

Software-Defined
Networking and

Security
From Theory to Practice

Data-Enabled Engineering Series
Series Editors: Nong Ye, Arizona State University, Phoenix, USA

Convolutional Neural Networks in Visual Computing
A Concise Guide
Ragav Venkatesan and Baoxin Li

For more information about this series, please visit: www.crcpress.com/Data-
Enabled-Engineering/book-series/CRCDATENAENG

http://www.crcpress.com/Data-Enabled-Engineering/book-series/CRCDATENAENG
http://www.crcpress.com/Data-Enabled-Engineering/book-series/CRCDATENAENG

Software-Defined
Networking and

Security
From Theory to Practice
Dijiang Huang
Ankur Chowdhary
Sandeep Pisharody

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-8153-8114-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here-
after invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy
right.com (http:==www.copyright.com=) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides
licenses and registration for a variety of users. For organizations that have been granted a photocopy
license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.
Library of Congress Cataloging-in-Publication Data

Names: Huang, Dijiang, author. | Chowdhary, Ankur, author. | Pisharody,
Sandeep, author.
Title: Software-defined networking and security : from theory to practice /
Dijiang Huang, Ankur Chowdhary and Sandeep Pisharody.
Description: First edition. | Boca Raton, FL : CRC Press/Taylor & Francis
Group, 2018. | Series: Data-enabled engineering
Identifiers: LCCN2018037448 | ISBN9780815381143 (hardback : acid-free paper)
Subjects: LCSH: Software-defined networking (Computer network technology)
Classification: LCC TK5105.5833 .H83 2018 | DDC 005.8--dc23
LC record available at https://lccn.loc.gov/2018037448
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2018037448

To Lu, Alex, and Sarah: love,
Dijiang/////Dad
To my mother, father, and sister, Vaishali
Ankur
To Shuchi, you mean the world to me!
Sandeep

http://taylorandfrancis.com

Contents
Preface . xvii
Acknowledgments. xxiii
About the Authors. xxv
Part I Foundations of Virtual Networking and Security

1. Introduction of Computer Networks . 7

1.1 Foundations of Computer Networks . 8
1.1.1 Protocol Layers. 8
1.1.2 Networking Services and Packet Encapsulation 9
1.2 Addresses . 11

1.2.1 MAC Address . 12
1.2.2 IP Address (IPv4) . 13
1.2.2.1 Classless Inter-Domain Routing 14
1.2.2.2 Private IPs . 19
1.2.3 IP Address (IPv6) . 20

1.2.3.1 Address Representation . 20
1.2.3.2 Address Uniqueness. 21
1.2.3.3 Link-local Address . 22
1.2.3.4 Global Addressing . 22
1.2.4 Port Number . 23

1.3 Physical, Logical, and Overlay Networks. 24
1.3.1 Physical Networks . 24
1.3.2 Logical Networks . 24
1.3.3 Overlay Networks . 26
1.4 Computer Networking Services . 27

1.4.1 Address Resolution Protocol . 27
1.4.2 Dynamic Host Configuration Protocol . 29
1.4.3 Domain Name System . 30
1.4.4 Network Address Translation. 31
1.4.4.1 What is NAT . 31
1.4.4.2 PREROUTING and POSTROUTING. 32
1.4.4.3 Netfilter and NAT. 33
1.4.5 iptables . 34

1.4.5.1 Tables in iptables . 34
1.4.5.2 Chains in iptables . 35
1.4.5.3 Targets in iptables’ Chains . 36
1.5 IP Network Routing . 36
Summary . 38
vii

viii Contents
2. Virtual Networking . 39

2.1 Virtual Networks . 39
2.1.1 Basis of Virtual Networks . 39
2.1.2 Abstraction vs. Virtualization . 41
2.1.3 Benefits of Virtualizing Networks. 42
2.1.4 Orchestration and Management of Virtual Networks. 44
2.1.5 Virtual Networking Embedding Problems. 44
2.1.5.1 VNE Problem Description. 45
2.1.5.2 VNE Formal Definition. 46
2.2 Layer-2 Virtual Networking . 47

2.2.1 Linux Bridge . 49
2.2.1.1 Data Structures of Linux Bridge. 50
2.2.1.2 Linux Bridge Configuration . 51
2.2.1.3 Linux Bridge Frame Processing 52
2.2.1.4 Use Cases of Linux Bridge . 54
2.2.2 Open Virtual Switches . 57

2.2.2.1 Linux Bridge vs. Open Virtual Switch. 57
2.2.2.2 Open Virtual Switch Supporting Features 58
2.2.2.3 Open Virtual Switch Internal Modules 59
2.2.2.4 Packet Processing in OVS . 60
2.3 Tunneling Protocols and Virtual Private Networks. 61

2.3.1 VLAN . 63
2.3.1.1 Types of VLANs. 64
2.3.1.2 IEEE 802.1Q . 67
2.3.2 Virtual Extensible LAN . 72

2.3.2.1 VXLAN Design Requirements

and Challenges . 73
2.3.2.2 VXLAN Frame . 73
2.3.3 Generic Routing Encapsulation . 75

2.3.3.1 GRE Header . 75
2.3.3.2 GRE Packet Flow . 76
2.4 Virtual Routing and Forwarding . 76
Summary . 78
3. SDN and NFV . 81

3.1 Introduction. 81
3.2 Network Functions Virtualization . 82
3.2.1 Background and Motivation behind NFV. 82
3.2.2 NFV Framework . 83
3.2.3 Benefits and Challenges of NFV . 84
3.2.4 OPNFV. 84
3.2.5 OpenStack. 85
3.3 Software-Defined Networks . 88

3.3.1 Benefits and Challenges of SDN . 89

Contents ix
3.3.2 Background . 91
3.3.3 SDN Control Plane . 91
3.3.4 SDN Data Plane . 92
3.3.5 OpenFlow . 92
3.3.6 SDN Controllers. 93
3.3.7 Open Virtual Switch . 94
3.3.8 Routing in SDN . 95
3.3.8.1 RCP: Routing Control Platform 95
3.3.8.2 The SoftRouter . 96
3.3.8.3 RF IP Routing: IP Routing Services over

RouteFlow-based SDN . 96
3.3.8.4 VRS: Virtual Routers as a Service 97
3.3.8.5 RFCP: RouteFlow Routing Control

Platform over SDN . 98
3.3.8.6 RaaS: Routing as a Service . 98
3.3.8.7 CAR-Cloud Assisted Routing 99
3.3.9 OpenDaylight . 99
3.3.10 Distributed SDN Environments. 102
3.3.11 Distributed SDN Controller Considerations 103
3.3.12 Challenges in Multiple-Controller Domain 104
3.4 Advanced Topic: Deep Programmability . 104

3.4.1 P4 Forwarding Model . 105
3.4.2 P4 Programming Language . 105
3.4.3 Protocol Independent Switch Architecture. 107
Summary . 107
4. Network Security Preliminaries . 109

4.1 Basic Concepts of Computer Network Security. 109
4.1.1 Threat, Risk, and Attack . 109
4.1.2 Defense In Depth. 111
4.1.3 Cyber Killer Chain . 112
4.2 Network Reconnaissance . 114

4.2.1 Network Mapping . 114
4.2.2 Port Scanning . 115
4.2.3 Vulnerability Scanning and Penetration Testing 115
4.3 Preventive Techniques . 116

4.3.1 Firewalls . 116
4.3.2 Intrusion Prevention . 120
4.4 Detection and Monitoring . 121

4.4.1 Intrusion Detection. 121
4.4.2 Logging . 122
4.5 Network Security Assessment . 125
Summary . 126

x Contents
5. SDN and NFV Security . 127

5.1 Introduction. 127
5.1.1 An Overview of Security Challenges in NFV 127

5.1.1.1 NFV Threat Vectors . 128
5.1.1.2 NFV Security Goals . 128
5.2 NFV Security. 129

5.2.1 NFV Security Classification . 129
5.2.1.1 Intra-VNF Security . 129
5.2.1.2 Extra-VNF Security. 130
5.2.2 NFV Security Lifecycle . 130
5.2.3 Use Case: DNS Amplification Attack . 132
5.2.4 NFV Security Countermeasures. 133
5.2.4.1 Topology Verification and Enforcement 133
5.2.4.2 Securing the Virtualization Platform 134
5.2.4.3 Network and I/O Partitioning 134
5.2.4.4 Authentication, Authorization, and

Accounting . 135
5.2.4.5 Dynamic State Management, and

Integrity Protection . 136

5.3 SDN Security. 137
5.3.1 SDN Security Classification . 137

5.3.1.1 SDN Security Threat Vectors 139
5.3.2 Design of Secure and Dependable SDN Platform. 140
5.3.3 SDN Data Plane Attacks and Countermeasures 143
5.3.3.1 SDN Data Plane Attacks . 143
5.3.3.2 SDN Data Plane Attack Countermeasures 144
5.3.4 SDN-Specific Security Challenges. 145

5.3.4.1 Programmablity . 145
5.3.4.2 Integration with Legacy Protocols. 146
5.3.4.3 Cross-Domain Connection . 146
5.3.5 OpenFlow Protocol and OpenFlow Switch
Security Analysis . 146

5.3.5.1 Attack Model . 146
5.3.5.2 Protocol-Specific Analysis . 147
Summary . 149
Part II Advanced Topics on Software-Defined and
Virtual Network Security

6. Microsegmentation . 155

6.1 From Firewall to Microsegmentation . 155
6.2 Distributed Firewalls. 160
6.2.1 Issues of Conventional Firewalls . 160
6.2.2 Introduction of Distributed Firewalls . 162

Contents xi
6.2.3 Implementation of Distributed Firewalls. 164

6.3 Microsegmentation. 166
6.3.1 Design Microsegmentation and Considerations 166

6.3.1.1 Software-Defined and Programmability 166
6.3.1.2 Fine-Grained Data Flow Control and

Policy Management . 167
6.3.1.3 Applying Network Analytic Models to

Understand Data Traffic Pattern 167
6.3.1.4 Zero Trust Zones . 168
6.3.1.5 Tools for Supporting Legacy Networks 168
6.3.1.6 Leveraging Cloud-Based Resource

Management and Support. 168

6.3.2 MicroSegmentation Defined . 169
6.3.3 NIST Cybersecurity Recommendations for

Protecting Virtualized Workloads. 170

6.4 Case Study: VMware NSX Microsegmentation 171
6.4.1 Isolation . 172
6.4.2 Segmentation. 172
6.4.3 Security Service Function Chaining . 172
6.4.4 Network and Guest Introspection. 174
6.4.5 Security Service Abstraction . 175
6.4.5.1 Service Composer . 175
6.4.5.2 Grouping . 177
6.4.5.3 Intelligent Grouping. 177
6.4.5.4 Security Tag . 179
Summary . 180
7. Moving Target Defense . 181

7.1 Introduction. 181
7.2 MTD Classification. 182
7.2.1 Security Modeling-based MTD. 183

7.2.1.1 Shuffle . 183
7.2.1.2 Diversification . 183
7.2.1.3 Redundancy . 185
7.2.2 Implementation Layer-based MTD . 185

7.2.2.1 Network Level MTD . 186
7.2.2.2 Host Level MTD. 187
7.2.2.3 Application Level MTD . 187
7.3 SDN-based MTD. 188

7.3.1 Network Mapping and Reconnaissance Protection 189
7.3.1.1 Service Version and OS Hiding 189

7.3.2 OpenFlow Random Host Mutation . 190
7.3.3 Frequency Minimal MTD Using SDN. 191
7.3.4 SDN-based Scalable MTD in Cloud. 193
7.4 Game Theoretic MTD Models . 194

xii Contents
7.4.1 Game Theoretic Approach to IP Randomization. 194
7.4.2 Game Theoretic Approach to Feedback Driven

Multi-Stage MTD. 195
7.4.3 Game Theory-based Software Diversity 196
7.4.4 Markov Game-based MTD. 198
7.4.4.1 IP Hopping Using Markov Game Modeling . . . 199
7.4.4.2 Winning Strategy for Adversary 200
7.5 Evaluation of MTD . 201

7.5.1 Quantitative Metrics for MTD Evaluation 201
7.5.2 MTD Analysis and Evaluation Framework 202
Summary . 203
8. Attack Representation . 205

8.1 Introduction. 205
8.1.1 Cybersecurity Metrics . 206
8.1.2 Common Vulnerability Scoring System (CVSS). 206
8.1.3 CVSS Use Case . 207
8.1.4 Attack Scenario Analysis . 208
8.1.5 Qualitative and Quantitative Metrics . 209
8.2 Attack Graph . 210

8.2.1 Probabilistic Attack Graphs . 212
8.2.2 Risk Mitigation Using Probability Metrics 213
8.2.3 Attack Graph Ranking . 214
8.3 Attack Tree. 215
8.4 Attack Countermeasure Tree . 216
8.4.1 ACT Qualitative and Quantitative Analysis 217

8.5 Other Attack Representation Models . 221
8.5.1 Fault Tree . 221
8.5.2 Event Tree. 221
8.5.3 Hierarchical Attack Representation

Model . 222

8.6 Limitations of Attack Representation Methods 223
Summary . 224
9. Service Function Chaining . 225

9.1 Introduction. 225
9.2 SFC Concepts . 227
9.2.1 Challenges in SFC . 229

9.3 SDN- and NFV-based SFC. 232
9.3.1 SDN as an Enabler of SFC . 233

9.4 SFC Implementations . 234
9.4.1 T-Nova: SDN-NFV-based SFC . 234
9.4.2 Tacker: OpenStack-based SFC . 236

Contents xiii
9.5 Policy-Aware SFC. 237

9.5.1 PGA: Graph-based Policy Expression and

Reconciliation . 238

9.5.1.1 Policy Composition Example. 239
9.5.2 Group-based Policy . 239

9.6 Secure Service Function Chaining . 240
9.6.1 Secure In Cloud Chaining. 242
9.6.2 SFC Using Network Security Defense Patterns 243
Summary . 246
10. Security Policy Management in Distributed SDN Environments . . 247

10.1 Background . 248
10.2 Related Work . 250
10.2.1 Firewall Rule Conflicts . 250
10.2.2 SDN Security and SDN Policy Management 251
10.3 Flow Rules . 253

10.3.1 Security Policies Using Flow Rules 255
10.3.2 Flow Rule Model. 257
10.4 Flow Rule Management Challenges . 258

10.4.1 Motivating Scenarios. 259
10.4.1.1 Case Study 1: MTD . 260
10.4.1.2 Case Study 2: VPN Services. 261
10.4.1.3 Case Study 3: Load Balancing

and IDS . 262

10.5 Flow Rule Conflicts . 262
10.5.1 Problem Setup . 262
10.5.2 Conflict Classes . 263
10.5.2.1 Redundancy. 264
10.5.2.2 Shadowing . 264
10.5.2.3 Generalization. 267
10.5.2.4 Correlation . 267
10.5.2.5 Overlap . 268
10.5.2.6 Imbrication . 268
10.5.3 Cross-layer Policy Conflicts . 268
10.5.4 Traffic Engineering Flow Rules . 270
10.6 Controller Decentralization Considerations 271

10.6.1 Clustered Controllers . 272
10.6.2 Host-based Partitioning . 272
10.6.3 Hierarchical Controllers. 274
10.6.4 Application-based Partitioning . 275
10.6.5 Heterogeneous Partitioning . 276
10.7 Flow Rule Conflict Resolution . 276

10.7.1 Conflict Severity Classification. 276
10.7.1.1 Tier-1 Conflicts . 276

xiv Contents
10.7.1.2 Tier-2 Conflicts . 277
10.7.1.3 Tier-3 Conflicts . 277
10.8 Conflict Resolution Model . 277

10.8.1 Intelligible Conflicts. 277
10.8.2 Interpretative Conflicts . 278
10.8.2.1 Least Privilege. 278
10.8.2.2 Module Security Precedence 278
10.8.2.3 Environment Calibrated. 279
10.8.2.4 Administrator Assistance 279
Summary . 279
11. Intelligent Software-Defined Security . 281

11.1 Intelligence in Network Security. 281
11.1.1 Application of Machine Learning and AI
in Security. 281

11.1.2 Intelligent Cybersecurity Methods and
Architectures . 282

11.1.2.1 Neural Networks. 282
11.1.2.2 Expert Systems . 282
11.1.2.3 Intelligent Agents . 283
11.1.2.4 Learning. 283
11.1.2.5 Search . 283
11.1.2.6 Constraint Solving . 283
11.1.3 Application of AI in IDS . 284

11.1.3.1 Data Reduction. 284
11.1.3.2 Behavior Classification . 285
11.1.4 SDN-based Intelligent Network Security Solutions . . . 285

11.1.4.1 Topology Protection. 285
11.1.4.2 SDN-based DoS Protection. 289
11.2 Advanced Persistent Threats . 289

11.2.1 Traditional Attacks vs. APT . 290
11.2.2 APT Attack Model . 290
11.2.3 APT Case Studies . 293
11.2.3.1 Stuxnet . 294
11.2.3.2 Hydraq . 295
11.2.4 APT Detection/Mitigation . 296
11.2.5 Orchestrating SDN to Disrupt APT 296
11.2.5.1 SDN-based MicroSegmentation 296
11.2.5.2 SDN-enabled Secured Service

Function Chaining . 298

11.3 Problems in Application of Intelligence in Cybersecurity 298
11.3.1 Outlier Detection. 299
11.3.2 High Cost of Errors . 299

Bib

Ind

Contents xv
11.3.3 Semantic Gap . 300
11.3.4 Variance in Network Traffic . 300
Summary . 300

liography . 303

ex. 323

http://taylorandfrancis.com

Preface
Why This Book?

The project of working on a book including both education and research
content on security of Software-Defined Networking (SDN) and Network
Functions Virtualization (NFV) has been laid out since 2015, when the first
author was awarded the National Science Foundation (NSF) research
award on the Secure and Resilient Networking (SRN) project [125]. Before
the SRN award, significant effort was also put together by the Secure Net-
working and Computing (SNAC) research group at Arizona State Univer-
sity (ASU) in the area of computer network security. The book’s contents
are mainly built on the research and education efforts of book authors
and their colleagues in SNAC. Encouraged by Professor Ye Nong, who is
a book series editor at CRC Press, the authors decided to work on the
book in early 2017.
Security in the SDN/NFV domain is a fast-evolving area. It is impossible for

us to provide a thorough description to cover all aspects of security in SDN/

NFV. Generally speaking security in SDN/NFV should include both SDN/

NFV security and how to use SDN/NFV to provide stronger security features
for computer networks. This book focuses on the latter, particularly on how to
use the programmability capability of SDN/NFV to establish aMoving Target
Defense (MTD) network security infrastructure.
SDN is an emerging research area that has attracted a lot of attention from

academia, industry, and government. SDN packs in itself immense possibili-
ties from supporting the creation of consolidated data centers and better load
balancing, to seamless mobility and secure networks. It is an innovation that
allows us to control and program the network in a way to make it responsive
to networking events, for example, events caused by security breaches, in a
more proactive fashion. This book seeks to enlighten and educate the reader
about cyber maneuvers or adaptive and intelligent cyber defense. Prior to
implementing these proactive cyber defense techniques, it is important to ana-
lyze potential threats in an environment, detect attacks, and implement coun-
termeasures in a way that expends attacker resources while preserving user
experience. This book discusses theory and tools to detect multi-stage attacks
and how to use SDN/NFV approaches to build a more proactive approach
and evaluate their effectiveness.
The SDN approach separates control and data planes which improves

optimization of network policies, and by providing easy access to flow
tables, it gives a real-time control over the network switches, allowing admin-
istrators to monitor and control the route of packets flowing through the
network. Thus, the packets, which otherwise flow according to fixed and
xvii

xviii Preface
firmware-defined security rules, can now be analyzed and controlled accord-
ing to dynamic user-defined rules. This traffic reshaping capability of SDN
promises further developments in networking and allows exploitation of a
true control over the traffic. One of the many applications of SDN can be in
improving the security by controlling traffic flow in the network by redirect-
ing the packets from a suspicious node to an inspection node where in-depth
examination of these packets can be performed.
SDN can also help in implementation of other techniques for improving

security in a Software-Defined Infrastructure (SDI) cloud environment, such
as reconfiguring the network dynamically to enforce packet forwarding,
blocking, redirection, reflection, changing of MAC or IP address, limiting
the packet flow rate, etc. These solutions can be considered less intrusive alter-
natives to security countermeasures taken at the host level, and offer
centralized control of the distributed network. Continuing with this notion
of security with SDN, in this book, we will introduce the basic features of
SDN technologies and explain how to deploy a secure cloud computing
system based on SDN solutions.
The development of SDN/NFV and their supported security solutions have

been shifted from implementing static SDN/NFV-supported security func-
tions or appliance to a more intelligent SDN/NFV security control frame-
work to intelligently and efficiently managing and deploying SDN/NFV
security features considering various factors such as effectiveness on counter-
ing attacks, intrusiveness to good users, and system cost to deploying ad hoc
security functions. With the research and development in the area of SDN
security in the past few years, we strongly feel that SDN security has evolved
beyond the networking area. A more general area, usually called software-
defined and programmable systems, has emerged including every aspect of
a computing and networked system.
Audience

Our goal has been to create a book that can be used by a diverse set of
audiences, and with varied levels of background. It can serve as a reference
book for college students, instructors, researchers, and software developers
interested in developing SDN/NFV-supported applications. It can serve as
a good reference book for undergraduate and graduate courses focusing on
computer network and security. Specifically, we set out to create a book
that can be used by professionals as well as students and researchers. In
general, this is intended as a self-study. We assume that the reader already
has some basic knowledge of computers, networking, and software-based
service models. Among professionals, the intent has been to cover two
broad groups: computer networking and security developers including
SDN/NFV and system security, with the overall goal to bring out issues
that one group might want to understand that the other group faces.

Preface xix
For students, this book is intended to help learn about virtualization for
SDN/NFV in depth, along with lessons from security aspects, and opera-
tional and implementation experience. For researchers who want to know
what has been done so far and what are the critical issues to address for
the next generation of computer network security, this is intended as a
helpful reference.
Organization and Approach

The organization of the book is summarized as follows.
In the first part of this book, we will focus on the foundation of computer

networks. Particularly, we first present basic concepts of computer networks
in Chapter 1, covering layered network architecture, services, and packet
encapsulation. Addresses such as MAC addresses, IP addresses, and port
numbers play very important roles in network layers, and thus we put a lot
of emphasis on these fundamental concepts for novel readers in computer
network areas. In order to help understand computer networks, we provide
a comprehensive description for relations between physical networks,
logical networks, and virtual networks. Moreover, several important com-
puter network services such as ARP, DHCP, DNS, and NAT are presented.
Finally, network routing in IP networks and software-defined networks are
described. In summary, this chapter provides a foundation for novice readers
in the networking area, and the presented concepts and descriptions are nec-
essary to understand the rest of this book.
Both SDN and NFV are heavily built on network virtualization technolo-

gies. Thus, in Chapter 2, we provide a comprehensive view of existing net-
work virtualization solutions. This chapter starts with basic virtualization
concepts and technologies including OpenFlow, OPNFV, and virtual net-
working embedding problems. Then, layer-2 virtual networking solutions
such as Linux bridge and open virtual switches are described in details. Tun-
neling solutions such as VLAN, VxLAN, and GRE are widely used to build
existing virtual and programmable networks, which are also presented.
Finally, virtual routing and forwarding are described. Understanding materi-
als provided in this chapter is critical to understandingmodern computer net-
working solutions.
In Chapter 3, SDN and NFV are introduced and described in more

detail. Motivation for both these paradigms, their benefits, challenges,
and use cases are described. Leading frameworks that implement NFV and
SDN are also discussed. This is followed by a discussion of the symbiotic
nature of these two paradigms and their interworking. Finally, an introduc-
tion of P4 and PISA is presented as an advanced topic for deep programmable
SDN.
This book focuses on security aspects of using SDN and NFV solutions. To

understand the basics of computer network security, in Chapter 4, we first

xx Preface
describe several important security concepts to understand differences
between threat model and attack model, defense in depth, cyber killer chain,
and their limitations. Then, several network exploration approaches such as
network mapping, port scanning, vulnerability scanning, and penetration
testing are presented. Later, we focus the discussion on preventive techniques
such as firewalls and intrusion prevention. Next, detection and monitoring
techniques are presented. Finally, we briefly discuss what is network security
assessment. All the presented basic security concepts and mechanisms
build the fundamental network security services and they can be imple-
mented in an SDN/NFV networking environment and controlled by using
the programmable features.
Finally, in the first part of Chapter 5 we analyze the threat model and attack

vectors that are part of traditional networks and new threats that are intro-
duced as a part of an SDN/NFV framework. As part of NFV security we
discuss intra-VNF, extra-VNF security threats, and countermeasures
that can help in addressing NFV security challenges. The SDN security
has been distributed into threat vectors targeting different layers of SDN
infrastructure, i.e., SDN data plane and control plane. Additionally, we dis-
cuss challenges specific to SDN, OpenFlow protocol (one of the most common
SDN protocols), OpenFlow switch, and attack countermeasures to deal with
SDN threats.
In the second part of this book, we will focus on the advanced topics on

how to build a secure networking solution by utilizing SDN and NFV, partic-
ularly, the presentation focus on a new MTD concept, which utilizes the pro-
grammability capability of SDN to automate the defense-in-depth control in
terms of security monitoring and analysis, security countermeasure services
selection, and deployment. Advanced topics such as security policy manage-
ment andmachine learningmodels involving SDN/NFV are also presented in
this part.
In Chapter 6, we present the security microsegmentation concept and its

realization, which is illustrated by using VMware’s NSX service model. We
explain how a security service model such as firewall is transited to a more
scrutinized approach, i.e., microsegmentation. A highly related security ser-
vice – distributed firewall – is discussed in detail followed by illustration of
microsegmentation concepts. Finally, a microsegmentaion case study is
discussed in detail. Microsegmentation is a good starting point to improve
the programmability and agility of network security services. It is the trend;
however, it faces high network and security state management challenges
to be overcome to make microsegmentation practical.
In Chapter 7, we discuss proactive security mechanisms to reduce the attack

surface and limit the capabilities of the attacker, as compared to a static
defense mechanism, where the attacker has asymmetric advantage of time.
We discuss different MTD techniques, such as random host mutation, port
hopping, and their impact on the service availability and resources (compute

Preface xxi
and storage) in the network. SDN helps in deployment of different MTD tech-
niques in an automated fashion, hence we have dedicated one section of this
chapter to SDN-based MTD. We analyze the attack-defense scenarios as a
dynamic game between the attacker and the defender, and evaluate different
MTD frameworks from a qualitative and quantitative perspective in
this chapter.
Chapter 8 is dedicated to cybersecurity metrics utilized for quantification of

the attack. The most common metric Common Vulnerability Scoring System
(CVSS) has been discussed in detail in the first section of this chapter. We ded-
icate the rest of the chapter to attack graphs and attack trees, which are used to
represent the dependencies between network services and vulnerabilities. The
attack representation methods discussed in this chapter help in representing
multi-hop attacks and possible countermeasures (attack countermeasure
trees) in a simplified and intuitive fashion. We also address the limitations
associated with different ARMs in this chapter.
The end-to-end delivery of network traffic requires the packets to be pro-

cessed by different security and optimization Virtual Network Functions
(VNFs), such as application firewall, load balancer, etc. This chaining of
VNFs—Service Function Chaining (SFC)—is discussed in Chapter 9. The
key challenges associated with incorporation of SFC and the role of SDN as
an enabler of SFC, in identification of dependencies between VNFs and com-
pilation into policy aware SFC, have been discussed in this chapter. The
research and industry SDN/NFV-based SFC testbeds and their architecture
have been discussed in detail. Additionally, policy-aware SFC and secured
SFC have been discussed with illustrative examples in this chapter.
In Chapter 10, policy conflicts in security implementations are discussed,

with emphasis on flow rule conflicts in SDN environments. A formalism for
flow rule conflicts in SDN environments is described. A conflict detection
and resolution model is discussed that ensure no two flow rules in a distrib-
uted SDN-based cloud environment have conflicts at any layer; thereby assur-
ing consistent conflict-free security policy implementation and prevention of
information leakage.
Chapter 11 is dedicated to analysis of advancements in the fields of intelli-

gent security, such as application of Machine Learning (ML) and Artificial
Intelligence (AI) in the field of cybersecurity, which use cases such as the
role AI can play in improvement of a current Intrusion Detection System
(IDS). We discuss the SDN-based intelligent network security solution that
can incorporate these advancements in the field of intelligent cybersecurity.
We discuss the Advanced Persistent Threats (APTs) and different stages of
APTs in the cyberkill chain, along with suggestions for mitigation of APT
using SDN-enabled microsegmentation and secured SFC. In the last section
of this chapter, we discuss some key challenges that limit the application of
ML and AI in cybersecurity, such as high cost of errors, semantic gap, highly
variant network traffic, etc.

xxii Preface
Bonus Materials and Online Resources

The book, in its printed form, has 11 chapters; additional support materials,
for example, source codes, implementation instructions, additional reading,
and instructional materials, are available at http://virtualnetworksecurity.
thothlab.com.

Dijiang Huang
Tempe, Arizona, USA

Dijiang.Huang@asu.edu

Ankur Chowdhary
Tempe, Arizona, USA

achaud16@asu.edu

Sandeep Pisharody
Lexington, Massachusetts, USA
Sandeep.Pisharody@ll.mit.edu

http://virtualnetworksecurity.thothlab.com
http://virtualnetworksecurity.thothlab.com
http://virtualnetworksecurity.thothlab.com
http://virtualnetworksecurity.thothlab.com
http://virtualnetworksecurity.thothlab.com

Acknowledgments
This book cannot be done without the tireless and hard work of three authors
who have collaboratively contributed the materials and presentation for each
chapter. However, each chapter also has a lead author to coordinate and orga-
nize the materials and presentations. Particularly, Dr. Dijiang Huang leads
Chapters 1, 2, 4, and 6; Ankur Chowdhary leads Chapters 5, 7, 8, 9, and 11;
and Dr. Sandeep Pisharody leads Chapters 3 and 10. Dr. Chun-Jen Chung
and Yuli Deng help the authors establish the SDN/NFV testing platform
and source code testing. Some parts of MTD and APT solutions are derived
from Adel Alshamrani and Sowmya Myneni’s research work.

Dr. Dijiang Huang leads the Secure Networking and Computing (SNAC)
group at Arizona State University (ASU). SNAC is formed by graduate stu-
dents who are working on various research and development projects in the
areas of computer networking security, cloud computing security, applied
cryptography, and IoT security, etc. SNAC hosts regular meetings for group
members to share research results and discuss research issues. Most SDN
security-related work has been studied through SNACmeetings. The authors
also gratefully thank current SNAC members: Adel Alshamrani, Chun-Jen
Chung, Yuli Deng, Qiuxiang Dong, Jiayue Li, Fanjie Lin, Duo Lu, Sowmya
Myneni, Abdulhakim Sabur, and Zeng Zhen, who greatly inspired them
through discussions, seminars, and project collaborations.

The authors would also like to thank SNAC alumni: Abdullah Alshalan
(King Saud University), Bing Li (Google), Zhijie Wang (General Electric
Research Laboratory), Tianyi Xing (Wal-Mart Research Lab), Zhibin Zhou
(Huawei), Yang Qin (Facebook), Bhakti Bohara (Akamai Technologies),
Shilpa Nagendra (Commvault Systems), Janakarajan Natarajan (AMD), Qin-
gyun Li, Pankaj Kumar Khatkar (CAaNES), Zhenyang Xiong (Omedix), Ash-
win Narayan Prabhu Verleker (Microsoft), Xinyi Dong (Amazon), Yunji
Zhong (Microsoft), Aniruddha Kadne (F5), Sushma Myneni (Microchip),
Nirav Shah (Intel), Vetri Arasan (Garmin), Le Xu (Microsoft), Oussama Mjihil
(Fulbright scholar student, Hassan I University, Morocco), Iman Elmir
(Hassan I University, Morocco), Xiang Gu (Nantong University, China),
Bo Li (Yunnan University, China), Zhiyuan Ma (UESTC, China), Weiping
Peng (Henan Polytechnic University, China), Jin Wang (Nantong University,
China), Aiguo Chen (University of Electronic Science and Technology, China),
Jingsong Cui (Wuhan University, China), Weijia Wang (Beijing Jiaotong Uni-
versity, China), and Chunming Wu (Southwest University, China).

Special thanks to the NSF SRN project collaborators Professor Deep Medhi,
Professor Kishor Trivedi, and their research group members based on our
research collaborations, and useful discussions through group meetings and
various collaborative private communication.
xxiii

xxiv Acknowledgments
Our immediate family members suffered the most during our long hours of
being glued to our laptops. Throughout the entire duration, they provided all
sorts of support, entertainment, and “distractions.” Dijiang would like to
thank his wife, Lu, and their son, Alexander, and daughter, Sarah, for love
and patience, and for enduring this route. He would also like to thank his
father, Biyao, mother, Zhenfen, and brother, Dihang, for their understanding
when he was not able to call them regularly and postponing several trips to
China for a family reunion. He would also like to acknowledge his family
members, Shan and Yicheng. Finally, he would like to thank his many friends
for numerous support.

Ankur would like to thank his father, Vikram Singh, mother, Munesh,
sister, Vaishali, all his cousins, and friends, Tarun, Abhishek, Puneet, Rahul,
Chandan, Sunit, Prashant, Rushang, for their support and guidance.

Sandeepwould like to express his profound gratitude to his family for being
a pillar of support through this work. His amazing wife, Shuchi, shouldered
far more than her fair share of parenting two kids and household responsibil-
ities, while he sat zoned out in front of a computer. His parents and brother
were the perfect role models throughout childhood and now adulthood.
And finally, his children, Gayathri and Om, were his compass and helped
put things into perspective.

About the Authors
LinkedIn QR Code
Dr. Dijiang Huang graduated in telecommunica-
tions from Beijing University of Posts and Telecom-
munications (China) with a bachelor’s degree in
1995; his first job was a network engineer in the com-
puter center of Civil Aviation Administration of
China (CAAC), where he received four years of
industry working experience. He then came to the
University of Missouri-Kansas City (UMKC) in the
US to pursue his graduate study in the joint com-
puter networking and telecommunication network-
ing program of computer science; and he earned an
MS and PhD in computer science in 2001 and 2004,
respectively. During his study at UMKC, he became
interested in the research areas of mobile computing
and security, and focused his research on network
security and mobile networks.
After graduating with a PhD, Dr. Huang joined

the Computer Science and Engineering (CSE)
department at Arizona State University (ASU) as
an assistant professor. One of his early research
areas was securingMANET communication and networking protocols. Later,
he realized that the cross-layer approach was extremely important in making
a MANET solution more efficient and practical. Gradually, he looked into
the research problem of how to build a situation-aware solution that better
supported MANET applications, considering various unstable issues due to
node mobility and intermittent communication. Considering mobiles trying
to utilize all reachable resources to support their applications, this situation
is very similar to the resource management scenario for cloud computing,
of course with a different context, running environment, programming, and
virtualization capabilities and constraints.
In 2010, Dr. Huangwas awarded theOffice ofNaval Research (ONR) Young

Investigator Program (YIP) award for a research project to establish a secure
mobile cloud computing system. The main task of the award was to develop
a secure and robust mobile cloud and networking system to support trust-
worthy mission-critical operations and resource management, considering
communication, networking, storage, computation, and security require-
ments and constraints. The boom of Software Defined Networking (SDN) has
changed the playground of computer network security, which has become
more dynamic, automatic, and intelligent in the past few years. His research
has been focused on a more intelligent and MTD by incorporating dynamic
xxv

xxvi About the Authors
learning models into security analysis and decisions. This book can share his
past research and development outcomes and provide a starting point to
ride on the next research anddevelopmentwave for software-defined security,
which can benefit both research communities and practitioners.
Dr. Huang is currently a Fulton Entrepreneur Professor in the School of

Computing Informatics Decision Systems Engineering (CIDSE) at ASU, he
has published four US patents, and is a co-founder of two start-up companies:
Athena Network Solutions LLC (ATHENETS) and CYNET LLC. He is cur-
rently leading the SecureNetworking andComputing (SNAC) research group.
Most of his current andprevious research is supported by federal agencies such
as National Science Foundation (NSF), ONR, Army Research Office (ARO),
Naval Research Lab (NRL), National Science Foundation of China (NSFC),
and North Atlantic Treaty Organization (NATO); and industries such as the
Consortium of Embedded System (CES), Hewlett-Packard, andChinaMobile.
In addition to the ONR Young Investigator Award, he was also a recipient of
the HP Innovation Research Program (IRP) Award, and the JSPS Fellowship.
He is a senior member of IEEE and member of ACM. For more information
about his research publications, teaching, and professional community ser-
vices, please refer to http://www.public.asu.edu/~dhuang8/.
LinkedIn QR Code
Ankur Chowdhary is a PhD student at Arizona
State University (ASU), Tempe, AZ, US. He
received a B.Tech in information technology
from GGSIPU, Delhi, India in 2011 and an MS in
computer science from ASU in 2015. He has
worked as an information security researcher for
Blackberry Ltd. (2016), RSG (2015), and as an
application developer for CSC Pvt 2011-2013 Ltd.
His research interests include SDN, cloud security,
web security, and application of machine learn-
ing in the field of security. He has co-authored 12
research publications, most of which are highly
related to the subject matter of the book. He is
highly involved in cybersecurity education and
training for undergraduate and graduate students
at ASU. He has been captaining the ASU Cyberse-
curity Defence Competition (CCDC) team from
2015 to the present. He is co-founder and CEO
of CyNET LLC, a cybersecurity startup, whose
prime objective is to provide SDN-based proactive
security solutions for cloud networks and data
centers. For more information about his research publications, teaching, and
professional community services, please refer to http://www.public.asu.
edu/~achaud16/.

http://www.public.asu.edu/&%23x007E;achaud16/
http://www.public.asu.edu/&%23x007E;achaud16/
http://www.public.asu.edu/&%23x007E;achaud16/
http://www.public.asu.edu/&%23x007E;achaud16/
http://www.public.asu.edu/&%23x007E;achaud16/
http://www.public.asu.edu/&%23x007E;achaud16/
http://www.public.asu.edu/~dhuang8/

ORCID QR Code

About the Authors xxvii
Dr. Sandeep Pisharody graduated from the Univer-
sity of Nebraska - Lincoln, with a BS in both electrical
engineering and computer engineering in 2004. He
went on to get an MS in electrical engineering in
2006 from the University of Nebraska - Lincoln, spe-
cializing in material sciences. He joined the industry
as a network/security engineer in 2006, and spent
the next eight years working in various capacities
for Sprint Corp., Iveda Corp., Apollo Education
Group, Insight, and the University of Phoenix. He
went back to school under the guidance of the first
author in 2013, and graduated with a PhD in com-
puter science from Arizona State University. His
areas of interest are network security, software-
defined networks, cloud security, modeling and sim-
ulation, and human factors in security. He currently
works as a technical staff member at MIT Lincoln
Laboratory, Lexington, MA.

http://taylorandfrancis.com

Part I

Foundations of Virtual
Networking and Security
This book focuses on Network Functions Virtualization (NFV), Software
Defined Networking (SDN), and security models built into/on SDN/NFV
technologies. In this part, we will provide preliminary foundations of com-
puter networking and NFV/SDN, which will help readers to understand
advanced topics in this book. Moreover, the first part can be used as learning
and teaching materials for students starting to learn computer and network
security. Before moving forward, several important and highly related terms
need to be clearly understood.
What is Software?

The Institute of Electrical and Electronics Engineers (IEEE) defines software as
“The complete set of computer programs, procedures, and possibly associated
documentation and data designated for delivery to a user” [225]. It possesses
no mass, no volume, and no color, which makes it a non-degradable entity
over a long period. Software does not wear out or get tired. In short, software
can be simply defined as a collection of programs, documentation and operating
procedures.
Software controls, integrates, and manages the hardware components of a

computer system. It also instructs the computer what needs to be done to
1

2 Foundations of Virtual Networking and Security
perform a specific task and how it is to be done. In general, software charac-
teristics are classified into six major components:

1. Functionality, which refers to the degree of performance of the soft-
ware against its intended purpose.

2. Reliability, which refers to the ability of the software to provide
desired functionality under the given conditions.

3. Usability,which refers to the extent to which the software can be used
with ease.

4. Efficiency, which refers to the ability of the software to use system
resources in the most efficient manner, with the least waste of time
and effort.

5. Maintainability,which refers to the ease with which modifications can
be made in a software system to extend its functionality, improve its
performance, or correct errors.

6. Portability, which refers to the ease with which software developers
can transfer software from one platform to another, without (or
with minimum) changes. In simple terms, it refers to the ability of
software to function properly on different hardware and software
platforms without making any changes in it.

In addition to the above characteristics, robustness and integrity are also
important. Robustness refers to the degree to which the software can keep
on functioning in spite of being provided with invalid data, while integrity
refers to the degree to which unauthorized access to the software or data
can be prevented.
Computers work only in response to instructions provided externally. For

example, software instructs the hardware how to print a document, take input
from the user, and display the output. Usually, the instructions to perform
some intended tasks are organized into a program using a programming lan-
guage like C, C++, Java, etc., and submitted to computer. The computer inter-
prets and executes these instructions and provides response to the user
accordingly. The set of programs intended to provide users with a set of inter-
related functionalities is known as a software package.
What is Software-Defined?

The term Software-Defined is the ability to abstract the management and
administrative capabilities of the technology. In terms of computer network-
ing, it is the ability to control the provisioning of network devices, Virtual
LANs (VLANs), Firewall rules, traffic engineering and Quality of Services

Foundations of Virtual Networking and Security 3
(QoS), etc. In summary, a system regarded as Software-Defined should rely on
software to achieve the following interrelated and supported Abstraction,
Automation and Adjustment (AAA) features:

Abstraction of Physical Resources: A software-defined system usually
provides a set of Application Platform Interfaces (APIs) to abstract
their physical resources to simplify its resource management and
allocation.

Automation of Actions/////Controls: Actions and controls can be executed
based on the incorporated complex application logics by examining
software running conditions or being triggered by software moni-
tored systems with a certain level of adaptability and intelligence.

Adjustment of Configurations (Reconfiguration): Adjustments of sys-
tem resource can be achieved through predictive configuration or
control of workloads, which can be performed by changing past
administrator defined rule sets.

Definitions of Software-Defined Systems

Software-Defined Networking (SDN) is an emerging architecture that is
dynamic, manageable, cost-effective, and adaptable, making it ideal
for the high-bandwidth, dynamic nature of today’s applications.
This architecture decouples the network control and forwarding func-
tions enabling the network control to become directly programmable
and the underlying infrastructure to be abstracted for applications
and network services. The OpenFlow protocol is a foundational ele-
ment for building SDN solutions.

Software-Defined Storage (SDS) is a computer program that manages
data storage resources and functionality and has no dependencies
on the underlying physical storage hardware. SDS is most often asso-
ciated with software products designed to run on commodity server
hardware. It enables users to upgrade the software separately from
the hardware. Common characteristics of SDS products include the
ability to aggregate storage resources, scale out the system across a
server cluster, manage the shared storage pool and storage services
through a single administrative interface, and set policies to control
storage features and functionality.

Software-DefinedData Centers (SDDC) is often referred as to a data cen-
ter where all infrastructure is virtualized and delivered as a service.
Control of the data center is fully automated by software, meaning
hardware configuration is maintained through intelligent software
systems. This is in contrast to traditional data centers where the
infrastructure is typically defined by hardware and devices. SDDCs
are considered by many to be the evolution of virtualization and

4 Foundations of Virtual Networking and Security
cloud computing as it provides a solution to support both legacy
enterprise applications and new cloud computing services.

Software-Defined Power (SDP) is a solution to application-level reliabil-
ity issues being caused by power problems, and it is about creating a
layer of abstraction that makes it easier to continuously match
resources with changing applications/services’ needs, where the
resource is the electricity required to power all of the equipment.
Under the SDDC, the overall reliability of SDP is improved by shifting
applications to a data center with the most dependable, available and
cost-efficient power at any given time, which is implemented using a
software system capable of combining IT and facility/building man-
agement systems, and automating standard operating procedures,
resulting in the holistic allocation of powerwithin and across data cen-
ters, as required by the ongoing changes in application load.

Software-Defined Infrastructure (SDI) is the definition of technical com-
puting infrastructure entirely under the control of software with no
operator or human intervention. It operates independent of any hard-
ware specific dependencies and is programmatically extensible. In the
SDI approach, an application’s infrastructure requirements are
defined declaratively (both functional and non-functional require-
ments) such that sufficient and appropriate hardware can be automat-
ically derived and provisioned to deliver those requirements.

Software-Defined Everything (SDE) refers to various systems controlled
by advanced software programs and constructed in a virtual, versus
physical, hardware space. SDE is also often used as several technolo-
gies under one umbrella. For example, SDN involves the creation of
virtualized networks, where physical hardware is replaced by a
sophisticated software system. A SDDC uses virtualization tech-
niques to construct a data center. SDS involves replacing a distributed
hardware system with virtual storage systems. SDE also is a compre-
hensive idea based on new applications of technology, as SDE sys-
tems can be used to provide fully virtualized IT systems.
Software-Defined Virtual Networking (SDVN)

Network Functions Virtualization (NFV) is a concept of virtual networking
architecture based on virtualization solutions to virtualize entire classes of net-
work node functions into building blocks that may connect, or chain together,
to create communication and networking services. A Virtual Network Func-
tion (VNF) may consist of one or more Virtual Machines (VMs) or containers
running different software and processes, on top of standard high-volume

Foundations of Virtual Networking and Security 5
servers, switches and storage devices, or even cloud computing infrastructure,
instead of having custom hardware appliances for each network function.
NFV and SDN are commonly used together, and both move toward net-

work virtualization and automation. However, they are different and serve
different goals. An SDN can be considered a series of networking entities,
such as switches, routers, and firewalls that are deployed in a highly auto-
mated manner. The automation may be achieved by using commercial or
open source tools, like SDN controllers and OpenFlow based on the adminis-
trator’s requirements. A full SDN may cover only relatively straightforward
networking requirements, such as VLAN and interface provisioning.
NFV is the process of moving services like load balancing, firewalls and

intrusion prevention systems away from dedicated hardware into a virtual-
ized environment. Functions like caching and content control can easily be
migrated to a virtualized environment, but they will not necessarily provide
any significant reduction in operating costs until some intelligence is intro-
duced. This is because a straight physical to virtual migration, from an
operational perspective, achieves little beyond the initial reduction in power
and rack-space consumption. Until some dynamic intelligence is introduced
with an SDN technology, NFV network deployments inherit many of the
same constraints as traditional hardware appliance deployments, such as
static, administrator defined and managed policies.
In many intelligent networking use cases, SDN is linked to server virtuali-

zation, providing the glue that makes virtual networks stick together. This
may involve NFV, but not necessarily. Thus, NFV and SDN are complemen-
tary technology initiatives. NFV moves services to a virtual environment but
does not include policies to automate the environment. When SDN is com-
binedwith Network Functions Virtualization Infrastructure (NFVI), however,
SDN’s centralized management function can forward data packets from one
network device to another, while NFV allows routing control functions to
run on a VM or a container located in a rack mount server, for example. In
essence, NFV and SDN make the network itself programmable, offering the
promise of rapid innovation of network services customized and tightly inte-
grated with specific application domains. The results of NFV/SDN research
and development are creating fundamentally new measurement challenges
in network behavior, software quality, and security properties of dynamically
composed, programmable networks. Given the critical position of basic net-
work control systems, the need to accurately measure and thoroughly test
the safety, robustness, security and performance of SDN will be paramount
in ensuring the success of these technologies’ use in future missions or
business-critical networks.
In this book, we refer to NFV and SDN technologies collectively as

Software-Defined Virtual Networking (SDVN). They build the foundation
to support computer network security functions in a virtual and highly auton-
omous networking environment tomeet applications’ needs and counter chal-
lenging malicious attacks.

6 Foundations of Virtual Networking and Security
Industry and academic leaders started the SDVN movement to change the
economics and complexity of network innovation. Virtualized networking to
support vast data centers was the initial commercial force driving SDVN,with
network switch, Hypervisor, and cloud service vendors driving the pace and
the direction of innovation. The realization of the power and potential of
“opening up” networking platforms and enabling the seamless integration
of programmable networks and applications set off a series of billion-dollar
acquisitions and triggered even broader efforts by the industry to commodi-
tize network hardware platforms and software environments. Today, the
potential applications software-defined virtual networks range from global
telecommunications to completely software-defined data centers. Current
market analyses project the NFV/SDN market to reach $100B by 2020 [204].

1
Introduction of Computer Networks
When I, Dijiang, teach my computer network security class, I always pose a
question: “On the university campus, you boot up a laptop, open an email applica-
tion, compose an email, provide the receiver’s email address (e.g., john@xyz.com) and
other related information such as email subject, make sure the email content and
everything else is fine, and finally click send. During this procedure, what networking
and application protocols have been invoked and what magic happened in the com-
puter network to allow John to receive and view your email?”.
To answer the question, I usually use a real-world example of “sending a

mail” to emulate what may have happened in the virtual world, i.e., the Inter-
net. Instead of sending an email, I can send a regular mail to John with the
added limitation of a long mail delivery time. Before sending a regular mail,
I need to do some preparation work such as putting the written letter into
an envelope, writing down both sender’s and receiver’s addresses on the
envelope, sealing it, and finally adding the requisite postage on the envelope.
This letter preparation procedure is quite similar to invoking an email appli-
cation to write an email before clicking the “send” button. In order to provide
similar data privacy protection, i.e., using an envelope, I should use a secure
email service, e.g., using an email client with encryption/decryption capabil-
ity on both sides or using secure sockets layer (SSL) protocol to secure the com-
munication links from my computer to John’s.
Dropping the letter into a mailbox of a local post office is equivalent to

clicking on the “send” button on the email client. The letter will be usually first
sorted at the local post office based on the receiver’s address to decide when
and how to deliver (i.e., put the letter in a scheduled delivery truck to the next
delivery hub), in which the sorting is based on the “scope” of the destination:
international vs. domestic, city and street names or a zip code. Once the letter
arrives at the destination’s local post office, the letter distributor will check the
receiver’s home number and street name for the final delivery. This procedure
is similar to what the Internet Protocol (IP)-based packet switching network
uses to deliver an end-to-end packet that encapsulates the email content. Rout-
ers serve as counterparts for post offices and mail delivery hubs, while the
transmission protocol serves the purpose of the mail delivery truck. In an IP
packet, source IP address and destination IP address serve the purpose of
sender’s address and receiver’s address for mail delivery, respectively. An
IP address has a two-level data structure: the network address and host
address, which can be mapped to the zip code, city, and street names; and
7

8 Software-Defined Networking and Security
home number, respectively. Internet routers only look at the network address
to deliver themessage to the destination’s local network, and once arrived, the
host address is used to deliver the message to the destination host.
The above example tells us that understanding how the Internet works is

similar to understanding how our mail system works. Many of the existing
Internet protocols help realize real-life applications or workflows. As a result,
we can view the Internet is a virtual realization of our physical world. This can
greatly help us understand how the Internet works and howwe design a new
computer networking solution.
In this chapter, we first present the foundations of computer networks

focusing on packet switching networks in Section 1.1. Details will be provided
to explain what addresses will be used at different layers of the TCP/IP
protocol stack in Section 1.2. In Section 1.3, we will present basic concepts
to understand physical and virtual networks; several important inter-
networking protocols and services are illustrated in Section 1.4; and finally,
IP network routing is introduced in Section 1.5.
1.1 Foundations of Computer Networks

In this section, we first introduce several important concepts in order to under-
stand computer networks.

1.1.1 Protocol Layers

The Open Systems Interconnection (OSI) model is a conceptual model
that characterizes and standardizes the communication functions of a tele-
communication or computing system without regard to its underlying inter-
nal structure and technology. OSI model is standardized by the International
Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) with the identification ISO/IEC 7498-1. The goal of OSI
is the interoperability of diverse communication systemswith standard proto-
cols. The model partitions a communication system into abstraction layers.
Shown in Figure 1.1, on the right side is the original version of the model
defined using seven layers, namely Physical, Data Link, Network, Transport,
Session, Presentation, and Application. The corresponding TCP/IP protocol
layers, which is the Internet Engineering Task Force (IETF) standard is pre-
sented on the left side of the Figure 1.1. The OSI model is conceptually sound
to nicely present the relations amongmultiple protocols and their inter-depen-
dencies. However, the simplicity of the TCP/IP protocol framework won the
competition and has been widely adopted by many networking systems,
especially, the Internet.
For both OSI and TCP/IP, a layer serves the layer above it and is served

by the layer below it. For example, a layer that provides error-free

FIGURE 1.1
OSI and Internet Protocol layers.

Introduction of Computer Networks 9
communications across a network provides the path needed by applications
above it, while it calls the next lower layer to send and receive packets
that comprise the contents of that path. Two instances at the same layer are
visualized as connected by a horizontal connection in that layer. Network
architectures define the standards and techniques for designing and building
communication systems for computers and other devices. To reduce the
design complexity, most of the networks are organized as a series of layers
or levels, each one builds upon the one below it. The basic idea of a layered
architecture is to divide the design into small pieces. Each layer adds to the
services provided by the lower layers in such a manner that the highest layer
is provided a full set of services to manage communications and run the appli-
cations. The benefits of the layeredmodels aremodularity and clear interfaces,
i.e., open architecture and comparability between the different providers’
components.
1.1.2 Networking Services and Packet Encapsulation

In an n-layer architecture, layer n on one machine carries on a conversation
with the layer n on another machine. The rules and conventions used in this
conversation are collectively known as the layer-n protocol. The basic ele-
ments of a layered model are services, protocols, and interfaces. A service is
a set of actions that a layer offers to another (higher) layer. A protocol is a
set of rules that a layer uses to exchange information with a peer entity. These
rules concern both the contents and the order of the messages used. Between
the layers, service interfaces are defined. The data from one layer to another
are sent through those interfaces.
Basically, a protocol is an agreement between the communicating parties on

how communication is to proceed. Violating the protocol will make commu-
nication more difficult, if not impossible. As shown in Figure 1.1, several well-
known protocols are presented at each layer. It is interesting to observe that

10 Software-Defined Networking and Security
the protocols’ distribution is shaped like an hourglass, also referred to as a nar-
row waist, in which IP [139] occupies the most important position and it is the
most critical protocol to support higher level protocols.
Between each pair of adjacent layers, there is an interface. The interface

defines which primitive operations and services the lower layer offers to the
upper layer adjacent to it. When the network designer decides howmany lay-
ers to include in the network and what each layer should do, one of the main
considerations is defining clean interfaces between adjacent layers. Doing so,
in turn, requires that each layer should perform well-defined functions. In
addition to minimizing the amount of information passed between layers,
the neat interfaces also make it simpler to replace the implementation of one
layer with a completely different implementation, because all that is required
of new implementation is that it offers the same set of services to its upper layer
neighbor as the old implementation (i.e., what a layer provides and how to use
that service is more important than knowing how exactly it is implemented).
A set of layers and protocols is known as network architecture. The specifica-

tion of architecture must contain enough information to allow an implemen-
tation to write the program or build the hardware for each layer so that it will
correctly follow the appropriate protocol. Neither the details of implementa-
tion nor the specification of an interface is a part of network architecture
because these are hidden away inside machines and not visible from outside.
It is not even necessary that the interface on all machines in a network be the
same, provided that each machine can correctly use all protocols. A list of pro-
tocols used by a certain system, one protocol per layer, is called protocol stack.
Figure 1.2 shows the TCP/IP layered protocol stack being used by amessag-

ing application to send a message from left to right. In this example, the enti-
ties comprising the corresponding layers on different machines are called
peers. In other words, it is the peers that communicate using protocols at its
layer. Each layer passes data and control information to the layer immediately
below it and a layer header is added to the data, which is called encapsulation,
until the lowest layer is reached. Data at different encapsulation layers is
FIGURE 1.2
Service interfaces and packet encapsulation.

Introduction of Computer Networks 11
measured differently. Shown in Figure 1.1, at the physical layer, it is measured
by bits; at the data link layer, it is measured by frames; at the network layer,
it is measured by packets; and at the transport layers, it is measured
by segments.
Below the network interface layer is the transmission medium, through

which actual communication occurs. The receiver will process data in the
reverse order as done by the sender, called decapsulation, to remove added
headers at each layer, and finally reveal the message to the messaging appli-
cation. The peer process abstraction is crucial to all network design. Using the
layered approach, a basic principle is to ensure the independence of layers by
defining services provided by each layer to the next higher layer without
defining how the services are to be performed. This permits changes in a layer
without affecting other layers.
1.2 Addresses

To understand how the TCP/IP protocol stack works, it is important to under-
stand several addresses used at different protocol layers. In particular, they
are: (a) data link layer: MAC addresses, (b) network layer: IP address, and
(c) transport layer: port number.
In Figure 1.3, an email service example is presented to highlight the use of

these addresses. MAC addresses allow networking devices to directly com-
municate with their intermediate neighboring devices at the data link layer.
IP addresses are used for end-to-end addressing and multi-hop routing on
the Internet. And finally, port numbers are used to identify which application
on a host is to handle a received data packet. Altogether, these three important
addresses are used to allow an application to deliver a message between two
remote hosts through a hop-by-hop data forwarding approach through inter-
connected networking devices. We must note that through the data forward-
ing path, both IP addresses and port numbers will remain the same unless a
Network Address Translation (NAT) service is used in between, and the
Media Access Control (MAC) addresses will be changed on every en route.
FIGURE 1.3
Addresses used in TCP/IP protocol stack.

12 Software-Defined Networking and Security
1.2.1 MAC Address

Media Access Control (MAC) address of a device is a unique identifier assigned
to network interface controllers for communications at the data link layer of a
network segment. A MAC address format is presented in Figure 1.4. MAC
addresses are used as the address for most IEEE 802 network technologies,
including Ethernet and Wi-Fi. MAC addresses are most often assigned by
the manufacturer of a Network Interface Controller (NIC) and are stored in
its hardware, such as the network card’s read-only memory or some other
firmware mechanism. If assigned by the manufacturer, a MAC address usu-
ally encodes the manufacturer’s registered identification number and may
be referred to as the Burned-In Address (BIA). It may also be known as an
Ethernet Hardware Address (EHA), Hardware Address or Physical Address.
A network node may have multiple NICs and each NIC must have a unique
MAC address. Sophisticated network equipment such as a multi-layer switch
or router may require one or more permanently assigned MAC addresses.
MAC addresses are formed according to the rules of one of three numbering
name spaces managed by the Institute of Electrical and Electronics Engineers
(IEEE): MAC-48, EUI-48, and EUI-64 [130].
Addresses can either be Universally Administered Addresses (UAA) or

Locally Administered Addresses (LAA). A universally administered address
is uniquely assigned to a device by its manufacturer. The first three octets
identify the organization that issued the identifier and are known as the Orga-
nizationally Unique Identifier (OUI). The remainder of the address (three
octets for MAC-48 and EUI-48 or five for EUI-64) are assigned by that organi-
zation in nearly any manner they please, subject to the constraint of unique-
ness. A locally administered address is assigned to a device by a network
administrator, overriding the burned-in address. For example, in a MAC
1st octet 2nd octet 3rd octet 4th octet 5th octet 6th octet

6 octets

b7 b6 b5 b4 b3 b2 b1 b0

8 bits

0: unicast
1: mul�cast

0: globally unique (OUI enforced)
1: locally administered

Iden�fier
Organiza�onally Unique

(OUI)
Network Interface

Controller (NIC) Specific

FIGURE 1.4
MAC address.

Introduction of Computer Networks 13
address 06-00-00-00-00-00, the first octet is 06 (hex), the binary form ofwhich is
00000110, where the second-least-significant bit is 1, and thus it is a locally
administered MAC address. MAC addresses are used for direct networking,
where devices use MAC addresses within a local networking environment. A
networking device needs to change its source and destinationMAC addresses
when forwarding it to the next network segment.
If the least significant bit of the first octet of an address is set to 0 (zero), the

frame targets at one receiving NIC, in which this type of transmission is called
unicast. If the least significant bit of the first octet is set to 1, the frame will still
be sent only once; however, NICs will choose to accept it if they are allowed to
receivemulti-casting frames by using a configurable list of acceptedmulti-cast
MAC addresses, and this MAC address is called multi-cast addressing. The
IEEE has built in several special address types to allowmore than one network
interface card to be addressed at one time. These are examples of group
addresses, as opposed to individual addresses; the least significant bit of the
first octet of a MAC address distinguishes individual addresses from group
addresses. Group addresses, like individual addresses, can be universally
administered or locally administered. The group addresses are

∙ Packets sent to the broadcast address, all one bits, are received by all
stations on a local area network. In hexadecimal, the broadcast
address would be FF:FF:FF:FF:FF:FF. A broadcast frame is flooded
and is forwarded to all other nodes.

∙ Packets sent to a multi-cast address are received by all stations on a
LAN that have been configured to receive packets sent to that
address.

∙ Functional addresses identify one or more Token Ring NICs that pro-
vide a particular service, defined in IEEE 802.5 [6].

1.2.2 IP Address (IPv4)

Every computer or device on the Internet must have a unique number
assigned to it called the IP address. This IP address is used to recognize
your particular computer out of the millions of other computers connected
to the Internet.
In the mid-1990s, the Internet was a dramatically different network than

when it was first established in the early 1980s. Today, the Internet has entered
the public consciousness as the world’s largest public data network, doubling
in size every ninemonths. This is reflected in the tremendous popularity of the
World Wide Web (WWW), the opportunities that businesses see in reaching
customers from virtual storefronts, and the emergence of new types andmeth-
ods of doing business. It is clear that expanding business and social awareness
will continue to increase public demand for access to resources on the Internet.
When IP was first standardized in September 1981, the specification required
that each system attached to an IP-based Internet be assigned a unique, 32-bit

14 Software-Defined Networking and Security
Internet address value. Some systems, such as routerswhich have interfaces to
more thanonenetwork,must be assignedaunique IP address for eachnetwork
interface. As shown below, IP addresses are categorized into 5 classes. This
separation of classes of IPs results in what is known as classful IP addresses.
Class A
Start IP:
 0. 0. 0. 0
 → 00000000.00000000.00000000.00000000
End IP:
 127.255.255.255
 → 01111111.11111111.11111111.11111111
Class B
Start IP:
 128. 0. 0. 0
 → 10000000.00000000.00000000.00000000
End IP:
 191.255.255.255
 → 10111111.11111111.11111111.11111111
Class C
Start IP:
 192. 0. 0. 0
 → 11000000.00000000.00000000.00000000
End IP:
 239.255.255.255
 → 11011111.11111111.11111111.11111111
Class D
Start IP:
 224. 0. 0. 0
 → 11100000.00000000.00000000.00000000
End IP:
 239.255.255.255
 → 11101111.11111111.11111111.11111111
Class E
Start IP:
 240. 0. 0. 0
 → 11110000.00000000.00000000.00000000
End IP:
 255.255.255.255
 → 11111111.11111111.11111111.11111111
The first part of the IP address, underlined in the snippet above identifies
the network onwhich the host resides, while the second part identifies the par-
ticular host on the given network. This created the two-level addressing
hierarchy.
In 1985, RFC 950 defined a standard procedure to support the subnetting, or

division,whichwas introduced to overcome someof the problems that parts of
the Internet were beginning to experience with the classful two-level address-
ing hierarchy. In 1987, RFC 1009 specified how a subnetted network could
use more than one subnet mask. When an IP network is assigned more than
one subnet mask, it is considered a network with “Variable Length Subnet
Masks (VLSM)” since the extended-network-prefixes have different lengths.
1.2.2.1 Classless Inter-Domain Routing

By 1992, the exponential growth of the Internet was beginning to raise serious
concerns among members of the IETF about the ability of Internet’s routing
system to scale and support future growth. These problems were related to:

∙ The near-term exhaustion of the Class B network address space.

∙ The rapid growth in the size of the global Internet’s routing tables.

∙ The eventual exhaustion of the 32-bit IPv4 address space.

Introduction of Computer Networks 15
Projected Internet growth figures made it clear that the first two problems
were likely to become critical by 1994 or 1995. The response to these immedi-
ate challenges was the development of the concept of Supernetting or Class-
less Inter-Domain Routing (CIDR). The third problem, which is of a more
long-term nature, is currently being explored by the IP Next Generation
(IPng or IPv6) working group of the IETF.
CIDRwas officially documented in September 1993 in RFC 1517, 1518, 1519,

and 1520. CIDR supports two important features that benefit the global Inter-
net routing system, each of which is detailed next.
CIDR Promotes the Efficient Allocation of the IPv4 Address Space

CIDR eliminates the traditional concept of Class A, Class B, and Class C
network addresses with the generalized concept of a “network-prefix.” By
having routers use the network-prefix to determine the dividing point
between the network address and the host address, CIDR supports the
deployment of arbitrarily sized networks rather than the standard 8-bit,
16-bit, or 24-bit network numbers associated with classful addressing. This
enables the efficient allocation of the IPv4 address space which will allow
the continued growth of the Internet until IPv6 is deployed.
In the CIDRmodel, each piece of routing information is advertisedwith a bit

mask (or prefix-length). The prefix-length is a way of specifying the number of
leftmost contiguous bits in the network-portion of each routing table entry.
For example, a network with 20 bits of network-number and 12-bits of host-
number would be advertised with a 20-bit prefix length (a /20). The clever
thing is that the IP address advertised with the /20 prefix could be a former
Class A, Class B, or Class C. Routers that support CIDR do notmake assump-
tions based on the first 3-bits of the address, they rely on the prefix-length
information provided with the route.
In a classless environment, prefixes are viewed as bitwise contiguous blocks

of the IP address space. For example, all prefixeswith a /20 prefix represent the
same amount of address space (212 or 4,096 host addresses). Furthermore, a /20
prefix can be assigned to a traditional Class A, Class B, or Class C network
number. The snippet below shows how each of the following /20 blocks repre-
sents 4,096 host addresses - 10.23.64.0/20, 130.5.0.0/20, and 200.7.128.0/20.

Traditional A: 10.23.64.0/20 � 00001010.00010111.01000000.00000000

Traditional B: 130.5.0.0/20 � 10000010.00000101.00000000.00000000

Traditional C: 200.7.128.0/20 � 11001000.00000111.10000000.00000000

Table 1.1 provides information about the most commonly deployed CIDR
address blocks. Referring to the table, you can see that a /15 allocation can
also be specified using the traditional dotted-decimal mask notation of
255.254.0.0. Also, a /15 allocation contains a bitwise contiguous block of

TABLE 1.1

CIDR Address Blocks

CIDR prefix-length Dotted decimal # of Individual Addresses # of Classful Networks

=13 255.248.0.0 512K 8Bs or 2048Cs

=14 255.252.0.0 256K 4Bs or 1024Cs

=15 255.254.0.0 128K 2Bs or 512Cs

=16 255.255.0.0 64K 1B or 256Cs

=17 255.255.128.0 32K 128Cs

=18 255.255.192.0 16K 64Cs

=19 255.255.224.0 8K 32Cs

=20 255.255.240.0 4K 16Cs

=21 255.255.248.0 2K 8Cs

=22 255.255.252.0 1K 4Cs

=23 255.255.254.0 512 2Cs

=24 255.255.255.0 256 1C

=25 255.255.255.128 128 1=2C

=26 255.255.255.192 64 1=4C

=27 255.255.255.224 32 1=8C

16 Software-Defined Networking and Security
128K (131,072) IP addresses which can be classfully interpreted as 2 Class B
networks or 512 Class C networks.
Howdoes all of this lead to the efficient allocation of the IPv4 address space?

In a classful environment, an Internet Service Provider (ISP) can only allocate
/8, /16, or /24 addresses. In a CIDR environment, the ISP can carve out a block
of its registered address space that specifically meets the needs of each client,
provides additional room for growth, and does not waste a scarce resource.
Assume that an ISP has been assigned the address block 206.0.64.0/18. This

block represents 16,384 (214) IP addresses which can be interpreted as 64 /24s.
If a client requires 800 host addresses, rather than assigning a Class B (and
wasting 64,700 addresses) or four individual Class Cs (and introducing 4
new routes into the global Internet routing tables), the ISP could assign the
client the address block 206.0.68.0/22, a block of 1,024 (210) IP addresses
(4 contiguous /24s). The efficiency of this allocation is illustrated as follows:

ISP′s Block: 206.0.64.0/18 � 111001110.00000000.01000000.00000000

Client Block: 206.0.68.0/22 � 111001110.00000000.01000100.00000000

ClassC #0: 206.0.68.0/24 � 111001110.00000000.01000100.00000000

ClassC #1: 206.0.69.0/24 � 111001110.00000000.01000101.00000000

ClassC #2: 206.0.70.0/24 � 111001110.00000000.01000110.00000000

ClassC #3: 206.0.71.0/24 � 111001110.00000000.01000111.00000000

Introduction of Computer Networks 17
CIDR Supports Route Aggregation

CIDR supports route aggregation where a single routing table entry can rep-
resent the address space of perhaps thousands of traditional classful routes.
This allows a single routing table entry to specify how to route traffic to
many individual network addresses. Route aggregation helps control the
amount of routing information in the Internet’s backbone routers, reduces
route flapping (rapid changes in route availability), and eases the local admin-
istrative burden of updating external routing information. Without the rapid
deployment of CIDR in 1994 and 1995, the Internet routing tables would have
in excess of 70,000 routes (instead of the current 30,000+) and the Internet
would probably not be functioning today!

Host Implications for CIDR Deployment

It is important to note that there may be severe host implications when you
deploy CIDR-based networks. Since many legacy hosts are classful, their
user interface will not permit them to be configuredwith amask that is shorter
than the “natural”mask for a traditional classful address. For example, poten-
tial problems could exist if you wanted to deploy 200.25.16.0 as a /20 to define
a network capable of supporting 4,094 (212-2) hosts. The software executing
on each end station might not allow a traditional Class C (200.25.16.0) to be
configured with a 20-bit mask since the natural mask for a Class C network
is a 24-bit mask. If the host software supports CIDR, it will permit shorter
masks to be configured.
However, there will be no host problems if you were to deploy the

200.25.16.0/20 (a traditional Class C) allocation as a block of 16 /24s since
non-CIDR hosts will interpret their local /24 as a Class C. Likewise,
130.14.0.0/16 (a traditional Class B) could be deployed as a block of 255 /24s
since the hosts will interpret the /24s as subnets of a /16. If host software sup-
ports the configuration of shorter than expected masks, the network manager
has tremendous flexibility in network design and address allocation.

CIDR Address Allocation Example

For this example, assume that an ISP owns the address block 200.25.0.0/16.
This block represents 65,536 (216) IP addresses (or 256 /24s). From the
200.25.0.0/16 block, it wants to allocate the 200.25.16.0/20 address sub-blocks.
This smaller block represents 4,096 (212) IP addresses (or 16 /24s).

Address Block: 200.25.16.0/20 → 11001000.00011001.00010000.00000000
In a classful environment, the ISP is forced to use the /20 as 16 individual

/24s as below:

Network # 0:200.25.16.0/24 � 11001000.00011001.00010001.00000000
Network # 1:200.25.17.0/24 � 11001000.00011001.00010001.00000000
Network # 2:200.25.18.0/24 � 11001000.00011001.00010010.00000000

18 Software-Defined Networking and Security
Network # 3:200.25.19.0/24 � 11001000.00011001.00010011.00000000
Network # 4:200.25.20.0/24 � 11001000.00011001.00010100.00000000
.

.

Network # 13:200.25.29.0/24 � 11001000.00011001.00011101.00000000
Network # 14:200.25.30.0/24 � 11001000.00011001.00011110.00000000
Network # 15:200.25.31.0/24 � 11001000.00011001.00011111.00000000

If you look at the ISP’s /20 address block as a pie, in a classful environment it
can only be cut into 16 equal-size pieces. This is illustrated in Figure 1.5.

However, in a classless environment, the ISP is free to cut up the pie any

way it wants. It could slice up the original pie into 2 pieces (each 1/2 of the
address space) and assign one portion to Organization A, then cut the other
half into 2 pieces (each 1/4 of the address space) and assign one piece to Orga-
nization B, and finally slice the remaining fourth into 2 pieces (each 1/8 of the
address space) and assign it to Organization C and Organization D. Each of
the individual organizations is free to allocate the address space within its
“Intranetwork” as it sees fit. The steps followed are shown below. The slicing
of the IP space, in this case, is illustrated in Figure 1.6.

Step #1 Divide the address block 200.25.16.0/20 into two equal size
slices. Each block represents one-half of the address space or 2,048
(211) IP addresses.

ISP′sBlock: 200.25.16.0/20 � 11001000.00011001.00010000.00000000
OrgA: 200.25.16.0/21 � 11001000.00011001.00010000.00000000
Reserved: 200.25.24.0/21 � 11001000.00011001.00011000.00000000
0
1

2

3

4

0

5

6
78

0

9

10

11

12

13

14
15

200.25.31.0/24

200.25.30.0/24

200.25.29.0/24

200.25.28.0/24

200.25.27.0/24

200.25.26.0/24

200.25.25.0/24

200.25.24.0/24

200.25.16.0/24

200.25.17.0/24

200.25.18.0/24

200.25.19.0/24

200.25.20.0/24

200.25.21.0/24

200.25.22.0/24

200.25.23.0/24

FIGURE 1.5
Slicing the pie – classful environment.

FIGURE 1.6
Slicing the pie – CIDR environment.

Introduction of Computer Networks 19
Step #2 Divide the reserved block (200.25.24.0/21) into two equal size
slices. Each block represents one-fourth of the address space or
1,024 (210) IP addresses.

Reserved: 200.25.24.0/21 � 11001000.00011001.00011000.00000000
OrgB: 200.25.24.0/22 � 11001000.00011001.00011000.00000000
Reserved: 200.25.28.0/22 � 11001000.00011001.00011100.00000000

Step #3 Divide the reserved address block (200.25.28.0/22) into two
equal size blocks. Each block represents one-eighth of the address
space or 512 (29) IP addresses.

Reserved: 200.25.28.0/22 � 11001000.00011001.00011100.00000000
OrgC: 200.25.28.0/23 � 11001000.00011001.00011100.00000000
OrgD: 200.25.30.0/23 � 11001000.00011001.00011110.00000000

1.2.2.2 Private IPs

With CIDR, we can assign 32 bits freely to describe the network address por-
tion and host address portion. However, the Internet is still facing an address
shortage issue. To further deal with the address shortage issue, RFC 1918
requests that organizations make use of the private Internet address space
for hosts that require IP connectivity within their enterprise network, but do
not require external connections to the global Internet. For this purpose, the

20 Software-Defined Networking and Security
Internet Assigned Numbers Authority (IANA) has reserved the following
three address blocks for private networks:

10.0.0.0− 10.255.255.255(10.0.0.0/8)

172.16.0.0− 172.31.255.255(172.16.0.0/12)

192.168.0.0− 192.168.255.255(192.168.0.0/16)

Any organization that elects to use addresses from these reserved blocks can
do so without contacting the IANA or an Internet registry. Since these
addresses are never injected into the global Internet routing system, the
address space can simultaneously be used by many different organizations.
The disadvantage to this addressing scheme is that it requires an organization
to use a Network Address Translator (NAT) for local addresses to have global
Internet access. However, the use of the private address space and a NAT
make it much easier for clients to change their ISP without the need to renum-
ber or “punch holes” in a previously aggregated advertisement. The benefits
of this addressing scheme to the Internet is that it reduces the demand for IP
addresses so that large organizations may require only a small block of the
globally unique IPv4 address space.
1.2.3 IP Address (IPv6)

IPv6 is designed to address the IP address shortage issue of IPv4 due to its
limited 32-bit address space. IPv6 addresses have 128 bits. To put that number
in perspective, the number of atoms on the surface of the earth is 1.26× 1034,
and the total number of IPv6 addresses is 3.4× 1038. Thus, we could have
an IP address for every atom on the surface of the earth and have enough left
over to repeat the process a hundred times. The IPv6 address space
implements a very different design philosophy than in IPv4, in which subnet-
tingwasused to improve the efficiencyofutilization of the small address space.
Since in IPv6 the address space is deemed large enough, a local area

subnet always uses 64 bits for the host portion of the address, designated as
the interface identifier, while the most significant 64 bits are used as the rout-
ing prefix. The identifier is only unique within the subnet to which a host is
connected. IPv6 has a mechanism for automatic address detection, so that
address autoconfiguration always produces unique assignments.
1.2.3.1 Address Representation

The 128 bits of an IPv6 address is represented in 8 groups of 16 bits each.
Each group is written as four hexadecimal digits (sometimes called hextets)
and the groups are separated by colons (:). An example of this represen-
tation is 2001:0db8:0000:0000:0000:ff00:0042:8329. For convenience, an IPv6

Introduction of Computer Networks 21
address may be abbreviated to shorter notations by application of the follow-
ing rules:

1. One or more leading zeroes from any groups of hexadecimal digits
are removed; this is usually done to either all or none of the leading
zeroes. For example, the group 0042 is converted to 42.

2. Consecutive sections of zeroes are replaced with a double colon (::).

3. The double colon may only be used once in an address, as multiple
uses would render the address indeterminate. RFC 5952 recommends
that a double colon not be used to denote an omitted single section
of zeroes.

As an example of an application of these rules, consider the initial address to
be 2001:0db8:0000:0000:0000:ff00:0042:8329. After removing all leading zeroes
in each group, we have the address 2001:db8:0:0:0:ff00:42:8329. Next, after
omitting consecutive sections of zeroes, we get 2001:db8::ff00:42:8329. Simi-
larly, the loopback address, 0000:0000:0000:0000:0000:0000:0000:0001, may
be abbreviated to ::1 by using the abbreviation rule. As an IPv6 address
may have more than one representation, the IETF has issued a proposed stan-
dard for representing them in text [146].
1.2.3.2 Address Uniqueness

Hosts verify the uniqueness of addresses assigned by sending a neighbor
solicitation message asking for the Link Layer address of the IP address. If
any other host is using that address, it responds. However, MAC addresses
are designed to be unique on each network card which minimizes chances
of duplication.
The host first determines if the network is connected to any routers at

all, because if not, then all nodes are reachable using the link-local address
that already is assigned to the host. The host will send out a Router Solicitation
message to the all-routers multi-cast group with its link-local address as the
source. If there is no answer after a predetermined number of attempts, the
host concludes that no routers are connected. If it does get a response from
a router, there will be network information inside that is needed to create a
globally unique address. There are also two flag bits that tell the host whether
it should use Dynamic Host Configuration Protocol (DHCP) to get further
information and addresses:

1. The Managed bit, which indicates whether or not the host should use
DHCP to obtain additional addresses.

2. The Other bit, which indicates whether or not the host should obtain
other information through DHCP.

22 Software-Defined Networking and Security
The other information consists of one or more prefix information options for
the subnets that the host is attached to, a lifetime for the prefix, and two flags:

∙ On-link: If this flag is set, the host will treat all addresses on the specific
subnet as being on-link, and send packets directly to them instead of
sending them to a router for the duration of the given lifetime.

∙ Address: This is the flag that tells the host to actually create a global
address.

1.2.3.3 Link-local Address

All interfaces of IPv6 hosts require a link-local address. A link-local address
is derived from the MAC address of the interface and the prefix fe80::/10.
The process involves filling the address space with prefix bits left-justified
to the most-significant bit and filling the MAC address in EUI-64 format
into the least-significant bits. If any bits remain to be filled between the two
parts, those are set to zero.
The uniqueness of the address on the subnet is tested with the Duplicate

Address Detection (DAD) method.
1.2.3.4 Global Addressing

The assignment procedure for global addresses is similar to local address
construction. The prefix is supplied from router advertisements on the net-
work. Multiple prefix announcements cause multiple addresses to be
configured.
Stateless Address Autoconfiguration (SLAAC) requires a /64 address block,

as defined in RFC 4291. Local Internet registries are assigned at least /32
blocks, which they divide among subordinate networks. The initial recom-
mendation stated assignment of a /48 subnet to end-consumer sites (RFC
3177). This was replaced by RFC 6177, which recommends giving home sites
significantly more than a single /64 but does not recommend that every home
site is given a /48 either. /56s are specifically considered. It remains to be seen
if ISPs will honor this recommendation. For example, during initial trials,
Comcast customers were given a single /64 network.
IPv6 addresses are classified by three types of networking methodologies:

∙ unicast addresses identify each network interface,

∙ anycast addresses identify a group of interfaces, usually at different
locations of which the nearest one is automatically selected, and

∙ multi-cast addresses are used to deliver one packet tomany interfaces.

The broadcast method is not implemented in IPv6. Each IPv6 address has a
scope, which specifies in which part of the network it is valid and unique.

Introduction of Computer Networks 23
Some addresses are unique only on the local (sub-)network. Others are
globally unique.
Some IPv6 addresses are reserved for special purposes, such as loopback,

6-to-4 tunneling, and Teredo tunneling, as outlined in RFC 5156. Also, some
address ranges are considered special, such as link-local addresses for use
on the local link only, Unique Local addresses (ULA), as described in RFC
4193, and solicited-node multi-cast addresses used in the Neighbor Discovery
Protocol.
1.2.4 Port Number

When information is sent over the Internet to a computer, it accepts that infor-
mation by using Transmission Control Protocol (TCP) or User Datagram Pro-
tocol (UDP) ports. When a program on the computer sends or receives data
over the Internet, it sends that data to an IP specific port on the remote com-
puter and receives the data on a usual address and a sly random port on its
own computer. If it uses the TCP protocol to send and receive the data, then
it will connect and bind itself to a TCP port. If it uses the UDP protocol to
send and receive data, it will use a UDP port. In order for a web server to
accept connections from remote computers, such as yourself, it must bind
the web server application to a local port. It will then use this port to listen
for and accept connections from remote computers. Web servers typically
bind to the TCP port 80, which is what the Hypertext Transfer Protocol
(HTTP) uses by default, and then will wait and listen for connections from
remote devices. Once a device is connected, it will send the requested web
pages to the remote device, and when complete, disconnect the connection.
On the other hand, if a remote user connects to a web server, it would work
in reverse. Your web browser would pick a random TCP port from a certain
range of port numbers and attempt to connect to port 80 on the IP address
of the web server. When the connection is established, the web browser will
send the request for a particular web page and receive it from the web server.
Then both computers will disconnect the connection. Thus, we can view a port
number as the address for an application.
In TCP and UDP networks, a port is an endpoint to a logical connection and

the way a client program specifies a specific server program on a computer in
a network. The port number identifies what type of port it is. For example,
port 80 is usually used for HTTP traffic. Some ports have numbers that are
assigned to them by the IANA, and these are called the “well-known
ports” which are specified in RFC 1700, and there is a total 216 = 65536 port
numbers available for each host, for each protocol.
Using TCP, the host sending the data connects directly to the computer it is

sending the data to and stays connected for the duration of the transfer. With
this method, the two communicating hosts can guarantee that the data has
arrived safely and correctly, and then they disconnect the connection. This
method of transferring data tends to be quicker and more reliable but puts

24 Software-Defined Networking and Security
a higher load on the computer as it has to monitor the connection and the data
going across it.
Using UDP on the other hand, the information is packaged into a nice little

package and releases it into the network with the hopes that it will get to the
right place. What this means is that UDP does not connect directly to the
receiving computer like TCP does, but rather sends the data out and relies
on the devices in between the sending computer and the receiving computer
to get the data where it is supposed to go properly. This method of transmis-
sion does not provide any guarantee that the data you send will ever reach its
destination. On the other hand, this method of transmission has a very low
overhead and is therefore very popular to use for services that are not that
important to work on the first try.
1.3 Physical, Logical, and Overlay Networks

The layered structure of computer networks provides an efficient and effective
approach to describe complicated dependencies among different networking
services. However, the layered structure also blocks access to some network
functions on lower layers. Virtual networking solutions are a group of tech-
niques that enable access to network functions at any layer. To better illustrate
what virtual networks are, we first need to understand differences among
several network terms: physical networks, logical (virtual) networks, and
overlay networks.
1.3.1 Physical Networks

A physical network is visible and physically presented to connect physical
computers as shown in Figure 1.7(a). We can go to any physical server (or
desktop PC for that matter) and check the status of the network connection
by seeing the “media state”; i.e., if it is enabled. We can check its speed,
how long it has been up, and what its connectivity state is as defined by the
operating system on that server.We are comfortable with networkmonitoring
tools and agents for physical servers and their physical network connections.
1.3.2 Logical Networks

A logical network is a virtual representation of a network that appears to the
user as an entirely separate and self-contained network even though it might
physically be only a portion of a larger network or a local area network. It
might also be an entity that has been created out ofmultiple separate networks
and made to appear as a single network. This is often used in virtual environ-
ments where there are physical and virtual networks running together; so, out

c

d

FIGURE 1.7
Physical and logical view of networks.

