary
to describe this set more precisely. For this, the state invariant can be used,
denoted in the form of an OCL condition. The OCL constraint is formulated

5.3 States 149

in the context of the described object. In Fig. 5.11 that is an object of the class
Auction. It is possible to access attributes of the own object but also of de-
pendent objects (i.e., of the object environment). The state invariant, thus,
could also have been used in a regular OCL constraint.

It is recommendable to restrict the state invariant by using local attributes
and, if needed, attributes of dependent objects, as otherwise a diagram state
could change without an explicit stimulus of the modeled object being pro-
cessed. Usually, such Statecharts only have descriptive character and are
suited for modeling tests but not for code generation.

A state invariant can fulfill various tasks:

1. Similar to a contract [Mey97], a transition starting from the state can rely
on the fact that the object state fulfills the given condition.

2. Vice versa, this means for a transition ending in this state that it is obliged
to establish the state invariant.

3. If, furthermore, a nonvisible, external activity that affects the object can
happen on the object environment, while the object is in the state, this
activity also has to ensure that the state invariant is not infringed. Such
a guarantee is, e.g., necessary if the object has public attributes or if the
state invariant accesses the object state of foreign objects.

If, in case of a Statechart, there is the risk of overloading the diagram
with information, outsourcing of state elements into a table is recommended
as an alternative. Table 5.13 illustrates this for state invariants. According to
[Bro98] or [Par93], various forms of tabular representation can also be imple-
mented also for transitions and actions where reasonable.

To understand the state concept in object-oriented modeling, it is help-
ful to consider its components. The data state of an object is determined by
its own attributes and possibly attributes of dependent objects. This also in-
cludes links to other objects. A second component of the object state is, how-
ever, the control state, which manifests in the running system through the pro-
gram counter and the call stack. A state invariant can only specify the data
state while the control state remains hidden. Figure 5.12, for example, shows
four data states of the class Auction that each have disjoint state invariants.

Figure 5.12. Four data states of the class Auction

150 5 Statecharts

OCL

State invariants :
AuctionReady: timePol.status == TimingPolicy.READY TO GO

AuctionRegularOpen: timePol.status == TimingPolicy.RUNNING &&

!timePol.isInExtension

AuctionExtended: timePol.status == TimingPolicy.RUNNING &&

timePol.isInExtension

AuctionFinished: timePol.status == TimingPolicy.FINISHED

Table 5.13. Tabular representation of states

The control state cannot be modeled in full detail with a Statechart. How-
ever, states in a Statechart that describe the process of a single method repre-
sent an abstraction of the control state space.

State invariants of data states need not necessarily be disjoint either; For
example, the usage of state invariants can be completely neglected if they
do not contribute to the representation of the desired information. The State-
chart in Table 5.13, for example, has a certain expressiveness in communica-
tion and documentation even without describing state invariants.

To distinguish control states from data states, the usage of stereotypes
is suitable. For this purpose, Table 5.14 introduces the stereotypes �datas-
tate� and �controlstate�.

Stereotypes �datastate� and �controlstate�

Model
element

States of a Statechart.

Motivation An object state consists of data and control states. This is to be
modeled in the Statechart.

Glossary A state tagged with �datastate� is called a data state. �control-
state� tags a control state.

Usage
condition

Usually, a Statechart consists of only one sort, either data or
control states.

(continued on the next page)

5.3 States 151

(continues Table 5.14.: Stereotypes �datastate� and �controlstate�)

Effect Attributes and links alone can determine whether an object
are located in a state tagged with �datastate�.
For control states, also the program counter and the stack are
relevant.

Example(s) For an example of data states, see Fig. 5.13. Control states are
used in the modeling of internal states of complex methods.

Pitfalls The state invariant in �datastate� states does not necessarily
suffice for identification of the current state. In particular, state
invariants can be incomplete or missing and, thus, overlap the
invariants of data states in the diagram.

See also �statedefining� to keep the defining character of the state in-
variant.

Extendable
to

A whole Statechart if it applies to each single state. This is usu-
ally the case. Furthermore, for Statecharts that are assigned to
classes, �datastate� is assumed as default.

Table 5.14. Stereotypes �datastate� and �controlstate�

A state invariant typically characterizes a property of the state respec-
tively the object in this state. An object, however, can also fulfill the state
invariant if it is currently located in another state. This is demonstrated by
means of the reliability of persons in Fig. 5.15. A rating that, among other
aspects, includes correct behavior in previous auctions is used to distin-
guish three groups of persons. The stereotype �statedefining� in the state
BadPerson leads to the fact that each person with a rating smaller than zero
is definitely located in this state. Therefore, this condition is defining for the
state BadPerson. The condition, in contrast, only has characterizing charac-
ter in the state VIP-Person. Hence, according to the Statechart in Fig. 5.15,
there can be persons in the state NormalPerson that also reach a rating
higher than 4500. The background of this modeling is the fact that a person
only becomes a VIP if this is explicitly decided by, e.g., the auctioneer, while,
in the case of a negative rating, the state BadPerson is taken automatically.

Figure 5.15. Reliability modeled for the class Person

The stereotype �statedefining� is defined in the following Table 5.16.

152 5 Statecharts

Stereotype �statedefining�

Model
element

State invariants in the Statechart.

Motivation Usually, the invariant alone does not define which diagram
state an object state belongs to. Thus, the invariant has describ-
ing but not defining character. This is changed by a stereotype.

Glossary A state invariant tagged with �statedefining� is called defin-
ing.

Usage
condition

Defining state invariants need to be disjoint. All object states
that do not belong to that diagram state necessarily do not
fulfill the invariant.
The stereotype �statedefining� for a state invariant implies
the stereotype �datastate� for the corresponding state and
can, thus, only be used for data states.
For the purpose of simplification, it is determined that all state
invariants have to be of the same kind in a hierarchically com-
posed state. Therefore, it is enough to apply the stereotype
�statedefining� to the state invariant at the highest level.

Effect The question of whether an object is located in the diagram
state can be answered precisely by evaluation of the state in-
variant.

Example(s) Figure 5.12 has disjoint state invariants and could use the
stereotype �statedefining�. Figure 5.15 shows a Statechart
where not all state invariants have defining character.

Pitfalls Defining state invariants have to be disjoint. For more com-
plex conditions, this might be hard to ensure.

Also see �datastate�

Extendable
to

A complete Statechart if it applies to each single state invari-
ant.

Table 5.16. Stereotype �statedefining�

Depending on whether the states modeled in the Statechart are control-
or data states and whether these are described by defining state invariants,
different strategies for implementation of a Statechart are possible. Defining
invariants, for example, can be realized by Boolean predicates and used for
deriving the state directly from the attributes. If defining state invariants are
missing, almost always an additional attribute needs to be used, storing the
diagram state explicitly in the object state space.

5.3 States 153

5.3.2 Hierarchical States

Hierarchy can be used to prevent a state explosion by structuring complex
state spaces with it. Additionally, hierarchy is of methodical interest, as it
allows one to first define states of the higher level and than refine them later
into substates. The use of hierarchies thus allows defining an abstract view of
the state space. A hierarchically divided state has, like any other state, a name
and can contain a state invariant as well as an entry-action, exit-action, and
do-activity. In addition, it contains one or more substates. Figure 5.17 shows
an alternative representation of the Statechart in Fig. 5.12, where two states
have been hierarchically aggregated.

Figure 5.17. Hierarchical decomposition of the state space

The state AuctionOpen is structured by two substates AuctionRegu-
larOpen and AuctionExtended. These substates are denoted separately
from the other components of the superstate in their own compartment.

The completeness mark c© determines that the state AuctionOpen is par-
titioned by the two substates. This means that, if the object is located in the
state AuctionOpen, it is in exactly one of the two substates, and vice versa.
If the completeness mark had been omitted or incompleteness mark “. . .”
given, it would be possible that objects of the modeled class take the super-
state AuctionOpen without being in one of the two substates. This is, e.g.,
possible if another substate exists but is not explicitly given in the diagram.

One of the advantages of hierarchical decomposition of states is the pos-
sibility to note common parts of state invariants in the superstates. This leads
to a more compact version of the state invariant for both substates. The actual
state invariant of a substate is, hence, the conjunction of all state invariants
of its superstates. Accordingly, the two representations shown in Fig. 5.18 are
equivalent for states, and use of the more compact form of representation is
allowed.3

3 The concept of the equivalence of two Statecharts is subsequently used to, e.g., intro-
duce a new element of the Statechart notation by relating it to the already known
elements. In this sense, some of the equivalences can be regarded as defining. But
generally, these equivalences are used in a rather illustrative way and serve for
better understandability. Most representations, thus, illustrate only a special case.
Figure 5.18, for instance, only describes the case with one substate.

154 5 Statecharts

Figure 5.18. State invariant of the superstate also holds for the substate

It is possible that a state invariant is not satisfiable. This means that there
is no object state where the state invariant evaluates to true. As described
in Sect. 5.5.2, such a situation needs to be avoided as transitions leading to
this state suggest a behavior that the implementation does not even have. In
hierarchically structured states, the state invariant must not be considered
separately but the conjunction of all state invariants of the substate and its
superstates.

A side-effect of the possibility to explicitly take over state invariants from
the superstate to the substate and the later discussed options of leading tran-
sitions from or to the superstate directly into substates allow for introduction
or removal of a hierarchy in the state space where necessary. The equiva-
lence of flat and hierarchical representations is illustrated in the Statechart
in Fig. 5.19. Due to this equivalence, hierarchy is mainly a convenience to
prevent the explosion of states and transitions.

Figure 5.19. Introduction and expansion of hierarchy

Compared with the original Statecharts [Har87] and the UML standard
[OMG10a], only the so-called or-decomposition of states is used, just like in

5.3 States 155

ROOM [SGW94]. This form of decomposition allows the hierarchical decom-
position of the state space but is not suitable to describe parallelism or con-
currency within an object. As today parallelism is immanent in many sys-
tems at larger granularity, but sequential processing is the dominant concept
within an object, the and-decomposition of states for modeling concurrent be-
havior components is not necessary in UML.4

5.3.3 Initial and Final States

As Statecharts mostly model the lifecycle of an object or the process of a
method, they require a description to identify diagram states as initial or
final states. Figure 5.20 shows how initial and final states are marked.

Figure 5.20. Initial and final states

A Statechart may have several initial and final states. States can even be
initial and final state at the same time. Figure 5.20 shows that there are two
ways to initiate an auction. Normal customers can set up an auction, but
it additionally needs to be released. Only an authorized group of good cus-
tomers are allowed to set up auctions in a directly released state. If an auction
is, for example, not released because of a lack of solvency of the person set-
ting up the auction or if the auction is terminated, the lifecycle of the auction
object is also terminated. Thus, the black circles and the arrows from or to
them do not represent states or transitions themselves, although their repre-
sentation might create this impression.

The nondeterminism in the Statechart arising from marking several initial
states is, as described in Fig. 5.2.2, interpreted as freedom to choose. The
developer can either restrict this freedom of choice in the further process of
the project or leave all possibilities to the system when implemented with
different constructors.
4 This view is consistent with the target language Java, which also prevents paral-

lelism within objects by providing the keyword synchronized.

156 5 Statecharts

Initial and final states can also be labeled within a hierarchically decom-
posed state. Then, however, they have another meaning that is discussed in
Sect. 5.4.2.

5.4 Transitions

A transition describes an excerpt of the object behavior. The transition can be
executed if the object is in the source state of the transition and if the trig-
gering condition is fulfilled. An action is executed and the target state of the
transition is taken. This section deals in detail with the stimuli and triggering
conditions leading to the execution of a transition. In the next section, actions
are discussed. Figure 5.21 shows a Statechart with the state transitions for the
class Auction already known from Fig. 5.13. It shows how preconditions for
transitions are defined and that transitions can arbitrarily trespass state hier-
archies.

Figure 5.21. Transitions in Auction Statecharts

5.4.1 State Invariants Within the State Hierarchy

The start() transition leads from the state AuctionReady into the sub-
state AuctionRegularOpen. Besides the explicitly given precondition, there
is an additional precondition resulting from the source state AuctionReady.
The complete precondition for this transition is thus

OCLtimePol.status == TimingPolicy.READY TO GO

&& Time.now() >= timePol.start

5.4 Transitions 157

The transition labeled with finish() leading to the closure of an auction
has the source state AuctionOpen. As this state is completely partitioned by
its substates (c©), it is equivalent to instead let two transitions start from the
two substates. The two equivalences shown in Figures 5.22 and 5.23 describe
this as general rules.

Figure 5.22. Interplay of precondition and state invariant

Figure 5.23. Transitions starting from the superstate

5.4.2 Initial and Final States in the State Hierarchy

The transition start() described in the Statechart in Fig. 5.21 has the sub-
state AuctionRegularOpen as target state. Alternatively, it is possible that
this transition only targets the superstate AuctionOpen. However, it is then
not described in which of the two substates the auction really is after the ex-
ecution of this transition. Therefore, in Fig. 5.24 it is modeled that an auction
runs first in the regular phase when started. This is indicated by using an
initial state mark within a hierarchically partitioned state.

158 5 Statecharts

Figure 5.24. Initial state marking the continuation of a transition

The equivalence suggested by Figures 5.21 and 5.24 can generally be ex-
pressed as shown in Fig. 5.25. This rule can even be used repeatedly if the
initial substate in turn is again refined by substates.

Figure 5.25. Initial state marks in hierarchical states

In a similar manner, it is also possible to use final state marks within
hierarchical states. They describe when transitions originating from the su-
perstate may be triggered. Figure 5.26 demonstrates the corresponding rule.
However, as the clarity of the Statecharts quickly suffers, it is recommended
to use marks for initial and final states not too often. For the same reason,
hierarchies should be used carefully in automata.

5.4 Transitions 159

Figure 5.26. Final state marks in hierarchical states

If a superstate does not contain initial states, it is equivalent to the fact that
all substates also are initial states. The same holds for missing final states.
Figure 5.27 illustrates these equivalences.

Figure 5.27. Missing initial or final state marks

5.4.3 Stimuli for Transitions

Kinds of Stimuli

As we have now clarified the relation between transitions and the state hier-
archy, we discuss in this section which events can cause the firing of transi-
tions. We distinguish five different categories of stimuli leading to the firing
of a transition:

• A message is received
• A method is called
• The result of a return-statement is returned as an answer to a previous

method call
• An exception is caught
• The transition occurs spontaneously

160 5 Statecharts

According to message-based communication known, e.g., from CORBA
[OH98] or from distributed architectural models [HRR10, GHK+08], it can be
assumed that message management, i.e., buffering and transfer, is realized in
an appropriate runtime framework. Thus, it does not make any difference for
the receiving object whether a method call is transmitted asynchronously or
as a normal method call. Therefore, no distinction is made between these two
kinds of stimuli in the Statechart. As a result, we use the kinds of transition
stimuli represented in Fig. 5.28.

Figure 5.28. Kinds of stimuli for transitions

Object Recursion

In Sect. 5.2.7 it has already been discussed that flat automata are not suitable
for depicting recursive call structures. For Statecharts, this problem manifests
in the fact that the implementation can execute object-recursive calls but that
modeling with Statecharts does not consider this adequately. Object recursion
always occurs when a method of an object is active and directly or indirectly
leads to the call of another method of the same object. Although it is possible
to carry out further method calls in procedurally formulated actions (dis-
cussed hereinafter) which in turn trigger further transitions, this leads to a
number of semantic problems. On the one hand, it is not clear in which state
the object really is when the recursive method call starts. It may have already
left the source state and reached the target state, or it may be in an undefined
intermediate state. On the other hand, it is not clear whether the recursive
method leads to further object state alterations so that the target state repre-
sented in the Statechart does not correspond to the actually reached object
state. To avoid this problem but explicitly allow the object recursion that is
often used especially in design patterns [Pre95], we use the observation mo-
tivated from practice that methods of an object can mostly be separated into
two levels:

5.4 Transitions 161

• The top-level methods serve for realization of primary functionality. If an
object contains a state space that fits the Statechart, these methods depend
on the object’s state concept and are responsible for the state transitions
of the object. These methods do not call each other but only rely on the
helper methods of the lower level. An object’s helper methods mainly
serve for processing of core functionality, such as for the calculation of a
value. Classic helper methods are queries and get/set methods.

• Helper methods are principally independent of the state of an object de-
fined in the Statechart and can, thus, be arbitrarily used by top-level
methods and call each other recursively.

Top-level methods of an object can be determined by an explicit statement
(e.g., by using a suitable stereotype) or by extraction of the methods that are
explicitly used as stimuli in a Statechart. By means of a data flow analysis
based on the program code, it can be determined whether these methods re-
ally do not carry out an object recursion.5 We, hence, assume that in practice
methods which depend on or change the state of the object do not participate
in object recursion.

5.4.4 Enabledness

As we have defined the stimuli for transitions and how transition precondi-
tions can be combined along the state hierarchy, we can now precisely define
when a transition is enabled. For this, the following conditions must be ful-
filled:

1. The object needs to be in an object state that corresponds to the source
state of the transition.

2. Either the transition is spontaneous and does not need a stimulus, or
the stimulus that is necessary for the transition has occurred. The values
given in the stimulus description (for instance, method parameters) cor-
respond to the actual values of the received stimulus. Each variable used
in the stimulus description is assigned to the actual value in the stimulus.

3. The precondition which is evaluated over the object state and the param-
eters of the received stimulus holds.

It can happen that a precondition cannot be fulfilled in any situation. In
this case, the transition is pointless, as it never fires.

Even if a transition is enabled, this does not necessarily mean that it is
also executed. It is possible that several transitions are enabled at the same

5 A top-level method is definitely entitled to call itself or a top-level method of an-
other object. This method recursion can, for example, be used in a linearly linked
object list without leading to object recursion. As this depends on the current ob-
ject structure, a static data flow analysis is sometimes not able to exclude object
recursion, even if this does not take place in the implemented system.

162 5 Statecharts

time. This is not prohibited—on the contrary, it is explicitly welcome. To en-
able developers to delay design decisions and leave some choice either to the
implementers or even the implementation at runtime, we already allowed
this nondeterminism in Sect. 5.2. Nondeterminism in a Statechart usually does
not mean that the implementation is nondeterministic. Mostly, the decisions
necessary for reducing this nondeterminism are made at the right time. Over-
lapping enabledness is, thus, basically a form of underspecification that can
manifest in different variants. Figure 5.29 shows two allowed situations of
overlapping transition scopes.

Figure 5.29. Situations of overlapping transition scopes

In both cases (a) and (b), both alternatives are possible and can lead to
very different overall behavior of the modeled object, depending on the kind
of action executed or the further behavior of the target state. There are several
possibilities to remedy underspecification, such as the one shown in Fig. 5.29.
Besides the obvious option of canceling one of the two transitions, there is the
possibility of transferring the two overlapping transition scopes into disjoint
transition scopes by strengthening the precondition.

Another way to remedy underspecification which is especially suitable
for transitions of different hierarchy levels, as represented in Fig. 5.29(b), is
the usage of priorities. In contrast to classical Statecharts [Har87] and the
form of Statecharts adapted to object-oriented systems [HG97], no implicit
priorities are used, i.e., neither is the internal transition preferred against the
external one nor vice versa. We can, thus, allocate priorities using a stereo-
type of the form �prio=4�, which has an integer value. However, due to
compatibility with present Statechart variants, the usage of a stereotype of
the form �prio:inner� or �prio:outer� is reasonable to give internal or exter-
nal transitions priority. Figure 5.30 illustrates the effect of these two stereo-
types. Table 5.31 introduces both stereotypes.

5.4 Transitions 163

Figure 5.30. Stereotypes for defining priorities

Stereotypes �prio:inner� and �prio:outer�

Model
element

Statechart.
See Fig. 5.30 for how to apply.

Motivation If transitions with overlapping enabledness exist whose
source states are located on different hierarchy levels, the in-
ner or outer transitions can be prioritized.

Effect Nondeterminism due to the described situation is reduced.
The effect of both stereotypes is illustrated in Fig. 5.30.

Table 5.31. Stereotypes �prio:inner� and �prio:outer�

5.4.5 Incomplete Statechart

In the previous section, situations with multiple, simultaneously enabled
transitions were discussed. However, it is also possible that there is no tran-
sition enabled to handle an incoming stimulus. Such a Statechart is called in-
complete. Analogous to automata (Sect. 5.2.5), various interpretations of this
situation exist:

1. The stimulus is ignored, and if applicable, an “alert” is displayed.
2. A default error handling is executed. For example, an exception can be

thrown and the normal program execution can be interrupted, resulting
in an error state. Alternatively, the error can be logged and handled in a
robust way.

164 5 Statecharts

3. As the diagram does not contain explicit information about what needs
to be done with the incoming stimulus in the respective state, it is not
possible to determine the behavior of the object.

4. Thus, everything is possible, as we have underspecification at this point.

As discussed in Sect. 5.2.6, the lifecycle of an object can be interpreted in
different ways. In the first two interpretations, the lifecycle is regarded as the
maximal possible one, while in the last interpretation it is understood as the
minimally ensured one. This becomes a crucial difference, especially for the
transformations discussed in Sect. 5.6.2.

The first two interpretations of incompleteness are useful if the Statechart
serves as an implementation. In fact, ignoring nonprocessible stimuli is only
a special case of explicit error handling. If there is consistent error handling, it
can be modeled as an entry-action in a dedicated state tagged with the stereo-
type �error�. The stereotype �error� is used if explicit transitions for han-
dling errors are not wanted, for example, for the sake of clarity. Figure 5.32
illustrates a possible application.

Figure 5.32. Stereotype �error� for error handling

However, using an explicit error state as in Fig. 5.32 has the drawback that
only one universal and uniform error handling is possible. Hence, a return to
the state that caused the error cannot be modeled. Alternative error handling
can use stereotypes, such as �completion:ignore�, either for the whole Stat-
echart or for single states. For pragmatic reasons, we also distinguish normal
error situations, in which the enabledness for a stimulus is missing, from
the receipt of an exception. Thus, the stereotype �exception� is available for
dealing with exception stimuli. It is the only stereotype for handling occur-
rences of explicit exceptions.

Statecharts defined and refined during the development process can tem-
porarily be incomplete without the intention of specifying error handling

5.4 Transitions 165

through their incompleteness. Furthermore, Statecharts can intentionally be
incomplete, e.g., if they are used for the definition of tests. The semantics of
Statecharts intended for tests says that, if a Statechart describes a behavior,
it has to be fulfilled by the object. Otherwise, if the Statechart does not make
a statement, the object is completely free in its action. Thus, the third of the
aforementioned possibilities of interpreting incompleteness is the best one
for the usage of Statecharts in tests. This behaviorial freedom for implemen-
tations can be specified for a whole Statechart with the stereotype �comple-
tion:chaos�. Tables 5.33, 5.34, and 5.35 introduce the three newly mentioned
stereotypes for dealing with incompleteness in Statecharts.

Stereotype �error�

Model
element

State.
For an example, see Fig. 5.32.

Motivation If a Statechart is incomplete, a uniform error handling can be
conducted by introducing an error state.

Glossary A state tagged with �error� is called error state.
Usage
condition

In a Statechart, only one state may be marked with �error�.
This cannot be a substate, but it can have explicit incoming
transitions and substates.

Effect If there is no transition that can process a stimulus, a transition
to the triggered error state processes the stimulus. Exception
stimuli are not handled by this stereotype.

See also �exception�, �completion:chaos�, and �completion:ignore�.

Table 5.33. Stereotype �error�

Stereotype �exception�

Model
element

State.
See Fig. 5.32 for an example.

Motivation The stereotpye �error� handles stimuli in situations without
enabledness, but it does not handle exceptions. This can be
achieved with the stereotype �exception�

Glossary A state tagged with �exception� is called an exception error
state.

(continued on the next page)

166 5 Statecharts

(continues Table 5.34.: Stereotype �exception�)

Usage
condition

In a Statechart, only one state may be tagged with �excep-
tion�. This cannot be a substate, but it can have explicit incom-
ing transitions and substates. The stereotype �exception� is
used independently from the stereotype �error� and �com-
pletion:. . . �.

Effect If no other transition can process an exception stimulus, a tran-
sition into the exception error state is conducted to process the
exception.

See also �error�, �completion:chaos�, and �completion:ignore�.

Table 5.34. Stereotype �exception�

Stereotypes �completion:ignore� and �completion:chaos�

Model
element

Statechart.

Motivation There are various possible interpretations for an incomplete
Statechart. By using one of these stereotypes, the developer
can explicitly choose the desired interpretation.

Usage
condition

Both stereotypes exclude each other as well as the simultane-
ous use of an error state (�error�).

Effect Statecharts tagged with �completion:ignore� ignore stimuli
they cannot process. This is suitable for a robust implementa-
tion.
Statecharts tagged with �completion:chaos� allow arbitrary
freedom in processing of otherwise unhandled stimuli. This is
suited for specification and tests.
Exceptions are not handled with these stereotypes.

Pitfalls Both variants are used to clarify the interpretation of incom-
pleteness. For practical issues other than prototyping, robust
treatment of unspecified situations is particularly reasonable,
say in an error state.

See also �error� and �exception�

Table 5.35. Stereotypes �completion:ignore� and �completion:chaos�

5.5 Actions 167

The interpretations dealing with incomplete Statecharts suggested in this
section can also be modeled by an explicit completion of the transitions,
as known from automaton theory, for example in a Statechart tagged with
�completion:ignore�, all incomplete states need to be supplemented with
loops. These loops start and end in the same state, process all stimuli that are
not processed by other transitions, but do not change the state or produce an
output.

When using an error state, these transitions must instead end in the
marked error state.

In a chaos completion with the stereotype �completion:chaos�, a lot
more transitions could have to be introduced, as they can lead from each in-
complete state to all states of the Statechart. The actions of these transitions
have arbitrary freedom. They can freely change the state of the modeled ob-
jects, restricted only by the target state and their environment, set up new
objects, etc. Nonterminating actions are also not excluded in a chaos comple-
tion.

While the first two forms of completion are indeed reasonable for the
implementation, due to the explosion of transitions, it is obvious that a chaos
completion is only a conceptual mechanism for clarifying the meaning of a
Statechart but should not be considered for an implementation.

5.5 Actions

The description of the behavior of a Statechart only becomes complete when
adding actions. Actions describe the reaction to the receipt of a stimulus in
a certain state. They are added to the state as an entry- and exit-action, or
to the transition as a reaction. According to the philosophy of UML/P, two
types of action descriptions are allowed. The procedural form allows the use
of assignments and control structures, and the descriptive action form allows
us to characterize the effect of an action without defining how this action is
actually realized.

Both types of action description complement each other and allow the
usage of the best-suited technique. In some cases, it is easier to describe an
action by procedural instructions and, hence, specify its implementation. Un-
fortunately, procedural instructions too often lead to needless overengineer-
ing, as they anticipate implementation details. Therefore, it is an advantage
in many situations to use either the descriptive form or a combination of both
forms.

5.5.1 Procedural and Descriptive Actions

In contrast to a descriptive condition, the advantage of using a procedural
code snippet is that it can be used directly for code generation. In compari-
son, descriptive conditions can often be formulated in a more abstract way

168 5 Statecharts

and allow a certain freedom in the implementation. The combination of both
action forms allows us to define the action by procedural code and to de-
scribe its desired effect by a condition.

A method Statechart typically has only actions that are modeled by Java
code. Such a Statechart is suited for the direct realization into a complete im-
plementation. As UML/P has Java as its target language, the usage of an in-
dependent “action language,” such as the one discussed in [OMG01a], is not
necessary. Instead, code snippets directly formulated in Java can be used. The
idea of an “action language” adapted to this task has only restricted value,
as it must also be a complete programming language. Thus, it offers only a
small advantage in contrast to an existing programming language such as
Java, by using a syntactical form adapted to a UML-like syntax. On the con-
trary, the “action language” requires its own translators and libraries. Hence,
the approach of regarding UML as a language family [CKM+99] and includ-
ing elements of the target language directly into the used UML version is a
desirable alternative.

Therefore, we allow arbitrary Java code snippets as actions. They can ac-
cess attributes of the modeled object and the arguments of the processed
stimulus. Modification of the object state and the state of other objects of the
environment is explicitly allowed. If the processed stimulus is a method call
with a result, the action has to terminate with a return-statement. In order
to avoid that the Statechart appearing overloaded, actions can be attached
to the Statechart, e.g., in tabular form, as already done in a similar way for
preconditions in Table 5.13.

An action described by code does not offer freedom for omission of im-
plementation details which the modeler does not want to state yet. Therefore,
Statecharts offer as a second form of action the possibility of giving postcon-
ditions in the form of OCL statements to allow characterization of a certain
bandwidth of behaviors without defining how these must actually be imple-
mented. A postcondition formulated in OCL is also called an action condition.
Its character is similar to that of the postcondition of method specifications
discussed in Sect. 3.4.3. We will see in Sect. 5.6.3 that transitions processing a
method call as a stimulus can actually be translated into a specification in the
pre- and postcondition style. As discussed there, Statecharts with action con-
ditions are not directly suitable for code generation. Instead, they assist with
the abstract modeling of behavior during the design process and the mod-
eling of tests. While it is generally not possible to automatically establish an
action condition, they can be checked well and errors recognized automati-
cally.

The action condition of a transition may access the arguments of the pro-
cessed stimulus, the attributes of the modeled object, and if applicable, local
variables defined in the instruction part of the action. In particular, attributes
can thereby be used in the state before and after execution of the transi-
tion. With a==a@pre, for example, we can model that an attribute may not
change.

5.5 Actions 169

Figure 5.36 contains an extract a Statechart for the class Auction which
shows a transition with a procedural action description and a postcondition.
If the class TimingPolicy is implemented correctly, the postcondition al-
ready results from the action instructions. Thus, the postcondition here has
illustrative character and can be used particularly for tests.

Figure 5.36. Transition with procedural and descriptive action

Postconditions can not only be formulated as a redundant addendum to
action instructions but also supplement them. In this way, one part of the
behavior can be modeled procedurally while the other part can be charac-
terized in a descriptive form by an OCL constraint. Subsequently, we also
discuss the treatment of actions in hierarchical states and the interaction be-
tween a characterizing condition and the procedural implementation.