Introduction of Computer Networks 25

26 Software-Defined Networking and Security
of convenience and function, separate networks can be made into a single
logical network.
A logical network is usually represented based on which level to view it. As

shown in Figure 1.7(b)-(d), a logical network may be viewed differently at dif-
ferent protocol layers. At the link layer, there are two isolated and fully
meshed link-layer networks, which are isolated by a network-layer router;
at the network layer, if the routing is set up correctly, it will be represented
as a fully meshed peer-to-peer network. At the application level, e.g., a web
service model, the logical network can be viewed as a one-to-many client-
service based networking service model.
In Figure 1.7(c)-(d), we can see that a logical network, unlike a physical net-

work, often spans multiple physical devices such as network nodes and net-
working equipment that are often parts of separate physical networks. For
example, a logical network can be made up of elements from separate net-
works with devices located around the globe, as in a global enterprise where
the computers of sitemanagers fromdifferent countries might be connected as
a single logical network in order to foster quick and hassle-free communica-
tion even though they are physically separated by continents.
This concept is very important for distributed applications as it binds the

distributed components, more or less, as a single group or a single entity. In
this way, logical components can be arranged into groups that represent busi-
ness environments or departments such as finance, engineering, human
resource or quality assurance. Those environments are then treated as a single
logical network even though their physical components might be located in
different geographical zones.
1.3.3 Overlay Networks

An overlay network is a virtual network of nodes and logical links that are
built on top of an existing network with the purpose of implementing a net-
work service that is not available in the existing network. That overlay net-
works implement a service or application is the subtle difference between
them and logical networks. For example, Napster is a peer-to-peer overlay
network for music file sharing service. Nodes in the overlay network can be
thought of as being connected by virtual links, each of which corresponds
to a path in the underlying network, perhaps through many physical links.
Distributed systems such as peer-to-peer networks and client-server applica-
tions are overlay networks because their nodes run on top of the Internet.
Interestingly, while the Internet was originally built as an overlay upon the
telephone network, today (through the advent of Voice-over-IP (VoIP)), the
telephone network is increasingly turning into an overlay network built on
top of the Internet.
Similar to logical networks, overlay networks run as independent virtual

networks on top of a physical network infrastructure. These virtual network
overlays allow service providers to provision and orchestrate networks

Introduction of Computer Networks 27
alongside other virtual resources. They also offer a new path to converge net-
works and programmability. Using a network overlay is one way to imple-
ment a SDN architecture. In the context of SDNs, an overlay network uses
virtual links to connect to the underlying physical network (e.g., Ethernet
switches or routers). As a convention, we usually use virtual networks instead
of using overlay networks in the context of SDN technologies.
1.4 Computer Networking Services

1.4.1 Address Resolution Protocol

The Address Resolution Protocol (ARP) is a communication protocol used for
discovering the link layer address, such as a MAC address, associated with a
given network layer address, typically an IPv4 address. This mapping is a crit-
ical function in the Internet protocol suite. ARP was defined in RFC 826.
ARP uses a simple message format containing one address resolution

request or response, which is shown in Figure 1.8. The size of the ARPmessage
depends on the upper layer and lower layer address sizes, which are given by
the type of networking protocol (usually IPv4) in use and the type of hardware
or virtual link layer that the upper layer protocol is running on. The message
header specifies these types, as well as the size of addresses of each. The
message header is completed with the operation code for request (1) and
reply (2). The payload of the packet consists of four addresses, the hardware
and protocol address of the sender and receiver hosts.
As shown in Figure 1.8, when a IPv4 network running on Ethernet, the

packet has 48-bit fields for the Sender Hardware Address (SHA) and Target
Hardware Address (THA), and 32-bit fields for the corresponding sender
FIGURE 1.8
ARP protocol packet format.

FIGURE 1.9
ARP and ARP spoofing attack.

28 Software-Defined Networking and Security
and target protocol addresses (SPA and TPA). Thus, the ARP packet size in
this case is 28 bytes. The EtherType for ARP is 0x0806.
In Figure 1.9, it shows two computers B and C are connected to each other in

a switch, with no intervening gateways or routers. B has a packet to send to C.
Through DNS, it determines that C has the IP address 192.168.0.55. To send
themessage, it also requires C’sMAC address. First, B uses a cachedARP table
to look up 192.168.0.55 for any existing records of C’s MAC address (00:eb:24:
b2:05:ac). If the MAC address is found, it sends an Ethernet frame with desti-
nation address 00:eb:24:b2:05:ac, containing the IP packet onto the link. If the
cache did not produce a result for 192.168.0.55, B has to send a broadcast ARP
message (destination FF:FF:FF:FF:FF:FF MAC address), which is accepted by
all computers, requesting an answer for 192.168.0.55. C responds with its
MAC and IP addresses. Cmay insert an entry for B into its ARP table for future
use. B then caches the response information in its ARP table and can now send
the packet to C.
ARP Spoofing Attacks

ARP protocol does not provide methods for authenticating ARP replies on a
network; as a result, ARP replies can come from systems other than the one
with the required Layer 2 address. An ARP proxy is a system which answers
the ARP request on behalf of another system for which it will forward traffic,
normally as a part of the network’s design. However, an ARP reply message
can be easily spoofed, in which a spoofer, i.e., computer A in Figure 1.9, replies
to a request sent by B for the gateway’s MAC address and claim A’s MAC
address is the Gateway’s MAC address. After receiving the ARP reply mes-
sage, B will put A’s MAC address as the destination MAC address in the

Introduction of Computer Networks 29
packet, and thus A can perform a Man-in-The-Middle (MITM) or Denial-of-
Service (DoS) attack to computer B.
1.4.2 Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) is a network management
protocol used to dynamically assign an Internet Protocol (IP) address to any
device, or node, on a network so they can communicate using IP. DHCP
automates and centrally manages these configurations rather than requir-
ing network administrators to manually assign IP addresses to all network
devices. DHCP assigns new IP addresses in each location when devices are
moved from place to place, which means network administrators do not
have to manually initially configure each device with a valid IP address or
reconfigure the device with a new IP address if it moves to a new location
on the network. Versions of DHCP are available for use in Internet Protocol
version 4 (IPv4) and Internet Protocol version 6 (IPv6).
The DHCP employs a connectionless service model, using the User Data-

gram Protocol (UDP). It is implemented with two UDP port numbers for its
operations, which are the same as for the Bootstrap Protocol (BOOTP). UDP
port number 67 is the destination port of a server, and UDP port number 68
is used by the client. DHCP dynamically assigns IP addresses to DHCP clients
and to allocate TCP/IP configuration information to DHCP clients. This
includes IP address and subnet mask information, default gateway IP addresses
and domain name system (DNS) addresses.
DHCP is a client-server protocol in which servers manage a pool of unique

IP addresses, as well as information about client configuration parameters,
and assign addresses out of those address pools. DHCP-enabled clients
send a request to the DHCP server whenever they connect to a network.
Clients configured with DHCP broadcast a request to the DHCP server and

request network configuration information for the local network to which
they are attached. A client typically broadcasts a query for this information
immediately after booting up. The DHCP server responds to the client request
by providing IP configuration information previously specified by a network
administrator. This includes a specific IP address aswell as for the time period,
also called a lease, for which the allocation is valid.When refreshing an assign-
ment, a DHCP client requests the same parameters, but the DHCP server may
assign a new IP address based on policies set by administrators.
A DHCP server manages a record of all the IP addresses it allocates to net-

work nodes. If a node is relocated in the network, the server identifies it using
its MAC address, which prevents accidentally configuring multiple devices
with the same IP address.
DHCP is limited to a specific Local Area Network (LAN), which means a

single DHCP server per LAN is adequate, or two servers for use in case of a
fail-over. Larger networksmay have aWideAreaNetwork (WAN) containing
multiple individual locations. Depending on the connections between these

30 Software-Defined Networking and Security
points and the number of clients in each location, multiple DHCP servers can
be set up to handle the distribution of addresses. If network administrators
want a DHCP server to provide addressing tomultiple subnets on a given net-
work, they must configure DHCP relay services located on interconnecting
routers that DHCP requests have to cross. These agents relay messages
between DHCP clients and servers located on different subnets.
DHCP lacks any built-in mechanism that would allow clients and servers to

authenticate each other. Both are vulnerable to deception (one computer pre-
tending to be another) and to attack, where rogue clients can exhaust a DHCP
server’s IP address pool.
1.4.3 Domain Name System

The Domain Name System (DNS) is a hierarchical decentralized naming sys-
tem for computers, services, or other resources connected to the Internet or a
private network. It associates various information with domain names
assigned to each of the participating entities. Most prominently, it translates
more readily memorized domain names to the numerical IP addresses needed
for locating and identifying computer services and devices with the underly-
ing network protocols. By providing a worldwide, distributed directory
service, DNS is an essential component of the functionality on the Internet
that has been in use since 1985.
The DNS delegates the responsibility of assigning domain names and map-

ping those names to Internet resources by designating authoritative name
servers for each domain. Network administrators may delegate authority
over sub-domains of their allocated name space to other name servers. This
mechanism provides distributed and fault-tolerant service and was designed
to avoid a single large central database.
The DNS also specifies the technical functionality of the database service

that is at its core. It defines the DNS protocol, a detailed specification of the
data structures and data communication exchanges used in the DNS, as
part of the Internet Protocol Suite. Historically, other directory services pre-
ceding DNS were not scalable to large or global directories as they were orig-
inally based on text files, prominently the host’s file.
The Internet maintains two principal namespaces, the domain name hierar-

chy and the Internet Protocol (IP) address spaces. The DNS maintains the
domain name hierarchy and provides translation services between it and
the address spaces. Internet name servers and a communication protocol
implement the DNS. A DNS name server is a server that stores the DNS
records for a domain; a DNS name server responds with answers to queries
against its database.
The most common types of records stored in the DNS database are for

Start of Authority (SOA), IP addresses (A andAAAA), SMTPmail exchangers
(MX), name servers (NS), pointers for reverseDNS lookups (PTR), anddomain
name aliases (CNAME). Although not intended to be a general-purpose

Introduction of Computer Networks 31
database, DNS can store records for other types of data for either automatic
lookups, such as DNS Security (DNSSEC) records, or for human queries
such as responsible person (RP) records. As a general-purpose database, the
DNS has also been used in combating unsolicited email (spam) by storing a
real-time blackhole list. The DNS database is traditionally stored in a struc-
tured zone file.
1.4.4 Network Address Translation

1.4.4.1 What is NAT

Network Address Translation (NAT) is the process where a network device,
usually a firewall, assigns a public address to a computer (or group of comput-
ers) inside a private network. The main use of NAT is to limit the number of
public IP addresses an organization or company must use, for both economy
and security purposes.
The common form of network translation involves a large private network

using private IP addresses in any of the following given ranges:

∙ 10.0.0.0 to 10.255.255.255 (10.0.0.0/8)

∙ 172.16.0.0 to 172.31.255.255 (172.16.0.0/12), or

∙ 192.168.0 0 to 192.168.255.255 (192.168.0.0/16)

The private addressing scheme works well for computers that only have to
access resources inside the network, like workstations needing access to file
servers and printers. Routers inside the private network can route traffic
between private addresses with no trouble. However, to access resources out-
side the network, like the Internet, these computers have to have a public
address in order for responses to their requests to return to them.
For a stricter definition of NAT, it means a one-to-one, one-to-many, or

many-to-many private-to-public IP addresses translation or it is represented
as k-to-n translation and usually k≥ n, which allows one or multiple public
IP address(es) to represent one or multiple internal private IP address(es).
When k. n, multiple private IP addresses need to share a small number of
public IP addresses, and this can deduce to another public IP shortage issue
since all the private IP addresses need to compete to get a public IP to access
to the public domain. In order to address this issue, we can use both IP
addresses and port numbers, e.g., TCP or UDP ports, to use both a public
IP address a port number to uniquely translate a private IP address to a public
IP address and a port number based on a small number of public IP addresses.
This approach is called Network and Port Address Translation (NPAT), or
simple Port Address Translation (PAT). Due to the tradition and convenience,
we do not strictly differentiate between NAT, NPAT, or PAT, and call them
collectively NAT for simplicity. It usually means that the translation includes
both IP and port addresses without a special notice, otherwise.

32 Software-Defined Networking and Security
Usually, NAT is transparent to end users. A workstation inside a network
makes a request to a computer on the Internet. Routerswithin the network rec-
ognize that the request is not for a resource inside the network, so they send
the request to the firewall. The firewall sees the request from the computer
with the internal private IP address. It then makes the same request to the
Internet using its own public IP address, and returns the response from the
Internet resource to the computer inside the private network. From the per-
spective of the resource on the Internet, it is sending information to the
address of the firewall. From the perspective of the workstation, it appears
that communication is directly with the destination site on the Internet.
When NAT is used in this way, all users inside the private network access
the Internet have the same public IP address when they use the Internet.
Thatmeans only one public address is needed for hundreds or even thousands
of users within the private network domain.
Most modern firewalls are stateful; that is, they are able to set up the connec-

tion between the internal workstation and the Internet resource. They can
keep on tracking the details of the connection, like ports, packet order, and
the IP addresses involved, which means “stateful.” In this way, they are
able to keep track of the session composed of communication between the
workstation and the firewall, and the firewall with the Internet. When the ses-
sion ends, the firewall discards all of the information about the connection.
There are other uses for NAT beyond simply allowing workstations with

internal IP addresses to access the Internet. In large networks, some servers
may act as Web servers and require access from the Internet. These servers
are assigned public IP addresses on the firewall, allowing the public to access
the servers only through that IP address. However, as an additional layer of
security, the firewall acts as the intermediary between the outside world
and the protected internal network. Additional rules can be added, including
which ports can be accessed at that IP address. Using NAT in this way allows
network and security engineers tomore efficiently route internal network traf-
fic to the same resources, and allow access to more ports, while restricting the
access at the firewall. It also allows detailed logging of communications
between the network and the outside world.
Additionally, NAT can be used to allow selective access to the outside of the

network, too. Workstations or other computers requiring special access out-
side the network can be assigned specific external public IP address using
NAT, allowing them to communicate with computers and applications that
require a unique public IP address. Again, the firewall acts as the intermedi-
ary, and can control the session in both directions, restricting port access
and protocols.
1.4.4.2 PREROUTING and POSTROUTING

In NAT table, it contains two chains: PREROUTING and POSTROUTING.
The PREROUTING is done at first when a packet is received and is thus

Introduction of Computer Networks 33
routed based on where it is going (destination). After all other routing rules
have been applied, the POSTROUTING chain will determine where it goes
based on where it came from (source).
For example, on a server, incoming ports that are to be forwarded (NATed)

are all defined in the PREROUTING chain as DNAT, and all packets that come
from the NATed interfaces, go through the POSTROUTING chain as SNAT,
and consequently (in this case), go through the filter FORWARD chain. As
the name suggested, PREROUTING means the NAT-based IP/port changes
need to have occurred before routing. This will allow an incoming packet to
change its destination address (i.e., use DNAT in iptables setup) to a NATed
IP address (e.g., a private IP), and then the routing will decide how to forward
to the internal interface-based on the changed destination IP address. On the
contrary, POSTROUTING chain will be evaluated after the routing decision,
i.e., change the source IP address to a public IP address associated to an
outgoing interface.
1.4.4.3 Netfilter and NAT

The basic firewall software most commonly used in Linux is called iptables.
The iptables’ firewall works by interacting with the packet filtering hooks
in the Linux kernel’s networking stack. These kernel hooks are known as
the netfilter framework. Every packet that enters a networking system (incom-
ing or outgoing) will trigger these hooks as it progresses through the stack,
allowing programs that register with these hooks to interact with the traffic
at key points. The kernel modules associated with iptables register at these
hooks in order to ensure that the traffic conforms to the conditions laid out
by the firewall rules.
The NAT packet processing procedure is highlighted in Figure 1.10. The

PREROUTING chain is responsible for packets that just arrived at the network
interface before routing decision has taken place. As a result, it is not yet
known whether the packet would be interpreted locally or whether it would
be forwarded to another machine located at another network interface. After
the packet has passed the PREROUTING chain, e.g., it may change the
packet’s public destination IP address to a private IP address, the routing deci-
sion is made based on the destination IP address. Just before the forwarded
FIGURE 1.10
NAT using Linux and Netfilter.

34 Software-Defined Networking and Security
packet leaves the machine, it passes the POSTROUTING chain and sees if the
source IP address is required to be changed or not, and then leaves through the
network interface. For locally generated packets, there is a small difference:
Instead of passing through the PREROUTING chain, it passes the OUTPUT
chain and then moves on to the POSTROUTING chain.

1.4.5 iptables

iptables is a command-line interface to the packet filtering functionality in net-
filter. The packet filtering mechanism provided by iptables is organized into
three different kinds of structures: tables, chains and targets. Simply put, a
table is something that allows you to process packets in specific ways. The
default table is the filter table, although there are other tables too. These tables
have chains attached to them. These chains are used to inspect traffic at vari-
ous points, such as when they just arrive on the network interface or just
before they are handed over to a process. Rules can be added to them tomatch
specific packets such as TCP packets going to port 80 and associate it with a
target. A target decides the fate of a packet, such as allowing or rejecting it.
When a packet arrives (or leaves, depending on the chain), iptables matches

it against rules in these chains one-by-one. When it finds a match, it jumps
onto the target and performs the action associated with it. If it does not find
a match with any of the rules, it simply does what the default policy of the
chain tells it to. The default policy is also a target. To set up a whitelist, the
default policy is DROP and to set up a blacklist, the default policy is ACCEPT.
By default, all chains have a default policy of accepting packets.

1.4.5.1 Tables in iptables

There are several tables included in iptables:

∙ Filter table: This is the default and perhaps the most widely used table.
It is used tomake decisions aboutwhether a packet should be allowed
to reach its destination.

∙ Mangle table: This table is used to alter packet headers in various ways,
such as changing Time-To-Live (TTL) values.

∙ NAT table: This table is used to route packets to different hosts onNAT
networks by changing the source and destination addresses of pack-
ets. It is often used to allow access to services that cannot be accessed
directly, because they are on a NAT network.

∙ Raw table: iptables is a stateful firewall, which means that packets are
inspected with respect to their “state.” For example, a packet could be
part of a new connection, or it could be part of an existing connection.
The raw table can be used to work with packets before the kernel
starts tracking its state. In addition, we can also exempt certain pack-
ets from the state-tracking machinery.

Introduction of Computer Networks 35
In addition, some kernels also have a security table. It is used by Security-
Enhanced Linux (SELinux) to implement policies based on SELinux
security contexts.
1.4.5.2 Chains in iptables

Each of the tables in iptables is composed of a few default chains. These
chains are used to filter packets at various points. The list of chains iptables
provides is as follows:

∙ The PREROUTING chain: Rules in this chain apply to packets as they
just arrive on the network interface. This chain is present in the NAT,
mangle and raw tables.

∙ The INPUT chain: Rules in this chain apply to packets just before they
are given to a local process. This chain is present in the mangle and
filter tables.

∙ The OUTPUT chain: The rules here apply to packets just after they
have been produced by a process. This chain is present in the raw,
mangle, NAT and filter tables.

∙ The FORWARD chain: The rules here apply to any packets that are
routed through the current host. This chain is only present in theman-
gle and filter tables.

∙ The POSTROUTING chain: The rules in this chain apply to packets as
they just leave the network interface. This chain is present in the NAT
and mangle tables.

The diagram in Figure 1.11 shows the flow of packets through the chains in
various tables.
FIGURE 1.11
iptables.

36 Software-Defined Networking and Security
1.4.5.3 Targets in iptables’ Chains

Chains in iptables allow us to filter traffic by adding rules to them. So, for
example, we can add a rule on the filter tables INPUT chain to match traffic
on port 22. But what would we do after matching them? That is what targets
are for; they decide the fate of a packet.
Some targets are terminating, which means that they decide the matched

packets’ fate immediately. The packet will not be matched against any other
rules. The most commonly used terminating targets are:

∙ ACCEPT: This causes iptables to accept the packet.

∙ DROP: iptables drops the packet. To anyone trying to connect to your
system, it would appear like the system did not even exist.

∙ REJECT: iptables “rejects” the packet. It sends a “connection reset”
packet in case of TCP, or a “destination host unreachable” packet in
case of UDP or Internet Control Message Protocol (ICMP).

Besides the above terminating targets, there are also non-terminating tar-
gets, which keepmatching other rules even if a match was found. An example
of this is the built-in LOG target. When a matching packet is received, it logs
about it in the kernel logs. However, iptables keepsmatching it with the rest of
the rules too.
Sometimes, the system may have a complex set of rules to execute once a

matched packet is found. In addition to default chains, we can also create a
custom chain. In a table, it must start from a default chain, and then, it could
jump to a user-defined chain.
1.5 IP Network Routing

IP network routing is the process of moving packets across a network from
one host to another. It is usually performed by dedicated devices called a
router, which is usually a computer running routing protocols to establish
routing tables for packet forwarding. Network routing is usually referred to
as IP network routing, inwhich the connectivity is established on IP networks.
IP packets are the fundamental unit of information transport in all modern
computer networks.
Routing protocols play important roles for modern networks to establish

end-to-end interconnections. At a high level, most routing protocols have
three components:

∙ Determining neighbors: Network nodes that are directly linked through
layer-2 connections are called neighbors in a network topology.
A node may not be able to reach a directly linked node either because

Introduction of Computer Networks 37
the link has failed or because the node itself has failed for some reason.
A link may fail to deliver all packets (e.g., because a blackhole cuts
cables), or may exhibit a high packet loss rate that prevents all or
most of its packets from being delivered. Tomaintain the reachability,
a HELLO protocol is usually required tomonitor up or down status of
neighbors. The basic idea is for each node to send periodic HELLO
messages on all its live links; any node receiving a HELLO knows
that the sender of the message is currently alive and a valid neighbor.

∙ Periodic advertisements: Each node periodically sends routing adver-
tisements to its neighbors. These advertisements summarize useful
information about the network topology. Each node sends these
advertisements periodically to achieve two functions. First, in dis-
tance vector routing protocols, periodic advertisements ensure that
over time all nodes have correct information to compute correct
routes. Second, in both distance-vector and link-state routing proto-
cols, periodic advertisements are the fundamental mechanism used
to overcome the effects of link and node failures. Both distance-vector
and link-state routing protocols are described next.

∙ Integrating advertisements: In this step, a node processes all the adver-
tisements it has recently heard to establish the routing table. To keep
an up-to-date routing table, three continuous steps need to be main-
tained: discovering the current set of neighbors, disseminating adver-
tisements to neighbors, and adjusting the routing tables. This
continual operation implies that the state maintained by a router is
soft, i.e., it refreshes periodically as updates arrive, and adapts to
changes that are represented in these updates. This soft state means
that the path between a source and destination pair could be changed
at any time, which can change the order of a sequence of packets
received at a destination. On the positive side, the ability to refresh
the route means that the system can adapt by “rerouting” packets
to deal with link and node failures.

A variety of routing protocols have been developed in the literature and
several different ones are used in practice. Broadly speaking, protocols fall
into one of two categories depending onwhat they send in the advertisements
and how they integrate advertisement to compute the routing table. Protocols
in the first category are called distance vector protocols, where each node n
advertises to its neighbors a vector with one component per destination. In
the integration step, each recipient of the advertisement can compute its vector
of distance based on received vectors to update shorter distances.
Routing protocols in the second category are called link-state protocols,

where each node n advertises information (in a Link-State Update (LSU)
packet) about the link status (or cost) to all its current neighbors; and each
recipient re-sends this information on all of its links except the interface that

38 Software-Defined Networking and Security
received the LSU,which is called flooding. Every nodewill repeat the flooding
procedure, and eventually, all nodes will know about all the links’ states as
long as the network is connected. In the integration step, each node uses the
shortest path algorithm, i.e., Dijkstra, to compute the minimum-cost path to
every destination in the network.
Due to the flooding nature of link-state protocols, a huge amount of traffic

will be generated, which make it unsuitable for large networks. In general,
link-state protocols are used for intra-domain routing such as Open Shortest
Path First (OSPF) [199] and Intermediate System to Intermediate System
(IS-IS) [208]. On the contrary, distance vector protocols have the issue of
long-time convergence; however, due to its distributed nature for routing
table computation, distance vector protocols have been widely deployed
for both intra-domain routing, e.g., Routing Information Protocol (RIP)
[110], and inter-domain routing, e.g., Border Gateway Protocol version 4
(BGPv4) [227].
Summary

In this chapter, our discussions focus on computer network foundations. Par-
ticularly, understanding the TCP/IP protocol stack and various addresses to
be used in computer networking protocols is extremely important to under-
stand how the Internet works. These foundations allow us to further look
into concepts of logical and virtual networks and how we can use various
computer networking services to realize the different views of a computer net-
work at its physical level as well as logical level.
Computer networks build the fundamental Internet infrastructure to sup-

port various Internet applications. Back to the example of sending an email
vs. sending a mail given at the beginning of this chapter, we realized Internet
can greatly improve the efficiency of message delivery and reduce the cost of
the traditionalmail service onhow todeliver a letter. Themajor benefit of using
the digitalized Internet to revitalize the traditional messaging delivery system
is to remove the human-in-the-loop requirement at the intermediate nodes
through the message delivery path and automate the control function for
message delivery via various programmable interfaces. In the following chap-
ters, we can see many protocol examples and they mainly focus on how to
build more effective interfaces and incorporate more programmable capabili-
ties to further improve the efficiency and functionalities of our network.
The automation at the control plane of a computer network also invokes

great security concern. To avoid our computer networking system from being
vandalized by malicious attackers, we will gradually introduce security ser-
vices andmodels in the following chapters to provide amore secure and trust-
worthy networking environment in the fast-evolving computer networking
research and development area.

2
Virtual Networking
How do things change when a physical server is converted into a Virtual
Machine (VM), run on top of a Hypervisor (like KVM, VirtualBox, XEN,
vSphere, Hyper-V, etc.) and connected to a virtual network? With more and
more servers being virtualized (occupying the majority of all servers in the
world now), we need to understand virtual network connections and virtual
infrastructures.
In this chapter, we provide a review of virtual network solutions. Compared

to a physical network, which is a network of physical machines that are con-
nected; a virtual network is a technical approach that provides mapping func-
tions to represent various logical views or isolations of underlying physical
networks at the network layer of the TCP/IP protocol stack to better serve
its supported applications for easier management and stronger security
protection.
In this chapter, we first provide a few definitions to clarify the differences

among physical networks, virtual networks, overlay networks, and logical
networks in Section 2.1. Next, we focus on layer-2 virtual networking tech-
niques and realizations in Section 2.2. Then, in Section 2.3, we describe a
closely related concept – Virtual Private Network (VPN)-at different layers
of the protocol stack. Finally, we briefly discuss virtual networking and
forwarding concepts in Section 2.4.
2.1 Virtual Networks

2.1.1 Basis of Virtual Networks

Avirtual network is amapping of the entire or subset of networking resources
to a specific protocol layer. Virtual networking technologies enable creation of
various logical networks based on the applications’ need. For example, a vir-
tual network interconnects virtual and/or physical machines that are con-
nected to each other so that they can send data to and receive data from
each other. Generally speaking, two virtual machines residing on the same
physical server can send data to each other through a virtual network, e.g.,
a software switch running on top of the operating system. As shown in
Figure 2.1(a), when two virtual machines located on different physical servers
and want to send data to each other through a software switch, a layer-2
39

Router

Switch Switch

(a) Physical Network with Layer-2 Tunnels (e.g., GRE/VxLAN).

(b) Logical Network (Link-layer View).

Tunnels

1 2 3 4 5 6 7 8

1 2

5 6

3

7

4

8

vlan100 vlan200 vlan100 vlan200

FIGURE 2.1
Virtual networking approaches enable different logical views of the underlying physical
networks.

40 Software-Defined Networking and Security
tunnel needs to be established overlaying the physical network between two
servers. Thus, it is important to understand the concept of layered structure of
TCP/IP protocols; and how we can create a virtual network by using virtual
networking parameters at different protocol layers and how we can create a
virtual network using overlaying approaches. The virtual networks changed
logical networks as shown in Figure 2.1(b) vs. the logical networks shown in
Figure 1.7(b).
Virtual networks can be achieved through Network Virtualization (NV)

approach, which is defined by the ability to create logical, virtual networks
that are decoupled from the underlying network hardware to ensure the net-
work can better integrate with and support increasingly virtual environments.
NV can be delivered via hardware into a logical virtual network that is decou-
pled from and runs independently on top of a physical network. Beyond
Layer 2 or 3 (L2 or L3) services like switching and routing, NV can also incor-
porate virtualized L4-7 services.
With virtualization, organizations can take advantage of the efficiencies and

agility of software-based compute and storage resources. While networks
have been moving towards greater virtualization, it is only recently, with
the true decoupling of the control and forwarding planes, as advocated by

Virtual Networking 41
SDN [153] and Network Functions Virtualization (NFV) [106], that network
virtualization has become more of a focus.
The two most common forms of NVs are protocol-based virtual networks,

(1) Virtual LANs (VLANs) [1], Virtual Networks (VNs) and Virtual Private
Networks (VPNs) [25], Virtual Private LAN Services (VPLS) [168], and
(2) virtual networks that are based on virtual devices (such as the networks
connecting VMs inside a Hypervisor). In practice, both forms can be used
in conjunction.
VLANs are logical local area networks (LANs) based on physical LANs as

shown in Figure 2.1(a). A VLAN can be created by partitioning a physical
LAN into multiple logical LANs using a VLAN ID. Alternatively, several
physical LANs can function as a single logical LAN. The partitioned network
can be on a single router, or multiple VLANs can be onmultiple routers just as
multiple physical LANs would be.
A VPN is usually built on tunneling protocols, which consists of multiple

remote end-points (typically routers, VPN gateways of software clients)
joined by some sort of tunnel over another network, usually a third-party net-
work. Two such end-points constitute a “Point to Point Virtual Private Net-
work” (or a PTP VPN). Connecting more than two end points by putting in
place a mesh of tunnels creates a ‘Multipoint VPN’.
A VPLS is a specific type of Multipoint VPN. VPLS are divided into Trans-

parent LAN Services (TLS) and Ethernet Virtual Connection Services. A TLS
sends what it receives, so it provides geographic separation, but not VLAN
subnetting. An Ethernet Virtual Connections (EVCS) adds a VLAN ID, so it
provides geographic separation and VLAN subnetting.
A common example of a virtual network that is based on virtual devices is

the network inside a Hypervisor where traffic between virtual servers is
routed using virtual switches (vSwitches) along with virtual routers and vir-
tual firewalls for network segmentation and data isolation. Such networks can
use non-virtual protocols such as Ethernet as well as virtualization protocols
such as the VLAN protocol IEEE 802.1Q [129].
2.1.2 Abstraction vs. Virtualization

Virtual networks are built on virtualization techniques and virtualization is
an important technique for establishing modern cloud computing services.
However, it is easy to confuse with another overly used concept – abstraction.
Virtualization is similar to abstraction but it does not always hide the low
layer’s details. A real system is transformed so that it appears to be different.
Moreover, virtualization can be applied not only to subsystem, but to an entire
machine, e.g., Virtual Machines (VMs), or an entire system, e.g., virtual net-
works. Abstraction is about hiding details, and involves constructing inter-
faces to simplify the use of the underlying resource (e.g., by removing
details of the resource’s structure). For example, a file on a hard disk that is
mapped to a collection of sectors and tracks on the disk. We usually do not

42 Software-Defined Networking and Security
directly address disk layout when accessing the file. Concrete is the opposite of
abstract. For example, software and development goes from concrete, e.g., the
actual binary instructions, to abstract, e.g., assembly to C to Java to a frame-
work like Apache Groovy [31] to a customizable Groovy add-on. For computer
virtualization solutions, hardware no longer exists for the OS. At some level
it does, on the host system, but the host system creates a virtualization layer
that maps hardware functions that allows an OS to run on the software rather
than the hardware. For network virtualization, it focuses on creating an over-
played networking solution to logically isolate multiple networks that are
physically sharing the same set or subset of networking resources. For net-
working resource management, how to allocate virtual networks on physical
networks is called virtual networking embedding, which will be discussed in
the next subsection.
Besides abstraction, the term overlay network is also quite oftenmentioned, in

which it describes a computer network that is built on top of another network.
Nodes in the overlay network can be thought of as being connected by logical
links, each of which corresponds to a path, perhaps through many physical
links, in the underlying network. For example, distributed systems such as
peer-to-peer networks are overlay networks because their nodes run on top
of the Internet. The Internet was originally built as an overlay upon the tele-
phone network, while today (through the advent of Voice over IP (VoIP)),
the telephone network is increasingly turning into an overlay network built
on top of the Internet. Overlay networks build the foundation of virtual net-
works and they run as independent virtual networks on top of a physical net-
work infrastructure. Virtual network overlays allow resource providers,
such as cloud providers, to provision and orchestrate networks alongside
other virtual resources. They also offer a new path to converged networks
and programmability.
Two additional concepts are also quite frequently used with the concept of

virtualization: replication is to create multiple instances of the resource (e.g., to
simplify management or allocation); and isolation is to separate the uses which
clients make of the underlying resources (e.g., to improve security).
2.1.3 Benefits of Virtualizing Networks

In computing, virtualization refers to the act of creating a virtual (rather than
actual) version of something, including virtual computer hardware platforms,
storage devices, and computer network resources. Generally speaking, virtu-
alization is a technical approach to create illusions, which is dominated by
three major virtualized resources, computing power, networking resources,
and storage spaces. A virtual network is a computer network that consists,
at least in part, of virtual network links. Usually, a virtual network link is a
link that does not consist of a physical (wired or wireless) connection between
two computing devices but is implemented using methods of NFV. Thus, a
virtualized system’s interface and resources are mapped onto interface and

Virtual Networking 43
resources of another (“real”) system; and virtualization provides a different
interface and/or resources at a similar level of the abstraction without losing
major functions to be represented in the virtualized system. Focusing on net-
work virtualization, several benefits are summarized as follows:

∙ Resource optimization: For satisfying real needs, the available network
bandwidth can be used much more effectively. Tunnels and virtual
networks can isolate or restrict network traffic based on the applica-
tion needs, which provides in-network control capability compared
to traditional best effort computer networking solutions.

∙ Multiple execution environments: Virtual networks enable an isolated
multiple application running environment that can bring multi-
faceted benefits such as isolating or restrictingmalicious network traf-
fic, providing redundancy for backup, load sharing features, etc.

∙ Debugging and intrusion detection: Using virtual networks, we can cre-
ate slices (called slicing),which is an isolationapproach to reserve a cer-
tain amount of networking resources for a particular application. In
case of under-attacks, a slice can be handled easily such as performing
intrusiondetection,monitoring, andDeepPacket Inspection (DPI), etc.

∙ Mobility: Virtual networking not only provides a programmable
approach to setup a needed network for new service deployment
andmanagement, but also it can seamlessly assist softwaremigration.
For example, live migration consists of migrating the memory content
of the VM, maintaining access to the existing storage infrastructure
containing the VM’s stored content while providing continuous net-
work connectivity to the existing network domain. The existing VM
transactions can be maintained and any new transaction will be
allowed during any stage of the live migration, thereby providing
continuous data availability.

∙ Appliance (security): Enabling security function plug-and-play feature
and working as appliances that can be easily enabled and disabled,
and applied at any network segment or interfaced to existing services
in a cloud-based service platform.

∙ Testing/Quality assurance: Virtual networks offer software developers
isolated, constrained, test environments. Rather than purchasing and
maintaining dedicated physical hardware, virtual networks can create
multiple isolated networking environments. Together with VMs and
virtual storages, we can quickly establish a software testing environ-
ment, where developers can create an unlimited number of user con-
figurations on their physical machines and choose the most suitable
configuration at each stage. This gives the possibility to experiment
with potentially incompatible applications and perform testing with
different user profiles. Moreover, the testing will be hardware inde-
pendent, portable, and backup and replication will be easy.

44 Software-Defined Networking and Security
2.1.4 Orchestration and Management of Virtual Networks

We are in the age of virtualization, associating network resources and ele-
ments to services is no longer as simple as literally running wires and connect-
ing terminal blocks. Nor does it just mean setting new parameters so network
hardware knows how to provide the customer’s VPN, for example. A virtual
assembly process needs to be included into operations practices, which
describe how abstract services, features and even devices are realized on
real infrastructure.
At the same time, as IT and the networkmerge in the cloud, traditional oper-

ations support systems, business support systems and network management
systems may be merging into a cloud-related operations model. That model
focuses on the emerging concepts of management and orchestration, and of
managing bindings, which are records of the physical and virtual elements
that make up a service.
SDN and Network Functions Virtualization (NFV) are new computer net-

working management frameworks, described in Chapter 3.
2.1.5 Virtual Networking Embedding Problems

In network virtualization, the primary entity is a virtualized network,
which is a combination of active and passive network elements (network
nodes and network links) on top of a substrate network. Virtual nodes
are interconnected through virtual links, forming a virtual topology. By
virtualizing both node and link resources of a substrate network, multiple
virtual network topologies with widely varying characteristics can be
created and co-hosted on the same physical hardware. Moreover, the
abstraction introduced by the resource virtualization mechanisms allows
network operators to manage and modify networks in a highly flexible
and dynamic way.
How to optimally allocate virtual networks and their associated networking

resources is called a Virtual Network Embedding (VNE) problem, which is an
NP hard problem. Through dynamic mapping of virtual resources onto phys-
ical hardware, the benefit gained from existing hardware can be maximized.
Optimal dynamic resource allocation, leading to the self-configuration and
organization of future networks, will be necessary to provide customized
end-to-end guaranteed services to end users. This optimality can be computed
with regard to different objectives, ranging from QoS, economical profit, or
survivability over energy efficiency to security of the networks.
VNE deals with the allocation of virtual resources both in nodes and links.

Therefore, it can be divided in two sub problems: Virtual Node Mapping
(VNoM) where virtual nodes have to be allocated in physical nodes and Vir-
tual Link Mapping (VLiM) where virtual links connecting these virtual nodes
have to be mapped to paths connecting the corresponding nodes in the
substrate network.

Virtual Networking 45
2.1.5.1 VNE Problem Description

The application of virtualization mechanisms to network resources leads to
the question how the virtualized resources should be realized by the substrate
resources. It is important to note that substrate resources can be virtual them-
selves. This is commonly referred to as nested virtualization. In that case, only
the lowest layer has to consist of physical resources.
The hardware abstraction provided by the virtualization solution provides

a common denominator, allowing any substrate resource to host virtual
resources of the same type. Typically, a substrate resource is partitioned to
host several virtual resources. For example, a virtual node can, in principle,
be hosted by any available substrate node. Moreover, a single substrate
node can host several virtual nodes. Thus, the mapping of virtual nodes to
substrate nodes describes a n : 1 relationship (a strict partition of substrate
resources).
In some cases, substrate resources can also be combined to create new vir-

tual resources. This is the case for a virtual link which spans several links
(i.e., a path) in the substrate network. In this case, a virtual link between
two virtual nodes v and w is mapped to a path in the substrate network
that connects the substrate hosts of v and w. Each substrate link may then
be part of several virtual links. As such, the mapping of virtual links to sub-
strate paths describes a n :m relationship (both, a partition and a combination
of substrate resources).
Figure 2.2 depicts a scenario where three virtual networks with 2-3 nodes

each are hosted on one substrate network with four nodes. It can be seen
that substrate nodes can host several virtual nodes (up to three in this
VN1

VN2

VN3

FIGURE 2.2
A VNE example.

46 Software-Defined Networking and Security
example). Likewise, substrate links can host more than one virtual link. More-
over, three of the virtual links span two substrate links, thus representing a
virtual resource combined from several substrate resources.
In general, there are some restrictions to be considered during the mapping.

The candidate substrate resources for amapping have to be able to support the
performance requirements of the virtual resources. For example, a 1000 MBit/s
virtual link cannot bemapped to a path containing a 100MBit/s substrate link.
Likewise, the Central Processing Unit (CPU) power requested by a virtual
node has to be less than (or equal to) the CPU power actually provided by a
substrate node. If redundancy is required, even more substrate resources
may have to be reserved. Nevertheless, substrate resources should be spent
economically. Therefore, the mapping has to be optimized. This problem of
mapping virtual resources to substrate resources in an optimal way is com-
monly known as the VNE problem. This is typically modeled by annotating
a Virtual Network Request (VNR) with node and link demands. Likewise,
the Substrate Network (SN) is annotated with node and link resources.
Demands and resources then have to be matched in order to complete the
embedding. This means that virtual resources are first mapped to candidate
substrate resources. Only if all virtual resources can bemapped, the entire net-
work is then embedded and substrate resources are actually spent. If VNRs
arrive one at a time, reconfiguration might be necessary, reverting the previ-
ous embedding and calculating a new mapping.

2.1.5.2 VNE Formal Definition

Here, we use the formal definition of VNE presented in [91]. The VNE prob-
lem can be described as follows (see Table 2.1): Let SN= (N, L) be a substrate
network where N represents the set of substrate nodes and L the set of
TABLE 2.1

Notations for VNE

Term Description

SN¼ (N, L) SN is a substrate network, consisting of nodes N and links L

VNRi ¼ ðNi; LiÞ VNRi denotes the ithVirtual Network Request (VNR), consisting of nodes
Ni and links Li

_R ¼ Qm
j¼1 Rj

_R contains resource vectors for all resources R1,… , Rm

cap : N < L ! _R The function cap assigns a capacity to an element of the substrate
network (either node or link)

demi : Ni < Li ! _R The function demi assigns a demand to an element ofVNRi (either a node
or a link)

fi : Ni ! N fi is the function that maps a virtual node of VNRi to a substrate node
(VNoM)

gi : Li ! SN0 # SN gi is the function that maps a virtual link of VNRi to a path in the
substrate network (VLiM)

Virtual Networking 47
substrate links and let VNRi = (Ni, Li) be a set of i= 1,… , n VNRs where Ni

and Li represent the set of virtual nodes and virtual links of the VNR i, respec-
tively. Furthermore, let Ṙ = ∑m

j = 1Rj be a vector space of resource vectors
over resource setsR1,… ,Rm and let cap :N < L � Ṙ be a function that assigns
available resources to elements of the substrate network. Finally, for each
VNRi, let demi : Ni < Li � Ṙ be a function that assigns demands to elements
of all VNRs. Then, a VNE consists of two functions fi : Ni � N and
gi : Li � SN′ # SN for each VNRi such that ∀ni [Ni : demi(ni) ≤ cap(fi(ni))
and ∀li [Li : ∀l [gi(li) : demi(li) ≤ cap(l). fi is then called a node map-
ping function (VNoM) and gi is called a link mapping function (VLiM).
Together, they form an embedding forVNRi. It is not required that these func-
tions are calculated by a single entity; calculation can be split among multiple
entities.
Solving the VNE problem is NP-hard, as it is related to the multi-way sep-

arator problem [30]. Even with a given virtual node mapping, the problem of
optimally allocating a set of virtual links to single substrate paths reduces to
the unsplittable flow problem [155, 158], and thus also is NP hard. Therefore,
truly optimal solutions can only be gained for small problem instances. Thus,
currently the main focus of work within the research community is on heuris-
tic or metaheuristic approaches.
VNE is a central problem to be solved when networks are virtualized. Opti-

mizing the embedding of multiple virtual networks on one substrate network
is computationally difficult for a number of important metrics. Multiple algo-
rithms approaching this problem have been discussed in the literature, which
can be reviewed in a survey paper [91].
2.2 Layer-2 Virtual Networking

Based onOSImodel, layer-2 networking provides direct connectivity between
hosts, where the TCP/IP networkingmodel the direct connectivity is provided
at the Interface layer (or represented as a sublayer of the Physical layer). Before
presenting the layer-2 virtual networking solutions, it is important to under-
stand the difference among a few networking devices and their functions at
different protocol layers.
A hub is the simplest of networking devices. We rarely see hubs in our cur-

rent networking environment due to its inefficiency of data delivery. How-
ever, due to its simplicity and critical role served in the history of computer
networking, we should understand what the difference between a hub and
a switch is. In the OSI networking model, a hub is a physical-layer device,
and it is the central part of a wheel where the spokes come together. In a
hub, a frame is passed along or broadcast to every one of its ports. It does
not matter that the frame is only destined for one port. The hub has no way

48 Software-Defined Networking and Security
of distinguishing which port a frame should be sent to, and thus, it passes a
frame to every port to ensure that it will reach its intended destination. More-
over, hubs cannot filter data so data packets are sent to all connected devices/
computers and do not have intelligence to find out the best path for data pack-
ets. This leads to inefficiencies and wastage. As the result, hubs are used on
small networks where data transmission is not high.
Compared to hub, a switch is a data-link layer device, which has more con-

trol capabilities on data frames. A switch keeps a record of theMAC addresses
of all the devices connected to it. With this information, a switch can identify
which system is sitting on which port. As the result, when a frame is received,
the switch knows exactly which port to send it to, without significantly
increasing network response times. Unlike a hub, all the connected devices
share the bandwidth of the full capacity of the hub; the switch can grant the
full capacity of the switch to each individual connected device due to the
direct connections established between switch ports. For example, for an
8-port hub with the bandwidth capacity of 100Mbps, each device can theoret-
ically get the 1/8 portion of the bandwidth; however, for a switch, each port
can achieve the full 100Mbps transmission rate. Moreover, switches may
have more control functions such as performing error checking before
forwarding data and creating virtual LANs, and some advanced switches
can also handle IP packets (i.e., at the network layer/Layer-3).
In the physical world, a bridge connects roads on separate sides of a river or

railroad tracks. In the technical world, a bridge is also a layer-2 (i.e., data-link
layer) device. A bridge connects a LAN to another LAN that uses the same
protocol, i.e., a bridge is a device that separates two ormore network segments
within one logical network (e.g., a single IP-subnet). A bridge examines each
message on a LAN, passing those known to be within the same LAN and
forwarding those known to be on other interconnected LANs. In bridging net-
works, computer or node addresses have no specific relationship to location.
For this reason, frames are sent out to every address on the network and
accepted only by the intended destination node. Bridges learn which
addresses are on which network and develop a learning table so that subse-
quent messages can be forwarded to the right network. Bridges use Spanning
Tree Protocol (STP) developed to send frames using broadcasting and multi-
casting without causing frame storm issues
The challenge here is how to differentiate between a switch and a bridge? Before

describing the difference, we need to first explain how Ethernet works, in
which switches and bridges are designed to support. Ethernet was originally
an everyone sees all traffic protocol running over a LAN. When a node is using
the network, others need to wait until the next chance that no one uses the net-
work. If two nodes try to use the network at the same time, then collision
occurs, and then both nodes need to wait a random amount of time before
attempting to use the network again. This illustrates that Ethernet is designed
for a shared communication media (or bus), and each Ethernet is a collision
domain or what is called broadcast domain. Traditionally, a bridge usually is

Virtual Networking 49
explained as a 2-port device to connect two LANs, where we consider each
LAN as a shared bus or collision domain. Using a bridge, a large collision
domain can be separated into two smaller collision domains, and thus reduc-
ing the chance of collisions for each port. From this view, we can simply illus-
trate that an Ethernet switch is a multi-port Ethernet bridge, i.e., a switch is
simply a bridge with lots of ports. Thus, we can simply view a switch is the
same device as a multi-port bridge. A switch will increase the number of col-
lision domains on a LAN, where each port will be a collision domain; how-
ever, the size of these domains will be reduced. For a full-duplex switch,
technically, the switch can remove collisions totally.
A router is a network-layer device (layer-3 device according to the OSI

model). Unlike a switch forwarding frames based onMAC addresses, a router
forwards packets based on IP addresses and routing tables established using
dynamic routing protocols or static routes. Moreover, unlike a switch inter-
connecting networks or nodes at the data-link layer, a router interconnects dif-
ferent IP networks.
2.2.1 Linux Bridge

As described in previous section, a switch can be considered as a multi-port
bridge. A switch is responsible for connecting several network links to each
other, creating a Local Area Network (LAN). In this book, without a special
notice, we do not differentiate between the term switch and bridge. Generally
speaking, a switch is composed by four major components: a set of network
ports, a control plane, a forwarding plane, and a MAC learning database.
The set of ports are used to interconnect interfaced networking devices and

hosts and forward traffic between other switches and end-hosts in the LAN.
The control plane of a switch is typically used to run the Spanning Tree Pro-
tocol (STP) [13] and calculate a Minimum Spanning Tree (MST) [100] for the
LAN, preventing physical loops from crashing the network. The forwarding
plane is responsible for processing input frames from the network ports and
making a forwarding decision on which network ports to forward a received
frame. The MAC learning database is used to keep track of the host locations
in the LAN. It typically contains an entry for each host MAC address that tra-
verses the switch, and the input port where the frame was received.
For each unicast destination MAC address, the switch looks up the output

port in theMACdatabase. If an entry is found, the frame is forwarded through
the port further into the network. If an entry is not found, the frame is instead
flooded from all other network ports in the switch, except the port where the
frame was received.
Several operating systems have their own bridging implementation in their

network stack. For example, FreeBSD [186] has a similar bridging implemen-
tation to Linux kernel; however, the FreeBSD implementation also imple-
ments the Rapid Spanning Tree Protocol (RSTP) [280]. The FreeBSD bridge
implementation also supports more advanced features, such as port MAC

50 Software-Defined Networking and Security
address limits, and Simple Network Management Protocol (SNMP) monitor-
ing of the bridge state.
In the following subsections, we present the architecture, design and the

implementation of the Linux bridging module. The architectural overview of
the Linux bridging module is divided into three parts: (1) data structures for
the bridgingmodule, (2) the configuration interface of the Linuxbridgingmod-
ule, and (3) the input/output processing flow of the Linux bridging module.
2.2.1.1 Data Structures of Linux Bridge

The Linux bridge module has three key data structures that provide the cen-
tral functionality for the bridge operation [271]. Figure 2.3 presents an over-
view of the most important fields and their associations in the three key
data structures. The main data structure for each bridge in the operating sys-
tem is the net_bridge. It holds all of the bridge-wide configuration information,
a doubly linked list of bridge ports (net_bridge_port objects) in the field
port_list, a pointer to the bridge netdevice in the field dev, and the forwarding
database in the field hash. Finally, the field lock is used by the bridge to syn-
chronize configuration changes, such as port additions, removals, or changing
the various bridge-specific parameters.
Each bridge port has a separate data structure net_bridge_port. It contains the

bridge port specific parameters. The field br has a back reference to the bridge,
which the port belongs to. The dev field holds the actual network interface that
the bridge port uses to receive and transmit frames. Finally, position of the data
structure object in the net_bridge→ port_list linked list is stored in the field list.
The third key data structure for the Linux bridge module is the net_bridge_

fdb_entry object that represents a single forwarding table entry. A forwarding
table entry consists of a MAC address of the host (in the field addr), and the
port where theMAC address was last seen (in the field dst). The data structure
also contains a field hlist that points back to the position of the object in a hash
hlist
dst

...

updated

used

addr

net_bridge_fdb_entry

port_list
dev

...

hash_lock

hash

...

net_bridge

lock

dev
list

...

br

net_bridge_port

(bridge)
netdevice

0..255

0..1023

FIGURE 2.3
Linux bridge data structure.

Virtual Networking 51
table array element in net_bridge→hash. In addition, there are two fields,
updated and used, which are used for timekeeping. The updated field specifies
the last time when the host was seen by this bridge, and the used field
specifies the last time when the object was used in a forwarding decision.
The updated field is used to delete entries from the forwarding database,
when the maximum inactivity timeout value for the bridge is reached, i.e.,
current_time-updated . bridge_hold_time.

2.2.1.2 Linux Bridge Configuration

The Linux bridgingmodule has two separate configuration interfaces exposed
to the user-space. The first, ioctl interface offers an interface that can be used to
create and destroy bridges in the operating system, and it can also add net-
work interfaces and remove existing network interfaces to/from the bridge.
The second is the sysfs-based interface that allows the management of bridge
and bridge port specific parameters. Figure 2.4 presents a high level overview
of the kernel ioctl process, which creates and initializes the bridge object, and
adds network interfaces to it.
The creation of a new bridge beginswith the ioctl command SIOCBRADDBR

that takes the bridge interface name as a parameter. The ioctl command is han-
dled by the br_ioctl_deviceless_stub function, as there is no bridge device to
attach the ioctl handler internally. The addition of a new bridge calls the func-
tion br_add_bridge, that creates required bridge objects in the kernel, and even-
tually calls the alloc_netdev function to create a new netdevice for the bridge.
The allocated netdevice is then initialized by the br_dev_setup call, including
assigning the bridge device specific ioctl handler br_dev_ioctl to the newly allo-
cated netdevice. All subsequent bridge specific ioctl calls are done on the newly
created bridge device object in the kernel.
Ports are added to bridges by the ioctl command SIOCBRADDIF. The ioctl

command takes the bridge device and the index of the interface to add to
the bridge as parameters. The ioctl calls the bridge device ioctl handler
br_ioctl_deviceless_stub

br_ioctl_dev

net/bridge/br_ioctl.c

br_add_bridge

br_add_if

net/bridge/br_if.c

Bridge Device

alloc_netdev

net/core/dev.c

br_dev_setup

net/bridge/br_device.c

netdev_rx_handler_register

net/core/dev.c

SIOCBRADDBR

SIOCBRADDIF

Kernel module

 Bridge module

FIGURE 2.4
Linux bridge configuration: adding a bridge and a bridge port.

52 Software-Defined Networking and Security
(br_dev_ioctl), that in turn calls the br_add_if function. The function is respon-
sible for creating and setting up a new bridge port by allocating a new net_
bridge_port object. The object initialization process automatically sets the inter-
face to receive all traffic, adds the network interface address for the bridge port
to the forwarding database as a local entry, and attaches the interface as a
slave to the bridge device. Finally, the function calls the netdev_rx_handler_
register function that sets the rx_handler of the network interface to br_handle_
frame, that enables the interface to start processing incoming frames as a part
of the bridge.
2.2.1.3 Linux Bridge Frame Processing

The Linux bridge processing flow begins from lower layers. Each network
interface that acts as a bridge interface has a rx_handler set to br_handle_frame,
which acts as the entry point to the bridge frame processing code. The rx_han-
dler is called by the device-independent network interface code in __netif_ recei-
ve_skb. Figure2.5presents theprocessingflowofan incoming frame, as itpasses
through the Linux bridge module to a destination network interface queue.
The br_handle_frame function does the initial processing on the incoming

frame. This includes doing initial validity checks on the frame and separating
control frames from normal traffic. The bridge considers any frame that has a
destination address prefix of 01:80:C2:00:00 to be a control frame, that may
need specialized processing. The last byte of the destination MAC address
defines the behavior of the link local processing. Ethernet pause frames are auto-
matically dropped. STP frames are either passed to the upper layers if it is
br_pass_frame_up

br_handle_frame_finish

net/bridge/br_input.c

__br_fdb_get

br_flood_forward

net/bridge/br_fdb.c

ne�f_receive_skb

net/core/dev.c

__ne�f_recieve_skb

net/core/dev.c Kernel module

 Bridge module dev_queue_xmit

net/core/dev.c

br_handle_frame

br_fdb_update

Forwarding
Database

br_mul�cast_forward

br_forward __br_forward

deliver_clone

net/bridge/br_forward.c

Incoming Ethernet Frames Outgoing Ethernet Frames

FIGURE 2.5
Linux bridge modules and I/O.

Virtual Networking 53
enabled on the bridge or forwardedwhen it is disabled. If a forwarding decision
is made, and the bridge is in either forwarding or learning mode, the frame is
passed tobr_handle_frame_finish,where theactual forwardingprocessingbegins.
The br_handle_frame_finish function first updates the forwarding database of

the bridge with the source MAC address, and the source interface of the frame
by calling br_fdb_update function. The update either inserts a new entry into
the forwarding database or updates an existing entry.
The processing behavior is decided based on the destination MAC address

in the Ethernet frame. Unicast frames will have the forwarding database
indexed with the destination address by using the br_fdb_get function to
find out the destination net_bridge_port where the frame will be forwarded
to. If a net_bridge_fdb_entry object is found, the frame will be directly for-
warded through the destination interface by the br_forward function. If no
entry is found for the unicast destination Ethernet address, or the destination
address is broadcast, the processing will call the br_flood_forward function.
Finally, if the frame is a multi-destination frame, the multi-cast forwarding
database is indexed with the complete frame. If selective multi-casting is
used and a multi-cast forwarding entry is found from the database, the frame
is forwarded to the set of bridge ports for that multi-cast address group by
calling the br_multicast_forward function. If no entry is found or selective mul-
ticasting is disabled, the frame will be handled as a broadcast Ethernet frame
and forwarded by the br_flood_forward function.
In cases where the destination MAC address of the incoming frame is multi-

cast or broadcast, the bridge device is set to receive all traffic, or the address is
matches one of the local interfaces, a clone of the frame is also delivered
upwards in the local network stack by calling the br_pass_frame_up function.
The function updates the bridge device statistics and passes the incoming
frame up the network stack by calling the device independent netif_receive_skb
function, ending the bridge specific processing for the frame.
The forwarding logic of the Linux bridge module is implemented in three

functions: br_forward, br_multicast_forward, and br_flood_forward to forward
unicast, multi-cast, and broadcast or unknown unicast destination Ethernet
frames, respectively. The br_forward function checks whether the destination
bridge interface is in forwarding state, and then either forwards the incoming
frame as is, clones the frame and forwards the cloned copy instead by calling
the deliver_clone function, or doing nothing if the bridge interface is blocked.
The br_multicast_forward function performs selective forwarding of the incom-
ing Ethernet frame out of all of the bridge interfaces that have registeredmulti-
cast members for the destination multi-cast address in the Ethernet frame, or
on interfaces that have multi-cast routers behind them. The br_flood_forward
function iterates over all of the interfaces in the bridge and delivers a clone
of the frame through all of them except the originating interface. Finally, all
three types of forwarding functions end up calling the br_forward function
that actually transfers the frame to the lower layers by calling the dev_queue_
xmit function of the interface.

54 Software-Defined Networking and Security
2.2.1.4 Use Cases of Linux Bridge

Creating a bridge

Bridge can be created using ioctl command SIOCBRADDBR, which is imple-
mented by brctl utility provided by bridge-utils.

#. sudo strace brctl addbr br1
execve(”/sbin/brctl”, [”brctl”, ”addbr”, ”br1”], [/* 16 vars */]) = 0
...
ioctl(3, SIOCBRADDBR, 0x7fff2eae9966) = 0
...

There is no device at this point to handle the ioctl command. The ioctl com-
mand is handled by a stub method: br_ioctl_deviceless_stub, which in turn calls
br_add_bridge. This method calls alloc_netdev, which is a macro that eventually
calls alloc_netdev_mqs.

br_ioctl_deviceless_stub
|- br_add_bridge

|- alloc_netdev
|- alloc_netdev_mqs // creates the network device
|- br_dev_setup // sets br_dev_ioctl handler

alloc_netdev initializes the new netdevice using the br_dev_setup. This also
includes setting up the bridge specific ioctl handler. In codes of the handler,
it handles ioctl command to add/delete interfaces.

int br_dev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) {
...
switch(cmd) {

case SIOCBRADDIF:
case SIOCBRDELIF:
return add_del_if(br, rq→ifr_ifindex, cmd == SIOCBRADDIF);
...

}
..

}

Adding an interface

In the function br_dev_ioctl, bridge can be created using ioctl command
SIOCBRADDIF:

#.: sudo strace brctl addif br0 veth0
execve(”/sbin/brctl”, [”brctl”, ”addif”, ”br0”, ”veth0”], [/* 16 vars */]) = 0
...
gets the index number of virtual ethernet device.
ioctl(4, SIOCGIFINDEX, ifr_name=”veth0”, ifr_index=5) = 0
close(4)
add the interface to bridge.
ioctl(3, SIOCBRADDIF, 0x7fff75bfe5f0) = 0
...

Virtual Networking 55
br_add_if

The br_add_ifmethod creates and sets up the new interface/port for the bridge
by allocating a new net_bridge_port object. The object initialization is particu-
larly interesting, as it sets the interface to receive all traffic, adds the network
interface address for the new interface to the forwarding database as the local
entry, and attaches the interface as the slave to the bridge device.

/* Truncated version */
int br_add_if(struct net_bridge *br, struct net_device *dev)
{

struct ne_bridge_port *p;
/* Don’t allow bridging non-Ethernet like devices */

...
/* No bridging of bridges */

...
p = new_nbp(br, dev);

...
call_netdevice_notifiers(NETDEV_JOIN, dev);
err = dev_set_promiscuity(dev, 1);
err = kobject_init_and_add(&p→kobj, &brport_ktype, &(dev→dev.kobj),

SYSFS_BRIDGE_PORT_ATTR);

...
err = netdev_rx_handler_register(dev, br_handle_frame, p);
/* Make entry in forwarding database*/
if (br_fdb_insert(br, p, dev→dev_addr, 0))

...
...

}

In the bridge implementation, since a bridge is a layer-2 device, thus, only
Ethernet like devices can be added to bridge. This implementation does not
add a bridge to an existing bridge. In order to set the bridge to promiscuous
mode, we need to set: de_set_promiscuity(dev, 1). The promiscuous mode can
be confirmed from kernel logs.

#. grep -r ’promiscuous’ /var/log/kern.log
kernel: [5185.751666] device veth0 entered promiscuous mode

Finally, br_add_ifmethod calls netdev_rx_handler_register, that sets the rx_han-
dler of the interface to br_handle_frame, and then an interface (or port) is set up
in the bridge.
Linux Bridge Frame Processing

Linux bridge frame processing starts with device-independent network
code in __netif_receive_skb, which calls the rx_handler of the interface and
it was set to br_handle_frame at the time of adding the interface to bridge.

56 Software-Defined Networking and Security
The br_ handle_frame does the initial processing and any address with prefix
01-80-C2-00-00 is a control plane address, that may need special processing.
From the comments in br_handle_frame:

/*
* See IEEE 802.1D Table 7-10 Reserved addresses
*
* Value Assignment
* 01-80-C2-00-00-00 Bridge Group Address
* 01-80-C2-00-00-01 (MAC Control) 802.3
* 01-80-C2-00-00-02 (Link Aggregation) 802.3
* 01-80-C2-00-00-03 802.1X PAE address
*
* 01-80-C2-00-00-0E 802.1AB LLDP
*
* Others are reserved for future standardization
*/

In the method, STPmessages are either passed to upper layers or forwarded
if STP is enabled on the bridge or disabled, respectively. If a forwarding deci-
sion is made, the packet is passed to br_handle_frame_finish, where the actual
forwarding happens. The highly truncated version of br_handle_frame_finish
is provided as follows:

/* note: already called with rcu_read_lock */
int br_handle_frame_finish(struct sk_buff *skb)
{
struct net_bridge_port *p = br_port_get_rcu(skbrightarrowdev);
...

/* insert into forwarding database after filtering to
avoid spoofing */
br = prightarrowbr;
br_fdb_update(br, p, eth_hdr(skb)rightarrowh_source, vid);
if (prightarrowstate == BR_STATE_LEARNING)

goto drop;
/* The packet skb2 goes to the local host (NULL to skip). */
skb2 = NULL;
if (brrightarrowdevrightarrowflags & IFF_PROMISC)

skb2 = skb;
dst = NULL;
if (is_broadcast_ether_addr(dest))

skb2 = skb;
else if (is_multicast_ether_addr(dest)) {
...
} else if ((dst = __br_fdb_get(br, dest, vid)) &&

dstrightarrowis_local) {
skb2 = skb;
/* Do not forward the packet since it’s local. */
skb = NULL;

}
if (skb) {

if (dst) {

Virtual Networking 57
br_forward(dstrightarrowdst, skb, skb2);
} else
br_flood_forward(br, skb, skb2);

}
if (skb2)

return br_pass_frame_up(skb2);
out:

return 0;
...

}

In the br_handle_frame_finish, an entry in forwarding database is updated for
the source of the frame. If the destination address is a multi-cast address,
and if the multi-cast is disabled, the packet is dropped, or else message is
received using br_multicast_rcv; if the promiscuous mode is on, packet will
be delivered locally, irrespective of the destination.
For a unicast address, the port is determined by using the forwarding data-

base (__br_fdb_get). If the destination is local, then skb is set to null, i.e., packet
will not be forwarded; if the destination is not local, then based on if we found
an entry in forwarding database, either the frame is forwarded (br_forward) or
flooded to all ports (br_flood_forward).
Apacket is delivered locally (br_pass_frame_up) if either the current host is the

destination or the net device is in promiscuous mode. The br_forward method
either clones and then delivers (if it is also to be delivered locally, by calling
deliver_clone), or directly forwards the message to the intended destination
interface by calling__br_forward. The method bt_flood_forward forwards the
frame on each interface by iterating through the list in the br_floodmethod.
A bridge can be used to create various different network topologies and it

forms the foundation to realize more advanced networking solutions such
as virtual switches, and bridges are used with containers where they provide
networking in network namespaces along with veth devices. In fact, the default
networking in Docker is provided using bridge.
2.2.2 Open Virtual Switches

Open vSwitch (OVS) is a multi-layer software switch licensed under the open
source Apache 2 license. OVS is well suited to function as a virtual switch in
VM environments. In addition to exposing standard control and visibility
interfaces to the virtual networking layer, it was designed to support distribu-
tion across multiple physical servers. OVS supports multiple Linux-based vir-
tualization technologies including Xen/XenServer, KVM, and VirtualBox.
2.2.2.1 Linux Bridge vs. Open Virtual Switch

As we described in the previous section, Linux bridge is a native function
on Linux kernel with layer-2 capabilities, which can be considered as an

ovsdb-server ovs-switchd

Linux Kernel
Drivers

OVS Kernel
Drivers

Kernel

User
Space

Kernel
Space

Linux
Bridge OVS

FIGURE 2.6
Open virtual switch and Linux bridge.

58 Software-Defined Networking and Security
Ethernet Hub. OVS provides a “software layer” in the user space to add
programmable capabilities involving database, layer-2 to layer-4 matching,
QoS, etc., which is shown in Figure 2.6. Moreover, OVS supports OpenFlow
standards [259].
2.2.2.2 Open Virtual Switch Supporting Features

OVS version 2.9.0 supports the following features:

∙ Visibility into inter-VM communication via NetFlow, sFlow(R),
IPFIX, SPAN, RSPAN, and GRE-tunneled mirrors

∙ LACP (IEEE 802.1AX-2008)

∙ Standard 802.1Q VLAN model with trunking

∙ Multi-cast snooping

∙ IETF Auto-Attach SPBM and rudimentary required LLDP support

∙ BFD and 802.1ag link monitoring

∙ STP (IEEE 802.1D-1998) and RSTP (IEEE 802.1D-2004)

∙ Fine-grained QoS control

∙ Support for HFSC qdisc

∙ Per VM interface traffic policing

∙ NIC bonding with source-MAC load balancing, active backup, and
L4 hashing

∙ OpenFlow protocol support (including many extensions for
virtualization)

∙ IPv6 support

Virtual Networking 59
∙ Multiple tunneling protocols (GRE, VXLAN, STT, and Geneve, with
IPsec support)

∙ Remote configuration protocol with C and Python bindings

∙ Kernel and user-space forwarding engine options

∙ Multi-table forwarding pipeline with flow-caching engine

∙ Forwarding layer abstraction to ease porting to new software and
hardware platforms

2.2.2.3 Open Virtual Switch Internal Modules

The included Linux kernel module supports Linux 3.10 and up. OVS can also
operate entirely in userspace without assistance from a kernel module. This
userspace implementation should be easier to port than the kernel-based
switch. OVS in userspace can access Linux or DPDK [83] devices. As shown
in Figure 2.7, some of main components are described as follows:

∙ ovs-vswitchd, a daemon that implements the switch, alongwith a com-
panion Linux kernel module for flow-based switching. It talks to the
kernel module through netlink protocol. ovs-vswitchd saves and
changes the switch configuration into a database and talks to ovsdb-
server that manages ovsdb.
ovs-ofctl sFlowTrend

ovs-dpctl ovs-appctl ovs-vsctl
ovsdb-
client

ovs-vswitchd ovsdb-server
ovsdb-tool

ovsdb

OVS kernel module

Remote

User Space

Kernel Space

FlowTable

Datapath

netlinkUpcall
(netlink)

From Net Device

apply changes

save changes

command Config DB Opera�on

OpenFlow

FIGURE 2.7
Open virtual switch internal modules.

60 Software-Defined Networking and Security
∙ ovsdb-server, a lightweight database server that ovs-vswitchd queries
to obtain its configuration.

∙ ovs-dpctl, the OVS datapath management utility. It configures the
switch kernel module.

∙ ovs-vsctl, a utility for querying and updating the configuration of ovs-
vswitchd. It manages the switch through interaction with ovsdb-
server.

∙ ovs-appctl, a utility that sends commands to running Open vSwitch
daemons.

∙ ovsdb persists the data across reboots; it configures ovs-vswitchd.

∙ OVS kernel module is designed to be fast and simple, and implements
tunnels and caches flows. It handles switching and tunneling without
knowledge of Openflow. If a flow is found, actions are executed,
otherwise the flow is passed to the userspace.

Open vSwitch also provides some tools:

∙ ovs-ofctl, a management utility for querying and controlling Open-
Flow switches and controllers.

∙ ovsdb-tool, a command line tool to manage database.

∙ ovs-pki, a utility for creating and managing the public-key
infrastructure.

2.2.2.4 Packet Processing in OVS

In OVS, two major components direct packet forwarding [215]. The first, and
larger, component is ovs-vswitchd, a userspace daemon that is essentially the
same from one operating system and operating environment to another. The
other major component, a datapath kernel module, is usually written spe-
cially for the host operating system for performance. Figure 2.8 depicts
how the two main OVS components work together to forward packets.
The datapath module in the kernel receives the packets first, from a physical
NIC or a VM’s virtual NIC. Either ovs-vswitchd has instructed the datapath
how to handle packets of this type, or it has not. In the former case, the data-
path module simply follows the instructions, called actions, given by ovs-
vswitchd, which list physical ports or tunnels on which to transmit the
packet. Actions may also specify packet modifications, packet sampling, or
instructions to drop the packet. In the other case, where the datapath has
not been told what to do with the packet, it delivers it to ovs-vswitchd. In
userspace, ovs-vswitchd determines how the packet should be handled,
then it passes the packet back to the datapath with the desired handling. Usu-
ally, ovs-vswitchd also tells the datapath to cache the actions, for handling
similar future packets.

Controller

ovs-vswitchd

Kernel Datapath

ovsdb-server

o�
ox

U
serspace

Kernel

First packet
Subsequent

packets

OVSDB OpenFlow

FIGURE 2.8
Packet forwarding in OVS.

Virtual Networking 61
OVS is commonly used as a SDN switch, and the main way to control
forwarding is OpenFlow [259]. Through a simple binary protocol, OpenFlow
allows a controller to add, remove, update, monitor, and obtain statistics on
flow tables and their flows, as well as to divert selected packets to the control-
ler and to inject packets from the controller into the switch. In OVS, ovs-
vswitchd receives OpenFlow flow tables from an SDN controller, matches
any packets received from the datapath module against these OpenFlow
tables, gathers the actions applied, and finally caches the result in the kernel
datapath. This allows the datapath module to remain unaware of the particu-
lars of theOpenFlowwire protocol, further simplifying it. From theOpenFlow
controllers’ point of view, the caching and separation into user and kernel
components are invisible implementation details: in the controllers’ view,
each packet visits a series of OpenFlow flow tables and the switch finds the
highest-priority flow whose conditions are satisfied by the packet and exe-
cutes its OpenFlow actions.
The flowprogrammingmodel of OVS largely determines the use cases it can

support and to this end, OVS has many extensions to standard OpenFlow to
accommodate network virtualization.
2.3 Tunneling Protocols and Virtual Private Networks

The two most common forms of network virtualization are protocol-based
virtual networks (such as VLANs, VPNs, and VPLSs) and virtual networks
that are based on virtual devices (such as the networks connecting VMs inside
a Hypervisor). Several popular virtual networking protocols are presented as
follows:

62 Software-Defined Networking and Security
∙ L2TP (Layer 2 Tunneling Protocol) is a tunneling protocol used to sup-
port VPNs or as part of the delivery of services by ISPs. It does not
provide any encryption or confidentiality by itself. Rather, it relies
on an encryption protocol that it passes within the tunnel to provide
privacy. The entire L2TP packet, including payload and L2TP header,
is sent within a User Datagram Protocol (UDP) datagram. It is com-
mon to carry Point-to-Point Protocol (PPP) sessions within an L2TP
tunnel. L2TP does not provide confidentiality or strong authentica-
tion by itself. IPsec is often used to secure L2TP packets by providing
confidentiality, authentication and integrity. The combination of
these two protocols is generally known as L2TP/IPsec.

∙ PPP (Point-to-Point Protocol) is a data link (layer 2) protocol used to
establish a direct connection between two nodes. It connects two rout-
ers directly without any host or any other networking device in
between. It can provide connection authentication, transmission
encryption, and compression. PPP is used over many types of physi-
cal networks including serial cable, phone line, trunk line, cellular
telephone, specialized radio links, and fiber optic links such as
SONET. PPP is also used over Internet access connections. Internet
Service Providers (ISPs) have used PPP for customer dial-up access
to the Internet, since IP packets cannot be transmitted over a modem
line on their own, without some data link protocol.

∙ VLAN (Virtual Local Area Network) is any broadcast domain that is
partitioned and isolated in a computer network at the data link
layer. VLANs allow network administrators to group hosts
together even if the hosts are not on the same network switch.
This can greatly simplify network design and deployment, because
VLAN membership can be configured through software. To subdi-
vide a network into virtual LANs, one configures network equip-
ment. Simpler equipment can partition based on physical ports,
MAC addresses, or IP addresses. More sophisticated switching
devices can mark frames through VLAN tagging, so that a single
interconnect (trunk) may be used to transport data for multiple
VLANs.

∙ VXLAN (Virtual Extensible LAN) is a network virtualization technol-
ogy that attempts to improve the scalability problems associated
with large cloud computing deployments. It uses a VLAN-like encap-
sulation technique to encapsulate layer 2 Ethernet frames within
layer 4 UDP packets, using 4789 as the default IANA-assigned desti-
nation UDP port number. VXLAN endpoints, which terminate
VXLAN tunnels and may be both virtual or physical switch ports,
are known as VXLAN Tunnel Endpoints (VTEPs). It is an alternative
of Generic Routing Encapsulation (GRE) protocol in cloud system to
build private networks as layer 2 tunnels.

Virtual Networking 63
∙ Generic Routing Encapsulation (GRE) is a communication protocol used
to establish a direct, point-to-point connection between network
nodes. Being a simple and effective method of transporting data over
a public network, such as the Internet, GRE lets two peers share data
they will not be able to share over the public network itself. GRE
encapsulates data packets and redirects them to a device that de-
encapsulates them and routes them to their final destination. This
allows the source and destination switches to operate as if they
have a virtual point-to-point connection with each other (because
the outer header applied by GRE is transparent to the encapsulated
payload packet). For example, GRE tunnels allow routing protocols
such as Routing Information Protocol (RIP) and Open Shortest Path
First (OSPF) to forward data packets from one switch to another
switch across the Internet. In addition, GRE tunnels can encapsulate
multi-cast data streams for transmission over the Internet.

∙ SSL (Secure Socket Layer) is a standard security technology for estab-
lishing an encrypted link between a server and a client - typically a
web server (website) and a browser, or a mail server and a mail client
(e.g., Outlook) by encrypting data above the transport layer. The SSL
protocol has always been used to encrypt and secure transmitted
data. For example, all browsers have the capability to interact with
secured web servers using the SSL protocol. However, the browser
and the server need what is called an SSL Certificate to be able to
establish a secure connection, where SSL Certificates are constructed
based on a key pair, a public and a private key, and a certificate that
contains a public key digital signed by using a trusted third party’s
private key. A client can use the server’s certificate to establish an
encrypted connection.

∙ IPSec is a network protocol suite that authenticates and encrypts the
packets of data sent over a network at the IP layer. IPsec includes pro-
tocols for establishing mutual authentication between agents at the
beginning of the session and negotiation of cryptographic keys for
use during the session. IPsec can protect data flows between a pair
of hosts (host-to-host), between a pair of security gateways (net-
work-to-network), or between a security gateway and a host (net-
work-to-host).

In the following subsections, we will focus on three tunneling protocols,
VLAN, VXLAN, and GRE, which have been widely used in virtual network-
ing environments.

2.3.1 VLAN

Virtual Local Area Networks (VLANs) divide a single existing physical net-
work into multiple logical networks. Thereby, each VLAN forms its own

64 Software-Defined Networking and Security
broadcast domain. Communication between two different VLANs is only
possible through a router that has been connected to both VLANs. VLANs
behave as if they had been constructed using switches that are independent
of each other.

2.3.1.1 Types of VLANs

In principle, there are two approaches to implementing VLANs:

∙ Port-based VLANs (untagged), and

∙ tagged VLANs.

Port-based VLANs

With regard to port-based VLANs, a single physical switch X is simply
divided into multiple logical switches. The example presented in Figure 2.9
divides a ten-port physical switch into two logical switches, which are shown
in Table 2.2.
All of the computers (A-H) have been connected to one physical switch;

however, only the following computers can communicate with each other
due to ports configured into two logical LANs: VLAN 1 and VLAN 2:

∙ VLAN 1: A, B, C, and D;

∙ VLAN 2: E, F, G, and H.

If we want to move two computers from each VLAN to a neighboring
room’s switch Y, and keep the same VLAN configuration, we can connect
two VLANs using two physical cables as shown in Figure 2.10.
As shown in Table 2.3, in this setup, one cable is required to connect from

switch X port 5 to switch Y port 1, and another cable is required to connect
from switch X port 10 to switch Y port 6. In this way, two VLANs can span
through two physical switches. For some switches it is necessary to set the
1 2 3 4 5

6 7 8 9 10
X

A B C D

E F G H

FIGURE 2.9
Port-based VLANs.

TABLE 2.2

Port-Based VLAN Assignment for Switch X

Port VLAN ID Connected Device

1 1 A

2 B

3 not used

4 C

5 D

6 2 E

7 F

8 not used

9 G

10 H

1 2 3 4 5

6 7 8 9 10
X

A B

E F

1 2 3 4 5

6 7 8 9 10
Y

C D

G H

Room A Room B

Directed Connec�on Approach

FIGURE 2.10
Port-based VLANs over multiple physical switches.

TABLE 2.3

Port-Based VLAN Assignment for Switch X and Switch Y

Port VLAN ID Connected Device Port VLAN ID Connected Device

1 1 A 1 1 Direct connection

2 B 2 not used

3 not used 3 not used

4 not used 4 C

5 Direct connection 5 D

6 2 E 6 2 Direct connection

7 F 7 not used

8 not used 8 not used

9 not used 9 G

10 Direct connection 10 H

Virtual Networking 65

1 2 3 4 5

6 7 8 9 10
X

A B

E F

1 2 3 4 5

6 7 8 9 10
Y

C D

G H

Room A

1 2 3 4 5

666 777 888 999 1100
X

A B

E F

Room A

1 2 3 4 5

666 777 888 999 1100
Y

C D

G H

Room B

Trunk-link Approach

FIGURE 2.11
Tagged VLANs using a trunk link.

66 Software-Defined Networking and Security
PVID (Port VLAN ID) on untagged ports in addition to the VLAN ID of the
port. This specifies which VLAN any untagged frames should be assigned
to when they are received on this untagged port. The PVID should therefore
match the configured VLAN ID of the untagged port.

Tagged VLANs

In the previous example, we can reduce the physical connections from using
two cables to just using one cable. This is achieved through using tagged
VLAN approach as shown in Figure 2.11.With regard to tagged VLANs, mul-
tiple VLANs can be used through a single switch port that is called trunk port.
Tags containing the respective VLAN identifiers indicating the VLAN to
which the frame belongs are attached to the individual Ethernet frames. If
both switches understand the operation of tagged VLANs in the example,
the reciprocal connection can be accomplished using one single cable. The
port assignment in tag-based VLANs is presented in Table 2.4.
TABLE 2.4

Tag-Based VLAN Assignment for Switch X and Switch Y

Port VLAN ID Connected Device Port VLAN ID Connected Device

1 1 A 1 1 Trunk port

2 B 2 not used

3 not used 3 not used

4 not used 4 C

5 not used 5 D

6 2 E 6 2 not used

7 F 7 not used

8 not used 8 not used

9 not used 9 G

10 Trunk port 10 H

Virtual Networking 67
2.3.1.2 IEEE 802.1Q

IEEE 802.1Q is a protocol for carrying VLAN traffic on an Ethernet. AVLAN is
a type of local area network that does not have its own dedicated physical
infrastructure, but instead uses another LAN to carry its traffic. The traffic
is encapsulated so that a number of logically separate VLANs can be carried
by the same physical LAN.
VLANs are used whenever there is a need for traffic to be segregated at the

link layer. For example, on Internet Protocol networks it is considered good
practice to use a separate VLAN for each IP subnet. Reasons for doing this
include:

∙ preventing a machine assigned to one subnet from joining a different
one by changing its IP address; and

∙ avoiding the need for hosts to process broadcast traffic originating
from other subnets.

Tagging

As shown Figure 2.12, in 802.1Q VLAN frames are distinguished from ordi-
nary Ethernet frames by the insertion of a 4-byte VLAN tag into the Ethernet
header. It is placed between the source MAC and the EtherType fields:
The first two bytes of the tag contain the Tag Protocol Identifier (TPID),

which is defined to be equal to 0x8100. Since it is located where the Ether-
Type would appear in an ordinary Ethernet frame, tagged frames appear
to have an EtherType of 0x8100. The remaining two bytes contain the
TCI (tag control information), of which 12 bits correspond to the VLAN
Identifier (VID), and 4 bits contain metadata used for quality of service
management.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Des�na�on MAC address Source MAC address
802.1Q VLAN tag

0x8100

EtherType
(0x8000)

18...

Data
(IP packet)

46-1500TCI

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Des�na�on MAC address Source MAC address
EtherType
(0x8000)

14...

Data
(IP packet)

46-1500

Bytes

0 1 2 3 4 5 6 7 8 9 10 11 16 17 18 19 20 21

Des�na�on MAC address Source MAC address
802.1Q VLAN tag

0x8100

EtherType
(0x8000)

22...

Data
(IP packet)

46-1500TCI

FCS

4-bytes

12 13 14 15

802.1ad VLAN tag

0x8a88 TCI

FCS

4-bytes

FCS

4-bytes

Regular Ethernet Frame (untagged)

802.1Q (tagged)

802.1ad (QinQ tagged)

FIGURE 2.12
Ethernet Frame, 802.1Q (VLAN), and 802.1ad (QinQ).

68 Software-Defined Networking and Security
VLAN numbering

Each 802.1Q VLAN is identified by a 12-bit integer called a VID (VLAN Iden-
tifier) in the range 1 to 4094 inclusive. The values 0 and 4095 are reserved and
should not be used. The first VLAN, with a VID of 1, is the default VLAN to
which ports are presumed to belong if they have not been otherwise config-
ured. It is considered good practice to move traffic off the default VLAN
where possible, in order to minimize the extent to which an unconfigured
switch port would give access to the network. This does not mean that a net-
work, which uses the default VLAN is necessarily insecure, and vacating it
may not be feasible since some devices have functions that are hardwired to
a VID of 1. However, if we have the opportunity to use a different VLAN,
then that is usually preferable.
The remaining values have no special status and can be used freely but be

aware that many network devices place a limit on the number of VLANs
that can be configured so it will not necessarily be feasible to make use of
all 4094 possible VIDs.

Trunk and access ports

There are two ways in which a machine can be connected to a switch carrying
802.1Q VLAN traffic:

∙ via an access port, where VLAN support is handled by the switch (so
the machine sees ordinary, untagged Ethernet frames); or

∙ via a trunk port, where VLAN support is handled by the attached
machine.

It is also possible to operate a switch port in a hybrid mode, where it acts as
an access port for one VLAN and a trunk port for others. Thus, the attached
Ethernet segment can carry a mixture of tagged and untagged frames. This
is not recommended due to the potential for VLAN hopping.

Port configuration

The 802.1Q standard does not itself make any formal distinction between
trunk and access ports. Instead, it allows the manner in which each VLAN
is handled to be configured separately. In Table 2.5, it shows each port to be
in one of three states for a given VLAN:
TABLE 2.5

Port Configurations of 802.1Q Frame

State Ingress Egress

tag allowed allowed, will be tagged

untag allowed allowed, will not be tagged

non-member prohibited prohibited

Virtual Networking 69
In addition to this, each port has a PVID (Port VLAN ID) which specifies
which VLAN any untagged frames should be assigned to. It may also be pos-
sible to specifywhich frame types are acceptable for ingress (tagged, untagged
or both).
This method of configuration provides a lot of flexibility, but be aware that

just because a configuration is possible does not mean that it is useful or safe.
For all but the most unusual purposes you should configure each port so that
it is either an access port or a trunk port:

∙ For an access port, there should be exactly one untagged VLAN (the
one to be made accessible) and no tagged VLANs. The PVID should
be set to match the untagged VLAN. If there is a choice, then the
port should admit only untagged frames.

∙ For a trunk port, there may be any number of tagged VLANs, but no
untagged VLANs. Ideally, the PVID should be set to a VLAN that
does not carry any legitimate traffic, but this is not essential. If there
is a choice, then the port should admit only VLAN-tagged frames.

Effect on the MTU

The Maximum Transmission Unit (MTU) of a network interface is the size of
the largest block of data that can be sent as a single unit. The standard Ethernet
MTU is 1500 bytes at the network layer or 1518 bytes at the link layer, the dif-
ference is due to the 14-byte header and 4-byte frame check sequence that
enclose the payload of an Ethernet frame.
On aVLAN trunk the need for each frame to be tagged adds a further 4 bytes

of link-layer framing. This can be accommodated either by increasing the link-
layer MTU or by reducing the network-layer MTU:

∙ To use the standard network-layer MTU of 1500 bytes, the equipment
must support a link-layer MTU of at least 1522 bytes.

∙ If the link-layerMTUwere limited to the standard value of 1518 bytes,
then the network-layer MTU would need to be reduced to 1496 bytes
to compensate.

Devices with explicit VLAN support are supposed to accommodate a link-
layer MTU of at least 1522 bytes, but if you are using generic hardware then it
maybe necessary to accept a lower value.All devices on agiven IP subnetmust
use the same network-layerMTU, so if you intend to deviate from the standard
value of 1500 bytes then youwill need to configure all affected machines. Sim-
ilar considerations applywhenusing jumbo frames. The link layerMTU is then
much larger, but so is the potential payload, so allowance must still be made.
VLAN stacking

Because an 802.1QVLANcan carry arbitrary Ethernet traffic, it is in principle fea-
sible to nest one VLANwithin another. Possible reasons for doing this include:

70 Software-Defined Networking and Security
∙ carryingmore than 4094 separate VLANs on one physical bearer, sim-
plifying the configuration of backbone switches, or

∙ allowing customer and service-provider VLANs to be administered
independently of each other.

A basic 802.1Q-compatible switch cannot be used to add further tags to an
already tagged frame, but there is an amendment to the standard called IEEE
802.1ad (also known as QinQ) which adds this capability. Note that VLAN
stacking exacerbates the effect on the MTU, as each extra level adds a further
4 bytes of link-layer framing.
The QinQ technology is also called VLAN dot1q tunnel, 802.1Q tunnel, and

VLAN Stacking technology. The standard comes from IEEE 802.1ad and it is
the expansion of the 802.1Q protocol. QinQ adds one layer of 802.1Q tag
(VLAN Tag) based on the original 802.1Q packet head.With the double layers
of tags, the VLAN quantity is increased to 802.1Q.
QinQ encapsulates the private network VLAN Tag of the user in the public

(service provider) network VLAN Tag to make the packet with double layers
of VLAN Tags cross the backbone network (public network) of the operator.
In the public network, the packet is passed according to the out-layer of VLAN
Tag (that is the public network VLAN Tag) and the private network VLAN
Tag of the user is shielded.
The formats of the common 802.1Q packet with one layer of VLAN Tag and

the QinQ packet with two layers of VLAN Tags are shown in Figure 2.12. Two
layers of VLAN tags can support 4Kx4K VLANs, meeting most of require-
ments ISP and overcoming limitation of VLANs.
In addition to increase the number VLANs, QinQ also provides one simple

L2 VPN tunnel for the user, and it does not need the supporting of the protocol
and signaling, which can be established by using static configuration. QinQ is
divided into two kinds, including basic QinQ and selective QinQ.

∙ Basic QinQ: When receiving the packet, the QinQ port adds the VLAN
Tag of the default VLAN of the port to the packet no matter whether
the packet has the VLAN Tag. Before the packet is forwarded out
from the QinQ port, delete the out-layer of Tag and then forward it.
The disadvantage of the method is that the encapsulated out-layer of
VLAN cannot be selected according to the VLAN Tag of the packet.

∙ Selective QinQ: The selective QinQ solves the disadvantage of the basic
QinQ.When receiving thepacket, theQinQport adds the specified-out
layer of VLAN Tag to the packet according to the VLAN Tag of the
packet. If the encapsulated out-layer of VLAN Tag is not specified,
add the VLAN Tag of the default VLAN of the port to the packet.

QinQ can be used to address three major network setup requirements: (1) it
can shield the VLAN ID of the user, so as to save the public network VLAN ID
resource of the service provider, (2) the user can plan the private network

CE1

PE1 PE2

CE2

VLAN 1 4094... 4094...VLAN 1

QinQ portQinQ port

Single Tag

P
Double Tags

FIGURE 2.13
A QinQ example.

Virtual Networking 71
VLAN ID, avoiding the conflict with the public network and other user VLAN
IDs, and (3) it provides the simple L2 VLAN solution.
To illustrate how QinQ works, an example is presented in Figure 2.13. The

upstream packet of the CE1 switch carries one layer of VLAN tag. The packet
reaches the QinQ port of the PE1 switch. According to the configuration of the
QinQ port, add one out-layer of VLAN Tag to the packet. The packet with two
layers of VLAN tags is forwarded to PE2 via the public network. On the QinQ
port of PE2, the out-layer of VLAN Tag is deleted, and the packet recovers to
have one layer of VLAN Tag and is forwarded to CE2.
VLAN hopping

802.1Q VLANs can be expected to provide a degree of isolation that is almost
as good as would be provided by separate physical networks. This isolation is
not complete because there will usually be competition for shared network
bandwidth, but if the infrastructure has been securely configured then no traf-
fic should be able to enter a VLAN unless it has been deliberately routed or
bridged there by one of the connected hosts.
Special care is needed to achieve this state of affairs, because some configu-

rations can be exploited to inject unauthorized traffic into a VLAN. This prac-
tice is known as VLAN hopping and is usually accomplished by:

∙ double tagging, or

∙ somehow persuading a switch to reconfigure an access port as a
trunk port.

One method than can sometimes be used to hop between VLANs is to
construct a frame with two tags. If this traverses a VLAN-aware switch
that has been poorly configured, then it may be possible to forward the
frame onto a VLAN trunk with its outer tag removed but the inner tag intact

72 Software-Defined Networking and Security
and exposed. There are two conditions that must be satisfied for this attack
to be feasible:

∙ The egress port on the switch must operate in the hybrid mode
described above, where traffic belonging to one of the possible
VLANs is forwarded in untagged form.

∙ The ingress port must allow access to that VLAN by means of a
tagged frame.

The inner tag should match the VLAN you want to hop to. The outer tag
should match the VLAN that is untagged on the egress port. An effective
way to defend against this technique is to ensure that the conditions described
above do not arise. Specifically, you should ensure that every active port is
either:

∙ a trunk port which tags all outbound frames for all VLANs, or

∙ an access port which does not tag any frames.

As an additional protection, some switches may prohibit the ingress of
tagged frames on ports that are supposed to be access ports. However, we
should be aware that whether frames are tagged or untagged on egress nor-
mally has no bearing on which frame types are acceptable for ingress.
2.3.2 Virtual Extensible LAN

Many enterprise and service provider customers are building private or
public clouds. Intrinsic to cloud computing is the presence of multiple ten-
ants with numerous applications using the on-demand cloud infrastructure.
Each of these tenants and applications needs to be logically isolated from
the others, even at the network level. For example, a three-tier application
can have multiple virtual machines in each tier and requires logically iso-
lated networks between these tiers. Traditional network isolation tech-
niques such as IEEE 802.1Q VLAN provide 4096 LAN segments (through
a 12-bit VLAN identifier) and may not provide enough segments for large
cloud deployments. Moreover, in a distributed cloud networking environ-
ment, it is common to establish a VLAN across geographically remote
datacenters.
To address these issues, several Cisco, VMware, Citrix, and RedHatworked

together to design and promote Virtual Extensible LAN (VXLAN) solutions to
address new requirements for scalable LAN segmentation and for transport of
virtual machines across a broader network range. VXLAN defines a 24-bit
LAN segment identifier that provides segmentation at cloud scale. In addi-
tion, VXLAN provides an architecture that customers can use to expand their
cloud deployments with repeatable pods in different Layer 2 domains.
VXLAN can also enable migration of virtual machines between servers across
Layer 3 networks.

Virtual Networking 73
2.3.2.1 VXLAN Design Requirements and Challenges

Cloud Computing Demands More Logical Networks

An infrastructure for a service cloud computing environment can have a large
number of tenants, eachwith its own applications. In fact, each tenant requires
a logical network isolated from all other tenants. Furthermore, each applica-
tion from a tenant also requires its own logical network, to isolate it from other
applications. To provide instant provisioning, cloud management tools, such
as VMware vCloud Director, clone the application’s virtual machines, includ-
ing the virtual machine’s network addresses, that demands a logical network
for each instance of the application.
Challenges of Existing Network Isolation Techniques

The VLAN has been the traditional mechanism for providing logical network
isolation. Because of the ubiquity of the IEEE 802.1Q standard, numerous
switches and tools are available that provide robust network troubleshooting
and monitoring capabilities, enabling mission-critical applications to depend
on the network. The IEEE 802.1Q standard specifies a 12-bit VLAN identifier,
which limits the scalability of cloud networks beyond 4K VLANs. Some in the
industry have proposed incorporation of a longer logical network identifier in
a MAC-in-MAC or MAC in Generic Route Encapsulation (MAC-in-GRE)
encapsulation as a way to expand scalability. However, in a data center net-
work port channels are commonly used, where a port channel is an aggrega-
tion of multiple physical interfaces that create a logical interface. Up to eight
individual active links can be bundled into a port channel to provide increased
bandwidth and redundancy. In addition, port channeling also load-balancing
traffic across these physical interfaces. Existing layer-2 virtual networking
solutions transport network packets inefficiently because they cannot make
use of all the links in a port channel, which is typically implemented in data
center networks.
2.3.2.2 VXLAN Frame

VXLAN meets these challenges with a MAC in User Datagram Protocol
(MAC-in-UDP) encapsulation technique and a 24-bit segment identifier in
the form of a VXLAN ID (Figure 2.14). The larger VXLAN ID allows LAN seg-
ments to scale to 16 million in a cloud network. In addition, the UDP
Outer
MAC
DA

Outer
MAC

SA

Outer
IEEE

802.1Q

Outer
IP DA

Outer
IP SA

Outer
UDP

VXLAN ID
(24 bits)

Inner
MAC
DA

Inner
MAC

SA

Op�onal
Inner IEEE

802.1Q

Original
Ethernet
Payload

FCS

VXLAN Encapsula�on Original Ethernet Frame

FIGURE 2.14
A VXLAN frame.

1 U1 U1 U

Layer 2 Layer 2

VM VM VM VM
VXLAN 5500VLAN 1

Migrate in Layer 2 Migrate in Layer 3

Layer 3

VM Connected to VLAN:
Restricted migra�on in layer 2

VM Connected only to VXLAN:
Migra�on across layer 3

Even traffic distribu�on via
port channels

FIGURE 2.15
A VXLAN example with port channels and layer-3 migration.

74 Software-Defined Networking and Security
encapsulation allows each LAN segment to be extended across Layer 3 and
helps ensure even distribution of traffic across port channel links.
VXLAN uses an IP multi-cast network to send broadcast, multi-cast, and

unknown unicast flood frames. When a VM joins a VXLAN segment, the
server joins a multi-cast group. Broadcast traffic from the VM is encapsulated
and is sent using multi-cast to all the servers in the same multi-cast group.
Subsequent unicast packets are encapsulated and unicast directly to the desti-
nation server without multi-cast. In effect, traditional switching takes place
within each VXLAN segment.
In the example presented in Figure 2.15, VXLAN solution provides the

following capabilities:

∙ Logical networks can be extended among virtual machines placed in
different Layer 2 domains, e.g., VXLAN 5500.

∙ Flexible, scalable cloud architecture enables addition of new server
capacity over Layer 3 networks and accommodates elastic cloud
workloads, i.e., two geo-separated domains can be connected in
Layer 2.

∙ If a VM is connected only through VXLAN, then it can migrate across
the Layer 3 network.

∙ If a VM is connected to a VLAN, then it is restricted to migration
within the Layer 2 domain. Note that a VM on a VXLAN segment
needs to be connected to a VLAN network in order to interact with
external networks.

Virtual Networking 75
2.3.3 Generic Routing Encapsulation

Generic Routing Encapsulation (GRE) is a communication protocol used to
establish a direct, point-to-point connection between network nodes. Being
a simple and effective method of transporting data over a public network,
such as the Internet, GRE lets two peers share data they are able to share
over the public network itself.
GRE in its simplest form provides a way to encapsulate any network layer

protocol over any other network layer protocol. For example, GRE can be used
to transport IP packets with private IP addresses over the public Internet to a
remote private IP network. GRE allows routers to act as if they have a virtual
point-to-point connection to each other. GRE tunnels allow routing protocols
(like RIP and OSPF) to be forwarded to another router across the Internet. In
addition, GRE tunnels can encapsulate multi-cast data streams for transmis-
sion over the Internet.
GRE tunneling is accomplished by creating routable tunnel endpoints that

operate on top of existing physical and/or other logical endpoints. By design,
GRE tunnels connect A to B and provide a clear data path between them. To
protect the payload, usually, IPSec must be used on the GRE tunnels to ensure
data security. Data is routed by the system to the GRE endpoint using routes
established in the route table. Once a data packet is received by the GRE end-
point, it is encapsulated in a GRE header and routed again using the endpoint
configuration (destination address of the tunnel); therefore, each data packet
traveling over the GRE tunnel gets routed through the system twice. An IP
packet routed through a GRE tunnel can be viewed in Figure 2.16.
2.3.3.1 GRE Header

Figure 2.17 presents the GRE packet header format. The GRE packet header
varies in length (depending on options) and can be 32 to 160 bits long. A stan-
dard GRE header has the form:
C Reserved0 Ver Protocol Type
Checksum (Op�onal) Reserved 1(Op�onal)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

FIGURE 2.17
GRE packet format.

Delivery header GRE header Original packet

FIGURE 2.16
GRE packet encapsulation.

76 Software-Defined Networking and Security
∙ Checksum present (C, Bit 0) specifies whether there is a checksum in
the GRE header. When it is set to 1, the checksum and reserved1 fields
(bits 32 to 63) must contain appropriate information. When set to 0,
the checksum and reserved1 fields are not necessary.

∙ Reserved0 (Bits 1 to 12) contains several bits to indicate the presence of
optional fields in the header (per RFC2890).

∙ Version (Ver, Bits 13 to 15) must contain 000 for GRE.

∙ Protocol Type (2 octets) specifies the protocol type of the original pay-
load packet as defined in RFC1700. For SROS GRE applications, this
will always be 0x800 (IP).

∙ Checksum (2 octets), when the checksum present bit is set to 1, the
checksum octets contain the IP checksum of the GRE header and
payload packet.

∙ Reserved1 (2 octets) is reserved for future use. It is only presented
when the checksum present bit is set to 1.

2.3.3.2 GRE Packet Flow

Tracing a packet destined for a network available through the GRE tunnel will
provide a better functional understanding of how the GRE implementation
works. Using the network diagram in Figure 2.18 as our example, trace a
packet from a node on the 192.168.1.0 network (192.168.1.10) to a node on
the 192.168.2.0 network (192.168.2.15). The step-by-step tunnel establishment
procedure is presented in Table 2.6.
2.4 Virtual Routing and Forwarding

Virtualizationisatechniqueforhidingthephysicalcharacteristicsofcomputing
resources from the way in which other systems, applications, or end users
Internet

Site A Site B

192.168.1.0/24 192.168.2.0/24

Tunnel Interface
10.0.0.1

Tunnel Interface
10.0.0.2

eth0/1
192.168.1.1

eth0/2
192.168.2.1

PPP
172.16.32.16

PPP
172.16.64.128

.10

.15

FIGURE 2.18
GRE tunnel establishment example.

TABLE 2.6

GRE Tunnel Establishment

Step Description

1 Packet originates from 192.168.1.10.

2 Packet received by the router at Site A on eth 0=1 (192.168.1.1).

3 Checks routing table for routing information (destination 192.168.2.15) and determines the
destination network is available through the tunnel interface.

4 Packet is encased in GRE header with source IP (172.16.32.16) and destination IP
(172.30.64.128) and routed back through the route stack.

5 Checks routing table for routing information for destination IP 172.30.64.128 and routes
the packet out the WAN interface.

6 The router at Site B receives the packet on the PPP interface (172.30.64.128). The system
recognizes that there is a GRE header on the packet and sends it to the tunnel interface
associated with the source and destination IP addresses (172.16.32.16 and 172.30.64.128).

7 GRE header is stripped and the packet is routed through the route stack with a destination
IP of 192.168.2.15.

8 Packet is routed out eth 0=2 for delivery.

Virtual Networking 77
interact with those resources. This includes making a single physical resource
(such as a server, an operating system, an application, storage device, or net-
work) appear to function asmultiple logical resources; or it can includemaking
multiple physical resources (such as storage devices or servers) appear as
a single logical resource. Virtual networks is a generic term that uses many
different technologies to provide virtualization. Fundamentally, virtual net-
works all provide amechanism todeploywhat looks andoperates likemultiple
networks and are actually all using the same hardware and physical
connectivity.
If we needed IP networks that are isolated as they were used by different

companies, departments, or organizations, we would normally deploy multi-
ple IP networks made up of separate physical routers that were not connected
to each other. They may still be using a shared Layer 2 or Layer 1 infrastruc-
ture; however, at Layer 3 they are not connected and do not form a network.
Network virtualization allows a single physical router to have multiple route
tables. The global table contains all IP interfaces that are not part of a specific
virtual network and route tables are for each unique virtual network assigned
to an IP interface. In its basic form, this allows an Ethernet 0/0 IP interface to be
in virtual network 10 and Ethernet 0/1 IP interface to be in virtual network 20.
Packets arriving on Ethernet 0/0 are only forwarded to other interfaces in vir-
tual network 10 and do not use Ethernet 0/1, because it is not in its virtual net-
work: virtual network 10 has no routing knowledge of other virtual networks.
Additional virtualization can be provided by allowing multiple virtual net-
works per physical connection. This is enabled by using Layer 2 logical con-
nections. For an Ethernet physical port, the use of multiple virtual LANs
(VLANs) allows each VLAN to use a different virtual network.

VN1

VN2

VN3

VRF
VRF
VRF

VRF Router

FIGURE 2.19
Virtual route forwarding (VRF).

78 Software-Defined Networking and Security
Virtual Route Forwarding (VRF) is a techniquewhich creates multiple virtual
networkswithina singlenetworkentity (as shown inFigure 2.19). Ina singlenet-
work component, multiple VRF resources create the isolation between virtual
networks. The goal of a VRF is to build a separate routing table that is indepen-
dent of themain one. VRFs are the samemethods of network isolation/virtuali-
zation as VLANs, VLANs are used at the Layer-2 and VRFs are Layer-3 tools.
VLAN is the existing virtualization technique at Layer 2 to separate different

types of traffic, e.g., voice networks from data networks. However, in a case
where a soft-phone from a PC (in a data VLAN) wants to talk to a hard-phone
in a voice VLAN, using a global routing table, it creates a potential security
threat since the voice VLAN is now visible from the data network.
Security can be improved by deploying virtualization at the network level.

VRF technology can be used with the rules and policies so that each VRF net-
work achieves the expected level of security. The system allows only the soft-
phone application to talk to the hard-phone in a voice VRF, or allow different
soft phones within data VRF resources to talk to each other; however, do not
allow other applications to communicate with each other.
Summary

Understanding virtual networking concept is essential for understanding
cutting-edge programmable networking technologies. This chapter is one of
the important chapters of this book for readers to build the knowledge foun-
dation to understandmodern computer networking solutions, especially later
when we describe network functions virtualization and software-defined
networking.

Virtual Networking 79
Various virtual networking solutions also help us build effective security
management systems such as VPN technologies which are good examples
to provide network-level isolations to protect network traffic. Moreover,
virtual networks provide us an approach to change the management or
protection granularity of networks, which later we refer to as network micro-
segmentation in Chapter 6. Based on the provisioned virtual networking
resource, we can provide customized and adaptive security provisioning
such as monitoring, detection, and recovery security appliances via network
functions virtualization solutions. Interested readers can jump to Chapter 6
if you have sufficient background of SDN and NFV.

http://taylorandfrancis.com

3
SDN and NFV
Howdoes underlying technology changewhen confrontedwith changing use
patterns or changing user requirements? In most cases, the driver is purely
economical. If the investment in a technology is large enough, it is stretched
to meet new needs. In this chapter, we examine two new paradigms that
helped “stretch” the traditional IP infrastructure in the information age. First
amongst these is Network Functions Virtualization (NFV) which, as the name
suggests, moved network functions from stand-alone appliances to software
running on any server, reducing the time-to-market for products. The second
is a more clean slate approach using SDN, wherein separation of control and
data plane leads to a highly agile and dynamic environment. These two tech-
nologies, along with some benefits, challenges and use cases are described in
detail next.
3.1 Introduction

The current era of human history, often called the Information Age, is charac-
terized by the ubiquity of information. Since its advent in the 1960s, pervasive-
ness of Internet has resulted in nearly 40% of the global population using this
technology to revolutionize the way we do business, socialize, gain knowl-
edge, and entertain ourselves [15]. The explosion of information has resulted
in a realization of how, despite their prevalence, the traditional IP-based net-
works are inflexible and difficult to manage. This, in short, is the motivation
for Network Functions Virtualization (NFV) and SDN. While they are closely
related and often coexist, NFV and SDN are distinct approaches to intro-
ducing malleability to the infrastructure that forms the bedrock of the
information age.
As the name suggests, NFV is the process of moving network services like

firewalls, Network Address Translation (NAT), load balancing, Intrusion
Detection System (IDS), etc. from dedicated physical hardware into services
on a virtualized environment. The movement to virtualize is not limited to
network functions, and is part of the broader shift in computing industry to
better employ the immense gains in hardware capabilities. Generally, NFV
does not introduce changes to existing protocols, and can be implemented
incrementally. SDN, on the other hand, seeks to introduce flexibility,
81

82 Software-Defined Networking and Security
dynamism and automation into the deployment andmanagement of network
objects by decoupling and centralizing the network intelligence from the
packet-forwarding process.While it is possible to virtualize network functions
without using SDN concepts and to realize an SDN that does not use NFV,
there are inherent synergies in leveraging SDN to implement and manage
an NFVI; leading to SDN and NFV being considered symbiotic paradigms.
3.2 Network Functions Virtualization

NFV is the concept of moving dedicated network functions from stand-alone
appliances to software running on any white box or Commercial off-the-Shelf
(COTS) server. By fundamentally altering the design and deployment process
that service providers have used for a generation, NFV aims to inject dyna-
mism and cost efficiency to an antiquated domain that suffered from
chronic issues.
3.2.1 Background and Motivation behind NFV

Postal, Telegraph and Telephone (PTT) service providers (carriers or telcos)
were legacy government agencies [238] that evolved to become mobile wire-
less carriers and data service providers by becoming Internet Service Provid-
ers (ISPs). As such, the term carriers is now used to describe both, the classic
telephone companies and pure ISPs.
By virtue of their origins, sanctions of new products and services by a carrier

followed rigorous standards for reliability and quality. The endorsement
carrier grade is still used to designate devices that pass such strict standards.
Over time, such standards led to carriers buying hardware from a small list
of highly specialized vendors that could satisfy them. However, this need
for reliability and quality impeded product development and led to carriers
falling behind competition frommarket disrupters like Google, Apple, Micro-
soft, Amazon, and Facebook in providing value-added services on the public
Internet. To maintain revenue and track their growth objectives, the carriers
sought to shorten product development cycles by leveraging virtualization
technologies that hadmade their impact felt in the computing world. To accel-
erate progress, several European carriers banded together and created the
European Telecommunications Standards Institute (ETSI). The ETSI Industry
Specification Group for Network Functions Virtualization (ETSI ISG NFV),
published a whitepaper titled, “Network Functions Virtualisation” [59] in
October 2012 to outline the rationale, benefits, enablers and challenges for
NFV with the goal to accelerate development and deployment using generic
servers. As a paradigm, NFV was born.

SDN and NFV 83
Using the newly minted NFV framework, carriers hoped to alleviate the
following concerns:

∙ Since large swaths of the carrier infrastructure had a few vendors,
carriers were often at the mercy of the hardware manufacturers
for deployment of services. The design-procure-integrate-deploy
cycle that accompanies adding new hardware made operation
expensive.

∙ Hardware installed in the late 1990s and early 2000s was rapidly
reaching end of life, and replacing them en-masse was costly.

∙ Proving value-add services meant having to diversify the type of
hardware present in the carrier environment. Increasing the variety
of hardware vendors did not always ensure smooth interoperablity.

∙ The presence of multiple hardware products resulted in carriers hav-
ing to deal with chronic complexity management of hardware, firm-
ware, and software updates.

∙ Carriers had little visibility into security issues with the proprietary
hardware.

∙ Launching new services was arduous, with carriers having the need
to allocate space and power, along with integration of another hard-
ware device into a very large network.

Since the publication of the white paper, ETSI ISG NFV has produced more
detailed documentation, standard terminology, and use cases that seek to
advise adopters and steer the direction of NFV though their instrumental
work in collaborative projects like OPNFV [11].
3.2.2 NFV Framework

The NFV framework, thought of by ETSI, consists of three main components:

∙ Virtual Network Functions (VNFs) are the software implementations
of network functions. VNFs are used as modules that are deployed as
the building blocks of an NFV architecture.

∙ NFVI is the entirety of the hardware and software components that
build the environment where VNFs are deployed. Processing (both
virtual and physical), storage resources and virtualization software
are essential parts of the NFVI. If the infrastructure is distributed,
the network backbone providing connectivity between the sites is
considered part of the NFVI.

∙ NFV Management and Orchestration (NFV-MANO) consists of all
functional blocks, data repositories, reference points, and interfaces
that are used for managing and orchestrating VNFs and the NFVI.

84 Software-Defined Networking and Security
3.2.3 Benefits and Challenges of NFV

NFV has been a catalyst for major change in the telecommunications domain.
As was originally intended with the publication of the whitepaper in 2012,
NFV simplifies and speeds up the process of deploying new functions or
applications that help the carrier provide value-add services or save costs.
Automating the orchestration and management lets an NFVI be more scal-

able and achieve better resource utilization. Using generic server hardware
that can act as any number of network devices instead of specialized hardware
that perform singular functions helps reduce both operational and capital
expenditures. Further, virtualization offers carriers the ability to offer pay-
as-you-go services without huge up-front investment. Avoiding proprietary
hardware empowers administrators with a streamlined provisioning process.
If a service provider’s customer requests a new function, for example, NFV

enables the service provider to more easily add that service in the form of
a VM without upgrading or buying new hardware. Consider Multimedia
Messaging Service (MMS), which is used to send messages with multimedia
content over a cellular network. During the early 2000s, the MMS infrastruc-
ture included at least a dozen dedicated servers that had specialized functions
in addition to a multimedia gateway. Launching MMS, or increasing capacity
was expensive for a telco - and hence for the user. However, with NFV, a telco
can add capacity as needed with virtualized generic servers, thereby reducing
costs drastically.
Being in the early stages of adoption, however, results in a few challenges

facing NFV as well. Foremost among these are a lack of universally accepted
standards inNFVMANOandOperational and Billing Support Systems (OSS/
BSS). As with the case of the videotape format war (VHS vs. Betamax) of the
late 1970s, and to a lesser extent the high definition optical disc format war
(Blu-ray vs HD-DVD) of the early 2000s, carriers are hesitant to invest in a
standard that is not universally accepted.
3.2.4 OPNFV

Open Platform for NFV (OPNFV) [11] is a collaborative open-source platform
that seeks to develop NFV and shape its evolution. Created by the Linux
Foundation in 2014, contributors now include Cisco, Juniper Networks,
Dell, Hewlett-Packard, Intel, AT&T, Brocade Communications Systems,
China Mobile, Ericsson, Huawei, IBM, NEC, Nokia Networks, Red Hat, etc.
By bringing together upstream and downstream organizations for integrated
development and testing, the OPNFV project looks to reduce the time to mar-
ket for NFV products and solutions. By cooperative development, OPNFV
helps with life-cycle management, introducing dynamism and failure detec-
tion in a multi-vendor environment. A case study that details the use of
OPNFV to implement a virtual Customer Premise Equipment (v-CPE) is
described next.

SDN and NFV 85
3.2.5 OpenStack

OpenStack is an open-source cloud computing platform that has high market
penetration. Since its inception in 2010 as a joint project of Rackspace Hosting
and NASA, OpenStack has evolved to a community project with more than
500 active contributors managed by the OpenStack Foundation [10]. It
includes a collection of interoperable modules that are used to orchestrate
large pools of compute, storage, and networking resources. These resources
are managed either through command line tools or a web-based GUI. Further,
OpenStack provides RESTful APIs to its back-end. We present an overview of
the most commonly used OpenStack modules (Figure 3.1) and the intercon-
nectivity between them before presenting a case study of an OpenStack
implementation.
The modular nature of OpenStack coupled with it being a community pro-

ject has led to amultitude ofmodules, each ofwhich strives to achieve a clearly
stated objective: help deploy OpenStack. Modules in OpenStack span the
entire range of the CMMI maturity scale [127]. We limit our discussion to
the more mature OpenStack modules.
In Figure 3.2, we classify modules using their functionality as the basis. Suc-

cinctly, they are as follows:

∙ Core modules - Modules that are considered essential to operating an
OpenStack infrastructure provide basic compute, network and stor-
age capabilities along with security provided by identity manage-
ment. They fall into both the VNF and NFVI components of the
NFV framework. The core modules are among the more mature mod-
ules, and the most widely deployed. When asked, “What is the bare
minimum modules I need to install to get a webserver running using an
OpenStack cloud?”, these would be themodules you install and config-
ure. These modules are the following:
∙ Nova, or compute module, is used to create and delete compute
instances as required.

∙ Glance synchronizes and maintains VM images across the com-
pute cluster.

∙ Keystone provides authentication for accessing all of OpenStack’s
services.

∙ Cinder provides block storage used as storage volumes for VMs.

∙ Swift provides object storage that is used to store large amounts of
static data in a cluster.

∙ Neutron, or networking, allows the different compute instances
and storage nodes to communicate with each other.
∙ Management modules - Modules that enhance the MANO experience
in the OpenStack installation fall into this category. While some

FI
G
U
R
E
3.
1

O
pe

nS
ta
ck

m
od

ul
e
in
te
rc
on

ne
ct
iv
ity

.

86 Software-Defined Networking and Security

FIGURE 3.2
Categorization of modules in OpenStack.

SDN and NFV 87
management modules are mature, there are several projects that are
evolving rapidly.

∙ Horizon provides a GUI dashboard, and is by far the most widely
deployed management module.

∙ Heat helps expedite orchestration of applications across multiple
compute instances by using templates.

∙ Celiometer monitors the NFVI and helps identify bottlenecks and
resource optimization opportunities.

∙ Ironic is a provisioning tool for baremetal installation of compute
capabilities instead of VMs in OpenStack. The Ironic module is
forked from the Nova baremetal driver.

∙ Congress is a policy management framework for the OpenStack
environment.

88 Software-Defined Networking and Security
∙ Designate is used to point applications in the OpenStack environ-
ment to a trusted DNS source. Since it seeks to enhance the security
in the environment, it is often designated as straddling themanage-
ment and security functions.
∙ Security modules - Relatively new to the scene, these modules seek to
provide trusted sources of information for the applications running in
the OpenStack environment to keep intrusions and malware to a
minimum.
∙ Barbican works with Keystone authentication to manage internal
application security by behaving as a key manager.

∙ Murano provides a white list repository of applications.
∙ Service modules - Once again, relatively low on the maturity scale,
modules in this category provide services that help with an Open-
Stack installation. They do not address any generic issues with Open-
Stack, and as such, these modules are deployed in specific use cases.
Some examples are as follows:
∙ Trove provides a distributed database service and enables users to
deploy relational and non-relational database engines.

∙ Sahara, formerly called Savanna, provides big data services by pro-
viding Elastic MapReduce and ability to provision Hadoop.

∙ Manila provides Network Area Storage (NAS) solutions for an
OpenStack deployment.

∙ Zaqar provides a multi-tenant cloud messaging service.

∙ Magnum is an umbrella project that provides containerization
assistance. This module is still in development.
3.3 Software-Defined Networks

The SDN paradigm is based on the premise that separating control of net-
work functions from the network devices themselves (switches, routers, fire-
walls, etc.) can address several limitations associated with today’s vertically
integrated, closed and proprietary networking infrastructure. The adoption
of virtualization technologies in computing, and the convergence of voice,
video and data communication to IP networks fueled the need for such a
shift in networking standards [77]. Figure 3.3 shows a typical network
implemented using SDN in a data center environment. Four users have
VMs running on the same physical host, with each VM connected to the
same OVS (described in Section 3.3.7). Data frames that come from the
VMs are tagged with a VLAN ID or some other ID based on the tunneling
protocol in use, logically separating each of the four users. The OVS then

VMVMVM

VMVMVM

VMVMVM

VMVMVM

Virtual
Machines

SDN
Controller

Physical
Network

Internet

OpenFlow

Physical
Server Farm
Physical
Server Farm

OVS

FIGURE 3.3
Typical network implemented using SDN.

SDN and NFV 89
uses flow rules it gets from the SDN controller to determine how to handle
the traffic.
The separation of the control and data planes result in network switches

becoming dumb forwarding devices, with control logic being implemented
in a centralized1 controller [185]. This not only allows the network administra-
tors a much finer granularity of control over traffic flow, but also empowers
them to respond to changing network requirements in a dynamic environ-
ment [36] in a much more effective manner. Figure 3.4 shows a simplified
view of the SDN architecture.
3.3.1 Benefits and Challenges of SDN

Use of SDN has picked up steam due to the following benefits:

∙ The traffic patterns culminating from the adoption of cloud systems
and big-data computing do not adhere to the traditional notion of a
north-south network.

∙ Separating network control from the hardware devices eliminates the
need to configure each device individually. Having a central network
policy that can be dispatched to the SDN devices reduces the time-to-
deploy thereby enhancing profits for the data center or service
providers.

∙ Since control is separated from the network devices, administrators
can modify the behavior of the device by pushing software updates
to the device, instead of conducting fork-lift upgrades - once again
enhancing profits for data center providers.
1 The controller only needs to be logically centralized. This may be implemented in a physically
centralized or distributed system [159].

Infrastructure layer

Network Operating System

Control layer

Southbound API

Application layer

App 1App 1 App 2App 2 App 3App 3 App nApp n
. . .

Northbound API

FIGURE 3.4
Abstraction in SDN.

90 Software-Defined Networking and Security
∙ A singular device can handle the functionalities managed bymultiple
traditional network devices. For example, a single device could do
switching, routing, load balancing and security functions. Further,
SDN is vendor agnostic, thereby allowing providers more flexibility.

∙ SDN can organically provide traffic shaping and administer QoS. In
current networks, provisioning different QoS levels for different
applications is a highly manual process, and cannot dynamically
adapt to changing network conditions [147].

∙ SDN provides a layer of abstraction that allows application managers
and administrators to dissociate from managing the physical hard-
ware. In addition to having access to virtual disk and memory,
SDN virtualizes a Network Operating System (NOS), abstracting
the physical topology of the network from the applications. As shown
in Figure 3.4, several applications running on the same physical hard-
ware could have different views of the network.

In addition to being deployed for a variety of traditional functionalities
like routing, security and load balancing, SDN can be used for traffic engi-
neering, end-to-end QoS enforcement, mobility management, data center

SDN and NFV 91
implementation and reducing power consumption. Kreutz et al. [164] group
all these applications into five categories: 1) traffic engineering; 2) mobility
and wireless; 3) measurement and monitoring; 4) security; and 5) data center
networking.
3.3.2 Background

Despite their widespread adoption, traditional IP networks are complex. Sev-
eral researchers believed that current Internet architecture, including the OSI
layer structure, had grown beyondwhat it was designed for. This was the pri-
mary motivation for the Stanford Clean Slate program, which was based on
the premise that shortcomings in the Internet architecture were structural,
and that incremental research would not cut it. One of the major outcomes
of the program was SDN and OpenFlow. Given their common origin, SDN
and OpenFlow are often used interchangeably.
While the Clean Slate Program is creditedwith doingmuch of the heavy lift-

ing on SDN, the concept of separation of the control and data plane can be
traced back to the Public Switched Telephone Network (PSTN). In 2004, the
IETF proposed an interface standard called ForCES [286], which sought to
decouple the control and forwarding functions of devices. Industry accep-
tance though was scant. With the Clean Slate Program providing new
impetus, there was renewed interest in investigating avenues to address
weaknesses in the Internet architecture.
Work on OpenFlow continued at Stanford in an academic setting. With

advances being shown on research and production networks, industry part-
ners such as NEC and HP started manufacturing OpenFlow enabled hard-
ware. Parallel work conducted at Google added further impetus to SDN
[159]. A milestone was reached when the Open Networking Foundation
(ONF) was founded in 2011 to promote SDN and OpenFlow.
3.3.3 SDN Control Plane

The unified control plane of an SDN setup consists of one or more SDN con-
trollers that use open APIs to exert control over the underlying vSwitches or
forwarding devices. In addition to pushing forwarding rules to the vSwitches,
the controllers also monitor the environment; thereby giving the controllers
ability to have forwarding decisions integrated with real time traffic manage-
ment. The controllers interact with the rest of the SDN infrastructure using
three communication interfaces, commonly called the southbound, north-
bound and east/westbound interfaces. The separation in their functions is
as follows:

∙ Southbound interface allows the controller to communicate, interact
and manage the forwarding elements. While other proprietary solu-
tions exist, OpenFlow is, by far, the most common implementation

92 Software-Defined Networking and Security
of the southbound interface. Amongst the proprietary solutions with
non-trivial market share are onePK (Cisco) and Contrail (Juniper Net-
works). An alternate IETF standard, ForCES failed to gain much trac-
tion or adoption.

∙ Northbound interface enables applications in the application layer to
program the controllers by making abstract data models and other
functionalities available to them. The northbound interface can alter-
nately be considered an API into the network devices. Unlike Open-
Flow for southbound interfaces, there is no overwhelming market
leader or accepted standard for northbound interfaces.

∙ East/Westbound interfaces are meant for communication between
groups or federations of controllers. Similar to the northbound inter-
faces, there is yet to be a universally accepted standard.

3.3.4 SDN Data Plane

The data plane in the SDN architecture is tasked with enabling the transfer of
data from the sender to the receiver(s). They are agnostic to the protocol that is
used for communication between the end points. With the exception of com-
munication with the controller, devices in the data plane themselves do not
generate or receive any data, but instead act as conduits for data. Data plane
devices need to support a southbound API, to communicate with the control-
lers. Devices in the data plane come in two flavors: 1) Software-based, such as
Open vSwitch; and 2) Hardware-based such as a OpenFlow enables HP
switch. As can be envisaged, software-based devices have a more complete
feature set, but are generally slower.
3.3.5 OpenFlow

OpenFlow, defined by the ONF [8], is a protocol between the control and
forwarding layers of an SDN architecture, and is by far the most widespread
implementation of SDN. A basic OpenFlow architecture consists of end hosts,
a controller and OpenFlow enabled switches. Note that contrary to the tradi-
tional network nomenclature, an OpenFlow switch is not limited to being a
layer-2 device. The controller communicates with the switches using anOpen-
Flow API.
When a packet arrives at an OpenFlow switch, packets are processed as

follows:

1. A flow table lookup attempting to match the header fields of
the packet in question to the local flow table is done. If no matching
entry is present, then the packet is sent to the controller for pro-
cessing. When multiple entries that match the incoming packet are
present in the flow table, the packet with the highest priority is

SDN and NFV 93
picked. Details about the match fields and actions are provided in
Chapter 10.

2. Byte and packet counters are updated.

3. Action(s) corresponding to the matching flow rule is(are) appended
to the action set. If a different flow table is part of the execution chain,
then processing continues.

4. Once all flow tables have been processed, the action set is executed.

3.3.6 SDN Controllers

The controller is the brains of the SDNoperation. It lies between the data plane
devices on one end, and high level applications on the other. An SDN control-
ler takes the responsibility of establishing every flow in the network by install-
ing flow entries on switch devices.
Flow entries can be added to a data plane device in either a (1) proactive

mode, where the flow rules are sent to the data plane devices as soon as the
controller learns of it; or (2) reactive mode, where the controller sends flow
entries to the data plane devices only as needed. In reactive mode, when
data plane devices send flow setup requests to the controller, it first checks
this flow against policies at the application layer and decides what actions
need to be taken. Next, it determines a path for the packets to traverse (based
on other application layer policies) and installs new flow entries in each device
along the path. Flow entries that are added have specific timeout valueswhich
indicate to the data plane devices how long they should be stored in their
forwarding tables in case of inactivity before removing the entry. The trade-
off between setup delay and memory required to maintain the forwarding
table in your environment determines the selection of the network administra-
tor. Further, in reactive mode, the administrators are offered the ability to be
agile according to the current network conditions.
In addition to the mode of operation, administrators face another design

choice over flow granularity, where the trade-off lies between flexibility
and scalability. This is akin to aggregated routes in traditional routers.
While fine-grained flow rules offer flexibility and an additional layer of secur-
ity, it can be unfeasible to implement. These aspects are discussed further in
Chapter 10.
A few widely deployed OpenFlow-based SDN controllers are:

∙ NOX was among the first publicly available OpenFlow controller.
Several variants of NOX exist today; such as NOX-MT, QNOX, Fort-
Nox, POX, etc.; each with a different emphasis.

∙ OpenDaylight (ODL) is an open-source SDN controller that has
been available since 2014. It is a modular multi-protocol SDN control-
ler that is widely deployed in the industry. A more detailed explora-
tion of ODL is shared in Section 3.3.9. Companies such as

94 Software-Defined Networking and Security
ConteXtream, IBM, NEC, Cisco, Plexxi, and Ericsson are active con-
tributors to ODL.

∙ OpenContrail is a flavor of SDN controller originally from Juniper
Networks. It is an Apache 2.0-licensed project that works well with
virtual routers, and has an analytics engine.

∙ Beacon is a JAVA-based OpenFlow control built at Stanford Univer-
sity. It has a multi-threaded, cross-platform, and modular controller.

∙ Floodlight is a JAVA-based OpenFlow controller originally forked
from Beacon by Big Switch Networks. Similar to OpenContrail, it is
also an Apache 2.0-licensed product that supports a range of virtual
and physical OpenFlow switches. Further, it integrates well with
OpenStack. It is supported and enhanced by companies such as Intel,
Cisco, HP, and IBM.

∙ Ryu is a Python-based open-source SDN controller that is lightweight.
It is modular in nature and supports several protocols such as
OpenFlow, Netconf and OF-config.

∙ FlowVisor is a special-purpose OpenFlow controller that supports a
decentralized controller. It allows for siloing of the resources to ensure
only an assigned controller can control a switch. It also has traffic
shaping functionalities.

In addition to installing flow rules, the controller is also used for trafficmon-
itoring. In fact, traffic monitoring can be used in conjunction with application
layer policies to implement rate limiting. The controller can obtain traffic from
the data plane devices in a push-based or a pull-based fashion. While both
accomplish the same result for the most part, each gives the administrator
some positives over the other. For example, push-based mechanism is ill-
suited for flow scheduling. Pull-based mechanisms need to be cognizant of
the scalability and reliability of the centralized controller. Once again, the
mode of choice is a design decision for the administrator.

3.3.7 Open Virtual Switch

OVS [9] is open-source implementation of a distributed programmable virtual
multi-layer switch. OVS implementations generally consist of flow tables,
with each flow entry having match conditions and associated actions. OVS
communicates with the controller using a secure channel, and generally
uses theOpenFlowprotocol. OVS has beenwidely integrated intomajor cloud
orchestration systems such as OpenStack, CloudStack [3] etc., in lieu of the tra-
ditional Linux bridge.
Figure 3.5 represents the main components of OVS. The kernel module

receives the packets from a NIC (physical or virtual). If the kernel module
knows how to handle the packet, it simply follows the instructions. If not,
the packet is sent to the ovs-vswitchd in userspace using NetLink. This

UserSpace

Remote (Controller)

Open vSwitch Kernel Module

ovsdb-serverovs-vswitchd

ovsdb ovsdb-tool

ovs-vsctl ovsdb-client

Config DB Operation

ovs-appctlovs-dpctl

Management
(TCP/6632)

OpenFlow
(TCP/6633)

NetLink

FIGURE 3.5
Open vSwitch architecture.

SDN and NFV 95
determines how the packet should be handled using the OpenFlow protocol.
The ovs-vswitchd communicates with a ovsdb-server via a socket.
The ovsdb-server stores OVS configuration and switch management data
in JavaScript Object Notation (JSON) format. All functions in the userspace
can be accomplished using Command Line Interface (CLI) commands.
OVS and vSwitch are used interchangeably in the remainder of this

document.

3.3.8 Routing in SDN

In traditional networking, the topology information, i.e., connectivity and
linkweights between neighbors or Originator-Destination (OD) pairs, is prop-
agated in the network for route computation. This usually results in high
bandwidth, high process utilization, excessive storage occupancy, slow con-
vergence, complex and unscalable networking. In an SDN environment, there
is no device explicitly defined as a traditional router, where the control plane
and data plane are separated. Link states are periodically polled by the con-
troller to compute a configuration for each switch to direct packet switch in
the data plane. As the result, routing in SDN is done in the SDN control plane.
A few well-known routing strategies in SDN follow.

3.3.8.1 RCP: Routing Control Platform

Routing Control Platform (RCP) was proposed in [90] for the provisioning of
inter-domain routing over a BGP network. In this architecture, routing is done

96 Software-Defined Networking and Security
as a separate entity. In RCP, control from physically distributed entities in a
domain is logically centralized in a control plane. RCP computes and
exchanges routes within the domain and with other domains’ RCPs. The
working principle of RCP is based on three considerations:

∙ network’s consistent view of the state,

∙ controlled routing protocol interaction, and

∙ expressive and flexible policies.

In this architecture, legacy network routing constituent iBGP Route Reflec-
tor (RR), which collects network information swapped with RCP. The net-
work information is gathered in a consistent way by accumulating eBGP
learned routes. Then the collected information is directly shared with border
routers. Afterwards, the best route is computed based on the eBGP learned
route. The entire routing configuration and routing states reside in RCP con-
trol plane. For correct handling, RCP maintains a local registry which has
global view and information is exchanged with other RCPs for inter-domain
routing. The implementation of RCP in SDN is known as Intelligent Route
Service Control point (IRSCP) [273]. IRSCP is an architecture that was in the
use before the emergence of SDN.
3.3.8.2 The SoftRouter

The SoftRouter [174] architecture is presented with the aim of separation of
control and forwarding elements called Control Element (CE) and Forward-
ing Element (FE), respectively. The control functionality is provided by using
a centralized server, i.e., a CE that might be many hops away from the FE. The
SoftRouter architecture is inspired by softswitch [279] concept of telecommu-
nication industry, where software-based switching is done for separating the
voice from the control path. Many FEs may be connected to one CE. The com-
munication between CE and FE is done through ForCEs [82]. The control pro-
tocol runs over the CE but the topology discovery module is run by the FE to
form anNE.When SoftRouter is employed in a BGP-basedAS, IGP route com-
putation is done in CE using ForCES protocol. In contrast to RCP, where intra-
AS route computation is done using IGP. SoftRouter also uses iBGP for inter-
mesh AS connectivity.
3.3.8.3 RF IP Routing: IP Routing Services over RouteFlow-based SDN

RouteFlow was a project initially named as QuagFlow [200], which aimed to
provide IP routing as Router-as-a-Service in a virtualized environment. The
RouteFlow basically consists of three components: RouteFlow Controller,
RouteFlow Server, and Virtual Network Environment.
RouteFlow controller interacts with RouteFlow Server through RouteFlow

Protocol. The Virtual Environment (VE) consists of RouteFlow Client and

SDN and NFV 97
Routing Engine. The RouteFlow Client collects Forwarding Information Base
(FIB) from the Routing Engine (Quagga, BIRD, XORP, etc). RouteFlow Client
transforms these FIBs into OpenFlow tuples that are forwarded to the Route-
Flow Server that is responsible for establishing routing logic out of these tuples.
The routing logic is transferred to RouteFlow controller that defines the match
field and action against each match. The VE is connected directly to the Route-
Flow controller through a Virtual Switch, such as OVS. The direct connection
between VE and controller reduces the delay by providing a direct mapping
of physical and virtual topology. There were no databases used in the first
phase of the development of RouteFlow, which may choke the RouteFlow
Server. To overcome this issue,NoSQL (MongoDB, Redis, CouchDB)was intro-
duced in the RouteFlow architecture to provide inter-process communication
between different components of the architecture. RouteFlow performs multi-
ple operations in different scenarios: i) logical split, ii) multiplexing and iii)
aggregation. All routing tasks are done by the virtual environment that
provides flexibility. The different phases of RouteFlow development makes it
possible to integrate it with SDN, so much so that RouteFlow is considered
the basic architecture to control routing in SDNs.
3.3.8.4 VRS: Virtual Routers as a Service

In [52], the authors describe an architecture characterized by a virtual routing
instance that is responsible for managing distributed forwarding elements
termed as Virtual Router System (VRS). Virtual router instances communicate
with a Point-Of-Presence (POP) and follow a star topology, in which a single
core node is connected to Customer Edge Gateways (CEG) linked through
Intermediate Nodes (INs). VRS instances are associated with Forwarding
Engines, which can be programmed using OpenFlow and flow tables are
updated accordingly. The routing decision is computed in the core node. A
VM instance associated with virtual routing controller in core install all the
rules in the forwarding plane. Another module of this architecture is the
Path Management Controller (PMC) which is used to calculate the minimum
cost route. PMCs also manage data path migration. VRS generally involves
two operations:

∙ core node location selection, and

∙ optimal forwarding path allocation.

VRS adheres to the following considerations while calculating minimum
cost path:

∙ customer’s geographical attachment,

∙ bandwidth demand, and

∙ corresponding capacity.

98 Software-Defined Networking and Security
By keeping a view of these considerations, a node with maximum capacity
and minimum cost data path is selected. The cost of VRS increases with the
increase in CEG nodes.
3.3.8.5 RFCP: RouteFlow Routing Control Platform over SDN

In [233], the authors proposed RouteFlow Control Platform (RFCP), which is
a hybrid networking model of two former studies, i.e., Routing Control Plat-
form and RouteFlow. RFCP is an additional computational layer for comput-
ing routes within and between ASes. The RFCP adds a flavor of data store-
centric platform that stores: i) RFCP Core state information, ii) network
View, and iii) Network Information Base (NIB). The communication between
NOS running SDN controller (POX, NOX, Maestro, Trema). Interfacing with
the Virtual Environment is done through OpenFlow protocol control mes-
sage. RFCP comprises of RouteFlow-Client, RouteFlow-Server, and Route-
Flow-Proxy. To integrate this architecture with a traditional network,
Route Reflector (RR) in BGP domain is interconnected with Provider Edge
(PE) routers via iBGP, which communicates with BGP controller that is
also called RFCP-Controller. The RouteFlow-controller serves as a gateway
between Route Reflector and OpenFlow switches. RouteFlow Client gathers
routing information from the routing engine that has a virtual image of
physical topology. On the basis of collected information, routing logic is
established in the RouteFlow-Server. RF-Proxy (RF Controller) exchanges
network state between the switch and RFCP. The direct communication
between the controller and virtual machines is done through OpenFlow con-
trol messages. Automatic configuration of RFCP has been made possible by
the introduction of discovery controller. The enhanced version now consists
of five modules: i) RouteFlow controller, ii) topology controller, iii) Remote
Procedure Call (RPC) client, iv) RPC server, and v) FlowVisor. Topology
controller monitors the entrance of new switch, i.e., change in topology, exe-
cutes the topology discovery module and directs this configuration informa-
tion to RPC client. The configuration contains switch ID and port number.
On the basis of this configuration information, RPC server generates a VM
of the same ID and with same port resembling the physical topology net-
work. This VM is assigned with IP addresses allocated by the topology con-
troller. All information is stored in the database by the RF-controller in the
form of configuration files. These configuration files are passed to the RPC
server through RPC Clients that configure this information in created
virtual machines.
3.3.8.6 RaaS: Routing as a Service

In [151], authors proposed a Routing Service as an intelligent application
based on OpenFlow architecture. A logically centralized routing control plane
is used, which has a complete view of the network topology. This global view

SDN and NFV 99
enables the centralized control tomake a routing decision. The building blocks
of a centralized routing plane are

∙ Link Discovery Module: determines the physical links between
OpenFlow enabled devices;

∙ Topology Manager: upholds network status information, i.e.,
topology; and

∙ Virtual Routing Engine: creates a virtual topology for incorporating
traditional routing over a virtual routing engine.

The routing controller initiates routing services by advertising its informa-
tion and sending packet-out messages on all the connected OpenFlow
switches’ ports. In this way, the flow look-up procedure is done across all con-
nected OpenFlow switches and flow entries are populated using packet-in
message sent towards the centralized controller. For a non-OpenFlow switch,
a packet is broadcast as in traditional link discovery protocol. Routing deci-
sions are based on the information stored in the database attached to the cen-
tralized routing plane and routing decision accuracy is determined by keeping
track of MAC addresses and port numbers of each connected device. The best
route is calculated using the Dijkstra algorithm.

3.3.8.7 CAR-Cloud Assisted Routing

An architecture that provides RaaS is presented in [144]. The proposed
architecture is Cloud Assisted Routing (CAR), in which routing complexity
is handled by using clouds based on two principles: i) CPU Principle: Keep
control plane closer to the cloud, i.e., transferring computational intensive
routing function on cloud; and ii) Memory Principle: keeping data plane
closer to the cloud so as to place rarely used prefixes at the cloud. The archi-
tecture of the CAR includes two types of routers: i) hardware routers: keep-
ing partial FIB, and ii) software routers: keeping full FIB. The authors
basically present an architectural framework for shifting CPU intensive com-
putation into the cloud to leverage cloud computation and memory benefits.
How much routing computation is shifted on the cloud is a basic consider-
ation in this architecture. The inter-domain routing in a BGP-based AS can
easily be shifted on this architecture by shifting Route Reflector into the
cloud.
3.3.9 OpenDaylight

OpenDaylight (ODL) is an open-source project under the Linux Foundation
[7]. Applications running on the ODL controller use a Service Abstraction
Layer (SAL) to communicate with different types of devices using a variety
of communication protocols, and provide RESTful APIs for use by external
applications. ODL was chosen as the controller in this implementation

DLUX

AAA-AuthN Filter

OpenDaylight APIs (REST)

Service Abstract Layer (SAL)
(Plugin Manager, Capability Abstraction, Flow Programming, Inventory, etc.)

OpenFlow OVSDB

...

NETCONF...

Orchestration
Layer
Orchestration
Layer

ControllerController

ControllerController

Data plane
Elements
Data plane
Elements

Basic network functions + Loadable modules

FIGURE 3.6
ODL architecture.

100 Software-Defined Networking and Security
because of its large open-source development community, as well as indica-
tions during decisionmaking that ODLwould be adopted as an industry stan-
dard. Thiswork extends the stable Lithium version of the controller. Figure 3.6
shows the ODL architecture including the different modules.
The ODL project repository, available at [16], follows a microservices archi-

tecture to control applications, protocols, plugins and interfaces between pro-
viders and customers. It uses YANG data structures along with shared data
stores and messaging infrastructure to implement a Model Driven SAL
(MD-SAL) approach to solving more complex problems. This model helps
keep the controller as lightweight as possible, providing users with the ability
to install protocols and services as needed. As of this book, the ODL ecosystem
has implementations for Switching, Routing, Authentication, Authorization
and Accounting (AAA), a DLUX-based Graphical User Interface (GUI) and
support for protocols such as OpenFlow, NETCONF, BGP/PCEP, SNMP,
CAPWAP. Additionally, it interfaces with OpenStack [207] and OVS through
the OVSDB Integration Project [214]. This modularization and separation of
functionality has been implemented per the Open Services Gateway Initiative
(OSGi) specification, and as such provides for service object initiation,
dynamic module handling and graceful exit.
ODL uses Apache Karaf [2] as its OSGi container. Applications2 in Karaf are

independent of each other, and can be started, stopped or restarted without
affecting other applications. Brew uses the l2switch, openflowplugin,
openflowjava, yangtools, netconf and dlux features. RESTCONF [47]
provides a RESTful API to perform Create, Retrieve, Update and Delete
(CRUD) operations using NETCONF, which itself is a means to configure net-
work elements in a vendor-agnostic manner using the YANG modeling
2 Interchangeably called bundles or features. Karaf command line uses the keyword feature.

MD-SAL

Application
YANG model

Application
Model data

Controller
Model

REST API

OpenFlow

A
pp

lic
a

tio
ns

FIGURE 3.7
MD-SAL application development.

SDN and NFV 101
language. Figure 3.7 shows the relationship between the different protocols
and modeling languages in a MD-SAL development paradigm [201]. A new
application development requires defining the application’s model using
YANG.
ODL maintains two different data stores, as shown in Figure 3.8. Classified

broadly on the type of datamaintained in them, they are: a) configuration data
store; and b) operational data store. Since the data is stored in a tree format, the
configuration and operational data stores are interchangeably called the con-
figuration and operational trees.
vSwitch n

Flow Table 1

ODL Controller

Configuration
Tree

Operational
Tree

......

Flow Table 2

...

Flow Table n

......

R
ul

e
1

R
ul

e
2

R
ul

e
n ...

vSwitch 1

......

FIGURE 3.8
ODL data stores.

102 Software-Defined Networking and Security
The configuration data store on each ODL controller contains data that
describes the changes to be made to the flow rules on the switches. It repre-
sents the intended state of the system, and is populated by administrators or
applications on the controller. The configuration data store contains informa-
tion about every device present in the environment, flow tables associated
with the devices, and the flow rules in every flow table. To give administra-
tors and other applications the ability to populate this data store, it has read/
write permission. The operational data store matches the configuration data
store in structure, but contains information that the controller discovers
about the network through periodic queries. It represents the state of the sys-
tem as understood by the data plane components in the environment. As
opposed to the configuration data store, the operational data store has
read-only permissions. The use of dual data stores is primarily to maintain
global knowledge of the environment while supporting a multiple controller
scenario. For example, if Controller 1 has a new flow rule that is used by an
OVS to direct traffic, Controller 2 would learn of this flow rule when it pop-
ulates its operational data store with all the flow rules present in the environ-
ment. This would happen irrespective of the communication between the
two controllers.
3.3.10 Distributed SDN Environments

Distributed controller environments in SDN are widely studied. Onix [159]
facilitates distributed control in SDN by providing each instance of the distrib-
uted controller access to holistic network state information through an API.
HyperFlow [267] synchronizes the network state among the distributed con-
troller instances while making them believe that they have control over the
entire network. Kandoo [289] is a framework tailored for a hierarchical con-
troller setup. It separates out local applications that can operate using the local
state of a switch, and lets the root controller handle applications that require
network-wide state. DISCO [216] is a distributed control plane that relies on a
per domain organization, and contains an east-west interface that manages
communication with other DISCO controllers. It is highly suitable for a hier-
archically decentralized SDN controller environment. ONOS [45] is anOS that
runs on multiple servers, each of which acts as the exclusive controller for a
subset of switches and is responsible for propagating state changes between
the switches it controls.
Dixit et al. [81] presented an approach to dynamically assign switches to the

controllers in a multiple controller environment in real-time. The balanced
placement of controllers can reduce the cost and the overhead for dynamic
assignment of controllers. Bari et al. [37] also presented a technique to dynam-
ically place controllers depending on the changes of number of flows in the
network. Controller placement problems have been studied extensively
from a performance perspective [37, 156, 288, 290], and based on resilience
[40, 123, 124, 272, 282].

SDN and NFV 103
3.3.11 Distributed SDN Controller Considerations

SDN was designed with a centralized control plane in mind. This empowers
the controller with a complete network-wide view and allows for the develop-
ment of control applications and for easier policy enforcement. Centralizing
the control plane in SDN is fraught with scalability challenges associated
with the SDN controller being a bottleneck [290]. Benchmarking tests on an
SDN have shown rapid increase in the performance of a single controller,
from about 30,000 responses per second using NOX [264] in 2009 to over
1,350,000 responses per second for Beacon [87] in 2013. But with data center
architectures dealing with 100 GB network traffic (equal to about 130 Million
Packets Per Second (MPPS) [12]), a single controller would still not scale well
enough to be deployed in a cloud environment [42]. Further, large production
environments still demand performance and availability [45]. Distributing the
controller responsibilities to multiple devices/applications, while maintaining
logical centralization is an obvious solution. Figure 3.9 shows a representation
of major different distributed controller categories; namely clustered and
hierarchical.
While the OpenFlow protocol supports multiple controller environments,

the controllers themselves need to be able to: a) allow a switch to establish
communication with them; and b) have mechanisms in place to process
handover, fail overs, etc. OpenFlow shields itself from the complexities of
a multiple controller environment, and just requires the controller to have
one of three roles - OFPCR_ROLE_MASTER, OFPCR_ROLE_EQUAL or OFPCR_
ROLE_SLAVE3.
Clustered Hierarchical

FIGURE 3.9
Distributed controller classes.

3 TheMaster and Slave roles are self-explanatory. Equal role andMaster role are exactly the same,
with the difference that only one controller can beMaster at a time,whilemultiple controllers can
share the Equal role.

104 Software-Defined Networking and Security
Moving to a distributed controller environment essentially splits the roles of
the SDN controller between multiple devices that communicate with the
switches, and a data store that retains complete environment knowledge.
3.3.12 Challenges in Multiple-Controller Domain

Several studies have attempted to study distributed SDN controllers. How-
ever, despite their attempt at distributing the control plane, they require a
consistent network wide view in all the controllers. Maintaining synchroniza-
tion and concurrency in a highly dynamic cloud environment is problematic.
Since the SDN switches look to the controllers for answers while handling
unfamiliar flows, knowing which controller to ask is important. Moreover,
the controllers themselves need to havemethodologies to decide who controls
which switch, and who reacts to which events. And most of all, consistency in
the security policies present on the controller is paramount - the absence of
which might result in attackers using application hopping across multiple
partitions of the SDN environment without permissions.
Since one of the primary motivations behind SDNwas a centralized control

plane that has complete knowledge of the environment, maintaining a com-
plete picture after dividing the network into multiple subnetworks requires
information aggregation. This could be challenging, especially when the envi-
ronments are dynamic.
While designing a distributed controller architecture, the implications of

controller placement need to be considered carefully. For example, security
policies in a mesh controller architecture would have to ensure minimal
address space overlap; while in a hierarchical architecture, it may be accept-
able for the lower level (leaf) controllers to share address spaces. In environ-
ments where latency is a concern, the distance between controllers and the
switches needs to be minimized.
Finally, studies also suggest that distributed control planes are not adapt-

able to heterogeneous and constrained network deployments [216]. This
removes a certain amount of desired design flexibility from the SDN setup.
3.4 Advanced Topic: Deep Programmability

The recent developments in the field of SDN saw emergence of protocols sim-
ilar to OpenFlow that could widen the movement towards adoption of SDN.
Programming Protocol Packet Processors (P4) [50] is one such language. The
OpenFlow protocol originally started with Layer 2 headers that allowed pro-
cessing of packets traversing through OpenFlow capable switches. The num-
ber of headers have grown from 12 to 41 in the latest version of OpenFlow.
This has increased the expressive capability of the protocol, but at the same

SDN and NFV 105
time increased the complexity of adding new headers. Different cloud and
data-center service providers need additional headers to the current Open-
Flow protocol, in order to support encapsulation (e.g., VXLAN, NVGRE,
and STT). The P4 proposes a flexible mechanism for the parsing of packets
and matching header fields. The goals of P4 are

1. Reconfigurability, allowing programmers to change theway inwhich
switches process the packets, once they are deployed.

2. Protocol independence, where switches should not be tied to specific
network protocols. The packet parser in the OpenFlow switches is
fixed, whereas P4 allows creation of custom parser for different types
of network traffic. Additionally, P4 consists of a collection of typed
match+action tables to process the packets.

3. Target independence, wherein the packet processing capability
should be independent of the underlying hardware.

3.4.1 P4 Forwarding Model

P4 digresses from the fixed switch design in OpenFlow protocol. The recent
chip designs allow low-level chip interface to be exposed in form of abstract
interface for the programmers to configure the switch behavior at terabit
speeds. P4 acts as a middleware between the switches and SDN controller,
allowing the SDN controller to change the way switch operates. P4 forward-
ing model consists of two main operations, i.e., Configure and Populate. The
configuration operation creates a parser for the network traffic, sets the order
of match+action stages, and specifies the header fields to be processed at
each stage. It also specifies the protocols supported and other packet pro-
cessing operations. The populate operation adds/removes the entries from
match+action tables created during the configuration phase.
As shown in Figure 3.10, the packets arriving are handled first by the parser.

The header fields of the parser are extracted and the protocols supported
by the switch are identified. The packet body is buffered separately. The
extracted header fields are then passed to the match+action tables to deter-
mine the packet egress port and the queue that is processing the packet. Based
on the match+action, the packet may be forwarded, dropped, rate limited or
replicated. The packet is then passed to egress match+action for per-instance
flow modification, frame-to-frame flow state tracking. Packet can also carry
additional metadata for information such as packet scheduling, virtual net-
work identifier, etc.
3.4.2 P4 Programming Language

P4 follows control flow programming paradigm to describe header field pro-
cessing using declared header types and a primitive set of actions. P4 language

FIGURE 3.10
P4 abstract forwarding model.

106 Software-Defined Networking and Security
allows identification of sequential dependencies between header fields of
the packet as shown in the Figure 3.11, and optimize the packet processing
by executing some operations in parallel. The Table Dependency Graphs
(TDGs) shown above help in describing field inputs, actions and control
flow between tables.
P4 consists of a two-step compilation process. At higher level the program-

mers express the packet processing using imperative control flow language
(P4), the control flow is then translated into TDG, which facilitates depend-
ency analysis and mapping of TDG to a specific target switch. The detailed
FIGURE 3.11
P4 table dependency graph (TDG) for L2/L3 switch.

FIGURE 3.12
PISA architecture.

SDN and NFV 107
programming repository and tutorials for testing P4 language can be analyzed
by the interested reader by cloning P4 git repository [51].
3.4.3 Protocol Independent Switch Architecture

The network switches in modern data centers have fixed functions. The flex-
ibility required by network programmers in order to modify the behavior of
the network switches comes at a cost of performance. Protocol Independent
Switch Architecture (PISA) is a new paradigm for processing packets at
high speed, under the programmatic control of the user.
As shown in the Figure 3.12, PISA [76, 253] consists of about 11 primitive

instructions that can be programmed using very uniform pipeline of program-
ming stages to process packet headers in rapid succession. The programs
are written in P4 language, and compiled by Barefoot Capilano compiler,
which allows line-rate packet processing on the PISA device. Example of
PISA device includes Barefoot Network’s Tofino switch which operates at
6.5Tb/s, and is fully programmable via P4 programming language.
Summary

The need for dynamism in allocating resources to changing and growing need
for networking capability to support compute capability gave rise to two com-
plementary paradigms - NFV and SDN. They both allow the network admin-
istrators to manage network services through abstraction of lower-level

108 Software-Defined Networking and Security
functionalities, as well as provide programmable APIs allowing computer
networking applications to interact with networking functions based on pre-
defined programming logic and network traffic situations.
While both sought to bring in agility and dynamism, they are fundamen-

tally different. NFV and SDN address common objectives: allow network ser-
vices to be automatically deployed and programmed. More precisely, SDN is
a tool typically used for dynamically establishing a connection between VNFs.
Furthermore, the infrastructure services addressed by SDN are rather basic
connectivity services, while the NFVI services address a larger scope and pro-
vide a framework for virtualization and orchestration.
Thanks to NFV architecture and processes, the infrastructure services layer

is decoupled from the resources layer. In addition, network and IT resources
will soon be allocated and managed per infrastructure services. Thus, by iso-
lating IoT use-cases, the risks to impact other infrastructure services, flood or
break down the whole infrastructure is prevented.

4
Network Security Preliminaries
Network security consists of the policies and practices adopted to prevent and
monitor unauthorized access, misuse, modification, or denial of a computer
network and network-accessible resources. Network security involves the
authorization of access to data in a network, which is traditionally controlled
by the network administrator. To achieve the goal of network security, one
must first understand attackers, what could become their targets, how these
targets might be attacked, what gains attackers can derive, and consequences
that the victim will suffer. Thus, how to model attacks is the first target of this
chapter. The tasks of network security are to provide confidentiality, integrity,
nonrepudiation, and availability of useful data that are transmitted in public
networks or stored in networked computers. Building a deep layered defense
system is the best possible defense tactic in network security. Within this type
of defense system, multiple layers of defense mechanisms are used to resist
possible attacks. Follow this strategy, we also presented layered security
approaches by describing network reconnaissance, preventive defense solu-
tions, and network security monitoring andmanagement foundations. By fin-
ishing this chapter, readers should have a fundamental understanding of
computer network security.
The rest of this chapter is arranged as follows: In Section 4.1, basic concepts

of computer network security are presented including threat and attack
models, layered security defense, and cyber killer chain; network mapping
and port scanning based network reconnaissance are presented in Section 4.2;
preventive network security approaches such as firewall and IPS are
described in Section 4.3; network intrusion prevention and secure logging ser-
vices are presented in Section 4.4; and finally, the network security assess-
ment approaches are presented in Section 4.5.
4.1 Basic Concepts of Computer Network Security

4.1.1 Threat, Risk, and Attack

In computer security, a threat is a possible danger that might exploit a vulner-
ability to breach security and therefore cause possible harm. A threat can be
either “intentional” (i.e., hacking froman individual cracker or a criminal orga-
nization) or “accidental”, e.g., the possibility of a computer malfunctioning.
109

FIGURE 4.1
Security terms: vulnerability, threat, attack, and risk.

110 Software-Defined Networking and Security
In the area of computer network security, threat modeling is about riskman-
agement in their core, and thus, they are often used in the same conversations.
The terms threat and attack are often used interchangeably, which most often
leads to incorrect interpretation of their meanings. Generally speaking, a
threat is often due to the existence of vulnerabilities in a system that can be
explored through actual attack actions. Thus, it is important to understand
the relation among terms: threat, risk, vulnerability, and attack. Their relation
is highlighted in Figure 4.1. In short, the relation among vulnerability, threat,
attack, and risk can be explained as follows:

∙ A vulnerability is a weakness or gap in a security system that can be
either exploited by attackers or caused by malfunctioning system
components.

∙ A threat is the possibility of exploration of vulnerabilities that can
lead to something bad happening, and it emphasizes the qualitative
of potential damages due to explored vulnerabilities.

∙ An attack is an action triggered by deploying an attacking method,
when a vulnerability is exploited to actually realize a threat.

∙ A risk is the quantifiable likelihood of loss due to a realized threat, and
it emphasizes the quantitative of potential damages.

As shown in Figure 4.1, the two terms that get mixed up most often are
threat and attack. They both aim to achieve damages, losses, or destruction
of a given computer system. However, they focus on different security mod-
eling aspects. Generally speaking, when we try to model vulnerabilities from
an adversarial viewpoint, we are doing attack modeling but not threat mod-
eling. For example, when we start with a vulnerability, and see what kind of
damage it can lead to through deploying attacks, we basically model an
attack. This is how traditional “bug hunting” operates.
For threat modeling, it is generally viewed from the defender’s viewpoint,

in which we start with a vulnerability, and see how likely the vulnerability
can be explored, i.e., qualitative analysis. In formal terms, threat modeling
is the process of identifying a system (or assets), potential threats against

Network Security Preliminaries 111
the system. It is thinking ahead of time about what could go wrong and acting
accordingly. Through a quantitative measurement model if we can build one,
we can usually derivate a risk analysis model for a given explorable vulnera-
bility. As a result, risk analysis is usually performed offline before a damage
can happen based on a given system/asset containing one or multiple
vulnerabilities.
When evaluating a countermeasure of an attack, we usually use attack

model to describe four interdependent terms:

∙ The source of attacks: there are two types of attackers based on their ori-
gins called inside attacker (or insider) and outside attacker (or out-
sider). For inside attackers, they are usually initiated within the
security perimeter by an authorized user, e.g., a privileged DBA copy-
ing customer information and selling it. For outside attackers, they are
usually initiated from the outside of security perimeter by an unau-
thorized user, e.g., an attacker performing a SQL Injection attack
via a vulnerable application.

∙ The method of attacks: there are two types of attack methods based on
the intention of the attacker called passive attacks and active attacks.
For passive attacks, attackers do not alter resources while trying to
learn information, e.g., wiretapping, port scanning, etc. For active
attacks, attackers alter resources, e.g., IP spoofing, DDoS attacks,
buffer overflows attacks, etc.

∙ The target of attacks: it is the objective of attackers to try to compromise.
For example, an attack target can be a program, a computer system, a
network segment, etc.; in other words, it is also called victim in
computer security.

∙ The consequence of attacks: it describe outcomes by successfully deploy-
ing an attack. It is a multi-faceted consequence. From the functional
aspect, the attacking target can be malfunctioned, e.g., not working
orwrong function logics. From the social aspect, the victim (or the vic-
tim owner) will lose reputation as a result of security breaches. From
the economic aspect, the cost for the security breach remedy can be
prohibitively high.

4.1.2 Defense In Depth

Defense in depth (also known as Castle Approach [197]) is the concept of pro-
tecting a computer network with a series of defensive mechanisms such that
if one mechanism fails, another will already be in place to thwart an attack
[184]. Because there are so many potential attackers with such a wide variety
of attack methods available, there is no single method for successfully pro-
tecting a computer network. Utilizing the strategy of defense in depth will
reduce the risk of having a successful and likely very costly attack on a
network.

Preven�ve
Solu�ons

FW

NIDS

Detec�on &
response

Data

Backup
Data

Survivability
&Recovery

A�acks

FIGURE 4.2
Layers of computer network security.

112 Software-Defined Networking and Security
Generally speaking, the layers of computer network security can be broadly
presented as three-layer defense in depth framework, which is presented in
Figure 4.2. The first layer is a prevention mechanism that stops attacks from
getting into the networking system. Inevitably, some attacks can defeat the
prevention mechanisms. That is, there are “holes”, or, weaknesses, in the pre-
vention mechanism that allows some attacks to get through. For example, a
packet filtering Firewall (FW) cannot prevent application-level attacks, e.g.,
downloading a malicious code that can be triggered in the future.
The second layer is detection and responsemechanisms that watch activities

on systems and networks to detect attacks and repair the damages. Again,
there will be attacks that can go undetected, at least for a while. For example,
attacks that blend in with normal activities, such as the Advanced Persistent
Threat (APT) malware can be a malicious browser plug-in, in which it is
hard to detect initially, not until its effects, such as data loss due to stolen cre-
dentials, manifest sometime later.
The third layer is attack-resilient technologies that enable the core elements,

or, the most valuable systems, on the network to survive attacks and continue
to function. For example, a database server is a collection of diversified sys-
tems with redundant backups, so that compromised data can be recovered
after the attack created damages in one database system.
4.1.3 Cyber Killer Chain

The term “kill chain” is a term used originally by the military to define the
steps the enemy uses to attack a target. In 2011 Lockheed Martin released a
paper defining a “Cyber Kill Chain” [180] that adopts the concept of a proce-
dural step-by-step attacking method consisting of target identification, force
dispatch to target, decision and order to attack the target, and finally the
destruction of the target. Particularly, the cyber kill chain includes the follow-
ing steps:

∙ Reconnaissance: The attacker gathers information on the target before
the actual attack starts. Attackers collect information on their

Network Security Preliminaries 113
intended targets by searching the Internet, social network sites such as
LinkedIn or Facebook. In addition, theymay try to gather information
through social engineering approaches such as employee calling,
email interactions, dumpster diving, etc. Operations Security
(OPSEC) [278] plays a big defending role here: trained and aware
workforces will know they are a target and limit what they publicly
share; they will authenticate people on the phone before they share
any sensitive information; they safely dispose of and shred sensitive
documents; etc. At the network level, networking mapping and
port scanning are fundamental approaches that an attack can under-
stand the targeting network’s topology and running services. They
can be followed by vulnerability exploration by using various
penetration tools.

∙ Weaponization: Cyber attackers do not interact with the intended vic-
tim, instead they create their attack. For example, the attacker may
create a malicious code, e.g., network worm, for later sending to an
identified vulnerable network port in the targeting system.

∙ Delivery: Transmission of the attack to the intended victim(s). For
example, this would be sending the actual malicious codes to a victim
network node.

∙ Exploitation: This implies actual detonation of the attack, such as the
exploit running on the system. For example, the explored vulnerable
system may suffer buffer-overflow problem and the attacker may
gain root privilege of the exploited system. Then, the attacker can
do further malicious actions on it, such as erase the trace, install
back-door software, etc.

∙ Installation: The attacker may install malware on the victim. However,
not all attacks require malware, such as a CEO Fraud Attack, harvest-
ing login credentials, or stealing secret data.

∙ Command & Control (C&C): This implies that once a system is compro-
mised and/or infected, the system has to call home to a C&C, a Com-
mand and Control system for the cyber attacker to gain control, which
is usually done through the installed back-door program.

∙ Actions on Objectives: Once the cyber attackers establish access to the
organization, they then execute actions to achieve their objectives/
goal. Motivations greatly vary depending on the attacking goal, to
include political, financial or military gain. Nowadays, attackers are
quite commonly using the compromised system as a stepping stone
to explore the next victim. In such, the traditional strong north-south
bound traffic control, in which the security is heavily depending on
perimeter firewalls will not work well. Attackers may laterally
explore vulnerable systems through east-west traffic within the
secure perimeter.

114 Software-Defined Networking and Security
Cyber killer chain is a comprehensive approach to model attackers’ behav-
ior based on a step-by-step procedural approach. However, it has limitations
in that attackers may not follow the identified step, and sometimes, they may
change the sequence [160]. For insider attacks, some steps can be skipped; and
for Advanced Persistent Threat (APT) attackers, they can explore the system
through a long duration, which cannot be easily identified and prevented
using traditional network security solutions. However, understanding attack-
ers’ potential actions and goals is helpful to construct security solutions tar-
geted at each step.
4.2 Network Reconnaissance

4.2.1 Network Mapping

Networkmapping is the study of the connectivity of networks at the layer 3 on
a TCP/IP network. Network mapping discovers the devices, i.e., virtual or
physical, on the network and their connectivity. There are two prominent
techniques used today for networkmapping. The first works on the data plane
of the network and is called active probing. It is used to infer network topol-
ogy based on router adjacencies. The second works on the control plane and
infers autonomous system connectivity based on network management sys-
tem, e.g., SNMP (Simple Network Management Protocol).
Active probing relies on traceroute-like probing on the IP address space.

These probes report back IP forwarding paths to the destination address. By
combining these paths, an attacker can infer router level topology for a given
scanning network. Active probing is advantageous in that the paths returned
by probes constitute the actual forwarding path that data takes through net-
works. However, active probing requires massive amounts of probes to map
the entire network and itmaymiss some links/paths that are not on the shortest
path of probes. It is alsomore likely to infer false topologies due to load balanc-
ing routers and routerswithmultiple IP address aliases. Decreased global sup-
port for enhanced probing mechanisms such as source-route probing, ICMP
Echo Broadcasting, and IP Address Resolution techniques leaves this type of
probing used mainly in the realm of network diagnosis.
Using network management framework such as SNMP is another way to

achieve the network mapping. However, SNMP v3 [258] has strong security
protection, which is difficult for external attackers to compromise themanage-
ment system. Other auditing systems such as network logs can be potentially
attacking targets.
Through network mapping, attackers aim to find out whichever systems

they can reach, and their connectivity to other victims that cannot be directly
reached from attackers. If the attackers have no access to your internal net-
work, they will begin by mapping and scanning your Internet gateway,

Network Security Preliminaries 115
including your DMZ systems, such as Internet-accessibleWeb, Mail, FTP, and
DNS servers. They will methodically probe these systems to gain an under-
standing of your Internet perimeter. After conquering your perimeter, the
attackers will attempt to move on to your internal network.
4.2.2 Port Scanning

After attackers know the addresses of live systems on the network and have
basic understanding of your network topology, next they want to discover
the purpose of each system and learn potential entryways into the victim hosts
by analyzing which ports are open. Active TCP and UDP ports on a host are
indicative of the services running on those systems. Eachmachinewith a TCP/
IP stack has 65,535 TCP ports and 65,535 UDP ports. Every port with a listen-
ing service is a potential doorway into the machine for the attacker, who will
carefully take an inventory of the open ports using a port-scanning tool.
For example, a web server listens to TCP port 80 for unencrypted traffic and

TCP port 443 for encrypted traffic that are default ports assigned to the web
service. When running a DNS server, UDP port 53will be open. If the machine
is hosting an Internet mail server, TCP port 25 is likely open. RFC1700,
Assigned Numbers, which contains a list of these commonly used port num-
bers and now assigned port numbers are maintained by an online database
by IANA [69].
4.2.3 Vulnerability Scanning and Penetration Testing

Vulnerability scanning is an inspection of the potential points of exploit on a
computer or network to identify security holes. For security enhancement pur-
poses, a vulnerability scan detects and classifies system weaknesses in com-
puters, networks and communications equipment and predicts the
effectiveness of countermeasures. A scan may be performed by an organiza-
tion’s IT department or a security service provided possibly as a condition
imposed by some authority. From the attacking aspect, vulnerability scans
are also used by attackers looking for vulnerabilities as points of entry to
hack into the system.
A vulnerability scanner (such as Nessus, Open VAS, GFI LANGuard,

Rapid7, Retina, Qualys) usually runs from the end point of the person inspect-
ing the attack surface in question. The software compares details about the tar-
get attack surface to a database of information about known security holes in
services and ports, anomalies in packet construction, and potential paths to
exploitable programs or scripts. The scanner software attempts to exploit
each vulnerability that is discovered. Running a vulnerability scan can pose
its own risks, as it is inherently intrusive on the target machines running
code. As a result, the scan can cause issues such as errors and reboots, reduc-
ing productivity.