A descriptive characterization of the action by means of a postcondition
has the disadvantage (discussed in Sect. 3.4.3) that further modifications of
variables which are not explicitly mentioned in the condition are not ex-
cluded either. Here, we also use the pragmatic approach that, in an imple-
mentation or an extension of the Statechart towards code generation, the im-
plementer gets the freedom to decide which changes to attributes are addi-
tionally necessary. Statecharts whose postconditions only describe a part of
the changes made by the implementation are nevertheless perfectly suited
for tests. They can be used to describe and test the behavior of the imple-
mentation regarding a certain aspect.

5.5.2 State Actions

As Fig. 5.11 shows, there is also the possibility of adding an entry- and exit-
action as well as a do-activity to each state. These actions can be described
procedurally or by an OCL constraint, too. The entry-action of a target state is
executed in combination with the transition action and often has the function
of opening connections, signaling state changes, conducting log outputs, or
carrying out changes on the user interface.

Exit-actions are used in a very similar manner, namely to accomplish op-
erations that are necessary when leaving the state. This could be the closing
of a connection or a file as well as further log outputs. As both entry- and

170 5 Statecharts

exit-actions are each executed in the context of the execution of a transition,
these actions are primarily a writing shortcut. Figure 5.37 shows that entry-
actions can alternatively be moved to incoming transitions and exit-actions
to outgoing transitions. Figure 5.37 represents the case of procedural actions
where the actions are composed sequentially.

Figure 5.37. Entry- and exit-action as convenient shortcuts

Sequential Composition for Code

The rule shown in Fig. 5.37 allows one to move entry- and exit-actions to
transitions and, thus, remove them from states, but this only holds if all con-
cerned transitions are treated uniformly.

This procedure can also be used for entry- and exit-actions in hierarchi-
cal states. Figure 5.38 shows the transfer of procedural actions to transitions.
This rule also demonstrates in which order entry- and exit-actions are exe-
cuted in hierarchical states. The execution order of these actions corresponds
to the order of the leaving or entering of states of the executed transition,
respectively.

Logical Conjunction for Action Conditions

If the actions of a Statechart are specified by OCL action conditions, the log-
ical conjunction is used instead of the sequential composition. Figure 5.39
shows how in this case conditions can be shifted from the states into the
transitions. In this transformation, the syntactic correctness certainly needs
to be maintained as in all other transformations. In particular, if two local
variables accidentally have the same name, renaming becomes necessary.

According to the definition in Sect. 5.4.4, the enabledness of a transition
exclusively depends on the source state, the stimulus, and the precondition.
However, there are enabled transitions that lead to a target state whose state
invariant is not fulfilled, which have an unfulfillable postcondition, or where

5.5 Actions 171

Figure 5.38. Entry- and exit-actions in hierarchical states

Figure 5.39. Conditions as entry- and exit-action in states

a state invariant and postcondition contradict each other. This problem oc-
curs in case of a predicative description of actions and cannot be automati-
cally recognized. On the one hand, we can avoid this by using forms for the
postcondition and the state invariant that ideally make statements about or-
thogonal parts of the state space. On the other hand, we can ensure this by
choosing a suitable precondition stating that such a transition is enabled only
if the postcondition can be fulfilled. Accordingly, a transition’s enabledness
could additionally be determined by the fact that a transition is executable,
i.e., the postcondition and target state invariant can be fulfilled. However,
generally, an unaccomplishable postcondition should be avoided, as a useful
meaning cannot (easily) be assigned to such a Statechart [Rum96]. If used in
a software development process and not directly recognized as such, rectifi-

172 5 Statecharts

cation is advisable after their recognition, at the latest, e.g., in corresponding
tests.

Piecewise Action Conditions

The interpretation of state actions illustrated in Fig. 5.39 is adequate for
purely predicatively described Statecharts. However, if a Statechart has a
mixed form of procedural and predicative action descriptions, an alterna-
tive interpretation is advisable to meet the sequential processing character
of the actions. Figure 5.40 illustrates this interpretation. With the use of the
ocl statement for OCL assertions, the piecewise fulfillment of the conditions
relevant for a transition can be specified.

Figure 5.40. Code and conditions in entry- and exit-actions

By using the stereotype �actionconditions:sequential� in Fig. 5.40, we
basically prevent that the condition conA used in the exit-action also has to
hold at the end of the transition. This condition can instead be invalidated,
e.g., by the transition action.

The stereotype �actionconditions:sequential� is defined in Table 5.41.

Stereotype �actionconditions:sequential�

Model
element

Statechart. For example, see Fig. 5.40.

Motivation The exit condition of a source state can be invalidated through
the action of the transition. Therefore, transitions in State-
charts which are tagged with the stereotype �actioncondi-
tions:sequential� are interpreted according to Fig. 5.40.

(continued on the next page)

5.5 Actions 173

(continues Table 5.41.: Stereotype �actionconditions:sequential�)

Effect As illustrated in Fig. 5.40, the condition of the exit-action al-
ready holds after the execution of this exit-action. In this way,
the following transition action can already rely on this condi-
tion but also invalidate it.
The same applies for hierarchically nested states.

Example If the conditions of the entry- and exit-action of a state are
in contradiction to each other, for instance by an attribute
value being supposed to take on different values, there
can only be transition loops in this form of interpretation.

Pitfalls In a Statechart, the combination of descriptive conditions and
procedural code should be used with caution. Depending on
the purpose of a Statechart, it is often sufficient to use one of
the two forms.

Table 5.41. Stereotype �actionconditions:sequential�

Considering the entry- and exit-actions, the state invariants discussed in
previous sections, have been neglected so far. A state invariant must always
hold when the object is in that state. In particular a state invariant also holds
after the entry-action of a state has been executed and before the exit-action of
a state is executed. Hence, state invariants can be inserted at the appropriate
place, as demonstrated by the equivalences shown in Figures 5.39 and 5.40.

5.5.3 State-Internal Transitions

While the entry- and exit-actions have to be regarded as part of the incoming
and outgoing transitions, state-internal transitions are complete and indepen-
dent transitions where the entry- or exit-actions of the state are not executed.
Figure 5.42 shows how a state-internal transition can be understood. State-
internal transitions do not leave the state and therefore do not execute entry-
and exit-actions. If stateA would not have an entry- and exit-action, the
transition could simply be attached directly to stateA instead of introduc-
ing a substate.

5.5.4 Do-Activity

If a state represents a situation of the object where an activity prevails, when,
for example, a phone rings or a warning message flashes, we can use the do-

174 5 Statecharts

Figure 5.42. State-internal transitions

activity for its modeling. There are two fundamental possibilities of interpre-
tation in a normal Java programming model. One possibility is to implement
a do-activity through a parallel thread that is active only in this state. An
alternative and preferred method, however, is shown in Fig. 5.43.

Figure 5.43. Do-activity as time-controlled repetition of an action

In the transformation of Fig 5.43 it has been assumed that a timer is
available calling the method timeout() after the specified amount of time.
This is presented as an internal transition that does not leave the state, first
executes the action, and then resets the timer.

5.6 Statecharts in the Context of UML

In the previous sections of this chapter, the Statechart notation has been in-
troduced in greater detail and representation possibilities have been demon-
strated by means of numerous examples. Using several stereotypes, different
variants of Statecharts have been defined and their respective field of appli-
cation discussed. Possibilities for variation consist, on the one hand, in the
semantics of the Statechart elements and, on the other hand, in the interpreta-
tion of these elements in the context of object-oriented modeling. In Fig. 5.30,
for example, possibilities were presented regarding use of the stereotypes
�prio:inner� and �prio:outer� to specify the priority of overlapping transi-
tions as required.

In this section, some basic problems the interpretation of the Statechart
that are still unsolved are discussed. Thereby, fundamental characteristics of

5.6 Statecharts in the Context of UML 175

a transformation into OCL or a programming language and possible trans-
formation techniques (refactoring steps) are explained.

5.6.1 Inheritance of Statecharts

In UML/P, Statecharts are principally attached to classes or methods. Of-
ten, OCL constraints and Java code snippets are parts of Statecharts. Thus,
Statecharts must always be seen in the context of other artifacts of the soft-
ware development. In a number of publications [SHJ+94, LW94, LW99, PR94,
GKRB96, RK99, KPR97, Rum96, EE97, DL96], different variants have been
discussed to show how to specialize Statecharts that describe a class and,
thus, allow one to further detail the behavior. This, e.g., includes the behav-
ioral conformity from [HG97]. The strategies proposed and used for inheri-
tance differ considerably in some regards. If, for example, a Statechart is in-
tended as an interface description of a class describing the call order of the
methods, transitions can be removed because this corresponds to a special-
ization of the object in the subclass. If, in contrast, a Statechart is intended to
describe the implementation, transitions may be added for the inheritance in
order to make the behavior of the subclass more robust against errors.

Also, in UML/P, Statecharts have different fields of applications. A Stat-
echart that has been defined for test purposes usually cannot be applied to
objects of the subclass, as the subclass has an extended state concept and ad-
ditional methods. As described above, there are different interpretations in
literature for the usage of constructive Statecharts, i.e., Statecharts that are
intended for the implementation.

In practice, inheritance of Statecharts is rarely applied—and if so, rather
informally—for the refinement of behavior. Mostly, the behavior is only re-
defined. This means that in practice, state-based behavior of the super- and
the subclass are broadly independent of each other if both are modeled by
Statecharts. Often the case occurs that only the superclass is modeled by a
Statechart while the subclass only redefines the helper functions, which do not
influence the state concept of the Statechart. So, the Statechart of the super-
class is taken over without any change.

A further observation shows that classes described by a Statechart fre-
quently do not have subclasses, as they are conceived as complex steering
classes and allow behavioral variability by delegation.

5.6.2 Transformations on Statecharts

With the release of [Fow99], containing transformation techniques for Java
code, it has become obvious that transformations on modeling and program-
ming artifacts allow for improvement of the systematics of software devel-
opment. A systematic transformation in small, composable steps is consider-
ably clearer and, thus, better for planning than “Big Bang”developments and
modifications. Modification of architectural aspects of a system modeled by

176 5 Statecharts

class diagrams often has effects at several places. Therefore, small, system-
atic, and ideally tool-supported modification steps are ideal. These steps are
performed individually and then directly tested for their effect. Hence, as de-
scribed in [Fow99], refactoring of class diagrams is a fundamental means for
incremental improvement of the system.

In contrast, a Statechart models only a small section of the system. It fo-
cuses on the modeling of an object’s behavior and sometimes also of a strictly
limited environment. Modifications in the state model or behavior of indi-
vidual objects can have considerable effects on the overall behavior of the
system. However, regarding Statechart development in practice, single mod-
ification steps, such as those introduced in [SPTJ01, RK99, Rum96, Rum97,
EHHS00, EH00, Sch98b], do not help to the desired degree. Experience shows
that particularly the modification of the state space often enforces such inten-
sive alterations to a Statechart that the initial Statechart has little in common
with the new one. For pragmatic reasons, more often it is therefore reason-
able to develop a new Statechart instead of deducing it from an old one.

The number of transformation rules necessary to develop a transforma-
tion calculus complete enough for practical implementations is also rela-
tively high. This is due to the higher number of model elements that are
used in Statecharts and the resulting number of potential combinations. Be-
cause of these observations motivated by practical implementations and the
discussion above, the definition of a complete calculus for transformation of
Statecharts is relinquished. Instead, a set of rules is introduced in this section
to serve for the targeted transformation of Statecharts. These rules are partly
based on transformations already represented in previous sections in Figures
5.18, 5.19, 5.22, 5.23, 5.25, 5.26, 5.27, 5.30, 5.37, 5.38, 5.39, 5.40, 5.42, and 5.43.

The refactoring techniques for modification of Java code in [Fow99] ex-
clusively serve preservation of the externally visible behavior (see [PR01]).
Hence, they focus on improving the design and architecture of the system
without changing the functionality and, thus, serve as a basis for later ex-
tensions of functionality. However, the motivation for transformation of a
Statechart can have other causes. As Statecharts are primarily behavior de-
scriptions, refinement (addition of details) of the behavior described in the
Statechart is possibly of the same interest as the preservation of the behavior.
As [SPTJ01] shows, modification of the state space with the purpose of refin-
ing in accordance with the condition that the behavior does not change can
also be of interest. Additionally, it must be distinguished whether the mod-
ifications of a Statechart are adaptions only concerning the model, i.e., the
presentation, or whether these adaptions change the state space and the be-
havior of the modeled objects as well. This distinction is important because,
in contrast to class diagrams, with Statecharts we have many different possi-
bilities for depicting the same behavior.

Hereinafter, some transformations for Statecharts are presented, serving
for, among other goals, preparation of code generation by reducing the con-
cepts used in the Statechart.

5.6 Statecharts in the Context of UML 177

Simplification of Statecharts

As Statecharts provide a comprehensive collection of concepts, indicating
transformation rules that eliminate single concepts of a Statechart is of inter-
est. As a result, the Statechart becomes less comprehensive in the concepts
used and thus more easily accessible for analysis or code generation. In fact,
the rules described below can be understood as a first step towards code gen-
eration. At the same time, these rules can also be regarded as defining for the
concepts they process. The eliminations of the state actions and the state hi-
erarchy presented hereinafter are described by equivalence transformations
that can also be used inversely to allow their introduction.

The procedure described below is to a large extent automatable. In steps
12, 15, and 18, however, design decisions can be made or undecidable OCL
constraints need to be treated. There, also optimizations for later code gener-
ation can be made. Steps 12 and 15 can also be implemented directly by an
algorithm, and step 18 can be omitted.

1. Do-activities are eliminated according to Fig. 5.43.
2. Internal transitions are transformed to real transitions like described in

Fig. 5.42. If the state with the internal transition already has substates,
internal transitions are added as transition loops solely to already exist-
ing states. This means that source the and target state always correspond,
because internal transitions do not change the state.

3. Initial states within hierarchical states serve for forwarding of transitions
whose target state is the hierarchical state to one of the substates. Accord-
ing to Fig. 5.25, these transitions are directly forwarded to substates that
are marked as initial states. Then, the marks of the initial states are irrel-
evant.

4. Final states within hierarchical states can be removed in a similar man-
ner according to Fig. 5.26.

5. Target states with substates. The remaining transitions that still have tar-
get states with substates are all diverted to these substates (and, if nec-
essary, multiplied). The equivalence indicated on the left in Fig. 5.27 is
thereby used in combination with Fig. 5.25.

6. Source states with substates. In a similar manner, the source states of all
transitions are diverted to substates and at the same time multiplied, if
applicable. The equivalence from Fig. 5.27 given on the right is applied
in combination with Fig. 5.26.

7. Repetition on several hierarchy levels can be necessary for steps 3–6 so
that all source and target states of all transitions are simple states (i.e., do
not have substates anymore). Initial and final states now only exist at the
top level.

8. Exit-actions are added to the action of the transition leaving the state, ac-
cording to Figures 5.37 and 5.38. According to Fig. 5.44, if a final state

178 5 Statecharts

has an exit-action, it is also conceived as an action of the finalizer.6 In
method Statecharts, a spontaneous transition is used instead of the final-
izer. Then, the exit-actions are eliminated.

9. Entry-actions are added to the incoming transitions in a similar manner.
Entry-actions of initial states are treated according to Fig. 5.45 by intro-
ducing a new incoming transition that corresponds to the constructor re-
alizing this entry-action. In a method Statechart, a spontaneous transition
is used instead of the constructor. Then, the entry-action is eliminated.

10. State invariants of hierarchically decomposed states are added in the
substates explicitly, according to Fig. 5.18.

11. Hierarchically decomposed states have now become irrelevant and are
eliminated according to Fig. 5.19. All initial and final state marks are
thereby transferred from the eliminated states to the substates.

Figure 5.44. Exit-actions in final states

Figure 5.45. Entry-actions in initial states

As result of these transformations, all state actions have been transferred
to transitions and all hierarchically decomposed states are eliminated. The
remaining atomic states only contain state invariants.

6 The usage of a new final state and this explicit transition with the stimulus
finalize() corresponds to a variant of the situation known from automaton
theory regarding the transformation of Moore to Mealy machines.

5.6 Statecharts in the Context of UML 179

Handling of State Invariants

State invariants can be treated in different ways, depending on the meaning
of the states. This is why several variants exist for the next step 12, depending
on the particular purpose of the Statechart.

For code generation, state invariants can be used as assertions of proper-
ties for certain program stages in the system and, thus, directly taken over
into the code. This allows use of state invariants as assertions for tests.

However, ensuring that a state invariant is correct is much easier than
developing or generating code that ensures that the invariant is fulfilled.
Under certain but fairly restricted circumstances, it is possible to produce
constructive code from an invariant, especially if the invariant represents a
conjunction of equations that can be interpreted as assignments and where
the variables on the left are only used after their definition. Such a construc-
tively usable state invariant for the class WebBidding (see Fig. 4.32) is for
example

OCL

status == AppStatus.INITIAL &&

appletLanguage == (language==null) ? "English" : language &&

statusText== (appletLanguage=="English") ? "Hello" : "Hallo"

On the one hand, it can be examined whether a state invariant can be
used constructively. However, on the other hand, in general, it cannot au-
tomatically be checked whether a state invariant is already fulfilled by the
action of the incoming transition and, as a consequence, generation of con-
structive code is not necessary anymore. This can only be decided by the de-
velopers. In order to store the knowledge of, whether the state invariants of
a Statechart have already been constructively realized by the actions, in the
diagram, a stereotype can be used. This is especially meant for controlling
code generation.

In a Statechart attached to a class, state invariants are relevant only at
the beginning and end of a method. They are therefore part of a method’s
pre- and postcondition and of the processing of a message, respectively. One
possibility of using these state invariants in the further development is to use
them as a pair of OCL pre/postconditions for the definition of a method.

When the Statechart describes an object’s lifecycle, the object state is the
only place to store the information about the current diagram state of an ob-
ject. This is why the diagram state of the object needs to be computable from
the attributes and links of an object in the object structure. This requires the
usage of disjoint state invariants in the implementation. Then it is possible
to evaluate the state invariant as a predicate and in doing so to derive the
diagram state and the transition to select.

As overlapping state invariants are allowed in Statecharts, it is advisable
to convert these into disjoint invariants by an appropriate transformation.
Hence, the following rule is proposed as step 12 in the transformation to-
wards simpler Statecharts and offered in two variants:

180 5 Statecharts

12. Tighten state invariants in order to ensure that the diagram state of an
object can be uniquely determined from the object state by evaluating
the state invariant such an appropriate transition can be chosen for the
arriving stimulus.

So, if a new stimulus arrives at the object, it can be determined solely
based on the state invariant which diagram state the object is in and, thereby,
which transitions are enabled. In practice, there are different options to real-
ize step 12, of which two are presented here:

12a. Tighten state invariants by making statements about further compo-
nents of the object state. This can, for example, refer to the presence and
absence of links, the size of containers, or the values of attributes.

However, tightening a state invariant with the aforementioned step 12a
requires the developer to have quite some knowledge about the context of
the Statechart. In the realization of Statecharts, these newly introduced dis-
joint state invariants could be evaluated consecutively until the respective
current object state is identified, but in general this is not efficient. An alter-
native procedure that furthermore has the advantage that it is automatically
executable uses an additional attribute for explicitly storing the respective
current diagram state:

12b. Tighten state invariants by introducing a state attribute, according to
Fig. 5.46, that explicitly stores the diagram state of an object.

Figure 5.46. Introduction of a state attribute

The transformation in step 12b is clearly directed towards implementa-
tion. It is especially efficient because only the attribute state is necessary

5.6 Statecharts in the Context of UML 181

for determination of the current diagram state and a casestatement can be
used for the discrimination. In contrast, the original state invariants are not
necessary anymore. They can now be used as assertions for tests at the be-
ginning or after the completion of a method processing the respective current
stimulus.

In the special case that a Statechart has no explicit state invariants, we can
also introduce a state attribute remembering the state.

Adding State Invariants to Transitions

As already discussed for Fig. 5.22, the state invariant of a source state has
the same effect as if it were given as a precondition of the transition. The
next step 13, thus, transforms the preconditions of all transitions such that
the state invariants are explicitly incorporated:

13. Conjugate state invariants with preconditions, according to Fig. 5.22, so
that the preconditions are represented completely.

By explicit inclusion of state invariants, it becomes easier to recognize
incompleteness or overlapping of the firing conditions of transitions. The
subsequent steps can therefore be performed more easily.

While the state invariant of a transition’s source state is an additional
assertion for the transition, a state invariant of the target state is an additional
obligation which the transition is responsible for. This obligation can also be
made visible in the action condition of a transition by explicit inclusion:

14. Conjugate state invariants with action conditions, according to Fig. 5.47,
so that the action conditions are represented completely.

Figure 5.47. Explicitly representing a state invariant in an action condition

182 5 Statecharts

Incompleteness of Transition Scopes

We have already discussed various facets of nondeterminism and incom-
pleteness of Statecharts in Sections 5.2 and 5.4.5. We also explained that in-
completeness can be interpreted in various ways. For that purpose we intro-
duced the stereotypes �completion:ignore�, �completion:chaos�, and �er-
ror�. In all three cases, it is principally possible to complete the Statecharts by
adding explicit transitions. This, however, excessively increases the amount
of transitions such that a Statechart can practically not be read anymore. For
an implementation, such a completion is also not necessary because, for ex-
ample, in an implementation using a case statement, incompleteness can
be dealt with by the default construct. This is suitable for the stereotypes
�completion:ignore� and �error� as both variants offer a precisely deter-
mined reaction to arriving stimuli. For the stereotype �exception�, we in
addition need a try-catch statement.

In comparison, the chaos completion (stereotype �completion:chaos�)
aims at interpreting incompleteness as maximally existing nondeterminism.
Thus, it is often methodically reasonable to complete a Statechart by choos-
ing a proper set of transitions instead of executing a chaos completion in
order to make the Statechart also react robustly in underspecified cases.

The following step 15a describes the completion of a Statechart marked
with �completion:ignore�

15a. Completion of a Statechart marked with �completion:ignore� can be
achieved by introducing explicit transition loops that contain an empty
action or an action condition, that does not change the system state.
These loops are added for all potentially incoming stimuli and states
for which no transition exists or where the precondition restricts the en-
abledness of a transition.

As the rule for the performance of step 15a shows, in the worst case there
is a transition loop necessary for each combination of state and potential
stimulus. Figure 5.48 illustrates how such a completion can be achieved in
an exemplary Statechart with two transitions for the same stimulus.

Whether the transition added to the state sourceStateA in Fig. 5.48
is actually necessary can in the general case only be determined manually
due to the generally not automatically recognizable satisfiability of OCL
conditions. In this case, it needs to be decided whether the state invariant
invariantA is already covered by the existing transitions precon1 ||

precon2. Only if this is the case is the newly added transition redundant
and its precondition never fulfilled. So, it needs to be checked if the follow-
ing is true:

OCLinvariantA implies (precon1 || precon2)

If this holds, the following can be concluded for the precondition of the
new transition:

5.6 Statecharts in the Context of UML 183

Figure 5.48. Transition loop for the part that is not enabled

OCLinvariantA && (!precon1 && !precon2) <=> false

The completion of a Statechart with an error state is conducted in a similar
way:

15b. Completion of a Statechart with a state marked with �error� is done
analogously to step 15a. All added transitions, however, target the error
state. The error state is also completed.

The following rule for step 15c allows us to explicitly add a suitable, self-
chosen set of transitions instead of the full set of transitions that implicitly
exists when using chaos completion. In particular, we have complete free-
dom of choice for the reaction to an incoming stimulus.

15c. Completion. Statecharts marked with �completion:chaos� are com-
pleted by introducing transitions whose preconditions and stimuli are
determined as in the previously given steps. However, there is the free-
dom of choosing a suitable target state and action for each transition. The
nondeterministic addition of transitions with overlapping firing condi-
tions is also possible (but only overlapping within the new transitions).

The completion of exception behavior can be conducted in the same way
as in step 15b.

16. Exception completion. If a state marked with �exception� is given, tran-
sitions marked with stimulus Exception are added analogously to step
15b, targeting the exception error state. The exception error state is also
completed.

184 5 Statecharts

Reducing Nondeterminism

Irrespective of whether step 15 has been executed in one of the three variants
of completing Statecharts, nondeterminism can occur in the resulting State-
chart in several forms. Causes and effects of nondeterminism in Statecharts
have already been discussed in detail in Sect. 5.4. There are two essential
reasons for dealing with nondeterminism in Statecharts:

1. Nondeterminism interpreted as underspecification can be used for post-
poning irrelevant details during earlier activities of the software devel-
opment. If we receive additional requirements from the customer or can
make further design decisions, we can refine and detail the behavior
modeled with the Statechart by reducing nondeterminism.

2. If the program execution is, as in Java (without threads), deterministic,
nondeterministic alternatives always needs to be decided when imple-
menting a nondeterministic Statechart into sequentially processed Java
code. An automatic selection is often made by using the random order
for the evaluation of the translated functions. But by explicitly reducing
the nondeterminism, the selection otherwise made by the code generator
can be controlled by the developer.

As the sources of nondeterminism in the Statechart are manyfold, there
are a number of possible modifications of a Statechart in order to reduce its
nondeterminism. If, for example, the Statechart is incomplete and marked
with �completion:chaos�, the implicit nondeterminism existing due to the
incompleteness can be considerably reduced by a change to the stereotype
�completion:ignore� or by explicitly introducing an error state with the
stereotype �error�.

If a transition action is underspecified, this action can be made determin-
istic by a suitable transformation.

Another source of nondeterminism is the overlapping of firing conditions
of different transitions with the same source state and the same stimulus. A
simple instrument to reduce this source of nondeterminism is the usage of
priorities as outlined in Sect. 5.4.4. However, it is also possible to reduce this
form of nondeterminism by tightening the preconditions of the overlapping
transitions. The following rule in step 17 describes this technique:

17. Reducing nondeterminism. Nondeterminism caused by transitions with
overlapping firing conditions is reduced according to Fig. 5.49 by choos-
ing a suitable condition D that has the effect of a discriminator between
the two transitions. This technique can be applied pairwise for all transi-
tions with overlapping firing conditions.

The transformation in Fig. 5.49 initially leads to complex-looking precon-
ditions where the discriminator D separates the overlapping conditions. Al-
though it needs to be syntactically correct, the discriminator can be freely
chosen. An apt definition of the discriminator can considerably simplify the

5.6 Statecharts in the Context of UML 185

Figure 5.49. Reduction of nondeterminism in overlapping firing conditions

new preconditions. One possibility, for instance, is to use the discriminator
true which leaves the left transition unchanged and gives it priority over
the right transition with the precondition B&&!A.

Eliminating Transitions Without Enabledness

Due to the numerous transformation steps performed so far, many transi-
tions have been added or modified. However, especially automatically per-
formed steps may have added transitions that are never enabled. For exam-
ple, reducing nondeterminism by applying the previously discussed step 17
can restrict a precondition so that an execution of the transition is not possible
anymore. This, for example, can happen if the firing condition of one transi-
tion includes that of the other. Unfortunately, transitions that are not enabled
cannot be recognized automatically. Hence, the next step is an optimization
that normally needs to be performed by the developer. Only in exceptional
cases will the system itself recognize that a transition has become redundant
as its precondition is equivalent to false:

18. Eliminating transitions without enabledness, as they do not contribute
to the system behavior.

Rule 18 is mainly useful in combination with the previous step 17. If two
transitions have the same firing condition, the firing condition of one transi-
tion can first be reduced to be empty with step 17 and then removed with step
18. In the example in Fig. 5.49, this means that we set A <=> B and choose
the discriminator true and, thus, reduce the precondition of the right tran-
sition to false.

Removing transitions is generally allowed if one or more alternative tran-
sitions exist that overlap the firing condition of the transition to be elimi-
nated. This means that it must be the same stimulus and that the precon-
dition of the transition is subsumed by the preconditions of the alternative
transitions, i.e., it is implied by their disjunction. Methodically, the removal

186 5 Statecharts

of unnecessary transitions details the modeled behavior. It may not seem
intuitive that information is actually added to the Statechart by removing tran-
sitions. However, this is exactly the case. After the removal of an alternative,
the behavior of the modeled object is described more precisely. Thus, the ob-
ject behavior is less underspecified as it has fewer alternative ways to behave.

Vice versa, also adding transitions, especially as described in step 15c, can
detail the modeled system behavior. The essential difference is that adding
transitions is only allowed if there is no alternative in the original Statechart,
while the removal of transitions is allowed if alternatives exist.

Eliminating Unreachable States

By applying the transformation steps 17 and 18, states can become unreach-
able in the diagram. The reachability of a state is defined by using the transi-
tive closure over all enabled transitions starting from the set of initial states.
This allows us to detect individual states that are not a destination of a tran-
sition. Moreover, it also allows us to detect regions of connected states that
can reach each other, but where the region is unreachable from the outside.
Step 19 allows removal of these diagram states from the diagram:

19. Eliminating unreachable diagram states, as they do not contribute to
the system behavior. A state is reachable if it is (1) an initial state or (2)
a target state of an enabled transition whose source state is reachable.
Transitions with unreachable source states are removed as well.

Result of the Transformation

The described simplification of the Statechart creates a flat structure that only
contains transitions that contribute to the described behavior. The states con-
tain disjoint state invariants. All actions have been relocated to transitions.
The transitions are complete in the sense that they contain the complete pre-
and postcondition and, hence, are directly suited for implementation.

By removing a number of Statechart concepts, the result is more suitable
for analysis or code generation. Therefore, a simplified form of the Statechart is
assumed in the following considerations.

5.6.3 Mapping to OCL

Statecharts serve as a state-based description of object behavior. The behav-
ior of objects is finally realized by the methods that are used as stimuli in
the transitions. OCL-based method specifications have been introduced in
Sect. 3.4.3, also allowing us to model method behavior. The pre/postcondition
style used there for specifying the effect of a method fairly precisely corre-
sponds to the description by a transition if an OCL postcondition is used for

5.6 Statecharts in the Context of UML 187

Figure 5.50. A transition as OCL pre/postcondition

modeling the reaction. Hence, the transformation of transitions of the sim-
plified Statechart described in Fig. 5.50 is straightforward.