116 Software-Defined Networking and Security
Generally speaking, there are two approaches to perform a vulnerability
scan, namely, unauthenticated and authenticated scans. In the unauthenti-
cated method, the scanner performs the scan as an intruder would, without
trusted access to the network. Such a scan reveals vulnerabilities that can be
accessed without logging into the network. For an authenticated scan, the
scanner logs in as a network user, revealing the vulnerabilities that are acces-
sible to a trusted user, or an intruder that has gained access as a trusted user.
Another quite often used security term is penetration testing, which can be

easily confused when distinguishing it from vulnerability scanning. Indeed,
penetration testing is quite different, as it attempts to identify insecure busi-
ness processes, insecure system settings, or other weaknesses. For example,
transmission of unencrypted passwords, password reuse, and forgotten data-
bases storing valid user credentials are examples of issues that can be discov-
ered by a penetration test. Penetration tests do not need to be conducted as
often as vulnerability scans but should be repeated on a regular basis.
Penetration tests are best conducted by a third-party vendor rather than

internal staff to provide an objective view of the network environment and
avoid conflicts of interest. Various tools are used in a penetration test, but
the effectiveness of this type of test relies on the tester. The tester should
have a breadth and depth of experience in information technology, preferably
in the organization’s area of business; an ability to think abstractly and
attempt to anticipate threat actor behaviors; the focus to be thorough and com-
prehensive; and a willingness to show how and why an organization’s envi-
ronment could be compromised.
A penetration test report should be short and to the point. It can have appen-

dices listing specific details, but the main body of the report should focus on
what data was compromised and how. To be useful for the customer, the
report should describe the actual method of attack and exploit, the value of
the exploited data, and recommendations for improving the organization’s
security posture. In Table 4.1, a comparison is given to describe the difference
between vulnerability scan and penetration test.
4.3 Preventive Techniques

4.3.1 Firewalls

In computer security, a firewall (FW) is a component or set of components
that restricts access between a protected network and the Internet, or
between other sets of networks. In Chapter 6, we provide a more advanced
topics of firewalls. In this section, we focus on technical background of fire-
walls. Some frequently used terms that are highly related to firewalls are
given below:

TABLE 4.1

Comparison of Vulnerability Scans Versus Penetration Tests

Vulnerability Scan Penetration Test

Frequency More frequently and can be ad hoc,
especially after new equipment is
loaded or the network undergoes
significant changes

Once or twice a year, as well as
anytime the Internet-facing
equipment undergoes significant
changes

Reports Provide a comprehensive baseline of
what vulnerabilities exist and what
changed since the last report

Concisely identify what data was
compromised

Focus Lists known software vulnerabilities
that could be exploited

Discovers unknown and exploitable
weaknesses in normal business
processes

Performed by Typically conducted by in-house staff
using authenticated credentials; does
not require a high skill level

Best to use an independent, outside
service and alternate between two or
three; requires a great deal of skill

Value Detects when equipment could be
compromised

Identifies and reduces weaknesses

Network Security Preliminaries 117
∙ Host: A computer system attached to a network.

∙ Dual-homedhost:Adual-homedhost is a termused to referencea typeof
firewall that uses two (or more) network interfaces. One connection
is to an internal network and the second connection is to the Internet.
A dual-homed host usually runs general purpose operating system
to support firewall applications running in it.

∙ Network Address Translation (NAT): A procedure by which a router
changes data in packets to modify the network addresses. This allows
a router to conceal the addresses of network hosts on one side of it.
This technique can enable a large number of hosts to connect to the
Internet using a small number of allocated addresses or can allow a
network that is configured with illegal or un-routable addresses to
connect to the Internet using valid addresses. It is not actually a secur-
ity technique, although it can provide a small amount of additional
security. However, it generally runs on the same routers that make
up part of the firewall.

∙ Perimeter network: A network added between a protected network and
an external network in order to provide an additional layer of secur-
ity. A perimeter network is sometimes called a DMZ,which stands for
De-Militarized Zone (named after the zone separating North and
South Korea).

∙ Proxy: A program that deals with external servers on behalf of internal
clients. Proxy clients talk to proxy servers, which relay approved cli-
ent requests on to real servers, and relay answers back to clients.

118 Software-Defined Networking and Security
A packet filtering firewall performs packet filtering action a device takes
to selectively control the flow of data to and from a network. Packet filters
allow or block packets, usually while routing them from one network to
another (most often from the Internet to an internal network, and vice
versa). To accomplish packet filtering, a set of rules is set up to specify
what types of packets (e.g., those to or from a particular IP address or
port) are to be allowed and shat types are to be blocked. Packet filtering
may occur in a router, in a bridge, or on an individual host. It is sometimes
known as screening.
To provide more scrutinized security protection by using a firewall, it is

desirable to keep tracking of network connections. To this end, stateful inspec-
tion takes the basic principles of packet filtering and adds the concept of
packet transmission history, so that the Firewall considers the packets in the
context of previous packets belonging to the same networking session (usu-
ally at the transport layer). A firewall can perform stateful inspection is called
Stateful Firewall.
For example, a stateful firewall records when it sees a TCP SYN packet in

an internal table, and in many implementations will only allow TCP packets
that match an existing conversation by tracking the TCP connection and
sequence numbers to be forwarded to the network. Using stateful firewall,
it is possible to build up firewall rules for protocols, which cannot be prop-
erly controlled by packet filtering (e.g., UDP-based protocols). The drawback
is that the stateful firewall’s implementation is necessarily more complex
and therefore more likely to be buggy. Moreover, it also requires a firewall
device with more memory and a more powerful CPU, etc., for a given traffic
load, as information has to be stored about each and every traffic flow seen
over a period of time. In Table 4.2, a comparison among a few firewall tech-
nologies is provided.
In firewall terminology, a Bastion host is a special purpose computer on a

network specifically designed and configured to withstand attacks. The com-
puter generally hosts a single application, for example a proxy server, and all
other services are removed or limited to reduce the threat to the computer. A
Bastion host is usually considered as an application-layer gateway that is
TABLE 4.2

Comparison of Firewall Technologies

Firewall Capability Packet Filters
Application-

Layer Gateways
Stateful

Inspection

Communication information Partial Partial Yes

Communication-derived state No Partial Yes

Application-derived state No Yes Yes

Information manipulation Partial Yes Yes

Network Security Preliminaries 119
configured to inspect a specific application and it can check the correctness of
application logics and application data content. It is hardened in this manner
primarily due to its location and purpose, which is either on the outside of a
firewall or in a DMZ and usually involves access from untrusted networks or
computers.
An Example of Screened Subnet Firewall Architecture

Here, a screened subnet firewall architecture is illustrated. Figure 4.3 shows an
example firewall configuration that uses the screened subnet architecture.
In this example, the perimeter network is another layer of security, an addi-

tional network between the external network and your protected internal net-
work. If an attacker successfully breaks into the outer reaches of your firewall,
the perimeter net offers an additional layer of protection between that attacker
and your internal systems.
With a perimeter network (or DMZ), if someone breaks into a bastion host

on the perimeter net, he will be able to snoop only on traffic on that net. All the
traffic on the perimeter net should be either to or from the bastion host, or to or
from the Internet. Because no strictly internal traffic (that is, traffic between
two internal hosts, which is presumably sensitive or proprietary) passes
over the perimeter net, internal traffic will be safe from prying eyes if the bas-
tion host is compromised.
A bastion host is attached to the perimeter network and this host is the main

point of contact for incoming connections from the outside world; for exam-
ples: for incoming email (i.e., SMTP) sessions to deliver electronic mail to
the site; for incoming FTP connections to the site’s anonymous FTP server;
and for incoming domain name service (DNS) queries about the site. By
Untrusted Networks

Bas�on Host

Exterior Router

Interior Router

Perimeter Network

Internal Network

Firewall

FIGURE 4.3
Traditional screened subnet architecture (using two routers).

120 Software-Defined Networking and Security
setting up proxy servers to run on the bastion host to allow internal clients to
access external network indirectly. We can also set up packet filtering to allow
the internal clients to talk to the proxy servers on the bastion host and vice
versa, but to prohibit direct communications between internal clients and
the outside world.
The interior router (sometimes called the choke router in firewalls litera-

ture) protects the internal network both from the Internet and from the
perimeter net. The interior router does most of the packet filtering for
the firewall. It allows selected services outbound from the internal net to
the Internet.
The exterior router (sometimes called the access router in firewalls litera-

ture) protects both the perimeter net and the internal net from the Internet.
In practice, exterior routers tend to allow almost anything outbound from
the perimeter net, and they generally do very little packet filtering. The packet
filtering rules to protect internal machines would need to be essentially the
same on both the interior router and the exterior router; if there is an error
in the rules that allows access to an attacker, the error will probably be present
on both routers.
The example presented in Figure 4.3 illustrated the mostly popular firewall

setup for a private network connected to the Internet, where the trusted
and untrusted domain boundary is clearly defined. However, with the fast-
developed virtualization technology in both enterprise and datacenter net-
working environments, the boundary is not able to be defined clearly. As a
result, the trusted domain boundary can be shrunk at the interface level,
and a more scrutinized firewall system, e.g., distributed firewall, is required
to provide protection on microsegmented networking systems, which will
be described in Chapter 6.
4.3.2 Intrusion Prevention

An Intrusion Prevention System (IPS) is a network security/threat prevention
technology that examines network traffic flows to detect and prevent vulner-
ability exploits. Vulnerability exploits usually come in the form of malicious
inputs to a target application or service that attackers use to interrupt and
gain control of an application or machine. Following a successful exploit,
the attacker can disable the target application (resulting in a denial-of-service
state) or can potentially access to all the rights and permissions available to the
compromised application.
An IPS implementation often sits directly behind the firewall and provides

a complementary layer of analysis that negatively selects for dangerous con-
tent. Unlike an Intrusion Detection System (IDS), which is a passive system
that scans traffic and reports back on vulnerability exploits, the IPS is placed
inline (in the direct communication path between source and destination),
actively analyzing and taking automated actions on all traffic flows that enter
the network. Specifically, these actions include:

Network Security Preliminaries 121
∙ sending an alarm to the administrator (as would be seen in an IDS),

∙ dropping the malicious packets,

∙ blocking traffic from the source address, and

∙ resetting the connection.

As an inline security component, the IPS must work efficiently to avoid
degrading network performance. It must also work fast because exploits
can happen in near real-time. The IPSmust also detect and respond accurately,
so as to eliminate threats and false positives (legitimate packets misread as
threats).
The IPS has a number of detection methods (which is also applied for IDS)

for finding exploits, but signature-based detection and statistical anomaly-
based detection are the two dominant mechanisms. Signature-based detection
is based on a dictionary of uniquely identifiable patterns (or signatures) in the
code of each exploit. As an exploit is discovered, its signature is recorded and
stored in a continuously growing dictionary of signatures. Signature detection
for IPS breaks down into two types:

1. Exploit-facing signatures identify individual exploits by triggering on
the unique patterns of a particular exploit attempt. The IPS can iden-
tify specific exploits by finding a match with an exploit-facing signa-
ture in the traffic stream.

2. Vulnerability-facing signatures are broader signatures that target the
underlying vulnerability in the system that is being targeted. These
signatures allow networks to be protected from variants of an exploit
that may not have been directly observed in the wild, but also raise
the risk of false positives.

In addition to signature detection, there is another group of detection
called statistical anomaly detection which takes samples of network traffic
at random and compares them to a pre-calculated baseline performance level.
When the sample of network traffic activity is outside the parameters of base-
line performance, the IPS takes action to handle the situation.
4.4 Detection and Monitoring

4.4.1 Intrusion Detection

An Intrusion Detection System (IDS) is a network security technology origi-
nally built for detecting vulnerability exploits against a target application or
computer. As we described previously, IPS extends IDS solutions by adding
the ability to block threats in addition to detecting them and has become the
dominant deployment option for IDS/IPS technologies. However, an IDS

122 Software-Defined Networking and Security
needs only to detect threats and as such is placed out-of-band on the network
infrastructure, meaning that it is not in the true real-time communication path
between the sender and receiver of information. Rather, IDS solutions will
often take advantage of a TAP or SPAN port to analyze a copy of the inline
traffic stream (and thus ensuring that IDS does not impact inline network
performance).
IDSwas originally developed this way because at the time the depth of anal-

ysis required for intrusion detection could not be performed at a speed that
could keep pace with components on the direct communications path of the
network infrastructure.
As explained, the IDS is also a listen-only device, i.e., a sniffer of network

traffic. The IDS monitors traffic and reports its results to an administrator,
but cannot automatically take action to prevent a detected exploit from taking
over the system. Attackers are capable of exploiting vulnerabilities very
quickly once they enter the network, rendering the IDS an inadequate deploy-
ment for prevention device.
In Table 4.3, we summarize the differences in technology intrinsic to IPS and

the IDS deployment.
4.4.2 Logging

Logs are a critical part of a secure system; they give you deep insights about
occurred events for later security analysis. Broadly speaking, we can catego-
rize logging systems into three groups: (1) host-based log, (2) centralized
log, and (3) decentralized log. The host-based logging solution stores logs
on individual hosts. This approach minimizes the network traffic by transfer-
ring logs into a centralized log server; however, it incurs significant manage-
ment overhead to retrieve logging data from individual hosts. Moreover, the
TABLE 4.3

Comparison of IPS and IDS

IPS IDS

Placement in Network
Infrastructure

Part of the direct line of
communication (inline)

Outside direct line of
communication (out-of-band)

System Type Active (monitor & automatically
defend) and=or passive

Passive (monitor & notify)

Detection Mechanisms 1. Statistical anomaly
based detection

2. Signature detection

∙ Exploit-facing
signatures

∙ Vulnerability-facing
signatures

1. Signature detection:

∙ Exploit-facing
signatures

Network Security Preliminaries 123
logging data is vulnerable to host-based attacks, in which attackers may com-
promise a host and thus modify logged data.
For centralized logging approach, individual hosts or networking devices

send their logs to a centralized logging service for log management and anal-
ysis. Using the centralized approach, log analysis model can be effectively
deployed. It requires the centralized logging service to be robust against net-
work attacks to avoid single point failure. For decentralized logging services,
they are usually built on centralized logging solutions, in which multiple cen-
tralized-logging systems can be established to handle specific applications to
address the scalability issues. Moreover, isolating different application logs,
it will be easier to set up log analysis models with the application-focused
log data.
For a given large datacenter networking environment, providing a central-

ized logging service, we usually require to establish four interdependent ser-
vices, namely: collect logs, transport, store, analyze, and alerting.

Log Collection

All the applications create logs in different ways, some applications log
through system logs (e.g., syslog) and other logs directly in files. When estab-
lishing a typical web application running on a Linux server, there will be a
dozen more log files in /var/log and also a few application-specific logs in
the home directories and other locations. Basically, there will be logs gener-
ated by different applications at a different place.
There are two basic approaches to collect logs:

∙ Use the replication approach, where files are replicated to a central
server on a fixed schedule. We can set up a cron job that will replicate
log files on Linux server to the central log server. The cron job usually
introduces delay due to the scheduled time intervals between two
consecutive cron jobs.

∙ Use direct remote logging protocol to send log data when generated
from the system without a delay. For example, we can configure
syslog to send a new logged event to a remote logging server through
a TCP port.

Transport

There are many frameworks available to transport log data. One way is
directly plug input sources and framework can start collecting logs and
another way is to send log data via API. Application code is written to log
directly to these sources; it reduces latency and improves reliability. Some
popular remote logging applications include: Logstash and Fluntd– open
source log collector that are written in Ruby– and Flume– an open source
log collector that is written in Java. These frameworks provide input sources
but also support natively tailing files and transporting them reliably.

124 Software-Defined Networking and Security
To log data via APIs, which is generally a more preferred way to log data to
a central application, these are several frameworks that can be used; for exam-
ples, Scribe– an open source software by Facebook that is written in C++ – nsq–
an open source that is written in Go– and Kafka– an open source software by
Apache that is written in Java.

Storage

To store logs, the storage system should be highly scalable, as the data will
keep on growing and it should be able to handle the growth over time. Several
factors should be taken into consideration:

∙ Time – for how long should logged data be stored?When logs are for long-
term and do not require immediate analysis, they can be archived and
saved on S3 or AWSGlacier, as they provide a relatively low cost for a
large amount of data. When logs are for short-term, e.g., a few days or
months of logs, we can use distributed storage systems like Cassandra,
MongoDB, HDFS or ElasticSearch, etc. For ephemeral data, e.g., just a
few hours, we can use Redis for example.

∙ Volume – how huge would the logged data be? Google and Facebook cre-
ate a much larger volume of data in a day compared to a week’s data
of a simple NodeJs application. The storage system should be highly
scalable and scale horizontally as log data increases.

∙ Access – how will you access the logs? Some storage systems are not suit-
able for real-time analysis, for example AWSGlacier can take hours to
load a file. AWS Glacier or Tape Backup does not work if we need to
access data for troubleshooting analysis. ElasticSearch or HDFS is a
good choice for interactive data analysis and working with raw
data more effectively.

Analysis

Traditional parallel data computingmodels such asHadoop and SPARK can be
used for log data analysis. However, the user needs to build the analysis algo-
rithms. There are many tools specially designed for log analysis, if a UI for
analysis is required, we can parse all the data in ElasticSearch and use Kibana
orGreylog2 to query and inspect the data.Moreover,Grafana andKibana can be
used to show real-time data analytics.
Alerting

Logs are very useful for troubleshooting errors and alert system administra-
tors when critical events are detected. Using the alerting built in the logging
application system, it will send an email or notify us then to have someone

Network Security Preliminaries 125
keep watching logs for any changes. There are many error reporting tools
available; we can use Sentry, Honeybadger, or Riemann.
4.5 Network Security Assessment

A network security assessment will help us determine the steps we need to
take to prepare ourselves, our organization, and our network for the threats
of today and tomorrow. It must be a comprehensive evaluation by consider-
ing various attack scenarios based on attack models (from the attacker’s per-
spectives) or threat models (from the defender’s perspectives). An assessment
should also consider the layered security infrastructure and provide a mea-
surement approach in each step of the cyber killer chain to prevent or mitigate
attacks at its earlier stage. Here are a few ideas to be considered for network
security assessment:

∙ Assess the vulnerabilities of networks, applications, and other IT resources.
Document and analyze the entire IT infrastructure to find the weak-
nesses and potential issues.

∙ Conduct comprehensive scanning of ports, vectors, and protocols. Conduct
a comprehensive scan of all ports on the network to identify the IT
equivalent of open windows and unlocked doors. The most common
malicious network scans search for vulnerabilities in a standard range
of 300 ports on a network where the most common vulnerabilities are
found. However, we may have over 60,000 ports on our network that
can be suspect.

∙ Understand how your network interacts with outside parties. Try to access
the network as an outsider to inspect what network requests in terms
of information and how easily it can be satisfied.

∙ Probe internal network weaknesses. Assess interaction with internal
networks. Unfortunately, we cannot assume that all threats will orig-
inate outside the network. Internal people can pose a threat too.

∙ Review wireless nets, including Wi-Fi, Bluetooth, RFID, and rogue devices.
Wireless nets, rogue devices, and removable media all present vulner-
abilities. For example, a hacker may use baits, such as leaving a USB
flash drive containing malicious code in the lobby, and then someone
will likely pick it up and pop it into a system on the network to see
what is on it.

∙ Assess and educate employees about social engineering attacks. This
includes policies around behavior such as using social media or pick-
ing up flash drives left lying around, etc.

126 Software-Defined Networking and Security
Summary

In this chapter, we provide a brief introduction of several important concepts
of computer network security including attack/threat models, layers of secur-
ity, preventive security defense, intrusion detection and monitoring services,
and security assessment. The presented materials cannot cover all aspects of
computer network security; however, it can provide a basic understanding
of important security services for network security. Unlike data communica-
tions of the past, today’s networks consist of numerous devices that handle the
data as it passes from the sender to the receiver. However, security concerns
are frequently raised in circumstances where interconnected computers use a
network controlled by many entities or organizations. A comprehensive net-
work security solution should examine various network protocols, focusing
on vulnerabilities, exploits, attacks, and methods to mitigate an attack.
In order to have a better understanding of the security aspect of a network,

readers who have difficulty to interpret the content presented in this chapter
or who have little knowledge of computer network security may refer to other
well-proposed network security books to enhance the security background to
move forward to the advanced topics presented in this book.

5
SDN and NFV Security
Network Functions Virtualization (NFV) has emerged as a technology
to provide a virtualized implementation of hardware-based equipment
such as firewall, routers, and Intrusion Detection System (IDS). Virtual
Network Functions (VNFs) can be realized through virtual machines (VMs)
or containers running on top of the physical server of cloud computing
infrastructure.
SDN acts as enabling technology for NFV. Despite the great benefits

offered by SDN and NFV, the security, privacy and trust management
remain an important problem to be addressed. The architecture of SDN
and NFV has been discussed in previous chapters. In this chapter, we dis-
cuss the security challenges faced by different components of SDN and
NFV, some that are part of traditional network architecture, and some
introduced because of the SDN/NFV framework that should be considered
before deployment of SDN/NFV technologies in a cloud network or
data-center.
We survey the threat model and security challenges in NFV in Section 5.1.

Section 5.2 has been dedicated to the classification of NFV security from
the perspective of intra- and inter-virtual network functions (VNF) design.
We also introduce some of the defense mechanisms that are used in NFV to
deal with current threat vectors. In Section 5.3, we consider SDN security
threat vectors. Section 5.2.2 provides guidelines for the design of a secured
SDN platform. Additionally, we discuss the threat vectors specific to the
SDN data plane, SDN architecture, OpenFlow protocol and OpenFlow
switching software in this section.
5.1 Introduction

5.1.1 An Overview of Security Challenges in NFV

The NFV consists of two main function blocks, i.e., NFV MANO, and NFVI.
The security of NFVI requires ensuring security compliance with standard
methods of authentication, encryption, authorization and policy enforcement
to deal with both internal and external threats.
127

TABLE 5.1

NFV Threat Vectors

Threat Vector Description Impact

VNF Service Flooding Attackers can flood the service or the network
interface using attacks such as DNS lookup, multiple
authentication failure attempts resulting in denial-of-
service (DoS) in signaling plane and data plane.

Availability

Application Crashing Attackers can send malformed packets to the services
running in NFV environment and cause network
service disruption (e.g., buffer overflow exploit).

Availability

Eavesdropping Attackers can eavesdrop on sensitive data and control
plane messages.

Confidentiality

Data Ex-filtration Unauthorized access to sensitive data such as user
profiles.

Confidentiality

Data and Traffic
Modification

Attacker can perform Man-in-the-Middle (MITM)
attack on the network traffic in transit, perform DNS
redirection or modify sensitive data on network
elements (NE).

Integrity

Control Network and
Network Elements

The attacker can exploit protocol vulnerabilities or
implementation flaws to compromise a network.
Additionally, attackers can exploit vulnerabilities on
the management interface to take control of NE.

Control

128 Software-Defined Networking and Security
5.1.1.1 NFV Threat Vectors

Threats to theNFV network perimeter and core services can violate the service
level agreements (SLAs), such as NFV data confidentiality and service avail-
ability. We analyze the threat vectors that can impact the NFV framework
in Table 5.1.
In addition to these threat vectors, there can be insider threats where

attacker inside the NFVI can make changes to the data on Network Element
(NE) or make changes to the network configuration.

5.1.1.2 NFV Security Goals

To define the security perimeter and its scope in NFV, we need to identify the
security goals in NFV environment at various levels of granularity. The Euro-
pean Telecommunication Standards Institute (ETSI) defines the following
security goals at a high level in an NFV environment:

∙ Establish a secure baseline of guidance for NFV operation while high-
lighting optional measures that enhance security to be commensurate
with risks to confidentiality, integrity, and availability (CIA).

∙ Define areas of consideration where security technologies, processes,
and practices have different requirements than of non-NFV systems
and operations.

SDN and NFV Security 129
∙ Supply the guidelines for the operational environment that supports
and interfaces with NFV systems and operations but avoid redefining
any security considerations that are not specific to NFV.

The VNFs in an NFV environment often possess sensitive data and the NFV
administrator should take care of data authentication in NFV workloads. The
sensitive data authentication can consist of passwords, tokens, Cryptographic
Keys, private keys and documents containing sensitive data. Each VNF can be
responsible for one or more functions and capabilities. Authorization for the
use of these functions and capabilities should be performed using standard
techniques, e.g., identity, trust, delegated or joint decision making and
API security.
The security in NFV is not limited to managing the NFV network and

endpoints, but secured mechanisms must be designed for the lifecycle man-
agement of VNFs. The VNF creation requires changes to networking, creden-
tialing, license and configuration information. Guidelines for VNF creation
using newly defined configuration or cloning from a previously created
VNF must be in place. Well-defined and secured mechanisms should be uti-
lized for VNF lifecycle operations such as VNF deletion,WorkloadMigration,
VNF configuration and patch management.
5.2 NFV Security

5.2.1 NFV Security Classification

NFV security architecture can be considered from various perspectives. Secur-
ity domains of NFVI can be classified into networking, Compute and Hyper-
visor domains as discussed by Yang et al. [287]. ETSI [88] classifies the security
domain of NFV into intra-VNF security, i.e., security between the VNFs and
extra-VNF security, i.e., security external to VNF.
5.2.1.1 Intra-VNF Security

VNFs communicating with each other directly have special security require-
ments, since communication path is not restricted to the network level. The
characteristics of intra-VNF security include:

∙ Secured orchestration for and between the VNFs.

∙ Flows between VNFs are not often through layer 3 firewall or any
other security policy enforcement point.

∙ Service chaining capabilities often need to be enforced if available.

130 Software-Defined Networking and Security
∙ Requires security mechanism in intra-VNF communication and resil-
iency to attacks.

∙ Security and virtual appliances need to be configured to be part
of the traffic flow.

5.2.1.2 Extra-VNF Security

The VNF security is dependent upon the security of physical infrastructure,
external services, and environment. The key issues that need to be considered
for the security of NFV environment because of the factors external to the
VNFs are

∙ NFV deployment may span across several regulatory and jurisdiction
domains, leading to multiple sets of Service Level Agreement (SLA)
and Quality of Service (QoS) requirements. Extra-VNF security
should have the ability to administer cross-border and domain
requirements, e.g., Workload Migration from one public NFV tenant
to a secured NFV tenant may impact the QoS or security of the desti-
nation NFV tenant.

∙ Authentication, authorization, and accounting across NFV domains,
across a mix of domains, humans and system entities. For instance,
one NFV deployment can have multiple administrative domains,
e.g., a) NFVI, b) SDN, c) Orchestration, d) VNF Manager (VNFM),
e) Service Network.

5.2.2 NFV Security Lifecycle

The VNF lifecycle as shown in the Figure 5.1(a) comprises five phases, i.e., VNF
development, instantiation, operation, enhancement, and retirement. The secur-
ity management processes 5.1(b) for NFV should be embedded into these
phases of VNF lifecycle. The scope of NFV security comprises of NFV frame-
work, hardware, software and service platform that supportsNFV.We consider
hardware platform to be following the required NFV security guidelines and
consider security for hardware platform out of the scope of this chapter.
We can segment the NFV architecture into components that can be a direct

or indirect target of attacks. The goal of the attack can range from reconnais-
sance, service degradation, service disruption to unauthorized access to criti-
cal information in the NFV framework. Reynaud et al. [228] have identified
five critical assets in NFV framework that can be potential attack targets:
(1) Virtual Network Functions, (2) Virtualization Layer, (3) Communication
with and within NFV MANO, (4) NFV Manager and/or Orchestrator,
(5) Virtualized Infrastructure Manager (VIM) as shown in Figure 5.2.

1. Virtual Network Functions: VNFs suffer from software vulnerabili-
ties. They can be a source of an attack or target. The vulnerabilities

VNF
Development

VNF
Re�rement

VNF
Instan�a�on

VNF
Enhancement

VNF
Opera�on

Architect Assess Validate Detect Prevent Respond Iterate

(a) VNF Lifecycle

(b) NFV Security Management Process

FIGURE 5.1
Virtual networking approaches enable different logical views of the underlying physical
networks.

FIGURE 5.2
NFV targetable components.

SDN and NFV Security 131

132 Software-Defined Networking and Security
like buffer overflow and DoS attacks against cloud and web-based
services are typical threat vectors that can be caused by VNFs.

2. Virtualization Layer: The virtualization layer can be a target of many
security attacks, e.g., malicious code execution on the physical host,
Return Oriented Programming (ROP) based attacks, where an
attacker can elevate the VM privilege, CPU resource monopolization
attack, Data Theft and VMmonitoring attacks as discussed by Riddle
and Chung [229].

3. Communication with and within NFV MANO: The attacker can
eavesdrop on the traffic between NFV MANO and NFVI. The
attacker can perform a MITM attack, an attack vector targeting this
particular communication channel.

4. VNF Orchestrator and/////or Manager: NFV over OpenStack can be
targeted to ephemeral storage vulnerability (CVE-2013-7130). An
attacker can steal Cryptographic Keys from other VNFs or
steal root disk contents of the other users by exploiting this
vulnerability.

5. Virtualized Infrastructure Manager (VIM): Attacks can target the
infrastructure manager in the NFV, e.g., Ruby vSphere console
in VMWare vCenter Server suffers from privilege escalation
vulnerability (CVE-2014-3790). This allows remote users to
escape chroot jail and execute arbitrary code in the infrastructure
domain.
5.2.3 Use Case: DNS Amplification Attack

The VNFs can be a target of DoS attacks. The goal of the attacker can be
network resource exhaustion or impacting service availability. If the attacker
can exploit a vulnerability present on old versions of some software of
a VNF, e.g., CVE-2018-0794 (MS Office Remote Code Execution vulnera-
bility). A huge volume of network traffic can be generated from compro-
mised VNFs and directed towards other VNF present on the same
Hypervisor in VNFI. For example, Figure 5.3 shows NFVI comprising of
a number of DNS servers as a component of virtual evolved packet core
(vEPC).
The NFVI orchestrator can spawn additional DNS servers on-demand

depending upon the traffic load in the network. In Step (1) of the attack, the
attacker spoofs the IP address of the victims and launches a large number
of malicious DNS queries. The orchestrator realizes the traffic load in the net-
work is above the normal threshold and spawns out additional virtual DNS
(vDNS) VNFs in Step (2). Multiple recursive DNS servers in the network
respond to the victim, and in-effect receive amplified DNS query responses
- Step (3), which can ultimately result in service unavailability or disruption.

LTE
RAN

Hypervisor

COTS Hardware

vS-GW vP-GW vPCEF

vMME vHSS vPCRF

vDNS

vDNS

Orchestra�on

A�acker

Vic�m

NFVI

1

3

2

vEPC

FIGURE 5.3
DNS amplification attack in NFV environment.

SDN and NFV Security 133
5.2.4 NFV Security Countermeasures

The ETSI NFV Industry Specification Group (ISG) and NFV Security Expert
Group have identified some key areas of concern in NFV security and security
best practices to deal with these security problems. In this section, we discuss
NFV security countermeasures based on ETSI specification and state-of-the-
art research works in the field on NFV security.

5.2.4.1 Topology Verification and Enforcement

The network topology and communication of data plane, control plane
and management plane in NFV should be validated, ensuring the following
specifications.

Data Plane

∙ Intra-host communication (the communication between VNFs on the
same host).

∙ Inter-host communication (communication between VNFs on differ-
ent Hypervisors).

∙ Communication path between VNFs and physical equipment.

Control and Management Plane

∙ The communication paths within the MANO system.

134 Software-Defined Networking and Security
∙ Paths between MANO and the Virtualized Infrastructure.

∙ Paths between MANO and the hardware infrastructure.

∙ Paths between MANO and the managed VNFs.

The topology of these two networks must be validated individually as well as
together. The topology validation can be divided into different levels to man-
age the complexity of the operation. For instance, the physical and logical
topology (VLAN, GRE) of the underlying infrastructure can be checked first,
followed by validation of ports of each virtual forwarding function in VNF
environment.

5.2.4.2 Securing the Virtualization Platform

An important security assumption in NFV is that a VNF provider has to trust
the virtualization platform on which various VNFs have been hosted. Addi-
tionally, the platform should also have some mechanism to ensure the trust
in VNFs. One way of providing platform security is Secure Boot [78] technol-
ogy. Secure boot can help maintain validation and assurance of Boot Integrity.
There are several assurance factors that are part of Boot Integrity, including
authenticity, configuration management, local attestation, certificates, Digital
Signatures, etc.
A malicious attacker can tamper with the initial boot process of VNF to

load malicious code during the VNF launch cycle. Secure boot can provide
assurance that the code loaded in VNF execution environment is authentic,
and has not been tampered with. Trusted boot process in coordination
with VNF manager can provide validation during the VNF launch and
installation stages.

5.2.4.3 Network and I=====O Partitioning

One of the main purposes of virtualization is the isolation of VMs from
crashes, loops, hangs, and security attacks from other VMs. The objective is
hard to be realized when:

∙ Granularity at which network boundaries have been defined or
resources have been allocated is too coarse.

∙ Use of workloads is highly variable.

There are various attack vectors that can target Hypervisor resources in an
NFV environment, e.g., a) local storage attack can be mounted to fill up
Hypervisor local storage with logs, b) remote connection attacks (remote con-
trol channel degradation).
The network resource is a critical network function. In addition to the mali-

cious users, sometimes a large number of remote users can send a request to
local resources, and it is hard to distinguish between the normal request from
malicious traffic. An efficient QoS scheme can be used to ensure that critical

SDN and NFV Security 135
tasks are given priority in case of high network demand. Additionally, the net-
work must be partitioned into fine-grained segments to localize the threat
only to the infected segment of the network.
Resource isolation is anothermechanism to achieve fine-grained partitioning.

Some methods to achieve isolation include a) physical segregation of hard-
ware resources, b) rate-limiting the usage of resources VNF can reserve,
c) dividing available resources between competing demands using efficient
schedulingmechanism, e.g., round-robin or fair-queue bandwidth scheduling.

5.2.4.4 Authentication, Authorization, and Accounting

Reliable mechanisms to ensure the identity and accounting facilities at the net-
work, and virtualization layer can be incorporated to achieve authentication,
authorization and accounting (AAA).
Introduction of NFV can bring new security issues for AAA. The identity

and accounting facilities span across two regions, i.e., network infrastructure
layer (identifying the actual tenant), and network function layer (identifying
the particular user), as shown in Figure 5.4. Some of the AAA issues that
can occur in NFV framework include:

1. Authentication: Unauthenticated disclosure of user information at
the layers that are not supposed to consume certain identity attributes.
FIGURE 5.4
DNS amplification attack in NFV environment.

136 Software-Defined Networking and Security
2. Authorization: Privilege escalation by wrapping unrelated identities
not verifiable at a particular layer.

3. Accounting: Lack of accounting at different layers of network infra-
structure, e.g., the granularity of tenant can allow an attacker to
over-subscribe the allocated resources in NFVI.

A generalized AAA scheme is required to support identity and access man-
agement at each tenant and VNF level. The current AAAmechanisms assume
there will be a single identity, policy decisions, enforcement points, and single
accounting infrastructure. Achieving this in current NFV framework using
mechanisms such as tunneling can introduce scalability and resiliency con-
cerns. Although achievement of all possible objectives such as security
enforcement, scalability, flexibility, manageability are difficult to achieve, it
is important to find the appropriate combination supporting the trust frame-
work. Some of the countermeasures include:

∙ Authentication of VNF images.

∙ Authentication of users requesting access to NFV MANO function
blocks.

∙ Updates to authorized users and managers in the suspended/offline
images.

∙ Authorization on interfaces/APIs between different function blocks.

∙ Support for real-time monitoring, logging, and reporting on SLAs,
reliability, and performance.

∙ Traffic packet acquisition at full line rate and traffic classification and
accounting per subscriber, per user and per application.

∙ Policy decision functions that raise alarm when a specific threshold
has been reached according to the detected policies and traffic.

5.2.4.5 Dynamic State Management, and Integrity Protection

∙ Dynamic State Management: Online and offline security operations
such as securely suspending a VM image, updating the access control
lists (ACLs) in suspended images, secured live migration of VNFs.
VNFC should be provisionedwith the initial root of trust. All commu-
nication between the initial root of trust and VNFC should be
strictly monitored.

∙ Dynamic Integrity Management: During the normal functioning of
VNF, the VNF volume should be encrypted and Cryptographic
Keys should be stored in a secure location. Trusted Platform Module
(TPM) volume is one way of securely storing the keys. A software or
hardware misconfiguration can cause VNF to crash, rendering the
VNF in an unexpected state, which can cause security concerns. The

SDN and NFV Security 137
crash events should be properly analyzed to ensure the integrity of
VNF keys and passwords ismaintained during the crash. The analysis
of crash event should also consider external influences that should be
mitigated to restore service. In case of crash events, the Hypervisor
should also be properly configured to wipe out virtual volume disk
to prevent it from unauthorized access.

5.3 SDN Security

SDN finds many applications in enterprise cloud and data-center network. The
adoption of SDN can provide benefits in not only cloud management and
orchestration but also cloud security. Thus, the security of SDN itself is quite
an important area of research. The centralized design of SDN can introduce
security challenges such as distributed denial-of-service (DDoS) attacks against
the SDN controller. The SDN functional architecture can be divided into three
layers, i.e., the application layer, the control layer and the data layer as discussed
in previous chapters. Each layer can have multiple attack vectors. Additionally,
the communication channel between layers, e.g., an application-control inter-
face can be targeted to traffic modification and eavesdropping attacks.

5.3.1 SDN Security Classification

The relationships between SDN elements can introduce new vulnerabilities,
which are absent in the traditional network. For instance, the use of transport
layer security is optional in theOpenFlownetwork. The nature of the communi-
cation protocol can thus introduce security issues such as DoS, fraudulent flow
rule insertion, and rulemodification as discussed by Scott-Hayward et al. [241].
Figure 5.5 highlights different components in SDN: (1) application plane,

(2) control plane and (3) data plane tier that can be subjected to attacks. For
instance, there can be software vulnerabilities in SDN controllers (Openday-
light, ONOS, Floodlight). Additionally, the communication paths between
three tiers, i.e., northboundAPIs (4) and southboundAPIs (5) can face security
attacks. We discuss some of the attack vectors against targetable components
in detail below:

∙ Application Plane: The applications developed for telemetry, orches-
tration and other SDN operations can have security vulnerabilities.
All the security issues that can be present in a typical web application
such as Cross Site Scripting (XSS), Cross Site Request Forgery (CSRF)
also apply to SDN. The malicious/compromised applications can
allow spread of attack in the entire network.

∙ Control Plane: The control plane consists of one or more controller,
e.g., OpenDaylight, POX, ONOS and other applications and plugins

FIGURE 5.5
SDN targetable components.

138 Software-Defined Networking and Security
for handling different kinds of protocols. The attacker can generate
traffic from spoofed IP address and send a huge volume of traffic to
the controller as discussed by Kalkan et al. [142]. The communication
between the switch and the controller can be saturated using this
attack, thus increasing service latency or in the worst case bringing
down the controller.

∙ Data Plane: The attackers can poison the global view of the network,
by forging the Link Layer Discovery Protocol (LLDP) packages. The
attackers can also observe the delay in communication between the
control plane and data plane applications using specially crafted
packets. This can help in identification of controller application logic
[96]. The attackers can also target the switches. The switch responsible
for data plane flow rule updates often have limited memory and can
be overflowed by generating a large number of flow rules.

∙ Communication Channels: The communication channel between
switches and controllers (Southbound API), controllers and applica-
tion plane tier (Northbound API) can be subjected to Man-in-the-
Middle (MITM) attack as showcased by Romao et al. [230], ARP

TABLE 5.2

Security Issues Associated with Different Layers of SDN

Security Attack

SDN Layer Affected

App Layer App-Ctl Intf Ctl Layer Ctl-Data Intf Data Layer

Unauthorized Access

Unauthorized Controller Access ✓ ✓ ✓

Unauthenticated Application ✓ ✓ ✓

Data Leakage

Flow Rule Discovery ✓

Forwarding Channel Discovery ✓

Data Modification

Flow Rule Modification ✓ ✓ ✓

Malicious Applications

Fraudulent Rule Insertion ✓ ✓ ✓

Controller Hijacking ✓ ✓ ✓

Denial of Service

Controller Switch Flooding ✓ ✓ ✓

Switch Flow Table Flooding ✓

Configuration Issues

Lack of TLS ✓ ✓ ✓

Policy Enforcement Issues ✓ ✓ ✓

SDN and NFV Security 139
Poisoning is one example of such security attacks. Other attacks
showcased by authors that target the communication channel include
eavesdropping traffic between hosts, and stealthily modifying the
traffic between hosts.

Table 5.2 summarizes some of the security issues associated with different
components of SDN that we described above.

5.3.1.1 SDN Security Threat Vectors

In this section, we discuss some key Threats Vectors (TVs) in SDN in detail,
and analyze if a better SDN platform design can help in dealing with security
threats intrinsic and extrinsic to the SDN.

∙ TV1 Fake Traffic Flows: Faulty devices or malicious users can use
DoS attacks to target the TCAM (ternary content-addressable mem-
ory) switches in the SDN infrastructure, with the goal of exhausting
the capacity of the TCAM switches. The problem can be mitigated
by using a simple authentication mechanism, but if the attacker is
able to compromise the application server consisting of details of

140 Software-Defined Networking and Security
users, an attacker can use the same authenticated ports and source
MAC addresses to inject forged authorized flows into the network.

∙ TV2 Switch Specific Vulnerabilities: The switches present in the
SDN environment can have vulnerabilities. For instance, a vulnerabil-
ity in Juniper OS (CVE-2018-0019) SNMP MIB-II subagent daemon
(mib2d) allows a remote network-based attacker to cause the
mib2d process to crash resulting in a denial of service condition
(DoS) for the SNMP subsystem. A switch can be used to slow down
the traffic in SDN environment, deviate the network traffic to
steal information, or can be used to insert forged traffic requests
with the goal of overloading the controller or the neighboring
switches.

∙ TV3 Control Plane Communication Attack: The control-data plane
communication does not require the presence of TLS/SSL security.
Even if Public Key Infrastructure (PKI) is present in an SDN environ-
ment, complete security is not guaranteed for the channel communi-
cation. Research works highlight security issues with TLS/SSL [113].
A compromised Certificate Authority (CA), vulnerable application
can lead to an attacker gaining access in control plane channel of
the SDN. The attacker can launch DDoS by using switches that are
controlled by the control plane.

∙ TV4 Controller Vulnerabilities: The controller is the most important
component in the SDN environment. A compromised controller can
bring down the entire network. For example, an old version of SDN
controller ONOS suffers from remote denial of service attack (CVE-
2015-7516). The attacker can cause NULL pointer dereference and
switch disconnect by sending two Ethernet frames with ether_type
Jumbo Frame (0x8870) to ONOS controller v1.5.0. A combination of
signature-based intrusion detection tools may not be able to find
the exact combination of events that triggered a particular behavior
and deem it malicious or benign.

∙ TV5 Lack of Trust between Controller and Management Appli-
cations: Controller and management plane applications lack a built-
in mechanism to establish trust. The certificate creation and trust
verification between network devices in the SDN environment can
be different from the trust framework between normal applications.
5.3.2 Design of Secure and Dependable SDN Platform

A secure and dependable SDN architecture as shown in Figure 5.6, having
features such as fault-tolerance, self-healing, trusted framework and dynamic
service provisioning capabilities can be used to deal with threat vectors
discussed in the previous subsection. In this section, we discuss each of the

FIGURE 5.6
Design of secure and dependable SDN.

SDN and NFV Security 141
security mechanisms that can be embedded into the design of the SDN
framework.

1. Replication: Application and controller replication can help in
dealing with cases of controller or application failures due to a
high volume of traffic or software vulnerabilities. As shown in
Figure 5.5, there are three versions of the SDN controller providing
replication. Additionally, application B has been replicated on each
controller. This approach can help in dealing with both hardware
and software failure issues (accidental or malicious). Another
advantage of replication is the isolation of malicious application
while keeping the service consistency.

2. Diversity: The utilization of only one kind of software or operating sys-
temmakes it easier for attackers to exploit a target. Diversity improves
the robustness and intrusion tolerance. As discussed by Garcia et al.
[97], utilization of a diverse set of OS makes a system less susceptible
to intrusions. Diversity helps in avoiding the common faults and vul-
nerabilities since there are only a few intersecting vulnerabilities among

142 Software-Defined Networking and Security
diverse software or OS. In SDNmanagement plane, use of diverse con-
trollers can help reduce lateral movement of an attacker and cascading
system failures caused by common vulnerabilities.

3. Automated Recovery: In the case of security attacks, leading to ser-
vice disruption, the proactive and reactive security recovery mecha-
nisms can help in maintaining optimal service availability. When
replacing a software, e.g., SDN controller, it is necessary to perform
the replacement with new and diverse versions of the component.
For example, if we plan to switch SDN controller OpenDaylight,
we can consider an alternate version of controller software such as
Floodlight, ONOS or Ryu providing similar functionality.

4. Dynamic Device Association: The association between the controller
and devices such as OpenFlow switch should be dynamic in nature.
For instance, if one instance of the controller fails, the switch should
be able to dynamically associate with the backup controller in a
secured fashion (proper authentication mechanism to detect good
controller from malicious controller software). Dynamic Device asso-
ciation feature helps in dealingwith faults (crash or Byzantine). Other
advantages include load balancing feature provided by diverse con-
trollers (reduced service latency).

5. Controller-Switch Trust: A trust establishment mechanism between
the controller and switch is important to deal with cases of fake flows
being inserted by malicious switches. The controller can in basic trust
establishment scenario maintain a whitelist of switch devices that are
allowed to send control plane specific messages to the controller. In a
more complex scenario, Public Key Infrastructure (PKI) can be used
to establish trust between the control plane and data plane devices.
The behavior devices controlled by the controller can also be used
to create a trust framework. The devices showcasing anomalous
behavior can be put in quarantine mode by the controller.

6. Controller-App Plane Trust: The software components change behav-
ior because of change in the environment. Additionally, the software
aging can introduce security vulnerabilities. Controller and application
plane components should use autonomic trust management mecha-
nisms based on mutual-trust and delegated trust (3rd part such as
the Certificate Authority to establish trust). The controller can utilize
autonomic trust management for component-based software systems
as discussed by Zheng and Prehofer [285]. Qualitative metrics such
as confidentiality, integrity, and availability can also be leveraged to
establish the trustworthiness of an application in the SDN framework.

7. Security Domains: Security domains help in segmenting the network
into different levels of trust, and containment of the threats to only
the affected section in the SDN framework. A security domain-based

TABLE 5.3

SDN Design Solution for Dealing with Threat Vectors

SDN Security Solution Threat Vector

Replication TV1, TV4, TV5

Diversity TV3, TV4

Automated Recovery TV2, TV4

Dynamic Device Association TV3, TV4

Controller-Switch Trust TV1, TV2, TV3

Controller-App Plane Trust TV4, TV5

Security Domains TV4, TV5

SDN and NFV Security 143
isolation can be incorporated to provide defense-in-depth for SDN
environment. For example, the web-server application on one physi-
cal server should only interact with database back-end applications,
and not any other application running in the same network. A white-
list-based security policy composition with appropriate policy con-
flict checking mechanism can be utilized to achieve such security
objectives. We discuss the segmentation policy creation, its key ben-
efits, and real-world applications in detail in the next chapter.

Table 5.3 summarizes the security solutions that we discussed in this
subsection and threat vectors TV1-5, that can be mitigated using these mech-
anisms. An important consideration while deploying the desired security
solution or combination of solutions is cost-benefit analysis (delay introduced
in the network, CPU/resource utilization) of these solutions in isolation as
well as together.

5.3.3 SDN Data Plane Attacks and Countermeasures

5.3.3.1 SDN Data Plane Attacks

The communication between the SDN data plane and control plane opens the
doors for highly programmable application development; it also introduces
the possibility of new types of threat vectors in SDN data plane. The data
plane attacks can dysfunction the anonymous communication in OpenFlow
networks [292]. The attacker can also perform reconnaissance on the traffic
channel between SDN data plane devices and controller to identify relevant
information about controller software, e.g., version and type of controller
(python or java application). This information can be utilized by the attacker
to perform more targeted attacks against control plane software. Some key
attacks that find origin in the SDN data plane include:

1. Side-Channel Attacks: The attacker can observe the processing time
of the control plane in order to learn the network configuration as

144 Software-Defined Networking and Security
discussed by Sonchak et al. [256]. The attacker crafts probe requests
corresponding to different layers of network protocol stack, e.g.,
ARP requests for MAC layer and TTL probe message for the IP layer.
The requests can be sent to the controller along with some baseline
traffic requests with a known response. By observing the response
time and content difference between baseline traffic and the probe
traffic, the attacker can observe a version of OpenFlow, the size of
switch flow table, network and host communication records, network
monitoring policies, and the version of the controller software.

2. Denial-of-Service (DoS): The devices send a connection request to
the switching software in the data plane. If the switch consists of
flow rule entry corresponding to the traffic pattern, traffic is for-
warded out of the specific switch port. If the entry is missing (table-
miss packets) the request is sent to the controller. A class of DoS
attacks - data to control plane saturation attacks as discussed by
Gao et al. [96] can forge the OpenFlow fields with random values,
that will lead to table-miss event in the switch. When a large volume
of forged table-miss flows is sent to the controller as packet_in entries.
The controller can be saturated since these packet_in messages will
consume a large amount of switch-controller bandwidth and control-
ler resources (CPU, memory). In case the controller decides to insert
the flow entries in the switch, the TCAM table limit of the switch
may be reached, which will prevent the legitimate traffic flows
from being inserted in the switch flow table.

3. Topology Poisoning Attacks: This is a two-stage data plane attack,
which utilizes forged control plane packets (LLDP packets) as a start-
ing point. In the first attack, the attacker captures the OpenFlow
LLDP packets and filters out the LLDP syntax. In the second step,
the attacker sends the forged LLDP packets to the controller or
replays them to other hosts in the network, in order to trigger the
response from the connected switch to the controller. This can help
an attacker in establishing a previously non-existent link between
the switches. The attacker can utilize the modified topology to his
advantage and launch MITM or a variation of DoS attack in the
network.

5.3.3.2 SDN Data Plane Attack Countermeasures

1. Side-Channel Countermeasure The side-channel attacks rely on
response time pattern, so a disruption in time frequency can help
counter side-channel attacks. Sonchak et al. [256] propose timeout
proxy on the data plane to normalize control plane delay. When the
control plane fails to respond within a specified time duration, the
timeout proxy sends default forwarding instruction to the request.
The proxy reduces the long delay time of some long response packets

SDN and NFV Security 145
to avoid side-channel attacks. The duration of response can also be
randomized in order to counter the side-channel attacks.

2. DoS Countermeasure DoS attacks such as SYN flood can be
inspected for existence of valid source and destination addresses.
AvantGuard extends the hardware of OpenFlow switches, and
adds TCP proxy to send SYN-ACK as a reply for the TCP-based
data to control plane starvation attacks. Another approach is to per-
form statistical analysis and flow classification to distinguish attack
traffic from the benign traffic which can help in the detection and
prevention of DoS attacks.

3. Topology Poisoning Countermeasure The type of neighbor
devices connected to OpenFlow switch can help in dealing with
LLDP-packet-based Topology Poisoning Attacks as showcased by
TopoGuard [119]. The control plane can identify neighbor device
using packet hop distance, and other packet statistics. If a port first
receives an LLDP packet, the neighboring device can be regarded
as a switch. On the other hand, if a packet from first hop host is
received, the neighboring device is regarded as host. The dynamic
monitoring and probing can help in the reconstruction of neighbor
topology. The drawback of this approach is that it may allow attack-
ers to forge neighbor device transfer from host to switch. Gao et al.
[96] propose more a granular classification of devices (host/switch/
any/untested) to deal with the problem of topology poisoning faced
by TopoGuard.

5.3.4 SDN-Specific Security Challenges

In addition to the threat vectors discussed in previous subsections, there are
some security issues specific to SDN that are not inherently present in tradi-
tional networks. In this subsection, we highlight these security challenges
and best practices to avoid them in SDN.
5.3.4.1 Programmablity

SDN offers programmatic features to the clients who belong to different busi-
ness entities and organizations. Traditional business entities follow a closed
domain, administrative model. Thus the SDN business model makes it neces-
sary to protect system integrity, open interfaces and 3rd-party data across
multiple administrative and business domains.

∙ Traffic and Resource Isolation: The business management and real-
time control information of one application need to be fully isolated
from other applications. Traffic and resource isolation across tenants
must be ensured in the SDN environment. The SLA requirements and

146 Software-Defined Networking and Security
private addressing scheme induced dynamic interactions may create
a need for more fine-grained isolation.

∙ Trust between third-party applications and controller: Authentica-
tion and authorization mechanisms should be enforced at the point
of application registration to the controller in order to limit controller
exposure.

5.3.4.2 Integration with Legacy Protocols

The advent of SDN solved some of the technical and process deficiencies in the
legacy protocols. However, retrofitting of the security capabilities into existing
technologies, e.g., DNS, BGP may not be straightforward. It is critical to
inspect compatibility of legacy protocols before incorporation into SDN.

5.3.4.3 Cross-Domain Connection

SDN infrastructure allows connectivity across different physical servers, clus-
ters and data centers. Each security domain can be under the control of one or
many controllers. An appropriate mechanism for establishing a trust relation-
ship between controllers should be present in SDN design. The trust frame-
work should have the ability to prevent abuse and capability of establishing
a secure channel.
5.3.5 OpenFlow Protocol and OpenFlow Switch Security Analysis

5.3.5.1 Attack Model

Actors

The threats against OpenFlow protocol can be internally initiated or
externally initiated. A trusted insider can try privilege escalation to modify
the implementation of OpenFlow protocol or perform unauthorized access
request on the OpenFlow related reference data. On the other hand, an
external attacker can control the dataplane devices directly attached to the
OpenFlow switches, and try to generate malicious traffic request aimed at dis-
rupting the communication or gaining privileges to OpenFlow devices
remotely.

Attack Vectors

The following attack vectors can be employed by external and internal attack-
ers who aim to target OpenFlow components:

∙ Passive eavesdropping on the data/control plane messages. This may
help the attacker gain necessary information for subsequent attacks.

SDN and NFV Security 147
∙ Replay attacks in SDN network with non-authentic data/control mes-
sages, Man-in-the-Middle (MITM) attack, DoS/DDoS attacks or side-
channel attacks.

Target/Goal

The attacker may aim at obtaining OpenFlow protocol assets/properties:

∙ Sensitive information in protocol messages.

∙ Tenant, network topology, SDN network availability or performance
related information.

∙ Reference data on devices implementing OpenFlow switch flow
table entries.

∙ Data and resource information of control and dataplane (e.g., band-
width, latency, flow timeout duration).

5.3.5.2 Protocol-Specific Analysis

The protocol specific analysis should consider following entities, components
and subcomponents as shown in Table 5.4. We discuss the candidate security
countermeasures to deal with attacks against OpenFlow protocol, OpenFlow
switch and associated components highlighted in Table 5.5. The analysis
assumes that each OpenFlow switch can be connected to one or more control-
lers within the trust boundary of cloud service provider. Also, TLS security
can be employed between switch and controller to deal with message tamper-
ing and to perform mutual authentication.
TABLE 5.4

OpenFlow Protocol Analysis Breakdown

Entity Component Sub-components=====Scenarios

Switch Ports ∙ Physical Ports

∙ Logical Ports

∙ Reserved Ports

Tables ∙ Counters

OpenFlow Channel and
Control Channel

Channel Connections ∙ Connection Setup

∙ Encryption

∙ Multiple
Controllers

∙ Auxiliary
Connections

TA
B
LE

5.
5

O
pe

nF
lo
w

C
om

po
ne

nt
Se
cu

ri
ty

Is
su

es
an

d
C
an

d
id
at
e
C
ou

nt
er
m
ea
su

re
s

C
om

p
on

en
t

S
ec
u
ri
ty

Is
su

e
C
an

d
id
at
e
C
ou

n
te
rm

ea
su

re

Ph
ys
ic
al

Po
rt

Fa
ke

ph
ys
ic
al
po

rt
m
ay

be
in
se
rt
ed

or
ch

an
ge

d
in

or
d
er

to
pe

rf
or
m

tr
af
fi
c
an

al
ys
is
le
ad

in
g
to

ne
tw

or
k
at
ta
ck
.

E
na

bl
e
lin

k
st
at
e
m
on

ito
ri
ng

an
d
ne

tw
or
k
ch

an
ge

tr
ac
ki
ng

ca
pa

bi
lit
y
in

SD
N

co
nt
ro
lle

r.

L
og

ic
al

Po
rt
s

Po
rt

tu
nn

el
ID

m
is
si
ng

in
po

rt
st
at
is
ti
c
m
es
sa
ge

s.
E
na

bl
e
tu
nn

el
ID

ch
ec
ki
ng

fe
at
ur
e
in

th
e
co
nt
ro
lle

r.

R
es
er
ve

d
Po

rt
s

C
on

tr
ol
le
r
un

ab
le

to
co
lle

ct
st
at
is
ti
ca
li
nf
or
m
at
io
n
on

re
se
rv
ed

po
rt
s.

E
na

bl
e
A
PI
s
to

al
lo
w

th
e
co
nt
ro
lle

r
to

qu
er
y
re
se
rv
ed

po
rt
s.

C
ou

nt
er
s

C
ou

nt
er

ro
ll-
ba

ck
ou

t
of

co
nt
ro
l

E
ns
ur
e
co
nt
ro
lle

r,
fl
ow

ta
bl
e
sy
nc

hr
on

iz
at
io
n.

C
on

ne
ct
io
n

Se
tu
p

T
L
S
pr
ot
ec
ti
on

fo
r
T
C
P
he

ad
er

m
is
si
ng

or
in
fo
rm

at
io
n
to

m
an

ag
e
C
ry
pt
og

ra
ph

ic
K
ey

s
an

d
ce
rt
ifi
ca
te
s
m
is
si
ng

.
M
ec
ha

ni
sm

s
pr
ov

id
in
g
T
C
P-
A
O

fo
r
he

ad
er

pr
ot
ec
ti
on

,a
nd

sw
it
ch

m
an

ag
em

en
t
pr
ot
oc
ol

fo
r
ke

y
an

d
ce
rt
ifi
ca
te

m
an

ag
em

en
t
sh
ou

ld
be

pr
es
en

t.

E
nc

ry
pt
io
n

A
ut
he

nt
ic
at
io
n
fo
r
m
es
sa
ge

co
m
m
un

ic
at
io
n
no

t
pr
es
en

t.
Su

pp
or
t
fo
r
m
ul
ti
pl
e
ty
pe

s
of

au
th
en

ti
ca
tio

n
an

d
en

cr
yp

ti
on

pr
ot
oc
ol
s

sh
ou

ld
be

in
co
rp
or
at
ed

.

M
ul
tip

le
C
on

tr
ol
le
r

Se
cu

ri
ty

po
lic
y
co
nfl

ic
t
be

tw
ee
n
co
nt
ro
lle

rs
,m

al
ic
io
us

co
nt
ro
lle

r
at
te
m
pt
in
g
un

au
th
or
iz
ed

ac
ce
ss

in
th
e

ne
tw

or
k

M
ut
ua

la
ut
he

nt
ic
at
io
n
an

d
sy
nc

hr
on

iz
at
io
n
sh
ou

ld
be

em
pl
oy

ed
ac
ro
ss

co
nt
ro
lle

rs
.R

ol
e-
ba

se
d
au

th
en

ti
ca
ti
on

fo
r
ea
ch

co
nt
ro
lle

r.
Se
cu

re
co
m
m
un

ic
at
io
n
be

tw
ee
n
th
e
m
as
te
r
co
nt
ro
lle

r
an

d
sw

itc
he

s.

A
ux

ili
ar
y

C
on

ne
ct
io
ns

L
ac
k
of

ve
ri
fi
ca
ti
on

m
ec
ha

ni
sm

s
ag

ai
ns
t
in
va

lid
D
PI
D
.

A
le
rt

m
ec
ha

ni
sm

in
th
e
co
nt
ro
lle

r
w
he

n
in
va

lid
D
PI
D

se
nd

s
ac
ro
ss

a
pa

ck
et
.U

se
d
if
fe
re
nt

au
th
en

ti
ca
tio

n
fo
r
au

xi
lia

ry
an

d
m
ai
n
co
nn

ec
ti
on

s.

148 Software-Defined Networking and Security

SDN and NFV Security 149
Summary

The SDN and NFV platforms suffer from many threat vectors, some of
which are introduced by weak authentication and authorization mechanisms,
others because of the SDN/NFV design. Consideration of each threat vector in
isolation is important for creating a secured cloud networking environment
managed by SDN/NFV. This chapter explored security issues affecting confi-
dentiality, integrity, and availability of SDN/NFV. The security design goals
and best practices, security countermeasures have described in detail for NFV,
SDN data plane, SDN control plane and OpenFlow protocol. The secured
architecture design depends on many other factors apart from the mecha-
nisms described in this chapter, such as latency and throughput impact
because of a particular secured configuration. These factors, however, are
beyond the scope of this chapter and should be considered before adopting
the recommendations provided as a part of this chapter.

http://taylorandfrancis.com

Part II

Advanced Topics on
Software-Defined and

Virtual Network Security
In this part, we will provide advanced topics for virtual network security
and particularly several important topics such as Moving Target Defense
(MTD), attack graph and attack tree based security analysis approaches,
security service function chaining, security policy management, andmachine-
learning based attack analysis models are presented. Moreover, the second
part can be used by senior undergraduate students or graduate students as
a reference book to work on their thesis or research-related projects. Before
moving forward, several important and highly related terms need to be clearly
understood.
What is Network Security?

Network security is the activity designed to protect the usability and integrity
of the network and data. The security is not limited to the network edge or
core, it includes hardware, software and human aspect within and outside
an organization. While there is no silver bullet to achieve complete network
security, the network security should at minimum ensure confidentiality,
integrity and availability (CIA) of the data at rest (i.e., present inside the cor-
porate environment) in form of critical databases, active directory information
151

152 Advanced Topics on Software-Defined and Virtual Network Security
of users in the organization, files containing sensitive information, and data in
transit, i.e., data should be securely transmitted to the trusted party with
appropriate authentication and authorization.
There are various tools and techniques in traditional network security that

use reactive threat mitigation techniques such as Network Firewall, Web
Application Firewall, and Intrusion Detection System (IDS), to name a few.
The goal of this part of the book is to introduce the latest proactive security
solutions that have gained popularity in the industry as well as academic
research, with emphasis on Software-Defined Networking and its role in
adoption of these security solutions.
What is Software-Defined Security?

Software-Defined Data Centers (SDDCs) are able to allocate compute,
storage and networking resources dynamically. While the modern-era data
centers are evolving to become software defined, we lag behind in the
security of virtual infrastructure. Current information security methods
are too rigid and static to support the rapidly changing digital business.
SDN provides next generation information security services that enforce
proactive monitoring, analysis, detection and prevention of threats in the
Virtualized Infrastructure. The SDN+next generation smart information
security is together referred to as Software-Defined Security (SDS). The
security infrastructure in SDS will be able to adapt to changes in network
infrastructure and application services. In the long term, the adaptive secur-
ity infrastructure will be driven by software-defined models, providing pro-
tection against emerging threats.
Some key features of SDS as per Gartner, Inc. are

∙ Location independent security for information and workloads.

∙ Aligning security controls to the risk profiles of what they are
protecting.

∙ Enabling policy driven and automated security orchestration and
management.

∙ Removing the time- and error-prone human middleware via higher
level of automation.

∙ Enabling information security professionals to focus on policies
and detecting advanced threats using programmable security
components.

∙ Enabling security to scale and protect dynamic cloud-basedworkloads.

∙ Enabling security to move at the speed of digital business.

Advanced Topics on Software-Defined and Virtual Network Security 153
Distributed Security and Microsegmentation

Traditionally security is provisioned in a centralized way, distributed security
is a method of breaking traditional data center and cloud network into logical
elements and managing each element separately. Such architecture allows
enforcement of granular security, i.e., security at the granularity of each
network, subnet and application workload. Microsegmentation is one such
approach towards a decentralized security framework. Network microseg-
mentation provides software-level abstraction to the subnetwork traffic con-
trol, making security management architecture simpler in complex SDDC
with fluctuating workloads and applications. Another key benefit provided
by microsegmentation is the prevention of lateral movement of the attacker
by introducing zero-trust proof architecture.
Proactive Security

Proactive security refers to a new paradigm of security management, where
instead of defending the network infrastructure by detecting, preventing,
tracking and remediation of threats, attack surface is changed over time.
This creates an asymmetric disadvantage for the attackers, and levels the play-
ing field between the attacker and defender. MTD is a term that has been
coined to generalize different proactive security mechanisms such as intro-
ducing diversity into network topology, OS, software, or randomizing the
memory layout so that the attack propagation becomes difficult for the
attacker.
Security Policy Management

A large organization can have different groups, each responsible for manag-
ing a small portion of the network. Often there is high interdependence
between the access control policies of different groups. The security policy
management incorporates identification and correction of policy conflicts
between different security policies in an automated fashion.
Attack Representation Methods

The interaction between different applications and the impact on the attack
surface by the dynamics of applications and workloads changing constantly

154 Advanced Topics on Software-Defined and Virtual Network Security
in a cloud network needs to be expressed in an intuitive fashion, especially for
the network security administrators, so that they can make an informed deci-
sion, keeping the entire threat landscape of the organization into perspective.
Attack Representation Methods (ARMs), such as attack graphs and attack
trees, help in representing complex information in an easy-to-understand for-
mat. ARMs in combination with the security metrics, such as Common Vul-
nerability Scoring System (CVSS), allow network administrators to ask
higher order logic questions, such as the likelihood of critical services at the
core of networks being exploited, if the attacker starts from the vulnerable
public facing website at the edge of the network, or return of investment
(ROI) from the security countermeasure against a particular security threat.

6
Microsegmentation
Firewall is a common terminology that is widely used in the security field. It
is the essential system security component to provide inspections on various
networking components. Firewall technologies have been evolved in the past
several decades from the simplest dedicated packet filter to today’s advanced
security appliance that can be easily deployed on any network segments. In
addition to guarding against north-south bound ‘bad’ traffic transported in-
and-out of a trusted domain, firewalls have been used to filter east-west
traffic within a trusted domain to prevent malicious traffic moving laterally
to explore internal vulnerabilities. The granularity level of protected networks
within a trust domain can be at the level of a subnetwork, a VLAN, an inter-
face, an application, or a data flow, inwhich it is usually implemented through
a virtual networking approach called “microsegmentation.”
Microsegmentation is a method of creating secure zones in data centers and

cloud deployments to isolate workloads from one another and secure them
individually to make network security more granular. The rise of SDN and
NFV has paved the way for microsegmentation to be realized in software to
ease the deployment and management.
In this chapter, a brief history of firewall and transitions to microsegmenta-

tion is firstly described in Section 6.1 and followed with distributed firewall
in Section 6.2, microsegmentation system and models are described in
Section 6.3, and finally the implementation based on VMWare solutions is
presented in Section 6.4.
6.1 From Firewall to Microsegmentation

In Figure 6.1, a brief history of firewalls is presented. The term “firewall” orig-
inally referred to a wall intended to confine a fire within a building, i.e., a wall
is built to prevent fire from expanding to a larger area. Later uses refer to
similar structures, such as the metal sheet separating the engine compartment
of a vehicle or aircraft from the passenger compartment. The termwas applied
in the late 1980s to network technology that emerged when the Internet was
fairly new in terms of its global use and connectivity. The predecessors to fire-
walls for network security were the routers used in the late 1980s.
155

Original term coined,
meaning "A physical

wall meant to
prevent the spread of

fire in a structure,
from fire (n) + wall

(n.)"

1851

The Secure Compu�ng Technology
Center research group is formed at
Honeywell working with the NSA to
develop a high-assurance hardened

opera�ng system (Logical
Coprocessing kernel or LOCK) that is
later featured in Secure Compu�ng's

Sidewinder firewall (1994).

1984

The Morris worm is unleashed
one of the first Internet viruses.

compromising an es�mated
6,000 systems (approximately

10% of the Internet at that �me).
This first set of viruses made

dire the need for an increased
focus on network security.

1988

The first network
firewalls begin to

appear, created to
protect "private

networks by securing
gateway servers to
external networks
like the Internet."

Late 1980s

The first security firewalls -IP
routers with filtering rules - were

put to use. “The first security
policy was something like the

following: allow anyone ‘in here’
to access ‘out there’. Also, keep
anyone (or anything I don’t like)
‘out there’ from ge�ng ‘in here’.

Early 1990s

Appearance of the
first commercial

firewall the DEC SEAL
a hybrid firewall
using applica�on

proxies and packet
filters.

1992

The first of the
"stateful" firewalls

appears. Check Point
So�ware

Technologies
originates the term,

'"stateful inspec�on."

IDC coins the term UTM
(unified threat

management) and several
security vendors follow suit
beginning to market their
firewalls that run mul�ple

security func�ons running on
a single appliance as a UTM.

1994

2004

Gartner defines the
Next-Genera�on

Firewall as "a wire-
speed integrated

network pla�orm that
performs deep

inspec�on of traffic and
blocking of a�acks."

Results of first widespread
analysis of firewall management
prac�ces are published, including
sta�s�cs like: "93% [of supervisors

of firewall administrators] felt
their firewalls contained at least

one category of error and 70% felt
that it was likely their rule bases

contain undetected errors."

2009

Gartner releases a
forecast that says

"Through 2018, more
than 95 percent of

firewall breaches will
be caused by

misconfigura�ons,
not firewall flaws."

The key finding from Dark Reading's Death of the
Perimeter poll is that "the classic view about what

cons�tutes a network boundary has given way to a new
metaphor. For 55% of respondents, the network

perimeter has evolved to a seemingly boundless space
"anywhere and everywhere data is located" that

incorporates what is on the device, in a cloud, or on a
server (51%} and how the data gets there and back (4%).”

20122014

Steven M. Bellovin (ATT)’s work on
Distributed Firewalls: (1) A compiler

translates the policy language into some
internal format. (2) The system

management so�ware distributes this
policy file to all hosts that are protected
by the firewall. (3) Incoming packets are

accepted or rejected by each “inside”
host, according to both the policy and

the cryptographically-verified iden�ty of
each sender.

1999
OpenFlow Standard was

proposed and Open Network
Founda�on is formed to

promote So�ware Defined
Networking (SDN) and promote a

programmable but more
centralized control architecture.

Microsegmenta�on was
introduced by the SDN

community.

2011

The concept of Network
Func�on Virtualiza�on
(NFV) was introduced.

Programmable network
func�on chaining was

used to provide
adap�ve security

services.

AI-based security
analysis and

control solu�ons
kicked in for pen

tes�ng and
firewall

deployment and
setup

2016

FIGURE 6.1
History of firewall technologies.

156 Software-Defined Networking and Security
The first reported type of network firewall is called a packet filter. Packet fil-
ters look at network addresses and ports of packets to determine if they must
be allowed, dropped, or rejected. The first paper published on firewall tech-
nology was in 1988, when engineers from Digital Equipment Corporation
(DEC) developed filter systems known as packet filter firewalls. This fairly
basic system is the first generation of what later became a highly involved
and technical Internet security feature.

Microsegmentation 157
The second-generation firewalls perform the work of their first-generation
predecessors but operate up to layer 4 (transport layer) of the OSI model.
This is achieved by retaining packets until enough information is available
to make a judgment about its state, which is called stateful firewall. A stateful
firewall can “remember” a packet session direction, e.g., established TCP con-
nection, to prevent attackers frommimicking a non-returning packet targeting
into the protected network system.
Around the late 1990s, firewall inspecting traffic at the application protocol

layer started; it is called application-level firewall. The key benefit of applica-
tion layer firewall is to understand particular applications and protocols such
as File Transfer Protocol (FTP), Domain Name System (DNS), or Hypertext
Transfer Protocol (HTTP). This is useful as it is able to detect if an unwanted
application or service is attempting to bypass the firewall using a protocol on
an allowed port, or detect if a protocol is being abused in any harmful way.
Time forwards to 2011 and 2012, when SDN and NFV came into the picture,
where firewall technologies had faced a huge challenge as well as opportuni-
ties. Microsegmentation was brought up in the SDN community to provide
fine-grained level of packet inspection at any network segment and push
the inspection into a more refined level. As of 2012, the so-called Next-Gener-
ation Firewall (NGFW) is nothing more than the “wider” or “deeper” inspec-
tion at application stack. For example, the existing deep packet inspection
functionality ofmodern firewalls can be extended to include Intrusion preven-
tion systems (IPS).
Microsegmentation is a method of creating secure zones in data centers and

cloud deployments to isolate workloads from one another and secure them
individually. It aims atmaking network securitymore granular. Network seg-
mentation is not a new concept. Companies have relied on firewalls, virtual
local area networks (VLAN) and access control lists (ACL) for network seg-
mentation for years. With microsegmentation, policies are applied to individ-
ual workloads for greater attack resistance. The rise of SDN and NFV has
paved the way for microsegmentation. Relying on SDN and NFV in software,
in a layer that is decoupled from the underlying hardware, this makes seg-
mentation much easier to develop and deploy. Microsegmentation is mainly
designed to address two security issues:

∙ Identify network traffic above layer-4 (transport layer), i.e., user,
application, etc.

∙ Control network traffic in a policy driven manner.

When TCP/IP and Ethernet was gaining a foothold as being the networking
platform of choice over token ring and others, it was easy to map OSI
layers to devices. For example, hubs are on layer 1, switches are on layer 2,
routers are on layer 3, and firewalls are on layer 4. If we want to divide a net-
work into two IP segments, we can use a router, and if wewant to segment the

158 Software-Defined Networking and Security
network by ports, we then use a firewall to do the work. There are many
shortcomings to only using IP and port as a way to segment the network
for security purposes. Virtual LAN (or VLAN) is the primary solution today
to isolate layer-2 network traffic with the main goal to reduce broadcast
traffic. Access Control Lists (ACLs) can help control traffic, but most enter-
prises have decades old ACLs that are costly to manage. Attackers are able
to move around from endpoint to workstation with impunity, which call
for more attention to control the east/west traffic flow to effectively secure
the network.
There are two main problems with the classic VLAN approach. The first is

that a single bad network card sending faulty frames can disrupt the entire
network. If you are lucky, this will only affect a single VLAN. If, however,
the Network Interface Card (NIC) and switch port are configured to allow
trunk access, one bad NIC can affect all VLANs.
The microsegmentation approach is to make use of modern VLAN proto-

cols that are capable not of the classic 4095 VLANs, but instead the 16M
VLANs that modern protocols like Shortest Path Bridging (SPB) and VXLAN
are capable of. Instead of great big, flat layer 2 networks, the idea is to break
everything up such that each virtual network only contains those devices
which absolutely must talk to one another and rely on routers to bridge the
gaps. Microsegmentation is a promising approach because network adminis-
trators have finally started to accept that virtualized routers are useful and
usable. For over a decade their use has been anathema, considered by many
to be evidence of professional malpractice. As that attitude has changed, so
too has both network and software design. Instead of needing expensive,
powerful centralized routers to bridge virtual and/or physical networks,
virtual machines (VMs) configured as routers can serve the same purpose.
Virtualization- and networking-aware management software (VMware’s
NSX being the canonical example) can dramatically increase security by
reducing the number of systems that need to be part of the same virtual
network.
What is the ‘Micro’ inMicrosegmentation? Let’s say that we have a service

that consists of a number of VMs. There is a load balancer, a database, a virtual
file server and a bunch of web servers. It is reasonable that these VMs be able
to communicate with one another, but there is no good reason for them to
communicate with anything else. In a pre-microsegmentation network envi-
ronment, the VMs that make up this service would likely be part of a virtual
or physical network, with hundreds or even thousands of other workloads
that were all in the same “zone.” Being web-facing, they would probably be
part of the “DMZ” zone, and multiple services would be separated from
each other through subnetting.
Using subnets to isolate workloads is very weak security. It is trivial for

an attacker to modify a compromised workload to attempt to access different
subnets. It is much harder to get past a properly configured router imple-
menting virtual networks. When VLANs are properly implemented, switch

Microsegmentation 159
ports –whether virtual or physical – do not allow workloads the opportunity
to access arbitrary VLANs. Even in cases (such as virtual routers) where
it might make sense to have guest-initiated VLANs, switches are generally
configured to only pass packets from VLANs that guest actually needs
to access.
This means microsegmentation can be configured such that a given service

cannot possibly access other virtual networks except by going through the vir-
tual router; nor can workloads on those other networks access the service you
are securing, except through the virtual router. The virtual router, in turn,
would only be granted access to the virtual networks that VMs for which
it is responsible need to communicate with. Furthermore, with microsegmen-
tation this service would simply be isolated in their own virtual network. If
they had a need to talk with another VM, even if it was on the same host,
they would go through that host’s router. This has numerous security
advantages.
In order to transit from traditional firewall approaches to a microsegmenta-

tion approach, the least privilege principle needs to be implemented:
A white-list packet filtering approach needs to be enforced to allow known and
legitimated network traffic passing among nodes within a trusted domain.
Microsegmentation is only possible because management software exists
which can relieve the configuration burden. Humans are not good at keeping
more than a few hundred interconnections straight in their mind, and when
we start isolating each individual service in a large enterprise, we are poten-
tially creating millions of segments. Moreover, microsegmentation is not
just about limiting which workloads talk to one another. It is about the auto-
mation of network configuration, network service provisioning, and security
policy enforcement.
Early development of microsegmentation only limits the impact of any

given compromise within a network segment. Simple packet filtering
approaches can be established between segment boundaries. It can also be
combined with tools that profile services to learn what they communicate
with, and then both dynamically configure least-privilege access and exclude
potential breaches. Thus, how to maintain connection states is an implemen-
tation challenge for microsegmentation considering the large-scale network
and system nodes in a datacenter environment. Intelligently providing micro-
segmentation at a proper granularity is one of the challenging research topics
to be addressed.
Other network services beyond just routers are being virtualized. Intrusion

detection systems, honeypots and various flavors of automated incident
response are all part of the enterprise IT security toolkit today. While these
are usable in a classical networking environment, they may also play an
important security role in the kinds of highly automated and orchestrated
environments that make use of microsegmentation.

160 Software-Defined Networking and Security
6.2 Distributed Firewalls

A firewall is a collection of components interposed between two networks that
filters traffic between them according to some security policy. Conventional
firewalls depend on the topology restriction of the networks. At the controlled
entry point, the firewall divides the networks into two parts, internal and
external networks. Since the firewall cannot filter the traffic it does not see,
it assumes that all the hosts on the internal networks, e.g., a corporation’s net-
work, are trusted and all the hosts on the other side (external), e.g., Internet,
are untrusted.
6.2.1 Issues of Conventional Firewalls

Figure 6.2 shows conventional firewalls that serve as the sentry between
trusted and untrusted networks. They rely on restricted topology and con-
trolled network entry points to enforce traffic filtering. The key assumption
of this model is that everyone on one side of the entry point of the firewall
is to be trusted, hence they are protected, and that anyone on the other side
is, at least potentially, an enemy. This model works quite well when networks
comply with the restricted topology. But with the expansion of network
connectivity, such as extranets, high speed lines, multiple entry points, and
telecommuting, this model faces great challenges:

∙ Firewalls do not protect networks from internal attacks. Since every-
one on the internal networks is trusted and the traffic within these
trusted networks is not seen by the firewall, a conventional firewall
cannot filter internal traffics, hence it cannot protect systems from
internal threats. For traditional firewalls, the only way to work
around this is to deploy multiple firewalls within the internal net-
works, i.e., divide the network into many smaller networks, and pro-
tect them from each other. Since different policies have to be applied
on these firewalls, both the load and complexity of administration
increase.
Worksta�on

Trusted NetworkUntrusted Network

Firewall

FIGURE 6.2
Conventional firewall: trusted and untrusted domains.

Microsegmentation 161
∙ The vastly expanded Internet connectivity makes this model obsolete.
The extranets and the telecommuters from outside are allowed to
reach all or part of internal networks. Meanwhile, the telecommuters’
computers that use the Internet for connectivity need protectionwhen
encrypted tunnels are not in place, especially as cable modems and
DSL becomemore available and affordable. Currently, most such tele-
commuters connect to organizations’ internal networks through VPN
tunnels. If they also use the same VPN tunnel for generic Internet
browsing purposes, it is not only inefficient (causes the “triangle rout-
ing”), but may also violate the organization’s guidelines. If they do
not use the VPN channel, they either open a security hole or add
the workload of maintaining numerous personal firewalls that are
at different locations.

∙ End-to-end encryption is another threat to the firewall. There are so
many externalWeb proxies, such as www.anonymizer.com, out there
on the Internet. Users can easily set up an end-to-end encryption tun-
nel between their desktop within the organization’s internal network
to a machine outside. Since the firewall does not have the key to look
into the encrypted package, it cannot filter properly according to the
security policy. By doing so, insider users can bypass the destination
restriction and hide the traffic. If this channel is controlled by mali-
cious hackers, it is almost impossible to detect, because all the pack-
ages are encrypted!

∙ Some protocols are not easily handled by a firewall. Because the fire-
wall lacks certain knowledge, protocols like voice-over-IP need appli-
cation level proxies to manage through the firewall.

∙ A firewall is the single-entry point. This is the place traditional fire-
walls enforce their policy and filter the traffic. It is also a single point
of failure. If the firewall goes down for any reason, the entire internal
networks are isolated from the outside world. Although high avail-
ability options, such as hot standby firewall configurations exist,
they are usually cost prohibitive.

∙ Firewalls tend to become network bottlenecks. Due to the increasing
speed of networks, the amount of data passing through, and the com-
plexity of protocols firewalls must support (such as IPSec), they are
more likely to be the congestion points of networks.

∙ Unauthorized entry points bypass the firewall security. It has become
trivial for anyone to establish a new, unauthorized entry point to the
network without the administrator’s knowledge or consent. Various
forms of tunnels, wireless, and dial-up access methods allow individ-
uals to establish backdoor access that bypasses all the security mech-
anisms provided by traditional firewalls. While firewalls are in
general not intended to guard against misbehavior by insiders, there

http://www.anonymizer.com

162 Software-Defined Networking and Security
is a tension between internal needs for more connectivity and the
difficulty of satisfying such needs with centralized firewalls. The
situation becomes so critical when modern cloud and datacenter net-
working environment demands tremendous east-west traffic among
cloud users.

6.2.2 Introduction of Distributed Firewalls

In order to solve problems of conventional firewalls while still retaining their
advantages, Steven Bellovin, an AT&T researcher, proposed a “distributed
firewall” [41].Amultitudeof host-residentfirewallswhen centrally configured
andmanagedmakes up a distributed firewall. In this architecture, the security
policy is still defined centrally, but the enforcement of the policy takes place at
each endpoint (hosts, routers, etc.). The centralizedpolicydefineswhat connec-
tivity is permitted or denied. Then this policy is distributed to all endpoints,
where it is enforced. Three components are needed for distributed firewalls:

1. a security policy language;

2. a policy distribution scheme; and

3. an authentication and encryption mechanism, such as IPSec.

The security policy language describes what connections are permitted or
prohibited. It should support credentials and different types of applications.
After policy is compiled, it is shipped to endpoints. The policy distribution
scheme should guarantee the integrity of the policy during transfer. This policy
is consulted before processing the incoming or outgoing messages. The distri-
bution of the policy can be different and varies with the implementation. It can
be either directly pushed to end systems, or pulled when necessary, or it may
even be provided to the users in the form of credentials that they use when
they try to communicate with the hosts.
How the inside hosts are identified is very important. Conventional fire-

walls rely on topology. The hosts are identified by their IP addresses and
network interfaces on the firewalls they are attached to, such as “inside,” “out-
side,” and “DMZ.” This kind of structure is quite weak. Anyonewith physical
access to the internal network and has an internal IP address will be fully
trusted, plus IP address-spoofing is not difficult at all. Since all the hosts on
the inside are trusted equally, if any of these machines are subverted, they
can be used to launch attacks to other hosts, especially to trusted hosts for pro-
tocols like rlogin.
It is possible that distributed firewalls use IP addresses for host identifica-

tion. But a secure mechanism is more desirable. It is preferred to use certificate
to identify hosts. IPSec provides cryptographic certificates. These certificates
can be very reliable and unique identifiers. Unlike IP address, which can be
easily spoofed, the digital certificate is much more secure and the ownership

Microsegmentation 163
of a certificate is not easily forged. Furthermore, they are also independent of
topology. Policy is distributed according to these certificates. If a machine is
granted certain privileges based on its certificate, those privileges can be
applied regardless of where the machine is physically located.
In this case, all machines have the same rules. They will apply the rules to

the traffic. Since they have better knowledge of the connection (such as the
state and the encryption keys, etc.), they will make better judgment according
to the policy. With a distributed firewall, the spoofing is not possible either,
because each host’s identity is cryptographically assured. In summary, the
distributed firewalls provide the following benefits:

∙ Topology Independence: The most important advantage for distributed
firewalls is that they can protect hosts that are not within a topology
boundary. The telecommuters who use the Internet both generically
and to tunnel in to a corporate network are better protected now.
With distributed firewalls, the machines are protected all the time,
regardless of whether the tunnel is set up or not. No more triangle
routing is needed.