The transformation shown in Fig. 5.50 creates such a pre/postcondition
for each transition. As in a Statechart a number of transitions might contain
the same stimulus, so several OCL specifications arise for the same method.
The integration of such pairs of OCL specifications has already been dis-
cussed in Sect. 3.4.3. There we discussed two basically different forms of
combination that also play a role here.

If we transform a deterministic Statechart, i.e., a Statechart whose transi-
tions do not have overlapping firing conditions, we get OCL specifications
whose preconditions are pairwise disjoint. The OCL specifications, thus, can
be combined by the algorithm described in Sect. 3.4.3 where each precondi-
tion acts as a guard for its postcondition. The disjunction of the preconditions
ensures that at most one postcondition needs to be fulfilled and, thus, no in-
consistencies can arise due to contradicting postconditions.

However, in a nondeterministic Statechart, there are overlapping firing
conditions. Transitions with such overlaps cannot be transformed individ-
ually into OCL constraints because their combination would lead to incon-
sistent postconditions. Instead, overlapping transitions are transformed to-
gether. Because the state conditions are disjoint in our simplified Statechart,
transitions with overlapping transition scopes can start only from the same
source state. This form of transformation is shown in Fig. 5.51 by means of
two overlapping transitions. Note that, if both preconditions are fulfilled, the
freedom of choosing transitions means that afterwards only one postcondi-
tion needs to be fulfilled because only one of the transitions fires. This is
reflected by the slightly complex form of the postcondition. An application
to more than two transitions is possible due to generalization or iterated ap-
plication of the rule for two overlapping transitions.

The transformation of transition descriptions into OCL method specifi-
cations can be applied in two ways. On the one hand, it can be understood
as semantic integration of the two UML subnotations, Statecharts and OCL.
On the other hand, it also has a practical application. The semantic integra-
tion achieved by this transformation shows the relations of both subnotations
and maps the semantics of simplified Statecharts to OCL. Together with the

188 5 Statecharts

Figure 5.51. Overlapping transitions as OCL pre/postcondition

transformation of general Statecharts into simplified Statecharts already in-
troduced earlier, we now have a coherent transformation chain of Statecharts
in OCL. The meaning of a Statechart can, thus, be derived from the meaning
of OCL. A similar form of semantics definition for flat automata has been
given, e.g., in [Rum96] with the target language Focus [BS01].

If the given transformation is supported by a tool, Statecharts can be
translated into OCL within a project, and the available analysis, simulation,
and code generation techniques can be applied to the generated OCL con-
ditions. This especially enables the application of verification tools available
for OCL to object behavior that has initially been described with Statecharts
and allows one to show certain properties of the modeled object.

5.7 Summary

Statecharts represent an essential link between a system’s structure in the
form of state spaces and the classes’ behavior. They allow us to structure
the state space hierarchically and define the reaction of objects to incoming
stimuli based on these state hierarchies.

Statecharts are based on the concepts of the Mealy and Moore automata,
which is why fundamental problems, such as nondeterminism, incomplete-
ness, ε-transitions, and expressiveness, were already studied on these au-
tomata. We identified the interpretation of automaton concepts (input, au-
tomaton state, and output) in the “real” world of software development
(method call, object state space, and action) besides automaton theory.

Then we introduced states, state invariants, transitions, preconditions, stim-
uli, and actions with procedural and descriptive character.

Especially relevant is the enabledness of transitions and the resulting possi-
bilities of treating nondeterminism (underspecification) and incompleteness. The
composition of entry-, exit-, and transition actions by conjunction, sequential
execution, and piecewise validity has been another crucial point of discus-
sion.

5.7 Summary 189

A collection of transformation rules for Statecharts shows on the one
hand the semantics of more complex Statechart concepts such as initial and
final states in hierarchical states or entry- and exit-actions but also allows on
the other hand the transformation of general Statecharts into simplified State-
charts that are more suitable for code generation and analysis.

6

Sequence Diagrams

The one just looking sees more
than the one playing the game.

Wilhelm Busch

A sequence diagram represents an exemplary snippet of a software system’s
process. It models the occurring interactions and activities and can be ex-
tended by OCL expressions. This chapter introduces a simplified version of
sequence diagrams which are suitable especially for the modeling of tests.

6.1 Concepts of Sequence Diagrams . 193
6.2 OCL in Sequence Diagrams . 196
6.3 Semantics of a Sequence Diagram . 198
6.4 Special Cases and Extensions for Sequence Diagrams . . 203
6.5 Sequence Diagrams in UML . 206
6.6 Summary . 208

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7_6

191

192 6 Sequence Diagrams

Sequence diagrams are used for modeling interactions between objects. A
sequence diagram describes in which order method calls are executed and
when they terminate. Thus, similar to Statecharts, sequence diagrams model
behavioral aspects. However, there are some essential differences:

• A sequence diagram focuses on the interaction between objects, but the
inner state of an object is not represented.

• Basically, a sequence diagram is exemplary. Just like in the object diagram,
the represented information can, thus, occur arbitrarily often, multiple
times in parallel, or even not at all in the process of a system.

• Due to their exemplary character, sequence diagrams are not suitable for
the complete modeling of behavior. They are mainly used for require-
ments definition and, as shown in this work, test case modeling.

Hence, sequence diagrams are methodically used especially for require-
ments analysis as well as for test definition for or after implementation. If
sequence diagrams are used for modeling a system, they always illustrate
specific, desired or undesired situations or erroneous behavior and are there-
fore suitable as a starting point for test cases.

When used in requirements engineering, developers need to derive a
complete implementation from a necessarily finite set of sequence diagrams.
A number of proposals extend sequence diagrams in order to systematize
this derivation. Control structures are often added that allow alternatives,
parallelism, iterations, and recursive calls of sequence diagrams. These pro-
posals are discussed, e.g., in [Krü00, Leu95, GRG95, BGH+98a, SHB96] and
used in different forms in the two essential standards for sequence dia-
grams. Besides the UML standard [OMG10a], dialects of sequence diagrams
are used particularly in the telecommunication, industry in the form of
Message Sequence Charts (MSCs) [IT99]. The automaton-based extension
in High-Level MSCs also allows the representation of MSC combinations
[IT99, Krü00, GGR01]. Another variant of sequence diagrams is Object-MSCs
[BMR+96] in which activity bars have been introduced. Also the Live Se-
quence Charts’(LSCs) approach deserves special attention [DH01, HM03,
HM08]. It gives sequence diagrams considerably more expressiveness and
therefore becomes accessible for complete specifications, simulation of differ-
ent processes [KHK+03], constructive code generation, or verification tech-
niques.

In comparison with the mentioned variants, the form of sequence dia-
grams introduced in this chapter is kept simple. The reason is, among oth-
ers, that, in this work, the methodical use of sequence diagrams is rather
restricted to modeling of test cases and test drivers. Statecharts can already
be used for complete process descriptions. Thereby, a redundant description
is avoided. This is based on the experience that it is much more elaborate to
create complete descriptions instead of exemplary ones and that, for reasons
of developer efficiency, redundancy needs to be avoided. Thus, sequence di-
agrams are adequate to exemplarily describe system runs.

6.1 Concepts of Sequence Diagrams 193

The following Sect. 6.1 introduces the fundamental concepts of sequence
diagrams. Section 6.2 discusses the use of OCL constraints in sequence di-
agrams. In Sect. 6.3, several different semantics for sequence diagrams are
introduced. The developer can choose one by using stereotypes. Additions
to sequence diagrams and special cases are discussed in Sect. 6.4. Section 6.5
finally deals with the use of sequence diagrams in the context of other UML
diagrams. Additionally to this chapter, Appendix C.6 describes the abstract
syntax of sequence diagrams.

6.1 Concepts of Sequence Diagrams

Figure 6.1 describes a sequence diagram that in the following is used as an
example explaining the available concepts.

Figure 6.1. Sequence diagram for accepting a bid

The essential concepts occurring in a sequence diagram are briefly ex-
plained in Fig. 6.2.

Object, Timeline, and Activity

In a sequence diagram, objects are represented next to one another in a row
and furnished with a timeline pointing downward. Optionally, objects have
a name and a type. In contrast to object diagrams, attributes and links are

194 6 Sequence Diagrams

Object An object in the sequence diagram has the same semantics as in the object
diagram (see Fig. 4.1), but it is only shown with name and type. Several objects
of the same type are allowed. Name or type are optional.

Timeline. In a sequence diagram, consecutive events are represented top down.
Each object has a timeline representing the progress of the time for this object.
The timescale shown is not faithful to the time in the system’s object. The time-
line, thus, only serves to represent the chronological order of interactions.

Interaction. As discussed in Sect. 5.4.3, an interaction between two objects can be
one of several kinds of stimuli. This includes method calls, returns, exceptions,
and asynchronous messages. Parameters of interactions are optional in a se-
quence diagram.

Activity bars. For processing a method call, an object is active for a certain time.
The activity bar that can also occur in a nested form in a recursion serves as a
representation for this activity.

Constraint. For a detailed description of properties that hold during a process, OCL
guards can be used.

Figure 6.2. Definitions for sequence diagrams

not represented. Interactions arriving at and leaving from an object are rep-
resented in chronological order by reaching the timeline. They could have
been reported in this form by an observer.

Basically, also asynchronous messages are permitted as interactions. How-
ever, asynchronous communication can be represented only to a limited ex-
tent. We simplify sequence diagrams by assuming that messages are not sent
simultaneously and that they do not intersect. This simplification is based
on the usage of sequence diagrams for test purposes where concurrency is
explicitly controlled in order to maintain deterministic test results. This con-
siderably simplifies the modeling with sequence diagrams, but we might not
be able to represent certain phenomena with sequence diagrams that are pos-
sible in an implementation. Similar assumptions can be found in other, more
complex MSC dialects [Krü00, BMR+96]. Therefore, the remaining chapter
only further discusses the sequential method call.

An activity bar is used to show when a method of an object is executed.
Usually, activity bars start and end at incoming or outgoing arrows. Activity
bars can be omitted, and we later discuss the ambiguity that can then arise.
For a recursive call, activity bars are represented in a nested form, which is
also discussed later. As a return arrow can also be omitted, an activity bar
may end without an outgoing arrow.

The kinds of possible interactions are represented in Fig. 6.3. Except for
the later discussed recursive call, each interaction is represented by a hori-
zontal arrow. The time spent is neglected.1

1 Due to the assumptions described above, this also holds especially for asyn-
chronous messages, which are not differentiated syntactically from normal method
calls. In some dialects, a specific arrow is used for asynchronously sent messages.

6.1 Concepts of Sequence Diagrams 195

At the arrows, method calls, returns, or exceptions are added. These can
optionally have arguments. An argument is denoted as a Java expression.
If it is a single variable that has not occurred so far, it is defined with its
first occurrence. Return information can be omitted completely, as the dashed
arrow is already unambiguous. Due to its nature, a return can only occur in
the diagram after the corresponding method call.

To avoid information overload, the incompleteness indicator “. . .” can be
used instead of the arguments of the interaction. This has the same effect as
if the parameters were omitted completely.

Figure 6.3. Types of interactions in sequence diagrams

Static Methods

If a method is static, it is underlined like in the class diagram. In this case, the
arrow ends at a class that is used analogously to an object. This is demon-
strated by Fig. 6.4.2

Figure 6.4. Static method in a sequence diagram

2 While objects are underlined as instances, attributes and methods are underlined
if they are not assigned to an instance. This is not consistent but corresponds to the
rule that elements that are used more often can be described more easily.

196 6 Sequence Diagrams

Object Creation

If an object is newly created during some interaction, this can be represented
by the object’s timeline starting at a later point in time. Figure 6.5 shows two
typical forms of object creation. Both representations are even equivalent if
they are used for certain forms of object creation. Form (b) is then only a more
detailed and more implementation-related representation.

A representation for destroying an object is not offered in UML/P, as this
is also not possible in the target language Java.

Figure 6.5. Creation of a new object

Stereotypes and Tags

Stereotypes and tags can be used in sequence diagrams as well. The stereo-
type �match� is introduced in Sect. 6.4 to give the developer the possibility
of choosing between different semantics for sequence diagrams.

The stereotype �trigger�, for example, can be used to indicate that a
method call is the cause for all other interactions of the sequence diagram.
Therefore, such a stereotype is especially suited for test drivers, such as those
shown in Fig. 6.6, and it can be used only for method calls of objects of
the test environment into the tested object structure. Hence, mostly only the
first method call is tagged with �trigger�. Interactions tagged with �trig-
ger� necessarily lead to the other described interactions. The called objects
are not allowed to behave differently. This is a considerably stronger restric-
tion than sequence diagrams without this stereotype would denote.

6.2 OCL in Sequence Diagrams

As Fig. 6.1 shows, conditions that only hold at certain points in time of the
process can be added to a sequence diagram. In these OCL constraints, the

6.2 OCL in Sequence Diagrams 197

Figure 6.6. Test drivers with starting message

objects and values occurring in the sequence diagram can be related. For this
purpose, access to the named objects and the variables used as arguments
in method calls is possible. Figure 6.1 contains several such variables. The
binding area of each variable stretches from the place of the first occurrence
to the overall sequence diagram. This, for example, means that the Auction
object copper912 can also be used as a method argument as well as in OCL
constraints. In Fig. 6.1, in total the variables copper912, bidPol, timePol,
theo, bid, t, and bm are available. In both sequence diagrams and object
diagrams, anonymous objects are treated as if they had an unambiguous,
externally unknown name.

As already discussed, variables such as bm and t that occur as arguments
of a method call or a return for the first time are bound at this place. Their
type results from the respective signature that can be read from a class dia-
gram. bid is of the type Bid, t of the type Time, and it is known that object
bm is of the type Message.

An OCL constraint can describe occurring objects and parameters as well
as a message’s effect on an object more precisely, whereas the context results
from the sequence diagram. Explicitly stating the context, the bottom con-
straint in Fig. 6.1 can be represented as follows:

OCLcontext Auction copper912, BiddingPolicy bidPol,

TimingPolicy timePol, Person theo, Bid bid,

Time t, Message bm inv:

copper912.currentClosingTime==t &&

theo.message.last==bm &&

typeif bm instanceof BidMesssage then

bm.auction==copper912

else false

This condition, among other things, requires that bm is an object of the
type BidMessage and then partly checks its content.

The specification of the context shows that access to attributes is possible
by qualification with the object. However, if an OCL constraint is exclusively
assigned to one timeline, the attributes of this object can directly be accessed,
but for better readability, it is reasonable to still use a qualification. Thus, the
context of the first OCL constraint in Fig. 6.1 is the following, whereas in

198 6 Sequence Diagrams

contrast to the above mentioned context definition, the BidMessage bm is
not yet introduced:

OCLcontext Auction copper912, BiddingPolicy bidPol,

TimingPolicy this, Person theo,

Bid bid, Time t inv:

let TimingPolicy timePol = this

in

t.timeSec == bid.time.timeSec + extensionTime

The validity of an OCL constraint refers to the point in time directly after
the last occurred interaction or the last occurred activity bar. This means that
the OCL constraint must only be satisfied directly after this interaction but
not during the overall “period” in which the OCL constraint is embedded.
This is illustrated by means of two sequence diagrams in Fig. 6.7.

Figure 6.7. Validity of OCL constraints in sequence diagrams

As a sequence diagram models temporal system runs, other than in the
OCL method specification, a @pre operator is not available. If a previous
attribute value must be accessed, this value needs to be stored explicitly in an
auxiliary variable. For this purpose, a let construct is used that is similar to
the OCL construct and that introduces new variables that are accessible only
within the sequence diagram. These auxiliary variables are not part of the
implementation but exclusively serve for the specification of effects during
the process of interactions. Figure 6.8 shows a use of these variables.

6.3 Semantics of a Sequence Diagram

The exemplary character of a sequence diagram has already been referred to.
However, for the methodically correct use of sequence diagrams, a precise
explanation of the semantics of such an exemplary process and the treatment
of incomplete representations is necessary.

6.3 Semantics of a Sequence Diagram 199

Figure 6.8. Auxiliary variables to store values

Exemplaricity and Incompleteness

Similar to the object diagram, the exemplaricity of a sequence diagram is
based on the description of a set of objects that, in this form, can occur in
a system arbitrarily often or even not at all. Furthermore, the run itself is
exemplary. It can occur arbitrarily often, be concurrent and nested, or not
occur at all.

In addition to these forms of exemplaricity, a sequence diagram represents
an abstraction of a process, as it can contain neither all objects of the system
nor all occurring interactions. In a sequence diagram, interactions can also be
missing. Figure 6.9 can, therefore, represent the same process as Fig. 6.8 on a
different abstraction level because different objects are shown.

Figure 6.9. Representation with different abstraction level

Formally, the semantics of a sequence diagram can be explained by map-
ping the diagram’s elements to a system run. Figure 6.10 shows such a map-
ping where the right side uses a representation for the system run that is sim-

200 6 Sequence Diagrams

ilar to that of a sequence diagram and that can be understood analogously to
Fig. 3.19.

Figure 6.10. Representation of a sequence diagram in a system run

The prototypic objects in the sequence diagram are mapped to real ob-
jects, and the shown interactions are mapped to real interactions of the sys-
tem; the chronological order must be consistent. This form of matching cor-
responds to the already discussed form of an observer selectively observing
objects and protocolling some interactions. With mathematical means, this
representation can, e.g., be described as in Figures 6.11 and 6.12.

Ambiguities and Restricting Stereotypes

The matching described in Figures 6.11 and 6.12 allows several assignments.
If a method call takes place several times during the observation period, it
is ambiguous which actual method call corresponds to the interaction repre-
sented in the diagram. The fictive observer has possibly “overlooked” some
interactions between the two objects.

However, by using suitable stereotypes, the form of observation can be
determined more precisely. The representation indicator “ c©” can be used for
objects in the sequence diagram to indicate the completeness of the shown
interactions. Alternatively, the representation indicator “. . . ” for incomplete-
ness already holds by default but can also be stated explicitly. Figure 6.9
shows the use of these indicators. A “ c©” means that the tagged object has
no interaction with any other object between the first and last interaction
shown in the diagram. This means that the protocol of the fictive observer is
complete with regard to the marked object and the represented observation
period.

For an object completely observed in this sense, it necessarily holds that
a suitable return must be stated for each call. Furthermore, all objects that

6.3 Semantics of a Sequence Diagram 201

A loose semantics definition for sequence diagrams is described by mapping the
elements of a sequence diagram to the elements of a system run.
The essence of a sequence diagram is given by:

• The set of the prototypic objects Ō

• The set of possible interactions Ā in the diagram

• The source of each interaction s̄ : Ā → Ō

• The target of each interaction t̄ : Ā → Ō

• A sequence of diagram interactions d̄ ∈ Ā∗, where multiple occurrence of the
same interaction is allowed

The essence of a system run, in analogy, consists of a set of objects Obj , interactions
Act , two mappings s, t : Act → Obj for the source and target of each interaction,
and the system run r ∈ Act∗ representing a trace [DR95]. According to [Rum96],
the dynamics of object creation can be simulated using a predefined set of existing
objects and thus can be ignored here.
Let Ixd = {0..n} be the n + 1 indexes of the sequence d = d0d1 . . . dn and di the
element at position i ∈ Ixd.
The connection is defined by requiring the existence of a mapping f : Ō → Obj for
the objects and a monotonically increasing injection j : Ixd̄ → Ixr of the indexes of d̄
into the indexes of r.
For each index i ∈ Ixd̄ in the sequence diagram the following must hold:

s(rj(i)) = f(s̄(d̄i)),

t(rj(i)) = f(t̄(d̄i)).

The monotonicity and injectivity of j ensure the chronological order of the represen-
tation. A sequence diagram forms an abstraction of the system run, as neither f nor
j need be surjective.

Figure 6.11. Loose semantics for sequence diagrams, part 1

The loose semantics definition of sequence diagrams from Fig. 6.11 is detailed by
the alignment of returns to corresponding calls.
The definition of the essence of sequence diagrams is extended by

• The set of returns and exceptions R̄ ⊆ Ā

• The assignment of the returns to the respective method calls m̄ : R̄ → (Ā \ R̄)

Analogously, the representation of a system run is detailed by returns and exceptions
R ⊆ Act , and the bijective assignment m : R → (Act \ R). While m is a bijection,
due to the incompleteness of a sequence diagram, m̄ only needs to be injective.
For each index pair a, b ∈ Ixd̄ it holds that:

d̄b ∈ R̄ ∧ d̄a = m̄(d̄b) ⇒ a < b ∧ rj(b) ∈ R ∧ rj(a) = m(rj(b))

Figure 6.12. Loose semantics for sequence diagrams, part 2

202 6 Sequence Diagrams

directly interact with the observed object need to be shown. This can lead to
considerably more detailed diagrams than actually desired. Therefore, fur-
ther stereotypes are used that allow additional variants of the semantics def-
inition.

The stereotype �match:initial�, for instance, is especially well suited for
defining testable sequence diagrams, while the interpretation �match:free�

corresponds to the default “...”. Table 6.13 describes the four variants.
More variants that further refine the form of observation are conceivable.
Thus, lists of method calls that are completely observed or ignored could
explicitly be given, but this would increase the information density of a se-
quence diagram, making it less readable.

Stereotypes �match:*�

Model
element

Prototypic object in the sequence diagram.

Motivation Assigning the interactions of a sequence diagram to interac-
tions in the system run is ambiguous, as sequence diagrams
can represent abstractions. The defined stereotypes can re-
solve these ambiguities.

Usage
condition

The stereotypes can be stated individually for each object in
the sequence diagram.

Effect Between the first and last interaction, an object tagged with
�match:complete� has exactly the interactions with other ob-
jects or itself stated in the diagram. Hence, the observation of
this object is complete.
�match:visible� prohibits omitting interactions with other ob-
jects stated in the sequence diagrams but allows that interac-
tions with objects not stated in the diagram are omitted. There-
fore, the observation of this object is complete only with re-
gard to the objects visible in the diagram.
�match:initial� allows further interactions between the stated
objects if these are of another kind, i.e., calls of other methods,
for example. Further interactions of the same kind are allowed
only after the occurrence of the stated interactions.

(continued on the next page)

6.4 Special Cases and Extensions for Sequence Diagrams 203

(continues Table 6.13.: Stereotypes �match:*�)

So, the observer tries to carry out an “initial” or early match-
ing. Further interactions of this kind are ignored in the system
run as soon as the last one of this kind is checked off in the
diagram. Hence, the observer always protocols the first occur-
rence of the respective interaction and “checks off” the inter-
action in the sequence diagram.
The stereotype �match:free� represents the default and
means that arbitrary omissions are possible in the observation.

Pitfalls The combination of different stereotypes within a sequence di-
agram can be used for elegant statements but can also cause
confusion.3

Extensible Each stereotype can also be applied to the overall sequence
diagram and therefore hold for all objects contained therein.

Table 6.13. Stereotypes �match:*�

A formal definition of the four variants is given on the basis of regular
expressions in Fig. 6.14. Here, the overall run of a system is understood as a
word, while a sequence diagram is regarded as a regular expression to which
a system run has to adhere.

One of the biggest advantages of the equivalence of this formalization
to regular expressions is that there are efficient algorithms from the theory
of formal languages that can protocol system runs and recognize occurring
matches. This is an important prerequisite for using sequence diagrams for
tests. However, this efficiency suffers if, in between, values must be assigned
to variables and OCL constraints evaluated.

6.4 Special Cases and Extensions for Sequence Diagrams

An analysis of the defined form and semantics for UML/P sequence dia-
grams shows that, similar to other forms, certain special cases that require a
more detailed explanation can arise.

Noncausal Sequence Diagrams

A sequence diagram specifies a chronological order of the messages ob-
served, but it does not necessarily define a causal order. As shown in Fig. 6.15,
a sequence diagram can especially consist of two disjoint parts. The thus in-
complete observation does not show the causal context anymore but only
a temporal one of the occurring method calls. Such sequence diagrams are

3 Tricky specifications are often difficult to read and should, thus, be avoided in
practice. Sometimes, less elegant specifications should be preferred.

204 6 Sequence Diagrams

The loose semantics definition for the stereotypes of the form �match:*� is based
on the foundations from Fig. 6.11. For simplification, let us assume that Ā ⊆ Act

and Ō ⊆ Obj , that we can ignore arguments of the interactions, and that f , as a
consequence, is the identity. Furthermore, let obj(a) = {s(a), t(a)}.
Without restriction, let each object in Ō be tagged with one of the stereotypes. Let
Oφ ⊆ Ō be the set of the sequence diagram’s objects tagged with �match:φ�.
A system run can be regarded as a word over the alphabet of the interactions Act .
To build the semantics, a sequence diagram is assigned a regular expression which
describes valid system runs. This can be used to hereinafter explain the semantics of
the �match:*� stereotypes.
The sequence diagram d̄ = a0a1a2 . . . an consisting of the n+1 interactions ak ∈ Act

can be transformed to a regular expression of the form

Sem[a0 . . . an] = Act
∗

a0 X
∗

1 a1 X
∗

2 a2 . . . X
∗

n an Act
∗

that describes a set of system runs. Before the first and after the last interaction de-
scribed, the system run is not restricted. The set of possible interactions in Xk de-
pends on the chosen �match:*� stereotypes.
The following interactions are forbidden:

Acomplete = {a ∈ Act | obj(a) ∩Ocomplete �= ∅}, (1)
Avisible = {a ∈ Act | obj(a) ∩Ovisible �= ∅ ∧ obj(a) ⊆ Ō}, (2)
Ainitial,k = {ak, ak+1, . . . , an | obj(al) ∩Oinitial �= ∅ for k ≤ l ≤ n}. (3)

(1) and (2) describe interactions that must be stated in the sequence diagram and are
therefore prohibited in between. (3) identifies interactions that are later stated in the
sequence diagram and, thus, would contradict the initial matching.
It holds that Xk = Act \ Acomplete \Avisible \Ainitial,k.
The arguments of interactions Act can be taken into consideration by introducing
type information. The dynamic assignment of prototypic objects to real objects that
is analogous to the object diagram can also be taken into consideration.

Figure 6.14. Semantics of the stereotypes �match:*�

suitable for tests but not for a description from which an implementation is
to be developed, as causality plays an essential role for the developer.

Figure 6.15. Noncausal sequence diagram

6.4 Special Cases and Extensions for Sequence Diagrams 205

A similar phenomenon can be found in Fig. 6.16: it is not stated how con-
trol is transferred to object c. Noncausal sequence diagrams can be prohib-
ited by using suitable �match:*� stereotypes.

Figure 6.16. Second noncausal sequence diagram

Recursion and Ambiguity

The object recursion already discussed in Sect. 5.2.7 causes complications not
only in Statecharts but also in sequence diagrams. We talk of object recursion
if, within the execution of a method, another method of the same object is
called directly or indirectly. Figure 6.17 shows both forms of calls.

Figure 6.17. Sequence diagrams with object recursion

Normally, activity bars serve to illustrate behavior pattern and can be
omitted. In recursive cases however, they allow to resolve ambiguities. In
Fig. 6.18(a), neither activity bars nor returns are given, so that the two al-
ternatives 6.18(b) and 6.18(c) are possible. The elimination of ambiguity can,
as shown, happen by using activity bars or, in a similar manner, by adding
returns.

The source of these ambiguities is the object recursion shown in Fig. 6.17.
As such an ambiguity can easily be resolved by using activity bars, we decide
that a sequence diagram with such an ambiguity is not well-formed and is
rejected by a code generator.

206 6 Sequence Diagrams

Figure 6.18. Ambiguous sequence diagram

6.5 Sequence Diagrams in UML

Inheritance

A sequence diagram has prototypic objects where optionally name and type
are given. The type of an object can be a class with several subclasses or an
interface. Correspondingly, the object that is observed in a running system
can be from a different class. In this sense, sequence diagrams, thus, take in-
heritance into account. But due to the used loose semantics for sequence dia-
grams, the expressiveness for subclasses is also restricted. In fact, a sequence
diagram only describes that objects of a certain type can behave according to
the described pattern but that they do not have to do so.

But for tests that check a certain behavior pattern for all objects of a type,
it is beneficial to give objects from subclasses certain liberties in the behavior,
e.g., by assigning the stereotype �match:visible�.

Sequence Diagrams and Statecharts

Depending on the development method, there are various options to use
Statecharts and sequence diagrams in combination:

1. Statecharts are developed from a set of sequence diagrams.
2. Startecharts and sequence diagrams are used in parallel for different pur-

poses.
3. Sequence diagrams can be derived from Statecharts, thus conforming to

them.

In [Krü00, BGK99], for example, a procedure is described to derive au-
tomata for the participating objects from a finite set of sequence diagrams.
In the form used there, first a word of the automaton’s alphabet is derived
by dissection of a sequence diagram into the interactions that are relevant
for a single object. By manually adding state information, an automaton that
accepts these (and further words) can be built from the finite set of words.
By further transforming the automaton, they derive a version that can be
understood as an operative description of an object which implements the
behavior described by sequence diagrams.

6.5 Sequence Diagrams in UML 207

A similar procedure is described in [DH01]: an LSC (Live Sequence Chart
[HM08, HM03]) is implicitly created by protocolling desired behavior and by
building an automaton thereof. Both approaches have in common that they
first assume an exemplary specification from which they derive a complete,
implementation-related description. With an appropriate adaption, these ap-
proaches could also be used for UML/P.

The reverse procedure of deriving sequence diagrams from given Stat-
echarts can be used for two tasks. On the one hand, exemplary and more
easily understandable descriptions can be extracted from a given Statechart
implementation, and on this basis, the interplay of the participating objects
can be analyzed. On the other hand, test cases that check various transition
paths of the Statecharts can be derived from the Statechart.

Another alternative is to use Statecharts and sequence diagrams in par-
allel. In this case, both views of the system have not been derived from each
other but developed manually. Thus, it is of interest to check both descrip-
tions for consistency with analytical techniques by regarding a sequence dia-
gram as a word (sequence of interactions) that has to satisfy a Statechart. But
when using OCL constraints within both notations, analysis is not necessar-
ily executable. Therefore, it is reasonable to use the Statechart for implemen-
tation and sequence diagrams as test cases.