∙ Protection from Internal Attacks: After distributed firewalls abandon the
topology restriction, hosts are no longer vulnerable to internal attacks.
To the host, there is nomore difference between “internal” and “exter-
nal” networks. After amachine boot up, the policy is enforced on it for
any inbound and outbound traffic. In addition, hosts can be identified
by their encrypted certificates, this eliminates the chance of identity
spoofing.

∙ Elimination of the Single Point of Failure: A traditional firewall needs a
single entry point to enforce policy. It not only creates the single point
of failure but also limits the entire network’s performance to the speed
of the firewall. Multiple firewalls are introduced to work in parallel to
overcome these problems; in many cases though, that redundancy is
purchased only at the expense of an elaborate (and possibly insecure)
firewall-to-firewall protocol. With the deployment of distributed
firewalls, these problems are totally eliminated. The performance,
reliability, and availability no longer depend on one, or in some cases
a group of, machines.

∙ Hosts Make Better Decisions: Conventional firewalls do not have
enough knowledge in terms of what a host intends. One example is
end-to-end encrypted traffic, which can easily bypass the rules on
conventional firewalls since the firewalls do not have the necessary
key. Also, many firewalls are configured that they will pass the
TCP packets from the outside world with the “ACK” bit set, because
they think these packets are the replies to the internal hosts who
initialize the conversation. Sadly enough, it is not always true and
the spoofed ACK packets can be used as part of “stealth scanning.”

164 Software-Defined Networking and Security
Similarly, traditional firewalls cannot handle UDP packets properly
because they cannot tell if these packets are replies to outbound
queries (and hence legal) or they are incoming attacks. In contrast
thehost that initializes the conversationor sends out thequeries knows
exactly what packets it is expecting, what it is not, since it has enough
knowledge to determine whether an incoming TCP or UDP packets
are legitimate and it has the necessary key in the case of end-to-end
encryption. The same thing is true for the protocols like FTP.

In addition to the advantages, distributed firewalls have their limitations
too. Intrusion detection is harder to achieve on distributed firewalls. Modern
firewalls can detect the attempted intrusions. In a distributed firewall, it is not
a problem for a host to detect the intrusions; however, the collection of data
and aggregate data for intrusion detection purposes is more problematic,
especially at times of poor connectivity to the central site, or when either
site (host or central site) is under attacks such as DoS.
6.2.3 Implementation of Distributed Firewalls

A project supported by DARPA was fulfilled at the University of Pennsylva-
nia in 2000 [132]. In this project, a prototype of distributed firewall was con-
structed. OpenBSD was chosen as the operating system, because it was an
attractive platform for developing security applications with well-integrated
security features and libraries. Keynote [48] was chosen as the security policy
language. It was also used to send credentials over an untrusted network.
IPSec was used for traffic protection and user/host authentication. This was
a concept-proven implementation. Other improvements, such as moving
the policy daemon to the kernel and adding IP filters, etc., needed to be
done on this prototype firewall.
In a datacenter networking environment, a distributed firewall is an essen-

tial component of the overall secure system. It is a network layer, 5-tuple
(protocol, source and destination port numbers, source and destination IP
addresses), stateful, multi-tenant firewall. As shown in Figure 6.3, when
deployed and offered as a service by the service provider, tenant administra-
tors can install and configure firewall policies to help protect their virtual
networks from unwanted traffic originating from Internet (i.e., north-south
traffic) and intranet networks (i.e., east-west traffic).
The service provider administrator or the tenant administrator can manage

the Datacenter Firewall policies via the network controller and the north-
bound APIs. The Datacenter Firewall offers the following advantages for
cloud service providers:

∙ A highly scalable, manageable, and diagnosable software-based fire-
wall solution that can be offered to tenants.

VM1 VM2 VM3 VM4 VM5 VM6

VSwitch VSwitch

Northbound Interface (REST APIs)

Southbound Interface

Distributed Firewall Manager

NIC NIC NIC NIC

VNICs VNICs

Controller

North-South Traffic

East-West Traffic

FIGURE 6.3
Distributed firewalls.

Microsegmentation 165
∙ Freedom to move tenant virtual machines to different compute hosts
without breaking tenant firewall policies.

∙ Deployed as a vSwitch port host agent firewall.

∙ Tenant virtual machines get the policies assigned to their vSwitch
host agent firewall.

∙ Firewall rules are configured in each vSwitch port, independent of
the actual host running the VM.

∙ Offers protection to tenant virtualmachines independent of the tenant
guest operating system.

The Datacenter Firewall offers the following advantages for tenants:

∙ Ability to define firewall rules to help protect Internet facing work-
loads on virtual networks.

∙ Ability to define firewall rules to help protect traffic between virtual
machines on the same L2 virtual subnet as well as between virtual
machines on different L2 virtual subnets.

∙ Ability to define firewall rules to help protect and isolate network
traffic between tenant on premise networks and their virtual net-
works at the service provider.

166 Software-Defined Networking and Security
6.3 Microsegmentation

Anatural extension of distributed firewalls is the implementation ofmicroseg-
mentation. In that sense, we can view microsegmentation is an extension
of traditional distributed firewall with more capability on security policy
management and defending endpoints. According to Cisco Blog [73], micro-
segmentation is about having the possibility of setting up policies with end-
point granularity. As of today, both Cisco’s ACI [74] and VMWare’s NSX
[275] are current leading players in the field of microsegmentation. Their solu-
tions have pros and cons in terms of system architecture design and applied
networking enthronement. To highlight the salient features of microsegmen-
tation, our following discussion is mainly based on the terminologies from
VMWare’s implementation [112].
6.3.1 Design Microsegmentation and Considerations

With the growth of SDN and the evolution of software-defined data center
(SDDC) technologies, network administrators, data center operators and
security officers are increasingly looking to microsegmentation, for enhanced
and more flexible network security. To assist in administration, security
enforcement and the management of data collision domains, network seg-
mentation or the division of a network into smaller subsections allows admin-
istrators to minimize the access privileges granted to people, applications and
servers, and the rationing of access to sensitive or mission-critical information
on an “as-needed” basis. In what follows, a few important microsegmentation
design considerations are presented.
6.3.1.1 Software-Defined and Programmability

In its traditional form, network segmentation is achieved by creating a set
of rules to govern communication paths, then configuring firewalls and
VLANs to provide the means to partition the network into smaller zones.
For comprehensive security coverage, a network should be split into mul-
tiple zones, each with their own security requirements – and there should
be a strict policy in place to restrict what is allowed to move from one zone
to another. It is a physical process that can soon reach the limits of its effec-
tiveness, once traditional or even next-generation firewalls become over-
loaded and the burden on IT staff of manually fine-tuning configurations
and policies becomes too great, as networks expand beyond a certain
size or are simply overwhelmed by changing conditions. Microsegmenta-
tion takes network partitioning to the next level, by exploiting virtualiza-
tion and software-defined networking technologies, and utilizing their

Microsegmentation 167
programmable interfaces to allow policy-based security to be assigned
automatically to the network at a granular level with security assignments
possible down to individual workloads.
More attention should be put on north-bound interfaces to allow the soft-

ware-defined system to understand security policies required from applica-
tions to specify appropriate east-west traffic based on correctly applied
traffic policies enforced between segments.
6.3.1.2 Fine-Grained Data Flow Control and Policy Management

In a datacenter networking environment, for microsegmentation, hardware-
based firewalls are usually not required to enable security to be directly
integrated with virtualized workloads. As a result, security policies can be
synchronized with virtual machines (VMs), virtual networks, operating
systems, or other virtual security assets, with security assignments down to
the level of a single workload or network interface. When a network is recon-
figured or migrated, VMs and workloads will move together with their
associated security policies. By enabling such fine-grained security controls,
microsegmentation can drastically reduce the available attack surface that a
network presents. It enables more granular control over the traditional “choke
points” of a network, and allows for security controls that are customized for
each virtual environment.
Should an attack occur, the effective separation of each zone, i.e., a micro-

segment, into its own secured environment helps limit the spread of incursion
and any sideways spread into the rest of the network. Microsegmentation can
also simplify and speed up incident responses and enhance forensics in the
event of a security breach or other network event. On the downside, microseg-
mentation can be a complex process requiring detailed design and careful
administration. The increased overhead in areas like system monitoring and
alerts or identitymanagement may translate into increased financial and staff-
ing costs for the enterprise unless the deployment is properly planned and
executed.
6.3.1.3 Applying Network Analytic Models to Understand Data
Traffic Pattern

Mapping a network’s security requirements down to its lowest level requires a
detailed knowledge of its inner workings, a fine-grained view of the network
that goes beyond what manual observation can achieve. Visibility must be
gained into communication patterns and network traffic flows to, from, and
within the enterprise campus, and software analytics should be employed
to establish key relationships and traffic patterns (groups of related work-
loads, critical applications, shared services, etc.).

168 Software-Defined Networking and Security
The policies and security rules to be used undermicrosegmentationwill also
be determined by the results of network analytics. Models should be drawn
up and assessed to highlight important relationships, and to help spot net-
work elements andworkloads that may potentially pose problems. Analytical
results will also assist in crafting policy definitions and the orchestration sys-
tem needed for pushing microsegmentation out to all the infrastructure on
the network.
6.3.1.4 Zero Trust Zones

Using Microsegmentation, white-list based security policies, i.e., denial of
access, should be the default philosophy, with communications on the net-
work selectively allowed on the basis of the previous analysis. Throughout
the microsegmentation deployment, “zero trust zones” should be created,
with policies and rules set to allow only access to users, systems, and pro-
cesses that they essentially need to do their jobs. The ideal solution to com-
plete data center protection is to protect every traffic flow inside the data
center with a firewall, allowing only the flows required for applications
to function. Achieving this level of protection and granularity with a tradi-
tional firewall is operationally unfeasible and cost prohibitive, as it would
require traffic to be hair-pinned to a central firewall with individual virtual
machines placed on distinct VLANs (i.e., Pools of Security model).
6.3.1.5 Tools for Supporting Legacy Networks

Software-defined networking technologies may facilitate the enhancement
of legacy infrastructure and security protections for microsegmentation, but
this will depend on a careful selection of Hypervisor and tools for virtualiza-
tion. This would typically include a single tool or platform for visualizing
the interactions occurring between the physical and software-defined layers
of the network. Tools should also be integrated and user-friendly for all the
personnel involved whether they are assigned to operations, networking,
cloud, storage, administration, or security.
6.3.1.6 Leveraging Cloud-Based Resource Management and Support

Microsegmentation does incur significant monitoring and management
overhead to achieve features such as automated provisioning and move/
change/add for workloads, scale-out performance for firewalling, and distrib-
uted enforcement in-kernel and at each virtual interface. Cloud-based technol-
ogies can relieve much of the burden of a microsegmentation deployment.
Network traffic analytics tools may be employed at the design stage to help
trace critical communication paths and inter-relationships, and to reduce
potential network security and microsegmentation weaknesses, based on
known best practice configurations. Deep insights into network operations

Microsegmentation 169
may be obtained without the need for investing in on-premises hardware and
software, and web-based administration platforms may be used to manage
and orchestrate the dispersal of microsegmentation policies across the entire
network.

6.3.2 Microsegmentation Defined

Microsegmentation decreases the level of risk and increases the security pos-
ture of the modern data center. Microsegmentation utilizes the following
capabilities to deliver its outcomes:

∙ Distributed stateful firewalling: Reducing the attack surface within the
data center perimeter through distributed stateful firewalling. Using
a distributed approach allows for a data plane that scales with the
compute infrastructure, allowing protection and visibility on a per
application basis. Statefulness allows Application Level Gateways
(ALGs) to be applied with per-workload granularity.

∙ Topology agnostic segmentation: Providing application firewall protec-
tion regardless of the underlying network topology. Both L2 and L3
topologies are supported, agnostic of the network hardware vendor,
with logical network overlays or underlying VLANs.

∙ Centralized ubiquitous policy control of distributed services: Controlling
access through a centralized management plane; programmatically
creating and provisioning security policy through a RESTful API or
integrated cloud management platform (CMP).

∙ Granular unit-level controls implemented by high-level policy objects:
Utilizing grouping mechanisms for object-based policy application
with granular application-level controls independent of network
constructs. Microsegmentation can use dynamic constructs including
OS type, VM name, or specific static constructs (e.g., Active Directory
groups, logical switches, VMs, port groups IP Sets). This enables a
distinct security perimeter for each application without relying on
VLANs.

∙ Network based isolation: Supporting logical network overlay-based iso-
lation through network virtualization (i.e., VXLAN), or legacy VLAN
constructs. Logical networks provide the additional benefits of being
able to span racks or data centers while independent of the underlying
network hardware, enabling centralized management of multi-data
center security policy with up to 16 million overlay-based segments
per fabric.

∙ Policy-driven unit-level service insertion and traffic steering: Enabling
integration with third-party introspection solutions for both advanced
networking (e.g., L7 firewall, IDS/IPS) and guest capabilities (e.g.,
agentless anti-virus).

170 Software-Defined Networking and Security
6.3.3 NIST Cybersecurity Recommendations for Protecting
Virtualized Workloads

The National Institute of Standards and Technology (NIST) is a US federal
technology agency working with industry to develop and apply technol-
ogy, measurements, and standards. NIST works with standards bodies
globally in driving forward the creation of international cybersecurity stan-
dards. NIST published Special Publication 800-125B [56], “Secure Virtual
Network Configuration for VM Protection” to provide recommendations
for securing virtualized workloads. The microsegmentation capabilities
should satisfy the security recommendations made by NIST for protecting
VM workloads.
Section 4.4 of NIST 800-125B [56] makes four recommendations for protect-

ing VMworkloads within modern data center architecture. These recommen-
dations are as follows:
∙ VM-FW-R1: In virtualized environments with VMs running delay-
sensitive applications, virtual firewalls should be deployed for traffic
flow control instead of physical firewalls, because in the latter case,
there is latency involved in routing the virtual network traffic outside
the virtualized host and back into the virtual network.

∙ VM-FW-R2: In virtualized environments with VMs running I/O
intensive applications, kernel-based virtual firewalls should be
deployed instead of subnet-level virtual firewalls, since kernel-based
virtual firewalls perform packet processing in the kernel of the Hyper-
visor at native hardware speeds.

∙ VM-FW-R3: For both subnet-level and kernel-based virtual firewalls,
it is preferable if the firewall is integrated with a virtualization man-
agement platform rather than being accessible only through a stand-
alone console. The former will enable easier provisioning of uniform
firewall rules to multiple firewall instances, thus reducing the chances
of configuration errors.

∙ VM-FW-R4: For both subnet-level and kernel-based virtual firewalls,
it is preferable that the firewall supports rules using higher-level
components or abstractions (e.g., security group) in addition to the
basic 5-tuple (source/destination IP address, source/destination
ports, protocol).

For example, as of 2017, VMware NSX-based microsegmentation meets the
NIST VM-FW-R1, VM-FW-R2, and VM-FW-R3 recommendations. It provides
the ability to utilize network virtualization-based overlays for isolation and
distributed kernel-based firewalling for segmentation with API-driven cen-
trally managed policy control.

Microsegmentation 171
6.4 Case Study: VMware NSX Microsegmentation

As shown in Figure 6.4, the VMware NSX platform includes two firewall com-
ponents: a centralized firewall service offered by the NSX Edge Services Gate-
way (ESG) and the Distributed Firewall (DFW). The NSX ESG enables
centralized firewalling policy at an L3 boundary and provides layer 3 adjacen-
cies from virtual to physical machines. The DFW is enabled in the Hypervisor
kernel as a VIB (vSphere Installation Bundle) package on all VMware
vSphere® hosts that are part of a given NSX domain. The DFW is applied to
virtual machines on a per-vNIC basis.
Protection against advanced persistent threats that propagate via targeted

users and application vulnerabilities requires more than L4 segmentation to
maintain an adequate security posture. Securing chosen workloads against
advanced threats requires application-level security controls such as applica-
tion-level intrusion protection or advanced malware protection.
NSX-based microsegmentation approaches enable fine-grained application

of service insertion (e.g., IPS services) to be applied to flows between assets
that are part of a Payment Card Industry (PCI) zone. In a traditional network
environment, traffic steering is an all-or-nothing proposition, requiring all
traffic to be steered through additional devices. With microsegmentation,
advanced services are granularly applied where they are most effective; as
close to the application as possible in a distributed manner while residing in
a separate trust zone outside the application’s attack surface.
VM1 VM2 VM3 VM4 VM5 VM6

VSwitch VSwitch

NSX Manager

Security Analy�cs

NIC NIC NIC NIC

VNICs VNICs

Controlled East-West Traffic

Policy

Stateful DFW

Logical Router

Stateful DFW

FIGURE 6.4
Distributed segmentation with network overlay isolation.

172 Software-Defined Networking and Security
6.4.1 Isolation

Isolation is the foundation of network security, whether for compliance, con-
tainment, or separation of development/test/production environments. Tra-
ditionally ACLs, firewall rules, and routing policies were used to establish
and enforce isolation and multi-tenancy. With microsegmentation, support
for those properties is inherently provided.
Leveraging VXLAN technology, virtual networks (i.e., Logical Switches) are

L2 segments isolated from any other virtual networks as well as from the
underlying physical infrastructure by default, delivering the security principle
of least privilege. Virtual networks are created in isolation and remain isolated
unless explicitly connected. No physical subnets, VLANs, ACLs, or firewall
rules are required to enable this isolation.
VLANs can still be utilized for L2 network isolation when implementing

microsegmentation, with application segmentation provided by the Distribu-
ted Firewall. While using VLANs is not the most operationally efficient model
of microsegmentation, implementing application segmentation with only the
DFW and keeping the existing VLAN segmentation is a common first step in
implementing microsegmentation in brownfield environments.
6.4.2 Segmentation

A virtual network can support a multi-tier network environment. This allows
for either multiple L2 segments with L3 isolation (Figure 6.5(a)) or a single-tier
network environment where workloads are all connected to a single L2 seg-
ment using Distributed Firewall rules (Figure 6.5(b)). Both scenarios achieve
the same goal of microsegmenting the virtual network to offer workload-to-
workload traffic protection, also referred to as east-west protection.
6.4.3 Security Service Function Chaining

Modern data center architectures decouple network and compute services
from their traditional physical appliances. Previously, data center operation
required traffic to be steered through appliances for services such as firewall,
intrusion detection and prevention, and load balancing. As infrastructure ser-
vices transition from physical appliances to software functions, it becomes
possible to deploy these services with greater granularity by directly inserting
them into a specific forwarding path. The combination ofmultiple functions in
this manner is referred to as a service chain or service graph, in which two ser-
vice chaining examples are shown in Figure 6.6.
Once infrastructure services are defined and instantiated in software, they

can be created, configured, inserted, and deleted dynamically between any
two endpoints in the infrastructure. This allows the deployment and configu-
ration of these services to be automated and orchestrated as part of a Software-
Defined Data Center (SDDC).

VM1 VM2 VM3 VM4 VM5 VM6

VSwitch VSwitch
VNICs VNICs

Distributed Logical Router

App-�er
2.2.2.0/24

Web 01 Web 02 Web 03 App 01 App 02 App 03

.1.1

.11 .12 .13 .11 .12 .13

VM1 VM2 VM3 VM4 VM5 VM6

VSwitch
VNICs VNICs

Distributed Logical Router

Web 01 Web 02 Web 03 App 01 App 02 App 03

.1

.11 .12 .13 .14 .15 .16

FIGURE 6.5
Segmentation at L3 or using distributed firewalls.

Microsegmentation 173
Microsegmentation allows for application-centric, topology-agnostic seg-
mentation. Service insertion in this context permits granular security policies
to be driven at the unit or application level rather than at the network or sub-
net level. This enables the creation and management of functional groupings
of workloads and applications within the data center, regardless of the under-
lying physical network topology.
L2-L4 stateful distributed firewalling features should be provided to deliver

segmentation within virtual networks. In some environments, there is a
VM1

VM2
VM3

VM4

IPS

IDS

FW

DPI

LB

VPN

Services

FIGURE 6.6
Two distinct security service chains utilizing different functions.

174 Software-Defined Networking and Security
requirement for more advanced network security capabilities. In these
instances, organizations can distribute, enable, and enforce advanced network
security services in a virtualized network environment. Network services can
be configured into the vNIC context to form a logical pipeline of services
applied to virtual network traffic.Network services can be inserted into this log-
ical pipeline, allowing physical or virtual services to be equivalently consumed.
Every security team uses a unique combination of network security prod-

ucts to address specific environmental needs, where network security teams
are often challenged to coordinate network security services from multiple
vendors. Another powerful benefit of the centralized NSX approach is its abil-
ity to build policies that leverage service insertion, chaining, and steering to
drive service execution in the logical services pipeline. This functionality is
based on the result of other services, making it possible to coordinate other-
wise unrelated network security services from multiple vendors.
6.4.4 Network and Guest Introspection

In the NSX infrastructure, there are two families of infrastructure services that
can be inserted into an existing topology: network services and guest services.
When deploying a network service, flows are dynamically steered through
a series of software functions. For this reason, network services traffic may
be referred to as data in motion. Network functions inspect and potentially
act on the information stream based on its network attributes. These attributes
could include the traffic source, destination, protocol, port information, or
a combination of parameters. Typical examples of network services include
firewall, IDS/ IPS, and load balancing services.
Guest services act on the endpoints, or compute constructs, in the data center

infrastructure. These functions are concernedwith data at rest, primarily focus-
ing on compute and storage attributes. Agentless anti-virus, event logging, data
security, and file integrity monitoring are examples of guest services.
Service insertion methodologies traditionally rely on network traffic steer-

ing to a set of software functions via the physical or logical network control
plane. This approach requires an increasing amount of element management
and control plane steering as the number of software services scales over time.
The NSX microsegmentation-based approach involves steering specified traf-
fic via the NetX (Network Extensibility) framework through one or more
Service Virtual Machines (SVMs). These SVMs do not receive network traffic
through the typical network stack; they instead are passed traffic directly via a
messaging channel in the Hypervisor layer. Network traffic designated for
redirection to a third-party service is defined in a policy-driven manner utiliz-
ing a feature called Service Composer. The traffic steering rules are based on
defined security policies.
This framework for traffic redirection is known as VMware Network Exten-

sibility or NetX. The NetX program features a variety of technology partners

VM1 VM3 VM5 VM2 VM4 VM6

Web 01 App 01 DB 01 Web 02 App 02 DB 02

VM1 VM2 VM3 VM4 VM5 VM6

VSwitch

Distributed Logical Router

Web 01 Web 02 App 01 App 02 DB 01 DB 02

.1

.11 .12 .13 .14 .15 .16
All-�er

1.1.1.0/24

VXLAN Transport
Network

Management
Network

Controllers

FIGURE 6.7
Security abstracted from physical topology.

Microsegmentation 175
across the application delivery, security, operations, and inter-domain feature
sets, with additional partners constantly joining the ecosystem.
6.4.5 Security Service Abstraction

Network security has traditionally been tied to network constructs. Security
administrators had to have a deepunderstanding of network addressing, appli-
cation ports, protocols, network hardware, workload location, and topology to
create security policy. As shown in Figure 6.7, using network virtualization can
abstract applicationworkload communication from the physical network hard-
ware and topology; this frees network security from physical constraints,
enabling policy based on user, application, and business context.
6.4.5.1 Service Composer

Microsegmentation enables the deployment of security services independent of
the underlying topology. Traditional (e.g., firewall) or advanced (e.g., agentless
Anti-Virus (AV), L7 firewall, IPS, and traffic monitoring) services can be
deployed independent of the underlying physical or logical networking

176 Software-Defined Networking and Security
topologies. This enables a significant shift in planning and deploying services in
the data center. Services no longer need to be tied to networking topology. Ser-
vice Composer is designed to enable deployment of security services for the
data center. Service Composer consists of three broad parts:

∙ Intelligent Grouping: decoupling workloads from the underlying
topology via creation of security groups.

∙ Service Registration and Deployment: enabling third-party vendor regis-
tration and technology deployment throughout the data center.

∙ Security Policies: security policies allow flexibility in applying specific
security rules to distinct workloads. Policies include both governance
of built-in NSX security services as well as redirection to registered
third-party services (e.g., Palo Alto Networks, Check Point, Fortinet).

There are various advantages in decoupling the service and rule creation
from the underlying topologies:

∙ Distribution of Services: The services layer allows distribution and
embedding of services across the data center, enabling workload
mobility without bottlenecks or hairpinning of traffic. In this model,
granular traffic inspection is done for all workloads wherever they
reside in the data center.

∙ Policies are Workload-Centric: Policies are natively workload-centric
rather than requiring translation between multiple contexts - from
workloads to virtual machines to basic networking topology/IP
address constructs. Policies can be configured to define groups of
database workloads that will be allowed specific operations without
explicitly calling out networking-centric language (e.g., IP subnets,
MACs, ports).

∙ Truly Agile and Adaptive Security Controls: Workloads are freed from
design constraints based on the underlying physical networking
topologies. Logical networking topologies can be created at scale,
on demand, and provisioned with security controls that are indepen-
dent of these topologies. When workloads migrate, security controls
and policies migrate with them. New workloads do not require the
recreation of security polices; these policies are automatically applied.
When workloads are removed, their security policies are removed
with them.

∙ Service Chaining is Policy-based and Vendor Independent: Service chain-
ing is based on a policy across various security controls. This has
evolved from manually hardwiring various security controls from
multiple vendors in the underlying network. Policies can be created,
modified, and deleted based on the individual requirements.

Security
Groups

Defini�on

Dynamic Inclusion

Sta�c Inclusion

Sta�c Exclusion

VM-centric
Computer OS Name, Computer Name, VM Name,
Security Tag, En�ty

Infrastructure-centric
Security Group, Cluster, Logical Switch, Network,
vAPP, Datacenter, IP sets, Ac�ve Directory group,
MAC Sets, Security Tag, vNIC, VM, Resource Pool,
Distributed Virtual Switch Port Group

Security Group:
(Dynamic Inclusion + Sta�c inclusion)- Sta�c Exclusion

FIGURE 6.8
Security grouping.

Microsegmentation 177
6.4.5.2 Grouping

Grouping mechanisms can be either static or dynamic in nature, and a group
may be any combination of objects. Grouping criteria can include any combi-
nation of objects, VM Properties, or Identity Manager objects (e.g., Active
Directory Group). A security group is based on all static and dynamic criteria
along with static exclusion criteria defined by a user. Figure 6.8 details the
security group construct and valid group objects.
Static grouping mechanisms are based on a collection of virtual machines

that conform to set criteria. Objects define core networking and management
components in the system. Combining different objects for the grouping crite-
ria results in the creation of the AND expression. Dynamic grouping mecha-
nisms are more flexible; they allow expressions that define the virtual
machines for a group. The core difference from static grouping mechanisms
is the ability to defineAND/OR aswell as ANY/ALL criteria for the grouping.
Evaluation of VMs that are part of a group is also different. In a static grouping
mechanism, the criteria instruct on which objects to look for in terms of
change. In dynamic grouping, each change is evaluated by the controllers in
the data center environment to determine which groups are affected.
As dynamic grouping has a greater impact than static grouping, evaluation

criteria should look at zones or applications and be mapped into sections to
avoid the global evaluation of dynamic objects. When updates or evaluations
are performed, only the limited set of objects belonging to a specific section are
updated and propagated to specific hosts and vNICs. This ensures rule
changes only require publishing of a section rather than the entire rule set.
This method has a critical impact on performance of controllers and the prop-
agation time of policy to hosts.

6.4.5.3 Intelligent Grouping

Change Firewall configuration is not a trivial task. In the following example,
two virtual machines are added to a logical switch. In a traditional firewall
scenario, IP addresses or subnets must be added or updated to provide

Port-Group APP

Source Des�na�on Service Ac�on

Any 1.1.1.1 HTTPS Allow
1.1.1.2
1.1.1.3

Any 1.1.1.1 Any Block
1.1.1.2
1.1.1.3

1.1.1.1 2.2.2.1 Apache Allow
1.1.1.2 2.2.2.2 (HTTP 80)
1.1.1.3 2.2.2.3

1.1.1.1 2.2.2.1 Any Block
1.1.1.2 2.2.2.2
1.1.1.3 2.2.2.3

VM
1

VM
2

VM
5

VM
3

VM
4

VM
6

Switch Switch

External Physical router

1.1.1.1 1.1.1.2 1.1.1.3 2.2.2.1 2.2.2.2 2.2.2.3

Port-Group Web Apache

HTTPS Move, add and change of
VMS triggers FW

opera�onal complexity

Port-Group APP

Source Des�na�on Service Ac�on

Any 1.1.1.1 HTTPS Allow
1.1.1.2

Any 1.1.1.1 Any Block
1.1.1.2

1.1.1.1 2.2.2.1 Apache Allow
1.1.1.2 2.2.2.2 (HTTP 80)

1.1.1.1 2.2.2.1 Any Block
1.1.1.2 2.2.2.2

VM
1

VM
2

VM
3

VM
4

Switch Switch

External Physical router

1.1.1.1 1.1.1.2 2.2.2.1 2.2.2.2

Port-Group Web Apache

HTTPS

FIGURE 6.9
Traditional firewall rule management overhead.

178 Software-Defined Networking and Security
adequate security to the workload. This implies that the addition of firewall
rules is a prerequisite of provisioning a workload, i.e., for every Firewall
rule entry related to the added VM will need to be added. When the network
system is large, manually changing these rules is prone to errors. Moreover, it
is not easy to check potential rule conflicts with manually added rules.
Figure 6.9 diagrams this process. With Security Grouping (SG), a security or

network administrator can define that any workload on this VM will be
assigned similar security controls. With intelligent grouping based on the
NSX Logical Switch, a rule can be defined that does not change with every
VM provisioned. The security controls adapt to an expanding data center as
shown in Figure 6.10. By using SG, the rules do not need to be changed
Distributed Logical Router

Any SG_WEB HTTPS Allow

Any SG_WEB Any Block
SG_WEB SG_APP Apache Allow
 (HTTP 80)
SG_WEB SG_APP Any Block

VM
1

VM
2

VM
5

VM
3

VM
4

VM
6

Switch Switch

1.1.1.1 1.1.1.2 1.1.1.3 2.2.2.1 2.2.2.2 2.2.2.3 Source Des�na�on Service Ac�on

SG_WEB Sta�c: Logical Switch VM1, VM2, VM5
 -WEB_LS

SG_APP Sta�c: Logical Switch VM3, VM4, VM6
 -APP_LS

Security Selec�on Criteria Resultant VMs
Groups

WEB_LS
logical-switch-1
VXLAN S001

APP_LS
logical-switch-2
VXLAN S002

Rule stays the
same

Only needs to update
security group

FIGURE 6.10
Adaptive security with Security Group.

Microsegmentation 179
when a newly configured VM is added into the system. Instead, changes only
need to be done by configuring the security groups. In this way, the configu-
ration overhead can be significantly reduced.

6.4.5.4 Security Tag

Security tags can be applied to any VM. This allows for classification of virtual
machines in any desirable form. As shown in Figure 6.11, two tags ‘FIN-TAG-
WEB’ and ‘HR-TAG-WEB’ are used for finance department and HR depart-
ment, and they belong to security groups SG-FIN-WEB and SG-HR-WEB,
respectively. Furthermore, tags ‘FIN-WEB-01’ and ‘FIN-WEB-02’ are used
for identify web traffic to/from two individual VMs in the SG-FIN-WEB
group.
Some of the most common forms of classification for using security tags are:

∙ Security state (e.g., vulnerability identified);

∙ Classification by department;

∙ Data-type classification (e.g., PCI Data);

∙ Type of environment (e.g., production, developments);

∙ VM geo-location.

Security tags are intended for providing more contextual information about
the workload, allowing for better overall security. In addition to users creating
and defining their own tags, third-party security vendors can use the same
SG-FIN-WEB Security Tag contains ‘FIN-TAG-WEB’

SG-HR-WEB Security Tag contains ‘HR-TAG-WEB’

Security Group Dynamic Membership

FIN-TAG-WEB

HR-TAG-WEB

SG-HR-WEB

SG-FIN-WEB

FIN-WEB-01

VM

HR-WEB-01

VM

FIN-WEB-02

VM

HR-WEB-02

VM

Finance

HR

DMZ-Web Logical Switch
172.16.10.0/24

FIGURE 6.11
Tag used as base isolation method.

180 Software-Defined Networking and Security
tags for advance workload actions. Examples of vendor tags include trigger
on malware found, suspicious workload activity, and Common Vulnerabili-
ties and Exposures (CVE) score compliance. This functionality allows for
context sharing across different third-party vendors.
Summary

In this chapter, we illustrated the transition from traditional firewall to
modern microsegmentation approaches by using software-defined and vir-
tual networking approaches. The enabling technique of microsegmentation
is due to the significantly improved capacity of networking devices and serv-
ers’ hardware supporting both virtualized networks and software security
appliances. However, several challenges still exist that make the deployment
of microsegmentation solutions still in its early stage.
The first challenge is to maintain states of network traffic flows, which is a

critical service to support security functions such as stateful firewall, intrusion
detection and prevention, etc. However, it is a non-trivial task to maintain
all network traffic flow states, especially, when maintaining states at each
individual interface (both physical and virtual interfaces) level. Moreover, it
requires to design a distributed state monitoring system for decentralized
state management that can be used to support realtime traffic analysis at
each network segment.
The second challenge is to build an effective security and traffic analysis

model. Traditional centralized data processing model cannot satisfy realtime
security decisions for security services such as DFW, IPS, DPI, etc. Both of
these challenges are still open research problems that need significant research
efforts to overcome.

7
Moving Target Defense
Static nature of cloud systems is useful from a service provisioning aspect. The
cloud service providers want system configuration to remain unchanged once
an application has been deployed. This makes the cloud system soft target for
the attackers since they can spend the time to perform reconnaissance on the
system and craft the necessary attacks based on the information gathered by
cloud system exploration. The static and homogeneous nature of the cloud
system, although it makes administration easy, increases the chance of a sys-
tem being compromised.
MTD has been used as a defensive technique in many fields such as one-

on-one air combats, Go game, chess, etc. The goal is to deceive the attacker.
MTD allows the administrator to change the static nature of cloud
resources. The cloud system information that is accessible to the attacker,
such as open ports, Operating System (OS) information, and software ver-
sion information together constitute the Attack Surface. By introducing
MTD, the static nature of a cloud system can be changed to dynamic. The
homogeneous attack surface becomes asymmetric and heterogeneous. The
constantly changing attack surface reduces the probability of successful
exploits by the attacker.
In this chapter, we introduce MTD-based proactive security. The introduc-

tion of cyber kill chain and how MTD can help in disruption of attack propa-
gation at various stages of attack have been discussed in Section 7.1. The
classification of different types of MTD mechanisms, along with illustrative
examples, has been discussed in Section 7.2. We consider some examples of
SDN-based MTD frameworks that utilize Service Randomization, OS hiding
and other obfuscation techniques using SDN-based command and control
have been discussed in Section 7.3. Section 7.4 considers MTD as a game
between attacker and defender and discusses existing approaches that lever-
age game theoretic detection and defense mechanisms to deal with security
attacks. The evaluation of the effectiveness of different MTD frameworks
has been provided in Section 7.5.
7.1 Introduction

Today’s security teams consider monitoring the network, detection of inci-
dents, prevention and remediation of security breaches as the most important
181

Reconnaissance

Weaponiza�on

Delivery

Exploita�on

Installa�on

Command & Control

Ac�ons on Objec�ve

Iden�fica�on of exploitable resources and
target selec�on.

Pairing remote access malware with
exploit into deliverable payload.

Transfer of payload to the target via email
or malicious websites.

Exploita�on of vulnerable applica�ons
and systems by malware.

Persistent access to weapon’s host via
backdoor.

Communica�on of host with target
malware, hands-on target network access.

Data exfiltra�on, intrusion objec�ve
achieved, or intrusion of another target.

FIGURE 7.1
Phases of Cyber Kill Chain.

182 Software-Defined Networking and Security
tasks. The assumption is that infrastructure will remain static over time and
security teams try to defend it using state-of-the-art security analysis tools.
The threat vectors and adversaries are however constantly evolving. The poly-
morphic and dynamic adversaries enjoy the advantage of an unchanging
attack surface, which they can study at their leisure.
It is a well-known fact that a moving target is harder to hit compared to a

static target. When the intruders are able to successfully breach a certain end-
point in the cloud system, they can use that as a way to further exploit critical
services, and gain complete command and control of the network.
The cyber kill chain in Figure 7.1 comprises courses of action an attacker is

likely to take while exploiting a system. MTD can disrupt the attack propaga-
tion by increasing the cost of attack for the attacker in the early stages of the
chain. For instance OS rotation [266] will render knowledge gained by an
attack by probing the network (Reconnaissance) redundant. The payload that
attackers might have crafted (Weaponization) against a particular OS version,
e.g., Ubuntu 14.04, to exploit a system vulnerability will not work on an alter-
nate version of OS - Ubuntu 16.04. There are several factors such as timing,
cost, valid configurations that need to be considered while using MTD as dis-
cussed in [297]. The MTD techniques should minimize the threat level in the
network and at the same time limit service disruption for legitimate users.
7.2 MTD Classification

Moving Target Defense (MTD) can be classified based on two approaches,
i.e., classification based on security modeling and classification based on

Moving Target Defense 183
placement in the IP protocol stack. We discuss both these approaches in
this section.
7.2.1 Security Modeling-based MTD

MTD techniques based on security modeling can be classified into (i) Shuffle,
(ii) Diversification and (iii) Redundancy as discussed by Hong et al. [118].

7.2.1.1 Shuffle

A shuffle technique involves rearrangement of resources at various layers.
Some examples of a shuffle technique includemigration of VM from one phys-
ical server to another, application migration, instruction set randomization
(ISR), etc.
Figure 7.2 shows two servers under attack. The network administrator can

take the shuffle action as shown above to reconfigure network topology in
such a way that both attackers are connected to Server 2 in the new configura-
tion. The legitimate users - Users 1,2,3 - can use Server 1, and attackers can be
quarantined to a specific zone of the network. This will slow down the attack
propagation and increase the cost of attack for the attackers. Server 2 can also
act as honeypot post-network reconfiguration if the administrator wants to
study the attacker’s behavior.

7.2.1.2 Diversification

Diversification-based MTD techniques modify the network function or soft-
ware responsible for the functioning of an application or the underlying com-
piler to diversify the attack surface as discussed in [283]. The accretion,
Server 1

Server 2

Server 1

Server 2

User 1

User 2

User 3

A�acker 1

A�acker 2

A�acker 1

A�acker 2

User 1

User 2

User 3
Shuffle

Rearrangement

FIGURE 7.2
MTD shuffle.

184 Software-Defined Networking and Security
excision, and replacement of functionality are some examples of software-
based diversification techniques.
Security attacks like Code Reuse Attacks (CRAs) that use jump oriented pro-

gramming approach and library code reuse techniques [49] can be eliminated
by diversity based MTD techniques [116]. CRAs exploit the fact that all bina-
ries of a given version of software are identical. Attackers can use reverse engi-
neering on one binary to identify regions of code with vulnerability, and then
craft a payload that works on all such binaries. However, if the target binaries
are different, then the gadget blocks identified from one become useless on the
other binary.
Figure 7.3 shows container-based software diversification solution. The par-

adigm of software delivery has shifted from physical delivery of software via
media to application stores such as Amazon Web Server (AWS) [67]. Light-
weight, executable piece of software - Container [191] - can be downloaded
and uploaded to container stores like AWS.
The application developer can create and push the application to the con-

tainer store. The application delivery engine is an MTD diversification-based
application randomizer,which produces a different variant of the base software
binary represented by different icons in Figure 7.3 on each client request. Thus
an attacker who wants to target application needs to reverse-engineer not only
thememory gadgets from the host binary, but also the diversification approach
used in order to craft an exploit payload against all variants of a software ver-
sion. This increases the cost of attack for the attacker by a large amount.
The diversification approach can also be applied to OS version and runtime

environments, e.g., Address Space Layout Randomization (ASLR) [246] and
Instruction Set Randomization (ISR).
Applica�on Diversity Engine

Applica�on Developer

Applica�on
creates

deliver to

Container Pla�orm

variants

creates

FIGURE 7.3
MTD diversification.

Moving Target Defense 185
7.2.1.3 Redundancy

Redundancy creates multiple replicas of a network component in order to
maintain an optimal level of service in case of network attacks like DDoS
attacks. Another benefit of redundancy is that we can create decoys in the net-
work for increasing the discovery time of the actual target. The goal of the
attacker in a DDoS attack is saturation of network nodes. With redundancy,
the attack goal is hard to achieve for the attacker, since the administrator
can load balance traffic to different proxies in case of traffic surge and main-
tain network reliability.
A layer of proxies between the client and the application accessed by the

client as discussed by MOTAG [136] architecture can be used to inhibit the
direct attack on the network infrastructure. As shown in Figure 7.4, the client’s
requests to legitimate services hosted on application server need to pass
through an authentication server.
The actual IP address of the application server is concealed from the clients,

and a group of proxy nodes acts as a relay between the clients and the server.
Once the authentication server verifies the client access, the client can connect
to one of the proxy nodes available and access the application server. The
proxies only talk to the authentication server so they are resilient to the
attacks. Also, the proxy nodes keep changing proxy nodes dynamically, so
the attacker is confused about the actual location of the proxy node.

7.2.2 Implementation Layer-based MTD

Another way of classifyingMTD techniques is based on the implementation in
the protocol stack. The level at which decisions of making a change in attack
Proxy 1

Proxy 2

Proxy 3

Proxy 4

Client
Applica�on Server

Authen�ca�on
Server

Signaling

Command and
Control

FIGURE 7.4
MTD redundancy.

186 Software-Defined Networking and Security
surface can involve some configuration change inside the host, application
binary or the way networking and routing have been configured in the target
environment. We classify MTD based on the implementation in protocol
stack into categories below (i) Network Level MTD, (ii) Host Level MTD,
and (iii) Application Level MTD.

7.2.2.1 Network Level MTD

Network Level MTD requires a change in the network parameters, such as
network configuration, network connection obfuscation and Routing Ran-
domization. By making changes to the network configuration, several key
issues such as zero-day attacks and, false positives from IDS can be mitigated.
Such a countermeasure, however, also affects the service availability of the
genuine users. An intelligent system can take operational and security goals
of the system into account and utilize intelligent MTD adaptations in order
to secure the network as discussed by Zhuang et al. [298].
An overview of the various components involved in Network MTD has

been discussed by Green et al. [101]. There are some clients who behave in
accordance with the network and security policies. Such clients are referred
to as trusted clients, as shown in Figure 7.5. A service important from the
perspective of the normal functioning of business is often the target of the
attackers. The attacker’s goal is to disrupt the service or steal key information
from the application or database by exploiting vulnerability present on the
service. Such services are referred to as target. A decoy put in place to confuse
the attacker carrying no useful information is known as sink. The mapping
Trusted Client

Trusted Client

Untrusted Client

Untrusted Client

Target

Sink

Mapping Service

Clients

Trustworthy Clients

Untrustworthy Clients

FIGURE 7.5
Overview of components of network MTD system.

Moving Target Defense 187
system consists of an access control mechanism in order to distinguish the
legitimate users from the attackers. Once the clients have been authenticated,
they are authorized to access the network services.
The network-based MTD system consists of three key properties:

1. Moving Propertywhich requires a continual change of information or
configuration by forcing clients to reach the services using mapping
system and limit the exposure to target services by shrinking the win-
dow of opportunity for the attackers.

2. Access Control Property ensures that policies for accessing the network
services are enforced properly. Only the authenticated and properly
authorized users should be able to use the target services.

3. Distinguishability Property to separate the trustworthy clients from
untrustworthy users based on network activity. Any classification
errors in this property can result in blocking of the trusted users
from accessing the services or allow untrustworthy users to exploit
the target in the network.

7.2.2.2 Host Level MTD

Host LevelMTD requires a change in host resources, OS, and renaming of con-
figurations. Multi-OS Rotation Environment (MORE) [266] is an example of
host level MTD. The system consists of two sets of IP addresses, i.e., Live IP
and Spare IP. The live IP address can be accessed by the clients connected to
the host, whereas the spare IP address is used when the host is being rotated.
The host which is selected during the rotation phase is analyzed for the pres-
ence of malware, evidence of intrusion attempts, etc. If the host is found to
be compromised, it can be replaced by the clean version of OS or the affected
service. The framework is managed by an administrator daemon, which aims
to achieve high service availability during the rotation process.

7.2.2.3 Application Level MTD

Application Level MTD involves a change in the application required, source
code, memorymapping, and software version. An example of software-based
MTD is randomization of application address space. Address Space Layout
Randomization (ASLR) is a technique in OS to hide the base address of the
software gadgets running on the OS. The ASLR protection forces the attacker
to guess the location of the gadget.
However, some parts of the file are not randomized, leaving weak spots in

the application for the attacker, which can be used by him to invoke malicious
code. Most of the software exploits are based on a technique known as Return-
Oriented Programming (ROP). ROP is an exploit technique which allows an
attacker to take control of the program flow by smashing the call stack and
inserting the malicious instruction sequence in the program. ROP is able to

Sta�c Analysis of
the binary code

Offline par��oning
of the code into

chunks

Offline/online
randomizing of the

chunks into
opcodes

FIGURE 7.6
Anti-ROP application level MTD.

188 Software-Defined Networking and Security
bypass Data Execution Prevention (DEP), a technology used in hardware and
software to prevent code injection and executions.
MTD can be used to prevent ROP attacks. The attackers leveraging the ROP

attacks assume that the gadgets they are targeting are in absolute address or
shifted by some constant bytes. MTD solution can be used to ensure that even
if the attacker can detect the byte shift of one gadget, he is not able to guess
byte shift for the rest of the gadgets.
The Process Executable (PE)/ELF file for the application binary can be ana-

lyzed and the chunks of differentmemory blocks can be rearranged in order to
provide MTD based security for the application as shown in Figure 7.6. The
reorganized binary file provides the same functionality as the original appli-
cation binary. The attacker, in this case, will need to find the address of all
the gadgets in order to successfully exploit the application.
7.3 SDN-based MTD

SDN allows centralized command and control of the network. The flexible
programmable network solution offered by SDN makes it an ideal candidate
for provisioningMTD solutions. For instance, in a cloud network managed by
SDN, the SDN controller can be notified by security analysis tools about active
threat in the network, and the controller can take preventive methods to deal

Moving Target Defense 189
with the situation such as IP address hopping, reconfiguration of routes for
network traffic or changing the host endpoint to delay the attack propagation.
In this section, we analyze some techniques that involve the use of SDN.
7.3.1 Network Mapping and Reconnaissance Protection

The first step of the Cyber Kill Chain is the identification of vulnerable soft-
ware and OS versions. Most scanning tools make use of ICMP, TCP or UDP
scans to identify the connectivity and reachability of the potential targets.
The replies to the scans can also reveal the firewall configuration details,
i.e., what traffic is allowed or denied. The Time to Live (TTL) information
can also help in the identification of a number of hops to the attack target [143].
SDN-enabled devices can use MTD adaptations can be used to delay the

attack propagation by masquerading the real response and replying back
with a fake response to confuse the attacker. As a result, the scanning tool
will see randomports open in the target environment. The attacker’sworkload
will be increasedbecausehewill have todistinguish the fake reply from the real
traffic reply. The SDN-enabled devices can also introduce random delays in
TCP handshake request that will disrupt the identification of TCP services
and as a result help in the prevention of Distributed Denial of Service (DDoS)
attacks. Kampanakis et al. [143] have discussed the cost-benefit analysis of
MTD adaptations against network mapping and reconnaissance attacks.

7.3.1.1 Service Version and OS Hiding

The attacker needs to identify the version of OS or vulnerable service in order
to mount an attack. For instance, the attacker can send HTTP GET request to
Apache Web Server, and the response can help in identification of vulnerabil-
ity associated with a particular version of the Apache software. If the attacker
gets a reply 404 Not Found, he can identify some obfuscation happening at the
target software. A careful attacker can thus change the attack vector to exploit
the vulnerability at the target.
An SDN-enabled solution can override the actual service version with a

bogus version of the Apache Server. Some application proxies leverage this
technique to prevent service discovery attempts by a scanning tool.
Another attackmethod known asOS Fingerprinting, where the attacker tries

to discover the version of the operating systemwhich is vulnerable. Although
modern OS can generate a random response to TCP and UDP requests, the
way in which TCP sequence numbers are generated can help an attacker in
the identification of OS version.
In an SDN-enabled solution, the OS version can also be obfuscated by the

generation of a random response to the probes from a scanning tool. SDN
can introduce a layer of true randomization for the transit traffic to the target.
The SDN controller can manage a list of OS profiles and send a reply resem-
bling TCP sequence of a bogus OS, thus misguiding the attacker. As shown in

Applica�ons APIs

Adapta�on
Engine

Computa�on
Engine

Configura�on

Collector/
Analy�c

Programming

MTD
Network
Model

Controller

Network Elements

FIGURE 7.7
SDN-based MTD solution.

190 Software-Defined Networking and Security
Figure 7.7, the SDN controller can use computation engine, and collector/
analytic modules to analyze the traffic statistics, and the MTD adaptation
engine can generate service version and OS hiding based MTD strategies.
7.3.2 OpenFlow Random Host Mutation

SDN makes use of OpenFlow protocol for control plane traffic. Jafarian et al.
[133] proposed OpenFlow enabled MTD architecture as shown in Figure 7.8,
can be used to mutate IP address with a high degree of unpredictability
while keeping a stable network configuration and minimal operational
overhead.
The mutated IP address is transparent to the end host. The actual IP address

of the host called real IP (rIP) is kept unchanged, but it is linked with a short-
lived virtual IP address (vIP) at regular interval. The vIP is translated before
the host. The translation of rIP-vIP happens at the gateway of the network,
and a centralized SDN controller performs the mutation across the network.
A Constraint Satisfaction Problem (CSP) is formulated in order to maintain
mutation rate and unpredictability constraints. The CSP is solved using
Satisfiability Modulo Theories (SMT) solver.

Web Server

Database Server

DNS Auth Server

Web Server

Database Server

Flow Table

Flow Table

OF-Switch

OF-Switch

Router

NOX Controller

Internet

FIGURE 7.8
OpenFlow random host mutation.

Moving Target Defense 191
Sensitive hosts have a higher mutation rate compared to the regular hosts in
this scheme. The OF-RHM is implemented using mininet network simulator
andNOX SDN controller. OF-RHM is able to thwart about 99% of information
gathering and external scanning attempts. The framework is also highly effec-
tive against worms and zero-day exploits.
7.3.3 Frequency Minimal MTD Using SDN

Frequency minimal MTD [79] approach considers resource availability,
QoS and exploits probability for performing MTD in an SDN-enabled cloud
infrastructure.
The design goals of the approach consider:

1. What is the optimal frequency at which proactive VM migration
should take place, provided wastage of cloud resources is minimal?

2. What should be the preferred location for VMmigrationwhich can be
selected without impacting the application performance?

As shown in Figure 7.9, the normal clients can access the services hosted in the
cloud network via regular path, and the attack path represents the path along
which the attacker tries to exploit the target application.
The VMs periodically share their resource information such as storage, com-

pute capacity with the controller along the control path. Depending upon the
level of threat, the migration of VM can be proactive or reactive. The real IP

A�acker

Regular
Client

OpenFlow
Controller

Authen�ca�on
Server

Migra�on
Des�na�on VM

Candidate VM

Target
Applica�on VM

 Control Path
 Regular Path

 A�ack Path
Data Migra�on Path

FIGURE 7.9
VM migration based MTD against DoS attack.

192 Software-Defined Networking and Security
address of the VM hosting cloud application is hidden from the clients. The
data path shows the path along which VM application and its back-end data-
base are migrated. The VM migration is based on factors:

∙ VMCapacity: This parameter considers the capacity of migration tar-
get in terms of computing resources available to store files and data-
base of current and future clients.

∙ Network Bandwidth: The lower the network bandwidth between
the source and target VM, the slower will be the migration process
and the longer will be the exposure period (in case of active attacks)
for the VM being migrated. This parameter considers bandwidth
between source and target while performing VM migration.

∙ VM Reputation: This is the objective indicator of VM robustness to
deter future cyber attacks. It is the history of VM in terms of cyber
attacks launched against the VM. This parameter is considered in
order to ensure VM’s suitability for migration.

This researchwork estimates the optimal migration frequency and ideal migra-
tion location based on the parameters described above. The VM migration
mechanism is highly effective in dealing with denial-of-service (DoS) attacks.

Moving Target Defense 193
7.3.4 SDN-based Scalable MTD in Cloud

SDN-based scalable MTD solution [64] makes use of Attack Graph-based
approach to perform the security assessment of a large-scale network. Based
on the security state of the cloud network,MTD countermeasures are selected.
Figure 7.10 shows system modules and operating layers, which are part of
SDN-based MTD framework. The overlay network is responsible for vulner-
ability analysis, attack graph generation. The physical network consists of
OVS, running on top of the physical server. The SDN control interacts with
OVS using OpenFlow APIs.
The security analysis of a large-scale cloud network in real time is a

challenging problem. Attack Graphs help in identification of possible attack
scenarios that can lead to exploitation of vulnerabilities in the cloud network.
The attack graphs, however, suffer from scalability issues, beyond a few
hundred nodes.
The research work utilizes an approach based on Parallel Hypergraph Par-

titioning [145] in order to create a scalable attack graph in real time and select
MTD countermeasure - VMmigration. The MTD strategy considers the avail-
able space on the target physical server and the threat level of the destination
server before performing the VM migration.
The SDN framework also checks the possible conflicts in the OpenFlow

rules after MTD countermeasure deployment. Six types of security conflicts,
i.e., (i) Redundancy, (ii) Generalization, (iii) Correlation, (iv) Shadowing,
(v) Overlap, and (vi) Imbrication are identified based on overlap in match
and action fields of flow rules. The flow rule extraction, conflict detection,
and resolution happen at the logical layer in cloud network as shown in
Figure 7.10. The conflicted flow rules are identified and corrected
in order to provide security compliance in SDN environment post-MTD
countermeasure.
FIGURE 7.10
System modules and operating layers of scalable MTD solution.

194 Software-Defined Networking and Security
7.4 Game Theoretic MTD Models

MTD can be considered as a game between the defender and the attacker. The
goal of the attacker is the exploit of critical services in the network with a
minimum possible cost of attack. The goal of the defender is to invest the
security budget in such a way that the cost of attack is maximized for the
attacker. The defensive strategy should stop or slow down the attack propa-
gation. In this section we analyze the game theoretic model for MTD that
utilizes various reward metrics such as time, network bandwidth, service
latency, etc., to study the MTD techniques.
7.4.1 Game Theoretic Approach to IP Randomization

The framework comprises of real nodes that the attacker wants to target, and
the decoy nodes, which have been added to the system by the defender in
order to distract and slow down the attacker [66]. A game theoretic model
is used to study the strategic interactions between the attacker and the
decoy nodes.
The framework consists of two parts. The first part evaluates the interaction

between the adversary and a single decoy node. The adversary in this step can
use the variation in timing from real nodes and decoy nodes in order to iden-
tify the actual target nodes. Another way that can be used by the adversary to
target-decoy nodes is a study of variation in protocol implementation at real
and decoy nodes.
The equilibrium of the game in the first stage is used to formulate a

game with multiple real nodes and decoy nodes in the second stage. The
goal of an adversary in the attack model is to discover the real node’s IP
address in order to select the appropriate attack against services running on
that VM.
The information set of the system can be described by the current number

of valid sessions, Y(t) and decoy node fraction scanned by the adversary at
time ‘t’, denoted by D(t). The goal of the system administrator is to minimize
the cost function composed of an information set by choosing an optimal
random variable R:

minRE(D(R))+ βY(R). (7.1)

The β denotes delay introduced by migration of a connection to the IP
address of the real node from decoy node. The cost of the connection is, there-
fore, βY(t). The randomization policy is the mapping of the information
space (Y(t), D(t)) to {0,1} random variable, where a strategy of not randomiz-
ing at the time ‘t’ is denoted by 0 and the strategy of randomizing at the time ‘t’
is denoted by 1.

Moving Target Defense 195
7.4.2 Game Theoretic Approach to Feedback Driven Multi-Stage MTD

Computer networks suffer from network scanning and packet sniffing
tools which are used by a malicious attacker for information gathering. A
multi-stage defense mechanism [296] can be formulated based on feedback
information structure. The multi-stage defense mechanism manipulates
the attack surface in order to provide a proactive defense mechanism against
attacks.
The attacker needs to learn the network setup continuously, and change

his attack vector accordingly. This is known as attack cost. The defender,
on the other hand, needs to consider the reconfiguration cost of shifting
the attack surface. Such interactions between attacker and defender can
be formulated as a game, in which defender has the objective of minimiz-
ing the security risk while maintaining the usability of the system. Thus,
the defender has to find the optimal configuration policy in order to
achieve the desired objective. The attacker in this game has the objective
of exploring the attack surface and inflicting maximum damage on
the system.
Consider a system to be partitioned into several layers, l= 1,2,3,…,N.

The vulnerabilities in each layer are denoted by Vl := {vl,1, vl,2, ..., vl,nl }. Each
vulnerability is a system weakness that can be exploited by attacker.
The vulnerability setVl is common knowledge for both attacker and defender.
Each system configuration can have one or many vulnerabilities. Let the set of
feasible system configurations at layer l be depicted by Cl : {cl,1, cl,2,, cl,ml }.
The function πl maps associate each system configuration with vulnerability
set, i.e., πl :Ci � 2Vl .
Figure 7.11 consists of four layers, l= 1,2,3,4 and an attack surface

with vulnerability set Vl = {vl,1, vl,2, vl,3}. There are two possible feasible
configurations at layer 1, i.e., C1 = {c1,1, c1,2}. In Figure 7.11 the configuration
chosen is c1,1. The configuration is subject to two vulnerabilities,
π1(c1,1) = {v1,1, v1,2}.
Similarly π2(c2,1) = {v2,1, v2,2}, π3(c3,1) = {v3,1, v3,2}, π1(c4,2) = {v4,3, v4,3}. The

configuration in this example {c1,1, c2,1, c3,1, c4,2} allows the attacker to launch
a successful attack through a sequence of exploits v1,1 � v2,2 � v2,3 � v4,3.
If the system configuration remains static, an attacker can launch a multi-

stage attack by systematically scanning and exploiting vulnerability corre-
sponding to each configuration. A mixed strategy can be employed by the
defender as shown in Figure 7.12.
The defender changes the configuration at stage 1 to c1,2. Thus the overall

system configuration changes to {c1,2, c2,1, c3,1, c4,2}. The attack planned by
an attacker based on original network configuration will not succeed in this
case. The attack-defense interaction can be formulated as two-player zero-
sum game. The defender can randomize the attack surface at each layer to
thwart multi-stage attacks.

V

V1,1

V1,2

V1,3

V2,1

V2,2

V2,3

V3,1

V3,2

V3,3

V4,1

V4,2

V4,3

c1,1 c2,1 c3,1
c4,2

FIGURE 7.12
Randomized configuration of attack surface at layer 1. Dotted curves show vulnerabilities circum-
vented by current configuration.

V

V1,1

V1,2

V1,3

V2,1

V2,2

V2,3

V3,1

V3,2

V3,3

V4,1

V4,2

V4,3

c1,1 c2,1 c3,1
c4,2

FIGURE 7.11
Static configuration and sequence of attack propagation on a physical system. Solid curve is used
to denote existing vulnerabilities.

196 Software-Defined Networking and Security
7.4.3 Game Theory-based Software Diversity

The over-reliance of a certain version of the software and an operating system
can lead to security compromise propagation over a large domain of networks
or cloud systems. The diversity as a solution to softwaremonoculture problem
has been studied by Neti et al. [203]. The hosts in the network and

h1

h2

h3

h4

h5

h6

hn

v1

v2

v3

v4

v5

v6

vm

Hosts Vulnerabili�es

FIGURE 7.13
Graph with non-uniform distribution of n hosts and m vulnerabilities; 3 vulnerabilities per host.

Moving Target Defense 197
vulnerabilities are represented by a bipartite graph. An anti-coordination
game is over the bipartite graph as shown in Figure 7.13 is used to understand
the benefit of software diversity. The software diversity is chosen based on
Renyi entropy.
The model assumes that there are k vulnerabilities per host hi∈H. A com-

promised vulnerability thus affects
nk
m

hosts. Let pi be the probability that

host h, chosen at random, is connected to vulnerability vi, pi = deg(vi)
kn

. A frac-

tion of edges are connected to each vulnerability. The diversity number Na is
denoted by equation:

Na = (
∑m

i=1

pmi)
1

1−a. (7.2)

In the equation above,Na is reciprocal of (a− 1)th root of weighted mean of
(a− 1)th power of pi. In this equation N1 = lima�1Na., which is the same as
Shannon Entropy, i.e., log(N1) = H = −∑m

i=1 pilog(pi). As the value of a is
increased from −∞ to +∞, the Na changes weightage assigned from least to
most connected vulnerabilities.

TABLE 7.1

Two-Play Anti-Coordination Game Payoff Matrix

Stay Switch

Stay �c2, �c2 0, �cw
Switch �cw, 0 �(c2þ cw), �(c2þ cw)

198 Software-Defined Networking and Security
Anti-Coordination Game for two players can be considered in terms of
two hosts h1, h2 with vulnerabilities v1, v2. Each host can stay with vulnerabil-
ity v1 or switch to vulnerability v2. The switching cost cw is the cost of user
getting familiar with a new version of software.
If both hosts h1 and h2 plan to stay with original software, the cost incurred

due to attack would be c2, and cw, c2. The intrinsic cost of one vulnerability is
c0. There payoff matrix for two-player anti-coordination game can be seen in
Table 7.1.
The game consists of two pure strategy Nash Equilibrium, i.e., (Stay, Switch)

and (Switch, Stay) and a mixed strategy Nash Equilibrium with cost
c2 + cw
2c2

.

This indicates that in a large network some hosts may choose to stay with
their original software. An effective diversity technique based on anti-coordi-
nation game analysis and Renyi entropy would be to reduce the overlap of
vulnerabilities across different hosts.

7.4.4 Markov Game-based MTD

Markov game-based MTD modeling [178] is used for analyzing security
capacity of the system and the attack strategy employed by the adversary
for defeating the MTD strategy.
An MTD in Markov model is defined as set of defender moves

D = {ϵ, d1, d2, ...} and attacker moves A = {ϵ, a1, a2, ...}. The symbol ϵ denotes
No Move. An algorithm G outputs triple {(Di, Ai, wi)}i≥1, where wi∈ {0, 1} is
used to indicate whether attacker has beaten the defender wi= 1 at time
step i or defender has beaten the attacker wi= 0 at time step i. The MTD
algorithm ‘M’ makes use of coin toss to check the attacker’s and defender’s
adversarial moves in next state along with the order of the moves.
If we consider the game to be ending in state ‘k’ for the attacker or defender,

if either of them enters state ‘k’ during first T time slots. A (k + 1)× (k + 1)
matrix M (Markov chain state transition matrix) can be used to show attackers
and defendersmoves. If the attacker is currently in state ‘i’, and decides to take
an action which transitions him into the state ‘j’, the transition probability of
the move is denoted by Mij.
An M-MTD (MD, λ, MA, μ) can be defined by:

∙ Parameters λ and μ, 0 ≤ λ+ μ ≤ 1, which represent the rate of play for
attacker and defender.

Moving Target Defense 199
∙ (k + 1)× (k + 1) transition matrices MA and MD; for i, j [{0, ..., k}.
MA

ij and MD
ij denote the transition probability from state ‘i’ to

state ‘j’ for attacker and defender, respectively.

A three-valued coin flip decides who moves in a particular state. The
attacker moves with probability λ in state ‘i’, the defender moves with prob-
ability μ and with probability 1− λ− μ, no one moves in state ‘i’.
The MTD game (MD, λ, MA, μ) can be fully described using,

M = λMD + μMa + (1− λ− μ)Ik+1, (7.3)

where Ik + 1 is the identity matrix in the MTD game.

7.4.4.1 IP Hopping Using Markov Game Modeling

IP hopping refers to continually changing the IP address of the hosts on the
network which an adversary is planning to target. The adversary has to con-
tinually rescan the network in order to discover the target hosts.
In a TCP communication, the adversary can send SYN packet. If the target

host replies back with an ACK, the adversary has successfully discovered
the vulnerable host. The defender can select a new IP address from the pool
of IP addresses at random, with a rate of λ. The adversary can probe with a
rate of μ in order to find the target host. The adversary keeps track of IP
addresses already tried in the past states of the game.
The Markov game of N+ 1 states are shown in Figure 7.14. The state

N represents the winning state for attacker or defender. The states 0,1,…,
N− 1 represent the states at which IP address was randomized. A state q,
0≤ q≤ 1 shows that IP address was randomized exactly q states ago.

∙ Mq,0 = λ. The defender randomizes the IP address with probability λ
and the game transitions back to state 0.

∙ Mq,q+1 = μ(N − q− 1)
(N − q)

. The attacker tries IP address with probability μ

and with probability 1− 1
N − q

, the IP address is incorrect.

∙ Mq,N = μ

N − q
. The attacker tries IP address with probability

1
N − q

.

The IP address is correct for attacker and the attacker wins the game.

∙ Mq,q. Both attacker and defender do nothing with probability
1− λ− μ.

∙ MN,0 = λ,MN,N = 1− λ. The attacker does not need to try any new IP
address. Only if defender randomizes the IP address, the attacker will
be kicked out of the winning state.

FIGURE 7.14
Single target hiding Markov chain.

200 Software-Defined Networking and Security
For an M-MTD game, stationary distribution πM= π, an initial state 0, rep-
resents a worst-case start state for an adversary. The probability that the
attacker wins after T time steps is ≤ T × π(k), where k is the winning state.

7.4.4.2 Winning Strategy for Adversary

The stationary distribution for single target hiding for 1 ≤ q ≤ N − 1, can be
computed as

π(0) = (1− μ)π(0)+ λπ(N)+ λ
∑N−1

q=0

π(q), (7.4)

π(q) = (1− λ− μ)π(q)+ μ
(N − q)π(q− 1)

N − q+ 1
, (7.5)

λ(N) = (1− λ)π(N)+
∑N−1

q=0

μ
π(q)
N − q

. (7.6)

The recurrence relation in Equation 7.5 can be solved by,

π(q) = μ

μ+ λ

N − q
N − q+ 1

π(q− 1), (7.7)

Moving Target Defense 201
π(q) = (
μ

μ+ λ
)q.

N − q
N

π(0). (7.8)

From Equation 7.4,
∑N

q=1 π(q) = 1− π(0), can be solved by π(0) = μ

μ+ λ
,

∑N−1

q=0

π(q)
(N − q)

=
1− μ

λ+ μ

()N

N
. (7.9)

Substituting in Equation 7.6, we get the winning state for the adversary:

1− μ

λ+ μ

()N
{ }

μ

λN
. (7.10)

The amount of time/cost spent by an adversary in defeating a single target
hiding strategy can thus bemodeled asMTDMarkov Game. The defender can
use these values to provision optimal MTD in order to increase attack cost for
the adversary.
7.5 Evaluation of MTD

The study of MTD effects, when applied to the network can serve as a guide
for the deployment of various MTD solutions. The costs and benefits associ-
ated with quantifiable security and usability metrics can help in the measure-
ment of effectiveness. In this section, we consider the frameworks that
measured the effectiveness of MTD.
7.5.1 Quantitative Metrics for MTD Evaluation

Themetrics calculated from cybersecurity testbed serve as a goodmeasure for
MTD operational deployment success. A quantitative framework based on
Cyber Quantification Metrics (CQM) has been discussed by Zaffarano et al.
[294]. The testbed utilizes four key metrics, i.e., Productivity, Success, Confiden-
tiality and Integrity for both attacker and defender.
In Table 7.2, μ=, T, A. is the average of duration attributes over the

tasks defined by the set A. The valuation of a particular task is denoted
by ν. The cost of deploying MTD is the valuation of mission productivity
valuation with and without MTD. Table 7.2 depicts various metrics and their
meaning from the attacker and defender perspective.

TABLE 7.2

Cyber Quantification Metrics for MTD Evaluation

Metric Defender Attacker Formula

Productivity Rate of task completion Rate of exploitation Prod(μ, ν) ¼ 1
jTj

P
t[T ν(t, duration).

Success Normalized value of task
completion success

Normalized value of
attack success

Success(μ, ν) ¼ 1
jTj

P
t[T ν(t, succ) [[0, 1].

Confidentiality Howmuch information is
exposed by a
task=service

Attacker activity
fraction that can be
detected

Con(μ, ν) ¼ 1
jTj

P
t[T ν(t, unexp).

Integrity Fraction of information
produced by task which
is preserved

The accuracy of
information viewed
by the attacker

Int(μ, ν) ¼ 1
jTj

P
t[T ν(t, intact).

202 Software-Defined Networking and Security
7.5.2 MTD Analysis and Evaluation Framework

MTD Analysis and Evaluation Framework (MASON) considers the problem
of multi-stage attacks in the SDN environment. The security budget for
deployment of MTD countermeasures in a network can be limited, thus anal-
ysis of most critical services in the network from centrality and security per-
spective is very important. In this research work, the authors use system
vulnerability information and intrusion detection system (IDS) alerts to com-
pose a threat score for network services.
Snort IDS and the Nessus vulnerability scanner are used for intrusion detec-

tion and vulnerability scanning in the network. The logs are collected from
both these agents into a centralized Elastic Search, Log Stash, Kibana (ELK)
framework.
A page rank-based threat scoring mechanism has been used in this work

for combining static vulnerability information and dynamic attack events.
The SDN controller Opendaylight (ODL) as shown in the Figure 7.15
interacts with ELK framework, in order to select nodes with high threat
score for MTD countermeasure port hopping. The experimental results
suggest that deployment of MTD countermeasure on top 40–50% of
the services can reduce the cumulative threat score of the network by
almost 97%.
The framework does not consider the factors such as capacity to have an

impact on network bandwidth, Quality of Service (QoS) while performing
MTD-based port hopping. Other MTD evaluation frameworks such as [68]
and [85] consider performance, available resources and stability constraints
for MTD.

ELK Server

Threat
Score Assessment

MTD
Countermeasure

Selector

Science DMZ SDN
Command & Control Center

FIGURE 7.15
MASON framework for MTD evaluation.

Moving Target Defense 203
Summary

Cyber-attacks continue to pose a major threat to the critical infrastructure.
There aremany reactive defense mechanisms that propose detection, analysis,
and mitigation of cyber-attacks. The static nature of cloud systems and
defense mechanisms, however, gives an asymmetric advantage to the attack-
ers. Attackers can perform reconnaissance, identify potential targets and
launch the attack at will in such a scenario. MTD has emerged as a potential
solution to provide proactive security, by constantly changing the attack sur-
face and reducing the window of opportunity for the attackers. This chapter
identified and discussed the state-of-the-art MTD defense mechanisms that
shuffle, diversify and randomize the existing infrastructure, software and vir-
tual machines. There are trade-offs associated with each MTD technique such
as the impact on service availability, computing resources and security invest-
ment required for deployment of scalable MTD solutions, which we have
discussed to an extent in this chapter.WhileMTDdoes not guarantee absolute
security, it certainly reduces the attack surface and makes it difficult for the
attacker to achieve desired attack goal. The readers are encouraged to evaluate
different MTD techniques discussed in this chapter on various cloud plat-
forms such as Google Cloud, MS Azure, AWS, apart from SDN-managed
cloud environments.

http://taylorandfrancis.com

8
Attack Representation
One of the key components of network defense is representation and visual-
ization of network attacks. Security provisioning in a large network consists
of proper authentication of users, authorization of access to software and
hardware resources in the network, proper storage and transfer of data across
the network. There are multiple entry points of data ingress and egress in a
network. Since the volume of information is huge to be analyzed by a human
expert, we need logical and efficient data structures for tracking current and
potential future activity of normal users and attackers in the network. This
is very critical from the point of Threat Assessment, risk analysis and Attack
Containment.
In this chapter, we introduce many state-of-the-art data structures that have

been utilized in the representation of security threats and the propagation of
attack, which makes security assessment easier for a security administrator.
We introduce the cybersecurity metrics that are currently used in industry
and research for quantification of security threats in Section 8.1, along with
an illustrative example of attack propagation in a network. The qualitative
and quantitative metrics discussed in Section 8.1 serve as a motivation of
attack graph introduced in Section 8.2, which are some of the most popular
data structures for attack representation. We also consider probabilistic anal-
ysis and threat ranking using attack graphs in Section 8.2. Another important
data structure attack tree has been described in Section 8.3, along with exam-
ples of attack propagation represented using an attack tree. Attack trees serve
as a foundation for attack countermeasure trees (ACT’s) that showcase the
countermeasures to detect and mitigate attacks in a network along with a
qualitative and quantitative analysis of different detection and mitigation
techniques. We discuss some other attack representationmodels in Section 8.5
and analyze the limitations of different attack representation methods in
Section 8.6.
8.1 Introduction

The enterprise networks are becoming large and complex. The vulnerabilities
and threats are evolving constantly. The management of network security is a
challenging task. Even a small network can have several attack paths that can
205

206 Software-Defined Networking and Security
cause a compromise of key services in the network. The incidence response is
many companies is still based on instinct and experience of the security pro-
fessionals. The means of measuring network security risk are very few and
limited. The adage “what can’t be measured can’t be effectively managed”
applies here. The lack of good security measurement and management meth-
ods make it a challenging task for security analysts and network operators to
measure the security status of their network [58].
8.1.1 Cybersecurity Metrics

The security metrics are tools that can be used to measure the security posture
of the security state of the organization. Without security metrics, the security
analyst cannot answer security questions, such as:

∙ How secure is my current network configuration?

∙ If I change the network configuration, will my network become more
secure or less secure?

∙ How can I plan security investment to have a certain level of security?

The security experts use some informalways ofmeasuring security. The risk
analysis based on network threats, vulnerabilities and potential impact [58] is
one such example.

Risk = Threats× Vulnerabilities× Impact. (8.1)

The riskmeasurement can be formalized by the notion of attack surface. The
vulnerabilities measurement tools such as NESSUS use security metrics
such as the Common Vulnerability Scoring System (CVSS) [72] to quantify
the attack surface. The cyber-threats can bemeasured andmitigated by reduc-
ing the attack surface.
8.1.2 Common Vulnerability Scoring System (CVSS)

CVSS is an opensource framework that defines characteristics of software vul-
nerabilities. It has been adopted as an industry standard by many security
frameworks and attack representation methods.
Figure 8.1 shows various subcomponents comprised by the CVSS metric

groups. The CVSS metric measurement is divided into three metric groups:
Base, Temporal and Environmental. The Base group is used to measure the
intrinsic qualities of a vulnerability. The Temporal group measures the vul-
nerability characteristics that change over time, and the Environmental
group measures the characteristics of a vulnerability that are specific to a
user’s environment. A Base Score (BS) between {0, 10} is assigned to a

FIGURE 8.1
CVSS v3.0 Metric Groups.

Attack Representation 207
Software Vulnerability and the score can be changed based on Temporal
and Environmental metrics. The CVSS score thus captures the principal
characteristics of the vulnerability and provides a numerical value that
reflects its severity.
8.1.3 CVSS Use Case

CVSS score for a vulnerability is calculated based on several factors as can be
seen in Figure 8.1. We analyze a specific example of a vulnerability and corre-
sponding values of CVSS metrics.
The GNU Bourne Again Shell (Bash) vulnerability also known as Shellshock

has been indexed as CVE-2014-6271 in CVSSv3.0. The older versions of bash≤
4.3 allowed trailing strings in the function definition to be part of environment
variables. This allowed remote attackers to execute arbitrary code via crafted
environment variables. For instance, the attacker can target the Apache
HTTPD Server running dynamic content CGI modules. The attacker can craft
a request consisting of environment variables. The handler of HTTP requests
(GNU bash shell) will interpret requests with the privilege of Apache HTTP
process. The attacker can use the privilege to install malicious software,
enumerate victim’s account details, and perform the denial-of-service (DoS)
attack. The values of various metrics which are part of CVSS for Shellshock
vulnerability have been showcased in Table 8.1.

TABLE 8.1

Shellshock Vulnerability CVSS v3.0 Base Score: 9.8

Metric Value Comment

Attack Vector Network Web Server Attack.

Attack Complexity Low Attacker needs to access services using bash shell as
interpreter or target bash shell directly.

Privileges Required None CGI in web server requires no privileges.

User Interaction None No interaction required for attacker to launch successful
attack.

Scope Unchanged GNU bash shell, which is a vulnerable component can be
used directly without any change in the scope.

Confidentiality Impact High Attacker can take complete command and control (C&C)
of the affected system.

Availability Impact High Attacker can take complete command and control (C&C)
of the affected system.

Integrity Impact High Attacker can take complete command and control (C&C)
of the affected system.

208 Software-Defined Networking and Security
8.1.4 Attack Scenario Analysis

The data structures used for the representation of information such as current
hosts, users, privilege level, vulnerabilities, open ports, etc. should be mean-
ingful and efficient to help network administrators tomake useful conclusions
regarding current threat level of the network and potential future targets in
the network.
Consider a network attack scenario as shown in Figure 8.2. A remote

attacker can exploit a security flaw such as weak authentication or unpatched
vulnerability on network firewall residing at the gateway. The attacker can
in effect gain root-level privilege on firewall. Once the attacker has access to
Internal Network, in a second stage attack can scan for the machines connected
to firewall on Internal Network, i.e., Web Server running on port 80 and File
Server running on some other random port.
The attacker can exploit Buffer Overflow vulnerability on Web Server and

gain root-level privilege on Web Server. This will allow the attacker to scan
nodes connected to DMZ Network and discover Database Server on DMZ
Network. In stage 3 the attacker can exploit SQL Injection vulnerability present
on Database Server. The attacker can ex-filtrate database credentials or corrupt
the database.
The series of steps taken by the attacker starting from initial stage and priv-

ilege in the network to reach the goal node is known as Attack Path. Several
data structures such as arrays, 2-D matrices, Binary Decision Diagrams
(BDDs), Attack Graphs, Attack Trees, Petri-nets, etc. have been used by secur-
ity researchers for representation of network attackers path to gain higher
privileges in network by exploitation of security flaws and vulnerabilities.

FIGURE 8.2
Attack propagation in a network.

Attack Representation 209
Each data structure has an associated cost in terms of time and space complex-
ity for representation of network attacks.
Attack Graphs (AGs) and Attack Trees (ATs) are two tools that have been

extensively used to represent multi-stage, multi-hop attacks in the network.
These tools provide a picture of current connectivity, vulnerability informa-
tion, and potential attack paths in a network. We can leverage information
gathered from various sources such as network traffic, system logs, vulnera-
bility scan results, etc., with help of attack graphs and trees to detect and mit-
igate potential attacks. Attack Representation Methods (ARM) provide time
efficient and cost effective network hardening capabilities as discussed by
Jajodia et al. [134].
8.1.5 Qualitative and Quantitative Metrics

Attack Graphs present a qualitative view of the security problems, e.g., what
are possible attacks in the system and what attack paths can be taken by the
attacker to reach the target node in the network.
CVSS metrics, on the other hand, can be used to interpret quantitative

information about the vulnerabilities such as complexity of a network
attack, impact on confidentiality or integrity of the system if the exploit is
successful, etc.
Component Metric can be generated using the numeric value of the CVSS

metric. The Conditional Probability of success of an attack can be represented

210 Software-Defined Networking and Security
using Component Metric. For instance an attacker needs c1(network access) to
launch an attack on the vulnerability, and c2(host compromised) is the conse-
quence of the successful exploit, i.e., Pr[c2 = T|c1 = T].
Cumulative Metric is used to represent the aggregate of probabilities over

the attack graph. Suppose a dedicated attacker tries exploiting all possible
attack paths in the system, cumulative metric denotes the probability of attack
success along at least one attack path.
8.2 Attack Graph

An Attack Graph G= {N, E} consists of nodes (N) and edges (E). The node set
can be represented as:

∙ The nodes of attack graph can be denoted by N = {Nf <Nc <
Nd <Nr}. Here Nf denotes primitive/fact nodes, e.g., vulExists(Web-
Server, BufferOverflow), Nc denotes the exploit, e.g., execCode(Web-
Server, apache), Nd denotes the privilege level, e.g., (user, Firewall)
and Nr represents the root or goal node, e.g., (root, DatabaseServer);

∙ The edges of the attack graph can be denoted by E = {Epre < Epost}.
Here Epre # (Nf <Nc)× (Nd <Nr) ensures that preconditions Nc

and Nf must be met to achieve Nd and Epost # (Nd <Nr)× (Nf <Nc)
means post-condition Nd achieved on satisfaction of Nf and Nc.

Definition 1 (Initial Conditions) Given an attack graph G, initial conditions
Ni , (Nf <Nc) refer to nodes in the attack graph used by an attacker as a starting
point with the goal of exploiting root node Nr. All other conditions that are a result
of some exploit and cannot be disabled without removing exploit conditions are known
as intermediate conditions N \Ni.

The attack graph has two different kinds of representation structures, the
ovals represent the primitive nodes and exploit nodes, i.e., Nf ∪ Nc. The dia-
monds Nd represent the exploit nodes that are a result of satisfaction of pre-
conditions Nf and Nc.
The network in Figure 8.3 consists of web server directly accessible via the

Internet. The backend database server consists of sensitive data like employee
identification numbers, company records, etc. Both the web server and user
subnet can access the database server. The web server is affected by vulnera-
bility CVE-2010-3947. The remote attacker can discover this vulnerability by
scanning the network and execute malicious code on the web server.
The database server consists of SQL Injection vulnerability CVE-2009-2106

which allows privilege escalation for a normal user. The workstations have
an outdated version of Internet Explorer (IE). This software is affected by

FIGURE 8.3
Attack graph.

Attack Representation 211
vulnerability CVE-2011-1918. The attacker can create an infected website.
The workstation user accessing this website using IE can be compromised.
The right-hand side of Figure 8.3 shows labels associated with network vul-
nerability and reachability information.
The attack graph as shown in the Figure 8.3 above can be constructed using

tools such as MulVAL [211]. The initial privilege of attacker located on the
Internet is represented by Node 0. When pre-conditions of an exploit are
met, an attack can be accomplished. The pre-conditions are joined using log-
ical AND relation. The exploit of web server Node 7 (7:0.2) in attack graph can
occur if an attacker can access the web server via TCP port 80Node 8. If a post-
condition node in the attack graph hasmultiple incoming arcs, this means that
a privilege can be obtained in more than one way. The incoming arcs into dia-
mond nodes are joined by logical OR relation.
For instance network access to database server Node 3 can be obtained by

web serverNode 6 or workstation Node 11. The attack graph can help network
admin to identify multiple attack paths that can lead to a compromise of var-
ious hosts. A multi-hop attack can be launched by the remote attacker to first
exploit web server vulnerability and use it as a stepping stone to access data-
base server (0, 28, 8, 7, 6, 4, 3, 2, 1). Another attack scenario involves attacker
tricking workstation user to click on a malicious website and use the worksta-
tion as a stepping stone to access database server (0, 15, 14, 12, 11,…).
There can be an exponential number of attack paths in worst-case scenarios

in an attack graph. The attack graph in this example has been constructed
using known vulnerabilities. However, we can also simulate artificial vulner-
abilities as input for the attack graph. This can be used for reasoning about
Advanced Persistent Threat scenarios.

212 Software-Defined Networking and Security
8.2.1 Probabilistic Attack Graphs

Security metrics in attack graphs help in assessing the risk likelihood of net-
work configuration. Many attack graph representation techniques focus on
individual security vulnerabilities. The problem with this approach is that
multi-stage network attacks exploit the dependencies between security vul-
nerabilities. Another issue in attack representation techniques is the fact that
they consider binary representation of network security secure or insecure.
This is limited because it is desirable for a security administrator to find a rel-
atively secure option amongst security configurations.
Probabilistic attack graphs utilize security metrics based on existing vulner-

ability scoring systems such as Common Vulnerability Scoring System (CVSS)
[72] and attack graph model. The model assigns probabilistic values to the
network vulnerabilities, i.e., likelihood of a vulnerability to be exploited.
Additionally, the model incorporates casual dependencies between the net-
work vulnerabilities.
The security metrics for attack graph can use priori probability value for

nodes. The probability value indicates the likelihood of a threat becoming
active and difficulty of vulnerability exploitation. We can consider prior
Risk Probability, denoted by Gv for the root node Nr # Nd. Probability value
of each internal risk node e∈Nc is denoted by Gm[e]. This value is calculated
using Base Score (BS) from CVSS metric. Base score is a combination of
exploitability and Impact-Vector (IV) as shown below:

BS = (0.6× IV + 0.4× E− 1.5)× f (IV)

IV = 10.41× (1− (1− C)× (1− I)× (1− A)),

E = 20× AC× AU × AV;

(8.2)

f (IV) = 0 if IV = 0.
1.176 otherwise.

{

(8.3)

The impact value (IV) is calculated using security parameters like
confidentiality (C), integrity (I) and availability (A). The exploitability
score E is composed of access vector (AV), access complexity (AC) and
authentication instances (AU). The value of BS from CVSS metrics lies
between 0 and 10. We normalize the value between (0,1] for probabilistic
attack graphs:

Pr(e) = BS(e)
10

∀e [Nc. (8.4)

The likelihood of attack propagation depends on the conjunct and disjunct
relation between exploits. The Risk Probability of current node is determined

Attack Representation 213
using Conditional Probability. This value depends upon Risk Probability of pre-
decessors and their relationship with the current node.

∙ If we consider the predecessor set W= parent(n) of any attack step
node in attack graph n∈Nc, conditional Risk Probability of attack
step node is given by

Pr(n|W) = Gm[n]× Πs[WPr(s|W). (8.5)

∙ On the other hand, if the predecessor node is having disjunctive rela-
tionship with predecessor setW= parent(n), the Conditional Probabil-
ity value is given by

Pr(n|W) = 1− Πs[W(1− Pr(s|W)). (8.6)
Once the Conditional Probability values of internal/step nodes have been
calculated, we can merge them to calculate the cumulative or absolute prob-
ability values according to the equations below.

∙ For the attack step nodes n∈Nc with predecessor set W= parent(n),

Pr(n) = Pr(n|W)× Πs[WPr(s). (8.7)

∙ For the attack privilege nodes n∈Ncwith predecessor setW=parent(n),

Pr(n) = 1− Πs[W(1− Pr(s)). (8.8)
The values of cumulative probability can be used by the network adminis-
trator for devising effective security countermeasure strategies.

8.2.2 Risk Mitigation Using Probability Metrics

There are several factors that need to be considered when designing a defen-
sive strategy based on network attack graphs such asmoney, time, and impact
on the service availability. We can use Risk Probability calculation based on
the approach proposed by Homer et al. [114].
Table 8.2 shows the impact of various countermeasures on the attack graph

depicted in Figure 8.3, i.e., patching vulnerability on DB Server, Web Server
and workstation firewall (Change in network access). Column 2 shows the ini-
tial values of probability for the attack to be successful.
The analysis of various countermeasures in terms of cost-intrusiveness can be

performed by comparing values of attack success with each countermeasure in
columns 3-6. PatchingWeb Server can eliminate the risk of compromise onWeb
Server, but there is limited impact on the values of Database Server andWork-
stations. Additionally, Web Server may not contain sensitive information so
protectingWeb Servermay not be the best option. The attacker can targetwork-
station and use it to access database server in a multi-hop attack.

TABLE 8.2

Risk Mitigation for Attack Graph

Host
Attack
Prob.

Patch Web
Server

Patch DB
Server

Patch
Workstation

Network Access
Change

DB Server 0.47 0.43 0 0.12 0.12

Web Server 0.2 0 0.2 0.2 0.2

Workstations 0.74 0.74 0.74 0 0.74

214 Software-Defined Networking and Security
The Database Server can be patched to eliminate the risk of losing important
information, but the downtime associated with patching the Database Server
may impact the business. Also, an attacker may still target workstations, as
patching Database Server does not help in securing the workstations. The
patch on the workstation can eliminate the attack path to the Database server,
thus eliminating the risk to attack Database Server. The attacker can still
target the Web Server, but the Database Server is secured.
The Firewall option, last column in Table 8.2, can be considered as

a countermeasure, to block access from Workstations to Database and Web
Server. This will help reduce the security risk of possible compromise
of important assets in the network. This can be considered a viable option
depending on the network setup, impact on business and other security and
usability constraints. Depending upon the cost-benefit analysis, a network
administrator can consider one or more countermeasures to deal with attack
scenarios described using an attack graph.
8.2.3 Attack Graph Ranking

The states in the attack graph can be assigned a ranking, which indicates the
probability of an intruder reaching the state. Mehta et al. [189] propose rank-
ing algorithm based on these state probability values. The scheme utilizes
ranking scheme similar to Google’s Page Rank algorithm [212]. The PageRank
algorithm, which is based on user behavior, assumes there is a “random
surfer” who visits web pages until he gets bored. Once the random surfer
gets bored, he can click on any randompage. To capture the notion of random-
ness, a damping factor d is used,where 0, d, 1. The factor 1− d denotes ran-
dom transitions from a given state to all possible states in a web graph
consisting of web pages as graph nodes and web links as edges.
If the graph consists of N nodes (web pages), Let In(j) be set of pages linking

to web page j and Out(j) be set of out-links from page j. The probability of ran-
dom surfer being at page i is given by

πi = 1− d
N

+ d
∑

j[In(i)

πj
|Out(j)|. (8.9)

Attack Representation 215
Let PageRank vector beR = (r1, r2, r3, . . . , rN)T, where rank of page i is ri. The
PageRank of page i is defined by the probability πi. Equation 8.9 is computed
recursively until πi converges. In the attack graph ranking, the event probabil-
ities are assigned to attack graph states, and the probability for the system is
computed until the values converge to a steady state. The parallels between
PageRank random surfer model and using a similar approach in attack graph
ranking is justified by the fact that brute force methods such as Distributed
Denial of Service (DDoS) use sequential probing of various network services.
Automated attacks like viruses, on the other hand, behave randomly.
8.3 Attack Tree

Attack Tree [240] is another method of representing system security. The
Attack Tree represents the network attacks. Attack Tree represents a mono-
tonic path taken by an attacker starting from a leaf node to reach a goal
node. Attack Tree usually consists of set of AND nodes and OR nodes. The
OR nodes represent one or more ways in which a goal node can be reached,
whereas AND nodes represent different conditions that must be fulfilled in
order to achieve a goal node. Children of the node are refinements of this
goal, and the attacks that can no longer be refined are represented by leaf
nodes [181].
Consider the Attack Tree [240] in Figure 8.4. The triangle represents OR

node, the logic AND gate symbol represents the AND node, and the rectangle
box represents the leaf node. The Password Hash can be obtained by attacker
from Shadow File OR Readable Password File.
Shadow File
Readable

Password File

Password
Hash

Dic�onary
A�ack

Observa�on

Shoulder
Surfing

Keylogger

From
Password

File

Extort from
User

Social
Engineering

Obtain
from
User

Crack
User

Password

FIGURE 8.4
Attack tree example.

216 Software-Defined Networking and Security
The attacker can obtain Password File using Password Hash AND textit-
Dictionary Attack. Similarly, password can be obtained from user by Extortion
OR Social Engineering. Both these techniques in addition to other methods like
Observation can be used to crack a user password. An attack tree represents all
relations specified by OR, AND conditions. The different combinations of tree
nodes (attack suites) can help an attacker reach his desired goal. We formally
define attack components and suites below.

Definition 2 Attack component set can be defined as C. An attack is finite, non-
empty multi-set of C and attack suite is finite set of attacks. We can denote universe
of attacks by A=M+(C) and universe of attack suites as S = P(A).

For example, if we haveC= {weak credentials, buffer overflow, root access},
then attack suites for gaining root access on a system can be defined as, {{weak
credentials, root access}, {buffer overflow, root access}}.
The nodes can be assigned different values in order to calculate the attack or

defense cost, e.g., easy to exploit and difficult to exploit, intrusive and non-
intrusive. The cost of attack/defense can be quantified in terms of time
required for exploitation, the cost in terms of dollar amount, etc. For instance,
the time required to obtain password directly from the user may be lesser than
using dictionary attack and password hash.

Definition 3 An Attack Tree [181] can be defined by three tuple (N, �, Nr)

∙ N is all possible nodes in the tree;

∙ S+(N) is multi-set of all possible subsets of nodes N;

∙ �# N × S+(N) denotes transition relation;

∙ NR represents the goal node of the attack tree.

For the example in Figure 8.4, S+(N) = {{Obtain from User, Crack Password},
{From Password File, Crack Password}, {Observation, Crack Password}}. The goal
node is Nr = {Crack Password}.
If we have more than one value of the same node, it is possible that calcula-

tion of attack cost is not unique and consequently undefined. In Figure 8.5, the
attacker needs to invest 5 minutes and 10 dollars in case of leaf node on the left,
whereas in case of leaf node on the right investment required for an attack is
10 minutes and 5 dollars. The attack profile of cheapest attack in the shortest
time is undecidable in this example.
8.4 Attack Countermeasure Tree

Existing state-space models used to represent Attack Trees and counter-
measures suffer from scalability challenges. Attack Response Tree [234] is

5 mins
10 dollars

10 mins
5 dollars

OR
Node

FIGURE 8.5
An undecidable case in attack tree.

Attack Representation 217
used to represent the countermeasure/response (R1, R2) for each attack state
(A1, A2).
As can be seen in Figure 8.6 such a state space model can lead to state space

explosion. The number of states is equal to 2Leaf Nodes. Attack Countermeasure
Tree (ACT) [235] takes a non-state-space representation to the security model-
ing. The defense mechanism can be placed at any node in the Attack Tree as
opposed to only at the leaf node in the Attack Response Tree. The ACT can
be used to perform a probabilistic analysis of system risk, Return of Invest-
ment (ROI), attack impact, etc.

Definition 4 (ACT) can be defined as ACT = {V, E, ϕ}. Ai indicates an attack
event, Dj indicates a detection event, M1 indicates mitigation event and CMk denotes
a countermeasure event.

∙ V = {∀kvk [Ai‖Dj‖Ml},

∙ ϕ = {∀kϕk = {AND, OR, k-of-n gate}},

∙ E = ∀kek [{(vi, ϕj)‖(ϕi, ϕj)},

∙ X = (xA1xA2 ..xD1xD2 ...xM1xM2 ..) is state vector of ACT.

Figure 8.7 shows a different combination of attack, detection andmitigation
events in ACT. Figure 8.7(a) shows ACT needs detection event outcome to be
False along with network attack to achieve goal Attack Success. Similarly both
detection and mitigation events should be False in order for attack to be suc-
cessful in Figure 8.7(b).
8.4.1 ACT Qualitative and Quantitative Analysis

Qualitative Analysis considers the Mincuts that represents the attack scenar-
ios leading to successful attack. In the given example in Figure 8.8, the goal of

A1 A2

R1 R1

AND

GOAL

11

01 10

00

FIGURE 8.6
Attack response tree.

218 Software-Defined Networking and Security
attacker is resetting the BGP session. The mincuts of attack tree (AT) are
{(A111, A12), (A1121, A12), (A1122, A12), (A1123, A12), (A2)}.
Figure 8.9 shows Attack Countermeasure Tree (ACT) for BGP reset attack.

The goal node for the ACT can be analyzed from a qualitative and quantitative
aspect.
The attack methods for each attack, e.g., A1 send reset message to the router

has corresponding detection and mitigation methods. The detection method
A�ack Success

A

D

AND

A�ack Success

A

D

AND

M

AND

a) b)

FIGURE 8.7
a) ACT with one attack and one detection event; b) ACT with one attack, one detection and one
mitigation event.

G:Reset a single BGP session
Impact=Unavailability

A1: Send message to router
causing reset

A2: Alter configura�on via
compromised router

A111: Send RST message
to TCP stack

A112: Send BGP
message

A12: TCP sequence
number a�ack

A1121: No�fy A1122: Open A1123: Keep Alive

AND

OR

OR

OR

FIGURE 8.8
Attack tree (AT) for BGP reset event.

G:Reset a single BGP session
Impact=Unavailability

A1: Send message to router
causing reset

A2: Alter
configura�on

via
compromised

router

A111: Send RST
message to TCP

stack

A112: Send BGP
message

A12: TCP
sequence

number a�ack

A1121: No�fy A1122: Open A1123: Keep
Alive

AND

OR

OR

AND

AND

M2: Secure
router

AND

AND

M1: Rand
Seq. No.

OR

AND

AND

M12: MD5
Auth

D1: Traceroute
check

D12:TCP Seq.
Check

D2: Router
firewall alert

A�ack event

Detec�on event

Mi�ga�on event

FIGURE 8.9
Attack countermeasure tree for BGP reset event.

Attack Representation 219

220 Software-Defined Networking and Security
for A1, i.e., D1 is Trace route check and mitigation methods M1 is Randomize
Sequence Number. The boolean function ϕ(X) is used to represent the comple-
ment of leaf nodes in ACT. The state of ACT can be depicted using state vector
X, where xAi = 1 if an event occurs and 0 otherwise.
Using the mincut set from AT in Figure 8.8, we have,

ϕ(X) = xA111xA12 + xA1121xA12 + xA1122xA12 + xA1123xA12 + xA2 . (8.10)

The mincuts for ACT are {(A111, CM1, A12, CM12), (A1121, CM1, A12, CM12),
(A1122, CM1, A12, CM12), (A1123, CM1, A12, CM12), (A2, CM2)}, (where
CM1 = D1M1, CM12 = D12M12, CM2 = D2M2).
The mincuts can be used to find most optimal countermeasure set for the

ACT, based on the cost of deployment and impact on the overall security state
of the network due to a particular detection and mitigation methods that are
part of countermeasure (CM). For instance CM1 and CM12 can be used to pre-
vent the attack events A1121 and A12.
Quantitative Analysis of ACT can be computed in terms of the Cost of

Attack (COA) and security investment required to prevent the attack, i.e.,
Return of Investment (ROI).
The cost of attack depends upon the input gate for the attack in the ACT.
In the case of AND gate, cost of attack is a sum of the cost of all input events

as shown in Table 8.3, whereas in case of OR gate, the attack cost will be a
minimum value of the cost of all attack events. The COA for a k-of-n gate is
the sum of k lowest attack event cost.
COA or Cattacker is a minimum value of attack cost of mincuts. The COA for

an attacker in case of BGP reset attack depicted in Figure 8.8 is

CAttacker = min{(cA111 + cA12), (cA1121 + cA12), (cA1122 + cA12), (cA1123

+ cA12), cA2 }. (8.11)

The ROI can be computed using values Igoal and Pgoal in addition to cost of
attack computed fromTable 8.3. Igoal depicts the damage to the system if attack
is successful. Pgoal is used to quantify the probability of attack being successful.
TABLE 8.3

Cost of Attack in ACT

Gate Cost of Attack

AND gate
Pn

i¼1 cAi

OR gate min:ni¼1cAi

k-of-n gate
Pn

i¼1 cAi

Attack Representation 221
We define system risk as Risksys = Igoal × Pgoal.

ROI = Risksys
Cattacker

. (8.12)

The defense strategy for a given network can be formulated by considering
qualitative and quantitative factors such as mincuts, ROA and ROI associated
with ACTs.
8.5 Other Attack Representation Models

8.5.1 Fault Tree

Fault tree [234] is an analytic model that is used to check the state of the
system. The root node of the tree is specified and the system is analyzed for
undesired operations and events to find subtrees with nodes/leaves that con-
tribute to the event. The fault events are linked by logic gates AND, OR, etc.
The Fault tree in Figure 8.10 shows causes at leaf node such as the existence

of network connectivity and Software Vulnerability that leads to fault Privilege
Escalation. Each of the faults connected by OR gate can cause top level event, in
this case Email Server crash.

8.5.2 Event Tree

An event tree [234] is used to identify event such as a security breach in the
network. The logic used in the event tree is different from the fault tree in
OR

Vulnerability
Network

Connec�vity

OS Crash
Privilege

Escala�on

Email Server
Down

AND

Top level Event

Faults

Causes

FIGURE 8.10
Fault tree example.

Email Server
Down

OS
Crash

System
Compromise

Keylogger

So�ware
Vulnerability

Weak
Password

0.65

FIGURE 8.11
Event tree.

222 Software-Defined Networking and Security
the sense that event trees do not include decision points requiring logical oper-
ators AND and OR. Event trees use binary logic, in which an event has or has
not happened.
The event tree [234] in Figure 8.11 shows the probabilistic values of occur-

rence of various events leading to Email Server crash. The Cumulative and
Conditional Probability values of occurrence of each event can be calcu-
lated using probability values at each level of the event tree. For instance,
the probability that Email Server is down due to Software Vulnerability is
p(SoftwareVulnerability)× p(SystemCompromise), i.e., 0.4875.
8.5.3 Hierarchical Attack Representation Model

The graph attack representation model (ARM) has issues such as state space
explosion caused by an exponential number of attack states. On the other
hand, tree-based representationmodels fail to capture attack path information
accurately. Moreover, the changes in network topology and service vulnera-
bility information over time make it difficult to have just a single ARM. Hier-
archical attack representation model (HARM) [117] segregates the network
topology and vulnerability information by using a different data structure
for each. The network topology information is represented using an attack
graph (upper layer), whereas the vulnerability information is represented
using an attack tree (lower layer).
An update in the network such as host addition, host removal, and vulnera-

bility patching cause a modification in representation structure. The compu-
tational complexity for modification afforded by HARM [117] is better
compared to structures such as attack graph and attack tree. Additionally,
use of a layered approach helps to improve the scalability of HARM. Attack
model construction can be parallelized at each layer using HARM. Security
andperformance analysis on each layer inHARMcanbeperformed separately.
The HARM corresponding to attack scenario in Figure 8.12 shows that an

upper layer, attack has network connectivity with Web Server and Database

A�acker

Web
Server

Database
Server

rsh
local_bof
sshd_bof

rsh
sqli
local_bof

A�acker

Web
Server

DB
Server

rsh (1)

local_bof (1)

sshd_bof (1)

rsh (2)

sqli (2)

local_bof (1)

root
(1)

root
(2)

Upper
Layer

Lower
Layer

a) A�ack Scenario b) HARM

FIGURE 8.12
Hierarchical attack representation model (HARM).

Attack Representation 223
Server represented by attack graph in Figure 8.12(b). At the lower layer, the
vulnerabilities on Web Server and Database Server - local buffer overflow
(local bof), remote shell (rsh) - are represented using an attack tree.
8.6 Limitations of Attack Representation Methods

The attack representation methods have suffered from scalability issues. The
model checking approach proposed by Ammann et al. uses counterexamples
as ameans to check the security policies [28]. This approachwill suffer from scal-
ability issues, as path explosion is often an issue with model checking. Ammann
et al. performed attack graph-based analysis of network attack chains [29]. The
computation complexity for the algorithm isO(n3) for theworst case attack paths.
MulVAL has utilized security analysis based on logic programming. The

research work uses a first-order logic-based modeling approach to identify
logical dependencies between attack goals and the configuration information
[211]. The attack graph scales polynomially in terms of network size. The run-
ning time ofMulVAL is estimated to be betweenO(n2) andO(n3). Homer et al.
[115] utilize data reduction and attack grouping methods for improving the
visualization of attack graphs. The portions of the attack graph not critical
for security assessment are trimmed, whereas the similar attacks are grouped
in attack graph to improve the understanding of attack goal.
Ingols et al. [131] proposed multi-prerequisite graph-based security

assessment. The attack graph scales linearly with the network size. The

224 Software-Defined Networking and Security
computational complexity as described in the paper is O(E+NlgN). The bal-
ance between completeness of attack representation and scalability of
approach is a widely researched area. Attack Graph distillation [126] uses
severitymetrics to choosemost critical attack paths. This helps the administra-
tor control the information presented. The paper utilizes a Minimum-Cost
SAT solving approach to identify most critical attack paths for the attacker
to launch multi-step attacks. Scalable attack graph generation using hyper-
graph partitioning approach has been discussed by Chowdhary et al. [64].
The research work has utilized parallelized attack graph partitioning for gen-
eration of scalable attack graphs in SDN-based cloud network.
Attack trees and attack response trees (ART) suffer from state space explo-

sion issues discussed by Roy et al. [234]. ACT’s have been proposed to address
the scalability issues suffered by ART. Authors [236] have used a non state-
space representation model. Additionally, optimization under different bud-
get constraints has been considered in this work.
Summary

Cybersecurity Metrics reflect the quantitative information about the security
state of the network. CVSS is the most commonly used security metric mea-
sure. The CVSS score assigned is based on factors such as attack complexity,
confidentiality, integrity, availability impact. Attack Graph is a tool to repre-
sent the vulnerability, reachability and attack propagation information in a
network. The nodes that are required for exploitation of particular vulnerabil-
ity (cause) are known as pre-conditions. The effect node which is a result of
vulnerability exploitation is known as post-conditions. Probability metrics
can be used for assessment of attack success probability. Likelihood of attack
depends upon the conjunctive and disjunctive relation between the nodes of
the attack graph, quantified by conditional and cumulative probability values.
Attack Tree is another representation method that depicts the monotonic

path taken by an attacker to reach goal node. The attack tree consists of
AND, OR nodes that are required to be fulfilled for state transition. Attack
Countermeasure Tree (ACT) represents a non-state-space view of security
in a network. ACT also consists of possible defensive and mitigation methods
that can help is thwarting an attack. A mincut-based analysis of various
attacks which are part of attack tree, and countermeasures (defense and mit-
igation methods) can be used for qualitative assessment of ACTs. A quantita-
tive assessment requires estimation of attack probability, the impact of exploit
and cost of attack for the attacker. Attack representation methods - Attack
Graphs and Attack Trees-often suffer from the problem of state space explo-
sion; representation methods with low computation complexity should be
selected to handle scalability challenges.

9
Service Function Chaining
There has been a shift in paradigm from the host-centric model to the data-
centric model. The network services and computation capacity are available
closer to the users. The cloud and data center network and cloud architecture
require flexible network function deployment models.
The advent of technologies such as Network Function Visualization (NFV)

allows Cloud Service Providers (CSPs) to provision Virtual Network Func-
tions (VNFs) as opposed to physical networking infrastructure, e.g., a tradi-
tional router can be replaced by a virtual router. In a traditional network,
a sequence of steps is required when connecting various hardware com-
ponents responsible for handling the traffic coming into and going out of
the network.
Service Function Chaining (SFC) is one way of providing end-to-end net-

work connectivity while maintaining different Service Level Agreements
(SLAs) promised by CSPs. In this chapter, we discuss different SFC objectives,
design and deployment considerations and challenges faced by CSPs in SFC
provisioning. Keeping in line with the main theme of the book, one section
has been dedicated to security provisioning using SFC framework. The moti-
vation for SFC along with high-level design goals has been discussed in Sec-
tion 9.1. The SFC architecture, core concepts, and challenges introduced in
SFC by topological dependencies, resource availability and configuration
complexity have been discussed in Section 9.2. The SFC on top of SDN/NFV
framework with different applications such as segment routing has been
described in Section 9.3. Section 9.4 introduces different SFC research
project-based testbed and their architectures, such as T-Nova and Tacker.
The policy composition for SFC deployment has been discussed in Section
9.5. The research works in the field of secured service function chaining
such as Secure In Cloud Chaining (SICS) and Network Security Defense Pat-
tern (NSDP) have been discussed in Section 9.6.
9.1 Introduction

The NFV architecture requires an agile service function model, which can
handle dynamic and elastic service delivery requirements, handle movement
of various service functions and application workload in the network and
mechanism to bind the service policies to granular per-subscriber state [223].
225

TABLE 9.1

Common Causes of Middlebox Failures

Misconfiguration Overload Physical=====Electric

Firewall 67.3% 16.3% 16.3%

Proxies 63.2% 15.7% 21.1%

Intrusion Detection
System (IDS)

54.5% 11.4% 34%

226 Software-Defined Networking and Security
Middleboxes are the devices used by network operators to perform net-
work functions along the packet’s datapath from source to destination, e.g.,
Web Proxy, Firewall, and Intrusion Detection System (IDS). Researchers have
focused efforts on several issues associatedwithmiddleboxes such as being eas-
ier touse, easier tomanage,designanddeploy thegeneral-purposemiddleboxes
for different network functions. A survey of various middlebox deployments
conducted by Sherry et al. [249] reveals factors such as increased operating costs
caused bymisconfiguration and overloads that affect their normal functioning.
As shown in Table 9.1 based on results of a survey [249] of 57 enterprise

network administrators, from NANOG network operators group, the mis-
configured and overloaded middleboxes are the major reasons of middlebox
failure. About 9% administrators reported about six and ten hours per week
dealing with middlebox failures. Also, the adoption of new middlebox tech-
nology is slow in the industry based on the survey results. In the median
case, enterprises update their middleboxes every four years.
Service Function Chaining (SFC) has emerged as a new architecture that

helps in better classification of various issues associated with middlebox
deployments and their potential solutions. SFC is a capability of network func-
tions (middleboxes) such as firewall, IDS, proxy, and Intrusion Prevention
System (IPS) to be connected in form of a chain for traffic steering and end-
to-end delivery of packets in a network. Automated provisioning of service
chains for network applications with different characteristics can be bene-
ficial from an operational and cost aspect for a CSP. For instance, a VOIP
service can be more resource intensive as compared to a proxy service.
A framework for management of SFC can help ensure on-demand provi-

sioning of traffic sessions with user-specified requirements. There has been
a surge in traffic of mobile devices and the Internet of Things (IoT), which
make deployment of VNFs closer to the user, distributed across multiple
data-centric networks even more desirable [46]. SDN is an enabling technol-
ogy that helps in realizing the VNF capabilities provided by NFV. There are
several key assumptions that need to be considered as part of SFC architecture
[105]. We have discussed some of them below:

1. The set of service function in a given administrative domainmay vary
from time to time. There is no global list of service functions that need
to be deployed in a particular domain.

Service Function Chaining 227
2. The policy of SFC and criteria for enabling them is a decision local to
the administrative entity of each SF domain.

3. Each administrative entity can define its own SFC logic. There is no
global standard on defining the SFC logic.

4. Several SF policies can be applied simultaneously to an administra-
tive domain in order to achieve business objectives.

5. SFC assumes independence of the underlay network setup. The
SF architecture places no restrictions on how the connectivity is real-
ized, or the factors such as jitter, bandwidth, and latency affect the
connectivity.

9.2 SFC Concepts

In this section, we describe the key terms associated with SFC architecture as
discussed in [105].

1. Network Service refers to an offering provided by a network service
provider. Network service can be composed of single or multiple
VNFs, e.g., Firewall, IDS, Load Balancer, etc.

2. Classification is used to describe the traffic flow segregation based
on local policies defined for a segment of the network. A set of service
functions can be assigned to a class of traffic. The element responsible
for the classification of the traffic is known as Classifier.

3. Service Function Chain (SFC) refers to an ordered set of service
functions that should be applied to the classified traffic. The order
of application of abstract service functions can be sequential or paral-
lel, based on the network requirements, e.g., Firewall and IDS can be
used in serial order for SFC. On the other hand, VNF operations such
as Monitoring and Firewall can be parallelized as discussed by Sun
et al. [262].

4. Service Function (SF) is used to describe a function that is used for
the treatment of traffic in a certain way. The service function can be
implemented using a virtual component, e.g., a virtualized firewall
or a physical hardware, e.g., Cisco router or switch. A virtual service
function at the network level is also known as Virtual Network Func-
tion (VNF). A hardware device can be used to implement one ormore
service functions.

5. Service Function Forwarder (SFF) is a device, physical or virtual,
that is used for forwarding traffic to a neighboring section of the net-
work based on the policy defined in the SFC encapsulation. The SFF
handles both ingress and egress traffic for a network segment.

228 Software-Defined Networking and Security
6. Service Function Path (SFP) is a constrained specification of
traversal of packets for a given SFP. The granularity of SFP can be
at a level of exact location or it can also be less specific. This allows
network operators to have a certain level of control over the selection
of SFF/SF.

7. SFCEncapsulation consists of information that helps in identification
of SFP for SFC aware traffic. In addition, SFC encapsulation may
also contain metadata associated with the data plane of the traffic
being steered using SFC.

8. Rendered Service Path (RSP) refers to the actual path traversed by
packets between two endpoints in a network based on the SFP
specified by various network operators in each zone aswell as SFF/SF
visited by traffic along the path.

SFC describes the ordered set of service functions that must be applied in
a provided order to offer a service, e.g., QoS service may require SFC contain-
ing Proxy and Load Balancer.
The example in Figure 9.1 illustrates the key terms described above.

We have two different SFCs based on the application requirement. The SFC
parental control blocks certain web traffic not deemed appropriate for
FIGURE 9.1
Service function chaining example.

FIGURE 9.2
Network service header.

Service Function Chaining 229
children. The classifier is used to steer the traffic that belongs to parental
control SFC using SFs HTTP and NAT. The inappropriate traffic is filtered
using SF HTTP. On the other hand, the SFC with no parental control steers
the traffic via SFNAT on the path to the internet. The RSP2 is used to represent
the actual traffic path for SFC with parental control in place, whereas RSP1
represents the path traversed by SFC with no parental control. Both service
chains traverse through the SFF while accessing the services available on
the internet.
Network Service Header (NSH) is a service plane protocol used for the

creation of dynamic SFC.
The key components of NSH are the following:

1. Service Path Identifier (SPI) as shown in Figure 9.2 is used to identify
service function path. This identifier is used by participating nodes
in SFC for SFP selection.

2. Service Index (SI) in Figure 9.2 is used to identify the location of service
function path. The value of SI is decremented as SFs or service func-
tion proxy nodes are encountered along the SFP. The default initial
value of SI is 255.

3. Optional metadata can be shared between participating entities
and SFs.

NSH can help in providing reusable classification of pre-programmed ser-
vice function paths. Figure 9.3 shows SFC with NSH. The chain information
is encapsulated with each packet using NSH. Some advantages and limita-
tions of using NSH as part of SFC have been discussed in Table 9.2.
9.2.1 Challenges in SFC

There are several challenges in deployments of SFC such as Firewall, IDS,
and Deep Packet Inspection (DPI) in large-scale environments. Factors like

Outer Eth
Header

Outer IP
Header

Outer UDP
Header

VxLAN NSH
Inner Eth
Header

Inner IP
Header

Payload

Network Services Header

NSH Base Header

Op�onal Metadata

Service Path (24-bit)/Index

Example: NSH Encapsulated
in VxLAN

Service Path: The Service
Chain ID

Index: The hop
In Service Chain

FIGURE 9.3
SFC with network service header.

TABLE 9.2

Network Service Header (NSH) Advantages and Limitations

Advantages Limitations

NSH allows metadata to be sent as a part of SFC.
This can be helpful for optimal service chain
deployment

NSH currently has limited support in
switches, kernels, and applications

NSH supports a wide variety of underlay and
overlay protocols such as MPLS, GRE, VXLAN

SF should be aware of NSH being a part
of SFC

NSH helps in simplifying the forwarding
complexity due to complex topological
dependencies

NSH encapsulation can introduce a delay
in the SFC

230 Software-Defined Networking and Security
application delivery, security policies, and network policies are often in con-
flict with each other when deploying an SFC as discussed by Quinn and
Nadeau [224]. We highlight some important issues to be considered for utiliz-
ing the full benefits of SFC.

Topological Dependencies: The service delivery offered by SFC is often
tightly coupled with network topology. For instance, in cloud services, differ-
ent tenants communicate via fast tunneling networks such as VLAN. If the ser-
vice function such as Firewall or IDS is placed in the SFP, the service delivery
is affected. This also inhibits the scale, capacity and flexibility across the
network.
If the network functions are hardware based or are fixed in place as per

network operators design specifications, they are difficult to move around,
and the SFC has to impose a strict ordering of SFs for packet delivery.

Service Function Chaining 231
Configuration Complexity: The logical and physical topology in networks
is at times dependent on the order of SFs in SFC. If there is a change in the
ordering of SFs, a corresponding physical or logical change is also required
in the network. Network operators are hesitant to make such a change due
to the fear of the network downtime caused by potential misconfiguration.
This leads to static service delivery deployment.
Constrained Availability of SFs: In order to provide high availability based

on network topology, redundant service functions are also required in addi-
tion to the primary service functions. Topological dependencies can, however,
impose constraints on the high availability of SFs.
Ordering and Application of SFs: The administrators have to consider the

order dependencies between the SFs. Administrator requires a standard
way to enforce and verify the ordering of SFs. There is no standard accepted
protocol so far to achieve this objective in SFC. The service policy applica-
tion in SFC needs topological information, but the available information
is not granular enough to be a reliable means for helping in the policy
specification.
Transport Dependence: The SFC should be generic enough to support

a wide variety of underlay and overlay protocols such as Virtual eXtensible
Local Area Network (VxLAN) Ethernet, Generic Routing Encapsulation
(GRE) and Multiprotocol Label Switching (MPLS).
Elastic Service Delivery: The resource flexing such as adding and removing

network functions based on the real-time traffic needs is hard to achieve in
existing networks due to topological dependencies and routing changes that
are required to ensure service delivery.
Traffic Selection Criteria: The existing SFC deployments have coarse traffic

selection policies. Policy routing and access control filtering can be used to
achieve granular traffic selection in SFC.
Security Considerations: (i) The service overlay depends on the transport

protocols such as GRE and MPLS in the network. If the security requirement
wants confidentiality or authentication in the service delivery, a secured pro-
tocol such as IPSec should be selected. (ii) The classification policy used for
selection of the underlay or the overlay protocol for SFC must be trusted
and accurate. (iii) The SFC encapsulationwhich coveys important information
about the SFC data-plane must be authenticated and/or encrypted. The
exchange of SFC encapsulation information must be done via a trusted proto-
col and source. (iv) An adequate protocol providing isolation of different ten-
ants in a multi-tenant cloud network should be in place.
Other challenges that are part of SFC include limited visibility in the end-

to-end service delivery, due to multiple data-centers and administrative
domains. The traffic steering in SFC can be unidirectional or bi-directional
depending upon the requirement. The SF-like IDS and stateful firewall often
require traffic to be steered in both forward and reverse direction. This can
be quite challenging considering the network topology and constrained
resource availability.

232 Software-Defined Networking and Security
9.3 SDN- and NFV-based SFC

There have been some attempts at developing a standard for SFC deploy-
ments. The IETF is actively developing SFC architecture to perform flow clas-
sification for routing traffic between service functions.
The European Telecommunications Standards Institute (ETSI) utilizes a ser-

vice architecture based on forwarding graphs to route traffic between VNFs
using network service header. NFV allows the creation of a software version
of service functions, e.g., virtual firewall, virtual routers, etc. By decoupling
the VNFs from the physical devices onwhich they are being run, NFV reduces
Capital Expenditures (CAPEX) and Operational Expenditures (OPEX). In
terms of service deployment, this leads to increased agility and better response
time [192]. NFV can provide dynamic policy enforcement and elastic resource
flexing in a network.
The issues discussed in Table 9.1 can be solved by NFV-based solutions

as discussed in Table 9.3. In the coming sections we will discuss detailed
examples and real-world implementations of NFV technologies that help in
dealing with SFC and middlebox deployment issues.
An example of VNF deployment over NFVI is segmented routing. Each

segment is an ordered list of instructions that help in steering traffic through
a specified path in SFC as discussed in [17]. In IPv6 architecture, the Segment
Routing Header (SRH) carries a list of segments. The segment list consists of
location information and traffic steering instructions.
Figure 9.4 shows end-to-end orchestrator that interacts with NFVmanagers

for VNF configurations in SFC. The original IPv6 packet is appended inside
the outer IPv6 packet alongwith SRH in this architecture. The incoming traffic
is classified by edge-routers, which associate the traffic to their respective VNF
chain. SRH consists of original packet and VNF chain information. The packet
arriving at NFV node is processed using VNF connector, so that packet is redi-
rected to the appropriate VNF.
OpenNFV [206] makes use of OpenStack based VNF Forwarding

Graph (VNFFG) and OpenFlow-based SFC to implement SFC. The solution
supports end-to-end packet delivery in a multi-tenant cloud network
TABLE 9.3

NFV Solution for Middlebox Failures

Failure Cause NFV Solution

Misconfiguration Centralized configuration policy checking using Openflow
protocol

Overloading Dynamic resource flexing and load balancing

Physical=Electric Virtual Network Functions (VNF) replacing physical devices

FIGURE 9.4
SFC segment routing using NFVI.

Service Function Chaining 233
using ODL controller, which allows traffic to be steered through intermediate
VNFs.
9.3.1 SDN as an Enabler of SFC

SDN allows separation of network traffic into data plane and control plane
traffic using OpenFlow protocol. SDN has emerged as a strong candidate
to serve as a de-facto protocol for deployment of VNFs in a cloud network.
SDNprovides programming abstractions required by SFC for traffic engineer-
ing and dynamic topology control. The capacity of SDN to dynamically
manage VNF connections and the underlying data plane flows makes it an
enabler for traffic steering capabilities required in SFC [268].
The control plane of SDN is responsible for management of SF instance,

mapping of SF to a specific Service Function Path (SFP), installation of flow
rules in Service Function Forwarding (SFF) devices (OpenFlow switches)
[187]. SDN control plane interacts with SDNdata plane elements via protocols
such as OpenFlow. Figure 9.5 shows various interfaces that are used by SDN
control plane to interact with SFC data plane elements that we discussed in
previous sections.
SFC classifier which is responsible for traffic classification interacts with

SFC control plane via interface C1 in Figure 9.5. The SFF devices such as

FIGURE 9.5
SDN enabled SFC architecture.

234 Software-Defined Networking and Security
OVS report connectivity status of SFs attached to them to the control plane
(interface C2) via OpenFlow protocol. Interface C3 is used by control plane
to collect packet statistics and metadata from the NSH-aware SFs. The
NSH-unaware SFs make use of SFC proxy shown in Figure 9.5 for a collection
of statistics such as trafficworkload, latency, etc. This information is relayed to
the SDN controller over interface C4.
9.4 SFC Implementations

9.4.1 T-Nova: SDN-NFV-based SFC

T-Nova [163] is an SDN-based MANO framework. T-Nova is built using
Opendaylight SDN controller and OpenStack cloud as key technologies.
Most of the existingMANOdeployments are based on the static configuration
for the nodes with VNFs. This leads to inconsistencies between the workload
requirements and features offered by the VNF node. Another key problem in
current NFVI is the absence of monitoring capability that covers not only
NFVI but also VNF services.

FIGURE 9.6
T-Nova architecture.

Service Function Chaining 235
T-Nova automates the resource discovery, service mapping, service deploy-
ment and monitoring. T-Nova showcases the performance gains obtained
using hardware acceleration. T-Nova architecture shown in Figure 9.6 is
based on the European Telecommunications Standards Institute (ETSI)
NFV ISG model with some added features. The key features in T-Nova fully
modular Service Oriented Architecture (SOA) are as follows:

236 Software-Defined Networking and Security
∙ NFVI layer, which consists of network services, physical and virtual
layers (switches, routers, VMs).

∙ NFV Management layer, composed of Virtualized Infrastructure
Manager (VIM) and Wan Infrastructure Connection Manager
(WICM). The control plane of T-Nova utilizes OpenDaylight [188]
SDN controller for network management and OpenStack [242] cloud
for data-center-based compute resources.

∙ TeNOR is the orchestration layer for T-Nova. TeNOR is a store of all
published VNFs. The design goal for TeNOR is lifecycle management
of distributed and virtualized NFVI.

∙ Marketplace layer consists of all business functions and customer-
facing interfaces, which allow external users to interact with T-Nova
system.

T-Nova testbed has led tomany SDN-based development efforts. SDK4SDN
[128], akaNETwork FLOws forCloud (Netfloc), is an opensource SDK for data
center network programming development. Netfloc has integration support
for SDN controller OpenDaylight. Netfloc provides Java interfaces and
REST-based APIs for network programmability and end-to-end OpenStack-
based data-centric network with OpenFlow enabled switches for leveraging
SDN-based MANO.
SDK4SDN was deployed using Lithium release of the OpenDaylight

controller. It was successfully tested on OpenStack Juno and Kilo releases.
Netfloc showcases several important use case applications such as tenant
isolation using lightweight non-GRE/VxLAN tunneling mechanism,
layer 2 resilience using redundant datapath abstraction for link recovery
and virtual switch reconfiguration and SFC for providing VNF traffic steer-
ing support.
9.4.2 Tacker: OpenStack-based SFC

Tacker [263] is an OpenStack-based VNF MANO platform. Tacker is based
on ETSI MANO architecture and provides a functional stack to orchestrate
end-to-end network services across VNFs.
The key components of Tacker are the following:

∙ NFV Catalog consists of VNF Descriptors, Network Service Des-
criptors and VNF Forwarding Graph Descriptors as shown in
Figure 9.7.

∙ VNFM (VNF Manager) is responsible for basic lifecycle management
operations such as create/update/delete, platform aware NFV load
optimization, health monitoring, auto-scaling and VNF configuration
management operations.

FIGURE 9.7
Tacker openstack NFV orchestration architecture.

Service Function Chaining 237
∙ NFVO: NFV Orchestrator is responsible for VIM resource check
and allocation, SFC management using VNF Forwarding Graph
descriptor, VNF placement policy, network service deployment using
decomposed VNFs.

Tacker initiative is an attempt to standardize the approach of SFC imple-
mentation using OpenStack and SDN Opendaylight controller.
9.5 Policy-Aware SFC

Security and traffic steering policies dictate how the traffic traversed
between two endpoints in a cloud network. Policies help ensure optimal per-
formance, redundancy, authentication and data integrity. Ensuring fulfill-
ment of these objectives in SFC is a complex issue. There are several actors
responsible for the formulation of these policies such as Application Service
Provider (ASP), Internet Service Provider (ISP), Telecom Service Provider
(TSP), etc. To further complicate the matter, policies can be static or dynamic
(created on the fly). In this section, we analyze the efforts in the direction of
efficient policy formulation and compliance in the context of SFC.
Some key requirements service function chaining that are provided by PGA

frameworks are as follows:

∙ Each policy writer should be able to specify service chain policies
independently.

238 Software-Defined Networking and Security
∙ SFC should allow eager policy composition, satisfying the composi-
tion intent of the individual policies.

∙ The frameworkmust be automated and free of any ambiguities for the
network traffic.

9.5.1 PGA: Graph-based Policy Expression and Reconciliation

The natural expression and automatic composition of policies in different
application scenarios such as tenant network and enterprise network is man-
ual and error-prone tasks.
The expression of high-level policies, such as DNS policies and Firewall

policies, into low-level network configuration requires coordination between
admins and users, to manually check conflicts in the policy set.
The new network infrastructures such as SDN and NFV have multiple

entities generating policies. Therefore, a mechanism that detects and resolves
conflicts between policies is highly desired. Policy Graph Abstraction (PGA)
[221] solves the problem of automatic expression, conflict-free and fast compo-
sition of network policies. PGA allows network policies to be represented as
graph structures.
The users/admins/tenants can independently compose policies and submit

them through Graph Composer through PGA User Interface (UI) shown in
Figure 9.8. A policy specified at a high level can be composed to low-level con-
figuration rules in this framework.
FIGURE 9.8
PGA system architecture.

FIGURE 9.9
PGA policy composition example.

Service Function Chaining 239
9.5.1.1 Policy Composition Example

Consider two policies - P1 and P2. Policy P1 says that only marketing employ-
ees can send traffic to the CRM server over port 7000. The traffic should
go through the load balancer (LB). According to policy P2, employees
should only access the servers installed in the company through ports
80, 3000 and 7000.
We can see in Figure 9.9 that policy P1 is completely encompassed by

policy P2. If we use simple priority assignment measure and prioritize policy
P1 over P2 since non-marketing employees will also be able to send traffic
to the CRM server in that case. A correct way of policy composition as per
PGA mechanism is shown in the figure. The marketing employees will need
to go through Firewall for accessing any server which is not CRM. All employ-
ees who are not part of marketing will need to go through firewall SF. This
arrangement may be able to achieve the desired service delivery objectives
but will lead to performance overhead, since Firewall SF has been used thrice
in the policy graph composition.
9.5.2 Group-based Policy

Group-based policy (GBP) is an automated intent-driven mechanism for
mapping the subscriber traffic to the SFs. The automation of intent is achieved

FIGURE 9.10
Endpoints, EPGs and contracts in GBP.

240 Software-Defined Networking and Security
by mapping between the intent expressed and renderers that provide the
capability to satisfy the intent. The entity that wants to communicate is known
as endpoint, e.g., Container, Network Port. The endpoints that consist of com-
mon attributes can be composed into a endpoint group (EPG). The EPGs can
enter into contracts that determine the scope of communications that are
allowed in GBP architecture. The EPGs can provide or consume contracts
which determine the capabilities and requirements of various EPGs.
For instance, EPG: WebServers in Figure 9.10 are providing the contracts

ssh and web. The EPG: Client can subscribe to the services provided as
part of the web, ssh contracts. The EPG: Client is also providing the contract
any that is subscribed by EPG: WebServers. As can be seen from the figure,
the traffic with destination ports 22, 80 (web, ssh) is allowed from EPG:
WebServer to EPG: Client, whereas for the opposite direction all traffic
is allowed.
9.6 Secure Service Function Chaining

The order in which SFs are placed, the reliance on the underlay and overlay
service delivery mechanisms, can lead to security issues and sub-optimal
packet delivery in SFC. We discuss a few ordering and placement strate-
gies and highlight the shortcomings below. Our SFC has the following
requirements:

Service Function Chaining 241
1. Traffic coming into the network should be classified into different categories
based on source IP address using Classifier SF.

2. Any traffic not part of data network security domain should be processed via
Intrusion Detection System.

3. Data network traffic and SDN controller traffic should go through Load bal-
ancing SF.

4. Control plane traffic from SDN controller should be encrypted using public
key encryption scheme.

The nodes in an SFC architecture can be SFs or Service Function Forwarders
(SFFs). An SFF is responsible for forwarding traffic packets or frames received
from a particular network segment to associated SFs using the informa-
tion encapsulated in the packet. In Figure 9.11 the OVS bridge acts as SFF.
The OVS bridges can communicate with each other using a tunnel network
tun0 shown in the figure. The SDN controller can communicate with OVS
switches using the OpenFlow protocol. The SFs are connected to OVS bridges
using tap interfaces veth. The traffic between OVS and controller is Control
Plane traffic, whereas the traffic between OVS and SFs is Dataplane traffic.
The Service Function Path (SFP) is the actual path traversed by the packet/

frame from source to destination in SFC after application of granular policies
and operational constraints in SFC. For instance in Figure 9.11, there are three
SFPs, i.e., SFP1, SFP2, SFP3, corresponding to Data Net, Public Net and SDN
controller traffic.
FIGURE 9.11
Service function chaining example in cloud network.

242 Software-Defined Networking and Security
Strategy 1 Order: C � VPN � IDS � LB.
Issue: SDN controller traffic needs to go through both VPN and IDS as
per policy, placing VPN first (incorrect order) violates security objective.
Thus, IDS should precede VPN, since VPN encrypts the traffic and IDS can
operate only on the raw traffic.

Strategy 2 Order: C � LB � IDS � VPN.
Issue: The traffic from SDN controller and data network has to go through clas-
sifier and load balancer. Malicious traffic could have been filtered out using
IDS policy resulting in less impact on QoS offered by the load balancer. The
incorrect placement leads to an efficiency issue. In order to preserve both
security and efficiency constraints, we design better placement and ordering
as shown in Figure 9.11 – Strategy 3.

Strategy 3 Order: C � IDS � VPN � LB.
Efficient Placement is obtained in this strategy since unwanted traffic is filtered
at IDS and load balancer has to deal with only legitimate traffic fromData-Net
and SDN Controller.
Correct Ordering is obtained for SDN controller traffic. The traffic is passed

in raw (un-encrypted) format through IDS, and later through VPN thus IDS
has complete visibility.
9.6.1 Secure In Cloud Chaining

The security is a key requirement in an end-to-end service delivery. The
outsourcing of network functions should satisfy confidentiality and privacy
properties. Current secure SF outsourcing schemes incur performance over-
head or are out-of-band (offline). Secure In Cloud Chaining (SICS) [277]
framework encrypts each packet header based on in-cloud rule matching
and incurs minimal performance overhead.
The SICS system in Figure 9.12 consists of a gateway for tunneling ingress

and egress traffic to the cloud middleboxes. Incoming traffic headers are
encrypted using AES encryption to ensure that cloud users are not able to
access incoming traffic. The traffic is then passed through different SFs and
decrypted at the enterprise gateway. The decrypted traffic is sent to the inter-
nal network. Each packet is assigned a label to ensure appropriate SFP is fol-
lowed and rule matching is successful when the packet traverses through a
sequence of middleboxes. The same operations are applied to the traffic going
from the internal network to the internet in reverse order. The traffic is
encrypted at the enterprise gateway and sent to the internet.
The label-based approach provides efficient packet lookup. A 16-bit label

is able to represent one million 5-tuple rules. The lookup overhead for the
matched labels using hashtable is O(1). A label can only reveal information
about the actions and forwarding behavior of themiddleboxes, thus preserves
privacy.

FIGURE 9.12
SICS design framework.

Service Function Chaining 243
9.6.2 SFC Using Network Security Defense Patterns

In a multi-tenant cloud network, each tenant can have different security and
service provisioning requirements. SDN with NFV can help inflexible com-
position of network functions. Most VNF deployment solutions consider
only the performance aspect of the SFC. The security needs are often loosely
coupled with other SFC objectives. For instance Strategy 1 in Figure 9.11 con-
siders placement of VPN service function before IDS, which violates security
objective, whereas Strategy 3 provides correct ordering of SFs. Similarly, other
security requirements such as DDoS blocking close to the source should be
considered as a part of SFC deployment.
The high-level security needs can be mapped to security patterns and the

security constraints can be mapped to appropriate SFC deployment con-
straints as discussed in Network Security Defense Pattern-based SFC frame-
work [244] as can be seen in Figure 9.13. Table 9.4 highlights various NSDP
that can help in achieving security and ordering objectives in SFC.
TheNSDPs represent security patternswhich can be combinedwith deploy-

ment constraints in order to achieve SFC. The deployment constraints can be
broadly classified into Region, Co-location, Distribution, and Waypoint.

∙ Region constraint forces the SF to be placed in a specific region or
zone. For instance, two different IDSs can be placed close to each other
(same region) in order to achieve collaboration.

FIGURE 9.13
Network security defense patterns in SFC.

TABLE 9.4

NSDP-Aware SFC

NSDP Description

Basic Unordered NSDP in which packet traversal through SFs does not need to follow any
strict ordering, e.g., Layer 3 (L3) Firewall and IDS – Figure 9.13(a).

Basic Ordered NSDP where one SF needs to be traversed before another in order to meet
security or efficiency objectives, e.g., IDS placement before VPN –

Figure 9.13(b).

Branch-and-Merge SFCwhere incoming traffic is required to be split into two branches in order
to pass through different service function paths – Figure 9.13(c).

Decomposition NSDP which requires splitting of the functionality of a given SF into two
different subsets of the same type for the purpose of de-localization. For
instance an implementation of distributed firewall via splitting of firewall
functionality – Figure 9.13(d).

Composition NSDP can sometimes require the merging of the functionality of two SFs in
order to achieve some desired properties such as state-aware SFC. For
example, a stateful firewall can have two bi-directional traffic SFs merged
together – Figure 9.13(e).

Probe Point SFC can require placement of an SF at a certain distance from a location, e.g.,
placement of L3 firewall close to the endpoint and DDoS SF close to the
location of the victim – Figure 9.13(f).

244 Software-Defined Networking and Security

Service Function Chaining 245
∙ Co-Location constraint requires placement of several similar or dis-
similar SFs on the same node. Two security functions with traffic
flow in opposite directions can be placed on the same node in order
to achieve a stateful SFC property.

∙ Distribution requires placement of SFs on different nodes. A distrib-
uted intrusion detection mechanism can require placement of IDS on
different nodes in order to achieve fast and complete security cover-
age of the entire network.

∙ Waypoint constraint requires traversal of traffic flows from different
nodes through a given SF. If we need DPI for suspicious traffic pat-
tern, we may require such traffic to pass through DPI SF.

Figure 9.14 shows three NSDPs, i.e., FW L3, IPS and WAF that are present
between EP1 and EP2 (Web Server). The NSDP basic location-aware, compo-
sition and decomposition are incorporated in this SFC deployment. We
describe the NSDP in this use case scenario below:

∙ Decomposition and Location Awareness: The layer 3 firewall
should be decomposed and placed close to source and destination.
The L3-FW is decomposed into FW L3_1 and FW L3_2, so that one
firewall can be placed near EP1 and another near the destination
node EP2. This deployment also satisfies the location awareness
criteria.
FIGURE 9.14
SFC with NSDP composition, decomposition and location awareness.

246 Software-Defined Networking and Security
∙ Composition: We want the traffic to be steered through the IDS
and Web Application Firewall (WAF) while traveling from source
to destination. Thus, we use a combination function for combining
the functionality of WAF and IDS into one SF for SFC deployment.

Summary

Service Function Chaining (SFC) architecture allows chaining of various
network functions such as Firewall, Load Balancer, and Intrusion Detection
System (IDS) in order to steer traffic between two network endpoints. Chal-
lenges in SFC such as topological dependencies, ordering, transport protocol
dependencies, traffic selection, policy routing, and security constraints
imposed by various underlay and overlay technologies limit the service deliv-
ery and possible deployment options in a network.
SDN and NFV-based SFC help in dealing with challenges in SFC. The NFV

helps in virtualization of various hardware-based SFs, thus reducing CAPEX
and OPEX. The use of SDN allows programmability in the network, thus
network monitoring, route optimization, SF ordering and traffic engineering
are possible by using SDN architecture. SFC implementation frameworks
such as T-Nova, Netfloc, and Tacker serve as a guideline for the adoption of
SFC in a cloud network. Policy compliance is critical in a cloud network. Pol-
icies can be composed into a policy graph in order to identify the order and
dependencies between various SFs in the network. Secured Service Function
Chaining (SSFC) can be achieved by identifying requirements such as traffic
encryption, load-balancing, intrusion detection, and placing the VNFs in an
order that achieves desired end-to-end security while limiting the impact on
the network performance.

10
Security Policy Management in Distributed
SDN Environments
Security policy management can be thought of as the framework for specifica-
tion of an authentication and authorization policy, and the translation of this
policy into information that can be used by devices to control access, manage-
ment of key distribution, audit of security activities and information leakage
[254]. This authorization usually pertains to permitting or denying access to
resources or information [196]. Security management almost always also
includes actions to be taken if any violations are detected.
Given the rapid growth in the scale of networks being deployed, traditional

methods which rely on trained personnel to implement and manage informa-
tion security has become more time consuming, and error-prone [274]. Main-
taining a mandated network security scheme for large-scale data center
networks and distributed environments is a formidable challenge. It is to
this end that several policy-driven management techniques have been sug-
gested [107]. By separating out security policies from their low-level imple-
mentation and enforcement in the network, such methodologies simplify
network management while paving the way for seamless growth of the net-
work [177,247].
The ease of programmability in SDN makes it a great platform for imple-

mentation of various initiatives that involve application deployment, dynamic
topology changes, and decentralized network management in a multi-tenant
data center environment. This programmability gives great flexibility in
implementing applications as well as security solutions. Having flexibility
also lends to the possibility of policy conflicts - both intentional and unin-
tended. Throw in the ability to have multiple SDN controllers to complicate
the situation by having potentially different policies in place for the same traf-
fic! Thus, implementing security solutions in such an environment is fraught
with policy conflicts and consistency issues with the hardness of this problem
being affected by the distribution scheme for the SDN controllers.
In this chapter, the implications of security policy conflicts is discussed first.

Next a formalism for flow rule conflicts in SDN environments is described. A
comprehensive conflict detection and resolution models ensure that no two
flow rules in a distributed SDN-based cloud environment have conflicts at
any layer; thereby assuring consistent conflict-free security policy implemen-
tation and preventing information leakage. Strategies for prioritizing and
unassisted resolution of these conflicts are also detailed.
247

248 Software-Defined Networking and Security
10.1 Background

The definition of policy itself is rather ambiguous and is often something of
debate. Policies could be thought of as a specific way to dynamically imple-
ment static requirements [95]. Separating out the policy from the requirement
enables them to be altered and adjusted to the environment or modified to
improve performance, all the while ensuring that they still adhere to the
requirement. In fact, the requirement can be used as a gauge to verify the func-
tionality of the policy. A policy hierarchy that represents the relationships
between different levels of policy abstractions, as shown in Figure 10.1, is gen-
erally accepted to be [54,75,193,194]:

∙ Requirements, high-level abstract policies or management goals:
These are generally natural language statements such as Service Level
Agreements (SLA) or business goals. They are usually not enforceable
at a device level, and are implemented using a lower abstraction level.

∙ Specification-level or network-level policies: These are specified by a
human administrator in a precise format to provide abstractions for
device-level implementations. These policies must be specific enough
to drive automation.

∙ Low-level policies or device configurations: These are implemented
on the devices themselves. These are often the bottleneck to both scal-
ability, performance and interoperability.

The level of policymost relevant to our study is specification-level policy, or
network policy. We adopt the definition of a network policy from the work of
Damianou [75].
Management
goals

Specification-
level policies

Device
configurations

Less abstraction,
More detail

FIGURE 10.1
Policy hierarchy.

Security Policy Management in Distributed SDN Environments 249
Definition 1 A network policy consists of rules which define relationships between
network resources and the network elements that provide those resources. Network
policies manage and control the accessibility, reliability and the QoS experienced by
networked applications and users.

The IETF policy model [260] specifies that network policies be considered as
rules that specify actions to be taken when certain conditions are met,
described by the syntax below.

IF ,condition (s). THEN ,action (s).

While the syntax described follows the Condition-Action paradigm of most

Policy Core Information Model (PCIM) [196] rules, flow rules written in this
syntax follow similar semantics to an obligation [75] in the form of an
Event-Condition-Action (ECA) paradigm [35] from event-driven architec-
tures, with an implicit event trigger in case of a match. To help determine
the action set when multiple conditions are met, most policies are associated
with a priority value. Alternately, instead of specifying an explicit priority, a
role-based priority may be assigned to the policies depending on the origina-
tion point of the policy.
A typical policy-based management architecture as per the PCIM is shown

in Figure 10.2. A Policy Manager (PM) serves to facilitate policy formulation,
analysis and verification. Once verified, the policies are stored in a Policy
Repository (PR). The Policy Decision Point (PDP) activelymonitors the system
Policy
Decision

Point

Policy
Retrieval

Event

Policy
Repository

Policy Administration
Point

Policy Enforcement
Point

Manage
Policies

FIGURE 10.2
Policy management framework.

250 Software-Defined Networking and Security
for specific events. When triggered by certain conditions, the Policy Enforce-
ment Point (PEP) comes into play to enforce the policy actions.
Several issues with regard to policy definition and implementation, such as

policy storage and enforcement in a distributed environment are addressed
natively in SDN, wherein the SDN controller can act as a PR and PDP, while
the SDN switches can act as the PEP.
10.2 Related Work

10.2.1 Firewall Rule Conflicts

There have been several attempts to classify policy conflicts. Lupu and Sloman
[175,176] describe conflict analysis for management policies, using a tool to
conduct offline detection of conflicts in a large-scale distributed system. Epp-
stein and Muthukrishnan [86] use a deal with the packet classification and fil-
ter conflict detection problem. They use KD tree [44] to verify if two rules
apply different actions on the same packet. This misses out on some conflict
classification types that involve sub-optimal rules. Fu et al. [95] manage poli-
cies as they apply to IPSec tunnels in both inter- and intra-domain environ-
ments. Hari et al. [108] present a conflict detection and resolution algorithm
using a k-tuple filter that grows linearly. However, the seminal work by Al-
Shaer and Hamed [23] is often used to classify firewall conflicts. In that
work, the authors also introduce the Firewall Policy Editor to provide a simple
representation allowing for easy human recognition of firewall rule conflicts.
The authors extend this work into a distributed environment in Firewall Pol-
icy Advisor (FPA) [22], which identifies where to insert new firewall rules to
not incur any new policy conflicts. In FPA, the authors also introduce basic
visualization by displaying simplified versions of complex firewall rules,
and show firewall rule conflicts in tabular format.
Firmato [38] is a firewall management toolkit that helps users separate out

security policy and the underlying network topology. It uses a Model Defini-
tion Language (MDL) to translate the security model into configuration files
for Lucent managed firewalls. Firmato ensures there are no policy conflicts
in the system and that the rules in the firewall are up to date with the security
policy. Fireman [293] detects misconfiguration stemming from: a) violations of
user-specified security policies; and b) inconsistencies among firewall rules. It
parses firewall configurations and converts them into an operational seman-
tics representation, which is then sent to the administrator for decision mak-
ing. Unlike FPA, Fireman also recognizes inter-firewall rule conflicts.
FAME [120] is a conflict management environment to detect and resolve

conflicts by using rule-based segmentation. In FAME, the authors used a
matrix to represent conflicting and non-conflicting address segments; but
failed while trying to represent larger rule sets.

Security Policy Management in Distributed SDN Environments 251
Capretta et al. [55] proposed a formalization of conflict detection for fire-
walls, but constrained themselves to only look at rules where the actions are
different; thereby missing out on some conflict classes. Rei [141] is a language
based on deontic logic [281] that defines security policies as possible actions on
a resource. All policies in Rei are free of conflicts due to the presence of meta-
policies defined by an administrator, which are used to resolve conflicts. If a
meta-policy that covers the conflict does not exist, by default the deny action
is prioritized. FLIP [295] is a high-level firewall configuration policy language
in which security policies are translated into lower level configuration to be
loaded onto the devices. Since FLIP is a centralized configuration generation
point, the rules generated will be conflict-free due to FLIP preventing overlap
of any kind [220].
Fang [182] is a tool that reads in the vendor specific configuration files

and converts them into an internal representation, which is then presented
to the administrator in a tabular form in simple text. While it is one of the ear-
liest work in visualization of rule conflicts, it is devoid of any graphics. While
it is a step to making security configurations vendor agnostic, it does not dis-
play any relation between conflicting rules. The onus is on an experienced
administrator to submit the right query that would present the conflict. Policy-
Vis [269] used overlapping bars to represent conflict types, and colors to
represent the action. However, the conflicts are visible only when a certain
scope is defined. A sunburst visualization is used by Mansmann et al. [179]
to visualize the rule set, but does not provide any visualization for flow rule
conflicts. None of the above works provide scalable rule conflict visualization
on-demand to the administrator, with high-level conflict categorization and
granular information.
10.2.2 SDN Security and SDN Policy Management

While advances in SDN have made it central to deployment of a cloud envi-
ronment, security mechanisms in SDN trail its applications. A basic SDN fire-
wall was introduced as part of Floodlight [5], wherein the first packet in a new
flow is sent to the controller to be matched against a set of flow rules. The
resulting action set is then sent to the OpenFlow switch. The action set is
applied for the current flow, and cached for enforcement on all future flows
matching the same conditions. In case of a dynamic security policy update
to the controller, the OpenFlow switches are oblivious to this situation and
could implement a dated action set. Javid et al. [135] built a layer-2 firewall
for an SDN-based cloud environment using a tree topology for a small net-
work using a POX controller and restricted traffic flow as desired. Suh et al.
[261] illustrated a proof-of-concept version of a traditional layer-3 firewall
over an SDN controller. An application layer firewall using SDNwas demon-
strated by Shieha [250].
FRESCO [251] allows for the implementation of security services in an

OpenFlow environment by providing reusable modules accessible through

252 Software-Defined Networking and Security
a Python API. To address conflicts that might arise in an OpenFlow environ-
ment, FRESCO introduces a Security Enforcement Kernel (SEK) that priori-
tizes rules to assist in conflict resolution, but does not tackle complex flow
rule inconsistencies. FortNOX [218] is an extension to the NOX controller
that implements role-based and signature-based enforcement to ensure appli-
cations running on the controller do not circumvent the existing security pol-
icy, thereby enforcing policy compliance. In FortNOX, reusable modules are
used to protect the flow installation mechanism against adversaries, but con-
flict analysis is conducted only between a new flow rule and existing rules,
without considering dependencies within flow tables. Thus, implementing
FortNOX in a distributed environment would be challenging. Decision mak-
ing in FortNOX seems to follow a least permissive strategy instead of making
a decision keeping the holistic nature of the environment inmind.Moreover, it
uses only layer-3 and layer-4 information for conflict detection, which we
believe is incomplete since SDN flow rules could use purely layer-2 addresses
for decisionmaking. In addition, FortNOXwould not be able to handle partial
flow rule conflicts.
In their work, Cholvy and Cuppens [60] conduct consistency analysis of

security policies, focusing on access control policy. Much of their study
focuses on defining and ensuring security policy consistency based on deontic
logic, like Rei. But paradoxes do exist in deontic logic [84] and hence such
work would be beneficial only in a complementary manner to any security
implementation involving network devices such as firewalls.
Natarajan et al. [202] study two different conflict detection techniques for

flow rules. Thefirst approach internally representsflow rules using a combina-
tion radix trie and a hash, which are then used to identify conflicts. The second
approach is an ontology-based detection system. However, the authors do not
discuss conflicts in distributed environments, or how to resolve any conflicts.
FlowChecker [21] identifies intra-switch conflicts within a single flow table

using Binary Decision Diagrams (BDD) [109]. Certain conflicts in SDN net-
works can also be determined by expanding the work of Gu et al. [102] in
detecting anomalies in network traffic tailored to a SDN environment. How-
ever, these would be limited to detecting network invariants that can be
detected by comparing current network traffic with a baseline distribution.
Pyretic [195], a high-level language written in Python courtesy of the Fre-

netic project [92], allows users to write modular applications. Modularization
ensures that rules installed to perform one task do not override other rules.
Using a mathematical modeling approach to packet processing, Pyretic com-
pares the list of rules as functions that use a packet as an input, and have a set
of zero or more packets as output. Given its mathematical base, Pyretic deals
effectively with direct policy conflicts, by placing them in a prioritized rule set
much like the OpenFlow flow table. However, indirect security violations or
inconsistencies in a distributed SDN environment cannot be handled by
Pyretic without a flow tracking mechanism such as the one discussed by
Fayazbakhsh et al. [89].

Security Policy Management in Distributed SDN Environments 253
VeriFlow [152] is a proposed layer between the controller and switches
which conducts real time verification of rules being inserted. It uses search
rules based on Equivalence Classes (ECs) to maintain relationships and deter-
mine which policies would be affected in case of a change. Thus, it can verify
that flow rules being implemented have no errors due to their dependence on
faulty switch firmware, control plane communication, reachability issues,
configuration updates on the network, routing loops, etc. Like VeriFlow, Net-
Plumber [148] sits between the controller and switches. Using header space
analysis [149], it ensures that any update to a policy is compared to all depen-
dent policies to prevent and report violations.
FlowGuard [121] is a security tool specifically designed to resolve security

policy violations in an OpenFlow network. FlowGuard examines incoming
policy updates and determines flow violations in addition to performing
stateful monitoring. It uses several strategies to refine policies, most of which
include rejecting a violating flow.
Research in SDN security enforcement such asAVANT-GUARD [252] allow

for development of security enforcement kernels, and threat detection to
applications. In Sphinx [80], the authors extend attack detection in SDN to
include a broader class of attacks including untrusted switches and hosts.
However, these security solutions implicitly assume the presence of a con-
flict-free security policy for implementation, and do not address the problem
of conflicting flow rules.
Since a flow can be defined using addresses in multiple layers, policy check-

ing approaches in SDN should differ from traditional approaches by being
able to consider indirect security violations, partial violations or cross-layer
conflicts. However, none of the works discussed above tackle these problems.
Moreover, they appear not to fully leverage the SDN paradigm that lets flow
rules do traffic shaping in addition to implementing accept/deny security pol-
icy. To that end, we propose Brew, a framework that considers cross-layer
dependencies while ensuring conflict-free policies in a distributed SDN-based
environment. Additionally, Brew analyzes traffic shaping policies including
rate limiting policies along with security policies to detect and resolve direct,
indirect and partial conflicts.
The remainder of this chapter details flow rules, flow rule conflicts and

resolution mechanisms.
10.3 Flow Rules

OpenFlow v1.3.1 specifications [14] describe a flow rule to consist of the fol-
lowing fields:

∙ Priority which describes the precedence of the rule, and is defined
in the range [1, 65535]. Higher priority values are preferred over

254 Software-Defined Networking and Security
lower values. If left unspecified, the priority field defaults to
32768.

∙ Match fields which consist of protocol specific header information,
hardware addresses, and metadata that is used to match incoming
flows. In all, the basic class in OpenFlow 1.3.1 can match thirty-nine
different values, amongst which thirteen values are required to be
handled by all switches. These are: a) ingress port; b) Ethernet source
address; c) Ethernet destination address; d) Ethernet type; e) IPv4
source address; f) IPv4 destination address; g) IPv6 source address;
h) IPv6 destination address; i) IPv4 or IPv6 protocol number; j) TCP
source port; k) TCP destination port; l) UDP source port; and
m) UDP destination port.

∙ Packet counters which keep track of the number of packets that utilize
the flow rule, and are updated each time a packet match is detected.
About forty different counters are specified in the OpenFlow
1.3.1 specification.

∙ An action set that contains instructions on what to do when a match-
ing flow is detected. Associated actions can: a) forward packets
through a specified port; b) flood the packet on all ports; c) change
QoS; d) encapsulate; e) encrypt; f) rate limit; g) drop the packet; and
h) be customized using various set-field actions. The action sets
are carried between flow tables, in cases where pipeline processing
of flow tables is in effect. The complete list of match fields is shown
in Table 10.1.

∙ Timeouts which specify the maximum amount of time or idle time
before a switch would consider the flow rule expired.

∙ A cookie value chosen by the controller. This value is not visible to the
switches, and therefore not used when processing packets. It may
however be used by the controller to filter flow statistics, flow modi-
fication and flow deletion.

Since packet counters, timeouts and cookie values are not central to han-
dling flow rule conflicts, in the remainder of this book, we limit discussion
of flow rules to priority, match fields and action set fields. Table 10.2 shows
a sample flow table rules with the selected fields present. The data in the table
has been written to be human readable. The mapping of the columns is as fol-
lows: a) Rule #, present only to refer to the rules in this book and not present in
OpenFlow; b) Priority; c) Source MAC, which is specified using the Ethernet
source address field; d) Destination MAC, which is specified using the Ether-
net destination address field; e) Source IP, which is specified using the IPv4
source address field; f) Destination IP, which is specified using the IPv4 desti-
nation address field; g) Protocol, which is specified using the IPv4 protocol
field; h) Source Port, which is specified using either the TCP source field or
the UDP source field; i) Destination Port, which is specified using either the

TABLE 10.1

Flow Table Actions

Argument Description

OFPAT_OUTPUT Output to switch port

OFPAT_COPY_TTL_OUT Copy TTL “outwards” from next-to-outermost to outermost

OFPAT_COPY_TTL_IN Copy TTL “inwards” from outermost to next-to-outermost

OFPAT_SET_MPLS_TTL MPLS TTL

OFPAT_DEC_MPLS_TTL Decrement MPLS TTL

OFPAT_PUSH_VLAN Push a new VLAN tag

OFPAT_POP_VLAN Pop the outer VLAN tag

OFPAT_PUSH_MPLS Push a new MPLS tag

OFPAT_POP_MPLS Pop the outer MPLS tag

OFPAT_SET_QUEUE Set queue ID when outputting to a port

OFPAT_GROUP Apply group

OFPAT_SET_NW_TTL IP TTL

OFPAT_DEC_NW_TTL Decrement IP TTL

OFPAT_SET_FIELD Set a header field using OXM TLV format

OFPAT_PUSH_PBB Push a new PBB service tag (I-TAG)

OFPAT_POP_PBB Pop the outer PBB service tag (I-TAG)

OFPAT_EXPERIMENTER Experimenter defined

Security Policy Management in Distributed SDN Environments 255
TCP destination field or the UDP destination field; and j) Action, which is
specified in the action set but simplified here to just forward and drop. All
required fields that are ignored in Table 10.2 can be assumed to bewildcarded.
10.3.1 Security Policies Using Flow Rules

Due to the ability to alter headers from multiple layers of the OSI stack, flow
rules in the OpenFlow protocol can inherently be used for traffic forwarding,
routing and traffic shaping. Research has shown that, in addition to traffic
manipulation functionalities, most security policies can be transferred into
flow entries and deployed on OpenFlow devices [171].
While several security mechanisms implemented in traditional environ-

ments depend on routing traffic through middleboxes [140,243,248], it
has been demonstrated that integrating processing into the network is just
as effective [169]. The centralized control in the SDN paradigm can make
this integration simple and elegant. Models to implement traditional
security functions such as firewall rules, an IDS and Network Address Trans-
lation (NAT) rules in software have been demonstrated to be successful
[27,98,213]. SIMPLE, a framework that achieves OpenFlow-based enforce-
ment of middlebox policies, has been demonstrated in [222]. Contextual

TABLE 10.2

Flow Table Example

Rule # Priority Source MAC Dest MAC Source IP

1 51 * * 10.5.5.0=24

2 50 * * 10.5.5.5

3 52 * * 10.5.5.5

4 53 * * 10.5.5.0=24

5 54 * * 10.5.5.5

6 51 * * 10.5.5.0=16

7 55 * * 10.5.5.5

8 57 11:11:11:11:11:ab 11:11:aa:aa:11:21 *

9 58 * * *

Rule # Dest IP Protocol Dest Port Action

1 10.1.1.63 tcp * forward

2 10.1.1.63 tcp 80 forward

3 10.1.1.0=24 tcp * forward

4 10.1.1.63 tcp * drop

5 10.1.1.63 tcp * drop

6 10.1.1.63 tcp * drop

7 10.1.1.0=24 tcp 10-17 drop

8 * * * forward

9 * tcp 80 drop

Note: All required fields not shown here are assumed to be wildcarded.

256 Software-Defined Networking and Security
meaning to assist in the implementation of middlebox policies using Flow-
Tags was demonstrated in [89]. Further, an OpenFlow-based multi-level
security system that implements desired security policies using flow rules
to accomplish network traffic monitoring as well as verification of packet
contents has been successfully implemented [172]. François et al. [94] survey
these and several other security implementations using OpenFlow.
Four of the most generic security-related policies are firewall, IPS/IDS, load

balancing and NAT rules, each of which can be expressed using the flow rule
tuple. A typical firewall rule that blocks all Telnet traffic can be specified in
OpenFlow as follows. Note that nw_proto=6 signifies TCP.

priority = 51, nw_proto = 6, tp_dst = 23, actions = drop

Similarly, a load balancer policy, IPS/IDS policy or a NAT policy could be

implemented by modifying the layer-3 source or destination address to
send the flow to a specific device as follows:

Security Policy Management in Distributed SDN Environments 257
priority = 51, nw_src = 10.5.5.5, nw_dst = 10.1.1.1,
actions = mod_nw_dst = 10.1.1.63, output :3

10.3.2 Flow Rule Model

In order to formally create a model that describes flow rules in an SDN-based
cloud environment, an address n is defined in Definition 5.

Definition 2 A frame space of a rule r is the subset of all possible 6-byte hexadecimal
numbers representing OSI layer-2 (MAC) addresses, and is expressed as a 2-tuple
(ϵs, ϵd) with subscript s denoting source and d denoting destination addresses.

Definition 3 A packet space of a rule r is the subset of all possible 32-bit numbers
representing OSI layer-3 (IPv4) addresses, and is expressed as a 2-tuple (ζs, ζd) with
subscript s denoting source and d denoting destination addresses.

Definition 4 A segment space of a rule r is the subset of all possible 16-bit numbers
representing OSI layer-4 (TCP/UDP) addresses, and is expressed as a 2-tuple (ηs, ηd)
with subscript s denoting source and d denoting destination addresses.

Definition 5 An address space n of a rule r is the 6-tuple representing the frame
space, packet space and segment space, and is expressed as (ϵs, ϵd, ζs, ζd, ηs, ηd),
with subscript s denoting source and d denoting destination addresses. An address
space is interchangeably called an address in this book.

If N is the universal set of address spaces, we have:

Definition 6 A flow rule r is a function f :N � N that transforms n to n′, where n′

is (ϵ′s, ϵ
′
d, ζ

′
s, ζ

′
d, η

′
s, η

′
d) together with an associated action set a, that can have any of

the values from Table 10.1. Thus,

r := f (n)⇝ a
The set-field capabilities in the action fields of the rules ensure that
any, all or none of the fields in nmay be modified as a result of the transform
function f. Considering cases where the action set a is a pointer to a different
flow table, we can apply the transform function on the result of the original
transform function n′. Formally, if r := f (n)⇝ a; f (n)= n′ and a := g(n′)⇝ a′

then,

r := g(f (n))⇝ a′

Thus, multiple rules applied in succession to the same input address space
can simply be modeled as a composite function. It must be noted that the
complexity of the flow rule composition function would be exponential in
nature, since each flow rule could have multiple actions, each of which could
recursively lead to multiple actions.

258 Software-Defined Networking and Security
10.4 Flow Rule Management Challenges

Unlike traditional firewall rules, flow rules can match more than just OSI
layer-3 and layer-4 headers making them inherently more complex by virtue
of having additional variables to consider. Since wildcard rules are allowed in
OpenFlow, a partial conflict1 of a flow policy could occur, thereby adding
complexity to the resolution of conflicting flow rules.
As discussed in Section 10.3, actions that can be applied on a match include

forwarding to specific ports on the switch, flooding the packet, changing its
QoS levels, dropping the packet, encapsulating, encrypting, rate limiting or
even customizable actions using various set-field actions. The set-field
functionality is a double-edged sword. One the one hand, it provides flexibil-
ity and allows the OpenFlow protocol to define complex virtual paths for traf-
fic, and helps assert granular control. Cross-layer interaction is bolstered by
virtue of having flow rules using set-field actions to change packet headers
at several layers dynamically. But it also introduces significant management
challenges, such as the origin binding problem [89,219].
OpenFlow specifications on how a flow match is determined are ambigu-

ous, with the specifications stating that an incoming packet is compared
against the match fields in priority order, and the first complete match is
selected [14]. However, when the OFPFF_CHECK_OVERLAP flag is not set
in the controller, multiple flow entries with the same priority can be set, in
which case, the selected flow entry is explicitly undefined [14]. This is
often the case in multi-tenant data centers, since setting the OFPFF_CHECK_
OVERLAP flag would result in capping the size of each flow table to 65,535
entries.Whenmultiplematching ruleswith the same priority are encountered,
directions on how to deal with the issue are unclear, and not standard across
different implementations. While some implementations install sensible
behavior such as more specific flows taking precedence over less specific
flows, this is not specified in the OpenFlow specification [14], and not imple-
mented in OVS. For instance, the only constraint OVS places requires flow
descriptions to be in normal form, i.e., a flow can specify details for a partic-
ular layer header only if the protocol field in its lower layers is populated.
That is, if the layer-2 protocol type dl_type is wildcarded, indicating use
of any layer-3 protocol, then the flow rule cannot specify layer-3 IPv4 source
and destination addresses. But, this requirement only does not prevent con-
flict causing scenarios. Furthermore, research has shown that despite there
being clear prioritization rules in OpenFlow, certain hardware OpenFlow
switches ignore priorities and treat rules installed later as more important
[165]. Needless to say, ambiguity is highly undesirable in any security imple-
mentation, and preventing conflicts in flow rules is key.
1 Caused when there is a partial overlap in the address spaces of the rules, as described in Section
10.3

Security Policy Management in Distributed SDN Environments 259
Security implementations using SDN leverage the ability to make dynamic
changes to the network and system configurations to have a lean, agile and
secure environment. Since this usually results in environments that are con-
stantly in flux, ensuring synchronization of the flow rules on all the distributed
controllers is challenging. As and when the logical topology changes, the flow
rules in place must be modified in accordance to ensure policy compliance.
Additionally, ensuring that the changing flow rules are always in line with
the security policy of the organization is not trivial [103].
Finally, flow rules in an SDN environment can be generated by any number

of applications rather than just from an administrator. While this can reduce
the workload on the administrator and help with chronic complexity manage-
ment, there exists a potential formisplaced priorities between some of the flow
rule generation points. Besides, an application acting maliciously can wreak
havoc across the environment if not detected early enough [18]. Having mul-
tiple applications with the ability to concurrently update flow rules can lead to
unexpected conditions if the holistic nature of the environment is not consid-
ered. For example, consider a load balancing and aDPI application running on
the controller. If the DPI detects an intrusion on a node, it would attempt to
migrate traffic off it. However, if the load balancer was responsible for allocat-
ing new incoming connections to the device with the fewest number of active
connections, it might effectively sabotage the attempts of the DPI program.
To summarize, flow rule management is more complex than rule manage-

ment in a traditional environment because:

∙ Match conditions cover more fields than in traditional environments.

∙ The set-field actions lead to cross-layer interaction in SDN flows.

∙ Flow rule priority field is not unique, and there is no standard on how
to handle flow rules with the same priority.

∙ Ensuring synchronicity of rules in a multiple controller environment
is not trivial when the topology is constantly changing.

∙ There are multiple generation points for flow rules, and there exist
potential for some of the generation points to not have the same pri-
orities as the administrator.

10.4.1 Motivating Scenarios

One of the major benefits of using SDN to implement a cloud environment is
the ability to have multiple applications run on the SDN controller, each of
which has complete knowledge of the cloud environment. This can be lever-
aged by the cloud provider to provide Security-as-a-Service (SaaS). A few
potential examples of services in a SaaS suite are Firewalls, VPN, IDS, IPS,
MTD, etc. Implementing a management system that only specifies security
policies without tackling topological interaction amongst constituent mem-
bers has always been a recipe for conflicts [95].

260 Software-Defined Networking and Security
With the SDN controller having visibility into the entire system topology
along with the policies being implemented, several of the conflict causing sce-
narios in traditional networks were handled. However, there are several
instances where conflicts can creep into the flow table such as policy inconsis-
tencies caused by: a) service chain processing where multiple flow tables that
handle the same flowmight have conflicting actions; b) VPN implementations
that modify header content could result in flow rules inadvertently being
applied to a certain flow; c) flow rule injection by different modules (using
the northboundAPI provided by the controller) could have conflicting actions
for the same flow; d) matching on different OSI layer addresses resulting in
different actions; and e) administrator error. This list, while incomplete,
goes to show how prevalent policy conflicts in SDN-based cloud environ-
ments could be.
Three distinct case studies in an SDN-based cloud environment where the

security of the environment is put at risk due to flow rule conflicts are dis-
cussed next. The first scenario serves as an example where rules from different
applications conflict with each other, and the second scenario serves as an
example where rules from a single module might cause conflicts due to the
dynamism in the environment. The last scenario once again discusses how
inconsistent view of the network state results in different applications insert-
ing flow rules with incomplete information.
10.4.1.1 Case Study 1: MTD

Traditional approaches to addressing security issues in a dynamic, distributed
environment concerned themselves with implementing security through indi-
vidual components, and not considering security holistically. This leads to
two critical weaknesses: a) defense against insider attack is minimal; and
thus b) when perimeter defenses fail, internal systems are ripe for the picking.
As a counter, security applications that implement MTD is a topic that is
hotly researched.
MTD techniques have been devised as a tactic wherein security of a cloud

environment is enhanced by having a rapidly evolving systemwith a variable
attack surface, giving defenders an information advantage [64]. An effective
countermeasure used in MTD is network address switching [284], which
can be accomplished in SDNwith great ease. Since an MTD application could
dynamically and rapidly inject new flow rules into an environment, it could
lead to conflicts between the new and old flow rules.
In the data center network shown in Figure 10.3, we have Tenant A hosting a

web farm. Being security conscious, only traffic on TCP port 443 is allowed
into the IP addresses that belong to the web servers. When an attack directed
against host A2 has been detected, the MTD application responds with coun-
termeasures and takes two actions: a) a new web server (host A3) is spawned
to handle the load of host A2; and b) the IP for host A2 is migrated to the Hon-
eypot network and assigned to host Z1.