Sequence Diagrams and UML Communication Diagrams

Besides sequence diagrams, the UML standard provides an additional no-
tation which is closely related to the notation of sequence diagrams. Com-
munication diagrams represent a subset of a sequence diagram’s information
but are less focused on the chronological order and more on the cooperation
between objects. Figure 6.19 contains the representation of the sequence dia-
grams from Figures 6.1 and 6.9 as a communication diagram. However, OCL
constraints and returns are not represented in the communication diagram.

Figure 6.19. Communication diagram

208 6 Sequence Diagrams

The two-dimensional distribution allows one to accommodate more ob-
jects in communication diagrams. The interaction order is not determined by
timelines but by numeration. For this, nested calls are marked with ascend-
ing lists of numbers. Return values are added to the call. There is no concept
analogous to activity bars in communication diagrams. More details regard-
ing communication diagrams can be found in [RQZ07], for example.

Although the information represented in both diagrams is essentially the
same, the form of representation and, thus, the way diagrams are dealt with
varies considerably. Adding an interaction, for example, is easier in a se-
quence diagram, because in a communication diagram interactions must be
renumbered. Besides, OCL constraints cannot be stated in the simple form
for certain points in time, as it is the case for sequence diagrams.

6.6 Summary

In this chapter, a simple form of sequence diagrams, that is suitable for
modeling interactions between objects on an exemplary basis, has been in-
troduced. A sequence diagram consists of several objects with one timeline
each, between which interactions take place. Method calls, returns, and ex-
ceptions are allowed kinds of interactions. OCL constraints can be stated to
define object properties at certain “points in time.”

With a sequence diagram, desired system runs can, for example, be rep-
resented in order to better understand the system that needs to be imple-
mented. Another use for sequence diagrams is the definition of exemplary
runs in tests as well as the modeling of test drivers.

As the simple sequence diagrams defined here suffice for this purpose,
UML/P leaves out the extensions that can be found in other dialects of se-
quence diagrams. This also has the interesting advantage that available con-
cepts in sequence diagrams are easy to understand and use. Further literature
has already been pointed at in the relevant places in the chapter. Therefore,
we once again recommend only the very detailed overview [Krü00] about
dialects of sequence diagrams. There, also a chapter about the methodical
refinement of sequence diagrams can be found.

7

Further Reading

For those readers who are interested in additional insights, we recommend to
look at our additional literature that describes the theoretical underpinning,
as well as the application of these concepts in specific domains, and newer
forms of use.

Agile Model Based Software Engineering

Can agility and modeling be used in the same project? This question was
raised in [Rum04]: “Using an executable, yet abstract and multi-view model-
ing language for modeling, designing and programming still allows to use an
agile development process.” Modeling will be used in development projects
much more, if the benefits become evident early, e.g with executable UML
[Rum02c] and tests [Rum03]. In [GKRS06], for example, we concentrate on
the integration of models and ordinary programming code. In this book,
respectively [Rum12] and [Rum11], the UML/P, a variant of the UML es-
pecially designed for programming, refactoring and evolution, is defined.
The language workbench MontiCore [GKR+06] is used to realize the UML/P
[Sch12]. Links to further research, e.g., include a general discussion of how to
manage and evolve models [LRSS10], a precise definition for model composi-
tion as well as model languages [HKR+09] and refactoring in various model-
ing and programming languages [PR03]. In [FHR08] we describe a set of gen-
eral requirements for model quality. Finally [KRV06] discusses the additional
roles and activities necessary in a DSL-based software development project.
In [CEG+14] we discuss how to improve reliability of adaprivity through
models at runtime, which will allow developers to delay design decisions to
runtime adaptation.

Generative Software Engineering

The UML/P language family defined here is a simplified and semantically
sound derivate of the UML designed for product and test code generation.

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7_7

209

210 7 Further Reading

[Sch12] describes a flexible generator for the UML/P based on the MontiCore
language workbench [KRV10, GKR+06]. In [KRV06], we discuss additional
roles necessary in a model-based software development project. In [GKRS06]
we discuss mechanisms to keep generated and handwritten code separated.
In [Wei12] we show how this looks like and how to systematically derive a
transformation language in concrete syntax. To understand the implications
of executability for UML, we discuss needs and advantages of executable
modeling with UML in agile projects in [Rum04], how to apply UML for test-
ing in [Rum03] and the advantages and perils of using modeling languages
for programming in [Rum02c].

Unified Modeling Language (UML)

Many of our contributions build on UML/P described in this book are im-
plemented in [Sch12]. Semantic variation points of the UML are discussed in
[GR11]. We discuss formal semantics for UML [BHP+98] and describe UML
semantics using the “System Model” [BCGR09a], [BCGR09b], [BCR07b] and
[BCR07a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGR08]. A precisely defined semantics for variations is
applied, when checking variants of class diagrams [MRR11c] and objects di-
agrams [MRR11d] or the consistency of both kinds of diagrams [MRR11e].
We also apply these concepts to activity diagrams (ADs) [MRR11b] which al-
lows us to check for semantic differences of activity diagrams [MRR11a]. We
also discuss how to ensure and identify model quality [FHR08], how models,
views and the system under development correlate to each other [BGH+98b]
and how to use modeling in agile development projects [Rum04], [Rum02c]
The question how to adapt and extend the UML in discussed in [PFR02]
on product line annotations for UML and to more general discussions and
insights on how to use meta-modeling for defining and adapting the UML
[EFLR99], [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs)
are better to use, but need appropriate tooling. The MontiCore language
workbench [GKR+06], [KRV10], [Kra10] describes an integrated abstract and
concrete syntax format [KRV07b] for easy development. New languages and
tools can be defined in modular forms [KRV08, Völ11] and can, thus, easily
be reused. [Wei12] presents a tool that allows to create transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been exam-
ined in [GR11]. A successful application has been carried out in the Air Traf-
fic Management domain [ZPK+11]. Based on the concepts described above,
meta modeling, model analyses and model evolution have been examined
in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions for defining
views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based
tooling for DSLs [KRV07a] complete the collection.

7 Further Reading 211

Modeling Software Architecture

Distributed interactive systems communicate via messages on a bus, dis-
crete event signals, streams of telephone or video data, method invocation, or
data structures passed between software services. We use streams, statema-
chines and components [BR07] as well as expressive forms of composition
and refinement [PR99] for semantics. Furthermore, we built a concrete tool-
ing infrastructure called MontiArc [HRR12] for architecture design and ex-
tensions for states [RRW13b]. MontiArc was extended to describe variabil-
ity [HRR+11] using deltas [HRRS11] and evolution on deltas [HRRS12].
[GHK+07] and [GHK+08] close the gap between the requirements and the
logical architecture and [GKPR08] extends it to model variants. [MRR14] pro-
vides a precise technique to verify consistency of architectural views against
a complete architecture in order to increase reusability. Co-evolution of ar-
chitecture is discussed in [MMR10] and a modeling technique to describe
dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and composition-
ality for modeling. The mechanisms for distributed systems are shown in
[BR07] and algebraically underpinned in [HKR+07]. Semantic and method-
ical aspects of model composition [KRV08] led to the language workbench
MontiCore [KRV10] that can even develop modeling tools in a compositional
form. A set of DSL design guidelines incorporates reuse through this form of
composition [KKP+09]. [Völ11] examines the composition of context condi-
tions respectively the underlying infrastructure of the symbol table. Modular
editor generation is discussed in [KRV07a].

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, lan-
guage precision and detailedness is discussed in [HR04]. Here, we defined
a semantic domain called system model, which is based on a sound mathe-
matical theory. [RKB95, BHP+98] and [GKR96, KRB96]. An extended version
especially suited for the UML is given in [BCGR09b] and in [BCGR09a] its ra-
tionale is discussed. [BCR07a, BCR07b] contain detailed versions that are ap-
plied on class diagrams in [CGR08]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11e]
compares class and object diagrams with regard to their semantics. In [BR07],
a simplified mathematical model for distributed systems based on black-box
behaviors of components is defined. Meta-modeling semantics is discussed
in [EFLR99]. [BGH+97] discusses potential modeling languages for the de-
scription of an exemplary object interaction, today called sequence diagram.

212 7 Further Reading

[BGH+98b] discusses the relationships between a system, a view and a com-
plete model in the context of the UML. [GR11] and [CGR09] discuss gen-
eral requirements for a framework to describe semantic and syntactic varia-
tions of a modeling language. We apply these on class and object diagrams
in [MRR11e] as well as activity diagrams in [GRR10]. The second book re-
spectively [Rum12] embodies the semantics in a variety of code and test case
generation, refactoring and evolution techniques. [LRSS10] discusses evolu-
tion and related issues in greater detail.

Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code
they are not initially correct and need to be changed, evolved and maintained
over time. Model transformation is therefore essential to effectively deal with
models. Many concrete model transformation problems are discussed: evo-
lution [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refac-
toring [Rum12, PR03], translating models from one language into another
[MRR11c, Rum12] and systematic model transformation language develop-
ment [Wei12]. [Rum04] describes how comprehensible sets of such trans-
formations support software development, maintenance and [LRSS10] tech-
nologies for evolving models within a language and across languages and
linking architecture descriptions to their implementation [MMR10]. Automa-
ton refinement is discussed in [PR94, KPR97], refining pipe-and-filter archi-
tectures is explained in [PR99]. Refactorings of models are important for
model driven engineering as discussed in [PR03, Rum12]. Translation be-
tween languages, e.g., from class diagrams into Alloy [MRR11c] allows for
comparing class diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Many products exist in various variants, for example cars or mobile phones,
where one manufacturer develops several products with many similarities
but also many variations. Variants are managed in a Software Product Line
(SPL) that captures the commonalities as well as the differences. Feature di-
agrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK+08] using 150% models. Reducing overhead and associated
costs is discussed in [GRJA12]. Delta modeling is a bottom up technique
starting with a small, but complete base variant. Features are added (that
sometimes also modify the core). A set of applicable deltas configures a sys-
tem variant. We discuss the application of this technique to Delta-MontiArc
[HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only
describe spacial variability but also temporal variability which allows for us-
ing them for software product line evolution [HRRS12]. [HHK+13] describes
an approach to systematically derive delta languages. We also apply vari-
ability to modeling languages in order to describe syntactic and semantic

7 Further Reading 213

variation points, e.g., in UML for frameworks [PFR02]. And we specified a
systematic way to define variants of modeling languages [CGR09] and ap-
plied this as a semantic language refinement on Statecharts in [GR11].

State Based Modeling (Automata)

Today, many computer science theories are based on state machines in var-
ious forms including Petri nets or temporal logics. Software engineering is
particularly interested in using state machines for modeling systems. Our
contributions to state based modeling can currently be split into three parts:
(1) understanding how to model object-oriented and distributed software us-
ing statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a],
(2) understanding the refinement [PR94, RK96, Rum96] and composition
[GR95] of statemachines, and (3) applying statemachines for modeling sys-
tems. In [Rum96] constructive transformation rules for refining automata be-
havior are given and proven correct. This theory is applied to features in
[KPR97]. Statemachines are embedded in the composition and behavioral
specifications concepts of Focus [BR07]. We apply these techniques, e.g., in
MontiArcAutomaton [RRW13a] as well as in building management systems
[FLP+11].

A

Language Representation with Syntax Class

Diagrams

There is nothing more practical
than a good theory.

Immanuel Kant

Languages are used for representing and communicating information. There
are many different forms of language. This includes textual, diagrammatic,
visual, and also audio languages, but what all languages have in common is
that they are built on the basis of a vocabulary of basic elements. The basic el-
ements are often called characters and are grouped into reasonable and more
complex statements, according to the rules defined in a grammar. Therefore,
a language is usually regarded as the set of well-formed sentences that belong
to this language [HU90]. This holds for linguistics as well as for computer
science. This knowledge forms the basis for an elegant and well-elaborated
theory for the representation of textual languages that manifests itself in the
Chomsky hierarchy and that is applied in practice as Extended Backus–Naur
Form (EBNF). Today, EBNF and related approaches are used to represent pro-
gramming languages such as Java [GJSB05]. Even XML [McL01] and the def-
inition language for XML documents are essentially based on these concepts.

However, the textual form of grammars is not suitable for representing
languages such as UML that are almost completely based on diagrams. Due
to the nonlinear, two-dimensional structure of diagrams, the representation
of such a language is necessarily more complex. A well-elaborated approach
is provided by the extension of grammars on graphs, the graph grammars
[Nag79, Roz99, EEKR99]. However, this approach wasn’t applied for a rep-
resentation of UML. In part, the reason for this is that the elegance and sim-
plicity of textual grammars could not be retained in graph grammars: but
probably graph grammars are not used mainly because the description lan-
guage of UML in the form of class diagrams is suitable for describing graph-
ical languages as well.

Metamodeling [SRVK10, RA01, CEK01, CEK+00] primarily uses class di-
agrams as the fundamental notation. A metamodel defines the abstract syntax
of a graphical notation. Since UML is being standardized, it is common to

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7

215

216 A Language Representation with Syntax Class Diagrams

use a simplified form of class diagrams as the metamodel language. This ap-
proach has the advantage that only one language needs to be learned, but at
the same time, this approach is vulnerable to circular definitions. Numerous
examples such as the successful use of the English language for describing
the English grammar or EBNF for defining EBNF show that a circular defi-
nition is acceptable for practical purposes. Thus, we use a combination of an
EBNF grammar and syntax class diagrams (SCDs) by means of which textual
and diagrammatic parts of UML/P notations are defined.

Many of today’s systems such as SAP products or plant operating soft-
ware have to be highly configurable and often need to be able to be supple-
mented by additional functions/calculations during operation. Exchange-
able components such as electronic control units for cars or plugins in ex-
tendable architectures must also be configurable after completion of the
product. An elegant possibility for configuring the product is the interpreta-
tion of dynamically loadable models at runtime. Instead of generating code
which is then statically fixed, the model in this case is loaded at the start
of or even during the runtime of the production system. However, for this
purpose, an explicit representation of the model is necessary. As metamod-
eling techniques are able to represent the abstract syntax of a model, an ex-
plicit configuration with models becomes possible. Models@runtime e.g. in
[BBF09, FR07, CEG+14], thus, discuss possible forms of software develop-
ment.

In the simplest form, dynamically loadable models are used to configure
the system. We gain further flexibility but also increased risk if the system
itself can manipulate its models by creating new or adapting existing model
elements by manipulating its metamodel structure. Such a manipulable ar-
chitecture is flexible and risky at the same time. This is shown by various
applications of reflection and, at the same time, by many software engineer-
ing guidelines arguing against reflection. Java provides a reflection appli-
cation programming interface (API) where inspection and manipulation of
objects as well as the class structure are possible. This would be analogous to
keeping the metamodel fixed but inspectable while allowing modification of
models.

Such explizit representation of models at the runtime of the system en-
forces integration of parts of the design tools into the runtime system and,
thus, blurs the border between design tool and product. Typically, the type
system provided by the programming language is a hindrance and needs to
be ignored, or a language which does not use a strong type system has to
be used. Smalltalk development environments [Gol84] show how this could
look. Essential risks are the complexity and the lack of transparency of the
system, the lack of understandability of the possible behavior, as well as the
lack of testability, maintainability, and further development. However, the
system can be used considerably more flexibly, it is easier to configure, and
it is better suited for meeting dynamically changing or individual require-
ments. Some application fields are, for example:

A Language Representation with Syntax Class Diagrams 217

• Interpretation of behavior models as a functional description
• Modeling of the data structure for the adjustment of generic algorithms

for storage, display, aggregation, and reporting of data and facts
• Rules concerning diagnostics, constraints, and plausibility
• Definition of user interfaces for screens and smartphones
• Definition of aggregations and reports from datasets
• Definition of automated processes or workflows with human participa-

tion

In the UML standard [OMG10a], metamodeling mainly consists of class
diagrams that are supplemented by OCL conditions, if necessary. However,
by far not all concepts of class diagrams are used. Therefore, in this section, a
subset of the concepts provided by class diagrams are identified, and it is pro-
posed to use only this subset for modeling the abstract syntax of a graphic
notation. For an explicit distinction between UML class diagrams and the
class diagrams used for language definition, the latter are marked with syn-
tactic modifiers. Figure A.1 shows a syntax class diagram that defines a finite
automaton.

Figure A.1. SCD for finite automaton

Each of the seven classes introduced corresponds to a nonterminal. This is
why class names such as 〈Automaton〉 are represented in the form of a non-
terminal. A syntax class diagram contains a main class, in this case the class
〈Automaton〉, that is understood as an axiom. This means that the other six
nonterminals introduced in Fig. A.1 are part of the defined automaton. This
is shown by the graphic containedness of the additional nonterminals in the
main class. Alternatively, it is also possible to represent the composition be-
tween the automaton and its components using an association. In Fig. A.2,

218 A Language Representation with Syntax Class Diagrams

such an alternative representation for automata is given that, besides an ex-
plicit representation of the composition, shows further alternatives to the
previous Fig. A.1. Although both syntax class diagrams have different struc-
tures, they represent nearly the same information on automata. In Fig. A.2,
the only information missing is that only one initial state per automaton is
allowed.

Figure A.2. Alternative SCD for finite automata

Figure A.3 describes single components of syntax class diagrams in de-
tail. Neither methods nor tags such as visibilities are described in syntax class
diagrams; In a language description, they are as unimportant as interfaces.
However, it is possible to assign a cardinality to the contained classes. As de-
fault value, the cardinality * is assumed. The cardinality 1 marks a singleton
class.

This cardinality is to be understood as the association cardinality of the
implicitly stated association between the axiom and the marked nonterminal.
Figure A.2 explicitly shows these associations and their cardinalities.

We regard the terms “nonterminal” and “syntax class” as synonymous
and replace them with the term “metaclass” used in metamodeling. It should
particularly be mentioned that modifiability is not important in syntax class
diagrams. Methods and forms of composition are insignificant because com-
position mainly affects the lifecycle of participating objects. Also, navigation
information only plays a minor role, e.g., in order to depict the reading di-
rection in a reflexive association. The mentioned modeling concepts, hence,
are mainly used to increase the readability of the diagram. Readability can
additionally be increased by using icons that depict the graphic appearance
of a syntax class. Figure A.4 represents such an annotation of Fig. A.1.

A class diagram and, thus, also a SCD describes a set of possible object
structures. In case of an SCD such as the one shown in Fig. A.4, each of these
object structures describes an automaton. As each object has an object iden-
tity, the SCD, however, contains subtle differences from the mathematical
definition of automata. Hence, according to the SCD it is possible that dif-
ferent transitions have the same source and target state as well as the same

A Language Representation with Syntax Class Diagrams 219

Class (synonyms: nonterminal, syntax class, type) describes a set of similar model ele-
ments. Its structure is determined by attributes and associations to other classes.

Attribute (synonyms: syntax attribute) describes a property of a model element. An
attribute principally consists of name and class. However, when unambiguous,
the name can be omitted.

Inheritance. The subclass inherits its attributes from the superclass. The subclass can
be extended by additional attributes. The instances of the subclass form a subset
of the instances of the superclass.

Association is a binary relation between classes. The cardinality restricts this rela-
tion. Association names, role names, composition form, and navigation direction im-
prove readability.

Cardinality (synonyms: multiplicity) is stated for each association end.
Class cardinality describes the number of objects of a class. This cardinality restricts

the implicit composition from the axiom to the marked nonterminal.
Context conditions describe additional properties that cannot easily or at all be ex-

pressed by the SCD.
Model element (synonyms: element, syntax object, object of the abstract syntax) is an

instance of a syntax class.

Figure A.3. Definitions for the syntax class diagram

Figure A.4. SCD with illustrating symbols

symbol. In contrast, in mathematical modeling, a transition is typically iden-
tified by these three components. A suitable context condition that can, e.g.,
be formulated using OCL allows emulation of the mathematical modeling in
SCDs. Such a context condition is described, for example, in Fig. A.5.

The use of OCL in the context of syntax class diagrams is made visible by
a special marker in the top right. “SOCL” stands for Syntax-OCL, i.e., OCL
is applied to a syntax definition using a syntax class diagram. This allows
use of nonterminals such as 〈Automaton〉 and 〈Transition〉 as classes and for
navigation purposes. The OCL constraint states that, for each automaton a,

220 A Language Representation with Syntax Class Diagrams

SOCLcontext 〈Automaton〉 a inv:

forall t1,t2 in a.〈transition〉 :

t1.source == t2.source &&

t1.target == t2.target &&

t1.〈character〉 == t2.〈character〉
implies t1 == t2

Figure A.5. Automaton transitions are unambiguous

an invariant holds stating that two transitions are identical if they are equal
in source state, target state, and input symbol. As is common in OCL, un-
named associations are navigated by using the target class in the given con-
text condition. Hence, the transitions of an automaton a can be assessed by
the implicitly given composition relation between the classes 〈Automaton〉
and 〈Transition〉 by the navigation expression a.〈transition〉.

As a syntax class describes a set of model elements, inheritance is a subset
relation between those sets. In the example in Fig. A.1, the set of possible
states of an automaton is represented by the nonterminal 〈State〉. This set
has two subsets, represented by 〈InitialState〉 and 〈FinalState〉. However, it is
specified neither whether these partition the total set of states nor whether
they are free of overlaps. Such constraints had to be expressed by additional
context conditions.

Sometimes it is pragmatic to neglect the representation of a property in
the SCD and to describe it by a SOCL condition. Otherwise, the SCD would
be overloaded. For programming language grammars, the priorities of infix
operators are often represented by an explicit table and not by a context-free
grammar. This is a typical example renunciation of representation by an SCD.
When using SCDs and SOCL context conditions, there is a large design space
for defining languages and representing their syntax in a readable form.

Due to the combination of SCDs with the textual EBNF, further variation
possibilities arise; e.g., syntax classes can be represented graphically with as-
sociations and attribute lists or by textual productions. However, some con-
ceptional differences need to be taken into consideration when using SCDs
and EBNF.

While EBNF strictly distinguishes between the definition and the usage of
a nonterminal, this distinction is not made in the SCD. A production always
defines the nonterminal on the left side, while nonterminals in the expression
of the right side are only used. A syntax class is defined by the representa-
tion in a SCD and, at the same time, used by the connection with other syntax
classes in the SCD. Thus, all mentioned syntax classes could formally be re-
garded as defining. The use of composition structure diagrams of UML could
possibly be a remedy by assuming that the occurrence of a class within such
a diagram is not defining for this class.

A Language Representation with Syntax Class Diagrams 221

In the SCD in Fig. C.2, we demand that the three nonterminals 〈Attribute〉,
〈Method〉, and 〈MethodSignature〉 exist but do not give a detailed defini-
tion. This can be concluded from the omission of any attributes. Therefore,
in Fig. C.3 these nonterminals are defined in EBNF.

As a pragmatic rule for combining SCDs and EBNF productions, we,
thus, assume that the nonterminals not further detailed in the SCD are de-
fined by EBNF productions or other SCDs. Vice versa, nonterminals used on
the right side in EBNF productions can be defined by a SCD. This leads to
mutual integration of SCDs with EBNF productions.

As is common in object-oriented modeling and as proposed by the metho-
dology propagated in this book, it is possible to use several class diagrams in
order to describe different aspects of systems. This technique can, of course,
also be used for syntax class diagrams. Then, a syntax diagram represents a
part of the overall language. By merging all syntax class diagrams, a compre-
hensive representation of the described language arises.

B

Java

The limits of my language
are the limits of my world.

Ludwig Wittgenstein

The programming language used in software development considerably in-
fluences the developers’ effectivity as well as the quality, costs, evolvability,
and maintainability of the product. The UML/P methodology introduced in
this book uses Java as its target language. To achieve good integration with
the modeling language UML/P, elements from the Java grammar are used
as far as possible when defining UML/P. Therefore, the reference grammar
defined in [GJSB05] for Java 6 is transferred into EBNF in this section.

When using one of the subsequently introduced nonterminals in other
chapters, the subscript of the figure in which the nonterminal is defined is
added to it. Thus, 〈TypeB.2〉 refers to the definition of this nonterminal in
Fig. B.2.

A representation of Java’s lexical elements is left out here and reference
is made to [GJSB05], where the form of comments, the “white spaces,” the
Unicode alphabet used for Java, and the keywords are explained. Especially,
the nonterminals 〈Literal〉, 〈Identifier〉, and 〈Digits〉 listed in Fig. B.1 are as-
sumed to be known (see also Appendix A).

〈Literal〉 describes the set of all constants. Among others, it contains numbers and
strings. Examples are 34, 0x3ff, or ’T’.

〈Identifier〉 is the set of all names that do not represent keywords. These names start
with a letter or an underscore and may contain numbers. Classes, attributes,
methods, and other artifacts of Java can be labeled with such names.

〈Digits〉 is a nonempty decimal numerical sequence.

Figure B.1. Basic elements: literal, identifier, and digits

From the 124 nonterminals given in [GJSB05] with relatively simple pro-
ductions, 62 nonterminals with more complex EBNF productions are com-

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7

223

224 B Java

pressed. In doing so, nearly all nonterminals taken over keep their origi-
nal semantics. Some nonterminals are newly introduced. Figure B.2 contains
types, normal and generic classes, qualified names, and compilation units
(files).

EBNF〈CompilationUnit〉 ::= { 〈Annotation〉∗ package 〈Name〉 ; }opt

{ import staticopt 〈Name〉 { . * }opt

; }∗ 〈TypeDeclaration〉∗

〈TypeDeclaration〉 ::= 〈ClassDeclaration〉
| 〈InterfaceDeclaration〉
| 〈EnumDeclaration〉
| 〈AnnotationTypeDeclaration〉
| ;

〈Name〉 ::= 〈Identifier〉1−∗

.

〈BasicType〉 ::= boolean | byte | int | ...

〈Type〉 ::= 〈BasicType〉
| 〈Name〉 〈TypeArguments〉opt

| 〈Type〉 []

| 〈TypeVariable〉
〈TypeVariable〉 ::= 〈Identifier〉 | ?

〈TypeArguments〉 ::= < 〈TypeArgument〉1−∗

, >

〈TypeArgument〉 ::= 〈Type〉 | ?

| ? extends 〈Type〉1−∗

&
| ? super 〈Type〉1−∗

&
〈TypeVoid〉 ::= 〈Type〉 | void

Figure B.2. Types, names, and compilation units

The definition of classes and interfaces is described in Fig. B.3.
The attributes, methods, and constructors contained in class and interface

declarations are explained in Fig. B.4.
The form of Java statements is explained in Fig. B.5. Despite the rather

compact representation of the grammar that has become possible due to the
use of EBNF, the language described here is nearly identical to the original
language Java. Minor simplifications have been made to increase the gram-
mar’s readability. The grammar, for example, does not specify that at least
one catch or finally needs to be stated in case of a try statement. Fur-
thermore, this compact grammar is ambiguous with respect to the known
if-then-else phenomenon and therefore not directly usable for a parser.

The sublanguage for describing expressions is defined in Fig. B.6. The ex-
pression language available in Java is relatively complex, not least due to the
possibility of defining and using inner classes as well as initializing arrays.
Because of this, the grammar from [GJSB05], on the one hand, has been com-
pactified by a complete outsourcing of operator priorities in Table B.7. On

B Java 225

EBNF〈ClassDeclaration〉 ::= 〈Modifier〉∗ class 〈Identifier〉
〈TypeParameters〉opt

{ extends 〈Type〉 }opt

{ implements 〈Type〉1−∗

, }opt

〈ClassBody〉
〈ClassBody〉 ::= { 〈ClassBodyDeclaration〉∗ }

〈ClassBodyDeclaration〉
::= 〈FieldDeclaration〉
| 〈MethodDeclaration〉
| static

opt 〈Block〉
| 〈ConstructorDeclaration〉
| 〈TypeDeclaration〉

〈Modifier〉 ::= public | protected | private | static

| final | abstract | ...

| 〈Annotation〉

〈InterfaceDeclaration〉
::= 〈Modifier〉∗ interface 〈Identifier〉

〈TypeParameters〉opt

{ extends 〈Type〉1−∗

, }opt

{ 〈InterfaceBodyDeclaration〉∗ }

〈InterfaceBodyDeclaration〉
::= 〈FieldDeclaration〉
| 〈MethodHeader〉 ;

| 〈TypeDeclaration〉

〈EnumDeclaration〉 ::= 〈Modifier〉∗ enum 〈Identifier〉
{ implements 〈Type〉1−∗

, }opt

〈EnumBody〉
〈EnumBody〉 ::= { 〈EnumConstant〉∗, ,

opt

{ ; 〈ClassBodyDeclaration〉∗ }opt }

〈EnumConstant〉 ::= 〈Annotation〉∗ 〈Identifier〉 〈Arguments〉opt

〈ClassBody〉opt

〈TypeParameters〉 ::= < 〈TypeParameter〉1−∗

, >

〈TypeParameter〉 ::= 〈Identifier〉 { extends 〈Type〉1−∗

& }opt

Figure B.3. Classes and interfaces

the other hand, the productions for 〈Primary〉 and 〈Expression〉 have been
restructured.

Annotations are defined in Fig. B.8.

OCL Statement for Assertions

Java offers an assert statement that allows to integrate OCL assertions into
the code, such that they are checked at runtime. With this, an important step

226 B Java

EBNF〈FieldDeclaration〉 ::= 〈Modifier〉∗ 〈Type〉 〈VariableDeclarator〉1−∗

, ;

〈VariableDeclarator〉::= 〈Identifier〉 []
∗ { = 〈VariableInitializer〉 }opt

〈VariableInitializer〉 ::= 〈Expression〉
| { 〈VariableInitializer〉∗, ,

opt }

〈MethodDeclaration〉
::= 〈MethodHeader〉 { 〈Block〉 | ; }

〈MethodHeader〉 ::= 〈Modifier〉∗ 〈TypeParameters〉opt 〈TypeVoid〉 〈Identifier〉
〈FormalParameters〉 []

∗ 〈Throws〉
〈ConstructorDeclaration〉

::= 〈ConstructorHeader〉 〈Block〉
〈ConstructorHeader〉

::= 〈Modifier〉∗ 〈TypeParameters〉opt 〈Identifier〉
〈FormalParameters〉 〈Throws〉

〈FormalParameters〉 ::= (〈FormalParameter〉1−∗

,

{ , 〈LastFormalParameter〉 }opt)

| (〈LastFormalParameter〉opt)

〈FormalParameter〉 ::= {final | 〈Annotation〉}∗ 〈Type〉 〈Identifier〉 []
∗

〈LastFormalParameter〉
::= {final | 〈Annotation〉}∗ 〈Type〉 ... 〈Identifier〉 []

∗

〈Throws〉 ::= { throws 〈Type〉1−∗

, }opt

Figure B.4. Attributes, methods, and constructors

Priority Operator Associativity Operand, semantics

13 ++, -- Right Numbers
+, -, ˜, ! Right Numbers, Boolean(!)
(type) Right Type conversion (cast)

12 *, /, % Left Numbers
11 +, - Left Numbers, string (+)
10 <<, >>, >>> Left Shifts
9 <, <=, >, >= Left Comparisons

instanceof Left Type comparison
8 ==, != Left Comparisons
7 & Left Numbers, Boolean
6 ˆ Left Numbers, Boolean
5 | Left Numbers, Boolean
4 && Left Boolean logic
3 || Left Boolean logic
2 ? : Right Choice expression
1 =, *=, /=, %= Right Assignment

+=, -=

<<=, >>=, >>>=

&=, ˆ=, |=

Table B.7. Priorities of the infix operators

B Java 227

EBNF〈Block〉 ::= { 〈Statement〉∗ }

〈Statement〉 ::= final
opt 〈Type〉 〈VariableDeclarator〉1−∗

, ;

| 〈TypeDeclaration〉
| 〈Block〉
| ;

| 〈Expression〉 ;

| switch (〈Expression〉) { 〈SwitchPart〉∗ }

| do 〈Statement〉 while (〈Expression〉) ;

| break 〈Identifier〉opt ;

| continue 〈Identifier〉opt ;

| return 〈Expression〉opt ;

| assert 〈Expression〉 { : 〈Expression〉 }opt ;

| synchronized (〈Expression〉) 〈Block〉
| throw 〈Expression〉 ;

| try 〈Block〉 〈CatchClause〉∗ { finally 〈Block〉 }opt

| 〈Identifier〉 : 〈Statement〉
| if (〈Expression〉) 〈Statement〉

{ else 〈Statement〉 }opt

| while (〈Expression〉) 〈Statement〉
| for (〈ForInit〉opt ; 〈Expression〉opt ;

〈Expression〉∗,) 〈Statement〉

| for (〈Modifier〉opt 〈Type〉 〈Identifier〉 :

〈Expression〉) 〈Statement〉

〈SwitchPart〉 ::= { case 〈Expression〉 : | default : }1−∗

〈BlockStatement〉∗

〈CatchClause〉 ::= catch (〈Type〉 〈Identifier〉 []
∗

) 〈Block〉
〈ForInit〉 ::= 〈Expression〉1−∗

,

| final
opt 〈Type〉 〈VariableDeclarator〉1−∗

,

Figure B.5. Block and statement

towards the practical use of invariants has been made. In this section, an ad-
ditional form of the assert statement is suggested, allowing use of OCL
expressions and being able to integrate defined and labeled OCL constraints
also by referencing them. This statement starts with the keyword ocl. Addi-
tionally, the let construct is taken over from OCL to define local variables
which, just as in OCL, are meant for exclusive use in invariants. In Fig. B.9,
extensions are introduced by supplementing the nonterminal 〈Statement〉
from Fig. B.5 by appropriate statements.

The ocl statement defined here only allows the use of OCL expressions,
so that the absence of side-effects is ensured. The first argument of the ocl
statement is the Boolean predicate to be checked. The optional second argu-
ment is evaluated if the predicate is false, and its value is printed, e.g., when
using it in tests.

228 B Java

EBNF〈Primary〉 ::= (〈Expression〉)

| 〈Literal〉
| { 〈Primary〉 . }opt 〈Identifier〉 〈Arguments〉opt

| { 〈Primary〉 . }opt this 〈Arguments〉opt

| { 〈Primary〉 . }opt super 〈Arguments〉
| 〈Primary〉 [〈Expression〉]

| super . 〈Identifier〉 〈Arguments〉opt

| new 〈Name〉 []
1−∗ { 〈VariableInitializer〉∗, ,

opt }

| new 〈Name〉 { [〈Expression〉] }1−∗

[]
∗

| { 〈Primary〉 . }opt new 〈Name〉 〈Arguments〉
〈ClassBody〉opt

| { 〈Primary〉 | 〈TypeVoid〉 } . class

〈PrefixOp〉 ::= ++ | -- | + | - | ˜ | !

| (〈Type〉)

〈PostfixOp〉 ::= ++ | --

〈Arguments〉 ::= (〈Expression〉∗,)

〈Expression〉 ::= 〈PrefixOp〉∗ 〈Primary〉 〈PostfixOp〉∗

| 〈Expression〉 〈InfixOp〉 〈Expression〉
| 〈Expression〉 instanceof 〈Type〉
| 〈Expression〉 ? 〈Expression〉 : 〈Expression〉
| 〈LeftHandSide〉 〈AssignmentOperator〉 〈Expression〉

〈InfixOp〉 ::= * | / | % | + | - | << | >> | >>>

| < | > | <= | >= | == | !=

| & | ˆ | | | && | ||

〈AssignmentOperator〉
::= = | *= | /= | %= | += | -= | <<= | >>=

| >>= | &= | ˆ= | |=

〈LeftHandSide〉 ::= 〈Name〉
| 〈Primary〉 { [〈Expression〉] | . 〈Identifier〉 }
| super . 〈Identifier〉

Figure B.6. Expressions in Java

While the first variant of the ocl statement allows direct use of an OCL
expression in the first argument, the other two forms refer to an OCL con-
straint defined elsewhere by using a name. So, OCL constraints can be
reused.

An OCL constraint starts with an explicit definition of a context in the
form of one or more variables. In this way, a universal quantification over
the given variables is made, as explained in Sect. 3.1.1. To resolve this quan-
tification, an explicit assignment of the objects to be checked to the context
variables can be made by regarding the OCL constraint as a Boolean predi-
cate that has these objects as arguments. If, for example, the following condi-
tion is defined:

B Java 229

EBNF〈Annotation〉 ::= @ 〈Name〉
({ 〈IdentifierB.1〉 = 〈ElementValue〉 }∗,)

| @ 〈Name〉 { (〈ElementValue〉) }opt

〈ElementValue〉 ::= 〈Expression〉
| 〈Annotation〉
| { 〈ElementValue〉∗, ,

opt }

〈AnnotationTypeDeclaration〉
::= 〈Modifier〉∗ @ interface 〈Identifier〉

{ 〈AnnotationTypeElementDeclaration〉∗ }

〈AnnotationTypeElementDeclaration〉
::= 〈TypeDeclaration〉
| 〈FieldDeclaration〉
| 〈Modifier〉∗ 〈Type〉 〈Identifier〉 ()

default 〈ElementValue〉 ;

Figure B.8. Annotations in Java

EBNF〈Statement〉 ::= ...

| let 〈OCLVarDeclaratorC.8〉 ;

| ocl 〈AssertPredicate〉 { : 〈OCLExprC.8〉 }opt ;

〈AssertPredicate〉 ::= 〈OCLExprC.8〉
| 〈IdentifierB.1〉
| 〈IdentifierB.1〉 (〈OCLExprC.8〉

∗

,)

Figure B.9. Extension of Java instructions

OCLcontext Auction a, Person p inv NM:

p in a.bidder implies

forall m in a.message: m in p.message

it can be checked with ocl NM(a,theo) whether the messages of an auc-
tion have been sent to person theo.

If the context of the OCL constraint is not specified with context but
with the keyword import, according to the definition, there is no universal
quantification but the specified names are directly imported from the context.
This means that the variation of the above OCL constraint

OCLimport Auction a, Person p inv NM2:

p in a.bidder implies

forall m in a.message: m in p.message

can be used in the statement ocl NM2 about the two variables a and p de-
fined in the Java context without explicitly stating these variables.

Often, previous values of attributes or intermediate results of previous
calculations are necessary to check assertions at a certain point in time. At
the time of evaluation of an assertion, these may not be available anymore

230 B Java

and, therefore, have to be explicitly cached previously.1 The let construct is
suited for defining intermediate results that are exclusively used for check-
ing assertions. It introduces an intermediate variable that cannot be used in
normal Java code and, therefore, has no effect on the program execution. Like
ocl instructions, let instructions can be omitted in the production system.2

According to the semantics of OCL constraints and the OCL let con-
struct, exceptions occurring during the evaluation of arguments of these con-
structs are caught. If the argument of the ocl construct evaluates to an ex-
ception, this is taken as nonfulfillment of the condition. However, in the let
statement, the variable is allocated a default value such as null.

1 The operator @pre is available for attributes and parameters in OCL constraints
and designates the respective values at the start of the call.

2 In Java, such helper variables need to be declared as normal variables and would
therefore be usable in the production code.

C

The Syntax of UML/P

Man is the model of the world.

Leonardo Da Vinci

C.1 UML/P Syntax Overview

Form of the Syntax Definition

A proper description of a language and its semantics is the foundation for
a detailed discussion and the introduction of techniques for its use. As dis-
cussed in [HR00, HR04], the desired precision of the semantics of a language
also depends on the intended readers. As some modifications of the syntax
have been made compared with the UML standard, it is necessary to pre-
cisely specify the syntactical form of UML/P diagrams. For this purpose, the
procedure for representation of combined graphical and textual languages
introduced in Appendix A is used.

Using a combination of EBNF and syntax class diagrams (SCDs) for the
definition of class diagrams involves some danger of a circular definition. In
Appendix A, the resulting problems are discussed and solutions presented.
Successful examples such as that EBNF can be used to define itself, or that
the English language is also used to define itself (see encyclopedia, dictio-
nary, and grammar) show that a circular definition of a language in itself
is no practical problem. By applying a language to itself, a layering into a
base language level and a “meta language level” arises. In metamodeling ap-
proaches, the fact that the same language is used on both levels, is utilized
to allow a model to access its own metalevel. In total, a metamodel struc-
ture that contains up to four layers arises, as in the MOF (“meta object fa-
cility” [OMG01b]), whose application to UML surely increases the flexibility
of UML but also its complexity and, thus, considerably reduces its under-
standability. Therefore, we pay particular attention to a strict separation of

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7

231

232 C The Syntax of UML/P

the language level UML/P and the representation of this language by EBNF
and SCD in this approach.

UML/P

UML/P is a syntactically precisely specifiable language, consisting of sev-
eral types of diagrams and texts that can also be used in an integrated form.
Figure C.1 describes the topmost production for UML/P, reflecting this seg-
mentation. Nonterminals that are taken from other figures are tagged with
the number of the defining figure, e.g., the nonterminal 〈ClassDiagramC.2〉 is
defined in Fig. C.2.

The artifacts used in UML/P can contain names and, thus, be referenced
within other artifacts. In this way, groups of artifacts, for example, can be
used in order to define a test case.

EBNF〈UML/P〉 ::= 〈UMLPunit〉∗

〈UMLPunit〉 ::= 〈ClassDiagramC.2〉
| 〈OCLC.7〉
| 〈ObjectDiagramC.14〉
| 〈StatechartC.16〉
| 〈SequenceDiagramC.19〉
| 〈CompilationUnitB.2〉

Figure C.1. Top level of the syntax for UML/P

UML/P described here does not contain a grouping concept like “pack-
ages” in Java or UML. Furthermore, other diagram types such as component,
communication, use-case, and activity diagrams are not contained in UML/P
represented in this book.

C.2 Class Diagrams

This section first defines the core parts of a class diagram, then adds the tex-
tual parts, and finally defines stereotypes and tags.

C.2.1 Core Parts of a Class Diagram

The 〈ClassDiagram〉 language is an important kind of diagram of UML. It is
defined in Fig. C.2. It introduces the main nonterminal and a number of fur-
ther language elements. Including syntax classes such as 〈Classifier〉 as well
as the relation between syntactical elements represented by syntax associa-
tions such as implements.

C.2 Class Diagrams 233

Figure C.2. Syntax of the core parts of class diagrams

The syntax class diagram given in Fig. C.2 is marked with SCD in the
top right in order to state that it is not a normal class diagram. A detailed
description of SCDs can be found in Appendix A.

It is known from software engineering that there are almost always mul-
tiple variants to model information. This also holds for the representation of
the internal structure of a language. The structure of class diagrams modeled
in Fig. C.2 has been chosen because it is almost compliant with the meta-
model given in the UML standard [OMG10a]. Deviations have become pos-
sible especially because of simplifications that are partly based on the fact
that textual parts of the language are subsequently represented by an EBNF
grammar.

As common in language definitions, comments, like that, e.g., shown in
Fig. 2.3, are not explicitly included. However, graphical elements are anno-
tatable with comments. Textual comments are also possible and reasonable.
As common in Java, textual comments start with // or are included in /*
. . .*/.

C.2.2 Text Parts of a Class Diagram

In Fig. C.2 the nonterminals 〈MethodSignature〉, 〈Method〉, and 〈Attribute〉
have not yet been detailed any further. In addition, several nonterminals
have been used as types of syntax attributes that also require definition.
〈ClassName〉, for example, is a syntax attribute that is assigned to the syn-

234 C The Syntax of UML/P

tax class 〈Classifier〉. The productions from Fig. C.3 represent these textual
parts.1

EBNF〈ClassName〉 ::= 〈TypeB.2〉
〈AssociationName〉 ::= /

opt 〈IdentifierB.1〉
〈RoleName〉 ::= 〈Modifiers〉 〈IdentifierB.1〉
〈Qualifier〉 ::= 〈IdentifierB.1〉 | 〈TypeB.2〉

〈Cardinality〉 ::= 1 | 0..1 | *
〈Visibility〉 ::= + | # | - | ?

〈Attribute〉 ::= 〈Modifiers〉 〈VarDeclaration〉
〈Modifiers〉 ::= /

opt { 〈Visibility〉 | 〈ModifierB.3〉 }∗

〈VarDeclaration〉 ::= 〈TypeCardinality〉opt 〈IdentifierB.1〉 []
∗

{ = 〈ExpressionB.6〉 }opt

〈TypeCardinality〉 ::= 〈TypeB.2〉 { [〈Cardinality〉] }opt

〈Method〉 ::= 〈MethodSignature〉 〈BlockB.5〉
opt

| 〈ConstructorSignature〉 〈BlockB.5〉
opt

〈MethodSignature〉 ::= 〈Modifiers〉 〈TypeVoidB.2〉
opt 〈IdentifierB.1〉

〈FormalParametersB.4〉
opt

[]
∗ 〈ThrowsB.4〉

〈ConstructorSignature〉
::= 〈Modifiers〉 〈IdentifierB.1〉

〈FormalParametersB.4〉
opt 〈ThrowsB.4〉

Figure C.3. Syntax for names and associations

In Java it is customary for class names to begin with upper-case letters.
This can be ensured by suitable and automatically verifiable context condi-
tions.

As far as possible and reasonable, the nonterminals in the UML/P gram-
mar were taken over from UML and Java language definitions. To facilitate
a smooth connection between UML/P and Java, our productions are mostly
defined in analogy to the Java language standard [GJSB05] or the EBNF rep-
resentation of the Java language standard given in Appendix B.

When comparing the productions in Fig. C.3 with the grammar given in
the Java language standard [GJSB05] respectively with its EBNF representa-
tion in Appendix B it is striking that in class diagrams some information are
optional. While in a programming language, all definitions must essentially
be complete, in a modeling language such as UML/P, e.g., type definitions
for attributes or parameters as well as the complete parameter list for meth-
ods can be missing. For generation of Java code, this information must be

1 Constraint language OCL is examined in Chap. 3.

C.2 Class Diagrams 235

extracted from other sources, for example, other class diagrams. The possi-
bility of omitting this information in early stages of development allows the
modeler to abstractly represent facts suitable for communication purposes
and to abstract detailed information if these, at the time of model creation,
are still not sufficiently known or consolidated.

The grammar given in Figures C.2 and C.3 basically allows the specifi-
cation of visibility of attributes and methods in two ways. The rather iconic
visibility modifiers “+”, “#”, “?”, and “-” can alternatively be expressed by
Java modifiers such as public. Further modifiers known from Java, e.g.,
final, have no graphical equivalent in UML. Thus, they are used directly in
UML/P. However, it is advised to represent such information only very re-
luctantly in class diagrams, as class diagrams can thereby seem overloaded
very easily. In contrast to a programming language, the absence of informa-
tion in a modeling language does not automatically imply a realization by
default. In principal, models allow abstraction. In class diagrams, abstrac-
tion generally manifests itself by omitting detailed information, starting with
attribute types, modifiers, attributes, and methods up to whole groups of
classes. This means that the modeler is free to decide how much detailed
information is represented in the diagrams.

Due to their wide spread use, a detailed explanation of the context condi-
tions of class diagrams is left out here. Examples for context conditions are:
In a class, two attributes may not have the same name, all data types used
must exist in the UML model, and the number and the type of arguments of
method calls must be compatible with the method declaration. Further con-
text conditions arise from using Java as a target language and from the UML
standard for class diagrams.

C.2.3 Tags and Stereotypes

Stereotypes and tags are used to classify model elements and assign addi-
tional characteristics of various forms to them. Figure C.4 introduces both
nonterminals 〈Stereotype〉 and 〈Tag〉 and shows how stereotypes and tags
are used. Furthermore, a template for the definition of stereotypes is intro-
duced in Sect. 2.5.3. Just as in the UML standard, a rather informal, tabular
form is provided for the definition of a stereotype. The template is therefore
not realized by a precisely specified abstract syntax.

In the previous definitions of the syntax for class diagrams in Figures C.2
and C.3, neither tags nor stereotypes have explicitly been introduced. As tags
and stereotypes are rather generic to define additional properties for model-
ing elements, and as they can be used on all model elements equally, we omit
an explicit introduction in the further grammar definitions of UML. Explic-
itly using the two elements would lead to a less readable overload of the
syntax diagrams as well as of the textual grammar. However, we show one
syntax diagram with explicit tags and stereotypes as an example in Fig. C.5.

236 C The Syntax of UML/P

EBNF〈Tag〉 ::= { 〈TagEntry〉∗, }

〈TagEntry〉 ::= 〈Keyword〉 { = 〈Value〉 }opt

〈Keyword〉 ::= 〈IdentifierB.1〉
〈Value〉 ::= 〈ExpressionB.6〉

〈Stereotype〉 ::= � 〈IdentifierB.1〉 �

Figure C.4. Syntax for tags and stereotypes

Figure C.5. Syntax of class diagrams with tags and stereotypes

From version 1.4 on, the UML standard provides the possibility of dec-
orating model elements with an arbitrary number of stereotypes. This al-
lows additional convenience when compactly modeling facts, but it should
be used with caution. Otherwise, models can become overly complex, simi-
lar to what happens with use of multiple inheritance. Textually represented
modeling elements can be decorated with stereotypes and tags, too. In the
UML standard, stereotypes are generally appended before and tags after a
model element. The nonterminals 〈Attribute〉 and 〈MethodSignature〉 from
Fig C.3 are therefore exemplarily extended as follows:

EBNF〈Attribute〉 ::= 〈Stereotype〉∗

〈Modifiers〉 〈VarDeclaration〉
〈Tag〉∗

C.2 Class Diagrams 237

EBNF〈MethodSignature〉 ::= 〈Stereotype〉∗

〈Modifiers〉 〈TypeVoidB.2〉
opt

〈IdentifierB.1〉 〈FormalParametersB.4〉
opt

[]
∗ 〈ThrowsB.4〉

〈Tag〉∗

The two representation indicators “ c©” and “. . .” introduced in Sect. 2.4
characterize the completeness or incompleteness of a model representation
respectively. Similar to stereotypes, they are implicitly added wherever a list
of language elements is allowed.

C.2.4 Comparison with the UML Standard

The class diagrams presented in this book differ in some points from the
UML standard [OMG10a]. The class diagrams used in UML/P concentrate
on aspects significant for an agile development method. Therefore, some con-
cepts less useful for these purposes are not discussed here. Interesting, but
only usable in a special context, are, for example, some new constructs such
as the subset relation for associations. However, UML/P also provides some
extensions especially developed for relevant tasks in this book.

The UML standard [OMG10a] and UML/P vary not only in the lan-
guage but also in the form of representation, i.e., the language definition.
The UML standard at first presents all model elements such as classes, ob-
jects, or states as independent units. It describes their properties, restrictions,
as well as fields of application and relationships without intensively referring
to the embedding of the model element into the graphical representation (di-
agram). The grouping of the model elements in diagrams, e.g., the class di-
agram or the Statechart, happens only subsequently. This book, in contrast,
pursues, just like many other UML introductions, a diagram-based explana-
tion. Thus, all model elements interesting for class diagrams have been ex-
plained in this chapter. The only exception are consistency conditions, which
are dealt with separately in Chap. 3.

A comparison of UML/P with the UML standard shows that in UML/P
the following model elements are omitted or not integrated in full generality:

• A number of stereotypes, such as �constructor� for tagging constructor
methods, have not been introduced explicitly.

• Usually, a class is represented with three compartments for the name, the
attributes, and the method signatures. In analysis models, further labeled
parts are possible, e.g., responsibilities.

• Nested classes, as provided for example by Java, can be represented in
UML.

• UML offers another compact form for representing an interface in the
class diagram. An interface is attached to classes in the form of a small
circle if these classes implement the interface.

• Dependencies such as the �use� relation for representing syntactic depen-
dency relations are not used in UML/P.

238 C The Syntax of UML/P

• UML provides parameterized classes and a graphical representation of
the parameter binding of such classes.

• UML/P does not require the explicit representation and accessability of
the metamodeling level within the language itself. A more detailed dis-
cussion of motivation and effects is contained in Appendix A.

• Due to the variety of possibilities to interpret aggregation (see [HSB99]),
the introduction of the weak form of aggregation (white diamond) has
been omitted and only the strong composition in the form of a black dia-
mond has been explained.

• Associations have been simplified. E.g., cardinalities have been restricted
to “1”, “0..1”, and “*”. Association classes and multitier associations
have not been introduced. In qualified associations, the qualifier has been
restricted to one element, but a mechanism has been added for combin-
ing the qualifier with an attribute of the target class. The nonnavigability
of an association direction has been omitted, because the necessity for
navigability can be directly recognized in code generation by a tool.

• Some tags for the inheritance relation, e.g., {overlapping}, have not
been introduced.

• UML/P provides slightly different modifiers such as readonly for at-
tributes.

Many of the mentioned additions could be integrated into UML/P with-
out further ado. Especially, default as well as project- and company-specific
stereotypes and tags could easily be transferred, especially when they are
meant for documentation purposes.

In contrast to the UML standard, UML/P, however, offers the two repre-
sentation indicators “ c©” and “. . .” that provide the reader of a diagram with
additional information on its completeness.

Furthermore, the representation of attributes and method signatures in-
dependent from programming languages has been replaced by a version that
conforms to Java. UML/P uses “Type attribute” instead of “attribute:
Type”, and its class names qualified with paths are “path.Class” instead
of “Path::Class”. This Java conformity has some advantages when turn-
ing class diagrams into Java code. In particular, the recognition effect for the
reader is increased considerably.

An important property of UML is the modifiability of its model elements
with the help of different modifiers, tags, attributes, etc. The programming
languages Java and EBNF also offer such mechanisms. Figure C.6 contains a
definition of the mechanisms used for this book. The essential sources for the
definition are given respectively.

C.3 OCL 239

Attribute is a model element with essentially the same meaning in UML class dia-
grams and Java. See Fig. 2.2. In attributed grammars, an attribute is a value storage
space at an element of the abstract syntax. Attributes are assigned to nontermi-
nals.

Modifiers such as public or final can be applied to classes, methods, and at-
tributes in UML and Java. Modifiers are an integral part of the language: new
modifiers cannot be defined.

Visibility is a modifier that describes the visibility of classes, methods, and at-
tributes. See Fig. 2.2.

Tag (or also: tagged value) can be applied to an arbitrary model element. A tag con-
sists of keyword and value and is arbitrarily definable. See Fig. 2.16.

Stereotype can be applied to an arbitrary model element. Stereotypes are arbitrarily
definable. See Fig. 2.16.

Indicator characterizes the representation of a model element with regard to com-
pleteness. Indicators are “. . .” and “ c©”.

Figure C.6. Summarizing definition for modifiers and related mechanisms

C.3 OCL

C.3.1 Syntax of OCL

As OCL is a textual language, the Extended Backus–Naur Form (EBNF)
is used for its definition. Compared with OCL in the standard definition
[OMG10b], OCL/P presented in this chapter has some significant syntac-
tic differences that can mainly be explained by a syntactic convergence to
the target programming language Java and some conceptual improvements.
These differences are explained in detail in Sect. C.3.2.

OCL is a language based on the ASCII alphabet. For better readability,
keywords such as forall are represented in another layout, but special
mathematical characters such as ∀ are not used. The practice of software de-
velopment shows that a modeler who is experienced in programming lan-
guages faces a considerably smaller hurdle to use a specification language
which looks like a programming language.

This hurdle has been further reduced for OCL/P by giving the modeling
concepts occurring in both Java and OCL the same syntactic form. Hence,
several passages in the following OCL grammar can be explained by refer-
encing the Java grammar given in Appendix B.

OCL constraints can be found in dedicated OCL documents and occur
as constraints within other diagrams and as invariants in Java. Therefore, a
document type 〈OCL〉 for OCL constraints exists in UML/P.

In the UML standard, OCL constraints are also intended for use as anno-
tations for classes and methods within class diagrams. However, practice and
also the UML standard itself show that this quickly leads to overloading of
the diagrams. Separation of OCL constraints into independent documents or
document sections is therefore advisable. The appearance of such documents

240 C The Syntax of UML/P

has already been illustrated by Figures 3.17 and 3.30. Parallel processing of
these documents can be well supported by suitable tools such as the editor
framework described in [HRR99].

Figure C.7 describes the top level of the OCL grammar. An OCL docu-
ment consists of a collection of invariants and method specifications. In an
OCL document, methods can be marked with tags and stereotypes. In this
way it is possible to define auxiliary functions that can be used for describing
constraints directly in OCL documents without the need for them to appear
in the implementation or in class diagrams.

EBNF〈OCL〉 ::= { 〈Constraint〉 }∗;
〈Constraint〉 ::= 〈StereotypeC.4〉

∗ 〈RawConstraint〉 〈TagC.4〉
∗

;

〈RawConstraint〉 ::= 〈Invariant〉 | 〈OperationConstraint〉
〈Invariant〉 ::= 〈ClassContext〉opt inv 〈InvariantName〉opt

: 〈OCLExpr〉∗;
〈OperationConstraint〉

::= context 〈OperationContext〉
{ let 〈OCLVarDeclarator〉1−∗

; }opt

{ pre 〈InvariantName〉opt : 〈OCLExpr〉∗; }opt

{ post 〈InvariantName〉opt : 〈OCLExpr〉∗; }opt

〈ClassContext〉 ::= { context | import }
{ 〈ClassOrInterface〉 〈IdentifierB.1〉

opt }∗,

〈OperationContext〉 ::= 〈OperationSignature〉 〈ThrowsB.4〉
〈OperationSignature〉

::= 〈MethodSignature〉 | 〈ConstructorSignature〉
〈MethodSignature〉 ::= 〈TypeVoidB.2〉

opt { 〈ClassOrInterfaceB.2〉 . }opt

〈IdentifierB.1〉 〈FormalParametersB.4〉 []
∗

〈ConstructorSignature〉
::= new 〈ClassOrInterface〉 〈FormalParametersB.4〉

〈ClassOrInterface〉 ::= 〈NameB.2〉 〈TypeArgumentsB.2〉
opt

〈InvariantName〉 ::= 〈IdentifierB.1〉

〈OCLConstraint〉 ::= 〈InvariantName〉 | 〈OCLExpr〉 | 〈Constraint〉

Figure C.7. OCL constraints

Basically, the constraint language OCL consists of a collection of lan-
guage concepts for the definition of expressions with Boolean values. Due
to this, the nonterminals 〈OCLExpr〉 and 〈OCLPrimeExpr〉 are accordingly
complex.2

2 In the Java grammar in Appendix B, the nonterminals 〈ExpressionB.6〉 and
〈PrimaryB.6〉 fulfill an analogous task.

C.3 OCL 241

The language of OCL expressions is explained in Fig. C.8. Their produc-
tions are constructed analogously to the Java grammar for expressions in
Fig. B.6.

EBNF〈OCLExpr〉 ::= 〈OCLPrefixOp〉∗ 〈OCLPrimary〉
| 〈OCLExpr〉 〈OCLInfixOp〉 〈OCLExpr〉
| 〈OCLExpr〉 instanceof 〈TypeB.2〉
| if 〈OCLExpr〉 then 〈OCLExpr〉 else 〈OCLExpr〉
| 〈OCLExpr〉 ? 〈OCLExpr〉 : 〈OCLExpr〉
| typeif 〈IdentifierB.1〉 instanceof 〈TypeB.2〉

then 〈OCLExpr〉 else 〈OCLExpr〉
| 〈IdentifierB.1〉 instanceof 〈TypeB.2〉

? 〈OCLExpr〉 : 〈OCLExpr〉
| let 〈OCLVarDeclarator〉1−∗

; in 〈OCLExpr〉

| 〈CollectionExpr〉

〈OCLInfixOp〉 ::= 〈InfixOpB.6〉 | <=> | implies

〈OCLPrefixOp〉 ::= + | - | ˜ | ! | (〈TypeB.2〉)

〈OCLVarDeclarator〉 ::= 〈TypeB.2〉
opt 〈IdentifierB.1〉 []

∗

= 〈OCLExpr〉

Figure C.8. OCL expressions

In principle, it is possible to directly use Java expressions that are ex-
tended by some OCL-specific constructs as constraints. However, besides
the operators ++ and -- as well as the assignment, which each have side-
effects, in Java expressions there are also constructs for the creation of new
objects and arrays that are not applicable in OCL constraints. This could
be expressed by suitable context conditions, but it is more reasonable to
embed these differences according to Fig. C.9 directly in the grammar in
which an own nonterminal 〈OCLPrimary〉 is used, constructed analogously
to 〈PrimaryB.6〉. The last variant of the nonterminal 〈OCLPrimary〉 serves for
integration of OCL with object diagrams and is discussed in Chap. 4.

In OCL, containers play an important role. Therefore, the possibilities of
defining expressions with containers are summarized in Fig. C.10. The non-
terminal 〈CollectionExpr〉 describes quantifiers and other special operations
for containers. The nonterminal 〈Comprehension〉 describes the variants
for the enumeration of container elements and for their property-oriented
description in the form of a comprehension. Besides the already known
〈OCLVarDeclarator〉 for the introduction of a variable in the let construct,
new variables can be introduced with the nonterminal 〈SetVarDeclaration〉.
This form of variable declaration is used to let a variable vary over the ele-
ments of a container.

As already mentioned, the grammars of the languages Java and OCL cor-
respond in many aspects with regards to structure and content. The com-

242 C The Syntax of UML/P

EBNF

〈OCLPrimary〉 ::= (〈OCLExpr〉)

| 〈LiteralB.1〉
| { 〈OCLPrimary〉 . }opt 〈IdentifierB.1〉

〈OCLArguments〉opt

| { 〈OCLPrimary〉 . }opt 〈IdentifierB.1〉 @pre

| { 〈OCLPrimary〉 . }opt 〈IdentifierB.1〉 **
| 〈OCLPrimary〉 [〈OCLExpr〉]

| super . 〈IdentifierB.1〉 〈OCLArguments〉opt

| super . 〈IdentifierB.1〉 @pre

| 〈TypeB.2〉 @pre
opt

| this

| result

| isnew (〈OCLExpr〉)

| defined (〈OCLExpr〉)

| 〈Comprehension〉
| OD . 〈Diagramname〉 // see Sec. C.4.1

〈OCLArguments〉 ::= (〈OCLExpr〉∗,)

Figure C.9. Primitives of the OCL expression language

EBNF

〈CollectionExpr〉 ::= forall 〈SetVarDeclarator〉1−∗

, : 〈OCLExpr〉

| exists 〈SetVarDeclarator〉1−∗

, : 〈OCLExpr〉

| any 〈OCLExpr〉
| iterate { 〈SetVarDeclarator〉 ; 〈OCLVarDeclarator〉

: 〈Identifier〉 = 〈OCLExpr〉 }

〈Comprehension〉 ::= 〈ContainerType〉opt { 〈CollectionItem〉∗, }

| 〈ContainerType〉opt

{ 〈OCLExpr〉 | 〈ComprehensionItem〉∗, }

| 〈ContainerType〉opt

{ 〈SetVarDeclarator〉 | 〈ComprehensionItem〉∗, }

〈SetVarDeclarator〉 ::= 〈TypeB.2〉
opt 〈IdentifierB.1〉 []

∗

in 〈OCLExpr〉
| 〈TypeB.2〉 〈IdentifierB.1〉 []

∗

〈ContainerType〉 ::= { Set | List | Collection }
〈TypeArgumentsB.2〉

opt

〈CollectionItem〉 ::= 〈OCLExpr〉 { .. 〈OCLExpr〉 }opt

〈ComprehensionItem〉
::= 〈SetVarDeclarator〉
| 〈OCLVarDeclarator〉
| 〈OCLExpr〉

Figure C.10. Containers in the OCL expression language

C.3 OCL 243

monly used and structurally similar nonterminals are summarized in Ta-
ble C.11.

Corresponding nonterminals

OCL nonterminal Java nonterminal

〈OCLArguments〉 〈ArgumentsB.6〉
〈OCLExpr〉 〈ExpressionB.6〉
〈OCLInfixOp〉 〈InfixOpB.6〉
〈OCLPrimary〉 〈PrimaryB.6〉
〈OCLPrefixOp〉 〈PrefixOpB.6〉
〈OCLVarDeclarator〉 〈VariableDeclaratorB.4〉
〈OCLVarInitializer〉 〈VariableInitializerB.4〉

Nonterminals taken over from Java

〈FormalParametersB.4〉 〈IdentifierB.1〉
〈InfixOpB.6〉 〈NameB.2〉
〈LiteralB.1〉 〈TypeB.2〉
〈TypeVoidB.2〉

Table C.11. Comparison of the grammars of OCL/P and Java

C.3.2 Differences From the OCL Standard

To increase the readability and, thus, the usability of OCL as well as improve
the integration with the target language Java, a number of conceptual and
syntactical modifications of OCL have been made in contrast to the standard
defined in [OMG10b]. The most important modifications are summarized in
Table C.12.

Some remarks on the differences described in Table C.12 follow (see su-
perscript indices):

1. The data type String is not regarded as a primitive type in OCL/P but
as a normal class. In addition to the modifications of the remaining type
names, the available constants and operations are also adjusted to Java.

2. OCL/P has generic types analogous to Java.
3. OCL/P provides only simulated enumeration types. The consolidation

of all values of enumeration types in Enumeration in the OCL stan-
dard, in contrast, had the disadvantage that further typing information
is missing.

4. For pragmatical reasons, the data type Bag for multisets has been omit-
ted. These multisets are not used often, and the explicit necessary con-
version to sets can, thus, be left out. Furthermore, the signatures of the
container types have been merged with the classes known from Java.

244 C The Syntax of UML/P

OCL/P OCL standard

Primitive types 1
boolean, char, int,

long, float, ...

Integer, String,

Boolean, Real,

Enumeration

Generic types2 Class<T1,T2,...> -
Supertype Object OclAny

Meta-datatypes - OclType, OclState,

OclExpression

Enumerations3 Simulated Enumeration

Containers4 Set<X>, List<X> Set, Sequence, Bag

Self-reference this self

Logic operators &&, ||, ˆ, ! and, or, xor, not

Comparisons ==, != ==, <>

Definedness defined(expr) Missing
Application5 set.size set->size()

Type conversion6
(Type)expr expr.oclAsType(Type)

Type query expr instanceof Type expr.oclIsKindOf(Type)

Set operations7 { v in set | expr } set.select(expr)

{ expr | v in set } set.collect(expr)

Quantifiers forall v in set: expr set.forall(expr)

exists v in set: expr set.exists(expr)

any v in set: expr set.any(expr)

sum, iterate8 Library Integrated in language

Operation context Type Class.operation() Class::operation() : Type
Variable definition Type variable variable : Type
Path name Path.Class Path::Class
Comment /* ... */, // ... -- ...

Table C.12. Differences between OCL/P and the OCL standard

Table C.13 shows a comparison for set operators. In OCL/P, some oper-
ators of standard Java have been omitted but can be recreated by simply
prefixing the negation.

5. The use of OCL operators on container structures starts with -> in the
OCL standard. The reason for this is the syntactical recognizability of
the OCL operators. However, this is not necessary as these are already
recognized by their names. The operator instanceof is provided in
combination with typeif in order to make an implicit and, thus, secure
type conversion, if the argument has the described type.

6. The capabilities of the set and list comprehensions have been extended
considerably. They allow generators to define filters and auxiliary vari-
ables.

7. The flatten operator is not used recursively but only flattens the high-
est level.

8. With regard to the operators provided, OCL/P is leaner than the OCL
standard, as some of the operators have been outsourced to a library.

C.3 OCL 245

At the same time, this increases the flexibility of OCL/P because user-
specific operators can also be defined.

Beyond the differences given in Table C.12, the following modifications
have been made:

• The usage of the let construct has been consolidated, and the stereo-
type �definition� introduced in UML 1.4 has been omitted in favor of
the stereotype �OCL�.

• In UML/P class diagrams, association classes are not used. Thus, there is
no navigation to such classes.

• OCL constraints can already be embedded into a package context by ex-
plicitly stating the package name in a class context. Thus, this embedding
is not necessary in UML/P.

• Some typing rules have been defined more precisely. In the OCL stan-
dard, for example, it has not been specified how heterogeneous enumer-
ations of the form Set{"text",person} need to be typed.

• The OCL logic has been adjusted to the capabilities of Java by regarding
the interpretation of an undefined value result as false. Therefore, the
lifting operator has been introduced to allow a two-valued logic.

OCL/P Java OCL standard

add add including

addAll addAll union

contains contains includes

containsAll containsAll includesAll

- - excludes

- - excludesAll

count - count

== equals =

isEmpty isEmpty isEmpty

- - notEmpty

remove remove excluding

removeAll removeAll -

retainAll retainAll intersection

symmetricDifference - symmetricDifference

size size count

flatten - -

asList - asSequence

Table C.13. Name comparison of set operators in Java, OCL and OCL/P

246 C The Syntax of UML/P

C.4 Object Diagrams

The syntactical representation of object diagrams is based on class diagrams
from Sect. C.2. Both diagram types consist of a graphical and a textual part
that are connected. For object diagrams, the connection with OCL constraints
for the realization of the “logic of object diagrams” that also requires an ex-
tension of the syntax for OCL diagrams is additionally described.

Thus, this section first describes the graphical part of the abstract syn-
tax of object diagrams, then the textual part, and finally the integration with
OCL. For describing the abstract syntax, again the combination of EBNF
grammars and syntax class diagrams (SCDs) introduced in Appendix A is
used.

In the second part of the section, the conformity of an object diagram with
a class diagram is discussed.

C.4.1 Context-Free Syntax

Object diagrams are another form of UML/P diagrams that are summarized
by the nonterminal 〈UMLPunit〉. Figure C.14 shows the graphical part of the
abstract syntax of object diagrams. Besides the nonterminal 〈ObjectDiagram〉,
other language elements for the representation of prototypic objects and
links in the object diagram are introduced therein.

Figure C.14. Syntax of the graphical part of object diagrams

A comparison of the SCDs from Figures C.14 and C.2 shows that there
are structural similarities between class and object diagrams. 〈Object〉 ele-
ments contain, in contrast to the 〈Class〉 elements, additional object names
but no methods and no information on the inheritance structure between
classes. In object and class diagrams, attributes are, in fact, represented in
the same way. However, the optional definition of an attribute value has a

C.4 Object Diagrams 247

different meaning, which is why, for object diagrams, the additional nonter-
minal 〈AttributeValue〉 has been introduced. While in the object diagram an
attribute value reflects the current state, the optional statement of an attribute
value in the class diagram is used for initializing the attribute.

In contrast to 〈Association〉 elements, 〈Link〉 elements do not contain a
cardinality, but instead the qualifier can have a concrete value.

Besides the nonterminals 〈Object〉 and 〈Link〉, the 〈Invariant〉 introduced
in Appendix C.3 has also been included in the syntax of object diagrams,
which allows the use of OCL invariants for the specification of attribute val-
ues in an object diagram.

The concrete syntax of object diagrams introduced in this chapter pro-
vides, at two points, alternative representations for the same information
that are not distinguished in the abstract syntax. It is possible to represent
class attributes by underlining them or adding the modifier static in the
object diagram. Composition can be represented by links or graphical con-
tainedness. Therefore, the two object diagrams from Fig. 4.11 have the same
abstract syntax.

Many of the nonterminals used in the syntax diagram from Fig. C.14 have
already been introduced for class diagrams or OCL. In particular, these are
the nonterminals

〈AttributeC.3〉 〈InvariantC.7〉
〈ClassNameC.3〉 〈AssociationNameC.3〉
〈RoleNameC.3〉

The nonterminals 〈DiagramName〉, 〈ObjectName〉, 〈AttributeValue〉, and
〈LinkQualifier〉 are newly introduced in Fig. C.14, but not further detailed.
Thus, the productions given in Fig. C.15 are used for the representation of
these textual language elements.

EBNF〈DiagramName〉 ::= 〈NameB.2〉
〈ObjectName〉 ::= 〈IdentifierB.1〉
〈AttributeValue〉 ::= 〈AttributeC.3〉
〈LinkQualifier〉 ::= 〈ExpressionB.6〉 | 〈IdentifierB.1〉

Figure C.15. Syntax for names and links

While object names are simple names, diagram names can be qualified so
that a hierarchical package structure for diagrams is possible. The optional
qualifier value for links is either an expression describing a concrete value or
an attribute name pointing to the value stored in the target object.

Similar to class diagrams, neither comments nor tags or stereotypes have
explicitly been included in the abstract syntax of object diagrams. Comments
can again be attached to all nonterminals of object diagrams.

248 C The Syntax of UML/P

Tags and stereotypes can be used for the syntax elements 〈Object〉, 〈Link〉,
and 〈AttributeValue〉 and also for 〈ObjectDiagram〉, i.e., the whole diagram.
By means of some examples, Sect. 4.1.6 has already shown how tags and
stereotypes can be used.

The two representation indicators “ c©” and “. . .” introduced in Sect. 2.4
are also used for object diagrams and characterize the completeness or in-
completeness of the model representation, respectively. Both indicators do
not affect the model itself and can, thus, similar to comments, be neglected
in the abstract syntax.

OCL Adjustment

The integration of object diagrams with OCL manifests itself at two points
in the abstract syntax. The SCD in Fig. C.14 shows that, on the one hand,
OCL invariants can be used in object diagrams. On the other hand, an object
diagram can directly be used in an OCL expression with OD.name. The alter-
native of the nonterminal 〈OCLPrimaryC.9〉 defined in Appendix C.3 serves
this purpose:

EBNF〈OCLPrimary〉 ::= ...
| OD . 〈DiagramName〉

It allows the integration of object diagrams as OCL statements, as multi-
ply shown in this chapter.

C.5 Statecharts

Statecharts are another diagram type of UML/P. Basically, a Statechart is as-
signed to a class or a method. Therefore, it has the name of the described
element. Thus, a Statechart requires its own name only if there are multiple
descriptions for the same class or method. This can, for example, be the case
for test models. In this section, first the abstract syntax of Statecharts is de-
fined in the usual way by syntax class diagrams introduced in Appendix A
and EBNF. The stereotypes introduced in this chapter are summarized in a
list together with their semantics and syntactical restrictions. Finally, the dif-
ferences between UML/P Statecharts and the UML standard are discussed.

C.5.1 Abstract Syntax

The graphical part of Statecharts is specified in the syntax diagram in Fig. C.16.
Each Statechart has an attribute of the kind 〈ClassNameC.3〉 that indicates

which class or which interface the Statechart is assigned to. If it is a method
Statechart, additionally a method name is specified. The graphic part of Stat-
echarts is structured quite easily. A Statechart consists of a collection of states

C.5 Statecharts 249

Figure C.16. Syntax of Statecharts

and transitions that each start and end in a state. States are arranged hierar-
chically.

States as well as transitions have a number of textual parts that, among
other aspects, describe constraints and actions. These parts are described in
Fig. C.17.

〈StateName〉 ::= 〈NameB.2〉
〈StateInvariant〉 ::= [〈OCLExprC.8〉]

〈Action〉 ::= / 〈StatementB.5〉
∗ 〈Postcondition〉opt

〈Precondition〉 ::= [〈OCLExprC.8〉]

〈Postcondition〉 ::= [〈OCLExprC.8〉]

〈InternalTransition〉 ::= 〈Precondition〉opt 〈Stimulus〉 〈Action〉opt

〈Stimulus〉 ::= ε | 〈MethodCall〉 | 〈Return〉 | 〈Exception〉
〈MethodCall〉 ::= 〈IdentifierB.1〉 { (...) | 〈ArgumentsB.6〉 }opt

〈Return〉 ::= return { ... | 〈ExpressionB.6〉 }opt

〈Exception〉 ::= 〈ExceptionType〉 { (...) | 〈ArgumentsB.6〉 }opt

〈ExceptionType〉 ::= 〈NameB.2〉

Figure C.17. Syntax for state and transition components

Statecharts use three kinds of constraints: the state invariant, the pre-
and the postcondition. Each is realized as an OCL constraint of the type
〈OCLExprC.8〉. Access to attribute values in the original state is only allowed
in postconditions using @pre. If a precondition starts with a let construct,
the visibility of the thereby locally defined variable is extended to the transi-
tion action including the postcondition. In this way, similar to OCL method
specifications, local variables can be used more effectively.

250 C The Syntax of UML/P

Java instructions are used for the description of procedural actions. They
can access the attributes of the object and the arguments of the stimulus,
which need to be understood as local variables and parameters, respec-
tively. A stimulus initiates a transition. This can either happen spontaneously
(marked by ε), by a return of a previously sent query, or by a method call. In
the stimulus, it is not distinguished whether the latter arrives as a normal
method call or as an asynchronously sent message.

Like in the other diagram types, stereotypes and tags are not explicitly
mentioned. However, a number of stereotypes have been introduced that
serve for specification of the semantics and, thus, also control code genera-
tion and methodical use. Subsequently, these stereotypes are repeated in a
shortened form. Generally, for Statecharts as well as for other diagram types,
stereotypes and tags can basically be defined for each nonterminal of the
syntax.

As common in other graphical UML/P subnotations and as demon-
strated in Fig. 2.3, comments are attached to the commented diagram ele-
ments.

In Table 5.13, the state invariants have been transferred from the diagram
into a separate table. This can also happen in a similar form for transitions
and actions in order to avoid overloading the diagram. For this, additional
names can be introduced as auxiliary references that establish a connection
between a table entry and the described diagram element. Instead of, for
example, writing invariants or preconditions directly into the diagram, there
is only a name that refers to the respective table entry. Apart from this, these
names have no further significance, so this this outsourcing into tables is not
made explicit in the abstract syntax.

List of stereotypes for Statecharts

�datastate� is applied to data states. It can be derived from the at-
tributes and the links of the objects (and dependent ob-
jects) whether an object is in such a state.

�controlstate� is dual to �datastate� and tags control states. For control
states, program counter and stack are also relevant.

�statedefin-
ing�

tags the state invariant of a data state (�datastate�). It
means that the state invariant exactly describes whether
an object is in a state or not. Hence, the state invariant de-
fines the state.

(continued on the next page)

C.5 Statecharts 251

(continues Table C.18.: List of stereotypes for Statecharts)

�method� is applied to a Statechart in order to characterize it as a
method Statechart. A method Statechart describes a single
(possibly complex) method. It only has control states. Be-
sides spontaneous transitions for continuing the method,
only return is allowed as a stimulus. With it, the result
of the method call that was sent in the last transition is
awaited. All states of a method Statechart are automati-
cally marked as �controlstate�.

�prio:inner� is applied to a Statechart in order to give priority to transi-
tions whose source states can be found inside the state hi-
erarchy, i.e., substates before superstates. In this way, tran-
sitions with overlapping enabledness are dissolved.

�prio:outer� describes the opposite of �prio:inner�: The outer transi-
tions have priority.

�error� tags a special state in the Statechart that is interpreted as
an error state. The error state is always taken if, in the in-
complete Statechart, no other transition is able to process
an arriving stimulus. The error state can also, as any other
state, have an entry- and exit-action and be left by nor-
mal transitions. Alternatives are �completion:ignore� and
�completion:chaos�.

�exception� tags a special state in the Statechart that is interpreted
as an error state for exceptions. All received exceptions
that are not retained target this state. �error�, �comple-
tion:ignore�, and �completion:chaos� do not catch excep-
tions and, thus, supplement �exception�.

�completion:
ignore�

is applied to a Statechart in order to represent that arriving
stimuli that cannot be processed are ignored. This means
that the stimulus does not cause a reaction in the sense of
a state alteration.

�completion:
chaos�

provides an alternative to �completion:ignore� and �er-
ror� that is especially used for specifications. It states that
Statecharts tagged with �completion:chaos� can have ar-
bitrary behavior on arrival of stimuli that cannot be pro-
cessed by a transition. Thus, the possible behavior is left
open for a later decision. It is underspecified.

(continued on the next page)

252 C The Syntax of UML/P

(continues Table C.18.: List of stereotypes for Statecharts)

�action-
conditions:
sequential�

is applied to a Statechart in order to not carry out the
composition of action conditions by conjunction. For tran-
sitions that enter and leave multiple state levels, several
exit- and entry-actions and the transition action may need
to be executed. The postcondition in each of these actions
needs to be fulfilled at the end of the subaction it is at-
tached to. The next subaction, however, can, in turn, in-
validate the postcondition.

Table C.18. List of stereotypes for Statecharts

C.5.2 Comparisons with the UML standard

In contrast to the UML standard [OMG10a], some concepts whose necessity
is not evident due to the embedding of Statecharts into UML have been omit-
ted when defining UML/P Statecharts. This, e.g., includes concurrent state
regions (“and-states”) that make a specification more compact but not more
readable. Thus, the identification of possible sequences while “reading” or
reviewing Statecharts is considerably aggravated because the reader needs
to mentally comprehend these concurrent state spaces. This also holds if the
concurrency, as suggested in [HG97], is only of conceptual nature and if it
is dissolved in the implementation, for example, by building product au-
tomata. For similar reasons, the use of the history mechanism has been left
out.

Vice versa, UML/P Statecharts, however, have been extended by postcon-
ditions in the actions so that a Statechart can be a detailed behavior descrip-
tion as well as an abstract specification of behavior relying on an abstraction
of the object states. The form of the introduced postconditions provides a
suitable transition to OCL method specifications for the stimuli used in the
Statechart.

The differences between UML/P Statecharts and the UML standard are
summarized below:

1. Parallel substates have been left out.
2. There is no history mechanism in UML/P.
3. Compared with the event-concept of the standard that is described very

abstractly, the concepts of stimuli and firing enabledness have been pre-
cisely defined here.

4. Preconditions of transitions are now located at the left side of the stimu-
lus in order to better distinguish them from postconditions.

5. The UML standard does not include descriptively formulated postcondi-
tions. Therefore, UML Statecharts are less suitable for specifications but
mainly for implementation descriptions.

C.6 Sequence Diagrams 253

6. Invariants, preconditions, and actions have been made vitally concrete
by embedding OCL expressions and Java instructions.

7. The representation of stimulus parameters has been generalized from
name:Type to expressions. This includes concrete values as well as vari-
ables that get values assigned thereby and that can be used in precondi-
tions, actions, and postconditions. A type declaration has been left out, as
this already results from the signature of the class to which the Statechart
is assigned.

8. Concurrent transitions with multiple initial or final states that, thus, sim-
ulate concurrency within the Statechart as well as synchronization states
have been left out because, generally, objects and therefore their State-
charts do not use concurrency on this level.

9. “Stubbed transitions,” i.e., transitions that lead inside a hierarchical state
without leading to a concrete substate, have not been included in UML/P
because the information expressed therewith is not more precise than if
this transition would lead directly to the superstate. If required, such a
transition can be tagged by a suitable stereotype.

10. “Junction” and “choice points” represent control states in the processing
of transitions and can be defined by states tagged with �controlstate�.

Generally, UML/P Statecharts are syntactically and semantically better
integrated with other UML/P notations as is the case in the UML standard.
The “event” concept has been kept very general in order to be able to sub-
sume the different kinds of stimuli arising from real-time systems as well
as from business systems. In the standard, an integration with OCL con-
straints or a concrete language for the representation of actions is omitted.
There, OCL and the Action language [OMG01a] are mentioned as possible
languages but no concrete integration is made.

C.6 Sequence Diagrams

C.6.1 Abstract Syntax

The abstract syntax of sequence diagrams is, compared with previous di-
agram types, unusual as the order of interactions is semantically relevant
at each timeline. Figure C.19 contains the abstract syntax for the graphical
part. This includes the three main elements 〈ObjectElement〉, 〈ActivityBar〉,
and 〈SequenceElement〉. As a superclass, the latter summarizes the different
forms of interactions as well as the start and end of activity bars and OCL
constraints. 〈SequenceElements〉 of a sequence diagram are in linear order
and, thus, express the chronological order.

Activity start and end are regarded as independent elements because, as
shown in Fig. 6.18(c), activity bars need not necessarily be coupled with in-
teractions, which is why the respective associations are optional.

254 C The Syntax of UML/P

Figure C.19. Graphical part of the syntax of sequence diagrams

The textual part of the syntax is contained in Fig. C.20. It shows the form
of OCL constraints and the introduction of auxiliary variables as well as
the label of the various interactions. As usual, stereotypes and tags are not
explicitly stated in the abstract syntax. The nonterminals 〈ClassNameC.3〉,
〈MethodCallC.17〉, 〈ReturnC.17〉, and 〈ExceptionC.17〉 have already been in-
troduced for other notations and are reused here.

EBNF〈OCLElement〉 ::= 〈OCLExprC.8〉 ;

| 〈IdentifierB.1〉 ;

| 〈IdentifierB.1〉 (〈OCLExprC.8〉
∗

,) ;

| let 〈OCLVarDeclaratorC.8〉
1−∗

;

〈Objectcreation〉 ::= new 〈NameB.2〉 { (...) | 〈ArgumentsB.6〉 }opt

Figure C.20. Lacking textual part of the syntax of sequence diagrams

The abstract syntax already constitutes some restrictions for the system.
The start and end of activity bars need to correspond. In addition, it must
hold, for instance, that two activity bars are either disjoint or that one is
contained in the other to describe the chronological order that an activity
bar associated with an interaction belongs to one of the objects participat-
ing in the interaction, that a method call initializes only one activity, etc. It is
also relevant that the typing of the arguments and return values is, as far as

C.6 Sequence Diagrams 255

given, already specified by class diagrams from the context of the sequence
diagram.

C.6.2 Comparison with the UML Standard

Basically, UML/P sequence diagrams are a subset of the UML standard
[OMG10a]. Several concepts contained in the UML standard such as con-
currency, alternatives, repetition, messages with a time delay, or termination
of objects are not included in UML/P. Hence, UML/P sequence diagrams
are less expressive but optimized for use in modeling of exemplary pro-
cesses and tests; for example, by distributing the timeline within sequence
diagrams, the form of representation of alternatives chosen in the UML stan-
dard very quickly leads to unclear models.

By leaving out the representation of asynchronous messages, sequence
diagrams can be related with Java implementations relatively canonically.
Furthermore, temporal conditions can, like in the UML standard, be added
in UML/P by using the tag {time}. This can also be used constructively for
specification of times in tests.

In the UML standard [OMG10a], an explicit integration with OCL condi-
tions is missing. In OCL/P, the graphic notation for this has been taken over
from the MSC standard [IT99]. In the UML standard, however, there is the
possibility to put guards, e.g., [x>0], in front of a method call in order to
choose from alternatives.

D

Sample Application: Internet-Based Auction

System

The market is the only democratic judge
in a modern economy.

Ludwig Erhard, Former German Chancellor

Due to the huge dissemination and high availability of the Internet, com-
mercial applications have gained tremendous economic and cultural signifi-
cance. A set of these applications are summed up by the term E-commerce.

Software systems for supporting cross-company or in-house E-commerce
applications are characterized by strong demands to meet the following re-
quirements:

• New or improved functionalities have to be made available very quickly
because time-to-market is an essential advantage against competitors
who, on the Internet, are only one “click” away.

• Due to the fact that customers easily move to the competition, customer
satisfaction needs to be guaranteed, among other things, through high
availability and reliability.

• The functionality offered needs to be correct and of high quality.
• Customers and service operators need to have access to multilateral se-

curity concepts, as various user groups with highly different objectives
participate in one application.

These requirements are not easily compatible and, thus, demand high stan-
dards of the software engineering process for E-commerce applications. For
a company whose business model is based on the functionality of their appli-
cations offered on the Internet, it is indispensable to ensure that the software
runs with a high level of reliability and accuracy.

The suggested methodology, thus, notably addresses the requirements
mentioned above. The technical implementation of Internet auctions there-
fore serves especially well as a sample application for this methodology. Sub-
sequently, the sample application described hereinafter is embedded in the
E-commerce world. Then, a description of the business application underly-
ing these Internet auctions follows. The sample application is taken from a

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7

257

258 D Sample Application: Internet-Based Auction System

system that has been running in practice for a while and, thus, demonstrates
the capacity of the described methodology for E-commerce applications.

D.1 Auctions as an E-Commerce Application

In about the year 1960, the first software applications for business purposes
were developed and deployed in companies. These first-generation applica-
tions were largely isolated applications which did not allow data exchange
among each other. In the second generation, these applications were inter-
connected company-wide. Since then, integrated databases have enabled dif-
ferent applications to access the data they require.

In the third generation that has been emerging for some years now, cross-
company business transactions are realized.

The initiation and execution of commercial transactions via the Internet as
well as electronic payment enable a lot of businesses to change their purchas-
ing and sales channels massively. Internet auctions have been well received
by customers as well as for industrial purchases and sales.

In the traditional auction, a single seller faces several potential buyers
who outbid each other by placing multiple bids until the top price is reached.
Due to the usage of the Internet as an electronic procurement tool, a second
auction form has prevailed—the procurement auction, also called the reverse
auction. Here, one buyer faces several potential suppliers who downbid each
other in the time frame of the auction until the lowest price is reached.

Figure D.1 shows the result of one of the first and most effective procure-
ment auctions in Germany. The chart displays the view of an external observer
who, instead of real prices, can see a price scale converted to 100% and who
can neither identify the bidders nor distinguish them.

In February 2000, the annual requirement of electricity for the headquar-
ters of a large German bank company was put up for auction among 14
bidders. In two and a half hours, a saving of more than 46% was achieved
[Rum02a, Böh00, Dei00]. The auction was conducted using the auction soft-
ware introduced in this book and operated by our group.

Figure D.1 shows one vertical as well as two horizontal lines in the auc-
tion chart. These lines serve for the parameterization of procurement auc-
tions. On the one hand, they allow the purchaser to step back from his wish
to purchase when a target price level is not reached (shown by the lower
horizontal line). On the other hand, they motivate the bidder not to wait un-
til the last second of the auction but to place their bids early on. Thus, the
bidders have the opportunity to react appropriately. The end of the official
auction time and, hence, the beginning of the prolongation is indicated by
the vertical line.

D.2 The Auction Platform 259

Figure D.1. Example auction of power with 46% saving

D.2 The Auction Platform

An essential part of the auction system is the graphical user interface which
enables the bidders to place their bids online. Further participants can follow
the auction process with the same graphical user interface but without the
possibility to bid actively. As basic technology, Java applets are used. Java
technology is well suited because it allows a graphical representation of the
results on the user side, facilitates a high interaction rate (refresh time below
one second), and still keeps the bandwidth of the communication between
auction server and applets small.

The applet offers several subpages for the illustration of different views.
As an example, the graphic illustration of an auction process is explained
here, and an overview of all available pages of the auction applet is given.

Figure D.2 shows a view that an external guest uses for observing the auc-
tion. It contains crucial auction information for the identification of the auc-
tion, the date and time of the server, the number of bids placed, the number of
active bidders, the allowed increment of bids, the auction’s form, and the cur-
rent bids (here scaled in %). The four auction states still closed, open,
in prolongation, and terminated show whether bids can be placed.
A message bar describes the current connection state and possible messages
from the auctioneer to the participants. For bidders, an additional input field
for bids is visible that allows bidders to participate in the auction process.

The display is supplemented by a message list that, among other items,
contains a precise overview of all bids including when they were placed.

260 D Sample Application: Internet-Based Auction System

Figure D.2. Representation of an auction

While external observers see all bids in an anonymized way, bidders can
identify their own bids against their competitors’ bids with a respective sym-
bol. It is possible to provide an internal observer with the same information
as a bidder. This is interesting, e.g., when bidders and observers come from
the same company.

Thus, a colleague can get access using their own authorization as an ob-
server without the risk that a bidder account is passed on.

The auctioneer can identify the bidder of each bid at any time. The buyer
is enabled to do so at the end of the auction.

The auction applet offers a variety of other views that, e.g., serve to give
the participant an overview of auctions running in parallel or to enable him
to configure the auction applet appropriately. Figure D.3 offers a collection
of a part of these views.

Significant elements of a purchase auction are the two price lines mark-
ing the historic and the desired target price. Both prices are determined by
the purchaser. The historical price characterizes the price the purchaser has
paid for the goods up to now and often serves for the bidders as a starting
point for their bids. The target price, however, is usually relevant in terms
of contractual law. If the target price is reached or undercut, the purchaser is
obliged to accept a bid —usually the lowest. Therefore, it is in the bidder’s
interest to reach the target price. An appropriate bid increment—typically
one thousandth of the historical price—prevents bidders from placing bids
in arbitrarily small steps.

Usually, an online auction takes place within one to three hours. In or-
der to prevent bids from being mainly placed within the last few seconds,
the auction time is divided into an official auction time and a prolongation

D.2 The Auction Platform 261

Figure D.3. Different views in the applet

phase. The middle vertical line marks the start of the prolongation phase. If
a bid is placed shortly before the end of the official auction time, the auction
time is prolonged. Normally, this prolongation has a length of three minutes.
Thus, the competitors get the possibility to react to a bid. Continued prolon-
gation of the auction time secures each bidder sufficient time to react and
finally leads to the optimal result. If the system is configured such that the
initial prolongation time of three minutes is linearly reduced with iterated
prolongation, in case of stable increment, a price development similar to a
parabola emerges analogous to Fig. D.2.

A number of participants with different interests take part in an auction.
Accordingly, the system provides four roles for participation, and the role of
observer is divided into three subroles. The auctioneer watches the process
of the auction, having insight into all relevant data. During the auction, the
purchaser can only see an anonymized process that first does not allow him
to identify the bidders of the bids. Thus, possible subsidiary agreements are
excluded. Bidders get an anonymized view of the competition but can iden-
tify their own bids in the corresponding chart. They also know how many
competitors are active. Independent observers see anonymized charts, possi-
bly with an additional price scaling to a 100% scale. This view is especially
suited for demonstrations in front of a broader audience. Bidders have the
additional possibility to invite colleagues as observers, they receive an auc-
tion view with bidder information without being able to place bids them-
selves.

262 D Sample Application: Internet-Based Auction System

A number of specialized functions, e.g., the combination of several auc-
tions for the distribution of the auctioned item in various slots, have proved
to be helpful in practice. Thus, varying delivery places of the auctioned items
can, for example, be taken into consideration. On the other hand, goods
which sometimes differ considerably in price, quality, or logistics costs and,
thus, are not directly comparable, can be related to each other in parallel auc-
tions.

A fundamental feature of an auction is the mutual anonymity of the bid-
ders. In this way, price arrangements between competitors become unlikely.
To ensure bidders’ confidence in the accuracy of information as well as in
the correctness and fairness of the auction process, the auctioneer’s indepen-
dence is indispensable. This also means that, in case of online auctions, the
auctioneer has to be an independent third besides the buyer and the bidder,
and that auction platforms should not be completely integrated into a com-
pany portal.

The auction platform has been described from the view of procurement
auctions. Traditional auctions, however, where a product is sold, can also be
realized using this auction platform.

References

[AK03] C. Atkinson and T. Kühne. Model-driven development: a metamodeling
foundation. IEEE Software, 20(5):36–41, 2003.

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A
standard-compliant metamodeling framework with graph transforma-
tions. In A. Rensink and J. Warmer, editors, Model Driven Architecture –
Foundations and Applications: Second European Conference, ECMDA-FA 2006,
Bilbao, Spain, July 10-13, 2006, volume 4066 of Lecture Notes in Computer
Science (LNCS), pages 361–375. Springer, 2006.

[Amb98] S. Ambler. Process Patterns. Building Large-Scale Systems Using Object Tech-
nology. Cambridge University Press, Sigs Books, 1998.

[Bal99] H. Balzert. Lehrbuch der Objektmodellierung. Analyse und Entwurf. Spektrum
Akademischer Verlag. Heidelberg, 1999.

[Bal00] H. Balzert. Lehrbuch der Software-Technik. Software-Entwicklung, 2. Aufl.
Spektrum Akademischer Verlag. Heidelberg, 2000.

[BBB+85] F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matzner,
B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and
H. Wössner. The Munich Project CIP, Vol 1: The Wide Spectrum Language
CIP-L. LNCS 183. Springer-Verlag, 1985.

[BBF09] G. Blair, N. Bencomo, and R.B. France. Models@run.time. IEEE Computer,
42(10):22–27, 2009.

[BCGR09a] Manfred Broy, Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Considerations and Rationale for a UML System Model. In
K. Lano, editor, UML 2 Semantics and Applications, pages 43–61. John Wiley
& Sons, November 2009.

[BCGR09b] Manfred Broy, Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Definition of the UML System Model. In K. Lano, editor, UML
2 Semantics and Applications, pages 63–93. John Wiley & Sons, November
2009.

[BCR07a] Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Towards
a System Model for UML. Part 2: The Control Model. Technical Report
TUM-I0710, TU Munich, Germany, February 2007.

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7

263

264 References

[BCR07b] Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Towards
a System Model for UML. Part 3: The State Machine Model. Technical
Report TUM-I0711, TU Munich, Germany, February 2007.

[BD00] B. Bruegge and A. Dutoit. Object-Oriented Software Engineering: Conquering
Complex and Changing Systems. Prentice Hall, 2000.

[Ber97] K. Bergner. Spezifikation großer Objektgeflechte mit Komponentendiagrammen.
Dissertation. CS Press, München, 1997.

[Béz05] J. Bézivin. On the Unification Power of Models. Springer International Jour-
nal on Software and Systems Modeling (SoSyM), 4(2):171–188, 2005.

[BFG+93] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hußmann, D. Nazareth, F. Re-
gensburger, O. Slotosch, and K. Stølen. The Requirement and Design Spec-
ification Language SPECTRUM, An Informal Introduction, Version 1.0, Part
1. Technical Report TUM-I9312, Technische Universität München, 1993.

[BG98] K. Beck and E. Gamma. Test-Infected: Programmers Love Writing Tests.
JavaReport, July 1998.

[BG99] K. Beck and E. Gamma. JUnit: A Cook’s Tour. JavaReport, August 1999.
[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger,

Bernhard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary
and Complete Object Interaction Descriptions. In H. Kilov, B. Rumpe, and
I. Simmonds, editors, Proceedings OOPSLA’97 Workshop on Object-oriented
Behavioral Semantics, volume TUM-I9737 of Technical Report. TU Munich,
Germany, 1997.

[BGH+98a] R. Breu, R. Grosu, C. Hofmann, F. Huber, I. Krüger, B. Rumpe,
M. Schmidt, and W. Schwerin. Exemplary and Complete Object Interac-
tion Descriptions. Computer Standards and Interfaces, 19, 1998.

[BGH+98b] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang
Schwerin. Systems, Views and Models of UML. In M. Schader and A. Ko-
rthaus, editors, Proceedings of the Unified Modeling Language, Technical As-
pects and Applications, pages 93–109. Physica Verlag, Heidelberg, Germany,
1998.

[BGK99] M. Broy, R. Grosu, and I. Krüger. Verfahren zum Automatischen Erzeugen
eines Programms. Deutsches Patent, 19837871, 1999.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katha-
rina Spies. Software and System Modeling Based on a Unified Formal
Semantics. In M. Broy and B. Rumpe, editors, Proceedings of the Interna-
tional Workshop on Requirements Targeting Software and Systems Engineering
(RTSE’97), volume 1526 of LNCS, pages 43–68, Bernried, Germany, Octo-
ber 1998. Springer.

[BMR95] A. Borgida, J. Mylopoulos, and R. Reiter. On the Frame Problem in Proce-
dure Specifications. IEEE Transactions on Software Engineering, 21(10):785–
789, 1995.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A Sys-
tem of Patterns. Pattern-Oriented Software Architecture. John Wiley & Sons,
1996.

[Böh00] R. Böhmer. Sichtbare Hand. Über einen der ersten erfolgreichen
Versuche, Zulieferware in Deutschland übers Internet zu ersteigern.
Wirtschaftswoche, 17.2.(8), 2000.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Model-
lierung als Grundlage der Software- und Systementwicklung. Informatik-
Spektrum, 30(1):3–18, Februar 2007.

References 265

[Bra84] W. Brauer. Automatentheorie: eine Einf”uhrung in die Technik endlicher Auto-
maten. Teubner, 1984.

[Bra04] G. Bracha. Generics in the Java Programming Language. Technical report,
Sun Microsystems, 2004.

[Bre01] R. Breu. Objektorientierter Softwareentwurf. Integration mit UML. Springer
Verlag, 2001.

[Bro97] M. Broy. The Specification of System Components by State Transition Di-
agrams. TUM-I 9729, Technische Universität München, 1997.

[Bro98] M. Broy. Pragmatic and Formal Specification of System Properties by Ta-
bles. TUM-I 9802, Technische Universität München, 1998.

[BS01] M. Broy and K. Stoelen. Specification and Development of Interactive Systems.
Focus on Streams, Interfaces and Refinement. Springer Verlag Heidelberg,
2001.

[BW02a] A. Brucker and B. Wolff. A Proposal for a Formal OCL Semantics in Is-
abelle/HOL. In TPHOLs 2002, LNCS. Springer-Verlag, Berlin, 2002.

[BW02b] A. Brucker and B. Wolff. HOL-OCL Experiences, Consequences and De-
sign Choices. In J-M. Jézéquel and H. Hußmann, editors, �UML�2002 –
The Unified Modeling Language: Model Engineering, Concepts and Tools, 5th
Intl. Conference. Springer, LNCS, 2002.

[CAB+94] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-Oriented Development: The Fusion Method. Prentice Hall,
1994.

[CEG+14] B. Cheng, K. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. Müller, P. Pellic-
cione, A. Perini, N. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, and
N. Villegas. Using Models at Runtime to Address Assurance for Self-
Adaptive Systems. In N. Bencomo, R. France, B. Cheng, and U. Aßmann,
editors, Models@run.time. Foundations, Applications, and Roadpmaps, State-
of-the-Art-Survey, LNCS 8378, pages 101–136. Springer Verlag, 2014.

[CEK+00] T. Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A Feasibility Study in
Rearchitecting UML as a Family of Languages using a Precise OO Meta-
Modeling Approach. Technical report, pUML Group and IBM, 2000.

[CEK01] T. Clark, A. Evans, and S. Kent. The Metamodelling Language Calculus:
Foundation Semantics for UML. In H. Hußmann, editor, Fundamental Ap-
proaches to Software Engineering. 4th International Conference, FASE 2001 (Part
of ETAPS 2001) Genova, Italy, April 2-6., pages 17–31, LNCS 2029, Berlin,
2001. Springer Verlag.

[CGR08] Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Sys-
tem Model Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU
Braunschweig, Germany, 2008.

[CGR09] Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variabil-
ity within Modeling Language Definitions. In Model Driven Engineering
Languages and Systems. Proceedings of MODELS 2009, volume 5795 of LNCS,
pages 670–684, Denver, Colorado, USA, October 2009. Springer, Germany.

[Che76] P. Chen. The Entity-Relationship Model – Toward a Unified View on Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[CK01] M. Cengarle and A. Knapp. A Formal Semantics for OCL 1.4. In
M. Gogolla and C. Kobryn, editors, �UML�2001 – The Unified Modeling
Language, 4th Intl. Conference, pages 118–133, LNCS 2185. Springer, 2001.

266 References

[CKM+99] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. Defin-
ing UML Family Members Using Prefaces. In C. Mingins and B. Meyer,
editors, TOOLS Pacific 32. IEEE Press, 1999.

[CKM+02] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. The
Amsterdam Manifesto on OCL. In T. Clark and J. Warmer, editors, Object
Modeling with the OCL, pages 115–149, LNCS 2263. Springer Verlag, Berlin,
2002.

[Dei00] H. Deisenroth. Strombeschaffung über Internet-Online Auktionen. In 35.
Symposium Einkauf und Logistik des BME am 25. September 2000 in Berlin.
BME Bundesverband für Materialwirtschaft, Einkauf und Logistik e.V.,
2000.

[DeM79] T. DeMarco. Structured analysis and system specification. Prentice Hall, 1979.
[DH01] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence

Charts. Formal Methods in System Design, 19(1):45–80, 2001.
[DL96] K. Dhara and G. Leavens. Forcing Behavioral Subtyping Through Specifi-

cation Inheritance. In 18th International Conference on Software Engineering,
Berlin, Germany, pages 258–267. IEEE, 1996.

[DR95] V. Diekert and G. Rozenberg. The Book of Traces. World Scientific, Singa-
pore, 1995.

[DSo01] D. DSouza. Model-Driven Architecture and Integration. Opportunities
and Challenges. Version 1.1. Technical Report OMG Document ad/2001-
03-02, Object Management Group, 2001.

[EE97] J. Ebert and G. Engels. Specialization of Object Life Cycle Definitions.
Fachberichte Informatik 19/95, Universität Koblenz-Landau, 1997.

[EEKR99] H. Ehrig, G. Engels, H. Kreowski, and G. Rozenberg. Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 2: Applications,
Languages and Tools. World Scientific, 1999.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-
Modelling Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral Specifications of Businesses and Systems, pages 45–60. Klu-
ver Academic Publisher, 1999.

[EH00] G. Engels and R. Heckel. Graph Transformation and Visual Modeling
Techniques. Bulletin of the European Association for Theoretical Computer Sci-
ence, 71, June 2000.

[EHHS00] G. Engels, J.-H. Hausmann, R. Heckel, and S. Sauer. Dynamic Meta-
Modeling: A Graphical Approach to the Operational Semantics of Be-
havioral Diagrams in UML. In A. Evans, S. Kent, and B. Selic, editors,
�UML�2000 – The Unified Modeling Language, 3th Intl. Conference, pages
323–337, LNCS 1939. Springer, 2000.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität
als Indikator für Softwarequalität: eine Taxonomie. Informatik-Spektrum,
31(5):408–424, Oktober 2008.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bern-
hard Rumpe. State-based Modeling of Buildings and Facilities. In Pro-
ceedings of the 11th International Conference for Enhanced Building Operations
(ICEBO’11), New York, NY, USA, October 2011.

[Fow99] M. Fowler. Refactoring. Improving the Design of Existing Code. Addison-
Wesley, 1999.

[Fow00] M. Fowler. UML Distilled. A Brief Guide to the Standard Object Modeling
Language. Second Edition. Addison-Wesley, 2000.

References 267

[FPR01] M. Fontoura, W. Pree, and B. Rumpe. The UML Profile for Framework Archi-
tecture. Addison-Wesley, 2001.

[FR07] R. France and B. Rumpe. Model-Driven Development of Complex Soft-
ware: A Research Roadmap. In Lionel C. Briand and Alexander L. Wolf,
editors, International Conference on Software Engineering, ICSE 2007, Work-
shop on the Future of Software Engineering, FOSE 2007, May 23-25, 2007, Min-
neapolis, MN, USA, FOSE, pages 37–54. IEEE Computer Society, 2007.

[GGR01] J. Grabowski, P. Graubman, and E. Rudolph. HyperMSCs with Connec-
tors for Advanced Visual System Modelling and Testing. In R. Reed and
J. Reed, editors, SDL 2001: Meeting UML, 10th International SDL Forum
Copenhagen, Denmark, June 27-29, 2001, Proceedings. Springer, LNCS 2078,
2001.

[GHG+93] J. Guttag, J. Horning, S. Garland, K. Jones, A. Modet, and J. Wing. Larch:
Languages and Tools for Formal Specification. Springer-Verlag, New York,
1993.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1994.

[GHK99] J. Gil, J. Howse, and S. Kent. Constraint Diagrams: A Step Beyond UML.
In Proceedings of TOOLS USA’99. IEEE Computer Society Press, 1999.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and
Bernhard Rumpe. View-based Modeling of Function Nets. In Proceed-
ings of the Object-oriented Modelling of Embedded Real-Time Systems (OMER4)
Workshop, Paderborn, Germany, October 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. Modelling Automotive Function Nets
with Views for Features, Variants, and Modes. In Proceedings of 4th Euro-
pean Congress ERTS - Embedded Real Time Software, Toulouse, France, 2008.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Third Edition. Addison-Wesley, 2005.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe.
Modeling Variants of Automotive Systems using Views. In T. Klein and
B. Rumpe, editors, Modellbasierte Entwicklung von eingebetteten Fahrzeug-
funktionen, volume 2008-01 of Informatik Bericht, pages 76–89, Berlin, Ger-
many, March 2008. TU Braunschweig.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab
System Model with State. Technical Report TUM-I9631, TU Munich, Ger-
many, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Ver-
arbeitung domänspezifischer Sprachen. Informatik-Bericht 2006-04, CFG-
Fakultät, TU Braunschweig, Deutschland, August 2006.

[GKRB96] R. Grosu, C. Klein, B. Rumpe, and M. Broy. State Transition Diagrams.
TUM-I 9630, Technische Universität München, 1996.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler.
Integration von Modellen in einen codebasierten Softwareentwick-
lungsprozess. In H.C. Mayer and R. Breu, editors, Proceedings of the Mod-
ellierung 2006, volume 82 of LNI, pages 67–81, Innsbruck, Tirol, Österreich,
März 2006. Gesellschaft für Informatik.

[Gol84] A. Goldberg. Smalltalk 80 - The Interactive Programming Environment. Ad-
dison Wesley, Reading, MA, 1984.

268 References

[GPHS08] C. Gonzalez-Perez and B. Henderson-Sellers. Metamodelling for Software
Engineering. Wiley Publishing, 2008.

[GPR06] V. Gruhn, D. Pieper, and C. Röttgers. MDA: Effektives Software-Engineering
mit UML 2 und Eclipse. Springer Verlag, 2006.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata.
Technical Report TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In
Proceedings of the 16th Montery Workshop on Modeling, Development and Veri-
fication of Adaptive Systems, volume 6662 of LNCS, pages 17–32, Redmond,
Microsoft Research, 2011. Springer, Germany.

[GRG95] J. Grabowski, E. Rudolph, and P. Graubman. Message Sequence Charts:
Composition Techniques versus OO techniques. In Proceedings of the 7th
SDL forum, 1995.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-
Level Requirements Management and Complexity Costs in Automotive
Development Projects: A Problem Statement. In Requirements Engineering:
Foundation for Software Quality. 18th International Working Conference, Pro-
ceedings, REFSQ 2012, Essen, Germany, March 2012.

[Grö10] H. Grönniger. Systemmodell-basierte Definition objektbasierter Model-
lierungssprachen mit semantischen Variationspunkte. Aachener Informatik-
Berichte, Software Engineering. Shaker Verlag, 2010.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of
Activity Diagrams with Semantic Variation Points. In D.C. Petriu, N. Rou-
quette, and Ø. Haugen, editors, Model Driven Engineering Languages and
Systems, Proceedings of MODELS, volume 6394 of LNCS, pages 331–345,
Oslo, Norway, 2010. Springer, Germany.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231–274, 1987.

[HBvB+94] W. Hesse, G. Barkow, H. von Braun, H. Kittlaus, and G. Scheschonk. Ter-
minologie in der Softwaretechnik - Ein Begriffssystem für die Analyse und
Modellierung von Anwendungssystemen. Teil 1: Begriffssystematik und
Grundbegriffe. Informatik Spektrum, 17/1994:39–47, 1994.

[HG97] D. Harel and E. Gery. Executable Object Modelling with Statecharts. In
Proceedings of the 18th International Conference on Software Engineering. IEEE
Computer Society Press, 1997.

[HHB02] R. Hennicker, H. Hußmann, and M. Bidoit. On the Precise Meaning of
OCL Constraints. In T. Clark and J. Warmer, editors, Object Modeling with
the OCL, pages 69–84, LNCS 2263. Springer Verlag, Berlin, 2002.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus
Müller, Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling
Languages. In Proceedings of the 17th International Software Product Line Con-
ference (SPLC’13), pages 22–31, Tokyo, Japan, September 2013. ACM.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari,
Bernhard Rumpe, and Ina Schaefer. First-Class Variability Modeling in
Matlab/Simulink. In Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS’13), pages 11–18,
Pisa, Italy, January 2013. ACM, New York, NY, USA.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. An Algebraic View on the Semantics of Model Com-
position. In D.H. Akehurst, R. Vogel, and R.F. Paige, editors, Proceedings of

References 269

the Third European Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA’07), volume 4530 of LNCS, pages 99–113, Haifa,
Israel, June 2007. Springer, Germany.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Scaling-Up Model-Based-Development for Large Het-
erogeneous Systems with Compositional Modeling. In H. R. Arabnia and
H. Reza, editors, Proceedings of the 2009 International Conference on Software
Engineeering in Research and Practice (SERP 2009), pages 172–176, Las Vegas,
Nevada, USA, July 2009.

[HM03] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, 2003.

[HM08] D. Harel and S. Maoz. Assert and Negate Revisited: Modal semantics for
UML Sequence Diagrams. Springer International Journal on Software and
Systems Modeling (SoSyM), 7(2):237–252, 2008.

[HR00] D. Harel and B. Rumpe. Modeling Languages: Syntax, Semantics and All
That Stuff. Technical Report MCS00-16, The Weizmann Institute of Science,
Rehovot, Israel, 2000.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Se-
mantics of ”Semantics”? IEEE Computer, 37(10):64–72, October 2004.

[HRR98] F. Huber, A. Rausch, and B. Rumpe. Modeling Dynamic Component In-
terfaces. In M. Singh, B. Meyer, J. Gil, and R. Mitchell, editors, TOOLS 26,
Technology of Object-Oriented Languages and Systems. IEEE Computer Soci-
ety, 1998.

[HRR99] F. Huber, O. Rabe, and B. Rumpe. Frisco OEF - Dokument-basiertes Editor
Framework. In S. Maffeis, F. Toenniessen, and C. Zeidler, editors, Erfahrun-
gen mit Java. Projekte aus Industrie und Hochschule, pages 333–354. d-punkt
Verlag, Heidelberg, 1999.

[HRR10] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards Architec-
tural Programming of Embedded Systems. In Tagungsband des Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteterSysteme VI, vol-
ume 2010-01 of Informatik-Bericht, pages 13 – 22, Dagstuhl Castle, Germany,
February 2010. fortiss GmbH, Germany.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank
van der Linden. Hierarchical Variability Modeling for Software Archi-
tectures. In Proceedings of International Software Product Lines Conference
(SPLC’11), pages 150–159, Munich, Germany, August 2011. IEEE Com-
puter Society.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Archi-
tectural Modeling of Interactive Distributed and Cyber-Physical Systems.
Technical Report AIB-2012-03, RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta
Modeling for Software Architectures. In Tagungsband des Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteterSysteme VII,
pages 1 – 10, Munich, Germany, February 2011. fortiss GmbH.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolv-
ing Delta-oriented Software Product Line Architectures. In D. Garlan and
R. Calinescu, editors, Large-Scale Complex IT Systems. Development, Opera-
tion and Management, 17th Monterey Workshop 2012, volume 7539 of LNCS,
pages 183–208, Oxford, UK, March 2012. Springer, Germany.

270 References

[HSB99] B. Henderson-Sellers and F. Barbier. Black and White Diamonds. In
�UML�’99 – The Unified Modeling Language. Beyond the Standard, pages
LNCS 1723, 550–565, Berlin, 1999. Springer Verlag.

[HU90] J. Hopcroft and J. Ullman. Einführung in die Automatentheorie, Formale
Sprachen und Komplexitätstheorie. Addison-Wesley, 1990.

[Hut07] G. Hutton. Programming in Haskell. Cambridge University Press, 2007.
[IT99] ITU-T. Message Seqeuence Chart (MSC), Recommendation Z.120 (11/99). In-

ternational Telecommunication Union, 1999.
[JJM09] M.A. Jeusfeld, M. Jarke, and J. Mylopoulos. Metamodeling for Method Engi-

neering. Cooperative Information Systems. The MIT Press, 2009.
[Jon96] M. P. Jones. An Introduction to Gofer, 1996.
[JUn16] JUnit. JUnit Testframework Homepage. http://www.junit.org/, 2016.
[KHK+03] N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E. Hubbard, and

M. Stern. Formal Modeling of C. elegans Development: A Scenario-Based
Approach. In Corrado Priami, editor, Computational Methods in Systems
Biology, volume 2602 of Lecture Notes in Computer Science, pages 4–20.
Springer Berlin / Heidelberg, 2003.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Design Guidelines for Domain Specific Lan-
guages. In M. Rossi, J. Sprinkle, J. Gray, and J.-P. Tolvanen, editors, Proceed-
ings of the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM’09),
volume B-108 of Techreport, pages 7–13, Orlando, Florida, USA, October
2009. Helsinki School of Economics.

[KPR97] C. Klein, C. Prehofer, and B. Rumpe. Feature Specification and Refinement
with State Transition Diagrams. In P. Dini, editor, Fourth IEEE Workshop on
Feature Interactions in Telecommunications Networks and Distributed Systems.
IOS-Press, 1997.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering. Number 1 in Aachener Informatik-
Berichte, Software Engineering. Shaker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based math-
ematical model for distributed information processing systems - SysLab
system model. In E. Najm and J.-B. Stefani, editors, Proceedings of the first
International Workshop on Formal Methods for Open Object-based Distributed
Systems, IFIP Advances in Information and Communication Technology,
pages 323–338, Paris, France, March 1996. Chapmann & Hall.

[Krü00] I. Krüger. Distributed System Design with Message Sequence Charts. Dok-
torarbeit, Technische Universität München, 2000.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software De-
velopment using Domain Specific Modelling Languages. In J. Gray, J.-P.
Tolvanen, and J. Sprinkle, editors, Proceedings of the 6th OOPSLA Workshop
on Domain-Specific Modeling 2006 (DSM’06), volume TR-37 of Technical Re-
port, pages 150–158, Portland, Oregon, USA, October 2006. Jyväskylä Uni-
versity, Finland.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor
Generation for Compositional DSLs in Eclipse. In J. Sprinkle, J. Gray,
M. Rossi, and J.-P. Tolvanen, editors, Proceedings of the 7th OOPSLA Work-
shop on Domain-Specific Modeling (DSM’07), volume TR-38 of Technical Re-
ports, Montreal, Quebec, Canada, October 2007. Jyväskylä University, Fin-
land.

References 271

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Defini-
tion of Abstract and Concrete Syntax for Textual Languages. In G. Engels,
B. Opdyke, D.C. Schmidt, and F. Weil, editors, Proceedings of Model Driven
Engineering Languages and Systems (MODELS’11), volume 4735 of LNCS,
pages 286–300, Nashville, TN, USA, October 2007. Springer, Germany.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular
Development of Textual Domain Specific Languages. In R.F. Paige and
B. Meyer, editors, Proceedings of the 46th International Conference Objects,
Models, Components, Patterns (TOOLS-Europe), volume 11 of LNBIP, pages
297–315, Zurich, Switzerland, July 2008. Springer, Germany.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Frame-
work for Compositional Development of Domain Specific Languages. In-
ternational Journal on Software Tools for Technology Transfer (STTT), 12(5):353–
372, September 2010.

[Lan05] K. Lano. Advanced Systems Design with Java, UML, and MDA. Elsevier, 2005.
[Lan09] K. Lano. Model-Driven Software Development With UML and Java. Cengage

Learning EMEA, 2009.
[Leu95] S. Leue. Methods and Semantics for Telecommunication Systems Engi-

neering. PhD Thesis, Universität Bern, 1995.
[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan

Sprinkle. Model Evolution and Management. In MBEERTS: Model-Based
Engineering of Embedded Real-Time Systems, International Dagstuhl Workshop,
volume 6100 of LNCS, pages 241–270, Dagstuhl Castle, Germany, October
2010. Springer, Germany.

[LW94] B. Liskov and J. Wing. A Behavioral Notion of Subtyping. ACM Trans-
actions on Programming Languages and Systems, 16(6):1811–1841, November
1994.

[LW99] B. Liskov and J. Wing. Behavioral subtyping using invariants and con-
straints. CMU CS-99-156, School of Computer Science, Carnegie Mellon
University, 1999.

[MC99] L. Mandel and M. Cengarle. On the Expressive Power of the Object Con-
straint Language OCL. In FM’99, World Congress on Formal Methods, LNCS
1708. Springer-Verlag, Berlin, 1999.

[McL01] B. McLaughlin. Java und XML. Deutsche Ausgabe. O’Reilly, 2001.
[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood

Cliffs, NJ, 1997.
[MMPH99] P. Müller, J. Meyer, and A. Poetzsch-Heffter. Making Executable Interface

Specifications More Expressive. In C. Cap, editor, JIT ’99 Java-Informations-
Tage 1999, Informatik Aktuell. Springer-Verlag, 1999.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Archi-
tecture Descriptions of Critical Systems. IEEE Computer, 43(5):42–48, May
2010.

[MPH00] P. Müller and A. Poetzsch-Heffter. Modular Specification and Verification
Techniques for Object-Oriented Software Components. In G. Leavens and
M. Sitaraman, editors, Foundations of Component-Based Systems. Cambridge
University Press, 2000.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic
Differencing for Activity Diagrams. In ESEC/FSE ’11: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, pages 179–189, Szeged, Hungary, 2011. ACM.

272 References

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational
Semantics for Activity Diagrams using SMV. Technical Report AIB-2011-
07, RWTH Aachen University, Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class
Diagrams Analysis Using Alloy Revisited. In Proceedings of Model Driven
Engineering Languages and Systems (MODELS’11), volume 6981 of LNCS,
pages 592–607, Wellington, New Zealand, October 2011. Springer.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Ob-
ject Diagrams. In Proceedings of the 25th European Conference on Object-
Oriented Programming (ECOOP’11), volume 6813 of LNCS, pages 281–305,
Lancaster, UK, July 2011. Springer.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically
Configurable Consistency Analysis for Class and Object Diagrams. In Pro-
ceedings of Model Driven Engineering Languages and Systems (MODELS’11),
volume 6981 of LNCS, pages 153–167, Wellington, New Zealand, October
2011. Springer.

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Compo-
nent and Connector Models against Crosscutting Structural Views. In 36th
International Conference on Software Engineering (ICSE 2014), pages 95–105,
Hyderabad, India, 2014. ACM New York.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Stan-
dard ML (Revised). MIT Press, Cambridge, 1997.

[Nag79] M. Nagl. Graph-Grammatiken: Theorie, Implementierung, Anwendungen.
Vieweg, Braunschweig, 1979.

[OH98] R. Orfali and D. Harkey. Client/Server Programming with Java and CORBA.
John Wiley & Sons, 1998.

[OMG99] OMG Analysis and Design Task Force. White Paper of the Profile Mecha-
nism. Version 1.0. Technical Report OMG Document ad/99-04-07, Object
Management Group, 1999.

[OMG01a] OMG. Action Semantics for the UML. Response to OMG RFP ad/98-11-
01. Technical Report OMG Document ad/2001-08-04, Object Management
Group, 2001.

[OMG01b] OMG. Meta Object Facility (MOF) Specification. Technical Report 1.3.1,
formal/01-11-02, Object Management Group (OMG), Sept. 2001.

[OMG03] OMG. MDA (Model Driven Architecture) Guide Verion 1.0.1. Techni-
cal Report OMG Document omg/2003-06-01, Object Management Group,
2003.

[OMG04] OMG. Enterprise Collaboration Architecture (ECA) Specification. Techni-
cal Report OMG Document formal/04-02-01, Object Management Group,
2004.

[OMG09] OMG. UML Profile for MARTE: Modeling and Analysis of Real-Time Em-
bedded Systems. Technical Report OMG Document formal/2009-11-02,
Object Management Group, 2009.

[OMG10a] OMG. OMG Unified Modeling Language: Infrastructure Specifica-
tion, Superstructure Specification; formal/2010-05-03, formal/2010-05-05.
Technical report, Object Management Group (OMG), May 2010.

[OMG10b] OMG. OMG Unified Modeling Language: Object Constraint Language
2.2; formal/2010-02-01. Technical report, Object Management Group
(OMG), February 2010.

References 273

[Par93] D. Parnas. Predicate Logic for Software Engineering. IEEE Transactions on
Software Engineering, 19(9), September 1993.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line An-
notations with UML-F. In G.J. Chastek, editor, Proceedings of the Second In-
ternational Conference on Software Product Lines (SPLC’02), volume 2379 of
LNCS, pages 188–197, San Diego, California, USA, August 2002. Springer.

[PH97] A. Poetzsch-Heffter. Specification and Verification of Object-Oriented Pro-
grams. Habilitation Thesis, Technische Universtität München, January
1997.

[PM06] R. Petrasch and O. Meimberg. Model-Driven Architecture: Eine praxisorien-
tierte Einführung in die MDA. dpunkt.verlag, 2006.

[PR94] B. Paech and B. Rumpe. A new Concept of Refinement used for Behaviour
Modelling with Automata. In FME’94, Formal Methods Europe, Symposium
’94, LNCS 873. Springer-Verlag, Berlin, October 1994.

[PR99] J. Philipps and B. Rumpe. Refinement of Pipe And Filter Architectures. In
FM’99, LNCS 1708, pages 96–115, 1999.

[PR01] J. Philipps and B. Rumpe. Roots of Refactoring. In K. Baclavski and
H. Kilov, editors, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA. Northeastern University, 2001.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifi-
cations. In Kilov, H. and Baclavski, K., editor, Practical Foundations of Busi-
ness and System Specifications, pages 281–297. Kluwer Academic Publishers,
2003.

[Pre95] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-
Wesley, 1995.

[RA01] G. Reggio and E. Astesiano. A Proposal of a Dynamic Core for UML Meta-
modelling with MML. Technical Report DISI-TR-01-17, DISI - Universita
di Genova, 2001.

[RG02] M. Richters and M. Gogolla. OCL: Syntax, Semantics and Tools. In T. Clark
and J. Warmer, editors, Object Modeling with the OCL, pages 42–68, LNCS
2263. Springer Verlag, Berlin, 2002.

[Ric02] M. Richters. A Precise Approach to Validating UML Models and OCL Con-
straints. Doktorarbeit, Universität Braunschweig, 2002.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior.
In B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications,
pages 265–286. Kluwer Academic Publishers, 1996.

[RK99] B. Rumpe and C. Klein. Automata Describing Object Behavior. In Object-
Oriented Behavioral Specifications, pages 265–287. Kluwer Academic Pub-
lishers, Norwell, Massachusetts, 1999.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes
mathematisches Modell verteilter informationsverarbeitender Systeme -
Syslab-Systemmodell. Technischer Bericht TUM-I9510, TU München,
Deutschland, März 1995.

[RLNS00] K. Rustan, M. Leino, G. Nelson, and J. Saxe. ESC/Java user’s manual.
Technical Note 2000-02, Compaq Systems Research Center, Palo Alto, CA,
2000.

[Roz99] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, 1999.

[RQZ07] C. Rupp, S. Queins, and B. Zengler. UML 2 glasklar. Carl Hanser Verlag,
3rd edition, 2007.

274 References

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Soft-
ware Architecture Structure and Behavior Modeling to Implementations
of Cyber-Physical Systems. Software Engineering 2013 Workshopband, LNI
P-215:155–170, May 2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiAr-
cAutomaton: Modeling Architecture and Behavior of Robotic Systems. In
Workshops and Tutorials Proceedings of the 2013 IEEE International Conference
on Robotics and Automation (ICRA’13), pages 10–12, Karlsruhe, Germany,
May 2013.

[Rum96] B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, 1996.

[Rum97] B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. In Ausgezeichnete Informatikdissertationen 1997, pages 118–134.
Teubner Stuttgart, 1997.

[Rum02a] B. Rumpe. Online Auctions (lessons learned from strategic E-Business
consulting). In Issues & Trends of Information Technology Management in Con-
temporary Associations, Seattle, pages 682–686, Hershey, London, 2002. Idea
Group Publishing.

[Rum02b] B. Rumpe. �Java�OCL Based on New Presentation of the OCL-Syntax.
In T. Clark and J. Warmer, editors, Object Modeling with the OCL, pages
189–212, LNCS 2263. Springer Verlag, Berlin, 2002.

[Rum02c] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Night-
mare? In T. Clark and J. Warmer, editors, Issues & Trends of Information
Technology Management in Contemporary Associations, Seattle, pages 697–701.
Idea Group Publishing, Hershey, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In de
Boer, F.S. and Bonsangue, M. and Graf, S. and de Roever, W.-P., editor, Pro-
ceedings of the International Symposium on Formal Methods for Components and
Objects (FMCO’02), volume 2852 of LNCS, pages 380–402, Leiden, Nether-
lands, November 2003. Springer.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In M. Wirsing,
A. Knapp, and S. Balsamo, editors, Proceedings of the Radical Innovations
of Software and Systems Engineering in the Future. 9th International Workshop
(RISSEF’02), volume 2941 of LNCS, pages 297–309, Venice, Italy, October
2004. Springer.

[Rum11] Bernhard Rumpe. Modellierung mit UML. Springer Berlin, 2te edition,
September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle,
Refactoring. Springer Berlin, 2te edition, Juni 2012.

[RWH01] B. Reus, M. Wirsing, and R. Hennicker. A Hoare Calculus for Verify-
ing Java Realizations of OCL-Constrained Design Model. In FASE 2001,
ETAPS, Genova, LNCS 2029, pages 300–316. Springer Verlag, 2001.

[Sch98a] S. Schiffer. Visuelle Programmierung. Grundlagen und Einsatzmöglichkeiten.
Addison-Wesley, 1998.

[Sch98b] P. Scholz. Design of Reactive Systems and their Distributed Implementation with
Statecharts. Doktorarbeit, Technische Universität München, 1998.

[Sch00] W. Schwerin. Models of Systems, Work Products, and Notations. In Pro-
ceedings of Intl. Workshop on Model Engineering, ECOOP, France. Tech. Re-
port, 2000.

References 275

[Sch02] A. Schürr. A New Type Checking Approach for OCL Version 2.0? In
T. Clark and J. Warmer, editors, Object Modeling with the OCL, pages 21–
41, LNCS 2263. Springer Verlag, Berlin, 2002.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der
UML/P. Number 11 in Aachener Informatik-Berichte, Software Engineer-
ing. Shaker Verlag, 2012.

[SE99a] S. Sauer and G. Engels. Extending UML for Modeling of Multimedia Ap-
plications. In M. Hirakawa and P. Mussio, editors, Proc. 1999 IEEE Sympo-
sium on Visual Languages, Tokyo, Japan, pages 80–87. IEEE Computer Society,
1999.

[SE99b] S. Sauer and G. Engels. UML-basierte Modellierung von Multimedian-
wendungen. In J. Desel, K. Pohl, and A. Schürr, editors, Modellierung ’99,
Karlsruhe, pages 155–170. Teubner, Stuttgart, 1999.

[SGW94] B. Selic, G. Gulkeson, and P. Ward. Real-Time Object-Oriented Modeling.
John Wiley and Sons, 1994.

[SHB96] B. Schätz, H. Hußmann, and M. Broy. Graphical Development of Consis-
tent System Specifications. In FME’96, Industrial Benefit and Advances in
Formal Methods, LNCS 1051. Springer-Verlag, Berlin, 1996.

[SHJ+94] G. Saake, P. Hartel, R. Jungclaus, R. Wieringa, and R. Feenstra. Inheritance
Conditions for Object Life Cycle Diagrams. In Formale Grundlagen für den
Entwurf von Informationssystemen, GI-Workshop, Tutzing 24.-26. Mai 1994
(GI FG 2.5.2 EMISA). Institut für Informatik, Universität Hannover, May
1994.

[SPHP02] B. Schätz, A. Pretschner, F. Huber, and J. Philipps. Model-Based Devel-
opment. Technical report TUM-I0204, Technische Universität München,
2002.

[SPTJ01] G. Sunye, D. Pollet, Y. Le Traon, and J.-M. Jezequel. Refactoring UML Mod-
els. In M. Gogolla and C. Kobryn, editors, �UML�2001 – The Unified Mod-
eling Language, 4th Intl. Conference, pages 134–148, LNCS 2185. Springer,
2001.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Kar-
sai. Metamodelling: State of the Art and Research Challenges. In
MBEERTS: Model-Based Engineering of Embedded Real-Time Systems, Inter-
national Dagstuhl Workshop, volume 6100 of LNCS, pages 57–76, Dagstuhl
Castle, Germany, October 2010. Springer, Germany.

[Sta73] H. Stachowiak. Allgemeine Modelltheorie. Springer Verlag, Wien, 1973.
[vdB94] M. von der Beeck. A Comparison of Statecharts Variants. In H. Lang-

maack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’94), volume LNCS 863, pages 128–
148. Springer-Verlag, 1994.

[vO01] D. von Oheimb. Hoare Logic for Java in Isabelle/HOL. Concurrency and
Computation: Practice and Experience, 13(13):1173–1214, 2001.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen.
Number 9 in Aachener Informatik-Berichte, Software Engineering. Shaker
Verlag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen.
Number 12 in Aachener Informatik-Berichte, Software Engineering.
Shaker Verlag, 2012.

[WK98] J. Warmer and A. Kleppe. The Object Constraint Language. Addison Wesley,
Reading, Mass., 1998.

276 References

[WKS10] I. Weisemöller, F. Klar, and A. Schürr. Development of Tool Extensions
with MOFLON. In H. Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schätz, ed-
itors, Model-Based Engineering of Embedded Real-Time Systems: International
Dagstuhl Workshop, Dagstuhl Castle, Germany, November 4-9, 2007, LNCS
6100, pages 337–343. Springer Verlag, 2010.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige,
Kumardev Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand
Data Analysis and Filtering for Inaccurate Flight Trajectories. In D. Schae-
fer, editor, Proceedings of the SESAR Innovation Days, Toulouse, France,
November/December 2011. EUROCONTROL.

Index

〈ActionC.17〉, 249
〈AnnotationTypeDeclarationB.6〉, 229
〈AnnotationTypeElementDeclarationB.6〉,

229
〈AnnotationB.6〉, 229
〈ArgumentsB.6〉, 228
〈AssertPredicateB.9〉, 229
〈AssignmentOperatorB.6〉, 228
〈AssociationNameC.3〉, 234
〈AttributeValueC.15〉, 247
〈AttributeC.3〉, 234
〈BasicTypeB.2〉, 224
〈BlockB.5〉, 227
〈CardinalityC.3〉, 234
〈CatchClauseB.5〉, 227
〈ClassBodyDeclarationB.3〉, 225
〈ClassBodyB.3〉, 225
〈ClassContextC.7〉, 240
〈ClassDeclarationB.3〉, 225
〈ClassNameC.3〉, 234
〈ClassOrInterfaceC.7〉, 240
〈CollectionExprC.10〉, 242
〈CollectionItemC.10〉, 242
〈CompilationUnitB.2〉, 224
〈ComprehensionItemC.10〉, 242
〈ComprehensionC.10〉, 242
〈ConstraintC.7〉, 240
〈ConstructorDeclarationB.4〉, 226
〈ConstructorHeaderB.4〉, 226
〈ConstructorSignatureC.7〉, 240
〈ConstructorSignatureC.3〉, 234
〈ContainerTypeC.10〉, 242
〈DiagramNameC.15〉, 247

〈DigitsB.1〉, 223
〈ElementValueB.6〉, 229
〈EnumBodyB.3〉, 225
〈EnumConstantB.3〉, 225
〈EnumDeclarationB.3〉, 225
〈ExceptionTypeC.17〉, 249
〈ExceptionC.17〉, 249
〈ExpressionB.6〉, 228
〈FieldDeclarationB.4〉, 226
〈ForInitB.5〉, 227
〈FormalParametersB.4〉, 226
〈FormalParameterB.4〉, 226
〈IdentifierB.1〉, 223
〈InfixOpB.6〉, 228
〈InterfaceBodyDeclarationB.3〉, 225
〈InterfaceDeclarationB.3〉, 225
〈InternalTransitionC.17〉, 249
〈InvariantNameC.7〉, 240
〈InvariantC.7〉, 240
〈KeywordC.4〉, 236
〈LastFormalParameterB.4〉, 226
〈LeftHandSideB.6〉, 228
〈LinkQualifierC.15〉, 247
〈LiteralB.1〉, 223
〈MethodCallC.17〉, 249
〈MethodDeclarationB.4〉, 226
〈MethodHeaderB.4〉, 226
〈MethodSignatureC.7〉, 240
〈MethodSignatureC.3〉, 234
〈MethodC.3〉, 234
〈ModifiersC.3〉, 234
〈ModifierB.3〉, 225
〈NameB.2〉, 224

© Springer International Publishing Switzerland 2016
B. Rumpe, Modeling with UML, DOI 10.1007/978-3-319-33933-7

277

278 Index

〈OCLArgumentsC.9〉, 242
〈OCLConstraintC.7〉, 240
〈OCLElementC.20〉, 254
〈OCLExprC.8〉, 241
〈OCLInfixOpC.8〉, 241
〈OCLPrefixOpC.8〉, 241
〈OCLPrimaryC.9〉, 242
〈OCLVarDeclaratorC.8〉, 241
〈OCLC.7〉, 240
〈ObjectNameC.15〉, 247
〈ObjectcreationC.20〉, 254
〈OperationConstraintC.7〉, 240
〈OperationContextC.7〉, 240
〈OperationSignatureC.7〉, 240
〈PostconditionC.17〉, 249
〈PostfixOpB.6〉, 228
〈PreconditionC.17〉, 249
〈PrefixOpB.6〉, 228
〈PrimaryB.6〉, 228
〈QualifierC.3〉, 234
〈RawConstraintC.7〉, 240
〈ReturnC.17〉, 249
〈RoleNameC.3〉, 234
〈SetVarDeclaratorC.10〉, 242
〈StateInvariantC.17〉, 249
〈StateNameC.17〉, 249
〈StatementB.9〉, 229
〈StatementB.5〉, 227
〈StereotypeC.4〉, 236
〈StimulusC.17〉, 249
〈SwitchPartB.5〉, 227
〈TagEntryC.4〉, 236
〈TagC.4〉, 236
〈ThrowsB.4〉, 226
〈TypeArgumentsB.2〉, 224
〈TypeArgumentB.2〉, 224
〈TypeCardinalityC.3〉, 234
〈TypeDeclarationB.2〉, 224
〈TypeParametersB.3〉, 225
〈TypeParameterB.3〉, 225
〈TypeVariableB.2〉, 224
〈TypeVoidB.2〉, 224
〈TypeB.2〉, 224
〈UML/PC.1〉, 232
〈UMLPunitC.1〉, 232
〈ValueC.4〉, 236
〈VarDeclarationC.3〉, 234
〈VariableDeclaratorB.4〉, 226
〈VariableInitializerB.4〉, 226

〈VisibilityC.3〉, 234
Collection<X>, 50
List<X>, 50
Set<X>, 50
{addOnly}, 113
{frozen}, 108
{ordered}, 110
{trigger}, 196

abstract, 17
Action, 148
Action condition, 147
Activity bar

sequence diagram, 194
Ambiguity

grammar, 224
Anonymous object

sequence diagram, 196
Association, 17, 22

derived, 25
object diagram, 108

Association name, 22, 105
Association role, 22
@pre, 84
Attribute, 17, 105

derived, 18
Auction

prolongation phase, 260
Auction platform, 259, 262

Basic data types, 44

Cardinality, 17
Causality

sequence diagram, 203
Chaos, 143
Chaos completion, 163, 182
Chomsky hierarchy, 215
Class, 17
Class attribute

object diagram, 108
Collection, 50
Comment

in the diagram, 17
Communication diagram, 207
Composition, 24

object diagram, 110
Composition link, 105
Comprehension, 53

Index 279

Concept of modeling, 8
Condition

OCL, 39
sequence diagram, 194

Constant, 17
Container, 50
Context, 72

of a condition, 39
of pre/postconditions, 82

Context-free grammar
OCL, 239

Contract
pre/postcondition, 83

Control state, 150

Data state, 150
Direction of navigation, 17
Discriminator

for overlapping firing conditions, 184
Do-activity, 148, 169

EBNF, 215
Enabledness, 147, 161
Encapsulation

in OCL, 65
Entry-action, 148, 169
Enumeration, 53
Error handling, 163
Error state, 143, 165
Evaluation strategy

OCL, 48
Exception

sequence diagram, 194
Statechart, 165

exists, 70
Exit-action, 148, 169
Extended Backus–Naur Form, 215
Extension, 51, 64

Filter
comprehension, 53

final, 17
Final state, 147
Flatten

OCL, 56, 62
forall, 70
Formalization

sequence diagram, 204

Generator

comprehension, 53
Grammar, 215

Helper function
OCL, 240

Import, 72
OCL, 40

Infix operator
Java, 226
OCL, 45

Inheritance, 17
Inheritance relation, 17
Initial state, 147
instanceof, 43
Interaction

sequence diagram, 193
Interface, 17
Interface implementation, 17
Interpretation

of a condition, 39
Invariant, 39, 240

implicit universal quantifier, 73
validity, 100

isnew
OCL, 86

Keyword
tag, 31

Kleene logic, 47

Labels, 4
Language profile, 6
Lifecycle, 137, 144

object, 24
Lifting operator

OCL, 48
Link, 22, 105

object, 108
List comprehension, 53
Logic

lifting, 46
OCL, 45
two-valued, 46

Loop
ε, 143

Matching
sequence diagram, 202

MDA, 10
Mealy automaton, 140

280 Index

Message
sequence diagram, 194

Message Sequence Charts, 192
Metamodeling, 217, 231
Method, 17
Method call

sequence diagram, 194
Method recursion, 145, 160
Method specification, 39, 82, 240

inheritance, 89
Model, 8
Model Driven Architecture, 10
Model element, 31
Modifier, 17
MSC, 192

Navigation, 23
set-valued, 65

Navigation direction, 105
OCL, 65

Navigation expression, 41
Nondeterminism, 141, 147, 161

Statechart, 184

Object, 105
anonymous, 108
sequence diagram, 194

Object Constraint Language, 38
Object creation

OCL, 80
sequence diagram, 196

Object diagram
alternatives, 127
in the method specification, 128
initialization, 131
negation, 127
object creation, 129

Object name, 105
Object recursion, 145, 160, 205
OCL, 38
OCL documents, 239
OCL grammar, 240
OMG, 10

Postcondition, 82, 147
method, 39

Precondition, 82, 147, 156
method, 39
unfulfilled, 83

private, 17
protected, 17
Prototypical object, 105, 115
Pseudovalue

undefined, 45
public, 17

Qualified association, 68
Qualifier, 26, 70

object diagram, 110
Quantifier, 70

computability, 73
primitive datatype, 73

Query, 39, 78

Rabin Scott automaton, 139
readonly, 17
Recursion, 92
Refactoring

Statechart, 175
Representation, 27

sequence diagram, 195
Representation indicator

. . . , 28
c©, 28
object diagram, 107

Result variable
result, 83

Return
sequence diagram, 194

Role name, 17, 22, 41, 105

SCD, 217
Sequence diagram, 192
Set comprehension, 53

OCL, 41
Sideeffect, 80
Signature, 17
Signs, 215
SOCL, 219
Source state, 147, 156
Specification query, 81
State, 147
State components, 17
State invariant, 147, 148
Statechart, 136

action, 167
final state, 155
hierarchy, 138

Index 281

inheritance, 175
initial state, 155
lifecycle, 155
refactoring, 175
run-to-completion, 137

static, 17
Stereotype, 31

�OCL�, 81
�actionconditions�, 172, 252
�completion:chaos�, 166, 252
�completion:ignore�, 166, 252
�controlstate�, 150, 252
�datastate�, 150, 252
�error�, 165, 252
�exception�, 165
�interface�, 21
�match:complete�, 202
�match:free�, 202
�match:initial�, 202
�match:visible�, 202
�method�, 252
�not-inherited�, 90
�prio:inner�, 163, 252
�prio:outer�, 163, 252
�query�, 78
�statedefining�, 152, 252

Stimulus, 137, 147, 159
Subclass, 17
Substitution principle, 17
Subtype, 17
Superclass, 17

Syntax
sequence diagram, 253
Statechart, 248

Syntax class diagram, 217
Syntax-OCL, 219
System run, 99, 201

Tag, 31
Target state, 147
Timeline

sequence diagram, 194
Transition, 147, 156

ε, 143
spontaneous, 138, 143

Transitive closure , 96
Triggering condition, 156
Type constructor

OCL, 50
typeif, 43

UML, 5
language profile, 6

UML/P, 232
overview, 5

Underspecification, 141, 161

Value
tag, 31

View, 27
Visibility markers, 31
Vocabulary, 215

	Foreword1
	Preface to the Second Edition2
	Preface to the English Edition
	Contents
	1
Introduction
	1.1 Goals of Book 1 and 2
	1.2 Overview
	1.3 Notational Conventions
	1.4 Placement of UML/P
	1.4.1 Importance and Scope of UML
	1.4.2 UML Language Profiles
	1.4.3 Notations in UML/P
	1.4.4 The Terms “Modeling” and “Model-Based Development”

	1.5 The Future: Agile Modeling with UML

	2
Class Diagrams
	2.1 Relevance of Class Diagrams
	2.2 Classes and Inheritance
	2.2.1 Attributes
	2.2.2 Methods
	2.2.3 Inheritance
	2.2.4 Interfaces

	2.3 Associations
	2.3.1 Roles
	2.3.2 Navigation
	2.3.3 Cardinality
	2.3.4 Composition
	2.3.5 Derived Associations
	2.3.6 Tags for Associations
	2.3.7 Qualified Associations

	2.4 View and Representation
	2.5 Stereotypes and Tags
	2.5.1 Stereotypes
	2.5.2 Tags
	2.5.3 Introduction of New Elements

	3
Object Constraint Language
	3.1 Overview of OCL/P
	3.1.1 The Context of a Constraint
	3.1.2 The let Construct
	3.1.3 Conditional Expression
	3.1.4 Basic Data Types

	3.2 The OCL Logic
	3.2.1 The Boolean Conjunction
	3.2.2 Two-Valued Semantics and Lifting
	3.2.3 Control Structures and Comparisons

	3.3 Container Data Structures
	3.3.1 Representation of Sets and Lists
	3.3.2 Set and List Comprehensions
	3.3.3 Set Operations
	3.3.4 List Operations
	3.3.5 Container Operations
	3.3.6 Flattening of Containers
	3.3.7 Typing of Containers
	3.3.8 Set- and List-ValuedNavigation
	3.3.9 Qualified Association
	3.3.10 Quantifiers
	3.3.11 Special Operators

	3.4 Functions in OCL
	3.4.1 Queries
	3.4.2 <<OCL>> Methods
	3.4.3 Method Specification
	3.4.4 Libraries of Queries

	3.5 Expressiveness of OCL
	3.5.1 Transitive Closure
	3.5.2 The Nature of an Invariant

	3.6 Summary

	4
Object Diagrams
	4.1 Introduction to Object Diagrams
	4.1.1 Objects
	4.1.2 Attributes
	4.1.3 Links
	4.1.4 Qualified Links
	4.1.5 Composition
	4.1.6 Tags and Stereotypes

	4.2 Meaning of an Object Diagram
	4.2.1 Incompleteness and Exemplaricity
	4.2.2 Prototypical Objects
	4.2.3 Instance VersusModel Instance

	4.3 Logic of Object Diagrams
	4.3.1 Name for a Diagram
	4.3.2 Binding of Object Names
	4.3.3 Integration of Object Diagram and OCL
	4.3.4 Anonymous Objects
	4.3.5 OCL Constraints in Object Diagrams
	4.3.6 Abstract Object Diagrams

	4.4 Methodical Use of Object Diagrams
	4.4.1 Composition of Object Diagrams
	4.4.2 Negation
	4.4.3 Alternative Object Structures
	4.4.4 Object Diagrams in aMethod Specification
	4.4.5 Object Creation
	4.4.6 Validity of Object Diagrams
	4.4.7 Initialization of Object Structures

	4.5 Summary

	5
Statecharts
	5.1 Properties of Statecharts
	5.2 Automaton Theory and Its Interpretation
	5.2.1 Recognizing andMealy Automata
	5.2.2 Interpretation
	5.2.3 Nondeterminism as Underspecification
	5.2.4 ε-Transitions
	5.2.5 Incompleteness
	5.2.6 Lifecycle
	5.2.7 Expressiveness
	5.2.8 Transformations on Automata

	5.3 States
	5.3.1 State Invariants
	5.3.2 Hierarchical States
	5.3.3 Initial and Final States

	5.4 Transitions
	5.4.1 State InvariantsWithin the State Hierarchy
	5.4.2 Initial and Final States in the State Hierarchy
	5.4.3 Stimuli for Transitions
	5.4.4 Enabledness
	5.4.5 Incomplete Statechart

	5.5 Actions
	5.5.1 Procedural and Descriptive Actions
	5.5.2 State Actions
	5.5.3 State-Internal Transitions
	5.5.4 Do-Activity

	5.6 Statecharts in the Context of UML
	5.6.1 Inheritance of Statecharts
	5.6.2 Transformations on Statecharts
	5.6.3 Mapping to OCL

	5.7 Summary

	6
Sequence Diagrams
	6.1 Concepts of Sequence Diagrams
	6.2 OCL in Sequence Diagrams
	6.3 Semantics of a Sequence Diagram
	6.4 Special Cases and Extensions for Sequence Diagrams
	6.5 Sequence Diagrams in UML
	6.6 Summary

	7
Further Reading
	A
Language Representation with Syntax Class Diagrams
	B
Java
	C
The Syntax of UML/P
	C.1 UML/P Syntax Overview
	C.2 Class Diagrams
	C.2.1 Core Parts of a Class Diagram
	C.2.2 Text Parts of a Class Diagram
	C.2.3 Tags and Stereotypes
	C.2.4 Comparison with the UML Standard

	C.3 OCL
	C.3.1 Syntax of OCL
	C.3.2 Differences From the OCL Standard

	C.4 Object Diagrams
	C.4.1 Context-Free Syntax

	C.5 Statecharts
	C.5.1 Abstract Syntax
	C.5.2 Comparisons with the UML standard

	C.6 Sequence Diagrams
	C.6.1 Abstract Syntax
	C.6.2 Comparison with the UML Standard

	D Sample Application: Internet-Based Auction
System
	D.1 Auctions as an E-Commerce Application
	D.2 The Auction Platform

	References
	Index