Data Center

Internet

Offload
A2 to A3

Host A1 Host A2

Host A3

Host Z1

Tenant A

HoneyPot

OVS1

OVS2

Quarantine A2's IP

VM VM

VM

VM

Controller

FIGURE 10.3
Policy conflicts in SDN-based cloud caused by MTD.

Security Policy Management in Distributed SDN Environments 261
To run forensics, isolate and incapacitate the attacker, the Honeypot net-
work permits all inbound traffic, but restricts egress traffic to other sections
of the data center. These actions result in new flow rules being injected into
the flow table that: a) permits all traffic inbound to the IP that originally
belonged to host A2, but now belongs to host Z1; b) modifies an incoming
packet’s destination address from host A2 to host A3 if the source is consid-
ered to be a non-adversarial source; c) stops all outbound traffic from the IP
that originally belonged to host A2, but now belongs to host Z1 to the rest
of the data center; and d) permits traffic on port 443 to host A3. The original
policy allowing only port 443 to the IP of hostA2, and the new policy allowing
all traffic to the IP address of host Z1 are now in conflict.
10.4.1.2 Case Study 2: VPN Services

In a multi-tenant hosted data center, the provider could have layer-3 rules in
place to prevent certain tenants from sending traffic to one another for mon-
etization, compliance or regulatory reasons or even due to technical reasons.
Hosts in two different tenant environments, TenantA and Tenant B, can estab-
lish a layer-2 tunnel (either as a host-to-host tunnel or a site-to-site tunnel)
between themselves to do single hop communication or to encrypt communi-
cation between them as shown in Figure 10.4. If another application running
on the controller inserts policies to implement DPI, all traffic originating from

Tenant A

VMVMVM VMVMVM VMVMVM

Tenant B

VMVMVM VMVMVM VMVMVM
Controller

Data Center

Internet

OVS1

OVS2

VPN

..........

DPI Module

VPN Module

FIGURE 10.4
Policy conflicts caused by different applications in an SDN-based cloud.

262 Software-Defined Networking and Security
Tenant A destined to Tenant B will be dropped, since they are encrypted and
fail the DPI standards. Clearly, there is an inherent conflict between flow rules
inserted by different applications running on the SDN controller, leading to a
shoddy user experience.

10.4.1.3 Case Study 3: Load Balancing and IDS

As introduced in Section 10.4 and similar to the scenario in Case Study 2,
consider an SDN-based data center environment where a load balancing
application as well as an IDS application run on the SDN controller. Upon
detecting intrusions, the IDS could implement a countermeasure that offloads
traffic from the compromised node. However, the load balancing application
which routes new connections based on their active load might start redirect-
ing new traffic to the compromised node, since the systemwould infer that the
compromised node has the least amount of load.
10.5 Flow Rule Conflicts

10.5.1 Problem Setup

When a packet arrives at an OVS, its match fields are compared to the
match fields of the rules in the flow table. There are multiple ways a rule
could be selected, namely: a) First match, where the first rule that matches

Security Policy Management in Distributed SDN Environments 263
the specified fields of the packet is selected; b) Best match, where the entire
firewall rule set is examined to determine the rule that provides the tightest
bounds to the specified fields; c) Deny take precedence, where any rule
with a deny action is automatically preferred over other actions; and
d) Most/Least specific take precedence, where the rule with the most/least
specific match for the match fields [39]. The first match selection is by far
the most prevalent way to select a matching flow rule. Here, we assume
all selections to be based on first match selection, with rules ordered by pri-
ority. When multiple rules with the same priority exist, the newest rule has
precedence.
10.5.2 Conflict Classes

Consider a flow table F containing rule set {r1, r2, . . . , rn}. We can represent a
flow rule ri using the tuple (pi, ϵi, ζi, ηi, ρi, ai), where a) pi is the priority. b) ϵi is
the frame space of the rule. c) ζi is the packet space of the rule. d) ηi is the seg-
ment space of the rule. e) ρi is the OSI layer-4 protocol. f) ai is the action set for
the rule.
For all devices, including SDN devices or traditional firewalls, we deal with

two main problems:

∙ Packet Classification Problem: In a firewall with rule set R, for an
incoming packet Πin with address 6-tuple nin and protocol ρin, the
packet classification problem [86] seeks to find out the set Rm # R
where Rm = {ri |(ri [R) ^ (ni = nin) ^ (ρi = ρin)}. The problem
can be further extended to determine rule rx = (px, nx, ρx, ax) [Rm

such that px . py ∀ ry [Rm.

∙ Conflict Detection Problem: The conflict detection problem [86]
seeks to find rules ri, rj such that ri, rj∈ R and (ni = nj) ^ (ρi = ρj) ^
(ai = aj _ pi = pj).

We formally define the set operations on addresses at each OSI layer. Let
ξ [{ϵ, ζ, η} be a 2-tuple (ξs, ξd) denoting an address at OSI layer-2, layer-3
or layer-4, with subscript s denoting the source address and d denoting the
destination address. Then the following definitions apply.

Definition 7 ξi # ξj if and only if they refer to the same OSI layer, and
ξsi # ξsj ^ ξdi # ξdj.

Definition 8 ξi � ξj if and only if they refer to the same OSI layer, and
ξsi � ξsj _ ξdi � ξdj.

Definition 9 ξi , ξj if and only if they refer to the same OSI layer, and
(ξsi , ξsj ^ ξdi # ξdj) _ (ξsi # ξsj ^ ξdi , ξdj).

Definition 10 Address Intersection ξi > ξj produces a tuple (ξsi > ξsj, ξdi > ξdj) if
and only if ξi and ξj refer to the same OSI layer.

264 Software-Defined Networking and Security
Definition 11 Conflict detection problem [86] seeks to find rules ri, rj such that ri,
rj ∈ R and (ni > nj = ∅) ^ (ρi = ρj) ^ (ai = aj _ pi = pj).

Definition 12 Flow rule address space ni # nj iff ϵi # ϵj ^ ζi # ζj ^ ηi # ηj.

Since flow rules in an SDN-based cloud environment are clearly a super-set
of rules in a traditional firewall environment, work on flow rule conflicts are
an extension of the work on firewall rule conflicts. While several works have
classified firewall rule conflicts [86,108,175,293]; the seminal work byAl-Shaer
and Hamed [23] is often used to classify firewall rule conflicts in a single fire-
wall environment. The classifications used in the work of Al-Shaer and
Hamed [23] are extended to formally classify flow rule conflicts, and further
adapted to suit a distributed environment.
Knowing that OpenFlow specifications clarify that if a packet matches two

flow rules, only the flow rule with the highest priority is invoked, the classifi-
cation of different conflicts in SDN environments are detailed in the remainder
of this section. The conflict classification is visually represented in Figure 10.5
and Figure 10.6. Figure 10.5 shows the address space overlap and flow rule
conflicts for rules with different priorities, and Figure 10.6 shows the address
space overlap for flow rules with the same priority.
10.5.2.1 Redundancy

A rule ri is redundant to rule rj iff: a) address space ni # nj; b) protocol ρi = ρj;
and c) action ai= aj. For example, consider rules 1 and 2 from Table 10.2,
shown below for easy reference. Rule 2 has an address space that is a subset
to the address space of rule 1, with matching protocol and actions. Hence,
rule 2 is redundant to rule 1. Redundancy does not pose a serious issue, but
instead, is more of an optimization and efficiency problem.

,flow_id = 1. priority = 51, nw_src = 10.5.5.0=24, nw_dst = 10.1.1.63,
nw_proto = 6, actions = output : 3

,flow_id = 2. priority = 50, nw_src = 10.5.5.5, nw_dst = 10.1.1.63,
nw_proto = 6, tp_dst = 80, actions = output :3

10.5.2.2 Shadowing

A rule ri is shadowed by rule rj iff: a) priority pi, pj; b) address space ni # nj; c)
protocol ρi = ρj; and d) action ai≠ aj. In such a situation, rule ri is never
invoked since incoming packets always get processed using rule rj, given its
higher priority. Shadowing is a serious issue since it shows a conflict in a
security policy implementation [23]. For example, rule 4 has the same address
space as rule 1, with the same protocol, but conflicting actions. But, the priority
of rule 4 is higher than that of rule 1, which results in rule 1 never being
invoked. Hence, rule 1 is shadowed by rule 4.

i

j

j

i

ji

Redundancy

ShadowingDifferent action

GeneralizationDifferent action

CorrelationDifferent action

Overlap

No conflictAny action

Same action

Same action

Imbrication
Same/Different

action

Address
Space

of Rule i

Address
Space

of Rule j

Key:

i

i

i

j

j

j

Priority of Rule i < Priority of Rule j

ji

FIGURE 10.5
Address space overlap and flow rule conflicts for rules with different priorities.

Security Policy Management in Distributed SDN Environments 265

Address
Space

of Rule i

Address
Space

of Rule j

Key:

i

j

ji

Redundancy

CorrelationDifferent action

No conflictAny action

i j

Same action

Imbrication
Same/Different

action
i

i

i

j

j

j

Priority of Rule i = Priority of Rule j

j

i

i j OverlapSame action

i

j

j

i

FIGURE 10.6
Address space overlap and flow rule conflicts for rules with same priority.

266 Software-Defined Networking and Security

Security Policy Management in Distributed SDN Environments 267
,flow_id = 1. priority = 51, nw_src = 10.5.5.0=24, nw_dst = 10.1.1.63,
nw_proto = 6, actions = output : 3

,flow_id = 4. priority = 53, nw_src = 10.5.5.0=24, nw_dst = 10.1.1.63,
nw_proto = 6, actions = drop

10.5.2.3 Generalization

A rule ri is a generalization of rule rj iff: a) priority pi, pj; b) address space
ni $ nj; and c) action ai≠ aj. In this case, the entire address space of rule rj is
matched by rule ri [23]. As shown below, rule 1 is a generalization of rule 5,
since the address space of rule 5 is a subset of the address space of rule 1,
with the same protocols, but different actions. Note that if the priorities of
the rules are swapped, it will result in a shadowing conflict. In traditional fire-
wall management practices, it was common practice to add such rules for
administrators to isolate a smaller portion of the traffic managed separately
from a larger set of traffic.

,flow_id = 1. priority = 51, nw_src = 10.5.5.0=24, nw_dst = 10.1.1.63,
nw_proto = 6, actions = output : 3

,flow_id = 5. priority = 54, nw_src = 10.5.5.0, nw_dst = 10.1.1.63,
nw_proto = 6, actions = drop

10.5.2.4 Correlation

Classically, a rule ri is correlated to rule rj iff: a) address space
ni � nj ^ ni � nj ^ ni > nj = ∅; b) protocol ρi = ρj; and c) action ai≠ aj [23].
As shown below, rule 3 is correlated to rule 4.

,flow_id = 3. priority = 52, nw_src = 10.5.5.5, nw_dst = 10.1.1.0=24,
nw_proto = 6, actions = output : 2

,flow_id = 4. priority = 53, nw_src = 10.5.5.0=24, nw_dst = 10.1.1.63,
nw_proto = 6, actions = drop

Since multiple SDN flow rules can have the same priority, we make the fol-

lowing addition to the correlation conflict to satisfy requirements in an SDN
environment: A rule ri is correlated to rule rj iff: a) priority pi= pj; b) address
space ni > nj = ∅; c) protocol ρi = ρj; and d) action ai≠ aj. Thus, the correlation
conflict now encompasses all policies that have the different actions, overlap-
ping address spaces and the same priority. Scenarios where address spaces of
two flow rules are subsets or supersets, whichwould have been categorized as
generalization and shadowing in a traditional environment are classified as a

268 Software-Defined Networking and Security
correlation if the priorities of the two flows are the same. For example, in
Table 10.2, rule 6 is correlated to rule 1.

,flow_id =1. priority =51 , nw_src ¼10.5.5.0/24 , nw_dst =10.1.1.63,
nw_proto =6, actions = output :3

,flow_id =6. priority =51 , nw_src =10.5.5.0/16 , nw_dst =10.1.1.63,
nw_proto =6, actions = drop

10.5.2.5 Overlap

A rule ri overlaps rule rj iff: a) address space ni � nj ^ ni � nj ^ ni > nj = ∅; b)
protocol ρi = ρj; and c) action ai= aj. An overlap rule is similar to a correlation;
but with the same action set. Note that the overlap conflict holds irrespective
of the priority of the rules in question. This overlap can be seen between rule 6
and rule 7 in Table 10.2, shown below.

,flow_id =6. priority = 51, nw_src = 10.5.5.0=16, nw_dst = 10.1.1.63,
nw_proto = 6, actions = drop

,flow_id = 7. priority = 55, nw_src = 10.5.5.5, nw_dst = 10.1.1.0=24,
nw_proto = 6, tcp_dst = 0x03e8=0xfff8, actions = drop

10.5.2.6 Imbrication

The criteria discussed above does not cover all potential conflicts in SDN envi-
ronments. Consider the case of flow rules where: a) only layer-3 header fields
are used as a condition (rule 1-7 in Table 10.2); b) only layer-2 header fields are
used as a condition for decision (rule 8); and c) only layer-4 header fields are
used as a condition (rule 9). Even though using our definitions there is no
overlap in address space, and hence there should be no conflict, a packet could
match more than one of these rules. We classify such policy conflicts as imbri-
cates, and address them by introducing the concept of reconciliation which
maps all headers to the same layer. Currently, all cross-layer conflicts are clas-
sified as imbrication. They are examined in further detail below.
10.5.3 Cross-layer Policy Conflicts

Asopposed to a traditional network,flow rules in SDN, could havematches on
multiple header fields, thereby resulting in indirect dependencies. For exam-
ple, consider traffic originating from Host A destined to Host B in Figure 10.7.
This flowwould clearly match both the flow rules shown in Listing 10.1. Rule
with cookie value0x2b0bwouldmatch on the layer-2 source, and layer-3 des-
tination address; while rule with cookie value 0x2b3a would match on the
layer-2 source, and layer-2 destination address. Since both rules have the

OVS0

10.1.1.93
11:11:aa:aa:11:11

10.1.1.63
11:11:aa:aa:11:21

OVS1

Controller

A
10.5.5.10

11:21:11:11:11:ab

VMVMVM VMVMVM

B
10.5.5.5

11:11:11:11:11:ab

OVS2

C

VMVMVM VMVMVM

D

FIGURE 10.7
Cross-layer flow rule conflict in SDN environments.

Security Policy Management in Distributed SDN Environments 269
samepriority, the action takenby the controllerwouldbe inconsistent.Asmen-
tioned earlier, since there is nodirection in the specificationonhow todealwith
such a scenario, different controllersmaydealwith these conflicts in a different
manner. A flawed approach to tackle this problem would be to expand the
address space from layer-3 and layer-4 to include layer-2 addresses, and deter-
mine rule conflicts as in a traditional environment. However, since there exists
an indirect dependency between the layer-2 and layer-3 addresses, an apples-
to-apples comparison is impossible. Moreover, flow rules could exist that do
not specify all the header fields adding another wrinkle.
Further, such conflicts between rules based on addresses over multiple OSI

layers are more complex than the other conflict classifications, since they are
transient in nature. For example, themapping between a layer-2MAC address
and layer-3 IP addresses in Figure 10.7 might result in a conflict between two
flow rules at time t1 in the layer-3 address space. But if the IP-MAC address
mapping changes, there may not be an address space overlap between the
two rules at time t2. This makes imbrication conflicts hard to find and even
harder to resolve.

LISTING 10.1 FLOW RULE CONFLICT BASED ON ADDRESSES
IN DIFFERENT OSI LAYERS
cookie = 0x2b0b, duration = 926.421s, table = 0, n_packets = 1378,
n_bytes = 271308, idle_age = 77, priority = 100 dl_type = 0x800
dl_src = 11:11:11:11:11:ab nw_dst = 10.211.1.63 actions = NORMAL

cookie = 0x2b3a, duration = 949.733s, table = 0, n_packets = 622,
n_bytes = 957, idle_age = 144, priority = 100, dl_type = 0x800
dl_src= 11:11:11:11:11:ab dl_dst= 11:11:aa:aa:11:21 actions= drop

270 Software-Defined Networking and Security
10.5.4 Traffic Engineering Flow Rules

Traffic engineering (TE) generally includes analysis of network traffic to
enhance performance at operational and resource levels [32]. In data cen-
ter and cloud service provider environments, QoS and resilience schemes
are also considered as major TE functions, especially since several applica-
tions not only have bandwidth requirements, but also require other QoS
guarantees [19]. Given the holistic network view that the SDN controller
possesses, TE mechanisms in SDN can be much more efficient and intel-
ligent, when compared to traditional IP-based mechanisms. Research on
SDN based TE has tackled the tradeoffs between latency and load balanc-
ing, focusing on: a) controller load balancing2 [87,122,159,267,289]; b)
switch load balancing [20,43,70,71,291]; and c) the use of multiple flow
tables. Our focus is determining how any implementation of TE functions
in SDN environments using flow rules might conflict with security poli-
cies. We steer clear of considering controller and switch load balancing
issues dealing with TE, and look at how implementing TE policies that
direct traffic along certain paths, and implementing QoS for certain flows
might interfere with security policy concerning the same flows.
OpenFlow specifications enable packets belonging to certain flows to be

directed to a queue of an egress port. However, using queues to implement
QoS requires that some configuration be done on the switches themselves,
in addition to the controller. The snippet below shows creation of a QoS queue
on an OVS that rate limits the maximum rate of this QoS policy to 1 Mbps,
while setting the maximum rate to 5 Mbps.

$ ovs - vsctl set port eth0 qos = @newqos -- --id = @newqos create
qos type = linux - htb other - config :max - rate = 1000000
other - config :max - rate = 5000000

Further QoS-related additions in OpenFlow enable the setting of rate limiting

functions. These utilize meter table entries, which define per-flow meters that
measure rate of packets assigned, and enable controlling that rate. Meters are
associated directly with flow entries, as opposed to different queues of egress
ports, and contain: a) an identifier; b) the specified way to process the packet;
and c) counters. Use of the meter table, as shown in Figure 10.8, to establish a
game theory-based security framework was demonstrated by Chowdhary
et al. [63], wherein the rate sub-field of band field in meter table was used
to establish rate limiting for non-cooperating actors. Their work shed light
on novel ways to use TE to implement security.
Our approach to tackling conflicts while using either of these two QoS sce-

narios is abecedarian, wherein only the forward/deny aspect of the rule is con-
sidered in the detection and resolution of conflicts.
2 Multiple controller scenarios are discussed in Chapter 3.

Match
Fields

Priority Counters
Instruction

Set

Meter
Identifier

Meter
Band

Counter

Band
Type

Rate Counter
Type

Specific Info

Timeout Cookie

FIGURE 10.8
Meter band in OpenFlow specification.

Security Policy Management in Distributed SDN Environments 271
10.6 Controller Decentralization Considerations

Choosing a decentralized control architecture is not trivial. There are several
controller placement solutions, and factors such as the number of controllers,
their location, and topology impact network performance [137]. Three major
issues need to be elucidated [245] while determining the decentralization
architecture:

∙ Efficient east- and westbound APIs need to be developed for commu-
nication between SDN controllers.

∙ The latency increase introduced due to network information
exchange between the controllers needs to be kept to a minimum.

∙ The size and operation of the controller back-end database needs to
be evaluated.

Since the key piece of information required for accurate flow rule conflict
detection (and resolution, as will be described in Chapter 10) is the priority
value of the flow rule p, the key challenge in extending flow rule conflict res-
olution from a single controller to a distributed SDN-based cloud environ-
ment lies in associating global priority values to flow rules. Definition 13
defines global priority.

Definition 13 A global priority p′ of a rule ri is value in the range [1, 65535], as
determined by weighing the priority value p by the rule origination point’s position
in the global distribution scheme. Alternately, p′ could be obtained using a static map-
ping scheme from p.

To illustrate Definition 13, consider flow rule as shownwith a priority value
of 51. If this flow rule originated in a controller or application with a weight of
2, its global priority would be 102.

272 Software-Defined Networking and Security
priority = 51, nw_src = 10.5.50.5, nw_dst = 10.1.1.1,
actions = output : 3

global_priority = 102, priority = 51, nw_src = 10.5.50.5,
nw_dst = 10.1.1.1, actions = output : 3

The strategies to associate these global priority numbers to flow rules in differ-
ent decentralization scenarios differ drastically.We classify five different mul-
tiple controller scenarios, and the global priority assignment logic followed by
our framework for each of them.
10.6.1 Clustered Controllers

The clustered SDN controller is the simplest of themultiple controller environ-
ments. It is ideal for smaller networks, where one controller can process all
events and run all applications. Clustering adds a layer of defense against
the controller being a single point of failure by having one or more controllers
in an active/standby scenario. Since all the controllers run the same applica-
tions and communicate with all the data plane devices, the global priority
assigned to the rules would be equal to the priority of the rule.
Flow rule conflict classification and resolution in clustered controllers is

handled exactly like in a single controller environment, owing to a lack of par-
titioning of data plane devices or applications. Hence, discussion of clustered
controllers as a decentralization strategy is limited in the rest of this chapter.
10.6.2 Host-based Partitioning

Host-based partitioning is most like a traditional layered network architec-
ture, where an SDN controller handles the functionalities of an access layer
switch, combined with the intelligence of a router and access control server.
The SDN-based cloud environment is separated into domains, where each
domain is controlled by a single controller. As shown in Figure 10.9, the
tenant infrastructure in multi-tenant data center environment could be
considered a domain that is handled by one controller. All the controllers
present in the environment would maintain global knowledge of the envi-
ronment by communicating with each other using east-west communica-
tion APIs.
Running on the assumption that the controller knows best about the main it

is responsible for, flow rules which contain match conditions with addresses
local to the controller are preferred. For example, the rule with cookie value
0xa added onto Controller 1 permits DNS traffic into host 10.1.1.5, which
we assume is an address assigned to Tenant A. If the rule with cookie value
0xb is added on Controller 2, the two conflicting flow rules will be known
to all the controllers owing to the controllers sharing their information.

Tenant A

Controller 1

Tenant 2

Controller 2

Tenant n

Controller n

A
pp

 1

A
pp

 2

A
pp

 n

A
pp

 1

A
pp

 2

A
pp

 n

A
pp

 1

A
pp

 2

A
pp

 n

FIGURE 10.9
Host-based partitioning.

Security Policy Management in Distributed SDN Environments 273
cookie = 0xa, priority = 100, nw_dst = 10.1.1.5, nw_proto = 17,
udp_dst = 53, actions = output : 1
cookie = 0xb, priority = 100, nw_dst = 10.0.0.0=8, nw_proto = 17,
udp_dst = 53, actions = drop

To help select the rule most applicable to the tenant, we assign weights to the

flow rules such that the ones originating from the controller assigned to the
specific domain (Controller 1, in our example) is considerably higher. The
weight itself is dependent on the environment, and can be assigned by an
administrator. Assuming a weight of 10 for the local controller, we now
have global priorities as shown in the modified flow rules below. The global
priority value can then be used for conflict resolution.

global_priority = 1000, cookie= 0xa, priority = 100, nw_dst= 10.1.1.5,
nw_proto =17, udp_dst = 53, actions = output : 1
global_priority= 100, cookie = 0xb, priority= 100, nw_dst = 10.0.0.0=8,
nw_proto = 17, udp_dst = 53, actions = drop

Host-based partitioning is popular in several cloud deployments, owing to its

simplicity. In DragonFlow [4], for example, an instance of the controller runs
on every compute node in theOpenStack cloud. Partitioning inDragonFlow is
based on the node it runs on, and is not purely tenant-based. Thus, an instance
of DragonFlow would manage the OVS and flow rules that are associated
with hosts running on the same compute node. The different DragonFlow
instances in the cloud share information by communicating with a shared

274 Software-Defined Networking and Security
back-end database. Partitioning schemes such as those employed by Dragon-
Flow are intuitive and most like decentralization strategies used in
traditional environments.
10.6.3 Hierarchical Controllers

Hierarchical controller distribution is a variant of host-based partitioning,
where some controllers handle a subset of data plane devices, while others
only communicate with control plane devices. The controllers that communi-
cate with the data plane devices can be thought of as leaf-level controllers,
while higher-level controllers communicate solely with other controllers. Fig-
ure 10.10 shows a hierarchical distribution of controllers. Further, the parti-
tioning may not be strictly host-based, as administrators could decide to
run certain applications on leaf-level controllers, and other applications on
higher-level controllers. For example, a DHCP application could reside on
the leaf controller while a NAT application could reside on the root controller.
Since higher-level controllers do not communicate with data plane devices,

except in caseswhen leaf-level controllers fail, control channel communication
is streamlined. Leaf-level nodes can obtain global information by communi-
cating with the higher-level controller, eliminating the need to talk with every
other leaf controller. Since the root controller would have holistic knowledge
of the environment, in case of conflicts flow rules originating from the root
controller are preferred.
Revisiting the example from host-based partitioning scheme, consider that

the rule with cookie value 0xa added onto Controller 1, while the rule with
cookie value 0xb is added on Controller 0. While Controller 1 might still
Tenant 1

Controller 1

Controller 0

Tenant n

Controller n

A
pp

 1

A
pp

 n

App 0

A
pp

 1

A
pp

 n

FIGURE 10.10
Hierarchical controller distribution.

Security Policy Management in Distributed SDN Environments 275
permit DNS traffic into the host at IP 10.1.1.5, the root level controller might
have an IDS application running on it that detected a DDoS attack, and
dropped all DNS traffic to the devices on 10.0.0.0/8 subnet. Once again, we
use a weight of 10, but this time for the rule on Controller 0, thereby ensuring
the conflict resolution algorithm drops the attack traffic.

global_priority = 100, cookie = 0xa, priority = 100, nw_dst = 10.1.1.5,
nw_proto = 17, udp_dst = 53, actions = output : 1
global_priority =1000, cookie= 0xb, priority =100, nw_dst= 10.0.0.0=8,
nw_proto = 17, udp_dst = 53, actions = drop

Hierarchical controllers may also be used if there is a specific structure to the

network, such as a two-tier structure. In such situations, hierarchy at the
controller level can help to manage flows for different tiers in the network.
However, coordination needs to be addressed to ensure efficiency in flow
management.
10.6.4 Application-based Partitioning

Application-based partitioning, as shown in Figure 10.11 implements decen-
tralization by having different applications run on different instances of the
controller. As with host-based partitioning, the flow rules generated by
the different applications would be known to the other controllers using the
east-west communication APIs. Each data plane device in this scenario would
communicate with every controller in the environment.
Associating global priority values in application-based decentralization is

straightforward. It could be done by assigning a weight to each application
[218], and is also used to generate the global priorities of flow rules. For
Data Plane

Controller 1

Controller 2

Controller n

App 1

App 2

App n

FIGURE 10.11
Application-based controller decentralization.

276 Software-Defined Networking and Security
example, consider Controller 1 with security applications running on it, and
Controller 2withQoS and traffic shaping applications running on it. If security
applications are prioritized with a higher weight than traffic shaping applica-
tions,flowruleswith the samepriority generatedby applications onController
1 and Controller 2will end upwith the rule generated by Controller 1 having a
higher global priority.
An alternate strategy to assign global priority values would be to allocate

ranges for flow rules created by applications. For example, it could be decided
that any NAT rule generated by the NAT application on the controller must
be within a priority of 40,000 and 42,000. Thus a global priority for a NAT
rule would be generated by mapping the priority originally in the range
[1, 65535] to a global priority in the range [40000, 42000].
10.6.5 Heterogeneous Partitioning

In a heterogeneous decentralized environment, appealing aspects of each of
the above decentralization scenarios are combined to obtain the optimal situa-
tion for meeting the requirements. Careful consideration needs to be taken to
identify the priorities of applications and controllers before deployment, to
have a conflict resolution strategy.
10.7 Flow Rule Conflict Resolution

In this section, the considerations for flow rule conflict resolution are discus-
sed. First, the flow rule conflict types discussed earlier are categorized based
on their difficulty of resolution. A conflict resolution model that addresses
automatic resolution of the flow rule conflicts is presented next.
10.7.1 Conflict Severity Classification

Based on their potential for causing damage, as well as their difficulty to
resolve, the flow rule conflicts formalized above can be classified into the fol-
lowing tiers:

10.7.1.1 Tier-1 Conflicts

Imbrication conflicts stem from flow rules using addresses in multiple layers.
Since mapping between different layers is of transient nature in dynamic
SDN environments, these conflicts are transient as well. Any resolution tech-
nique used to resolve these conflicts is, at best, made taking the current system
state into account. Such a resolution might induce the system to be in a highly
compromisable state at a future time, which could be exploited by attackers.

Security Policy Management in Distributed SDN Environments 277
To illustrate, consider once again the topology in Figure 10.7. If a layer-2 policy
and a layer-3 policy that constrain traffic between hosts A and D are present,
one of the conflict resolution strategies might select the layer-2 flow rule.
However, if the mapping between the layer-2 and layer-3 addresses changes,
the conflict resolution decision might be rendered invalid.

10.7.1.2 Tier-2 Conflicts

Conflicts classified as generalization and correlation stem from overlapping
address spaces and incompatible actions. These conflicts stem from attempts
at combining and oversimplifying flow rules. By making the address spaces
used in the flow rules as fine-grained as possible, tier-2 conflicts can be
eliminated.

10.7.1.3 Tier-3 Conflicts

Conflicts categorized as redundancy and overlap result from rules with overlap-
ping address spaces but the same resulting action. The shadowing conflict
stems from rules which are never invoked. In case of redundancy and overlap,
the action remains the same, so choosing any either flow rule would result
in the same action on the packet. Shadowed rules are never invoked owing
to their lower priority. Thus, we contend that while it is not ideal that these
conflicts exist in the system, their presence in the system is not a security threat
but an optimization issue.
10.8 Conflict Resolution Model

The different flow rule conflicts can be broadly categorized into Intelligible
and Interpretative conflicts. The resolution strategies for each of these two
categories are markedly different, and are detailed in the remainder of this
section. Tier-1 and Tier-2 conflicts are interpretative in nature, while Tier-3
conflicts are intelligible in nature.
10.8.1 Intelligible Conflicts

Flow rules that conflict with each other in the Redundancy and Overlap clas-
sifications all have the same action: they can be resolved without the loss of
any information. Rules that have shadowing conflicts can simply be removed,
without affecting any packet. In other words, the resolution algorithm can
guarantee that any packet that is permitted by the controller prior to resolving
the conflict will continue to be permitted after conflict resolution. And simi-
larly, any packet that is being blocked prior to conflict resolution will continue
to be blocked after the conflict resolution is put in place. Intelligible conflicts

278 Software-Defined Networking and Security
are resolved easily by eliminating the rules that are not applied, or by combin-
ing and optimizing the address spaces in the rules to avoid the conflict [150].
It could be argued that creative design of rules by administrators result in

flow rules that deliberately conflict to optimize the number of rules in the
flow table, especially when it comes to traffic shaping policies. However,
such optimization strategies stem out of legacy network management tech-
niques, and do not hold true in dynamic, large-scale cloud environments
where the flow table enforcing the policies in the environment could have
millions of rules.
10.8.2 Interpretative Conflicts

Conflicts that fall into Generalization, Correlation and Imbrication classifica-
tion cannot be intuitively resolved without any loss of information, and are
interpretative in nature. As opposed to intelligible conflicts, it is not guaran-
teed that any packet permitted by the controller prior to resolving the conflict
will be permitted after conflict resolution. Since interpretative conflict resolu-
tion is lossy in nature, the resolution strategies are not a one-size-fits-all and
need to be adapted per the cloud environment in question. Removing these
conflicts is a complex problem [24].
A few different resolution strategies that could be applied to resolving these

conflicts are discussed below. The global priority of the rule is assigned
depending on the controller decentralization strategy discussed in Chapter 3.
Resolution strategies for Tier-1 conflicts are shaky at best. Since these conflicts
are transient in nature, an additional decision needs to be made as to the time
duration for which the conflict resolution strategy is valid. We look at four
different strategies.

10.8.2.1 Least Privilege

In case of any conflict, flow rules that have a deny action are prioritized over a
QoS or a forward action. If conflicts exist between a higher and lower band-
width QoS policy, the lowerQoS policy is enforced. The least privilege strategy
is traditionally the most popular strategy in conflict resolution [239].

10.8.2.2 Module Security Precedence

Since flow rules in an SDN-based cloud environment can be generated by any
number of modules that run on the controller, an effective strategy that can be
put in place is to have a security precedence for the origin of the flow rule [218].
Thus, a flow rule originating from a security module is prioritized over flow
rule from an application or optimization module. The weighted global prior-
ities are calculated as discussed in the application-based partitioning scheme
discussed earlier. Table 10.3 shows sample precedence and associated global
priority weight values for a few generic applications that might run in an
SDN-based cloud.

TABLE 10.3

Security Precedence Priority Multiplier Example

Application Precedence Global Priority Weight

Virtual Private Network 1 3

Deep Packet Inspection 2 2.5

Network Address Translation 3 2

Quality of Service 4 1.5

Domain Name Service 5 1

Security Policy Management in Distributed SDN Environments 279
10.8.2.3 Environment Calibrated

This strategy incorporates learning strategies in the environment to make an
educated decision onwhich conflicting flow rule really needs to be prioritized.
Over time, if a picture can be formed about the type of data that a certain
tenant in a multi-tenant data center usually creates/retrieves, or of the appli-
cations and vulnerabilities that exist in the tenant environment, or of the reli-
ability of the software modules inserting the flow rule; the conflict resolution
module may be able to prioritize certain flow rules over others. However,
these techniques falter while dealing with a dynamic cloud.
A more deliberate approach might involve quantitative security analysis of

the environment with each of the conflicting rules, and picking the safest
option. Metrics originally proposed by Joh and Malaiya [138] and validated
by Lippmann et al. [170] provide a quantitative measurement of the probabil-
ity of the Cyber Key Terrain (CKT) [226] being compromised. Interpretative
conflict resolution could be as simple as determining which of the conflicting
policies would reduce the compromise probability.
10.8.2.4 Administrator Assistance

Administrators that are willing to give up automatic conflict resolution have
the option to resolve conflicts manually, so they can judge each conflict inde-
pendently. Visual assistance tools incorporated as part of the Brew framework
assist the administrator make a decision and are detailed in [201].
Summary

This chapter described the problem of policy conflicts, and their prevalence
especially in distributed environments. How security policies map to Open-
Flow rule conflicts is studied. The challenges that are brought about by a dis-
tributed environment are discussed. All potential flow rule conflicts are
categorized, and techniques to resolve said conflicts are examined. That in

280 Software-Defined Networking and Security
of itself enables us to obtain a solid foundation to having a platform that can
ensure a conflict-free security policy implementation across a distributed
SDN environment.
For continuing work based on the foundation laid out in the chapter, inte-

grating results from studies that incorporate stateful functionality into the
SDN environment would be an interesting avenue to explore. Evolving
from a pure packet filter-based security application to one that can have rules
based on connection state would greatly enhance the effectiveness of security
policy that can be implemented. Research from the traditional networking
environment suggests this may not be very complex [53].
Verifying that new flow policies adhere to organizational security policies is

a twofold problem: a) establish that the newly generated flow rules do not con-
flict with existing flow rules; and b) ensure that the conflict-free flow rule table
adhere to the high-level organizational policies. To ensure compliance with
higher level organizational policies, the work described here needs to be
adapted/extended to work in the area of regulatory compliance. Such work
usually uses a policy specification language based on a restricted subset of
First Order Temporal Logic (FOTL) which can capture the high-level require-
ments and encode what adherence to the policies mean [65]. Combining this
work with FOTL would greatly increase its future applications.
Further, considering flow rule optimization based on rule positioning and

examining adaptive prioritization of rules would be interesting. Including
role-based and attribute-based policy conflicts is a natural extension of this
work. And finally, using machine learning algorithms to identify MTD timer
thresholds and resolve interpretative conflicts could be a fruitful problem
to solve.

11
Intelligent Software-Defined Security
Software-Defined Security is an approach to implementing, managing and
controlling information security in a computing environment using the soft-
ware. The security components such as intrusion detection, access control,
network segmentation are automated and managed through software. There
is very limited or no hardware-based security dependence. The software-
defined networking framework helps in managing and orchestrating the
security needs of an organization in an intelligent fashion.
The Intelligent Software-Defined Security (ISDS) that we discuss in this

chapter comprises of key properties of an intelligent software system such
as situation awareness, self-healing, end-to-end monitoring, network analytic
capability, and feedback mechanism to dynamically reconfigure the network
in case of any compromising activity.
We discuss some important architectural considerations in the application

ofMachine Learning (ML) andArtificial Intelligence (AI) in security in Section
11.1. DifferentML andAI techniques such as neural networks, expert systems,
learning mechanisms along with their security applications have been briefly
discussed in this section. Additionally, we use an intrusion detection system
(IDS) as an example to showcase the application of intelligence in the field
of security in Section 11.1. SDN-based intelligent security design that incorpo-
rates ML and AI have been described in Section 11.1.4. Section 11.2 has been
dedicated to the study of advanced persistent threats (APTs). The difference
between traditional attacks and APTs, examples of most notable APT events
and vulnerabilities have been discussed in this section. The techniques used in
detection and mitigation of APT have been discussed in Subsection 11.2.4.
Subsection 11.2.5 describes the use of SDN based microsegmentation and
defense-in-depth security to disrupt the propagation of APTs. Section 11.3
has been dedicated to the study of problems associated with the application
of intelligence in security such as variance in network traffic, high cost or
errors because of incorrect attack prediction.
11.1 Intelligence in Network Security

11.1.1 Application of Machine Learning and AI in Security

Machine Learning (ML) is a field of computer science that utilizes statistical
techniques to help computers learn using the available data, without being
281

282 Software-Defined Networking and Security
explicitly programmed [237]. Artificial Intelligence (AI) [217] on the other
hand is defined as a study of intelligent agents. The intelligent agents perceive
their environment and take necessary actions that maximize the chances of
achieving the desired goal for the agent. AI is applied when amachine mimics
cognitive functions similar to the human brain such as learning and problem
solving. Commercial applications of AI have been pioneered by technology
giants such as Google (search engine) and Facebook (news feed) [167].
The user behavior data is collected, cleaned and analyzed by the organiza-

tions using big data analytic frameworks, ML and AI algorithms, to predict
the usage trends and derive more business value from their data. AI and
ML help in bolstering the cybersecurity infrastructure by using complex
and sophisticated applications to detect stealthy attack patterns. The adaptive
security framework built using AI and ML can automatically detect, analyze
and prevent attacks. Some proactive defense mechanisms offered by AI
include data deception techniques which can trick the attackers into interact-
ing with Honeypots and Honeynets [257] instead of legitimate services.
Although AI can itself introduce new threat vectors when it is dependent
upon interfaces within and across the organization, and attackers can utilize
the AI techniques to learn and target the ISDS, we consider such use cases
beyond the scope of this chapter.
11.1.2 Intelligent Cybersecurity Methods and Architectures

Artificial Intelligence, Machine Learning, andDataMining have several meth-
ods and architectures that find practical use in different fields of cybersecurity
as discussed by Tyungu et al. [270]. We discuss some of these methods in
this subsection.

11.1.2.1 Neural Networks

Neural Networks (NN) mimic the human cognition capabilities using a net-
work of artificial neurons interacting with each other. Simplest neural net-
works are known as Perceptron [231]. Some applications of NN include
attack pattern recognition, intrusion detection, and prevention. With the sup-
port of suitable hardware and graphics processors, NNs can achieve high-
speed detection rate, which can help in scaling security solution on a large
network.

11.1.2.2 Expert Systems

Expert System handles the task of modeling human reasoning with the aim of
finding solutions to questions in application domains such as finance, medical
diagnosis or cybersecurity. Two important parts of expert systems include
i) Knowledge Base for storing the expert knowledge about a specific domain,
and ii) Inference Engine for deriving answers based on the knowledge base
and additional information. Expert system shell consists of an empty

Intelligent Software-Defined Security 283
knowledge base and inference engine. The knowledge basemust befilledwith
the required knowledge before an expert system can utilize it. Additionally,
expert systems can have simulation capabilities to simulate various instances
of cyber attack and defense. Security Planning, which involves selection of suit-
able security measures and optimal usage of limited security resources is an
application area of expert systems in cybersecurity.

11.1.2.3 Intelligent Agents

Intelligent Agents are software or hardware components that exhibit some
properties of intelligent behavior such as proactiveness, situation awareness,
and understanding communication language from other intelligent agents.
Intelligent agents can cooperate and provide defense against cyber attacks
such as distributed denial of service (DDoS) as discussed by Konteko et al.
[161, 162]. Multi-agent systems can also be utilized in building hybrid and dis-
tributed intrusion detection systems [57, 111].

11.1.2.4 Learning

Learning is the task of improving the intelligent systems by rearranging the
knowledge base or improving the inference engine. Machine Learning tech-
niques can vary in complexity from simple learning task, which involves
learning some parameters - Parameter Learning to more sophisticated learning
concepts such as grammar, concepts and user behavior - Symbolic Learning.
Another method of classifying the task of learning is Supervised Learning
and Unsupervised Learning. When large-scale cybersecurity datasets are pre-
sent such as DDoS logs, user activity, and system process data, unsupervised
learning can be very helpful. Neural Networks and Self Organized Maps
(SOMs) [34, 276] utilize unsupervised learning for intrusion detection and
threat analysis.

11.1.2.5 Search

Search problem in AI involves selecting the best solution from a list of
candidate solutions. Another aspect of search is the utilization of additional
knowledge to guide the search and improve the efficiency of the search.
Search algorithms such as min-max, Stochastic Search, and αβ-pruning can
be utilized to solve security problems in an optimal fashion [205]. In a cyber-
security setting, the attack-defense scenarios can be considered a static or
Dynamic Game between the attacker and defender. The search algorithm
can help the defender select a security configuration that guarantees mini-
mum and maximum returns for the current security setting.

11.1.2.6 Constraint Solving

Constraint Solving, or Constraint Satisfaction Problem (CSP), involves solving
a set of constraints - equations, inequalities, and logical statements for a

284 Software-Defined Networking and Security
problem. Planning problems in AI can be represented as CSP. The search
problems can sometimes be difficult to solve because of a large amount of
search required over the available data. The constraints restrict the search to
a narrow dataset by taking into account information about a particular class
of problem. Constraint solving can be used in situation awareness and deci-
sion support by utilizing a logic programming approach [210].
11.1.3 Application of AI in IDS

The Artificial Intelligence (AI) deals with problems such as searching for an
efficient solution, feature selection, selection ofmost relevant feature set,which
can help in reduction of data-set, performance overhead, and storage require-
ments. The expert system utilizes training instances to acquire knowledge.
The systems can also utilize training instances to acquire knowledge. There
are two main types of techniques based on training instances used in AI, i.e.,

1. Rule Based Induction derives the rules that are able to explain the
training instances better than mathematical or statistical techniques.

2. Classifier System utilizes a set of training data in order to classify the
future examples. Examples of a classifier system include Neural Net-
work [104] and Decision Tree [157].

We analyze the survey of AI techniques employed in the IntrusionDetection
System (IDS) [93]. An important characteristic desired in IDS is real-time ana-
lytic capability. Analysis of a huge volume of network traffic in a cloud envi-
ronment may take several hours, at the end of which the predicted result may
not be very useful. Therefore data reduction techniques can help in speeding
up the prediction of intrusion events in real time.
11.1.3.1 Data Reduction

The data not very useful for intrusion detection can be filtered out using the
Filtering process. The assumption is that user activity will have some notable
trends, which can easily be detected and account for correlation in the input
data. The useful data can undergo a second step, i.e., Feature Selection, which
can be employed to eliminate data not containing desired features for intru-
sion detection. The process of feature selection can help in obtaining the fea-
ture, most indicative of misuse activity or distinguish between different
types of misuse activities. A third step in the process of data reduction is Clus-
tering. This process can help in finding hidden patterns in data and storing the
characteristics of the entire cluster instead of actual data. There are several
kinds of clustering techniques such as Hierarchical Clustering (generalization
based), Statistical Clustering (probability of example being in a cluster), Dis-
tance Clustering (distance to establish membership in a cluster), etc.

Intelligent Software-Defined Security 285
11.1.3.2 Behavior Classification

The IDS can identify only a certain fraction of intrusion events correctly. Often
the normal users are incorrectly flagged asmalicious by the IDS (False Positive)
and vice versa (False Negative). The AI techniques such as Statistical Anomaly
Detection can help in improving the IDS classification performance. The expert
systems encode the known attacks and IDS policies as a fixed set of rules. The
user behavior is matched against the rules to determine the attacks. Expert sys-
tems incorporate rule encoding, which can be utilized to make conclusions
regarding the information gathered by IDS. The presence of domain expertise
in expert systems provides optimal quality of rules. The encoded rules can be
past intrusion events, systemvulnerabilities, and security policies. The anomaly
detection component compares the attacker’s behavior against the normal
expected user behavior. Three distinct phases of IDS are:

1. Local information extraction.

2. Evolving background information from local abstraction.

3. Establishment of anomaly background boundaries.

Some operations that are performed on the raw data before behavior classifi-
cation include smoothing of the raw data to eliminate outliers, data weighting
to assign a higher weight to historical data than current data, blending of the
behavior variations to establish a tolerance level for network anomaly detec-
tion. Some anomalous patterns can include resource usage variations, login
session variations, directory access patterns, etc.
11.1.4 SDN-based Intelligent Network Security Solutions

The centralized command and control design of SDNprovides flexibility, sim-
plicity, and elasticity. The SDN application plane can be extended to develop
many intelligent applications such as smart IDS/IPS, traffic anomaly classifi-
cation, content popularity prediction, link/bandwidth testing application,
path discovery application, etc. We discuss some security applications and
frameworks that utilize SDN. An example of SDN-based intelligent network
security solution can be seen in Figure 11.1. The application plane in SDN can
have several smart applications such as path discovery, web request classifi-
cation, traffic anomaly classification module, which can be implemented
using SDN controller, that acts as a middle layer between application and
data plane.
11.1.4.1 Topology Protection

SDN controller can be subjected to network topology-based attacks. The fun-
damental building block of SDN is the discovery of network topology. With
a poisoned topology, the visibility of upper layer services and apps may be

Content Popularity
Predic�on

Path Discovery and
Selec�on

Web Request
Classifica�on

Traffic Anomaly
Classifica�on

Link Cost and
Bandwidth Est

Firewall IDS/IPS

ML Models

Web Server

App Inspec�on

Traffic Capture/
Pre-processing

Web Clients

IoT Devices

Popular
Server

API

Controller

QoS, Isola�on, Priori�za�on

Request/Reply

Bl
oc

k/
Al

lo
w

Applica�on Plane

Control Plane

tssssssss

Request/Reply

Bl
oc

k/
Al

lo
w

 Data Plane

FIGURE 11.1
SDN-based intelligent network security solutions.

286 Software-Defined Networking and Security
misled by the attacker, leading to hijacking, Man-in-the-Middle (MITM), and
denial-of-service. The link discovery and host tracking service APIs in various
SDN controllers such as NOX, POX, Floodlight, and Ryu can be subjected to
these attacks. Some attack vectors that target network topology have been
described below.
∙ Host Location Hijacking: OpenFlow controllers consist of a Host
Tracking Service (HTS). The events such as host location migration
can be identified by HTS by monitoring Packet-In messages. Once
the host migrates to a new location, the HTS updates the host profile
information. Existing OpenFlow controllers have very weak security
for host location update service. OpenDayLight controller consists of
API isEntityAllowed, which accepts every host location update. An
adversary can tamper with host location information by impersonat-
ing the target host. The host location information is utilized by SDN
controllers to make packet forwarding and routing decisions. Once
the attacker is able to tamper with host location information, the traf-
fic towards the host can be hijacked.
As shown in Figure 11.2, the attacker can create fake packets with an

identifier of the target host. Once the OpenFlow controller receives the

10.0.0.100
A�acker

Tenant

FIGURE 11.2
Attacker impersonating web server to hijack communication and phish users.

Intelligent Software-Defined Security 287
spoofed packet, the controller is tricked into believing that the host
has migrated to a new location. In effect, any future traffic meant
for the target host is hijacked by the attacker.

∙ Link Fabrication Attack: The OpenFlow controllers utilize Link Layer
Discovery Protocol (LLDP) to discover the links between various
switches. Additionally, OpenFlow Discovery Protocol (OFDP) and
Link Discovery Service (LDS) are utilized by OpenFlow controller to
construct network topology. The security flaws in the link discovery
procedure can be exploited by a malicious attacker.
There are two security constraints defined as a part of LDS specifi-

cation, i.e., 1) The integrity/origin on LLDP packets must be ensured
in the link discovery procedure. 2) The propagation path of LLDP
packets must only contain OpenFlow-enabled switches. The incorrect
enforcement of these constraints by existing OpenFlow controllers
opens up a window of opportunity for the attacker. The adversary
can craft falsified LLDP packets or relay LLDP packets between
switches in order to fabricate a fake internal link.
As shown in Figure 11.3, an adversary forges the internal link in a

relay fashion. The adversary receives the LLDP packet from one target
switch and repeats it to another switch without any modification. In
effect, the adversary constructs a fake topology view to the OpenFlow
controller, as if there is an internal link between two target switches.
The dashed line in the figure is the actual traffic route, whereas the
dotted line is the communication channel between the users in the
view of the controller. The link fabrication attack can serve as a basis
for further attacks such as DoS and MITM attack.

Compromised Host
User

Compromised Host

Relay Host

User

Fake Link

FIGURE 11.3
Link fabrication attack using LLDP relay.

288 Software-Defined Networking and Security
∙ Static Defense: The static defense consists of configuring the host link
and location information beforehand and manually verifying/
updating the information when required. The solution is however
error-prone and difficult to scale on a large network.

∙ Dynamic Defense against Host Location Hijacking: The host loca-
tion hijacking attack is successful in SDN environment because the
OpenFlow controller fails to verify the host identifier when the host
location is updated. The solutions that can be utilized to mitigate
this problem include: 1) Authentication of host information using
public-key infrastructure. When the host decides to change the loca-
tion, the new location information can be embedded into unused
packet field (VLAN or ToS), and packet encryption using the private
key. This solution can, however, have scalability limitations on a large
network. 2) The legitimacy of host migration can be verified by check-
ing the pre-condition Port_Down before host migration and post-con-
dition, i.e., checking that themigrated host entity is unreachable in the
previous location after host migration is completed.

∙ Dynamic Defense against Link Fabrication: Link fabrication attacks
can be mitigated by: 1) Adding additional authentication in the LLDP
packet. The signature can be calculated over the semantics of the
LLDP packet (DPID and Port number). 2) Switch property verification

Intelligent Software-Defined Security 289
can be employed to check if the host resides inside LLDP propagation,
e.g., traffic coming from each switch port can be inspected to check
devices connected to the switch. Since LLDP can only transmit on
the switch internal link ports and ports connected to the OpenFlow
controller, this can help in preventing LLDP replay attacks.

11.1.4.2 SDN-based DoS Protection

The traditional ML-based models employed for protection against DoS attacks
rely on network flow classification algorithms. The traffic logs are pre-
processed to identify some statistics that can be utilized by ML models. This,
however, introduces a lot of overhead in pre-processing and data collection.
The SDN architecture consists of flow tables with a lot of packet header and
counter details. The control plane can query the statistics related to the for-
warded traffic anytime. The DoS detection algorithm consists of components
such as Data Collector, Feature Extractor and Flow Classifier. Once the malicious
traffic pattern has been detected, the bad traffic can either be dropped or for-
warded to a Remote Triggered Black Hole Routing Component (RTBH).
Alshamrani et al. [26] use SDN framework to detect and prevent DDoS

attacks. The authors use online and offline algorithms to train the ML model
on 41 features defined on NSL KDD dataset [265]. Two different types of
attacks, New Flow Attack and Misbehavior Attack, are detected using
SMO-based ML algorithm. Additionally, the classification algorithm is able
to classify traffic into DoS, probe, normal and privilege escalation attempt
(R2L) traffic. The algorithm used, i.e., SMO achieves higher accuracy when
compared to other classification algorithms such as J48 and Naive Bayes algo-
rithm. Frameworks such as Science DMZ [62] also present a framework for
detecting, analyzing and preventing network attacks using SDN.
11.2 Advanced Persistent Threats

Advanced Persistent Threats (APTs) are stealthy attacks mounted by a sophis-
ticated group of attackers often sponsored by large organizations or govern-
ments to gain useful information about the target organizations. APT is a
combination of three words [232] namely:

Advanced: The APT attacks are well funded and use advancedmodes of
operation and sophisticated tools as opposed to normal information
discovery tools used by individual attackers. The advanced tools
employ multiple attack vectors, and the target organization in case
of APT is often a highly valued target.

290 Software-Defined Networking and Security
Persistent: The group of attackers in case of APT are highly motivated
and persistent. Once the attackers gain access into the system, they
try to gain access to connected systems without raising security tool
alarms. The attackers employ several evasive techniques and follow
“slow and low” approach to increase the chances of success.

Threats: The threat in case of APT attack is a loss of data or critical infor-
mation that can cause disruption in the normal operations of an orga-
nization, loss of reputation and mission-critical information. These
threats are difficult to detect, and require sophisticated defense mech-
anisms to detect and prevent.

According to the National Institute of Standards and Technology
(NIST) [154], an APT attacker: (i) pursues its objectives repeatedly
over an extended period of time; (ii) adapts to defenders’ efforts to
resist it; and (iii) is determined to maintain the level of interaction
needed to execute its objectives. And the objectives include exfiltra-
tion of information, undermining or impeding critical aspects of a
mission or program through multiple attack vectors.

11.2.1 Traditional Attacks vs. APT

APT is often loosely defined currently, and used by organizations as an excuse
when they fail to defend themselves against a targeted attack. On the other
hand, attackers have in some cases used goals as part of APT attacks not
well defined by NIST and other similar organizations. Thus, there is a need
to reconsider the definition of APT, and include other attack vectors and
attack goals as part of the APT definition. It is important to distinguish APT
from traditional attacks by considering some of the questions like:

1. Can the attack be prevented in one or more way?

2. Does the attack require a great deal of adaptation by the attackers?

3. Does this attack exhibit novelty in its variants and is difficult to detect
by traditional means?

If the answer to Q1 is False and answers to Q2,3 is True, the attack can be
classified as APT. Table 11.1 considers some of the characteristics that can
be used to distinguish normal attacks from APT.
11.2.2 APT Attack Model

APT attacks are well planned and highly organized in order to increase the
probability of attack success. In order for the attack to be successful, APT is
performed in multiple stages. Attack Trees described by Schneier et al. [240]
are a useful tool to study Multi-Stage Attacks. APTs can be modeled using

TABLE 11.1

Comparison of Traditional and APT Attacks

Traditional Attacks APT Attacks

Attacker Mostly single person Highly organized, sophisticated, determined, and
well-resourced group

Target Unspecified, mostly individual
systems

Specific organizations, governmental institutions,
commercial enterprises

Purpose Financial benefits,
demonstrating abilities

Competitive advantages, strategic benefits

Approach Single-run, “smash and grab”,
short period

Repeated attempts, stays low and slow, adapts to
resist defenses, long term

Intelligent Software-Defined Security 291
Attack Trees as shown in Figure 11.4. The information and assumptions of a
security system, possible ways of performing attacks, and various stages of
attack can be described using an Attack Tree. Giura et al. [99] have presented
APT models using Attack Tree. The authors presented sub-trees as different
attack planes and a pointed correlation between different planes. Attack trees
can also help the defender in deciding the security strategy for placement of
security monitoring and intrusion detection tools. Another key benefit of
using an attack tree is that the defender can use alert correlation from various
Achieve
Assigned
Objec�ve

Perform
Detrimental

Ac�vity
Post

Detrimental
Ac�vity

Gear up for
ac�on

Execute
Detrimental

Ac�vity

Con�nue
Detrimental

Ac�vity

Remove Ac�vity
Traces

Establish
Foothold

Learn about
system cri�cal

nodes

Reconnaisance
Exploit

Vulnerabili�es
Communicate

with C&C

Stay Updated
with

Environment
Move Laterally

Stage 1

Stage 2

Stage 4

Stage 3

Stage 5

Goal or Sub-Goal

Logical OR

Logical AND

FIGURE 11.4
Stages of advanced persistent threat (APT).

292 Software-Defined Networking and Security
detectionmechanisms to check how far the attacker is from his goal (root node
of the attack tree). The rectangular nodes in the figure represent the collection
of one or more actions, with the topmost rectangular node in each stage being
the goal of that particular stage. Using the threat score value assigned to each
of the actions (leaf-nodes) and correlation of alerts generated by security tools,
the defender will be able to assess the risk and response that is required tomit-
igate that threat. The APT attack is usually spread across the stages described
below:
1. Reconnaissance: The beginning of a successful attack starts with the
reconnaissance phase. In this stage, the attacker tries to gather a lot
of information about the target. The information can be details of
employees of the target organization such as social life, websites vis-
ited, habits of the employees, details of underlying IT infrastructure,
such as kind of hardware switches, routers, anti-virus tools used, web
servers available to the public network, open ports, etc. The informa-
tion can help attackers to easily establish the foothold into the target
network. In the attack tree gathering information involves social engi-
neering, reconnaissance, port scanning, service scanning and psycho-
logical manipulation of people into accomplishing the goals of attack.
Additionally, APT campaigns also query the public repositories such
as WHOIS, BGP looking for the domains and routing information.
The attackers try to find the websites with high-risk vulnerabilities,
such as Cross-Site Scripting (XSS), SQL Injection (SQLI), access
points, virtual hosts, firewalls, and IDS/IPS. The reconnaissance is
passive in nature and hence difficult to detect.

2. Foothold Establishment: The attackers use the reconnaissance infor-
mation in order to prepare an attack plan. The information collected
can be used to exploit the vulnerabilities found in the target organiza-
tion’s web application, databases, and other software. The details
of well-known vulnerabilities can be obtained from vulnerability
databases such as Common Vulnerability and Exposures List
(CVE), Open Source Vulnerability Database (OSVDB) [209], and
NISTNational Vulnerability Database (NVD) [190], where the known
and disclosed vulnerabilities have been archived with a vulnerability
identifier (e.g., CVE-ID). Additionally, attackers can also find useful
information about the vulnerabilities from dark-web and deep-web
forums [198]. Many organizations do not update the current
versions of their software even after vulnerability information has
been released tomaintain business continuity, which allows attackers
to exploit the unpatched vulnerabilities.

Malware is another way of exploiting the target system. According
to Symantec’s 2017 Internet Security Threat Report, there were 375M
malware variants in the year 2016, with email malware rate showing

Intelligent Software-Defined Security 293
a significant increase, i.e., from 1 in 220 emails in 2015 to 1 in 131 in
2016. The malware can be sent to the victim via Spear-phishing,
USB devices, and/or web downloads. The attackers selectively use
Business Email Compromise scams after performing social engineer-
ing in the initial phase of the attack. The cleverly crafted emails are
opened by unaware employees leading to installation and execution
of the malware. These techniques as shown in the attack tree help
attacker establish a foothold in the target organization network.

3. Lateral Movement/////Stay Undetected: Once the attacker has gained a
foothold into the target environment, he/she can try to move laterally
in the target environment and gain access to other sensitive hosts and
critical information in the organizational network. The malware can
spread to the neighboring machines in the target environment of
the infected system. The goal of this phase is to expand the foothold
to other systems in search of the data they want to exfiltrate. Once the
attacker has reached this stage, it is difficult to completely push
the attacker out of the environment. Some methods used by attackers
during this stage of attack include user account Password Dumping,
Hash Dumping, etc. The harvested credentials facilitate the lateral
movement of the attacker and help him in obtaining the restricted
information. Tools such as Windows Credential Editor (WCE),
Mimikatz, and Windows Local Security Authority (LSA) process
are commonly used for dumping credentials.

4. Exfiltration/////Impediment: The attacker tries to exfiltrate the data
collected to his command and control center. Most of the intrusion
detection and prevention systems do ingress filtering and not egress
filtering, data-exfiltration often goes undetected.
The attacker may split the exfiltrated data into batches and dis-

tribute exfiltration over a long period of time in order to evade the
organization’s incident detection tools. Table 11.2 shows the most
noticeable data exfiltration incidents reported in the year 2017.

5. Post-Exfiltration/////Post-Impediment: The final phase of the APT is to
maintain the persistence until the attack has been lifted by the attack
sponsor. The sponsor can choose to lift the attack once the desired
goal has been achieved or keep it going to get data from the target con-
tinuously. Another important step in this phase for the attacker is to
cover his/her tracks so that the attack detection mechanisms cannot
trace the attack sponsor or the attacker using system activity and logs.

11.2.3 APT Case Studies

In this sub-section, we discuss some of the notable APTs that affected health-
care, government organizations, and critical Supervisory Control and Data
Acquisition (SCADA) systems.

TABLE 11.2

Most Noticeable Data Exfiltration Incidents in 2017

Date Organization
Number of

Affected People What Got Leaked

19th June Republican National
Committee

200 million Names, Phone No., Home
addresses, Voting details, DOB

13th July Verizon 14 million Names, Phone No., PINs

15th Mar Dun & Bradstreet (DB) 33.7 million Email addresses, Contract
information

12th Mar Kansas Department of
Commerce

5.5 million Social security numbers

21st Mar America’s Job Link
Alliance (AJLA)

4.8 million Names, DOB, Social security
numbers

7th July World Wrestling
Entertainment (WWE)

3 million Names, Earnings, Ethnicity,
Address, Age range

17th July DOW JONES 2.2 million Names, Customer IDs, Email
addresses

29th July Equifax 143 million Social security numbers, Names,
Addresses, Driver’s Licenses

1st Aug E-Sports Entertainment
Association (ESEA)

1.5 million Locations, Login details, Email
addresses, DOB, Phone No.

294 Software-Defined Networking and Security
11.2.3.1 Stuxnet

Stuxnet is a malware that was discovered in 2010; it targets SCADA systems
and is believed to have caused substantial damage to Iran’s nuclear pro-
gram. Stuxnet specifically targeted programmable logic controllers (PLCs),
which are used for automation of machinery on factory assembly lines,
adventure parks, and nuclear facility centrifuges. The malware used by Stux-
net targeted Microsoft Windows OS, network software, and Siemens Step7
software. Stuxnet collected critical information from the PLCs situated in Ira-
nian nuclear facility and caused a fast spinning of PLC controlled centri-
fuges, causing centrifuges to tear themselves apart. The worm affected
200,000 computers in the nuclear plant, causing 1000 machines to physically
degrade.
Stuxnet consists of three modules: a worm that executes the routines related

to themain attack payload, a link file that auto-executes the propagated copies
of the worm, and a rootkit component that is responsible for hiding the activ-
ities of malicious processes and files, thus preventing the discovery of the
worm. The initial delivery mechanism for the worm was using a USB drive.
The worm performs the reconnaissance on the network with the goal of dis-
covering Siemens Step7 software - Step 1 of the APT attack tree. In the later
stages of an attack, worm introduces the infected rootkit on to PLC and
Step7 software. The rootkit modifies the code of the software and gives

Intelligent Software-Defined Security 295
unexpected commands to the PLC while returning loop of normal system
operation values to the system users.
11.2.3.2 Hydraq

Hydraq is another example of sophisticated APT that targets highly valued
corporate networks. It is also referred to as Operation Aurora, Google Hack
Attack and Microsoft Internet Explorer 0-day (CVE-2010-0249). The steps
utilized in Hydraq APT have been described below.

1. Reconnaisance: The tools such as Whois, DNS information and IP/
Network scan could provide initial information about the infrastruc-
ture of the target organization. Additionally, attackers utilize social
engineering to learn more about the attack target. The target profiling
performed by attackers also includes maintaining information about
employees, visitors, and contractors who have knowledge and access
to the target organization.

2. Zero day Hack Attack: Hydraq exploits zero day vulnerability
once it is able to discover the outdated version of Microsoft win-
dows explorer on the target. The attackers found an opportunity
to target Internet Explorer (IE) by tricking users into visiting a
compromised website. The vulnerability CVE-2010-049/MS10-002
obfuscates the JavaScript code to conceal real intention of the
attacker. The code takes advantage of an HTML object handling
flaw present in IE when IE tries to access deleted or un-initialized
object.

3. Code Execution: Once the exploit is successful, the Hydraq’s
shellcode executes on the target system. Simple bitwise operations
such as XOR with hardcoded keys such as 0xD8 reveals hidden
instruction present in the obfuscated code and Win32/Hydraq
installer location.

4. Maintaining Persistence: The attackers use backdoors to connect to
command and control center and maintain access. Hydraq dropper
is responsible for the installation of a dynamically linked library
(DLL) component, which contains features and functionality for the
remote attacker. Upon execution, dropper generates a random service
and makes corresponding entries in the registry file system of Win-
dows. It then creates and starts service under the context of host pro-
cess Svchost.exe.

5. Deleting Traces: Hydraq dropper, in addition to the installation of
DLL, also clears the traces on the target system to avoid forensic anal-
ysis. Additionally, dropper creates and executes a batch file, e.g.,DFS.
bat to remove the dropper file from the system once the end goal of
the attack has been achieved.

296 Software-Defined Networking and Security
11.2.4 APT Detection=====Mitigation

There have been several efforts towards the development of strategies to cope
with targeted attacks like APTs. Many organizations have issued guidelines
for dealingwith social engineering techniques such as continuous information
security training of the employees. Gartner [166] recommends 1) upgrading
network and perimeter security, and 2) incorporating strategies to protect
against malicious content.
A summary of protection techniques employed by various market leaders

in the field of security for APTs has been discussed in the report by Radicati
Group [183]. Symantec, for instance, employs on-premises, hybrid and
cloud-based solutions for dealing with APT scenarios. Symantec’s Advanced
Threat Protection (ATP) module comprises of various sub-modules for net-
work, endpoint, email, and roaming (protection against web-based attacks
outside corporate network). Force point utilized advanced data loss preven-
tion (DLP), malware protection, insider threat detection tools, and Next-Gen-
eration Firewall (NGFW) to detect and mitigate APTs. Other basic prevention
techniques such as application whitelisting, patching of software and vulner-
abilities, restricting administrative privileges to OS, and applications based on
user duties have been used for APT defense in both academic research
and industry.
We classify APT detection/mitigation methods into: 1) Monitoring Meth-

ods, 2) Detection Methods, and 3) Mitigation Methods.
11.2.5 Orchestrating SDN to Disrupt APT

The design of SDN can help in creating a defense against APT. The SDN
architecture having centralized command and network-wide visibility can
be extended to includemicrosegmentation and service chaining-based control
in order to break the lateral movement of the attacker during the third phase of
the APT attack.
Consider Figure 11.5, that attacker exploits a vulnerability on theweb server

present on application server A and uses the elevated privileges to exploit the
communication server present on the application server B. Similarly, other
applications present on the adjacent networks can be targeted by the attacker
in a multi-stage attack.

11.2.5.1 SDN-based MicroSegmentation

The controller can centrally enforce microsegmentation policy, for instance,
WEBA can communicate with FEECOM002 and CRMAPP2, similarly, the
applications within the same sub-network as in Figure 11.6 are allowed to
communicate with each other, all other traffic is blocked by default as a part
of the microsegmentation policy. Thus the lateral movement of the attacker
is localized only to the infected host/application. The microsegmentation
can be applied at various levels using SDN controller, e.g., a network gateway,

FEECOM001 FEECOM002 FEECOM003 FEECOM004

Load Balancer

WEBA WEBB

CRMAPP1 CRMAPP2 ECOMMPRDA ECOMMPRDB

Firewall

Applica�on A Applica�on B

FIGURE 11.5
APT lateral movement example.

FEECOM001 FEECOM002 FEECOM003 FEECOM004

Load Balancer

WEBA WEBB

CRMAPP1 CRMAPP2 ECOMMPRDA ECOMMPRDB

Firewall

Applica�on A Applica�on B

FIGURE 11.6
Micro-segmented cloud architecture to prevent lateral movement of the attacker.

Intelligent Software-Defined Security 297

Physical Host

vSwitch
Hypervisor

VM VM VM

Physical Host

vSwitch
Hypervisor

VM VM VM

Dashboard
Security Admins

Traffic
Steering Traffic

Steering
DPI

DPI

NSX Controller

FIGURE 11.7
Defense-in-depth using secured service function chaining.

298 Software-Defined Networking and Security
subnet level, host firewall level, in effect creating a distributed security frame-
work managed by a centralized controller.
11.2.5.2 SDN-enabled Secured Service Function Chaining

The operation of defense tools such as IDS/IPS, firewall, and Data Loss Pre-
vention (DLP) in isolation may have limited protection against sophisticated
attacks such as APT. The flow rules of OpenFlow switches can be modified in
order to create a chain of security functions between the source and destina-
tion of the network traffic. Using the SDN architecture the traffic can be
steered through a series of inspection mechanisms as shown in Figure 11.7,
thus increasing the likelihood of APT attack detection/mitigation.
11.3 Problems in Application of Intelligence in Cybersecurity

Machine Learning and AI find successful use cases in many application
domains such as recommendation systems, spamdetection, speech and image
recognition. However, the application of intelligence in cybersecurity, in gene-
ral, can be quite challenging. The Network Intrusion Detection Systems
(NIDS) that utilize misuse detection and anomaly detection to flag the abnormal
user behavior as an intrusion event can suffer from false positives and false

Intelligent Software-Defined Security 299
negatives. The cost of misclassifying the normal user activity such as failed
login attempts as abnormal, and failure to identify malicious activity correctly
can prove to be quite costly.
Sommer et al. [255] identify some characteristics exhibited by application of

machine learning in NIDS. The characteristics of NIDS are not well aligned
with machine learning requirements such as i) High cost of errors; ii) lack of
suitable training data; iii) semantic gap between results predicted by ML
and their operational interpretation; and iv) high variation in the input
data. The sound evaluation of results predicted by the ML algorithm requires
domain expertise and semantic insights into systems capabilities rather than
treating the system as a black box.
The ML and AI systems face some generic problems such as false positive

and false negative. The cybersecurity domain enhances the probability of
errors because adversarial users can try to evade detection by an anomaly-
based NIDS, by teaching the system to accept malicious activity as benign.
We discuss some issues that can limit the application of intelligence in this sec-
tion with NIDS as a use case.
11.3.1 Outlier Detection

Machine Learning performs well in classification problems (categorizing sim-
ilar items) as opposed to detection of anomalies. The classification algorithms
utilize collaborative filtering to match user preferences and positive ratings for
provided items to recommend similar items. Anomaly detection algorithm, on
the other hand, would try to identify an anomalous pair of items, i.e., products
with no common customers. The machine learning typically has a training
phase followed by the testing phase. The training phase would require a large
number of samples of both normal as well as abnormal activity in case of
NIDS. In a real-world setting, most of the traffic is normal, thus ML-based
NIDS systems end up training the detection algorithm on only one class of
training samples. The closed world assumption that any test sample not
matching the feature set of normal traffic is anomalous is not practical for
the real world. Thus, one needs to train an ML algorithm on normal as well
as attack traffic to successfully apply ML techniques in the field of NIDS.
11.3.2 High Cost of Errors

The cost of misclassification is much higher for an organization in case of
NIDS as opposed to using cases such as image recognition and recommenda-
tion systems. For instance, a false positive in the case of a network intrusion
event can lead to loss of service for a normal user and wastes significant
man-hours for an analyst who is responsible for analyzing the intrusion activ-
ity. Even a few false positives can render theNIDS useless [33]. False negatives
can, on the other hand, disrupt the security of the organization significantly.

300 Software-Defined Networking and Security
The spam detection and recommendation systems, on the other hand, can tol-
erate a small fraction of errors.
11.3.3 Semantic Gap

Anomaly detection systems suffer from the problem of the semantic gap
between actionable reports based on the output of NIDS and the semantic
meaning of the reports from the network operator’s point of view. The differ-
ence between abnormal behavior and malicious activity should be identified
in order to reliably predict network attacks usingmachine learning. In order to
make a production-grade NIDS, the semantic gap issue should be addressed.
Additionally, local security-policies and site-specific properties should be
identified and incorporated in definition of malicious vs. benign activity in
intrusion detection. For example, peer-to-peer (P2P) traffic is considered normal
as part of site-specific properties in a network, whereas the absence of this
information in training phase of NIDS can cause P2P traffic being flagged
as malicious.
11.3.4 Variance in Network Traffic

The features of network traffic such as bandwidth, latency, and network pro-
tocols can show significant variation even within the same network environ-
ment. Data transfer between applications within the same environment can
show a spike in network traffic. An anomaly detection system can find such
variability difficult to interpret when distinguishing between normal and
abnormal activities. Some operational knowledge of the network is required
in such cases so that the traffic can be aggregated over hours, days and weeks.
Such traffic shows a reliable pattern for performing intrusion detection. Traffic
diversity can also show variance because of application-specific features.
Summary

Intelligent Software-Defined Security discussed in this chapter consists of, but
is not limited to, the application of machine learning (ML) and artificial intel-
ligence (AI) in the field of cybersecurity. We discuss different aspects of ML
and AI such as search, attack behavior learning, and constraint solving that
can help in the detection of network security attacks. The chapter considers
an intrusion detection system (IDS) as a specific use case and shows how AI
can help in data-reduction and an attacker’s behavior classification for an
IDS. The role SDN can play in provisioning on an intelligent software-defined
security (SDS) has been discussed in the chapter, with DoS protection, and
topology protection examples. Traditional attacks have been compared to

Intelligent Software-Defined Security 301
new emerging threatmodels such as advanced persistent threats (APTs) in the
second section of this chapter. The APT attack model, famous use cases such
as Hydraq and Stuxnet, and SDN-based APT detection and mitigation tech-
niques such as microsegmentation and secured SFC are described in this sec-
tion. The intelligent ML- and AI-based techniques, while they sound quite
attractive, suffer from some key limitations, such as high cost of errors, and
problems associated with outlier detection in the field of cybersecurity. These
limitations have been highlighted in the last section of this chapter. Some
important topics that come under the scope of advanced SDN Security such
as protection of edge-cloud, vehicular networks [173], and mobile/wireless
SDN security [61] are beyond the scope of this book.

http://taylorandfrancis.com

Bibliography
1. Understanding and Configuring VLANs. Available at http://www.cisco.com/

c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/
guide/conf/vlans.html.

2. Apache Karaf. http://karaf.apache.org/.
3. CloudStack. https://cloudstack.apache.org/.
4. DragonFlow. https://wiki.openstack.org/wiki/Dragonflow.
5. Floodlight. http://www.projectfloodlight.org/floodlight/.
6. IEEE 802. 5 Web Site. Available at http://www.ieee802.org/5/www8025org/,

retrieved Feb 2018.
7. The Linux Foundation. https://www.linuxfoundation.org/.
8. Open Network Foundation. https://www.opennetworking.org/sdn-resour

ces/openflow.
9. Open vSwitch. http://openvswitch.org/.
10. OpenStack Foundation. https://www.openstack.org/foundation/.
11. OPNFV. https://www.opnfv.org/.
12. Wire Speed to PPS. https://kb.juniper.net/InfoCenter/index?page=conten

t&id=KB14737.
13. Media Access Control (MAC) Bridges. Technical report, 2004.
14. OpenFlow Switch Specification v1.3.1. Technical report, Open Networking

Foundation, September 2012.
15. ITU Releases 2014 ICT Figures. https://www.itu.int/en/ITU-D/Statistics/

Documents/facts/ICTFactsFigures2014-e.pdf, 2014. Accessed: 2015-09-11.
16. OpenDaylight Project Repository. https://github. com/opendaylight/

12switch, May 2014.
17. Ahmed AbdelSalam, Francois Clad, Clarence Filsfils, Stefano Salsano,

Giuseppe Siracusano, and Luca Veltri. Implementation of Virtual Network
Function Chaining Through Segment Routing in a Linux-Based nfv
Infrastructure. In Network Softwarization (NetSoft), 2017 IEEE Conference on,
pages 1–5. IEEE, 2017.

18. Ijaz Ahmad, Suneth Namal, Mika Ylianttila, and Andrei Gurtov. Security in
Software Defined Networks: A Survey. IEEE Communications Surveys &
Tutorials, 17(4):2317–2346, 2015.

19. Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, andWu Chou. ARoadmap
for Traffic Engineering in SDN-OpenflowNetworks. Computer Networks, 71:1–
30, October 2014.

20. Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In Proceedings of the 7th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ‘10), volume 10, pages 19–19. USENIX Asso-
ciation, 2010.
303

http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/vlans.html
http://karaf.apache.org/
https://cloudstack.apache.org/
https://wiki.openstack.org/wiki/Dragonflow
http://www.projectfloodlight.org/floodlight/
http://www.ieee802.org/5/www8025org/
https://www.linuxfoundation.org/
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://openvswitch.org/
https://www.openstack.org/foundation/
https://www.openstack.org/foundation/
https://www.opnfv.org/
https://kb.juniper.net/InfoCenter/index?page=content&id=KB14737
https://kb.juniper.net/InfoCenter/index?page=content&id=KB14737
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
https://github.com/opendaylight/12switch
https://github.com/opendaylight/12switch
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/vlans.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/25ew/configuration/guide/conf/vlans.html

304 Bibliography
21. Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration Analysis and
Verification of Federated Openflow Infrastructures. In Proceedings of the 3rd
ACM Workshop on Assurable and Usable Security Configuration (SafeConfig ‘10),
pages 37–44. ACM, 2010.

22. Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum Hasan. Conflict
Classification and Analysis of Distributed Firewall Policies. IEEE Journal on
Selected Areas in Communications, 23(10):2069–2084, 2005.

23. Ehab S Al-Shaer and Hazem H Hamed. Firewall Policy Advisor for Anomaly
Discovery and Rule Editing. In Proceedings of the 8th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2003), pages 17–30. IEEE,
2003.

24. Joaquin Garcia Alfaro, Nora Boulahia-Cuppens, and Fredric Cuppens. Com-
plete Analysis of Configuration Rules to Guarantee Reliable Network Security
Policies. International Journal of Information Security, 7(2):103–122, April 2008.

25. Abdullah Alshalan, Sandeep Pisharody, and Dijiang Huang. A Survey of
Mobile VPN Technologies. IEEE Communications Surveys & Tutorials, 18
(2):1177–1196, 2016.

26. Adel Alshamrani, Ankur Chowdhary, Sandeep Pisharody, Duo Lu, and
Dijiang Huang. A Defense System for Defeating DDoS Attacks in SDN Based
Networks. In Proceedings of International Symposium on Mobility Management
and Wireless Access (MobiWac). IEEE, 2017.

27. Izzat Alsmadi and Dianxiang Xu. Security of Software Defined Networks: A
Survey. Computers & Security, 53:79–108, 2015.

28. Paul Ammann, Joseph Pamula, Ronald Ritchey, and Julie Street. AHost-Based
Approach to Network Attack Chaining Analysis. In Computer Security Applica-
tions Conference, 21st Annual, pages 10-pp. IEEE, 2005.

29. Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, Graph-
Based Network Vulnerability Analysis. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, pages 217–224. ACM, 2002.

30. David G Andersen. Theoretical Approaches to Node Assignment. Computer
Science Department, page 86, 2002.

31. Apache Groovy. Available at http://groovy-lang.org/.
32. Daniel Awduche, Angela Chiu, Anwar Elwalid, Indra Widjaja, and XiPeng

Xiao. Overview and Principles of Internet Traffic Engineering. RFC 3272,
IETF, 2002.

33. StefanAxelsson. The Base-Rate Fallacy and its Implications for the Difficulty of
Intrusion Detection. In Proceedings of the 6th ACM Conference on Computer and
Communications Security, pages 1–7. ACM, 1999.

34. Jie Bai, YuWu, GuoyinWang, Simon X Yang, andWenbin Qiu. ANovel Intru-
sion Detection Model Based on Multi-Layer Self-Organizing Maps and Princi-
pal Component Analysis. In International Symposium on Neural Networks, pages
255–260. Springer, 2006.

35. James Bailey, George Papamarkos, Alexandra Poulovassilis, and Peter T
Wood. An Event-Condition-Action Language for XML. In Web Dynamics,
pages 223–248. Springer, 2004.

36. Kapil Bakshi. Considerations for Software-Defined Networking (SDN):
Approaches and Use Cases. In Proceedings of the 2013 IEEE Aerospace Confer-
ence, pages 1–9. IEEE, 2013.

http://groovy-lang.org/
http://groovy-lang.org/
http://groovy-lang.org/
http://groovy-lang.org/

Bibliography 305
37. Md Faizul Bari, Arup Raton Roy, Shihabur Rahman Chowdhury, Qi Zhang,
Mohamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba. Dynamic Controller
Provisioning in Software-Defined Networks. In Proceedings of the 9th Interna-
tional Conference on Network and Service Management (CNSM 2013), pages 18–
25. IEEE, 2013.

38. Yair Bartal, Alain Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A Novel
Firewall Management Toolkit. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, pages 17–31. IEEE, 1999.

39. Cataldo Basile, Alberto Cappadonia, and Antonio Lioy. Algebraic Models
to Detect and Solve Policy Conflicts. In Proceedings of the 7th International Con-
ference on Mathematical Methods, Models, and Architectures for Computer Network
Security (MMM-ACNS 2007), pages 242–247. Springer, 2007.

40. Beheshti, N. and Zhang, Y. Fast Failover for Control Traffic in Software-
Defined Networks. In Proceedings of the 2012 IEEE Global Communications Con-
ference (GLOBECOM 2012), pages 2665–2670. IEEE, December 2012.

41. Steven M Bellovin. Distributed Firewalls. http://static.usenix.org/
publications/login/1999-11/features/firewalls.html, 1999.

42. Theophilus Benson, Aditya Akella, and David A Maltz. Network Traffic
Characteristics of Data Centers in theWild. In Proceedings of the 10th A CMSIG-
COMM Conference on Internet Measurement (IMC 10), pages 267–280. ACM,
2010.

43. Theophilus Benson, Ashok Anand, Aditya Akella, andMing Zhang. MicroTE:
Fine Grained Traffic Engineering for Data Centers. In Proceedings of the Seventh
Conference on Emerging Networking Experiments and Technologies (CoNEXT ‘11),
page 8. ACM, 2011.

44. Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM, 18(9):509–517, 1975.

45. Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Koba-
yashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William
Snow, and others. ONOS: Towards an Open, Distributed SDN OS. In Proceed-
ings of the 3rd Workshop on Hot Topics in Software Defined Networking (HotSDN
2014), pages 1–6. ACM, 2014.

46. Deval Bhamare, Raj Jain,Mohammed Samaka, andAiman Erbad. A Survey on
Service Function Chaining. Journal of Network and Computer Applications,
75:138–155, 2016.

47. Bierman, A., Bjorklund, M., and Watsen, K. RESTCONF Protocol. RFC 8040,
IETF, January 2017.

48. Matt Blaze, Joan Feigenbaum, and Angelos D Keromytis. Keynote: Trust Man-
agement for Public-Key Infrastructures. In International Workshop on Security
Protocols, pages 59–63. Springer, 1998.

49. Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-Ori-
ented Programming: A New Class of Code-Reuse Attack. In Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Security,
pages 30–40. ACM, 2011.

50. Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese,
et al. P4: Programming Protocol-Independent Packet Processors. ACM SIG-
COMM Computer Communication Review, 44(3):87–95, 2014.

http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html
http://static.usenix.org/publications/login/1999-11/features/firewalls.html

306 Bibliography
51. Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese,
et al. P4 Language Git Repository. https://github.com/p4lang/, 2017.

52. Zdravko Bozakov. Towards Virtual Routers as a Service. In Proc. of 6th GI/ITG
KuVS Workshop on Future Internet, 2010.

53. Levente Buttyn, Gbor Pk, and Ta Vinh Thong. Consistency Verification of
Stateful Firewalls Is Not Harder Than the Stateless Case. Infocommunications
Journal, 64(1):2–8, 2009.

54. Filipe Caldeira and EdmundoMonteiro. A Policy-Based Approach to Firewall
Management. In Proceedings of the IFIP TC6 / WG6.2 & WG6.7 Conference on
Network Control and Engineering for QoS, Security and Mobility (Net-Con ‘02),
pages 115–126. Springer, 2003.

55. Venanzio Capretta, Bernard Stepien, Amy Felty, and Stan Matwin. Formal
Correctness of Conflict Detection for Firewalls. In Proceedings of the 2007
ACM Workshop on Formal Methods in Security Engineering (FMSE ‘07), pages
22–30. ACM, 2007.

56. Ramaswamy Chandramouli and Ramaswamy Chandramouli. Secure Virtual
Network Configuration for VirtualMachine (vm) Protection.NIST Special Pub-
lication 800–125B, 2016.

57. V Chatzigiannakis, G Androulidakis, and B Maglaris. A Distributed Intrusion
Detection Prototype Using Security Agents. HP OpenView University Associa-
tion, 2004.

58. Yi Cheng, Julia Deng, Jason Li, Scott A DeLoach, Anoop Singhal, and Xinming
Ou. Metrics of security. In Cyber Defense and Situational Awareness, pages 263–
295. Springer, 2014.

59. Margaret Chiosi, Don Clarke, Peter Willis, Andy Reid, James Feger, Michael
Bugenhagen, Waqar Khan, Michael Fargano, Chunfeng Cui, Hui Deng, et al.
Network Functions Virtualisation: An Introduction, Benefits, Enablers, Chal-
lenges and Call for Action. In SDN and Open-Flow World Congress, pages 22–
24, 2012.

60. Laurence Cholvy and Frédéric Cuppens. Analyzing Consistency of Security
Policies. In Proceedings of the 1997 IEEE Symposium on Security and Privacy,
pages 103–112. IEEE, 1997.

61. Ankur Chowdhary. Secure Mobile SDN. Arizona State University, 2015.
62. Ankur Chowdhary, Vaibhav Hemant Dixit, Naveen Tiwari, Sukhwa Kyung,

Dijiang Huang, and Gail-Joon Ahn. Science DMZ: SDN Based Secured Cloud
Testbed. InNetwork Function Virtualization and Software Defined Networks (NFV-
SDN), 2017 IEEE Conference on, pages 1–2. IEEE, 2017.

63. Ankur Chowdhary, Sandeep Pisharody, Adel Alshamrani, and Dijiang
Huang. Dynamic Game Based Security Framework in SDN-Enabled Cloud
Networking Environments. In Proceedings of the ACM International Workshop
on Security in Software Defined Networks & Network Function Virtualization,
pages 53–58. ACM, 2017.

64. Ankur Chowdhary, Sandeep Pisharody, and Dijiang Huang. SDN Based Scal-
ableMTD Solution in CloudNetwork. In Proceedings of the 2016 ACMWorkshop
on Moving Target Defense, pages 27–36. ACM, 2016.

65. Omar Chowdhury, Andreas Gampe, Jianwei Niu, Jeffery von Ronne,
Jared Bennatt, Anupam Datta, Limin Jia, and William H Winsborough.
Privacy Promises That Can Be Kept: A Policy Analysis Method with

https://github.com/p4lang/
https://github.com/p4lang/
https://github.com/p4lang/
https://github.com/p4lang/
https://github.com/p4lang/

Bibliography 307
Application to the HIPAA Privacy Rule. In Proceedings of the 18th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT ‘13), pages 3–14.
ACM, 2013.

66. Andrew Clark, Kun Sun, Linda Bushnell, and Radha Poovendran. A Game-
Theoretic Approach to IP Address Randomization in Decoy-Based Cyber
Defense. In International Conference on Decision and Game Theory for Security,
pages 3–21. Springer, 2015.

67. Amazon Elastic Compute Cloud. Amazon Web Services. Retrieved November,
9:2011, 2011.

68. Warren Connell, Daniel AMenascé, andMassimiliano Albanese. Performance
Modeling of Moving Target Defenses. In Proceedings of the 2017 Workshop on
Moving Target Defense, pages 53–63. ACM, 2017.

69. Michelle Cotton, Lars Eggert, Joe Touch, Magnus Westerlund, and Stuart
Cheshire. Internet Assigned Numbers Authority (IANA) Procedures for the
Management of the Service Name and Transport Protocol Port Number
Registry. Technical report, 2011.

70. Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. Mahout:
Low-Overhead Datacenter Traffic Management Using End-Host-
Based Elephant Detection. In Proceedings of the 30th International IEEE Confer-
ence on Computer Communications (INFOCOM 2011), pages 1629–1637. IEEE,
2011.

71. Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula,
Puneet Sharma, and Sujata Banerjee. DevoFlow: Scaling Flow Management
for High-Performance Networks. ACM SIGCOMM Computer Communication
Review, 41:254–265, 2011.

72. CVSS. Common Vulnerability Scoring System (CVSS). https://www.first.org/
cvss/, 2017. [Online; accessed 01-15-2018].

73. Frank D’Agostino. ACI Surpasses VMware NSX Again with Micro Segmenta-
tion and End-Point Granularity. Blog at Cisco, 2016.

74. Frank D’Agostino. Cisco Application Centric Infrastructure (aci). https://
www.cisco.com/c/en/us/solutions/data-center-virtualization/application-
centric-infrastructure/index.html, 2018.

75. Nicodemos C Damianou. A Policy Framework for Management of Distributed
Systems. PhD Dissertation, Imperial College, 2002.

76. Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon Kim,
Jennifer Rexford, Robert Soulé, and HakimWeatherspoon. Whip-Persnapper:
A p4 Language Benchmark Suite. In Proceedings of the Symposium on SDN
Research, pages 95–101. ACM, 2017.

77. Saurav Das, Guru Parulkar, Nick McKeown, Preeti Singh, Daniel Getachew,
and Lyndon Ong. Packet and Circuit Network Convergence with Openflow.
In Optical Fiber Communication Conference, page OTuG1. Optical Society of
America, 2010.

78. Derek L Davis. Secure boot, August 10 1999. US Patent 5,937,063.
79. Saptarshi Debroy, Prasad Calyam, Minh Nguyen, Allen Stage, and Vladimir

Georgiev. Frequency-Minimal Moving Target Defense Using Software-
Defined Networking. In Computing, Networking and Communications (ICNC),
2016 International Conference on, pages 1–6. IEEE, 2016.

80. Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann.
SPHINX: Detecting Security Attacks in Software-Defined Networks.

https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html

308 Bibliography
In Proceedings of the Network and Distributed System Security Symposium 2015
(NDSS 15). ISOC, 2015.

81. Advait Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and Ramana
Kompella. Towards an Elastic Distributed SDN Controller. ACM SIGCOMM
Computer Communication Review, 43:7–12, 2013.

82. Avri Doria, J Hadi Salim, Robert Haas, Horzmud Khosravi, Weiming Wang,
Ligang Dong, RamGopal, and Joel Halpern. Forwarding and Control Element
Separation (forces) Protocol Specification. Technical report, 2010.

83. Open vSwitch with DPDK. http://docs.openvswitch.org/en/latest/intro/
install/dpdk/.

84. Nicodemos Damianou and Naranker Dulay. The Ponder Policy Specification
Language. In Lecture Notes in Computer Science, pages 18–38. Springer-Verlag,
2001.

85. Iman El Mir, El Mehdi Kandoussi, Mohamed Hanini, Abdelkrim Haqiq, and
Dong Seong Kim. A Game Theoretic Approach Based Virtual Machine Migra-
tion for Cloud Environment Security. International Journal of Communication
Networks and Information Security, 9(3):345–357, 2017.

86. David Eppstein and SMuthukrishnan. Internet Packet Filter Management and
Rectangle Geometry. In Proceedings of the 12th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ‘01), pages 827–835. Society for Industrial and
Applied Mathematics, 2001.

87. David Erickson. The Beacon Openflow Controller. In Proceedings of the 2nd
Workshop on Hot Topics in Software Defined Networking (HotSDN 2013), pages
13–18. ACM, 2013.

88. ETSI. NFV Security and Trust Guidance, Dec, 2014.
89. Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and

Jeffrey CMogul. Enforcing Network-Wide Policies in the Presence of Dynamic
Middlebox Actions Using Flowtags. InNSDI, volume 14, pages 533–546, 2014.

90. Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Jaco-
bus Van Der Merwe. The Case for Separating Routing from Routers. In Pro-
ceedings of the ACM SIGCOMM workshop on Future directions in network
architecture, pages 5–12. ACM, 2004.

91. Andreas Fischer, Juan Felipe Botero,Michael Till Beck, HermannDeMeer, and
Xavier Hesselbach. Virtual Network Embedding: A Survey. IEEE Communica-
tions Surveys & Tutorials, 15(4):1888–1906, 2013.

92. Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto,
Jennifer Rexford, Alec Story, and David Walker. Frenetic: A Network Pro-
gramming Language. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming (ICFP ‘11), volume 46, pages 279–291.
ACM, 2011.

93. Jeremy Frank. Artificial Intelligence and Intrusion Detection: Current and
Future Directions. In Proceedings of the 17th national computer security conference,
volume 10, pages 1–12. Baltimore, MD, 1994.

94. Jérôme François, Lautaro Dolberg, Olivier Festor, and Thomas Engel. Network
Security Through Software Defined Networking: A Survey. In Proceedings of
the 7th Conference on Principles, Systems andApplications of IP Telecommunications
(IPTComm 2014), page 6. ACM, 2014.

95. Zhi Fu, S Felix Wu, He Huang, Kung Loh, Fengmin Gong, Ilia Baldine, and
Chong Xu. IPSec/VPN Security Policy: Correctness, Conflict Detection, and

http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/

Bibliography 309
Resolution. In Proceedings of the International Workshop on Policies for Distributed
Systems and Networks (POLICY 2001), volume 1995 of Lecture Notes in Computer
Science, pages 39–56. Springer, 2001.

96. Shang Gao, Zecheng Li, Bin Xiao, and Guiyi Wei. Security Threats in the Data
Plane of Software-Defined Networks. IEEE Network, 2018.

97. Miguel Garcia, Alysson Bessani, Ilir Gashi, NunoNeves, and Rafael Obelheiro.
Os Diversity for Intrusion Tolerance: Myth or Reality? InDependable Systems &
Networks (DSN), 2011 IEEE/IFIP 41st International Conference on, pages 383–394.
IEEE, 2011.

98. Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella.
Toward Software-Defined Middlebox Networking. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks (HotNets-XI), pages 7–12.
ACM, 2012.

99. Paul Giura and Wei Wang. A Context-Based Detection Framework for
Advanced Persistent Threats. In Cyber Security (CyberSecurity), 2012 Interna-
tional Conference on, pages 69–74. IEEE, 2012.

100. John C Gower and Gavin JS Ross. Minimum Spanning Trees and Single Link-
Age Cluster Analysis. Applied statistics, pages 54–64, 1969.

101. Marc Green, Douglas C MacFarland, Doran R Smestad, and Craig A Shue.
Characterizing Network-Based Moving Target Defenses. In Proceedings
of the Second ACM Workshop on Moving Target Defense, pages 31–35. ACM,
2015.

102. Yu Gu, Andrew McCallum, and Don Towsley. Detecting Anomalies in Net-
work Traffic Using Maximum Entropy Estimation. In Proceedings of the 5th
ACM SIGCOMM Conference on Internet Measurement (IMC 05), page 32. USE-
NIX Association, 2005.

103. Joshua D Guttman and Amy L Herzog. Rigorous Automated Network Secur-
ity Management. International Journal of Information Security, 4(1-2):29–48, Feb-
ruary 2005.

104. Martin THagan,Howard BDemuth,MarkHBeale, et al.Neural network design,
volume 20. Pws Pub. Boston, 1996.

105. Joel Halpern and Carlos Pignataro. Service Function Chaining (sfc)
Architecture. Technical report, 2015.

106. BoHan, VijayGopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network Func-
tion Virtualization: Challenges and Opportunities for Innovations. IEEE Com-
munications Magazine, 53(2):90–97, 2015.

107. Weili Han and Chang Lei. A Survey on Policy Languages in Network and
Security Management. Computer Networks, 56(1):477–489, January 2012.

108. Adiseshu Hari, Subhash Suri, and Guru Parulkar. Detecting and Resolving
Packet Filter Conflicts. In Proceedings of the 19th Annual Joint Conference of the
IEEE Computer and Communications Societies (IN-FOCOM 2000), volume 3,
pages 1203–1212. IEEE, 2000.

109. Scott Hazelhurst. Algorithms for Analysing Firewall and Router Access Lists.
CoRR, cs.NI/0008006, 2000.

110. Charles L Hedrick. Routing Information Protocol. Technical report, 1988.
111. Alvaro Herrero, Emilio Corchado, María A Pellicer, and Ajith Abraham.

Hybrid Multi Agent-Neural Network Intrusion Detection with Mobile
Visualization. In Innovations in Hybrid Intelligent Systems, pages 320–328.
Springer, 2007.

310 Bibliography
112. WadeHolmes. Vmware nsxMicro-Segmentation Day 1. VMWare Press, avail-
able at https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf, 2018.

113. Ralph Holz, Thomas Riedmaier, Nils Kammenhuber, and Georg Carle. X.
509 Forensics: Detecting and Localising the SSL/TLS Men-in-the-Middle. In
European Symposium on Research in Computer Security, pages 217–234. Springer,
2012.

114. Homer, John, Xinming Ou, and David Schmidt. A Sound and Practical
Approach to Quantifying Security Risk in Enterprise Networks. Kansas State
University Technical Report (2009): 1–15.

115. John Homer, Ashok Varikuti, Xinming Ou, andMiles AMcQueen. Improving
Attack Graph Visualization Through Data Reduction and Attack Grouping. In
Visualization for computer security, pages 68–79. Springer, 2008.

116. Andrei Homescu, Todd Jackson, StephenCrane, Stefan Brunthaler, Per Larsen,
and Michael Franz. Large-Scale Automated Software Diversityprogram Evo-
lution Redux. IEEE Transactions on Dependable and Secure Computing, 14
(2):158–171, 2017.

117. Jin Hong and Dong-Seong Kim. Harms: Hierarchical Attack Representation
Models for Network Security Analysis. SRI Security Research Institute, Edith
Cowan University, Perth, Western Australia, 2012.

118. Jin B Hong and Dong Seong Kim. Assessing the Effectiveness of Moving Tar-
get Defenses Using Security Models. IEEE Transactions on Dependable and
Secure Computing, 13(2):163–177, 2016.

119. Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. Poisoning Network
Visibility in Software-Defined Networks: New Attacks and Counter-
Measures. In NDSS, volume 15, pages 8–11, 2015.

120. Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. Fame: A Firewall
Anomaly Management Environment. In Proceedings of the 3rd ACM Workshop
on Assurable and Usable Security Configuration (SafeConfig ‘10), pages 17–26.
ACM, 2010.

121. Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. Flow-Guard:
Building Robust Firewalls for Software-Defined Networks. In Proceedings of
the 3rd Workshop on Hot Topics in Software Defined Networking (HotSDN 2014),
pages 97–102. ACM, 2014.

122. Yannan Hu, Wendong Wang, Xiangyang Gong, Xirong Que, and
Shiduan Cheng. BalanceFlow: Controller Load Balancing for Openflow
Networks. In Proceedings of the 2012 IEEE 2nd International Conference on Cloud
Computing and Intelligent Systems (CCIS 2012), volume 2, pages 780–785. IEEE,
2012.

123. Yannan Hu, Wendong Wang, Xiangyang Gong, Xirong Que, and Shiduan
Cheng. On the Placement of Controllers in Software-Defined Networks. The
Journal of China Universities of Posts and Telecommunications, 19:92–171, 2012.

124. Yannan Hu, Wendong Wang, Xiangyang Gong, Xirong Que, and Shiduan
Cheng. Reliability-Aware Controller Placement for Software-Defined
Networks. In Proceedings of the 13th IFIP/IEEE International Symposium on Inte-
grated Network Management (IM 2013), pages 672–675. IEEE, May 2013.

125. DijiangHuang, DeepMedhi, and Kishor Trivedi. SRN: On Establishing Secure
and Resilient Networking Services. Available at https://www.nsf.gov/
awardsearch/showAward?AWD_ID=1526299, 2015.

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-microsegmentation.pdf
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1526299
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1526299
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1526299
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1526299
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1526299
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1526299
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1526299

Bibliography 311
126. Heqing Huang, Su Zhang, Xinming Ou, Atul Prakash, and Karem Sakallah.
Distilling Critical Attack Graph Surface Iteratively Through Minimum-Cost
Sat Solving. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 31–40. ACM, 2011.

127. W. S. Humphrey. Characterizing the Software Process: A Maturity
Framework. IEEE Software, 5(2):73–79, March 1988.

128. ICC Lab. NETFLOC SDK4SDN. https://blog.zhaw.ch/icclab/service-func-
tion-chaining-using-the-sdk4sdn/, 2018. Online; accessed 13 February 2018.

129. IEEE. IEEE Std 802.1Q-1998. IEEE standard, availabe at http://ieeexplore.ieee.
org/xpl/RecentIssue.jsp?punumber=6080, 1998.

130. IEEE Standards Association. Guidelines for Use of Extended Unique Identifier
(EUI), Organizationally Unique Identifier (OUI), and Company ID (CID).
available at http://standards.ieee.org/develop/regauth/tut/eui.pdf, retrieved
Feb 2018.

131. Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical Attack
Graph Generation for Network Defense. In Computer Security Applications Con-
ference, 2006. ACSAC’06. 22nd Annual, pages 121–130. IEEE, 2006.

132. Sotiris Ioannidis, Angelos D Keromytis, Steve M Bellovin, and Jonathan M
Smith. Implementing a Distributed Firewall. In Proceedings of the 7th ACMCon-
ference on Computer and Communications Security, pages 190–199. ACM, 2000.

133. Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow Random Host
Mutation: Transparent Moving Target Defense Using Software Defined
Networking. In Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, pages 127–132. ACM, 2012.

134. Sushil Jajodia, StevenNoel, andBrianOBerry. TopologicalAnalysis ofNetwork
Attack Vulnerability. InManaging Cyber Threats, pages 247–266. Springer, 2005.

135. Tariq Javid, Tehseen Riaz, and Asad Rasheed. A Layer2 Firewall for Software
Defined Network. In Proceedings of the 2014 Conference on Information Assurance
and Cyber Security (CIACS), pages 39–42. IEEE, 2014.

136. Quan Jia, Kun Sun, and Angelos Stavrou. Motag: Moving Target Defense
Against InternetDenial of ServiceAttacks. InComputerCommunications andNet-
works (ICCCN), 2013 22nd International Conference on, pages 1–9. IEEE, 2013.

137. Yury Jimenez, Cristina Cervello-Pastor, and Aurelio J Garcia. On the Control-
ler Placement for Designing a Distributed SDNControl Layer. In Proceedings of
the 2014 IFIP Networking Conference (Networking 2014), pages 1–9. IEEE, 2014.

138. HyunChul Joh and Yashwant KMalaiya. Defining andAssessing Quantitative
Security Risk Measures Using Vulnerability Lifecycle and CVSS Metrics. In
Proceedings of the 10th International Conference on Security and Management
(SAM ‘11), pages 10–16, 2011.

139. Postel Jon. Internet Protocol-Darpa Internet Program Protocol Specification.
Technical report, RFC-791, DARPA, 1981.

140. Dilip A Joseph, Arsalan Tavakoli, and Ion Stoica. A Policy-Aware Switching
Layer for Data Centers. In Proceedings of the 2008 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM ‘08). ACM, 2008.

141. Lalana Kagal. Rei: A Policy Language for the Me-Centric Project. Technical
Report, HP Laboratories, Palo Alto, 2002.

142. Kubra Kalkan, Gurkan Gur, and Fatih Alagoz. Defense Mechanisms Against
ddos Attacks in sdn Environment. IEEE Communications Magazine, 55(9):175–
179, 2017.

https://blog.zhaw.ch/icclab/service-function-chaining-using-the-sdk4sdn/
https://blog.zhaw.ch/icclab/service-function-chaining-using-the-sdk4sdn/
https://blog.zhaw.ch/icclab/service-function-chaining-using-the-sdk4sdn/
https://blog.zhaw.ch/icclab/service-function-chaining-using-the-sdk4sdn/
https://blog.zhaw.ch/icclab/service-function-chaining-using-the-sdk4sdn/
https://blog.zhaw.ch/icclab/service-function-chaining-using-the-sdk4sdn/
https://blog.zhaw.ch/icclab/service-function-chaining-using-the-sdk4sdn/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6080
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6080
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6080
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6080
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6080
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6080
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6080
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6080
http://standards.ieee.org/develop/regauth/tut/eui.pdf
http://standards.ieee.org/develop/regauth/tut/eui.pdf
http://standards.ieee.org/develop/regauth/tut/eui.pdf
http://standards.ieee.org/develop/regauth/tut/eui.pdf
http://standards.ieee.org/develop/regauth/tut/eui.pdf
http://standards.ieee.org/develop/regauth/tut/eui.pdf
http://standards.ieee.org/develop/regauth/tut/eui.pdf
http://standards.ieee.org/develop/regauth/tut/eui.pdf

312 Bibliography
143. Panos Kampanakis, Harry Perros, and Tsegereda Beyene. SDN-Based Solu-
tions for Moving Target Defense Network protection. In World of Wvreless,
Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th International Sym-
posium on a, pages 1–6. IEEE, 2014.

144. Hasan T Karaoglu and Murat Yuksel. Offloading Routing Complexity to the
Cloud (s). In Communications Workshops (ICC), 2013 IEEE International Confer-
ence on, pages 1367–1371. Citeseer, 2013.

145. George Karypis and Vipin Kumar. A Parallel Algorithm for Multilevel Graph
Partitioning and Sparse Matrix Ordering. Journal of Parallel and Distributed
Computing, 48(1):71–95, 1998.

146. Seiichi Kawamura and Masanobu Kawashima. A Recommendation for IPV6
Address Text Representation. Technical report, 2010.

147. Ryota Kawashima. vNFC: A Virtual Networking Function Container for
SDN-enabledVirtual Networks. In Proceedings of the 2nd Symposium onNetwork
Cloud Computing and Applications (NCCA 2012), pages 124–129. IEEE, 2012.

148. Peyman Kazemian, Michael Chan, Hongyi Zeng, George Varghese, Nick
McKeown, and Scott Whyte. Real Time Network Policy Checking Using
Header Space Analysis. In NSDI, pages 99–111, 2013.

149. Peyman Kazemian, George Varghese, and Nick McKeown. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ‘12), pages
113–126. USENIX Association, 2012.

150. Pankaj Kumar Khatkar. Firewall Rule Set Analysis and Visualization. Master’s
thesis, Arizona State University, 2014.

151. Gautam Khetrapal and Saurabh Kumar Sharma. Demystifying Routing
Services in Software-Defined Networking. White paper, 2013.

152. Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. VeriFlow: Verifying Network-Wide Invariants in Real
Time. In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ‘13), pages 15–27. USENIX Association, 2013.

153. HyojoonKim andNick Feamster. ImprovingNetworkManagementwith Soft-
ware Defined Networking. IEEE Commun. Mag., 51(2):114–119, Feb. 2013.

154. Richard Kissel. Glossary of Key Information Security Terms. Diane Publishing,
2011.

155. JonMKleinberg.Approximation Algorithms for Disjoint Paths Problems. PhD the-
sis, Massachusetts Institute of Technology, 1996.

156. Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., and Roughan, M. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communications,
29(9):1765–1775, October 2011.

157. Ron Kohavi. Scaling up the Accuracy of Naive-Bayes Classifiers: a Decision-
Tree Hybrid. In KDD, volume 96, pages 202–207. Citeseer, 1996.

158. Kolliopoulos, Stavros G., and Clifford Stein. Improved Approximation Algo-
rithms for Unsplittable Flow Problems. focs. IEEE, 1997.

159. Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Pou-
tievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki
Hama, and others. Onix: A Distributed Control Platform for Large-Scale Pro-
duction Networks. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ‘10), volume 10, pages 1–6. USENIX
Association, 2010.

Bibliography 313
160. Maria Korolov and Lysa Myers. What is the Cyber Kill Chain? why it’s not
always the right approach to cyber attacks. Available at https://
www.csoonline.com/, accessed on June 24, 2018.

161. Igor Kotenko, Alexey Konovalov, and Andrey Shorov. Agent-BasedModeling
and Simulation of Botnets and Botnet Defense. In Conference on Cyber Conflict.
CCD COE Publications. Tallinn, Estonia, pages 21–44, 2010.

162. Igor Kotenko and Alexander Ulanov. Multi-Agent Framework for Simulation
of Adaptive Cooperative Defense Against Internet Attacks. In International
Workshop on Autonomous Intelligent Systems: Multi-Agents and Data Mining,
pages 212–228. Springer, 2007.

163. Michail-Alexandros Kourtis, Michael J McGrath, Georgios Gardikis, Georgios
Xilouris, Vincenzo Riccobene, Panagiotis Papadimitriou, Eleni Trouva, Fran-
cesco Liberati, Marco Trubian, Josep Batallé, et al. T-nova: An Open-Source
Mano Stack for NFV Infrastructures. IEEE Transactions on Network and Service
Management, 14(3):586–602, 2017.

164. Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian
Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-Defined
Networking: A Comprehensive Survey. Proceedings of the IEEE, 103(1):14–76,
2015.

165. Maciej Kuniar, Peter Pereni, and Dejan Kosti. What You Need to Know About
SDN Flow Tables. In International Conference on Passive and Active NetworkMea-
surement, pages 347–359. Springer, 2015.

166. Kaspersky Lab. Strategies for Mitigating Advanced Persistent Threats (APTs).
https://securelist.com/threats/strategies-for-mitigating-advanced-persistent-
threats-apts/, 2017.

167. Kris Lahiri. How Will Artificial Intelligence And Machine Learning Impact
Cyber Security? Available at https://www.forbes.com/, 2018. [Online;
accessed 06-04-2018].

168. M. Lasserre and V. Kompella. Virtual Private LAN Service (VPLS) Using Label
Distribution Protocol (LDP) Signaling. RFC4762, 2007.

169. Jeongkeun Lee, Jean Tourrilhes, Puneet Sharma, and Sujata Banerjee. NoMore
Middlebox: Integrate Processing into Network. ACM SIGCOMM Computer
Communication Review, 40:459–460, 2010.

170. Richard Paul Lippmann, JF Riordan, TH Yu, and KK Watson. Continuous
Security Metrics for Prevalent Network Threats: Introduction and First Four
Metrics. Technical Report MIT-LL-IA-3, Massachusetts Institute of Institute
of Technology Lincoln Laboratory, May 2012.

171. Jiaqiang Liu, Yong Li, Huandong Wang, Depeng Jin, Li Su, Lieguang Zeng,
and Thanos Vasilakos. Leveraging Software-Defined Networking for Security
Policy Enforcement. Information Sciences, 327:288–299, 2016.

172. Xiong Liu, Haiwei Xue, Xiaoping Feng, andYiqi Dai. Design of theMulti-Level
Security Network Switch System Which Restricts Covert Channel. In Proceed-
ings of the IEEE 3rd International Conference on Communication Software and
Networks (ICCSN 2011), pages 233–237. IEEE, 2011.

173. Duo Lu, Zhichao Li, Dijiang Huang, Xianglong Lu, Yuli Deng, Ankur
Chowdhary, and Bing Li. VC-bots: A Vehicular Cloud Computing Testbed
withMobile Robots. In Proceedings of the First International Workshop on Internet
of Vehicles and Vehicles of Internet, pages 31–36. ACM, 2016.

https://www.csoonline.com/
https://www.csoonline.com/
https://www.csoonline.com/
https://www.csoonline.com/
https://securelist.com/threats/strategies-for-mitigating-advanced-persistent-threats-apts/
https://securelist.com/threats/strategies-for-mitigating-advanced-persistent-threats-apts/
https://securelist.com/threats/strategies-for-mitigating-advanced-persistent-threats-apts/
https://securelist.com/threats/strategies-for-mitigating-advanced-persistent-threats-apts/
https://securelist.com/threats/strategies-for-mitigating-advanced-persistent-threats-apts/
https://securelist.com/threats/strategies-for-mitigating-advanced-persistent-threats-apts/
https://securelist.com/threats/strategies-for-mitigating-advanced-persistent-threats-apts/
https://www.forbes.com/
https://www.forbes.com/
https://www.forbes.com/
https://www.forbes.com/

314 Bibliography
174. Ting Luo and Shaohua Yu. Control and Communication Mechanisms of a
Softrouter. In Optical Internet and Next Generation Network, 2006. COIN-
NGNCON2006. The Joint International Conference on, pages 109–111. IEEE, 2006.

175. Emil C Lupu and Morris Sloman. Conflict Analysis for Management Policies.
In Integrated Network Management V, IFIP - The International Federation for Infor-
mation Processing, pages 430–443. Springer, 1997.

176. Emil C Lupu and Morris Sloman. Conflicts in Policy-Based Distributed Sys-
tems Management. IEEE Transactions on Software Engineering, 25(6):852–869,
1999.

177. HughMahon, Yoram Bernet, Shai Herzog, and Jhon Schnizlein. Requirements
for a Policy Management System. Internet Draft, IETF, 1999.

178. Hoda Maleki, Saeed Valizadeh, William Koch, Azer Bestavros, and Marten
van Dijk. Markov Modeling of Moving Target Defense Games. In Proceedings
of the 2016 ACM Workshop on Moving Target Defense, pages 81–92. ACM, 2016.

179. Florian Mansmann, Timo Gbel, and William Cheswick. Visual Analysis of
Complex Firewall Configurations. In Proceedings of the 9th International Sympo-
sium on Visualization for Cyber Security, pages 1–8. ACM, 2012.

180. Lockheed Martin. Cyber kill Chain®. URL: http://cyber.lock-heedmartin.com/

hubfs/Gaining_the_Advantage_Cyber_Kill_Chain.pdf, 2014.
181. Sjouke Mauw and Martijn Oostdijk. Foundations of Attack Trees. In Icisc, vol-

ume 3935, pages 186–198. Springer, 2005.
182. Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A Firewall Analysis

Engine. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages
177–187. IEEE, 2000.

183. McAfee. APT Protection Market Quadrant. https://www.mcafee.com/enterp
rise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf, 2017.

184. Todd McGuiness. Defense in Depth. SANS Institute InfoSec Reading Room.
SANS Institute, 2001.

185. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Com-
munication Review, 38(2):69–74, 2008.

186. Marshall Kirk McKusick, George V Neville-Neil, and Robert NMWatson. The
Design and Implementation of the FreeBSD Operating System. Pearson Education,
2014.

187. Ahmed M Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe A Carella,
Stefan Covaci, and Thomas Magedanz. Service Function Chaining in Next
Generation Networks: State of the Art and Research Challenges. IEEE Commu-
nications Magazine, 55(2):216–223, 2017.

188. Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight:
Towards a Model-Driven SDN Controller Architecture. In 2014 IEEE 15th
International Symposium on, pages 1–6. IEEE, 2014.

189. Mehta, Vaibhav, et al. “Ranking attack graphs.” International Workshop on
Recent Advances in Intrusion Detection. Springer, Berlin, Heidelberg, 2006.

190. Peter Mell, Karen Scarfone, and Sasha Romanosky. Common Vulnerability
Scoring System. IEEE Security & Privacy, 4(6), 2006.

191. Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Develop-
ment and Deployment. Linux Journal, 2014(239):2, 2014.

http://cyber.lock-heedmartin.com/hubfs/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
http://cyber.lock-heedmartin.com/hubfs/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
http://cyber.lock-heedmartin.com/hubfs/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
http://cyber.lock-heedmartin.com/hubfs/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
http://cyber.lock-heedmartin.com/hubfs/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
http://cyber.lock-heedmartin.com/hubfs/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-apt-market-quadrant-atd-top-player.pdf

Bibliography 315
192. RashidMijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
and Raouf Boutaba. Network Function Virtualization: State-of-the-Art and
Research Challenges. IEEE Communications Surveys & Tutorials, 18(1):236–
262, 2016.

193. Jonathan D Moffett. Requirements and Policies. In Proceedings of the Workshop
on Policies for Distributed Systems and Networks (POLICY 1999), UK, 1999. HP
Laboratories Bristol.

194. Jonathan D Moffett and Morris S Sloman. Policy Hierarchies for Distributed
Systems Management. IEEE Journal on Selected Areas in Communications,
11(9):1404–1414, 1993.

195. Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, David
Walker, and others. Composing Software-Defined Networks. In Proceedings
of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ‘13), pages 1–13. USENIX Association, 2013.

196. B. Moore. Policy Core Information Model (PCIM) Extensions. RFC 3460, IETF,
January 2003.

197. Andrea Morgagni, Andrea Fiaschetti, Josef Noll, Ignacio Arenaza-Nuño, and
Javier Del Ser. Security, Privacy, and Dependability Metrics. Measurable and
Composable Security, Privacy, and Dependability for Cyber-physical Systems: The
SHIELD Methodology, page 159, 2017.

198. Marti Motoyama, Damon McCoy, Kirill Levchenko, Stefan Savage, and Geof-
frey M Voelker. An Analysis of Underground Forums. In Proceedings of the
2011 ACM SIGCOMM Conference on Internet Measurement Conference, pages
71–80. ACM, 2011.

199. John Moy. OSPF version 2. Technical report, 1997.
200. Marcelo Ribeiro Nascimento, Christian Esteve Rothenberg, Marcos Rogério

Salvador, and Maurício Ferreira Magalhães. Quagflow: Partnering Quagga
with Openflow. ACM SIGCOMM Computer Communication Review, 41
(4):441–442, 2011.

201. Janakarajan Natarajan. Analysis and Visualization of OpenFlow Rule
Conflicts. Master’s thesis, Arizona State University, 2016.

202. SriramNatarajan, Xin Huang, and TilmanWolf. Efficient Conflict Detection in
Flow-Based Virtualized Networks. In Proceedings of the 2012 International Con-
ference on Computing, Networking and Communications (ICNC 2012), pages 690–
696. IEEE, 2012.

203. Saran Neti, Anil Somayaji, and Michael E Locasto. Software Diversity: Secur-
ity, Entropy and Game Theory.

204. NIST. NIST Software Defined Virtual Networks Project. available at http://
searchsdn.techtarget.com/answer/What-is-the-difference-between-SDN-and-
NFV, year.

205. Andres Ojamaa, Enn Tyugu, and Jyri Kivimaa. Pareto-Optimal Situaton Anal-
ysis for Selection of Security Measures. In Military Communications Conference,
2008. MILCOM 2008. IEEE, pages 1–7. IEEE, 2008.

206. OpenNFV. OpenNFV Based Service Function Chaining. https://wiki.opnfv.
org/display/sfc/Service+Function+Chaining+Home, 2018. Online; accessed
13 February 2018.

207. OpenStack. available at https://www.openstack.org/.
208. International Standards Organisation. Intermediate System to Intermediate

System Intra-Domain Routeing Exchange Protocol for use in Conjunction

http://searchsdn.techtarget.com/answer/What-is-the-difference-between-SDN-and-NFV
http://searchsdn.techtarget.com/answer/What-is-the-difference-between-SDN-and-NFV
http://searchsdn.techtarget.com/answer/What-is-the-difference-between-SDN-and-NFV
http://searchsdn.techtarget.com/answer/What-is-the-difference-between-SDN-and-NFV
http://searchsdn.techtarget.com/answer/What-is-the-difference-between-SDN-and-NFV
http://searchsdn.techtarget.com/answer/What-is-the-difference-between-SDN-and-NFV
http://searchsdn.techtarget.com/answer/What-is-the-difference-between-SDN-and-NFV
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/
https://www.openstack.org/

316 Bibliography
with the Protocol for Providing the Connectionless-ModeNetwork Service (iso
8473). ISO DP 10589, February 1990.

209. Kouns, Jake. Open Source Vulnerability Database. The Open Source Business
Resource (2008): 4.

210. Xinming Ou and AndrewW Appel. A Logic-Programming Approach to Network
Security Analysis. Princeton University Princeton, 2005.

211. Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. Mulval: A
Logic-Based Network Security Analyzer. In USENIX Security Symposium,
pages 8–8. Baltimore, MD, 2005.

212. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The Pag-
erank Citation Ranking: Bringing Order to the Web. Technical Report, Stan-
ford InfoLab, 1999.

213. Justin Gregory V Pena and William Emmanuel Yu. Development of a Distrib-
uted Firewall Using Software Defined Networking Technology. In Proceedings
of the 4th International Conference on Information Science and Technology (ICIST
2014), pages 449–452. IEEE, 2014.

214. Ben Pfaff and Bruce Davie. The Open vSwitch Database Management
Protocol. RFC 7047, IETF, 2013.

215. Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al.
The Design and Implementation of Open Vswitch. In NSDI, pages 117–130,
2015.

216. Kvin Phemius, Mathieu Bouet, and Jrmie Leguay. DISCO: Distributed Multi-
Domain SDN Controllers. In Proceedings of the 2014 IEEE Network Operations
and Management Symposium (NOMS 2014), pages 1–4. IEEE, May 2014.

217. David Lynton Poole, Alan K Mackworth, and Randy Goebel. Computational
intelligence: a logical approach, volume 1. Oxford University Press New York,
1998.

218. Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry
Tyson, and Guofei Gu. A Security Enforcement Kernel for Openflow
Networks. In Proceedings of the 1st Workshop on Hot Topics in Software Defined
Networking (HotSDN 2012), pages 121–126. ACM, 2012.

219. Phillip A Porras, Steven Cheung, Martin W Fong, Keith Skinner, and Vinod
Yegneswaran. Securing the Software Defined Network Control Layer. In Pro-
ceedings of the Network and Distributed System Security Symposium 2015 (NDSS
15). ISOC, 2015.

220. Sergio Pozo, Rafael Ceballos, and Rafael M Gasca. AFPL, an Abstract Lan-
guageModel for Firewall ACLs. In Proceedings of the 8th International Conference
on Computational Science and Its Applications (ICCSA 2008), pages 468–483.
Springer, 2008.

221. Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying
Zhang. Pga: Using graphs to express and automatically reconcile network
policies. In ACM SIGCOMM Computer Communication Review, volume 45,
pages 29–42. ACM, 2015.

222. Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In Pro-
ceedings of the 2013 ACM Conference on Special Interest Group on Data Communi-
cation (SIGCOMM ‘13), pages 27–38. ACM, 2013.

Bibliography 317
223. Paul Quinn, U Elzur, and C Pignataro. Network Service Header (nsh). Techni-
cal report, 2018.

224. Quinn, Paul, and Tom Nadeau. Problem Statement for Service Function
Chaining. No. RFC 7498. 2015.

225. Jane Radatz, Anne Geraci, and Freny Katki. IEEE Standard Glossary of Soft-
ware Engineering Terminology. IEEE Std, 610121990(121990):3, 1990.

226. David Raymond, Gregory Conti, Tom Cross, and Michael Nowatkowski.
Key Terrain in Cyberspace: Seeking the High Ground. In Proceedings of the
6th International Conference on Cyber Conflict (CyCon 2014), pages 287–300.
IEEE, 2014.

227. Yakov Rekhter, Tony Li, and Susan Hares. A Border Gateway Protocol 4
(BGP-4). Technical report, 2005.

228. François Reynaud, François-Xavier Aguessy, Olivier Bettan, Mathieu Bouet,
andVania Conan. AttacksAgainst Network Functions Virtualization and Soft-
ware-Defined Networking: State-of-the-Art. In Proceedings of the 2016 IEEE
Conference on Network Softwarization (NetSoft), pages 471–476. IEEE, 2016.

229. AndrewRRiddle and SoonMChung. A Survey on the Security ofHypervisors
in Cloud Computing. In Distributed Computing Systems Workshops (ICDCSW),
2015 IEEE 35th International Conference on, pages 100–104. IEEE, 2015.

230. D Romão, N Van Dijkhuizen, S Konstantaras, and G Thessalonikefs. Practical
Security Analysis of Openflow. University of Amsterdam, Amsterdam, 2013.

231. Frank Rosenblatt. The Perceptron: A Probabilistic Model for Information Stor-
age and Organization in the Brain. Psychological Review, 65(6):386, 1958.

232. Ronald S Ross. Managing Information Security Risk: Organization, Mission,
and Information System View. Special Publication (NIST SP)-800-39, 2011.

233. Christian Esteve Rothenberg, Marcelo Ribeiro Nascimento, Marcos Rogerio
Salvador, Carlos Nilton Araujo Corrêa, Sidney Cunha de Lucena, and Robert
Raszuk. Revisiting Routing Control Platforms with the Eyes and Muscles of
Software-Defined Networking. In Proceedings of the First Workshop on Hot Top-
ics in Software Defined Networks, pages 13–18. ACM, 2012.

234. Arpan Roy. Attack Countermeasure Trees: A Non-State-Space Approach Towards
Analyzing Security and Finding Optimal Countermeasure Sets. PhD thesis, Duke
University, 2010.

235. Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Cyber Security Analysis
Using Attack Countermeasure Trees. In Proceedings of the Sixth Annual Work-
shop on Cyber Security and Information Intelligence Research, page 28. ACM, 2010.

236. Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Attack Countermeasure
trees (ACT): Towards Unifying the Constructs of Attack and Defense Trees.
Security and Communication Networks, 5(8):929–943, 2012.

237. Arthur L Samuel. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, 3(3):210–229, 1959.

238. Wayne Sandholtz. Institutions and Collective Action: The New Telecommuni-
cations in Western Europe. World Politics, 45(2):242–270, 1993.

239. Fred B Schneider. Least Privilege and More. IEEE Security & Privacy, 1(5):55–
59, 2003.

240. Bruce Schneier. Attack trees. Dr. Dobbs Journal, 24(12):21–29, 1999.
241. Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. SDN security:

A survey. In Future Networks and Services (SDN4FNS), 2013 IEEE SDN For,
pages 1–7. IEEE, 2013.

318 Bibliography
242. Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack:
Toward an Open-Source Solution for Cloud Computing. International Journal
of Computer Applications, 55(3), 2012.

243. Vyas Sekar, Sylvia Ratnasamy, Michael K Reiter, Norbert Egi, and
Guangyu Shi. The Middlebox Manifesto: Enabling Innovation in Middlebox
Deployment. In Proceedings of the 10th ACM Workshop on Hot Topics in
Networks (HotNets-X), page 21. ACM, 2011.

244. Alireza Shameli Sendi, Yosr Jarraya, Makan Pourzandi, and Mohamed
Cheriet. Efficient Provisioning of Security Service Function Chaining
Using Network Security Defense Patterns. IEEE Transactions on Services Com-
puting, 2016.

245. Sezer, Sakir et al. AreWeReady for SDN? Implementation Challenges for Soft-
ware-Defined Networks. IEEE Communications Magazine, 51.7, 2013, 36–43.

246. Hovav Shacham,Matthew Page, Ben Pfaff, Eu-Jin Goh, NagendraModadugu,
andDan Boneh. On the Effectiveness of Address-Space Randomization. In Pro-
ceedings of the 11th ACM conference on Computer and communications security,
pages 298–307. ACM, 2004.

247. Susan J Shepard. Policy-Based Networks: Hype and Hope. IT Professional,
2(1):12–16, January 2000.

248. Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making Middleboxes Someone Else’s Problem:
Network Processing as a Cloud Service. ACM SIGCOMM Computer Communi-
cation Review, 42(4):13–24, 2012.

249. Sherry, Justine et al. Making Middleboxes Someone Else's Problem: Network
Processing as a Cloud Service. ACM SIGCOMM Computer Communication
Review, 42.4, 2012, 13–24.

250. Alaauddin Shieha. Application Layer Firewall Using OpenFlow. Master’s
thesis, University of Aleppo, 2014.

251. Seungwon Shin, Phillip A Porras, Vinod Yegneswaran,MartinWFong, Guofei
Gu, and Mabry Tyson. FRESCO: Modular Composable Security Services for
Software-Defined Networks. In Proceedings of the Network and Distributed Sys-
tem Security Symposium 2013 (NDSS 13). ISOC, February 2013.

252. Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Avant-
Guard: Scalable and Vigilant Switch Flow Management in Software-Defined
Networks. In Proceedings of the 20th ACM Conference on Computer and Commu-
nications Security (CCS ‘13), pages 413–424. ACM, 2013.

253. Anirudh Sivaraman, Mihai Budiu, Alvin Cheung, Changhoon Kim, Steve
Licking, George Varghese, Hari Balakrishnan, Mohammad Alizadeh, and
Nick McKeown. Packet Transactions: A Programming Model for Data-plane
Algorithms at Hardware Speed. CoRR, vol. abs/1512.05023, 2015.

254. Morris Sloman, Jeff Magee, Kevin Twidle, and J Kramer. An Architecture
for Managing Distributed Systems. In Proceedings of the 4th Workshop on
Future Trends of Distributed Computing Systems, pages 40–46. IEEE, September
1993.

255. Robin Sommer and Vern Paxson. Outside the Closed World: On using
Machine Learning for Network Intrusion Detection. In Proceedings of the 2010
IEEE Symposium on Security and Privacy, pages 305–316. IEEE, 2010.

256. John Sonchack, Anurag Dubey, Adam J Aviv, Jonathan M Smith, and Eric
Keller. Timing-based Reconnaissance and Defense in Software-Defined

Bibliography 319
Networks. In Proceedings of the 32nd Annual Conference on Computer Security
Applications, pages 89–100. ACM, 2016.

257. Lance Spitzner. Honeypots: Tracking Hackers, volume 1. Addison-Wesley
Reading, 2003.

258. William Stallings. SNMPv3: A Security Enhancement for SNMP. IEEE
Communications Surveys, 1(1):2–17, 1998.

259. Stanford Open Flow Team. OpenFlow Switch Specification, Version 1.0.0.
http://www.openflowswitch.org/documents/openflow-spec-v1.0.0.pdf, 2010.

260. John Strassner and Stephen Schleimer. Policy Framework Definition
Language. Internet Draft, IETF, November 1998.

261. Michelle Suh, Sae Hyong Park, Byungjoon Lee, and Sunhee Yang. Building
Firewall Over the Software-Defined Network Controller. In Proceedings of
the 16th International Conference on Advanced Communication Technology
(ICACT2014), pages 744–748. IEEE, 2014.

262. Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. NFP: Enabling
Network Function Parallelism in NFV. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, pages 43–56. ACM,
2017.

263. Tacker. Openstack Based SFC. https://wiki.openstack.org/wiki/Tacker, 2018.
Online; accessed 13 February 2018.

264. Arsalan Tavakoli, Martin Casado, TeemuKoponen, and Scott Shenker. Apply-
ing NOX to the Datacenter. In Proceedings of the 8th ACM Workshop on Hot
Topics in Networks (HotNets-VIII). ACM, 2009.

265. Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A Detailed
Analysis of the KDD CUP 99 Data Set. In Computational Intelligence for Security
and Defense Applications, 2009. CISDA 2009. IEEE Symposium on, pages 1–6.
IEEE, 2009.

266. Mark Thompson, Noah Evans, and Victoria Kisekka. Multiple OS Rotational
Environment an Implemented Moving Target Defense. In Proceedings of the
7th International Symposium on Resilient Control Systems (ISRCS 2014), pages
1–6. IEEE, 2014.

267. Amin Tootoonchian and Yashar Ganjali. HyperFlow: A Distributed Control
Plane for OpenFlow. In Proceedings of the 2010 Internet Network Management
Workshop/Workshop on Research on Enterprise Networking (INM/WREN ‘10)),
pages 3–3. USENIX Association, 2010.

268. Irena Trajkovska, Michail-Alexandros Kourtis, Christos Sakkas, Denis Baudi-
not, João Silva, Piyush Harsh, George Xylouris, Thomas Michael Bohnert, and
Harilaos Koumaras. SDN-based Service Function Chaining Mechanism and
Service Prototype Implementation in NFV Scenario. Computer Standards &
Interfaces, 54:247–265, 2017.

269. Tung Tran, Ehab S Al-Shaer, and Raouf Boutaba. PolicyVis: Firewall Security
Policy Visualization and Inspection. In LISA, volume 7, pages 1–16, 2007.

270. Enn Tyugu. Artificial Intelligence in Cyber Defense. In Cyber Conflict (ICCC),
2011 3rd International Conference on, pages 1–11. IEEE, 2011.

271. Nuutti Varis. Anatomy of a Linux Bridge. In Proceedings of Seminar on Network
Protocols in Operating Systems, page 58, 2012.

272. Vijay V Vazirani. Approximation Algorithms. Springer Science & Business
Media, 2013.

https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker
http://www.openflowswitch.org/documents/openflow-spec-v1.0.0.pdf

320 Bibliography
273. Patrick Verkaik, Dan Pei, Tom Scholl, Aman Shaikh, Alex C Snoeren, and Jaco-
bus E Van Der Merwe. Wresting Control from BGP: Scalable Fine-Grained
Route Control. In USENIX Annual Technical Conference, pages 295–308, 2007.

274. Dinesh C Verma. Simplifying Network Administration Using Policy-Based
Management. IEEE Network, 16(2):20–26, 2002.

275. VMWare. VMWare NSX: Network Virtualization and Security Platform.
https://www.vmware.com/products/nsx.html, 2018.

276. Liberios Vokorokos, Anton Balaz, and Martin Chovanec. Intrusion
Detection System using Self Organizing Map. Acta Electrotechnica et Informa-
tica, 6(1):1–6, 2006.

277. HuazheWang, Xin Li, Yu Zhao, Ye Yu, Hongkun Yang, and Chen Qian. SICS:
Secure In-Cloud Service Function Chaining. arXiv preprint arXiv:1606.07079,
2016.

278. Gary Williams. Operations Security (OPSEC). Ft. Leavenworth, Kan.: Center for
Army Lessons Learned, 1999.

279. Steve Williams. The Softswitch Advantage. IEE Review, 48(4):25–29, 2002.
280. Wald Wojdak. Rapid Spanning Tree Protocol: A New Solution from an Old

Technology. Reprinted from CompactPCI Systems, 2003.
281. G. H. von Wright. Deontic Logic. Mind, 60(237):1–15, 1951.
282. Peng Xiao, Wenyu Qu, Heng Qi, Zhiyang Li, and Yujie Xu. The SDN

Controller Placement Problem for WAN. In Proceedings of the 2014 IEEE/CIC
International Conference on Communications in China (ICCC), pages 220–224.
IEEE, 2014.

283. Jun Xu, Pinyao Guo, Mingyi Zhao, Robert F Erbacher, Minghui Zhu, and Peng
Liu. ComparingDifferentMoving Target Defense Techniques. In Proceedings of
the 1st ACM Workshop on Moving Target Defense (MTD 2014), pages 97–107.
ACM, 2014.

284. Justin Yackoski, Harry Bullen, Xiang Yu, and Jason Li. Applying Self-Shielding
Dynamics to the Network Architecture. InMoving Target Defense II, pages 97–
115. Springer, 2013.

285. Zheng Yan and Christian Prehofer. Autonomic Trust Management for a Com-
ponent-based Software System. IEEE Transactions on Dependable and Secure
Computing, 8(6):810–823, 2011.

286. Lily Yang, Ram Dantu, Terry Anderson, and Ram Gopal. Forwarding and
Control Element Separation (ForCES) Framework. Technical report, 2004.

287. Wei Yang and Carol Fung. A Survey on Security in Network Functions
Virtualization. In Proceedings of the 2016 IEEE Conference on Network Softwariza-
tion (NetSoft), pages 15–19. IEEE, 2016.

288. Guang Yao, Jun Bi, Yuliang Li, and Luyi Guo. On the Capacitated Controller
Placement Problem in Software-Defined Networks. IEEE Communications
Letters, 18(8):1339–1342, August 2014.

289. Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A Framework for Effi-
cient and Scalable Offloading of Control Applications. In The Beacon Openflow
Controller, pages 19–24. ACM, 2012.

290. Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. On Scalabil-
ity of Software-Defined Networking. IEEE Communications Magazine, 51
(2):136–141, 2013.

https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html

Bibliography 321
291. Minlan Yu, Jennifer Rexford, Michael J Freedman, and Jia Wang. Scalable
Flow-Based Networking with DIFANE. ACM SIGCOMMComputer Communi-
cation Review, 40(4):351–362, 2010.

292. Wei Yu, Xinwen Fu, Steve Graham, Dong Xuan, and Wei Zhao. Dsss-based
Flow Marking Technique for Invisible Traceback. In Proceedings of the 2007
IEEE Symposium on Security and Privacy, pages 18–32. IEEE, 2007.

293. Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su,
and Prasant Mohapatra. Fireman: A Toolkit for Firewall Modeling and
Analysis. In Proceedings of the 2006 IEEE Symposium on Security and Privacy,
pages 15–29. IEEE, 2006.

294. Kara Zaffarano, Joshua Taylor, and Samuel Hamilton. A Quantitative Frame-
work for Moving Target Defense Effectiveness Evaluation. In Proceedings of the
Second ACM Workshop on Moving Target Defense, pages 3–10. ACM, 2015.

295. Bin Zhang, Ehab Al-Shaer, Radha Jagadeesan, James Riely, and Corin Pitcher.
Specifications of a High-Level Conflict-Free Firewall Policy Language for
Multi-Domain Networks. In Proceedings of the 12th ACM Symposium on Access
Control Models and Technologies (SACMAT ‘07), pages 185–194. ACM, 2007.

296. Quanyan Zhu and Tamer Başar. Game-theoretic Approach to Feedback-
driven Multi-stage Moving Target Defense. In International Conference on Deci-
sion and Game Theory for Security, pages 246–263. Springer, 2013.

297. Rui Zhuang, Scott A DeLoach, and Xinming Ou. Towards a Theory of Moving
Target Defense. In Proceedings of the 1st ACM Workshop on Moving Target
Defense (MTD 2014), pages 31–40. ACM, 2014.

298. Rui Zhuang, Su Zhang, Alex Bardas, Scott A DeLoach, Xinming Ou, and
Achintya Singhal. Investigating the Application of Moving Target Defenses
to Network Security. In Proceedings of the 6th International Symposium on Resil-
ient Control Systems (ISRCS 2013), pages 162–169. IEEE, 2013.

http://taylorandfrancis.com

Index
αβ-pruning, 283

A

Abstraction, 41
accounting, 131
Active probing, 114
Address Resolution Protocol (ARP), 28
Address Space Layout Randomization

(ASLR), 184
Address Uniqueness, 21
Advanced Persistent Threats

(APTs), 289
AI based IDS, 284
AI in security, 281
Anti-Coordination Game, 197
Application Level MTD, 187
Application Service Provider (ASP), 237
Application-layer gateway, 119
ARP Spoofing Attacks, 29
Artificial Intelligence (AI), 282
Attack, 110
Attack Component Metric, 210
Attack consequence, 111
Attack Containment, 205
Attack Countermeasure Tree (ACT), 218
Attack Cumulative Metric, 210
Attack Graph Ranking, 214
Attack Graphs, 209
Attack method, 111
Attack modeling, 110
Attack Representation Methods

(ARM), 209
attack response tree (ART), 224
Attack Scenario Analysis, 209
Attack source, 111
Attack target, 111
Attack Trees, 209
Authentication, Authorization and

Accounting (AAA), 135

B

Base Score (BS), 207
Bastion host, 119
Behavior Classification, 285
BGP, 220
Binary Decision Diagrams (BDDs), 209
Boot Integrity, 134
Border Gateway Protocol version 4

(BGPv4), 38
Bridge, 48
Broadcast Domain, 48
buffer overflow, 132
Burned-In Address (BIA), 12
Business Email Compromise, 293
C

Capital Expenditures (CAPEX), 232
CAR-Cloud Assisted Routing, 99
Certificate Authority (CA), 140
classification, 299
Classifier System, 284
Classless Inter-Domain Routing

(CIDR), 15
Cloud Service Providers, 225
Clustering, 284
collaborative filtering, 299
Collision Domain, 48
Common Vulnerability and Exposures

List (CVE), 292
Compute, 129
Conditional Probability, 213
Constraint Satisfaction Problem,

190, 283
Constraint Solving, 283
Cost of Attack (COA), 221
Cross Site Request Forgery

(CSRF), 138
cross-site scripting (XSS), 292
Cryptographic Keys, 129
CVE-2009-2106, 211
CVE-2011-1918, 211
CVE-2013-7130, 132
CVE-2014-3790, 132
CVE-ID, 292
CVSS, 207
Cybersecurity Metrics, 206
323

324 Index
D

Data Execution Prevention (DEP), 188
Data Loss Prevention (DLP), 298
Data Plane Attack, 145
Data Reduction, 284
Data Theft, 132
Decapsulation, 11
Decision Tree, 284
Defense in depth, 111
Demilitarized Zone (DMZ), 117
Denial-of-Service (DoS), 29
Digital Signatures, 134
Distance Clustering, 284
Distance vector protocols, 38
Diversification, 183
Diversity, 142
DLP, 296
DMZ Network, 209
DNS Amplification Attack, 132
Domain Name System (DNS), 30
DoS Countermeasure, 145
Dual-homed host, 117
Dynamic Defense against Host Location

Hijacking, 288
Dynamic Defense against Link

Fabrication, 288
Dynamic Device Association (DDA), 142
Dynamic Game, 283
Dynamic Host Configuration Protocol

(DHCP), 29
Dynamic Integrity Management, 137
Dynamic State Management, 136
dynamically linked library (DLL), 295

E

Encapsulation, 10
endpoint group (EPG), 240
Ethernet Hardware Address (EHA), 12
European Telecommunication Standard

Institute (ETSI), 128, 235
Event Tree, 222
Expert System, 282
Extra-VNF security, 129

F

False Negative, 285
False Positive, 285
Fault Tree, 222
Feature Selection, 284
Filtering, 284
Firewall, 117, 160
Flooding, 38
FreeBSD, 49
Frequency Minimal MTD, 191

G

Game Theoretic IP Randomization, 194
Game Theoretic MTD, 194
Game Theory based Software

Diversity, 196
Generic Routing Encapsulation (GRE),

63, 75
Global addressing, 22
Google Hack Attack, 295
Group-based policy (GBP), 239
Grouping, 176

H

Hardware Address, 12
hash dumping, 294
Hierarchical Attack Representation

Model (HARM), 223
Hierarchical Clustering, 284
honeynet, 282
honeypot, 282
Host, 117
Host Level MTD, 187
Host Location Hijacking, 287
Host Tracking Service (HTS), 287
Hub, 47
Hydraq, 295
Hypervisor, 129

I

IEEE 802.1Q, 67
Impact Vector (IV), 212
Industry Specification Group (ISG), 133
Inference Engine, 282
instruction set randomization (ISR), 183
Intelligent Agents, 283
Intelligent Software-Defined Security

(ISDS), 281
Interface, 10

Index 325
Intermediate System to Intermediate
System (IS-IS), 38

Internet Explorer (IE), 295
Internet of Things, 226
Internet Service Provider (ISP), 237
Intra-VNF security, 129
Intrusion Detection System (IDS),

121–122, 284
Intrusion Prevention System (IPS), 120
intrusion tolerance, 142
IP, 7
IPSec, 63, 231
iptables, 34
ISP, 82
J

J48, 289
JavaScript, 295
K

Knowledge Base, 282
L

Layer 2 Tunneling Protocols (L2TP), 62
Least privilege principle, 159
Link Discovery Service (LDS), 288
Link Fabrication Attack, 288
Link-local address, 22
Link-State protocols, 38
Link-State Update (LSU), 38
Linux Bridge, 49
LLDP, 288
Local Area Network (LAN), 49
local attestation, 134
Local storage attack, 134
Locally Administered Addresses

(LAA), 12
Logical Network, 26
M

MAC address, 12
Machine Learning (ML), 281
Malware, 293
Man-in-The-Middle (MITM), 29
Management and Orchestrator
(MANO), 127, 235

Markov Game, 198
Markov Game-based MTD, 198
Maximum Transmission Unit (MTU), 69
Media Access Control (MAC), 12
Microsegmentation, 156–157, 167
Microsoft Internet Explorer 0-day

(CVE-2010-0249), 295
Middleboxes, 226
mimikatz, 294
mincut, 220
Minimum Spanning Tree (MST), 49
Moving Target Defense (MTD), 181
MTD Analysis and Evaluation

Framework (MASON), 203
MTD Evaluation, 202
multi-hop attacks, 209
Multi-OS Rotation Environment

(MORE), 187
multi-stage attacks, 203
Multi-Stage MTD, 195
MulVAL, 211
N

Naive Bayes, 289
Nash Equilibrium, 198
National Vulnerability Database

(NVD), 292
NESSUS, 207
Netfilter, 33
Network Address Translation

(NAT), 31, 117
Network Address Translator

(NAT), 20
Network and Port Address Translation

(NPAT), 32
Network Architecture, 10
Network Element (NE), 128
NETwork FLOws for Cloud

(Netfloc), 236
Network Functions Virtualization

(NFV), 41, 44, 81
Network Functions Virtualization

Infrastructure (NFVI), 83,
127, 235

Network Interface Controller (NIC), 12
Network Levek MTD, 186

326 Index
Network Security Defense Pattern, 244
Network Service, 227
Network Service Header (NSH), 229
Network Virtualization (NV), 40
Neural Network, 282, 284
Next-Generation Firewall (NGFW),

157, 296
NFV Threat Vectors, 21, 128
NULL pointer dereference, 140

O

ONOS, 142
Open Shortest Path First (OSPF), 38
Open Source Vulnerability Database

(OSVDB), 292
Open vSwitch (OVS), 57
OpenDaylight, 142
OpenFlow Discovery Protocol

(OFDP), 288
OpenFlow Random Host

Mutation, 190
OpenFlow Switch Security, 146
Operation Aurora, 295
Operational Expenditures (OPEX), 232
Operations Security (OPSEC), 113
OS Fingerprinting, 189
OS hiding, 181
OSI Open Systems Interconnection, 8
Outlier Detection, 299
Overlay Network, 27, 42
P

Packet filtering, 118
PageRank, 214
parallel hypergraph partitioning, 193
Parameter Learning, 283
password dumping, 294
perceptron, 282
Perimeter network, 117
petri-nets, 209
Physical Address, 12
Physical Network, 26
Planning problems, 284
Point-to-Point Protocol (PPP), 62
Policy Aware SFC, 237
Policy Graph Abstraction (PGA), 238
Port Address Translation (PAT), 32
Port channel, 74
POSTROUTING, 33
PREROUTING, 33
Private Internet Address, 19
Private IP, 31
proactive security, 181
Probabilistic Attack Graphs, 212
programmable logic controllers

(PLCs), 294
Programming Protocol Packet

Processors (P4), 104
Protocol independence, 104
Protocol Independent Switch

Architecture (PISA), 107
Protocol Stack, 10
Proxy, 118
Public Key Infrastructure (PKI), 140
R

RaaS: Routing as a Service, 98
Rapid Spanning Tree Protocol

(RSTP), 49
RCP: Routing Control Platform, 95
Reconfigurability, 104
Redundancy, 185
remote code execution, 133
Remote Triggered Black Hole Routing

Component (RTBH), 289
Rendered Service Path (RSP), 228
Renyi Entropy, 197
Replication, 141
Resource isolation, 135
Return of Investment (ROI), 218
Return Oriented Programming

(ROP), 132, 187
RF IP Routing, 96
RFCP: RouteFlow Routing Control

Platform, 98
Risk, 110
risk analysis, 205
Risk Probability, 212
rootkit, 294
Routing Control Platform (RCP), 95
Routing Information Protocol (RIP), 38
Routing Randomization, 186
Ruby vSphere, 132
Rule Based Induction, 284
Ryu, 142

Index 327
S

Satisfiability Modulo Theories
(SMT), 190

Screened subnet firewall, 119
SDK4SDN, 236
SDN based DoS Protection, 289
SDN based MTD, 188
SDN Security, 138
SDN-based APT Protection, 297
Secure Boot, 134
Secure In Cloud Chaining, 243
Secure Service Function Chaining

(SSFC), 240
Secure Socket Layer (SSL), 63
security compliance, 127
Security Grouping (SG), 178
Security Planning, 283
Security Tag, 178
Segment Routing Header (SRH), 233
Self Organized Maps (SOMs), 283
Semantic Gap, 300
Service Composer, 175
Service Function (SF), 227
Service function chaining (SFC), 172, 225,

226, 227
Service Function Forwarder (SFF),

227–228
Service Function Path Identifier

(SFPI), 229
Service Index (SI), 229
Service Level Agreement (SLA), 130
Service Oriented Architecture

(SOA), 235
service randomization, 181
SFC Challenges, 230
Shannon Entropy, 197
Shellshock, 208
Shuffle, 183
Side-Channel Attacks, 144
side-channel Countermeasure, 145
Siemens Step7, 295
Signature detection, 121
situation awareness, 283
Slicing, 43
SMO, 289
SNMP MIB-II, 140
SoftRouter, 96
software vulnerabilities, 207
Software-Defined Data Center
(SDDC), 173

Software-Defined Networking (SDN),
41, 44, 81

Spanning Tree Protocol (STP), 49
spear-phishing, 293
SQL Injection (SQLI), 211, 292
Stateful Firewall, 118
Static Defense, 288
statistical anomaly detection, 121
Statistical Clustering, 284
stochastic search, 283
StuxNet, 294
Subnetting, 14
Supernetting, 15
Supervised Learning, 283
Supervisory control and data acquisition

(SCADA), 294
Switch, 48
Symbolic Learning, 283
T

T-Nova, 235
Table Dependency Graphs (TDGs), 106
Tag Protocol Identifier (TPID), 68
Target independence, 104
TCAM switches, 140
TCP/IP, 8
Telecom Service Provider (TSP), 237
Threat, 110
threat assessment, 205
threat modeling, 110
Threats Vectors (TVs), 140
Topology Poisoning Attacks, 144
Topology Poisoning

Countermeasure, 145
Topology Protection, 286
Transmission Control Protocol (TCP), 23
Trusted Platform Module (TPM), 137
U

Universally Administered Addresses
(UAA), 12

Unsupervised Learning, 283
User Datagram Protocol (UDP), 23
User Interface (UI), 238

328 Index
V

Variable Length Subnet Masks
(VLSM), 14

Victim, 111
VID (VLAN Identifier), 68
virtual evolved packet core (vEPC), 133
Virtual Extensible LAN (VXLAN), 63,

73–74
Virtual Local AreaNetworks (VLAN), 62
Virtual Network, 40
Virtual Network Embedding (VNE), 44
Virtual Network Function (VNF), 83, 227
Virtual Networking Embedding, 44
Virtual Private LAN Services (VPLS), 41
Virtual Route Forward (VRF), 78
Virtualization, 41–42
Virtualization Layer, 131
Virtualized Infrastructure, 134
Virtualized Infrastructure Manager

(VIM), 131
VLAN Identifier (VID), 68
VMWare vCenter Server, 132
VNF Forwarding Graph (VNFFG), 233
VNF lifecycle, 129
VRS: Virtual Routers as a Service, 97
Vulnerability, 110
VXLAN tunnel endpoints (VTEPs), 63
W

White-list, 159
WHOIS, 292
Windows Credential Editor (WCE), 294
Windows Local Security Authority

(LSA), 294
Workload Migration, 129
Z

Zero day, 295
Zero trust zones, 168
zero-sum game, 195

	Cover������������
	Half Title�����������������
	Series Page������������������
	Title Page�����������������
	Copyright Page���������������������
	Dedication�����������������
	Contents���������������
	Preface��������������
	Acknowledgments����������������������
	About the Authors������������������������
	Part I: Foundations of Virtual Networking and Security���
	1. Introduction of Computer Networks���
	1.1 Foundations of Computer Networks���
	1.1.1 Protocol Layers����������������������������
	1.1.2 Networking Services and Packet Encapsulation���

	1.2 Addresses��������������������
	1.2.1 MAC Address������������������������
	1.2.2 IP Address (IPv4)������������������������������
	1.2.2.1 Classless Inter-Domain Routing���
	1.2.2.2 Private IPs��������������������������

	1.2.3 IP Address (IPv6)������������������������������
	1.2.3.1 Address Representation�������������������������������������
	1.2.3.2 Address Uniqueness���������������������������������
	1.2.3.3 Link-local Address���������������������������������
	1.2.3.4 Global Addressing��������������������������������

	1.2.4 Port Number������������������������

	1.3 Physical, Logical, and Overlay Networks��
	1.3.1 Physical Networks������������������������������
	1.3.2 Logical Networks�����������������������������
	1.3.3 Overlay Networks�����������������������������

	1.4 Computer Networking Services���������������������������������������
	1.4.1 Address Resolution Protocol��
	1.4.2 Dynamic Host Configuration Protocol��
	1.4.3 Domain Name System�������������������������������
	1.4.4 Network Address Translation��
	1.4.4.1 What is NAT��������������������������
	1.4.4.2 PREROUTING and POSTROUTING���
	1.4.4.3 Netfilter and NAT��������������������������������

	1.4.5 iptables���������������������
	1.4.5.1 Tables in iptables���������������������������������
	1.4.5.2 Chains in iptables���������������������������������
	1.4.5.3 Targets in iptables’ Chains��

	1.5 IP Network Routing�����������������������������
	Summary��������������

	2. Virtual Networking����������������������������
	2.1 Virtual Networks���������������������������
	2.1.1 Basis of Virtual Networks��������������������������������������
	2.1.2 Abstraction vs. Virtualization���
	2.1.3 Benefits of Virtualizing Networks��
	2.1.4 Orchestration and Management of Virtual Networks���
	2.1.5 Virtual Networking Embedding Problems��
	2.1.5.1 VNE Problem Description��������������������������������������
	2.1.5.2 VNE Formal Definition������������������������������������

	2.2 Layer-2 Virtual Networking�������������������������������������
	2.2.1 Linux Bridge�������������������������
	2.2.1.1 Data Structures of Linux Bridge��
	2.2.1.2 Linux Bridge Configuration���
	2.2.1.3 Linux Bridge Frame Processing��
	2.2.1.4 Use Cases of Linux Bridge��

	2.2.2 Open Virtual Switches����������������������������������
	2.2.2.1 Linux Bridge vs. Open Virtual Switch���
	2.2.2.2 Open Virtual Switch Supporting Features��
	2.2.2.3 Open Virtual Switch Internal Modules���
	2.2.2.4 Packet Processing in OVS���������������������������������������

	2.3 Tunneling Protocols and Virtual Private Networks���
	2.3.1 VLAN�����������������
	2.3.1.1 Types of VLANs�����������������������������
	2.3.1.2 IEEE 802.1Q��������������������������

	2.3.2 Virtual Extensible LAN�����������������������������������
	2.3.2.1 VXLAN Design Requirements and Challenges���
	2.3.2.2 VXLAN Frame��������������������������

	2.3.3 Generic Routing Encapsulation��
	2.3.3.1 GRE Header�������������������������
	2.3.3.2 GRE Packet Flow������������������������������

	2.4 Virtual Routing and Forwarding���
	Summary��������������

	3. SDN and NFV���������������������
	3.1 Introduction�����������������������
	3.2 Network Functions Virtualization���
	3.2.1 Background and Motivation behind NFV���
	3.2.2 NFV Framework��������������������������
	3.2.3 Benefits and Challenges of NFV���
	3.2.4 OPNFV������������������
	3.2.5 OpenStack����������������������

	3.3 Software-Defined Networks������������������������������������
	3.3.1 Benefits and Challenges of SDN���
	3.3.2 Background�����������������������
	3.3.3 SDN Control Plane������������������������������
	3.3.4 SDN Data Plane���������������������������
	3.3.5 OpenFlow���������������������
	3.3.6 SDN Controllers����������������������������
	3.3.7 Open Virtual Switch��������������������������������
	3.3.8 Routing in SDN���������������������������
	3.3.8.1 RCP: Routing Control Platform��
	3.3.8.2 The SoftRouter�����������������������������
	3.3.8.3 RF IP Routing: IP Routing Services over RouteFlow-based SDN��
	3.3.8.4 VRS: Virtual Routers as a Service��
	3.3.8.5 RFCP: RouteFlow Routing Control Platform over SDN��
	3.3.8.6 RaaS: Routing as a Service���
	3.3.8.7 CAR-Cloud Assisted Routing���

	3.3.9 OpenDaylight�������������������������
	3.3.10 Distributed SDN Environments��
	3.3.11 Distributed SDN Controller Considerations���
	3.3.12 Challenges in Multiple-Controller Domain��

	3.4 Advanced Topic: Deep Programmability���
	3.4.1 P4 Forwarding Model��������������������������������
	3.4.2 P4 Programming Language������������������������������������
	3.4.3 Protocol Independent Switch Architecture���

	Summary��������������

	4. Network Security Preliminaries��
	4.1 Basic Concepts of Computer Network Security��
	4.1.1 Threat, Risk, and Attack�������������������������������������
	4.1.2 Defense In Depth�����������������������������
	4.1.3 Cyber Killer Chain�������������������������������

	4.2 Network Reconnaissance���������������������������������
	4.2.1 Network Mapping����������������������������
	4.2.2 Port Scanning��������������������������
	4.2.3 Vulnerability Scanning and Penetration Testing���

	4.3 Preventive Techniques��������������������������������
	4.3.1 Firewalls����������������������
	4.3.2 Intrusion Prevention���������������������������������

	4.4 Detection and Monitoring�����������������������������������
	4.4.1 Intrusion Detection��������������������������������
	4.4.2 Logging��������������������

	4.5 Network Security Assessment��������������������������������������
	Summary��������������

	5. SDN and NFV Security������������������������������
	5.1 Introduction�����������������������
	5.1.1 An Overview of Security Challenges in NFV��
	5.1.1.1 NFV Threat Vectors���������������������������������
	5.1.1.2 NFV Security Goals���������������������������������

	5.2 NFV Security�����������������������
	5.2.1 NFV Security Classification��
	5.2.1.1 Intra-VNF Security���������������������������������
	5.2.1.2 Extra-VNF Security���������������������������������

	5.2.2 NFV Security Lifecycle�����������������������������������
	5.2.3 Use Case: DNS Amplification Attack���
	5.2.4 NFV Security Countermeasures���
	5.2.4.1 Topology Verification and Enforcement��
	5.2.4.2 Securing the Virtualization Platform���
	5.2.4.3 Network and I/O Partitioning���
	5.2.4.4 Authentication, Authorization, and Accounting��
	5.2.4.5 Dynamic State Management, and Integrity Protection���

	5.3 SDN Security�����������������������
	5.3.1 SDN Security Classification��
	5.3.1.1 SDN Security Threat Vectors��

	5.3.2 Design of Secure and Dependable SDN Platform���
	5.3.3 SDN Data Plane Attacks and Countermeasures���
	5.3.3.1 SDN Data Plane Attacks�������������������������������������
	5.3.3.2 SDN Data Plane Attack Countermeasures��

	5.3.4 SDN-Specific Security Challenges���
	5.3.4.1 Programmablity�����������������������������
	5.3.4.2 Integration with Legacy Protocols��
	5.3.4.3 Cross-Domain Connection��������������������������������������

	5.3.5 OpenFlow Protocol and OpenFlow Switch Security Analysis��
	5.3.5.1 Attack Model���������������������������
	5.3.5.2 Protocol-Specific Analysis���

	Summary��������������

	Part II: Advanced Topics on Software-Defined and Virtual Network Security���
	6. Microsegmentation���������������������������
	6.1 From Firewall to Microsegmentation���
	6.2 Distributed Firewalls��������������������������������
	6.2.1 Issues of Conventional Firewalls���
	6.2.2 Introduction of Distributed Firewalls��
	6.2.3 Implementation of Distributed Firewalls��

	6.3 Microsegmentation����������������������������
	6.3.1 Design Microsegmentation and Considerations��
	6.3.1.1 Software-Defined and Programmability���
	6.3.1.2 Fine-Grained Data Flow Control and Policy Management���
	6.3.1.3 Applying Network Analytic Models to Understand Data Traffic Pattern���
	6.3.1.4 Zero Trust Zones�������������������������������
	6.3.1.5 Tools for Supporting Legacy Networks���
	6.3.1.6 Leveraging Cloud-Based Resource Management and Support���

	6.3.2 Microsegmentation Defined��������������������������������������
	6.3.3 NIST Cybersecurity Recommendations for Protecting Virtualized Workloads��

	6.4 Case Study: VMware NSX Microsegmentation���
	6.4.1 Isolation����������������������
	6.4.2 Segmentation�������������������������
	6.4.3 Security Service Function Chaining���
	6.4.4 Network and Guest Introspection��
	6.4.5 Security Service Abstraction���
	6.4.5.1 Service Composer�������������������������������
	6.4.5.2 Grouping�����������������������
	6.4.5.3 Intelligent Grouping�����������������������������������
	6.4.5.4 Security Tag���������������������������

	Summary��������������

	7. Moving Target Defense�������������������������������
	7.1 Introduction�����������������������
	7.2 MTD Classification�����������������������������
	7.2.1 Security Modeling-based MTD��
	7.2.1.1 Shuffle����������������������
	7.2.1.2 Diversification������������������������������
	7.2.1.3 Redundancy�������������������������

	7.2.2 Implementation Layer-based MTD���
	7.2.2.1 Network Level MTD��������������������������������
	7.2.2.2 Host Level MTD�����������������������������
	7.2.2.3 Application Level MTD������������������������������������

	7.3 SDN-based MTD������������������������
	7.3.1 Network Mapping and Reconnaissance Protection��
	7.3.1.1 Service Version and OS Hiding��

	7.3.2 OpenFlow Random Host Mutation��
	7.3.3 Frequency Minimal MTD Using SDN��
	7.3.4 SDN-based Scalable MTD in Cloud��

	7.4 Game Theoretic MTD Models������������������������������������
	7.4.1 Game Theoretic Approach to IP Randomization��
	7.4.2 Game Theoretic Approach to Feedback Driven Multi-Stage MTD���
	7.4.3 Game Theory-based Software Diversity���
	7.4.4 Markov Game-based MTD����������������������������������
	7.4.4.1 IP Hopping Using Markov Game Modeling��
	7.4.4.2 Winning Strategy for Adversary���

	7.5 Evaluation of MTD����������������������������
	7.5.1 Quantitative Metrics for MTD Evaluation��
	7.5.2 MTD Analysis and Evaluation Framework��

	Summary��������������

	8. Attack Representation�������������������������������
	8.1 Introduction�����������������������
	8.1.1 Cybersecurity Metrics����������������������������������
	8.1.2 Common Vulnerability Scoring System (CVSS)���
	8.1.3 CVSS Use Case��������������������������
	8.1.4 Attack Scenario Analysis�������������������������������������
	8.1.5 Qualitative and Quantitative Metrics���

	8.2 Attack Graph�����������������������
	8.2.1 Probabilistic Attack Graphs��
	8.2.2 Risk Mitigation Using Probability Metrics��
	8.2.3 Attack Graph Ranking���������������������������������

	8.3 Attack Tree����������������������
	8.4 Attack Countermeasure Tree�������������������������������������
	8.4.1 ACT Qualitative and Quantitative Analysis��

	8.5 Other Attack Representation Models���
	8.5.1 Fault Tree�����������������������
	8.5.2 Event Tree�����������������������
	8.5.3 Hierarchical Attack Representation Model���

	8.6 Limitations of Attack Representation Methods���
	Summary��������������

	9. Service Function Chaining�����������������������������������
	9.1 Introduction�����������������������
	9.2 SFC Concepts�����������������������
	9.2.1 Challenges in SFC������������������������������

	9.3 SDN- and NFV-based SFC���������������������������������
	9.3.1 SDN as an Enabler of SFC�������������������������������������

	9.4 SFC Implementations������������������������������
	9.4.1 T-Nova: SDN-NFV-based SFC��������������������������������������
	9.4.2 Tacker: OpenStack-based SFC��

	9.5 Policy-Aware SFC���������������������������
	9.5.1 PGA: Graph-based Policy Expression and Reconciliation��
	9.5.1.1 Policy Composition Example���

	9.5.2 Group-based Policy�������������������������������

	9.6 Secure Service Function Chaining���
	9.6.1 Secure In Cloud Chaining�������������������������������������
	9.6.2 SFC Using Network Security Defense Patterns��

	Summary��������������

	10. Security Policy Management in Distributed SDN Environments���
	10.1 Background����������������������
	10.2 Related Work������������������������
	10.2.1 Firewall Rule Conflicts�������������������������������������
	10.2.2 SDN Security and SDN Policy Management��

	10.3 Flow Rules����������������������
	10.3.1 Security Policies Using Flow Rules��
	10.3.2 Flow Rule Model�����������������������������

	10.4 Flow Rule Management Challenges���
	10.4.1 Motivating Scenarios����������������������������������
	10.4.1.1 Case Study 1: MTD���������������������������������
	10.4.1.2 Case Study 2: VPN Services��
	10.4.1.3 Case Study 3: Load Balancing and IDS��

	10.5 Flow Rule Conflicts�������������������������������
	10.5.1 Problem Setup���������������������������
	10.5.2 Conflict Classes������������������������������
	10.5.2.1 Redundancy��������������������������
	10.5.2.2 Shadowing�������������������������
	10.5.2.3 Generalization������������������������������
	10.5.2.4 Correlation���������������������������
	10.5.2.5 Overlap�����������������������
	10.5.2.6 Imbrication���������������������������

	10.5.3 Cross-layer Policy Conflicts��
	10.5.4 Traffic Engineering Flow Rules��

	10.6 Controller Decentralization Considerations��
	10.6.1 Clustered Controllers�����������������������������������
	10.6.2 Host-based Partitioning�������������������������������������
	10.6.3 Hierarchical Controllers��������������������������������������
	10.6.4 Application-based Partitioning��
	10.6.5 Heterogeneous Partitioning��

	10.7 Flow Rule Conflict Resolution���
	10.7.1 Conflict Severity Classification��
	10.7.1.1 Tier-1 Conflicts��������������������������������
	10.7.1.2 Tier-2 Conflicts��������������������������������
	10.7.1.3 Tier-3 Conflicts��������������������������������

	10.8 Conflict Resolution Model�������������������������������������
	10.8.1 Intelligible Conflicts������������������������������������
	10.8.2 Interpretative Conflicts��������������������������������������
	10.8.2.1 Least Privilege�������������������������������
	10.8.2.2 Module Security Precedence��
	10.8.2.3 Environment Calibrated��������������������������������������
	10.8.2.4 Administrator Assistance��

	Summary��������������

	11. Intelligent Software-Defined Security��
	11.1 Intelligence in Network Security��
	11.1.1 Application of Machine Learning and AI in Security��
	11.1.2 Intelligent Cybersecurity Methods and Architectures���
	11.1.2.1 Neural Networks�������������������������������
	11.1.2.2 Expert Systems������������������������������
	11.1.2.3 Intelligent Agents����������������������������������
	11.1.2.4 Learning������������������������
	11.1.2.5 Search����������������������
	11.1.2.6 Constraint Solving����������������������������������

	11.1.3 Application of AI in IDS��������������������������������������
	11.1.3.1 Data Reduction������������������������������
	11.1.3.2 Behavior Classification���������������������������������������

	11.1.4 SDN-based Intelligent Network Security Solutions��
	11.1.4.1 Topology Protection�����������������������������������
	11.1.4.2 SDN-based DoS Protection��

	11.2 Advanced Persistent Threats���������������������������������������
	11.2.1 Traditional Attacks vs. APT���
	11.2.2 APT Attack Model������������������������������
	11.2.3 APT Case Studies������������������������������
	11.2.3.1 Stuxnet�����������������������
	11.2.3.2 Hydraq����������������������

	11.2.4 APT Detection/Mitigation��������������������������������������
	11.2.5 Orchestrating SDN to Disrupt APT��
	11.2.5.1 SDN-based MicroSegmentation���
	11.2.5.2 SDN-enabled Secured Service Function Chaining���

	11.3 Problems in Application of Intelligence in Cybersecurity��
	11.3.1 Outlier Detection�������������������������������
	11.3.2 High Cost of Errors���������������������������������
	11.3.3 Semantic Gap��������������������������
	11.3.4 Variance in Network Traffic���

	Summary��������������

	Bibliography�������������������
	Index������������

