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Preface

This book grew out of the lecture notes I gave to students in undergraduate programs in
economics, business, and finance for more than a decade at different institutions in different
countries. The book can be adopted either wholly or partially for undergraduate or beginning
graduate programs in these subjects. The only prerequisite, I assume, to follow the topics
covered in this book is a bit of patience.

It will not be an exaggeration if one states that mathematics has become the language
of economics. The states of affairs in related subjects such as business and finance are not
much different. Most of the beginning undergraduate programs in these subjects mainly
apply geometric tools for the exposition of relationships and theories. But, as the courses
progress, the inherent limitations of the geometric tools necessitate a shift from them to more
general algebraic forms. This shift calls for a training in some of the techniques and tools of
mathematics.

I have found from experience that an alarmingly large proportion of the students who
enroll in undergraduate programs in economics, business, and finance in particular (and
social science in general) possess some degree of “math-phobia” and “math-aversion.” These
feelings, I believe, have their root in the unpropitious presentation of the subject to them.
Although the books that have been written on mathematics for these subjects are all excellent
in their own respects, many of them still continue the unpropitious form of presentation. Many
of these books follow either a notoriously technical or oversimplified approach making the
subject esoteric or humdrum. My aim, through an intermediate approach, is an auspicious
presentation of the subject so that the feelings of phobia and aversion can be replaced by
passion and appreciation. Therefore, I attempt to present to undergraduates in these subjects
through this book why they need to learn all the mathematical techniques expected of them;
the importance of these techniques and their interrelationships; and how these techniques are
applied in their subjects. I believe that this approach will make them appreciate mathematics
and, thereby, help them understand their subjects properly.

Most of the graduate programs in economics, business, and finance apply mathematical
techniques and tools that are far beyond the levels of those covered in this book. Similarly,
most journals (even those considered to be applied in nature) appear with articles that
contain high-level mathematics. I do not claim either that this book will be sufficient for
graduate mathematical requirements or that it will prepare students to read and understand
the said articles. But, I do claim that this book is sufficient for undergraduate mathematical
requirements and it can build a strong foundation for graduate studies in these subjects, which
will eventually help in the reading and understanding of the journal articles mentioned above.

One important feature of the book is that the complete presentation of different topics is
based on intuition. Since I believe that visual aids such as graphs help students learn faster,
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Preface ix

I have included them throughout the book. Though proofs of theorems and propositions are
important and necessary for a proper understanding of mathematics, I believe that it will
be inauspicious and counterproductive to impose these proofs on already math-phobic and
math-averse students. They can learn these proofs once they understood the basics and if
they are interested in them. Therefore, I have deliberately omitted the proofs of most of the
theorems and propositions. Another feature is that most subsections in every chapter of the
book contain a number of numerical examples. Moreover, most major sections of the book
contain application examples and exercises from different branches of economics, business,
and finance. Although the examples in the book are drawn primarily from these subjects, the
main body of the book can be successfully adopted (through suitable selection of examples)
in similar programs in subjects such as political science, psychology, life sciences, etc.

The book is organized into eight chapters. I have attempted to include in the book most of
the mathematical techniques and tools that are normally taught in undergraduate programs
in economics, business, and finance throughout the world. I believe that a review of some of
the necessary mathematics learned in school will help students much and, therefore, the first
chapter of the book is devoted to this purpose. It covers most of the important topics that
students learned in school including basics of sets; number system; exponents; logarithms;
equations; inequalities; intervals; absolute values; functions; limits; continuity; sequences;
series; and sum and product symbols.

The second chapter covers linear algebra. This chapter explores most of the topics in vectors
and matrices that are required by undergraduate programs in the subjects mentioned above.
Specifically, it discusses the basics of vectors and matrices; vector spaces; vector and matrix
operations; determinants; inverse; rank; solutions to systems of linear equations; and some
special matrices and determinants. Differential calculus is discussed in the third chapter. It
explores differentiation and derivatives; differentiability of functions; rules of differentiation;
higher-order differentiation; curvature of curves; convex sets; transformation of functions
and Maclaurin and Taylor series; partial derivatives; differentials; total derivatives; implicit
differentiation; etc.

Since static optimization is crucial in the subjects of our interest, chapters four through
seven are set apart for this topic. The fourth chapter is on classical optimization, which is
primarily concerned with the application of linear algebra and differential calculus covered
in the second and third chapters, respectively. It begins with a discussion of optima and
extrema of univariate functions and progresses through their differential versions; optima
of multivariate functions and their extensions; and optimization with equality constraints
and its extensions. The fifth chapter is devoted to linear programming. The topics covered
in this chapter include graphical approach; the tabular and matrix approaches of the
simplex method; the revised simplex method; duality and sensitivity analyses; the dual
simplex method; transportation and assignment problems; etc. The nonlinear programming
approach to optimization is covered in the sixth chapter. Topics such as geometric forms of
nonlinear objective functions and constraints; geometric and algebraic solutions to nonlinear
programming problems; and concave, quasiconcave, and quadratic programming are dealt
with in this chapter. Another important topic of static optimization, namely game theory,
is dealt with in the seventh chapter. It presents topics including static games of complete
and perfect information; dominant and dominated strategies; Nash equilibrium; mixed and
maximin strategies; dynamic games of complete and perfect information; extensive form
representations; subgame perfect Nash equilibrium; repeated games; etc.

The last, and the eighth, chapter of the book is devoted to the presentation of one of the
tools of dynamic analysis, namely integral calculus. This chapter introduces the meaning
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of integration; the relationship between integration and differentiation; indefinite integrals;
rules of integration; initial value problems; partial and multiple integrals; definite integrals
and the fundamental theorem of integral calculus; areas under and between curves; definite
partial and multiple integrals; and improper integrals.

I had planned to include in the book, along with a few supplementary topics in the existing
chapters, exclusive chapters on difference equations and differential equations. Two issues
compelled me to exclude them from the book. One was, of course, the space constraint. The
other was the fact that these excluded topics are not widely covered in most undergraduate
programs in the subjects of our interest. However, I have prepared these supplementary topics
and the two chapters on difference equations and differential equations, which can be found
at the book’s website: www.emeacollege.ac.in/bmebf. Interested readers can access and use
them for learning purposes.

I had also planned to integrate Mathematica®, one of the world’s most versatile software
packages, into the book. Mathematica is a highly advanced computational software package.
It is beyond doubt that it can facilitate students’ learning of mathematics. All the figures in
this book are generated in Mathematica. But, again, space constraints forced me to exclude
it from the book. These materials include exclusive chapters on elements of Mathematica
and graphics in Mathematica. They also include the applications of Mathematica in most of
the topics covered in the book and in difference and differential equations. These materials
can also be found at the website mentioned above and interested readers can use them for
learning purposes.

The website also contains teaching aids such as PowerPoint and overhead projector slides;
an instructor’s manual; and a student solution manual.

E. K. Ummer
ummerek@emeacollege.ac.in

http://www.emeacollege.ac.in/bmebf
mailto:ummerek@emeacollege.ac.in
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1 Review of basics

1.1 Introduction

Economic activities have played an important role in the lives of humans for centuries past.
We now know that they have an even greater influence on our modern lives. The economic
agents in the old civilizations too possessed some perception, though not as sophisticated as
we do today, of some of the economic phenomena that affected their lives. But the difference
is that they needed only the rudiments of mathematics to analyze and comprehend these
phenomena. It was under these circumstances that some of the earliest writers on economics
communicated their misty visions.

However, events such as the Renaissance and the Industrial Revolution resulted in
radical transformations in production, consumption, trade, and economic management. These
transformations are now bolstered by the advent of information technology. These events
and the accompanying transformations have made modern economic life highly complex.
This suggests that we can no longer be complacent about the rudimentary mathematics that
was sufficient until about the beginning of the twentieth century.

One simple example can illuminate the argument we made above. Assume that a
consumer wishes to purchase a good offered for sale. But, we are aware of the fact that
the consumer’s demand for the good depends, ceteris paribus, on the price of the good.
We know that this is a highly simplified version of reality. In fact, the consumer’s demand
for the good is also influenced by factors such as the price of related goods (determined
in the markets for the related goods); the consumer’s income (determined in the factor
market); events taking place in the government sector; and so on. Although we started
with the simple proposition that a consumer’s demand for a good depends on the price
of the good, we ended up with a complex situation involving many markets or sectors of
the economy.

It would be difficult to analyze such a complex structure as the one presented above
without mathematics. The reason is that mathematics can reduce the complexity to
manageable limits. Mathematics can help define the elements of a theory precisely; can
help generate new insights; and can help in the applicability of the theory. The following
view of Fisher (1925: 119), a celebrated American economist, is a testimony to our above
statements (italics added):

The economic world is a misty region. The first explorers used unaided vision.
Mathematics is the lantern by which what before was dimly visible now looms up in
firm, bold outlines. The old phantasmagoria1 disappears. We see better. We also see
further.
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The above presented necessity generated by the complexity of the economic world paved
the way for the advent of mathematics in economic sciences. Mathematics has, in fact,
become the language of modern economics, business, and finance. Students of these subjects
require a wide variety of mathematical tools of varying degrees of complexity. Since several
of the mathematical tools used in these subjects are far beyond the scope of a basic book
such as this, we include here only those necessary tools that are required by students for
the successful completion of undergraduate programs, and to prepare them for graduate
programs, in these subjects.

In this chapter we review some of the essential topics that we will use later. This review
will include the basics of topics such as set theory; the number system; exponents; logarithms;
equations; inequalities, intervals, and absolute values; relations and functions; limits and
continuity; sequences and series; and summation and product notations.

Section 1.2 discusses the fundamental concepts in set theory. This is followed by the
number system and the associated properties in Section 1.3. Exponents and their laws
are covered in Section 1.4. Section 1.5 reviews logarithms and their properties. A review
of the basics of equations is provided in Section 1.6. Section 1.7 presents inequalities,
intervals, and absolute values. A review of the fundamental ideas of relations and functions
is given in Section 1.8. Limits and continuity are dealt with in Section 1.9. Sequences and
series are covered in Section 1.10. We introduce some of the sum and product notations in
Section 1.11.

1.2 Set Theory

1.2.1 Meaning of sets

Sets play a crucial role in almost all branches of mathematics and are being increasingly
used in economics, business, and finance. It is sometimes convenient to consider many items
together. Such a collective entity is called a set. A set is defined as any well-defined list,
collection, or class of objects. The objects in a set can be anything: students, numbers,
vehicles, countries, trees, or anything else. Examples of sets include:

The people living in the city of New York.
The even numbers between 0 and 10.
The odd numbers between 0 and 10.
The numbers 1, 2, 3, 4, and 5.

1.2.2 Set notations

Sets are usually denoted by uppercase letters such as A, B, C, X , Y , Z , etc. The objects in
a set are called the elements or members of the set. These objects are usually denoted by
lowercase letters such as a, b, c, x, y, z, etc. If x is an object in the set A, then x is called
an element of the set and is denoted as

x ∈ A, and is read “x belongs to A” or “x is a member of A”

If x is not an object in A, then we may write it as

x /∈ A, and is read “x does not belong to A” or “x is not a member of A”
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We can represent a set by listing its elements and using {} notation. Assume that the set A
consists of numbers 2, 4, 6, 8, and 10. Then we may write the set A as

A = {2,4,6,8,10}

Notice that in the set A above we separated the elements by commas and enclosed them in
curly brackets. We call this form of representation of a set the tabular form. Sets can also be
represented by stating properties that its elements must satisfy. Assume that we want a set B
of even numbers. Then we may write it as

B = {x | x is even}

which we read as “B is the set of numbers x such that x is even.” This form of representation
of a set is called the set-builder form.

1.2.3 Equality of sets and subsets

Two sets A and B are said to be equal if they have the same elements; that is, if every
element in A also belongs to B and if every element in B also belongs to A. Let A = {9,8,7,6}
and B = {8,7,9,6}. Then A = B. Notice that a set does not change if its elements are
rearranged. Notice also that the set {1, 2, 3, 3, 4} = {1, 2, 3, 4}.

Let there be two sets A and B. If every element in A is also an element of B, then A is
called a subset of B. In other words, A is a subset of B if a ∈ A and a ∈ B, and is denoted as
A ⊆ B. For example, let A = {1,2,3} and B = {1,2,3,4,5}. Since the elements 1, 2, and 3
appear in both sets and since B contains more elements than A does, then A ⊆ B. Notice that
if A = B, A ⊆ B and B ⊆ A. Assume that A ⊆ B. Then, we may also write B ⊇ A, which we
read “B is a superset of A.”

Another term widely used is the proper subset. Let there be two sets A and B. Then A is
called a proper subset of B if A ⊆ B and A �= B, and is denoted as A ⊂ B. As an example,
if A = {1,2,3} and B = {1,2,3,4,5}, then A ⊂ B.

1.2.4 Types of sets

There are a number of different types of sets. One of the basic types of sets is the null set
or empty set, which is denoted by the Greek letter � (phi).2 As an example, let A be a set
of people who are neither dead nor alive. We can write this set using the set-builder for as
A = {x|x is a person who is neither dead nor alive}. We know that this set is a null or empty
set. Notice that � is considered to be a subset of all other sets.

Sets can be finite or infinite. A set is said to be a finite set if it contains a finite number of
different elements. Otherwise the set is called an infinite set. The set of months in a year, the
set of hours in a day, etc., are examples of finite sets. The set of stars in the sky, the set of
real numbers, etc., are the examples of infinite sets.

Two other important sets widely used are universal set and complementary set. The
universal set consists of all the objects that are being considered in a particular situation.
It is generally denoted by U . The complementary set is the set of all elements that are not
the elements of a particular set (say A) but are of U . The complementary set of, say, B is
denoted by B′.
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Sometimes two or more sets may not have common elements. Such sets are called
disjoint sets. For example, if A = {1,2,3,4} and B = {5,6,7,8}, then A and B are called
disjoint sets. Another important type of set is the power set. The power set is defined as the
set of all the subsets that can be generated from a given set A. It can be shown that if A has
n elements, then the power set will contain 2n elements and is usually denoted as 2n(A). For
example, let A = {1,2}. Then 2n(A) = {{1,2},{1},{2}, φ}.

1.2.5 Set operations

There are three basic set operations: union, intersection, and difference. We shall review
each of them below. The union of two sets A and B is defined as the set of all elements
which belong to A, or to B, or to both A and B. We denote the union of sets A and B by
A ∪ B, which is read “A union B.” Let A = {1,2,3,4} and B = {4,3,5,6}. Then A ∪ B =
{1,2,3,4,5,6}.

The intersection of two sets A and B is defined as the set of elements that are common
to A and B, and is denoted by A ∩ B, which is read “A intersection B.” In our last example,
A ∩ B = {3,4}.

The difference of two sets A and B is defined as the set of elements which belong to A but
not to B and is noted by A − B, which is read “A difference B” or “A minus B.” In our last
example, A − B = {1,2}. Notice that B − A = {5,6}.

A useful way of representing sets and their operations is the Venn diagram, named
after the English logician and mathematician John Venn. In a Venn diagram, the uni-
versal set U is represented by a square or a rectangle within which individual sets
are shown as circles. The Venn diagram representations of union, intersection, dif-
ference, and complement are illustrated by the shaded areas in Figures 1.2.1(A)–(D),
respectively.

A

(A) (B)

(C) (D)

B A B

A B A

Figure 1.2.1
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1.2.6 Laws of set operations

The basic laws of set operations are

Commutative law

Associative law

Distributive law

Union A∪B = B∪A

A∪(B∪C) = (A∪B)∪C

A∩(B∩C) = (A∩B)∩C

A∪(B∩C) = (A∪B)∩(A∪C)

A∩(B∪C) = (A∩B)∪(A∩C)

A∩B = B∩AIntersection

Union

Intersection

Union

Intersection

1.2.7 Application examples

Example 1. Assume that a company wanted to frame a marketing strategy. The company
randomly chose 100 students from the hostels of a university and asked them three questions:
(1) Do you have a computer in your room? (2) Do you have a TV in your room? (3) Do
you have a computer and a TV in your room? Assume also that 60 of them answered yes
to (1), 40 answered yes to (2), and 25 answered yes to (3). (i) How many students have
either a computer or a TV in their rooms? (ii) How many students do not have a either
a computer or a TV in their rooms? (iii) How many students do have a computer but not
a TV in their rooms? (iv) How many students do not have both a computer and a TV in
their rooms?

Solution. If we use the Venn diagram, it is easy to solve this problem. But, for this, we
need to use specifications such as U = the set of students in the sample (100), C = the set
of students who have computers in their rooms (60), T = the set of students who have TV
in their rooms (40), and T ∩ C = the set of students who have computers and TV in their
rooms (25). Now we can use the Venn diagram illustrated in Figure 1.2.2. (i) The number of
students who have either a computer or a TV in their rooms is the number of students in the
set T ∪ C. As can be seen from Figure 1.2.2, this number is 35 + 25 + 15 = 75. (ii) This is
equal to the number of students in the set (T ∪C)′; that is, 100−75 = 25. (iii) The number of
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35C

U

25 15 T

Figure 1.2.2

students who have a computer in their rooms but not a TV is C − T = 35. (iv) This is equal
to (T ∩ C)′ = 75.

Example 2. Assume that fourmanagers of a company, denotedby the set {M1,M2,M3,M4},
wish to select a committee of two people from among themselves. In how many ways can
this committee be formed? Or, in other words, how many two-person subsets can be formed
from a set of four people?

Solution. Since the elements of the set are M1, M2, M3, and M4, the subsets with exactly
two elements are {M1,M2}, {M1,M3}, {M1,M4}, {M2,M3}, {M2,M4}, and {M3,M4}. This
shows that there are six different ways of forming a committee of two managers from
among four managers or there are six different subsets of two elements each in a set of
four elements.

1.2.8 Exercises

1. Write the following using the tabular form of sets:
(a) The days in a week. (b) The numbers 1, 2, 3, 4, and 5. (c) The vowels of English
alphabet. (d) The South Asian countries India, Pakistan, Sri Lanka, Bangladesh, and
Nepal.

2. Continue with exercise 1 above. Write the following using the set-builder form of sets:
(i) (a); (ii) (b); (iii) (c); (iv) (d).

3. Continue with exercise 1 above. Write the following statements using set notations:
(i) Sunday is an element of (a); (ii) 6 does not belong to (b); (iii) “b” is not a subset
of (c); (iv) India is a subset of (d); (v) Nepal is a proper subset of (d).

4. Let A = {a, b, c}. Decide whether the following statements are true or false:
(i) a /∈ A; (ii) {c} ⊆ A; (iii) {b} ∈ A; (iv) {a} ⊂ A; (v) 2A = 7.

5. Given the sets A1 = {1,2,3}, A2 = {5,1,3}, A3 = {2,1,3}, and A4 = {3,1}, find:
(i) A1 ∪ A2; (ii) A1 ∩ A2; (iii) A2 ∪ A3; (iv) A2 ∩ A3; (v) A1 ∪ A3; (vi) A1 ∩ A3;
(vii) A1 ∪ A2 ∪ A3; (viii) A1 ∩ A2 ∩ A3.

6. Given A = {1,2,{3,4},5}, which of the following statements are true and why?
(i) {3, 4} ⊆ A; (ii) {3, 4} ∈ A; (iii) {{3, 4}} ⊂ A; (iv) {{3, 4}, 5}�⊂ A.

7. Which of the following statements are valid?
(i) A∪A = A; (ii) A∩A = A; (iii) A∪φ= A; (iv) A∪U = U ; (v) A∩φ=φ; (vi) A∩U = U ;
(vi) (A′)′ = A.

8. Application exercise. A marketing survey of 100 people found that 70 people watch TV
news, 40 people listen to radio news, and 30 people both watch TV news and listen to
radio news. Find:
(i) The set of people who watch either TV news or listen to radio news. (ii) The set of
people who both watch TV news and listen to radio news. (iii) The set of people who do
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not watch either TV news or listen to radio news. (iv) The set of people who do not both
watch TV news and listen to radio news. (v) The set of people who watch TV news but
do not listen to radio news. (vi) The set of people who listen to radio news but do not
watch TV news.

Web supplement: S1.2.9 Mathematica applications

1.3 Number system

Many of the models in the subjects of our interest often use numbers. Moreover, most
commercial and financial transactions involve the use of numbers. Therefore, students of
economics, business, and finance require knowledge of the fundamental operations involving
numbers. Besides, a reasonable understanding of the classification of numbers is also
required by these students for further study of mathematics.

1.3.1 Classification of numbers

Numbers are classified into different sets according to certain characteristics. We shall
discuss here these sets and their characteristics. Let us begin the classification with natural
numbers. The natural numbers are also called the counting numbers, and we denote
them by N . Natural numbers constitute the set of positive whole numbers. Therefore,
the set of natural numbers is N = {1,2,3,4,5, . . .}. Notice that the natural numbers
are closed only under the operations of addition and multiplication. What this means is
that when we add or multiply two natural numbers we obtain another natural number.
This also means that the difference or quotient of two natural numbers need not be a
natural number.

Another set of numbers, which is close to the set of natural numbers, is the set of prime
numbers. The prime numbers are those natural numbers that are only divisible by 1 and by
the number itself. We represent the set of prime numbers by P. The set of prime numbers is,
therefore, P = {2,3,5,7,11,13,17,19,23,29, . . .}.

When we add negative whole numbers and zero to the set of natural numbers, we
obtain what is called the set of integers, denoted by Z . Therefore, the set of integers is
written as Z = {. . .,−3,−2,−1,0,1,2,3, . . .}. The integers are also referred to as whole
numbers. Notice that the integers are closed under the operations of addition, subtraction,
and multiplication. This means that the sum, difference, or product of two integers is
an integer.

Assume that we divide one integer by another integer (except zero). Then the quotient
may or may not be an integer. Such a number is called a rational number and is denoted
by Q. Therefore, we write the set of rational numbers as Q = {x|x = z1/z2}, where z1 ∈ Z
and z2 ∈ Z . It should be noticed that each integer is also a rational number; since, for
example, 2/1 = 2 and so Z ⊂ Q (i.e. Z is a proper subset of Q). It should also be
noticed that rational numbers are closed under all arithmetic operations; that is, under
addition, subtraction, multiplication, and division. This means that the sum, difference,
product, or quotient (except under division by 0) of two rational numbers is a rational
number.
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Can we write every number as the quotient of two numbers? In other words, is every
number a rational number? The answer is no. The reason is that some numbers like

√
2,√

3, e (= 2.71828. . .), and the value denoted by the Greek letter π (= 3.1415. . .) cannot be
written as ratios of integers. The numbers that cannot be written as ratios of integers or
the numbers that are not rational numbers are called irrational numbers, and we denoted
them by I .

One of the most important sets of numbers is the set of real numbers denoted by R.
The set of all rational and irrational numbers is the set of real numbers. They contain all
possible decimal representations. One of the important properties of the real numbers is
that they can be represented by points on a straight line. As can be seen from Figure 1.3.1,
we choose a point called the origin to represent 0 and another point, to the right of 0,
to represent 1. Similarly, we choose a point to the left of 0 to represent −1. Then each
point will represent a unique real number, and vice versa. We call this line the real
line. Those numbers to the right of 0 are called the positive numbers and those numbers
to the left of 0 are called the negative numbers. The number 0 is neither positive nor
negative.

There is still another set of numbers called imaginary numbers. These are the numbers
whose squares are negative numbers. i = √−1, which implies i2 = −1, is an imaginary
number. The last category of numbers is the set of complex numbers. Complex numbers
have both real and imaginary components and are written in the form a + bi, where a and
b are real numbers: a is the real part and bi is the imaginary part. Examples of complex
numbers are 2 + 3i, 10 − 3i, etc. The above classification of numbers can be represented by
a tree diagram as illustrated in Figure 1.3.2.
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1.3.2 Properties of real numbers

Given any real numbers a, b, c, and 0, the following properties are valid:

Additive
properties

Associative (a+b)+c = a+(b+c)

a+b = b+a

0+a = a+0 = a

(a×b)×c = a×(b×c)

a×b = b×a

(1)×a = a×(1) = a

a×(1/a) = (1/a)×a = 1, a≠0

a×(b+c) = a×b+a×c

(a+b)×c = a×c+b×c

a+(−a) = (−a)+a = 0

Commutative

Identity

Inverse

Associative

Commutative

Identity

Inverse

Multiplication
properties

Distributive
properties

1.3.3 Exercises

1. Given the sets of numbers N (natural numbers), Z (integers), Q (rational numbers), and
R (real numbers), indicate to which set(s) each of following numbers belongs:
(i) 5; (ii)

√
3; (iii) −3.59; (iv) −5/3; (v) 0; (vi) −1.

2. State whether each of the following is true or false:
(i)

√−1 ∈ R; (ii) 5 ∈ N ; (iii) −1 ∈ N ; (iv) 4 ∈ P; (v) (1/2) ∈ Z ; (vi) 2 ∈ Q; (vii) 1 ∈ R;
(viii) 2.5 ∈ I ; (ix) 0 /∈ N ; (x) 5 ∈ N ; (xi) π ∈ R; (xii) e /∈ R.

3. Give an example of each of the following:
(i) A prime number; (ii) a natural number; (iii) an integer; (iv) a rational number;
(v) an irrational number; (vi) a real number; (vii) a complex number; (viii) an imaginary
number.

Web supplement: S1.3.4 Mathematica applications

1.4 Exponents

In mathematical calculations we often make use of expressions such as x2, x3, xn, etc. We
shall now undertake a closer consideration of such expressions. We have learned in school
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mathematics that the product x × x × x is x3. In general, for a positive integer n, xn is the
short form for the product of n expressions of x’s. The letter n in xn is called the exponent
and x is called the base. xn is called the nth power of x. Notice that x0 = 1 for x �= 0, and 00

is undefined.

1.4.1 Rules of exponents

There exist a number of rules related to the use of exponents. The first rule of exponents is the
product rule. Let there be two exponents xn and xm. Then their product xn × xm is defined as

xn × xm = xn+m (1.4.1)

Equation (1.4.1) can be confirmed by using specific values for n and m. Let n = 4 and m = 3.
Therefore, using equation (1.4.1), we may write x4 × x3 = (x × x × x × x) × (x × x × x) =
(x × x × x × x × x × x × x) = x7 = x4+3.

The second rule is called the power rule. Assume that x is raised to the power n as xn.
Assume again that the last expression is again raised to the power m. Then we may write
these statements as

(xn)m = xn×m (1.4.2)

As in the case of equation (1.4.1), equation (1.4.2) can also be verified by using specific
values for n and m. Let n = 4 and m = 3. Then we may write (x×x×x×x)× (x×x×x×x)×
(x × x × x × x) = x12 = (x4)3 = x4×3.

Sometimes algebraic expressions may contain more complicated forms than those
in equations (1.4.1) or (1.4.2). One such expression is {[(xn)]m}p. We may use the power rule in
equation (1.4.2) to simplify this expression. The result will be xn×m×p. Another complicated
expression is (x.y)n, which involves two bases, x and y. This expression can be simplified,
as before, by applying the power rule, and the simplified form is xn × yn. A combination of
the last two expressions is (xn × ym)p. The simplified form of this is xn×p × ym×p.

The third rule is called the quotient rule. Assume that there exists an expression such as
xn/xm. Then the quotient rule says that this expression is equivalent to

xn/xm = xn × x−m = xn−m (1.4.3)

As an example, suppose that the expression is x4/x2 = (x.x.x.x)/(x.x). This expression
can be written as x4

/
x2 = x4−2 = x2. In the case of n = m, we have x0 = 1.

1.4.2 Rational and irrational exponents

In this section we shall discuss the concepts, in the context of exponents, of rational and
irrational numbers that we reviewed in Section 1.3.1. We shall first consider rational
exponents. One of the simplest examples of a rational exponent is x1/2. Notice that in this
expression the numerator of the exponent is 1 and the denominator (2) is an integer. This
is a simple way to represent the square root of x and it includes both the positive and the
negative square roots.3

Let there be an integer n. If we raise x to the power 1/n, then the result is called the nth
root of x and is represented as x1/n or n

√
x. Now suppose, instead of 1, we use a number (m)
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for the numerator of the exponent. Then the result is called the mth root of the exponent x1/n.
This is represented as xm/n or n

√
xm. It should be noticed that all the three rules of exponents

we stated above are applicable to rational exponents.
One can also encounter irrational exponents. In these cases, the exponents will be irra-

tional numbers. Let the exponent be π . Then the product of the same two bases with powers
π is xπ × xπ = xπ+π = x2.π . As an example, assume that the exponent is

√
2. Then we have

x
√

2 × x
√

2 = x
√

2+√
2 = x2×√

2 = x2×(1.4142) = x2.8284.

1.4.3 Exercises

1. Simplify the following expressions using the rules of exponents:
(i) xn.x3n.x2n; (ii) (x/x2); (iii) x5.y3.z−2.x−4.y0.z−1; (iv) (x−n.ym.z2)/(xn.y−m.z−1).

2. Use the rules of exponents to simplify the following exponents:
(i) (((x)2)3)4; (ii) ((((x2))2)2)2; (iii) (x1/2)1/2; (iv) (((x1/2/x1/2)1/2)1/2)1/2.

Web supplement: S1.4.4 Mathematica applications

1.5 Logarithms

Logarithms are widely used for both computational and analytical or theoretical purposes in
economics, business, and finance. A reasonable understanding of logarithms is necessary for
students aspiring for graduation, and for further studies, in these fields. Therefore, we shall
review in this section the fundamentals of logarithmic expressions.

1.5.1 Meaning of logarithm

We discussed some of the fundamental ideas of exponents in Section 1.4. Logarithms are
closely related to exponents. Assume that we have two numbers, 5 and 25. We know that
these two are related by the equation 52 = 25. Now we may define the exponent 2 as the
logarithm of 25 to the base of 5. We write this as log5 25 = 2 and is read “logarithm to the
base 5 of 25 is 2.” Similarly, we may write log5 125 = 3, log2 4 = 2, log3 27 = 3, and so on.
In general, if bx = y then one may state that the exponent x is the logarithm of y to the base
b, and is written as

logb y = x (1.5.1)

It should be clear by now that logarithm is the power (x) to which a base (b) must be
raised to obtain y. This is precisely what we did in the case of the equation 52 = 25 above.
Hence one may write the expression that shows the relationship between exponents and
logarithms as

y = bx is equivalent to logb y = x (1.5.2)

1.5.2 Common and natural logarithms

One may use any positive number for the base, b. But, in practice, the widely used bases are
10 and ‘e’. Logarithm to the base 10 is called common logarithm and is denoted by “log” or
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“log10.” Logarithm to the base e is called natural logarithm and is denoted by “ln” or “loge.”
Finding logarithms is not a time-consuming problem in our digital age as most scientific
calculators have specific buttons for both common and natural logarithms.

Students of economics, business, and finance might have noticed that common log-
arithms are mainly used for computational purposes whereas natural logarithms are
frequently applied in analytical or theoretical areas. Common logarithms usually used
for computational purposes include

log10 0 = undefined, log10 0.001 = −3, log10 0.01 = −2, log10 0.1 = −1,

log10 1 = 0, log10 10 = 1, log10 100 = 2, log10 1000 = 3, and so on (1.5.3)

Notice that common logarithm of any number between 0 and 1 is negative and that of any
number above 1 is positive. Notice also that logarithm of a number below 0 is not defined.

Similarly, natural logarithms usually used for analytical purposes include

loge e−1 = ln
1

e
= −1, loge 0 = undefined, loge e0 = ln 1 = 0, loge e1 = ln e1 = 1,

loge e2 = ln e2 = 2, and so on (1.5.4)

There are a few important points to be noted here. First, like common logarithm, natural
logarithm is not defined for 0 and the numbers below 0. Second, natural logarithm of an
expression en, where n is any real number, is negative if n is negative, is 0 if n is 0, and is
positive if n is positive. Third, natural logarithm of an expression en, where n (as before) is
any real number, is n.

1.5.3 Properties of logarithms

We list below some of the important properties of logarithms.4

Property I. Logarithm of a product is equal to the sum of the logarithm of the factors:

ln (x × y) = ln x + ln y where x,y> 0 (1.5.5)

Property II. Logarithm of a ratio is the difference between the logarithms of its
numerator and denominator:

ln (x/y) = ln x − ln y where x,y> 0 (1.5.6)

Property III. Logarithm of a power or exponent is the power or exponent times the
logarithm of the base:

ln xn = n × ln x where x> 0 (1.5.7)

Property IV. Logarithm of the reciprocal of a number is the negative of the logarithm
of the number:

ln (1/n) = − lnn where n> 0 (1.5.8)
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Property V. Logarithm of 1 is always 0:

ln 1 = 0 (1.5.9)

Property VI. Logarithm of a number to the same base is equal to 1:

ln e = 1 (1.5.10)

Property VII. Logarithm of any number to which e is raised is equal to that number:

eln x = x where x> 0 (1.5.11)

Property VIII. Let there be two bases a and b such that a,b> 0. Then

logb n = (loga n)/(loga b) or loga b × logb n = loga n (1.5.12)

Property IX. Let a> 0. Then

loga e = 1/ loge a (1.5.13)

Equations (1.5.12) and (1.5.13) are, respectively, called the change of base and the inversion
of base formulas of logarithms.

1.5.4 Exercises

1. Convert the following logarithmic (natural logarithmic) forms into their equivalent
exponential (natural exponential) forms:
(i) log3 9 = 2; (ii) log125 5 = 1/3; (iii) log81 9 = 1/2; (iv) logb x = 2; (v) ln15 = 2.71;
(vi) ln x = 2.71; (vii) ln y = (1/5); (viii) ln x = y − w.

2. Convert the following exponential (natural exponential) forms into their equivalent
logarithmic (natural logarithmic) forms:
(i) 25 = 52; (ii) 625 = 54; (iii) 3 = 271/3; (iv) 2 = 641/6; (v) 2.66 = e0.98; (vi) x = e0.98;
(vii) 1.131 = e0.123; (viii) y = ex+2.

3. Find the values of the following logarithms:
(i) log10 1000; (ii) log10 0.001; (iii) log2 32; (iv) log3 81; (v) eln 5; (vi) ln eln 1;
(vii) eln 5 − eln 5; (viii) ln(eln e).

4. Evaluate (or simplify) the following expressions using the properties of logarithms:
(i) log(5x2); (ii) log(5x/y2); (iii) log 3

√
125; (iv) log(10 × 1

/
10); (v) log1001/2;

(vi) ln eln e; (vii) ln eln e0
; (viii) ln(x.y1/2); (ix) ln(e2−e); (x) ln(1/e); (xi) (log5 e)(loge 25);

(xii) (ln 5)(log25 e); (xiii) log10x = log1; (xiv) 3 ln(1/2).

Web supplement: S1.5.5 Mathematica applications

1.6 Equations

Many of the relationships in economics, business, and finance are quantitative in nature. This
nature helps these subjects apply various mathematical tools in their analysis of relationships.
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One such tool is the concept of equations. Economists and the students of economics deal
with a variety of equations such as the demand equation, supply equation, price equation,
national income equation, etc. Business managers often engage with the profit equation,
revenue equation, cost equation, etc. Students of finance also make use of equations such as
the discount and compound formulas, break-even equations, etc. Therefore, students of these
subjects require a good understanding of the meaning of equations, their types, their geometric
forms, their determinations and solutions, etc. This section helps build this understanding.

1.6.1 Meaning of equations

Let there be two expressions: y − 5 and 2x. An equation is defined as a statement that
two expressions are equal, and the two statements are separated by an equals the sign ‘=’.
Therefore, if we write y −5 = 2x it is an equation. The left-hand side of this equation (y −5)
is called the LHS and the right-hand side (2x) is called the RHS. A few examples of equations
are 2x − 5 = 9, yi = 5 + 2xi, zi = 2 + 3xi + 4yi, yi = a + bxi1, and zi = a + bxi + cyi. Notice
the subscript “i” (or, subsequently, letters or numbers) in these equations. These subscript
notations are temporarily used to distinguish equations from functions, which will be clear
from the discussion at the end of Section 1.8.1.

We shall first review some terms related to equations. For example, consider the equation
2x − 5 = 9. In this equation, there is only one unknown quantity x. Therefore, this is an
equation with one unknown. Now consider the equation yi = 5+2xi. There are two unknown
quantities in this equation: x and y. Notice that in this equation when x changes, y also
changes. Therefore, x and y are called variables. Since there is only one variable on the
RHS (x), this is called a one-variable equation, or a single-variable equation, or a univariate
equation. The equation zi = 2 + 3xi + 4yi is a multivariable equation because there are two
variables on the RHS. Notice that in the last two equations there is only one variable on the
LHS. This variable on the LHS is called the dependent variable. The reason for this name
is that it depends on the value(s) of the variable(s) on the RHS. The variable (s) on the RHS
is (are) called the independent variable(s) since it (they) does (do) not depend on any other
variable in the equation.

When we work with equations, our aim is, among others, to solve the equations or to find
the solution(s) to the equations. When we say “to solve” an equation or “to find the solution”
to an equation what we mean is to determine a number(s) or value(s) for the unknown
quantity (quantities) that satisfies (satisfy) the equation. The solution(s) to an equation is
(are) called the root(s) of that equation. Consider, for example, 2x − 5 = 9. This equation
can be written as 2x = 9 + 5 = 14. Dividing both the LHS and RHS of this equation by 2,
we obtain x = 14/2 = 7. This means that there is only one number or value that satisfies this
equation and it is 7. Therefore, 7 is the solution to this equation.

Sometimes, even in the case of an equation with one unknown, there may be more than
one number that satisfies or solves the equation. For example, consider the equation x2 = 4.
This means that x = ±√

4 = ±2. That is, both +2 and −2 satisfy the equation, and there are
two solutions. The set of all solutions that satisfy an equation is called the solution set.

There are a few other terms related to equations that need to be touched upon. One is
the constant of an equation. A constant term is the fixed term in an equation. Consider the
equation y1 = 5 + 2x1. In this equation 5 and 2 are constants. In the equation yi = 2xi, there
is only one constant and it is 2. But, in zi = 2 + 3xi + 4yi, there are three constants and
they are 2, 3, and 4. These examples suggest that an equation may contain one or more than
one constant.
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Another important term is the intercept of an equation. There are two intercept terms in
a univariate equation: x-intercept and y-intercept. The former is the point where the graph
of the equation crosses the x-axis (that is, when y = 0) and the latter is the point where the
graph crosses the y-axis (that is, when x = 0). We often work with the y-intercept. In the
equation yi = 5+2xi, the y-intercept is 5 (when x = 0); and in the equation zi = 2+3xi +4yi,
the z-intercept is 2 (when xi = yi = 0). Notice that some equations such as y = 2x will not
have a positive y-intercept and some equations such as yi = −5 + 3xi will have a negative
y-intercept. Notice also that the graph of the former will pass through the origin (that is, the
value zero) and the graph of the latter will pass through the negative value −5 on the y-axis.

The last term in connection with equations often found in the literature is the parameter(s).
This can be explained with an example. Consider two equations: yi = 5+2xi and yi = a+bxi.
If we substitute 5 for a and 2 for b into the second equation, we obtain the first equation. This
means that the latter equation is more general than the former equation. That is, the latter
general equation can represent a number of specific equations like the former one. Notice that
in this general equation the values of the constants a and b are not specified. Such constants
are called parameters. One of the important objectives in a branch of applied mathematics
called statistics is to determine the values of these parameters.

1.6.2 Types of single-variable or univariate equations

Equations can be classified as shown in Figure 1.6.1. We shall discuss each of these
equations below. Let us begin with polynomial equations. A polynomial equation is defined
as an equation in which there is more than one term, with different powers, of an independent
variable. An example of a general polynomial equation is

yn = b0x0 + b1x1 + b2x2 + b3x3 +·· ·+ bnxn (1.6.1)

Equations

Rational
Equations

Exponential
Equations

Logarithmic
Equations

Straight
Line Equations

Polynomial
Equations

Trigonometric
Equations

Nonlinear
Equations

Constant
Equations

Linear
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powered equations

Figure 1.6.1
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Notice that in equation (1.6.1) we have only one independent variable x. But, x appears with
different powers: from 0, through 1, to n. Depending on the value of n (the highest power in
equation (1.6.1)), we obtain two subsets of the polynomial equation. The first subset comprises
constant equations and linear equations, and the second subset comprises nonlinear
equations of quadratic equations and cubic equations (and higher-powered equations). We
will later discuss the distinguishing features of linear and nonlinear equations. Notice that
the polynomial equation (1.6.1) consists of a number of terms on the RHS and each term is
a monomial. The degree of the polynomial is the highest value of the exponent (n) in it.

A constant equation can be obtained if we set the powers to zero and b0 �= 0 in
equation (1.6.1), and is given as

y0 = b0x0 = b0 (1.6.2)

Notice that equation (1.6.2) contains no independent variable on the RHS, but only the
constant b0. What this means is that the dependent variable will be equal to this value of
the constant irrespective of the value taken by the independent variable. Notice also that
this equation is a zero-degree polynomial because n = 0.

A linear equation can be derived from equation (1.6.1) if we set n = 1, b0 �= 0, and b1 �= 0,
and can be written as

y1 = b0x0 + b1x1 = b0 + b1x (1.6.3)

Notice that in equation (1.6.3) there is one independent variable (x) with power 1 and two
constants b0 and b1. Since there are two terms on the RHS of this equation, it is a binomial.
And since the highest exponent in the equation is 1, it is called a first-degree polynomial.

We can derive a quadratic equation if we set n = 2, b0 �= 0, b1 �= 0, and b2 �= 0 in
equation (1.6.1) as

y2 = b0x0 + b1x1 + b2x2 = b0 + b1x + b2x2 (1.6.4)

Notice that, since there are three terms on the RHS of equation (1.6.4), this equation is a
trinomial. Besides, since the highest value of the exponents in the equation is 2, a quadratic
equation is also called a second-degree polynomial. A second-degree polynomial is also
a nonlinear equation. If the highest value of the exponents in a polynomial is n, then that
polynomial is called an nth-degree polynomial.

Similarly, if we specify n = 3, b0 �= 0, b1 �= 0, b2 �= 0, and b3 �= 0 in equation (1.6.1), we
obtain the cubic equation as

y3 = b0x0 + b1x1 + b2x2 + b3x3 = b0 + b1x + b2x2 + b3x3 (1.6.5)

The reader must have noticed that a cubic equation is a third-degree polynomial and that it
is a nonlinear equation.

Another important set of equations is the set of rational equations. A rational equation
is the ratio of two polynomials in one (or more) independent variable(s). An example of a
rational equation in one independent variable is yi = (3 + 2xi)

/
(2 − 5xi). One of the simplest

cases of rational equations is the equation yi = b/xi.
Exponential equation and logarithmic equation are two of the other important types of

equations widely used in economics, business, and finance. We have already discussed the



[16:29 8/11/2011 5640-Ummer-Ch01.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 17 1–68

Review of basics 17

exponential and logarithmic expressions in Sections 1.4 and 1.5, respectively. We provide
below only the general forms of exponential and logarithmic equations, respectively, in
equations (1.6.6) and (1.6.7). Notice that these equations are nonlinear equations:

yi = axi (1.6.6)

yi = loga xi (1.6.7)

1.6.3 Solution of equations

In most applications, we need to solve equations. The reader will have noticed that there is
no need to solve a constant equation as the RHS is a constant term and its value is given.
But, in the case of all other equations, we may need to solve for the unknowns. We begin this
discussion with a linear equation. For example, assume that our linear equation is of the form
2x + 7 = 17− 8x. In order to solve this equation, collect the like terms on one side applying
the required changes in the signs. After doing this we obtain 2x +8x = 17−7. Now add the
like terms, and the result is 10x = 10. Then divide both sides of this equation by 10 and the
result will be x = 1. Notice that the last equation is now in the form of a constant equation.

We can now consider the solution of a quadratic equation. The quadratic equation (1.6.4),
by treating y2 = 0, b0 = c, b1 = b, and b2 = a, is generally written as

ax2 + bx + c = 0 (1.6.8)

where a(= b2), b(= b1), and c(= b0) are constants and a �= 0. Notice that a quadratic equation
may possess no real solution, one real solution, or two different real solutions while a linear
equation possesses only one solution. A quadratic equation can be solved either by factoring
or by applying the quadratic formula.

For example, assume that we have a quadratic equation of the form x2 − 3x − 10 = 0. Let
us first solve this equation by factoring. The LHS of this can be written as the product of
two factors: (x + 2) and (x − 5) or x2 − 3x − 10 = (x + 2) × (x − 5) = 0. The RHS is still the
same, 0. For the LHS to equal the RHS, at least one term or both terms on the LHS must
be zero. This is possible only when x = −2 or x = +5, or x = −2,+5. Therefore, the roots
of (or the solutions to) the above quadratic equation are −2 and 5, and the solution set is
x = {−2,+5}.

We can apply the quadratic formula

x = −b ±√
b2 − 4ac

2a
(1.6.9)

to find the roots of a quadratic equation. One advantage of the quadratic formula is that it
is useful when factoring is difficult. One can derive equation (1.6.9) as follows. Notice that
equation (1.6.8) may be written as a[x2 + (b/a)x + (c/a)] = 0. Since a �= 0, the last equation
has the same solution as that of x2 + (b/a)x + (c/a) = 0, which may also be written as
x2 + (b/a)x = −(c/a). Adding (b/2a)2 to both sides of the last equation yields x2 + (b/a)x +
(b/2a)2 = −(c/a) + (b/2a)2, or [x + (b/2a)]2 = [b2 − 4ac]/4a2, or x = [−b ±√

b2 − 4ac]/
2a, which is the same as equation (1.6.9).

We shall now solve the quadratic equation discussed above, x2 − 3x − 10 = 0, using
the quadratic formula. Notice that, in our example, a = 1, b = −3, and c = −10.
Substituting these values into equation (1.6.9) we obtain, after simplification, the set
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of solutions x = [−(−3) ± √
32 − 4 × 1 × (−10)]/2 × 1 = [3 ± √

49]/2 = [3 ± 7]/2 =
{10/2 = 5 ,−4/2 = −2}, which are precisely the solutions we obtained through factoring.

We now consider the solution of a cubic equation. Since a cubic equation is a third-degree
polynomial as in equation (1.6.5), it is quite natural that it is relatively more difficult to solve
such equations. As an example, we consider the simple cubic equation with y3 = 0, b0 = 0,
b1 = 1, and b2 = −2, and b3 = 1: x3 − 2x2 + x = 0.

As the first step in solving this equation, we may factor one x out of it. Then we obtain
x(x2 −2x +1) = 0. For the LHS to be zero, either x = 0 or (x2 −2x +1) = 0, or both must be
equal to zero. Therefore, one root of the above cubic equation is 0. We can now use either
factoring or the quadratic equation to find the roots of (x2 − 2x + 1) = 0. Factoring the LHS
of the equation yields (x − 1)(x − 1). This suggests that the remaining two roots are +1 and
+1. Therefore, the solution set of the above cubic equation is x = {0,1,1}.

It is quite simple to solve rational equations such as yi = b/xi. Assume that b = 10 and
yi = 5, then the rational equation is of the form 5 = 10/x. This rational equation can be
solved by cross multiplying and dividing both sides of the equation by x and 5, respectively,
and then simplifying the resulting expression as x = 10/5 = 2. It is needless to mention that
more complicated forms of rational equations will be harder to solve. Since we have already
considered the solutions of exponential and logarithmic equations in detail in Sections 1.4
and 1.5, respectively, we do not repeat them here.

1.6.4 Determination of the equation of a straight line

Students of economics, business, and finance often work with straight lines whose general,
algebraic form is given in equation (1.6.3). But, how do we determine the equation of a
straight line in the first place? Generally, there are four ways one can determine the equation
of a straight line.

The first and the simplest way of determining the equation of a straight line is the use
of literal description. To explain this let us consider the description of a firm’s supply of a
commodity. Assume that the firm requires a minimum amount of $1 to begin the supply of
the commodity. In addition to this, the firm decides to charge a constant amount of $2 on
each unit of the commodity sold. How can we write the equation of the price set by the firm
(or, in other words, the supply equation)?

In order to sell the first unit of the commodity the firm has to receive $1+$2×1 = $3. The
firm has to receive $1+$2×2 = $5 to sell the second unit. It has to receive $1+$2×3 = $7
to sell the third unit. This means that the price (y) increases by $2 when the firm sells each
additional unit of the commodity (x). This implies that we can write the supply equation as

y = 1 + 2x (1.6.10)

Notice that we have dropped the subscript notations for convenience. A comparison of the
general linear equation (1.6.3) with equation (1.6.10) shows that b0 = 1 and b1 = 2. Notice
also that equation (1.6.10) is a binomial and a first-degree polynomial equation.

The other methods of the determination of the equation of a straight line require that
we understand the meaning of the term slope. One of the important features of a straight
line (or any other curve) is its steepness. The concept of slope represents the measure of
this steepness. We discuss here the concept of slope with the help of the graph of equation
(1.6.10) as shown in Figure 1.6.2. As can be seen from the figure, the line representing
the linear equation y = 1 + 2x goes upward from left to right. Two points on this line are
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represented by the points (1, 3) and (3, 7), which for convenience we denote by (x1,y1)
and (x2,y2), respectively. Notice that (x1,y1) represents the initial (or the original) point and
(x2,y2) represents the new (or the changed) point. The difference between the new y(= y2)
and the initial y(= y1) points is called the vertical change denoted by�y = y2 −y1. Similarly,
the difference between the new x(= x2) and the initial x(= x1) points is called the horizontal
change denoted by �x = x2 − x1. We now define slope as the ratio of vertical change to
horizontal change. In mathematical notation this definition takes the form

Slope = b1 = Vertical change

Horizontal change
= �y

�x
= y2 − y1

x2 − x1
(1.6.11)

Substituting y2 = 7, y1 = 3, x2 = 3, and x1 = 1 into equation (1.6.11) yields

Slope = b1 = Vertical change

Horizontal change
= �y

�x
= y2 − y1

x2 − x1
= 7 − 3

3 − 1
= 4

2
= 2

This means that the slope of the straight line in Figure 1.6.2 is 2. Notice that the coefficient
of x in equation (1.6.10) is also 2. Therefore, we may generalize that the slope of a straight
line is the same as the coefficient of the independent variable in the equation that represents
the straight line.

The second way to determine the equation of a straight line is to use the notion of point–
slope form. Assume that there exists a straight line L. Assume also that the slope of this line
is b1 and that two points on this line are (x1,y1) and (x,y). We can now find the equation
for L if we know b1 and (x1,y1). This is the idea behind the notion of the point–slope
form. The procedure can be explained as follows. We know from equation (1.6.11) that
b1 = (y − y1)/(x − x1) or y − y1 = (x − x1)b1. This equation is the point–slope form of L. We
can use this idea to find the equation of a line that passes through (x1,y1) = (1,3) and b1 = 2.
Substituting these values into the above point–slope form, we obtain the required equation
as y − 3 = (x − 1) × 2 = 2x − 2 or y = 2x − 2 + 3 = 1 + 2x.

The third way is useful when we have only two points instead of a point and slope
as above. How can we then find the equation of the line? Let the two points on the
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straight line be (x1,y1) = (1,3) and (x2,y2) = (3,7). Then using equation (1.6.11) we obtain
b1 = (y2 − y1)/(x2 − x1) = (7 − 3)/(3 − 1) = 4/2 = 2. Having obtained the slope b1 = 2,
we may apply the point–slope form in equation (1.6.11) with the points (x1,y1) = (1,3) and
(x2,y2) = (x,y). Thus, we obtain y−3 = (x−1)×2. This simplifies to y = 2x−2+3 = 1+2x,
which is the same as equation (1.6.10).

The last method of determining the equation of a straight line is to use the slope–intercept
form. We know that b0 represents the y-intercept of the linear equation (1.6.3). If we
are given b0 and the slope b1, how can we find the equation of the line? The answer is
straightforward: apply equation (1.6.3). Let b0 = 1 and b2 = 2. Then application of equation
(1.6.3) yields y = b0 + b1x = 1 + 2x, which the required equation of the line.

Notice that there are two types of straight lines in the literature: parallel lines and
perpendicular lines. Let there be two straight lines L1 and L2, and let their respective slopes
be b1,1 and b1,2. These two lines are parallel to each other if and only if b1,1 = b1,2. And
they are perpendicular to each other if and only if b1,1 = −1/b1,2 or b1,2 = −1/b1,1. As an
example of parallel and perpendicular lines, suppose that L1 = 5 + 2x, L2 = −15 + 2x, and
L3 = −5 − 0.5x. As the graphs of these equations in Figure 1.6.3(A) show, L2 is parallel to
L1 and L3 is perpendicular to L3 (or, to L2).

By this time the reader might have guessed that the steepness of a straight line, for a given
intercept, depends upon the slope of the line. The higher the slope, the steeper the line will be,
and vice versa. This can be verified by the graphs of equations L4 = 20+20x, L5 = 20+10x,
L6 = 20+5x, L7 = 20, and L8 = 20−5x illustrated in Figure 1.6.3(B). Notice that these lines
are drawn with the same intercept (5).

1.6.5 Systems of linear equations

The study of most branches of economics, business, and finance often starts with models.
Many of these models contain more than one linear equation in two or more unknowns.
These equations constitute, when taken together, a system of simultaneous linear equations
(SSLEs). A system of equations containing n variables and m equations is called an n × m
(read “n by m”) system or n × m SSLEs.
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We have already discussed the meaning of the solution of an equation in Section 1.6.3.
An n = m system may have a unique solution (that is, only one solution for each of the
variables), an infinite solution, or no solution. An m< n system will give multiple solutions
(unlimited) or no solution (and never a unique solution). An n<m system may give solutions
as those of an n = m system.

One can present many examples of an n = m = 2 system. But, consider the general 2 × 2
system of two equations in two unknowns

y = b0 + b1x and y = b2 + b3x (1.6.12)

It can be shown that if b0 �= b2 and b1 �= b3 in the system (1.6.12), there will be a unique
solution to the system; if b0 = b2 and b1 �= b3, there is no unique solution; and if b0 = b2

and b1 = b3, the two equations coincide (that is, they are equivalent) and there is an infinite
number of solutions.

Let us now attempt to solve a 2 × 2 SSLEs. As an example, we consider the simple
system y = 10 + 2x and y = 5 + 4x. Generally there are four methods to solve this system.5

The first one we discuss is the graphical method. The first step in this method is to draw
the graphs representing the equations. These are given as L1 and L2 in Figure 1.6.4(A). The
next step is to draw a straight line from the point of intersection of L1 and L2 to the x-axis
to obtain the x-coordinate. The third, and the last, step is to draw a straight line from the
same intersection point to the y-axis to obtain the y-coordinate. These coordinates will be the
solution of the system. In our example, as shown in Figure 1.6.4(A), the solutions are x = 2.5
and y = 15.

The second method of solving a system of linear equations is the substitution method. The
first step in this method of solving a 2 × 2 linear system, with x and y as the unknowns, is
to solve for one of the unknowns (e.g. x). Then this solution of x is substituted back to solve
for y. Notice that this method will become more and more cumbersome as the size of the
system increases. In order to carry out the procedure just outlined, we again consider the
example of our previous 2× 2 system: y = 10 + 2x and y = 5 + 4x.

As stated above, solving for x from the first equation gives 2x = y − 10 or x = (y/2) − 5.
Substituting this solution of x into the second equation yields y = 5 + 4[(y/2) − 5] = 5 +
(4y/2) − 20 = (4y/2) − 15, or y − (4y/2) = −15. Taking the least common denominator
(LCD) of the last equation we get [(2y − 4y)/2] = −15, and by cross multiplying it by 2 we
obtain 2y−4y = −30. Simplifying this yields −2y = −30 or y = 15. The solution y = 15 can
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be substituted back to the solution for x = (y/2)−5 to obtain x = (5/2)−5 = 7.5−5 = 2.5,
which are precisely the solutions we obtained from the graphical method.

The third method of solving a 2×2 SSLEs we discuss here is the elimination method. This
method, as the name suggests, eliminates one of the unknowns in the system. Once again, for
exposition, we use the above system and eliminate x. The first step in this method is to make
equal the coefficients of x in the two equations by multiplying every term in one equation by
the coefficient of x in the other equation and, then, from the resulting equations, subtract one
equation from the other. The procedure is as follows:

y = 10 + 2x

y = 5 + 4x
or

4y = 40 + 8x

2y = 10 + 8x
or

4y = 40 + 8x

2y = 10 + 8x
or

4y − 2y = 30

2y = 30

Notice that we obtain y = 15 from the second equation in the last column above. The next and
the last step in this method is to substitute the solution y = 15 back into one of the original
equations, say y = 5 + 4x. This gives us 15 = 5 + 4x, or 15 − 5 = 4x = 10, which simplifies
to x = (10/4) = 2.5. Notice, again, that these are the same solutions as those we obtained
from both graphical and substitution methods.

So far in this section we have dealt with the 2×2 SSLEs. There are plenty of instances in
the subjects of our interest that a student encounters models involving higher-order systems.
Now imagine a system with n = 3 and m = 3 (that is, three variables and three equations).
The general form of a 3 × 3 SSLEs is

z = b0 + b1x + b2y, z = b3 + b4x + b5y, and z = b6 + b7x + b8y (1.6.13)

As a concrete example of a 3× 3 SSLEs, consider the system

z = 6 − 2x − y, z = 2 − x − 2y, and z = 2 − 0.5x − 0.5y (1.6.14)

which can be solved to obtain x = 3, y = −1, and z = 1.

1.6.6 Nonlinear equations and their systems

Many of the models in economics, business, and finance involve nonlinear equations in
two or more variables or unknowns. Therefore, students of these subjects must possess at
least a basic knowledge of these equations, their systems, and their solutions. An equation
is a nonlinear equation if it is a logarithmic or exponential equation, or if the power(s) of
the independent variable(s) is other than 0 or 1. We have already introduced some of these
equations earlier and we will deal with them in greater detail in Chapter 3.

A nonlinear system of equations is defined as a system of equations in which either all or
at least one equation is nonlinear. The general form of a nonlinear system of two equations
in two variables is given as

y = b0 + b1x + b2x2 and y = b3 + b4x (1.6.15)

Notice that the first equation in this system is a quadratic equation and the second one is
a linear equation. Therefore, the system is a nonlinear system of equations. As a specific
example, consider the simple system x2 + x + 2 = 2y and 4x + 5 = y. The first step
in solving this system is to substitute the value of y from the second equation into the
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first equation. The resulting expression will be x2 +x+2 = 2(4x + 5) or x2 +x+2 = 8x+10
or x2 − 7x − 8 = 0. The last expression is a quadratic equation. As we discussed earlier in
Section 1.6.3, we can resort either to factorization or to the quadratic formula to find the
solution of this equation. Without repeating the algebraic manipulations, we simply write
that the roots of this equation are 8 and −1. Therefore, the solution set is x = {8,−1}. The
next, and the last step is to substitute these values in any one of the original equations. We
choose the simplest equation for this: 4x + 5 = y. The result, after simplification, will be
the solution set y = {37,1}. Therefore, the solutions to this nonlinear system are x = (8,−1)
and y = (37,1). The graphs of this nonlinear system are illustrated in Figure 1.6.4(B) which
confirms our result.

The system in equation (1.6.15) involves only one independent variable. How about a
single equation that involves more than one unknown? Assume that an equation involves
unknowns x, y, and z, and is given by z = x2 − y2. This equation has two independent
variables, x and y, and is nonlinear. Now assume that we have a nonlinear system of three
equations in three unknowns, x, y, and z, and is given by

z = x2 − y2, z = x2 − y, and z = x − y2. (1.6.16)

The above system of nonlinear equations can be solved to obtain, among others, (x = 1, y = 1,
and z = 0) and (x = 0, y = 0, and z = 0).

1.6.7 Application examples

Example 1. Assume that in a market a firm can sell any quantity of a commodity produced
by it at the existing price of $5 per unit. This price is equal to the average revenue (AR)
and the marginal revenue (MR) to the firm from the sale of the commodity. Show these two
statements in a graph.

Solution. Since the price ($5) remains the same irrespective of the quantity of the
commodity sold, the graph of the price (= AR = MR) must be a straight line parallel to
the x-axis and with slope equal to zero. This graph is illustrated in Figure 1.6.5(A).
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Example 2. Suppose that a consumer purchases 20 units of apples when price (p) is zero
and reduces the quantity of apples purchased (q) by 2 units for every unit increase in price.
Derive the consumer’s demand equation for apples.

Solution. We are given that when p = 0, q = 20 and q diminishes by 2 units as p increases
by 1 unit. This implies that when p = 1, q = 18; when p = 2, q = 16; when p = 3, q = 14; and
so on. Therefore, the required demand equation can be written as q = 20−2p, or the inverse
demand equation as p = 10 − 0.5q.

Example 3. Assume that a straight line supply equation for a good has a slope of 5 and
passes through point (5, 60). Find the supply equation.

Solution. Let y denote the price of the good and x the quantity of the good supplied. We
may use the point–slope form [(y − y1) = b1(x − x1)] to solve this problem. Assuming that
y1 = 60, x1 = 5, and substituting 5 for b1, we can write the point–slope form as y − 60 =
5(x − 5), which simplifies to y = 35 + 5x. This is the equation of the supply curve, or the
required supply equation.

Example 4. Suppose that the straight line of a demand equation passes through points
(10, 20) and (5, 30). Find the demand equation.

Solution. Let p denote the price of the good and q the quantity demanded of the good.
Once again we can use the point–slope form to solve this problem. Since the points are
given, first we have to find out the slope to use the point–slope form. This can be found from
the equation b1 = (p − p1)/(q − q1). Substituting p = 20, p1 = 30, q = 10, and q1 = 5 into
this equation, we obtain slope b1 = −2. Now using b1, p1, and q1, we obtain the demand
equation as q = 20 − 0.5p or the inverse demand equation as p = 40 − 2q.

Example 5. Assume that the demand and supply equations of a good are given, respectively,
by qd = 40 − 2p and qs = −20 + 4p, where p represents the price per unit of the good in
dollars, qd stands for the quantity of the good demanded, and qs denotes the quantity sold.
Find the equilibrium price and equilibrium quantity, and the excess supply (ES) or surplus
and excess demand (ED) or shortage. Show these equilibrium and disequilibrium conditions
with the help of a figure.

Solution. Equilibrium is a state in which the variables (p, qd, and qs in the present example)
do not have a tendency to change. In other words, this is the point in a graph where the lines of
demand and supply equations intersect. The price, quantity demanded, and quantity supplied
at this point of intersection are the equilibrium price, equilibrium quantity demanded, and
equilibrium quantity supplied and are denoted by p∗, q∗

d, and q∗
s , respectively. Notice that

at this point q∗
d = q∗

s . This quantity is called the equilibrium quantity denoted by q∗ and,
therefore, we have q∗ = q∗

d = q∗
s at the equilibrium. Therefore, we can obtain p∗ and q∗ by

equating qd = 40 − 2p and qs = −20 + 4p, and solving for p and q∗ = q∗
d = q∗

s . The results
will be p∗ = $10 and q∗ = q∗

d = q∗
s = 20. This equilibrium is shown in Figure 1.6.5(B).

In our present example, disequilibrium occurs when qs > qd or qd > qs which happens
when p> p∗ or p< p∗, respectively. That is, any price above the equilibrium price (p> p∗)
causes excess supply or surplus (qs > qd ), and any price below the equilibrium price (p< p∗)
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causes excess demand or shortage (qd > qs). For example, when p = $15 > p∗ = $10,
qs = 40 > qd = 10. Therefore, the ES is equal to qs − qd = 40 − 10 = 30 units. And when
p = $5 < p∗ = $10, the ED is equal to qd − qs = 30 − 0 = 30 units. These disequilibrium
states are also shown in Figure 1.6.5(B).

Example 6. Assume that the demand and supply equations of a product of a seller are the
same as those in example 5: qd = 40 − 2p and qs = −20 + 4p, respectively. Also assume
that the government imposes an excise tax of $3 on every unit of the product sold. What
will be the new equilibrium price and quantity? How much of the per unit tax is borne by
the buyer and how much of the per unit tax is borne by the seller? Show the initial and the
new equilibrium positions with the help of a figure.

Solution. In the last example we saw that the original equilibrium price and quantity
were p∗ = $10 and q∗ = 20 units, respectively. Two points must be noted here. First, an
excise tax affects the supply equation only. Second, the price the seller receives after a
tax of $3 per unit of the product will be p − 3. Therefore, the new supply equation will
be qt

s = −20 + 4(p − 3) = −32 + 4p. Equating this with the original demand equation
and simplifying gives qt∗ = 16 and pt∗ = $12, where qt∗ and pt∗ denote the equilibrium
quantity demanded and supplied and the equilibrium price after the tax, respectively. Notice
that the equilibrium quantity demanded and supplied decreased from 20 units to 16 units
and the equilibrium price increased from $10 to $12 per unit after the tax. Notice also
that though the tax on the seller was $3, she could pass a burden of only $2 to the
buyer and the rest ($1) is borne by her. The two equilibrium positions are shown in
Figure 1.6.6(A). In this figure, E and Et represent the pre-tax and post-tax equilibrium
positions, respectively.

If the government imposed a sales tax, instead of an excise tax, the impact would again
be on the supply equation. In this event, the supply equation would change to qs = −20 +
4(1 − t)p, where t represents the rate of tax. One can equate this new supply equation with
the original demand equation and solve for qt∗ and pt∗ . It is evident that the impacts of
an excise tax and a sales tax are on the intercept and the slope of the supply equation,
respectively.
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Example 7. Once again assume that the demand and supply equations of a product of a
seller are the same as those in example 5: qd = 40 − 2p and qs = −20 + 4p, respectively.
Also assume that the government gives a subsidy to the seller of $3. What will be the new
equilibrium price and quantity? How much of the subsidy is passed to the buyer and how
much of the subsidy is retained by the seller? Show the initial and new equilibrium positions
with the help of a figure.

Solution. In the last two examples we saw that the original equilibrium price and quantity
were p∗ = $10 and q∗ = 20 units, respectively. As in the case of tax, two points must be noticed
here too. First, a subsidy affects the supply equation only. Second, the price the seller receives
after a subsidy of $3 per unit of the product will be p+3. Therefore, the new supply equation
will be qsd

s = −20 + 4(p + 3) = −8 + 4p. Equating this with the original demand equation
and simplifying gives qsd∗ = 24 and psd∗ = $8, where qsd∗ and psd∗ represent the equilibrium
quantity demanded and sold and the equilibrium price after the subsidy, respectively. Notice
that the equilibrium quantity demanded and supplied increased from 20 units to 24 units
and the equilibrium price decreased from $10 to $8 per unit after the subsidy. Notice also
that though the subsidy to the seller was $3 per unit, she passed only $2 to the buyer and
the rest ($1) is retained by her. The two equilibrium positions are shown in Figure 1.6.6(B).
In this figure, E and Esd represent the pre-subsidy and post-subsidy equilibrium positions,
respectively.

Example 8. Assume that the inverse demand curve for a good is nonlinear and is given
by p = 4/qd , and the inverse supply curve is linear and is given by p = 2 + 2qs. Find the
equilibrium quantity (q∗) and price (p∗), and illustrate this equilibrium in a figure.

Solution. If we equate the demand and supply equations and simplify (assuming that
q∗ = qd = qs = q), we get 2q2 +2q−4 = 0. Now using the quadratic formula from equation
(1.6.9) yields the roots (−2,1). If we substitute first root (−2) into any of the original
equations, we obtain the corresponding solution for price, −2. Since the quantity and price
cannot be negative, we discard the negative root, and choose the positive root, 1 (i.e. q∗ = 1).
Substitution of q∗ = 1 into any of the two original equations yields p∗ = 4. This equilibrium
state is illustrated in Figure 1.6.7(A).
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Example 9. Assume, as in example 8, that a good’s inverse demand curve is nonlinear and
is given by p = 4/qd , and (unlike in example 8) that its inverse supply curve also is nonlinear
and is given by p = 3 + q2

s . Find the equilibrium quantity (q∗) and price (p∗), and illustrate
this equilibrium in a figure.

Solution. If we equate the demand and supply equations and simplify (assuming that
q∗ = qd = qs = q), we obtain q3 +3q−4 = 0, which is a cubic equation. Now factoring and
using thequadratic formula (equation (1.6.9)) yields the roots (−0.5 + 1.94i,−0.5 − 1.94i,1).
As can be seen from this, except the solution 1, the other solutions are complex numbers.
Therefore, we choose the real, positive root, 1 (q∗ = 1). Substitution of q∗ = 1 into any of the
two original equations yields p∗ = 4. This equilibrium state is illustrated in Figure 1.6.7(B).
Notice that we obtained the same solution in example 8 even when we used a linear
supply equation.

1.6.8 Exercises

1. Solve the following equations:
(i) 8x − 5 = −7 + 10x; (ii) x = 1/x; (iii) 2x2 + x − 2 = 0; (iv) x3 + x2 = 0; (v) (x/1) +
(x2/2) = 5 − 5; (vi) (1/x) − (2/x2) = 10 − 10; (vii) x(x − 5) = 0.

2. Find the equations of the straight lines that pass through the following points:
(i) (4,3) , (5,2); (ii) (5,2) , (8,4); (iii) (−3,4) , (8,6); (iv) (4,−4) , (4,6).

3. Find the equations of the straight lines that pass through the following points and
have the following slopes:
(i) (10, 5), and slope = 2; (ii) (−10, 5), and slope = −2; (iii) (−3,−5), and slope = 4;
(iii) (3, 5), and slope = −4.

4. Find the equations of the straight lines that have the following features:
(i) slope = 3, and x-intercept = 5; (ii) slope = −3, and y-intercept = 5; (iii) slope = 0,
and y-intercept = 4; (iv) slope = ∞, and x-intercept = 4.

5. Solve the following SSLEs by graphical, substitution, and elimination methods:

(i)
2x + y = 5

x + 2y = 2
; (ii)

2x − y = −5

x − 2y = −2
; (iii)

x + 0.5y = 0

3x + y = 4
; (iv)

3x + y − 2 = 0

x − 2y = 1
.

6. Solve the following systems of nonlinear equations:

(i)
x2 = y

2x + y = 0
; (ii)

x2 + y = 0

x + y = 0
; (iii)

y = 2x − x2

y = x2 − 2x
; (iv)

x2 + y = 2

x + y2 = 2
.

7. Application exercise. When the per unit price of a good was $6 a consumer purchased
2 units of the good, and when the per unit price was $2 the consumer purchased 6 units.
Determine the demand equation.

8. Application exercise. Assume that a supply equation passes through points (2, 6) and
has a slope of 2. Determine the equation.

9. Application exercise. Assume that the market price of a good supplied by a company
increased $3 every month. Its price after 10 months was $220. Find the supply equation
of this company for this good.

10. Application exercise. Suppose that the per unit profit from the sale of a good (x) by a
company is $15, its total fixed cost is $50, and its total variable cost is 5x. Find the
breakeven (that is, no profit and no loss) quantity of x sold.

11. Application exercise. Assume that the inverse demand and supply equations of a good
sold by a firm are P = 20 − 2Q and P = 2 + Q, respectively. Also assume that the
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government imposes a tax of $2 on every unit of the good sold. Determine the pre-
and post-tax equilibrium prices and quantities, and the portions of the tax borne by the
seller and by the buyer after the tax.

12. Application exercise. Assume that the inverse demand and supply equations of a good
sold by a firm are as those in application exercise 11. Also assume that, instead of
imposing a tax, the government now gives a subsidy of $1 for every unit sold to the
seller of the good. Determine the pre- and post-subsidy equilibrium prices and quantities,
and the portions of the subsidy received by the seller and the buyer.

13. Application exercise. Assume that the total cost and total revenue equation of a firm are
C = 6−x2 and R = x2, respectively, where C is the total cost, R is the total revenue, and
x is the amount of the good produced. Determine the breakeven quantity. Now assume
that the government imposes an excise tax of $2 on every unit of the good produced.
Determine how this affects the above results. How will a subsidy (instead of an excise
tax) of $1 on every unit of the good produced change the original results?

Web supplement: S1.6.9 Mathematica applications

1.7 Inequalities, intervals, and absolute values

It is always convenient to express relationships in terms of equations. But this is often an
extreme case. Students of the subjects of our interest are frequently required to manipulate
relationships that are not equations, rather inequalities. This is particularly so in the study of
topics like optimization involving inequality constraints, which we will discuss later in the
book. In addition to inequalities, these students are often required to use ideas of intervals and
absolute values in algebraic manipulations. Therefore, it is important that students of these
subjects possess a reasonable understanding of inequalities, intervals, and absolute values.
Although there are both linear inequalities and nonlinear inequalities, our discussion here
is confined only to linear inequalities only.

1.7.1 Linear inequalities

An inequality is a statement that one expression is not equal to (i.e. less than or greater than)
another expression. We begin the discussion of linear inequalities with ideas of the number
system we briefly discussed in Section 1.3.1. We understand from the discussion of real
numbers that −2 is less than 0 and +2 is greater than 0. How do we write this? One way to
write these is in words: −2 is less than 0, and +2 is greater than 0. This can be seen from
Figure 1.7.1.

Imagine that, instead of numbers, we use letters to represent points (or, in other words,
numbers) on a real line as shown in Figure 1.7.2. A visual inspection of Figure 1.7.2 indicates
that a is less than b and c is greater than b; and these may be written with inequality signs
as a< b and c> b, respectively. These are sometimes read as “a is strictly less than b” and

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Figure 1.7.1
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p

Figure 1.7.2

Table 1.7.1

Notation = �= > < ≤ or <= ≥ or >=
Meaning Equal to Not

equal to
Greater than or

strictly greater
than

Less than or
strictly less
than

Less than or
equal to

Greater than
or equal to

“c is strictly greater than b,” respectively. The figure also indicates that since p is equal to
e, we write it as p = e; and since a is not equal to b, we write it as a �= b. If there is a point
or number which is very close to another point or number, then we state that the former
is approximately equal to the latter, and denote by the sign ≈; for example, 2.99987 ≈ 3.
Sometimes we may state that “b is greater than or equal to a” and “c is less than or equal
to d.” These are written as b ≥ a and c ≤ d, respectively. These notations and their meanings
are summarized in Table 1.7.1.

Students of economics, business, and finance may at times also encounter double
inequalities. Consider Figure 1.7.2. We know that a < b and b < c. Therefore, we may
write a< b< c or c> b> a, which are examples of double inequalities.

1.7.2 Properties of linear inequalities6

Some of the important properties of linear inequalities are the following.

Property I. If a< b, then a + c< b + c, and a − c< b − c.
Property II. If a< b and c> 0, then a × c< b × c, and (a/c)< (b/c).
Property III. If a< b and c> 0, then a(−c)> b(−c), and [a/(−c)]> [b/(−c)].
Property IV. If a< b, and a �= 0 and b �= 0, then (1/a)> (1/b).

Notice that the third and the fourth properties above are tricky, and the reader has to be
clear about their meanings. The third property implies that if both sides of an inequality
are multiplied by a negative number, then the inequality sign will be reversed. Similarly, the
fourth property implies that if we take the reciprocals of both sides of an inequality, then the
inequality sign will be reversed.

1.7.3 Solution of inequalities

As an example, consider the inequality 3(2 − a) < 5. Then, by applying the second
property of linear inequalities, we can divide both sides of the inequality by 1/3 and get
(3/3)(2 − a)< 5/3, which simplifies to 2−a< 5/3. Now, by applying the first property, we
can write 2 − a − 2< (5/3) − 2 = −a<−1/3. And, by using the third property, we obtain
(−1)(−a)> (−1/3)(−1). This simplifies to the solution a> 1/3.
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As another example, consider the double inequality 0 < 2/a < 5. Using the second
property, we get (0/2)< (2/2a)< (5/2) = 0< (1/a)< 5/2. Again using the second property,
we obtain 0×a< (1/a)×a< (5/2)×a = 0< 1< (5/2)a. Applying the second property for
the third time yields 0 × (2/5) < 1 × (2/5) < (5/2) × (2/5) × a = 0 < 2/5 < a. Therefore,
we have the solution a> 2/5.

1.7.4 Linear inequalities in two variables

Some of our earlier examples of inequalities used numbers or symbols that were constants.
All the properties of inequalities discussed in Section 1.7.2 are equally applicable if we use a
variable (say, x) instead of a constant. As an example, an inequality with the variable x can be
written as x + 1< 2. We know that the solution of this inequality is x< 1. The graph of this
will represent the set of all values on the real line to the left of the thick vertical line at x = 1
(the complete area except that on the thick vertical line) in Figure 1.7.3(A). If our inequality
were x+1 ≤ 2, then the solution would be x ≤ 1. The graph of this would represent the set of
all values on the real line to the left and on the thick vertical line at x = 1 (the complete area)
in Figure 1.7.3(A). If the inequalities were x+1> 2 (with solution x> 1) and x+1 ≥ 2 (with
solution x ≥ 1), their graphs would represent the set of all values on the real line to the right
of the thick vertical line at x = 1 (the complete area except that on the thick vertical line)
and to the right and on the thick vertical line at x = 1 (the complete area) in Figure 1.7.3(A),
respectively.

Sometimes we are required to use two variables in a single inequality. For example,
consider the inequality x + y < 1. We know that when y = 0, x < 1. This gives the values
that x can take: all values on the horizontal axis below 1. Similarly, if x = 0, y < 1, which
gives the values that y can take: all values on the vertical line below 1. If we draw a thick
straight line, as the white line in Figure 1.7.3(B), connecting points (0, 1) and (1, 0), then
all combinations of x and y below this line (x + y = 1) will be the set of solutions to this
inequality, as shown by the lower area in Figure 1.7.3(B). If the inequality were x + y ≤ 1,
then all combinations of x and y on and below the white line would be the set of solutions
to this inequality. If the inequality were x + y > 1 (or x + y ≥ 1), the set of solutions would

x = 1

10

x > 1
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x
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consist of all combinations of x and y above the white line (or on and above the white line)
in Figure 1.7.3(B).

Some of the optimization methods in the subjects of our interest make use of systems
of linear inequalities in more than one variable. Therefore, students of these subjects are
expected to possess at least a working knowledge of these systems. For the time being, we
shall consider the systems of linear inequalities in two variables.

As an example, consider the system of two linear inequalities in two variables: 2x+y< 10
and x + 2y < 10. Let us first attempt to solve this system and, then, graph the solution set.
Consider 2x + y < 10 first. If we treat x = 0, we get y < 10, and if y = 0, we get x < 5.
This gives us the y-intercept (0, <10) and the x-intercept (< 5, 0). Therefore, the solution
of this inequality is the set of combinations of all points below the line 2x + y = 10 in
Figure 1.7.4(A). Now consider the second inequality: x+2y< 10. Following the same logic,
we get the y-intercept (0,< 5) and the x-intercept (<10, 0). The solution of this inequality
is the set of combinations of all points below the line x + 2y = 10 in the Figure 1.7.4(A). It
can be seen from Figure 1.7.4(A) that the set of combinations of x and y that satisfy both
inequalities simultaneously is given by the set of points below the thick, solid line. But, if
our inequalities were 2x+y ≤ 10 and x+2y ≤ 10, then the solution set would contain the set
of all combinations of x and y that lie on and below the thick, solid line in Figure 1.7.4(A).

Now consider the same inequalities 2x+y< 10 and x+2y< 10, but with the constraint that
both x and y must be nonnegative (that is, x,y ≥ 0). This constraint is called the nonnegativity
constraint. This means that the solution set must include only nonnegative values of x
and y. Given the inequalities and the nonnegative constraints x,y ≥ 0, the solution set would
be the set of all combinations of x and y within the solid quadrilateral as in Figure 1.7.4(B). If,
instead, the inequalities were such as 2x + y ≤ 10 and x + 2y ≤ 10, and with the constraints,
the solution set would be the set of all combinations of x and y within and on the thick
quadrilateral as in Figure 1.7.4(B).

As another example, consider the system of linear inequalities 2x + y > 10 (with
y-intercept (0, >10) and x-intercept (>5, 0)) and x + 2y > 10 (with y-intercept (0, >5)
and x-intercept (>10, 0)). In the case of 2x + y > 10 and x + 2y > 10, the solution set will
be the set of points above the thick line in Figure 1.7.5(A). If the system of inequalities

10
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were 2x + y ≥ 10 and x + 2y ≥ 10, the solutions set would be the set of all points on and
above the thick line in Figure 1.7.5(A). The solutions set for inequalities 2x + y > 10 and
x +2y> 10 with nonnegative constraint x,y ≥ 0 will be the set of points above the thick line
in Figure 1.7.5(B), and the solutions set for inequalities 2x + y ≥ 10 and x + 2y ≥ 10 with
nonnegative constraint x,y ≥ 0 will be the set of points on and above the thick line.

1.7.5 Intervals

A concept closely related to inequalities is that of intervals. An interval represents the set
of all numbers that lie between two numbers or points (called end points) on a real line,
either including or excluding the points. If the set contains the end points, it is called a closed
interval, and if the set does not contain the end points, it is called an open interval. We can
use Figure 1.7.6 to explain the ideas of intervals. If an interval is written with square brackets,
[. . .], we call it a closed interval, and if it is written with parentheses, (. . .), it is called an
open interval. If an interval is written with one parenthesis and one square bracket, (. . .] or
[. . .), it is called a half-open interval or a half-closed interval. Therefore, with reference to
Figure 1.7.6, [e, f ] represents a closed interval; (j, k) represents an open interval; and (c, d]
and [l, m) represent half-open (or half-closed) intervals.

Notice that all the intervals discussed above possess upper and lower end points. Such
intervals are called bounded intervals (with both upper bound and lower bound). How about
the intervals representing the points b and a = −∞, and n and o = +∞? Since we cannot
specify a value for ∞ (or infinity), we may write the first interval as (−∞,b] and the second
interval as [n,+∞). Therefore, we say that (−∞,b] has no lower bound and [n,+∞) has

0
0.5 1 1.5 2 +∞−0.5

−1−1.5−2−∞ 2.5−2.5

a b c d e f j k l m n o

Figure 1.7.6
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Table 1.7.2

Notation [e, f ] (c,d] and [l,m) ( j,k) (−∞,+∞)

Name Closed Half-open Open Open
Example e ≤ x ≤ f c< x ≤ d, l ≤ x<m j < x< k −∞< x<+∞

no upper bound. Notice that all the real numbers that lie on the interval (a = −∞, o = +∞),
or (−∞,+∞), are represented by the downward-pointing brace.

Let us now pick a number, say x, which lies in the interval [e, f ]. The inequality represent-
ing this can be written as e ≤ x ≤ f . If x lies between (j, k), (c, d], and [l, m), we represent the
position of x in the form of inequalities as j < x< k; c< x ≤ d; and l ≤ x<m, respectively.
If x lies in the interval (−∞,+∞), we represent it by the inequality −∞ < x < +∞.
The above presentation of interval notations, their names, and related examples (of a
number, x, lying within the interval) are summarized in Table 1.7.2. It must be clear by
now the connection between intervals and inequalities.

1.7.6 Absolute values

Sometimes, the sign of a number is important. Consider the annual profit or loss of a company.
The number that represents the annual loss of the company in its accounts is always preceded
by the negative sign; for example, −$10 million, −$15 million, etc. Similarly, the annual
profit of the company in its accounts is always preceded by the positive sign (although it is
ignored in actual practice); for example, +$5 (or $5) million, +$20 (or $20) million, etc.

At some other times, the sign of a number is immaterial. Consider the example of the
distance run by an athlete within a specified time. Here the sign is immaterial. The magnitude
or size of a number irrespective or regardless of its sign is called the modulus or absolute
value of that number. Consider the real line in Figure 1.7.7. On the real line, the distance from
the point of origin (0) to a point or value, say x0, is called the modulus or absolute value of x0

and is denoted by |x0|. Similarly, the distance from 0 to x1 is called the modulus or absolute
value of x1 and is denoted by |x1|. For example, the distance from 0 to 2 is the modulus of 2
and is written as |2| = 2; and the distance from 0 to −2 is the modulus of −2 and is written
as |−2| = 2. This implies that the distances from 0 to 2 and from 0 to −2 are equal; that is,
|2| = |−2| = 2. Notice that irrespective of the fact that the point or the number lies to the left
or to the right of the origin, the modulus or absolute value of that number considers only the
magnitude of the number.

We shall now define the absolute value. The absolute value of a real number, x, written as
|x|, is defined as

|x| =
{

x, if x ≥ 0

−x, if x< 0
(1.7.1)

0 0.5 1 1.5 2−0.5−1−1.5−2x0 x1

Figure 1.7.7
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Sometimes one may find in the literature expressions called absolute value equations
such as |x − 2| = 3. How do we solve this equation? This equation states that the distance
from 0 to the number |x − 2| is equal to 3, in either direction (that is, x ≥ 0 or x < 0).
Then, applying the definition in equation (1.7.1) yields x − 2 = 3 or x − 2 = −3. These
two equations simplify to x = 5 and x = −1, respectively. Therefore, the solution set is
x = {5,−1}.

One may also find expressions called absolute value inequalities in the literature.
Examples of such inequalities are |x| < 2; |x + 2| < 2; |x − 2| < 2; and so on. How do
we solve such inequalities? Before we do this, we need to be a bit clearer about such
inequalities.

Consider, for example, the absolute value inequality |x| < 2. This inequality says that
|x| is less than 2 units away from 0 or the distance from 0 to |x| is less than 2. Applying
the definition of absolute value shows that x lies between −2 and 2; that is, on the interval
−2< x< 2. If |x|> 2, then x<−2 or x> 2. Notice that these results are valid even if we use
≤ and ≥ signs instead of < and > signs. Let us now generalize the above results. Assume
that we now use a general value, b, instead of specific values such as 2 or 3. Then, we may
write the solutions of the following absolute value inequalities:

|x|> b as x<−b or x> b, |x| ≥ b as x ≤ −b or x ≥ b, |x|< b as

− b< x< b, and |x| ≤ b as − b ≤ x ≤ b (1.7.2)

Let us now consider specific examples of absolute value inequalities. Consider, for
example, |x − 2|< 6. We need to solve this inequality for x. Following the general solutions
given in inequalities (1.7.2), we can write the last inequality as −6 < x − 2 < 6, or
−6 + 2 < x < 6 + 2, or −4 < x < 8. This shows that x lies between −4 and 8. In terms
of intervals discussed in the last section, this can be written as (−4, 8).

As another example, consider the absolute value inequality |x − 2| ≥ 6 for solving for x.
Following again the general solutions in inequalities (1.7.2), we may write the last inequality
as x − 2 ≤ −6 or x − 2 ≥ 6. This implies that the solution is x ≤ −4 or x ≥ 8. In terms of the
intervals discussed in the last section, these can be written as (−∞,−4] and [8,∞).

We now state the properties of absolute values. Let there be two points, a and b, on the
real line. Then, the following properties are valid.

Property I. The absolute value of the product of a and b is equal to the product of their
individual absolute values: |a.b| = |a| . |b|.

Property II. The absolute value of the ratio of a to b is equal to the ratio of their indivi-
dual absolute values: |a/b| = |a|/ |b|.

Property III. a lies between the negative absolute value of a and the positive absolute
value of a: −|a| ≤ a ≤ |a|.

Property IV. The absolute value of the difference of a and b is equal to the absolute value
of the difference of b and a: |a − b| = |b − a|.

1.7.7 Application examples

Example 1. Let that a consumer has $270 to spend on two goods (x and y), and that the
per unit price of x is $5 and the per unit price of y is $6. If the consumer buys 16 units of x,
what is the maximum units of y that can be bought?
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Solution. Given the information, we may write the inequality as 5x+6y ≤ 270, or 516+6y
≤ 270, or 80 + 6y ≤ 270, or 6y ≤ 190. This implies that the consumer can buy a maximum
of 31.67 (y ≤ 190/6 = 31.67) units of y.

Example 2. Let that a company expects to sell a minimum of 8000 units and a maximum
of 9000 units of its product every month for the next 9 months. Also let that the actual sale
(S) lies between the minimum and maximum expected sales. Express the actual sales of the
company with the help of a double inequality.

Solution. Since the company expects to sell a minimum of 8000 units every month, the
minimum sales for 9 months will be 9×8000 = 72000 units. And since the company expects
to sell a maximum of 9000 units every month, the maximum sales for 9 months will be
9 × 9000 = 81000. Therefore, the actual sales S will be between 72 000 units and 81 000
units: 72 000< S < 81 000.

Example 3. Suppose that a consumer has $1000 to spend on two goods x and y. Suppose
also that the per unit price of x is $4 and the per unit price of y is $8. Construct an inequality
that describes the above statements if the consumer spends the complete money or less than
that. Show the solution sets, using a graph, when the consumer spends $1000 completely and
when the consumer spends less than that.7

Solution. Since the unit prices of x and y are $4 and $8, respectively, the expenditures on
the two goods are $4× x and $8× y. Therefore, the required inequalities are 4x +8y< 1000
and 4x + 8y ≤ 1000 if the consumer spends less than and equal to the available money,
respectively. In order to find the solution sets we shall proceed as follows. Notice that the
x-intercept and y-intercept for the inequality 4x + 8y < 1000 are (≤ 250, 0) and (0,≤ 125),
respectively. Connecting these two intercepts we obtain the thick straight line Figure 1.7.8(A).
The set of all the combinations of x and y below this line (shaded area) in Figure 1.7.8(A) will
be the set of solutions of the inequality 4x + 8y< 1000. The set of all the combinations of x
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Table 1.7.3

Output x requirement Output y requirement Input availability

Input A 2 3 90
Input B 3 2 120

and y below and on the thick line will be the set of solutions of the equality 4x +8y ≤ 1000.
The latter set is called the budget set, and the equation 4x + 8y = 1000 is called the budget
line or budget equation.

Example 4. Assume that a firm uses two inputs x and y in order to produce two goods A
and B. Also assume that to produce one unit of x the firm has to use 2 units of A and 3 units
of B, and to produce one unit of y it has to use 3 units of A and 2 units of B. Assume again
that the maximum amount of A available is 90 units and the maximum amount of B available
is 120 units. Show this information with the help of a system of inequalities, and determine
the solution set (with x,y ≥ 0).

Solution. Let us first construct Table 1.7.3 using the above information. The next step is
to convert the information in Table 1.7.3 into inequalities. Then we obtain

2x + 3y ≤ 90 and 3x + 2y ≤ 120 (1.7.3)

From the first inequality we obtain (0 ≤ 30) and (≤ 45,0) as the x-intercept and y-intercept,
respectively. Similarly, from the second inequality, we obtain (0,≤ 60) and (≤ 40,0) as the
x-intercept and y-intercept, respectively. Connecting these respective intercepts will give
us the straight lines in Figure 1.7.8(B). The set of solutions satisfying both inequalities
simultaneously is given by the set of all combinations lying on and inside the quadrilateral
in the figure (the shaded area).

1.7.8 Exercises

1. Solve the following inequalities:
(i) 2 + 2x ≤ 10; (ii) −x ≥ −2; (iii) [(2x + 1)/(x − 3)] < 1; (iv) 4x − 2 > 0;
(v) [(x + 1)/(2y + 1)]> 1; (vi) 3x + 2y + 3 ≤ x + y + 5; (vii) (5/2)x> (2/5).

2. Find the solution sets of the following inequalities graphically:
(i) x < y; (ii) x > y; (iii) x < y < 2 + x; (iv) x < 5; (v) x > 5; (vi) 4 < x < 6;
(vii) 4< y< 6,4< x< 6; (viii) 0< x< 2,0< y< 2; (ix) 2x+2y ≤ 10; (x) 2x+2y ≥ 10;
(xi) 2x + 2y ≤ 10, (x,y) ≥ 0; (xii) 5x + 2y ≥ 10,40x + 10y ≥ 70; (xiii) 4x + 2y ≤ 20,
x + y ≤ 4, (x,y) ≥ 0.

3. Solve the following equations:
(i) |10/x| = 5; (ii) |x/10| = 5; (iii) |x| = 5; (iv) |−x| = 5; (v) |2 + 4x| = 8.

4. Solve the following inequalities:
(i) |x|< 10; (ii) |x|> 10; (iii) |x| ≤ 10; (iv) |x| ≥ 10; (v) |4x − 2|< 8; (vi) |4x − 2| ≤ 8;
(vii) |2 + 4x|> 8; (viii) |2 + 4x| ≥ 8.

5. Application exercise. Assume that a marketing executive expected a bonus (B) between
$4000 and $6000 every month over the next 5 months. But, the actual monthly B turned
out to be between these two values. Express these statements in terms of an inequality.
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6. Application exercise. Assume that a person has to eat two types of food, say x and y, as a
part of a diet prescribed by her doctor. The doctor advised that the food must contain two
types of nutrients, say A and B. Each unit of x needs at least 10 units of A and 20 units of
B, and each unit of y needs at least 4 units of A and 2 units of B. The food must contain a
total minimum of 80 units of A and 20 units of B. Find the solution set graphically such
that x,y ≥ 0.

7. Application exercise. Assume that a firm produces two goods, say x and y, using three
inputs, say A, B, and C. Also assume that the production of one unit of x requires one
unit of A, the production of one unit of y requires one unit of B, and one unit of x and
y each requires one and two units, respectively, of C. Again assume that the maximum
quantities of A, B, and C available are 10, 15, and 24, respectively. Find the solution set
graphically such that x,y ≥ 0.

8. Application exercise. Suppose that a producer has $10 000 to spend on two factors l
and k . Suppose also that the unit price of l is $2 and the unit price of k is $4. Construct
an inequality that describes the above statements if the producer spends the complete
money or less than that. Show the solution sets, using a graph, when the producer spends
$10 000 completely and when less is spent.

Web supplement: S1.7.9 Mathematica applications

1.8 Functions

Functions lie at the heart of the science of economics. A student of economics has to study
a multitude of functions: demand function, supply function, cost function, revenue function,
production function, profit function, consumption function, and so on. Business and finance
students also deal with some of these or related functions. Therefore, it is extremely important
that students in these branches possess a reasonably good understanding of the meaning,
generation, nature, and types of functions.

1.8.1 Univariate functions

Before we get into functions, we need to explore a few concepts such as the Cartesian
coordinate system or rectangular coordinate system; ordered pair; Cartesian product;
relation; and mapping for a proper understanding of functions. Therefore, we present below
a brief exposition of each of these concepts.

Assume that we pick a real line and place it horizontally. Assume also that we pick another
real line and place it such that it is perpendicular to the real line already placed horizontally
and that each line passes through the middle of the other. Then the former will be called
the horizontal axis or the x-axis and the latter will be called the vertical axis or the y-axis.
Such a system of lines is called a Cartesian or a rectangular coordinate system, as shown in
Figure 1.8.1. As can be seen, the two axes divide the plane into four areas called quadrants.
It is important to note that the signs of the values taken by the variables (x and y) are
different in different quadrants. Notice that the axes cross each other at point 0, and this
point is called the origin. Both variables have positive signs in the first quadrant and have
negative signs in the third quadrant. But, x has negative and positive signs in the second and
fourth quadrants, respectively; and y has positive and negative signs in the second and fourth
quadrants, respectively.
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Assume now that we drop a straight line from a specific point to the x-axis and another
one from the same point to the y-axis (such as point P1, P2, P3, or P4). Then the value
at which this line touches the x-axis is called abscissa and the value at which the second
line touches the y-axis is called ordinate. These two values together are called coordinates.
Notice that there is an innumerable number of coordinates in the x,y plane. Hence the name
coordinate system.

We mentioned that, to draw Figure 1.8.1, we first picked a real line that represented
the x-axis. This means that we have one real line and that all the numbers on this line
constitute a set of real numbers. Therefore, the points or numbers on this real line form a one-
dimensional space denoted by �1, or simply by �. If we have two axes (for two variables), as
in Figure 1.8.1, then we have two sets of complete real numbers. Then the plane (e.g. quadrant
I, II, III, or IV in the figure) defined by these two sets constitutes a two-dimensional space
denoted by �2. Assume that, instead of two, we have three sets of complete real numbers
represented by three real lines (for three variables). Then the plane defined by these three
sets jointly constitutes a three-dimensional space denoted by �3. In short, if we have n real
lines to represent n variables, then we will have n sets of real numbers and the plane defined
by these sets jointly is called an n-dimensional space represented by �n. Notice that if n> 3,
a geometric interpretation of space is not possible.

Let us now consider the concept of an ordered pair. An ordered pair is a grouping of
elements in a specific order. Let there be two elements a and b. Also let that we group them
in a specific order, for example a first and then b, and denote it by (a, b). This is called an
ordered pair of a and b. Another ordered pair of the same elements is (b, a). One may wonder
here whether (a, b) is equal to (b, a). The answer is no; because they are based on different
orders. This can be confirmed from Figure 1.8.3 because the ordered pairs represented by
points E and F are different.

An astute reader may now wonder how an ordered pair differs from a set. To explain
the difference between them, let us take two sets {a, b} and {b, a}. We know from our
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discussion in Section 1.2 that {a, b} = {b, a}. But, as discussed above, the ordered pair (a, b)
is not equal to the ordered pair (b, a). The reason for this is that orders are immaterial among
sets, while they are important among ordered pairs.

Assume now that we have a set of four points on the x-axis, namely a, b, c, and d:
x = {a,b,c,d}. Assume also that we have another set of four similar points on the y-axis:
y = {a,b,c,d}. The total number of ordered pairs that can be generated from two sets of four
elements is 16 (42 = 16). The set of all these ordered pairs is called the Cartesian product
or direct product of the sets x and y, and is denoted by x × y (read “x cross y”). Notice that
even if x and y are sets of numbers, x × y will represent a set of ordered pairs of numbers.
However, how do we get 16 ordered pairs from two sets of 4 letters or elements? The answer
can be shown through Figures 1.8.2(A)–(D). As shown, we associate each element of x to
every element of y. Thus, we can construct the Cartesian product generated from the two
sets x and y as

x × y = {(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,a), (c,b), (c,c), (c,d),

(d,a), (d,b), (d,c), (d,d)}.

Graphing these cross products in a diagram gives us the Cartesian system or rectangular
system as illustrated in Figure 1.8.3(A).

As an example, consider two small sets: x = {1,2,3} and y = {1,2,3}. We know that we
can generate 32 = 9 ordered pairs from these sets. They are: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
(2, 3), (3, 1), (3, 2), and (3, 3). Therefore, the Cartesian or cross product in the present case
is x × y = C = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}. The graph of this
rectangular system is illustrated in Figure 1.8.3(B).
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The next concept we need to explain is relation. To do this, consider the statement that y is
greater than x. This statement can be expressed using the inequality y > x. What will be the
solution set of this inequality? This problem can be easily solved with the help of the graph
in Figure 1.8.3(B). Notice that we have drawn a straight line from the origin to the point A
(0A) that passes through points representing values of x and y such that x = y. Therefore, all
points above this line must satisfy the inequality y> x. These points are, among others, (1, 2),
(1, 3), and (2, 3). We denote the set of these points by D such that D = {(1,2), (1,3), (2,3)}.
Notice that D is a subset of the cross product C; that is, D ⊆ C. A relation is defined as a
subset of the Cartesian or cross product. Therefore, D constitutes a relation.

The graph in Figure 1.8.3(B) can be used to represent other examples of relations. Consider
the two statements: y is equal to x, and y is less than x. These can be written as y = x and
y< x, respectively. All the points lying on the line (0A) satisfy the first statement and all the
points below that line satisfy the second statement. Assume that the set of all the points on
the line 0A is denoted by the set E; that is, E = {(1,1), (2,2), (3,3)}. This means that E ⊆ C.
Therefore, E constitutes a relation. Similarly, we denote the set of all points below the line
0A by the set F . We know that F ⊆ C. Therefore, Fdefines another relation.

We shall now explain the meaning of the term mapping with the help of two sets (x
and y), which we used to derive the Cartesian product illustrated in Figure 1.8.3(B). The term
mapping refers to the process of associating the elements of one set (x) to those of another
set (y). Notice that we picked up one element from x to associate it with an element from y
such that the statement y > x, or y < x, or y = x is satisfied. This process of associating the
elements of two or more sets is called mapping.

We are now ready to define a function.8 Let there be two sets, x and y. A function is
a special type of relation where for each (or more) element(s) in set x, there is only one
corresponding element in set y. Formally, a function is a relation or rule denoted by f that
produces a correspondence between the elements of two sets such that to each (or more)
element(s) in the first set (x) there corresponds one and only one element in the second set
(y) denoted by f (x), and read “f of x” (or y = f (x), read “y is a function of x”). The first set
is called the domain of the function and the second set is called the range of the function.

We may again use the graph in Figure 1.8.3(B) to explain the above definition of
a function. We discussed above the statement that y = x and found some points in the x,y
plane that satisfied this statement. These points were represented by the straight line 0A in
the figure. We stated that the set of points on this line described a relation. And, therefore,
this relation constituted a function. The reason is that for one (or more) value(s) of the
variable x, we have one and only one value of the variable y.

As another example, consider a statement in �2: y is half of x. This statement can be
written as y = (1/2)x. Assume that x ∈ � and y ∈ �. When we map the different values
of x into y we obtain the relation that constitutes a function y = 0.5 × x as illustrated in
Figure 1.8.4(A). In fact what we have done in Figure 1.8.4(A) is simply a mapping of
different values of x onto a unique value of y, such that y = 0.5 × x is satisfied, as shown
in Figure 1.8.4(B).

It is important to understand whether a graph represents a function or not. One can judge
whether a graph represents a function or not using a test called the vertical line test. Imagine
that we have a function with dependent variable y and independent variable x. We know from
the definition of a function given above that for a graph to represent a function there should
be only one point on the graph that intersects with a line drawn vertically to the graph, or
there should be only one value of y for one (or more) value(s) of x. This can be checked
by drawing a vertical line through the graph to the x-axis at, say, x = x1. If the vertical line
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intersects the graph at exactly one point, then the graph represents a function, otherwise it
does not represent a function.

Let us now use the vertical line test to check whether the graphs illustrated in
Figures 1.8.5(A)–(G) satisfy the definition of a function. In the graph in Figure 1.8.5(A)
there is only one y value for each value of x and, therefore, it represents a function. In
Figure 1.8.5(B), there is no unique y value for each value of x and, therefore, it does not
represent a function. In Figures 1.8.5(C), (F), and (G), there is only one y value for each
value of x and, therefore, these graphs represent functions. And there is no unique y value for
each value of x in Figures 1.8.5(D) and (E) and, therefore, they do not represent functions.

So far we have defined functions and graphically illustrated them using concepts such
as cross products, relations, and mappings. However, the reader must have noticed that the
domains of all these functions were defined over the elements of a single set. In other words,
all the functions had only one independent variable (in our examples, x). Such functions are
called univariate functions. Notice that one can find plenty of functions whose domains are
defined over the elements (values) of more than one set (variable), or multivariate functions.
We will deal with such functions in Section 1.8.5.

We discussed equations in detail in Section 1.6. Let us now take a closer look at
equations and, thereby, their dissimilarity with functions. The reader must have noticed
that when we mapped the set x onto the set y, as illustrated in Figure 1.8.4(B), using the
statement “y is half of x” we obtained some specific values in the set y. Therefore, for every
value xi ∈ x we have a unique value yi ∈ y. If we pick yi = 2 and reframe the statement as “half
of xi is equal to yi” we may write the statement algebraically as 0.5× xi = yi or 0.5× xi = 2.
The last expression is an equation whose solution is xi = 4 as confirmed by the mapping
in Figure 1.8.4(B). In short, a function purports a sequence of associations between two or
more sets but an equation purports only one (few) specific association(s). This was the reason
why we used subscripts in Sections 1.6.1 and 1.6.2.

However, in most practical cases we discard the subscripts for convenience and write the
expressions as 0.5×x = y = 2. Our above exposition suggests that functions are defined over
the entire domain set(s). Therefore, if we replace the specific elements of the domain (say
xi) or of the range (say yi) by the domain (x) or by the range (y) itself, an equation becomes
a function. This implies that we if replace xi and yi by x and y, respectively, and use the
notation f (x) then an equation becomes a function.
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Two important points are worth mentioning here. First, a general function such as y =
f (x) may take many specific forms depending upon the constants and coefficients involved
in it and upon the powers of the independent variable, x. In other words, a general function
y = f (x) may take many specific forms depending upon the rule f applied to the function.
For example, y = f (x) = x, y = f (x) = 1 + x; y = f (x) = 2 + 2x2; etc. Second, one has to be
clear about the equality of functions. Let there be two functions f and g. Assume that both
are the functions of x. Then these two functions are equal, i.e. f = g, only if they have the
same domain (the set of values that x can take).

1.8.2 Combination of functions; composite and compound functions

Functions obey the four fundamental arithmetic rules of addition, subtraction, multiplication,
and division. One can generate a new function by combining two or more functions through
the four arithmetic rules if the functions’ domains are the same. This process of combining
functions, or the function so generated, is called a combination of functions. Assume that we
have two functions, f and g, of x. Then we can do the above four operations that generate
new functions as

F(x) = (f + g)(x) = f (x) + g(x) (1.8.1)

G(x) = (f − g)(x) = f (x) − g(x) (1.8.2)
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H (x) = (f × g)(x) = f (x) × g(x) (1.8.3)

J (x) = (f /g)(x) = [f (x)/g(x)], g(x) �= 0 (1.8.4)

These rules suggest that we may express a function as a combination of two or more
functions, and vice versa. As an example, consider the two functions f (x) = 3 + 2x and
g(x) = 1+4x. Then the combinations of functions corresponding to equations (1.8.1)–(1.8.4)
will respectively be

F(x) = (f + g)x = f (x) + g(x) = (3 + 2x) + (1 + 4x) = 4 + 6x

G(x) = (f − g)(x) = f (x) − g(x) = (3 + 2x) − (1 + 4x) = 2 − 2x

H (x) = (f × g)(x) = f (x) × g(x) = (3 + 2x) × (1 + 4x) = 3 + 14x + 8x2

J (x) = (f /g)(x) = [f (x)/g(x)] = [(3 + 2x)/(1 + 4x)]

The next concept that we need to understand is composite function and the process of
forming it, called composition of functions. We shall discuss composition of functions with
the help of an example. We know that the quantity of output (z) produced of paddy, other
things remaining the same, depends on the quantity of water (y) in the paddy field, that is
z = g(y); and the quantity of water, again other things remaining the same, depends on the
amount of rainfall (x), that is y = f (x). Therefore, in this example, we have z depending on
y, which in turn depends on x; that is, we have a function-of-function. This means that z is
a direct function of y and an indirect function of x. Such a function is called a composite
function, and we denote it by (g ◦ f )(x) = g(f (x)). This is illustrated in Figure 1.8.6.

In composition of two functions, z = g(y) and y = f (x), we first apply one function (in
our example y = f (x)) to a number and then apply the other function z = g(y) to the result.
We use a specific example to show how this works. Assume that z = g(y) = y − 2y2 and
y = f (x) = 6x2. Then the composite function (g ◦ f )(x) = g[f (x)] can be obtained through
the substitution of f (x) = y for every occurrence of y in g(y). Therefore, we obtain the
result g[f (x)] = 6x2 − 2(6x2)2 = 6x2 − 2 × 62x4 = 6x2 − 2 × 36 × x4 = 6x2 − 72x4.

The last concept we consider in this section is compound functions. They are also
called piecewise functions. This may be better illustrated with an example. Suppose that
a saleswoman of a firm receives her remuneration (y) in two forms. The first is that she
receives $10 000 a month irrespective of sales. The second is that, in addition, she receives
a commission of $1 for every unit sold beyond the target level of 10 000 units. How do we
represent her remuneration in the form of a function? One minute’s thought would suggest
that one simple function would not suffice to represent her remuneration. This can be seen
from Figure 1.8.7. The question now is how we can write the information given in the

g(f(x)) f(x)

z
g f

y x

Figure 1.8.6
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remuneration example and its graphic illustration in Figure 1.8.7 in the form of a function.
Following the figure, we can write it as

y = f (x) =
{

10000 0 ≤ x< 10000

x 10000 ≤ x ≤ 20000

1.8.3 Types of functions and their graphs

Having considered the meaning and generation of functions, we now turn to the types
of functions. We presented a detailed discussion of equations in Section 1.6.1. And we
found the link between equations and functions at the end of Section 1.8.1. Following these,
we may write equations (1.6.1) through (1.6.7) as

y = f (x) = b0x0 + b1x1 + b2x2 + b3x3 +·· ·+ bnxn (1.8.5)

y = f (x) = b0x0 = b0 (1.8.6)

y = f (x) = b0x0 + b1x1 = b0 + b1x (1.8.7)

y = f (x) = b0x0 + b1x1 + b2x2 = b0 + b1x + b2x2 (1.8.8)

y = f (x) = b0x0 + b1x1 + b2x2 + b3x3 = b0 + b1x + b2x2 + b3x3 (1.8.9)

y = f (x) = ax (1.8.10)

y = f (x) = loga x (1.8.11)

which are called general polynomial function, constant function, linear function, quadratic
function, cubic function, exponential function, and logarithmic function, respectively. The
graphs of the second to the seventh of these functions, with the given values for constants,
are illustrated in Figures 1.8.8(A)–(F).

1.8.4 Other types of functions and their graphs

One type of function that we have not discussed so far is a continuous function. All of the
functions we have considered so far were continuous functions. A function is said to be



[16:29 8/11/2011 5640-Ummer-Ch01.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 45 1–68

Review of basics 45

(A)

(D) (E) (F)

(B) (C)b0 = 5 b0 = 5 & b1 = 1 b0 = 3, b1 = 5 & b2 = −1

b0 = 3, b1 = 5, b2 = −5 & b3 = 1.75 a = 4

0 2 4 6 8 10
x0

2

4

6

8

10
y

0 2 4 6 8 10
x0

2
4
6
8

10
12
14

y

0 1 2 3 4 5
x0

2

4

6

8

10
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x0

2

4

6

8
y

0.0 0.5 1.0 1.5 2.0
x0

1

2

3

4

5
y

0 2 4 6 8 10
x0.0

0.5

1.0

1.5

2.0
y

a = 10

Figure 1.8.8

0.0 0.5 1.0 1.5

(A) (B)
2.0 2.5

x0.0

0.5

1.0

1.5

2.0

2.5
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x0

1

2

3

4
y

Figure 1.8.9

continuous if its graph does not contain gaps (either vertical or horizontal). In other words,
a continuous function is one whose graph can be drawn without lifting the pencil from
the paper. However, it may contain corners. The difference between a continuous function
and a smooth function is that the former may contain corners while the latter does not.
The opposite of a continuous function is a discontinuous function, which contains gaps as
shown in Figures 1.8.9(A) and (B).

Another type of function that we have yet to consider is a step function. In this function,
for each interval in the domain, there will be a specific constant value in the range. But the
value in the range jumps up (or down) as we move forward (or backward) from one interval
to another interval in the domain. Graphs of such functions are shown in Figures 1.8.10(A)
and (B).

Another important function frequently used in the subjects of our interest is an inverse
function. Let y = f (x). If f is a one-to-one function,9 then the inverse of f , denoted by
x = f −1(y), read as “x is an inverse function of y,” is the function formed by interchanging
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the independent and dependent variables of f . If f is not a one-to-one function (that is, an
onto function), then f does not have an inverse. Inverse functions are mirror images of each
other. Since the exponential and logarithmic functions are mirror images of each other, they
are inverse functions as their graphs in Figures 1.8.8(E) and (F) suggest.

As an example, let our original function be y = f (x) = 3 + 2x. Then interchanging the
independent and dependent variables, we get x = f −1(y) = −1.5−0.5y, which is the inverse
of the original function. The graphs of these two functions are illustrated in Figure 1.8.11(A).

An implicit function is another important type of function. Let our function be y1/2 =
f (x) = n/(x1/2), where n is a positive real number. Functions such as these are called explicit
functions. In fact all the functions we have dealt with so far in the present chapter are explicit
functions. Notice that from the last function we can judge that y is the dependent variable and
x is the independent variable. Suppose that we write this function as f (x,y) = y1/2x1/2 = n.
But now we cannot distinguish between the dependent and independent variables. Functions
such as these are called implicit functions. The graph of this function is illustrated in
Figure 1.8.11(B).
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There is another type of function that is often used in the literature. This is called a
monotonic function. Sometimes a function will always be increasing or decreasing. Functions
like these are called monotonic functions. If the function is always increasing, it is called
an isotonic function; if the function is always decreasing, it is called an antitonic function.
Examples of isotonic and antitonic functions are the supply and the demand functions of
a good (assuming other things remain the same), respectively.

1.8.5 Multivariate functions

Our discussion so far in the present section has been limited to univariate functions. This is,
in fact, a simplified form of reality. Students of economic sciences normally deal with a large
number of functions that have more than one independent variable. A function with more than
one independent variable is called a multivariable function or multivariate function. Suppose
that we have a function with the dependent variable z and the independent variables x and y.
Then this multivariate function is written as z = f (x,y).

Normally the decision to cultivate most agricultural commodities is determined not just
by their respective current prices, but by their past prices as well. A company’s revenue
from the sale of a good is determined by many factors including the price of the good and
the amount of advertising expenditure. The price of the share of a company is influenced
by a host of forces including the performance of the company and government policies. A
person’s current year’s consumption expenditure depends not only on their current year’s
income but also on their past year’s income and consumption. A company’s decision to invest
in a project depends, among others, on the cost of capital and the expected return from the
project. Examples of multivariate functions like these are plenty in our fields of interest.
Therefore, it is important that students of these subjects posses a reasonable understanding
of such functions.

As an example of a multivariate function, consider the Cobb–Douglas production
function. This production function is written as Q = A.Kα.L1−α , where Q represents the
quantity of output produced, A denotes the efficiency parameter reflecting technology,
K represents the amount of capital employed, L denotes the quantity of labor employed,
and the Greek letter α represents the elasticity of output with respect to K . The graph of this
function, for A = 1 and α = 0.5, is illustrated in Figure 1.8.12(A).

Figure 1.8.12
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Another example of a multivariable function in economics is the constant elasticity of
substitution production function (also called the CES production function). This function
is written as Q = A[β.K−λ + (1 − β).L−λ]−1/λ, where Q, A, K , and L are the same as in
the Cobb–Douglas production function. The Greek letters β and λ represent the distribution
parameter and the substitution parameter, respectively. The graph of this function, for A = 1,
β = 0.5, and λ= 0.9, is illustrated in Figure 1.8.12(B).

1.8.6 Application examples

Example 1. Assume that a company’s total revenue (R) and total cost (C) are functions of
output produced (q). If R = f (q) = 0.3q and C = f (q) = 1 − 0.5q, find the function for the
company’s total profit (	).

Solution. We know that total profit is the difference between total revenue and cost:
	= (q) = R(q) − C(q). Therefore, by applying equation (1.8.2), we obtain 	(q) = R(q) −
C(q) = (0.3q) − (1 − 0.5q) = 0.3q − 1 + 0.5q = −1 + 0.8q.

Example 2. Suppose that a firm’s total variable cost function is given by TVC = (q)0.5q
and its total fixed cost is given by TFC = 20, where q is the quantity of the output produced.
Find the total cost (C) function.

Solution. We know that the total cost is the sum of TVC and TFC: C = (q) = TVC(q) +
TFC(q). Therefore, application of equation (1.8.1) yields C = (q) = TFC(q) + TVC(q) =
20 + 0.5q.

Example 3. Assume that a firm’s total cost is given by C = 20 + 0.5q, where q is the
quantity of the output produced. Find the firm’s average cost (AC) function.

Solution. We know that AC is the ratio of total cost to the quantity of the good produced:
AC = f (q) = C(q)/q. Therefore, application of equation (1.8.4) gives AC = f (q) = C(q)/q =
(20 + 0.5q)/q = 0.5 + 20/q.

Example 4. Suppose that a firm’s total cost C per day is a function of the amount of output
(q) that it produces on that day, and it is given by C = f (q) = 10 + 2q. Also assume that
output per day is given by q = g(l) = 3+100l, where l is the number of workers employed.
Find the firm’s total cost as a function of the number of workers employed.

Solution. To solve this problem, we can use the equation for the generation of a composite
function discussed in Section 1.8.2; that is, C = g(f (x)). Therefore, we can write the total
cost as C = g(f (l)) = 10 + 2(3 + 100l) = 10 + 6 + 200l = 16 + 200l.

Example 5. Assume that Ms. Stella was employed by a company. The company offered
her a remuneration (y) package that involved three slabs. The first slab was that every month
she would be paid a monthly consolidated salary of $15 000 if the profit (x) is above 0 but
below $100 000. The second slab is that she would be paid a commission of 15 percent of
the company’s profit every month if the profit is between $100 000 and $150 000. The last
slab is that she would be given a monthly consolidated salary of $22 500 if the profit is
above $150 000. Write the function for her remuneration (assuming x> 0).
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Solution. In this example, y = f (x). Given the information we have, we can write y =
15000 if 0 ≤ x< 100000, y = 0.15x if 100000< x< 150000, and y = 22500 if x> 150000.
This can be written in functional form as

y = f (x) =

⎧⎪⎨
⎪⎩

15000 0 ≤ x< 100000

0.15x 100000 ≤ x< 150000

22500 x ≥ 150000

Example 6. Suppose that the demand function for a good is given by Qd = f (P) = 10−2P,
where Qd denotes the quantity demanded of the good and P denotes it’s unit price. Find the
inverse demand function.

Solution. The inverse demand function can be found by solving the demand equation
for P. Therefore, the required inverse demand function is P = f −1(Qd) = 5 − 0.5Qd.

1.8.7 Exercises

1. Find the domain of the following functions:
(i) y = 1/(3 − x); (ii) y = 1/(

√
5 − x); (iii) y = 2x + 6 ; (iv) y = √

5 − x; (v) y = 1/x.
2. Find the range of the following functions:

(i) y = [1/(1 + x2)]; (ii) y = x2 − 5; (iii) y = x2; (iv) y = x3; (v) y = 1/x.
3. If y = f (x) = 10 + 5x and y = g(x) = 2 + x, find

(i) (f +g)(x); (ii) (f −g)(x); (iii) (f .g)(x); (iv) (f /g)(x); (v) (f +g)(5); (vi) (f −g)(6);
(vii) (f ◦ g)(2); (viii) (f /g)(0).

4. Find (g ◦ f )(x) and (f ◦ g)(x) if
(i) g(y) = 2+3y and f (x) = 1+x; (ii) g(y) = 2x2 and f (x) = 2+x; (iii) g(y) = 2y2+y+2
and f (x) = x; (iv) g(y) = y and f (x) = 2x2 − x − 2.

5. Find the inverse functions of the following functions:
(i) y = 50 − 5x; (ii) y = 1/x; (iii) y = x2; (iv) y = √

x; (v) y = x.
6. Application exercise. Assume that a company sells a good in two markets. The revenue

from market one is given by the function R1 = f (x) = 0.5x and that from market two
is given by R2 = g(x) = 0.6x, where x denotes the quantity of the good sold. Find the
function for the total revenue.

7. Application exercise. Assume that a company’s average revenue is given by
AR = f (q) = 5 + q2 − q, where q represents the amount output sold. Find the firm’s
total revenue R(q) function.

8. Application exercise. Suppose that a firm’s total profit is given by 	 = f (x) = 3x3 −
(1/x2) − (1/x) + 10, where x denotes the quantity of output produced. Find the firm’s
profit per unit of output.

9. Application exercise. If the price of a good produced by a firm is given by P = 1/Q,
find the total revenue function of the firm.

10. Application exercise. Suppose that a person’s income (Y ) is a function of the amount
of human capital (h) that the person possesses and is given by Y = f (h) = 5000+500h.
Also suppose that the amount of human capital depends on the years of schooling, s,
and is given by the function h = g(s) = 2+ s. Find the function for the person’s income
in terms of years of schooling.

11. Application exercise. Suppose that an insurance agent receives no commission if she
does not sell any policies. The commission will be 5 percent of the value of the policy
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if she sells policies below 10 and the commission will be 7 percent if she sells policies
equal to and above 10. Express her commission in the form of a suitable function.

12. Application exercise. Suppose that a company obtains a profit of $3 per unit from the
sale of up to 1000 units of a good, $2 per unit from the sale of the next 1000 units, and
$1 per unit from the sale of units above 2000. Illustrate this information in a suitable
graph.

13. Application exercise. Suppose that the inverse demand function for a good is given
by P = f −1(Qd) = 90 − 3Qd, where P is price and Qd is quantity demanded. Find the
demand function.

1.9 Limits and continuity

The concept of limit is fundamental to the branch of calculus in mathematics. Therefore, it
is important that one understands the meaning and rules of limits for a proper understanding
of calculus, a topic that we will deal with later. We shall discuss the concept of continuity
after the discussion of limits.

1.9.1 Meaning of limits

Limits are closely related to functions. In fact, the limit of a function is the value in the range
of the function when the independent variable assumes a particular value in the domain.
Consider, for example, the function y = f (x) = (x2 −1)/(x −1). Suppose that x takes values
(in the domain) from 0 to 1 such that x will never be equal to 1 but closer and closer to 1.
Then the values taken by the function (in the range) will come closer and closer to 2. These
movements of x and f (x) are presented in the first two rows, respectively, of Table 1.9.1.
Similarly, the values taken by f (x) as x moves from 2 to 1 (again, never equal to 1) are
presented in the last two rows of the table.

Table 1.9.1 suggests that f (x) converges to 2 irrespective of the movement of x: either
when x comes down from 2 to 1 (from the right) or when x goes up from 0 to 1 (from the
left). Therefore, f (x) settles down at 2. This is the limit of the function f (x), and is written
lim
x→1

f (x) = 2 and read “the limit of f (x) as x approaches, or tends, to 1 is 2.” This can be

illustrated as in Figure 1.9.1(A).
Notice that when x approaches 1 from the right, the limit of the function f (x) is 2. This is

called right-side limit (or one-sided limit). When x approaches 1 from the left also the limit
of the function f (x) is 2, and it is called left-side limit. For the limit to exist, the left- and right-
side limits must be the same. We illustrate in Figures 1.9.2(A)–(D) some of the graphical
examples of limits (of functions f (x) = 0.25 + 0.5x − 0.25x2; g(x) = 0.5x for 0 ≤ x< 1 and
g(x) = 1 − 0.5x for 1 ≤ x ≤ 2; h(x) = 1 − x + 0.5x2; and j(x) = 1 − 0.5x for 0 ≤ x < 1 and
j(x) = 0.5x for 1 ≤ x ≤ 2) as x approaches a = 1.

Table 1.9.1

x< 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f (x) 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

x> 1 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1
f (x) 3 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1
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We now formally define limit. Suppose that we have a function y = f (x). Then the limit
of f (x) as x approaches a is the number b and is written as lim

x→a
f (x) = b. Notice that the limit

is independent of the way x approaches a. Therefore, the limit will exist if and only if both
right-side and left-side limits exist and are equal. Notice also that b = 0.5 in the examples of
the graphs illustrated in Figure 1.9.2.

Now consider, as an example, the piecewise function y = f (x) = 1 for 0 ≤ x < 1 and
y = f (x) = 2 for 1 ≤ x ≤ 2, the graph of which is illustrated in Figure 1.9.1(B). It is clear
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that f (x) approaches two values when x → 1 from either directions. When x → 1 from the
left of x = 1, the limit is 1 and when x → 1 from the right of x = 1, the limit is 2. Since the
left-side and right-side limits are different, as per the definition of limit above, the limit of
the piecewise function y = f (x) = 1 for 0 ≤ x < 1 and y = f (x) = 2 for 1 ≤ x ≤ 2 does not
exist at x = 1.

We illustrate in Figures 1.9.3(A) and (B) two graphical examples of limits that do not exist
at x = a. In Figure 1.9.3(A), the left-side limit of the function y = f (x) = 1/x is −∞ and the
right-side limit of the same function is +∞ as x → a = 0. Similarly, in Figure 1.9.3(B) the
left-side limit of the piecewise function (y = f (x) = 1+0.5x for 0 ≤ x< 1 and y = f (x) = 3+x
for 1 ≤ x ≤ 2) is 1.5 and the right-side limit of the same function is 4 as x → a = 1. Since
the left-side and right-side limits of these functions are different, the functions that define
the graphs in Figures 1.9.3(A) and (B) do not have limits at x → a = 0 and x → a = 1,
respectively.

1.9.2 Properties of limits

Limits exhibit some important properties. Suppose that we have two functions f (x) and
g(x). Also let that both lim

x→a
f (x) and lim

x→a
g(x) exist. Then we have the properties given

below.

Property I. Let f (x) = k , then lim
x→a

f (x) = lim
x→a

k = k , where k is a constant.

Property II. Let f (x) = xn, then lim
x→a

f (x) = lim
x→a

xn = an, where n is any positive integer.

Property III. lim
x→x

k × f (x) = k × lim
x→a

f (x), where k is a constant.

Property IV. lim
x→a

[f (x) ± g(x)] = lim
x→a

f (x) ± lim
x→a

g(x).

Property V. lim
x→a

[f (x) × g(x)] = lim
x→a

f (x) × lim
x→a

g(x).

Property VI. lim
x→a

[f (x)/g(x)] = lim
x→a

f (x)/ lim
x→a

g(x).

Property VII. lim
x→a

[f (x)]n = [ lim
x→a

f (x)]n.
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1.9.3 Evaluation of limits

Students of economics, businesses, and finance are frequently required to evaluate the limits
of a variety of functions. We shall explain in the present section how one can evaluate the
limits of some of the important functions using the properties listed in Section 1.9.2.

Assume that we have the function f (x) = 2 + 2x. What is the limit of f (x) when x → 2?
Applying Properties III and IV listed in Section 1.9.2, we can show that the limit of this
function is 6. How did we obtain this value? Although x only approaches 2 and is never equal
to 2, we obtained the limit 6 through the substitution of 2 for x into the function f (x).

There may be many instances where the method of substitution does not work. For
example, consider the function f (x) = (x2 − 1)/(x − 1). What is the limit of this function
as x → 1? Suppose that we apply the substitution method to find the limit of this function. If
we substitute x = 1 into the function we get a meaningless quantity: zero divided by zero. This
shows that the substitution method is not always advisable. Then, how do we find the limit of
the function? One way is to convert the original function into another form and then do the
substitution. We may write the numerator of the given function as (x2 −1) = (x2−x+x−1) =
(x + 1)(x − 1). Thus, we may convert the original function f (x) = (x2 − 1)/(x − 1) into the
form f (x) = (x2 − 1)/(x − 1) = [(x − 1)(x + 1)]/(x − 1) = (x +1). Now, substitution of x = 1
yields lim

x→1
f (x) = lim

x→1
(x + 1) = 1 + 1 = 2. Therefore the limit of the function as x → 1 is 2.

Notice that this was the result we obtained in Section 1.9.1.
Now consider an important function that often appears in the subjects of our interest:

f (x) = (1 + x)1/x. What is the limit of this function as x → 0? It is easy to see the limit of
this function as x → 0 with help of the graph of this function as illustrated in Figure 1.9.4.
We see from this graph that the limit of the function as x → 0 from either side is 2.71828.
This is the value of the term e, the base of natural logarithm, we mentioned in Section 1.5.
Therefore, we can write lim

x→0
[(1 + x)1/x] = 2.71828 = e.

1.9.4 Continuity

Informally, a continuous function is a function whose graph can be drawn without
lifting the pencil from the paper (i.e. the graph does not contain gaps). When looking
from this angle, many of the graphs that we have constructed so far are the graphs of
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continuous functions. Similarly, a function whose graph is broken or contains gap, say at
x = a, is a discontinuous function. Graphs in Figures 1.8.9, 1.8.10, 1.9.1(B), and 1.9.3(B) are
examples of discontinuous functions.

However, we need a formal definition of continuity. We state it here. Let there be a
function f (x) and a point x = a in the domain of f (x). Then f (x) is said to be continuous
at x = a if

1. lim
x→a

f (x) exists, 2. f (a) exists, and 3. lim
x→a

f (x) = f (a)

If one or more of these three requirements are not met by the function f (x) at x = a, then
the function is said to be discontinuous at x = a. We also state that a function is continuous on
the open interval (a, b) if it is continuous at each point on the interval, and that a polynomial
function is continuous at every point in its domain.

As an example, we consider the function f (x) = 3 + x to check whether it is continuous
at x → a = 1. Since lim

x→a=1
f (x) = lim

x→a=1
(3 + x) = 3 + 1 = 4, the first condition above

is satisfied. Since f (x = a = 1) = f (1) = 4, the second condition is satisfied. And since
lim

x→a=1
f (x) = f (x = a = 1) = 4, the third condition also is satisfied. Therefore, the function

f (x) = 3 + x is continuous at x → a = 1.
As another example, we check whether the function f (x) = x2 − 1 is continuous at x = 3.

First, we know that lim
x→3

f (x) = lim
x→3

(x2 − 1) = 8. Second, we obtain f (3) = (32 − 1) = 8

at x = 8. Third, we have lim
x→3

f (x) = f (3) = 8. Since all the requirements of a continuous

function are satisfied, then f (x) = x2 − 1 is continuous at x = 3.
Now consider the function f (x) = 1

/
(1 − x). Is this function continuous at x = a = 1?

First, we check its limit at x = a = 1. At x = 1, the function approaches infinity
(f (1) = 1

/
(1 − 1) = ∞). Therefore, the limit of the function does not exist at x = a = 1.

This means that the first condition of continuity is violated. Since f (1) = 1
/

(1 − 1) = ∞, the
second condition is also violated. And since f (a = 1) = lim

x→a=1
f (x) = ∞, the third condition

is satisfied. Since the first two conditions are violated, the function f (x) = 1
/

(1 − x) is not
continuous at x = a = 1.

1.9.5 Properties of continuity

The important properties of continuity are the following.

Property I. Let there be two continuous functions, f (x) and g(x), on an interval. Then
f (x) + g(x), f (x) − g(x), f (x).g(x), and f (x)/g(x) are also continuous on the
same interval, except for those values of x that make a denominator zero.

Property II. A constant function f (x) = a, where a is a constant, is continuous for all x.
For example, f (x) = 1 is continuous for all x.

Property III. A power function f (x) = xn, where n is a positive integer, is continuous for
all x. For example, f (x) = x2 is continuous for all x.

Property IV. A polynomial function is continuous for all x. For example, the function
f (x) = x2 + x − 1 is continuous for all x.

Property V. A rational function is continuous for all x except for those values of x
that make the denominator zero. For example, f (x) = [(x2 − 1)

/
(x − 1)] is

continuous for all x �= 1.
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Property VI. Let n be a positive integer greater than 1. Then, the function n
√

f (x) is

continuous whenever f (x) is continuous. For example,
5
√

x3 is continuous
for all x.

1.9.6 Application examples

Example 1. Suppose that a company’s total average cost is given by the function
f (x) = 10x2 − 25x + 50, where x represents the quantity of the good produced. Draw a graph
of this function and evaluate its limit as x → 1.25.

Solution. The function approaches its minimum value of 37.38 as x → 1.25. The graph of
the function is illustrated in Figure 1.9.5(A).

Example 2. Assume that the total profit of a company is given by f (x) = 20x − 0.5x2,
where x denotes the quantity of the good produced. Show the limit of the function
graphically as x → 20.

Solution. The graph of the function is illustrated in Figure 1.9.5(B). It can be seen from
the graph that the function approaches its maximum value 200 as x → 20.

1.9.7 Exercises

1. Find the limits, if they exist, of the following functions:
(i) lim

x→3
5; (ii) lim

x→3
(14x); (iii) lim

x→3
(14x − 20); (iv) lim

x→3
(14x + 20); (v) lim

x→3
[(1 + 3x)/

(2 + 2x)].
2. Find the limits, if they exist, of the following functions:

(i) lim
x→0

(1/x); (ii) lim
x→0

[(x2 − 1)/(x + 1)]; (iii) lim
x→0

[(x2 + 2x + 1)x]; (iv) lim
x→0

[(2x + 1)2/x];
(v) lim

x→∞[x2/(1 + x2)].
3. Determine whether the following functions are continuous or discontinuous at the

specified points:
(i) f (x) = 3 at x = 1; (ii) f (x) = 3x + 3 at x = 1; (iii) f (x) = (1 − x)/2 at x = 1;
(iv) f (x) = (x − 3)/(x2 − 9) at x = 3; (v) f (x) = (x2 − 9)/(x − 3) at x = 1.
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Web supplement: S1.9.8 Mathematica applications

1.10 Sequences and series

Many of the relationships in the subjects of our interest follow some specific patterns.
Sequences and series are among the features of these patterns. Therefore, students of these
subjects require a reasonable understanding of sequences and series. We present a discussion
of these in this section.

1.10.1 Meaning of a sequence

Suppose that someone asked us to list all odd integer numbers greater than 0. Then our list
would be like this

1,3,5,7,9,11,13,15,17,19, . . .

Informally, a list of numbers such as the list above is called a sequence. We now attempt to
formalize this informal definition of a sequence. The first number (1) in the above list can be
written as 2 × 0 + 1 = 1. The second number (3) can be written as 2 × 1 + 1 = 3. The third
number (5) can be written as 2 × 2 + 1 = 5. This process can be continued indefinitely. In
general, the nth odd number in the above sequence will be equal to

2 × n + 1 = f (n) = sn or sn = f (n) = 1 + 2 × n (1.10.1)

Notice that we have a set of positive integers represented by the set n = {1,2,3, . . .}. What
we did was that we mapped the set n into a set of odd integers given in the above list by the
function in equation (1.10.1). We may now formally define a sequence as a function whose
domain is a set of positive integers. An entry, for example sn, is called a term of the sequence.
Notice also that the sequence represented by equation (1.10.1) has, or any other sequence
would have, four distinct essentials: an equation or function (as equation (1.10.1)), a domain
(as n = {1,2,3, . . .}), a range (as the above list), and a sequence of entries (as in the above
list). If n is finite or if the domain of a sequence is a finite set of numbers, we have a finite
sequence. If, instead, n is infinite, we have an infinite sequence.

As an example, consider the function sn = f (n) = 1 + n. Assume that the domain is the
set n = {1,2,3,4, . . .}, the set of all positive integers. When we map the values in the domain
using the function sn = 1 + n, we obtain the range. This set includes all positive integers
greater than one. This list of numbers, (2, 3, 4, 5,. . .), constitutes a sequence.

1.10.2 Converging and diverging sequences

Sequences may generally be divided into two groups: convergent sequence (or finite
sequence) and divergent sequence (or infinite sequence). We explain each with examples.
Consider the function f (n) = sn = 4−n. Assume that f (n) represents the price of a good and
n represents the quantity of the good that is demanded at price f (n). Then this is an example
of a linear inverse demand function introduced earlier. As is evident from the function, sn

decreases as n increases. And in the limit, sn will converge to 0 (ruling out the case of
negative price) as n → 4. Such a sequence is called a convergent sequence. The graph of this
convergent sequence and the graph of the function are illustrated in Figure 1.10.1(A).
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As another example, consider the function g(n) = −2+n. Assume that g(n) represents the
price of a good and n represents the quantity of the good supplied at price g(n). This is an
example of a linear inverse supply function introduced earlier. It is evident from this function
that g(n) increases without bounds, as n increases. Such a sequence is called a divergent
sequence. The graph of this divergent sequence and the graph of the function are illustrated
in Figure 1.10.1(B).

1.10.3 Series

The sum of the terms of a sequence is called a series. For example, assume that we have a
sequence s1,s2,s3,s4, . . .,sn, . . .Then the sum of this sequence s1+s2+s3+s4+·· ·+sn+·· ·
is called a series. If the sequence is finite, the associated series is called a finite series or a
convergent series; if the sequence is infinite, the associated series is called an infinite series
or a divergent series. An example of a finite series is 2+4+6+8 if the associated sequence
is 2, 4, 6, and 8; an example of an infinite series is 1 + 3 + 5 + 7 + . . . if the associated
sequence is 1,3,5,7, . . ..

1.10.4 Arithmetic progression

Before we begin the discussion of arithmetic progression, we need to understand the
meaning of the term progression. The term progression in mathematics is closely related to
a sequence. Progression is an arrangement of a number of terms in a definite order for which
there is a pattern or rule that allows the identification of successive terms. The fundamental
difference between a sequence and a progression is that the former may or may not exhibit
a definite order between terms whereas in the latter there will always be an order between
terms. Therefore, a sequence with definite order between terms is called a progression. We
will be concerned mainly with progressions.

For example, consider the following sequences of numbers: 1, 11, 21, 31, 41, . . .; 1, 2,
3, 4, 5, . . .; and 10, 9, 8, 7, . . .. Consider the first set of numbers to begin with. In this
set, the first number is 1 and each subsequent number is obtained by adding 10 to the
previous number. In the second set, the first number is again 1 but each subsequent number
is obtained by adding 1 to the previous number. In the third set, the first number is 10 and
each subsequent number is obtained by subtracting 1 from (or adding −1 to) the previous
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number. These are examples of arithmetic sequence or arithmetic progression; sequence
or progression obtained through addition. Arithmetic progression is one in which there is a
constant difference between any two consecutive terms.

We now define arithmetic progression formally. Let there be a sequence s1,s2,s3,s4, . . .,
sn, . . .. This sequence is called an arithmetic progression if there is a constant term a such
that sn − sn−1 = a or sn = a + sn−1. The term a is called the common difference. Notice that
a = 10, a = 1, and a = −1, respectively, in the last three sets of numbers.

Notice that if we are given a and the first term, we can find the nth term of the progression.
However, we can state the formal method of finding the nth term of an arithmetic progres-
sion. Suppose that we have an arithmetic progression s1,s2,s3,s4, . . .,sn, . . .. We know that
s2 = s1 + a; s3 = s2 + a = s1 + a + a = s1 + 2a; s4 = s3 + a = s2 + a + a = s1 + a + a + a =
s1 + 3a; . . .. This implies that the nth term of an arithmetic progress is given by

sn = s1 + (n − 1) × a, for all n> 1 (1.10.2)

Sometimeswemayneed tofind the sumof an arithmetic progression. Let s1,s2,s3,s4, . . .,sn

be a finite arithmetic sequence. Then the associated series is given by s1+s2+s3+s4+·· ·+sn

and is called a finite arithmetic series. How can we find this sum? We may find it with the
help of a formula, which can be derived through the following procedure.

We know from above that s2 = s1 +a; s3 = s2 +a = s1 +a+a; s4 = s3 +a = s2 +a+a =
s1 + a+ a+ a = s1 + 3a; and so on. It follows that sn = s1 + (n−1)a. Therefore, the sum of
this finite arithmetic series is given by Sn as: Sn = s1 + (s1 +a)+ (s1 +2a)+ (s1 +3a)+·· ·+
[s1 + (n−1)a], or Sn = ns1 +a+2a+3a+·· ·+ (n−1)a = ns1 + (n−1)a+ (n−2)a+·· ·+
3a+2a+a. Adding the last two equations gives us 2Sn = 2ns1 +na+na+na+·· ·+na =
2ns1 + (n − 1)na. Therefore, we have

Sn = (n/2) × [2s1 + (n − 1)a] (1.10.3)

Using equation (1.10.2), equation (1.10.3) can be written as

Sn = (n/2) × [s1 + sn] (1.10.4)

1.10.5 Geometric progression

Consider the sequence of numbers 1, 2, 4, 8, 16, 32, 64, . . .. The important feature of this
sequence is that each successive term is 2 times the previous term. That is, 2 = 1 × 2;
4 = 1 × 2 × 2 = 1 × 22; 8 = 1 × 2 × 2 × 2 = 1 × 23; and so on. This is an example of a
geometric sequence or geometric progression. A geometric progression is one in which
there is a constant ratio between any two consecutive terms. The general form of any
geometric progression is s1,s1k,s1k2,s1k3,s1k4, . . .,s1kn, . . ., where s1 is the first term and
k is the constant common ratio.

We now define geometric progression formally. Let there be a sequence s1,s2,s3,s4, . . .,
sn, . . .. This sequence is called a geometric progression if there is a constant common ratio
k such that k = sn/sn−1 or sn = k × sn−1. Notice that s1 = 1 and k = 2 in the above
geometric sequence.
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How can we find the nth term of the geometric progression? We know that s2 = s1.k;
s3 = s2.k = s1.k.k = s1k2; s4 = s3.k = s1k2.k = s1k3; and so on. This implies that the nth
term of a geometric progression is given by

sn = s1.k
n−1 for all n> 1 (1.10.5)

Equation (1.10.5) implies that once we are given s1 and k , we can easily find the nth term.
However, as in the case of arithmetic progression, we may need to find out the sum of a finite
geometric sequence or a finite geometric progression. We can find it with the help of a formula.
But, we shall first derive the formula through the following procedure. We know from above
that our finite geometric progression is s1,s1k,s1k2,s1k3,s1k4, . . .,s1kn−1. Our aim is to find
the sum s1 + s1k + s1k2 + s1k3 + ·· · + s1kn−1, which is called a geometric series. In other
words, we need to find Sn = s1 + s1k + s1k2 + s1k3 + ·· · + s1kn−1. Multiplying both sides
of this equation by k yields kSn = s1k + s1k + s1k3 + s1k4 +·· ·+ s1kn. Now subtracting kSn

from Sn yields Sn(1 − k) = s1 − s1kn = s1(1 − kn), or

Sn = [s1(1 − kn)/(1 − k)] = s1(kn − 1)/(k − 1), where k �= 1 (1.10.6)

which can be written in an alternative form. We have from equation (1.10.5) that sn =
s1kn−1, which may be written as ksn = s1kn. Therefore, equation (1.10.6) may be
transformed into

Sn = s1(1 − kn)/(1 − k) = (s1 − s1kn)/(1 − k)

= (s1 − ksn)/(1 − k) = (ksn − s1)/(k − 1), where k �= 1 (1.10.7)

One pertinent question now is how one can find the sum of an infinite geometric progression
such as s1,s2,s3,s4, . . .,sn, . . . called an infinite geometric series. This question may be
answered by rewriting equation (1.10.6) as

Sn = s1(kn − 1)/(k − 1) = [s1kn/(k − 1)]− [s1/(k − 1)] (1.10.8)

Notice a special case of −1 < k < 1. In this case, to find the series we may rewrite
equation (1.10.6) once again as

Sn = s1(1 − kn)/(1 − k) = (s1 − s1kn)/(1 − k) = [s1/(1 − k)]− [s1kn/(1 − k)] (1.10.9)

It can be shown that, given −1 < k < 1, kn will approach 0 as n becomes infinitely large
(or, kn → 0 as n → ∞). Therefore, the geometric series with −1< k < 1 will converge to
Sn = s1/(1 − k). Hence we have the result

Sn = s1/(1 − k) (1.10.10)

1.10.6 The binomial theorem

Before we begin a discussion of the binomial theorem, we need to explain three concepts
used in the development of this theorem. The first is the concept of factorials. Let there be a
natural number n. If we write the product of all the integers between (and including) n and 1,
it is called n factorial, and is denoted by n!. That is, n! = n× (n−1)× (n−2)× (n−3)×2×1.
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For example, 4! = 4 × 3 × 2 × 1 = 24. It should be noted that both one factorial and zero
factorial are defined to be 1 (that is, 1! = 0! = 1).

The second concept is that of permutation. If r items are selected (without replacement)
from a set of n items, any particular sequence of these r items is called a permutation.
As an example, we know that ab is a permutation of two of the first three letters of the
English alphabet. The other permutations are ba, ac, ca, bc, and cb. In general, the number of
permutations of r items that can be selected from n items is Pn,r = n× (n−1)× (n−2)×·· ·×
(n−r+1). This equation can be expressed in another way. Let us multiply and divide the RHS
of the equation by (n−r)× (n−r −1)×·· ·× (2)× (1) to yield Pn,r = [n× (n−1)× (n−2)×
·· ·×(n−r+1)×(n−r)×(n−r−1)×·· ·×(2)×(1)]/[(n−r)×(n−r−1)×·· ·×(2)×(1)],
where the numerator is n! and the denominator is (n − r)!. Therefore, the last equation can
be written as

Pn,r = n!/(n − r)! (1.10.11)

In our example of letters, the number of permutations, using equation (1.10.11), of r = 2
items one can select from a set of n = 3 items is P3,2 = 3!/(3 − 2)! = 6

/
1 = 6.

The last concept is combination. It is clear that the order of the items matters in
permutations. A combination is a selection of items where the order does not matter. The
number of combinations of r items that can be selected from n items is

Cn,r = [n × (n − 1) × (n − 2) × ........× (n − r + 1)]r !
= [n × (n − 1) × (n − 2) × ....× (n − r + 1) × (n − r) × (n − r − 1) ×·· ·

× (2) × (1)]/[(n − r) × (n − r − 1) ×·· ·× (2) × (1) × r!]
= n!/(n − r)!r! (1.10.12)

where the second step has been multiplied and divided by (n − r) × (n − r − 1) × ·· ·×
(2)× (1). The reader will have noticed the connection between permutation and combination:
Pn,r = r! × Cn,r . As an example, suppose that we want to select three balls from five balls.
How many ways can we do this? In this example, n = 5 and r = 3. Therefore, applying
equation (1.10.12), the answer is C5,3 = [5!/(5−3)!3!] = [{5×4×3×2×1}/{(2×1)× (3×
2×1)}] = 20/2 = 10. Notice that equation (1.10.12) is the basis of the solution we obtained
for example 2 in Section 1.2.7.

We shall now begin the discussion of the binomial theorem. One might wonder why we
need a theorem such as this. The rationale is as follows. Suppose that we want to expand the
expression (a + b)2. We can do this easily by factoring (a + b)2 and expanding the factors
through multiplication. The result is (a+b)2 = (a+b)× (a+b) = a2 +2ab+b2. Similarly,
we can obtain the expansion of (a+b)3 as (a+b)3 = (a+b)(a+b)2 = (a+b)× (a2 +2ab+
b2) = (a3 + 3a2b + 3ab2 + b3). However, the job involved becomes tedious as the power of
the expression increases. The question, therefore, is how one can find the expansion of an
expression such as (a + b)n. The binomial theorem comes in handy here. It states that

(a + b)n = Cn,0an + Cn,1an−1b1 + Cn,2an−2b2 + Cn,3an−3b3 +·· ·+ Cn,nan−nbn

= Cn,0an + Cn,1an−1b + Cn,2an−2b2 + Cn,3an−3b3 +·· ·+ Cn,nbn (1.10.13)

which may be derived as follows. We know from above that (a + b)1 = a + b; (a + b)2 =
a2 +2ab+b2; (a+b)3 = a3 +3a2b+3ab2 +b3; (a+b)4 = a4 +4a3b+6a2b2 +4ab3 +b4;
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(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5. Notice that every expansion here is a
particular series. Also notice some of the features of the above expansions. Firstly, there are
(n+1) terms in the expansion of (a+b)n. Secondly, the power of a (b) decreases (increases)
as we move rightward in each expansion. Thirdly, the sum of powers of a and b in each term
is equal to n. Fourthly, and lastly if we are given a term, we can get the coefficient of the next
term by multiplying the coefficient of the given term by the exponent of a and dividing by the
number that represents the position of the term in the series of terms. Using these features,
we can write the expansion of the general case as

(a + b)n = an + n

1
an−1b + n(n − 1)

1 × 2
an−2b2 + n(n − 1)(n − 2)

1 × 2 × 3
an−3b3 +·· ·+ bn

= n!
0!(n − 0)!a

n + n!
1!(n − 1)!a

n−1b + n!
2!(n − 2)!a

n−2b2

+ n!
3!(n − 3)!a

n−3b3 +·· ·+ n!
n!(n − n)!b

n

= Cn,0an + Cn,1an−1b + Cn,2an−2b2 + Cn,3an−3b3 +·· ·+ Cn,nbn

which is equation (1.10.13).
One application of the binomial theorem is in the determination of the vale of e, the base of

natural logarithm. Remember that we stated in Section 1.3.1 that value e = 2.71828 and that
we obtained this value in Section 1.9.3 when we geometrically evaluated lim

x→0
[(1 + x)1/x].

One can also apply the binomial theorem to obtain the value e = 2.71828. The procedure is
as follows. Let us first convert lim

x→0
[(1 + x)1/x] into the equivalent form lim

n→∞[(1 + 1/n)n],
where n = 1/x or x = 1/n. Our problem now is to evaluate lim

n→∞[(1 + 1/n)n]. But, before

this we need to expand the expression (1 + 1/n)n. Using the binomial theorem in equation
(1.10.13) with a = 1 and x = b = 1/n, the expression (1 + 1/n)n can be expanded as

(
1 + 1

n

)n

= Cn,0an−0b0 + Cn,1an−1b1 + Cn,2an−2b2 + Cn,3an−3b3 +·· ·+ Cn,nan−nbn

= 1 × 1 × 1 + n × 1 × 1

n
+ n(n − 1)

2! × 1 × 1

n2
+ n(n − 1)(n − 2)

3!
× 1 × 1

n3
+·· ·+ 1 × 1 × 1

nn

= 1 + 1 +
(n

n

)(n − 1

n

)
1

2! +
(n

n

)(n − 1

n

)(
n − 2

n

)
1

3! + · · ·+ 1

nn

Taking limits on both sides of the last equation as n → ∞ we obtain

lim
n→∞

(
1+ 1

n

)n

= lim
n→∞

[
1+1+

(n

n

)(n − 1

n

)
1

2! +
(n

n

)(n − 1

n

)(
n − 2

n

)
1

3! +· · ·+ 1

nn

]

e= lim
x→0

(1+x)1/x = lim
n→∞

(
1+ 1

n

)n

= 1 + 1 + 1

2! + 1

3! + 1

4! + 1

5! + 1

6! + 1

7! + 1

8! + · · ·
(1.10.14)
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This expansion of e is called the series expansion of e, which can be used to find the value
of e to any decimal. The value of e when we sum the first 9 terms of the above expansion is
2.71828, which was the value we mentioned in Section 1.3.1, and geometrically obtained in
Section 1.9.3.

Another closely related application of the binomial theorem lies in the evaluation of
lim

n→∞[(1 + x/n)n]. How do we find this limit? The procedure is similar to the one above.

Let us first find (1 + x/n)n. Letting a = 1, b = x/n and using the binomial theorem, we have(
1 + x

n

)n = Cn,0an−0b0 + Cn,1an−1b1 + Cn,2an−2b2 + Cn,3an−3b3 +·· ·+ Cn,nan−nbn

= 1 × 1 × 1 + n

1! × 1 × x

n
+ n(n − 1)

2! × 1 × x2

n2
+ n(n − 1)(n − 2)

3!
× 1 × x3

n3
+·· ·+ 1 × 1 × xn

nn

= 1 + x

1! +
(

n − 1

n

)
x2

2! +
(

n − 1

n

)(
n − 2

n

)
x3

3! + · · ·+ 1

nn

Taking limits on both sides of the last equation as n → ∞ we obtain

lim
n→∞

(
1 + x

n

)n = lim
n→∞

[
1 + x

1! +
(

n − 1

n

)
x2

2! +
(

n − 1

n

)(
n − 2

n

)
x3

3! + · · ·+ 1

nn

]

lim
n→∞

(
1 + x

n

)n = 1 + x

1! + x2

2! + x3

3! + · · · (1.10.15)

Notice that lim
n→∞ (1 + x/n)n = lim

m→∞ (1 + 1/m)m×x, where m = n/x. But, as per

equation (1.10.14), lim
m→∞ (1 + 1/m)m = e. This implies that lim

n→∞ (1 + x/n)n =
lim

m→∞ (1 + 1/m)m×x = ex. Therefore, equation (1.10.15) can be written as

lim
n→∞

(
1 + x

n

)n = ex = 1 + x

1! + x2

2! + x3

3! + · · · (1.10.16)

which can be used to evaluate ex for any value of x. The expansion of ex in equation (1.10.16)
is called the exponential series.

1.10.7 Application examples

Example 1. Suppose that the inverse demand function for a good is f (x) = 1/x, where
f (x) represents the price of the good and x represents the quantity demanded of the good.
Determine whether the sequence represented by this demand function is converging or
diverging.

Solution. If we plug positive integers for x in f (x) = 1/x, we get f (1) = 1/1 = 1,
f (2) = 1/2 = 0.5, f (3) = 1/3 = 0.333, f (4) = 1/4 = 0.25, f (5) = 1/5 = 0.2, and so on. This
suggests that f (x) decreases as x increases and in the limit f (x) → 0 as x → ∞. Therefore,
the sequence represented by the above function is a converging sequence. The graph of this
function is illustrated in Figure 1.10.2(A).
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Figure 1.10.2

Example 2. Assume that the total profit of a company is given by the function g(x) =
x1/2, where g(x) represents the total profit of the company and x represents the quantity of
the good produced. Determine whether the sequence represented by this profit function is
converging or diverging.

Solution. If we plug positive integers for x in g(x) = x1/2, we obtain g(1) = 11/2 = 1,
g(2) = 21/2 = 1.414, g(3) = 31/2 = 1.732, g(4) = 41/2 = 2, and so on. This suggests that
g(x) increases as x increases and in the limit g(x) → ∞ as x → ∞. Therefore, the sequence
represented by this profit function is a diverging sequence. The graph of this function is
illustrated in Figure 1.10.2(B).

Example 3. Suppose that a person receives a monthly salary of $15 000, which increases
by $1000 every year. What will be the person’s salary in the tenth year and what will be the
total salary the person received after ten years?

Solution. This is an example of an arithmetic progression with the initial value (s1) of
$15 000 and the common difference (a) of $1000. In order to find the person’s salary in the
tenth year we can apply equation (1.10.2). Therefore, the person’s salary in the tenth year
will be s10 = s1 + (n−1)a = $15000+ (10−1)$1000 = $15000+$9000 = $24000. To find
the total salary the person received after 10 years we can use equation (1.10.3). Therefore,
the total salary will be Sn = (n/2).[2s1 + (n−1)a] = (10/2).[2×$15000+ (10−1)$1000] =
$195 000.

Example 4. Suppose that a small company expects to achieve a profit of $10 000 in the
first year, which is expected to double every year after that. What will be the company’s fifth
year’s profit and what will be the total profit after the first five years?

Solution. This is an example of a geometric progression with the initial value (s1) of
$10 000 and the common ratio (k) of 2. To find out the company’s profit in the fifth year
we can apply equation (1.10.5). Therefore, the fifth year’s profit will be s5 = s1kn−1 =
$10000 × 25−1 = $10000 × 16 = $160000. To find out the company’s total profit after the
first five years we may apply equation (1.10.6). Therefore, the total profit of the company
after the fifth year will be S5 = s1(kn − 1)/(k − 1) = $10000(25 − 1)/(2 − 1) = $310000.



[16:29 8/11/2011 5640-Ummer-Ch01.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 64 1–68

64 Review of basics

Example 5. Suppose that the initial change in the investment in an economy (�I = s1)
is $2 billion. If the marginal propensity to consume (MPC, the fraction of a dollar that
consumers wish to spend) in the economy is 0.75, what will be the total amount of income
generated (�Y = Sn) in the economy as the economic transactions become infinitely large
(that is, n → ∞)?

Solution. This is an example of an infinite geometric series. In order to find the changed
total income (�Y = Sn) we have to apply equation (1.10.10) because the common ratio in
this example lies between 0 and 1 (0 < k < 1). Therefore, the economy’s changed total
income will be �Y = Sn = s1/(1 − k) = $2 billion/(1 − 0.75) = $8 billion. Since �I = s1,
we can write�Y /�I = 1/(1−k). This ratio is called investment multiplier, which measures
the change in national income per unit change in investment in the economy. In the present
example, �Y /�I = 1/(1 − k) = 1/(1 − 0.75) = 4. Notice that the total change in national
income (�Y = Sn = $8 billion) is equal to the initial change in investment (�I = s1 =
$2 billion) times the investment multiplier (4).

1.10.8 Exercises

1. Determine which sequences represented by the following functions converge (or
diverge):
(i) f (x) = [(x)4]1/2; (ii) f (x) = 1/x2; (iii) f (x) = 10 + x2; (iv) f (x) = 10 − 1/x2.

2. Give the fifteenth terms (and determine the sum of the first fifteen terms) of the
following progressions:
(i) 1, 2, 3, 4, 5,. . .; (ii) 50, 100, 150, 200, 250,. . .; (iii) 10, 9, 8, 7, 6, 5,. . ..

3. Determine the tenth term (and the sum of the first ten terms) of the following progressions:
(i) 5, 25 125, 625,. . .; (ii) 2, 4, 8, 16,. . .; (iii) 6, 36, 216, 1296,. . ..

4. Application exercise. Suppose that a company received a profit of $500 000 in the first
year of its operation. The company expects that this profit will increase by $50 000 every
year after the first year. What will the company’s profit at the end of the seventh year
and what will be its total profit after the first seven years?

5. Application exercise. Assume that a company expects to achieve a profit of $50 000 in
the first year of its operation, which is expected to halve every year after the first year.
What will be the company’s profit at the end of the fifth year and what will be the total
profit of the company after the first five years?

Web supplement: S1.10.9 Mathematica applications

1.11 Sums and products

Sum and product symbols, and their rules, are widely used in mathematics and economic
sciences. A working knowledge of these symbols and the associated rules is necessary for
students in these branches. Therefore, we provide here a fairly comprehensive treatment of
these symbols and their rules.

1.11.1 Sums

Assume that we wish to find out the total population of five cities in a country. Also assume
that the population of a city is denoted by the letter Pi, where the subscript i denotes the
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ith city. Then the sum of populations of the five cities can be shown as P1 +P2 +P3 +P4 +P5.
Every number in the last expression is called an entry.

It was easy to write the above expression as there were only five entries. The above
expression of sum can be written in an alternative, abbreviated form with the Greek letter

 (read “sigma”) as

∑i=5
i=1 Pi, where i represents the ith city and is called the index of

summation. Notice that one can use any index. This expression is read “sigma i equals 1 to i
equals 5 Pi,” and it gives the sum of P (population) for city i = 1 to city i = 5.

But, if we have a list of populations of all the cities and towns in a vast country like the
USA, India, China, or Russia (or any other similar country), it will be a laborious task to
write the list. In order to write such a long expression that involves n entries, one can use
the “sigma” notation introduced above. Suppose that we have an expression that involves n
entries such as P1 + P2 + P3 + P4 + P5 + ·· · + Pn. Then we can write this long expression
in the abbreviated form as

∑i=n
i=1 Pi.

It should be noticed that the abbreviation from i = 1 to i = n is over positive integer
values. It must also be noticed that one can begin the abbreviation of the sum from any
positive integer (not just 1) to any other positive integer (not just n). However, one condition
must be satisfied: the upper limit or upper positive integer (that is, i = n) must be greater
than or equal to the lower limit or lower positive integer (i = 1). For example, suppose
that we wish to write the abbreviated form of the sum n10 + n11 + n12 + ·· · + n25. Then
it can be written as

∑i=25
i=10 ni or

∑25
i=10 ni. If we sum from i = 1 to i = 1 then we get the

first entry itself:
∑i=10

i=10 ni =∑10
i=10 ni = n10. Some of the examples of abbreviation of sums

are:
10∑

i=5
xi = x5 + x6 + x7 + x8 + x9 + x10;

10∑
i=5

(x + 1)i = (x + 1)5 + (x + 1)6 + (x + 1)7 +

(x + 1)8 + (x + 1)9 + (x + 1)10;
10∑

i=5
[x/y]i = [x/y]5 + [x/y]6 + [x/y]7 + [x/y]8 + [x/y]9 +

[x/y]10;
4∑

i=1
1/i = (1/1)+(1/2)+(1/3)+)(1/4)=1+0.5+0.33+0.25=2.08;

10∑
i=5

x10−iyi−5 =
x10−5y5−5 + x10−6y6−5 + x10−7y7−5 + x10−8y8−5 + x10−9y9−5 + x10−10y10−5 = x5 + x4y +
x3y2 +x2y3 +xy4 +y5; and

10∑
i=5

1i = 15 +16 +17 +18 +19 +110 = 1+1+1+1+1+1 = 6.

Notice that abbreviated sums obey two rules. They are
∑n

i=1 (xi + yi) =∑n
i=1 xi +∑n

i=1 yi

and
∑n

i=1 kxi = k.
∑n

i=1 xi.
There are occasions for one to use double sums or multiple sums. We consider a simple

example to demonstrate the use of double sums. Assume that a company sells its product in
different regions (i = 1 to i = m) of a country during different weeks (j = 1 to j = n). Then
the quantities of the product sold in different regions during different weeks can be written
in the form of a rectangular array called a matrix (discussed in detail in Chapter 2) as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 ... a1j ... a1n

a21 a22 a23 ... a2j ... a21

a31 a32 a33 ... a3j ... a3n

... ... ... ... ... ... ...

ai1 ai2 ai3 ... aij ... ain

... ... ... ... ... ... ...

am1 am2 am3 ... amj ... amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Notice that this matrix has m rows and n columns. The notation aij in the matrix is called
an element of the matrix. The first subscript i of each element denotes the row and the
second subscript j denotes the column in which the element appears in the matrix. It is
much easier to represent the rows and columns with the help of letters. Therefore, we
write aij to represent the element a in the ith row and the jth column. This implies that
we can write the sums of each row as

∑n
j=1 a1j ,

∑n
j=1 a2j ,

∑n
j=1 a3j ,…

∑n
j=1 amj . The sum of

these row sums can then be written as
∑n

j=1 a1j +∑n
j=1 a2j +∑n

j=1 a3j + ·· · +∑n
j=1 amj =∑m

i=1 (
∑n

j=1 aij). Similarly, the sums of each column can be written as
∑m

i=1 ai1,
∑m

i=1 ai2,∑m
i=1 ai3,…

∑m
i=1 ain; and the sum of these column sums can then be written as

∑m
i=1 ai1 +∑m

i=1 ai2 +∑m
i=1 ai3 + ·· · +∑m

i=1 ain = ∑n
j=1 (

∑m
i=1 aij). Notice that

∑m
i=1 (

∑n
j=1 aij) =∑n

j=1 (
∑m

i=1 aij).

1.11.2 Products

We now consider the product notation, which is similar to the sum notation we discussed
above. Suppose that we have a list of numbers x1,x2,x3,x4, . . .xn. How do we write
the product of these numbers? If n is small, we can easily write the product. But if n
is large, one has to go through time-consuming work. One can save a lot of time if
one adopts the generally followed method of using a special notation for the product.
This notation is the uppercase Greek letter

∏
(read “pi”), and can be used in our

example as
n∏

i=1
xi = x1.x2.x3.x4. · · · .xn. Notice that, as in the case of the sum notation,

multiplication is over the positive integer values, and the upper limit (i = n) must be greater
than or equal to the lower limit (i = 1). Examples of abbreviated product notation are
5∏

i=1
xi = x1.x2.x3.x4.x5 = x15;

5∏
i=1

xiyi = x1y1.x2y2.x3y3.x4y4.x5y5 = x15y15;
5∏

i=1
xi−1y1−i =

x0y0.x1y−1.x2y−2.x3y−3.x4y−4 = x10y−10 = x10/y10; and
2∏

1=1
(x + y)i = (x + y)1.(x + y)2 =

(x + y)(x2 + 2xy + y2) = x3 + 3x2y + 3xy2 + y3.

1.11.3 Application examples

Example 1. Assume that a company employs different numbers of workers to work for
four days at different wages. Write the total wages paid by the company to the four workers
using sum notations.

Solution. For convenience, we denote the number of workers employed on the ith day by
ni and the wages paid on the ith day by wi, where 1 ≤ i ≤ 4. The total wages (W ) paid can
be written in the expanded form as W = w1.n1 +w2.n2 +w3.n3 +w4n4. In abbreviated form
using the sum notation, we may write it as W =∑4

i=1 wini.

Example 2. Suppose that a consumer buys different units of five commodities at their
respective prices. Write the consumer’s total expenditure using sum notations.

Solution. For convenience, we denote the units of commodities by qi and prices by
pi, where 1 ≤ i ≤ 5. The total expenditure (E) can be written in the expanded form as
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E = q1.p1 + q2.p2 + q3.p3 + q4p4 + q5p5. In abbreviated form using the sum notation, we
may write it as E =∑5

i=1 qipi.

Example 3. Suppose that the consumers in an economy buy different goods (qi) at their
respective prices (pi) during a particular year (say 0, called the base year), where 1 ≤ i ≤ n.
Also assume that they buy the same goods at their corresponding prices during year t (where
t > 0). We know that the sum of qi × pi gives the cost of living in an economy during a
particular year. Show, with the help of sum notations, the percentage change in the cost of
living in the economy between the two time periods.

Solution. The sum
∑n

i=1 q0
i pt

i gives the cost of living in the economy during year t.
Similarly, the cost of living for the base year is given by

∑n
i=1 q0

i p0
i . If we divide

the former by the latter and multiply the quotient by 100 we obtain the percentage
change in the cost of living in the economy between the two time periods. That is,
the percentage change in the cost of living in the economy between the two time
periods is given by (

∑n
i=1 q0

i pt
i)/
∑n

i=1 q0
i p0

i ) × 100. This is called a price index for
the year t. Specifically, it is called the Laspeyres price index. Instead, if we write
the index as (

∑n
i=1 qt

ip
t
i)/
∑n

i=1 qt
ip

0
i ) × 100, it is called the Paasche price index. The

other two important indices are
√

[(∑q0
i pt

i)/(
∑

q0
i pt

i)]× [∑qt
ip

t
i)/(

∑
qt

ip
0
i )] × 100 and

[(∑q0
i pt

i +
∑

qt
ip

t
i)/(

∑
q0

i p0
i +∑

qt
ip

0
i )] × 100. The former is called the Fisher index

number and the latter is called the Marshall–Edgeworth index number.

Example 4. Suppose that we have n observations whose values are denoted by xi, where
1 ≤ i ≤ n. Find the arithmetic mean (or simply the mean) of these values.

Solution. The arithmetic mean (of ungrouped data), denoted by x̄, is defined as the sum
of the values of the observations divided by the number of observations n. Therefore, the
mean is x̄ = (1/n) ×∑n

i=1 xi.

Example 5. Suppose that we have n observations whose values are denoted by xi, where
1 ≤ i ≤ n. Find the variance of these values.

Solution. The variance (of ungrouped data), denoted by σ 2, is defined as the sum of
squares of the mean deviations (deviation of the observed value from the mean). Therefore,
the variance is σ 2 = ∑n

i=1 (xi − x̄)2. Notice that the standard deviation of the values is
obtained by the square root of the variance. Therefore, the standard deviation of the values

in our present example is given by σ =
√

n∑
i=1

(xi − x̄)2.

1.11.4 Exercises

1. Write the following expressions in abbreviated form:
(i) 1 + 1 + 1 + 1 + 1; (ii) 1 + 1/2 + 1/3 + 1/4 + 1/5; (iii) 1 + 2 + 4 + 8 + 16;
(iv) a1+a1+a1+a1+a1; (v) x1j.y1j +x2j.y2j +x3j.y3j +x4j.y4j; (vi) xi1.yi1 +xi2.yi2 +
xi3.yi3 + xi4.yi4.
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2. Write the following expressions in abbreviated form:
(i) 2 × 4 × 8 × 16; (ii) (1/2) × (1/4) × (1/8) × (1/16); (iii) (x + y) (x + y)2 (x + y)3;
(iv) k0 × k1 × k2 × k3 × k4 × k5; (v) [(a + b)1/(x + y)0] × [(a + b)2/(x + y)1]
×[(a + b)3/(x + y)2].

3. Expand the following expressions:

(i)
∑5

i=0 2i; (ii)
∑5

i=0 (5i − 1); (iii)
∑5

i=0 (1/i2); (iv)
∑5

i=2 [(1 − i)/(i − 1)]; (v)
∑5

i=1 6.

4. Expand the following expressions:

(i)
5∏

k=1
xk−1/y1−k ; (ii)

5∏
k=1

x1/k ; (iii)
5∏

k=1
5k−1; (iv)

5∏
k=1

51−k ; (v)
5∏

k=1
x1−k .yk−1.

5. Application exercise. Suppose that a company sold q1 = 50, q2 = 40, q3 = 30, and q4 = 20
units of goods numbered 1, 2, 3, and 4, respectively. The unit prices of these goods were
$10, $8, $6, and $4, respectively. Find the company’s total and average revenues using
abbreviation notations.

6. Application exercise. Suppose that a firm purchased r1 = 500, r2 = 400, r3 = 300, and
r4 = 200 units of raw materials numbered 1, 2, 3, and 4, respectively. The unit prices of
these raw materials were $100, $80, $60, and $40, respectively. Find the firm’s total and
average costs using abbreviation notations.

7. Application exercise. Assume that we have the base year prices (p) and commodities (q)
in an imaginary economy as p0

1 = 10, q0
1 = 50, p0

2 = 15, q0
2 = 60, p0

3 = 12, and q0
3 = 55;

and the tth year prices and quantities as pt
1 = 12, qt

1 = 35, pt
2 = 16, qt

2 = 50, pt
3 = 11,

and qt
3 = 60. Find the Laspeyres price index and the Paasche price index.

8. Suppose that the total monthly sales of a company for one year are m1 = 10, m2 = 15,
m3 = 25, m4 = 30, m5 = 30, m6 = 35, m7 = 45, m8 = 50, m9 = 55, m10 = 60, m11 =
70, and m12 = 80, where mi denotes the ith month and the amounts are in thousands
of dollars. Find the arithmetic mean, variance, and standard deviation of sales using
abbreviation notations.

Web supplement: S1.12 Trigonometry

Web supplement: S1.12.7 Mathematica applications
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2 Linear algebra
Vectors and matrices

2.1 Introduction

Matrices are widely applied in various branches of economics. They are also applied in
business and finance. Important applications of matrices can be found extensively in areas
of econometrics, statistics, input–output analysis, solutions of system(s) of simultaneous
linear equations (SSLEs), optimization topics, and so on. Therefore, it is important that
students of economics, business, and finance possess a good understanding of matrices and
related topics.

Our main objective in this chapter is to learn some of the basic ideas of matrices and
related topics. However, a meaningful study of matrices must be preceded by a discussion
of vectors. Therefore, we begin this chapter with an introduction to the basics of vectors.

2.2 Vectors

2.2.1 Meaning, geometric representation, and types of vectors

A vector is defined as an ordered set of numbers, parameters, or variables usually enclosed in
square brackets. We can use a simple example to elucidate this definition of a vector. Assume
that a consumer buys x1 and y1 units of two goods x and y, respectively. We can write these

units either in a column as

[
x1

y1

]
or in a row as

[
x1 y1

]
. This column or row of numbers is

called a vector. If the vector appears in the form of a column, it is called a column vector;
if it appears in the form of a row, it is called a row vector. Each entry inside the brackets is
called a component of the vector. Column vectors are generally denoted by bold, lowercase
letters such as u, v, etc. And row vectors are denoted by notations u', v', etc. Since both
of the above vectors have two components each, we say that each is a 2-vector or each has
dimension 2. If a vector has n components, then we can say that it is an n-vector or it has
dimension n.

Let us now consider the geometric representation of vectors. Suppose that x1 = 2 and
y1 = 2 in our example above. Then we have a row vector u' of dimension 2 as u' = [

2 2
]
.

This vector can be represented by an arrow from the origin to the coordinate point P = (2,2)
in a two-dimensional space as illustrated in Figure 2.2.1(A).

Assume now that we have two row 2-vectors: u' = [
x1 y1

]
and v' = [

x2 y2
]
. Also

assume that x2 = 2, y1 = 0, x2 = 0, and y2 = 2. Then these two row 2-vectors can be
written as u' = [

2 0
]

and v' = [
0 2

]
, respectively. These two vectors can be illustrated

geometrically as Figure 2.2.1(B).
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There exist various types of vectors. One type is called unit vector. A unit 2-vector is
of the form u' = [

1 0
]

or v' = [
0 1

]
. Notice that the geometric forms of these unit

vectors coincide with the horizontal and the vertical axes, respectively, as Figure 2.2.1(B).
Another type is called zero vector or null vector. A null vector will contain only zeros as
its components such as v' = [

0 0
] = 0. This null vector represents the point of origin.

The third type is called equal vectors. Two vectors are said to be equal vectors only if they
have the same dimension and if their corresponding components are equal. For example,
the two row 2-vectors u' = [

u1 u2
]

and v' = [
v1 v2

]
are said to be equal vectors only

if u1 = v1 and u2 = v2. The fourth type comprises of vectors called like vectors and unlike
vectors. Vectors having the same direction are called like vectors (such as 0P and 0P′ in
Figure 2.2.2(A)), and vectors with opposite directions are called unlike vectors (such as 0P
and 0P′′ in Figure 2.2.2(A)). A fifth type of vector is collinear vectors. If two vectors lie
on the same line (again, as in Figure 2.2.2(A)) or on parallel lines, they are called collinear
vectors. The last type we mention here is coplanar vectors, which are vectors lying on the
same or parallel planes.

2.2.2 Vector operations

Operations on vectors include addition, subtraction, and scalar multiplication. We shall
discuss each of these here. Suppose that we have two row 2-vectors: u' = [

1 2
]

and v'
= [

2 1
]
. Then the sum u' + v', called the addition of vectors, is obtained by adding each

component of u' to the corresponding component of v'. Therefore, we have u' + v' =[
1 + 2 2 + 1

]= [
3 3

]
. This new vector is illustrated in Figure 2.2.2(B). The reader must

have noticed that for addition of two vectors, the number of components in the given vectors
(or the dimension of the vectors) must be the same.

We now consider the subtraction of vectors. Assume that we have two vectors
u' = [

2 1
]

and v' = [
1 2

]
. The difference of these two vectors, called the subtraction of

vectors, is obtained by subtracting each component of v' from the corresponding component
of u'. Therefore, we have u' − v' = [

2 1
]−[

1 2
]= [

2 1
]+[−1 −2

]= [
2 − 1 1 − 2

]=[
1 −1

]
. This is illustrated in Figure 2.2.3(A). Notice that u' + (−u') or v' + (−v') will
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yield a zero vector (the point of origin). If our vectors were u' = [
4 2

]
and v' = [

3 1
]
,

then the difference would be u' − v' = [
1 1

]
, which is illustrated in Figure 2.2.3(B).

The last operation we consider here is scalar multiplication of vectors. A scalar is any
real number. Suppose that s is a scalar and that s = 2. Also let u' = [

1 1
]
. Then, in scalar

multiplication, we multiply every component of u' by s, denoted by s u', giving us a new
vector which is s times the vector u'. Therefore, given our 2-vector u' = [

1 1
]
, the scalar

product is given by s×u' = 2 × [1 1] = [2 2]. This scalar multiplication is illustrated in
Figure 2.2.3(C). Notice that the direction of the newly generated vector will be reversed if s
is negative. Also notice that one can do scalar multiplication in combination with addition
and subtraction of vectors. This implies that given two vectors of the same dimension u'
and v' and the scalar s, s(u' ± v') = s u' ± sv'.

The properties of vector addition and scalar multiplication are presented below. The first
four properties are the properties of vector addition and the last three are the properties of
scalar multiplication.1
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Property I. Vector addition is commutative. For any two vectors u and v, u + v =
v + u.

Property II. Vector addition is associative. For any three vectors u, v, and z, (u + v) +
z = u + (v + z).

Property III. Existence of additive identity. For any vector u, there exists a zero
vector 0, called the additive identity, such that u + 0 = u.

Property IV. Existence of additive inverse. For any vector u, there exists a vector called
−u, such that u + (−u) = 0.

Property V. Scalar multiplication is associative. If there are scalars s1 and s2 and if u is
a vector, then (s1 × s2) u = s1 × (s2× u).

Property VI. Scalar multiplication is distributive. If s1 and s2 are two scalars and u and
v are two vectors of the same direction, then (s1 + s2) u = s1× u + s2× u,
and s1× (u + v) = s1×u + s1× v.

Property VII. Existence of multiplicative identity. For any vector u, 1× u = u.

2.2.3 Linear combination and linear dependence of vectors

The first concept we discuss in this section is the linear combination of vectors. Suppose that
we have n n-vectors v1, v2, v3, . . ., vn; and n scalars s1,s2,s3, . . .,sn. Then we can generate
a new n-vector by multiplying the components of each original vector by the corresponding
scalars. The new vector generated in this way is called a linear combination of the original
vectors and is given by

s1v1 + s2v2 + s3v3 +·· ·+ snvn (2.2.1)

As an example of linear combination of vectors, consider the two 2-vectors v1=

[
1

2

]
and

v2 =
[
2

1

]
, and scalars s1 and s2. Then the linear combination of the given vectors with the

given scalars can be written as

v = s1

[
1

2

]
+ s2

[
2

1

]
=
[
s1.1 + s2.2

s1.2 + s2.1

]

The next concept we are concerned with here is the linear dependence of vectors or the
linear independence of vectors. Suppose that we have n n-vectors v1, v2, v3, . . ., vn; and
n scalars s1,s2,s3, . . .,sn, not all zeros. Given these vectors and scalars, if we can write
s1v1 + s2v2 + s3v3 + ·· ·+ sn vn = 0, then the vectors are said to be linearly dependent. On
the other hand, if there do not exist scalars s1,s2,s3, . . .,sn, again not all zeros, such that
s1v1 + s2 v2 + s3v3 +·· ·+ sn vn = 0, then the vectors are said to be linearly independent.

As an example, consider the two vectors v1 =
[
2
2

]
, and v2 =

[
1
1

]
. Now, using scalars

s1 = 1 and s2 = −2, we can write 1v1 − 2v2 = 1

[
2
2

]
− 2

[
1
1

]
=
[
2
2

]
−
[
2
2

]
=
[
0
0

]
= 0.

This equation of vectors can also be written as 1v1 + (−2)v2 = 0 so that it corresponds with
the above definition of linear dependence. Therefore, we say that the vectors v1 and v2 are
linearly dependent. Notice that the geometric forms of these vectors are similar to those of
the vectors illustrated in Figure 2.2.3(C).
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As another example, consider the vectors v1 =
[

1
3

]
and v2 =

[
1
1

]
. Now, using scalars s1

and s2, we can write s1v1 − s2 v2 = s1

[
1
3

]
+ s2

[
1
1

]
=
[

s1

3s2

]
−
[

s1

s2

]
=
[

0
0

]
= 0. It can

be shown that this SSLEs will be satisfied only if s1 = s2 = 0. Therefore, the two vectors v1

and v2 are linearly independent. One can see that these two vectors have different directions
if one represents them geometrically.

2.2.4 Product of vectors

We now consider the multiplication of vectors or the product of vectors. The product of two
or more vectors is also called the inner product, or the scalar product, or the dot product of
vectors. Suppose that we have the two 3-vectors q' = [q1 q2 q3] and p' = [p1 p2 p3],
where qi denotes the quantity of the ith good purchased by a consumer and pi represents the
price of the ith good, and i = 1,2,3. When we multiply the quantity of the ith good in q'
by the price of the ith good in p, we obtain the expenditure on the ith good. Then, when we
sum the amounts spent on the three goods, we obtain the total expenditure of the consumer
on these three goods. That is, the total expenditure will be equal to

∑3
i=1 qipi. This is exactly

what we get when we multiply the vector q' by the vector p. This product is called the inner
product, or scalar product, or dot product, or simply the product of vectors q' and p. Let
us now generalize the last result. Suppose that we have two n-vectors u' = [u1 u2 . . . un]
and v' = [u1 u2 . . . un]. Then the scalar product of u' and v, denoted by u'.v, is defined as

u'.v = [u1.v1 + u2.v2 + u3.v3 +·· ·+ un.vn] =
∑n

i=1
ui.vi (2.2.2)

Notice that the product in equation (2.2.2) is not a vector but a real number. This is the
reason why it is called a scalar product. Also notice that in order for the scalar product to
exist, u' and v' must be of the same dimension. We list below the properties of the scalar
product of any three n-vectors u, v, and z, and the scalar s1.

Property I. Scalar product is commutative: u'.v = v'.u.
Property II. Scalar product is distributive: u'.(v + z) = u'.v + u'.z.
Property III. Scalar product is associative: (s1.u').v = u'.(s1.v) = s1.(u'.v).

2.2.5 Vector spaces

In Section 1.8.1 we introduced some of the rudiments of spaces and dimensions. We
shall extend them here a bit further. Let us begin with the geometric forms of vectors in
Figure 2.2.4(A). We mentioned in our discussion in Section 1.8.1 that each ordered pair that
lies on a real line, say a 2-tuple such as (1, 0) on the x-axis or (0, 1) on the y-axis, is an
ordered pair generated from two sets x ∈ � and y ∈ �. We also mentioned that each real line
represents a one-dimensional space (or a one-space) denoted by � or �1. This pointed to the
fact that � constitutes the set of all 2-tuple ordered pairs that lie on a real line such as those
on the x-axis or y-axis in Figure 2.2.4(A).

Similarly, we know from our discussion so far in this chapter that every point on a
real line can be represented by a vector such as C on the x-axis or F on the y-axis of
Figure 2.2.4(A). Notice that these vectors can be generated by scalar multiplication of the
unit vectors such as B or E in the same figure. Therefore, � also represents the set of all
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Figure 2.2.4

the 2-vectors generated by scalar multiplications of a single unit 2-vector. This implies that
these newly generated 2-vectors (like C, D, F, G, etc.) span a one-space or �. Therefore,
a one-dimensional vector space is defined as the set of all the unit 2-vectors generated by
scalar multiplications of a single unit vector. Notice that all the vectors that span a one-space
are linearly dependent vectors.

Now consider the geometric representations of vectors in Figure 2.2.4(B). These 2-vectors
are u' =

[
2 1

]
; v' =

[
1 2

]
; and z' =

[
1.5 1.5

]
. Notice that we generated the vector z'

through linear combination of u' and v' with scalars s1 = 0.5 and s2 = 0.5 (that is, z'
= s1 × u' + s2 × v'). We can generate such infinite number of linear combinations of u
and v with different values for s1 and s2. Such linear combinations of independent vectors
span the entire two-dimensional space (�2 or two-space) such as the area ABCDE in
Figure 2.2.4(B). Therefore, we define the two-dimensional vector space as the set of all
the 2-vectors generated by linear combinations of two independent 2-vectors.

The next question is how we can define a three-dimensional vector space (�3 or 3-space).
For this consider the geometric representation of three linearly independent row 3-vectors
u' = [

0.5 0 0
]
, v' = [

0 0.5 0
]
, and w' = [

0 0 0.5
]

illustrated in Figure 2.2.5(A). The
elements of each of these vectors represent the values taken by three variables z, x, and y,
respectively. This implies that we will have three axes as can be seen in Figure 2.2.5(A).
Notice that we generated the vector 2u' + 2v' + 2w' through linear combination of u, v,
and w with scalars s1 = 2, s2 = 2, and s3 = 2 (that is, 2u + 2v + 2w). We can generate such
infinite number of linear combinations of u, v, and w using different values for s1, s2 and s3.
Such linear combinations of independent vectors span the entire three-dimensional vector
space illustrated in Figure 2.2.5(A). Therefore, we define the three-dimensional vector space
as the set of all the 3-vectors generated through linear combinations of three independent
3-vectors. The condition here is that, as in the definition of the two-space, the three vectors
must be independent and have the same dimension.

It is needless to mention that, although it is not possible to show geometrically, we can
define an n-dimensional vector space (n-space or �n) as the set of all the n-vectors generated
through linear combinations of n independent n-vectors. Notice that, since each point in
an n-space is an ordered n-tuple, each n-vector represents a point in the n-space. Since the
n-space or �n contains all the real numbers, it is also known as Euclidian n-space.
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2.2.6 Lengths and orthogonality of vectors

We may sometimes need to find the lengths of vectors in different dimensions or spaces.
Consider the simplest problem first: the problem of finding the length of a vector (also called
the norm of a vector) in a one-space. Two unit vectors are illustrated in Figure 2.2.4(A):
AB and AE. Consider the vector AB in this figure. For convenience we denote it by u' =[
1 0

]
. What is the length of this vector? We know that this vector originates at point A = 0

and terminates at point B = 1. Therefore, we obtain the length of the vector u' = [
1 0

]
by subtracting its terminal value from its initial value; that is, the length of the vector
u' = [

1 0
]

is equal to 1 − 0 = 1. In this way we can find the length of any vector in
one-space.

Let us now consider the length of a vector in a 2-space or the length of a row 2-vector.
For this we can use the geometric form of the row 2-vector u' = [

2 2
]

illustrated in
Figure 2.2.5(B). The graph of the vector shows that its initial point is A = 0 and its terminal
point is C. Notice that the vector makes a right-angled triangle CAD. Our problem is to
find the length of the vector u' = [

2 2
]
; that is, the length of the line segment AC or the

distance from A to C. We can apply Pythagoras’ theorem to find this distance. Applying this
theorem, we obtain the distance as ‖AC‖ = √

(DA)2 + (CD)2. Since DA = 2 − 0 = 2 and
CD = 2 − 0 = 2, we have ‖AC‖ = √

22 + 22 = √
4 + 4 = √

8 = 2.8284.
Assume that the elements of the vector u' are now general: u' = [x1 y1]. Then the length

of the vector u', following our specific case above, can be written as

||u'|| =
√

x2
1 + y2

1 (2.2.3)

Following a line of thought similar to the above, we can find the lengths of vectors in 3-
space (or row 3-vectors) and in n-space (or row n-vectors). Suppose that the row 3-vector and
the row n-vectors are u' = [x1 y1 z1] and v' = [x1 x2 . . . xn], respectively. Then the lengths
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of these vectors can be given as

||u'|| =
√

x2
1 + y2

1 + z2
1 (2.2.4)

and

||v'|| =
√

x2
1 + x2

2 +·· ·+ x2
n (2.2.5)

respectively.
Let us now turn our attention to the concept of orthogonality of vectors. For this we may

use the geometric representation of two vectors u' = [−2 1
]

and v' = [
2 4

]
as illustrated

in Figure 2.2.6. We know from Pythagoras’ theorem that the angle θ between the vectors u'
and v' is equal to 90◦ (that is, θ = 90◦) only if it is a right angle. In other words, θ = 90◦ only
if ||b − a||2 = ||a||2 + ||b||2 or ||b||2 − ||2.a.b|| + ||a||2 = ||a||2 + ||b||2. The last equation
implies that ||2a.b|| = 0 or a.b = 0, which suggests that two vectors (such as u' and v' in
Figure 2.2.6) are orthogonal vectors (or they are perpendicular or the angle between them is
equal to 90◦) only if their inner product is zero. Although we defined orthogonality of vectors
with respect to 2-space, the definition can be generalized to n-space.

2.2.7 Lines, planes, and hyperplanes

We begin the discussion of a line with the geometric forms of two linearly independent
row 2-vectors u' = [

x3 y1
] = [

3 1
]

and v' = [
x1 y3

] = [
1 3

]
, as illustrated in

Figure 2.2.7(A). Notice that the vector z' = [
x2 y2

] = [
2 2

]
in this figure is generated

through the linear combination of vectors u' and v' with the scalar s = 0.5. That is, we can
write z' = v' + s(u' − v') = s u' + (1−s)v'. Notice also that the scalar s is such that 0 ≤ s ≤ 1.
Now using different values for s yields the set z'i = [

xi yi
]

(where i = 1,2,3, . . . ,n), such
as z'1, z'2, etc. It can be seen from Figure 2.4.7(A) that this set is the same as the set of points
lying on the line L. Therefore, z'i describes the line L. We shall now formally define a line
L through vectors u' = [

x1 y1
]

and v' = [
x2 y2

]
in �2 as the set of all z'i satisfying the

equation z' = s u' + (1 − s)v'.
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Similarly, we can define a line in �3 using geometric forms of two linearly independent
row 3-vectors u' = [

x1 y1 w1
] = [

3 1 1
]

and v' = [
x2 y2 w2

] = [
1 3 3

]
. Notice

that, as in Figure 2.2.7(A), the vector z' in Figure 2.2.7(B) is generated through linear
combination of vectors u' and v': z' = s u' + (1 − s)v', where s is a scalar such that
0 ≤ s ≤ 1. Now using different values for s, as before, yields the set z'i = [

xi yi wi
]

(where i = 1,2,3, . . .,n), such as z'1, z'2, etc. It can be seen, from Figure 2.2.7(B), that this
set is the same as the set of points lying on the line L. Therefore, z' describes the line L.
We can now formally define, again as before, a line L through u' = [

x1 y1 w1
]

and v' =[
x2 y2 w2

]
in �3 as the set of all z'i satisfying the equation z' = s u' + (1 − s)v'.

Continuing in an analogous fashion, we can define a line in �n. Suppose that we
have two linearly independent row n-vectors u' = [

u1 u2 u3 . . . un
]

and v' =[
v1 v2 v3 . . . vn

]
and a scalar s such that 0 ≤ s ≤ 1. Now using different values for

s, as above, yields the set z'i = [
z1 z2 z3 . . . zn

]
. It can be shown that this set is the

same as the set of points lying on a specific line in �n. Thus z' describes this specific line.
Therefore, we shall formally define a line through u' = [

u1 u2 u3 . . . un
]

and v' =[
v1 v2 v3 . . . vn

]
in �n as the set of all z'i satisfying the equation z' = s u' + (1 − s)v'.

The above description of a line using a parameter (s) is called the parametric represen-
tation of a line. Notice that if s = 0, we have the point represented by the vector z' = v'; if
s = 1, we have the point represented by the vector z' = u'. When s lies between 0 and 1 (that
is, when 0 ≤ s ≤ 1) we are at vector points, represented by z'i , between u' and v'. Therefore,
any point in this intermediate range can be shown through an equation called the parametric
equation of a line:

L (u',v') = {s u' + (1 − s)v' | 0 ≤ s ≤ 1} (2.2.6)

So far we have been concerned with lines in �1, �2, �3, . . ., and �n. We now consider
planes in these respective dimensions. But, before this, notice that while lines are one
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dimensional (irrespective of whether they lie in �1, �2, �3, or �n) and can be described
by one parameter (s in our case), planes are two dimensional. This is illustrated in
Figure 2.2.8(A).

The two-dimensional character of planes suggests that we require two parameters to
describe them. Therefore, we now use two scalars (parameters) to define a plane. Assume
that we have three linearly independent row 2-vectors p' = [

p1 p2
]
, u' = [

x1 y1
]
, and

v' = [
x2 y2

]
and two scalars s and r, where the vector p' is a normal vector (or a vector

perpendicular) to the plane z' in Figure 2.2.8(A). Then we can use the above method of
parameterization to define a plane in �2, such as the plane z', which can be given by the
equation z' = p' + s u' + r v'. One can show that this set z'j is the same as the set of
points lying in the plane �2. Notice that the vectors u' − p' and v' − p' are displacement
vectors from the normal vector p'. Therefore, the parametric equation given above for a two-
dimensional plane can be expressed as z' = p' + s(u' − p') + r(v' − p'), which simplifies
to z' = (1 − s − r)p' + s u' + r v'. Notice also that if p' = [

0 0
]
, then the plane will pass

through the origin. In such cases, the parametric equation becomes z' = s u' + r v'.
The last equation is called the parametric equation of a plane. It implies that the set of

vectors zj generated through linear combinations of u' and v' with scalars s and r, and with
the normal vector p', will span the entire two-dimensional plane (including the darker one) in
Figure 2.2.8(A). This suggests that, just as two points (represented by two linearly indepen-
dent 2-vectors) determine a line, three points (represented by three linearly independent
3-vectors) determine a plane.

The above parametric equation can be used to describe a plane in �3. This is illustrated
in Figure 2.2.8(B). Let us now attempt to define a plane in �3. Suppose that we have three
linearly independent 3-vectors p' = [

p1 p2 p3
]
, u' = [

x1 y1 z1
]
, and v' =

[
x2 y2 z2

]
;

and two scalars s and r. Notice that p' is still a normal vector. Following the above procedure,
we define a plane in �3 as a three-dimensional area that satisfies the same equation as the
one that defines a plane in �2: z' = p' + s(u' − p') + r(v' − p'). The only difference
here is that in the former the vectors p', u', and v' are 3-vectors, while in the latter they are
2-vectors.
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Continuing in an analogous fashion, we can define a plane in �n. Suppose that
we have three linearly independent row n-vectors u' = [

u1 u2 u3 . . . un
]
, v' =[

v1 v2 v3 . . . vn
]
, and p' = [

p1 p2 p3 . . . pn
]
; and two scalars s and r. Also suppose

that we have another vector z' = p' + s u' + r v' = [
z1 z2 z3 . . . zn

]
, which is generated

through a linear combination of the given vectors and using the given scalars. It can be
shown that this set z'j is the same as the set of points lying in a plane in �1. Therefore,
a plane in �n, like a plane in �2 or �3, is again the set of all z' satisfying the equation

z' = (1 − s − r)p' + su' + rv' (2.2.7)

Equation (2.2.7) represents the parametric equation of the plane that contains points p',
u', and v'. Notice that if p' = 0 and r = 1−s, then equation (2.2.7) reduces to equation (2.2.6).
This suggests that the equation that describes a plane (equation (2.2.7)) is more general than
the equation that describes a line (equation (2.2.6)). That is, one can derive the latter from
the former. What this suggests is that equation (2.2.7) can describe both lines and planes.
Therefore, a line in �1 such as AB in Figure 2.2.4(A) (or in �2 such as L or in �3 such as
L in Figures 2.2.7(A) and (B), respectively, or in �n) or a plane in �2 such as the shaded
area in Figure 2.2.8(A) (or in �3 such as the shaded area in Figure 2.2.8(B), or in �n) are
called hyperplanes.

2.2.8 Application examples

Example 1. Assume that two combinations of two goods (x and y) purchased by a
consumer are given by the two row 2-vectors u' = [

x1 y1
]

and v' = [
x2 y2

]
, and the

prices of the two goods are given by the row 2-vector p' = [px py]. The consumer’s income
is given by I . Show the consumer’s budget line and commodity space or commodity plane.
Also show that the price vector is orthogonal to the budget line (or to the commodity plane).

Solution. Suppose that we use the combination given by the vector u' = [
x1 y1

]
. Then

the total expenditure of the consumer is given by the dot product of two vectors: p'.u =
px.x1 + pyy1. Since the consumer’s income must be less than or equal to the expenses, we
have the inequality px.x1 + py.y1 ≤ I . If we write px.x1 + py.y1 = I , then it gives us the
consumer’s budget line as shown by the line BC (a line in a 2-space) in Figure 2.2.9(A).

Notice that the line BC in Figure 2.2.9(A) conforms to the definition of a line in a two-
dimensional space given in equation (2.2.6) if we use the parameter s such that 0 ≤ s ≤ 1:
L (u', v') = s u' + (1 − s)v'. However, using parameters s and r such that 0 ≤ s ≤ 1 and
0 ≤ r ≤ 1, we may express z' = (1 − s − r)p' + s u' + r v' (as in equation (2.2.7)). Then
the set of points represented by the plane z' is the same as the set of points lying within
(or on) the shaded triangle in Figure 2.2.9(A). This space is called the commodity space or
the commodity plane.

Let us now show that the price vector p' = [px py] is orthogonal to the budget line or the
commodity space. For this, assume that u' = [0 I/py] and v' = [

I/px 0
]
. Therefore, we

have z' = u' − v' = [0 I/py]−
[
I/px 0

]= [I/py −I/px]. We can now multiply the vector
z' by the vector p' to obtain p'.z' = [px py][I/py −I/px] = 0. This shows that the vector
that represents the budget line or the commodity plane and the price vector in Figure 2.4.9(A)
are orthogonal.
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Example 2. Assume that the two combinations of the two inputs (l and k) that a firm
employs to produce a good are given by the two row 2-vectors u' =

[
l1 k1

]
and v' =[

l2 k2
]
, and the prices of the two inputs are given by the row 2-vector p' = [

pl pk
]
. The

firm’s budget is given by G. Show the producer’s iso-cost line and input space or input plane.
Also show that the price vector is orthogonal to the iso-cost line (or to the input plane).

Solution. Following the same procedure as in the solution of example 1 above, we
can draw the firm’s iso-cost line (EF) and input plane (the shaded area) as illustrated in
Figure 2.2.9(B). Let us now show that the price vector p' = [

pl pk
]

is orthogonal to the
iso-cost line or the input space. For this, assume that v' = [

0 G/pk
]

and u' = [
G/pl 0

]
.

Therefore, we have z' = u' − v' = [
G/pl 0

]− [
0 G/pk

]= [
G/pl −G/pk

]
. We can now

multiply the vector p' by the vector z to obtain p'.z = 0. This shows that the vector that
represents the iso-cost line or the input plane and the price vector in Figure 2.2.9(B) are
orthogonal.

2.2.9 Exercises

1. Let u' = [1 3 5] and v' = [2 4 6]. Find the following:
(i) u' + v'; (ii) u' − v'.

2. Let u' = [1 3] and v' = [2 4]. Find, and illustrate, the following:
(i) u' + v'; (ii) u' − v'.

3. Let u' = [1 3] and v' = [2 4]. Find, and illustrate, the following:
(i) 2(u' + v'); (ii) 2(u' − v').

4. Which of the following vectors are linearly independent (or dependent), and why?
(i) u' = [1 3] and v' = [2 6]; (ii) u' = [1 3] and v' = [2 4]; (iii) u' = [1 3 5] and
v' = [2 4 6]; (iv) u' = [5 15 25] and v' = [1 3 5].

5. Find the inner products of the following vectors:
(i) u' = [1 3] and v' = [2 6]; (ii) u' = [2 6] and v' = [1 3]; (iii) u' = [1 3 5] and
v' = [2 4 6]; (iv) u' = [5 15 25] and v' = [1 3 5].
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6. Draw the graph of a line in �2 using the vectors u' = [1 3] and v' = [2 4] and the scalar
s = 0.5.

7. Draw the graph of a plane in �2 using the vectors u' = [1 3] and v' = [2 4] and the
scalars s = 0.4 and r = 0.4.

8. Draw the graph of a line in �3 using the vectors u' = [1 3 5] and v' = [2 4 8] and the
scalar s = 0.5.

9. Draw the graph of a plane in �3 using the vectors u' = [2 0 0] and v' = [0 2 0] and
v' = [0 0 2], and the scalars s1 = 1.5, s2 = 1.5, and s3 = 1.5.

Web supplement: S2.2.10 Mathematica applications

2.3 Matrices

We are now ready to begin the discussion of matrices. In Section 1.11.1 we constructed a
matrix based on the sales data of a company. The indices i and j in that matrix denoted the
ith month and jth market, respectively. Therefore, the elements in the ith row represented
the sales of the company in all the markets during the ith month and the elements in the jth
column represented the sales of the company in the jth market during all the months. And,
the element aij denoted the sales of the company during the ith month in the jth market.

Suppose now that the company sells its product in only three markets ( j = 1,2,3) during
only three months (i = 1,2,3). Suppose also that we denote these sales by three row 3-vectors
u' = [

a11 a12 a13
]
, v' = [

a21 a22 a23
]
, and z' = [

a31 a32 a33
]
. Now imagine that we

write these three vectors together by stacking one on the top of the other:

A =
⎡
⎣u′

v′
z′

⎤
⎦=

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ (2.3.1)

We call this row-wise stack of vectors in equation (2.3.1) a matrix. If our vectors
were u' = [ a11 a12 a13 . . . a1j . . . a1n ], v' = [ a21 a22 a23 . . . a2j . . . a2n ], w'
= [ a31 a32 a33 . . . a3j . . . a3n ],…, x' = [ ai1 ai2 ai3 . . . aij . . . ain ],…, and
z' = [am1 am2 am3 . . . amj . . . amn] , then the matrix would become

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′
v′
w′
. . .

x′
. . .

z′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 . . . a1j . . . a1n

a21 a22 a23 . . . a2j . . . a2n

a31 a32 a33 . . . a3j . . . a3n

. . . . . . . . . . . . . . . . . . . . .

ai1 ai2 ai3 . . . aij . . . ain

. . . . . . . . . . . . . . . . . . . . .

am1 am2 am3 . . . amj . . . amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3.2)

Let us now formally define a matrix, such as A or B above, as a rectangular array of
numbers (or parameters or variables). Every number (or parameter or variable) appearing
inside the matrix (such as a12, or a21, or aij) is called an element of the matrix.
Equation (2.3.2) gives the general form of a matrix, and its one specific form is given in
equation (2.3.1).
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Matrices are usually represented by bold, uppercase letters, such as A in equation (2.3.1)
or B in equation (2.3.2). The size of a matrix (or the dimension of a matrix or the order of
a matrix) is determined by the number of rows and columns it contains. Since matrix A has
3 rows and 3 columns, it is of order 3 × 3 (read “three by three”) and is written as A3×3.
Similarly, matrix B is of order m × n and is written as Bm×n.

2.3.1 Types of matrices

One of the most frequently used types of matrices is a square matrix. A square matrix is a
matrix in which the number of rows is equal to the number of columns; that is, m = n. The
matrices A and B we discussed earlier are examples of square matrices. Another example of a

square matrix is C2×2 =
[
1 2

3 4

]
. If in a matrix m �= n, then that matrix is called a rectangular

matrix. An example of a rectangular matrix is D2×3 =
[

1 2 3
4 5 6

]
.

Another important type of matrix is a null matrix. A null matrix is a matrix in which all
the elements are zeros. A null matrix is normally denoted by 0. Examples of a square null

matrix and a rectangular null matrix are E2×2 =
[

0 0
0 0

]
= 02×2 and F2×3 =

[
0 0 0
0 0 0

]
,

respectively.
Another type of matrix is a triangular matrix. Before we explain the meaning of a

triangular matrix, we need to know the meaning of the diagonal elements of a matrix.
Consider, for example, matrix C2×2 mentioned above. If we draw a line from the upper
left corner of this matrix to its lower right corner, the line we obtain is called the diagonal of
the matrix or the main diagonal of the matrix. The diagonal of this matrix will pass through
elements 1 and 4. These elements are called the diagonal elements of matrix C.

We now define a triangular matrix as a matrix whose elements off the main diagonal are
all zeros. This implies that a diagonal matrix is a matrix in which aij �= 0 for all i = j, and
aij = 0 for all i �= j. If aij = 0 for all i < j in a matrix (that is, if the elements in a matrix
above the main diagonal are all zeros), then that matrix is called a lower triangular matrix.
If aij = 0 for all i> j in a matrix (that is, if the elements in a matrix below the main diagonal
are all zeros), then that matrix is called an upper triangular matrix. Notice that for a matrix
to be either triangular, or lower or upper triangular, the matrix must be a square matrix. The
following matrices, A, B, and C, are examples of triangular, lower triangular, and upper
triangular matrices, respectively:

A3×3 =
⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ , B3×3 =

⎡
⎣1 0 0

2 3 0
4 5 6

⎤
⎦ , and C3×3 =

⎡
⎣1 2 3

0 4 5
0 0 6

⎤
⎦

Another important type of matrix is called an identity matrix or a unit matrix. Imagine
what happens if, in a triangular matrix, the elements on the main diagonal are all 1’s. Such
a matrix is called an identity or a unit matrix and is normally denoted by I. Examples of
identity matrices are

I2×2 =
[

1 0
0 1

]
, I3×3 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , etc.
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The last three types of matrices we discuss here are row matrix, column matrix, and equal
matrices. A row matrix is a matrix in which there is only one row. A column matrix is a
matrix in which there is only one column. Examples of row matrix and column matrix are

A1×2 = [
1 2

]
and B2×1 =

[
3
4

]
, respectively. Notice that these row and column matrices

are nothing other than the row and column vectors, respectively, we discussed and used in
Section 2.2. Two matrices are said to be equal only if their corresponding elements are equal

and they are of the same order. For example, suppose we have four matrices: A =
[
1 2
3 4

]
,

B =
[
1 2
3 4

]
, C =

[
5 6
7 8

]
, and D =

[
1 2

]
. Since A and B have the same order (2 × 2) and

since their corresponding elements are equal, A = B. Although A, B, and C are of the same
order, their corresponding elements are not equal. Therefore, A = B �= C. Since the orders
of A and B are different from that of D, A = B �= D.

2.3.2 Matrix operation: scalar multiplication

We often need to use scalar multiplication and its properties in other matrix operations.
Therefore, we first discuss the multiplication of one or more matrices by one or more

scalars. Suppose that we have a matrix A =
[
a11 a12

a21 a22

]
and a scalar s. What we mean

by scalar multiplication is that we multiply every element of the matrix A by s, and we

write it as sA = s

[
a11 a12

a21 a22

]
=
[
s.a11 s.a12

s.a21 s.a22

]
. Notice that, for scalar multiplication, the

matrix need not be a square matrix. Notice also that the reverse is also possible. Two of the
important properties of scalar multiplication of matrices are the following.

Property I. Suppose that we have two scalars s and t, and a matrix A. Then (s ± t)×A =
s × A ± t × A.

Property II. Suppose that we have a scalar s and two matrices A and B of the same order.
Then s× (A + B) = s × A + s× B.

2.3.3 Matrix operations: addition and subtraction

Assume that we have two matrices of the same order: Aij = [aij] and Bij = [bij]. Then a
new matrix Cij = [cij], where [cij] = [aij + bij] for all i and j, and i = 1,2,3, . . . ,m and
j = 1,2,3, . . . ,n, can be generated. What this means is that we add the (i, j)th element of A
to the corresponding (i, j)th element of B to obtain the (i, j)th of C. As an example consider

two matrices of order 2×2: A2×2 =
[
1 2
3 4

]
and B2×2 =

[
5 6
7 8

]
. Then the sum, or addition,

of the two matrices Aij and Bij is given as

C2×2 = A2×2 + B2×2 =
[
1 2
3 4

]
+
[
5 6
7 8

]
=
[
1 + 5 2 + 6
3 + 7 4 + 8

]
=
[

6 8
10 12

]

Subtraction of two or more matrices is similar to the addition of two or more matrices.
Suppose that, as in the case of addition, we have two matrices of the same order: Aij = [aij]
and Bij = [bij]. Then a new matrix Cij = [cij], where [cij] = [aij − bij] for all i and j, and
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i = 1,2,3, . . . ,m and j = 1,2,3, . . . ,n, can be generated. What this means is that we subtract
the (i, j)th element of B from the corresponding (i, j)th element of A to obtain the (i, j)th
of C. Notice that, in subtraction, we are in fact adding the negative of B (which is nothing
but a scalar multiple of B with the scalar being −1) to the corresponding element of A. As
an example, consider our last two matrices A2×2 and B2×2. Then the difference between A
and B is given as

C2×2 = A2×2 − 1 × B2×2 = A2×2 − B2×2 =
[
1 2
3 4

]
−
[
5 6
7 8

]
=
[
1 − 5 2 − 6
3 − 7 4 − 8

]

=
[−4 −4
−4 −4

]
= (−4)

[
1 1
1 1

]

Notice that for addition (or subtraction) of two matrices, the matrices must be of the
same order. This is called the conformability condition for addition (or subtraction) of
matrices. Notice also that the resulting matrix C will be of the same order as those of the
original matrices. The important properties of matrix addition (or of matrix subtraction) are
presented below, supposing that we have four matrices of the same order: A, B, C, and 0
(null matrix).

Property I. Matrix addition is commutative: A + B = B + A.
Property II. Matrix addition is associative: (A + B) + C = A + (B + C).
Property III. Existence of additive inverse: A + (−A) = 0.
Property IV. Existence of additive identity: A + 0 = A.

2.3.4 Matrix operation: multiplication

Let there be two matrices: Am×p = [aij]m×p and Bp×n = [bij]p×n. Then the product of A and
B, denoted by C, is given by AB = C = [cij]m×n, where cij = ai1.b1j + ai2.b2j + ai3.b3j +
..........+aip.bpj , i = 1,2,3, . . . ,m and j = 1,2,3, . . . ,n. This implies that the (i, j)th element
of C is obtained by multiplying the ith row of A and the jth column of B and summing the

result. Suppose that the two matrices are: A =
[
a11 a12 a13

a21 a22 a23

]
2×3

and B =
⎡
⎣b11 b12

b21 b22

b31 b32

⎤
⎦

3×2

.

Assume that we multiply every element in the first row of A by the corresponding elements
in the first column of B, multiply every element in the first row of A by the corresponding
elements in the second column of B, multiply every element in the second row of A by the
corresponding elements in the first column of B, and multiply every element in the second
row of A by the corresponding elements in the second column of B. When we take the sums
of these four products and write it in the form of a matrix, we obtain matrix C (which is the
product of A and B):

C = A.B =
[
a11 × b11 + a12 × b21 + a13 × b31 a11 × b12 + a12 × b22 + a13 × b32

a21 × b11 + a22 × b21 + a23 × b31 a21 × b12 + a22 × b22 + a23 × b32

]
2×2

Notice that these are nothing but the scalar products of vectors contained in the matrices A
and B.
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a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b31

b31 b32 b33

Figure 2.3.1

As an example of finding the products of two matrices, we shall use the matrices A and

B: A =

[
1 2 2
1 2 2

]
2×3

and B =

⎡
⎣2 1

1 2
2 1

⎤
⎦

3×2

. Therefore, the product of A and B is

A.B =
[

1 × 2 + 2 × 1 + 2 × 2 1 × 1 + 2 × 2 + 2 × 1

1 × 2 + 2 × 1 + 2 × 2 1 × 1 + 2 × 2 + 2 × 1

]
2×2

=
[

8 7

8 7

]
2×2

Suppose that our matrices are A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

3×3

and B =
⎡
⎣b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎦

3×3

. Then,

following a procedure similar to the one above or as illustrated in Figure 2.3.1, we obtain the
product of A and B as

AB =
[

a11 × b11 + a12 × b21 + a13 × b31 a11 × b12 + a12 × b22 + a13 × b32 a11 × b13 + a12 × b23 + a13 × b33

a21 × b11 + a22 × b21 + a23 × b31 a21 × b12 + a22 × b22 + a23 × b32 a31 × b13 + a32 × b23 + a33 × b33

a31 × b11 + a32 × b21 + a33 × b31 a31 × b12 + a32 × b22 + a33 × b32 a31 × b13 + a32 × b23 + a33 × b33

]
3×3

As an example of finding the product of two 3×3 matrices, suppose that the matrices are

A =
⎡
⎣2 2 1

2 1 1
2 2 1

⎤
⎦

3×3

and B =
⎡
⎣1 1 2

1 2 2
1 1 2

⎤
⎦

3×3

. Then their product will be

A.B =
⎡
⎣2 × 1 + 2 × 1 + 1 × 1 2 × 1 + 2 × 2 + 1 × 1 2 × 2 + 2 × 2 + 1 × 2

2 × 1 + 1 × 1 + 1 × 1 2 × 1 + 1 × 2 + 1 × 1 2 × 2 + 1 × 2 + 1 × 2

2 × 1 + 2 × 1 + 1 × 1 2 × 1 + 2 × 2 + 1 × 1 2 × 2 + 2 × 2 + 1 × 2

⎤
⎦

3×3

=
⎡
⎣5 7 10

4 5 8

5 7 10

⎤
⎦

3×3

The reader would have noticed that in the multiplication of A by B, the number of columns
of A was equal to the number of rows of B. This is called the conformability condition for the
multiplication of matrices. This implies that two matrices (A and B) are said to be conformable
for multiplication (if we multiply A by B) only if the number of columns in A is equal to
the number of rows in B. Otherwise the product will not exist. This points to the fact that the
order of A.B will be equal to the number of rows of A and the number of columns of B. In
our first example above, the order of A was 2 × 3 and the order of B was 3 × 2 giving us
the product A.B whose order was 2 × 2. In the second example, A and B were of the same
order (3 × 3) yielding us A.B whose order was 3 × 3.
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Similarly, if we multiply B by A, then the number of rows in B must be equal to the number
of columns in A, and the order of the resulting matrix will be equal to the number of rows of
B and the number of columns of A. Therefore, one needs to check whether the matrices are
conformable for multiplication before one carries out multiplication. Notice that those two
square matrices are always (in both ways) conformable for multiplication. We state below
the properties of matrix multiplication, assuming that we have five matrices, A, B, C, an
identity matrix (I), and a null matrix (0), such that they are conformable for the operations
indicated below.

Property I. Matrix multiplication is associative: (AB)C = A(BC).
Property II. Matrix multiplication is distributive over addition and subtraction:

A(B ± C) = AB ± AC and (B ± C)A = BA ± CA.
Property III. Matrix multiplication is not always commutative: AB = BA or AB �= BA

(that is, AB may or may not be equal to BA, even if these two operations
are conformable or even if the products exist).

Property IV. AI = A = IA.
Property V. A0 = 0 = 0A.

2.3.5 Transpose of a matrix and powers of square matrices

Suppose that we have the matrix A = [aij]m×n. Then the transpose of this matrix, denoted by
AT, is defined as AT = [bji]n×m, where bji = aij for all i = 1,2,3, . . . ,m and j = 1,2,3, . . . ,n.
What this means is that we obtain AT by interchanging the rows and columns of A; that is,
the rows of AT will be columns of A. This implies that the transposition of a matrix reverses
the order of the matrix; that is, if A is of order m×n, then AT will be of order n×m. Notice
that the transposes of matrices I and 0 will be the same; i.e., I = IT and 0 = 0T.

As an example, consider the matrices A =
[
1 2 3
4 5 6

]
2×3

and B =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦

3×3

. Then,

AT =
⎡
⎣1 4

2 5
3 6

⎤
⎦

3×2

and B T =
⎡
⎣1 4 7

2 5 8
3 6 9

⎤
⎦

3×3

. The reader will have noticed that if a square

matrix (such as B above) is transposed, the diagonal elements remain unchanged.
Two matrices related to the transpose of a matrix are symmetric matrix and skew

symmetric matrix. A square matrix, say C, is said to be a symmetric matrix if CT = C.
Notice that I and 0 are two examples of a symmetric matrices. Other examples include CT

1 =

C1 =
[
a b
b c

]
, CT

2 = C2 =
[
1 2
2 4

]
, CT

3 = C3 =
⎡
⎣a b c

b d e
c e f

⎤
⎦, and CT

4 = C4 =
⎡
⎣1 2 3

2 4 5
3 5 6

⎤
⎦.

A square matrix, say C, is said to be a skew symmetric matrix if CT = −C. Examples

of a skew symmetric matrix include CT
1 =

[
0 −b
b 0

]
given C1 =

[
0 b

−b 0

]
, and CT

2 =⎡
⎣ 0 b c

−b 0 e
−c −e 0

⎤
⎦ given C2 =

⎡
⎣0 −b −c

b 0 −e
c e 0

⎤
⎦.
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The important properties of matrix transposition are the following.

Property I. Let there be a matrix A and scalar s, then (s. A)T = s. (A)T.
Property II. For any matrix A, then (AT)T = A.
Property III. Let there be two matrices, A and B, of the same order, then (A ± B)T =

AT± BT.
Property IV. Let there be two matrices, A and B, and their product A.B exists, then

(A.B)T = BT.AT.

We now consider the powers of a square matrix. Let A be a square matrix. Then, we
define A.A = A2; A.A2 = A3; A.A3 = A4;…; and A.An−1 = An, where n is any positive
integer. Notice that Am.An = Am+n, and (Am)n = Am.n.

2.3.6 Matrices and SSLEs

There are plenty of models in the subjects of our interest that use matrices to abbreviate
SSLEs. Therefore, we consider here the topic of abbreviation of SSLEs using matrices. We
discussed SSLEs in detail in Section 1.6.5. Consider, for example, the 2×2 system we dealt
with in equation (1.6.12). Let us reproduce that system: −b1x + y = b0 and −b3x + y = b2.
Using, for convenience, a11 = −b1, a12 = 1, a21 = −b3, a22 = 1, x1 = x, x2 = y, d1 = b0,
and d2 = b2 we may rewrite the last system as

a11x1 + a12x2 = d1

a21x1 + a22x2 = d2
(2.3.3)

The question now is how one can abbreviate the system in equation (2.3.3) using matrices.
Notice that a11, a12, a21, and a22 are called coefficients, x1 and x2 are called variables, and d1

and d2 are called constants. One can write the coefficients, the variables, and the constants

in the above system using matrices as A =
[
a11 a12

a21 a22

]
, x =

[
x1

x2

]
, and d =

[
d1

d2

]
. Therefore,

the system in equation (2.3.3) can be written in matrix form as Ax = d. Notice that x and d
in this equation are nothing but two column 2-vectors.

Consider now, for example, the 3 × 3 system we dealt with in equation (1.6.13). Using,
for convenience, a11 = −b1, a12 = −b2, a13 = 1, d1 = b0, a21 = −b4, a22 = −b5, a23 = 1,
d2 = b3,a31 = −b7,a32 = −b8,a33 = 1, d3 = b6, x1 = x2 = y, and x3 = z, we may write the
system (1.6.13) as

a11x1 + a12x2 + a13x3 = d1

a21x1 + a22x2 + a23x3 = d2

a31x1 + a32x2 + a33x3 = d3

(2.3.4)

One can now write the coefficients, the variables, and the constants in the above system

using matrices as A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦, x =

⎡
⎣x1

x2

x3

⎤
⎦, and d =

⎡
⎣d1

d2

d3

⎤
⎦. Therefore, the system

in equation (2.3.4) can be written in matrix form as Ax = d. Suppose now that we have
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an m × n system of the form

a11x1 + a12x2 + a13x3 +·· ·+ a1nxn = d1

a21x1 + a22x2 + a23x3 +·· ·+ a2nxn = d2

a31x1 + a32x2 + a33x3 +·· ·+ a3nxn = d3

.......................................................

am1x1 + am2x2 + am3x3 +·· ·+ amnxn = dm

(2.3.5)

The above m × n system can be written, using matrices, as Ax = d, where

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 . . . a1n

a21 a22 a21 . . . a2n

a31 a32 a33 . . . a3n

. . . . . . . . . . . . . . .

am1 am2 am3 .... amn

⎤
⎥⎥⎥⎥⎦ ,x =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

..

xn

⎤
⎥⎥⎥⎥⎦ , and d =

⎡
⎢⎢⎢⎢⎣

d1

d2

d3

..

dm

⎤
⎥⎥⎥⎥⎦

Consider now an m × n system whose constants are all zeros (that is, di = 0, where i =
1,2,3, . . . ,m). Such a system is of the form

a11x1 + a12x2 + a13x3 +·· ·+ a1nxn = 0

a21x1 + a22x2 + a23x3 +·· ·+ a2nxn = 0

a31x1 + a32x2 + a33x3 +·· ·+ a3nxn = 0

.....................................................

am1x1 + am2x2 + am3x3 +·· ·+ amnxn = 0

(2.3.6)

We can write the system in equation (2.3.6) in matrix form as Ax = d = 0, where A denotes
the m×n matrix of coefficients, x denotes the m×1 column matrix (or vector) of variables,
and d = 0 denotes the m×1 column matrix (or vector) of constants. A SSLEs whose constants
are all zeros (as in equation (2.3.6)) is called a homogenous SSLEs.

2.3.7 Augmented matrices, elementary row operations, echelon forms, and
the solution of SSLEs

Consider the 3×3 SSLEs we used in the system in equation (1.6.14). Letting x1 = x, x2 = y,
and x3 = z, we may rewrite that system as

2x1 + x2 + x3 = 6

x1 + 2x2 + x3 = 2

0.5x1 + 0.5x2 + x3 = 2

(2.3.7)

We know that the coefficient matrix, the column vector of the variable, and the column

vector of the constant of the system, respectively, are A =
⎡
⎣ 2 1 1

1 2 1
0.5 0.5 1

⎤
⎦, x =

⎡
⎣x1

x2

x3

⎤
⎦, and
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d =
⎡
⎣6

2
2

⎤
⎦. We also know that the matrix form of the system is Ax = d. Notice that if we can

transform the system Ax = d into Ix = e (where we transformed the coefficient matrix (A)
into identity matrix (I) and the constant matrix d into another column matrix of constants
(e)), then we can be sure that Ix = x = e would be the solution to the above system.

In order to obtain the matrix equation Ix = x = e, we proceed as follows. Suppose now
that we augment A by adding the column matrix d inside A; that is, as [A|d] and denote it by

Aaugd. Then the result will be Aaugd =
⎡
⎣ 2 1 1 6

1 2 1 2
0.5 0.5 1 2

⎤
⎦, which is called the augmented

matrix based on equation (2.3.7).
Suppose again that we multiply or divide the rows of the augmented matrix by a nonzero

constant; or multiply one of the rows of the augmented matrix by a nonzero constant and add
the result to another row of the same augmented matrix; or interchange any of the two rows of
the augmented matrix. These three operations, when applied to an augmented matrix Aaugd
of an original system of equations, are called the elementary row operations. Therefore, the
elementary row operations include any one, or all, of the following:

I. Multiply or divide one row of the augmented matrix by a nonzero constant. When we
multiply the first row by 3 (or by 1/3), we denote it as R1 → 3R1 (or R1 → (1/3)R1).
Notice that when we do this operation on R1 of the augmented matrix, only R1 will
change and all other rows will remain unchanged.

II. Add a multiple of one row of the augmented matrix to another row of the same matrix.
When we multiply the second row by 3 and add the result to (or subtract the result
from) the third row, we denote it as R3 → R3 ± 3R2. As above, when we do this
operation, only R3 will change and all other rows remain unchanged.

III. Interchange two rows of the augmented matrix. When we interchange the first and the
second rows, we denote it as R1 ↔ R2. When we do this operation, the positions of R1

and R2 will be interchanged while the positions of all other rows remain unchanged.

We shall now carry out these elementary row operations on our augmented matrix Aaugd
above. Notice that one can carry out individual elementary row operations, or one or more
of the elementary row operations at the same time.

[
2 1 1 6
1 2 1 2

0.5 0.5 1 2

]
�

R3 → 2R3

[
2 1 1 6
1 2 1 2
1 1 2 4

]
�

R3 → 2R3 − R1

[
1 1 1 6
1 2 1 2
0 1 3 2

]

�
R1 → R1 − R2

[
1 −1 0 4
1 2 1 2
0 1 3 2

]
�

R2 → R2 − R3

[
1 −1 0 4
1 1 −2 0
0 1 3 2

]
R2 →

�
R2 − R1

[
1 −1 0 4
0 2 −2 −4
0 1 3 2

]

R1 → R1 + R3

�
R2 → R2 − 2R3

[
1 0 3 6
0 0 −8 −8
0 1 3 2

]
R2 →

�
R2 + R3

[
1 0 3 6
0 1 −5 −6
0 1 3 2

]
R3 →

�
R3 − R2

[
1 0 3 6
0 1 −5 −6
0 0 8 8

]

�
R3 → 1

8 R3

[
1 0 3 6
0 1 −5 −6
0 0 1 1

]
R1 → R1 − 3R3

�
R2 → R2 + 5R3

[
1 0 0 3
0 1 0 −1
0 0 1 1

]
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Notice that the last matrix contains two matrices: the identity matrix I =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ and

the column matrix e =
⎡
⎣ 3

−1
1

⎤
⎦. We can now write these two matrices backward, with the

matrix x, as we did before (that is, Ix = e). Now, what this new system Ix = e means is the
solution of our 3×3 SSLEs in equation (2.3.7). In other words we have the solutions x1 = 3,
x2 = −1, and x3 = 1. Therefore, the system possesses a unique solution. Notice that these
were exactly the solutions we mentioned at the end of Section 1.6.5.

As another example, consider the 2 × 2 system in Section 1.6.5. This system can be
written as

− 2x1 + x2 = 10

− 4x + x2 = 5
(2.3.8)

where x1 = x and x2 = y. We can write this system in matrix form as Ax = d, where A

=
[−2 1
−4 1

]
, x =

[
x1

x2

]
, and d =

[
10
5

]
. Then, as we did above, the augmented matrix of this

2×2 system is Aaugd =
[−2 1 10
−4 1 5

]
. We shall now carry out the elementary row operations

on Aaugd as

[−2 1 10
−4 1 5

]
�

R1 → −1

2
R1

[
1 −1/2 −5

−4 1 5

]
�

R2 → R2 + 4R1

[
1 −1/2 −5
0 −1 −15

]

�
R2 → (−1)R2

[
1 −1/2 −5
0 1 15

]
�

R1 → R1 + 1

2
R2

[
1 0 5/2
0 1 15

]

Notice that, as before, the last matrix contains two matrices: the identity matrix I =
[
1 0
0 1

]
and the column matrix e =

[
5/2
15

]
. We can write these two matrices backward, with the

matrix x, as we did before (that is, as Ix = e). Now, what this new system Ix = e means, as
before again, is the solution of the 2 × 2 SSLEs in equation (2.3.8). In other words we have
the solutions x1 = 5/2 = 2.5 and x2 = 15. Therefore, the system possesses a unique solution.
Notice that these were exactly the solutions we obtained in Section 1.6.5.

There may be occasions where one might end up with, instead of an identity matrix, a

matrix such as

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ or

[
1 1
0 0

]
for a 3×3 or for a 2×2 system, respectively. In these

cases, there will be an infinite number of solutions.
All that we did in the elementary row operations was that we converted the coefficient

matrix A, contained in the augmented matrix, into an identity matrix. But, as a byproduct
of this, we obtained a new column vector that replaced the original constant vector (d) and
we called this new column vector e, which is nothing but the vector of the solution of the
system. Therefore, to solve a SSLEs all that one has to do is to convert the coefficient part
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of the augmented matrix into an identity matrix using the elementary row operations. This
process of converting the coefficient part of the augmented matrix into an identity matrix is
called row reduction.

Suppose that, as above, we transform or reduce a coefficient matrix (or any square matrix)
into any other matrix of similar order containing only 1’s and 0’s. Then this latter matrix is
called the reduced row echelon form of the original coefficient matrix. Let us now define
the reduced row echelon form of a matrix. A matrix is in reduced row echelon form if the
following four conditions are satisfied:

I. All rows that contain only zeros, if any, must appear at the bottom of the matrix.
II. Any row that contains nonzero elements must begin with 1 as its first nonzero element.
III. If two consecutive rows contain nonzero elements, then the first nonzero element (that

is, 1) in the lower row must be to the right of the first nonzero element (again, 1) in the
upper row.

IV. Any column that contains the first 1 (as the first nonzero element of the concerned row)
must contain zeros as other elements.

The last four matrices are among the examples of row reduced echelon forms. However,
the fourth condition may not be satisfied in certain cases. If the first three conditions given
above are satisfied and if the fourth condition is not satisfied in a specific row reduction,

then we call such matrices row echelon forms. Examples of such matrices include

[
1 2
0 1

]
,

[
1 0 3
0 0 0

]
, and

⎡
⎣1 2 3

0 1 4
0 0 1

⎤
⎦.

2.3.8 Solution of SSLEs: the Gauss–Jordan and the Gauss methods

We continue our discussion of the topic of solution of SSLEs in this section. We discussed
reduced row echelon forms and row echelon forms in the previous section. However, one
can find two methods of solution of SSLEs, using row reduction, in the literature.

One of these two methods is called the Gauss–Jordan method or the Gauss–Jordan
elimination method. This is the same method as the one we used in the solution of the
systems in equations (2.3.7) and (2.3.8). Therefore, we will not repeat this method here.
However, we state that the crux of the Gauss–Jordan elimination method lies in finding the
reduced row echelon form from the augmented form of the coefficient matrix of the given
system. This reduced row echelon form will give us the solutions to the system. The Gauss–
Jordan method is used extensively in finding the inverse of a square matrix, a topic we will
consider later.

The Gauss method is closely related to the Gauss–Jordan method. However, in the Gauss
method we first find the row echelon form, which will give us the solution for the last
unknown. This solution is used to substitute backward until we obtain the solutions for all
other unknowns. As an example of the use of the Gauss method, consider the following
simple system:

2x1 + x2 = 4

x1 + 2x2 = 2
(2.3.9)
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The system in equation (2.3.9) implies that the coefficient matrix, the variable matrix, and

the constant matrix respectively are A =
[
2 1
1 2

]
, x =

[
x1

x2

]
, and d =

[
4
2

]
. Therefore, we

write the augmented matrix as Aaugd =
[
2 1 4
1 2 2

]
. One can carry out the elementary row

operations given below to obtain the row echelon form:

[
2 1 4
1 2 2

]
�

R1 → R1 − R2

[
1 −1 2
1 2 2

]
�

R2 → R2 − R1

[
1 −1 2
0 3 2

]

Notice that the last matrix gives the required row echelon form. From the last row of this
matrix it is clear that x2 = 0. From its first row we get x1 −x2 = 2. Substitution of x2 = 0 into
x1 − x2 = 2 yields x1 − 0 = x1 = 2. Therefore, the solutions are x1 = 2 and x2 = 0.

As another example of the use of the Gauss method, consider the following 3×3 system:

2x1 + x2 + x3 = 10

x1 + 2x2 + x3 = 5

x1 + x2 + 2x3 = 5

(2.3.10)

The system in equation (2.3.10) implies that the coefficient matrix, the variable matrix, and the

constant matrix, respectively, are A =
⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦, x =

⎡
⎣x1

x2

x3

⎤
⎦, and d =

⎡
⎣10

5
5

⎤
⎦. Therefore, we

write the augmented matrix as Aaugd =
⎡
⎣2 1 1 10

1 2 1 5
1 1 2 5

⎤
⎦. One can carry out the elementary

row operation given below, as before, to obtain the row echelon form:

[
2 1 1 10
1 2 1 5
1 1 2 5

]
R3 → R3 − R2

�
R1 → R1 − R2

[
1 −1 0 5
1 2 1 5
0 −1 1 0

]
R2 → R2 − R1

�
R3 → (−1)R3

[
1 −1 0 5
0 3 1 0
0 1 −1 0

]

�
R1 → R1 + R3

[
1 0 −1 5
1 2 1 5
0 1 −1 0

]
�

R2 → R2 − R1

[
1 0 −1 5
0 2 2 0
0 1 −1 0

]
�

R2 → R2 − R3

[
1 0 −1 5
0 1 3 0
0 1 −1 0

]

�
R3 → R3 − R2

[
1 0 −1 5
0 1 3 0
0 1 −4 0

]
�

R3 → R3 − R2

[
1 0 −1 5
0 1 3 0
0 0 −7 0

]

�
R3 →

(−1

7

)
R3

[
1 0 −1 5
0 1 3 0
0 0 1 0

]
�

R1 → R1 + R3

[
1 0 0 5
0 1 3 0
0 0 1 0

]

Notice that the last augmented matrix gives the required row echelon form. From the first
and the last rows of this matrix it is clear that x1 = 5 and x3 = 0, respectively. From the
second row we get x2 + 3x3 = 0. Substitution of x3 = 0 into x2 + 3x3 = 0 yields x2 = 0.
Therefore, the solutions are x1 = 5, x2 = 0, and x3 = 0.
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We now consider homogeneous SSLEs, as that in equation (2.3.6). As we will describe
in Section 2.7, a general SSLEs may possess a unique solution, an infinite number of
solutions, or no solution at all. However, in the case of a homogeneous SSLEs there
are only two possibilities: either one trivial solution (also called zero solution) or infinite
nontrivial solutions. The former happens when all the xs are zeros (that is, when x1 = x2 =
x3 = ·· · · · · · = xn = 0).

2.3.9 Application examples

Example 1. Suppose that the demand and the supply functions of a good are given
respectively by x1 = 4 − 4x2 and x1 = 2 + 2x2, where x1 denotes the quantity demanded
and supplied of the good, and x2 denotes the price of the good in dollars. Find the quantity
demanded (and supplied) and the price that solve the system.

Solution. To find out the quantity and price, we need to solve the given system. For
convenience, we write the system as

x1 + 4x2 = 4

x1 − 2x2 = 2

The coefficient, variable, constant, and augmented matrices of this system, respectively, are A

=
[
1 4
1 −2

]
, x =

[
x1

x2

]
, d =

[
4
2

]
, and Aaugd=

[
1 4 4
1 −2 2

]
. We can now use the Gauss–Jordan

method. Application of this method yields the reduced row echelon form

[
1 0 2.67
0 1 0.33

]
. This

suggests that the quantity demanded and supplied is 2.67 units (that is, x∗
1 = 2.67 units)

and the price is $0.33 (that is, x∗
2 = $0.33). These are the quantity and price that solve the

given system.

Example 2. Assume that income and interest rate in an IS-LM model of an economy are
related by the following SSLEs:

0.2x1 + 200x2 = 40

0.2x1 − 800x2 = −60

where x1 denotes income in billions of dollars and x2 denotes interest rate. Find the level of
income and interest rate that solve the system.

Solution. We represent this system in matrix form as Ax = d and Aaugd, where

A =
[
0.2 200
0.2 −800

]
, x =

[
x1

x2

]
, d =

[
40

−60

]
, and Aaugd =

[
0.2 200 40
0.2 −800 −60

]
. We can now

apply the Gauss–Jordan method to yield the reduced row echelon form

[
1 0 100
0 1 0.1

]
, which

suggests that the level of income is $100 billion (or x∗
1 = $100 billion) and the equilibrium

interest rate is 0.1 or 10 percent (or x∗
2 = 0.1 or 10%). These are the values that solve the

given system.
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2.3.10 Exercises

1. Let A = [aij], where i, j = 1,2,3,4. Construct a matrix using A such that aij = 1 for all
i = j and aij = 0 for all i �= j. What do you call this matrix? Construct a second matrix
using A such that aij = 0 for all i = j and aij = 0 for all i �= j. What do you call this
second matrix? Construct a third matrix using A such that aij = 0 for all i< j and aij = 1
for all i> j. What do you call this third matrix? Construct a fourth matrix using A such
that aij = 0 for all i> j and aij = 1 for all i< j. What do you call this forth matrix?

2. Let A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, B =

⎡
⎣9 8

7 6
5 4

⎤
⎦, C =

⎡
⎣9 8 7

6 5 4
3 2 1

⎤
⎦, and D =

⎡
⎣1 2

3 4
5 6

⎤
⎦. Which of these

matrices are conformable for addition and subtraction? Find the sums and differences
of those matrices that are conformable for addition and subtraction.

3. Suppose that we have an equation of matrices given by 4A − 2B = C. Let A =⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ and B =

⎡
⎣9 8 7

6 5 4
3 2 1

⎤
⎦. Find C.

4. Let A = [aij] and B = [bij], where i, j = 1,2,3 and aij = 1 for all i = j and aij = 0 for
all i �= j in A; and where i, j = 1,2,3 and bij = 0 for all i = j and bij = 1 for all i �= j
in B. Find their product AB.

5. Let A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, B =

⎡
⎣9 8

7 6
5 4

⎤
⎦, C =

[
5 6 7
8 9 10

]
, and D =

[
1 2
3 4

]
. Which of these

matrices are conformable for multiplication? Find the products of those matrices that
are conformable for multiplication.

6. Let a' = [5], b' = [2], c' =
[
2 3

]
, d =

[
4
5

]
, e =

⎡
⎣6

7
8

⎤
⎦, and f =

⎡
⎣ 9

10
11

⎤
⎦. Which of these

matrices are conformable for multiplication? Find the products of those matrices that
are conformable for multiplication.

7. Find the transpose of the following matrices, and state which of them are symmetric or
skew symmetric matrices:

A =
[
a b
c d

]
, B =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, C =

⎡
⎣0 −1 −2

1 0 −3
2 3 0

⎤
⎦, D =

[
0 5

−5 0

]
, e =

⎡
⎣1

2
3

⎤
⎦,

f' = [
1 2 3

]
, and g' = [1].

8. Suppose that we have three matrices A = [aij], x = [xi], and d = [di] where i, j = 1,2,3.
Construct a matrix equation of the form Ax = d using the above three matrices.

9. Write the following SSLEs as matrix equation(s):

(i) a11x1 + a12x2 = d; (ii)
4x1 = d1

2x2 = d2
; (iii)

4x1 + 2x2 = d1

2x2 = d2
; (iv)

4x1 = d1

x1 + 2x2 = d2
;

(v)

2x1 − 3x2 = d1

4x2 + x3 = d2

x1 + x3 = d3

; (vi)

2x1 − 3x2 − d1 = 0

4x2 + x3 = d2

x1 + x3 = d3

; (vii)

2x1 − 3x2 + x3 = d1

x1 + 4x2 + x3 = d2

x1 + x2 − x3 = d3

.

10. Let A =
[
1 2
3 4

]
. Find An if n = 1,2,3. Also find (A2)2 and (A2).(A3).
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11. Let A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦. Find An if n = 1,2,3. Also find (A2)2 and (A2).(A3).

12. Solve the following SSLEs using the Gauss method and the Gauss–Jordan method:

(i)
x1 + x2 = 10

2x1 + x2 = 4
; (ii)

x1 + 2x2 = 8

2x1 + x2 = 4
; (iii)

x1 + x2 + x3 = 1

2x1 + 2x2 = 2

x2 + x3 = 1

; (iv)

2x1 + 2x2 + 2x3 = 1

2x1 + 2x2 = 2

2x2 + 2x3 = 1

.

13. Application exercise. Suppose that the demand and the supply functions of a good are
given respectively by x1 = 10 − 0.5x2 and x1 = 1 + x2, where x1 denotes the quantity
demanded and supplied of the good, and x2 denotes the price of the good in dollars.
Find the quantity demanded and supplied and the price that solve the system using the
Gauss–Jordan method.

14. Application exercise. Assume that income and interest rate in an IS-LM model of an
economy are related by the SSLEs 0.1x1 −400x2 = −30 and 0.1x1 +100x2 = 10, where
x1 denotes income in billions of dollars and x2 denotes the interest rate. Find the level
of income and interest rate that solve the system using the Gauss–Jordan method.

15. Application exercise. Suppose that the prices of three goods sold by a firm are
interrelated by the SSLEs 5x1 − 2x2 − 2x3 = 5, −2x1 + 5x2 − 2x3 = 5, and −2x1 +
−2x2 + 5x3 = 5, where x1, x2, and x3 denote prices in dollars of goods 1, 2, and 3,
respectively. Find the prices that solve the system using the Gauss–Jordan elimination
method.

Web supplement: S2.3.11 Mathematica applications

2.4 Determinants

Determinants are used extensively in economics, business, and finance. One of the most
important uses of determinants lies in the solution of SSLEs. Therefore, it is important
that students of economics, business, and finance possess a reasonably good knowledge of
determinants, their evaluations, and their properties. This is attempted in this section.

2.4.1 Meaning and evaluation of determinants

So far we were dealing with vectors and matrices. Some students may wonder if we can
associate a number with every square matrix. Yes, we can, and it is called its determinant.
But, how can one find such a number? We discuss below the methods of finding the values
that we associate with square matrices of different orders (that is, evaluating determinants).

Suppose that we have a 2 × 2 matrix given by A =
[

1 2
3 4

]
. Then the determinant of A,

denoted by | A|, is written as |A| =

∣∣∣∣ 1 2
3 4

∣∣∣∣. We can find the value we associate with A

(that is, |A|) by finding the products of the elements on the main diagonal and subtracting
from this the product of the off-diagonal elements. The product of the elements on the main
diagonal in the present example is 1 × 4 = 4 and the product of the off-diagonal elements is

2 × 3 = 6. Therefore, the determinant is |A| =
∣∣∣∣ 1 2

3 4

∣∣∣∣= 4 − 6 = −2.



[12:20 3/11/2011 5640-Ummer-Ch02.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 96 69–127

96 Linear algebra

In general, if we have a 2×2 matrix B =
[

a11 a12

a21 a22

]
, then the determinant of B is given by

|B| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣= (a11 × a22) − (a21 × a12) (2.4.1)

Now suppose we have a matrix of order 3× 3 given by

A = 
a11 a12 a13

a31 a32 a33

a21 a22 a23

a11 a12 a13

a31 a32 a33

a21

a11

a31

a21a22

a12

a32

a22a23

One easy way of evaluating the determinant of this third-order matrix is to write it as given
alongside the matrix A. Notice that the last two columns above are the first two columns
of A. The next step is to find the product of the elements on the downward sloping arrows,
and sum these products, which is given by a11 ×a22 ×a33 +a12 ×a23 ×a31 +a13 ×a21 ×a32.
The third step is to find the product of the elements on the upward sloping arrows, and sum
them too, which is given by a31 × a22 × a13 + a32 × a23 × a11 + a33 × a21 × a12. The final
step is to subtract the latter from the former. Therefore, the determinant of A is given by

|A| = (a11 × a22 × a33 + a12 × a23 × a31 + a13 × a21 × a32)

− (a31 × a22 × a13 + a32 × a23 × a11 + a33 × a21 × a12) (2.4.2)

As an example, consider the following 3 × 3 matrix:

1 2 3 1 2
4A = 

1 2 3
4 5 6
7 8 9

5 6 4 5
7 8 9 7 8

As before, we write the matrix as given above alongside the matrix A. First, we find the
product of elements on the downward sloping arrows, and sum these products. This sum is
equal to 1×5×9+2×6×7+3×4×8 = 225. Second, we obtain the product of elements
on the upward sloping arrows, which is equal to 7 × 5 × 3 + 8 × 6 × 1 + 9 × 4 × 2 = 225.
The difference between these two sums is 225−225 = 0. Therefore, the determinant is zero;
that is, |A| = 0. If the determinant of a matrix is zero, then the determinant is said to vanish.
It is important to notice that the above method using arrows, popularly called Sarrus’ rule,
works only in the case of 3 × 3 matrices. Notice that the determinant of the matrix A = [3]
is given by |A| = 3. Also notice that determinants are defined only for square matrices. We
will consider later the evaluation of determinants of square matrices of order greater than 3.

2.4.2 Properties of determinants

Determinants obey some important properties. These properties are the following.

Property I. The determinant of a square matrix, A, and the determinant of its transpose
are equal, that is, |A| = |AT|. This implies that the determinant of a matrix
remains unchanged if the rows and columns of that matrix are interchanged.

Property II. If two rows (or columns) of a determinant, |A|, are interchanged, then the
sign of the determinant changes but the determinant remains the same.
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Property III. If two rows (or columns) of a determinant, |A|, are identical, then the
determinant is zero.

Property IV. If any one row (or one column) of a determinant is multiplied by a scalar s,
then the determinant will be multiplied by the scalar s.

Property V. If a multiple of one row (or column) is added to any row (or column), then
the determinant remains unchanged.

Property VI. The determinant of an identity matrix, I, of any order is equal to 1.
Property VII. Suppose we have two matrices, A and B. Also suppose that the product AB

exists. Then |AB| = |A|.|B|.

2.4.3 Sub-matrices, minors, co-factors, Laplace expansion, and determinants of
matrices of order greater than 3

So far we were evaluating the determinants of square matrices of order less than or equal
to 3 and we applied Sarrus’ rule for this. Since Sarrus’ rule is not applicable to evaluate
determinants of order greater than 3, we need to find out a method that can deal with such
determinants. There exists another method, called the method of expansion by co-factors,
to evaluate determinants of any order. However, to discuss this method, we need to explain
few concepts such as sub-matrices, minors, and co-factors. We shall do this first.

For simplicity, we begin our exposition of the concepts with a 3 × 3 matrix A we used in
the previous section. Suppose, now, that we discard the first row and the first column of A
(one can discard any row and any column); that is, we discard i = 1 and j = 1. Then the matrix

we obtain is called a sub-matrix (of order 2 × 2) and we denote it by S11 =
[

5 6
8 9

]
, where

S represents the sub-matrix, and the two subscripts (1’s) represent the numbers of discarded
rows and columns. One can generate a number of sub-matrices like this depending upon the

rows and columns discarded. For example, two other sub-matrices of A are S12 =
[

4 6
7 9

]
and S13 =

[
4 5
7 8

]
.

We are now ready to define a sub-matrix formally. Assume that we have a square matrix
A = (aij)n×n. The square matrix that can be generated if we discard the ith row and jth
column of A, denoted by Sij , is called the ijth sub-matrix of A. We can generate, in total,
nine sub-matrices from a 3 × 3 matrix such as A above. Therefore, all the sub-matrices of
order two that can be generated from A above are S11, S12, S13, S21, S22, S23, S31, S32,
and S33.

Now suppose that we take the determinant of a sub-matrix, say Sij , and denote it by |Sij|.
This determinant is called the ijth minor of A, and we denote it by Mij = |Sij|. For example,
M11 = |S11| = (5×9−8×6) = 45−48 = −3. Similarly, M12 = |S12| = (4×9−7×6) =
36 − 42 = −6, and M13 = |S13| = (4 × 8 − 7 × 5) = 32 − 35 = −3. Therefore, given A, we
will have nine minors in total: M11 = −3, M12 = −6, M13 = −3, M21 = −6, M22 = −12,
M23 = −6, M31 = −3, M32 = −6, and M33 = −3.

Assume now that we multiply M11 by (+1), M12 by (−1), M13 by 1, and so on. Notice
that we are multiplying each minor by the scalar (+1) or the scalar (−1) depending upon
the sum of the subscripted numbers of the corresponding minor. If the sum is even, the
scalar is +1; if the sum is odd, the scalar is (−1). In general, we can write the scalar as
(−1)(i+j). If we multiply Mij by (−1)(i+j), then it is called the signed minor of Mij . The
signed minor of Mij (that is, (−1)(i+j) Mij) is also called the co-factor of Mij , and is denoted
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by Cij . Therefore, the co-factor of M11 is C11 = (−1)(i+j) M11 = (−1)(1+1) M11 = (−1)2

M11 = (1) M11 = M11 = −3; of M12 is C12 = (−1) M12 = 6; and of M13 is C13 = (1)
M13 = −3. Similarly, C21 = (−1) M21 = 6; C22 = (1) M22 = −12; C23 = (−1) M23 = 6;
C31 = (1) M31 = −3; C32 = (−1) M32 = 6; and C33 = (1) M33 = −3.

We are now ready to use the concepts of co-factors to evaluate determinants of order
3 × 3. Consider, for example, our last 3 × 3 matrix A to find |A| using co-factors. Then |A|
is defined as |A| = 1× C11 + 2× C12 + 3× C13. Since C11 = (−1)(i+j) M11 = (−1)(1+1)

M11 = (−1)2 M11 = (1) M11 = (1) M11; C12 = (−1) M12; and C13 = (1) M13, we can
write |A| = 1 × (1) M11 + 2 × (−1) M12 + 3 × (1) M13. This implies that |A| = 1 × (1) ×∣∣∣∣ 5 6

8 9

∣∣∣∣+2× (−1)×
∣∣∣∣ 4 6

7 9

∣∣∣∣+3× (1)×
∣∣∣∣ 4 5

7 8

∣∣∣∣= 1×
∣∣∣∣ 5 6

8 9

∣∣∣∣−2×
∣∣∣∣ 4 6

7 9

∣∣∣∣+3

∣∣∣∣ 4 5
7 8

∣∣∣∣.
Since

∣∣∣∣ 5 6
8 9

∣∣∣∣ = −3,

∣∣∣∣ 4 6
7 9

∣∣∣∣ = −6, and

∣∣∣∣ 4 5
7 8

∣∣∣∣ = −3, the last result simplifies to |A| =
1×−3+−2×−6+3×−3 = −3+12−9 = 12−12 = 0. This was precisely the result we
obtained when we used Sarrus’ rule in the previous section.

Let us now generalize the idea with the help of a general matrix, A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦.

Then we define |A| as

|A| = a11 × (1) ×
∣∣∣∣ a22 a23

a32 a33

∣∣∣∣+ a12 × (−1) ×
∣∣∣∣ a21 a23

a31 a33

∣∣∣∣
+ a13 × (1) ×

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣= a11C11 + a12C12 + a13C13 (2.4.3)

Equation (2.4.3) implies that |A| = ∑ 3
j aijCij. If we evaluate (that is, expand) the last

matrix using the jth column, then we can write |A| =
∑ 3

i aijCij. Notice that if the matrix is an
n × n matrix, then we have |A| = ∑ n

j aijCij if we use the jth column and |A| = ∑ n
i aijCij if

we use the ith row. Also notice that
∑ n

j aijCij = ∑ n
i aijCij; that is, the determinant remains

the same irrespective of the row or column of the matrix that is used to evaluate it. This
method of evaluating (or expanding) a determinant, using co-factors, is called the Laplace
expansion of a determinant.

We now consider evaluating the determinant of a 4 × 4 matrix, A =

⎡
⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎥⎥⎦.

Following exactly the process of Laplace expansion as detailed above, we obtain

|A| = 1 × (1) ×
∣∣∣∣∣∣

6 7 8
10 11 12
14 15 16

∣∣∣∣∣∣+ 2 × (−1) ×
∣∣∣∣∣∣

5 7 8
9 11 12
13 15 16

∣∣∣∣∣∣
+ 3 × (1) ×

∣∣∣∣∣∣
5 6 8
9 10 12
13 14 16

∣∣∣∣∣∣+ 4 × (−1) ×
∣∣∣∣∣∣

5 6 7
9 10 11
13 14 15

∣∣∣∣∣∣= 0.



[12:20 3/11/2011 5640-Ummer-Ch02.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 99 69–127

Linear algebra 99

2.4.4 Co-factors and adjoint matrices

We described in the last section concepts like sub-matrices, minors, and co-factors. Let us
now construct a matrix using the co-factors called the co-factor matrix. Given the 3 × 3

matrix A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, the co-factors we obtained in the previous section were C11 = −3,

C12 = 6, C13 = −3, C21 = 6, C22 = −12, C23 = 6, C31 = −3, C32 = 6, and C33 = −3.
Therefore, the co-factor matrix denoted by CFA, where A represents the original matrix in
our present example, will be

CFA =
⎡
⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦=

⎡
⎣−3 6 −3

6 −12 6
−3 6 −3

⎤
⎦ (2.4.4)

Notice that if our original square matrix were of order 2×2, its co-factor matrix would be of
order 2×2; if it were of order 4×4, its co-factor matrix would be of order 4×4; and so on.
If we transpose the co-factor matrix, we obtain what is called the adjoint matrix, denoted by
Aadj. Therefore, the adjoint matrix in the case of our present example will be

Aadj = (CFA)T =
⎡
⎣−3 6 −3

6 −12 6
−3 6 −3

⎤
⎦ (2.4.5)

Notice that in this case CFA = (CFA)T because they are symmetric matrices.

2.4.5 Solution of SSLEs: Cramer’s rule

In Section 1.6.5 we used graphical, substitution, and elimination methods to solve SSLEs. In
Sections 2.3.7 and 2.3.8 we used elementary row operations or the Gauss–Jordan elimination
method and the Gauss elimination method, respectively, to solve SSLEs. Notice that each
method has its own merits and demerits.

However, in this section, we discuss another popular method called Cramer’s rule. For
this, we use the m × n (where m = n) SSLEs given in equation (2.3.5). We expressed there
the system as the matrix equation Ax = d. Now suppose that we replace the first column
of A by d and denote the resulting matrix by A1. When we continue the replacement of the
other columns of A by d, we obtain n such new matrices (including A1) each denoted by
A1, A2, A3,…, and An. We know that the determinants of these matrices will be |A1|, |A2|,
|A3|,…, and |An|, respectively. Notice that the determinant of the original coefficient matrix
is |A|. It can now be shown that

x1 =|A1|÷ |A|,x2 =|A2|÷ |A|,x3 =|A3|÷ |A|, . . .,xj =|Aj |÷ |A|, . . .,xn =|An|÷ |A|
(2.4.6)

Let us now state Cramer’s rule formally. Let A be an n × n matrix and |A| �= 0. Then
the unique solution to the system Ax = d is given by x1 = |A1|÷|A|, x2 = |A2|÷|A|, x3 =
|A3|÷|A|,…, xj = |Aj |÷|A|,…, xn = |An|÷|A|, where |Aj | denotes the determinant of the
adjoint matrix obtained by replacing the jth column of the coefficient matrix A by the vector
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of the constants (d). Notice that we can use either Sarrus’ rule if A (or Aj)is of order 3×3 or
Laplace expansion if A is of order larger than 3×3 to find the determinants of A (or of Aj).

As an example, consider the SSLEs in equation (2.3.7). We expressed this system in matrix

form as Ax = d, where A =
⎡
⎣ 2 1 1

1 2 1
1/2 1/2 1

⎤
⎦, x =

⎡
⎣x1

x2

x3

⎤
⎦, and d =

⎡
⎣6

2
2

⎤
⎦. We now generate

A1 =
⎡
⎣6 1 1

2 2 1
2 1/2 1

⎤
⎦, A2 =

⎡
⎣ 2 6 1

1 2 1
1/2 2 1

⎤
⎦, and A3 =

⎡
⎣ 2 1 6

1 2 2
1/2 1/2 2

⎤
⎦ by replacing the first,

the second, and the third columns of A, respectively, by d. We can compute that |A1| = 6,
|A2| = −2, |A3| = 2, and |A| = 2. Therefore, we obtain the solutions x1 = |A1|÷|A| = 6/2
= 3, x2 = |A2|÷|A| = −2/2 = −1, and x3 = |A3|÷|A| = 2/2 = 1. Notice that these are
exactly the same solutions as those we obtained for the system in Section 2.3.7.

As another example, consider the SSLEs given in equation (2.3.8). We expressed this

system in matrix form as Ax = d, where A =
[−2 1
−4 1

]
, x =

[
x1

x2

]
, and d =

[
10
5

]
. As

before, we generate A1 =
[

10 1
5 1

]
and A2 =

[−2 10
−4 5

]
by replacing the first and the

second columns of A, respectively, by d. We can obtain the determinants |A1| =5 and |A2|
= 30. The determinant of the original coefficient matrix is |A| = 2. Therefore, we obtain the
solutions x1 = |A1|÷|A| = 5/2 =2.5, and x2 = |A2|÷|A| = 30/2 = 15. Notice, again, that
these solutions are identical to the solutions we obtained for the system in Section 2.3.7.

2.4.6 Application examples

Example 1. Assume that the demand for and supply of a good are given by the system
x1 +5x2 = 10 and x1 −5x2 = 5, where x1 denotes the quantity demanded and supplied of the
good and x2 denotes the price of the good in dollars. Solve the system for the quantity and
price using Cramer’s rule.

Solution. We can write the above system in matrix form as Ax = d, where

A =
[

1 5
1 −5

]
, x =

[
x1

x2

]
, and d =

[
10
5

]
. According to Cramer’s rule, xj = |Aj |÷|A| where

|Aj| denotes the determinant of the coefficient matrix whose jth column is replaced by the
constant vector d. This means that |A1| = −75 and |A2| = −5. The determinant of the
coefficient matrix is |A| = −10. Therefore, x1 = |A1|÷|A| = −75/−10 = 7.5 and x2 =
|A2|÷|A|= −5/−10 = 0.5. That is, the quantity and price that solve the given SSLEs are
7.5 units and $0.5, respectively.

Example 2. Suppose that the IS-LM model of a two-sector economy is given by the SSLEs
0.15x1 + 500x2 = 150 and 0.25x1 − 500x2 = 150, where x1 represents income in billions of
dollars and x2 represents interest rate. Find the levels of income and interest rate that solve
the system using Cramer’s rule.

Solution. We can write the above system in matrix form as Ax = d, where

A =
[

0.15 500
0.25 −500

]
, x =

[
x1

x2

]
, and d =

[
150
150

]
. Following Cramer’s rule, we have xj =

|Aj |÷|A|, where |Aj | denotes the determinant of the coefficient matrix whose jth column is
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replaced by the constant vector d. We can get that |A1| = −1501000 and |A2| = −15.
The determinant of the coefficient matrix is |A| = −200. Therefore, x1 = |A1|÷|A| =
−150 000/−200 = 750 and x2 = |A2|÷|A|= −15/−200 = 0.075 = 7.5 percent. That
is, the levels of income and interest rate that solve the given SSLEs are $750 billion and
7.5 percent, respectively.

Example 3. Suppose that prices of three goods sold by a company are interrelated by the
system −4x1 + 3x2 + 3x3 = 10, 3x1 − 4x2 + 3x3 = 10, and 3x1 + 3x2 − 4x3 = 10, where x1,
x2, and x3 denote price in dollars of goods 1, 2, and 3, respectively. Find the prices that solve
the system using Cramer’s rule.

Solution. We first write the above system in matrix form as Ax = d, where

A =
⎡
⎣−4 3 3

3 −4 3
3 3 −4

⎤
⎦, x =

⎡
⎣x1

x2

x3

⎤
⎦, and d =

⎡
⎣10

10
10

⎤
⎦. Following Cramer’s rule, we have xj

= |Aj|÷|A|, where |Aj | denotes the determinant of the coefficient matrix whose jth column
is replaced by the constant vector d. As above, we can obtain that |A1| = 490, |A2| = 490, and
|A3| = 490. The determinant of the coefficient matrix is |A| = 98. Therefore, x1 = |A1|÷|A|
= 490/98 = 5, x2 = |A2|÷|A| = 490/98 = 5, and x3 = |A3|÷|A| = 490/98 = 5. Therefore,
the prices that solve the system are x1 = $5, x2 = $5, and x3 = $5.

2.4.7 Exercises

1. Find the determinants of the following matrices:

(i)

[
1 3
4 2

]
; (ii)

[
1 3
2 6

]
; (iii)

[
a b
a b

]
; (iv)

[
1 3
0 0

]
; (v)

[
0 3
0 6

]
.

2. Find the determinant of the following matrices using Sarrus’ rule:

(i)

⎡
⎣1 4 3

2 5 4
3 5 1

⎤
⎦; (ii)

⎡
⎣1 2 3

2 5 4
3 5 1

⎤
⎦; (iii)

⎡
⎣2 8 9

2 5 4
3 5 1

⎤
⎦; (iv)

⎡
⎣a b c

d e f
g h i

⎤
⎦.

3. Find the determinants of the following matrices using co-factors:

(i)

⎡
⎣5 4 3

6 5 4
3 5 5

⎤
⎦; (ii)

⎡
⎣1 2 3

2 1 4
3 5 1

⎤
⎦; (iii)

⎡
⎣2 8 9

6 5 4
3 4 1

⎤
⎦; (iv)

⎡
⎣a d g

b e h
c f i

⎤
⎦.

4. Find the determinants of the following matrices:

(i)

⎡
⎢⎢⎣

16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1

⎤
⎥⎥⎦; (ii)

⎡
⎢⎢⎣

1 5 4 1
2 1 0 3
2 3 6 5
4 1 2 0

⎤
⎥⎥⎦; (iii)

⎡
⎢⎢⎣

a b c d
e f g h
a b c d
i j k l

⎤
⎥⎥⎦; (iv)

⎡
⎢⎢⎣

a 1 b 1
d 9 e 9
f 5 g 5
h 1 i 1

⎤
⎥⎥⎦;

(v)

⎡
⎢⎢⎣

2a 2b 2c 2d
e f g h
i j k l
m n o p

⎤
⎥⎥⎦; (vi)

⎡
⎢⎢⎣

a + 2e b + 2f c + 2g d + 2h
e f g h
a b c d
i j k l

⎤
⎥⎥⎦; (vii)

⎡
⎢⎢⎣

e f g h
a b c d
a b c d
i j k l

⎤
⎥⎥⎦;
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(viii)

⎡
⎢⎢⎣

a b c d
0 f g h
0 0 c d
0 0 0 l

⎤
⎥⎥⎦; (ix)

⎡
⎢⎢⎣

1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10

⎤
⎥⎥⎦; (x)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦; (xi)

⎡
⎢⎢⎣

1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

⎤
⎥⎥⎦.

5. Solve the following SSLEs using Cramer’s rule:

(i)
x1 + 4x2 = 2

2x1 + 3x2 = 4
; (ii)

2x1 + 4x2 = 1

2x1 + 3x2 = 4
; (iii)

−x1 + 4x2 = 25

2x1 − 3x2 = 40
; (iv)

−2x1 − 3x2 = 20

2x1 − x2 = 30
;

(v)

3x1 + x2 − x3 = 2

x1 − 3x2 − x3 = 2

−x1 − x2 − 3x3 = 2

; (vi)

3x1 − x2 − x3 = 1

−x1 + 3x2 − x3 = 1

−x1 − x2 + 3x3 = 1

; (vii)

x1 + x3 = 2

x2 + x3 = 4

x1 + x3 = 1

.

6. Application exercise. Suppose that the demand for and the supply of a good offered for
sale in a market are given by functions x1 = 10 − 4x2 and x1 = 4 + 2x2, respectively,
where x1 denotes the quantity of the good demanded and supplied and x2 denotes the
price of the good in dollars. Find the quantity and price that solve the system using
Cramer’s rule.

7. Application exercise. Assume that the IS-LM model of a two-sector economy is given
by the SSLEs 0.3x1 + 10x2 = 25 and 0.15x1 − 700x2 = −50, where x1 denotes income
in billions of dollars and x2 denotes interest rate. Find the levels of income and interest
rate in the economy that solve the system using Cramer’s rule.

8. Application exercise. Suppose that the prices in three markets of a good are interrelated
as shown by the SSLEs 5x1 − 0.5x2 − 0.5x3 = 2, 0.5x1 + 5x2 − 0.5x3 = 2, and 0.5x1 −
0.5x2 + 5x3 = 2, where x1, x2, and x3 denote prices in dollars in markets 1, 2, and 3,
respectively. Find the prices that solve the system using Cramer’s rule.

Web supplement: S2.4.8 Mathematica applications

2.5 Inverse of a matrix

2.5.1 Meaning of inverse

We know from elementary algebra that a × (1/a) = a × a−1 = a1−1 = a0 = 1. Here we call
a−1 the multiplicative inverse of a. We shall now attempt to extend this result in algebra to
matrices. Suppose that we have two square matrices of the same order: matrix A and identity
matrix I. Can we now find a matrix B such that A.B = I? If we can, then B is called the
inverse of A, and is written as A−1 (that is, B = A−1). Then A is said to be invertible.

Since A.B = I, A is the inverse of B and B is the inverse of A; that is, A and B are the
inverses of each other. Notice that inverses are defined only for square matrices. However,
how does one find the inverse in the first place? Two methods are generally used to find the
inverse of a square matrix. One of these methods uses the determinant and the adjoint of the
given matrix. The other method uses the Gauss–Jordan method discussed in Section 2.3.8.
Let us discuss each of these below.

2.5.2 Finding inverse using determinant and adjoint matrix

Before finding the inverse, we need to check whether the inverse of a matrix exists or not.
Above, we used the matrix equation AB = I. We need to know whether A is invertible
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or not. We know, from the properties of determinants, that |AB| = |A|.|B| = |I|. It is clear
from this equation that if |A| = 0, then we will obtain a contradictory result that |A|.|B| =
|I| = 0.|B| = 0 = |I|. The only way to avoid this contradiction is that |A| �= 0. This suggests
that the condition for A to have an inverse is that its determinant, |A|, must be nonzero or
nonvanishing. Therefore, one can check whether a matrix is invertible or not by checking its
determinant. Notice that a square matrix will have only one inverse.

We are now ready to apply the determinant of a matrix and its adjoint to find the inverse
of that matrix. We defined the adjoint of matrix A (denoted by Aadj) as the transpose of the
co-factor matrix, CFA. That is, Aadj = (CFA)T. One can show that the product of A and
the adjoint of A is equal to the product of the determinant of A and the identity matrix I
of the same order; that is, A.Aadj = |A|.I. Now dividing both sides of this equation by |A|
yields (A.Aadj)/|A| = |A|.I/|A| = I. And pre-multiplying both sides of the last equation by
A−1 gives A−1(A.Aadj)/|A| = A−1I. Since A−1A = I, (I.Aadj)/|A| = Aadj/|A| and A−1I
= A−1, the last equation can be written as Aadj/|A| = A−1. Therefore, the inverse of A is
given by

A−1 = Aadj ÷| A| (2.5.1)

As an example, consider the 3×3 matrix A =
⎡
⎣1 2 1

1 1 2
2 2 1

⎤
⎦. The determinant of this matrix

is |A| = 3. The co-factor matrix of A is CFA =
⎡
⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦ =

⎡
⎣−3 3 0

0 −1 2
3 −1 −1

⎤
⎦,

which implies that Aadj = (CFA)T =
⎡
⎣−3 0 3

3 −1 −1
0 2 −1

⎤
⎦. Therefore, A−1 = Aadj ÷|A| =

1

3

⎡
⎣−3 0 3

3 −1 −1
0 2 −1

⎤
⎦ =

⎡
⎣−3/3 0/3 3/3

3/3 −1/3 −1/3
0/3 2/3 −1/3

⎤
⎦ =

⎡
⎣−1 0 1

1 −1/3 −1/3
0 2/3 −1/3

⎤
⎦.

2.5.3 Finding inverse using Gauss–Jordan elimination method

We shall now use the Gauss–Jordan elimination method to find the inverse of a square
matrix. But, before this, we shall recap this method. Suppose that the SSLEs we deal with
now is the general SSLEs in equation (2.3.5). We expressed this SSLEs, in Section 2.3.6,
as the matrix equation Ax = d, where A represented the coefficient matrix, x represented
the column vector of variables, and d represented the column vector of constants. If the
number of equations in the system is equal to the number of the variables, then we have
m = n. We can generate, following the procedure outlined in Section 2.3.7, the augmented
matrix Aaugd. If we carry out the elementary row operations on this augmented matrix
and convert the coefficient part of the augmented matrix into an identity matrix, we obtain
the reduced row echelon form, and that process of conversion was called row reduction.
We know that, in the row reduction process, the original column vector d would be
replaced by a new column vector (e) which would represent the solution to the system.
We called this method of finding the solution to the system the Gauss–Jordan elimination
method.
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We can now attempt to use the same method, with a slight difference, to find the inverse
of a matrix. The difference here is that, instead of using the column vector d to augment the
coefficient matrix A, we augment A by an identity matrix of the same order as

AaugI =

⎡
⎢⎢⎣

a11 a12 ... a1n 1 0 ... 0
a21 a22 ... a2n 0 1 ... 0
... ... ... ... 0 0 ... 0

am1 am2 ... amn 0 0 ... 1

⎤
⎥⎥⎦

That is, we form AaugI = [A|I]. We now carry out the same elementary row operations
to convert the coefficient part of AaugI into an identity matrix (the reduced echelon form
of A). This conversion process will replace, as before, the identity part of AaugI into another
matrix, which will be the inverse of the coefficient matrix. This suggests that a square matrix
A is invertible only if its reduced echelon form is an identity matrix of the same order
as A. This method is called the Gauss–Jordan elimination method of finding inverse of a
square matrix. Notice that in this reduction process, we may end up with, instead of the
reduced echelon form of A, a row that contains only zeros (on the left of the vertical line).
If this happens, A is not invertible. This is similar to the condition, in finding inverse with
determinant and adjoint discussed in the previous section, that |A| should not be zero for A
to have an inverse.

Let us now consider examples of finding inverse using the Gauss–Jordan elimination

method. Consider first the 2 × 2 matrix A =
[

3 4
3 2

]
. We can now augment this matrix by a

2×2 identity matrix to obtain AaugI =
[

3 4 1 0
3 2 0 1

]
. We may then carry out the elementary

row operations as follows:

[
3 4 1 0

3 2 0 1

]
R1 → (1/3)R1

�
R2 → (1/3)R2

[
1 4/3 1/3 0

1 2/3 0 1/3

]
�

R2 → R2 − R1

[
1 4/3 1/3 0

0 −2/3 −1/3 1/3

]

�
R1 → R1 + 2R2

[
1 0 −1/3 2/3

0 −2/3 −1/3 1/3

]
�

R2 → (−3/2)R2

[
1 0 −1/3 2/3

0 1 1/2 −1/2

]

Notice that the last augmented matrix is in reduced row echelon form. Therefore, as we

stated above, the inverse of A is A−1 =
[−1/3 2/3

1/2 −1/2

]
.

Consider now the 3 × 3 matrix we inverted in the previous section using deter-

minant and adjoint, A =
⎡
⎣1 2 1

1 1 2
2 2 1

⎤
⎦. Then, the corresponding augmented matrix of this

matrix is AaugI =
⎡
⎣1 2 1 1 0 0

1 1 2 0 1 0
2 2 1 0 0 1

⎤
⎦. We can carry out the elementary row operations on
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AaugI as follows:

�
R3 → R3 − R2

[
1 2 1 1 0 0
1 1 2 0 1 0
1 1 −1 0 −1 1

]
�

R3 → (−1)R3

[
1 2 1 1 0 0
1 1 2 0 1 0

−1 −1 1 0 1 −1

]

�
R3 → R3 + R2

[
1 2 1 1 0 0
1 1 2 0 1 0
0 0 3 0 2 −1

]

�
R3 → (1/3)R3

[
1 2 1 1 0 0
1 1 2 0 1 0
0 0 1 0 2/3 −1/3

]
�

R2 → R2 − R1

[
1 2 1 1 0 0
0 −1 1 −1 1 0
0 0 1 0 2/3 −1/3

]

�
R1 → R1 − R3

[
1 2 0 1 −2/3 1/3
0 −1 1 −1 1 0
0 0 1 0 2/3 −1/3

]
�

R2 → (−1)R2

[
1 2 0 1 −2/3 1/3
0 1 −1 1 −1 0
0 0 1 0 2/3 −1/3

]

�
R2 → R2 + R3

[
1 2 0 1 −2/3 1/3
0 1 0 1 −1/3 −1/3
0 0 1 0 2/3 −1/3

]
�

R1 → R1 − 2R2

[
1 0 0 −1 0 1
0 1 0 1 −1/3 −1/3
0 0 1 0 2/3 −1/3

]
.

Notice that the last augmented matrix is in reduced row echelon form. Therefore, as we stated

above, the inverse of A is A−1 =
⎡
⎣−1 0 1

1 −1/3 −1/3
0 2/3 −1/3

⎤
⎦. Notice that this is exactly the same

as the result we obtained when we used determinant and adjoint to find the inverse of A in
the previous section.

2.5.4 Properties of inverse

The inverse of a square matrix obeys some important properties. These properties are the
following.

Property I. If A is an invertible square matrix, then (A−1)−1 = A.
Property II. If s is a scalar not equal to zero and A is an invertible square matrix, then

(sA)−1 = s−1A−1.
Property III. If A is a square matrix, and if AT is invertible, then (AT)−1 = (A−1)T.
Property IV. If A and B are two square matrices of the same order, and if (AB)−1 exists,

then (AB)−1 = B−1A−1.
Property V. If A is a square matrix and I is an identity matrix of the same order as that

of A, and if A is invertible, then AA−1 = I.

2.5.5 Solution of SSLEs using inverse

In Section 2.4.5 we applied Cramer’s rule to solve two SSLEs. In this section we attempt to
solve the same systems with the help of inverse – the last method of solution of SSLEs we
consider in this book.
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Suppose, as in Section 2.4.5, we have an m × n (with m = n) SSLEs represented by the
matrix equation Ax = d, where A represents the n × n coefficient matrix, x represents the
n×1 variable vector, and d represents the n×1 constant vector. Let us now post-multiply A
and pre-multiply d of the equation Ax = d by the inverse of A, A−1. These yield AA−1x =
A−1d. Since A A−1 = I, the last equation simplifies to

Ix = x = A−1d (2.5.2)

Equation (2.5.2) is a very important result in linear algebra. It states that the solution of a
SSLEs is given by the product of the inverse of the matrix of coefficients and the vector of
the constants of the system. This is called the method of solving SSLEs using inverse.

As an example of the application of this method, consider again the 3×3 SSLEs we solved

in Section 2.4.5. In this SSLEs we had A =
⎡
⎣ 2 1 1

1 2 1
1/2 1/2 1

⎤
⎦, x =

⎡
⎣x1

x2

x3

⎤
⎦, and d =

⎡
⎣6

2
2

⎤
⎦.

Therefore, following the method of inverse discussed above, we can solve for x (that is, find
x = A−1d). But, for this, we need to find the inverse of A, A−1. We know how to find
A−1 using determinant and adjoint of A (using equation (2.5.1)) or using the Gauss–Jordan
elimination method (as we did in Section 2.5.3). Following any one of these two methods,

we can obtain A−1 =
⎡
⎣ 3/4 −1/4 −1/2

−1/4 3/4 −1/2
−1/4 −1/4 3/2

⎤
⎦. Therefore, applying equation (2.5.2) yields

x =
⎡
⎣x1

x2

x3

⎤
⎦ = A−1d =

⎡
⎣ 3/4 −1/4 −1/2

−1/4 3/4 −1/2
−1/4 −1/4 3/2

⎤
⎦
⎡
⎣6

2
2

⎤
⎦ =

⎡
⎣ 3

−1
1

⎤
⎦. This implies that x1 = 3,

x2 = −1, and x3 = 1. Notice that these solutions are identical with the solutions we obtained
when we used Cramer’s rule in Section 2.4.5.

As another example, consider the second SSLEs we solved in Section 2.4.5. In this

SSLEs we had A =
[−2 1
−4 1

]
, x =

[
x1

x2

]
, and d =

[
10
5

]
. In this case, we can find that

A−1 =
[

1/2 −1/2
2 −1

]
. Therefore, application of equation (2.5.2) gives x =

[
x1

x2

]
= A−1d

=
[

1/2 −1/2
2 −1

][
10
5

]
=
[

5/2
15

]
. This implies that x1 = 5/2 = 2.5 and x2 = 15. Notice

again that these solutions and the solutions we obtained when we used Cramer’s rule in
Section 2.4.5 are identical.

2.5.6 Application examples

Example 1. Suppose that the equilibrium in the goods market of an economy is given by
0.30x1 +100x2 = 180 and that the equilibrium in the money market of the economy is given
by 0.30x1 −200x2 = 150, where x1 represents income in billions of dollars and x2 represents
interest rate. Find the levels of income and interest rate that solve the system using inverse.

Solution. We first write the system in matrix form as Ax = d, where A =
[

0.3 100
0.3 −200

]
,

x =
[

x1

x2

]
, and d =

[
180
150

]
. The solution to this system can be obtained using
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equation (2.5.2): x = A−1d. But, to apply this equation, we need to find A−1. We can

find that A−1 =
[

2.22 1.11
0.0033 −0.0033

]
. Now application of equation (2.5.2) gives x = A−1d

=
[

2.22 1.11
0.0033 −0.0033

][
180
150

]
=
[

566
0.1

]
. Therefore, the levels of income and the interest rate

that solve the system are x1 = $566 billion and x2 = 0.1 or 10 percent, respectively.

Example 2. Suppose that the three markets in an economy are related by the prices x1, x2,
and x3. Also suppose that the relationships among these prices are given by −2x1 + 2x2 +
2x3 − 25 = 0, 2x1 − 2x2 + 2x3 − 25 = 0, and 2x1 + 2x2 − 2x3 − 25 = 0. Find the prices in
dollars that solve the system using inverse.

Solution. As above, we first write the system in matrix form as Ax = d, where A =⎡
⎣−2 2 2

2 −2 2
2 2 −2

⎤
⎦, x =

⎡
⎣x1

x2

x3

⎤
⎦, and d =

⎡
⎣25

25
25

⎤
⎦. The solution to this system can be obtained

by applying equation (2.5.2): x = A−1d. But, for this we need to find A−1. We can find

that A−1 =
⎡
⎣ 0 1/4 1/4

1/4 0 1/4
1/4 1/4 0

⎤
⎦. Then, application of equation (2.5.2) yields x = A−1d =

⎡
⎣ 0 1/4 1/4

1/4 0 1/4
1/4 1/4 0

⎤
⎦
⎡
⎣25

25
25

⎤
⎦ =

⎡
⎣12.5

12.5
12.5

⎤
⎦. Therefore, the prices that solve the system are x1 =

x2 = x3 = $12.5.

2.5.7 Exercises

1. Find the inverses, if they exist, of the following matrices using their determinants and
adjoint matrices:

(i)

[
2 5
1 3

]
; (ii)

[
2 1
1 2

]
; (iii)

[
1 0
0 1

]
; (iv)

[
1 2
2 1

]
; (v)

[
3 1
1 3

]
; (vi)

⎡
⎣1 2 2

2 1 2
2 2 1

⎤
⎦;

(vii)

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦; (viii)

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦; (ix)

⎡
⎣1 2 2

2 1 2
2 2 1

⎤
⎦; (x)

⎡
⎣1 2 2

2 1 2
2 2 1

⎤
⎦; (xi)

⎡
⎣1 2 3

0 4 5
0 0 6

⎤
⎦;

(xii)

⎡
⎣1 0 0

2 3 0
4 5 6

⎤
⎦.

2. Find the inverses, if they exist, of the matrices in exercise 1 above using the Gauss–Jordan
elimination method.

3. Solve the following SSLEs using inverse:

(i)
5x1 + 2x2 = 4
3x1 + x2 = 6

; (ii)
3x1 + x2 = 4
x1 + 3x2 = 6

; (iii)
2x1 + x2 = 4
x1 + 2x2 = 6

; (iv)
x1 + 2x2 = 4
2x1 + x2 = 6

;

(v)
2x1 + x2 + x3 = 2
x1 + 2x2 + x3 = 4
x1 + x2 + 2x3 = 6

; (vi)
x1 = 2
2x1 + 3x2 = 4
4x1 + 5x2 + 6x3 = 6

; (vii)
x1 + 2x2 + 3x3 = 2
4x2 + 5x3 = 4
6x3 = 6

.
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4. Application exercise. Assume that the demand and supply functions of a good are given
respectively by x1 = 4−2x2 and x1 = 8+0.5x2, where x1 represents the quantity of the
good demanded and supplied and x2 represents the price in dollars of the good. Find the
quantity and price that solve the system using inverse.

5. Application exercise. Suppose that the equilibrium in the goods market of an economy
is given by 0.4x1 + 200x2 = 360 and that the equilibrium in the money market of the
economy is given by 0.15x1 − 100x2 = 100, where x1 represents income in billions of
dollars and x2 represents interest rate. Find the levels of income and interest rate that
solve the system.

Web supplement: S2.5.8 Mathematica applications

2.6 Rank of a matrix

In Section 2.4 we associated a numerical value with a square matrix, and we called it the
determinant of that matrix. In this section we associate another numerical value with a matrix
(square or rectangular). We call this value the rank of the matrix. Now the question is: how
does one associate such a value to a square or a rectangular matrix? We take up this problem
in the present section.

2.6.1 Meaning of the rank of a matrix

We have already discussed the meaning of linear independence among vectors in
Section 2.2.3. We defined linear independence as follows. Suppose that we have n
n-vectors v1, v2, v3,…, vn; and n scalars s1,s2,s3, . . . ,sn, not all zeros. Given these vectors
and scalars, if we can write s1v1 + s2v2 + s3v3 +·· ·+ snvn = 0, then the vectors are said to
be linearly dependent. On the other hand, if there do not exist scalars s1,s2,s3, . . .,sn, again
not all zeros, such that s1v1 + s2v2 + s3v3 + ·· · + snvn = 0, then the vectors are said to be
linearly independent.

Notice that matrices are nothing but the stacking of vectors (see equation (2.3.2)). Suppose
we have three row 3-vectors v1' = [ 1 2 3] , v2' = [ 3 2 1] , and v3' = [ 2 3 1] . We now

generate the matrix, A, by stacking these row vectors horizontally A =
⎡
⎢⎣v1

'

v2
'

v3
'

⎤
⎥⎦=

⎡
⎢⎣1 2 3

3 2 1

2 3 1

⎤
⎥⎦.

One may now ask if the rows (or columns) of A are linearly dependent or independent. It
can be shown that given v1', v2', and v3', and scalars s1, s2, and s3, not all zeros, no linear
combination such as s1v1' + s2v2' + s3v3' = 0 can be generated. Such a linear combination,
in the case of A, is possible only when the scalars are all zeros. This means that the rows or
columns in A are linearly independent.

Consider other three row 3-vectors: u1' = [1 2 3] , u2' = [ 2 4 6] , and u3' = [ 2 3 1] .

Using these three vectors we can generate the matrix B =
⎡
⎢⎣u1

'

u2
'

u3
'

⎤
⎥⎦=

⎡
⎢⎣1 2 3

2 4 6

2 3 1

⎤
⎥⎦. We know

that the second row in B is, in fact, two times the first row. Notice that a linear combination
such as s1u1' +s2u2’ +s3u3' = 0 with s1 = −2, s2 = 1, and s3 = 0 can be generated. This
means that the rows (specifically the first and the second) in B are linearly dependent.
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We are now ready to define the rank of a matrix. The rank of a matrix A, usually denoted
by r(A) (read “r of A”), is defined as the maximum number of linearly independent rows or
columns in A. If A has 3 linearly independent rows or columns, then its rank is r(A) = 3. If
A is of order 3×3, then r(A) ≤ 3. Notice that if A is of order m×n, then r(A) ≤ min{m,n},
that is, the rank will be equal to or less than the minimum of the set of m and n. Notice also
that r(0) = 0, where 0 is any null matrix. However, how can one find the rank in the first
place? This is dealt with in the next section.

2.6.2 Finding the rank of a matrix

One can find the rank of a matrix using the determinant(s) of the given matrix (or its square
sub-matrices). The procedure is as follows. Suppose that we have a 3× 3 matrix A as in the
previous section. We first find |A|. If we find that |A| �= 0, then the rank of A is said to be 3;
that is, r(A) = 3. But, if it happens that |A| = 0, then r(A)< 3. In this event, in order to find
the exact rank we need to evaluate the determinants of the largest square sub-matrices (Sij)
of the given matrix or find minors Mij = |Sij |. If the minors Mij are different from zero, then
r(A) = i, j. If it happens that Mij = 0 again, then we need to find Mi−1,j−1. If we obtain that
Mi−1,j−1 �= 0, then r(A) = i −1, j −1. But, if we obtain that Mi−1,j−1 = 0, then we need to
evaluate Mi−2,j−2, and so on.

We stated in the previous section that the rank of a matrix is equal to the number of linearly
independent rows or columns of that matrix. We found there that the matrix B has only two
linearly independent rows. Therefore, the rank of B is equal to 2: r(B) = 2. This confirms
our statement in the previous section that r(B) ≤ 3.

The same conclusion can be arrived at by checking the determinant of B or of the
determinants of its square sub-matrices. We can find that the determinant of the matrix
in the previous section equals zero: |B| = 0. Now, as outlined above, we have to find the
minors of B: Mij with i, j = 2. One can verify that M11 = −14 �= 0. Notice that we do not
need to check other minors. This confirms that r(B) = 2.

Our discussion above shows that it is much easier to use the minors of a matrix (or the
determinants of its square sub-matrices) to find the rank of that matrix. Therefore, we redefine
the rank of a matrix as the largest-order nonzero minor of that matrix, or the order of the
nonzero determinant of the largest square sub-matrix that can be generated from that matrix.

2.6.3 Exercises

1. Find the rank of each of the following matrices:

(i)

[
1 5
3 4

]
; (ii)

[
1 1
1 1

]
; (iii)

[
1 0
0 1

]
; (iv)

[
0 1
1 0

]
; (v)

[
0 0
0 0

]
; (vi)

[
1 0
1 0

]
; (vii)

[
0 1
0 1

]
;

(viii)

[
1 2
3 6

]
; (ix)

[
3 5
9 15

]
; (x)

[
1 5 7
3 2 1

]
; (xi)

⎡
⎣1 3

5 2
7 1

⎤
⎦; (xii)

[
1 5 7
4 20 28

]
;

(xiii)

⎡
⎣1 3

5 15
7 21

⎤
⎦.

2. Find the rank of each of the following matrices:

(i)

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦; (ii)

⎡
⎣9 8 7

6 5 4
3 2 1

⎤
⎦; (iii)

⎡
⎣2 3 1

5 1 1
3 5 2

⎤
⎦; (iv)

⎡
⎣2 3 1

4 6 2
3 5 2

⎤
⎦; (v)

⎡
⎣2 3 1

8 5 7
3 5 2

⎤
⎦.
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2.7 Solution of SSLEs: consistency, existence, and uniqueness

We have used different methods to solve SSLEs. In Section 1.6.5 we used graphical,
substitution, and elimination methods. The Gauss–Jordan elimination method was used
in Section 2.3.7. In Section 2.3.8 we used the Gauss elimination method. The methods
using determinants (Cramer’s rule) and inverse were employed in Sections 2.4.5 and 2.5.5,
respectively.

However, before one can employ any of these methods one needs to know whether a
SSLEs is consistent or not. One might also need to know whether a solution exists or not
for a SSLEs. If a solution exists, one might wonder whether it is unique or not. Therefore,
the following three sections are devoted to the consistency of SSLEs; and the existence, and
uniqueness of their solutions.

2.7.1 SSLEs: consistency

Even before checking for the existence of solutions, we need to know whether a SSLEs is
a consistent system of equations or an inconsistent system of equations. The reason is that
it will be futile to spend time on checking the existence of solutions for a system if it is an
inconsistent system. We use the system 5x1 + 3x2 = d1 and 15x1 + 9x2 = d2 to illustrate the
meaning of consistency of a SSLEs. Notice that we write the matrix form of this system as

Ax = d, where A =
[

5 3
15 9

]
, x =

[
x1

x2

]
, and d =

[
d1

d2

]
.

We have two situations here depending upon the values that d1 and d2 may take. Notice
that the second equation of the above system is perfectly three times the first equation if
d2 = 3d1. Since the second row of A is three times the first row, the two rows are linearly
dependent. This implies that one equation of the system, say the second, is redundant leaving
us with only one equation with two unknowns: 5x1 + 3x2 = d1. Solving this equation for x1

gives us x1 = (d1/50)− (3/5)x2, which implies that there are an infinite number of solutions
(each value of x1 depends on the value that x2 takes, and vice versa). Therefore, we state that
a SSLEs is a consistent system if there exists at least one solution for the system. Hence,
given d2 = 3d1, the last system is a consistent SSLEs.

Suppose now, instead of d2 = 3d1, we treat d1 = 6. Then the first equation will be
5x1 + 3x2 = 6. Suppose also that d2 = 10. Then the second equation will become 15x1 +
9x2 = 10. Given these two values, the system will be 5x1 + 3x2 = 6 and 15x1 + 9x2 = 10.
Notice carefully that the two equations in this system represent parallel lines. We know that
parallel lines do not intersect and that a solution to a SSLEs exists only when the graphs
of the equations in the system intersect at some point. This means that the last system does
not possess a solution. Therefore, we state that a SSLEs is an inconsistent system if it has
no solution.

2.7.2 SSLEs: existence of solutions

We found in the previous section that one could judge whether a SSLEs is consistent or not
by checking whether the system has a solution or not. Whether a system has a solution or not
can be checked through visual inspection (as in the previous section) or through geometric



[12:20 3/11/2011 5640-Ummer-Ch02.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 111 69–127

Linear algebra 111

representation of the system (as in Section 1.6.5). But, these procedures are inefficient, or
even impossible particularly when the system has a number of equations or has more than
three unknowns. This calls for an efficient procedure that can deal with an m × n system.
This is explained below.

Instead of using specific systems, we shall use a general system such as the one in
equation (2.3.5). We have expressed this system in Section 2.3.6 as Ax = d, where A
denoted the m × n coefficient matrix, x denoted the m × 1 column vector of variables or
unknowns, and d denoted the m × 1 column vector of constants. We shall now generate an
augmented matrix by appending the column vector d to the coefficient matrix A and denote
it, as before, by Aaugd. We know that A is of order m × n. This implies that Aaugd must
be of order m × [n + 1]. Assume now that r(A) = r. Since d is a linear combination of the
elements of A, the rank of Aaugd must be equal to r: r(Aaugd) = r. Recall that the rank of a
matrix is the number of linearly independent rows or columns of that matrix. Recall also that
our statement in the previous section that the graphs of linearly dependent equations will be
parallel (when the constants are different) and will coincide (when the constants are equal),
while the graphs of linearly independent equations will intersect leading to solution(s).

The above discussion suggests that the rank of the coefficient matrix of a system and the
rank of its augmented form together determine whether the system has a solution or not.
Therefore, we have the following theorem: a system of m linear equations in n unknowns
such as Ax = d has a solution if and only if r(A) = r(Aaugd). Notice that r(A) = 1 and
r(Aaugd) = 2 in the case of the example with d' = [ 6 10] in the previous section. Therefore,
the system with d' = [ 6 10] in that example does not have a solution.

We stated in the previous section that a SSLEs such as Ax = d is consistent only if it
has at least one solution. But, we found above that the existence of solution to a the system
Ax = d depends on the equality of r(A) and r(Aaugd). Therefore, the consistency of the
system and the existence of its solution boil down to the same condition: r(A) = r(Aaugd).
The system will be inconsistent if r(A) < r(Aaugd). Notice that the system in the example
with d' = [ 6 10] in the previous section is inconsistent because r(A) = 1 < r(Aaugd) = 2,
and is consistent with d' = [ 2 6] because r(A) = r(Aaugd) = 1.

2.7.3 SSLEs: uniqueness of solutions

We discussed the inverse of a matrix and the methods to find the inverse in Section 2.5. We
found from our discussion that for a matrix to have an inverse, it must be a square matrix.
But, the squareness of a matrix alone does not guarantee its inverse. An example of such a
matrix is the coefficient matrix A in Section 2.7.1. If a square matrix has no inverse, it is
called a singular matrix; if it has an inverse, it is called a nonsingular matrix.

Consider two matrices A and B (those dealt with in Sections 2.7.1 and 2.5.3, respectively):

A =
[

5 3
15 9

]
and B =

[
3 4
3 2

]
. One can show that A does not have an inverse and we have

seen in Section 2.5.3 that B has an inverse. An important question now is: why does the
matrix A not have inverse, and why does the matrix B have inverse? The answer is simple:
the rows in the former and in the latter are linearly dependent and independent, respectively.
Therefore, for a matrix to have inverse, its rows or columns must be linearly independent. But,
we know from the previous section that when the rows or columns of the coefficient matrix
of a system are linearly dependent as in A, the system may have either multiple solutions or
no solution. Therefore, for a unique solution, the rows or columns of the coefficient matrix
must be linearly independent; or, in other words, the coefficient matrix must have an inverse.
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However, as we saw in Section 2.5.2 that, for a square matrix (say A) to have inverse,
its determinant must be nonvanishing or a nonzero number: that is, |A| �= 0. This is evident
from equation (2.5.1): A−1 = Aadj÷|A|. Moreover, as can be seen from Cramer’s rule in
equation (2.4.6), the solution to the jth variable of a linear system of equations depends on
the determinant of the system’s coefficient matrix, A: xj = |Aj|÷|A|. These imply that our
whole enquiry boils down to a single value: the determinant of the coefficient matrix of a
SSLEs. In other words, if |A| �= 0, A is nonsingular, A−1 exists, and a unique solution exists
for the system.

We now sum up our findings so far in the present section. A SSLEs such as Ax = d is
consistent if r(A) = r(Aaugd) and inconsistent if r(A) < r(Aaugd). The system will have a
solution if r(A) = r(Aaugd). The solution to the system will be unique if A−1 exists or if
|A| �= 0. If r(A) = r(Aaugd) and if |A| = 0, the system will have multiple or infinite number
of solutions.

2.7.4 SSLEs: homogeneous case

Assume that we have a general SSLEs as in equation (2.3.5). If in this system d �= 0, that is,
if the constant vector is not a vector of zeros, then the system is called a nonhomogeneous
SSLEs. So far our analyses of the SSLEs have been concerned with these nonhomogeneous
cases. However, there are situations where one needs to work with homogeneous SSLEs.
We defined a homogeneous SSLEs, in equation (2.3.6), as a system in which d = 0 and
represented it in matrix form as Ax = d = 0. We mentioned at the end of Section 2.3.8 that
a homogeneous system has either a trivial solution (or a zero solution) or an infinite number
of nontrivial solutions.

Suppose that we have a homogeneous SSLEs such as equation (2.3.6) whose matrix
representation is given by Ax = d = 0; where, as before, A denotes the m × n coefficient
matrix, x denotes the m × 1 column vector of unknowns or variables, d denotes the m × 1
column vector of constants, and 0 denotes the m × 1 column, null vector. Notice that
when d = 0, we know from equation (2.5.2) that the solution of the system, if A−1

exists or if |A| �= 0, is x = A−1d = A−10 = 0. This means, when d = 0, we have
the solution x1 = x2 = x3 = ·· · = xn = 0. This is the trivial or zero solution that we
mentioned in Section 2.3.8. The existence of a trivial solution is a feature of all homogene-
ous SSLEs.

If the system is Ax = d = 0 or x = A−10, then the system may yield a set of infinite
nontrivial solutions of which the trivial solution will be an element. This can be verified as
follows. If d = 0, x = A−10 = [|(Aaugd)|÷|A|]× 0 = 0. Moreover, we have seen in the
previous section that the system Ax = d = 0 may have infinite solutions if |A| = 0. Since
|Aadj| = 0 when d = 0, we may obtain x = 0/0. This suggests that, instead of a unique
solution, we obtain an infinite number of solutions. One can check this using the example
of the simple linearly dependent system we used in Section 2.7.1 by treating d1 = d2 = 0
(that is, d = 0).

2.7.5 Solution of SSLEs: summary of results

As can be seen widely in the literature, we present a summary of all the ideas related to
the solution of SSLEs we have discussed so far in the form of a table. The advantage of
presenting them in a compact, table form is that the reader can quickly understand which
SSLEs have unique solutions (trivial or nontrivial, or multiple solutions) and why they have
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Table 2.7.1

d �= 0 d = 0

|A| �= 0 (nonsingular) Unique, nontrivial solution,
i.e. x �= 0

Unique, trivial solution, i.e.
x = 0

|A| = 0 (singular; linear
dependence, but consistent)

Infinite solutions, not
including x = 0 (trivial)

Infinite solutions, including
x = 0 (trivial)

|A| = 0 (singular;
inconsistent)

No solution Not applicable

those solutions. Suppose that we have a SSLEs represented in matrix form Ax = d, then the
entries in Table 2.7.1 are valid.

2.7.6 Exercises

1. Determine whether each of the following SSLEs has a solution, a unique solution, or
multiple solutions:

(i)
2x1 + x2 = 10

3x1 + x2 = 10
; (ii)

2x1 + x2 = 0

3x1 + x2 = 0
; (iii)

2x1 + x2 = 0

3x1 + x2 = 10
; (iv)

2x1 + x2 = 10

3x1 + x2 = 0
;

(v)
2x1 + x2 = 10

4x1 + 2x2 = 10
; (vi)

2x1 + 6x2 = 10

2x1 + 6x2 = 10
.

2. Determine whether each of the following SSLEs has a solution, a unique solution, or
multiple solutions:

(i)

x1 + 2x2 + 3x3 = 2

x1 + 2x2 + 3x3 = 2

x1 + 2x2 + 3x3 = 2

; (ii)

x1 + 2x2 + 3x3 = 2

x1 + 2x2 + 3x3 = 0

x1 + 2x2 + 3x3 = 2

; (iii)

x1 + 2x2 + 3x3 = 4

x1 + x2 + 1.5x3 = 2

x1 + 2x2 + 3x3 = 2

;

(iv)

3x1 + 2x2 + 3x3 = 2

x1 + 2x2 + x3 = 2

x1 + 2x2 + 3x3 = 2

.

2.8 Linear algebra: extensions

In this section we discuss some of the matrices and determinants that we will make use of
in the applications of differential calculus (Chapter 3) and in optimization using differential
calculus (Chapter 4). Since most of the topics in this section are dependent on the topics in
Chapters 4 and 5, readers are encouraged to do Chapters 4 and 5 before they do the following
sections. The topics we cover in this section are Jacobian matrices and Jacobian determi-
nants; quadratic forms and discriminants; Hessian matrices, Hessian determinants, bordered
Hessian matrices, and bordered Hessian determinants; and characteristic equations and
characteristic roots. We begin with Jacobian matrices and determinants.

2.8.1 Jacobian matrices and determinants

So far we were using the determinant of the coefficient matrix, of a SSLEs, to test whether
there existed linear dependence among the rows and columns of that matrix. This test of
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linear dependence among equations helped us see whether a particular SSLEs had a unique
solution or multiple solutions.

Sometimes one may come across functions, linear or nonlinear, that are dependent or
independent. Such functions may not have a solution, have a unique solution, or have multiple
solutions. How do we know whether a system of simultaneous functions (SSF) possesses a
solution(s) or not? Therefore, we need a technique to test this; or in other words, to test
whether such a SSFs is dependent or not. For this we use the Jacobian matrices and their
determinants as discussed below.

Suppose that we have a SSFs of x1 and x2 as

y1 = f 1(x1,x2)

y2 = f 2(x1,x2)
(2.8.1)

where f i represents the ith function and yi represents the ith dependent variable. The partial
derivative of each of these functions with respect to x1 and x2 are ∂y1/∂x1 and ∂y1/∂x2; and
∂y2/∂x1 and ∂y2/∂x2, respectively. Assume now that we arrange these partial derivatives in
the form of a matrix J:

J =

⎡
⎢⎢⎣
∂y1

∂x1

∂y1

∂x2

∂y2

∂x1

∂y2

∂x2

⎤
⎥⎥⎦ (2.8.2)

The matrix J in equation (2.8.2) is called the Jacobian matrix of the partial derivatives of the
system in equation (2.8.1). Notice that the Jacobian matrix in equation (2.8.2) may also be
written as

J = [∂y1,∂y2]
/

[∂x1,∂x2]. (2.8.3)

Let us now take the determinant of the Jacobian matrix J in equation (2.8.2) or (2.8.3) to
obtain

|J| =
∣∣∣∣∣ ∂y1

/
∂x1 ∂y1

/
∂x2

∂y2
/
∂x1 ∂y2

/
∂x2

∣∣∣∣∣ (2.8.4)

which can also be written as |J| =
∣∣∂y1,∂y2

/
∂x1,∂x2

∣∣. The determinant in equation (2.8.4)
is called the Jacobian determinant or, in short, the Jacobian. If |J| = 0, then, the equations
are said to be functionally dependent; and if |J| �= 0, the equations are said to be functionally
independent.

We can generalize the above results into an m×n system of functions. Let yi be a function
of xj , where i = 1,2,3, . . . ,m and j = 1,2,3, . . . ,n, as

y1 = f 1(x1,x2,x3, . . . ,xn)

y2 = f 2(x1,x2,x3, . . . ,xn)

y3 = f 3(x1,x2,x3, . . . ,xn)

....................................

ym = f m(x1,x2,x3, . . . ,xn)

(2.8.5)
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Then the associated Jacobian matrix and Jacobian determinants, respectively, are

J = [∂y1,∂y2,∂y3, . . . ,∂yn/∂x1,∂x2,∂x3, . . . ,∂xn]

=

⎡
⎢⎢⎢⎢⎢⎣
∂y1/∂x1 ∂y1/∂x2 ∂y1/∂x3 . . . ∂yn/∂x1

∂y2/∂x1 ∂y2/∂x2 ∂y2
/
∂x3 . . . ∂y2/∂xn

∂y3/∂x1 ∂y3/∂x2 ∂y3/∂x3 . . . ∂y3/∂xn

. . . . . . . . . . . . . . .

∂ym/∂x1 ∂ym/∂x2 ∂ym/∂x3 . . . ∂ym/∂xn

⎤
⎥⎥⎥⎥⎥⎦ (2.8.6)

and

|J| = |∂y1,∂y2,∂y3, . . . ,∂yn/∂x1,∂x2,∂x3, . . . ,∂xn|

=

∣∣∣∣∣∣∣∣∣∣∣

∂y1/∂x1 ∂y1/∂x2 ∂y1/∂x3 . . . ∂yn/∂x1

∂y2/∂x1 ∂y2/∂x2 ∂y2/∂x3 . . . ∂y2/∂xn

∂y3/∂x1 ∂y3/∂x2 ∂y3/∂x3 . . . ∂y3/∂xn

. . . . . . . . . . . . . . .

∂ym/∂x1 ∂ym/∂x2 ∂ym/∂x3 . . . ∂ym/∂xn

∣∣∣∣∣∣∣∣∣∣∣
(2.8.7)

As an example, consider the SSFs: y1 = f 1 = 2x1 + x2 and y2 = f 2 = 4x2
1 + 4x1x2 + x2

2.
The associated partial derivatives are ∂y1

/
∂x1 = 2, ∂y1

/
∂x2 =1, ∂y2

/
∂x1 = 8x1 + 4x2, and

∂y2
/
∂x2 = 4x1 + 2x2. Then, we obtain the Jacobian matrix and Jacobian, respectively, as

J =
[

2 1
8x1 + 4x2 4x1 + 2x2

]
and |J| =

∣∣∣∣ 2 1
8x1 + 4x2 4x1 + 2x2

∣∣∣∣. Therefore, |J| = [2(4x1 +
2x2)−1(8x1 +4x2)] = (8x1 +4x2)− (8x1 +4x2) = 0. This implies that the last two functions
are dependent. Notice that the second function is simply the square of the first function:
y2 = (y1)2. Notice also that if the above system were a SSLEs, then we would have used the
determinant of its coefficient matrix to test for singularity (that is, to test whether the system
has a solution). In which case, we would have obtained the same result. This implies that
the determinantal test of the existence of solution in the case of a SSLEs (or SSFs) is just an
application of the Jacobian test (which can handle both linear and nonlinear functions) we
discussed above.

As another example, consider the system of functions y1 = f 1 = 2x1 + x2 and y2 = f 2 =
3x1 +4x2. The associated partial derivatives are ∂y1/∂x1 = 2, ∂y1/∂x2 = 1, ∂y2/∂x1 = 3, and

∂y2/∂x2 = 4. Then, we have J =
[
2 1
3 4

]
and |J| =

∣∣∣∣2 1
3 4

∣∣∣∣. Therefore, |J| = 2 × 4 − 3 × 1 =
8 − 3 = 5. This implies that the two functions are independent. Notice that we can write the
above system in matrix notation as Ax = y, where A = J denotes the coefficient matrix,
x denotes the vector of x’s, and y denotes the vector of y’s. Then we have the determinant
of the coefficient matrix |A| = |J| = 2 × 4 − 3 × 1 = 8 − 3 = 5, which is the same as the
Jacobian of the system. This confirms our statement above that the Jacobian will be equal
to the determinant of the coefficient matrix in the case of linear SSFs (or SSLEs).

As the last example, consider the functions y1 = f 1 = 2x1 + x1x2 and y2 = f 2 = 3x1x2.
The partial derivatives of this system are ∂y1/∂x1 = 2, ∂y1/∂x2 = x, ∂y2/∂x1 = 3x2,

and∂y2/∂x2 = 3x1. Then we obtain J =
[

2 x1

3x2 3x1

]
and |J| =

∣∣∣∣ 2 x1

3x2 3x1

∣∣∣∣. Therefore, |J| =
2 × 3x1 − 3x2 × x1 = 6x1 − 3x1x2. This suggests that the two functions are independent.
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2.8.2 Quadratic forms, discriminants, and sign definiteness

Students of economics, business, and finance usually deal with optimization problems
involving two or more independent variables. In solving these problems, both the first-order
condition (FOC) and the second-order condition (SOC) are to be satisfied. The SOCs involve
the determination of the sign of the second partial derivatives. This task can be simplified
considerably if one uses the concerned quadratic forms and the associated discriminants.
However, we first explain a few related concepts before we go on to the determination of the
sign of the quadratic forms using discriminants.

We presented a general polynomial in equation (1.6.1): y = b0x0 + b1x1 + b2x2 +
b3x3 + ·· · + bnxn = ∑n

i=0 bixi. Notice that in this equation there is only one independent
variable, x. If we limit i = 2, we obtain the quadratic equation y = b0x0 + b1x1 + b2x2, as in
equation (1.6.4).

Assume now that we have a polynomial equation with more than one independent
variable. Then each term of the new polynomial equation may contain one, or more than
one, variable with different powers. Notice that z = b0 + b1x1 + b2x2 is such a polynomial
equation. This equation is called a linear form (of two independent variables, x1 and x2)
because the sum of powers of the variables in each term is equal to 1. If the polynomial
is z = b0 + b1x2

1 + b2x1x2 + b3x2
2, then this is called a quadratic form (as before, of two

independent variables) because the sum of powers of the variables in each term is equal to 2.
If we have a polynomial such as z = b0 + b1x3

1 + b2x2
1x2 + b3x1x2

2 + b4x3
2, then it is called a

cubic form since the sum of powers of the variables in each term is equal to 3. We are mainly
concerned here with quadratic forms.

Suppose that we have a function of two independent variables, such as U = f (x1,x2), to
be optimized. Its first and second partial derivatives are given by fx1 = f1, fx2 = f2, fx1x1 = f11,
and fx2x2 = f22, fx1x2 = f12, fx2x1 = f21, respectively. Moreover, its first and second total
differentials are given, respectively, by

dU = f1dx1 + f2dx2 (2.8.8)

and

d2U = f11dx2
1 + 2f12dx1dx2 + f22dx2

2, since f12 = f21 (2.8.9)

Notice that equation (2.8.8) is a special case of equation (3.8.4) with n = 2 and
equation (2.8.9) is identical with equation (3.8.7). We can now use either partial derivatives
or total differential to find the optimum (either maximum or minimum) of U . We will show
in Chapter 4 that the FOCs for an optimum of U are f1 = f2 = 0 in terms of partial derivatives
and dU = 0 in terms of total differential. The SOCs for a minimum of U are f11, f22 > 0
and f11.f22 > (f12)2 in terms of partial derivatives and d2U > 0 in terms of total differential.
Similarly, the SOCs for a maximum of U are f11, f22 < 0 and f11.f22 > (f12)2 in terms of
partial derivatives and d2U < 0 in terms of total differential.

Notice that in the case of optimization involving two independent variables, as in our
example so far, we can use the partial derivatives (f11,f22, and f12) directly to determine
the sign as shown by the above conditions. But, when the number of independent variables
increases beyond two, the use of partial derivatives becomes tedious. In such cases, we need
to use an alternative method that may simplify the computation. Such a method can be found
by putting the total differential (d2U ) into further analysis. We present this below.
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The above exposition shows that we need to determine the sign of d2U as the SOC when
we use the total differential to decide whether U has an optimum. Notice that the equation
d2U = f11dx2

1 +2f12dx1dx2 + f22dx2
2 is a quadratic form because dx1 and dx2 are the variables

in the present case and the sum of their powers in each term is equal to 2. If this quadratic
form is negative, that is, if d2U < 0, then d2U is said to be negative definite. If d2U > 0,
then d2U is said to be positive definite. If d2U ≤ 0 or d2U ≥ 0, d2U is said to be negative
semidefinite or positive semidefinite, respectively. What all these mean is that for U to have
a minimum, d2U must be positive definite (d2U > 0); for U to have a maximum, d2U must
be negative definite (d2U < 0). In the case where d2U is indeterminate, then we have what
is called a saddle point. However, how does one test the sign of d2U? The procedure is
outlined below.

Notice that the quadratic form in equation (2.8.9) can be expressed as a product of
matrices as

d2U = [
dx1 dx2

] [f11 f12

f21 f22

] [
dx1

dx2

]
(2.8.10)

In equation (2.8.10), as mentioned above, the differentials (dx1 and dx2) are considered to be
variables while the second partial derivatives are considered to be constants. One restriction
we impose here is that both differentials cannot be zero at the same time. The determinant of
the matrix of the second partial derivatives is called the discriminant of the quadratic form
d2U and we denote it by DR . Therefore,

DR =
∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ (2.8.11)

Notice that, in equation (2.8.11), f11 is the first element on the principal diagonal of DR. The
determinant of this first element (that is, a sub-determinant of DR), which we denote by DR1,
is given by DR = |f11| = f11 and is called the first principal minor of DR . Also notice that DR2,
which is equal to DR , is a sub-determinant of DR . DR2 is called the second principal minor
of DR . Since there are only two sub-determinants in the present example (DR and DR2=
DR), we need to consider them only. If the quadratic form is a function of three independent
variables, then the associated discriminant will have three sub-determinants (such as DR1,
DR2, and DR3 = DR); if the quadratic form is a function of four independent variables, then
the associated discriminant will have four sub-determinants (such as DR1, DR2, DR3, and
DR4= DR); and so on.

It is easy to see that d2U is positive definite (d2U > 0) if, and only if, DR1 = f11 > 0
and DR2 = DR > 0; d2U is negative definite (d2U < 0) if, and only if, DR1 = f11 < 0
and DR2 = DR > 0. To validate this statement we use the quadratic form d2U = f11dx2

1 +
2f12dx1dx2 + f22dx2

2 by adding to it, and subtracting from it, the expression f 2
12dx2

2/f11. After
doing this and after factoring out, we obtain d2U = f11[dx2

1 +2f12dx1dx2/f11 + f 2
12dx2

2/f
2

11]+[f22 − f 2
12/f11]dx2

2. The expression in the first set of brackets of this equation is the square of
[dx1 + f12dx2/f11]. Therefore, we can write the equation as d2U = f11[dx1 + f12dx2/f11]2 +
[(f11f22 − f 2

12)/f11]dx2
2. Since the squared terms in the equation cannot be negative, the sign

of d2U depends on f11, f22, and f12 = f21. If f11 > 0 and f11f22 − f 2
12 > 0, then d2U > 0 (or

positive definite); if f11 < 0 and f11f22 − f 2
12 > 0, then d2U < 0 (or negative definite). But,

these are the same statements we made at the beginning of this paragraph. Notice that the
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condition for the inequality DR2 = f11.f22 − (f12)2 > 0 is that both f11 and f22 must be of the
same sign. Notice also that these are the same conditions as those stated earlier.

As an example, consider the quadratic form d2U = 2dx2
1 +0dx1dx2 +2dx2

2. Our aim here
is to check whether d2U is positive or negative definite. We know, from this quadratic form,
that f11 = 2, f22 = 2, and f12 = f21 = 0. Therefore, we can construct the discriminant DR=
DR2 = 4 − 0 = 4. The first principal minor, DR1, of the discriminant is DR1 = |2| = 2. Since
the first and the second principal minors are positive, we conclude that d2U is positive
definite.

As another example, consider the quadratic form d2U = −2dx2
1 + 0dx1dx2 − 2dx2

2. Then
we can obtain f11 = −2, f22 = −2, and f12 = f21 = 0. Therefore, the discriminant is DR=
DR2= 4. Notice that DR1 = |−2| = −2. Since the second principal minor is positive and the
first principal minor is negative, we conclude that d2U is negative definite.

Consider now the quadratic form of three independent variables

d2U = f11dx2
1 + f22dx2

2 + f33dx2
3 + f12dx1dx2 + f13dx1dx3 + f23dx2dx3 (2.8.12)

When the quadratic form is a function of three independent variables (as in equation (2.8.12))
one can show, following a similar line of arguments as earlier, that the conditions for d2U
to be positive definite are DR1 > 0, DR2 > 0, and DR = DR3 > 0, and that the conditions for
d2U to be negative definite are DR1 < 0, DR2 > 0, and DR= DR3 < 0. The discriminant of
the last quadratic form can be written as

DR =

∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣ (2.8.13)

Assume now that f11 = 2, f22 = 2, f33 = 2, f12 = f21 = 0, f13 = f31 = 0, and f23 = f32 = 0. Then

the discriminant of the last quadratic form becomes DR =

∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
2 0 0

0 2 0

0 0 2

∣∣∣∣∣∣∣,
from which we obtain that the third, the second, and the first principal minors, respectively,

are DR3 = DR =

∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

2 0 0

0 2 0

0 0 2

∣∣∣∣∣∣∣= 8; DR2 =
∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣=
∣∣∣∣∣ 2 0

0 2

∣∣∣∣∣= 4; and

DR = |f11| = |2| = 2. Since the first and second principal minors and the discriminant are
all positive, we conclude that d2U is positive definite.

As the last example, consider the quadratic form of three independent variables as in
equation (2.8.12). Assuming that f11 = −2, f22 = −2, f33 = −2, f12 = f21 = 0, f13 = f31 = 0,

and f23 = f32 = 0, we get the discriminant as DR =

∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

−2 0 0

0 −2 0

0 0 −2

∣∣∣∣∣∣∣, from

which we obtain that the third, the second, and the first principal minors, respectively, are

DR3 = DR =

∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−2 0 0

0 −2 0

0 0 −2

∣∣∣∣∣∣∣ = −8; DR2 =
∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣ =
∣∣∣∣∣−2 0

0 −2

∣∣∣∣∣ = 4;
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and DR = |f11| = |− 2| = −2. Since the first and the third principal minors are negative and
since the second principal minor is positive, we conclude that d2U is negative definite.

We now extend the application of discriminantal test of sign definiteness to quadratic
forms that involve n independent variables. Before we do this extension, we can convert
the earlier examples of the quadratic forms with two (and three) independent variables into
more convenient expressions. This is presented first.

Our quadratic form with two independent variables in equation (2.8.9) was d2U =
f11dx2

1 + 2f12dx1dx2 + f22dx2
2. This quadratic form can be written in matrix form as

d2U = xTDx (2.8.14)

where x =
[
dx1

dx2

]
and D =

[
f11 f12

f21 f22

]
. The associated discriminant is DR =

∣∣∣∣ f11 f12

f21 f22

∣∣∣∣.
Notice that the first principal minor is DR1 = |f11| = f11 and the second principal minor is
DR = DR2.

Similarly, our quadratic form with three independent variables in equation (2.8.12) was
d2U = f11dx2

1 + f22dx2
2 + f33dx2

3 + 2f12dx1dx2 + 2f13dx1dx3 + 2f23dx2dx3. As above, this
quadratic form can be written in matrix form, following equation (2.8.14), as d2U = xTDx,

where x =
⎡
⎣dx1

dx2

dx3

⎤
⎦ and D =

⎡
⎣ f11 f12 f13

f21 f22 f23

f31 f32 f33

⎤
⎦ with DR =

∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣. Notice that the

first, the second, and the third principal minors of the discriminant here, respectively, are:

DR1 = |f11| = f11; DR2 =
∣∣∣∣ f11 f12

f21 f22

∣∣∣∣; and DR = DR3 =
∣∣∣∣∣∣

f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣. Instead of quadratic

forms with two or three independent variables, suppose that we have a quadratic form with
n independent variables as

d2U = f11dx2
1 + f22dx2

2 + f33dx2
3 +·· ·+ fnndx2

n

+ 2f12dx1dx2 + 2f13dx1dx3 +·· ·+ 2f1ndx1dxn + 2f23dx2dx3 + 2f24dx2dx4

+·· ·+ 2f2ndx2dxn +·· ·+ 2fn(n−1)dxndxn−1 (2.8.15)

which is identical to equation (3.8.9) and which in matrix notation can be written as d2U =

xTDx, where x =

⎡
⎢⎢⎣

dx1

dx2

..

dxn

⎤
⎥⎥⎦ and D=

⎡
⎢⎢⎣

f11 f12 .. f1n

f21 f22 .. f2n

.. .. .. ..

fn1 fn2 .. fnn

⎤
⎥⎥⎦with DR =

∣∣∣∣∣∣∣∣
f11 f12 .. f1n

f21 f22 .. f2n

.. .. .. ..

fn1 fn2 .. fnn

∣∣∣∣∣∣∣∣. Notice

that the first, the second, the third, . . ., and the nth principal minors of the discriminant,

respectively, are: DR1 = |f11| = f11; DR2 =
∣∣∣∣ f11 f12

f21 f22

∣∣∣∣; DR3 =
∣∣∣∣∣∣

f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣;… and DR

= DRn =

∣∣∣∣∣∣∣∣
f11 f12 .. f1n

f21 f22 .. f2n

.. .. .. ..

fn1 fn2 .. fnn

∣∣∣∣∣∣∣∣. Therefore, one can show (as in the case of the quadratic form

with two or three variables), that d2U will be positive definite if DR1, DR2, DR3,…, DR
= DRn are all positive. Similarly, d2U will be negative definite if DR1 < 0, DR2 > 0,
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DR3 < 0, . . ., (−1)n DRn > 0; that is, when the principal minors of the discriminant alternate
in sign starting with DR1< 0. These are exactly the same results as those we employed when
we considered specific examples earlier.

2.8.3 Hessian and bordered Hessian matrices and determinants

Students of economics, business, and finance usually come across optimization problems
that involve equality constraints. Examples of these include utility maximization by a
consumer who faces a budget constraint, cost minimization by a firm that faces a constraint in
the form of an isocost line, etc. However, in order to find the optimum in all these problems we
need to use bordered Hessian matrices and bordered Hessian determinants. Therefore, it is
necessary that students of these subjects possess a good understanding of these matrices and
their determinants, and of using them in solving the said optimization problems. But, before
this, we need to be familiar with the concepts of Hessian matrices and Hessian determinants,
which will be dealt with first.

We carried out the sign definiteness test of the second total differentials in the previous
section. The n independent variable, general second total differential, or quadratic form we
used was given in equation (2.8.15). We then presented this second total differential in matrix
form as d2U = xTDx. The square matrix D that we obtained, which is in fact the matrix of
the partial derivatives in the quadratic form d2U , is also called the Hessian matrix, and we
denote it by H. And the determinant of D (or the discriminant DR) is called the Hessian
determinant (or, simply, the Hessian), and we denote it by |H|. This shows that D and H,
and |D| (or DR) and |H| are identical. Moreover, the conditions of sign definiteness using
|D| (or DR) are equally applicable when we use |H|. Specifically, d2U is positive definite
(or U has a minimum) when |H1|> 0, |H2|> 0, |H3|> 0,…, |Hn|> 0, and d2U is negative
definite (or U has a maximum) when |H1| < 0, |H2| > 0, |H3| < 0, . . ., (−1)n |Hn| > 0;
that is, when the principal minors of |H| alternate in sign. This implies that we may use either
discriminant or Hessian to test the sign definiteness of the quadratic form.

However, Hessian matrices and their determinants become particularly useful when we
do optimization problems involving equality constraints. We shall consider here the general
case. Suppose that we have an objective function with two independent variables given by
U = f (x1,x2) and a constraint with the same independent variables given by g(x1,x2) = c,
where c is a constant. We now construct a new function

L = f (x1,x2) +λ[c − g(x1,x2)] (2.8.16)

where L is called the Lagrangian function, and λ is called the Lagrangian multiplier. Then
the SOC for an optimum, as shown in Chapter 4 and as before, amounts again to determining
the sign of d2U . Notice that d2U here is a constrained quadratic form, with the constraint
g(x1,x2) = c. Therefore, the constraint quadratic form can be written as

d2U = L11dx2
1 + 2L12dx1dx2 + L22dx2

2 (2.8.17)

where L11 = Lx1x1 = f11 − λg11, L12 = Lx1x2 = f12 − λg12, and L22 = Lx2x2 = f22 − λg22.
As discussed in Section 4.4.5, the quadratic form in equation (2.8.17) can be written as
equation (4.4.15): d2U = [L11g2

2 − 2L12g1g2 + L22g2
1 ][dx2

1/g
2
2 ]. It is easy to see from this

equation that d2U is positive (negative) definite if and only if the sum of the terms in
the brackets is positive (negative). But, the reader must have noticed that the determinant
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|H| =

∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣= −[
L11g2

2 − 2L12g1g2 + L22g2
1

]
is the negative of the last bracketed

sum. Therefore, we can state that d2U > 0 (d2U < 0), or positive (negative) definite, if and
only if |H| < 0 (|H| > 0).

The matrix corresponding to the determinant |H| is written as H=
⎡
⎢⎣ 0 g1 g2

g1 L11 L12

g2 L21 L22

⎤
⎥⎦ and

is called a bordered Hessian matrix, because its borders (the top and the left) are the partial
derivatives of the constraint with respect to each independent variable and its constant. The
determinant of H above, |H|, is called a bordered Hessian determinant (or, simply, a bordered
Hessian).

Let us now generalize the above results to the case of an objective function with
n independent variables, U = f (x1,x2, . . . ,xn), subject to one constraint of the same
variables, g(x1,x2, . . . ,xn) = c. The associated Lagrangian function can be written as
L = f (x1,x2, . . . ,xn) + λ[c − g(x1,x2, . . . ,xn)]. If one follows a similar line of argument
as the one we used above, one can also derive the quadratic form in the present case of the
n-variable function. Once again the sign of the present quadratic form is dependent upon
the associated bordered Hessian. The associated bordered Hessian matrix and the bordered
Hessian, respectively, are

H =

⎡
⎢⎢⎢⎢⎢⎣

0 g1 g2 . . . gn

g1 L11 L12 . . . L1n

g2 L21 L22 . . . L2n

. . . . . . . . . . . . . . .

gn Ln1 Ln2 . . . Lnn

⎤
⎥⎥⎥⎥⎥⎦ and |H| =

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 . . . gn

g1 L11 L12 . . . L1n

g2 L21 L22 . . . L2n

. . . . . . . . . . . . . . .

gn Ln1 Ln2 . . . Lnn

∣∣∣∣∣∣∣∣∣∣∣
(2.8.18)

Notice that, as in the case of discriminants and Hessians, we also have bordered principal
minors for the bordered Hessians. In our general case the second bordered principal minor,
the third bordered principal minor, . . ., and the nth bordered principal minor, respectively, are

|H2| =

∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣ , |H3| =

∣∣∣∣∣∣∣∣∣

0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

∣∣∣∣∣∣∣∣∣
, . . . ,

and |H| = |Hn| =

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 . . . gn

g1 L11 L12 . . . L1n

g2 L21 L22 . . . L2n

. . . . . . . . . . . . . . .

gn Ln1 Ln2 . . . Lnn

∣∣∣∣∣∣∣∣∣∣∣
(2.8.19)

Having explained the meaning and derivation of |H| and having discussed the bordered
principal minors of |H|, we are now ready to state the SOCs for the sign definiteness of
d2U . One can show that d2U is positive definite (then the objective function, U , has a
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minimum), given dg = 0, if and only if |H2|, |H3|, |H4|,…, |H| (= |Hn|)< 0; that is, if all
the bordered principal minors are less than zero. Similarly, d2U is negative definite (then
the objective function, U , has a maximum), given dg = 0, if and only if |H2|> 0, |H3|< 0,
|H4|> 0, . . ., (−1)n |H| (= (−1)n |Hn|)> 0; that is, if the bordered principal minors alternate
in sign.

As an example, let us consider an objective function with two independent variables and
a constraint. Suppose the objective function is given by U = f (x1,x2) = x1/2

1 + x1/2
2 and the

constraint is given by 2x1 + 4x2 = 40. Then we construct the Lagrangian function as

L = f (x1,x2) +λ[c − g(x1,x2)] = x1/2
1 + x1/2

2 +λ[40 − 2x1 − 4x2] (2.8.20)

We know that, given the Lagrangian function, the associated quadratic form is given by

d2U = L11dx2
1 + L22dx2

2 + L12dx1dx2 + L21dx2dx1 (2.8.21)

The Hessian matrix and the bordered Hessian associated with the quadratic form in

equation (2.8.21) can be written, respectively, as H =
⎡
⎢⎣ 0 g1 g2

g1 L11 L12

g2 L21 L22

⎤
⎥⎦ and |H| = |H2| =

∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣. We now need to check the sign of |H2|. To do this, we substitute the

values (we will show in Section 4.4.5 how we obtain them) L11 = [−(13.33)−3/2]/4,
L22 = [−(3.33)−3/2]/4,L12 = 0, L21 = 0, g1 = 2, and g2 = 4 into |H2|. Then, upon evaluating
this determinant we obtain |H2| = 0.25 > 0. Since the bordered principal minor |H| = |H2|
is positive, we conclude that the quadratic form is negative definite. This suggests that the
objective function U has a maximum.

As another example, consider the function C = h(x1,x2) = q2
1 + q2

2 − q1q2 with the
constraint q1 + q2 = 10. Then we construct the Lagrangian function as

L = h(q1,q2) +λ[c − g(q1,q2)] = q2
1 + q2

2 +λ[10 − q1 − q2] (2.8.22)

We know that, given the Lagrangian function, the associated quadratic form is given by

d2C = L11dq2
1 + L22dq2

2 + L12dq1dq2 + L21dq2dq1 (2.8.23)

We can find the Hessian matrix and the bordered Hessian associated with the quadratic form
in equation (2.8.23). We then need to check, as above, the sign of the bordered Hessian |H2|.
To do this, we substitute the values (we will show in Section 4.4.5 how we obtain them)
L11 = 2, L22 = 2, L12 = 0, L21 = 0, g1 = 1, and g2 = 1 into |H2|. Then, upon evaluating
this determinant we obtain |H2| = −4< 0. Since the bordered principal minor |H| = |H2|
is negative, we conclude that the quadratic form is positive definite. This suggests that the
objective function C has a minimum.

Some of the constrained optimization problems may contain more than one constraint.
How do we know that the SOC for an optimum of the objective functions in such problems
is satisfied or not? We take up this problem here. Suppose that we have an objective
function with n independent variables as U = f (x1,x2,x3, . . . ,xn). Also suppose that there are
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m constraints (such that m< n) with the same n variables given by gi(x1,x2,x3, . . . ,xn) = ci,
where i = 1,2,3, . . . ,m. Then the Lagrangian function can be written as

L = f (x1,x2,x3, . . . ,xn) +
m∑

i=1

λi[ci − gi(x1,x2,x3, . . . ,xn)] (2.8.24)

From equation (2.8.24), we can obtain the second partial derivatives as Lij , where i =
1,2,3, . . . ,m and j = 1,2,3, . . . ,n. From the constraints we can get the partial derivatives of
each independent variable (that is, gi

j , where i = 1,2,3, . . . ,m and j = 1,2,3, . . . ,n). These

partial derivatives can be used to write the quadratic form of the second total differential, d2U .
This quadratic form can be expressed as an equation, as we did before, involving matrices.
The matrix in the middle of these matrices will be the bordered Hessian matrix. When we
take the determinant of the bordered Hessian matrix, exactly as we did before, we obtain
the bordered Hessian. As can be seen widely in the literature, this bordered Hessian of the
n-variable, m-constraint optimization problem can be given as in the following equation:

|H| = |Hn| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 . . .

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-- 0 g1

1 g1
2 g1

3 . . . g1
n

0 0 0 . . . 0 g2
1 g2

2 g2
3 . . . g2

n

0 0 0 . . . 0 g3
1 g3

2 g3
3 . . . g3

n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
------------------------------------------------
0 0 0 . . . 0 gm

1 gm
2 gm

3 . . . gm
n

g1
1 g2

1 g3
1 . . . gm

1 L11 L12 L13 . . . L1n

g1
2 g2

2 g3
2 . . . gm

2 L21 L22 L23 . . . L2n

g1
3 g2

3 g3
3 . . . gm

3 L31 L32 L33 . . . L3n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g1
n g2

n g3
n . . . gm

n Ln1 Ln2 Ln3 . . . Lnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.8.25)

Notice that we can construct (n−m) bordered principal minors, from the above |H| = |Hn|,
depending upon n and m. If n = 2 and m = 1, n = 3 and m = 2, and so on, we have

|Hm+1| = |H2| =

∣∣∣∣∣∣∣
0 g1

1 g1
2

g1
1 L11 L12

g1
2 L21 L22

∣∣∣∣∣∣∣ , |Hm+1| = |H3| =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 g1
1 g1

2 g1
3

0 0 g2
1 g2

2 g2
3

g1
1 g2

1 L11 L12 L13

g1
2 g2

2 L21 L22 L23

g1
3 g3

3 L31 L32 L33

∣∣∣∣∣∣∣∣∣∣∣∣
(2.8.26)

and so on, respectively. Notice that the number of rows (which is equal to the number of
columns) of the null square matrix inside |H| is equal to the number of constraints (m) in the
problem. Therefore, if m = 2 we have 02×2 inside |H|; if m = 3 we have 03×3 inside |H|;
and so on.

Our next task in this n-variable, m-constraint optimization problem is to check the signs
of the (n − m), from the largest to the smallest, bordered principal minors as the SOC for U
to have an optimum. We state that d2U is positive definite (so that U will have a minimum)
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if all the bordered principal minors take the same sign; that is, if they take the sign as the
sign of (−1)m. If these bordered principal minors alternate in sign, starting with the sign of
|Hm+1| equals the sign of (−1)m+1, then d2U is said to be negative definite (so that U will
have a maximum).

2.8.4 Characteristic equations, characteristic roots, and characteristic vectors

In Section 2.8.2 we used the discriminant DR and its principal minors to test the sign
definiteness of a quadratic form such as d2U = xTDx. In Section 2.8.3 we applied the
bordered Hessian |H| and its bordered principal minors to test the sign definiteness of a
quadratic form such as d2U = xTHx.

Suppose now that we still have a quadratic form as before: d2U = xTDx. We can use
another method to test its sign definiteness. This method uses the concept of the characteri-
stic roots of the matrix D, where D is the matrix of second partial derivatives. We know that
D is a square matrix. The question now is: can we find, given D, a vector v (v �= 0) and a
scalar v such that Dn×nvn×1 = νvn×1? If yes, then the vector v is called the characteristic
vector (or latent vector or eigenvector) of the matrix D; and the constant v is called the
characteristic root (or latent root or eigenvalue) of the matrix D.

Notice that the matrix equation Dn×nvn×1 = νvn×1 can be written as Dn×nvn×1 −
νIn×nvn×1 = 0n×1 or as [D −νI ] v = 0, where [D −νI ] is called the characteristic
matrix of D. Also notice that the determinant of this characteristic matrix must be a singular
matrix. Since the previous matrix equation represents a homogeneous SSLEs, the condition
for a nontrivial solution to the system is that the characteristic matrix must be singular
(that is, [D −νI ] must be singular or its inverse should not exist). Again, the condition
for singularity of the matrix [D −νI ] is that its determinant must be zero (in other words,
its determinant must vanish). Therefore, we have the equation

|D −νI | =

∣∣∣∣∣∣∣∣∣∣∣

a11 − ν a12 a13 . . . a1n

a21 a22 − ν a23 . . . a2n

a31 a32 a33 − ν . . . a3n

. . . . . . . . . . . . . . .

an1 an2 an3 . . . ann − ν

∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.8.27)

This determinantal equation is called the characteristic equation (or the characteristic
polynomial) of the matrix D. Notice that equation (2.8.27) represents an nth-degree
polynomial equation because we can obtain from it an nth-degree polynomial equation using
Laplace expansion. This implies that there will be n roots for (or solutions to) this nth-degree
polynomial equation. We denote these roots by v1,v2,v3, . . . ,vn.

As a specific case, suppose that D2×2 =
[

a11 a12

a21 a22

]
. Then the characteristic equation

associated with this matrix, following equation (2.8.27), can be written as |D −νI| =∣∣∣∣a11 − ν a12

a21 a22 − ν
∣∣∣∣= ν2 − (a11 + a22)ν + (a11a22 − a12a21) = 0, which is a second-degree

polynomial and can be solved to obtain the characteristic roots or eigenvalues using
the quadratic formula in equation (1.6.9) as ν1,ν2 = [(a11 + a22) ±√

(a11 + a22)2 − 4(a11a22 − a12a21)]/2. Notice that the eigenvalues ν1 and ν2 are real if (a11+
a22)2 ≥ 4(a11a22 − a12a21) or if (a11 − a22)2 + 4a12a21 ≥ 0. In other words, the eigenvalues
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ν1 and ν2 are real if D2×2 is a symmetric matrix in which case a12 = a21. Suppose that the
eigenvalues are ν1 and ν2. Then the expression ν2 − (a11 +a22)ν+ (a11a22 −a12a21) can be
written as ν2 − (a11 +a22)ν+ (a11a22 −a12a21) = (ν−ν1)(ν−ν2) = ν2 − (ν1 +ν2)ν+ν1ν2.
This implies that ν1 +ν2 = a11 +a22, or that the sum of the eigenvalues is equal to the sum of
the diagonal elements of the matrix D (also referred to as the trace of the matrix D, denoted
by tr(D)). It also implies that ν1 × ν2 = a11 × a22 − a12 × a21 = |D|, or the product of the
eigenvalues is equal to the determinant of the matrix. Then we can infer that both eigenvalues,
ν1 and ν2, are positive if and only if tr(D) > 0 and |D|> 0; both eigenvalues are negative if
and only if tr(D) < 0 and |D|> 0; the two eigenvalues possess different signs if and only if
|D|< 0; and one of the two eigenvalues will be zero if |D| = 0 and the other will be equal
to a11 + a22. One can extend this procedure to determine the signs of the eigenvalues of the
matrix D with any order.

We are now ready to state the conditions for the sign definiteness of the quadratic form
d2U = xTDx. Our above discussion shows that the sign of this quadratic form is determined
by the signs of the eigenvalues of the matrix D if it is a symmetric matrix (as in all our
examples). Therefore, d2U is negative definite (so that U will have a maximum) if all the
eigenvalues (vi, where i = 1,2, . . . ,n) are negative. Similarly, d2U is positive definite (so that
U will have a minimum) if all the eigenvalues are positive. d2U is negative semidefinite or
positive semidefinite if all the eigenvalues are nonpositive (and at least one is equal to zero)
and if all the eigenvalues are nonnegative (and at least one is equal to zero), respectively. If
some eigenvalues are positive and others are negative, then d2U will be indefinite.

As an example, assume that D in the quadratic form d2U = xTDx and its associated

characteristic matrix are given, respectively, by D2×2 =
[

2 1

1 2

]
and [ D −νI] =[

2 − v 1

1 2 − v

]
. Then the characteristic equation is | D −νI | = (2 − ν)(2 − ν) − 1 =

4 − 4ν + ν2 − 1 = ν2 − 4ν + 3 = 0. This equation can be written as (ν − 3)(ν − 1) = 0.
Therefore, the two roots of this quadratic equation are ν1 = 3 and ν2 = 1. This means that
the eigenvalues of the characteristic equation | D −νI |, or of D, are ν1 = 3 and ν2 = 1.
This suggests that the quadratic form d2U = xTDx with the given D, following the above
conditions, is positive definite.

As another example, assume now that D in the quadratic form d2U = xTDx and

its associated characteristic matrix are given, respectively, by D2×2 =
[−2 1

1 −2

]
and

[D −νI] =
[−2 − v 1

1 −2 − v

]
. Then the characteristic equation is given by |D −νI | =

(−2 − ν)(−2 − ν) − 1 = 4 + 4v + v2 − 1 = v2 + 4v + 3 = 0. This equation can be written
as (ν + 3)(ν + 1) = 0. Therefore, the two roots of this quadratic equation are ν1 = −3 and
ν2 = −1. This means that the eigenvalues of the characteristic equation |D −νI |, or of D,
are ν1 = −3 and ν2 = −1. This suggests that, the quadratic form d2U = xTDx with the given
D, is negative definite.

Let us now consider the derivation of eigenvectors. Notice that when we substitute one of
the above roots (say, νi) into the equation [D −νI]v = 0, we will obtain a particular vector
(say, vi). Since the system [D −νI] v = 0 is homogeneous, we will, in fact, obtain a set with
as many vectors as the degree of the polynomial (each vector obtained will correspond to
a particular root). This implies that there will be n eigenvectors (v1, v2,…, vn) in the set if
there are (or corresponding to each of the) n roots or eigenvalues (ν1,ν2,ν3, . . . ,νn).
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We stated that when we use a particular eigenvalue (νi) we obtained a corresponding
eigenvector, and we denoted it by vi . But, to do this we follow a procedure called
normalization. Normalization here is nothing but making the sum of squares of all the
eigenvalues in a particular eigenvector vi equal to unity; that is,

∑n
i=1 ν

2
i = 1.

Consider, for example, the eigenvalues in our first example above: ν1 = 3 and ν2 = 1.
When we use the first eigenvalue, the characteristic equation [ D −νI] v = 0 becomes[

2 − 3 1
1 2 − 3

][
ν1

ν2

]
=
[ −1 1

1 −1

][
ν1

ν2

]
= 0 =

[
0
0

]
. Notice that the rows and columns

of the matrix [D −νI ] are linearly dependent yielding an infinite number of solutions.
Therefore, we choose one of these equations, −1ν1 + ν2 = 0, which gives ν1 = ν2. Then,
normalizing ν1 = ν2 yields ν2

1 + ν2
2 = ν2

1 + ν2
1 = 1. This means that 2ν2

1 = 1 or ν2
1 = 1/2, or

ν1 = √
0.5 if we take the positive square root only. Since ν1 = ν2, ν2 = √

0.5. Therefore,

the eigenvector using the eigenvalue ν1 = 3 is v1 =
[√

0.5√
0.5

]
. When we use the second

eigenvalue, the characteristic equation [D −νI]v = 0 becomes

[
2 − 1 1

1 2 − 1

][
ν1

ν2

]
=[

1 1
1 1

][
ν1

ν2

]
= 0 =

[
0
0

]
. Notice that, as above, the rows and columns of the matrix

[D −νI ] are linearly dependent. Therefore, we choose one of these equations: ν1 + ν2 = 0.
This gives us ν1 = −ν2. Then normalizing ν1 = −ν2 yields ν2

1 + (ν2)2 = ν2
1 + (−ν1)2 = 1

or ν2
1 + ν2

1 = 2ν2
1 = 1, or ν2

1 = 1/2 = 0.5, which yields ν1 = √
0.5 (as before, we take the

positive square root only). Since ν2 = −ν1, ν2 = −ν1 = −√
0.5. Therefore, the eigenvector

using the eigenvalue ν2 = 1 is v2 =
[ √

0.5

−√
0.5

]
.

2.8.5 Exercises

1. Find the Jacobian matrices and the Jacobians associated with the following SSFs. Use
these Jacobians to test for functional dependence in each of these SSFs.

(i)
y1 = f 1 = 2x1 + x2

y2 = f 2 = 4x2
1 + 4x1x2 + x2

2

; (ii)
y1 = f 1 = x1 + x2

y2 = f 2 = 4x1 + 5x2
;

(iii)
y1 = f 1 = x1 + x2

y2 = f 2 = x4
1 + 4x3

1x2 + 6x2
1x2

2 + 4x1x3
2 + x4

2

; (iv)
y1 = f 1 = x3

1 − 3x2
1x2 − x3

2

y2 = f 2 = x1 − x2
;

(v)

y1 = f 1 = x1 + x2

y2 = f 2 = x3
1 + 3x2

1x2 + 3x1x2
2 + x3

2

y3 = f 3 = x2
1 + 2x1x2 + x2

2

; (vi)

y1 = f 1 = x1 + x2

y2 = f 2 = 3x1 + 2x2

y3 = f 3 = 5x1 + 3x2

.

2. Find the discriminants of the following quadratic forms. Use these discriminants to test
the sign definiteness of the quadratic forms.
(i) d2U = −2dx2

1 + 3dx1dx2 − 6dx2
2; (ii) d2U = 2dx2

1 − 3dx1dx2 + 6dx2
2;

(iii) d2U = 2dx2
1 + 3dx2

2 + 6dx2
3 + dx1dx2 + 2dx1dx3 + 6dx2dx3; (iv) d2U = −2dx2

1 −
3dx2

2 − 6dx2
3 + dx1dx2 + 2dx1dx3 + 6dx2dx3.

3. Given the following quadratic forms, construct the bordered Hessian matrices and
bordered Hessians. Use these bordered Hessians to test the sign definiteness of the
quadratic forms.
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(i) d2U = 2dx2
1 + 2dx2

2 + dx1dx2 + dx2dx1,g1 = g2 = 2; (ii) d2U = 0.5dx2
1 + 0.5dx2

2 +
dx1dx2 + dx2dx1,g1 = g2 = 2; (iii) d2U = 5dx2

1 + 5dx2
2 + 5dx2

3 + dx1dx2 + dx2dx1 +
dx1dx3+dx2dx3,g1 = g2 = g3 =2; (iv) d2U =−5dx2

1 −5dx2
2 −5dx2

3 +dx1dx2+dx2dx1+
dx1dx3 + dx2dx3,g1 = g2 = g3 = 2.

4. Given the following quadratic forms, find the characteristic matrices, characteristic
equations, characteristic roots, and characteristic vectors. Test the sign definiteness of
the quadratic forms using characteristic roots.
(i) d2U =−2dx2

1 +2dx1dx2 −2x2
2; (ii) d2U = 2dx2 −2dx1dx2+2dx2

2; (iii) d2U = 2dx2
1 +

2dx2
2; (iv) d2U = 2dx1dx2; (v) d2U = 2dx2

1 +3dx2
2 +6dx2

3 +dx1dx2+2dx1dx3+6dx2dx3;
(vi) d2U = −2dx2

1 − 3dx2
2 − 6dx2

3 + dx1dx2 + 2dx1dx3 + 6dx2dx3.

Web supplement: S2.8.6 Mathematica applications

Web supplement: S2.8.7 Diagonalization of matrices

Web supplement: S2.9 Application of Linear Algebra: Regression Analysis

Web supplement: S2.9.7 Mathematica applications

Web supplement: S2.10 Application of Linear Algebra: Input–Output Analysis

Web supplement: S2.10.7 Mathematica applications
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3 Differential calculus

3.1 Introduction

Students of economics come across a large number of functions such as the functions of
marginal cost, marginal product, marginal revenue, marginal utility, marginal social benefit,
marginal social cost, marginal return, etc. Students of business and finance also encounter
some of these or similar functions. One common feature of these functions is that they
all involve the word “marginal.” Some students wonder what this word marginal means.
Although we will deal with marginal analysis in greater detail later, we present below a
simple example to illustrate the meaning of this word and its importance in the subjects of
our interest.

Before we begin the example, we need to be clear about the meaning of a change in a
variable. Suppose that y is the dependent variable and x is the independent variable in a
function. Also suppose that y changes from y0 to y1 in response to a change in x from x0

to x1. In the former, the initial value is y0 and the new value is y1; in the latter, they are x0 and
x1, respectively. We now define the change in a variable as the difference between the new
value and the initial value of the variable, and it is usually denoted by the Greek letter�. This
means that the change in y is given by �y = y1 − y0 and that in x is given by �x = x1 − x0.

Assume now that a small firm produces a good called x. At present the firm produces
4 units of x. The total profit (y) from producing these 4 units of x is assumed to be $16.
Also assume that, expecting an increase in demand for x, the firm decides to increase the
production of x by two more units. Then the firm expects the total profit to increase to $36.
The question now is: what is the impact on total profit of producing the additional two units
of good x? We will answer this question in the next section.

Notice that, in our example above, we assumed that x is indivisible; that is, we treated
the quantity produced of the good as a discrete variable, a variable that takes only whole
numbers over a specific interval on the real line. Suppose now that we treat it as a continuous
variable, a variable that can take any value over a specific interval on the real line. Then the
second question that arises is: what will be the impact on the total profit if the firm increases
production by an infinitesimally small amount (rather than one or two discrete units). We
will answer this question also in the next section as we need to discuss some additional
concepts.

We will see in the next section that the answers to the above two questions are
straightforwardly related to the topic called differential calculus, one of the most fundamental
branches of mathematics. As most of the models and theories in the subjects of our interest
make heavy use of the topic of differential calculus, a detailed study of that topic is
indispensable for a meaningful understanding of the models and theories that students of
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economics, business, and finance need to learn. We undertake this task in this chapter
beginning with the next section. We first consider differential calculus involving univariate
functions, before moving to differential calculus involving multivariate functions.

3.2 Difference quotient, derivatives of univariate functions,
and notations

3.2.1 Difference quotient, and secant and tangent lines

Consider our previous example of the profit of a firm that produces the good x. Assume that
the firm’s profit is given by the univariate function y = f (x). Also assume, for convenience,
that this general function takes the particular form y = f (x) = x2 as illustrated by its graph
in Figure 3.2.1(A).

Applying the equations for the changes in y and x, we obtain �y = y1 − y0 = 36 − 16 =
20 and �x = x1 − x0 = 6 − 4 = 2. We now divide �y by �x to obtain �y/�x =
[{f (x0 +�x) − f (x0)}/{(x0 +�x) − x0}] = [$36 − $16]/[4 + 2 − 4] = $20/2 = $10. This
ratio (that is, the ratio of the total change in the dependent variable to the total change
in the independent variable) is called the difference quotient, or the average rate of change,
or the rate of change in y per unit change in x. Therefore, the average rate of change in the
total profit when the firm produces two more units of the good is $10. This is the answer to
our first question in the last section.

Notice that, from the last equation, we can find �y/�x if we have f (x0), f (x0 +�x), and
�x. Assume now, for example, that y0 = f (x0) = x2

0 and y1 = f (x1) = f (x0+�x) = (x0+�x)2.
Then we obtain �y/�x = [{(x0+�x)2−(x2

0)}/�x] = [x2
0 + 2x0�x + (�x)2 − x2

0]/�x. This
equation can be simplified to yield

�y/�x = [2x0�x + (�x)2]/�x = 2x0 +�x (3.2.1)

We can now obtain, by plugging x0 = 4 and �x = 2 in equation (3.2.1), �y/�x =
2 × 4 + 2 = $10. This means that the rate of change of y per unit change in x is 10. Notice
that this is exactly the same as the value we obtained above.

We now consider secant lines and tangent lines. These lines can be illustrated through
Figure 3.2.1(B). Assume that we have a point, such as P, on the graph of a function f (x).
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Also assume that we draw few straight lines from the point P rightwards and leftwards. The
rightward lines are PB′, PB′′, and PB′′′, and the leftward lines are PA′, PA′′, and PA′′′. These
lines are called secant lines. Secant lines are those lines that intersect a curve at one or more
points. Notice that, in Figure 3.2.1(B), we have drawn another line CD that touches, but does
not intersect, the graph of the function f (x) at point P. This line is called the tangent line to
the point P. One can draw as many tangent lines as the number of points on the graph of a
function.

3.2.2 Derivative, slope, differentiation, and notations

We mentioned in the above example that x was indivisible; that is, we treated the quantity
produced of the good as a discrete variable. Suppose now that we treat it as a continuous
variable, taking every possible value over an interval on the horizontal real line. Then the
question that arises is: what would be the impact on the total profit if the firm continuously
reduced (to an infinitesimally small amount) the additional quantity produced of the good? In
other words, what will be the change in profit if the change in x approaches zero (or,�x → 0),
but never equal to zero (or, �x �= 0)? This question can be answered by taking the limit, if
it exists, of equation (3.2.1) when �x → 0. Following the discussion of limits presented in
Section 1.9, we can write

lim
�x→0

[
�y

�x

]
= lim
�x→0

[
2x0�x + (�x)2

�x

]
= lim
�x→0

[2x0 +�x] = 2x0 (3.2.2)

Equation (3.2.2) is an important result in differential calculus. It states that the limit of the
average rate of change, or of the difference quotient, when �x → 0 is the derivative of the
function y = f (x) with respect to x at x = x0. Notice that the derivative is a function of x0 only
and not of �x, whereas the difference quotient in equation (3.2.1) is a function of both x0

and �x. Notice also that equation (3.2.2) is a derived function; derived from the original or
primitive function (y = f (x)). This is the reason why equation (3.2.2) is called the derivative.
Equation (3.2.2) is also called the instantaneous rate of change because of the fact that we
treated �x as infinitesimally small.

Notice that the line AB in Figure 3.2.1(A) is similar to the line PB′′′ (or any other secant
line) in Figure 3.2.1(B). Therefore, we can use Figure 3.2.1(B) to answer the above question. If
we reduce�x continuously, the rightward sloping secant lines (PB′′′, PB′′, PB′, etc.) become
closer and closer to the tangent CD to the point P on the graph (so do the leftward sloping
secant lines). And, in the limit (or, when �x becomes infinitesimally small) the secant lines
coincide with the tangent line. This is illustrated in Figure 3.2.2 for the case of rightward
sloping secant lines.

We now explain the meaning of the slope of a curve. The slope of a curve at a point (such
as P in Figure 3.2.2) is defined as the slope, if it exists, of the tangent line at that point. The
slope of a straight line such as CD in Figure 3.2.2 is equal to the ratio of the vertical distance
(DE or �y) to the horizontal distance (EC or �x); that is, it is equal to DE/EC or �y/�x.
Since the point P is common to both the graph of the function and the straight line CD, the
slope of the graph at P is equal to�y/�x as�x → 0. This implies that the slope of the graph
at point P corresponds to the value of the derivative at point P.

We are now ready to answer the question that we posed at the beginning of this section:
what is the change in total profit if the change in x approaches zero (or, �x → 0), but
never equal to zero (or, �x �= 0)? Using equation (3.2.2) the answer to this question is 2x0.
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Moreover, we can see from Figure 3.2.1(A), corresponding to point P, x0 = 4. Substitution
of this value in equation (3.2.2) yields lim

�x→0
[�y/�x] = 2 × 4 = $8. Therefore, the deri-

vative of the function y = f (x) = x2 when x = x0 = 4 is 8. Similarly, when x = x0 = 5, the
derivative of the function is 10; when x = x0 = 8, it is 16; and so on. Notice that the derivative
of a function refers to the change in its dependent variable when the independent variable
changes at the margin (or by an infinitesimally small amount). This is the reason why we
used the word “marginal” with the names of some of the functions at the beginning of this
chapter. Therefore, the marginal functions we referred to are nothing but the derivatives
of (or functions derived from) some functions when their independent variables change at
the margin.

One can find in the literature different notations that represent the derivative of a function
(f (x)) with respect to one independent variable (x in our example). We present few of them
in the following equation:

dy

dx
= y′ = y′(x) = f ′ = f ′(x) = lim

�x→0

[
�y

�x

]
(3.2.3)

Using equation (3.2.3) we can write the derivative of the function y = f (x) in our example

above when x = x0 = 4 as
dy

dx

∣∣∣∣
x0=4

= y′∣∣
x0=4 = y′(x)

∣∣
x0=4 = f ′∣∣

x0=4 = f ′(x)
∣∣
x0=4 =

lim
�x→0

[
�y

�x

]∣∣∣∣
x0=4

= 2 × 4 = 8, where the superscript is read “f prime (or y prime)” or

“f dash (or y dash).” Although we can represent the derivative of y = f (x) by the notations
in equation (3.2.3), we will mainly use either dy/dx or f ′(x) in this book.

Let us now formally define the concepts of the derivative of a function and differentiation
of a function. The derivative of a function y = f (x) is the function denoted by dy/dx or f ′(x)
and is given by

dy

dx
= f ′(x) = lim

�x→0

[
f (x +�x) − f (x)

�x

]
(3.2.4)
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given that the limit exists. If we can find dy/dx at, say, x = x0, then the function y = f (x) is
said to be differentiable at x = x0; and dy/dx is called the derivative of y = f (x) at x = x0 or
the derivative of y = f (x) with respect to x at x = x0. The process of finding the derivative
is called differentiation. Differential calculus deals with differentiation of various types of
functions and their applications.

3.2.3 Differentiability of a univariate function

Having demonstrated the meaning of the derivative of a function and differentiation, we
now turn our attention to the concept called the differentiability of a function. We pose few
questions to begin with: are all functions differentiable, or is a function differentiable at every
point on its graph? In other words, how does one know if a function is differentiable or not?
We will answer these questions below.

Since the differentiability of a function is closely related to the continuity of that function,
we recap here our previous discussion of the continuity of a function. In Section 1.8.4 we
stated that a function is continuous if its graph does not contain gaps. In Section 1.9.4 we
presented the formal definition of continuity of a function. As per this definition, a function,
say y = f (x), is said to be continuous at a point x = x0 if: (1) lim

x→x0
f (x) exists; (2) f (x0) exists;

and (3) lim
x→x0

f (x) = f (x0). If these three conditions are satisfied, then the function y = f (x) is

said to be continuous at x = x0.
Now consider equation (3.2.4). Notice that the derivative f ′(x) in this equation will exist

only if the limit exists. But, we know from our discussion of limits in Section 1.9 that for
the function y = f (x) to have a limit at x = x0, it must be continuous at x = x0. If y = f (x) is
discontinuous at x = x0, then the limit of y = f (x) will not exist. This suggests that for the
derivative of y = f (x) to exist at x = x0, y = f (x) must be continuous at x = x0.

However, the continuity condition for differentiability of a function is only a necessary
condition for differentiability. The sufficient condition is that the graph of the function must
be “smooth” (or the function must be a smooth function) at the chosen point. For a function
to be a smooth function, its graph must not only be continuous but must also be free of
sharp points. Recall that the derivative of a function at a particular point on the graph of
the function is equal to the slope of the tangent line drawn to that point. If the graph of the
function contains a sharp point, then we cannot define a tangent line to that point implying
that the derivative of the function at that point is not defined. Therefore, the condition for the
function y = f (x) to be differentiable and to have a derivative at a point (x = x0), it must be
a smooth function or its graph must be a smooth graph at that point.

As examples of differentiable and nondifferentiable functions, consider the graphs of
various functions in Figures 3.2.3(A)–(F). Figures 3.2.3(A)–(D) illustrate the graphs of two
functions each, and Figures 3.2.3(E) and (F) show the graphs of four functions each.
The graphs of functions in Figures 3.2.3(A) and (B) are continuous and discontinuous,
respectively. But, they have sharp points and gaps, respectively, at x = x0. Therefore,
following the condition of differentiability stated above, the functions of these graphs
are not differentiable at x = x0. The graphs of the two functions in Figure 3.2.3(C) are
smooth and, therefore, are differentiable at x = x0. The graphs of the two functions in
Figure 3.2.3(D) and those of the four functions in Figure 3.2.3(E) are continuous but do
not possess limits at x = x0. Therefore, these functions are not differentiable at x = x0.
Lastly, the graphs of the four functions in Figure 3.2.3(F) are smooth and, therefore,
are differentiable at x = x0.
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3.2.4 Application examples

Example 1. Assume that the utility (y) that a consumer obtains from the consumption of
different units of a good (x) is given by the function y = f (x) = 1/x. Find the marginal utility
function using the definition of the derivative. Also find the marginal utility when x = x0 = 5.

Solution. Substituting y = f (x) = 1/x into equation (3.2.4), we obtain

dy/dx = lim
�x→0

[{ f (x +�x) − f (x)/�x}]

= lim
�x→0

[{
1

(x +�x)
− 1

x

}
/�x

]
= lim
�x→0

[{−�x/x(x +�x)}/�x]

= lim
�x→0

[−�x/(x2 +�x)�x] = [−�x/(x2 +�x)�x]

= lim
�x→0

[−1/x2 +�x] = −1/x2

Therefore, the marginal utility function is dy
/

dx = −1/x2. Marginal utility when x =
x0 = 5 can be found by substituting x = x0 = 5 into dy/dx. This yields dy/dx|x=x0=5 =
−1/x2

x=x0=5 = −1/52 = −1/25. Therefore, marginal utility when x = x0 = 5 is −1/25.

Example 2. Assume that the total cost (y) in dollars of producing x units of a good to a
firm is given by the function y = f (x) = 1 + 0.5x. Find the marginal cost function using the
definition of the derivative. Also find the marginal cost when x = x0 = 10.

Solution. Substituting y = f (x) = 1 + 0.5x into equation (3.2.4), we obtain dy/dx =
lim
�x→0

[{ f (x+�x)−f (x)}/�x]= lim
�x→0

[{(1+0.5(x+�x))−(1 − 0.5x)}/�x]= lim
�x→0

[{1+0.5x



[12:20 3/11/2011 5640-Ummer-Ch03.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 134 128–192

134 Differential calculus

+ 0.5�x − 1 − 0.5x}/�x] = lim
�x→0

[0.5�x/�x] = lim
�x→0

0.5 = 0.5. Therefore, the marginal

cost function is dy/dx = 0.5, a constant function. Notice that marginal cost is the same, $0.5,
irrespective of the value that x takes.

Example 3. Suppose that the total output produced of good y by a firm using l units of
labor is given by the function y = f (l) = 2+ l2. Find the marginal product function using the
definition of the derivative. Also find the marginal product when l = l0 = 20.

Solution. Substituting y = f (l) = l + l2 into equation (3.2.4), we obtain dy/dl =
lim
�l→0

[{f (l +�l) − f (l)}/�l] = lim
�l→0

[{(2 + (l +�l)2) − (2 + l2)}/�l] = lim
�l→0

[{(2 + l2 +
2l�l+ (�l)2)− (2+ l2)}/�l] = lim

�l→0
[{2l�l + (�l)2}/�l] = lim

�l→0
(2l+�l) = 2l. Therefore,

the marginal product function is dy/dl = 2l. The marginal product when l = l0 = 20
is dy/dl|l=l0=20 = 2l|l=l0=20 = 2 × 20 = 40. Therefore, the marginal product when x =
x0 = 20 is 40 units.

3.2.5 Exercises

1. Find the difference quotient of each of the following functions:
(i) y = f (x) = 5−x; (ii) y = f (x) = x3; (iii) y = f (x) = 2+x2; (iv) y = f (x) = 1

/
(1 − x2).

2. Find the derivatives of the following functions, using equation (3.2.4), at x = x0 = 2:
(i) y = f (x) = 5−x; (ii) y = f (x) = x3; (iii) y = f (x) = 2+x2; (iv) y = f (x) = 1

/
(1 − x2).

3. Application exercise. Suppose that the monthly consumption expenditure of a household
is given by the function y = f (x) = 5+0.7x, where y denotes the monthly consumption
expenditure and x denotes the monthly disposable income (both in dollars). Find the
function for marginal propensity to consume (MPC) using equation (3.2.4). Also find
the MPC when x = x0 = $3500.

4. Application exercise. Suppose that the monthly savings of a household are given by the
function y = f (x) = 5 + 0.3x, where y denotes the amount of money saved a month
and x denotes the monthly disposable income (both in dollars). Find the function for
marginal propensity to save (MPS) using equation (3.2.4). Also find the MPS when
x = x0 = $3500.

5. Application exercise. Suppose that the total social benefit of a public project is given
by the function y = f (x) = x3, where y denotes the monetary value of the social benefit
and x denotes the amount of money invested in the project (both in dollars). Find the
function for marginal social benefit of the project using equation (3.2.4). Also find the
marginal social benefit when x = x0 = $5 000 000 000.

Web supplement: S3.2.6 Mathematica applications

3.3 Rules of differentiation of univariate functions

In the last section we differentiated few simple functions using the definition of a derivative
given in equation (3.2.4). We found that the application of this equation was a tedious job
even when the function was a simple one. It is needless to say that finding the derivative of
a complicated function will be a difficult task if we use equation (3.2.4). Another problem
with this equation is that we need to check the limit every time we differentiate a function.
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Therefore, we need a set of routines that can be used straightforwardly to find the derivative of
different types of functions. These routines are given by the rules of differentiation, which we
discuss in the following sections. We use these rules, either individually or in combination,
throughout the book. Moreover, these rules lie at the heart of differential calculus. A good
grasp of these rules is necessary for a proper understanding of differential calculus.

3.3.1 Differentiation of constant functions or constants

The first rule we discuss is the derivative of a constant function. Suppose that our differen-
tiable function is y = f (x) = c, where c is a constant. Then

dy

dx
= d[c]

dx
= f ′[c] = 0 (3.3.1)

which is popularly called the constant function rule of differentiation. The constant function
rule of differentiation states that the derivative of a constant or of a constant function is equal
to zero.

The rule in equation (3.3.1) can be validated using equation (3.2.4). Substitution of
y = f (x) = c into equation (3.2.4) yields dy/dx = f ′(x) = lim

�x→0
[{ f (x +�x) − f (x)}�x] =

lim
�x→0

[{c − c}/�x] = lim
�x→0

[0/�x] = lim
�x→0

0 = 0, which checks with equation (3.3.1).

As an example, consider the function y = f (x) = 10. Since the power of x on the RHS is
zero, y = f (x) = 10 is a constant function. Therefore, dy/dx = f ′(10) = 0.

3.3.2 Differentiation of power functions

Let our differentiable function be y = f (x) = xn. Then

dy

dx
= d[y]

dx
= f ′(x) = n.xn−1 (3.3.2)

which is popularly called the power function rule of differentiation. The power function rule
states that the derivative of a function raised to a power is equal to the power times the
independent variable raised to the power minus one.

The power function rule can be substantiated using equation (3.2.4). Substitution of
the function into equation (3.2.4) yields dy/dx = f ′(x) = lim

�x→0
[{ f (x +�x) − f (x)}/�x] =

lim
�x→0

[{(x +�x)n − xn}/�x]. The first term in the numerator, (x +�x)n, can be expanded

using the binomial theorem given in equation (1.10.13) as (x + �x)n = Cn,0xn(�x)0 +
Cn,1xn−1(�x)1 +Cn,2xn−2(�x)2 +Cn,3xn−3(�x)3 +·· ·+Cn,n−n=0xn−n(�x)n = xn +n.xn−1

�x + Cn,2xn−2(�x)2 + Cn,3xn−3(�x)3 + ·· · + (�x)n. Therefore, dy/dx = lim
�x→0

[{ f (x +�x) − f (x)}/�x] = lim
�x→0

[{(x +�x)n − xn}/�x] = lim
�x→0

[{xn + n.xn−1�x+
Cn,2xn−2(�x)2 +Cn,3xn−3(�x)3 + . . .+ (�x)n −xn}/�x] = lim

�x→0
[n.xn−1 +Cn,2xn−2(�x)+

Cn,3xn−3(�x)2 +·· ·+ (�x)n−1] = n.xn−1, which checks with equation (3.3.2).
As an example, consider the function y = f (x) = x3. In this example, n = 3. Therefore,

applying the rule in equation (3.3.2), we obtain dy/dx = f ′(x) = 3.x3−1 = 3x2.
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3.3.3 Differentiation of functions with a constant

Suppose that our differentiable function is y = f (x) = c.xn, where c is a constant. Then

dy

dx
= d[y]

dx
= f ′[x] = c(n.xn−1) (3.3.3)

which is popularly called the function-with-constant rule of differentiation. This rule states
that the derivative of a function with a constant is equal to the constant times the derivative
of the function.

As earlier, the rule in equation (3.3.3) can be verified using equation (3.2.4). Substitution of
the function into equation (3.2.4) yields dy/dx = f ′(x) = lim

�x→0
[c.{ f (x +�x) − f (x)}/�x] =

c.[ lim
�x→0

[{(x +�x)n − xn}/�x]. Then following exactly the same arguments as in the

verification of the derivative of the power function, we obtain dy/dx = f ′[x] = c.n.xn−1,
which checks with equation (3.3.3). As an example, consider the function y = f (x) =[2/3].x3.
Then, applying the rule in equation (3.3.3), we obtain dy/dx = f ′(x) = f [(2/3).x3] =
(2/3)[3.x3−1] = 2x2. Notice that c = 2/3 and n = 3 in the present example.

3.3.4 Differentiation of sums or differences (or combinations) of functions

Assume that we have two differentiable functions: f (x) and g(x). Since f (x) and g(x) are
assumed to be differentiable, their sum F(x) = f (x)+g(x) and their difference G(x) = f (x)−
g(x) are also differentiable. Consider first the sum: F(x) = f (x) + g(x). Then

d[F(x)]
dx

= F ′(x) = d[ f (x) + g(x)]
dx

= f ′(x) + g′(x) (3.3.4)

which is called the sum rule of differentiation. The sum rule of differentiation states that the
derivative of the sum of two or more functions is the sum of the derivatives of individual
functions.

We can validate the rule in equation (3.3.4) using equation (3.2.4). Application of
equation (3.2.4) yields d[F(x)]/dx = F ′(x) = lim

�x→0
[{F(x +�x) − F(x)}/�x] = lim

�x→0
[{f (x+

�x) + g(x + �x) − [ f (x) + g(x)]}/�x] = lim
�x→0

[{[ f (x + �x) − f (x)] + [g(x + �x) −
g(x)]}/�x] = lim

�x→0
[{f (x+�x)− f (x)}/�x]+ lim

�x→0
[{g(x +�x) − g(x)}/�x]. Since the first

term and the second term in the last step are f ′(x) and g′(x), respectively, we can write
d[F(x)]/dx = F ′(x) = f ′(x) + g′(x), which checks with equation (3.3.4).

Following exactly the same reasoning as above, one can show that the derivative of
the difference of two or more functions is the difference of the derivatives of individual
functions; that is

d[G(x)]
dx

= G′(x) = d[ f (x) − g(x)]
dx

= f ′(x) − g′(x) (3.3.5)

where G(x) = f (x) − g(x). Equation (3.3.5) gives the difference rule of differentiation.
Notice that the rules in equations (3.3.4) and (3.3.5) can be generalized to the sum and
difference, respectively, of any number of functions.

As an example, consider F(x) = f (x)+ g(x), where f (x) = 2+ x2 and g(x) = 1+ x3. This
means that F(x) = f (x) + g(x) = 2 + x2 + 1 + x3 = 3 + x2 + x3. Therefore, using the rules
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we have discussed so far, F ′(x) = 2.x2−1 +3.x3−1 = F ′(x) = 2.x +3.x2 = x(2+3x). We can
check this result by finding the derivatives of f (x) and g(x) individually and summing them up.
That is, f ′(x) = 2x and g′(x) = 3x2. Therefore, f ′(x)+g′(x) = 2x +3x2 = x(2+3x) = F ′(x).
This confirms the rule d[F(x)]/dx = F ′(x) = f ′(x) + g′(x).

As another example, consider the function G(x) = f (x) − g(x), where f (x) = 5 + x and
g(x) = 1+ x4. This implies that G(x) = f (x)−g(x) = 5+ x −1− x4 = 4+ x − x4. Therefore,
again using the rules we have discussed so far, G′(x) = 1.x1−1 −4.x4−1 = 1−4.x3 = 1−4x3.
As above, we can check this result by finding the derivatives of f (x) and g(x) individually
and subtracting the latter from the former. That is, f ′(x) = 1 and g′(x) = 4x3. Therefore,
f ′(x) + g′(x) = 1 − 4x3 = F ′(x). This confirms the rule d[G(x)]/dx = G′(x) = f ′(x) − g′(x).

3.3.5 Differentiation of the product of two functions (product rule)

Suppose that we have two functions: f (x) and g(x). We assume that f (x) and g(x) are
differentiable. Therefore, their product H (x) = f (x).g(x) is also differentiable. Then

dy

dx
= H ′(x) = d[ f (x) × g(x)]

dx
= f ′(x).g(x) + f (x).g′(x) (3.3.6)

which is called the product rule of differentiation. The product rule of differentiation states
that the derivative of the product of two functions is equal to the derivative of the first
function times the second function plus the derivative of the second function times the first
function.

Let us substantiate the product rule using equation (3.2.4). Substitution of H (x) =
f (x).g(x) into equation (3.2.4) yields H ′(x) = lim

�x→0
[{H (x+�x)−H (x)}/�x] = lim

�x→0
[{f (x+

�x).g(x +�x) − f (x).g(x)}/�x]. Now adding and subtracting [ f (x).g(x +�x)]/�x from
the RHS of the last equation yields H ′(x) = lim

�x→0
[{f (x +�x).g(x +�x) − f (x).g(x)}/�x+

{f (x).g(x +�x) − f (x).g(x +�x)}/�x] = lim
�x→0

[{f (x +�x).g(x +�x) − f (x).g(x +�x)}/
�x + {f (x).g(x + �x) − f (x).g(x)}/�x] = lim

�x→0
[{f (x + �x) − f (x)].g(x + �x)}/�x +

{f (x)[g(x+�x)−g(x)]}/�x]= lim
�x→0

[{[f (x+�x)−f (x)].g(x+�x)}�x]+ lim
�x→0

[{f (x)[g(x+
�x) − g(x)]}/�x] = lim

�x→0
[{f (x + �x) − f (x)}/�x] × lim

�x→0
g(x + �x) + lim

�x→0
f (x) ×

lim
�x→0

[{g(x+�x)−g(x)}/�x] = f ′(x).g(x)+ f (x).g′(x), which checks with equation (3.3.6).

As an example, consider the functions H (x) = f (x).g(x), where f (x) = 2 + x2 and g(x) =
1+ x3. This means that H (x) = (2+ x2).(1+ x3). Therefore, applying the product rule yields
dy/dx = H ′(x) = d[ f (x) + g(x)]/dx = f ′(x).g(x) + f (x).g′(x) = (2x) × (1 + x3) + (2 + x2) ×
(3x2). After simplification we obtain dy/dx = H ′(x) = 2x + 6x2 + 5x4. This result can be
verified by multiplying f (x) = 2 + x2 and g(x) = 1 + x3 and finding the derivative of the
resulting expression using the rules we have discussed so far. Multiplication of (2 + x2) by
(1 + x3) gives us 2 + x2 + 2x3 + x5. The derivative of this expression with respect to x is
d(2 + x2 + 2x3 + x5)/dx = 2x+6x2 +5x4, which checks with the result we obtained through
the product rule.

The product rule we outlined above can be extended to three functions of the same
independent variable. Let f (x), g(x), and h(x) be three differentiable functions. Then, it
can be shown that d[ f (x).g(x).h(x)]/dx = f ′(x).g(x).h(x)+ f (x).g′(x).h(x)+ f (x).g(x).h′(x).
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3.3.6 Differentiation of rational functions (quotient rule)

Assume that we have two differentiable functions: f (x) and g(x), where g(x) �= 0. Since
these two functions are assumed to be differentiable, their quotient K(x) = f (x)/g(x) is also
differentiable. Then

d[K(x)]
dx

= K ′(x) = g(x).f ′(x) − f (x).g′(x)

[g(x)]2 (3.3.7)

which is called the quotient rule of differentiation. The quotient rule of differentiation states
that the derivative of the quotient of two functions is the denominator times the derivative
of the numerator minus the numerator times the derivative of the denominator, all divided
by the square of the denominator.

The quotient rule can be verified as follows. Given K(x) = f (x)/g(x), we have f (x) =
K(x).g(x). By applying the product rule in equation (3.3.6), we obtain f ′(x) = K ′(x).g(x) +
K(x).g′(x). This equation can be solved for K ′(x) to obtain K ′(x) = [ f ′(x) − K(x).g′(x) ]/g(x).
Since K(x) = f (x)/g(x), we can write K ′(x) as K ′(x) = [{f ′(x) − f (x)/g(x)}.g′(x)]/g(x). This
equation can be simplified to obtain K ′(x) = [g(x).f ′(x) − f (x).g′(x)]/[g(x)]2, which checks
with equation (3.3.7). As an example, consider the functions f (x) = 2+x2 and g(x) = 1+x3.
Therefore, we define K(x) = f (x)/g(x) = (2 + x2)/(1 + x2). Then, applying equation (5.3.7),
we obtain K ′(x) = [g(x).f ′(x) − f (x).g′(x)]/[g(x)]2 = [(1 + x3).(2x) − (2 + x2).(3x2)]/
(1 + x3)2 = [2x − 6x2 − x4]/(1 + x3)2.

3.3.7 Differentiation of composite functions (chain rule)

Assume that we have two differentiable functions: y = f (u) and u = g(x). Notice that in the
former function, y depends on u; and in the latter function, u depends on x. This means that
we have two independent variables. These functions together imply that changes in x cause
changes in u which, in turn, will change y.

Now assume that y and u are differentiable functions of u and x, respectively. Then

dy

dx
= dy

du
× du

dx
(3.3.8)

which is called the chain rule or the composite function rule of differentiation. The chain
rule states that the derivative of the first function (y = f (u)) with respect to the independent
variable in the second function (x in u = g(x)) is equal to the derivative of the first function
with respect to its independent variable (u) times the derivative of the second function with
respect to its independent variable (x).

The chain rule can be validated as follows. Given y = f (u) and u = g(x), we know
that �y/�u = [ f (u +�u) − f (u)]/�u and �u/�x = [ f (x +�x) − f (x)]/�x. Therefore,
�y/�x = [�y/�u].[�u/�x] = [ f (u+�u)− f (u)/�u].[ f (x+�x)− f (x)]/�x. Now taking
limits on both sides of this equation when �x → 0, we obtain dy/dx = lim

�x→0
[�y/�x] =

( lim
�u→0

�y/�u).( lim
�x→0

�u/�x) = ( lim
�u→0

{f (u+�u)− f (u)}/�u)× lim
�x→0

{f (x+�x)− f (x)}/
�x = [dy/du].[du/dx], which checks with equation (3.3.8).

As an example, consider the functions y = f (u) = 2 + u2 and u = g(x) = 2x + 3x2. Then,
by applying the chain rule, we obtain dy/dx = [dy/du].[du/dx] = (2u).(2 + 6x). Since u =
g(x) = 2x + 3x2, dy/dx = [dy/du].[du/dx] = (2u).(2 + 6x) = 2(2x + 3x2).(2 + 6x) = 2(4x +
12x2 + 6x2 + 18x3) = 8x + 36x2 + 36x3.
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Notice that the chain rule can be extended to include any number of functions. Suppose, for
example, we have three functions y = f (u), u = g(v), and v = h(x). Then, following exactly
the same arguments as those we used in the validation of equation (3.3.8), we can obtain

dy

dx
= dy

du
× du

dv
× dv

dx
(3.3.9)

3.3.8 Differentiation of composite function with power (power rule)

Suppose that we have a differentiable composite function y = f (u) = un, where u = g(x).
Then the derivative of y with respect to x, if y and u are differentiable, is defined as

dy

dx
= n.un−1 × du

dx
(3.3.10)

which is called the power rule of differentiation. Notice that this rule is, in fact, the chain
rule applied to the power of a function.

As an example, let y = f (u) = (2x + 5)3. We now define u = g(x) = 2x + 5. This implies
that we can write y = f (u) = (2x +5)3 = u3. Then, by applying equation (3.3.10), we obtain
dy/dx = n.un−1.du/dx = 3.(2x + 5)2.(2) = 6(2x + 5)2.

3.3.9 Differentiation of logarithmic functions

Assume that our function is a differentiable natural logarithmic function given by y = f (x) =
ln x. Then the derivative of y = (x) with respect to x is given by

dy

dx
= f ′(x) = d[ln x]

dx
= 1

x
(3.3.11)

which is called the logarithmic rule of differentiation. This rule implies that the derivative
of a logarithmic function of x is the inverse of x.

As before, the logarithmic function rule can be substantiated by applying equation (3.2.4).
Substituting the function y = f (x) = ln x into equation (3.2.4) yields dy/dx = f ′(x) =
d(ln x)/dx = lim

�x→0
[{ f (x +�x) − f (x)}/�x] = lim

�x→0
[{ln(x +�x) − ln x}/�x]. Using equa-

tion (3.5.6), we can write the last equation as dy/dx = d[ln x]/dx = lim
�x→0

[ln{(x +
�x)/x}/�x] = lim

�x→0
(1/�x). ln[(x + �x)/x] = lim

�x→0
(1/�x). ln[1 + �x/x] = lim

�x→0
(1/x).

(x/�x). ln[1 +�x/x]. Using equation (1.5.7), we can write the last equation as dy/dx =
d[ln x]/dx = lim

�x→0
[(1/x). ln[1 + �x/x]x/�x = (1/x). lim

�x→0
ln[1 + �x/x]x/�x = (1/x).

ln[ lim
�x→0

[1 +�x/x]x/�x] = (1/x). ln[ lim
�x→0

(1 + 1/n)n], where n = x/�x, which implies that

as�x → 0, n → ∞. Therefore, we can write dy/dx = d[ln x]/dx = (1/x). ln[ lim
n→∞(1+1/n)n].

Notice that the term lim
n→∞(1 + 1/n)n in the last equation is identical with the term that we

found in the derivation of equation (1.10.14). We found in Section 1.10.6 that this term was
equal to the value e = 2.71828. Therefore, we have dy/dx = d[ln x]/dx = (1/x). ln e. We
know from equation (1.5.4) that ln e = 1, which shows that dy/dx = d[ln x]/dx = (1/x) ln e =
(1/x).1 = 1/x, which checks with equation (3.3.11).
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As an example, assume that our logarithmic function is given by y = ln x3. Notice that we
can write it as y = 3ln x. We shall now apply equations (3.3.11) and (3.3.3) to obtain the
derivative as dy/dx = d[3. ln x]/dx = 3.(1/x) = 3/x.

Assume now that our function is a logarithmic composite function such as y = f (u) = lnu,
where u = g(x). Also assume that y and u are differentiable functions. How do we differen-
tiate this function? The answer is now simple: apply equations (3.3.11) and (3.3.8) together;
that is, use the logarithmic rule and the chain rule together. The result will be

dy

dx
= dy

du
× du

dx
= d[lnu]

du
× du

dx
= 1

x
× du

dx
(3.3.12)

As an example, assume that y = f (u) = lnu, where u = g(x) = 2 + x2. Then, applying
equation (3.3.12) gives us dy/dx = d[lnu]/dx = (dy/du).(du/dx) = {d[lnu]/du}.(du/dx) =
(1/u).(du/dx) = (2x)/(2 + x2).

Suppose that our function is a logarithmic composite function with base other than e
such as y = f (u) = logb u, where u = g(x). How do we differentiate this function if y and
u are differentiable functions? Before we differentiate y = f (u) = logb u, we convert it into
y = lnu/ lnb using equation (1.5.12). Notice that, in the last equation, lnb is a constant. This
implies that we can write it as y = (1/ lnb). lnu. We can now apply equation (3.3.12) to obtain

dy

dx
= d[logb u]

dx
= d(lnu/ lnb)

dx
= 1

lnb
× d(lnu)

dx
.= 1

lnb
× d(lnu)

du
× du

dx
= 1

lnb
× 1

u
× du

dx
(3.3.13)

As an example, consider the function y = log4(2 + x2). Assume that u = g(x) = 2 +
x2 and b = 4. Notice that we can write y = log4(2 + x2) as y = log4 u, and y = log4 u as
y = lnu/ln 4 = (1/ ln 4). lnu, where u = 2 + x2. We can now apply y = (1/ ln 4). lnu to
equation (3.3.13) to yield dy/dx = (1/ lnb).{d[lnu]/dx}.(du/dx) = (1/ lnb).(1/u).(du/dx) =
(1/ ln 4).[1/((2 + x2)].(2x).

3.3.10 Differentiation of exponential functions

Suppose that our differentiable exponential function is given by y = f (x) = ex. The deriva-
tive of this function with respect to x is given by

dy

dx
= f ′(x) = ex (3.3.14)

which is called the exponential rule of differentiation. Notice that derivative of the exponen-
tial function y = f (x) = ex is the function itself.

The exponential rule can be verified as follows. Let us first convert the function y = f (x) =
ex into the form ln y = x. ln e = x. Differentiating both sides of ln y = x with respect to x, we
obtain (1/y).(dy/dx) = d[x]/dx = dx/dx = 1. Rearranging this equation, we get dy/dx = y.
Since y = f (x) = ex, we obtain dy/dx = ex, which checks with equation (3.3.14).

As an example consider the function y = f (x) = 5ex. Then the derivative of this function
with respect to x is given by dy/dx = f ′(x) = 5ex.

Suppose that the differentiable exponential function is a composite function such as y =
f (u) = eu, where u = g(x). We can find the derivative of y = f (u) with respect to x through the
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combined application of equations (3.3.14) and (3.3.8). Then, following the above procedure
by using u (instead of x), we obtain

dy

dx
= f ′(x) = d[eu]

dx
= eu × du

dx
(3.3.15)

As an example, consider the function y = f (u) = eu, where u = g(x) = 2+ x2. Then, using
equation (3.3.15), we obtain the derivative of y = f (u) with respect to x as dy/dx = f ′(x) =
d[eu]/dx = (eu).(du/dx) = (eu)(2x) = 2xeu = 2xe2+x2

.
So far we have used e as the base of the exponential functions. What will be the derivative

of an exponential function if its base is a value other than e; say, for example, a? Then the
function will be of the form y = f (x) = ax. Notice that we can write, using equation (1.5.11),
y = f (x) = ax as y = f (x) = (elna)x = elnax = ex lna. Then the derivative of the last function
with respect to x is given by

dy

dx
= f ′(x) = d[ax]

dx
= d[ex lna]

dx
= (ex lna) × (lna) × dx

dx
= (ax) × (lna) (3.3.16)

Consider, as an example, the function y = f (x) = 5x. We shall now treat a = 5. Then
the derivative of this function with respect to x, following equation (3.3.16), is dy/dx =
d[5x]/dx = d[ex ln 5]/dx = (ex ln 5).(ln 5).(dx/dx) = (5x).(ln 5).

As a last case, what will be the derivative of the differentiable function y = f (u) = au

with respect to x, where u = g(x)? This can be found through the combined application of
equations (3.3.16) and equation (3.3.8). That is

dy

dx
= d[au]

dx
= d[eu lna]

dx
= (eu lna) × (lna) × du

dx
= (au) × (lna) × du

dx
(3.3.17)

As an example, consider the function y = f (x) = 5u, where u = g(x) = x2. This implies that
y = f (x) = 5x2

. We now treat a = 5. Therefore, applying equation (3.3.17) yields dy/dx =
d[5u]/dx = d[eu ln 5]/dx = (eu ln 5).(ln 5).(du/dx) = (5u).(ln 5).(2x) = 5x2

.(ln 5).(2x).

3.3.11 Differentiation of inverse functions (the inverse function rule)

Suppose that we have a one-to-one function, y = f (x). We know from Section 1.8.4 that the
inverse function of this original function is defined as x = f −1(y). Then the derivative of this
inverse function is

dx

dy
= 1

dy/dx
= 1

f ′(x)
, where dy/dx = f ′(x) �= 0 (3.3.18)

which is called the inverse function rule of differentiation. Notice that this rule states that the
derivative of the inverse function is the inverse of the derivative of the original function.

The inverse function rule can be validated as follows. Our aim is to find dy/dx from
x = f −1(y). Since it is difficult to differentiate x = f −1(y) explicitly, we take a shortcut here.
The shortcut is to write x = f −1(y) as x = f (y). Then we can differentiate both sides of this
function with respect to x. This gives us d[x]/dx = {d[ f (y)]/dy}.(dy/dx) = dx/dx = 1, or
{d[ f (y)]/dy}.(dy/dx) = 1, which implies that d[ f (y)]/dy = 1/(dy/dx). Since x = f (y), the last
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result can be written as dx/dy = 1/(dy/dx) = 1/f ′(x), which checks with equation (3.3.18).
Notice the condition: dy/dx = f ′(x) �= 0.

As an example of the application of the inverse function rule, assume that y = f (x) = 2+x2.
From this we obtain dy/dx = f ′(x) = 2x. Therefore, using equation (3.3.18), we obtain
dx/dy = 1/(dy/dx) = 1/f ′(x) = 1/2x. Notice that dy/dx = f ′(x) �= 0 for all values of x �= 0.

3.3.12 Differentiation of implicit functions (the implicit function rule)

Suppose that our implicit function is y3 + x2 − 4 = 0. Notice that in an implicit function
such as y3 + x2 − 4 = 0, we are unable to say whether y or x is the dependent variable or
not. How do we differentiate such a function and find dy/dx? The method of differentiating
such functions involves four steps as outlined below.

Firstly, assume that y is a differentiable function of x. Secondly, differentiate both sides of
the equation with respect to x. Thirdly, collect all the terms that contain dy/dx, and factor it.
Fourthly, solve the result for dy/dx. Let us carry out these operations for the above implicit
function to yield d[y3]/dx+d[x2]/dx−d[4]/dx = d[0]/dx; 3y2(dy/dx)+2x(dx/dx)−0 = 0;
and 3y2(dy/dx) = −2x. This equation can be simplified to obtain dy/dx = −2x/3y2.

3.3.13 Logarithmic differentiation

Sometimes one may come across functions that are difficult to be differentiated using the rules
stated so far. In such a situation, one can use the method called logarithmic differentiation.
Logarithmic differentiation is not a rule of differentiation such as the product or the quotient
rule, but a technique or method of differentiating complicated functions. However, this
technique makes use of the rule of differentiation of logarithmic functions and other rules we
discussed earlier.

Suppose that we have a differentiable function y = f (x). Notice that f (x) may be a
complicated expression involving products, sums, differences, quotients, exponents, and so
on. How do we differentiate such a function and find dy/dx? The procedure is as follows.
Firstly, take the natural logarithm of both sides of the function, that is, ln y = ln[ f (x)], and
simplify the resulting expression using the properties of logarithms given in Section 1.5.3.
Secondly, differentiate both sides of the result in the last step with respect to x, and then solve
for dy/dx.

As an example, suppose that our differentiable function is y = f (x) = xln x. We know that
it is difficult to differentiate this function with respect to x through the direct application of
the rules of differentiation we discussed so far. Therefore, we follow the procedure outlined
above. Let us first convert the function, using the rules of logarithms, into the form ln y =
ln xln x = ln x. ln x = ln(x+x)= ln(2x). Notice that we can write this equation as ln y = ln(2x)=
lnu, where u = g(x) = 2x is assumed to be a differentiable function of x. Differentiation of
both sides of this equation with respect to x yields (1/y).(dy/dx) = (d[lnu]/du).(du/dx) =
(1/u).(du/dx) = (1/2x).2 = (2/2x) = 1/x. Since y = xln x, the last result can be restated as
dy/dx = (1/x).y = xln x/x = xln x.x−1 = xln x−1.

3.3.14 Relative and percentage rates of change

Before we present the application examples of the rules of differentiation, we need to explain
two important concepts. We know that the derivative of the function y = f (x), denoted
by dy/dx = f ′(x), is, in fact, the instantaneous rate of change or the rate of change of the



[12:20 3/11/2011 5640-Ummer-Ch03.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 143 128–192

Differential calculus 143

dependent variable with respect to an infinitesimally small change in the independent variable.
Suppose that we divide the derivative (or the derived function) by the original function to
obtain the ratio f ′(x)/f (x). This ratio is called the relative rate of change of f (x). Therefore,
we have the equation

Relative rate of change of f (x) = f ′(x)/f (x) (3.3.19)

If we multiply the relative rate of change by 100, we obtain the percentage rate of change of
f (x). Therefore, we have the equation

Percentage rate of change of f (x) = [ f ′(x)/f (x)]× 100 (3.3.20)

3.3.15 Application examples

Example 1. Assume that the inverse demand function for a firm’s product is given by
p = f (q) = 25/q, where p denotes the per unit price in dollars and q denotes the quantity of
the good demanded. Find the rate of change of price with respect to quantity. How fast will
the price change when q = 10?

Solution. We can find the rate of change of price with respect to quantity by differentiating
the function with respect to q. Therefore, applying the quotient rule yields dp/dq =
{[q.d(25)/dq] − 25.d(q)/dq}/(q)2 = (0 − 25)/(q)2 = −25/(q)2. This means that the rate
of change of price with respect to quantity demanded is dp/dq = −25/(q)2. This implies
that when q = 10, dp/dq|q=10 = −25/(q)2

∣∣
q=10 = −125/102 = −25/100 = −0.25. This

suggests that an increase of one unit of the good demanded when q = 10 reduces the price
by 25 cents. Notice that, to have any economic sense out of this result, we have to interpret
it oppositely.

Example 2. Suppose that a company’s total revenue is given by the function R = f (q) =
50q − 0.2q2, where R denotes the total revenue in dollars and q denotes the total quantity
of the good sold by the company. Find the marginal revenue when q = 20. Also find the
percentage rate of change of revenue with respect to the quantity of the good sold when
q = 20 and interpret the result.

Solution. Marginal revenue is obtained by differentiating the total revenue function with
respect to the quantity of the good sold. Therefore, using the sum–difference rule and the
power rule of differentiation jointly we obtain dR/dq = 50−2(0.2q) = 50−0.4q. Therefore,
marginal revenue when q = 20 is dR/dq|q=20 = 50 − 0.4q|q=20 = 50 − (0.4)20 = 50 − 8 =
$42. The percentage rate of change of revenue with respect to the quantity of the good sold
when q = 20 can be found by applying equation (3.3.20). This gives us [ f ′(q)/f (q)]×100 =
42/ f (q)|q=20 ×100 = {42/[50(20)−0.2(202)]}×100 ∼= 0.05×100 = 5%. This means that
the total revenue of the company increases by 5 percent when an additional unit of the good
beyond 20 units is sold.

Example 3. Suppose that a firm’s total cost is given by the function C = f (q) = 8 + 2q +
0.25q2, where C denotes the total cost in dollars and q denotes the total quantity of the good
produced. Find the marginal cost of the firm when q = 10, and the percentage rate of change
of total cost with respect to q when q = 10 and interpret the result.
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Solution. Marginal cost is obtained by differentiating the total cost function with respect
to the quantity of the good produced. Therefore, using the sum–difference rule we obtain
dC/dq = f ′(q) = q − 2(0.25q) = q − 0.5q = 0.5q. Therefore, marginal cost when q = 10 is
dC/dq|q=10 = 0.5q|q=10 = (0.5)10 = $5. The percentage rate of change of cost with respect
to the quantity of the good produced when q = 10 can be found by applying equation (3.3.20).
This gives us f ′(q)/f (q)×100 = [5/ f (q)|q=10]×100 = {5/[8+2(10)+0.25(102)]}×100 ∼=
0.09× 100 = 9%. This implies that the total cost of the firm increases by 9 percent when an
additional unit of the good beyond 10 units is produced.

Example 4. Assume that the total utility that an individual obtains from the consumption
of different units of a good is given by the function U = f (x) = ln(2+ x2), where U denotes
the total utility obtained and x denotes the units of the good consumed. Find the individual’s
marginal utility when x = 10; and find the percentage rate of change of the individual’s total
utility when x = 10 and interpret the result.

Solution. Marginal utility is obtained by differentiating the total utility function with
respect to the quantity of the good consumed. Notice that we can write the utility function as
U = lnu, where u = 1 + x2. Therefore, using the logarithmic rule of differentiation and the
chain rule jointly, we obtain dU/dx = {d[lnu]/du}.(du/dx) = [1/(2+x2)].2x = 2x/(2+x2).
Thus, marginal utility when x = 10 is dU/dx|x=10 = 2x/(2 + x2)

∣∣
x=10 = 20/102 = 20/102 ∼=

0.198. The percentage rate of change of utility with respect to the quantity of the good
consumed when x = 10 can be found by applying equation (3.3.20). This gives us
[ f ′(x)/f (x)] × 100 = [0.19/ ln(2 + 100)] × 100 = [0.19/4.6] × 100 ∼= 0.04 × 100 = 4.3%.
This implies that the total utility that the individual obtains increases by 4.3 percent when
an additional unit of the good beyond 10 units is consumed.

Example 5. Suppose that the inverse demand for a good is given by the function p = f (q),
where p denotes price and q denotes the quantity demanded. Find the equation for the point
elasticity of demand (�) using the definition of derivative in equation (3.2.4).

Solution. Point elasticity of demand is defined as the ratio of the percentage change
in quantity demand to the percentage change in price. The former can be written as
[{(q +�q) − q}/q] × 100 = [�q/q] × 100 and the latter can be written as [{f (q +�q) −
f (q)}/f (q)] × 100. Assume that f (q) is differentiable. Then we have �= lim

�q→0
[{(�q/q) ×

100}/{[ f (q+�q)−f (q)]/f (q)}×100= lim
�q→0

[{f (q).100/q.100}.{�q/[ f (q+�q)−f (q)}]=
lim
�q→0

[{f (q)/q}/{[ f (q+�q)−f (q)]/�q}]. UsingProperties I andVIof limits inSection1.9.2,

we can write the last equation as � = [ lim
�q→0

f (q)/q]/ lim
�q→0

[{f (q +�q) − f (q)}/�q] =
[ f (q)/q]/ lim

�q→0
[{f (q +�q) − f (q)}/�q]. From equation (3.2.4) we know that the limit of

[ f (q +�q) − f (q)]/�q, as �q → 0, is the derivative of f (q) with respect to q; that is, it is
f ′(q) = dp/dq. Therefore, we obtain �= [ f (q)/q]/[dp/dq]. Since f (q) = p, we have

�= f (q)

q
÷ dp

dq
= p

q
÷ dp

dq
(3.3.21)

Since dp and dq move in opposite directions (which we call the law of demand) and since
p and q are assumed to be nonnegative, �< 0; that is, point elasticity of demand is always



[12:20 3/11/2011 5640-Ummer-Ch03.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 145 128–192

Differential calculus 145

negative. But, for convenience, we consider only the absolute value of elasticity, discarding
the negative sign. The absolute value of elasticity of demand can be less than one, equal to
one, or greater than one. If it is less than one, equal to one, and greater than one, we say that
demand is inelastic, unitary elastic, and elastic, respectively.

Example 6. Find the elasticity of demand if the inverse demand function is p = f (x) =
10 − 0.5q and when q = 10.

Solution. Given p= f (x)=10−0.5q and q = 10, we have p= f (x)=10−0.5(10)=5, and
dp/dq =−0.5. Therefore, using equation (3.3.21), we obtain�= (p/q)÷(dp/dq) = (5/10)÷
−0.5 = −1. This implies that the demand is unitary elastic when p = 5.

Example 7. Suppose that the aggregate consumption (C), in billions of dollars, in an
economy is given implicitly by the equation C2 +0.2Y 2 = CY +Y , where Y denotes national
income of the economy in billions of dollars. Find the marginal propensities to consume
and to save when C = $70 billion and Y = $100 billion and interpret the results.

Solution. Marginal propensity to consume (MPC) is defined as the rate of change of the
aggregate consumption with respect to national income, and is obtained by differentiating
aggregate consumption, C, with respect to national income, Y . But, notice that the
given equation represents an implicit function. Assuming C as a function of Y , and
differentiating C in C2 + 0.2Y 2 = CY + Y with respect to Y using the implicit function
rule, we obtain 2.C.(dC/dY ) + 0.2.(2).Y (dY /dY ) = C.(dY /dY ) + Y .(dC/dY ) + (dY /dY ).
This expression can be simplified to obtain 2.C.(dC/dY ) + 0.4Y = C + Y .(dC/dY ) + 1,
or(2.C − Y )(dC/dY ) = C + 1 − 0.4Y , or dC/dy = [C + 1 − 0.4Y ]/[2.C − Y ]. Therefore,
the MPC, when C = $70 billion and Y = $100 billion, can be found by substituting the
given values in dC/dy = [C + 1 − 0.4Y ]/[2.C − Y ]. This gives us dC/dY |C=70,Y=100 =
[C + 1 − 0.4Y ]/[2.C − Y ]|C=70,Y=100 = 31/40 = $0.775 billion. This implies that when
the national income increases by $1 billion, the aggregate consumption will increase by
$0.775 billion.

Marginal propensity to save (MPS) is defined as the rate of change of aggregate saving
with respect to national income, and is obtained by differentiating aggregate saving, S, with
respect to national income, Y . MPS is also defined as one minus MPC; that is, MPS = dS/dy =
1−MPC = 1−dC/dY . Therefore, MPS = $1billion − $0.775 billion = $0.225 billion. This
value of MPS implies that when national income increases by $1 billion, the aggregate
saving increases by $0.225 billion. Notice that MPC + MPS = 1.

Example 8. Suppose that a company’s total revenue from the sale of a good is given by
the function y = f (x) = x1/x, where y denotes the total revenue in dollars and x denotes the
quantity of the good sold. Find the marginal revenue of the company when x = 10.

Solution. Marginal revenue can be found by differentiating the function with respect
to x. Since it is difficult to apply the rules of differentiation to this function, we use the method
of logarithmic differentiation. For this, we first take natural logarithm of both sides of the
function to obtain ln y = f (x) = ln x1/x = (1/x) ln x. We can now differentiate lny with respect
to x. This process yields d[ln y]/dx = (1/x).{d[ln x]/dx} + (ln x).{d[1/x]/dx}, which can
be simplified to yield (1/y)(dy/dx) = (1/x)(1/x) + ln x.(−1/x2) = (1/x2) + ln x.(−1/x2) =
(1/x2). − (ln x/x2) = (1 − ln x)/x2, or dy/dx = [(1 − ln x)/x2] × y. Since y = x1/x, we
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obtain dy/dx = [(1 − ln x)/x2].x1/x. Substituting x = 10 into this equation gives us
dy/dx|x=10 = [(1 − ln x)/x2] .x1/x

∣∣
x=10 = −0.0164. Therefore, the company’s marginal

revenue is −$0.0164.

Example 9. Suppose that the quantity demanded of a good is given by the function q =
f (p) = 5 − 0.5p, where p denotes the price in dollars and q denotes the quantity demanded
of the good at price p. Find the derivative of the inverse demand function: dp/dq.

Solution. From q = f (p) = 5−0.5p, we obtain dq/dp = −0.5. Applying equation (3.3.18),
we obtain the derivative of the inverse demand function as dp/dq = 1/− 0.5 = −2. Notice
that this result can be verified by writing the inverse demand function explicitly and then
differentiating it with respect to q. That is, the inverse demand function can be written as
p = 10 − 2q. Now differentiating this function with respect to q yields dp/dq = −2, which
confirms the result we obtained.

Example 10. Equation (3.3.21) implies that the point elasticity of demand varies when p
or q varies (or when both vary). Show that this is true in the case of a linear inverse demand
function.

Solution. Assume that the linear inverse demand function is p = f (q) = a + bq, where we
assume that (to make economic sense) a > 0 and b < 0. Applying equation (3.3.21), we
obtain the point elasticity of the linear inverse demand function: � = (p/q) ÷ (dp/dq) =
(p/q)/b = p/bq = p/(p − a). Notice now, using the quotient rule of differentiation, that
d�/dp = [{(p − a).(−1.p)}/(p − a)2] = [−a/(p − a)2] = −[a/(p − a)2]. This implies that
the point elasticity of demand is a decreasing function of price; that is, [d�/dp] < 0. In
other words, as price increases, point elasticity of demand decreases. But, as can be seen
from Figure 3.3.1, p lies between 0 and b. At the middle of this interval, we have p = b/2.
Substituting this in the last equation, we get � = p/(p − a) = (b/2)/[(b/2) − b] = −1.
Therefore, at the middle of the linear demand curve, the point elasticity of demand is equal
to −1 (or � = −1). But, notice that � > −1 when p < b/2 and � < −1 when p > b/2.
Since� is always negative, we take its absolute value. Therefore, we have three cases: when
p = b/2, �= 1; when p< b/2, �< 1; and when p> b/2, �> 1. These results can be seen
in Figure 3.3.1.

Φ=∞⇒Perfectly elastic demand

Φ>1⇒Elastic demand

Φ=1⇒Unitary elastic demand

Φ=0⇒Perfectly
inelastic demand

Φ<1⇒Inelastic demand

b

b/2

−a/b(1/2)−(a/b)0 q

p

Figure 3.3.1
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Example 11. Assume that the inverse demand function of a firm’s output is given by
p = f (q) and its total revenue function is given by R = p.q, where p denotes the price of the
good and q denotes the quantity of the good. Show that marginal revenue is a function of
both price and the point elasticity of demand, and interpret the result.

Solution. We know that marginal revenue is dR/dq. Therefore, differentiating R with
respect to q using the product rule of differentiation yields dR/dq = p + q.(dp/dq) =
p[1 + (q/p).(dp/dq)]. Notice that the second term inside the brackets is the inverse of the
point elasticity of demand (�). Therefore, marginal revenue can be written as

dR

dq
= p

[
1 + 1

�

]
(3.3.22)

We know that p > 0. Therefore, for given p > 0, equation (3.3.22) implies that demand is
elastic if [1 + (1/�)] > 0 (or when � < −1) and demand is inelastic if [1 + (1/�)] < 0
(or when � > −1). This suggests that if the firm reduces (increases) the price of the good
when demand is elastic (inelastic), its total revenue will increase (decrease).

3.3.16 Exercises

1. Use the constant function and the function-with-constant rules to find dy/dx =
f ′(x) given
(i) y = f (x) = 1/2; (ii) y = f (x) = 21/2; (iii) y = f (x) = 0; (iv) y = f (x) = −0.5x;
(v) y = f (x) = 3x/4; (vi) y = f (x) = (1/2) − (2x/3).

2. Use the sum-or-difference and power rules to find dy/dx = f ′(x) given
(i) y = f (x) = 0.5+3x +2x2; (ii) y = f (x) = 0.5−2x2; (iii) y = f (x) = 0.5−3x −2x2;
(iv) y = f (x) = 0.5+3x−2x2; (v) y = f (x) = 0.5+3x+2x2 −3x3; (vi) y = f (x) = √

x;
(vii) y = f (x) = (1 + x2)5; (viii) y = f (x) = (1 + x2)1/2; (ix) y = f (x) = (

√
x)1/2.

3. Use the product and quotient rules to find dy/dx = f ′(x) given
(i) y = f (x) = (1+ x)(2+ x2); (ii) y = f (x) = √

x( 3
√

(1 + x2); (iii) y = f (x) = (x +2x2 +
3x3)(−x − 2x2 − 3x3); (iv) y = f (x) = (2x + x3)/(x2 − x3); (v) y = f (x) = (10 − x2)/
(x2 − 10); (vi) y = f (x) = 1/x1/n; (vii) y = f (x) = (x − 2)/(x + 2).(x − 2).

4. Use the chain rule to find dy/dx = f ′(x) given
(i) y = 2u+1/u, where u = 1+x; (ii) y = 2u2, where u = 2x; (iii) y = u3, where u = 1+x;
(iv) y = 1/u3, where u = 1 + x; (v) y = 3

√
u − 1, where u = 1 + x; (vi) y = u3/u2,

where u = 1 + x.
5. Use the logarithmic and exponential function rules to find dy/dx = f ′(x) given

(i) y = ln[(1−x)/(1+x)]; (ii) y = ln(2x+3x2 +4x3); (iii) y = log5 x; (iv) y = e10−(1/x);
(v) y = (ex + 1)/(ex − 1); (vi) ex. ln(1/x).

6. Find dy/dx = f ′(x), using implicit differentiation, given
(i) x1/3 + y1/3 = 3; (ii) x3 + y2 + xy = 4; (iii) x2 + y2 = 9.

7. Use the technique of logarithmic differentiation to find dy/dx = f ′(x) given
(i) y =√

(2 + x2).(x2 + 2); (ii) y = (2 + x2)(3 + x3); (iii) y = x
√

x.
8. Application exercise. Assume that the inverse demand function for a good produced by

a firm is given by p = elnq2
, where p denotes the price per unit of the good in dollars

and q denotes the quantity demanded of the good. Find the firm’s marginal revenue
when q = 20.
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9. Application exercise. We know that P amount of money invested for t years when
interest rate r is compounded continuously would have grown to F = f (t) = P.er × t .
What is the relative rate of change of F with respect to t?

10. Application exercise. Suppose that the population of a city from now until time t is
given by the function P = 500 000e0.08.t , where P denotes the population and t denotes
the number of years. Find the rate of change of population when t = 10.

11. Application exercise. Assume that the quantity of output (q) produced by a firm
using l units of labor is given by the function q = (2l2)/(2 + l1/2). Also assume that
the demand for the firm’s product is given by the function p = 20 − 0.5q, where p
denotes the price per unit of the good in dollars. Find the marginal revenue product
when l = 10.

12. Application exercise. Suppose that the inverse demand for a good is given by p =
10q(−4/

√
q), where p denotes the price per unit of the good in dollars and q denotes the

quantity demanded of the good. Find the point elasticity of demand when q = 4, and
interpret the result. Should the producer of the good increase or decrease the price, or
keep the price constant, to increase the revenue?

13. Application exercise. Assume that the inverse demand function for a good is given by
p = f (q) = 25/(2 + q2), where p denotes the price per unit of the good in dollars and
q denotes the quantity demanded of the good. Find the rate of change of quantity with
respect to price.

Web supplement: S3.3.17 Differentiation of trigonometric functions

3.4 Higher-order differentiation of univariate functions

3.4.1 Meaning and notations of higher-order differentiation

In Section 3.2.2 we found that the derivative of a primitive, univariate function was in fact
another function. We called this function the derived function. A question that arises here is:
can we differentiate again the derived functions with respect to the independent variable x?
Yes, we can differentiate them again. If we differentiate for a second time, then the result is
called the second-order derivative or the second derivative of y = f (x) with respect to x. If
we differentiate the second derivative for another time, it is called the third-order derivative
or the third derivative of y = f (x) with respect to x. And, if we differentiate the nth derivative,
then the result is called the nth-order derivative or the nth derivative of y = f (x) with respect
to x. Notice that the higher derivatives are also derived functions.

We know that the first derivative, or simply the derivative, of y = f (x) is denoted by
dy/dx = f ′(x) = y′. Similarly, the second derivative of this function is denoted by d2y/dx2 =
f ′′(x) = y′′; the third derivative is denoted by d3y/dx3 = f ′′′(x) = y′′′; and the nth derivative
is denoted by dny/dxn = f n(x) = yn.

3.4.2 Finding the higher derivatives of univariate functions

Suppose that we have a univariate function given by y = f (x) = 2x − 3x2. We know
that the first derivative of this function with respect to x is dy/dx = f ′(x) = 2 − 6x.
Notice that dy/dx is a function of x. We can now differentiate dy/dx with respect to x
to obtain the second derivative of y = f (x). This second derivative is d2y/dx2 = f ′′(x) = −6.
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Notice that all the higher derivatives of the given function beyond the second derivative are
equal to zero.

We now consider the second derivative of an exponential function. Suppose that the
exponential function is y = f (x) = ex. Then we know from Section 3.3.10 that dy/dx = ex.
Since the RHS of the derived function (dy/dx) is the same as that of the primitive function,
all the higher derivatives of an exponential function with base e will be equal to the original,
primitive function. Therefore, dny/dxn = f n(x) = ex. However, the results will be different
if the exponential function has a base different from e. For example, consider the function
y = f (x) = ax. Then, following equation (3.3.16), we obtain dy/dx = ax.(lna). The second
derivative is d2y/dx2 = (lna).ax.(lna) = (lna)2ax; and continuing like this, we can obtain the
nth derivative of y = f (x) = ax as dny/dxn = f n(x) = (lna)nax. Similarly, one can show that
the higher derivatives will be different from the first derivative if the exponential function
is y = f (u) = eu or if y = f (u) = au, where u = g(x).

The last important function that we consider here is the implicit function. Consider
the implicit function 3x2 + 5y2 = 2. Following our discussion in Section 3.3.12, we
obtain the first derivative 3 × 2 × x.(dx/dx) + 5 × 2 × y.(dy/dx) = 0, which can be
written as 6x + 10y.(dy/dx) = 0, which can be simplified to obtain 10y.(dy/dx) = −6x,
or dy/dx = (−6x/10y) = (−3x/5y). We can now use the quotient rule to obtain the
second derivative: d2y/dx2 = {(5y).[d(−3x)/dx]−[(−3x).d(5y)/dx]}/(5y)2} = [(5y)(−3)−
(−3x)4.(dy/dx)]/(5y)2] = [{(−15y) + 12x(dy/dx)}/(5y)2]. Substituting dy/dx = (−3x)/5y
into the last equation we obtain d2y/dx2 = [{(−15y) + 12x(dy/dx)}/(5y)2] = [{(−15y) +
12x(−3x/5y)}/(5y)2] = [(−15y) + (−26x2/5y)]/(5y)2] = −(75y + 26x2)(5y). Notice that
one can continue like this to find the other higher derivatives.

3.4.3 Derivatives and limits: l’Hôpital’s rule

We discussed limits of functions and their properties in Section 1.9. In our discussion we
found that limits might not exist for some functions. Assume that our function is y = f (x) =
g(x)/h(x) and we want to find the limit of this function as x → x0. Notice that when x → x0,
the limit of the function does not exist if one of these cases happen: (1) g(x) → 0 and
h(x) → 0 (giving us the meaningless expression 0/0); (2) g(x) → +∞ and h(x) → −∞
(giving us the expression +∞/− ∞); (3) g(x) → −∞ and h(x) → −∞ (giving us the
expression −∞/ − ∞); or (4) g(x) → +∞ and h(x) → +∞ (giving us the expression
+∞/+∞).

As an example, consider the function we used in Section 1.9.3. The function we used there,
to find the limit when x → x0 = 1, was y = f (x) = g(x)/h(x), where g(x) = x2 −1 and h(x) =
x −1. When we substituted the value x = 1 in this function, we ended up with case (1) noted
above. However, we factored the function g(x) = x2 −1 into g(x) = (x+1)(x−1) and rewrote
the original function y = f (x) = (x2 −1)/(x−1) as y = f (x) = [(x+1)(x−1)]/(x−1) = x+1.
Then we evaluated the limit of the function when x → x0 = 1 and obtained the limit 2:
lim
x→1

f (x) = lim
x→1

(x + 1) = (1 + 1) = 2.

Notice that, in the above operation, we factored the numerator g(x) (one can also factor
the denominator if needed and possible) and then carried out the operation. Factoring may
not always be advisable in the case of some functions. Suppose that g(x) = 10x + 1 and
h(x) = x − 1 so that y = f (x) = g(x)/h(x) = (10x + 1)/(x − 1). Also suppose that we want
to find the limit of this function when x → x0 = ∞. If we substitute x → x0 = ∞ in this
function, we end up with case (4) noted above. Notice that factoring does not work in this
example. How, then, do we find the limit of this function when x → ∞? In situations like
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these l’Hôpital’s rule can be of help. This rule states that

lim
x→x0

f (x) = lim
x→x0

[
g(x)

h(x)

]
= lim

x→x0

[
g′(x)

h′(x)

]
(3.4.1)

We now apply l’Hôpital’s rule to the above example. We know that g′(x) = 10 and
f ′(x) = 1. Therefore, the limit of y = f (x) = g(x)/h(x) = (10x + 1)/(x − 1) when x →
x0 = ∞ is lim

x→x0=∞y = lim
x→x0=∞ f (x) = lim

x→x0=∞[g(x)/h(x)] = lim
x→x0=∞[(10x + 1)/(x − 1)] =

lim
x→x0=∞[g′(x)/h′(x)] = lim

x→x0=∞(10/1) = 10.

As another example, consider our previous function y = f (x) = (x2 − 1)/(x − 1),
where we assumed that g(x) = x2 − 1 and h(x) = x − 1, whose limits we wanted to
find when x → x0 = 1. Then we obtain g′(x) = 2x and h′(x) = 1. Substituting these
values in equation (3.4.1) yields lim

x→x0=1
y = lim

x→x0=1
f (x) = lim

x→x0=1
[(x2 − 1)/(x − 1)] =

lim
x→x0=1

[g(x)/h(x)] = lim
x→x0

[g′(x)/h′(x)] = lim
x→x0=1

[2x/1] = 2 × 1 = 2. Notice that this is

identical with the result we obtained when we used the method of factoring above and
in Section 1.9.3.

However, in some cases one single application of l’Hôpital’s rule may still produce indeter-
minate limits. In such cases one can apply l’Hôpital’s rule more than once. This implies that
lim

x→x0
f (x) = lim

x→x0
[g(x)/h(x)] = lim

x→x0
[g′(x)/h′(x)] = lim

x→x0
[g′′(x)/h′′(x)] = . . .. As an example

of this, consider the function y = f (x) = g(x)/h(x), where g(x) = 4x2−5x and h(x) = 3x2−16.
Then, we obtain g′(x) = 8x2 −5 and h′(x) = 6x. When we substitute this in equation (3.4.1),
we get lim

x→x0=∞ f (x) = lim
x→x0=∞[g(x)/h(x)] = lim

x→x0=∞[g′(x)/h′(x)] = lim
x→x0=∞[(8x−5)/6x] =

∞/∞, which is the same as case (4) noted earlier. Therefore, we apply l’Hôpital’s rule again to
yield lim

x→x0=∞ f (x) = lim
x→x0=∞[g(x)/h(x)] = lim

x→x0=∞[g′(x)/h′(x)] = lim
x→x0=∞[g′′(x)/h′′(x)] =

lim
x→x0=∞[16/6] = 16/6 = 8/3.

3.4.4 Application examples

Example 1. Assume that the total utility that an individual obtains from the consumption
of different units of a good is given by the function U = f (x) = ln x, where U denotes the
total utility obtained and x denotes the units of the good consumed. Find the individual’s
marginal utility, and the rate of change of marginal utility or determine how marginal utility
behaves.

Solution. Marginal utility is obtained by differentiating the total utility function with
respect to x. Using equation (3.3.11) we obtain marginal utility as dU/dx = d[ln x]/dx = 1/x.
This shows that marginal utility of the individual diminishes as x increases. This phenomenon
is called the law of diminishing marginal utility in the theory of demand in economics. The
rate of change of marginal utility is given by the second derivative of the total utility function.
Differentiating dU/dx again with respect to x yields d2U/dx2 = (x.0 − 1 × 1)/x2 = −1/x2.
This implies that the total utility that the individual obtains increases at a diminishing rate as
x consumed increases (because dU/dx = (1/x)> 0 and d2U/dx2 = (−1/x2)< 0 for x> 0).
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Example 2. Suppose that the total cost (assuming that there is no fixed cost) of producing x
units of output of a firm is given by C = f (x) = 40x −9x2 +x3. Determine the rate of change
of marginal cost of the firm or determine how marginal cost behaves as x increases.

Solution. Marginal cost is obtained by differentiating the total cost function with respect
to x. We can obtain marginal cost as dC/dx = 40 − 18x + 3x2. A plot of this will show that
marginal cost of the firm diminishes in the beginning, and then increases as the quantity of
the good produced increases. The rate of change of marginal cost is given by the second
derivative of the total cost function. Differentiating dC/dx again with respect to x yields
d2C/dx2 = −18 + 6x. This implies that the total cost of the firm increases at a diminishing
rate until x < 3 (because(dC/dx) > 0 and (d2C/dx2) < 0 at x < 3) and increases at an
increasing rate when x> 3 (because (dC/dx)> 0 and (d2C/dx2)> 0 for x> 3).

Example 3. Assume that a firm’s total output of producing q units of output using l units of
labor is given by the function q = f (l) = 50l2 −5l3. Determine the rate of change of marginal
product of labor (or determine how marginal product of labor behaves) as l increases.

Solution. Marginal product of labor is obtained by differentiating the total output function
with respect to l. We can obtain it as dq/dl = 100l − 15l2. A plot of this will show that the
marginal product of labor increases in the beginning (until l = 3.3), and then diminishes as l
increases beyond 3.3 units. This phenomenon is called the law of diminishing returns in the
theory of production in economics. The rate of change of marginal product of labor is given
by the second derivative of the total output function. Differentiating dq/dl again with respect
to l yields d2q/dl2 = 100−30l. This implies that the total product of the firm increases at an
increasing rate until l< 3.3 (because (dq/dl)> 0 and (d2q/dl2)> 0 for l< 3.3) and increases
at a diminishing rate when l > 3.3 (because (dq/dl)> 0 and (d2q/dl2)< 0 for l > 3.3).

Example 4. Suppose that the total revenue (R) of a firm from the production of q units of
output is given by R = f (q) = 50q − 5q2 − 0.1q3. Determine the rate of change of marginal
revenue (or determine how marginal revenue behaves) as q increases.

Solution. Marginal revenue of the firm is obtained by differentiating the total revenue
function with respect to q. We can obtain it as dR/dq = f ′(q) = 50 − 10q − 0.3q2. A plot of
this will show that marginal revenue decreases as q increases. The rate of change of marginal
revenue is given by the second derivative of the total revenue function. Differentiating dR/dq
again with respect to q yields d2R/dq2 = −10 − 0.6q. This implies that the total revenue
increases at a diminishing rate until q = 4.42 (because (dR/dq) > 0 and (d2R/dl2) < 0 for
q< 4.42).

3.4.5 Exercises

1. Find the third derivatives of the following functions:
(i) y = f (x) = 2x − 3x2; (ii) y = f (x) = (2x + 1)/x2; (iii) y = f (u) = lnu, u = g(x) =
(1 + x2); (iv) y = f (u) = eu, u = g(x) = (1 + x2).

2. Find the third derivatives of the following functions:
(i) y = f (x) = 102x; (ii) y = f (x) = 102x/(1+x); (iii) y = f (x) = eln x2

.
3. Find the second derivatives given the following implicit functions:

(i) y2 = 2x2; (ii) y2 − 2x2 = 4; (iii) y − xy + 4 = 0; (iv) y2 + xy + x2 = 8.
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4. Application exercise. Suppose that the total cost (C) of producing q units of output
is given by C = f (q) = 50q − 10q2 + q3. Determine how marginal cost behaves as q
increases. Interpret the results.

5. Application exercise. Let the total output (q) that a firm produces using k units of capital
be given by q = f (k) = 10 + k + 5k2 − k3. Determine how marginal product of capital
(= dq/dk) behaves as k increases. Interpret the results.

6. Application exercise. Suppose that the total utility (U ) that a consumer obtains from the
consumption of x units of a good is given by U = f (x) = x2. Determine how marginal
utility behaves as x increases. Interpret the results.

7. Application exercise. Assume that the total profit (	) that a company obtains from the
production of q units of its good is given by	= f (q) = q1/2. Determine how marginal
profit behaves as q increases. Interpret the results.

Web supplement: S3.4.6 Higher derivatives of trigonometric functions

Web supplement: S3.4.7 Mathematica applications

3.5 Derivatives and curvature of curves; concave and convex
functions; convex sets

Undergraduate courses in the fields of our interest often make use of curves as geometric
representations of relationships among variables. One frequently needs to determine whether
a particular curve always increases, always decreases, alternates in nature, or remains as a
straight line. Therefore, a reasonable understanding of the curvature of curves, or the nature
of curves, is a must for these students.

Similarly, students in these fields frequently deal with curves such as indifference curves,
isoquants, production possibility curves, etc. These curves are the geometric representations
of either concave functions or convex functions. This suggests that a study of these functions
will certainly enrich students’ understanding of the geometric representations mentioned
above. It will also equip them with a powerful tool which can be used later, particularly in
solving optimization problems.

Another important topic that we consider in this section is the concept of convex sets.
A good understanding of convex sets is essential for a meaningful understanding of the
topic of optimization, particularly linear programming. We first consider the topic of the
curvature of curves followed by concave and convex functions, and then convex sets.

3.5.1 Derivatives and curvature of curves

One important question is: can we say, without plotting, whether the graph, or the curve, of
a function is always increasing, is always decreasing, is alternating in nature, or is remaining
constant? Is there any way to judge the nature, or the curvature, of a curve from its function?
The answers to these questions are the same: yes, one can use the derivatives of a function
to judge the nature or curvature of a curve defined by its function. We discuss the use of
derivatives in determining the curvature of curves below.

Assume that we have two functions: y = f (x) and y = g(x). We know, from the definition
of the derivative of f (x) at x = x0 (or of the slope of the tangent to f (x) corresponding to
x = x0), that the derivative or slope (f ′(x)) measures the rate of change of f (x) when x changes
by an infinitesimally small amount. If a positive (negative) infinitesimal change in x causes a
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positive (negative) change in y, then these two changes move in the same direction. Therefore,
the ratio of the latter to the former must be positive (that is, f ′(x)> 0). This implies that when
the derivative or the slope of the tangent is positive at x = x0 (if f ′(x)

∣∣
x=x0

> 0), then the
function or the curve representing the function must be increasing at x = x0. This conclusion
is applicable if g′(x)

∣∣
x=x0

> 0.
Similarly, if a positive (negative) infinitesimal change in x causes a negative (positive)

change in y, then these two changes move in the opposite direction. Therefore, the ratio of
the latter to the former must be negative (that is, f ′(x) < 0). This implies that when the
derivative or the slope of the tangent is negative at x = x2 (if f ′(x)

∣∣
x=x2

< 0), then the
function or the curve representing the function must be decreasing at x = x2. This conclusion
is applicable if g′(x)

∣∣
x=x2

< 0.
Another possibility is that a positive (negative) infinitesimal change in x may cause no

change in y. Then the ratio of the latter to the former must be zero (that is, f ′(x) = 0). This
implies that when the derivative or the slope of the tangent is zero at x = x1 (if f ′(x)

∣∣
x=x1

= 0),
then the function or the curve representing the function must be constant at x = x1. Again, the
conclusion is applicable if g′(x)

∣∣
x=x1

= 0. The above three arguments can be best understood
with the help of Figures 3.5.1(A) and (B). The first argument corresponds to points A and
F, the second argument corresponds points C and D, and the third argument corresponds
points B and E in the figure.

We found above that one could use the sign of the derivative of (the slope of the tangent
to) y = f (x) at x = x0 to judge whether y = f (x) or its graph is increasing, decreasing, or
remains constant at x = x0. But, a question that arises now is: if y = f (x) is increasing
(decreasing) at x = x0, does the function increase (decrease) at an increasing (decreasing)
rate at x = x0? The answer to this question depends on the sign of the second derivative of
y = f (x) with respect to x or of the slope of the slope of the tangent at x = x0.

We know that the second derivative of y = f (x), or d2y/dx2 = f ′′(x), at a point on
its graph (say, at x = x0) measures the rate change of the rate of change of y = f (x)
at that point. Therefore, the sign of f ′′(x)

∣∣
x=x0

shows whether the curve of y = f (x)

increases (or decreases) at an increasing (or decreasing) rate at x = x0. If f ′(x)
∣∣
x=x0

> 0

and if f ′′(x)
∣∣
x=x0

< 0, then the function will be increasing at a decreasing rate at x = x0.
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Table 3.5.1

y = f (x) dy/dx = f ′(x) d2y/dx2 = f ′′(x) Point on the graph in
Figure 3.5.1(A)

Curvature of
y = f (x)

x = x0 > 0 < 0 A Increasing at
decreasing rate

x = x1 = 0 < 0 B Constant
x = x2 < 0 < 0 C Decreasing at

decreasing rate

y = g(x) dy/dx = g′(x) d2y/dx2 = g′′(x) Point on the graph in
Figure 3.5.1(B)

Curvature of
y = g(x)

x = x0 < 0 > 0 D Decreasing at
increasing rate

x = x1 = 0 > 0 E Constant
x = x2 > 0 > 0 F Increasing at

increasing rate

This corresponds to point A in Figure 3.5.1(A). If f ′(x)
∣∣
x=x2

< 0 and f ′′(x)
∣∣
x=x2

< 0, then
the function or its curve will be decreasing at a decreasing rate at x = x2. This corresponds
to point C in Figure 3.5.1(A). If g′(x)

∣∣
x=x0

< 0 and g′′(x)
∣∣
x=x0

> 0, then the function will
be decreasing at an increasing rate at x = x0. This corresponds to point D in Figure 3.5.1(B).
If g′(x)

∣∣
x=x2

> 0 and g′′(x)
∣∣
x=x2

> 0, then the function will be increasing at an increasing

rate. This corresponds to point F in Figure 3.5.1(B). If f ′(x)
∣∣
x=x1

= f ′′(x)|x=x1 = 0 and

g′(x)
∣∣
x=x1

= g′′(x)|x=x1 = 0, then the function will be constant or its graph will be a straight
line parallel to the horizontal axis as represented by points B and E in Figures 3.5.1(A) and
(B), respectively.

As an example, consider the function y = f (x) = 5 − x + x2. The first derivative of this
function at x = 5 is f ′(x)

∣∣
x=5 = −1 + 2x|x=5 = −1 + 2 × 5 = 9> 0. The second derivative

of this function at x = 5 is f ′′(x)
∣∣
x=5 = 2> 0. Since the first derivative is positive at x = 5,

the function is increasing at x = 5. And since the second derivative is positive, the function
is increasing at an increasing rate at x = 5.

As another example, consider the function y = g(x) = 5 + x − x2. The first derivative
of this function at x = 5 is g′(x)

∣∣
x=5 = 1 − 2x|x=5 = 1 − 2 × 5 = −9 < 0. The second

derivative of this function at x = 5 is g′′(x)
∣∣
x=5 =−2< 0. Since the first derivative is negative,

the function is decreasing at x = 5. And since the second derivative is negative at x = 5, the
function is decreasing at a decreasing rate at x = 5. Let us now condense all the results that
we derived in this section for easy reference. This is presented in Table 3.5.1.

3.5.2 Univariate concave and convex functions

There are two types of concave functions: strictly concave functions and weakly concave
functions (or, simply, concave functions). From now on we call a weakly concave function
a concave function. Let us first explain the meaning of a strictly concave function geometri-
cally. We will then present the algebraic representation of such a function.

Suppose that we a have a function y = f (x) whose graph resembles that in Figure 3.5.1(A).
Also suppose that we choose two points (G and H) on the graph of this function and connect
them by a straight line GH as shown in Figure 3.5.2(A). Notice that the line GH lies entirely
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below, except at points G and H, the graph of the function. Such a curve is called a strictly
concave curve or the function of that curve is called a strictly concave function. This suggests
that that a strictly concave curve is like an inverted U-shaped curve.

We now provide a formal, algebraic description of a strictly concave function. Notice
that point J on the line GH lies exactly halfway between G and H. Therefore, the vertical
coordinate of J is (1/2)f (x0) + (1/2)f (x1) and its horizontal coordinate is (x0 + x1)/2. The
horizontal coordinate of point I on the graph of the function is the same as that of point J.
But the vertical coordinate of I is f [(x0 + x1)/2], which is different from that of J. This
means that the vertical coordinate of I is higher than that of J. This argument gives us the
inequality f [(x0 + x1)/2]> (1/2)f (x0) + (1/2)f (x1). One can repeat the above argument for
any other point on the line GH yielding inequalities similar to the last one. This is exactly
the description of a strictly concave function we geometrically stated above. Therefore, the
last inequality gives the definition of a strictly concave univariate function.

We used the value 1/2 in the above inequality because we chose point J that lay exactly
in the middle of the line GH. But when we choose point K, then we will be using 1/4 in the
inequality, or 3/4 if we use point L. Instead of specific values such as 1/2, 1/4, or 3/4, we
now use a general constant α such that 0< α < 1. Using this constant, and using i and j as
indices of x, we can rewrite the above definition of a strictly concave function as

f
(
α.xi + (1 −α).xj

)
> α.f (xi) + (1 −α).f (xj), where i �= j (3.5.1)

Let us now consider a concave function. As we defined a strictly concave function
geometrically, we can define a concave function geometrically. Suppose that our function is
y = f (x) whose graph resembles that in Figure 3.5.3(A). As we drew a straight line connecting
two points of a strictly concave function, we now draw a straight line connecting points B
and C on the graph. But this line coincides with the graph of the function between points B
and C. However, if we draw a straight line connecting points A and B (or points C and D),
we obtain a straight line that lies completely below the graph of the function (except at the
end points). Therefore, the straight lines we drew lie either below the graph or coincide with
it. This implies that, following the definition given in inequality (3.5.1), the function is strictly
concave between points A and B (and points C and D), and concave between points B and C.
Therefore, the function whose graph is illustrated in Figure 3.5.3(A) is both strictly concave
and concave.
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The above arguments imply that we can define a concave function by a slight modifi-
cation of the definition of a strictly concave function given in inequality (3.5.1). The required
modification relates to replacing the “>” sign by the “≥” sign. Therefore, a function is a
concave function if the following inequality is satisfied:

f
(
α.xi + (1 −α).xj

)≥ α.f (xi) + (1 −α).f (xj), where i �= j (3.5.2)

We shall now consider a strictly convex function. Suppose that we have the function
y = g(x) whose graph resembles that in Figure 3.5.2(B). Also suppose that we choose two
points (L and M) on the graph of this function and connect them by the straight line LM.
Notice that the line LM lies entirely above (except at points L and M) the graph of the function.
Such a curve is called a strictly convex curve or the function of that curve is called a strictly
convex function. This suggests that that a strictly convex curve is like a U-shaped curve.

As in the case of a strictly concave function, we now provide a formal, algebraic descri-
ption of a strictly convex function. Notice that point S on the line LM lies exactly halfway
between L and M. Therefore, the vertical coordinate of S is (1/2)g(x8)+ (1/2)g(x11) and its
horizontal coordinate is (x8 +x11)/2. The horizontal coordinate of point N on the graph of the
function is the same as that of point S. But the vertical coordinate of N isg[(x8+x11)/2], which
is different from that of point S. This means that the vertical coordinate of S is higher than
that of N. This argument gives us the inequality g[(x8 + x11)/2]< (1/2)g(x8)+ (1/2)g(x11).
One can repeat the above argument for any other point on the line LM yielding inequalities
similar to the one above. This is exactly the description of a strictly convex function we
geometrically stated above. Therefore, the last inequality gives the definition of a strictly
convex univariate function. Again as in the case of a strictly concave function, we use a
general constant β (such that 0< β < 1) instead of specific values. Using this constant, and
using i and j as indices of x, we can rewrite the definition of a strictly convex function as

g
(
β.xi + (1 −β).xj

)
< β.g(xi) + (1 −β).g(xj), where i �= j (3.5.3)

We shall now consider a weakly convex function or convex function. From now on we
call a weakly convex function a convex function. As for a strictly convex function, we can
define a convex function geometrically. Suppose that our function is g = f (x) whose graph
resembles that in Figure 3.5.3(B). We now draw a straight line connecting points W and Z.
But this line coincides with the graph of the function between points W and Z. However, if
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we draw a straight line connecting points U and W (and points Z and V), we obtain a straight
line that lies completely above the graph of the function (except at the end points). Therefore,
the straight lines we drew lie either above the graph or coincide with it. This implies that,
following the definition given in equation (3.5.3), the function is strictly convex between
points U and W (and Z and V), and convex between points W and Z. Therefore, the function
whose graph is illustrated in Figure 3.5.3(B) is both strictly convex and convex.

The above arguments imply that, as before, we can define a convex function by a slight
modification of the definition of a strictly convex function given in inequality (3.5.3). The
required modification relates to replacing the “<” by the “≤” sign. Therefore, a function is
a convex function if the following inequality is satisfied:

g
(
β.xi + (1 −β).xj

)≤ β.g(xi) + (1 −β).g(xj), where i �= j (3.5.4)

Notice that the graph of the function y = f (x) between points B and C in Figure 3.5.3(A) is a
straight line. As per the definition in inequality (3.5.2), this straight line is a concave function.
Similarly, the graph of the function g = f (x) between points W and Z in Figure 3.5.3(B) is
a straight line. And, as per the definition in inequality (3.5.4), this straight line is a convex
function. What these imply is that a straight line represents both a concave as well as a
convex function. At the same time, a straight line represents neither a strictly concave nor
a strictly convex function. Inequalities (3.5.1)–(3.5.4) are called Jensen’s inequalities for
univariate functions.

Also notice an important feature of strictly concave and strictly convex functions. We
found that function y = f (x) in Figure 3.5.2(A) was a strictly concave function, which
resembles the function y = f (x) in Figure 3.5.1(A). An important feature of this function
is that its second derivative is negative for all x in its domain. Therefore, we can infer that,
if the second derivative is negative, then the function must be a strictly concave function.
Similarly, the strictly convex function y = g(x) in Figure 3.5.2(B) is similar to the function
y = g(x) illustrated in Figure 3.5.1(B), whose feature is that its second derivative is positive
for all x in its domain. Therefore, we can infer again that, if the second derivative is positive,
then the function must be a strictly convex function.

We shall now sum up the above results. If the inequalities f
(
α.xi + (1 −α).xj

)
>α.f (xi)+

(1−α).f (xj) and f
(
α.xi + (1 −α).xj

)≥ α.f (xi)+ (1−α).f (xj) with i and j being the indices
of x and i �= j are satisfied, then the function y = f (x) is said to be a strictly concave function
and a concave function, respectively. If the inequalities g

(
β.xi + (1 −β).xj

)
< β.g(xi) +

(1−β).g(xj) and g
(
β.xi + (1 −β).xj

)≤ β.g(xi)+ (1−β).g(xj) with i and j being the indices
of x and i �= j are satisfied, then the function y = g(x) is said to be a strictly convex function
and a convex function, respectively. Moreover, y = f (x) is also said to be a strictly concave
function if f ′′(x)< 0, and y = g(x) is also said to be a strictly convex function if g′′(x)> 0.

Concave and convex functions obey few important properties. These properties are the
following.

Property I. Assume that y = f (x) is a concave (strictly concave) function. Then,
−f (x) [= g(x)] is a convex (strictly convex) function, and vice versa.
This property implies that concave (strictly concave) and convex (strictly
convex) functions are the mirror images of each other (see the graphs in
Figures 3.5.1(A) and (B)).

Property II. Assume that y = f (x) (or g(x)) are both concave (convex) functions. Then,
f (x) + g(x) is a concave (convex) function. Assume again that f (x) and



[12:20 3/11/2011 5640-Ummer-Ch03.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 158 128–192

158 Differential calculus

g(x) are both concave (convex) functions and either one or both of them
is a strictly concave (strictly convex) function, then f (x) + g(x) is a strictly
concave (strictly convex) function.

Property III. Assume that f (x) (or g(x)) is a linear function. Then f (x) (or g(x)) is a
concave function and a convex function at the same time (but is neither a
strictly concave nor a strictly convex function). Notice that we have already
mentioned this property.

3.5.3 Differentiable univariate functions, and concave and convex functions

Notice that in the definitions of f (x) and g(x) as strictly concave, concave, strictly convex,
and convex functions given in inequalities (3.5.1)–(3.5.4) we did not use derivatives
of the functions f (x) and g(x). In other words, we did not impose the conditions in
those definitions that the functions f (x) and g(x) are differentiable functions. Suppose now
that these functions are differentiable. Then, one can give alternative definitions to concave
and convex (including strictly concave and strictly convex) functions using the derivatives
f ′(x) and g′(x). We present these below.

Consider the graph of the function f (x) illustrated in Figure 3.5.4(A). In this graph, we
have drawn a tangent to the point A. The vertical coordinate of point A is f (x0) and its
horizontal coordinate is x0. We have drawn another straight line from point A to point B
on the same graph. The vertical coordinate of point B is f (x1) and its horizontal coordinate
is x1. Notice that the change in x is x1 − x0. Also notice that the slopes of the tangent
line AC and the secant line AB are CD/AD and BD/AD, respectively. A visual inspection
of the graph shows that the slope of the secant line is smaller than that of the tangent
line; that is, (BD/AD) < (CD/AD). But the slope of the secant line is given by [{f (x1) −
f (x0)}/(x1 − x0)] and the slope of the tangent is given by f ′(x0). Therefore, we can write the
inequality as [{f (x1) − f (x0)}/(x1 − x0)] < f ′(x0). Multiplying both sides of this inequality
by (x1 − x0) yields f (x1) − f (x0) < f ′(x0)(x1 − x0), and rearranging gives f (x1) < f (x0) +
f ′(x0)(x1 − x0). This gives us the definition of a differentiable, univariate, strictly
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concave function. Therefore, a differentiable, univariate function is said to be a differentiable,
univariate, strictly concave function if the following inequality is satisfied:

f (x1)< f (x0) + f ′(x0)(x1 − x0) (3.5.5)

We know from the previous section that if we replace the strong inequality sign by
the weak inequality sign, we obtain the definition of a concave function. Therefore, a
differentiable, univariate function is said to be a differentiable, univariate, concave function
if the following inequality is satisfied:

f (x1) ≤ f (x0) + f ′(x0)(x1 − x0) (3.5.6)

We now attempt to define a differentiable, univariate, strictly convex function. For this
consider the graph of the function g(x) illustrated in Figure 3.5.4(B). In this figure, we have
drawn a tangent to the point E. The vertical coordinate of point E is g(x2) and its horizontal
coordinate is x2. We have drawn a straight line from point E to point F on the same graph.
The vertical coordinate of point F is g(x3) and its horizontal coordinate is x3. Notice that the
change in x is x3 − x2. Also notice that the slope of the tangent line EG is GH/EH, and the
slope of the secant line EF is FH/EH. A visual inspection of the graph shows that the slope of
the secant line is larger than that of the tangent line; that is, (FH/EH)> (GH/EH). But the slope
of the secant line is given by [{g(x3)−g(x2)}/(x3 −x2)], and the slope of the tangent is given
by g′(x2). Therefore, we can write the above inequality as [{g(x3) − g(x2)}/(x3 − x2)] >
g′(x2). Multiplying both sides of the last inequality by (x3 − x2) yields g(x3) − g(x2) >
g′(x2)(x3 − x2), and rearranging gives g(x3) > g(x2) + g′(x2)(x3 − x2). This gives us the
definition of a differentiable, univariate, strictly convex function. Therefore, a differentiable,
univariate function is said to be a differentiable, univariate, strictly convex function if the
following inequality is satisfied:

g(x3)> g(x2) + g′(x2)(x3 − x2) (3.5.7)

As in the case of inequality (5.5.6), if we replace “>” by “≥” in inequality (3.5.7), we
obtain the definition of a convex function. Therefore, a differentiable, univariate function is
said to be a differentiable, univariate, convex function if the following inequality is satisfied:

g(x3) ≥ g(x2) + g′(x2)(x3 − x2) (3.5.8)

3.5.4 Inflection points and the curvature of curves

We found in Section 3.5.1 that a function y = f (x) would increase at x = x0 if f ′(x)
∣∣
x=x0

> 0

and would decrease at x = x0 if f ′(x)
∣∣
x=x0

< 0. We also saw that the function would

increase at an increasing rate if f ′′(x)
∣∣
x=x0

> 0 and would decrease at a decreasing rate if

f ′′(x)
∣∣
x=x0

< 0.
Suppose that we have a continuous function y = f (x). Then, one might ask whether this

function is always strictly concave or strictly convex. The answer is that y = f (x) may or
may not always be a strictly concave or a strictly convex function. In fact, the students of the
subjects of our interest often deal with functions that are strictly concave (for some values in
the domain of the functions) as well as strictly convex (for some other values in the domain
of the functions).
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As an example, assume that we have two functions y = f (x) and y = g(x) whose graphs
are illustrated, respectively, in Figures 3.5.5(A) and (B). We know, following our previous
discussions, that the portion of the graph between points A and B and the portion of the graph
between points B and C in Figures 3.5.5(A) represent strictly concave and strictly convex
portions, respectively, of the function y = f (x). Similarly, the portion of the graph between
points D and E and the portion of the graph between points E and F in Figures 3.5.5(B)
represent strictly convex and strictly concave portions, respectively, of the function y = g(x).

How does one know whether a function is always strictly concave, strictly convex, or both
strictly concave and convex for different values in the domain of the function? One simple
condition, as we saw at the end of Section 3.5.2, for y = f (x) to be a strictly concave function
is f ′′(x) < 0, and to be a strictly convex function is f ′′(x) > 0, both evaluated at x = x0.
Therefore, one can use the sign of the second derivative of a function to determine whether
that function is always strictly concave or always strictly convex.

Before we apply the second derivative test, we need to explain a concept called inflection
point. An inflection point on the graph of a function, if it exists, is a point after which
the second derivative of the function changes its sign from either negative to positive or
from positive to negative. In other words, the inflection point on the graph of a function,
if it exists, is a point before which the graph of the function will be strictly concave (or
strictly convex) and after which the graph of the function will be strictly convex (or strictly
concave). The graph of y = f (x) and the graph of y = g(x) in Figure 3.5.5 are the geometric
illustrations of strictly concave (and strictly convex) and strictly convex (and strictly concave)
functions, respectively. The reason is that f ′′(x)< 0 between points A and B, and f ′′(x)> 0
between points B and C; and g′′(x) > 0 between points D and E, and g′′(x) < 0 between
points E and F.

The above discussion leads us to a question: what will be the value of the second deriva-
tive of the function at the inflection point? Since f ′′(x) changes sign at the inflection point,
its value must be zero (that is, f ′′(x) = 0) or not defined at the inflection point. Therefore, if
f ′′(x) = 0 is solved for x = x∗, then the function will have an inflection point corresponding
to x = x∗.

As an example, consider the function y = f (x) = 18x − 5x2 + 0.5x3. Therefore, f ′(x) =
18 − 10x + 1.5x2 and f ′′(x) = −10 + 3x. Setting f ′′(x) = −10 + 3x = 0, and solving for x
yields x = x∗ = 3.33. For values x = x∗ < 3.33, f ′′(x) < 0 and, therefore, the function is
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strictly concave. For values x = x∗ > 3.33, f ′′(x)> 0 and, therefore, the function is strictly
convex. The graph of this function is illustrated in Figure 3.5.6(A).

As another example, consider the function y = g(x) = x + 24x2 − 5.25x3. Therefore,
g′(x) = 1 + 48x − 15.75x2 and g′′(x) = 48 − 31.5x. Setting g′′(x) = 48 − 31.5x = 0, and
solving for x yields x = x∗ = 1.524. For values 0< x = x∗ < 1.524, g′′(x)> 0 and, therefore,
the function is strictly convex. For values x = x∗ > 1.524, g′′(x) < 0 and, therefore, the
function is strictly concave. The graph of this function is illustrated in Figure 3.5.6(B).

3.5.5 Convex sets

Let us now consider the concept of convex set. Convex sets are used extensively in
optimization problems, including linear programming problems, which we will consider
in the next few chapters. Therefore, we present here an introduction to the concept of convex
sets. We first present a geometric definition of convex sets followed by an algebraic definition.

Assume that we have a set of points in a space in �2. Suppose that we pick two points in
the set and connect them by a straight line. If the resulting line lies completely within the
set, then the set is said to be a convex set. All the sets of points in the two-dimensional spaces
of Figures 3.5.7(A)–(H) are examples of convex sets. Other examples of convex sets include
a straight line, a set with a single point, and a null set with no points.

But, if the resulting line does not lie completely within the set, then the set is said to be a
nonconvex set. All the sets of points in the two-dimensional spaces of Figure 3.5.8(A)–(D)
are examples of nonconvex sets.

We can now define a convex set algebraically. Assume that we have two linearly
independent row 2-vectors: u′ = [ x1 y1 ] and v′ = [ x2 y2 ]. Also assume that x1 = 1, y1 = 2,
x2 = 2, and y2 = 1. Then we have u′ = [ 1 2 ] and v′ = [ 2 1] . We now choose a scalar s such that

0 ≤ s ≤ 1, and generate the linear combination of u and v to obtain s.

[
x1

y1

]
+ (1− s).

[
x2

y2

]
.

This is a special type of linear combination, the specialty being 0 ≤ s ≤ 1. This special linear
combination is called a convex combination of vectors u and v. In terms of our numerical
values and using s = 0.5, the convex combination of vectors u and v can be written as

u + v = 0.5.

[
1
2

]
+ (1−0.5).

[
2
1

]
=
[

0.5
1

]
+
[

1
0.5

]
=
[

1.5
1.5

]
= w. Notice that this convex

combination of vectors u and v gives us another vector, which lies between the original
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vectors u and v. We denote this new vector, generated through the convex combination,
by w. The geometric illustration of this convex combination is shown in Figure 3.5.9(A).

Similarly, we can generate an infinite number of new vectors like w simply by changing
the value of s such that 0 ≤ s ≤ 1. This way we obtain the entire plane represented by the
shaded triangle. Notice an important feature of the convex combination that the new vector(s)
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that we generate lies (lie) completely with in the triangle. This was the geometric definition
of a convex set that we provided earlier. Notice also that this shaded triangle is similar to the
triangle in Figure 3.5.7(E).

We can now state the algebraic definition of a convex set. Let there be a set A of points in
a plane. Then the set A is said to be a convex set if, for any two vector points u and v in A
and for the scalar s such that 0 ≤ s ≤ 1, the following equation holds:

w = su + (1 − s)v (3.5.9)

Notice that the vectors we used above (u and v) can contain values, as components,
representing any number of variables, not just two. Therefore, equation (3.5.9) can be used
to define a convex set in any dimension. Notice also the similarity between equation (3.5.9)
and the parametric equation (2.2.6), which defines a line in �n.

As an example, consider the implicit function 2x2 + 4y2 = 8. How can we say whether
this function represents a convex set or not? One easy way to answer this question is to plot
the graph of the function. This is illustrated in Figure 3.5.9(B). This graph shows that the
function 2x2 + 4y2 = 8 gives us an oval, which is similar to the graph in Figure 3.5.7(G),
which (as per our definition) represents a convex set. Therefore, the set of points represented
by the implicit function 2x2 +4y2 = 8 defines a convex set. Notice that if we pick two points
inside the oval, say x = 1 and y = 1, then the line joining these two points lies completely
within the oval.

Let us now consider some related concepts. Suppose that a point (x0,y0) exists in a set of
points, denoted by A, represented by a plane and that there exists a circle whose centre is
the point (x0,y0), such as the circle in Figure 3.5.10(A). Then this point is called the interior
point of the set A if all the points inside the circle lie within the set. If the circle’s centre
(x0,y0) lies on the boundary of the set such that the circle contains points that are included
both in the set A and in its complement, as can be seen in Figure 3.5.10(A), then the point
(x0,y0) is called the boundary point of the set A. A set is called an open set, such as the set
of points represented by Figure 3.5.10(B), if it consists of only the interior points (and does
not include the boundary points). If the set contains all its boundary points, such as the one
in Figure 3.5.10(C), then the set is called a closed set. Notice that the set represented by the
plane in Figure 3.5.10(D) is neither an open set nor a closed set.

Notice that the set of points in the planes defined by inequalities pxx + pyy ≤ I and pll +
pkk ≤ G and illustrated, respectively, in Figures 2.2.9(A) and (B) are examples of closed sets.
The sets defined by these inequalities include the boundary points. However, if we replace
the weak inequalities (such as ≤ or ≥) by strong inequalities (such as < or >) the boundary
points are excluded, and, therefore, we obtain open sets.

(A) (B) (C) (D)

Figure 3.5.10
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Three other related terms are bounded set, unbounded set, and compact set. Imagine that
we place a set in a large circle. If the set is contained fully within the circle, then that set is
called a bounded set. All the sets represented by planes in Figures 3.5.7–3.5.9 (except the
one in Figure 3.5.8(A)), and those represented by the triangles in Figures 2.2.9(A) and (B)
are examples of bounded sets. If a set is both closed and bounded, then the set is called a
compact set. But, the set of points in the plane represented by the inequalities x ≥ 1 or x ≤ 1
(the graph of which is illustrated in Figure 1.7.3) are examples of unbounded (closed) sets.
Notice that the set of points represented by the plane in Figure 3.5.8(A) is neither closed nor
open, but is unbounded.

3.5.6 Univariate quasiconcave and quasiconvex functions

In Section 3.5.2 we presented the meaning, nature, and properties of univariate concave
and convex functions. We extended this presentation to include univariate differentiable
functions in Section 3.5.3. And in Section 3.5.5 we discussed convex sets and related topics.
We are now ready to present functions called quasiconcave functions and quasiconvex
functions.

We begin with a geometric illustration of a quasiconcave function followed by its algebraic
representation. Consider the graphs of two univariate functions, f (x) and g(x), illustrated in
Figure 3.5.11(A).

As concavity is subdivided into strict concavity and weak concavity (or, simply, concavity),
quasiconcavity is also subdivided into strict quasiconcavity and weak quasiconcavity (or,
simply, quasiconcavity). Notice that both functions illustrated in Figure 3.5.11(A) have the
same domain, which is a convex set. Suppose that we pick two different points xi and xj

such that xi < xj in this convex domain. Also suppose that the function f (x) forms an arc
between xi and xj such that the point on the arc corresponding to xi is A and the point on the
arc corresponding to xj is B. The feature of the arc AB is that point B is higher than point A.
Then the function f (x) is said to be a strictly quasiconcave function. Now consider the graph
of the function g(x), which forms a straight line between points A and C corresponding,



[12:20 3/11/2011 5640-Ummer-Ch03.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 165 128–192

Differential calculus 165

respectively, to points xi and xj, respectively. The feature of this line is that point C is higher
than or equal to point A (in fact, they are equal). Then the function g(x) is said to be a
weak quasiconcave function or, simply, a quasiconcave function. This suggests that a linear
function is a quasiconcave function.

Let us now provide an algebraic definition of quasiconcave functions. Although the
definition we present here pertains to univariate functions, it can be easily generalized to
multivariate functions. Assume that f is a function of x. Then, for any two points xi and xj in
the convex domain of the function such that xi < xj and for 0<α < 1, the function is said to
be a strictly quasiconcave function if the following inequality is satisfied:

f (xj)> f (xi) ⇒ f
(
α xi + (1 −α)xj

)
> f (xi) (3.5.10)

If we replace the strict inequality (3.5.10) with weak inequality in the case of a function (g(x)
in our example), we have the definition for a weak quasiconcave function as

g(xj) ≥ g(xi) ⇒ g
(
α xi + (1 −α)xj

)≥ g(xi) (3.5.11)

Let us now present the geometric illustration of a quasiconvex function. Consider the
graphs of the two univariate functions, h(x) and k(x), illustrated in Figure 3.5.11(B). As
in the case of convexity, quasiconvexity is also subdivided into strict quasiconvexity and
weak quasiconvexity (or, simply, quasiconvexity). Notice that the domain of both functions
illustrated in Figure 3.5.11(B) is a convex set. Suppose that we pick two different points, xi

and xj , in this convex domain such that xi < xj . Also suppose that the function h(x) forms an
arc between xi and xj such that the point on the arc corresponding to xi is D and the point on
the arc corresponding to xj is F. The feature of the arc DF is that point D is higher than point F.
Then the function h(x) is said to be a strictly quasiconvex function. Now consider the graph of
the function k(x), which forms a straight line between points E and F corresponding to points
xi and xj , respectively. The feature of this graph is that point F is higher than or equal to point
E (in fact, they are equal). Then the function k(x) is said to be a weak quasiconvex function
or, simply, a quasiconvex function. This suggests that a linear function is quasiconcave as
well as quasiconvex.

We can now present an algebraic definition of a quasiconvex function. Although the
definition we present here pertains to univariate functions, it can be generalized to multivari-
ate functions. Assume that h is a function of x. Then, for any two points xi and xj in the
convex domain of the function such that xi < xj and for 0< α < 1, the function is said to be
a strictly quasiconvex function if the following inequality is satisfied:

h(xi)> h(xj) ⇒ h(xi)> h
(
α xi + (1 −α)xj

)
(3.5.12)

If we replace the strict inequality (3.5.12) with weak inequality in the case of a function (k(x)
in our example), we have the definition for a weak quasiconcave function as

k(xi) ≥ k(xj) ⇒ k(xi) ≥ k
(
α xi + (1 −α)xj

)
(3.5.13)

So far we have not imposed the condition of differentiability on all the functions (f (x),
g(x), h(x), and k(x)) we have considered in the present section. Now assume that these
functions are differentiable. Then these functions are strictly quasiconcave, quasiconcave,
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strictly quasiconvex, and quasiconvex if, for two points xi and xj on their convex domain
such that xi < xj, the following inequalities, respectively, are satisfied:

f (xj)> f (xi) ⇒ f ′(xi)[xj − xi]> 0 (3.5.14)

g(xj) ≥ g(xi) ⇒ g′(xi)[xj − xi] ≥ 0 (3.5.15)

h(xi)> h(xj) ⇒ h′(xi)[xj − xi]< 0 (3.5.16)

and

k(xi) ≥ k(xj) ⇒ k ′(xi)[xj − xi] ≤ 0 (3.5.17)

Quasiconcave (or quasiconvex) functions obey three important properties. These proper-
ties are:

Property I. As we stated before, a linear function is both quasiconcave and quasiconvex.
Property II. All concave (convex) functions, strict or not strict, are quasiconcave

(quasiconvex), strict or not strict, but the opposite is not valid.
Property III. If a function is quasiconcave, strict or not strict, then the negative of that

function is quasiconvex, strict or not strict.

3.5.7 Determinantal tests for quasiconcavity and quasiconvexity

We discussed in the previous section the nature of quasiconcave and quasiconvex functions.
But, how does one know whether a function is quasiconcave or quasiconvex in the first
place? One can rely on a test called a determinantal test to determine whether the function
is quasiconcave or quasiconvex. This test uses the determinant of the partial derivatives (see
Section 3.7) of the function.

Suppose that we have a multivariate function, say, f (x1,x2,x3, . . . ,xn). Also suppose that
this function is twice differentiable. Then, one can show that the function f (x1,x2,x3, . . . ,xn)
is quasiconcave if the principal minors of the matrix

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 f1 f2 f3 . . . fn
f1 f11 f12 f13 . . . f1n

f2 f21 f22 f23 . . . f2n

f3 f31 f32 f33 . . . f3n

. . . . . . . . . . . . . . . . . .

fn fn1 fn2 fn3 . . . fnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

alternate in sign, beginning with nonpositive (that is, for even n, |Qn| ≥ 0; and for odd n,
|Qn| ≤ 0). In other words, the function f (x1,x2, . . . ,xn) is quasiconcave if

|Q1| =
∣∣∣∣∣ 0 f1

f1 f11

∣∣∣∣∣≤ 0, |Q2| =

∣∣∣∣∣∣∣
0 f1 f2
f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣∣≥ 0, |Q3| =

∣∣∣∣∣∣∣∣∣

0 f1 f2 f3
f1 f11 f12 f13

f2 f21 f22 f23

f3 f31 f32 f33

∣∣∣∣∣∣∣∣∣
≤ 0, . . .
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Table 3.5.2

Function Quasiconcave Quasiconvex

f (x1,x2,x3, . . . ,xn) |Q1| ≤ 0, |Q2| ≥ 0, |Q3| ≤ 0, . . . |Q1| ≤ 0, |Q2| ≤ 0, |Q3| ≤ 0, . . .,
|Qn| = |Q| ≤ 0

That is, |Qn| ≤ 0 if n is odd and |Qn| ≥ 0
if n is even

That is, |Qn| ≤ 0 for all n

One can also show that the function f (x1,x2,x3, . . . ,xn) is quasiconvex if the principal
minors of the matrix Q are all nonpositive (that is, |Qn| ≤ 0, for all n). In other words, the
function f (x1,x2, . . . ,xn) is quasiconvex if

|Q1| =
∣∣∣∣∣ 0 f1

f1 f11

∣∣∣∣∣≤ 0, |Q2| =

∣∣∣∣∣∣∣
0 f1 f2
f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣∣≤ 0, |Q3| =

∣∣∣∣∣∣∣∣∣

0 f1 f2 f3
f1 f11 f12 f13

f2 f21 f22 f23

f3 f31 f32 f33

∣∣∣∣∣∣∣∣∣
≤ 0, . . .

We present these tests of quasiconcavity and quasiconvexity in Table 3.5.2 for easy
reference.

3.5.8 Application examples

Example 1. Assume that the inverse demand function for a good is given by p = f (q) =
1/(1+q), where p denotes the price of the good per unit in dollars and q denotes the quantity
of the good demanded at price p. What will be the curvature of the demand function for
all q> 0?

Solution. To see the curvature of the function, we need to find the first and second
derivatives of the function. They are f ′(q) = [{(1+ q)× 0− 1× 1}/(1+ q)2] = −1/(1+ q)2

and f ′′(q) = [{(1 + q)2 × 0 − (−1 × 1)}/(1 + q)3] = 1/(1 + q)3, respectively. Since the
first derivative is negative and the second derivative is positive for all q > 0, the demand
function is diminishing at an increasing rate.

Example 2. Suppose that an individual invests $100 in her bank account. Also suppose
that the bank compounds interest continuously at 8 percent. Then the amount of money
(F), after t years, in her account will be given by the function F = g(t) = 100e0.08t .
Determine whether this function is strictly concave (or concave) or strictly convex (or
convex).

Solution. To determine whether the function is strictly concave or strictly convex, we
need to find the second derivative of the function. The first and second derivatives are
g′(t) = 100e0.08t(0.08) = 8e0.08t and g′′(t) = 8e0.08t(0.08) = (0.64)e0.08t , respectively. Since
the second derivative is positive for all t > 0, the function is strictly convex.
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Example 3. Suppose that a firm’s output y when it employs l units of labor is given by the
function y = f (l) = l3/2. Determine whether this production function is strictly concave (or
concave) or strictly convex (or convex).

Solution. To determine whether the production function is strictly concave or strictly
convex, we need to find the second derivative of the function. The first and second derivatives
are f ′(l) = (3/2)l1/2 and f ′′(l) = (3/2)(1/2)l−1/2, respectively. Since the second derivative
is positive for all l > 0, the function is strictly convex.

Example 4. Suppose that the total monthly consumption expenditure (C) in dollars of a
household is given by the function C = h(Y ) = 20Y + 30Y 2 − 0.4Y 3, where Y denotes the
household’s monthly disposable income in dollars. Does the curvature of the consumption
function change, and (if it does) at what level of income does it change?

Solution. To determine whether the consumption function changes it curvature, we need
to determine the value of the second derivative of the function when it is equal to zero.
The first and second derivatives are h′(Y ) = 20 + 60Y − 1.2Y 2 and h′′(Y ) = 60 − 2.4Y ,
respectively. Therefore, the value of the second derivative when it is equal to zero is
h′′(Y )

∣∣
Y=0 = 60 − 2.4Y |Y=0 = 60−2.4Y ∗ = 0 or Y ∗ = 25. Notice that for all 0< Y < 25, the

second derivative is positive. Similarly, it is negative for all 25> Y ; that is, h′′(Y )
∣∣
Y>25 =

60 − 2.4Y |Y>25 < 0. Therefore, the consumption function is strictly convex until Y = 25
and is strictly concave after Y = 25. This implies that the inflection point occurs or the
curvature of the consumption function changes at Y = 25.

3.5.9 Exercises

1. Determine the curvature of the following functions:
(i) y = f (x) = 1 + 2x; (ii) y = g(x) = 2 − 2x; (iii) y = h(x) = 1 − (1/x);
(iv) y = h(x) = 1 + (1/x).

2. Determine whether the following functions are strictly concave (or concave) or strictly
convex (or convex):
(i) y = f (x) = 1 + 2x; (ii) y = g(x) = 2 − 2x; (iii) y = h(x) = 1 − (1/x);
(iv) y = h(x) = 1 + (1/x).

3. Determine whether the following functions possess an infection point for x> 0. If they
do, determine the value of x at which it happens.
(i) y = f (x) = 25x2 − 3x3; (ii) y = g(x) = −10x + x2; (iii) y = h(x) = 10x2 − x3.

4. Application exercise. Suppose that the total utility (U ) an individual obtains from the
consumption of different units of a good is given by the function U = f (x) = ln x, where
x denotes the quantity of the good that the individual consumes. Determine whether
the individual’s total utility increases (decreases) at an increasing (decreasing) rate or
remains constant.

5. Application exercise. Assume that the total profit (	) of a firm that produces a good
is given by the function 	 = g(x) = (0.2)eln x, where x denotes the quantity of the
good produced. Determine whether the firm’s total profit function is strictly concave (or
concave) or strictly convex (or convex).

6. Application exercise. Assume that the budget set of a consumer, who buys two goods x
and y, is given by the inequality 4x +8y ≤ 40, where x ≥ 0 and y ≥ 0. Show this budget
set in a figure, and determine whether it is a convex set or not.
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3.6 Derivatives and transformation of univariate functions:
Maclaurin and Taylor series

There may be situations where one has to deal with the transformed forms of some
functions. In such situations, one has to transform the given function into another form. The
transformation of a function is also called the expansion of the function or the approximation
of the function.

Two methods widely used to expand a function are Maclaurin series or Maclaurin
expansion and Taylor series or Taylor expansion. Let there be a function y = f (x). Then, the
Maclaurin series expands this function around the point x = 0 in the domain of the function,
while the Taylor series expands this function at any point x = x0 in its domain. Both methods
use the derivatives of the function y = f (x) evaluated at x = 0 (in the former) and at x = x0 (in
the latter). The expanded or transformed function will be a new polynomial function called
a power series.

3.6.1 Meaning of linearization of a univariate nonlinear function

Assume that our function y = f (x) takes the form given by the graph in Figure 3.6.1(A). We
can give a description of the linear approximation of y = f (x) with this figure. We can see
that f (x1) = Dx1 and f (x0) = x0A = x1B. Notice that f (x1) = Dx1 = x1B + BC + CD. Since
f (x0) = x1B and BC = f ′(x0).AB = f ′(x0)(x1 − x0), f (x1) can be written as f (x1) = Dx1 =
f (x0)+ f ′(x0)(x1 −x0)+CD. The last equation means that we have transformed the function
y = f (x) into the form f (x1), which is equal to the value of the function and its derivative
times (x1 − x0) at the point x = x0 plus a value equal to the distance CD. Using the standard
terminology, we state that the function f (x) has been expanded about the point x = x0 and
the centre of expansion is x0.

The vertical distance CD (or R) in Figure 3.6.1(A) is called the remainder. It is easy to
see that the quality of approximation improves as the remainder becomes smaller. We will
see in the next section that as the degree of the transformed polynomial function increases,
the value of R will decrease and, thereby, the quality of approximation will improve.
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3.6.2 Maclaurin series

Suppose that we have an nth-degree polynomial function as

y = f (x) = a0x0 + a1x1 + a2x2 + a3x3 +·· ·+ anxn (3.6.1)

We know that f ′(x) = a1 + 2a2x + 3a3x2 + ·· · + nanxn−1, f ′′(x) = 2a2 + 6a3x + ·· · +
n(n − 1)anxn−2, f ′′′(x) = 6a3x + ·· · + n(n − 2)anxn−3, . . ., and f n(x) = n(n − 1)
(n − 2) . . . (2)(1)an. We have seen in Section 1.10.6 that n(n − 1)(n − 2) . . . (2)(1)an = n!.
If we evaluate these derivatives at x = 0, we obtain f ′(0) = a1, f ′′(0) = 2a2,… and
f n(0) = n!an. Therefore, these equations can be written as [ f ′(0)/1!]= a1,[ f ′′(0)/2!]= a2,…,
and [ f n(0)/n!] = an. When we substitute these results into equation (3.6.1), we obtain

y = f (x) =
[

f (0)

0!
]

+
[

f ′(0)

1!
]

x +
[

f ′′(0)

2!
]

x2 +·· ·+
[

f n(0)

n!
]

xn (3.6.2)

which is called the Maclaurin series or expansion of the polynomial function (3.6.1). Notice
that the original function has been expanded around x = 0. This means that when we
expand a function of x around x = 0 we must obtain the original function.

As an example, consider the first-degree polynomial function y = f (x) = 10 + 2x. Then,
f (0) = 10 and f ′(x) = 2; and when the derivative is evaluated at x = 0, we have f ′(0) = 2.
We do not need to take higher derivatives as they are all zeros. Then, equation (3.6.2)
implies that y = f (x) = f (0)/0! + [ f ′(0)/1!]x = 10/0! + (2/1!)x = 10 + 2x, which is
exactly our original function. This implies that the Maclaurin series describes the original
function exactly.

As a second example, consider the second-degree polynomial function y = f (x) = 10 +
2x + 5x2. Then, f ′(x) = 2 + 10x and f ′′(x) = 10; and when these derivatives are evaluated
at x = 0, we have f ′(0) = 2 and f ′′(0) = 10, respectively. As before, we do not take higher
derivatives as they are all zeros. Notice that f (0) = 10. Then, equation (3.6.2) implies that
y = f (x) = [ f (0)/0!] + [ f ′(0)/1!].x + [ f ′′(0)/2!].x2 = [10/0!] + [2/1!].x + [[10/2!].x2 =
10 + 2x + 5x2. Again the Maclaurin series describes the original function exactly.

As a third example, consider the third-degree polynomial function y = f (x) = 10 +
2x + 5x2 + 4x3. Then, f ′(x) = 2 + 10x + 12x2, f ′′(x) = 10 + 24x, and f ′′′(x) = 24; and
when we evaluate these derivatives at x = 0, we have f ′(0) = 2, f ′′(0) = 10, and f ′′′(0) =
24, respectively. Notice that f (0) = 10. Then, equation (3.6.2) implies that y = f (x) =
[ f (0)/0!]+[ f ′(0)/1!].x+[ f ′′(0)/2!].x2 +[ f ′′′(0)/3!].x3 =[10/0!]+[2/1!].x+[10/2!].x2 +
[24/3!].x3 = 10 + 2x + 5x2 + 4x3. Once again the Maclaurin series describes the original
function exactly.

We stated at the end of the previous section that as the degree of the transformed poly-
nomial function increases, the value of the remainder R will decrease and, thereby, the quality
of approximation will increase. Consider our last example with y = f (x)= 10+2x+5x2+4x3.
If we consider only the zero-degree polynomial or f (x) = 10, then the Maclaurin series gives
y0 = f0(x) = f (0)/! = 10 (where the subscript shows the series of the new polynomial function
(the Maclaurin series) when only the first term is considered). Similarly, if we consider the
first-degree polynomial, the series will be y1 = f1(x) = [ f (0)/0!] + [ f ′(0)/1!].x = 10 + 2x;
if we consider the second-degree polynomial, the series will be y2 = f2(x) = [ f (0)/0!] +
[ f ′(0)/1!].x+[ f ′′(0)/2!].x2 =[10/0!]+[2/1!].x+[[10/2!].x2 = 10+2x+5x2; and when we
consider the third-degree polynomial, the series will be y3 = f3(x)=[ f (0)/0!]+[ f ′(0)/1!].x+
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[ f ′′(0)/2!].x2 + [ f ′′′(0)/3!].x3 = [10/0!] + [2/1!].x + [10/2!].x2 + [24/3!].x3 = 10 + 2x +
5x2 + 4x3. The graphs of all these polynomial functions (from zero degree to third degree)
are illustrated in Figure 3.6.1(B). These graphs clearly show that as the degree of the
polynomial increases, the Maclaurin series approaches the original function that is expanded.
The declining vertical distances represented by arrows between graphs show the reduction
in errors or remainders in successive approximations.

3.6.3 Taylor series

In Maclaurin series, we expanded the function y = f (x) around x = 0. It is not necessary that
we always expand the function around x = 0. One can use any other value in the domain of
the function, say x = x0, to expand the function. This is, in fact, done in Taylor series.

For a discussion of the Taylor series or expansion, consider the first-degree polynomial
function we used in the previous section: y = f (x) = 10 + 2x. Let us expand this
function around x = x0. Assume that, as in Figure 3.6.1(A), x = x1 = x0 + ε. Then,
the function y = f (x) = 10 + 2x becomes f (x) = 10 + 2(x0 + ε). Notice that, in the last
function, x0 is a constant and �x = ε is the variable. Given these, f (x) can be written
as g(ε)=10+2(x0+ε) ≡ f (x). Then the derivative of g(ε) is g′(ε) = 2. Notice that the
derivatives higher than g′(ε) are all zeros, and therefore we discard them.

Notice that when we expand g(ε) around ε = 0 we obtain the Maclaurin series as in
equation (3.6.2). That is, we will get the following equation when we expand g(ε) around
ε = 0:

g(ε) =
[

g(0)

0!
]

+
[

g′(0)

1!
]
.ε (3.6.3)

But, x1 = x0 + ε implies that, when ε = 0, x1 = x0. Then, we obtain g(0) = f (x0) and
g′(0) = f ′(x0). When we substitute the last two results in equation (3.6.3), we get

g(ε) =
[

f (x0)

0!
]

+
[

f ′(x0)

1!
]
.ε =

[
f (x0)

0!
]

+
[

f ′(x0)

1!
]
.(x1 − x0) (3.6.4)

We know that x1 can be any value of x. Therefore, we replace x1 by x. This implies that
we can rewrite equation (3.6.4) as

g(ε) = f (x0)

0! + f ′(x0)

1! ε = f (x0)

0! + f ′(x0)

1! (x − x0) (3.6.5)

Equation (3.6.5) is the Taylor series expansion of the linear polynomial function y = f (x) =
10+2x. In the case of our example of linear polynomial function y = f (x) = 10+2x, f (x0) =
10 + 2x0 and f ′(x0) = 2. Substituting these in equation (3.6.5) yields g(ε) = [ f (x0)/0!] +
[ f ′(x0)/1!](x − x0) = 10 + 2x0 + 2(x − x0) = 10 + 2x, which shows that the Taylor series
approximates exactly the function in our example.

Now suppose that, instead of a first-degree polynomial function, we have a second-degree
polynomial function y = f (x) = 2+ 3x +4x2. Then, following the above arguments, we can
write the Taylor series for the second-degree polynomial function in our example as

g(ε) = [ f (x0)/0!]+ [ f ′(x0)/1!].ε+[ f ′′(x0)/2!].ε2

= [ f (x0)/0!]+ [ f ′(x0)/1!].(x − x0) +[ f ′′(x0)/2!].(x − x0)2 (3.6.6)
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With respect to our present example, we can obtain f (x0) = 2 + 3x0 + 4x2
0, f ′(x0) =

3 + 8x0, and f ′′(x0) = 8. Substituting these in equation (3.6.6) gives g(ε) = [ f (x0)/0!] +
[ f ′(x0)/1!].(x−x0)+[ f ′′(x0)/2!].(x−x0)2 = 2+3x0 +4x2

0 + (3+8x0)(x−x0)+4(x−x0)2 =
2+3x+4x2 = y = f (x). This, once again, shows that the Taylor series correctly approximates
the original second-degree polynomial function.

Let us now generalize the above result to an nth-degree polynomial function as the function
in equation (3.6.1). The Taylor series of the expansion of this nth-degree polynomial function
is given as

f (x) = [ f (x0)/0!]+ [ f ′(x0)/1!].(x − x0) +[ f ′′(x0)/2!].(x − x0)2

+[ f ′′′(x0)/3!].(x − x0)3 +·· ·+ [ f n(x0)/n!].(x − x0)n (3.6.7)

Notice that the only difference between Taylor series and Maclaurin series (equations
(3.6.7) and (3.6.2), respectively) is that if we use x0 = 0 in the former, we obtain the latter.
Therefore, the Maclaurin series is a special case of the Taylor series. What equation (3.6.7)
says is that if we pick two numbers in the domain of the function (say, x = x1 = 10 and x0 = 5)
and evaluate the RHS of equation (3.6.7), then the RHS will be equal to f (x = x1 = 10).

3.6.4 Maclaurin and Taylor series with remainders

So far, we have been concerned with the expansion of an nth-degree polynomial function
into another nth-degree polynomial function. In fact, we can expand (around, say, x0) any
function, say h(x), not necessarily a polynomial function, into a polynomial form. But, the
condition for the expansion of an arbitrary function h(x) is that it must have finite, continuous
derivatives up to the required degree at x0.

Taylor series with remainder is based on the Taylor theorem, which states that a function
h(x) can be expanded around x0 as

h(x) = [h(x0)/0!]+ [h′(x0)/1!].(x − x0) +[h′′(x0)/2!].(x − x0)2 +·· ·
+ [hn(x0)/n!].(x − x0)n +[hn+1(x0)/(n + 1)!].(x − x0)n+1 (3.6.8)

where the last term [hn+1(x0)/(n + 1)!].(x − x0)n+1 = Rn is called the remainder or error of
approximation. It can be shown that Rn → 0 as n → ∞. In this case, we will have

h(x)=[h(x0)/0!]+[h′(x0)/1!].(x−x0)+[h′′(x0)/2!].(x−x0)2+···+[hn(x0)/n!].(x−x0)n

(3.6.9)

Notice that if we expand a polynomial function into another polynomial function of the
same degree, then the term Rn will be equal to zero. If we expand h(x) around x = 0, then
we have

h(x) = [h(0)/0!]+ [h′(0)/1!].x +[h′′(0)/2!].x2 +·· ·+ [hn(0)/n!].xn + Rn (3.6.10)

which is called the Maclaurin series with remainder. Suppose we assume now that n = 0.
In this case equation (3.6.8) will reduce to h(x) = [h(x0)/0!]+ [h′(x0)/1!].(x − x0) = h(x0)+
h′(x0)(x − x0). This result is popularly called the mean-value theorem. Notice that we have
already used this theorem few times earlier.
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3.6.5 Exercises

1. Expand the following functions using Maclaurin series:
(i) f (x) = 2x + 3x2 + 5x3; (ii) g(x) = 3x + 2x2 + 5x3; (iii) h(x) = 5x + 3x2 + 2x3.

2. Expand the above functions using Taylor series when x = 5 and x0 = 3.

Web supplement: S3.6.6 Euler relations

Web supplement: S3.6.7 Mathematica applications

3.7 Differentiation of multivariate functions: partial derivatives

So far in this chapter we were dealing with differentiation of univariate functions and their
applications in specific cases. However, most of the relationships in economics, business,
and finance involve more than one independent variable. Functions that involve more than
one independent variable are called multivariate functions. We noted in Section 3.2 that the
derivative of a univariate function y = f (x) was interpreted as the rate of change of y when
x changes by an infinitesimally small amount. One may wonder if a similar concept can be
developed in the case of a multivariate function.

As an illustration, consider the example of a firm that produces Q units of output using
K units of capital and L units of labor. We can write the output produced as a function of
capital and labor as Q = f (K,L). This production function is an example of a multivariate
function with two independent variables, which is also called a bivariate function. An
important question that arises now is: what impact does a change in capital have on the
output produced? Another question is: if there is an impact, how does one find it? These
questions are answered below.

3.7.1 Partial differentiation: meaning, notations, and method

Consider the bivariate function discussed above: Q = f (K,L). We know that when K changes
by a particular amount, keeping L constant at �L, there will be a corresponding change in Q.
Let us denote the change in K by �K and the change in Q by �Q. As we have seen
in the case of univariate differentiation, we divide the latter change by the former change
to yield

�Q

�K
= f (K +�K,�L) − f (K,�L)

�K
(3.7.1)

which gives the difference quotient in the case of the bivariate function under consideration.
Notice that equation (3.7.1) is based on the assumption that L is held constant at �L. If we
take the limit, if it exists, on both sides of equation (3.7.1) when �K → 0, we obtain
what is called the partial derivative of Q with respect to K . Notice the term “partial
derivative.” This derivative is called the partial derivative because the change on the RHS
is partial or the change on the RHS is taking place in K only as L is held constant. The
process of finding the partial derivative is called partial differentiation. Therefore, the
partial derivative of Q with respect to K is lim

�K→0
[�Q/�K] = lim

�K→0
[{f (K +�K,�L) −

f (K,�L)}/�K].
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Although we can denote the partial derivative of Q with respect to K in many forms,
we denote it by either ∂Q/∂K or fK . Therefore, we have ∂Q/∂K = fK = lim

�K→0
[�Q/�K].

The partial derivative of the production function with respect to capital, ∂Q/∂K = fK , is
called the marginal product of capital.

Exactly as we held L constant and allowed K to vary, we now can hold K constant at �K
and allow L to vary (say, by �L). This will also produce a change in Q. Then, we obtain a
ratio similar to the one in equation (3.7.1): �Q/�L = [ f (�K,L +�L) − f (�K,L)]/�L. If we
follow a process similar to the one we used in the derivation of ∂Q/∂K or of fK , we obtain the
partial derivative of Q with respect to L as ∂Q/∂L or fL. This partial derivative with respect
to labor is called the marginal product of labor. Notice that ∂Q/∂L or fL is derived assuming
that K is held constant at �K .

We now extend the above results to the case of a multivariate function involving n
independent variables. Assume that we have the function y = f (x1,x2,x3, . . . ,xi, . . . ,xn).
Then the partial derivative of the function with respect to xi is defined as

lim
�xi→0

[
�y

�xi

]
= lim
�xi→0

[
f (x1,x2,x3, . . . ,xi +�xi, . . . ,xn) − f (x1,x2,x3, . . . ,xi, . . . ,xn)

�xi

]
(3.7.2)

and is denoted by ∂y/∂xi = fxi . From now on we will denote ∂y/∂xi = fxi , for convenience,
by fi. Notice that the rules of univariate differentiation are equally applicable in the case of
multivariate differentiation. Therefore, one does not need to learn a different set of rules for
multivariate differentiation.

Let us apply the above definition to specific cases. Suppose that our function is y =
f (x1,x2)=x2

1+x2
2. Then, using the above definition and holding x2 constant, the partial deriva-

tive of the function with respect to x1 is ∂y/∂x1=fx1 =f1=2x1. Similarly, the partial derivative
of the function with respect to x2, holding x1 constant, is ∂y/∂x2 = fx2 = f2 = 2x2.

Consider another function: y = g(x1,x2) = x2
1 + x2

2 + x1x2. Then, holding x2 constant,
the partial derivative of the function with respect to x1 is ∂y/∂x1 = gx1 = g1 = 2x1 + x2,
and the partial derivative of the function with respect to x2, holding x1 constant, is ∂y/∂x2 =
gx2 = g2 = 2x2 + x1.

3.7.2 Partial derivatives: geometric illustrations

As they will help easier understanding, we present here the geometric illustrations of partial
derivatives. Suppose that we have our last bivariate production function: Q = f (K,L).
Suppose that we keep L constant at L = L0. Then the production function can be written
as Q = f (K,L0). Also suppose that this production function takes the form of the graph in the
three-dimensional space as illustrated in Figure 3.7.1(A). Notice that the graph in this figure
is obtained by cutting the space with a vertical plane parallel to the LQ space. The slope of
the graph at K = Ki and L = L0 (which is equal to the slope of the tangent AB at K = Ki and
L = L0) is equal to the derivative of Q = f (K,L) with respect to K at K = Ki and L = L0 or
∂Q/∂K |K=Ki,L=L0

= fK |K=Ki,L=L0
.

Similarly, we can present the geometric illustration of the derivative of Q = f (K,L) with
respect to L at L = Li and holding K constant at K0. This is illustrated in Figure 3.7.1(B).
The slope of the graph at K = K0 and L = Li (which is equal to the slope of the tangent AB
at K = K0 and L = Li) is equal to the derivative of Q = f (K,L) with respect to L at K = K0

and L = Li or ∂Q/∂L|K=K0,L=Li
= fL|K=K0,L=Li

.
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3.7.3 Higher partial derivatives

In the case of univariate functions, we found higher derivatives by successively differen-
tiating the function until the higher derivative became zero. Similarly, we can obtain higher
partial derivatives by successively differentiating the multivariate function until the higher
partial derivative becomes zero. But, one important point to remember here is that when
we find the higher derivative of the multivariate function with respect to one independent
variable, the other independent variable(s) is (are) to be held constant.

Suppose that we have a general function y = f (x1,x2, . . . ,xi, . . . ,xn). Then, the first
partial derivative of the function with respect to xi is ∂y/∂xi = fxi = fi. The second partial
derivative of the function with respect to xi is found by partially differentiating the first
partial derivative with respect to xi, holding xj (where i �= j) constant. This is normally
denoted by ∂(∂ y)/∂ xi(∂ xi) = ∂2y/∂ x2

i = fxixi = fii. The third partial derivative of the
function with respect to xi is ∂3y/∂ x3

i = fxixixi = fiii, . . . , and the nth partial derivative is
∂ny/∂ xn

i = fxixixi ...xi = fiii....i.
As an example, consider the function z = f (x,y) = x3y3. Then, we can find that ∂z/∂x =

fx = 3x2y3; ∂(∂z)/∂ x(∂ x) = ∂2z/∂ x2 = fxx = 6xy3; ∂3z/∂x3 = fxxx = 6y3; and all the higher
partial derivatives of the function with respect to x are zeros. Similarly, we can obtain
∂z/∂y = fy = 3x3y2; ∂2z/∂y2 = fyy = 6x3y; ∂3z/∂y3 = fyyy = 6x3; and all the higher partial
derivatives of the function with respect to y are zeros.

Notice that we can also find the mixed partial derivatives or cross partial derivatives
from a multivariate function. As an example, consider the function in the last example:
z = f (x,y) = x3y3. We found above that ∂z/∂x = fx = 3x2y3. Now, suppose that we want
to find the second partial derivative of the function with respect to y. This can be found as
∂(∂z)/∂y(∂x) = ∂2z/∂y∂x = fxy = 9x2y2. Similarly, we can find ∂3z/∂x∂y∂x = fxyx = 18xy2;
∂z/∂y = fy = 3x3y2; ∂2z/∂x∂y = fyx = 9x2y2; and ∂3z/∂y∂x∂y = fyxy = 18x2y. Notice that,
in our example, fxy = 9x2y2 = fyx . This result is called Young’s theorem. All other higher
partial derivatives are called mixed partial derivatives or cross partial derivatives. Most of
the examples that we consider in this book involve functions whose second mixed partial
derivatives have the feature that conforms to Young’s theorem.
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3.7.4 Application examples

Example 1. Properties of Cobb–Douglas production function. Assume that a manufacturer
produces Q units of output using K units of capital and L units of labor. Also assume that the
manufacturer’s production function takes the form of the Cobb–Douglas production function,
with K and L as the independent variables (disregarding technology for convenience), as
Q = f (K,L) = KαL1−α , where α represents the elasticity of output with respect to capital (K)
and 0<α< 1. Show that the Cobb–Douglas production function: (i) is a linear homogeneous
production function and, therefore, exhibits constant returns to scale; (ii) yields diminishing
returns to both K and L; (iii) gives α = output elasticity of capital and (1 − α) = output
elasticity of labor; (iv) is fully correspondent with Euler’s theorem; (v) α and 1−α represent
the relative share of capital and the relative share of labor, respectively, in national income;
and (vi) has elasticity of substitution equal to 1. Notice that these are the properties of the
Cobb–Douglas production function.

Solution. (i) A function is said to be a homogeneous function if when each independent
variable in the function is multiplied by a positive real constant x, then the constant can be
factored out. If the power of this factored constant is 1, then the function is homogeneous
of degree one or is a linear homogeneous function; if its power is greater than one, then the
function is homogeneous of degree greater than one; and if its power is less than one, then
the function is homogeneous of degree less than one.

Now consider the Cobb–Douglas production function: Q = f (K,L) = KαL1−α . Let us
now multiply the production function by the positive real constant x to yield f (xK,xL) =
(xK)α(xL)1−α . We can now factor out the constant as xf (K,L) = (x)α+1−αKαL1−α =
(x)α+1−α KαL1−α = (x)α+1−αQ. This implies that the Cobb–Douglas production function
is a homogeneous production function. Since we assumed that 0< α < 1, the last equation
can be written as xf (K,L) = (x)α+1−αKαL1−α = (x)α+1−αKαL1−α = xQ. This means that
Cobb–Douglas production function is a linear homogeneous production function.

Since we assumed that 0 < α < 1 and since the Cobb–Douglas production function
is a homogeneous production function, the equation xf (K,L) = (x)α+1−αKαL1−α =
(x)α+1−αKαL1−α = xQ implies that when we change both factors by the constant x, output Q
also changes by the same factor (xQ). This shows that the Cobb–Douglas production function
exhibits constant returns to scale. Notice that if the power of x in xQ were greater than one,
then the Cobb–Douglas production function would exhibit increasing returns to scale; and
if the power of x in xQ were less than one, then it would exhibit diminishing returns to scale.

(ii) We shall differentiate the production function to answer this question. Differentiating
Q = f (K,L) = KαL1−α partially with respect to K and L, we obtain, respectively

∂Q/∂K = fK = αKα−1L1−α = α[{KαL1−α}/K] = α[Q/K] (3.7.3)

and

∂Q/∂L = fL = (1 −α)KαL1−α−1 = (1 −α)[{KαL1−α}/L] = (1 −α)[Q/L] (3.7.4)

Notice that the marginal product of capital (fK ) in equation (3.7.3) is positive for all values
of K > 0. Differentiating equation (3.7.3) again with respect to K , we obtain fKK = α(α−
1)Kα−2L1−α . But, since α < 1, (α − 1) < 0 and, therefore, fKK < 0. This implies that the
marginal product of capital diminishes as K increases. Similarly, the marginal product of labor
(fL) in equation (3.7.4) is also positive for all values of L> 0. Differentiating equation (3.7.4)
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again with respect to L, we obtain fLL = (1−α)(−α)KαL−α−1. Since 0<α < 1 and −α < 0,
fLL < 0. This implies that the marginal product of labor diminishes as L increases. These
results show that the Cobb–Douglas production function yields diminishing returns to both
K and L.

(iii) The output elasticity of capital (α) and the output elasticity of labor (1−α) are defined,
respectively, by[(∂Q/∂K).(K/Q)] and [(∂Q/∂L).(L/Q)]. Substituting equations (3.7.3) and
(3.7.4) in these two expressions, we obtain [(∂Q/∂K).(K/Q)] = α[(Q/K).(K/Q)] = α and
[(∂Q/∂L).(L/Q)] = (1 − α)[(Q/L).(L/Q)] = 1 − α. This shows that the output elasticity of
capital is α and the output elasticity of labor is (1−α).

(iv) Before we show that the Cobb–Douglas production function is fully correspondent
with Euler’s theorem, let us first discuss this theorem. Euler’s theorem states that, given a
multivariate function y = f (x1,x2,x3, . . . ,xn), the following result holds:

y = x1[∂y/∂x1]+ x2[∂y/∂x2]+ x3[∂y/∂x3]+ · · ·+ xn[∂y/∂xn] (3.7.5)

We now apply Euler’s theorem in equation (3.7.5) treating x1 = K and x2 = L. The result is
Q = K[∂Q/∂K]+L[∂Q/∂L]. Substituting equations (3.7.3) and (3.7.4) into equation (3.7.5),
we obtain Q = K[α.(Q/K) + L(1 − α)(Q/L) = αQ + Q − αQ = Q. This shows that the
Cobb–Douglas production function is fully correspondent with Euler’s theorem.

(v) The share of capital in national income is defined as [K(∂Q/∂K)]/Q and the
share of labor in national income is defined as [L(∂Q/∂L)/Q]. Substituting equations
(3.7.3) and (3.7.4) into the last two expressions, we obtain [K(∂Q/∂K)]/Q = [K(αQ/K)]/
Q = α and [L(∂Q/∂L)/Q] = L[(1 −α)Q/L]/Q =(1 − α). This shows that α represents the
share of capital in national income and (1 − α) represents the share of labor in national
income.

(vi) The elasticity of substitution is defined as the percentage change in the optimum
(or, the least-cost) K/L ratio due to a small percentage change in the input-price ratio
PL
/

PK , and is denoted by σ . Therefore, σ = [d(K∗/L∗)
/

K∗/L∗]/[d(PL
/

PK )
/

PL
/

PL] =
[d(K∗/L∗)

/
d(PL

/
PK )]/[(K∗/L∗)

/
PL
/

PK ]. As shown in example 5(ii) in Section 4.4.9,
both the numerator and the denominator of the last equation are equal to α/(1 − α). This
means that σ = [α/(1 −α)]/[α/(1 −α)] = 1.

Example 2. Properties of constant elasticity of substitution (CES) production function.
Assume that a manufacturer produces Q units of output using K units of capital and L units
of labor. Also assume that the manufacturer’s production function takes the form of CES
production function with K and L as the independent variables (again disregarding techno-
logy for convenience), as Q = f (K,L) = (αK−β + (1 − α)L−β )−1/β , where α(0 < α < 1)
represents the distribution parameter and β (β >−1) represents the substitution parameter.
Show that the CES production function: (i) is a linear homogeneous production function,
and, therefore, exhibits constant returns to scale; (ii) yields diminishing returns to both K
and L; (iii) is fully correspondent with Euler’s theorem; (iv) exhibits constant elasticity of
substitution; and (v) approaches the Cobb–Douglas production function as β → 0. Notice
that these are the properties of the CES production function.

Solution. (i) We are given Q = f (K,L) = (αK−β + (1 − α)L−β )−1/β . Multiplying both
sides of this function by the positive real constant x, we obtain Qx = [α(Kx)−β +
(1−α)(Lx)−β ]−1/β = [x−βαK−β+x−β(1−α)L−β ]−1/β = [x−βαK−β+x−β (1−α)L−β ]−1/β =
[x−β (αK−β + (1 − α)L−β )−1/β ] = x(αK−β + (1 − α)L−β )−1/β = xQ. This shows that the
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CES production function is a linear homogeneous production function and, therefore, exhibits
constant returns to scale if power of x equals one.

(ii) Differentiating Q = (αK−β + (1 − α)L−β )−1/β or Q−β = αK−β + (1 − α)L−β with
respect to K and L, we obtain the marginal products of capital and labor, respectively, as

−βQ−β−1[∂Q/∂K] = (−β)αK−β−1, or

∂Q/∂K = [−βαK−β−1/−βQ−β−1] = αK−β−1/Q−β−1, and (3.7.6)

−βQ−β−1[∂Q/∂L] = (−β)(1 −α)L−β−1, or

∂Q/∂L = [−β(1 −α)L−β−1/−βQ−β−1] = (1 −α)L−β−1/Q−β−1 (3.7.7)

Notice that the marginal product of capital (fK ) in equation (3.7.6) is positive for all
values of K > 0. Differentiating equation (3.7.6) again with respect to K , we obtain fKK =
[α/Q−β−1](−β − 1)K−β−2. But, if β >−1 (as we assumed above), fKK < 0. This implies
that the marginal product of capital diminishes as K increases. Similarly, the marginal product
of labor (fL) in equation (3.7.7) is also positive for all values of L > 0. Differentiating
equation (3.7.7) again with respect to L, we obtain fLL = [(1 − α)/Q−β−1](−β − 1)L−β−2.
But, if β >−1 (again, as we assumed above), fLL < 0. This implies that the marginal product
of labor diminishes as L increases. These results show that the CES production function
yields diminishing returns to both K and L.

(iii) Applying Euler’s theorem given in equation (3.7.5), we obtain Q = K[αK−β−1/

Q−β−1]+L[(1−α)L−β−1/Q−β−1] = [{αK−β+ (1−α)L−β}/Q−β−1]. The las equation can
be simplified to obtain Q−β = (αK−β+ (1−α)L−β ) or Q = (αK−β+ (1−α)L−β )−1/β = Q.
This shows that the CES production function is fully correspondent with Euler’s theorem.

(iv) As in example 1(vi) above, the elasticity of substitution (σ ) is defined as σ =
[d(K∗/L∗)/K∗/L∗]/[d(PL/PK )/PL/PL] = [d(K∗/L∗)/d(PL/PK )]/[(K∗/L∗)/PL/PK ]. As
shown in example 6(ii) in Section 4.4.9, the numerator and the denominator of the
last equation can be given by [{α/(1 −α)}1/(1+β)/(1 + β)].[PL/PK ]1/(1+β)−1 and
[{α/(1 −α)}1/(1+β).[PL/PK ]1/(1+β)−1, respectively. Therefore, we can write σ = [{[{α/
(1 − α)}1/(1+β)/(1 + β)].[PL/PK ]1/(1+β)−1}/{[{α/(1 − α)}1/(1+β).[PL/PK ]1/(1+β)−1}] =
1/(1 + β). Notice that if β = −1, then σ = 1/(1 + β) = 1/(1 − 1) = ∞; if β = 0, then
σ = 1; and if β = ∞, then σ = 0. This implies that the elasticity of substitution of the
CES production function lies between 0 and ∞; that is, 0 ≤ σ ≤ ∞.

(v) We need to show that as β → 0, the CES production function approaches the Cobb–
Douglas production function; that is, we need to show that the limit of the CES production
function as β → 0 is the Cobb–Douglas production function. For this, we first take the
natural logarithm on both sides of the function to obtain ln Q =[− ln(αK−β+(1−α)L−β )]/β.
Our task here is to find the limit of lnQ when β→ 0 (that is, lim

β→0
lnQ = lim[{

β→0
− ln(αK−β +

(1 − α)L−β )}/β]. But, when β → 0, both the numerator and denominator on the RHS will
give us a meaningless expression (0/0) necessitating the use of l’Hôpital’s rule. For this,
consider the numerator and denominator as functions f (β) = − ln(αK−β + (1 − α)L−β )
and g(β) = β, respectively; and differentiate them (as in l’Hôpital’s rule) with respect
to β. The required derivatives are f ′(β) = [{−1[−αK−β lnK − (1 −α)L−β lnL]}/{αK−β +
(1−α)L−β ] = [{αK−β lnK + (1−α)L−β lnL}/{αK−β+ (1−α)L−β}]. Similarly, g′(β) = 1.
We can now write, as stated by l’Hôpital’s rule, lim

β→0
lnQ = lim

β→0
[{− ln(αK−β +



[12:20 3/11/2011 5640-Ummer-Ch03.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 179 128–192

Differential calculus 179

(1 − α)L−β )}/β] = lim
β→0

[ f ′(β)/g′(β)] = lim
β→0

[{αK−β lnK + (1 − α)L−β lnL}/{αK−β +
(1 − α)L−β}] = {α lnK + (1 − α) lnL}/1, because K−β and L−β both tend to 1 when
β → 0. Therefore, we can write the last result as lim

β→0
lnQ = lnKα + lnL1−α = ln(KαL1−α),

or lim
β→0

Q = KαL1−α . This shows that the CES production function approaches the

Cobb–Douglas production function when β → 0.

Example 3. Partial elasticities. Suppose that a consumer’s demand for good x manufac-
tured by a firm is given by the multivariate function Qx = f (Px,Pr,Y ) = 5000 − 2Px +
3Pr + 0.05Y , where Px, Pr , and Y denote the price of the good x, the price of the related
(substitute) good, and the income of the consumer, respectively. Find the partial elasticities
(own-price elasticity, cross-price elasticity, and income elasticity) when Px, Pr , and Y are
$1000, $400, and $10 000, respectively.

Solution. Equation (3.3.21) gives the price elasticity or own-price elasticity. Then, applying
equation (3.3.21) in the case of the present multivariate function, we obtain�Px = (Px/Qx)÷
(∂Px/∂Qx), where �Px shows that the elasticity under consideration is own-price elasticity.
When Px, Pr , and Y are $1000, $400, and $10 000, respectively, Qx = 5000 − 2 × 1000 +
3 × 400 + 0.05 × 10 000 = 4700. The partial derivative of Qx = f (Px,Pr,Y ) = 20 − 2Px +
5Pr + 0.05Y with respect to Px is ∂Q/∂Px = −2. Substituting Qs = 4700, Px = $1000, and
∂Q/∂Px = −2 into �Px = (Px/Qx)÷ (∂Px/∂Qx) yields �Px = (1000/4700)/(−2) = −0.11.

Cross-price elasticity denoted by �Pr is defined as the percentage change in Qx due to a
percentage change in Pr . This is given by the equation

�Pr = Pr

Qx
÷ ∂Pr

∂Qx
(3.7.8)

We can find �Pr by substituting Qx = 4700, Pr = $400, and ∂Pr/∂Qx = 3 into equation
(3.7.8): �Pr = (Pr/Qx) ÷ (∂Pr/∂Qx) = (400/4700) ÷ 3 = 0.028. Notice that the cross-price
elasticity (�Pr ) is positive if the related good is a substitute (as in our present example) and
is negative if the good is a complementary good.

Income elasticity denoted by �Y is defined as the percentage change in Qx due to a
percentage change in Y . This is given by the equation

�Y = Y

Qx
÷ ∂Y

∂Qx
(3.7.9)

We can find �Y by substituting Qx = 4700, Y = $10 000, and ∂Y /∂Qx = 0.05 into
equation (3.7.9): �Y = (Y /Qx) ÷ (∂Y /∂Qx) = (10 000/4700) ÷ 0.05 = 42.6. Notice that
income elasticity (�Y ) is positive in our present example. This implies that as income
increases, the quantity demanded of the good (Qx) also increases. Such a good is called
a normal good. If �Y < 0, then the good is called an inferior good.

3.7.5 Exercises

1. Find the partial derivatives of the following functions with respect to each independent
variable:
(i) z = x + y; (ii) z = x − y; (iii) z = x/y; (iv) z = y/x; (v) z = (x + y)/(y − x).
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2. Find the partial derivatives of the following functions with respect to each independent
variable:
(i) z = xy; (ii) z = xy − y; (iii) z = xy/y2; (iv) z = y2/xy; (v) z = (x2 + y)/(y2 + x).

3. Find the partial derivatives of the following functions with respect to each independent
variable:
(i) u = xyz; (ii) u = xy − zy; (iii) z = x/y; (iv) z = y/x; (v) z = (x + y)/(x − y).

4. Find the second partial derivatives, with respect to each independent variable, of the
functions in exercises 1 through 3 above.

5. Application exercise. Suppose that the total cost, in dollars, of producing two goods, x
and y, by a firm is given by C = 1000 + 0.1x2 + 50x + 0.1y2 + 40y. Find the marginal
costs when x = 50 and y = 100 units.

6. Application exercise. Suppose that the total revenue, in dollars, of producing two goods,
x and y, by a firm is given by R = x2 − 10x + y2 − 10y. Find the marginal revenues
when x = 100 and y = 100 units.

7. Application exercise. Suppose that a consumer’s demand for good x is given by the
function Qx = 10 − Px + 0.5Pr + 0.1Y , where Qx, Px, Pr , and Y denote the quantity
demanded of the good, price of the good, price of the related good, and income of
the consumer. Find the own-price, cross-price, and income elasticities when Px = $10,
Pr = $5, and Y = $100, and interpret the results.

8. Application exercise. Suppose that the quantities demanded, qx and qy, of two goods,
x and y, are given by the functions qx = √

py/2
√

px and qy = √
px/4

√
py, respectively,

where px and py denote the prices of the goods. Find the marginal demand functions
(∂qx/∂px, ∂qx/∂py, ∂qy/∂px, and ∂qy/∂py) and determine whether the two goods are
substitutes (or competitive goods), or complementary goods, or neither.

9. Application exercise. Suppose that the quantities demanded of two goods, qx and qy,
are given by the functions qx = 100/

√
px 3

√
py and qy = 200/

√
py 3

√
px, respectively.

Find the marginal demand functions (∂qx/∂px, ∂qx/∂py, ∂qy/∂px, and ∂qy/∂py)
and determine whether the two goods are substitutes (or competitive goods), or
complementary goods, or neither.

10. Application exercise. Suppose that the quantities demanded qx and qy of two goods, x
and y, are given by the functions qx = √

py/2
√

px and qy = √
px/4

√
py, respectively,

where px and py denote the prices of the goods. The total cost of producing these two
goods is given by the function C = 100+20qx +10qy +0.1qxqy. Find the rate of change
of total cost with respect to both px and py when px = 10 and py = 20.

Web supplement: S3.7.6 Differentiation of matrices

Web supplement: S3.7.7 Mathematica applications

3.8 Differentials, total derivatives, and multivariate implicit
differentiation

3.8.1 Meaning of differentials of univariate functions

Earlier we defined the derivative of a function as the rate of change of that function when
the independent variable changes by an infinitesimally small amount. But, how can we
find the total change in the dependent variable when the independent variable changes by
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0 x0 = 10 x1 = 10.01 x

dx = Δx

f(x0) = 1072

1072.25

f(x1) = f(x0 + Δx) = 1072.2512

f(x)

y = f(x)

Figure 3.8.1

an infinitesimally small amount? This question leads us to the concept of differentials. The
idea behind differentials can be best explained with the help of simple example.

Suppose that a firm produces a good y using labor x. Then, the quantity of y produced by
the firm can be expressed as y = f (x). Assume, for simplicity, that this function takes the
form y = f (x) = 20 − 15x + 12x2, whose graph resembles the one shown in Figure 3.8.1.
It can be seen from Figure 3.8.1 that �y = f (x0 +�x) − f (x0). Let us now multiply and
divide the RHS of the last equation by �x to obtain �y = {[ f (x0 +�x) − f (x0)]/�x}�x.
Therefore,�y = {[ f (x0 +�x)− f (x0)]/�x}�x gives the change in y when x changes by�x.
Notice that finding the change in y when x changes by �x using the difference quotient is a
laborious task. Therefore, we attempt to find the approximate change in y when x changes
by an infinitesimally small amount. For this, we use the concept of derivative that we have
been discussing so far.

Notice that the term inside the brackets of the last equation represents the difference
quotient which becomes the slope of the function at point A (that is, the slope of the
function at x = x0) when �x → 0, and is given by the equation dy/dx = f ′(x). We know
that {[ f (x0 +�x)− f (x0)]/�x}�x is dy/dx = f ′(x). Therefore, we can write �y = {[ f (x0 +
�x) − f (x0)]/�x}�x as �y = f ′(x0)�x. However, when the change in x is infinitesimally
small, the last equation can be written as

dy = f ′(x0)dx (3.8.1)

The terms dy and dx in equation (3.8.1) are called the first differentials of y and x,
respectively, in the univariate function y = f (x), and the process of finding dy is called
differentiation. Notice that if we divide both sides of equation (3.8.1) by dx, we will end
up with the derivative of the function y = f (x) at x = x0. This shows the close connection
between the differentials and the derivatives.
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It should be noticed that the result in equation (3.8.1) is valid only when the change in
x is infinitesimally small. Instead of such a small change in x, if one uses a large value for
�x, equation (3.8.1) would give only an approximation to the change in y with a large error
(or remainder). This can be shown through an example. Consider our function y = f (x) =
20 − 15x + 12x2. Now suppose that the change in x is �x = x1 − x0 = 10.01 − 10 = 0.01.
We know that f ′(x) = −15 + 24x. Plugging these values in equation (3.8.1), we obtain
the change in y equal to dy = f ′(x)dx = (−15 + 24 × 10) × 0.01 = 2.25. But, the actual
change in y is �y = y1 − y0 = f (x1) − f (x0) = (20 − 15x1 + 12x2

1) − (20 − 15x0 + 12x2
0) =

[20−15×10.01+12(10.01)2]− [20−15×10+12×102] = 1072.2512−1070 = 2.2512,
where y = y1 and y = y0 represent the values of the function corresponding to x = x1 and
x = x0, respectively. The change in y if we use equation (3.8.1) is 2.25. Therefore, the
difference is 0.0012 = (2.2512 − 2.25), which is the error in approximation. This error will
be larger (smaller) if we use �x> 0.01 (�x< 0.01).

Why did the error noted above occur? Notice in Figure 3.8.1 that the actual change in y
is �y = BD and the actual change in x is �x = AB. If we used �y = BD and �x = AB
in �y = {[ f (x0 +�x) − f (x0)]/�x}�x we would have obtained �y = (BD/AB)AB = BD,
where BD/AB is the slope of the secant line AD; and this result does not involve any error.
But, when we applied equation (3.8.1) we used the slope of the tangent line AC, and not that
of the secant line. When we use the slope of the tangent line AC, the part CD is excluded
from the calculation and the error (0.0012 in our example) is equal to the vertical distance
CD. What all this means is that, when we find the differential �x must be infinitesimally
small so that the error in approximation will be small.

3.8.2 Differentials of multivariate functions: total and partial differentials

In the last section we discussed how we can approximate the change in the dependent variable
of a univariate function when its independent variable changes by a very small amount. A
pertinent question that arises now is: can one find such a change in the value of the dependent
variable when all of the independent variables in a multivariate function change by very
small amounts? The answer is yes. The multivariate analogue to the univariate differential is
called total differential. Total differentials give us the approximate change in the dependent
variable when the independent variables change by infinitesimally small amounts.

Let us cite a simple example to drive home the meaning of total differentials. We know
from the principles of microeconomics that the quantity demanded of good x (denoted by
Qx) by a consumer depends, other things remaining the same, on the price of the good x
(denoted by Px), price of related goods (either substitutes or complements denoted by Pr),
and income of the consumer (denoted by Y ). Then, the consumer’s demand function can be
written as

Qx = f (Px,Pr,Y ) (3.8.2)

We know, from Section 3.7, that the partial derivative ∂Qx/∂Px measures the rate of change
of Qx when Px changes by an infinitesimally small amount (or by dPx), holding Pr and Y
constant. Therefore, following equation (3.8.1), the change in Qx when Px changes by dPx

is given by the product of ∂Qx/∂Px and dPx; that is, by [∂Qx/∂Px] × dPx. Similarly, the
changes in Qx when Pr and Y change, respectively, by dPr and dY are given, respectively,
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by [∂Qx/∂Px] × dPr and [∂Qx/∂Px] × dY . If we add all these three component changes,
we obtain the total change in Qx as

dQx = ∂Qx

∂Px
× dPx + ∂Qx

∂Pr
× dPr + ∂Qx

∂Y
× dY (3.8.3)

where dQx is called the total differential of the demand function in equation (3.8.2). The
process of finding this total differential is called total differentiation. We now generalize the
result in equation (3.8.3) to the case of a multivariate function with n independent variables.
Suppose that the multivariate function is y = f (x1,x2,x3, . . . ,xn). Then, the total differential
of this function, evaluated at (x0

1,x
0
2,x

0
3, . . . ,x

0
n), is

dy = f1(x0
1,x

0
2,x

0
3, . . . ,x

0
n)dx1 + f2(x0

1,x
0
2,x

0
3, . . . ,x

0
n)dx2 + f3(x0

1,x
0
2,x

0
3, . . . ,x

0
n)dx3 +·· ·

+ fn(x0
1,x

0
2,x

0
3, . . . ,x

0
n)dxn =

n∑
i=1

fi(x
0
1,x

0
2,x

0
3, . . . ,x

0
n)dxi (3.8.4)

where fi(x0
1,x

0
2,x

0
3, . . . ,x

0
n) denotes the partial derivative of the function y = f (x1,x2,

x3, . . . ,xn) with respect to the ith independent variable, each evaluated at (x0
1,x

0
2,x

0
3, . . . ,x

0
n).

Let us now consider partial differentials. Consider the multivariate function in equation
(3.8.2). The total differential of this function is given in equation (3.8.3). Assume now
that only Px in the function changes, while Pr and Y remain constant. This implies that
dPr = dY = 0. Therefore, equation (3.8.3) reduces to dQx = [∂Qx/∂Px] × dPx, which is
called a partial differential of Qx = f (Px,Pr,Y ). Similarly, we can get the other partial
differentials of the function as dQx = [∂Qx/∂Pr]× dPr and dQx = [∂Qx/∂Y ]× dY .

3.8.3 Higher differentials and higher total differentials

We found differentials of univariate functions and total differentials of multivariate func-
tions in the previous two sections. However, students of economics, business, and finance
sometimes need to use higher differentials and higher total differentials, particularly in
optimization problems. Therefore, we shall present them here.

Equation (3.8.1) gives the differential dy of the univariate function y = f (x). How do we
find the second differential of this function? It can be found by differentiating dy again. It
should be noted, however, that when we differentiate dy again it is with respect to f ′(x). The
reason is that f ′(x) is the independent variable in equation (3.8.1), and dx is just a constant
as it is a real number. Therefore, differentiating dy in equation (3.8.1) again, we obtain

d2y = d(dy) = d[ f ′(x)dx] = [df ′(x)]dx = [ f ′′(x)dx]dx = f ′′(x)dx2 (3.8.5)

Following the same arguments as above, we can find the third differential of the function
y = f (x), and it is given by d3y = f ′′′(x)dx3. Continuing analogously, we obtain the nth
differential of y = f (x), if it exists, as

dny = f n(x)dxn (3.8.6)

We shall now turn to the higher total differentials (that is, higher differentials of multi-
variate functions). Let us first consider the case of a multivariate function with two
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independent variables, y = f (x1,x2). Using equation (3.8.4), the first total differential of
this function can be found as dy = f1dx1 + f2dx2, which is identical to equation (2.8.8).
The second total differential of this equation can be found by differentiating again the first
total differential. But, when we find the second total differential, as in the case of the first
total differential, dx1 and dx2 are considered constants, and f1 and f2 are considered to be
variables. Therefore, differentiating dy = f1dx1 + f2dx2 again totally, we find d2y = d(dy) =
[∂(dy)/∂x1]dx1+[∂(dy)/∂x2]dx2 =[∂(f1dx1+f2dx2)/∂x1]dx1+[∂(f1dx1+f2dx2)/∂x2]dx2 =
(f11dx1 + f12dx2)dx1 + (f21dx1 + f22dx2)dx2 = f11dx2

1 + f12dx2dx1 + f21dx1dx2 + f22dx2
2. Since

f12 = f21, the last result can be written as

d2y = f11dx2
1 + f12dx2dx1 + f21dx1dx2 + f22dx2

2 = f11dx2
1 + 2f12dx1dx2 + f22dx2

2 (3.8.7)

Notice that equation (3.8.7), which is identical to equation (2.8.9), gives us the second total
differential of the multivariate function with two independent variables, y = f (x1,x2). Follow-
ing the same procedure, one can obtain the second total differentials of multivariate functions
with three and n independent variables (y = f (x1,x2,x3) and y = f (x1,x2,x3, . . . ,xn)),
respectively, as

d2y = f11dx2
1 + f22dx2

2 + f33dx2
3 + 2f12dx1dx2 + 2f13dx1dx3 + 2f23dx2dx3 (3.8.8)

and

d2y = f11dx2
1 + f22dx2

2 + f33dx2
3 +·· ·+ fnndx2

n

+ 2f12dx1dx2 + 2f13dx1dx3 +·· ·+ 2f1ndx1dxn + 2f23dx2dx3 + 2f24dx2dx4 +·· ·
+ 2f2ndx2dxn +·· ·+ 2fn(n−1)dxndxn−1 (3.8.9)

Notice that the total differentials we used as quadratic forms (along with their matrix
representations) in Sections 2.8.2–2.8.4 (with borders in the case of bordered Hessian
matrices and bordered Hessians in Section 2.8.3) were special cases (with n = 2 and with
n = 3) of equation (3.8.9).

3.8.4 Rules of differentials

Differentials obey some important rules. Suppose that we have two functions y = f (x1,x2)
and z = g(x1,x2), and a constant s. Then, the following rules of differentials are valid. Notice
that many of these rules resemble the rules of differentiation.

Rule I. Constant function: ds = 0.
Rule II. Function-with-constant: d(sy) = sdy.
Rule III. Power function: d(yn) = nyn−1dy.
Rule IV. Sum–difference: d(y ± z) = dy ± dz.
Rule V. Product: d(y × z) = z × dy + y × dz.
Rule VI. Quotient: d(y/z) = (z × dy − v × dz)/z2.

3.8.5 Derivatives of multivariate composite functions: total derivatives

So far, we have been concerned with multivariate functions whose independent variables
were independent. This meant that in a multivariate function y = f (x1,x2), x1 and x2 were
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assumed to be independent or unrelated. But, one can cite many examples of multivariate
functions in economics, business, and finance with independent variables that are related.

One simple example is the quantity of output (y) produced by a firm. We know that y
depends on many factors. Assume for convenience that y depends on time t (because time
can affect technology, which, in turn, will affect y) and the quantity of labor (L) used.
Therefore, the firm’s production function can be written as y = f (L, t). But, we know that
the quantity of labor that the firm uses will change over time; that is, L depends on t. This
implies that L is a function of t; that is, L = g(t). What all these mean is that a change in
t will affect y directly through the function f and indirectly through the function g. This is
illustrated in Figure 3.8.2(A). The question now is: how can we find the effect of a change
in t on y when t and L are dependent? The answer is that, to find the effect of a change in t
on y when t and L are dependent, we have to use the method called total derivative, which
is discussed below.

As Figure 3.8.2(A) shows, there are two impacts on y of a change in t: (1) the direct impact
through f and (2) the indirect impact through f and g. To obtain the total impact on y (or the
total derivative), we first find the differential of y: it is given as dy = fLdL+ ftdt. We can now
divide both sides of this equation by dt to yield

dy

dt
= •

y = fL
dL

dt
+ ft

dt

dt
= fL

•
L+ft (3.8.10)

where dL/dt = •
L. Equation (3.8.10) gives the total derivative of y with respect to t. The

process of finding the total derivative is called total differentiation.
Suppose now that the firm employs two factors, capital (K) and labor (L). Also suppose

that K = g(t) and L = h(t). Therefore, we can write the firm’s production function as
y = f (K,L, t). As above, the relationship among y, K , L, and t can be illustrated through
Figure 3.8.2(B). Following the same line of arguments as that we used in the derivation of
equation (3.8.10), we obtain the total derivative of y with respect to t as

dy

dt
= •

y = fK
dK

dt
+ fL

dL

dt
+ ft

dt

dt
= fK

•
K +fL

•
L+ft (3.8.11)
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where dL/dt = •
L and dK/dt = •

K . Let us now generalize the above results to a general function
y = f (x1,x2,x3, . . . ,xn, t), where x1,x2,x3, . . . ,xn are different functions of t. Then the total
derivative of y with respect to t is given by

dy

dt
= •

y = f1
dx1

dt
+ f2

dx2

dt
+ f3

dx3

dt
+·· ·+ fn

dxn

dt
= f1

•
x 1 + f2

•
x 2 + f3

•
x 3 +·· ·+ fn

•
x n + ft

(3.8.12)

where dx1/dt = •
x 1, dx2/dt = •

x 2, dx3/dt = •
x 3, . . . ,dxn/dt = •

x n.
Notice that if a variable (t in our present case) does not appear directly in a function (but

only indirectly through other independent variable(s)), then that variable does not directly
influence the dependent variable. This means that that the panels in Figure 3.8.2 will be devoid
of the kinked arrows. This also means that the total derivatives of such functions (such as
equations (3.8.10)–(3.8.12)) will be devoid of the term representing the partial derivative of
the function with respect to that variable (ft).

As an example, consider the function y = f (x, t) = 10xt + 2x2, where x = g(t) = t2.
Then, applying equation (3.8.12), we can find the total derivative of y with respect to t as
•
y = fx

•
x+ft(dt/dt) = fx

•
x+ft = (10t +4x)(2t)+ (10x) = 20 t2 +8tx+10x. Since x = g(t) = t2,

substituting this into the last result gives us
•
y = (10t +4x)(2t)+ (10x) = 20t2 +8t3 +10t2 =

30t2 +8t3. This result can be verified by substituting x = g(t) = t2 into y = f (x, t) = 10xt+2x2

and differentiating the result with respect to t. Substituting x = g(t) = t2 into y = f (x, t) =
10xt + 2x2, we obtain y = f (x, t) = 10 t2t + 2(t2)2 = 10 t3 + 2 t4. Then, differentiating this

last equation with respect to t yields
•
y = [d(10t3 + 2t4)/dt] = 30t2 + 8t3, which is identical

to the result we obtained above.
Assume now that our function is y = f (xi, ti), where xi = gi(ti), and i = 1,2, . . . ,n. Then

the total derivative of y = f (xi, ti) with respect to ti (holding tj constant, where i �= j) is
obtained as

dy

dti
= ∂y

∂x1

dx1

dti
+ ∂y

∂x2

dx2

dti
+·· ·+ ∂y

∂xn

dxn

dti
+ ∂y

∂ti

dti
dti

+ ∂y

∂t2

dt2
dti

+·· ·+ ∂y

∂tn

dtn
dti

= ∂y

∂x1

dx1

dti
+ ∂y

∂x2

dx2

dti
+·· ·+ ∂y

∂xn

dxn

dti
+ ∂y

∂ti
(3.8.13)

where (dti/dti) = 1 and (∂y/∂t2)(dt2/dti) = ·· · = (∂y/∂tn)(dtn/dti) = 0 (because tj, where
i �= j, is held constant).

So far, we have been concerned with the first total derivative of different multivariate
functions. We now consider the second total derivative of such functions. As an example,
assume that our function is y = f (x1,x2), where x1 = g(t) and x2 = h(t). Notice that the
function is not directly influenced by the variable t. Applying equation (3.8.12) we obtain the
first total derivative of y = f (x1,x2, t) with respect to t as dy/dt = f1(dx1/dt) + f2(dx2/dt).
If we totally differentiate the last equation with respect to t again, we obtain the second
total derivative of y = f (x1,x2) with respect to t. Therefore, differentiating dy/dt =
f1(dx1/dt) + f2(dx2/dt) + ft totally with respect to t, we obtain d2y/dt2 = {∂[ f1(dx1/dt) +
f2(dx2/dt)]/∂x1}(dx1/dt) + {∂[ f1(dx1/dt) + f2(dx2/dt)/∂x2}(dx2/dt). Notice that the first
term on the RHS, {∂[ f1(dx1/dt)+ f2(dx2/dt)]/∂x1}(dx1/dt), can be written as {f11(dx1/dt)+
f1[∂(dx1/dt)/∂x1] + f21(dx2/dt) + f2[(∂/∂x1)(dx2/dt)](dx1/dt). This expression can be
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written as f11(dx1/dt)2 + f1(d2x1/dt2)(dt/dx1)(dx1/dt) + f21(dx2/dt)(dx1/dt) =
f11(dx1/dt)2 + f1(d2x1/dt2)+ f21(dx2/dt)(dx1/dt), because f1∂(dx1/dt)/∂x1 = f1[d(dx1/dt)/
dt](dt/dx1) = f1(d2x1/dt2)(dt/dx1) and f2[∂(dx2/dt)/∂x1] = f2[0] since dx2 = 0 when we
hold x2 constant and differentiate with respect to x1. Similarly, the second term on the
RHS, {∂[ f1(dx1/dt) + f2(dx2/dt)/∂x2}(dx2/dt), can be written as f12(dx1/dt)(dx2/dt) +
f1(0) + f22(dx2/dt)2 + f2(d2x2/dt2). Using these two results, we can rewrite the second
total derivative as d2y/dt2 = f11(dx1/dt)2 + f1(d2x1/dt2) + f21(dx2/dt)(dx1/dt) +
f12(dx1/dt)(dx2/dt) + f22(dx2/dt)2 + f2(d2x2/dt2) = f11(dx1/dt)2 + f22(dx2/dt)2 +
2f12(dx1/dt)(dx2/dt) + f1(d2x1/dt2) + f2(d2x2/dt2).

3.8.6 Differentiation of multivariate implicit functions:
implicit partial derivatives

We discussed univariate implicit functions in Section 1.8.4. We learned, in Section 3.3.12,
how to differentiate univariate implicit functions. Here we extend our exposition to
multivariate implicit functions, and attempt to see how one can differentiate such functions
and obtain implicit partial derivatives. But, a proper understanding of the differentiation of
multivariate implicit functions requires an understanding of the implicit function theorem.
Therefore, we begin this section by discussing the implicit function theorem.

Suppose that we have a multivariate implicit function given by F(y,x1,x2,x3, . . . ,xn) = s,
where s is a constant. Also let that this implicit function is defined at (y0,x0

1,x
0
2,x

0
3, . . . ,x

0
n)

and that this function has continuous partial derivatives at (y0,x0
1,x

0
2,x

0
3, . . . ,x

0
n) with

Fy(y0,x0
1,x

0
2,x

0
3, . . . ,x

0
n) �= 0. Then, the implicit function theorem states that there exists

a function y = f (x1,x2,x3, . . . ,xn), defined in the neighborhood of (x0
1,x

0
2,x

0
3, . . . ,x

0
n)

corresponding to F(y,x1,x2,x3, . . . ,xn) = s, such that (1) F[ f (x0
1,x

0
2,x

0
3, . . . ,x

0
n),x0

1,x
0
2,

x0
3, . . . ,x

0
n] = s, (2) y0 = f (x0

1,x
0
2,x

0
3, . . . ,x

0
n), and (3) fi(x0

1,x
0
2,x

0
3, . . . ,x

0
n) = Fxi (x

0
1,x

0
2,

x0
3, . . . ,x

0
n)/Fy(x0

1,x
0
2,x

0
3, . . . ,x

0
n), with Fxi (x

0
1,x

0
2,x

0
3, . . . ,x

0
n) = ∂F(y,x1,x2,x3, . . . ,xn)/∂xi

and Fy(x0
1,x

0
2,x

0
3, . . . ,x

0
n) = ∂F(y,x1,x2,x3, . . . ,xn)/∂y. In simple terms, what the implicit

function theorem says is that, among others, given an implicit function F(y,x1,x2,

x3, . . . ,xn) = s, one can derive an explicit function of the form y = f (x1,x2,x3, . . . ,xn).
We have already applied the above implicit function theorem in Section 3.3.12 to find the
derivatives of univariate implicit functions.

Now consider a multivariate implicit function F(y,x1,x2,x3, . . . ,xn) = s. One can now
apply both the implicit function theorem stated above and the implicit function rule of
differentiation to obtain the total differential of this function (using equation (3.8.4)) as
Fydy + F1dx1 + F2dx2 + F3dx3 + ·· · + Fndxn = 0. Assume now that only y and x1 vary
while all other variables (x2,x3, . . . ,xn) are assumed to be constant. This implies that dy �= 0,
dx1 �= 0, and dx2 = dx3 = ·· · = dxn = 0. Then the equation Fydy +F1dx1 +F2dx2 +F3dx3 +
·· ·+Fndxn = 0 becomes Fydy+F1dx1 = 0, and solving for dy/dx1 = ∂y/∂x1 yields dy/dx1 =
∂y/∂x1 = −F1/Fy, which is an implicit partial derivative. Following the arguments above,
one can derive the other implicit partial derivatives. In general, if there exists a multivariate
implicit function F(y,x1,x2,x3, . . . ,xn) = s with its explicit form y = f (x1,x2,x3, . . . ,xn), as
defined by the implicit function theorem, one can obtain the implicit partial derivative of
y = f (x1,x2,x3, . . . ,xn) with respect to xi (where i = 1,2,3, . . . ,n), and is defined by

dy

dxi
= ∂y

∂xi
= − Fi

Fy
(3.8.14)
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Notice that in the case of univariate implicit function F(y,x) = s, equation (3.8.14) can be
written as dy/dx = −Fx/Fy. Notice also that this was the result that we used in the example
of Section 3.3.12. Therefore, we do not repeat here the differentiation of univariate implicit
functions.

As an example of the application of equation (3.8.14), consider the multivariate implicit
function F(y,x1,x2) = y2+x1y+x2y = 0, where s = 0. Therefore, applying equation (3.8.14),
we can find the partial derivatives ∂y/∂x1 and ∂y/∂x2 as ∂y/∂x1 = −F1/Fy = [−(2y +
y)]/[2y + x1 + x2] = −3y/(2y + x1 + x2), and ∂y/∂x2 = −F2/Fy = −y/(2y + x1 + x2),
respectively.

3.8.7 Application examples

Example 1. Suppose that the national income in a three-sector economy is given by
Y = C +I0 +G0, where C = C0+bYd , Yd = Y −T , T = T0 + tY , C0, I0,G0,T0> 0, 0< b< 1,
and 0 < t < 1; and where Y , C, I0, G0, C0, Yd , T , T0, b, and t denote national income,
consumption expenditure, autonomous investment, autonomous government expenditure,
autonomous consumption expenditure, disposable income, tax receipts, autonomous tax,
MPC, and the fraction of national income collected as taxes respectively. Assume now that
I0 = $100, G0 = $400, C0 = $50, T0 = $200, b = 0.75, and t = 0.25. Find the change in
equilibrium level of income (Y ∗) when: (i) government autonomous expenditure increases
by $100; (ii) government autonomous expenditure decreases by $100; (iii) autonomous tax
increases by $100; (iv) autonomous tax decreases by $100; (v) autonomous investment
increases by $100; and (vi) autonomous investment decreases by $100. All the values are
in billions of dollars.

Solution. This problem can be solved using partial differentials. But, before this, we need
to find the equilibrium level of income in the economy. Substituting C = C0 + bYd , Yd =
Y − T , T = T0 + tY into Y = C + I0 + G0 and simplifying the resulting expression yields
the equilibrium level of income: Y ∗ = [1/(1 − b + bt)] [C0 − bT0 + I0 + G0]. Substituting
I0 = 100, G0 = 400, C0 = 50, T0 = 200, b = 0.75, and t = 0.25 into the last equation
gives Y ∗ = [1/(1 − b + bt)] [C0 − bT0 + I0 + G0] = 400/0.4375 = $915 billion.

(i) To find the change in equilibrium level of income when the government expenditure
increases by $100 billion, we can use the equation of partial differential given in Section 3.8.2.
The partial differential of income with respect to government autonomous expenditure is
given by�Y ∗ = (∂Y ∗/∂G0)×�G0 (which is equal to dY ∗ = (∂Y /∂G0)×dG0 when�G0 is
infinitesimally small). Since ∂Y ∗/∂G0 = 1/(1−b+bt) = 2.29 and�G0 =+$100, the change
in equilibrium level of income is �Y ∗ = (∂Y ∗/∂G0) ×�G0 = [1/(1 − b + bt)] ×�G0 =
2.29 × $100 = $229 billion.

(ii) The only difference between the answer to this question and the answer to the last
question is that now �G0 = −$100 while it was �G0 = +$100 in the last question.
Therefore, we can use all the last results with �G0 = −$100. Then the change in the
equilibrium level of income when autonomous government expenditure decreases by $100
billion is �Y ∗ = (∂Y ∗/∂G0) × −�G0 = [1/(1 − b + bt)] × −�G0 = 2.29 × −$100 =
− $229 billion.

(iii) Following arguments similar to those above, the partial differential of Y ∗ with
respect to autonomous tax is given by �Y ∗ = (∂Y ∗/∂T0) × �T0. Since ∂Y ∗/∂T0 =
[−b/(1 − b + bt)] = −1.715 and �T0 = +$100, the change in equilibrium level of income
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when autonomous tax increases by $100 billion is�Y ∗ = (∂Y ∗/∂T0)×�T0 = [−b/(1−b+
bt)]×�T0 = −1.715 × $100 = −$171.5 billion.

(iv) The partial differential of Y ∗ with respect to autonomous tax is given by �Y ∗ =
(∂Y ∗/∂T0) × �T0. Since ∂Y ∗/∂T0 = [−b/(1 − b + bt)] = −1.715 and �T0 = −$100
billion, the change in equilibrium level of income when autonomous tax decreases by
$100 billion is �Y ∗ = (∂Y ∗/∂T0) × −�T0 = [−b/(1 − b + bt)] × −�T0 = −1.715 ×
−$100 = $171.5 billion.

(v) The partial differential of Y ∗ with respect to autonomous investment is given by
�Y ∗ = (∂Y ∗/∂I0)×�I0. Since ∂Y /∂I0 = 1/(1−b+bt) = 2.29 and�I0 = $100, the change
in equilibrium level of income when autonomous investment increases by $100 billion is
�Y ∗ = (∂Y ∗/∂I0) ×�I0 = 1/(1 − b + bt) ×�I0 = 2.29 × $100 = $229 billion.

(vi) The partial differential of Y ∗ with respect to autonomous investment is given by
�Y ∗ = (∂Y ∗/∂I0)×�I0. Since ∂Y /∂I0 = 1/(1−b+bt) = 2.29 and�I0 =−$100, the change
in equilibrium level of income when autonomous investment decreases by $100 billion is
�Y ∗ = (∂Y ∗/∂I0) ×−�I0 = 1/(1 − b + bt) ×−�I0 = 2.29 ×−$100 = −$229 billion.

Example 2. Suppose that a firm, producing Q units of output using K units of capital and L
units of labor, has the production function given by the Cobb–Douglas form Q = f (K,L) =
KαL1−α . Find the approximate change in the total output when both K and L change by
infinitesimally small amounts.

Solution. To solve this problem, we have to find the total differential of Q using
equation (3.8.4). But, to use this equation, we first need to find the partial derivatives of
Q with respect to both K and L (marginal products of capital and labor, respectively). These
are given, respectively, by ∂Q/∂K = αKα−1L1−α = αQ/K and ∂Q/∂L = (1 −α)KαL−α =
[(1 − α)Q]/L. Therefore, the approximate change in the total output Q when both K and L
change by infinitesimally small amounts is given, by equation (3.8.4), as dQ = (∂Q/∂K)dK +
(∂Q/∂L)dL = [αKα−1L1−α]dK +[(1 −α)KαL1−α]dL = (αQ/K)dK +[(1 −α)Q/L]dL.

Example 3. Suppose that a firm, producing Q units of output using K units of capital, L
units of labor, and using t level of technology, has the production function given by the form
Q = f (K,L, t) = KαLβ t1−α−β . Also suppose that K = g(t) = 2t and L = h(t) = 3t. Find the
change in the total output produced when technology changes by an infinitesimally small
amount.

Solution. To solve this problem, we need to use the total derivative in equation (3.8.11)
as a special case of equation (3.8.12). The change in output due to a very small change in
the level of technology is given by the total derivative of Q with respect to t: dQ/dt =
•
Q = fK (dK/dt) + fL(dL/dt) + ft = fK

•
K +fL

•
L+ft . From Q = f (K,L, t) = KαLβ t1−α−β

we can find ∂Q/∂K = αKα−1Lβ t1−α−β ; ∂Q/∂L = βKαLβ−1t1−α−β ; and
•
Q = (1 −

α − β)KαLβ t−α−β . Plugging these partial derivatives in
•
Q yields

•
Q = fK

•
K +fL

•
L+ft =

αKα−1Lβ t1−α−β •
K +βKαLβ−1t1−α−β •

L+(1 − α − β)KαLβ t−α−β = (αQ/K)
•
K +

(βQ/L)
•
L+[(1 − α − β)Q]/t. Since

•
K = dK/dt = 2 and

•
L = dL/dt = 3, the last result

can be written as
•
Q = (αQ/K)

•
K +(βQ/L)

•
L+[(1 − α− β)Q/t] = (2αQ/K) + (3βQ/L) +

[(1 −α−β)Q/t].
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Example 4. Consumer equilibrium. Assume that an indifference curve representing the
utility (U ) obtained by a consumer when two goods (y and x) are consumed is defined
by the implicit utility function U (y,x) = U0, where U0 is a constant. Also assume that the
consumer’s budget line is represented by the equation pyy + pxx = I , where py, px, and I
denote the price of good y, the price of good x, the income of the consumer, respectively.
Show that, when the consumer is in equilibrium, the slope of the indifference curve is equal to
the slope of the budget line (that is, Ux/Uy = px/py, where Ux and Uy represent the marginal
utilities that the consumer obtains from x and y, respectively).

Solution. Let us write the budget line as y = (I/py)− (px/py)x. This shows that the vertical
intercept of the budget line is I/py and its horizontal intercept is I/px. Differentiating y in
y = (I/py) − (px/py)x with respect to x gives the slope of the budget line: dy/dx = −px/py.

We now find the slope of the indifference curve. This can be found by applying
the implicit function theorem and the technique of total differentiation. Using these, we
obtain (∂U/∂y)dy + (∂U/∂x)dx = d(U0) = 0. Notice that ∂U/∂y = Uy and ∂U/∂x = Ux.
Substituting these two into (∂U/∂y)dy + (∂U/∂x)dx = d(U0) = 0 yields Uydy + Uxdx = 0.
By rearranging this result we get Uydy = −Uxdx or dy/dx = −Ux/Uy. Therefore, the slope
of the indifference curve representing utility U0 is dy/dx = −Ux/Uy.

We know from the principles of microeconomics that the slope of the budget line is
equal to the slope of the indifference curve at the point of equilibrium (E). This is shown
in Figure 3.8.3(A). Therefore, equating the slope of the indifference curve with the slope
of the budget line, we get −Ux/Uy = −px/py = −MUx/MUy. As shown in example 1 in
Section 4.4.11, this is indeed the condition for consumer equilibrium. Notice that the slope
of the indifference curve is called marginal rate of substitution between x and y (denoted
by MRSxy). Therefore, when the consumer is in equilibrium, we have the condition that
MRSxy = −Ux/Uy = −px/py = −MUx/MUy.

Example 5. Producer equilibrium. Assume that an isoquant representing the output (Q)
manufactured by a producer when two factors (capital, K , and labor, L) are employed is
defined by an implicit production function Q(K,L) = Q0. Also assume that the producer’s
isocost line is represented by the equation rK +wL = M , where r, w, and M denote interest

E

y

x

(A) (B)
0 I/Px

I/Py

U0

y*

x*

G

K

L0

M/r

K*

L* M/w

Q0

Figure 3.8.3
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rate (the price of capital), wage rate (the price of labor), and the amount of investment,
respectively. Show that, when the producer is in equilibrium (that is, when the cost of
production is minimized), the slope of the isocost line is equal to the slope of the isoquant
(that is, MPL/MPK = w/r, where MPK and MPL denote the marginal products of capital and
labor, respectively).

Solution. Let us write the isocost line as K = (M/r)− (w/r)L. This shows that the vertical
intercept of the isocost line is M /r and its horizontal intercept is M /w. Differentiating K in
K = (M/r) − (w/r)L with respect to L gives the slope of the isocost line: dK/dL = −w/r.

Let us now find the slope of the isoquant. This can be found, as before, by applying
the implicit function theorem and the technique of total differentiation. Using these,
we obtain (∂Q/∂K)dK + (∂Q/∂L)dL = d(Q0) = 0. Notice that ∂Q/∂K = MPK and
∂Q/∂L = MPL. Substituting these two into (∂Q/∂K)dK + (∂Q/∂L)dL = d(Q0) = 0 yields
MPKdK + MPLdL = 0. By rearranging this equation we get MPKdK = −MPLdL or
dK/dL = −MPL/MPK . Therefore, the slope of the isoquant representing output Q is
dK/dL = −MPL/MPK .

We know that the slope of the isocost line is equal to the slope of the isoquant at the
point of equilibrium (G). This is shown in Figure 3.8.3(B). Therefore, equating the slope of
the isoquant with the slope of the isocost line, we get −MPL/MPK = −w/r. As shown in
example 2 in Section 4.4.11, this is indeed the condition for producer equilibrium. Notice
that the slope of the isoquant is called marginal rate of technical substitution between L
and K (denoted by MRTSLK ). Therefore, when the producer is in equilibrium, we have the
condition that MRTSLK = −MPL/MPK = −w/r.

3.8.8 Exercises

1. Find the differentials of the following functions:
(i) y = 2x3 + 4x2 + 8x + 10; (ii) y = (x + 2)2; (iii) y = (x + 2)3; (iv) y = 2x/(x + 1);
(v) y = x/(x + 1).

2. Find the total differentials of the following functions:
(i) y = x1x2; (ii) y = x2

1x2
2; (iii) y = x1/x2; (iv) y = (x1 + x2)2.

3. Find the second differentials of the following functions:
(i) y = 2x3 + 4x2 + 8x + 10; (ii) y = (x + 2)2; (iii) y = x/(x + 1); (iv) y = x1x2;
(v) y = x2

1x2
2; (vi) y = x1/x2.

4. Find the total derivatives of the following functions:
(i) y = x1x2, where x1 = 2x2

2; (ii) y = x2
1x2

2, where x1 = 2x2
2; (iii) y = x1 + x2 where

x1 = 2x2
2.

5. Find dy/dx of the following functions:
(i) 2x2 + 3y = 0; (ii) 2x + 3y = 0; (iii) y/(x + 1) = 2; (iv) (x + 1)/y = 2.

6. Application exercise. Suppose that the national income in a three-sector economy
is given by Y = C + I0 + G0, where C = C0 + bYd, Yd = Y − T , T = T0 + tY ,
C0, I0,G0,T0 > 0, 0 < b < 1, and 0 < t < 1, and where Y , C, I0, G0, C0, Yd , T ,
T0, b, and t denote national income, consumption expenditure, autonomous invest-
ment, autonomous government expenditure, autonomous consumption expenditure,
disposable income, tax receipts, autonomous tax, MPC, and the fraction of national
income collected as taxes, respectively. Assume that I0 = $50, G0 = $500, C0 = $100,
T0 = $300, b = 0.80, and t = 0.20. (i) Find the equilibrium level of income in
the economy. (ii) What should be the change in autonomous investment so that
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the equilibrium level of income will be $1000? (iii) What should be the change in
autonomous government expenditure so that the equilibrium level of income will be
$1100? (iv) What should be the change in autonomous tax so that the equilibrium level
of income will be $1200? All values are in billions.

7. Application exercise. Suppose that the total utility, U , that a consumer obtains from the
consumption two goods, x and y, is given by the function U = f (x,y) = xαy1−α . Find
the approximate change in total utility when both x and y change by infinitesimally
small amounts.

8. Application exercise. Suppose that the total revenue R that a seller receives from the
sale of two goods, x and y, along with the advertisement expenditure, ν, is given
by the function R = f (x,y,v) = x0.4y0.4v0.2. Also suppose that x = g(v) = 0.5v and
y = h(v) = v. Find the change in the total revenue when advertisement expenditure
changes by an infinitesimally small amount.

9. Application exercise. Assume that an indifference curve representing the utility (U )
obtained by a consumer when two goods (y and x) are consumed is defined by the implicit
utility function U (y,x) = y0.4x0.6 = 100. Also assume that the consumer’s budget line is
represented by the equation pyy+pxx = I , where py = $2 denotes the price of good y, px

= $4 denotes the price of good x, and I = $10 000 denotes the income of the consumer.
Show the equilibrium of this consumer (assuming that the equilibrium occurs when the
slope of the indifference curve is equal to the slope of the budget line).

10. Application exercise. Assume that an isoquant representing the output (Q) manufact-
ured by a producer when two factors (capital, K , and labor, L) are employed is defined
by the implicit production function Q(K,L) = K0.4L0.6 = 500. Also assume that the
producer’s isocost line is represented by the equation rK + wL = M , where r = 0.2
denotes interest rate, w = $10 denotes wage rate, and M = $100 000 denotes the amount
of investment. Show the equilibrium of this producer (assuming that the equilibrium
occurs when the slope of the isoquant is equal to the slope of the isocost line).

Web supplement: S3.8.9 Mathematica applications
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4 Classical optimization

4.1 Introduction

Every student of economics begins the study of the subject with an introduction to the
relationship between available resources and human wants. It is a reality that the resources to
satisfy unlimited human wants are scarce. This necessitates choice. Every economic agent,
whether the agent is a consumer, or a producer, or a government, is compelled to make
choices. Since the agent is assumed to be rational, the agent attempts to allocate the scarce
resources in such a way that the agent’s objective is “optimized.” Such an allocation of
resources is called the optimal allocation of resources.

The science of economics deals with the economic behavior of economic agents. Every
consumer is assumed to allocate his or her income to different goods and services that he or
she buys so that his or her objective is optimized. Every business firm is assumed to allocate
its resources so that its objective is optimized. Similarly, government agents are assumed to
allocate resources so that society’s benefits or welfare will be optimized. It is needless to
say that optimal allocation of resources lies at the heart of the science of economics. The
states of affairs are similar in the fields of business and finance. Therefore, a reasonably
good understanding of the topic of optimization is indispensable for students of economics,
business, and finance.

However, a very important question that arises now is how one can say that a particular
economic agent has, in fact, optimized the agent’s objective. There exist several mathematical
approaches, concerned with differing states of nature, to answer this and the related questions.
These include classical approach, linear programming approach, nonlinear programming
approach, game theory approach, and so on. It should be noticed that these approaches are
complementary in that they are concerned with problems with different states of nature.

This chapter deals with the classical approach to optimization. We consider other relati-
vely newer approaches in the following chapters. We have already presented, in the previous
three chapters, most of the mathematical prerequisites for a comprehensive but introductory
discussion of optimization problems that follow in this chapter. We begin this chapter with
an introduction to different concepts that students normally encounter in optimization topics.

4.2 Optima and extrema of univariate objective functions

4.2.1 Objective function and optima

In this section we are concerned with univariate functions. We mentioned above that the aim
of every economic agent is to attain the optimum of a goal, called the objective function.
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Consider, for example, the case of a consumer who consumes one good, x. The consumer
consumes this good because the consumer obtains utility or satisfaction from its consumption.
Therefore, the consumer’s aim is to consume that quantity of x so as to obtain the “maximum”
possible level of utility expressed by a utility function. Therefore, the objective function in
this example is the consumer’s utility function that is to be optimized.

As another example, consider the case of a firm that produces good x. We know from
the principles of microeconomics that the aim of the firm, other things remaining the same,
is to obtain maximum profits. But, again other things remaining the same, maximization of
profits depends on the cost of production. Therefore, the aim of the firm is to choose its output
level so that its cost is “minimum” or, in other words, its profit is maximum. In short, the
objective function in this example is the producer’s cost function or profit function that is to
be minimized or maximized, respectively.

As the last example, consider the case of a local government that plans to build a recreation
facility for the local people. As above, the aim of the government is to build the facility such
that the social benefit to the local people is maximum. Therefore, the objective function in
this example is the social benefit function that is to be maximized.

In all three illustrative examples above, the economic agents are either maximizing
or minimizing their respective objective functions. This implies that optimization of an
objective function is either maximization or minimization of the objective function. And the
optimum value of the function is either the maximum value or the minimum value depending
upon whether the function is maximized or minimized, respectively. These values are also
called optima.1

4.2.2 Optima and extrema

We stated above that optimization is either maximization or minimization of an objective
function, and that optima refer to either the maximum value or the minimum value of the
function. But, this classification is purely from an application or economic point of view, and
it does not have a mathematical connotation.

However, when we refer to the optima of an objective function what we mean is
the maximum or minimum possible value of the function; that is, the extreme values
or the extrema of the function. Therefore, the correct mathematical term for maximum
and minimum values (or, for optima) is extrema. However, we will use these terms
interchangeably in our following discussions.

4.2.3 Extrema: graphical illustrations and definitions

We saw that in Figures 3.5.1(A) when the first derivative of a function (say, y = f (x)) is
greater than zero or if f ′(x)> 0 at x = x0, then the graph of the function would increase at
x = x0, as represented by point A. We also saw in the same figure that if the first derivative
is less than zero or if f ′(x) < 0 at x = x2, then the graph of the function would decrease at
x = x2, as represented by point C. One can give similar interpretations to points F and D in
Figure 3.5.1(B), which represents the graph of the function y = g(x). However, what will be
the values of f ′(x) and g′(x) at x = x1 (with corresponding points B and E)? To answer this
question, consider these figures again, which are reproduced in Figure 4.2.1 for convenience.

In equation (3.2.4) we defined the derivative of the function y = f (x) at a particular
point on its graph, which is equal to the slope of the function at that point on the graph,
as the ratio of the change in y to a very small change in x. Now consider points B and E
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in Figures 4.2.1(A) and (B), respectively. At both points the change in y is zero while the
change in x is different from zero. This implies that the ratio of the former to the latter must
be zero. Therefore, the derivatives of y = f (x) and y = g(x) at points B and E, respectively,
must be zero: f ′(x) = 0

∣∣
x=x1

and g′(x) = 0
∣∣
x=x1

. This answers our last question.
We are now ready to illustrate extrema or optima, the extreme or optimum values such

as maximum or minimum values. Assume that our objective function is y = f (x), the graph
of which resembles the one in Figure 4.2.2. Notice that the graph of the function y = f (x)
in Figure 4.2.2 is a smooth graph except at points F and G and, therefore, the function is
differentiable at every point on its graph except at F and G. We know that f ′(x)< 0 between
points A and B, between D and F, and on the RHS of G; and that f ′(x)> 0 between points
B and D, and between F and G. We also know that f ′(x) = 0 at points B and D.

A
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Figure 4.2.2
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Now consider the interval [0,x3] on the real line in Figure 4.2.2. Notice that this is a
closed interval. The lowest value of the function in this interval is at point B, corresponding
to x1. This lowest value of the function in the interval [0,x3] is called a relative minimum, or
a local minimum, of the function, and it occurs when x = x1. Now consider another interval,
[x2,x6], on the same real line. We know that this is, as before, a closed interval. As can be seen
from the figure, the highest value of the function in this interval is at point D, corresponding
to x3. This highest value of the function in the interval [x2,x6] is called a relative maximum,
or a local maximum, of the function, and it occurs at x = x3. Although f ′(x) is not defined at
points F and G, yet they represent local minimum and local maximum values of the function
in the intervals [x3,x6] and [x4,x6], respectively.

What will be the lowest and the highest values of the function if we discard the intervals
on the real line we mentioned above? If the lowest value of the function occurs at point B
when x takes any value on the real line, then that value of the function is called the global
minimum or the absolute minimum of the function. Similarly, if the highest value of the
function occurs at point D when x takes any value on the real line, then that value of the
function is called the global maximum or the absolute maximum of the function. The relative
or local minimum (or maximum) is called a relative extremum and the global or absolute
minimum (or maximum) is called the global extremum.

Let us now formally define local minimum (and maximum) and global minimum (and
maximum) of a function. A function f (x) has a relative minimum (or maximum) at x = x0 in
an interval containing x0 if f (x0) ≤ f (x) (or f (x0) ≥ f (x)) for all x in the interval, and f (x0) is a
local minimum (or maximum) of the function. Similarly, the function has the global minimum
(or maximum) if f (x0) ≤ f (x) (or f (x0) ≥ f (x)) for all x in the domain of the function, and
f (x0) is the global minimum (or maximum) of the function. It should be noticed that the
absolute minimum or maximum of a function, if it exists, is unique; and it may occur at more
than one value of x.

4.2.4 Extrema: necessary and sufficient conditions

Let us now discuss the formal tests of relative minimum and relative maximum (in other
words, of relative optima or extrema). For this we use Figure 4.2.2. Notice that we discard
points such as F and G from our discussion as the function is not differentiable at these points.
Our following discussion will pertain only to those points on the graph of the function where
the function is differentiable or the derivative of the function exists at those points.

The reader will have noticed an important feature of the graph of the function illustrated
in Figure 4.2.2. This feature is that the relative minimum (point B) or the relative maximum
(point D) occurs when the first derivative of the function is zero (or f ′(x) = 0).2 Another
important feature of the graph is that f ′(x)< 0 and f ′(x)> 0 to the immediate LHS and RHS,
respectively, of point B; and that f ′(x) > 0 and f ′(x) < 0 to the immediate LHS and RHS,
respectively, of point D. These suggest that at the point of minimum of the function, f ′(x)
changes sign from negative to positive (and vice versa); and at the point of maximum of the
function, f ′(x) changes sign from positive to negative (and vice versa). These results lead us
to the following condition, which is called the first-order condition (FOC) or the necessary
condition for extrema at x = x0. The FOC for a relative minimum of the function f (x) are

(i) f ′(x0) = 0 or f ′(x0) is not defined

(ii) f ′(x) changes sign from negative to positive at small values around x = x0

}
(4.2.1)
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Similarly, the FOC or necessary condition for a relative maximum of the function f (x):

(i) f ′(x0) = 0 or f ′(x0) is not defined
(ii) f ′(x) changes sign from positive to negative at small values around x = x0

}
(4.2.2)

What the above conditions imply can be easily seen from Figure 4.2.2. Notice that for both
a relative minimum and a relative maximum at x = x0, f ′(x0) must be zero at x = x0. However,
the condition f ′(x0) = 0 does not guarantee the existence of either a relative maximum
or a relative minimum. This can be illustrated through Figure 4.2.3. As can be seen from
Figure 4.2.3(A), the first derivative of the function y = f (x) (as shown in Figure 4.2.3(C))
corresponding to point A is zero; that is, f ′(x0) = 0. But point A is not a relative minimum
(or maximum) point of the function y = f (x). Similarly, we can see in Figure 4.2.3(B) that
the first derivative of the function y = g(x) (as shown in Figure 4.2.3(D)) corresponding to
point B is zero; that is, g′(x0) = 0. But, again, point B is not a minimum (or maximum) of
the function y = g(x).3 All this shows that f ′(x0) = 0 (or g′(x0) = 0) is only a necessary or a
FOC for an optimum of f (x) (or g(x)).

What, then, is the sufficient condition for a function to have relative extrema? The sufficient
condition for a function to have relative extrema is also called the second-order condition
(SOC). Let us use Figure 4.2.2 again to explain the SOC. We know from the results of our
discussions in Sections 3.5.1 and 3.5.2 that a function is a strictly convex function if its second
derivative is positive and is a strictly concave function if its second derivative is negative.
That is, if f ′′(x)> 0 then f (x) is strictly convex; and if f ′′(x)< 0 then f (x) is strictly concave.



[12:20 3/11/2011 5640-Ummer-Ch04.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 198 193–243

198 Classical optimization

Table 4.2.1

Condition Minimum Maximum

FOC or necessary condition f ′(x) = 0 f ′(x) = 0
SOC or sufficient condition f ′′(x)> 0 f ′′(x)< 0

Inflection point or inconclusive

f ′′(x) = 0

Following these results, we know that the function f (x) in Figure 4.2.2 is strictly convex for
all x in the neighborhood of x1 and is strictly concave for all x in the neighborhood of x3.
Therefore, we state below the SOC or the sufficient condition for extrema. The SOC or the
sufficient condition for a relative minimum of f (x) at x = x0 is

f ′′(x0)> 0 (4.2.3)

Similarly, the SOC or the sufficient condition for a relative maximum of f (x) at x = x0 is

f ′′(x0)< 0 (4.2.4)

Therefore, for a function y = f (x) to have a relative minimum at x = x0, the FOC and the
SOC are f ′(x0) = 0 and f ′′(x0)> 0, respectively. Similarly, for the function to have a relative
maximum at x = x0, the FOC and the SOC are f ′(x0) = 0 and f ′′(x0) < 0, respectively.4

We present these conditions in Table 4.2.1 for easy reference.
Let us now explain three important concepts related to optimization problems: critical

value, stationary value, and critical point or stationary point. In Figure 4.2.2 the value x = x1

corresponds to the relative optimum (minimum) value of the function y = f (x). This value
of x (x1) is called a critical value. It is called a critical value because it is very important,
or “critical”, in locating the relative optimum. Another critical value in the same figure
is x3. The y-coordinate of a critical value is called a stationary value. And its corresponding
coordinate point (such as B or D) is called a critical point or stationary point. Let us now
define critical values, stationary values, and critical points formally. Assume that x0 is in the
domain of the function y = f (x) and that f ′(x0) = 0 or f ′(x0) is not defined. Then, x0 is called
the critical value of f (x), f (x0) is called the stationary value of f (x), and the coordinate point
[x0, f (x0)] is called the critical point or stationary point.

Notice that, sometimes, the second derivative may turn out to be either indeterminate or
zero at some points on the graph of the function. In these cases, we will have to put the
first derivative to further analysis or determine the sign of the third or higher derivatives to
check whether the function has a relative optimum at the specified point on the graph of the
function. These cases are rare in the fields under consideration, and most of the functions that
we use in this book possess nonzero second derivatives. However, we state below the nth
derivative test for relative optima. Suppose that we have a function y = f (x), with f ′(x0) = 0
at x = x0 and f n(x0) �= 0. Then

(i) f (x0) is a relative minimum if n is even and f n(x0)> 0

(ii) f (x0) is a relative maximum if n is even and f n(x0)< 0

(iii) f (x0) is an inflection point if n is odd

⎫⎪⎬
⎪⎭ (4.2.5)
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As an example, consider the function y = f (x) = 10 − 4x + x2 for relative optima. Let us
first find the first derivative of the function. The first derivative of the function is f ′(x) =
−4+2x. We now apply the FOC given in Table 4.2.1. Applying this, we obtain x = 2 when
f ′(x) = −4+2x = 0. We denote this value of x by x∗. This suggests that the critical value is
x∗ = 2. Finally, we apply the SOC. Applying this yields f ′′(x∗) = 2. Since f ′′(x∗) = 2> 0,
the function has a relative minimum at x = 2 = x∗, and the minimum value of the function,
the stationary value, is y∗|x=2 = f (x)|x=2 = 10 − 4x + x2

∣∣
x=2 = 10−4×2+22 = 6. This is

shown in Figure 4.2.4(A).
As another example, consider the function y = g(x) = 10 + 4x − x2. The first derivative

of the function is g′(x) = 4 − 2x. We can now apply the FOC to obtain x∗ = 2 when g′(x) =
4 − 2x = 0. This suggests that the critical value is, as before, x∗ = 2. Application of the
SOC yields g′′(x∗) = −2. Since g′′(x∗) = −2 < 0, the function has a relative maximum at
x∗ = 2, and the maximum value of the function (its stationary value) is y∗|x=2 = g(x)|x=2 =
10 + 4x − x2

∣∣
x=2 = 10 + 4 × 2 − 22 = 14. This is shown in Figure 4.2.4(B).

4.2.5 Conditions of extrema of univariate functions: differential version

We used only the first and the second derivative of the univariate function y = f (x) in
the development of the conditions for the optima of the function presented in Table 4.2.1.
However, one can develop a similar set of conditions using differentials, which we
discussed in Section 3.8. To develop these conditions, consider the graph of the function
in Figure 4.2.5(A).5

Let us now develop the FOC for the relative extrema of the function y = f (x) using
differentials. For this, we use the differential of a univariate function (y = f (x)) given in
equation (3.8.1): dy = f ′(x)dx. Now consider point A in Figure 4.2.5(A). Since f ′(x) = 0 at
point A, point A is a point of relative minimum of the function f (x) as per the FOC we stated
in the previous section. Since f ′(x) = 0 and dx > 0 at point A, dy = f ′(x)dx = 0.dx = 0 at
point A. The same is true at point C, which is a relative maximum of the function. Notice
that dy �= 0 at points such as B (where dy = f ′(x)dx > 0 because f ′(x)> 0 and dx > 0) and
D (where dy = f ′(x)dx < 0 because f ′(x) < 0 and dx > 0); therefore, points such as B and
D do not qualify for the points of relative optima. In short, for a function y = f (x) to have
an optimum point (either minimum or maximum), the FOC given in the following equation



[12:20 3/11/2011 5640-Ummer-Ch04.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 200 193–243

200 Classical optimization

y = f(x)

f(x)

A

B

C

D

dy>0

dx>0

(A) (B)

dy<0

dx>0

0 x1x0 x2 x3 x

f(x), g(x), h(x)

0 x

A
B

C

D

E

F

f(x)

g(x)

h(x)

x0 x1

Figure 4.2.5

must be satisfied for dx> 0:

dy = f ′(x)dx = 0.dx = 0 (4.2.6)

Notice that, as we had the FOC when we used only derivatives in the previous section,
equation (4.2.6) is only the necessary condition or the FOC for function y = f (x), in terms of
differentials, to have a relative optimum point. The SOC or the sufficient condition must also
be satisfied, as before, for y = f (x) to have a relative optimum point. This SOC requires that
we check the sign of the second differential of the function. The required second differential
can be found by differentiating the first differential (equation (4.2.6)) again. Then, applying
equation (3.8.6), we obtain the second differential of equation (4.2.6) as d2y = f ′′(x)dx2.
Since dx2 is the square of dx, it must always be positive. This implies that the sign of d2y
depends solely on the sign of f ′′(x): if f ′′(x)> 0, then d2y > 0; if f ′′(x)< 0, then d2y < 0.
We know, from the results presented in Table 4.2.1, that the SOC for a minimum of the
function is f ′′(x) > 0. Therefore, for the function to have a relative minimum, the second
differential of the function must be positive; that is, d2y > 0. Similarly, for the function to
have a relative maximum, the second differential of the function must be negative; that is,
d2y< 0. Therefore, we have the following inequalities as the SOC:

for y = f (x) to have a relative minimum, given dy = 0, d2y> 0

for y = f (x) to have a relative maximum, given dy = 0, d2y< 0

}
(4.2.7)

As before, we present these differential versions of the FOC and SOC for a function
y = f (x) to have a relative optimum in Table 4.2.2.

4.2.6 Optima of univariate functions on closed intervals

So far, we have mainly used open intervals on the domains of functions to find their relative
extrema. Let us now use closed intervals on the domains of functions to find their optima
(to be more precise, absolute optima).
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Table 4.2.2

Condition Minimum Maximum

FOC or necessary condition dy = 0 dy = 0
SOC or sufficient condition d2y> 0 d2y< 0

Inflection point or inconclusive

d2y = 0

But, before this, we present an important theorem, called the extreme-value theorem,
which guarantees the existence of relative optima for a function with a closed interval on its
domain. The extreme-value theorem states that if a function y = f (x) is a smooth function on
a closed interval (say, [x0,x1]) on its domain, then the function possesses both a maximum
value and a minimum value on that interval. These are the absolute maximum and minimum
values of the function on that interval. This can be shown through Figure 4.2.5(B), which
illustrates the graphs of three functions: f (x), g(x), and h(x). For convenience we have fixed
the same closed interval, [x0,x1], on their domains for all these functions. It can be seen that
points D, E, and F represent the absolute minimum values of functions f (x), g(x), and h(x),
respectively, on the interval [x0,x1]. Similarly, their respective absolute maximum values
are represented by points B, C, and A. What this implies is that every smooth function has
both an absolute minimum value and an absolute maximum value on a closed interval on its
domain. This is what the extreme-value theorem states.

How does one determine these absolute extrema? The procedure is as follows: (1) Find
the stationary value(s); (2) find the values of the function at the lower and upper bounds of
the interval; (3) compare these results with the stationary value(s); and (4) the absolute
minimum (maximum) value of the function is the smallest (highest) of the values in
step (3).

As an example, consider the function y = f (x) = 10 − 2x + x2. Assume that we want
to find the absolute extrema of this function in the closed interval [0, 5]. We follow the
above procedures. First, we obtain the critical value x∗ = 1 from f ′(x) = −2 + 2x = 0, and
the stationary value y = f (1) = 10 − 2 × 1 + 12 = 9. Second, we find the values of the
function at the lower and upper bounds of the interval. The value of the function at x = 0
(the lower bound of the interval) is y = f (0) = 10 − 2 × 0 + 02 = 10 and the value of the
function at x = 5 (the upper bound of the interval) is y = f (5) = 10 − 2 × 5 + 52 = 25.
Third, we can compare these values. Notice that the stationary value is lower than the
values of the function at both the lower and the upper bounds of the interval. Fourth,
based on these results, we conclude that the function has, on the closed interval [0, 5] on its
domain, an absolute minimum (equal to 9) at the critical value x = 1 and has an absolute
maximum (equal to 25) at the upper bound of the interval. This is shown in Figure 4.2.6(A).
Notice that the graph of the function f (x) is similar to the graph of the function g(x) in
Figure 4.2.5(B).

As another example, consider the function y = g(x) = 10+2x − x2. Assume that we want
to find the absolute extrema of this function on the closed interval [0, 4]. As in the last
example, we follow the above procedures. First, we obtain the critical value x∗ = 1 from
g′(x) = 2 − 2x = 0, and the stationary value y = g(1) = 10 + 2 × 1 − 12 = 11. Second, we
find the values of the function at the lower and upper bounds of the interval. The value of the
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function at x = 0 (the lower bound of the interval) is y = g(0) = 10+2×0−02 = 10 and the
value of the function at x = 4 (the upper bound of the interval) is y = g(4)= 10+2×4−42 = 2.
Third, we compare these values. Notice that the stationary value is higher than the values of
the function at both the lower and upper bounds of the interval. Fourth, based on these results,
we can state that the function has, on the closed interval [0, 4] on its domain, an absolute
maximum (equal to 11) at the critical value x = 1 and has an absolute minimum (equal to 2)
at the upper bound of the interval. This is illustrated in Figure 4.2.6(B).

4.2.7 Convexity and concavity, and extrema of univariate functions

We discussed convexity and concavity of univariate functions in Section 3.5. In our
discussion we found that the graphs in Figures 3.5.1(A) and (B) were strictly concave and
strictly convex, respectively. These are due to the fact that the second derivative of the first
function is negative throughout (f ′′(x)< 0) and the second derivative of the second function
is positive throughout (g′′(x)> 0) on the closed interval [x0, x2] on their respective domains.

The reader would have noticed an important feature of the graph in Figure 3.5.1(A). This
feature is that the function f (x) has a maximum at x = x1 and two minimum points at around
x = x0 and around x = x2 on the closed interval [x0, x2] on its domain. Similarly, the graph
of the function g(x) in Figure 3.5.1(B) has a minimum at x = x1 and two maximum points
at around x = x0 and around x = x2 on the closed interval [x0, x2] on its domain. What
this means is that a strictly concave function will always have an absolute maximum and
a strictly convex function will always have an absolute minimum on the closed intervals
on their respective domains. This implies that a knowledge of the curvature (convexity and
concavity) of functions obviates the need to check the SOC in optimization. This again
confirms the extreme-value theorem we stated in the previous section. Let us now state these
results formally.

Suppose that f (x) is a convex (concave) function on a closed interval I = [xi, xj], where
i �= j. Also suppose that x0 in I = [xi, xj] is a critical value of f (x), and f (x0) is a stationary
value of f (x). Then, f (x0) is a local minimum (maximum) of f (x). Suppose, instead, that
f (x) is a strictly convex (concave) function on its entire domain; x0 is the critical value of
f (x); and f (x0) is the stationary value of f (x). Then, f (x0) is the global or absolute minimum
(maximum) of f (x).
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4.2.8 Application examples

Example 1. Suppose that the total cost (in thousands of dollars) of producing q units of
output (assuming that there is no fixed cost) of a firm is given by the function C = f (q) =
40q−9q2 +q3. Find the level of output at which the average cost of the firm is a minimum,
and the minimum average cost. Show this minimum on the graph of the average cost function.

Solution. The average cost function (�C = g(q)) is obtained by dividing the total cost
function by the output produced, q. Therefore, the average cost function is �C = g(q) =
40−9q+q2. The FOC for an optimum requires g′(q) = 0. Differentiating g(q) with respect
to q yields g′(q) = −9+2q. Setting this derivative to zero and solving yields q∗ = 9/2 = 4.5.
Therefore, the critical value is q∗ = 4.5. The SOC requires that we check the sign of the
second derivative of the average cost function. Differentiating g′(q) = −9 + 2q again with
respect to q, we obtain g′′(q) = 2> 0. This implies that the function has a relative minimum
at the critical value; that is, the average cost is a minimum when the quantity of output
produced is 4.5 units. The minimum average cost (or the stationary value of the average
cost function) is �C = g(q) = 40 − 9 × 4.5 + (4.5)2 = $19.75 (in thousands). This relative
minimum of the average cost function is shown in Figure 4.2.7(A). Notice that this relative
minimum is the minimum of the function for all x > 0. Therefore, this relative minimum is
also the absolute or global minimum of the average cost function.

Example 2. Assume that a firm produces q units of output employing l units of labor. Also
assume that the firm’s production function is given by q = f (l) = 50l2 −5l3. How many units
of labor should the firm employ in order to maximize the total output produced? Show this
maximum on the graph of the firm’s production function.

Solution. We need to check whether the function q = f (l) = 50l2 − 5l3 has a maximum.
If it has one, then the number of workers corresponding to that maximum output will be the
answer to the question. For an optimum, as before, the FOC must be satisfied: it is f ′(l) = 0.
We know that f ′(l) = 100l −15l2. Setting f ′(l) = 100l −15l2 to zero, and solving for l, yields
l∗ = (0, 6.7). Since l∗ = 0 is meaningless in our example, we discard it; instead, we choose
l∗ = 6.7. This means that the admissible critical value is l∗ = 6.7. We can now check the
sign of f ′′(l) to see if this critical value corresponds to an optimum of the function. We obtain



[12:20 3/11/2011 5640-Ummer-Ch04.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 204 193–243

204 Classical optimization

0 2 4 6 8
q0

20

40

60

80

100

120

140
f (q), f '(q)

0 200 400 600 800 1000
0

200

400

600

800

1000

qB

qA

f(q)f'(q)

4.42

(A) (B)

115

50

500

500
E

333.33

A's reaction function

B's reaction function

Figure 4.2.8

that f ′′(l) = 100−30l. When we substitute the critical value l∗ = 6.7 into f ′′(l∗) = 100−30l∗
we get f ′′(6.7) = 100 − 30 × 6.7 = −101< 0. This satisfies the SOC for f (l) for a relative
maximum at l∗ = 6.7. This implies that the firm must employ 6.7 units of labor to maximize
its output, and the maximum output will be q∗ = f (6.7) = 50(6.7)2 − 5(6.7)3 = 740.7 units.
This relative maximum of the firm’s production function is shown in Figure 4.2.7(B). Notice
that this relative maximum is the maximum of the function for all l > 0. Therefore, this
relative maximum is also the absolute or global maximum of the production function.

Example 3. Assume that the total revenue, R, of a company from the sale of q units of
a good is given by the function R = f (q) = 50q − 5q2 − 0.1q3, where R is in thousands of
dollars. How many units of the good should the company sell to maximize its total revenue?
Show this maximum on the graph of the company’s total revenue function.

Solution. As before, we need to check whether the function R = f (q) = 50q−5q2 −0.1q3

has a maximum. If it has one, then the units of the good sold corresponding to that maxi-
mum revenue will be the solution to the problem. For an optimum, as before, the FOC
must be satisfied: it is f ′(q) = 0. We know that f ′(q) = 50 − 10q − 0.3q2. Setting f ′(q) =
50 − 10q − 0.3q2 to zero and solving for q yields q∗ = (−37.75, 4.42). Since q∗ = −37.75
is inadmissible in our example, we discard it; instead, we choose q∗ = 4.42. This means
that the admissible critical value is q∗ = 4.42. We now check the sign of f ′′(q) to see if
this critical value corresponds to an optimum of the function. We can obtain that f ′′(q) =
−10 − 0.6q. When we substitute the critical value q∗ = 4.42 into f ′′(q∗) = −10 − 0.6q∗
we get f ′′(4.42) = −10 − 0.6 × 4.42 = −12.7 < 0. This satisfies the SOC for f (q) for a
relative maximum at q∗ = 4.42. This implies that the company must sell 4.42 units of the
good to maximize its total revenue, and the maximum total revenue will be R∗ = f (4.42) =
50 × 4.42 − 5(4.42)2 − 0.1(4.42)3 = $115 (in thousands). The relative maximum of the
company’s total revenue is shown in Figure 4.2.8(A). Notice that this relative maximum is
the maximum of the function for all q > 0. Therefore, this relative maximum is also the
absolute or global maximum of the total revenue function.

Example 4. Suppose that the price, P, in dollars, in a Cournot duopoly market, which is a
special type of oligopoly market, is given by P = f (q) = 1100 − (qA + qB) = 1100 − qA −
qB, where qA and qB denote duopolist A’s output and duopolist B’s output, respectively
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(and the goods are assumed to be homogeneous). Notice that the total duopoly market output
is q = qA + qB. Also suppose, for convenience, that the duopolists have equal and constant
marginal and average costs of $100; that is, ACA = MCA = ACB = MCB = $100. (i) Draw
the reaction function of each duopolist. (ii) Find the output that maximizes the total profits
of each duopolist. (iii) Find the total profits of each duopolist. (iv) Find the market price.
(v) Find the total quantity produced by the duopolists. (vi) How do these results change if
we assume that these duopolists collude?

Solution. (i) The reaction functions can be derived by maximizing the total profits of the
duopolists. We are given that the market demand function is P = f (q) = 1100 − (qA +
qB) = 1100 − qA − qB. Then the total revenue of A is RA = P.qA = (1100 − qA − qB)qA =
1100qA − q2

A − qAqB and the total cost of A is CA = 100qA. Therefore, A’s total profit is
	A = RA−CA = PqA −100qA = 1100qA −q2

A −qAqB−100qA = 1000qA −q2
A −qAqB. The

FOC for a maximum of the total profit of A is that d	A/dqA = 0. We know that d	A/dqA =
1000 − 2qA − qB; setting this to zero and solving for qA yields qA = h(qB) = 500 − 0.5qB.
This function is the reaction function of A, which has the horizontal intercept (500, 0) and
the vertical intercept (0, 1000). This is shown in Figure 4.2.8(B).

We now derive the reaction function of duopolist B. The total revenue of B is RB =
P.qB = (1100 − qA − qB)qB = 1100qB − qAqB − q2

B and the total cost of B is CB = 100qB.
Therefore, B’s total profit is	B =RB−CB =PqB−100qB = 1100qB−q2

B−qAqB−100qB =
1000qB −q2

B −qAqB. The FOC for a maximum of the total profits of B is that d	B/dqB = 0.
We know that d	B/dqB = 1000 − 2qB − qA; setting this to zero and solving for qB yields
qB = f (qA)= 500−0.5qA. This function is the reaction function of B, which has the horizontal
intercept (1000, 0) and the vertical intercept (0, 500). This is shown in Figure 4.2.8(B). Since
d2	A/dq2

A = −2< 0 and d2	B/dq2
B = −2< 0, the SOC is also satisfied in the case of both

duopolists.
(ii) The output that maximizes each duopolist’s profit can be found by equating the

reaction functions of the duopolists and solving for qA and qB. Equating the two reaction
functions gives us qA = qB. This implies that we can substitute one reaction function in
the other reaction function to solve for either qA or qB. Therefore, we substitute qB into
qA to obtain qA = 500 − 0.5qB = 500 − 0.5(500 − 0.5qA), which gives us q∗

A = 333.33.
Since q∗

A = q∗
B, q∗

B = 333.33. Therefore, the output levels that maximize the profits of each
duopolist are identical: qA = qB = 333.33 units.

(iii), (iv), and (v) Since q∗
A = q∗

B = 333.33, 	∗
A = 	∗

B = 1000q∗
A − q∗2

A − q∗
Aq∗

B =
1000(333.33) − (333.33)2 − (333.33)2= $111 112. The combined profit in the duopoly
market is 	∗

A +	∗
B = $111 112 + $111 112 = $222 224. The market price is P = f (q∗) =

1100− (q∗
A +q∗

B) = 1100−q∗
A −q∗

B = 1100−333.33−333.33 = $433.34. The total quantity
produced by the duopolists is q∗ = q∗

A + q∗
B = 333.33 + 333.33 = 666.66 units. Notice that

point E in Figure 4.2.8(B) is called the Cournot equilibrium point.
(vi) If the two duopolists collude, the price in the market will be P = f (q) = 1100 − q.

Then, their combined total revenue and total cost will be R = Pq = 1100q−q2 and C = 100q,
respectively. The profit function (of the industry), when there is collusion of duopolists,
is 	 = R − C = Pq − C = 1100 q − q2 − 100 q = 1000 q − q2. The FOC requires, for
this profit function to have a maximum, that d	/dq = 0. We know that d	/dq = 1000 −
2q. Setting this to zero yields q∗ = 500 units. Moreover, we have d2	/dq2 = −2 < 0,
which means that the industry profits will be maximum when output produced is 500 units.
This also means that the collusive (or cooperative) output (500 units) is smaller than the
noncollusive (or noncooperative) output (666.66 units). The market price when there is
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collusion will be P = f (q∗) = 1100 − q∗ = 1100 − 500 = $600, which is higher than the
market price ($433.34) without collusion. The industry profit under collusion will be 	∗ =
1000q∗ − q∗2 = 1000(500) − (500)2 = $250 000, which is higher than the industry profit
($222 224) when there is no collusion.

Example 5. Assume that the demand and the cost functions of the duopolists in a
Stackelberg duopoly market, which is another special case of oligopoly market, are the
same as those in example 4 above: P = f (q) = 1100 − (qA + qB) = 1100 − qA − qB and
ACA = MCA = ACB = MCB = $100. (i) If A is the leader, find the output and profit of each
duopolist. (ii) If B is the leader, find the output and profit of each duopolist.

Solution. Notice that the demand and the cost conditions here are the same as those in
example 4. We know, from the solution for example 4, that the reaction functions of the
duopolists A and B are qA = 500 − 0.5qB and qB = 500 − 0.5qA, respectively.

(i) Stackelberg equilibrium with A as leader. When A is the leader, it will substitute B’s
reaction function into its profit function, which is 	A = 1000qA − q2

A − qAqB. Substituting
qB = 500−0.5qA into	A = 1000qA −q2

A −qAqB, we obtain	A = 1000qA −q2
A −qA(500−

0.5qA) = 500qA − 0.5q2
A. We now need to maximize this profit function of A. Then the

FOC is d	A/dqA = 500 − qA = 0, which gives us the critical output for the leader, A:
q∗

A = 500 units. Since d2	A/dq2
A = −1 < 0, this critical value (q∗

A = 500) corresponds
to the maximum point on the total profit function of A. Hence, the output that maximizes
A’s total profit is q∗

A = 500. Therefore, A’s total profit will be 	∗
A = 500qA − 0.5q∗2

A =
500 × 500 − 0.5(500)2 = $125 000.

Since B is the follower, it will assume that A will continue to produce q∗
A = 500 units.

Therefore, B substitutes this quantity into its reaction function. Substituting q∗
A = 500 into

qB = 500−0.5qA yields q∗
B = 500−0.5×500 = 250 units. Therefore, B’s total profit will be

	∗
B = 1000q∗

B −q∗2
B −q∗

Aq∗
B = 1000×250− (250)2 −500×250 = $62 500. This Stackelberg

equilibrium is represented by point EA in Figure 4.2.9(A).
(ii) Stackelberg equilibrium with B as leader. When B is the leader, it will substitute A’s

reaction function into its profit function, which is 	B = 1000qB − q2
B − qAqB. Substituting

qA = 500−0.5qB into	B = 1000qB −q2
B −qAqB, we obtain	B = 1000qB −q2

B −qB(500−
0.5qB) = 500qB − 0.5q2

B. We can now maximize this profit function of B. Then the FOC is
d	B/dqB = 500−qB = 0, which gives us the critical output for the leader, B: q∗

B = 500 units.
Since d2	B/dq2

B = −1< 0, this critical value (q∗
B = 500) corresponds to the maximum point

0 200 400 600

(A) (B)
800 1000

qA0

200

400

600

800

1000

qB

0 10 20 30 40 50
0

10

20

30

40

50

pA

pB

A's reaction function B's reaction function

A's reaction
function

33.33

33.33
E

EB

E
EA

B's reaction function
250

500

500

Figure 4.2.9



[12:20 3/11/2011 5640-Ummer-Ch04.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 207 193–243

Classical optimization 207

on the total profit function of B. Hence, the output that maximizes B’s total profit is q∗
B = 500.

Therefore, B’s total profit will be	∗
B = 500q∗

B −0.5q∗2
B = 500×500−0.5(500)2 = $125 000.

Since A is the follower now, it will assume that B will continue to produce q∗
B = 500

units. Therefore, A substitutes this quantity into its reaction function. Substituting q∗
B = 500

in qA = 500 − 0.5qB yields q∗
A = 500 − 0.5 × 500 = 250 units. Therefore, A’s total profit

will be 	∗
A = 1000q∗

A − q∗2
A − q∗

Aq∗
B = 1000 × 250 − (250)2 − 250 × 500 = $62 500. This

Stackelberg equilibrium is represented by point EB in Figure 4.2.9(A).

Example 6. Assume that the demand functions of the duopolists in a Bertrand duopoly
market, which is yet another special case of oligopoly market, are given by qA = 30− pA +
0.5pB and qB = 30 − pB + 0.5pA, where qA, qB, pA, and pB are the quantities produced and
prices fixed by duopolists A and B, respectively. Also assume that ACA = MCA = ACB =
MCB = $20. (i) Determine the duopolists’ reaction functions and graph them. (ii) Find the
Bertrand equilibrium.

Solution. Let us first find the total profit functions of each duopolist. The total profit of A
is given by	A = pAqA −ACAqA = 50pA −p2

A +0.5pApB −10pB −600. Similarly, the total
profit of B is given by 	B = pBqB − ACBqB = 50pB − p2

B + 0.5pApB − 10pA − 600.
(i) Differentiating the above two profit functions with respect to pA and pB, respectively,

and setting the results to zero yields pA = 25+0.25pB and pB = 25+0.25pA (= pA =−100+
4pB). The previous two equations give us the reaction functions of A and B, respectively.
Their graphs are shown in Figure 4.2.9(B).

(ii) The Bertrand duopoly market equilibrium can be found by equating the reaction
functions of the two duopolists. Therefore, equating pA = 25+0.25pB and pB = 25+0.25pA

(= pA = −100+4pB) gives us p∗
A = p∗

B = 33.33. Notice that in the present Bertrand duopoly
market equilibrium the prices set by the duopolists are equal.

4.2.9 Exercises

1. Test the following functions for relative extrema:
(i) y = f (x) = 10+10x−x2; (ii) y = f (x) = 10+10x+10x2 −x3; (iii) y = f (x) = x2 −5x;
(iv) y = f (x) = 5x − x2; (v) y = f (x) = (x + 1)(x + 1); (vi) y = f (x) = (x − 1)(x − 1);
(vii) y = f (x) = (x + 1)(x + 1)(x − 1); (viii) y = f (x) = (x − 1)(x − 1)(x + 1).

2. Test the following functions for absolute extrema on the indicated intervals:
(i) y = f (x) = 10 − 10x + x2, [0, 10]; (ii) y = f (x) = 10 + 10x − x2, [0, 10]; (iii) y =
f (x) = 10 − 5x + x3, [−10, 10]; (iv) y = f (x) = (x + 1)(x − 1), [−5, 5]; (v) y = f (x) =
(x − 1)(x − 1), [−5, 5]; (vi) y = f (x) = (x + 1)(x + 1), [−10, 10].

3. Application exercise. Suppose that the total utility (U ) obtained by a consumer when q
units of a good are consumed is given by U = f (q) = 50q+10q2 −q3. Find the number
of units of the good that must be consumed to maximize the utility.

4. Application exercise. Suppose that the total revenue (R) that a company obtains from the
sale of q units of a good is given by R = g(q) = (100q − 2q2)/50. How many units of
the good must the company sell in order to maximize its total revenue in dollars?

5. Application exercise. Assume that the inverse demand function for a company’s product
is given by P = f (q) = 200−3q, where P denotes the price per unit of the good in dollars,
and q denotes the quantity of the good demanded. Also assume that the total cost of the
company is given by C = g(q) = 200+2q+0.5q2. Find the level of output at which the
profit of the company is maximum. What will be the profit-maximizing price?
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6. Application exercise. Suppose that the total cost of producing q units of a good by a firm
is given by C = f (q) = 50q − 10q2 + q3. Find the level of output at which the firm’s
average cost is minimum. What is the average cost at this level of output?

7. Application exercise. Suppose that the demand functions of duopolists in a Cournot
duopoly market are the same as those in example 4 in Section 4.2.8. Also suppose that
the government gives a subsidy of $25 per unit of the good produced to duopolist A;
and ACB = MCB = $100 remains the same as before. How does this subsidy affect the
solutions to example 4?

8. Application exercise. Suppose that the demand functions of duopolists in a Stackelberg
duopoly market are the same as those in example 5 in Section 4.2.8. Also suppose that
the government imposes a tax of $25 per unit of the good on duopolist B; and that
ACA = MCA = $100 remains the same as before. How does this tax affect the solutions
to example 5?

9. Application exercise. Assume that the demand functions of the duopolists in a Bertrand
duopoly market are the same as those in example 6 in Section 4.2.8. Also assume that
ACA = MCA = $10 and ACB = MCB = $20. How does this difference in costs affect
the solutions to example 6?

Web supplement: S4.2.10 Mathematica applications

4.3 Extrema of unconstrained multivariate objective functions

So far we have been concerned with finding the extrema, if they exist, of objective functions
that involve only one independent variable, or of univariate objective functions. But we
know that most of the relationships among variables in economics, business, and finance are
expressed in the form of multivariate functions. Therefore, it is important that students of
these subjects possess a good understanding of the topic of optimization of objective functions
that involve more than one independent variable. We provide in this section the techniques
of optimization of multivariate functions.

4.3.1 Extrema of unconstrained bivariate functions: FOCs and SOCs

As a simple case, consider the production function of a firm that uses two factors, labor (L)
and capital (K), to produce a particular quantity (Q) of a good. We normally express the
production function in the form Q = f (K,L). We know from our discussion in Section 3.7
that Q will change when K changes for given L; or when L changes for given K ; or when
both K and L change.

We stated in Section 4.2 that, in the case of a univariate function f (x) (or g(x)), the FOC
for the function to attain a relative optima is f ′(x) = 0 (or g′(x) = 0). That is, the function
has a relative maximum when the function forms itself a “hill” as in Figure 4.2.1(A) or a
relative minimum when it forms itself a “valley” as in Figure 4.2.1(B). Can we think of
such hills and valleys in the case of bivariate functions? Yes, we can; they are shown in
Figure 4.3.1.

Consider, to begin with, the graph of Q = f (K,L) in Figure 4.3.1(A). Notice that at point
A the graph attains the maximum possible value. An important feature of point A is that the
partial derivatives of Q = f (K,L) with respect to K holding L constant (represented by the
tangent TK ) and the partial derivative of Q = f (K,L) with respect to L holding K constant
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(represented by the tangent TL) are both zero. This implies that, at point A, ∂Q/∂K = ∂f /∂K =
fK = 0 and ∂Q/∂L = ∂f /∂L = fL = 0.

Similarly, at point B in Figure 4.3.1(B), the graph attains the minimum possible value.
An important feature of point B is that the partial derivatives of Q = g(K,L) with respect to K
holding L constant (represented by the tangent TK ) and the partial derivative of Q = g(K,L)
with respect to L holding K constant (represented by the tangent TL) are both zero. This
implies that, at point B, ∂Q/∂K = ∂g/∂K = gK = 0 and ∂Q/∂L = ∂g/∂L = gL = 0. Therefore,
the FOC for a relative optimum (either a maximum or a minimum) is that the first partial
derivatives of the functions are all zero:

∂Q

∂K
= ∂f

∂K
= fK = 0 and

∂Q

∂L
= ∂f

∂L
= fL = 0 (4.3.1)

However, as we saw in the case of univariate functions, the FOC does not guarantee
optima. The reason is that we may find fK = fL = 0 at a particular point on the graph of
Q = f (K,L) (as represented by the middle point B on the graph in Figure 4.3.2) but it does
not represent either a maximum or a minimum. Such a point is called a saddle point.

The above discussion implies that, as in the case of univariate functions, the FOC is
only a necessary condition for an optimum. Again, as in the case of univariate functions,
a SOC must be satisfied for an optimum. Therefore, once the FOC is satisfied, the SOC for
a minimum of Q = f (K,L) is

fKK > 0, fLL > 0 and fKK .fLL > f 2
KL (4.3.2)

and the SOC for a maximum of Q = f (K,L) is

fKK < 0, fLL < 0 and fKK .fLL > f 2
KL (4.3.3)
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Table 4.3.1

Condition Minimum Maximum

FOCs or necessary conditions f1 = f2 = 0 f1 = f2 = 0
SOCs or sufficient conditions f11 > 0, f22 > 0, and f11 < 0, f22 < 0, and

f11.f22 > (f12)2 f11.f22 > (f12)2

Inflection point

f11 < 0, f22 < 0, and f11.f22 < (f12)2 or

f11 < 0, f22 < 0, and f11.f22 < (f12)2

Saddle point

f11 > 0, f22 < 0, and f11.f22 < (f12)2, or

f11 < 0, f22 > 0, and f11.f22 < (f12)2

Inconclusive

f11.f22 = (f12)2

We present these FOCs and SOCs in the case of a general bivariate function y = f (x1,x2)
in Table 4.3.1 for easy reference.

As an example, consider the function U = f (x1,x2) = x2
1 + x2

2 − x1 − x2. Following the
FOCs given in Table 4.3.1, we obtain f1 = 2x1 − 1, f2 = 2x2 − 1, f11 = 2, f22 = 2, and f12 =
f21 = 0. Now setting f1 = f2 = 0 and solving, as before, we obtain the critical values (x∗

1,x
∗
2) =

(0.5,0.5). Since f11 = 2, f22 = 2, f12 = f21 = 0, the SOC gives us f11.f22 = 4> 0 (= (f12)2).
Therefore, following Table 4.3.1, both the FOC and the SOC are satisfied for the function
to have a relative minimum corresponding to the critical points (x∗

1,x
∗
2) = (0.5,0.5). The

minimum or the stationary value of the function at the critical values (x∗
1,x

∗
2) = (0.5,0.5) is

U ∗ = f (x∗
1,x

∗
2) = x∗2

1 + x∗2
2 − x∗

1 − x∗
2 = 0.52 + 0.52 − 0.5 − 0.5 = −0.5.
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As another example, consider the function U = f (x1,x2) = x1 + x2 − x2
1 − x2

2. Following
the FOCs given in Table 4.3.1, we obtain f1 = 1−2x1, f2 = 1−2x2, f11 = −2, f22 = −2, and
f12 = f21 = 0. Now setting f1 = f2 = 0 and solving, we obtain the critical values (x∗

1,x
∗
2) =

(0.5,0.5). Since f11 =−2, f22 =−2, f12 = f21 = 0, the SOC gives us f11.f22 = 4> 0 (= (f12)2).
Therefore, following Table 4.3.1, both the FOC and the SOC are satisfied for the function
to have a relative maximum corresponding to the critical point (x∗

1,x
∗
2) = (0.5,0.5). The

maximum or the stationary value of the function at the critical values (x∗
1,x

∗
2) = (0.5,0.5) is

U ∗ = f (x∗
1
,x∗

2) = x∗
1 + x∗

2 − x∗2
1 − x∗2

2 = 0.5 + 0.5 − 0.52 − 0.52 = 0.5.

4.3.2 Conditions of extrema of bivariate functions: differential version

As we developed the conditions of extrema of univariate functions using differentials in
Section 4.2.5, we can develop the conditions of extrema of bivariate functions using total
differentials. To develop these conditions, assume that we have a general bivariate function
U = f (x1,x2). The first total differential of this function, as a special case of equation (3.8.4)
with n = 2, is dU . But, we know from our discussion in Section 3.8.2 that dU = (∂f/∂x1)dx1+
(∂f /∂x2)dx2 = f1dx1 + f2dx2.

Notice that the function U = f (x1,x2) is stationary only when dU = 0, for given dx1 and
dx2, not both zero. This implies that an extreme point of the function must be a stationary
point. Therefore, as in the case of univariate functions, dU = 0 is the FOC for a relative
extremum of the function U = f (x1,x2). But, since dU = f1dx1 + f2dx2, dU = 0 only when
both partial derivatives are zero, that is, only when f1 = f2 = 0. Therefore, the FOC in terms of
total differential that dU = 0 is, in fact, identical with the FOC using derivatives (f1 = f2 = 0).

We now consider the SOC using total differential. The second total differential of the
function U = f (x1,x2) is given in equation (3.8.7), which is a special case of equation (3.8.9).
Therefore, the second total differential of the function is d2U = f11dx2

1 +2f12dx1dx2 + f22dx2
2.

It is clear from this equation that the sign of d2Udepends on the signs of the partial derivatives.
It is easy to see that d2U > 0 only if f11 > 0, f22 > 0, and f11.f22 > (f12)2; and d2U < 0 only
if f11 < 0, f22 < 0, and f11.f22 > (f12)2. Therefore, the SOC for the function U = f (x1,x2)
to have a minimum is d2U > 0 (given dU = 0) and the SOC for the function to have a
maximum is d2U < 0 (given dU = 0). We present the FOCs and the SOCs for the bivariate
function U = f (x1,x2) to have relative extrema in Table 4.3.2 for easy reference. Notice that
these conditions for extrema are identical to the conditions presented in Table 4.3.1 using
derivatives.

Notice that the second total differential d2U = f11dx2
1 + 2f12dx1dx2 + f22dx2

2, of the
function U = f (x1,x2), is a quadratic form that we discussed and utilized in Section 2.8.2.
We stated in Section 2.8.2 that d2U is positive definite if d2U > 0 and negative definite if
d2U < 0. Therefore, a minimum of U = f (x1,x2) requires (given dU = 0) d2U to be positive
definite (that is, d2U > 0) and a maximum of U = f (x1,x2) requires d2U to be negative
definite (that is, d2U < 0).

Table 4.3.2

Condition Minimum Maximum

FOC or necessary condition dU = 0 dU = 0
SOC or sufficient condition d2U > 0 d2U < 0
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Table 4.3.3

Condition Minimum Maximum

FOC or necessary condition dU = 0 dU = 0
SOC or sufficient condition d2U > 0, or positive definite, if

DR1 > 0 and DR2 = DR > 0
d2U < 0, or negative definite, if

DR1 < 0 and DR2 = DR > 0

How do we determine the sign of d2U?6 We have already discussed the methods of
determining the sign of d2U in Chapter 2. In Section 2.8.2, we represented the quadratic
form d2U = f11dx2

1 + 2f12dx1dx2 + f22dx2
2 (equation (2.8.9)) in terms of matrices as d2U =

xTDx (equation (2.8.14)), where xT = [
dx1 dx2

]
and D =

[
fx1x1 fx1x2

fx2x1 fx2x2

]
=
[

f11 f12

f21 f22

]
.

We called the determinant of D the discriminant of the quadratic form d2U and denoted it
by DR . Therefore, |D| = DR. We found there that the first principal minor of DR , denoted
by DR1, is equal to | f11| = f11. The second principal minor is DR2 = DR = |D|. We also
found there that if d2U is positive definite (or d2U > 0), then the function U = f (x1,x2) has
a minimum (given dU = 0), if DR1 > 0 and DR2 = DR > 0. Similarly, we found that if d2U
is negative definite (or d2U < 0), then the function U = f (x1,x2) has a maximum (given
dU = 0), if DR1 < 0 and DR2 = DR > 0. If these conditions of extrema are not satisfied,
then U = f (x1,x2) has a saddle point at the corresponding critical values. We present these
FOCs and SOCs, using differentials and quadratic forms, of extrema of the bivariate function
U = f (x1,x2) in Table 4.3.3 for easy reference.

As an example, consider the function in the first example in the last section: U =
f (x1,x2) = x2

1 + x2
2 − x1 − x2. The first total differential of this function can be written as

dU = f1dx1 + f2dx2. The FOC is that dU = 0; and it implies, as before, that f1 = f2 = 0. We
obtained in the last section that f1 = 2x1 −1 and f2 = 2x2 −1; and obtained, by setting them to
zero and simplifying, the critical values (x∗

1,x
∗
2) = (0.5,0.5). We also obtained f11 = 2, f22 = 2,

and f12 = f21 = 0. The quadratic form of U = f (x1,x2) = x2
1 +x2

2 −x1−x2 with f11 = 2, f22 = 2,
and f12 = f21 = 0 is d2U = f11dx2

1 + 2f12dx1dx2 + f22dx2
2 = 2dx2

1 + 2 × 0 × dx1dx2 + 2dx2
2,

which in matrix form is d2U = xTDx, where xT and D are in accordance with our earlier

definitions. Since, in this example, D =
[

fx1x1 fx1x2

fx2x1 fx2x2

]
=
[

f11 f12

f21 f22

][
2 0

0 2

]
, DR1 = 2> 0,

and DR2= DR = 4 > 0, d2U is positive definite; therefore, the function U = f (x1,x2) =
x2

1 + x2
2 − x1 − x2 qualifies for a minimum at the critical value (x∗

1,x
∗
2) = (0.5,0.5). The

stationary value of the function at the critical values (x∗
1,x

∗
2) = (0.5,0.5) is U ∗ = f (x∗

1,x
∗
2) =

x∗2
1 + x∗2

2 − x∗
1 − x∗

2 = 0.52 + 0.52 − 0.5 − 0.5 = −0.5. These were precisely the results we
obtained in the last section when we used the derivatives to find the optimum of the given
function.

As another example, consider the function we used in the second example in the last
section: U = f (x1,x2) = x1 + x2 − x2

1 − x2
2. The first total differential of this function can be

written as dU = f1dx1 + f2dx2. The FOC is that dU = 0; and it implies, as we stated above,
that f1 = f2 = 0. We obtained in the last section that f1 = 1 − 2x1 and f2 = 1 − 2x2; and
obtained, by setting them to zero and simplifying, the critical values (x∗

1,x
∗
2) = (0.5,0.5).

We also obtained there that f11 = −2, f22 = −2, and f12 = f21 = 0. The quadratic form of
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U = f (x1,x2) = x1 + x2 − x2
1 − x2

2 with f11 = −2, f22 = −2, and f12 = f21 = 0 is d2U =
f11dx2

1 + 2f12dx1dx2 + f22dx2
2 = −2dx2

1 + 2 × 0 × dx1dx2 − 2dx2
2, which in matrix form is

d2U = xTDx, where xT and D are in accordance with our earlier definitions. Since, in

this example, D =
[

fx1x1 fx1x2

fx2x1 fx2x2

]
=
[

f11 f12

f21 f22

][
−2 0

0 −2

]
, DR1 = −2 < 0, and DR2 =

DR = 4 > 0, d2U is negative definite; therefore, the function U = f (x1,x2) = x1 + x2 −
x2

1 − x2
2 qualifies for a maximum at the critical value (x∗

1,x
∗
2) = (0.5,0.5). The stationary

value of the function at the critical values (x∗
1,x

∗
2) = (0.5,0.5) is U ∗ = f (x∗

1
,x∗

2) = x∗
1 +

x∗
2 − x∗2

1 − x∗2
2 = 0.5 + 0.5 − 0.52 − 0.52 = 0.5. Again, these were precisely the results

we obtained in the last section when we used the derivatives to find the extremum of the
function.

4.3.3 Conditions of extrema of trivariate functions: differential version

Now assume that the unconstrained objective function is a trivariate function such as U =
f (x1,x2,x3). Since it is difficult to state the conditions of extrema of U = f (x1,x2,x3) using
derivatives similar to those presented in Table 4.3.1, we rely here on total differentials. Even
in the case of trivariate functions, the FOC is the same as before: the first total differential of
U = f (x1,x2,x2) is equal to zero or dU = f1dx1 + f2dx2 + f3dx3 = 0 (which is a special case
of equation (3.8.4) with n = 3). Therefore, this FOC implies that f1 = f2 = f3 = 0.

We know from the discussion in Section 3.8.3 that the second total differential of U =
f (x1,x2,x3), which is a special case of U = f (x1,x2,x3, . . . ,xn) with n = 3, is given by
equation (2.8.12) or (3.8.8): d2U = f11dx2

1 + f22dx2
2 + f33dx2

3 + 2f12dx1dx2 + 2f13dx1dx3 +
2f23dx2dx3. The SOC for extrema of U = f (x1,x2,x3) requires that we check the sign of
d2U . Notice that the matrix representation of d2U , as shown in Section 2.8.2, is d2U =

xTDx, where xT = [
dx1 dx2 dx3

]
and D =

⎡
⎢⎣ f11 f12 f13

f21 f22 f23

f31 f32 f33

⎤
⎥⎦. We stated in Section 2.8.2

that d2U would be positive definite (given dU = 0) so that U = f (x1,x2,x3) would have a
minimum if DR1 > 0, DR2 > 0, and DR3 = DR > 0. And, d2U would be negative definite
(given dU = 0) so that U = f (x1,x2,x3) would have a maximum if DR1 < 0, DR2 > 0, and
DR3 = DR < 0. These conditions are presented in Table 4.3.4.

As an example, consider the function U = f (x1,x2,x3) = x2
1 + x2

2 + x2
3 − x1 − x2 − x3. The

FOC, as per Table 4.3.4, requires that dU = 0 for an optimum of the function. For this to
happen, we must have f1 = f2 = f3 = 0. We can obtain from the function that f1 = 2x1 − 1,
f2 = 2x2 − 1, and f3 = 2x3 − 1. Setting these partial derivatives to zero and simplifying
yields the critical values (x∗

1,x
∗
2,x

∗
3) = (0.5,0.5,0.5).

Table 4.3.4

Condition Minimum Maximum

FOC or necessary condition dU = 0 dU = 0
SOC or sufficient condition d2U > 0, or positive definite,

if DR1 > 0, DR2 > 0, and
DR3 = DR > 0

d2U < 0, or negative definite,
if DR1 < 0, DR2 ≥ 0, and
DR3 = DR > 0
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We now need to check the SOC to know whether these critical values correspond to an
optimum of the function. The SOC requires that the sign of the associated quadratic form
d2U = f11dx2

1 + f22dx2
2 + f33dx2

3 + 2f12dx1dx2 + 2f13dx1dx3 + 2f23dx2dx3 be checked for a
relative optimum of the function. We can obtain from the function that f11 = 2, f22 = 2,
f33 = 2, f12 = 0, f13 = 0, and f23 = 0. Substituting these values into the quadratic form
we obtain d2U = 2dx2

1 + 2dx2
2 + 2dx2

3 + 2 × 0dx1dx2 + 2 × 0dx1dx3 + 2 × 0dx2dx3. The
matrix representation of this equation is d2U = xTDx, where xT and D are as we defined

earlier. Then, we have D =
⎡
⎢⎣f11 f12 f13

f21 f22 f23

f31 f32 f33

⎤
⎥⎦ =

⎡
⎢⎣2 0 0

0 2 0

0 0 2

⎤
⎥⎦, which gives us DR1 = 2 > 0,

DR2 = 4> 0, and DR3 = DR = 8> 0. Then, following Table 4.3.4, we conclude that d2U
is positive definite; therefore, U = f (x1,x2,x3) = x2

1 + x2
2 + x2

3 − x1 − x2 − x3 qualifies for a
minimum at the critical values (x∗

1,x
∗
2,x

∗
3) = (0.5,0.5,0.5). Therefore, the minimum value

of the function is U ∗ = f (x∗
1,x

∗
2,x

∗
3) = x∗2

1 + x∗2
2 + x∗2

3 − x∗
1 − x∗

2 − x∗
3 = −0.75.

As another example, consider the function U = f (x1,x2,x3) = x1 + x2 + x3 − x2
1 − x2

2 −
x2

3. The FOC, as above, requires that dU = 0 for an optimum of the function. For this to
happen, we must have f1 = f2 = f3 = 0. We can obtain from the function that f1 = 1 − 2x1,
f2 = 1 − 2x2, and f3 = 1 − 2x3. Setting these partial derivatives to zero and simplifying
yields the critical values, as before, (x∗

1,x
∗
2,x

∗
3) = (0.5,0.5,0.5).

We now need to check the SOC to know whether the above critical values correspond
to an optimum of the function. The SOC requires that the sign of the associated quadratic
form d2U = f11dx2

1 + f22dx2
2 + f33dx2

3 + 2f12dx1dx2 + 2f13dx1dx3 + 2f23dx2dx3 be checked
for a relative optimum of the function. We can obtain from the function that f11 = −2,
f22 = −2, f33 = −2, f12 = 0, f13 = 0, and f23 = 0. Substituting these values into the quadratic
form we obtain d2U = −2dx2

1 − 2dx2
2 − 2dx2

3 + 2 × 0dx1dx2 + 2 × 0dx1dx3 + 2 × 0dx2dx3.
The matrix representation of this equation is d2U = xTDx, where xT and D are as we

defined earlier. Then, we have D =
⎡
⎢⎣f11 f12 f13

f21 f22 f23

f31 f32 f33

⎤
⎥⎦ =

⎡
⎢⎣−2 0 0

0 −2 0

0 0 −2

⎤
⎥⎦, which gives us

DR1 = −2 < 0, DR2 = 4 > 0, and DR3 = DR = −8 < 0. Then, following Table 4.3.4, we
conclude that d2U is negative definite; therefore, U = f (x1,x2,x3) = x1 + x2 + x3 − x2

1 −
x2

2 −x2
3 qualifies for a maximum at the critical values (x∗

1,x
∗
2,x

∗
3) = (0.5,0.5,0.5). Therefore,

the maximum value of the function is U ∗ = f (x∗
1,x

∗
2,x

∗
3) = x∗

1 + x∗
2 + x∗

3 − x∗2
1 − x∗2

2 −
x∗2

3 = 0.75.

4.3.4 Conditions of extrema of n-variable functions: differential version

Assume now that the unconstrained objective function is U = f (x1,x2,x3, . . . ,xn), a function
with n independent variables. As before, the FOC for optima in the case of an n-variable
function is that the first total differential of the function be equal to zero or dU = f1dx1 +
f2dx2 + f3dx3 +·· ·+ fndxn = 0, which is identical with equation (3.8.4). Therefore, this FOC
implies, as earlier, that f1 = f2 = f3 = ·· · = fn = 0.

We know from Section 3.8.3 that the second total differential of U = f (x1,x2,x3, . . . ,xn) is
d2U = f11dx2

1 + f22dx2
2 + f33dx2

3 +·· ·+ fnndx2
n +2f12dx1dx2 +2f13dx1dx3 +·· ·+2f1ndx1dxn+

2f23dx2dx3 +2f24dx2dx4 +·· ·+2f2ndx2dxn +·· ·+2fn−1,ndxn−1dxn +·· · , which is identical
with equation (3.8.9). The SOC for an optimum of U = f (x1,x2,x3, . . . ,xn) requires that
we check the sign of d2U . Notice that the matrix representation of d2U , as we saw
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Table 4.3.5

Condition Minimum Maximum

FOC or necessary
condition

dU = 0 dU = 0

SOC or sufficient
condition

d2U > 0, or positive definite, if
DR1 > 0, DR2 > 0, DR3 ≥ 0, . . .,
DRn = DR ≥ 0

d2U < 0, or negative definite, if
DR1 < 0, DR2 > 0, DR3 < 0, . . .,
(−1)nDRn = (−1)nDR ≥ 0

at the end of Section 2.8.2, is d2U = xTDx, where xT = [
dx1 dx2 .... dxn

]
and D

=

⎡
⎢⎢⎢⎣

f11 f12 .. f1n

f21 f22 .. f2n

.. .. .. ..

fn1 fn2 .. fnn

⎤
⎥⎥⎥⎦. We stated at the end of Section 2.8.2 that d2U would be positive

definite (given dU = 0) so that U = f (x1,x2,x3, . . . ,xn) would have a minimum if DR1 > 0,
DR2 > 0, DR3 > 0, . . ., DRn = DR > 0. And, d2U would be negative definite (given
dU = 0) so that U = f (x1,x2,x3, . . . ,xn) would have a maximum if DR1 < 0, DR2 > 0,
DR3 < 0, . . . , (−1)n DRn = (−1)n DR > 0. These conditions are presented in Table 4.3.5.

4.3.5 Concavity and convexity, and extrema of n-variable functions

In Section 4.2.7 we discussed how a knowledge of the curvature (convexity and concavity)
of a univariate function, y = f (x), obviated the need to check the SOCs to determine whether
the function has an optimum. We found from our discussion there that if the function was
convex (concave) over a closed interval on its domain, then the function had a local or relative
minimum (maximum). We also found that if the function was strictly convex (concave) on
its entire domain as the graph in Figure 4.2.1(A) (Figure 4.2.1(B)), then the function had a
global or absolute minimum (maximum).

So far in the present section we were presenting the FOCs and the SOCs for optima of
multivariate functions in terms of both derivatives and differentials. Suppose now that we
have a multivariate function such as U = f (x1,x2,x3, . . . ,xn). A reasonable question that
arises now is: can one dispense with the SOCs and only use the information on the curvature
of the function to judge whether the function has an optimum (as in the case of univariate
functions)? The answer is yes, and the procedure is outlined as follows.

To begin with, assume that we have two bivariate functions Q = f (K,L) and Q =
g(K,L). Also assume that the graphs of these two functions resemble those illustrated in
Figures 4.3.1(A) and (B), respectively. We know from our discussion in Section 4.3.1 that the
graphs in these figures (which are planes in three-dimensional spaces; a three-dimensional
extension of the graphs in two-dimensional spaces as those in Figures 4.2.1(A) and (B),
respectively) are strictly concave and convex, respectively. The graph in Figure 4.3.1(A)
attains a global maximum (at point A) and that in Figure 4.3.1(B) attains a global minimum
(at point B). They attain global optima because they are strictly concave or convex. If
these functions were defined over closed intervals of their respective domains, then they
would have attained local or relative optima. These results suggest that information on the
curvature of bivariate functions can be used to determine whether the function attains local
or global optima.
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Let us now generalize the above results to the optima of an n-variable function, U =
f (x1,x2,x3, . . . ,xn). If the function is convex (concave) over a closed interval on its domain,
then the function has a local minimum (maximum) over that interval. If, instead, this function
is strictly convex (concave) over its entire domain, then the function has a global minimum
(maximum). Therefore, we need only check whether the function under consideration is
convex (concave) to determine whether it has a minimum (maximum), and, therefore, we
can dispense with the need to check the SOCs (as in the case of univariate functions).

But, the question is how one can check the curvature of functions. This is an easy
problem, as we saw in Section 3.5.1, if we have a univariate function such as y = f (x).
We learned there that the function is convex (concave) if its second derivative is positive
(negative), that is, if f ′′ > 0 (f ′′ < 0). In terms of differentials, as we saw in Section 4.2.5,
the function y = f (x) is convex (concave) if its second differential is positive (negative).
The problem will be a bit cumbersome if we have a multivariate function such as U =
f (x1,x2,x3, . . . ,xn). We know from our discussions in Section 2.8.2 that if d2U is positive
(negative) definite, then the function has a global minimum (maximum); if d2U is positive
(negative) semidefinite, then the function has a local minimum (maximum). It can be shown
that the curvature of the function U = f (x1,x2,x3, . . . ,xn), the nature of the n-dimensional
hyperplane, is determined by the sign of the associated quadratic form d2U (equation (3.8.9)).
If d2U is positive (negative) definite, then the function is strictly convex (concave) and the
function has a global minimum (maximum); if d2U is positive (negative) semidefinite, then
the function is convex (concave) and the function has a local minimum (maximum). We
know from Sections 2.8.2 and 4.3.2–4.3.4 how one can determine the sign of d2U .

4.3.6 Application examples

Example 1. Assume that the inverse demand functions in two markets that a discrimi-
nating monopolist faces for its product are given by p1 = f (q1) = 100 − 2q1 and p2 =
g(q2) = 60−2q2, where p1, p2, q1, and q2 denote the price charged in market one, the price
charged in market two, the quantity demanded in market one, and the quantity demanded in
market two, respectively. Also assume that the total cost (C) of the monopolist in supplying
the good in the two markets is given by C = h(q1,q2) = 10 + 20q1 + 20q2. Find the levels
of q1 and q2 that should be supplied to the two markets so that the combined profit of the
monopolist will be maximized. Assume that the prices are in dollars.

Solution. The objective function to be optimized in this example is the monopolist’s total
profit function and it is the difference between the total revenue and the total cost. The total
cost of the monopolist is already given: C = h(q1,q2) = 10+20q1 +20q2. The total revenue
(R) that the monopolist obtains from both markets together is the sum of the revenue from
market one (R1) and the revenue from market two (R2), and is given by R = R1 + R2 =
p1q1 + p2q2 = (100 − 2q1)q1 + (60 − 2q2)q2 = 100q1 − 2q2

1 + 60q2 − 2q2
2. Therefore, the

total profit (	) of the monopolist is 	= j(q1,q2) = R − C = 100q1 − 2q2
1 + 60q2 − 2q2

2 −
10 − 20q1 − 20q2 or 	= j(q1,q2) = −10 + 80q1 + 40q2 − 2q2

1 − 2q2
2.

Notice that this is a problem of optimizing an objective function that has two independent
variables (q1 and q2); that is, optimizing a bivariate function (	= j(q1,q2)). The conditions
for an optimum of 	 = j(q1,q2) are presented in Table 4.3.1 (in terms of derivatives) and
in Table 4.3.3 (in terms of differentials and quadratic forms) or in Table 4.3.5, which is
the general case of the conditions presented in Table 4.3.3. One can apply any one of
these; we shall apply the conditions presented in Table 4.3.3. The FOC for an optimum
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of 	= j(q1,q2) requires that d	 = (∂j/∂q1)dq1 + (∂j/∂q2)dq2 = j1dq1 + j2dq2 = 0. This
implies that ∂j/∂q1 = j1 = 0 and ∂j/∂q2 = j2 = 0. Therefore, the partial derivatives of
	= j(q1,q2) = −10+80q1 +40q2 −2q2

1 −2q2
2 with respect to q1 and q2 are j1 = 80−4q1

and j2 = 40 − 4q2, respectively. Setting these partial derivatives to zero and simplifying
yields q∗

1 = 20 and q∗
2 = 10. Therefore, the critical values are (q∗

1,q
∗
2) = (20,10). These

values imply that the price in market one is p∗
1 = f (q∗

1) = 100 − 2 × 20 = $60 and the price
in market two is p∗

2 = g(q∗
2) = 60 − 2 × 10 = $40.

The SOC for an optimum of 	 = j(q1,q2) requires that we check the sign of its
second total differential. The second total differential of 	 = j(q1,q2) is d2	 = j11dq2

1 +
2j12dq1dq2 + j22dq2

2, the matrix representation of which is d2	= xTDx, where xT and D are
as we defined earlier. We can obtain, from	= j(q1,q2) = −10+80q1 +40q2 −2q2

1 −2q2
2,

that j11 = −4, j22 = −4, and j12 = j21 = 0. Therefore, the quadratic form in the present
example can be written as d2	 = −4dq2

1 + 2 × 0dq1dq2 − 4dq2
2. Substituting these partial

derivatives in D we obtain D =
[−4 0

0 −4

]
. We obtain DR1 = j11 = −4 < 0 and DR1=

DR = |D| = 16 > 0. Since DR1 < 0 and DR2 = DR > 0, the quadratic form is negative
definite. This implies, following the conditions in Table 4.3.3, that the function 	 =
j(q1,q2) = −10 + 80q1 + 40q2 − 2q2

1 − 2q2
2 qualifies for a maximum at the critical values

(q∗
1,q

∗
2) = (20,10). Therefore, the stationary value of the function (or the maximum profit)

at the critical values (q∗
1,q

∗
2) = (20,10) is 	∗ = j(q∗

1,q
∗
2) = −10 + 80q∗

1 + 40q∗
2 − 2q∗2

1 −
2q∗2

2 − 10 + 80 × 20 + 40 × 10 − 2 × 202 − 2 × 102 = 990.

Example 2. Suppose that the total cost (C), in dollars, of producing two goods by a
multiproduct firm is given by C = f (q1,q2) = 100 + 3q2

1 + 2q2
2 − 2q1q2 − 4q1 − 4q2, where

q1 and q2 represent the quantities of good 1 and good 2, respectively. How many units
of the two goods must the firm produce in order to minimize the total cost? What will be
minimum cost to the firm?

Solution. Notice that this is a problem, as before, of optimizing a bivariate function:
C = f (q1,q2). The conditions for an optimum, in terms of differentials and quadratic forms,
of a bivariate function are given in Table 4.3.3. We know, from this table, that the FOC for
an optimum of C = f (q1,q2) requires that dC = (∂f /∂q1)dq1 + (∂f /∂q2)dq2 = f1dq1 +
f2dq2 = 0. This implies that f1 = f2 = 0. The partial derivatives of C = f (q1,q2) =
100 + 3q2

1 + 2q2
2 − 2q1q2 − 4q1 − 4q2 with respect to q1 and q2 are f1 = 6q1 + 2q2 − 4 and

f2 = 4q2 + 2q1 − 4, respectively. Setting these partial derivatives to zero and simplifying
yields q∗

1 = 0.4 and q∗
2 = 0.8. Therefore, the critical values are (q∗

1,q
∗
2) = (0.4,0.8).

The other critical values ((q∗
1,q

∗
2) = (0,0)) are discarded as they are meaningless in the

present example.
The SOC for an optimum of C = f (q1,q2) requires that we check the sign of the

second total differential of C = f (q1,q2): d2C = f11dq2
1 + 2f12dq1dq2 + f22dq2

2. Its matrix
representation is d2C = xTDx, where xT and D are as we defined earlier. We can obtain,
from C = f (q1,q2) = 100 + 3q2

1 + 2q2
2 − 2q1q2 − 4q1 − 4q2, that f11 = 6, f22 = 4, and

f12 = f21 = 2. Therefore, the quadratic form in the present example can be written as
d2C = 6dq2

1 + 4dq1dq2 + 4dq2
2. Substituting these partial derivatives in D, we obtain

D =
[

6 2
2 4

]
. We know that DR1 = f11 = 6 > 0 and DR2 = DR = |D| = 24 − 4 = 20.

Since DR1 = 6 > 0 and DR2 = DR = 20 > 0, the quadratic form is positive definite.
This implies that, following the conditions in Table 4.3.3, the function C = f (q1,q2)
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= 100+3q2
1 +2q2

2 −2q1q2 −4q1 −4q2 qualifies for a minimum at critical values (q∗
1,q

∗
2) =

(0.4,0.8). Therefore, the stationary value of the function (or the minimum cost) at the
critical values (q∗

1,q
∗
2) = (0.4,0.8) is C∗ = f (q∗

1,q
∗
2) = 100+3q∗2

1 +2q∗2
2 −2q∗

1q∗
2 −4q∗

1 −4q∗
2

= 100 + 3(0.4)2 + 2(0.8)2 − 2(0.4)(0.8) − 4(0.4) − 4(0.8) = 96.26.

Example 3. Assume that a firm uses capital (K) and labor (L) to produce a good. The
quantity (q) of the good produced is given by the function q = f (K,L) = 4K1/3L1/2. Also
assume that the total cost of production (C) is given by the function C = g(K,L) = 0.1K +2L,
and the price (p) of the good is $1 per unit. Find the quantities of capital and labor that the
firm must employ to maximize its profits. Also find the profit-maximizing quantity of the
good produced and the maximum profit.

Solution. The total revenue (R) of the firm is R = h(K,L) = p×q = 1×q = q = 4K1/3L1/2.
Therefore, the profit (	) of the firm is 	 = j(K,L) = R − C = 4K1/3L1/2 − 0.1K − 2L.
The FOC for an optimum of 	 = j(K,L) requires that d	 = (∂j/∂K)dK + (∂j/∂L)dL =
jKdK + jLdL = 0. This implies that jK = jL = 0. Therefore, the partial derivatives of
	= j(K,L) = 4K1/3L1/2 −0.1K −2L with respect to K and L are jK = (4/3)K−2/3L1/2 −0.1
and jL = 2K1/3L−1/2 − 2, respectively. Setting these partial derivatives to zero and sim-
plifying yields K∗ = $2370.4 and L∗ = 177.8 units. Therefore, the critical values are
(K∗,L∗) = ($2370.4, 177.8).

The SOC for an optimum of 	 = j(K,L) requires that we check the sign of the
second total differential of 	 = j(K,L): d2	 = jKKdK2 + 2jKLdKdL + jLLdL2, the matrix
representation of which is d2	 = xTDx, where xT and D are as we defined earlier. We
can obtain, from	= j(K,L) = 4K1/3L1/2 −0.1K −2L, that jKK = (−8/9)K−5/3L1/2, jLL =
−K1/3L−3/2 and jKL = jLK = (2/3)K−2/3L−1/2. Substituting the critical values in these
second partial derivatives gives jKK = −28.4, jLL = −5.61 and jKL = jLK = 0.281. Therefore,
the quadratic form in this example can be written as d2	= −28.4dK2 + 2 × 0.281dKdL −
5.61dL2. Substituting these partial derivatives in D we obtain D =

[−28.4 0.281
0.281 −5.61

]
.

We obtain DR1 = jKK = −28.4 < 0 and DR2 = DR = |D| = 159.22 > 0. Since DR1 < 0
and DR2 = DR > 0, the quadratic form is negative definite. This implies that, following the
conditions in Table 4.3.3, the function	= 4K1/3L1/2 −0.1K −2L qualifies for a maximum
at the critical values (K∗,L∗) = ($2370.4, 177.8). The stationary value of the function (or the
maximum profit) at the critical values (K∗,L∗) = ($2370.4, 177.8) is	∗ = j(K∗,L∗) = $115.
The profit-maximizing output is q∗ = f (K∗,L∗) = 707.6 units.

Example 4. Assume that the quantities of two goods (A and B) produced by a multi-
product firm are given by the functions qA = f (pA,pB) = 10pB −10pA and qB = g(pA,pB) =
100+10pA −20pB, where qA, qB, pA, and pB denote the quantity of A produced, the quantity
of B produced, the price per unit (in dollars) of A, and the price per unit (in dollars) of B,
respectively. The average cost of producing A is $1 and the average cost of producing B is $2.
Find pA, and pB that will maximize the firm’s total profit,	. Also find the profit-maximizing
levels of qA and qB and the maximum profit.

Solution. The profit per unit from either good is equal to the price of the good minus per
unit cost of the good. Since the per unit costs of goods A and B are $1 and $2, respectively,
the per unit profits from these goods are (pA −1) and (pB −2), respectively. The total profits
from goods A and B are given by (pA − 1)qA and (pB − 2)qB, respectively. Therefore, the
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multiproduct firm’s total profit is given by 	 = j(pA,qA,pB,qB) = (pA − 1)qA + (pB −
2)qB. Substituting qA = 10pB − 10pA and qB = 100 + 10pA − 20pB into 	= (pA − 1)qA +
(pB − 2)qB and simplifying, we obtain 	= h(pA,pB) = −200 + 20pApB − 10p2

A − 20p2
B +

130pB − 10pA.
The FOC for an optimum of 	 = h(pA,pB) requires that d	 = (∂h/∂pA)dpA +

(∂h/∂pB)dpB = hpAdpA +hpBdpB = 0, which implies that ∂h/∂pA = hpA = 0 and ∂h/∂pB =
hpB = 0. Therefore, the partial derivatives of 	 = h(pA,pB) with respect to pA and pB

are 	pA = 20pB − 20pA − 10 and 	pB = 20pA − 40pB + 130, respectively. Setting these
partial derivatives to zero and simplifying yields p∗

A = 5.5 and p∗
B = 6. Therefore, the critical

values are (p∗
A,p

∗
B) = (5.5,6).

The SOC for an optimum of 	= h(pA,pB) requires that we check the sign of its second
total differential. The second total differential of 	 = h(pA,pB) is d2	 = hpAAdp2

A +
2hpApBdpAdpB +hpBBdp2

B, the matrix representation of which is d2	= xTDX, where xT and
D are as we defined earlier. We can obtain, from	= h(pA,pB) = −200+20pApB −10p2

A −
20p2

B + 130pB − 10pA, that hpAA = −20, hpBB = −40, and hpAB = 20 = hpBA . Therefore, the
quadratic form in this example with these values of the partial derivatives can be written
as d2	 = −20dp2

A + 2 × 20dpAdpB − 40dp2
B. Substituting these partial derivatives into D,

we obtain D =
[−20 20

20 −40

]
. We know that DR1 = hpAA = −20 < 0 and DR2 = DR =

|D|= 400> 0. Since DR1< 0 and DR2 =DR =|D|> 0, the quadratic form is negative definite.
This implies, following the conditions in Table 4.3.3, that the function 	 = h(pA,pB) =
−200 + 20pApB − 10p2

A − 20p2
B + 130pB − 10pA qualifies for a maximum at the critical

values (p∗
A,p

∗
B) = (5.5,6). The stationary value of the function (or the maximum profit)

at the critical values (p∗
A,p

∗
B) = (5.5,6) can be found by substituting the critical values

into 	∗ = h(p∗
A,p

∗
B) = −200 + 20p∗

Ap∗
B − 10p∗2

A − 20p∗2
B + 130p∗

B − 10p∗
A. Therefore, the

maximum profit is 	∗ = h(p∗
A,p

∗
B) = $162.50. The profit-maximizing quantities of the two

goods produced are q∗
A = 5 units and q∗

B = 35 units.

4.3.7 Exercises

1. Find the critical values of the following functions. Also determine the optima, if they
exist.
(i) U = f (x,y) = 10 + x2 + y2 − 4x − 4y; (ii) U = f (x,y) = 10 − x2 − y210x + 10y;
(iii) U = f (x,y) = x3 + y3 − xy; (iv) U = f (x,y) = x3 + y3 − 9x − 9y; (v) U = f (x,y) =
x2 − 4xy − y2; (vi) U = f (x,y) = x2 + 2xy + y3; (vii) U = f (x,y) = x3 − xy + y3;
(viii) U = f (x,y) = xy − x3 − y3.

2. Application exercise. Suppose that the production function of a firm that produces q
units of the output of a good using k units of capital and l units of labor is given by
q = f (k, l) = 10k + 10 l − k2 − l2 − kl. Find the quantities of capital and labor that the
firm must use in order to maximize its output. Also find the maximum output.

3. Application exercise. Assume that the total cost (C) of producing two goods (A and B)
by a multiproduct firm is given by C = f (qA,qB) = q2

A + 4q2
B + 2qAqB − 2qA − 4qB,

where qA and qB represent the quantities of goods A and B produced, respectively. Find
qA and qB that the firm should produce so that its total cost will be minimum. Also find
the minimum total cost.

4. Application exercise. Suppose that two firms, A and B, are duopolists in a market, and
that they produce qA and qB units, respectively, of a homogeneous good. Also suppose
that the industry demand for the good is given by P = f (qA,qB) = 80−qA −qB, where P
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denotes market price; and that the total cost of producing the good by firm A is CA = 5qA

and the total cost of producing the good by firm B is CB = 0.1q2
B. Suppose again that

the two firms decided to enter into collusion and form a monopoly. Find the quantities
that firms A and B (i.e. qA and qB) should produce so that the monopoly profit will be
maximum. Also find the maximum monopoly profit and the market price.

5. Application exercise. Suppose that the inverse demand functions of two goods that a
monopolist sells are given by qA = 10 − 2pA and qB = 5 − pB, where qA, pA, qB,
and pB denote the quantity of good A demanded, price of good A, quantity of good B
demanded, and price of good B, respectively. Also suppose that the monopolist’s joint
cost of producing these two goods is given by C = qA + qB + qAqB. Prices and costs
are in dollars. Find pA and pB that maximize the monopolist’s total profit. Also find the
profit-maximizing qA and qB, and the maximum total profit.

6. Application exercise. Assume that the inverse demand functions that a discriminat-
ing monopolist faces in two markets (1 and 2) are given by p1 = 90−q1 and p2 = 80−q2,
where p1, q1, p2, and q2 denote price in market 1, quantity demanded in market 1, price
in market 2, and quantity demanded in market 2, respectively. Also assume that the
monopolist’s total cost is given by C = 500+5q1 +5q2. Prices and costs are in dollars.
Find q1 and q2 that the monopolist should sell to maximize its total profit. Also find the
profit-maximizing p1 and p2, and the maximum total profit.

7. Application exercise. Suppose that the total utility (U ) that a consumer obtains from
the consumption of two goods, q1 and q2, is given by the function U = f (q1,q2) =
2q1q2 − q2

1 − q3
2. Find the quantities of q1 and q2 that the consumer should consume to

maximize the total utility. Also find the maximum total utility.

Web supplement: S4.3.8 Mathematica applications

4.4 Extrema of multivariate objective functions with constraints

4.4.1 Introduction

We began this chapter with an introduction to the objectives of economic agents. We stated
that every economic agent aimed at optimizing some objective function. A consumer wanted
to maximize the total utility from the bundle of goods consumed or minimize the expenditure
on the bundle of goods purchased; a producer wanted to maximize the total profit or minimize
the total cost; a government agent wanted to maximize social welfare or minimize social
costs; and so on.

However, in optimizing all the objective functions that we have considered so far, the
agent was assumed to be free to choose the quantities that optimized the agent’s objective
function. For example, suppose that a consumer aims at maximizing the total utility (U )
obtained from the consumption of two goods, x1 and x2. For convenience, suppose that the
consumer’s total utility is given by the function U = f (x1,x2) = x1/2

1 + x1/2
2 . Given this

utility function, the consumer was assumed to choose any quantities of the goods x1 and
x2 that would maximize the total utility. Notice that the utility will be a maximum only
when infinite quantities of the two goods are consumed, and that the consumer is free to
consume these quantities. An optimization problem such as this is called a free optimization
problem or unconstrained optimization problem. It is unnecessary to mention that a free
or unconstrained optimization problem has little significance in the subjects of our interest.



[12:20 3/11/2011 5640-Ummer-Ch04.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 221 193–243

Classical optimization 221

We also stated at the beginning of this chapter that the resources to achieve the objectives
of the economic agents were limited and that this “limitation” forced the agents to make
choices. In the face of this limitation, the consumer in our above example cannot consume
infinite quantities of the two goods to maximize total utility. Consuming infinite quantities
of the two goods would not have been a problem if the consumer had an infinite amount of
money or if the goods were free. But, the truth is that the amount of money (or, in general,
resources) of the consumer or of any other economic agent is limited and the goods have
to be paid for at their respective prices. These constraints, as mentioned, force one to make
choices. Therefore, given the prices of the two goods and the limited amount of money, the
consumer can consume more of one good only by reducing the consumption of the other
good. This means that there exists a trade-off in the consumption of goods. This also means
that the consumer has to maximize utility taking into account the limitation imposed by the
prices of the goods and the amount of money the consumer has to spend on the two goods.
Suppose that one unit of x1 costs $2 and one unit of x2 costs $4 and the amount of money at
the consumer’s disposal for spending on these two goods is $40. Then the resource limitation
that the consumer faces can be written as 2x1 + 4x2 = 40. This equation is called the budget
constraint or, simply, the constraint or the subsidiary condition. Notice that the problem of
scarcity we noted earlier enters into the optimization problem through the budget constraint.
What all this means is that, instead of a free optimization problem, the consumer now has a
constrained optimization problem; specifically, a constrained maximization problem. In fact,
the optimization problems of all the economic agents we referred to above are constrained
optimization problems.

4.4.2 Constrained optimization: concepts and geometric interpretation

We stated above that every economic agent aims at optimizing some objective function.
Moreover, we saw above that every economic agent faces at least one constraint. In certain
optimization problems, the agent(s) may confront more than one constraint, and such
problems are called multiconstraint optimization problems.

The constraints that the agent faces may be equality constraints (such as the one in the
last example) or inequality constraints (which we will consider in Chapters 5 and 6). In
the present chapter we will consider constrained optimization problems with only equality
constraints.

One term that is frequently used in constrained optimization theory is feasible set.
A feasible set is the set of combinations of the independent or choice variables of the objective
function that satisfies all the constraints of the optimization problem simultaneously.

We have also seen above the difference between free or unconstrained and constrained
optimization problems. We can now present a geometric illustration of this difference.
For this we use the utility maximization example presented in the last section. Notice
that we can represent the budget constraint given in that example by the straight line BC
in Figure 4.4.1(A). The problem of the consumer now is to maximize the total utility
U = f (x1,x2) = x1/2

1 + x1/2
2 subject to the budget constraint 2x1 +4x2 = 40. If there were no

constraint, then the domain of the objective function would be the nonnegative values on the
real lines representing x1 and x2; that is, the nonnegative (x1,x2) plane in a three-dimensional
figure. Consequently, the range of the function would be nonnegative values on the real
line representing U in Figure 4.4.1(B). However, with the introduction of the constraint, the
domain of the objective function is curtailed (to the set of points on the budget line BC in
Figure 4.4.1(A)). This curtailment in the domain leads to a corresponding curtailment of the
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range of the function (to the set of points of the utility plane lying directly above the budget
line) as shown in Figure 4.4.1(B).

The curtailment mentioned above in the objective function due to the introduction of
the budget constraint can be better understood with a three-dimensional illustration as
presented in Figure 4.4.2. As can be seen, the constrained maximum is, in most cases,
lower than the free maximum, and it can be utmost as high as (and not greater than) the
free maximum.
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Our aim here is to find the optimum (in the present example, maximum) of the objective
function. The two methods that are widely used to find the optimum of the objective
functions in constrained optimization problems are the substitution method and the Lagrange
multiplier method. We first present the substitution method followed by the Lagrange
multiplier method.

4.4.3 Solution of constrained optimization problems: the substitution method

As an illustration of the substitution method of solving constrained optimization problems,
consider our previous example. The objective function in our example was to maximize

U = f (x1,x2) = x1/2
1 + x1/2

2 (4.4.1)

subject to the constraint

2x1 + 4x2 = 40 (4.4.2)

Notice that there are two independent or choice variables in the objective function in
equation (4.4.1). Therefore, this is the case of a bivariate constrained optimization problem
with one constraint. We will later consider optimization problems involving more than
two choice variables and one or more constraints. We now use the substitution method
to solve this problem.

We begin by solving for x2 in the budget constraint given in equation (4.4.2). Solving for x2,
we obtain x2 = 10− 0.5x1. We can now substitute this value for x2 in the objective function
in equation (4.4.1) to obtain U = g(x1) = x1/2

1 + (10 − 0.5x1)1/2. Notice that the original
bivariate objective function is now converted into a univariate objective function. Therefore,
we can use the FOC and the SOC in Table 4.2.1 to check whether the last function has
an optimum.

The FOC for g(x1) to have a maximum is g′(x1) = 0. Differentiating U = g(x1) = x1/2
1 +

(10−0.5x1)1/2 with respect to x1 we obtain g′(x1) = 0.5x−1/2
1 +0.5(10−0.5x1)−1/2 ×−0.5.

Setting this first derivative to zero and simplifying yields x∗
1 = 160/12 = 13.33. Substi-

tuting this value into the budget constraint gives x∗
2 = 40/12 = 3.33. Therefore, the critical

values are (x∗
1,x

∗
2) = (13.33, 3.33). The SOC for g(x1) to have a maximum is g′′(x1) < 0.

The second derivative of g(x1) is g′′(x1) = −0.5x−3/2
1 + (1/8)(10 − 0.5x1)−3/2 ×−0.5. The

value of this second derivative at x∗
1 = 13.33 is g′′(x∗

1) = −0.0154 < 0. Since the second

derivative is negative, the function U = g(x1) = x1/2
1 + (10 − 0.5x1)1/2 is strictly concave

at x∗
1 = 13.33 and, therefore, it has a maximum at x∗

1 = 13.33. Therefore, the maximum or
the stationary value of the function at the critical values (x∗

1,x
∗
2) = (13.33, 3.33) is U ∗ =

f (x∗
1,x

∗
2) = x∗1/2

1 + x∗1/2
2 = g(x∗

1) = x∗1/2
1 + (10 − 0.5x∗

1)1/2 = 5.5.
The above procedure for solving a constrained optimization problem involving two

choice variables and one constraint can be summarized as follows. Firstly, solve the constraint
for one of the variables. Secondly, substitute this solution in the original bivariate objective
function to convert it into a univariate objective function. Thirdly, find the critical value of
the choice variable in the converted objective function from the FOC. Fourthly, substitute
this value of the choice variable into the constraint to solve for the other choice variable, and
this will give its critical value. Fifthly, check the second derivative of the converted objective
function to determine whether the function has a maximum or a minimum corresponding to
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the first critical value. Lastly, substitute these two critical values into the original bivariate
objective function to obtain the optimum or the stationary value of the function.

As another example, assume that a firm received an order for ten units of its product, which
is produced at two separate plants. Also assume that the quantities of the goods produced
at these two plants are q1 and q2, respectively, and that the total cost (C) of producing the
product is given by the function C = f (q1,q2) = q2

1 +q2
2 −q1q2. How many units of the good

must be produced in each plant such that the firm’s total cost will be minimum?
The constraint in this problem can be written as q1 + q2 = 10. We shall now follow the

steps outlined above. Solving q1 +q2 = 10 for q2 yields q2 = 10−q1. Substituting this value
of q2 into the objective function C = f (q1,q2) = q2

1 + q2
2 − q1q2 and simplifying, we obtain

C = g(q1) = 100 + 3q2
1 − 30q1. Notice that we converted the original bivariate objective

function into a univariate objective function. We know that its critical values can be found
by differentiating it with respect to q1 and setting the derivative to zero. The derivative of
C = g(q1) = 100 + 3q2

1 − 30q1 with respect to q1 is g′(q1) = 6q1 − 30, and setting this to
zero yields q∗

1 = 5. Since q2 = 10 − q1, we obtain q∗
2 = 10 − q∗

1 = 10 − 5 = 5. Therefore,
the critical values are (q∗

1,q
∗
2) = (5, 5). Since g′′(q1) = 6 > 0, the SOC for a minimum of

C = g(q1) = 100 + 3q2
1 − 30q1 is also satisfied. This implies that the function C = g(q1) =

100 + 3q2
1 − 30q1 has a minimum and it occurs at q∗

1 = q∗
2 = 5. The minimum cost or the

stationary value of the function is C∗ = f (q∗
1,q

∗
2) = q∗2

1 + q∗2
2 − q∗

1q∗
2 = 52 + 52 − 5 × 5 =

g(q∗
1) = 100 + 3q∗2

1 − 30q∗
1 = 100 + 3 × 52 − 30 × 5 = $25.

The reader will have noticed that the substitution method of solving constrained
optimization problems is easier when there is only one constraint and the objective function
is a simple expression of two variables. But this method will be more cumbersome to use if
the optimization problem involves more constraints and more choice variables or when the
original objective function is a complicated expression. This necessitates the employment
of a more formal method to solve constrained optimization problems. This method is called
the Lagrange multiplier method and is presented in the following section.

4.4.4 Solution of constrained optimization problems: the Lagrange
multiplier method

As before, we are still dealing with the optimization of bivariate objective functions subject to
one constraint. In the last section we presented the substitution method of solving constrained
optimization problems. There is an alternative method which, as in the case of the substitution
method, also converts the original objective function into another form. This alternative
method is called the Lagrange multiplier method. The converted form of the original objective
function is called the Lagrangian function which comprises the original objective function,
the constraint, and an undetermined variable called the Lagrangian multiplier. One might
wonder why one needs to convert the original objective function into the Lagrangian function.
The reason is that (as in the case of the substitution method), once the Lagrangian function
is formed, we can still use the FOC of free optimization problems. However, how does one
do this? The procedure is outlined below.

We use the first example in the last section. The objective function and the constraint of this
example are given in equations (4.4.1) and (4.4.2), respectively. We can now combine the
objective function with the constraint and with the Lagrangian multiplier (λ) to form the
Lagrangian function7 as

L = h(x1,x2,λ) = x1/2
1 + x1/2

2 +λ(40 − 2x1 − 4x2) (4.4.3)
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Notice that the terms inside the brackets on the RHS of equation (4.4.3) are nothing but a
restatement of the constraint. It should be noted that most of the constraints that appear in
this chapter are binding constraints.8 Since, at maximum, the consumer utilizes the available
resources completely or since the constraint is binding at extremum, the terms inside the
brackets on the RHS of equation (4.4.3) will be zero. In this case the Lagrangian function in
equation (4.4.3) will reduce to the original objective function in equation (4.4.1). Therefore,
when the Lagrangian function is optimized, the original function will also be optimized. This
suggests that we can still use, as in the case of the substitution method, the simple FOC of
free optimization problems.

Therefore, the FOCs for the objective function to have an optimum require that the
partial derivatives of the Lagrangian function with respect to each choice variable be equal
to zero. That is, the FOCs are

L1 = ∂L/∂x1 = 0.5x−1/2
1 − 2λ= 0; L2 = ∂L/∂x2 = 0.5x−1/2

2 − 4λ= 0; and

Lλ = 40 − 2x1 − 4x2 = 0 (4.4.4)

Notice that Lλ in equation (4.4.4) is a mere restatement of the budget constraint. Solving the
three equations in the system (4.4.4) simultaneously, we obtain the critical values (x∗

1,x
∗
2) =

(13.33, 3.33). Notice also that these are precisely the critical values we obtained when we
used the substitution method. With these critical values we can solve, using any one of the
first two equations, for λ: λ = 0.06849. As before, the stationary value or the maximum
utility is U ∗ = 5.5. The next task here is to determine whether the function has a maximum
corresponding to these critical values. This requires the satisfaction of the SOC, which is
discussed in the following section.

As another example, consider the problem in the second example we solved in the previous
section. The objective function and the constraint in this example are C = f (q1,q2) = q2

1 +
q2

2 − q1q2 and q1 + q2 = 10, respectively. We now set up the Lagrangian function as

L = h(q1,q2,λ) = q2
1 + q2

2 − q1q2 +λ(10 − q1 − q2) (4.4.5)

Therefore, the FOCs for the objective function to have an optimum require that the partial
derivatives of the Lagrangian function with respect to each choice variable be equal to zero.
That is, the FOCs are

L1 = ∂L/∂q1 = 2q1 − q2 −λ= 0; L2 = ∂L/∂q2 = 2q2 − q1 −λ= 0; and

Lλ = 10 − q1 − q2 = 0 (4.4.6)

Solving the first two equations in the system (4.4.6) simultaneously, we obtain q∗
1 = q∗

2.
Substituting this in the last equation and simplifying, we obtain q∗

1 = q∗
2 = 5. Substituting

this in the first or the second equation yields λ = 5. Notice that these are identical to the
critical values we obtained when we used the substitution method. The minimum cost or the
stationary value of the function is C∗ = f (q∗

1,q
∗
2) = q∗2

1 +q∗2
2 −q∗

1q∗
2 = 52 +52 −5×5 = $25.

The next task, as in the last example, is to determine whether the function has a minimum
corresponding to the above critical values. This requires the satisfaction of the SOC, which
is presented in the following section.

We now consider a general bivariate constrained optimization problem. Suppose that the
objective function is U = f (x1,x2) and the constraint is g(x1,x2) = c, where c is a constant.
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Then, the associated Lagrangian function is

L = h(x1,x2,λ) = f (x1,x2) +λ[c − g(x1,x2)] (4.4.7)

Therefore, an optimum of U = f (x1,x2) requires that the partial derivatives of L =
h(x1,x2,λ) with respect to x1, x2, and λ are all zero. That is, the FOCs are

L1 = ∂L/∂x1 = f1 −λgx1 = 0; L2 = ∂L/∂x2 = f2 −λgx2 = 0; and

Lλ = c − g(x1,x2) = 0 (4.4.8)

The above system of three equations gives us, when solved simultaneously, the critical
values of x1 and x2 denoted by x∗

1 and x∗
2, respectively. Since the budget constraint is expected

to be binding at the optimum, the expression in the square brackets in equation (4.4.7) will
be zero. Therefore, the critical values that guarantee an optimum of the Lagrangian function
will also guarantee an optimum of the original objective function. That is, the optimum of
the Lagrangian function will be identical with the optimum of the original objective function.
We will see, as stated before, whether this “optimum” is indeed an optimum using the SOCs
presented in the following section. Notice that, from the first two expressions in the system
of equations (4.4.8), we can obtain

f1
g1

= λ= f2
g2
, (4.4.9)

which we will use later. Notice also that in equation (4.4.9) we used notations g1 = gx1 and
g2 = gx2 for convenience.

4.4.5 Constrained optimization with Lagrange multiplier method: FOC and
SOC using differentials

As in the case of unconstrained optimization problems, we first attempt to express the
above (derivative) FOCs in terms of total differentials. In the case of unconstrained, free
optimization of U = f (x1,x2), the FOC in terms of total differential (following Table 4.3.2)
can be written as dU = 0. It can be shown that this condition remains valid even if we
add the constraint (g(x1,x2) = c) to the problem. Therefore, the FOC for an optimum of
U = f (x1,x2), given the constraint g(x1,x2) = c, is dU = f1dx1 + f2dx2 = 0 or, in other
words, f1 = f2 = 0.

As in the case of the free optimization problem, the SOC in constrained optimization also
depends on the sign of the second total differential or the quadratic form of U = f (x1,x2).
But what will be its second total differential? Differentiating the first total differential (dU =
f1dx1 + f2dx2) with respect to dx1 and dx2, we can find the second total differential of U =
f (x1,x2). But, when we do this, we cannot treat dx1 and dx2 as independent of each other
(as we did in the case of free optimization problems); instead we have to treat dx2 as a
variable and dx1 as a constant or vice versa. Using this condition, we can write the second
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total differential of U = f (x1,x2) as

d(dU )=d2U = ∂(dU )

∂x1
dx1+ ∂(dU )

∂x2
dx2 = ∂

∂x1
[f1dx1+f2dx2]dx1+ ∂

∂x2
[f1dx1+f2dx2]dx2

=
[
f11dx1+f12dx2+f2

∂dx2

∂x1

]
dx1 +

[
f21dx1 + f22dx2 + f2

∂dx2

∂x2

]
dx2

= f11dx2
1 + f12dx1dx2 + f2

∂dx2

∂x1
dx1 + f21dx1dx2 + f22dx2

2 + f2
∂dx2

∂x2
dx2

= f11dx2
1 + 2f12dx1dx2 + f22dx2

2 + f2d2x2 (4.4.10)

since f2[(∂dx2/∂x1)dx1 + (∂dx2/∂x2)dx2] = f2d2x2. Notice that the second total differential
of the objective function in the constrained optimization problem (equation (4.4.10)) differs
from the second total differential of the objective function in the free optimization problem
(equation (3.8.7)) only with regard to the last term in the former, which does not make d2U a
quadratic form. How can we convert equation (4.4.10) so that d2U will become a quadratic
form? The way out of this problem is to find the second total differential of the constraint
and substitute the value of d2x2 from that into equation (4.4.10). The first total differential
of the constraint g(x1,x2) = c is

dg = g1dx1 + g2dx2 = 0 (4.4.11)

and its second total differential is

d2g = g11dx2
1 + g12dx1dx2 + g21dx2dx1 + g22dx2

2 + g2d2x2 = 0

or

d2g = g11dx2
1 + 2g12dx1dx2 + g22dx2

2 + g2d2x2 = 0 (4.4.12)

Solving equation (4.4.12) for d2x2, we obtain d2x2 = [−g11dx2
1 −2g12dx1dx2 −g22dx2

2]/(g2).
If we substitute this last result (with g11 = gx1x1 , g22 = gx2x2 , g12 = gx1x2 , and g21 = gx2x1 )
into equation (4.4.10) for d2x2, we can obtain the quadratic form of d2U as

d2U =
[
f11 − f1

g2
g11

]
dx2

1 + 2

[
f12 − f2

g2
g12

]
dx1dx2 +

[
f22 − f2

g2
g22

]
dx2

2 (4.4.13)

which can be rewritten, using equation (4.4.9), as d2U = [f11 − λg11]dx2
1 + 2[f12 −

λg12]dx1dx2 +[f22 −λg22]dx2
2, which can again be rewritten as

d2U = L11dx2
1 + 2L12dx1dx2 + L22dx2

2 = L11dx2
1 + 2L12dx1dx2 + L22dx2

2 (4.4.14)

where L11 = Lx1x1 = f11 − λg11, L12 = Lx1x2 = f12 − λg12, and L22 = Lx2x2 = f22 − λg22.
Solving equation (4.4.11) for dx2 and substituting the result in equation (4.4.14), we obtain

d2U = [L11g2
2 − 2L12g1g2 + L22g2

1 ][dx2
1/g

2
2] (4.4.15)
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Table 4.4.1

Condition Minimum Maximum

FOC or necessary condition dU = 0 dU = 0
SOC or sufficient condition d2U > 0, or positive definite,

if |H2| = |H|< 0
d2U < 0, or negative definite,

if |H2| = |H|> 0

As we saw in Section 2.8.3, the bordered Hessian |H2|= |H|=

∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣=−[L11g2
2 −

2L12g1g2 + L22g2
1 ] of the bordered Hessian matrix H =

⎡
⎢⎣ 0 g1 g2

g1 L11 L12

g2 L21 L22

⎤
⎥⎦ is the negative of

the value in the first brackets of equation (4.4.15). Therefore, we can state that d2U > 0,
or positive definite, given dg = g1dx1 + g2dx2 = 0, if and only if |H2| = |H| < 0; that is,
if the bordered Hessian is negative. Then, the objective function U = f (x1,x2) subject to
the constraint g(x1,x2) = c will have a minimum. Similarly, d2U < 0, or negative definite,
given again dg = g1dx1 + g2dx2 = 0, if and only if |H2| = |H| > 0; that is, if the bordered
Hessian is positive. Then, the objective function U = f (x1,x2) subject to the constraint
g(x1,x2) = c will have a maximum. These are the SOCs for U = f (x1,x2), subject to the
constraint g(x1,x2) = c, to have a minimum or maximum. We present the above FOCs and
SOCs in Table 4.4.1.

Let us now check whether the critical values, (x∗
1,x

∗
2) = (13.33, 3.33), we obtained

for the first example in the previous section indeed correspond to a maximum. For
this we can use the SOC in Table 4.4.1. We can obtain from equation (4.4.4) that L11 =
−x−3/2

1 /4 = −(13.33)−3/2/4, L22 = −x−3/2
2 /4 = −(3.33)−3/2/4, and L12 =

L21 = 0, and from equation (4.4.2) that g1 = 2 and g2 = 4. The quadratic form (cor-
responding to equation (4.4.15)) in the case of this example can be written as d2U =
[{−(13.33)−3/2/4}42 − 2 × 0 × 2 × 4 + {−(3.33)−3/2/4}22](dx2

1/4
2). The expression in

the square brackets of the last equation is the negative of the bordered Hessian matrix
H and its determinant (the corresponding bordered Hessian) |H2| = |H|, which can,

respectively, be written as H =
⎡
⎣0 2 4

2 −(13.33)−3/2/4 0
4 0 −(3.33)−3/2/4

⎤
⎦ and |H2| = |H| =

∣∣∣∣∣∣
0 2 4
2 −(13.33)−3/2/4 0
4 0 −(3.33)−3/2/4

∣∣∣∣∣∣= 0.25> 0. These results suggest that the quadratic

form is negative definite (d2U < 0). Therefore, following Table 4.4.1, the SOC is satisfied
for the function U = f (x1,x2) = x1/2

1 +x1/2
2 , subject to the constraint 2x1 +4x2 = 40, to have

a maximum at critical values (x∗
1,x

∗
2) = (13.33, 3.33). Notice that this is the same as the

conclusion we obtained when we used the substitution method in Section 4.4.3.
We also check the SOC for the second example in the previous section. The critical values

we obtained from the FOC were (q∗
1,q

∗
2) = (5, 5). We can obtain from equation (4.4.6), that

L11 = 2, L22 = 2, and L12 = L21 = 0, and from the constraint g(q1,q2) = q1 + q2 = 10 = c
that g1 = 1 and g2 = 1. The quadratic form (corresponding to equation (4.4.15)) in the case



[12:20 3/11/2011 5640-Ummer-Ch04.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 229 193–243

Classical optimization 229

of this example can be written as d2U = [2 × 12 − 2 × 0 × 1 × 1 + 2 × 12](dx2
1/1

2). The
expression in the square brackets of the last equation is the negative of the bordered Hessian
matrix H and its determinant (the corresponding bordered Hessian) is |H2| = |H|, which can,

respectively, be written as H =
⎡
⎣0 1 1

1 2 0
1 0 2

⎤
⎦ and |H2| = |H| =

∣∣∣∣∣∣
0 1 1
1 2 0
1 0 2

∣∣∣∣∣∣= −4< 0. These

results suggest that the quadratic form is positive definite (d2C > 0). Therefore, following
Table 4.4.1, the SOC is satisfied for the function C = f (q1,q2) = q2

1 + q2
2 − q1q2, subject to

the constraint q1 + q2 = 10, to have a minimum at critical values (q∗
1,q

∗
2) = (5, 5). Notice

that, as before, this is the same as the conclusion we obtained when we used the substitution
method in Section 4.4.3.

We now present, for easy reference, the steps involved in optimizing U = f (x1,x2), subject
to the constraint g(x1,x2) = c, using the Lagrangian method.

Step 1. Set up the Lagrangian function L = h(x1,x2,λ) = f (x1,x2) +λ[c − g(x1,x2)].
Step 2. Find the partial derivatives of L with respect to x1, x2, and λ, and set them to zero.
Step 3. Solve the simultaneous equations in step 2 for the critical values (x∗

1and x∗
2) and λ.

This will satisfy the FOCs.
Step 4. To determine whether the critical values obtained in step 3 correspond to an

optimum, check the sign definiteness of the quadratic form d2U . If d2U > 0 or
positive definite (which happens when |H2| = |H| < 0), U = f (x1,x2), subject
to g(x1,x2) = c, has a minimum. If d2U < 0 or negative definite (which happens
when |H2| = |H| > 0), U = f (x1,x2), subject to g(x1,x2) = c, has a maximum.
These results will satisfy the SOC.

4.4.6 Constrained optimization with three variables and one constraint

So far we were dealing with the solution of constrained optimization problems with
two independent or choice variables and one constraint. We now consider constrained
optimization problems with three independent variables and one constraint.

Suppose that the function we wish to optimize is U = f (x1,x2,x3) and the constraint is
g(x1,x2,x3) = c. Since most of the ideas involved in optimizing U = f (x1,x2,x3) subject to
g(x1,x2,x3) = c are similar to those used in the previous sections, we do not repeat them here
and, instead, we will only present the results. Then, following the procedures outlined at the
end of the previous section, we set up the Lagrangian function as

L = h(x1,x2,x3,λ) = f (x1,x2,x3) +λ[c − g(x1,x2,x3)] (4.4.16)

Notice that equation (4.4.16) is an extension of equation (4.4.7) to the case of three variables.
Then, the FOCs require that the first partial derivatives of equation (4.4.16) be zero:

L1 = f1 −λg1 = 0;L2 = f2 −λg2 = 0;L3 = f3 −λg3 = 0; and Lλ = c − g(x1,x2,x3) = 0
(4.4.17)

As we stated in the previous section, the solution of the above system of equations will
yield the critical values (x∗

1,x
∗
2,x

∗
3) and λ. These critical values will satisfy the FOCs for

an optimum of U = f (x1,x2,x3) subject to g(x1,x2,x3) = c.
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Table 4.4.2

Condition Minimum Maximum

FOC or necessary condition dU = 0 dU = 0
SOC or sufficient condition d2U > 0 or positive definite, or

|H2|< 0 and |H3| = |H|< 0
d2U < 0 or negative definite or

|H2|> 0 and |H3| = |H|< 0

If we follow the same line of thought as that was adopted in the derivation of the quadratic
form of the bivariate case in equation (4.4.15), we can derive the quadratic form in the
present trivariate case too. Then the associated bordered Hessian matrix and the bordered

Hessian will, respectively, be H =

⎡
⎢⎢⎢⎣

0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

⎤
⎥⎥⎥⎦ and |H| =

∣∣∣∣∣∣∣∣∣
0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

∣∣∣∣∣∣∣∣∣
.

Following the results presented in Section 2.8.3, d2U is positive definite (then U =
f (x1,x2,x3), subject to g(x1,x2,x3) = c, will have a minimum) if |H2| < 0 and |H3| =
|H| < 0; and d2U is negative definite (then U = f (x1,x2,x3), subject to g(x1,x2,x3) = c,
will have a maximum) if |H2| > 0 and |H3| = |H|< 0. We present these FOCs and SOCs in
Table 4.4.2 for easy reference.

As an example, suppose that we want to optimize the function U = f (x1,x2,x3) = x1 +
x2 + x3 − x2

1 − x2
2 − x2

3 subject to the constraint x1 + x2 + x3 = 6. The Lagrangian function
associated with this problem can be written as

L = h(x1,x2,x3,λ) = x1 + x2 + x3 − x2
1 − x2

2 − x2
3 +λ(6 − x1 − x2 − x3) (4.4.18)

Differentiating equation (4.4.18) with respect to each choice variable and setting the results
to zero, we obtain the FOCs as

L1 = 1 − 2x1 −λ= 0; L2 = 1 − 2x2 −λ= 0; L3 = 1 − 2x3 −λ= 0; and

Lλ = ∂L/∂λ= 6 − x1 − x2 − x3 = 0 (4.4.19)

Solving the above system of simultaneous equations, we obtain the critical values
(x∗

1,x
∗
2,x

∗
3) = (2,2,2). These critical values satisfy the FOCs. We can obtain from equa-

tion (4.4.19) that

L11 = −2, L22 = −2, L33 = −2, L12 = 0, L13 = 0, L23 = 0, g1 = 1,

g2 = 1, and g3 = 1 (4.4.20)

Therefore, with the partial derivatives given in equation (4.4.20), the bordered Hessian
matrix and bordered Hessian in the present example can be written, respectively, as

H =

⎡
⎢⎢⎢⎣

0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 1 1

1 −2 0 0

1 0 −2 0

1 0 0 −2

⎤
⎥⎥⎥⎦ and |H| =

∣∣∣∣∣∣∣∣∣
0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

∣∣∣∣∣∣∣∣∣
=
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0 1 1 1

1 −2 0 0

1 0 −2 0

1 0 0 −2

∣∣∣∣∣∣∣∣∣
. We now need to check the signs of |H2| and |H3| = |H| to determine

whether d2U is negative definite or positive definite. Since |H2 | = 4 > 0 and |H3| =
|H| = −12 < 0, we conclude (using the conditions given in Table 4.4.2) that d2U is
negative definite. Therefore, the function U = f (x1,x2,x3) = x1 + x2 + x3 − x2

1 − x2
2 − x2

3,
subject to the constraint x1 + x2 + x3 = 6, qualifies for a maximum at the critical values
(x∗

1,x
∗
2,x

∗
3) = (2,2,2). The maximum value of the function is U = f (x∗

1,x
∗
2,x

∗
3) = x∗

1 + x∗
1 +

x∗
3 − x∗2

1 − x∗2
2 − x∗2

3 = 2 + 2 + 2 − 22 − 22 − 22 = −6.
As another example, suppose that we want to optimize the function U = f (x1,x2,x3) =

x2
1 +x2

2 +x2
3 −x1 −x2 −x3 subject to the constraint x1 +x2 +x3 = 6. The Lagrangian function

associated with this problem can be written as

L = h(x1,x2,x3,λ) = x2
1 + x2

2 + x2
3 − x1 − x2 − x3 +λ(6 − x1 − x2 − x3) (4.4.21)

Differentiating equation (4.4.21) with respect to each choice variable and setting the results
to zero, we obtain the FOCs as

L1 = 2x1 − 1 −λ= 0; L2 = 2x2 − 1 −λ= 0; L3 = 2x3 − 1 −λ= 0; and

Lλ = 6 − x1 − x2 − x3 = 0 (4.4.22)

Solving the above system of simultaneous equations, we obtain the critical values
(x∗

1,x
∗
2,x

∗
3) = (2,2,2). These critical values satisfy the FOCs. We can obtain from equa-

tion (4.4.22) that

L11 = 2, L22 = 2, L33 = 2, L12 = 0, L13 = 0, L23 = 0, g1 = 1,

g2 = 1, and g3 = 1 (4.4.23)

Therefore, with the partial derivatives in equation (4.4.23), the bordered Hessian matrix and
the bordered Hessian in the present example can be written, respectively, as

H=

⎡
⎢⎢⎢⎣

0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

0 1 1 1

1 2 0 0

1 0 2 0

1 0 0 2

⎤
⎥⎥⎥⎦ and |H|=

∣∣∣∣∣∣∣∣∣
0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
0 1 1 1

1 2 0 0

1 0 2 0

1 0 0 2

∣∣∣∣∣∣∣∣∣
.

We now need to check the signs of |H2| and |H3| = |H| to determine whether d2U is
negative definite or positive definite. Since |H2| = −4< 0 and |H3| = |H| = −12< 0, we
conclude (using the conditions given in Table 4.4.2) that d2U is negative definite. Therefore,
the function U = f (x1,x2,x3) = x2

1 +x2
2 +x2

3 −x1 −x2 −x3, subject to the constraint x1 +x2 +
x3 = 6, qualifies for a minimum at the critical values (x∗

1,x
∗
2,x

∗
3) = (2,2,2). The minimum

value of the function is U = f (x∗
1,x

∗
2,x

∗
3) = x∗2

1 + x∗2
2 + x∗2

3 − x∗
1 − x∗

1 − x∗
3 = 22 + 22 + 22 −

2 − 2 − 2 = 6.

4.4.7 Constrained optimization with ‘n’ choice variables and one constraint

So far in this section we have been concerned with optimization of bivariate or trivariate
objective functions subject to one constraint. We now consider the more general case of
optimization of objective functions with n choice variables subject to one constraint.
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Suppose that we want to optimize U = f (x1,x2,x3, . . . ,xn) subject to g(x1,x2,

x3, . . . ,xn) = c. The Lagrangian function of this problem can be written as

L = h(x1,x2,x3, . . . ,xn,λ) = f (x1,x2,x3, . . . ,xn) +λ[c − g(x1,x2,x3, . . . ,xn)] (4.4.24)

Then, the usual FOCs can be stated as

L1 = f1 −λg1 = 0; L2 = f2 −λg2 = 0; L3 = f3 −λg3 = 0; . . .;
Ln = fn −λgn = 0; and Lλ = c − g(x1,x2,x3) = 0 (4.4.25)

Solving the above system of simultaneous equations, we can obtain the critical values
(x∗

1,x
∗
2,x

∗
3, . . . ,x

∗
n). These critical values satisfy the FOCs. From equation (4.4.25) we

can obtain

L11,L22,L33, . . . ,Lnn,L12,L13, . . . ,L1n, . . . ,L21,L23, . . . ,L2n, . . . ,

Ln1,Ln2,Ln3, . . . ,L(n−1),n, and g1,g2,g3, . . . ,gn (4.4.26)

Therefore, with the partial derivatives in (4.4.26), the bordered Hessian matrix and the
bordered Hessian in the present example can be written as

H =

⎡
⎢⎢⎢⎢⎢⎣

0 g1 g2 . . . gn

g1 L11 L12 . . . L1n

g2 L21 L22 . . . L2n

. . . . . . . . . . . . . . .

gn Ln1 Ln2 . . . Lnn

⎤
⎥⎥⎥⎥⎥⎦ and |H| =

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 . . . gn

g1 L11 L12 . . . L1n

g2 L21 L22 . . . L2n

. . . . . . . . . . . . . . .

gn Ln1 Ln2 . . . Lnn

∣∣∣∣∣∣∣∣∣∣∣
We now need to check, again as before, the signs of the principal minors of the bordered
Hessian to determine whether d2U is negative definite or positive definite. As we stated in
Section 2.8.3, d2U is positive definite (and, therefore, U = f (x1,x2,x3, . . . ,xn), subject to
the constraint g(x1,x2,x3, . . . ,xn) = c, has a minimum) if

|H2| =

∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣< 0, |H3| =

∣∣∣∣∣∣∣∣∣
0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

∣∣∣∣∣∣∣∣∣
< 0, . . .,

|Hn| = |H| =

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 . . . gn

g1 L11 L12 . . . L1n

g2 L21 L22 . . . L2n

. . . . . . . . . . . . . . .

gn Ln1 Ln2 . . . Lnn

∣∣∣∣∣∣∣∣∣∣∣
< 0

The minimum of U = f (x1,x2,x3, . . . ,xn) will be given by U ∗ = f (x∗
1,x

∗
2,x

∗
3, . . . ,x

∗
n).

Similarly, d2U is negative definite (and, therefore, U = f (x1,x2,x3, . . . ,xn), subject to the
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Table 4.4.3

Condition Minimum Maximum

FOC or necessary
condition

dU = 0 dU = 0

SOC or sufficient
condition

d2U > 0, or positive definite, if
| H2|< 0, | H3|< 0, . . ., | Hn| =
|H|< 0

d2U < 0, or negative definite, if
| H2|> 0, |H3|< 0, . . .,
(−1)n|Hn| = (−1)n|H|> 0

constraint g(x1,x2,x3, . . . ,xn) = c, has a maximum) if

|H2| =

∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣> 0, |H3| =

∣∣∣∣∣∣∣∣∣
0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

∣∣∣∣∣∣∣∣∣
< 0, . . .,

(−1)n|Hn| = (−1)n|H| =

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 . . . gn

g1 L11 L12 . . . L1n

g2 L21 L22 . . . L2n

. . . . . . . . . . . . . . .

gn Ln1 Ln2 . . . Lnn

∣∣∣∣∣∣∣∣∣∣∣
> 0

These conditions are presented in Table 4.4.3 for easy reference.

4.4.8 Constrained optimization with n choice variables and
m constraints (n > m)

Suppose now that we want to optimize a function with n choice variables subject to m
constraints such that n > m. Also suppose that the objective function that we want to
optimize is U = f (x1,x2,x3, . . . ,xn) and that the constraints are g1(x1,x2,x3, . . . ,xn) = c1,
g2(x1,x2,x3, . . . ,xn) = c2, . . ., gm(x1,x2,x3, . . . ,xn) = cm. Therefore, the Lagrangian function
can be written as

L= h(x1,x2,. . .,xn,λ1,λ2,. . .,λm)= f (x1,x2,. . .,xn)+
m∑

k=1

λk [ck − gk (x1,x2,x3,. . .,xn)]
(4.4.27)

where k = 1,2,3, . . . ,m. Notice that equation (4.4.27) is similar to equation (2.8.24). The
FOC for U = f (x1,x2,x3, . . . ,xn), subject to the constraints, to have an optimum is that
the first partial derivatives of equation (4.4.27) are all equal to zero. From these, one can
obtain the critical values (x∗

1,x
∗
2,x

∗
3, . . . ,x

∗
n) and λk . The SOCs for an optimum of U =

f (x1,x2,x3, . . . ,xn), subject to the constraint gk (x1,x2,x3, . . . ,xn) = ck , are given at the end
of Section 2.8.3. Therefore, we do not repeat them here. We simply state these conditions in
Table 4.4.4 for easy reference. Notice that the SOCs of constrained extrema for the bivariate
case with one constraint (Table 4.4.1), the trivariate case with one constraint (Table 4.4.2), and
the n-variable case with one constraint (Table 4.4.3) are special cases of the SOCs presented
in Table 4.4.4.
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Table 4.4.4

Condition Minimum Maximum

FOC or necessary
condition

dU = 0 dU = 0

SOC or sufficient
condition

d2U > 0, or positive definite, if all
the principal minors have the
same sign as that of (−1)m

d2U < 0, or negative definite, if the
principal minors alternate in sign
(starting with the sign of |Hn+1|
equals the sign of (−1)m+1)

As an example, consider optimizing U = f (x1,x2,x3) = x2
1 + x2

2 + x2
3 subject to two

constraints g1(x1,x2,x3) = 2x1 + x2 + x3 = 10 = c1 and g2(x1,x2,x3) = x1 + 2x2 + x3 =
20 = c2. Following equation (4.4.27), the Lagrangian function for this problem, with n = 3
and m = 2, can be set up as

L=h(x1,x2,x3,λ1,λ2)=x2
1+x2

2+x2
3+λ1[10 − 2x1 − x2 − x3]+λ2[20 − x1 − 2x2 − x3]

The FOCs require that L1 = 2x1 − 2λ1 − λ2 = 0, L2 = 2x2 − λ1 −
2λ2 = 0, L3 = 2x3 − λ1 − λ2 = 0, Lλ1 = 10 − 2x1 − x2 − x3 = 0, and Lλ2 = 20 − x1 −
2x2 − x3 = 0. Solving this system of simultaneous equations will yield the critical values
(x∗

1,x
∗
2,x

∗
3) = (−10/11,100/11,30/11), and λ1 = −80/11 and λ2 = 140/11.

The SOC for an optimum of U = f (x1,x2,x3) = x2
1 + x2

2 + x2
3 requires, as we presented in

Section 2.8.3, that we check the sign of its quadratic form. We can obtain from the above
FOCs that L11 = 2, L22 = 2, L33 = 2, L12 = L21 = 0, L13 = L31 = 0, and L23 = L32 = 0,
and that g1

1 = 2, g1
2 = 1, g1

3 = 1, g2
1 = 1, g2

2 = 2, and g2
3 = 1. If we follow the procedures

outlined in Section 2.8.3 and equation (2.8.26), we can construct the bordered Hessian for
the present problem as

|Hn| = |Hm+1| = |H3| =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 g1
1 g1

2 g1
3

0 0 g2
1 g2

2 g2
3

g1
1 g2

1 L11 L12 L13

g1
2 g2

2 L21 L22 L23

g1
3 g3

3 L31 L32 L33

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 2 1 1

0 0 1 2 1

2 1 2 0 0

1 2 0 2 0

1 1 0 0 2

∣∣∣∣∣∣∣∣∣∣∣∣
As discussed at the end of Section 2.8.3, we now need to check the sign of (n−m) = (3−2) = 1
principal minor, which is the Hessian itself. Since |Hn| = |Hm+1| = |H3| = 22 > 0, it has
the same sign as that of (−1)m = (−1)2 = 1. This suggests that, following Table 4.4.4,
the quadratic form of U = f (x1,x2,x3) = x2

1 + x2
2 + x2

3 is positive definite. Therefore, we
conclude that the function U = f (x1,x2,x3) = x2

1 + x2
2 + x2

3 has a minimum at the critical
values (x∗

1,x
∗
2,x

∗
3) = (−10/11,100/11,30/11), and the stationary value or the minimum

value of the function is U ∗ = f (x∗
1,x

∗
2,x

∗
3) = x∗2

1 + x∗2
2 + x∗2

3 = 1000/11 = 90.90.
As another example, consider optimizing U = f (x1,x2,x3) = −x2

1 − x2
2 − x2

3 subject to
two constraints g1(x1,x2,x3) = 2x1 + x2 + x3 = 10 = c1 and g2(x1,x2,x3) = x1 +2x2 + x3 =
20 = c2. Following equation (4.4.27), the Lagrangian function for this problem, with n = 3
and m = 2, can be set up as

L=h(x1,x2,x3,λ1,λ2)=−x2
1−x2

2−x2
3+λ1[10 − 2x1−x2−x3]+λ2[20−x1−2x2 − x3]
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The FOCs require that L1 = −2x1 − 2λ1 − λ2 = 0, L2 = −2x2 − λ1 − 2λ2 = 0, L3 =
−2x3 − λ1 − λ2 = 0, Lλ1 = 10 − 2x1 − x2 − x3 = 0, and Lλ2 = 20 − x1 − 2x2 − x3 = 0.
Solving this system of simultaneous equations will yield the critical values (x∗

1,x
∗
2,x

∗
3) =

(−10/11,100/11,30/11), and λ1 = 80/11 and λ2 = −140/11.
The SOC for an optimum of U = f (x1,x2,x3) = −x2

1 − x2
2 − x2

3 requires, as we presented
in Section 2.8.3, that we check the sign of its quadratic form. We can obtain from the
above FOCs that L11 = −2,L22 = −2,L33 = −2,L12 = L21 = 0,L13 = L31 = 0, and L23 =
L32 = 0, and that g1

1 = 2,g1
2 = 1,g1

3 = 1,g2
1 = 1,g2

2 = 2, and g2
3 = 1. If we follow the

procedures outlined in Section 2.8.3 and equation (2.8.26), we can construct the bordered
Hessian for the present problem as

|Hn| = |Hm+1| = |H3| =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 g1
1 g1

2 g1
3

0 0 g2
1 g2

2 g2
3

g1
1 g2

1 L11 L12 L13

g1
2 g2

2 L21 L22 L23

g1
3 g3

3 L31 L32 L33

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 2 1 1

0 0 1 2 1

2 1 −2 0 0

1 2 0 −2 0

1 1 0 0 −2

∣∣∣∣∣∣∣∣∣∣∣∣
As presented in Section 2.8.3, we now need to check the sign of (n − m) = (3 − 2) = 1
principal minor, which is the Hessian itself. Since |Hn| = |Hm+1| = |H3| = −22< 0, it has
the same sign as that of (−1)m+1 = (−1)2+1 = (−1)3 = −1. This suggests that, following
Table 4.4.4, the quadratic form of U = f (x1,x2,x3) = −x2

1 − x2
2 − x2

3 is negative definite.
Therefore, we conclude that the function U = f (x1,x2,x3) = −x2

1 − x2
2 − x2

3 has a maximum
at the critical values (x∗

1,x
∗
2,x

∗
3) = (−10/11,100/11,30/11), and the stationary value or the

maximum value of the function is U∗ = f (x∗
1,x

∗
2,x

∗
3) = −x∗2

1 − x∗2
2 − x∗2

3 = −79.98.

4.4.9 Meaning of the Lagrange multiplier, λ

One important difference between the substitution method and the Lagrangian method is that
the latter makes use of a new variable called the Lagrangian multiplier. One might wonder
what significance this variable possesses. This new variable represents the rate of change
of the optimal value of the objective function with respect to the constraint. In other words,
the Lagrangian multiplier, as we show below, represents the effect of a small change in the
constraint on the optimal value of the objective function. Assume that our objective function
is U = f (x1,x2) and the constraint is g(x1,x2) = c. Also assume that the optimal value of
this objective function is U ∗ = f [x∗

1(c),x∗
2(c)] and the constraint at the optimum position is

g[x∗
1(c),x∗

2(c)] = c. The total derivative of U ∗ = f [x∗
1(c),x∗

2(c)] with respect to c will yield

∂f [x∗
1(c),x∗

2(c)]
dc

= ∂f [x∗
1(c),x∗

2(c)]
∂x∗

1

dx∗
1(c)

dc
+ ∂f [x∗

1(c),x∗
2(c)]

∂x∗
2

dx∗
2(c)

dc
(4.4.28)

and the total derivative of g[x∗
1(c),x∗

2(c)] = c with respect to c will yield

∂g[x∗
1(c),x∗

2(c)]
∂x∗

1

dx∗
1(c)

dc
+ ∂g[x∗

1(c),x∗
2(c)]

∂x∗
2

dx∗
2(c)

dc
= dc

dc
= 1 (4.4.29)
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Our previous presentations show that the FOCs require that

∂f [x∗
1(c),x∗

2(c)]
∂x∗

1
= λ∂g[x∗

1(c),x∗
2(c)]

∂x∗
1

(4.4.30)

and

∂f [x∗
1(c),x∗

2(c)]
∂x∗

2
= λ∂g[x∗

1(c),x∗
2(c)]

∂x∗
2

(4.4.31)

Substituting equations (4.4.30) and (4.4.31) into equation (4.4.28) yields

df [x∗
1(c),x∗

2(c)]
dc

= dU ∗

dc
= λ∂g[x∗

1(c),x∗
2(c)]

∂x∗
1

dx∗
1(c)

dc
+λ∂g[x∗

1(c),x∗
2(c)]

∂x∗
2

dx∗
1(c)

dc

= λ
[
∂g[x∗

1(c),x∗
2(c)]

∂x∗
1

dx∗
1(c)

dc
+ ∂g[x∗

1(c),x∗
2(c)]

∂x∗
2

dx∗
2(c)

dc

]
(4.4.32)

Notice that the terms inside the bracket in equation (4.4.32) are identical with equa-
tion (4.4.29), which, in turn, is equal to 1. Therefore, equation (4.4.32) can be rewritten as

∂f [x∗
1(c),x∗

2(c)]
dc

= dU ∗

dc
= λ× 1 = λ (4.4.33)

Equation (4.4.33) is the result we required. It states that the rate of change of the optimal
value of the objective function with respect to the constraint (or, the effect of a small change
in the constraint on the optimal value of the objective function) is equal to the Lagrangian
multiplier, λ. However, for this interpretation of the Lagrange multiplier, we need to form
the Lagrangian function as given in equation (4.4.3) and not as given in footnote 8 in
this chapter. In certain circumstances, the Lagrangian multiplier, λ, is referred to as the
shadow price.

4.4.10 Quasiconcavity, quasiconvexity, and constrained optima

We know from Section 4.2.7 that the knowledge of the nature of a function (that is, its
concavity and convexity) obviates the need to check the SOC in an unconstrained optimization
or free optimization problem with a univariate objective function. We found from our
discussion there that if the function was convex (concave) over a closed interval on its
domain, then the function had a local minimum (maximum). We also found that if the
function was strictly convex (concave) on its entire domain, then the function had a global
minimum (maximum).

Similarly, we found in Section 4.3.5 that if the quadratic form of a multivariate function
such as U = f (x1,x2,x3, . . . ,xn) was positive (negative) definite, then the function was strictly
convex (concave) and that the function had a global minimum (maximum); and if its quadratic
form was positive (negative) semidefinite, then the function was convex (concave) and that
the function had a local minimum (maximum). A question that arises now is: can we use
a similar knowledge that obviates the need to check the SOC in a constrained optimization
problem? The answer is yes, although the required knowledge is about quasiconcavity and
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quasiconvexity (discussed in Sections 3.5.6 and 3.5.7) and not about concavity and convexity
(strict or nonstrict).

Consider, for example, the general constrained optimization problem given in equa-
tion (4.4.24). The quadric form of this Lagrangian function and its Hessian (|Hn|) can be
derived as presented in Section 4.4.7. We used the determinant of the partial derivatives
of the function f (x1,x2,x3, . . . ,xn), in Section 3.5.7, to determine whether the function is
quasiconcave or quasiconvex, and that determinant is |Qn|. These two, respectively, are

|H| = |Hn| =

∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 . . . gn

g1 L11 L12 . . . L1n

g2 L21 L22 . . . L2n

. . . . . . . . . . . . . . .

gn Ln1 Ln2 . . . Lnn

∣∣∣∣∣∣∣∣∣∣∣∣
and |Q| = |Qn| =

∣∣∣∣∣∣∣∣∣∣∣∣

0 f1 f2 . . . fn
f1 f11 f12 . . . f1n

f2 f21 f22 . . . f2n

. . . . . . . . . . . . . . .

fn fn1 fn2 . . . fnn

∣∣∣∣∣∣∣∣∣∣∣∣
Notice the two differences between the Hessian and the determinant |Q|. The first difference
is in the nonborder elements in the two determinants. In the Hessian they are the second
partial derivatives of the associated Lagrangian function, while in the determinant |Q| they
are the second partial derivatives of the original function. The second difference is that the
borders in the Hessian are the first partial derivatives of the constraint, while the borders in
the determinant |Q| are the first partial derivatives of the original function.

Notice that when the constraint is linear we obtain from the Lagrangian function that
Lj = fj −λgj, where j = 1,2,3, . . . ,n. Similarly, when the constraint is linear, we obtain from
the FOC that fj −λgj = 0 or fj = λgj . This implies that the borders in |Q| are nothing but the
borders in the Hessian multiplied by the Lagrangian multiplier, λ. Therefore, we can factor
out λ in the Hessian and can write |Q| = λ2|H|. This can be done for all the principal minors.
Thus, we arrive at an important result that, when the constraint is linear, the sign of |Q|
is the same as the sign of |H|. Therefore, we can conclude that if the objective function is
quasiconcave (quasiconvex), given linear constraint and the FOC, the objective function has
a maximum (minimum).

4.4.11 Application examples

Example 1. Assume that a consumer’s utility, from the consumption of two goods x1 and
x2, is given by

U = f (x1,x2) (4.4.34)

and that the consumer faces the budget constraint given by

p1x1 + p2x2 = c (4.4.35)

where p1, p2, and c denote the price of good x1, the price of good x2, and the income of the
consumer, respectively. Maximize the consumer’s utility subject to the constraint.

Solution. The Lagrangian function for this example can be set up as

L = h(x1,x2,p1,p2,λ,c) = f (x1,x2) +λ[c − p1x1 − p2x2] (4.4.36)
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Differentiating the Lagrangian function with respect to x1, x2, and λ and setting the results
to zero will yield the FOCs for a maximum of U = f (x1,x2). These FOCs are

L1 = f1 −λp1 = 0;L2 = f2 −λp2 = 0 and Lλ = c − p1x1 − p2x2 = 0 (4.4.37)

Solving the above system of simultaneous equations yields the critical values (x∗
1,x

∗
2) and λ.

Notice that from equation (4.4.37) we can obtain (because the derivatives of the objective
function U = f (x1,x2) with respect to x1 and x2 represent the marginal utility from x1 (MU1)
and the marginal utility from x2 (MU2), respectively)

( f1/p1) = (f2/p2) = λ, or (MU1/p1) = (MU2/p2) = λ (4.4.38)

Equation (4.4.38) shows that, at the utility-maximizing point, each good purchased must
yield the same marginal utility (MU) per dollar spent on that good. This result is popularly
called equi-marginal utility or, in general, the equi-marginal principle. Therefore, the
Lagrangian multiplier, λ, can be interpreted as the marginal utility of an additional dollar
spent, or the marginal utility of money. Notice that equation (4.4.38) can written as

( f1/f2) = (MU1/MU2) = (p1/p2) = λ (4.4.39)

The result in equation (4.4.39) is the result we used in application example 4 in Section 3.8.7.
Notice that we can write the budget constraint (equation (4.4.35)) as x2 = (c/p2)− (p1/p2)x1.
This means that the vertical intercept, horizontal intercept, and slope of the budget constraint
are c/p2, c/p1, and −p1/p2, respectively. As we showed in application example 4 in
Section 3.8.7, the slope of the indifference curve is given by dx2/dx1 = −MU1/MU2.
We also stated there that the slope of the indifference curve is called the marginal rate
of substitution between x1 and x2 (MRSx1x2 ); that is, dx2/dx1 = −MU1/MU2 = MRSx1x2 .
Therefore, equation (4.4.39) can also be expressed as

MRSx1x2 = −(MU1/MU2) = −(p1/p2) (4.4.40)

which states that when the consumer is in equilibrium or maximizes utility, the slope of
the indifference curve is equal to the slope of the budget line. This is shown via point E in
Figure 3.8.3(A).

We now consider the SOC to ensure that the critical values (x∗
1,x

∗
2) qualify for a maximum

of U = f (x1,x2). We know that this requires that we check the sign of the quadratic form
of U = f (x1,x2) with constraint p1x1 + p2x2 = c. Assume that we write the constraint as
g(x1,x2,p1,p2,c) = c − p1x1 − p2x2 = 0. Then, given the Lagrangian function presented in
equation (4.4.36), the concerned quadratic form can be written, as we did before, as

d2U = [L11g2
2 − 2L12g1g2 + L22g2

1][dx2
1/g

2
2 ] (4.4.41)

Therefore, the associated Hessian can be written as

|H2| = |H| =

∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣ (4.4.42)
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We know from Table 4.4.1 that the SOC for a maximum of U = f (x1,x2) is that the quadratic
form in equation (4.4.41) must be negative definite or d2U < 0. For this to happen, the
Hessian in equation (4.4.42) must be positive; that is,

|H2| = |H| =

∣∣∣∣∣∣∣
0 p1 p2

p1 L11 L12

p2 L21 L22

∣∣∣∣∣∣∣= −p2
1L11 − p2

2L22 + 2p1p2L12 > 0 (4.4.43)

We assume that the indifference curve that we deal with in the present example is strictly
convex at the point of equilibrium (or the critical values). This assumption guarantees that
|H2| = |H| > 0. Therefore, we state that the function U = f (x1,x2) qualifies for a maximum
corresponding to the critical values (x∗

1,x
∗
2).

Example 2. Assume that the total cost, C, to a firm that uses capital, k , and labor, l, to
produce output, q, is given by

C = f (k, l,r,w) = r.k + w.l (4.4.44)

where r denotes interest rate and w denotes wage rate. Also assume that the firm’s total output
is given by the constraint

j(k, l) = q0 (4.4.45)

Minimize the firm’s total cost subject to the constraint.

Solution. The Lagrangian function for this example can be set up as

L = h(k, l,r,w,λ,q0) = f (k, l,r,w) +λ[q0 − j(k, l)] (4.4.46)

Differentiating the Lagrangian function with respect to k , l, and λ, we obtain the FOCs as

Lk = r −λ.jk = 0, Ll = w −λ.jl = 0, and Lλ = q0 − r.k − w.l = 0 (4.4.47)

Solving the above system of simultaneous equations yields the critical values (k∗, l∗) and λ.
Notice that from equation (4.4.47) we can obtain (because the derivatives of the production
function j(k, l) with respect to k and l represent the marginal product of capital (MPk ) and
the marginal product of labor (MPl), respectively)

(jk/r) = (jl/w) = λ, or (MPk/r) = (MPl/w) = λ (4.4.48)

which shows that, at the cost-minimizing point, each factor employed must yield the same
marginal product (MP) per dollar spent on that factor. Notice that equation (4.4.48) can be
written as

(jl/jk ) = (MPl/MPk ) = (w/r) = λ (4.4.49)

The result in equation (4.4.49) is the result we used in application example 5 in
Section 3.8.7. Notice that we can write equation (4.4.44) as k = C/r −[w/r] l. This means
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that the vertical intercept, horizontal intercept, and slope of the isocost line are C/w, C/r,
and −w/r, respectively. As we showed in application example 5 in Section 3.8.7, the slope
of the isoquant was given by dk/dl = −MPl/MPk . We also stated there that the slope of the
isoquant was called the marginal rate of technical substitution between l and k (MRTSlk ); that
is, dk/dl = −MPl/MPk = MRTSlk . Therefore, equation (4.4.49) can also be expressed as

MRTSlk = −(MPl/MPk ) = −(w/r) (4.4.50)

which states that when the firm is in equilibrium or when the firm minimizes cost, the
slope of the isoquant is equal to the slope of the isocost line. This is shown via point G in
Figure 3.8.3(B).

We now consider the SOC to ensure that the critical values (k∗, l∗) qualify for a
minimum of C = f (k, l,r,w). We know that this requires that we check the sign of the
quadratic form of C = f (k, l,r,w) with constraint j(k, l) = q0. Assume that we write the
constraint as g(k, l,q0) = j(k, l) − q0 = 0. Then, given the Lagrangian function presented in
equation (4.4.46), the concerned quadratic form can be written, as we did before, as

d2C = [Lkkg2
k + Lllg

2
l + 2Lklgkgl][dk2/g2

k ] (4.4.51)

and the associated Hessian as

|H2| = |H| =

∣∣∣∣∣∣∣
0 gk gl

gk Lkk Lkl

gl Llk Lll

∣∣∣∣∣∣∣ (4.4.52)

We know from Table 4.4.1 that the SOC for a minimum of C = f (k, l,r,w) is that the
quadratic form in equation (4.4.51) be positive definite or d2U > 0. For this to happen, the
Hessian in equation (4.4.52) must be negative; that is,

|H2| = |H| =

∣∣∣∣∣∣∣
0 gk gl

gk Lkk Lkl

gl Llk Lll

∣∣∣∣∣∣∣= −g2
k Lkk − g2

l Lll + 2gkglLkl < 0 (4.4.53)

We assume that the isoquant that we deal with in the present example is strictly convex
at the point of equilibrium (or the critical values). This assumption guarantees that |H2|
= |H| < 0. Therefore, we state that the function C = f (k, l,r,w) qualifies for a minimum
corresponding to the critical values (k∗, l∗).

Example 3. Assume that the output q produced by a firm using k units of capital and l
units of labor is given by the Cobb–Douglas production function q = f (k, l) = kαl1−α . Also
assume that the firm’s budget constraint is given by r.k + w.l = s, where r, w, and s denote
interest rate, wage rate, and available fund in dollars, respectively. (i) Find the quantities of k
and l that the firm must use to maximize its output assuming α = 0.5, r = 0.1 (or 10 percent),
w = $10, and s = $100. (ii) Find the elasticity of substitution between the two factors.

Solution. (i) The Lagrangian function for this example can be written as L = kαl1−α +
λ[s− r.k −w.l]. Then the FOCs are Lk = αkα−1l1−α−λr = 0, Ll = (1−α)kα l−α−λw = 0,
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and Lλ = s − r.k −w.l = 0. These three equations can be solved to obtain the critical values
(k∗, l∗) = α.s/r, (1 −α) .s/w, and λ = (α/r)α.[(1 − α0/w]1−α . If we substitute α = 0.5,
r = 0.1 (or 10 percent), w = $10, and s = $100 into the last two equations, we find that
(k∗, l∗) = ($500, 5) and λ = 0.5. Therefore, the maximum output will be q∗ = f (k∗, l∗) =
k∗ αl∗1−α = 50 units.

Let us now check whether the critical points (k∗, l∗) = ($500, 5) correspond to a
maximum of q = f (k, l) = kα l1−α . The quadratic form associated with this problem is d2q =
[Lkkg2

k +Lllg2
l +2Lklgkgl](dk2/g2

k ) and the associated Hessian is similar to equation (4.4.43):

|H2| = |H|. We can find Lkk = α(α − 1)kα−2l1−α , Lll = (1 − α)(−α)kα l−α−1, and Lkl =
α(1 −α)kα−1l−α = Llk . If we evaluate these second partial derivatives at the critical values
(with α = 0.5), we obtain Lkk = 0.0001, Lll = 1, and Lkl = Llk = −0.01. We can find from
the constraint that gk = r = 0.1 and gl = w = $10. Substituting these values into the Hessian

yields |H2| = |H| =

∣∣∣∣∣∣∣
0 0.1 10

0.1 −0.00005 0.025

10 0.025 −0.5

∣∣∣∣∣∣∣= 0.06> 0. Therefore, following Table 4.4.1,

the quadratic form is negative definite. This suggests that the function q = f (k, l) = kαl1−α
qualifies for a maximum corresponding to the critical values (k∗, l∗) = ($500, 5).

(ii) Let us now find the elasticity of substitution. We defined in example 1(vi) in
Section 3.7.4 the elasticity of substitution (σ ) as the percentage change in the optimum
(that is, the least or minimum cost) k/l ratio due to a small percentage change in the
input-price ratio, pl/pk . Notice that pl = w and pk = r in the present example. The least
cost capital-labor ratio in the present example is k∗/l∗ and the input-price ratio is w/r.
Therefore, we define elasticity of substitution as σ = [d (k∗/l∗)k∗/l∗]/[d (w/r)/w/r] =
[d (k∗/l∗)/d (w/r)]/[k∗/l∗w/r]. The numerator of the last equation is called the marginal
function and the denominator is called the average function. Therefore, the elasticity of
substitution is the ratio of the marginal function to the average function.

We found above the critical (optimal) values of k and l as k∗ = α.s/r and l∗ =
(1 −α) .s/w, respectively. Taking the ratios of the last two equations and simplifying
yields k∗/l∗ = [α/(1 − α)].(w/r). Then the derivative of this ratio with respect to w/r (the
marginal function) is d (k∗/l∗)/d (w/r) = α/(1−α). Similarly, the denominator (the average
function) is (k∗/l∗)/(w/r) = {[α/(1−α)].(w/r)}/(w/r) = α/(1−α). Therefore, the ratio of
the marginal function to the average function is σ = [d (k∗/l∗)/d (w/r)]/[k∗/l∗/w/r] =
[α/(1 −α)]/[α/(1 −α)] = 1. This was the result we used in example 1(vi) in Section 3.7.4.

Example 4. Assume that the output q produced by a firm using k units of capital and l units
of labor is given by the CES production function q = f (k, l) = [a.k−β + b.l−β ]−1/β . Also
assume that the firm’s budget constraint is given by r.k +w.l = s, where r, w, and s represent
interest rate, wage rate, and available fund, respectively. (i) Find the quantities of k and l that
the firm must employ to maximize its output assuming a = 0.5, b = 0.5, β = 0.5, r = 0.1
(or 10 percent), w = $10, and s = $100. (ii) Find the elasticity of substitution between the
two factors.

Solution. (i) The Lagrangian function for this example can be written as L = [a.k−β +
b.l−β ]−1/β+λ[s−r.k −w.l]. Then the FOCs are Lk = a.[a.k−β+b.l−β ]−(1+β)/β.k−(1+β) −
λr = 0, Ll = b.[a.k−β + b.l−β ]−(1+β)/β .l−(1+β) − λw = 0, and Lλ = s − r.k − w.l = 0.
Dividing the first equation by the second equation and simplifying yields k = [(r/w).
(b/a)]−1/(1+β).l = x.l, where x = [(r/w).(b/a)]−1/(1+β). Substituting this into the budget



[12:20 3/11/2011 5640-Ummer-Ch04.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 242 193–243

242 Classical optimization

constraint and solving for l gives the optimal value of l as l∗ = s/(r.x + w). Substituting
l∗ into the budget constraint again yields the optimal value of k as k∗ = s.x/(r.x + w).
Therefore, the critical values are (k∗, l∗) = {[s.x/(r.x + w)], [s/(r.x + w)]}. If we substitute
a = 0.5, b = 0.5, β = 0.5, r = 0.1 (or 10 percent), w = $10, and s = $100 into the last
equation, we find that (k∗, l∗) = ($177, 8.23) and λ= 464. Therefore, the maximum output
will be q∗ = f (k∗, l∗) = [a.k∗−β + b.l∗−β ]−1/β = 21.84 units.

Let us now check whether the critical values (k∗, l∗) = (177, 8.23) correspond to a
maximum of q = f (k, l) = [a.k−β + b.l−β ]−1/β . The quadratic form associated with this
problem is d2q = [Lkkg2

k + Lllg2
l + 2Lklgkgl](dk2/g2

k ), and the associated Hessian can be
written as before. We can find the second partial derivatives (Lkk , Lll , and Lkl) from the
Lagrangian. If we evaluate these derivatives at the critical values (k∗, l∗) = (177, 8.23)
(and with a = 0.5, b = 0.5, and β = 0.5), we can obtain Lkk = −0.034, Lll = −0.891, and
Lkl = Llk = 0.018. We can find from the constraint that gk = r = 0.1 and gl = w = $10.

Substituting these values into the Hessian yields |H2| = |H| =
∣∣∣∣∣∣

0 0.1 10
0.1 −0.034 0.018
10 0.018 −0.891

∣∣∣∣∣∣=
3.8> 0. Therefore, following Table 4.4.1, the quadratic form is negative definite. This means
that the function q = f (k, l) = [a.k−β + b.l−β ]−1/β qualifies for a maximum corresponding
to the critical values (k∗, l∗) = (177, 8.23).

(ii) Let us now find the elasticity of substitution. We defined in example 2(iv) in
Section 3.7.4 the elasticity of substitution (σ ) as the percentage change in the optimum
k/l ratio due to a small percentage change in the input-price ratio, pl/pk . We will follow
our solution to the previous example. We found above that the critical or optimal values
of k and l as k∗ = s.x/(r.x + w) and l∗ = s/(r.x + w), respectively. Taking the ratio
of the last two equations and simplifying yields k∗/l∗ = x = [(r/w).(b/a)]−1/(1+β) =
(a/b)1/(1+β).(w/r)1/(1+β). Then, the derivative of this ratio with respect to w/r (the
marginal function) is d (k∗/l∗)/d (w/r) = (a/b)1/(1+β).[1/(1+β)].(w/r)−β/(+β). Similarly,
the denominator (the average function) is (k∗/l∗)/(w/r) = (a/b)1/(1+β).(w/r)−β/(1+β).
Therefore, the ratio of the marginal function to the average function is σ = [d (k∗/l∗)/
d (w/r)]/ [k∗/l∗/w/r] = {(a/b)1/(1+β).[1/(1 + β)].(w/r)−β/(1+β)}/{(a/b)1/(1+β).

(w/r)
−β/(1+β)} = 1/(1+β). This was the result that we used in example 2(iv) in Section 3.7.4.

Notice that we used there a = α and b = 1 −α.

4.4.12 Exercises

1. Use the substitution method to solve the following constrained optimization problems,
all subject to x1 + x2 = 2:
(i) U = f (x1,x2) = x2

1 + x2
2; (ii) U = f (x1,x2) = x2

1x2
2; (iii) U = f (x1,x2) = x2

1 +
10x2

2 + 10.
2. Use the Lagrangian method to solve the following constrained optimization problems,

all subject to x1 + x2 + x3 = 3:
(i) U = f (x1,x2,x3) = x2

1 + x2
2 + x2

3; (ii) U = f (x1,x2,x3) = x2
1x2

2x2
3; (iii) U =

f (x1,x2,x3) = −x1 − x2 − x3.
3. Use the Lagrangian method to solve the following constrained optimization problems,

all subject to x1 + x2 + x3 = 3 and x1 + x2 + x3 = 6:
(i) U = f (x1,x2,x3) = x2

1 + x2
2 + x2

3; (ii) U = f (x1,x2,x3) = x2
1x2

2x2
3; (iii) U =

f (x1,x2,x3) = −x2
1 − x2

2 − x2
3.
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4. Application exercise. Assume that a consumer’s total utility, U , from the consumption
of two goods, x1 and x2, is given by the Cobb–Douglas utility function U = f (x1,x2) =
10x0.7

1 .x0.3
2 . Also assume that the price of one unit of x1 is $4, the price of one unit of x2

is $5, and the money available for spending is $20. Find the quantities of x1 and x2 that
maximize the consumer’s total utility.

5. Application exercise. Suppose that a firm’s total output, q, from the employment of
two factors, capital, k , and labor, l, is given by the Cobb–Douglas production function
q = f (k, l) = 10k0.6l0.4. Also suppose that the price of one unit of k is $0.05, the price
of one unit of l is $4, and the money available for spending is $100. Find the quantities
of capital and labor that maximize the firm’s output.

6. Application exercise. Suppose that the total cost, C, of producing q0 = 100 units of output
by a firm is given by the function C = f (k, l) = 0.2k + 5l, where k and l denote capital
and labor, respectively. Also suppose that the firm’s production function is given by the
Cobb–Douglas form g(k, l) = 10k0.4l0.6 = q0. Find the quantities of capital and labor
that minimize the total cost to the firm.

7. Application exercise. Suppose that the total cost, C, of producing q0 = 1000 units of
output by a firm is given by the function C = f (k, l) = 0.2k + 5l, where k and l denote
capital and labor, respectively. Also suppose that the firm’s production function is given
by the CES form g(k, l) = [0.5k0.5 + 0.5l0.5]−1/0.5 = q0. Find the quantities of capital
and labor that minimize the total cost to the firm.

Web supplement: S4.4.12 Mathematica applications
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5.1 Introduction

Ever since economics became a systematic branch of knowledge, economists have been
concerned with, among other issues, devising general rules for optimization of functions
representing economic relationships. This quest culminated in the development of so-called
neoclassical marginalism, which was based mainly on differential calculus. This was the
topic that we introduced in the last chapter.

However, the method of neoclassical marginalism based on differential calculus possesses
two perceptible limitations. The reader might have noticed that all the constrained optimiza-
tion problems we dealt with in the last chapter had constraints in the form of linear equalities.
This was due to the restriction that, when an economic agent attains an optimum, the agent
is assumed to expend the available resources completely. This means that the agent, given
the agent’s preferences, is assumed to choose a particular point on the budget line or the
isocost line. This also means that the constraints in the optimization problem are binding.
The fact is that, in many real-world cases, an agent may sometimes attempt to optimize the
objective function without expending the available resources completely. This is the case of
constrained optimization when the constraints are not binding. The second limitation is that
the classical approach, as we saw in the last chapter, may yield negative critical or optimal
values for the choice variables. However, these negative optimal values are inadmissible in
the subjects of our interest.

An important question, therefore, is: can the methods of constrained optimization we
introduced in the last chapter be used to find the optima when the constraints are not binding
or when the constraints are linear inequalities and when the optimal values of the choice
variables have to be nonnegative? The answer is, obviously, no. Then the question is: how
can one find the optima of problems if the constraints are linear inequalities and if the optimal
values of the choice variables are to be nonnegative? Here lies the significance of the linear
programming (LP) approach to optimization. We have already presented all the prerequisites
for a comprehensive discussion of the LP approach. These prerequisites include the solution
and geometric representation of linear inequalities in Chapter 1 and linear algebra in Chapter 2.

Even before the development of the LP technique, economists had recognized optimization
problems that were similar to LP problems. However, it was the needs of the United States
Air Force that stimulated the development of the LP technique. During the Second World
War the United States Air Force needed a more effective and efficient way of allocating
resources. This led to the development of the LP technique in 1947 by George B. Dantzig
who was a member of the Air Force.
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The development of the LP technique has been dubbed one the most significant scientific
developments of the twentieth century. There have been remarkable theoretical developments
related to LP. And there have been extraordinary developments in the applications of the LP
technique. One must admit that, in the history of mathematics, only very rarely has a new
mathematical technique found such a wide range of practical applications as the LP technique.
It has been applied in many branches of knowledge, including the subjects of our interest.
Therefore, it is important that students of economics, business, and finance, which make
heavy use of LP, have a good knowledge of this highly valuable technique.

We begin this chapter with a definition of LP and an introduction to concepts that are used
in the solution of LP problems. We will then explore the graphical method of solving LP
problems, and then the more general LP method called the simplex method. Subsequently,
we will consider duality and sensitivity analyses. We will also explore two of the extensions
of LP problems called the transportation problem and assignment problem.

5.2 LP: introduction

5.2.1 LP: definition, concepts, and assumptions

One can define LP as a technique that, given a linear objective function in n variables and
m linear inequality constraints with the same variables, helps find nonnegative values of
these variables which will satisfy the constraints and optimize the objective function. This
definition suggests that the LP technique employs a mathematical model to represent the
optimization problem. It also suggests that the objective function and the constraints are
expressed as linear functions. It should be noted that the word “programming” in LP does
not connote computer programming. Instead, it stands for “planning”; in other words, for
“planning of activities.”

The above definition of the LP technique implies that a LP problem possesses three
important ingredients. The first ingredient is that, as in the classical approach, any LP problem
has an objective function to be optimized. One difference between the classical optimization
approach and the LP optimization approach is that in the former the objective function may
or may not be linear, while in the latter it is strictly linear. The second important ingredient of
a LP problem is that, again like a classical constrained optimization problem, it involves one
or more constraints. But, the constraints in the former are, like the objective function, also
linear. Moreover, these constraints are in the form of inequalities, while they are equalities
in classical constrained optimization problems. The third important ingredient of the LP
technique is that it, in most cases, gives the optimal solution(s) for the choice variables (also
called decision variables). But, a condition imposed is that the optimal values of the choice
variables be nonnegative. Although classical optimization may also give an optimal solution
to a constrained optimization problem, it does not impose the just mentioned nonnegativity
constraint or nonnegativity condition.

Let us now explain some of the concepts that are normally found in the literature on LP.
Notice that a clear comprehension of the meanings of some of these concepts often requires
specific examples, which will be presented shortly. We begin with the concept of solution.
Any set of values that solve a SSLEs is called a solution. Notice that a SSLEs may, sometimes,
possess multiple solutions. The sets of values that solve a SSLEs are called feasible solutions
or feasible points. A plane that represents the set of all feasible solutions or feasible points
is called the feasible region. A feasible region may be either a bounded feasible region or
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an unbounded feasible region. Similarly, a feasible region may be either an empty feasible
region or a nonempty feasible region.

Notice that when n (the number of variables) > m (the number of constraints) in the
system, the set of feasible points may contain infinite points. However, the number of extreme
points or corner points in the set of feasible points will be finite. An extreme point in a convex
set is a point in the set which does not lie on a line segment that connects two other interior
points of the same set. All these extreme points1 are called basic solutions. Some of these
basic solutions may violate one or more of the constraints. A subset of these basic solutions is
called basic feasible solutions (BFSs) as they do not violate any of the constraints. The aim in
solving a LP problem is to choose the best of all the basic feasible solutions; that is, to choose
that basic feasible solution which gives the optimum value of the objective function. Such
a solution is also called an optimum feasible solution or optimal solution. We will use the
extreme-point theorem introduced in Section 4.2.6, which states that if an optimal solution of
the objective function exists, it will be located at one of the extreme points or corner points
of a convex set.

Let us now consider the assumptions of the LP technique, which are, in fact, implicit in
the definition of LP. The first is the proportionality assumption. The assumption means that
the change in the objective function and in the LHS of the constraints is proportional to the
values of the decision variable(s). This assumption rules out the possibility of exponents for
the decision variables other than one, and, thus, ensures that both the objective function and
the LHS of the constraints are linear. The second assumption is additivity. Additivity in LP
means that both the objective function and the LHS of the constraints are expressed as the sum
of individual contributions of the decision variables. This assumption rules out the possibility
of decision variables occurring as cross products. The third, and the last, assumption is called
divisibility. This assumption implies that the decision variables in a LP problem may take
any value, not just integral or discrete values.

5.2.2 Illustrative LP example: maximization problem with two variables

We now present an illustrative example of a LP problem with two variables. The example
we present here is that of a maximization problem. We will present the example of a
minimization problem in the next section.

For the purpose of exposition and for simplicity, a slightly modified form of example 4
in Section 1.7.7. For convenience we reproduce the example here. Assume that a firm uses
two types of inputs A and B in order to produce two goods x and y (which are the decision
or choice variables in the example). Also assume that to produce 1 unit of x the firm has to
use 2 units of input A and 3 units of input B, and to produce 1 unit of y it has to use 3 units
of input A and 2 units of input B. Assume again that the maximum amounts of inputs A
and B available are 90 and 120 units, respectively, and that the unit profits from x and y are
$2 and $2, respectively. We now impose the condition that the quantities of the two goods
produced must be greater than or equal to zero because negative quantities of the goods are
inadmissible. The firm’s aim is to maximize its profits from the production of the two goods
while still complying with the input or resource constraints. A problem such as this is called
a LP maximization problem. How can the firm achieve its objective of maximizing its profits
given the constraints? Before we solve this problem, we summarize the above information
in Table 5.2.1 for visual clarity.

The next step is to convert the information in Table 5.2.1 into inequalities and equations.
The last row of the table shows the unit profits from the production of the two goods.
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Table 5.2.1

Output x requirement Output y requirement Input availability

Input A 2 3 90
Input B 3 2 120

Profit per unit of x Profit per unit of y

$2 $2

Therefore, the total profit, 	, can be written as

	= 2x + 2y (5.2.1)

which is called the objective function of the given LP problem. Notice that the total profit in
equation (5.2.1) is proportional to the values of the two goods and is the sum of the individual
contributions of the two goods as stated in the proportionality and additivity assumptions.
Notice also that equation (5.2.1) can be written as 2y =	− 2x or as

y = (	/2) − x (5.2.2)

which suggests that y is a linear function of x (hence the name “linear” programming) with
(0, 	

/
2) as the vertical intercept, (	

/
2, 0) as the horizontal intercept, and −1 as the slope.

Let us now convert the information in Table 5.2.1 into constraints. Since there are upper
limits for the availability of inputs, the total use of any particular input must be less than or
equal to the available quantity of that input. Therefore the constraints can be written as

2x + 3y ≤ 90 and 3x + 2y ≤ 120 (5.2.3)

which are called technical constraints determined by the existing state of technology
and the availability of inputs. Notice that the constraint functions also obey, as does the
objective function in equation (5.2.1), the proportionality and additivity assumptions. Another
constraint we mentioned in the presentation of the problem above is

x,y ≥ 0 (5.2.4)

which is called the nonnegativity constraint. This constraint precludes negative or unaccept-
able values from the solutions of the choice variables (x and y). It is more convenient to state
the objective function and the constraints of the optimization problems together as

Maximize 	= 2x + 2y, subject to 2x + 3y ≤ 90,3x + 2y ≤ 120, and x,y ≥ 0 (5.2.5)

Assume now that we treat the first two inequalities above as equalities and solve them for
y to obtain

y = 30 − (2/3)x and y = 60 − (3/2)x (5.2.6)

Notice that the first function in equation (5.2.6) has vertical intercept (0, 30) and horizontal
intercept (45, 0). Similarly, the second function in equation (5.2.6) has vertical intercept
(0, 60) and horizontal intercept (40, 0).
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Table 5.2.2

Dish x requirements Dish y requirements Minimum vitamin
requirements

Vitamin A 15 10 90
Vitamin B 10 15 90

Cost per unit of x Cost per unit of y

$9 $12

5.2.3 Illustrative LP example: minimization problem with two variables

We now present an illustrative minimization example of a LP problem with two variables.
Assume that an order received by a catering firm contains two types of dishes, x and y. Also
assume that each unit of dish x must contain at least 15 units of vitamin A and 10 units of
vitamin C; and each unit of dish y must contain at least 10 units of vitamin A and 15 units
of vitamin C. Again assume that the minimum amount of vitamin A in the dishes must be
90 units and the minimum amount of vitamin C must also be 90 units, and that the cost of
preparation of one unit of x is $9 and the cost of preparation of one unit of y is $12. We
also impose the condition, as before, that the quantities of the two dishes prepared must be
greater than or equal to zero because negative quantities of the dishes are unacceptable. The
firm’s aim is to minimize its total cost while still complying with the vitamin requirements
or constraints. A problem such as this is called a LP minimization problem or a diet problem.
How can the firm achieve its objective of minimizing its costs given the constraints? We
present the above information in Table 5.2.2 for visual clarity.

The next step is to convert the information in Table 5.2.2 into inequalities and equations.
The last row of the table shows the unit costs to the firm of preparation of the two dishes.
Therefore, the total cost, C, can be written as

C = 9x + 12y (5.2.7)

which is the objective function of the present LP problem. Notice that the total cost in
equation (5.2.7) is proportional to the values of the two dishes and is the sum of the individual
contributions of the two dishes as stated in the proportionality and additivity assumptions.
Notice also that equation (5.2.7) can be written as 12y = C − 9x or as

y = (C/12) − (9/12)x (5.2.8)

which means that y is a linear function of x (hence the name, as before, “linear” programming)
with (0,C/10) as the vertical intercept, (C/5,0) as the horizontal intercept, and −3/4 as
the slope.

Let us now convert the constraints implied by Table 5.2.2. Since there are lower limits
for the requirement of vitamins, the total content of any particular vitamin must be greater
than or equal to the minimum units stipulated of the vitamins. Therefore the constraints can
be written as

15x + 10y ≥ 90 and 10x + 15y ≥ 90 (5.2.9)
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The constraints presented in inequality (5.2.9) are called technical constraints of the mini-
mization problem. Notice that the constraint functions also obey, as does the objective
function in equation (5.2.7), the proportionality and additivity assumptions. Another
constraint we mentioned in the presentation of the problem above is

x,y ≥ 0 (5.2.10)

which is called, as in the case of the maximization problem, the nonnegativity constraint.
This constraint precludes negative or unacceptable values from the solutions of the decision
variables (x and y). As earlier, it is more convenient to state the objective function and the
constraints of the minimization problems together as

Minimize C = 9x + 12y, subject to 15x + 10y ≥ 90,10x + 15y ≥ 90, and x,y ≥ 0
(5.2.11)

Assume now, as in the maximization problem, that we treat the first two inequalities above
as equalities and solve them for y to obtain

y = 9 − (3/2)x and y = 6 − (2/3)x (5.2.12)

Notice that the first function in equation (5.2.12) has vertical intercept (0, 9) and horizontal
intercept (6, 0). Similarly, the second function in equation (5.2.12) has vertical intercept (0, 6)
and horizontal intercept (9, 0).

5.2.4 Solution of LP problems: maximization problem with graphical method

There are two popular methods to solve LP problems. They are the graphical method or
geometric method, and the simplex method. The graphical method is useful when there are
only two decision variables in the optimization problem and the simplex method is useful
when the problem involves more than two decision variables. Since we are concerned with
LP problems that involve only two decision variables in the present section, we use the
graphical method here. The simplex method is introduced in Section 5.3.

Consider our maximization problem condensed in equation (5.2.5). We presented the
constraints in functional forms in equation (5.2.6). These functions are y = 30 − (2/3)x and
y = 60 − (3/2)x. The graphs of these functions are illustrated in Figure 5.2.1(A).

Notice that there are six corner points (A, B, C, D, E, and F) in Figure 5.2.1(A). They are
all called the basic solutions. But, point E violates the constraint 2x + 3y ≤ 90 and point F
violates the constraint 3x + 2y ≤ 120. Corner points A, B, C, and D do not violate any of
the constraints and, therefore, they are the feasible solutions in the example. The set of all
the points in the shaded region ABCD is the feasible set, and the space represented by the
feasible set is the feasible region. According to extreme point theorem, if an optimal solution
occurs in the present example it would occur at one of the above feasible solutions or corner
points. Therefore, we need only check the coordinates of the corner points to know whether
there exists an optimal solution or not. To do this, we illustrate the feasible region along with
the graphs of the transformed objective function (equation (5.2.2)), for different levels of
profit 	i, in Figure 5.2.1(B). These levels of profit are represented by the dashed lines.

We now attempt to find the optimal solution. But before this we need to find the
coordinates corresponding to corner points A, B, C, and D. We know the coordinates of
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A, B, and D are (0, 0), (0, 30), and (40, 0), respectively. The coordinates corresponding
to point C can be found by solving the two equations 3x + 2y = 120 and 2x + 3y = 90
simultaneously. This yields the coordinates corresponding to point C as (36, 6). We can now
find the optimal solution. To find this, we can substitute the coordinate values of the two
variables into the profit function (equation (5.2.1)). This yields

Corner point A: 	= 2x + 2y = 2 × 0 + 2 × 0 = 0;
corner point B: 	= 2x + 2y = 2 × 0 + 2 × 30 = 60;
corner point C: 	∗ = 2x∗ + 2y∗ = 2 × 36 + 2 × 6 = 84;
corner point D: 	= 2x + 2y = 2 × 36 + 2 × 0 = 72 (5.2.13)

which show that profit is the highest at corner point C. This means that the optimal solution
is (x∗, y∗) = (36, 6), or the firm must produce 36 units of x and 6 units of y to maximize its
profit and the maximum profit will be	∗ = $84. It can be verified that this optimal solution
satisfies the inequalities in (5.2.3). Since x∗ = 36> 0 and y∗ = 6> 0, the solution satisfies
the nonnegativity constraint given in inequality (5.2.4).

Notice that in Figure 5.2.1(B) we have drawn three isoprofit lines (dashed lines) for three
different levels of profits (	= 60,	= 84, and	= 120). An isoprofit line represents the loci
of different combinations of the two goods that give the same level of profit. One can draw
many isoprofit lines that touch one or more of the corner points. Since the present problem
is a maximization problem, our aim is to choose the highest isoprofit line that touches any of
the corner points of the feasible region. In Figure 5.2.1(B), there is only one such isoprofit
line and that passes through point C. This implies that there is only one optimal solution
in the present example, and it occurs at the corner point C. This was exactly the result we
obtained above.

5.2.5 Solution of LP problems: minimization problem with graphical method

Consider our minimization problem condensed in equation (5.2.11). We presented the
constraints of the problem in functional forms in equation (5.2.12). These functions are
y = 9 − (3/2)x and y = 6 − (2/3)x. The graphs of these functions are illustrated in
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Figure 5.2.2(A). Notice that there are six corner points (A, B, G, D, E, and F) in the figure.
They are all called the basic solutions. But, point B violates the constraint 15x + 10y ≥ 90,
point D violates the constraint 10x +15y ≥ 90, and point A violates both constraints. Corner
points E, F, and G do not violate any of the constraints and, therefore, they are the feasible
solutions in the example. The set of all the points in the shaded region on or above the line
EGF is the feasible set, and the space represented by the feasible set is the feasible region.
According to extreme point theorem, if an optimal solution occurs in the present example it
would occur at one of the above feasible solutions or corner points. Therefore, we need only
check the coordinates of these corner points to know whether there exists an optimal solution
or not. To do this, we illustrate the feasible region along with the graphs of the transformed
objective function (equation (5.2.8)), for different levels of cost Ci, in Figure 5.2.2(B). These
levels of cost are represented by the dashed lines.

We now attempt to find the optimal solution. But before this, as in the case of the
maximization problem, we need to find the coordinates corresponding to corner points E,
F, and G. We know that the coordinates of E and F are (0, 9) and (9, 0), respectively.
The coordinates corresponding to point G can be found by solving the two equations
15x+10y = 90 and 10x+15y = 90 simultaneously. This yields the coordinates corresponding
to point C as (3.6, 3.6). We can now find the optimal solution. To find this, we can substitute
the coordinate values of the two variables into the cost function (equation (5.2.7)). This yields

Corner point E : C = 9x + 12y = 9 × 0 + 12 × 9 = 108;
corner point F : C = 9x + 12y = 9 × 9 + 12 × 0 = 81;
corner point G : C∗ = 9x∗ + 12y∗ = 9 × 3.6 + 12 × 3.6 = 75.6 (5.2.14)

Equation (5.2.14) shows that the cost is the lowest at corner point G. This means that the
optimal solution is x∗ = 3.6 and y∗ = 3.6, or the firm must prepare 3.6 units of x and 3.6 units
of y to minimize its cost and the minimum cost will be C∗ = $75.6. It can be verified that this
optimal solution satisfies the inequalities in (5.2.9). Since x∗ = 3.6> 0 and y∗ = 3.6> 0, the
solution satisfies the nonnegativity constraint given in inequality (5.2.10).

Notice that in Figure 5.2.2(B) we have drawn three isocost lines (dashed lines) for three
different levels of costs (C = 50, C = 75.6, and C = 90). An isocost line represents the
loci of different combinations of the two dishes that cost the firm equally. One can draw
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many isocost lines that touch one or more of the corner points. Since the present problem
is a minimization problem, our aim is to choose the lowest isocost line that touches any of
the corner points of the feasible region. In Figure 5.2.2(B), there is only one such isocost
line and that passes through point G. This implies that there is only one optimal solution
in the present example, and it occurs at the corner point G. This was exactly the result we
obtained above.

We now summarize the steps in the graphical method of finding the solution to a two-
variable LP problem.

Step 1. Set up the equation of the objective function and the inequalities of the constraints
based on the verbal or tabular information.

Step 2. Convert the objective function and inequalities into equations and then solve for
one of the variables.

Step 3. Graph the equations in step 2 in a figure.
Step 4. Determine the feasible points.
Step 5. Find the coordinates of the feasible points.
Step 6. Substitute these coordinates in the objective function in step 1.
Step 7. The maximum (minimum) of the objective function will be the highest (lowest)

value in step 6. This result can also be obtained by drawing the isoprofit (isocost)
lines and choosing the highest (lowest) isoprofit (isocost) line that touches a
corner point.

5.2.6 Additional examples

In this section we consider an additional example each of a maximization and minimization
LP problem. Let us first consider a hypothetical maximization problem. Suppose that a firm
wants to produce two goods x and y using three factors 1, 2, and 3 whose maximum available
quantities are 30, 20, and 45 units, respectively. Also suppose that the production of one unit
of good x requires 4, 2, and 3 units of factors 1, 2, and 3, respectively; and that the production
of one of unit of good y requires 2, 2, and 9 units of factors 1, 2, and 3, respectively. Suppose
again that the firm can obtain $10 and $20 profit from each unit of x and y, respectively. How
many units of the two goods should the firm produce in order to maximize its total profit and
what will be its total profit? For convenience, we summarize the above verbal presentation
of the problem in Table 5.2.3.

Let us follow the steps outlined at the end of the last section. The first step stipulates that
we set up the functions representing the objective function and the inequalities. These can be

Table 5.2.3

Output x requirement Output y requirement Input availability

Factor 1 4 2 30
Factor 2 2 2 20
Factor 3 3 9 45

Profit per unit of x Profit per unit of y

$10 $20
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condensed as

Maximize 	= 10x + 20y, subject to 4x + 2y ≤ 30,2x + 2y ≤ 20,

3x + 9y ≤ 45, and x,y ≥ 0 (5.2.15)

The second step stipulates that we convert the inequalities in the constraints in problem
(5.2.15) into equations and then express the equations in terms of one of the variables (y).
Then, expressing the equations and the objective function in terms of one of the variables,
we obtain

y = (	/20) − (1/2)x, y = 15 − 2x,y = 10 − x, and y = 5 − (1/3)x (5.2.16)

As the third step, we now graph the functions in equations (5.2.16), as shown in
Figure 5.2.3(A). Notice that unlike Figures 5.2.1 and 5.2.2, we have plotted the graphs of
both the objective function and the constraints together in Figure 5.2.3(A). The dashed lines
represent isoprofit lines (the graphs of the transformed objective function y = (	i/20)−0.5x)
for different levels of profit (	= 40, 	= 58.33, and 	= 75).

The next step is to determine the feasible points. Notice that out of the corner points in
Figure 5.2.3(A), points C, D, E, G, I, and J violate one or more constraints. Corner points A,
B, F, and H do not violate any of the constraints and, therefore, their set constitutes the set
of feasible solutions. The set of points in the shaded area ABFH is the set of feasible points,
and that area is the feasible region in the present example. Since the corner points B, F, and
H constitute the set of feasible solutions, we only need to check the coordinates of these
corner points. The coordinates of points B and H are (0, 5) and (7.5, 0), respectively. We
can obtain the coordinates of point F (by solving equations 4x + 2y = 30 and 3x + 9y = 45
simultaneously) as (6, 3). We can now substitute, as the fourth step, the above coordinates
in the objective function to obtain

Point B: 	= 10x + 20y = 10 × 0 + 20 × 5 = 100;
point F: 	∗ = 10x∗ + 20y∗ = 10 × 6 + 20 × 3 = 120;
point H: 	= 10x + 20y = 10 × 7.5 + 20 × 0 = 75 (5.2.17)
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Table 5.2.4

One unit of x requires One unit of y requires Minimum vitamin
requirements

Vitamin A 2 1 15
Vitamin C 1 4 25
Vitamin D 1 2 20

Cost per unit of x Cost per unit of y

$5 $5

As can be seen from equation (5.2.17), the total profit of the firm will be maximum if
the firm produces 3 units of y and 6 units of x, and the maximum total profit is $120. This
result can be verified if we use the isoprofit lines as shown in Figure 5.2.3(A). Since the
present problem is a maximization problem, we choose the highest possible isoprofit line
that touches at least one corner point of the feasible region. This happens only at the corner
point F. The coordinates of point F are (6, 3). If we substitute these values in the objective
function we obtain total profit equal to $120.

Let us now consider a diet problem as a hypothetical minimization problem. Assume that
the diet prescribed to a person by a dietician contains dishes x and y, and these dishes must
contain vitamin A, vitamin C, and vitamin D. Also assume that one unit of dish x must contain
2, 1, and 1 units of vitamins A, C, and D, respectively; and one unit of dish y must contain
1, 4, and 2 units of vitamins A, C, and D respectively. The dietician also prescribed that the
minimum quantities in the two dishes of vitamins A, C, and D must be 15, 25, and 20 units,
respectively. Assume again that the unit cost of dishes x and y containing the prescribed units
of vitamins is the same $5. Find the quantities of the two dishes, still complying with the
vitamin requirements, that minimize the person’s total expenditure.

We first set up Table 5.2.4 based on the above information, and follow the steps outlined
at the end of the last section. Based on Table 5.2.4 we can set up the condensed mathematical
form of the minimization problem as

Minimize C = 5x + 5y, subject to 2x + y ≥ 15, x + 4y ≥ 25, x + 2y ≥ 20, and x,y ≥ 0
(5.2.18)

We now convert the inequalities in problem (5.2.18) into equations and solve both the
converted inequalities and the objective function to obtain

y = (C/5) − x,y = 15 − 2x,y = (25/4) − 0.25x, and y = 10 − 0.5x (5.2.19)

We can now graph the functions in equation (5.2.19), as shown in Figure 5.2.3(B). As in the
last example, we have plotted the graphs of both the objective function and the constraints.
The dashed lines represent the isocost lines (the graph of the transformed objective function
y = (Ci/5) − x) for different levels of expenditures (i.e. C = 75, C = 58.33, and C = 40).

Let us now determine the feasible points. Notice that out of the corner points in
Figure 5.2.3(B), points A, B, K, F, H, and I violate one or more constraints. Corner points
D, E, G, and J do not violate any of the constraints and, therefore, their set constitutes the
set of feasible solutions. The set of points in the area on or above the line DEGJ is the set of



[12:21 3/11/2011 5640-Ummer-Ch05.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 255 244–315

Linear programming 255

feasible points and that shaded area is the feasible region in the present example. Since the
corner points D, E, G, and J constitute the set of feasible solutions, we need only check the
coordinates of these corner points. The coordinates of points D and J are (0, 15) and (25, 0),
respectively. We can obtain the coordinates of points E (by solving equations 2x + y = 15
and x + 2y = 20 simultaneously) and G (by solving equations x + 4y = 25 and x + 2y = 20
simultaneously) as (10/3, 25/3) and (15, 2.5), respectively.

We can now substitute the above coordinates into the objective function (in equa-
tion (5.2.18)) to obtain

Point D: C = 5x + 5y = 5 × 0 + 5 × 15 = 75;
point E: C∗ = 5x∗ + 5y∗ = 5 × (10/3) + 5 × (25/3) = 58.33;
point G: C = 5x + 5y = 5 × 15 + 5 × 2.5 = 87.5;
point J: C = 5x + 5y = 5 × 25 + 5 × 0 = 75 (5.2.20)

As can be seen from equation (5.2.20), the total expenditure of the person will be minimum
if they buy 10/3 units of x and 25/3 of y, and the minimum expenditure will be $58.33. This
result can be verified if we use the isocost lines as in Figure 5.2.3(B). Since the present problem
is a minimization problem, we choose the lowest possible isocost line that touches at least one
corner point of the feasible region. This happens only at the corner point E. The coordinates
of point E are, as we found above, (10/3, 25/3). If we substitute these values in the objective
function we obtain total expenditure equal to $58.33.

5.2.7 Slack and surplus variables and LP problems

Consider, for simplicity, our maximization problem (5.2.5). We reproduce that problem
here for convenience. The problem is to maximize 	 = 2x + 2y, subject to the constraints
2x + 3y ≤ 90, 3x + 2y ≤ 120, and x,y ≥ 0. Notice that the LHSs of the first two of these
inequalities represent the amounts of the resources actually used and the RHSs show the
available quantities of the two resources. Since the inequalities are “less than or equal to”
inequalities, there are chances that the available quantities of the resources may not be used
completely. Suppose that the differences, if any, between the two in the cases of the first and
second inequalities are denoted by the variables s1 and s2, respectively. These variables are
called slack variables. Since the unused quantity of the resources cannot be negative, slack
variables are always greater than or equal to zero (or, s1,s2 ≥ 0).

We know that it is always easier to work with equalities than with inequalities. Since the
slack variables represent unused quantities of the two resources in the present example, they
should not make any impact on the objective (profit) function, 	 = 2x + 2y. Because of
this fact they appear in the objective function with zero coefficients. Therefore we can write
the augmented objective function, augmented by including the slack variables and their zero
coefficients, as

Maximize 	= 2x + 2y + 0s1 + 0s2 (5.2.21)

We now augment the constraints in the problem by including the slack variables. This
will give us augmented constraints. But, when we do this, we add the slack variables to the
LHS of the inequalities so that the inequalities become equalities. Therefore, the augmented
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constraints can be written as

Subject to 2x + 3y + s1 = 90 and 3x + 2y + s2 = 120 (5.2.22)

Notice that the nonnegativity constraint now becomes x,y,s1,s2 ≥ 0. Notice also that the
augmented problem represented by equations (5.2.21) and (5.2.22) cannot be solved by the
graphical method we introduced earlier, because it now contains more than two variables.
Therefore, we defer the solution of the augmented problem to Section 5.3. We will show
there that addition of slack variables in the problem will not alter the optimal solution.

Now consider our minimization problem (5.2.11). The objective in this problem was to
minimize C = 5x +10y subject to constraints 15x +10y ≥ 90, 10x +15y ≥ 90, and x,y ≥ 0.
Notice that the LHSs of the first two of these inequalities represent the amounts of the
vitamins actually contained in the two dishes and the RHSs show the minimum quantities of
the vitamins required. There are chances that the quantities of the vitamins contained in the
dishes may be more than the minimum requirements. Suppose that the differences, if any,
between the two in the cases of the first and second inequalities are denoted by the variables s3

and s4, respectively. These variables are called surplus variables. Since the excess quantities
of the vitamins contained in the dishes cannot be negative, the surplus variables, like the
slack variables, are always greater than or equal to zero (s3,s4 ≥ 0).

Since the surplus variables represent the excess quantities of the two vitamins in the present
example, they should not make any impact on the objective function, C = 5x+10y. Because
of this fact, the surplus variables, like the slack variables, appear in the objective function
with zero coefficients. Therefore, we can write the augmented objective function, augmented
by including the surplus variables and their zero coefficients, as

Minimize C = 5x + 10y + 0s3 + 0s4 (5.2.23)

Let us now augment the constraints in the problem by including the surplus variables. But,
when we do this, we must subtract the surplus variables from the LHSs of the inequalities
so that the inequalities become equalities. Therefore, the augmented constraints can be
written as

Subject to 15x + 10y − s3 = 90 and 10x + 15y − s4 = 90 (5.2.24)

and the nonnegativity constraint becomes x,y,s3,s4 ≥ 0. Since it involves four variables, like
the augmented maximization problem, the augmented minimization problem represented by
equations (5.2.23) and (5.2.24) cannot be solved by the graphical method we introduced
earlier. Therefore, we defer the solution of the augmented minimization problem to
Section 5.3. We will show in Section 5.3 that the subtraction of surplus variables will not
alter the optimal solution.

5.2.8 LP problems: some special cases

LP problems, in most cases, yield unique optimal solutions. However, there are few
special LP problems that yield empty feasible region or no optimal solution, unbounded
feasible region or unbounded solution, multiple optimal solutions, and degeneracy or
degenerate BFS.
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Let us begin with the case of empty feasible region. As an illustration, consider the
problems in the following equation:

Maximize 	= 5x + 6y, subject to 4x + 2y ≤ 10,4x + 2y ≥ 20, and x,y ≥ 0

Minimize C = 4x + 6y, subject to 4x + 2y = 10,4x + 2y ≥ 20, and x,y ≥ 0 (5.2.25)

The graphs of the associated constraints are illustrated in Figures 5.2.4(A) and (B),
respectively. Figure 5.2.4(A) shows the graphs of constraints in the maximization problem in
(5.2.25). Notice that the feasible solutions that satisfy the constraint 4x+2y ≤ 10 are given by
the set of points lying on or below the lower line. Similarly, the feasible solutions that satisfy
the constraint 4x + 2y ≥ 20 are given by the set of points lying on or above the upper line.
Notice also that no point in this figure can satisfy both constraints simultaneously. Therefore,
there is no optimal solution.

Figure 5.2.4(B) shows the graphs of constraints in the minimization problem in (5.2.25).
Notice that the feasible solutions that satisfy the constraint 4x +2y ≥ 20 are given by the set
of points lying on or above the upper line. Similarly, the feasible solutions that satisfy the
equality constraint 4x +2y = 10 are given by the set of points lying on the lower line. Notice
also that, as in the maximization problem, no point in this figure can satisfy both constraints
simultaneously. Therefore, again as in the maximization problem, there is no optimal solution
in the minimization problem.

The second case is that of unbounded solution or of unbounded feasible region. To illustrate
this, consider the example

Maximize 	= x + y, subject to y = 4 and x,y ≥ 0 (5.2.26)

The graph of the constraint in problem (5.2.26) is illustrated in Figure 5.2.5. Notice that
the feasible region in the present problem is the line y = 4 in Figure 5.2.5. It is easy to see
that this feasible region is unbounded. If we substitute the constraint y = 4 in the objective
function, we obtain	= 4+x. This equation implies that	will increase without bounds as x
increases. This also implies that the feasible region is unbounded. Therefore, no feasible point
maximizes the objective function and no unique optimum solution exists; specifically, the
solution is unbounded. Notice also that the present problem would have an optimum solution
at y = 4 if the problem were a minimization problem. In that case we would have x = 0.
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The third case is that of multiple optimal solutions. This happens when the objective
function and the LHS of one (or more) of the constraints are linearly dependent. As an
illustration, consider the problem

Maximize 	= 4x + 6y, subject to 2x + 8y ≤ 48,2x + 3y ≤ 30, and x,y ≥ 0 (5.2.27)

If we plot the transformed forms of the constraints and the objective function, we obtain
the graphs illustrated in Figure 5.2.6(A). The feasible region in Figure 5.2.6(A) is the set of
points on and inside the area ABDE. Notice that the isoprofit line (for	= 60) coincides with
the constraint 2x + 3y ≤ 30. This implies that there is no unique optimal solution; instead,
the set of coordinate points from D to E (including D and E) constitutes the optimal solution.
In other words, the problem has multiple solutions and each solution satisfies the constraints
as well as the objective function for 	= 60.

The last case we consider here is degeneracy or degenerate BFS. Degeneracy or degenerate
BFS happens when the number of positive choice variables in the optimal solution is less
than the number of the constraints. As an illustration, consider the maximization problem

Maximize 	= 25x + 15y, subject to x + y ≤ 10,x + 2y ≤ 10, and x,y ≥ 0 (5.2.28)
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Table 5.2.5

Resource requirement per unit of xj

Resources x1 x2 . . . xj . . . xn Maximum availability
of the ith resource

1 a11 a12 . . . a1j . . . a1n b1
2 a21 a22 . . . a2j . . . a2n b2
. . . . . . . . . . . . . . . . . . . . . . . .
i ai1 ai21 . . . . . . ain bi
. . . . . . . . . . . . . . . . . . . . . . . .
m am1 am2 . . . am3 . . . amn bm
Contribution to 	 per

unit of xj

π1 π2 . . . πj . . . πn

The graphs of the constraints in problem (5.2.28) are illustrated in Figure 5.2.6(B). Notice
that the feasible region is the triangle ABD. The coordinates of the corner points A, B, and D
in the feasible region are (0, 0), (0, 5), and (10, 0), respectively. The values of the objective
function corresponding to these corner points can be obtained by substituting their values
into the objective function. Therefore, the values of the objective function corresponding to
A, B, and D are	= 25x+15y = 25×0+15×0 = 0,	= 25x+15y = 25×0+15×5 = 75,
and 	= 25x + 15y = 25 × 10 + 15 × 0 = 250. This means that the optimal solution in the
present example happens at the corner point D, where x = 10 and y = 0. Since there are two
constraints and two choice variables in the problem and since one of the choice variables is
equal to zero at the optimal solution (y = 0), the number of positive choice variable at the
optimal solution is less than the number of constraints. Therefore, the optimal solution in the
present problem is an example of a degenerate BFS.

5.2.9 Standard forms of LP problems

We now consider the standard form or the mathematical form of a LP problem. We first
consider the standard form of a maximization problem. Suppose that a firm has to use aij

(where i = 1,2, . . . ,m and j = 1,2, . . . ,n) units of the ith resource to produce one unit of
good xj , and that the maximum available quantity of the ith resource is bi. Also suppose that
the profit from one unit of good xj is πj . We present this information in Table 5.2.5, as we
constructed tables earlier in the chapter. We assume here that the number of choice variables
(n) is greater than the number of constraints (m).

As we did in the last two sections, we can condense the information in Table 5.2.5 as given
in the following equation and inequalities:

Maximize 	= profit = π1x1 +π2x2 +·· ·+πjxj +·· ·+πnxn (5.2.29)

Subject to a11x1 + a12x2 +·· ·+ aijxj +·· ·+ a1nxn ≤ b1,

a21x1 + a22x2 +·· ·+ a2jxj +·· ·+ a2nxn ≤ b2,

. . .,ai1x1+ai2x2+·· ·+ aijxj +·· ·+ ainxn ≤ bi,

. . .,am1x1 + am2x2 +·· ·+ amjxj +·· ·+ amnxn ≤ bm,

and xj ≥ 0, j = 1,2,3, . . . ,n and i = 1,2, . . . ,m (5.2.30)
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This is called the longhand form of a standard LP maximization problem. Notice that the last
equation and inequalities can be written in matrix form as

Maximize 	= πTx (5.2.31)

Subject to Ax ≤ b and x ≥ 0 (5.2.32)

where πT = [ π1 π2 .. πj .. πn ], xT = [ x1 x2 .. xj .. xn ],

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 .. a1j .. a1n

a21 a22 .. a2j .. a2n

.. .. .. .. .. ..

ai1 ai2 .. aij .. ain

.. .. .. .. .. ..

am1 am2 .. amj .. amn

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

and bT = [
b1 b2 .. bi .. bm

]
; or using the sum (

∑
) notation as

Maximize 	= n



j=1
πjxj (5.2.33)

Subject to
n



j=1
aijxj ≤ bi, and xj ≥ 0, where i = 1,2, . . . ,m and j = 1,2, . . . ,n (5.2.34)

The above matrix and sigma forms of the problem are called the shorthand forms of a
standard LP maximization problem. Let us now set up the standard or mathematical form
of a minimization problem. Suppose that a person has been prescribed to include eij (where
i = 1,2, . . . ,m and j = 1,2, . . . ,n) units of the ith nutrient in one unit of dish xj and that
the minimum quantity of the ith nutrient in all the dishes together must be di. Also suppose
that the cost of one unit of dish xj is cj. We present this information in Table 5.2.6, as we
constructed Table 5.2.5. We assume here that, as before, the number of choice variables (n)
is greater than the number of constraints (m).

Table 5.2.6

Nutrient requirement per unit of xj

Nutrients x1 x2 . . . xj . . . xn Minimum requirement
of ith nutrient

1 e11 e12 . . . e1j . . . e1n d1
2 e21 e22 . . . e2j . . . e2n d2
. . . . . . . . . . . . . . . . . . . . . . . .
i ei1 ei2 . . . eij . . . ein di
. . . . . . . . . . . . . . . . . . . . . . . .
m em1 em2 . . . em3 . . . emn dm
Contribution to C per

unit of xj

c1 c2 . . . cj . . . cn
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As we did in the case of the maximization problem, we can condense the information in
Table 5.2.6 and write the longhand form of the LP minimization problem as given in the
following equation and inequalities:

Minimize C = cost = c1x1 + c2x2 +·· ·+ cjxj +·· ·+ cnxn (5.2.35)

Subject to e11x1+e12x2+·· ·+ eijxj +·· ·+ e1nxn ≥ d1,

e21x1 + e22x2 +·· ·+ e2jxj +·· ·+ e2nxn ≥ d2, . . .,

ei1x1+ei2x2+·· ·+ eijxj +·· ·+ einxn ≥ di, . . .,

em1x1 + em2x2 +·· ·+ emjxj +·· ·+ emnxn ≥ dm,

and xj ≥ 0, j = 1,2,3, . . . ,n and i = 1,2, . . . ,m (5.2.36)

Notice that the above equation and inequalities can be written in matrix form as

Minimize C = cTx (5.2.37)

Subject to Ex ≥ d and x ≥ 0 (5.2.38)

where cT = [ c1 c2 .. cj .. cn ], xT = [ x1 x2 .. xj .. xn ],

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

e11 e12 .. e1j .. e1n

e21 e22 .. e2j .. e2n

.. .. .. .. .. ..

ei1 ei2 .. eij .. ein

.. .. .. .. .. ..

em1 em2 .. emj .. emn

⎤
⎥⎥⎥⎥⎥⎥⎦

and dT = [
d1 d2 .. di .. dm

]
; or using the sum (

∑
) notation as

Minimize C = n



j=1
cjxj (5.2.39)

Subject to
n



j=1
eijxj ≥ di, and xj ≥ 0, where i = 1,2, . . . ,m and j = 1,2, . . . ,n (5.2.40)

5.2.10 Convex sets and LP problems: existence of optimal solution

We discussed vector spaces, hyperplanes, and convex sets in Sections 2.2.5, 2.2.7, and 3.5.5,
respectively. We now extend here our discussions of these topics to some related aspects so
that we can apply them to demonstrate the existence of solutions to LP problems.

We know from our discussion in Section 2.2.7 that lines and planes in two- or
higher-dimensional spaces are special cases of hyperplanes. We defined a hyperplane by
equation (2.2.6). Hyperplanes can be defined in alternative forms. One such form is, in an
n-dimensional space, the set of points whose coordinates satisfy a linear equation

a1x1 + a2x2 +·· ·+ ajxj +·· ·+ anxn = aTx = b (5.2.41)

where aT = [ a1 a2 .. aj .. an ] and xT = [ x1 x2 .. xj .. xn ]. We can also write
equation (5.2.41) in set-builder form as

H (a,b) = {x|aTx = b} (5.2.42)
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where H represents the hyperplane. If n = 2 (two-dimensional space), equation (5.2.41)
gives us a line; in higher dimensions it gives us a plane. If we substitute πj (or cj) for aj and
	 (or C) for b into equation (5.2.41), we obtain the objective function – profit (cost) function
– in a standard LP problem. Therefore, an objective function in a LP problem is a hyperplane.

Now suppose that we have a linear inequality such as

a11x1 + a12x2 +·· ·+ a1jxj +·· ·+ a1nxn = aTx ≤ b1 (5.2.43)

which, in an n-dimensional space, gives a half-space. In fact, it is called a closed half-
space. Consider a special case of inequality (5.2.43): a11x1 + a12x2n = aTx ≤ b1, where
aT = [

a11 a12
]

and xT = [
x1 x2

]
. Then a11x1 + a12x2n = aTx ≤ b1 is the set of points

defined by one of the constraints in a two-variable general maximization problem of LP.
This set divides, with a hyperplane (a line), the total two-dimensional space (in the graphs
of maximization problems we have considered so far) into two sub-spaces; one above the
hyperplane and the other below the hyperplane. This is why the space (or the set of points)
represented by the inequality a11x1 + a12x2n = aTx ≤ b1 is called a half-space. Since the
inequality is in the form of “less than or equal to,” the lower sub-space includes the points
on the hyperplane, and, therefore, it is called a closed half-space. If the inequality were
a11x1 + a12x2n = aTx < b1, then it would be called an open half-space and it would not
contain the points on the hyperplane. Similarly, in a two-variable minimization LP problem,
the closed half-space is defined by the inequality a11x1 + a12x2n = aTx ≥ b1. It is needless
to say that if one sub-space is a closed half-space, the other sub-space must be an open
half-space. Our discussion so far suggests that every constraint in a LP problem represents
a half-space.

One can show that hyperplanes, whether they are lines or planes in different dimensions,
are convex sets. We defined convex sets as the set of points in different dimensions with
the property that a line that joins any two points in the set lies completely inside the set.
We now provide here an intuitive explanation for the statement that hyperplanes are closed
convex sets. Consider a line in a two-dimensional space, such as the graph of the objective
function; or a plane, such as the feasible region, in a standard LP problem. If we draw a line
connecting any two points on this line or in this plane, the line will lie completely on the graph
of the objective function or inside the feasible region, respectively. Therefore, the objective
hyperplane (the hyperplane representing the objective function) and the feasible hyperplane
(the hyperplane representing the feasible region), which we denote by F , of a standard two-
variable LP problem are closed convex sets. One can generalize this to dimensions higher
than two. This result also applies to closed half-spaces.

One can also show that the intersection of a finite number of convex sets is a convex
set; if each of these finite convex sets is a closed convex set, their intersection will also
be a closed convex set. This can be shown through Figure 5.2.7 for the case of two closed

S S2S1

Figure 5.2.7
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convex sets. Suppose that we have two closed convex sets, S1 and S2. We denote their
intersection by S. If we draw a line connecting two points in S, then the line lies completely
in S itself, as illustrated in Figure 5.2.7. This suggests that the intersection of two closed
convex sets is a closed convex set.

We explained the boundary and interior points of a closed convex set in Section 3.5.5.
Another closely related concept is the extreme point (or the corner point or the vertex) of a
closed convex set. To elucidate this concept, consider Figure 3.5.7(E). This figure shows the
closed convex set of a triangle. There are three corner points or extreme points in this closed
convex set. One property of these extreme points is that they do not lie on line segments that
connect two other different points in the set. Another property is that the set of the extreme
points is the subset of the boundary points of a closed convex set.

We now attempt to apply all the ideas discussed in this section so far. Our aim in
solving a LP problem, as we saw in the numerical, illustrative examples in the previous
few sections, is to push upward (downward) in maximization (minimization) problems
the objective hyperplane until it touches the highest (lowest) possible extreme point of the
feasible hyperplane. Such an objective hyperplane is called a supporting hyperplane and we
denote it by H ∗. Notice that H ∗ will intersect F only at the latter’s extreme point or will
coincide with the latter’s side. If H ∗ intersects with a side of F , then every point on that
line segment will give an optimal solution, which leads to multiple optimal solutions (as
illustrated in Figure 5.2.6(A) as the solution to the maximization problem (5.2.27)). Barring
this and the other special cases noted in Section 5.2.8, in most practical applications H∗
intersects with only one extreme or corner point of F . This is the crux of the extreme point
theorem. This is the idea we used when we solved the numerical, illustrative examples of LP
problems in earlier sections.

The last important point we note here is that the local maximum (minimum) solution to
a LP problem will also be a global maximum (minimum) solution. This result is guaranteed
by the globality theorem, which states that if F is a closed convex set and if the objective
function is a concave (convex) function, then any local maximum (minimum) will also be
global maximum (minimum); and if the objective function is a strictly concave (convex)
function, then the global maximum (minimum) will be unique.

5.2.11 Exercises

1. Solve the following LP problems:
(i) maximize	= 3x+3y, subject to x ≤ 60, y ≤ 70, x+y ≤ 90, and x,y ≥ 0; (ii) maximize
	= x+y, subject to x ≤ 60, y ≤ 50, and x,y ≥ 0; (iii) maximize	= 10x+5y, subject to
2x+ ≤ 10, x +y ≤ 20, x +y ≤ 20, 4x +y ≤ 30, and x,y ≥ 0; (iv) maximize	= 4x +3y,
subject to 2x + 4y ≤ 40, 4x + 2y ≤ 50, 2x + 2y ≤ 40, and x,y ≥ 0.

2. Solve the following LP problems:
(i) minimize C = 3x+2y, subject to x+10y ≥ 20, 10x+y ≥ 40, and x,y ≥ 0; (ii) minimize
C = 3x+3y, subject to x ≥ 60, y ≥ 70, x+y ≥ 90, and x,y ≥ 0; (iii) minimize C = x+y,
subject to 2x + y ≥ 30, x + y ≥ 40, x + y ≥ 50, and x,y ≥ 0; (iv) minimize C = 2x + 3y,
subject to 2x + 3y ≥ 30, 3x + 2y ≥ 30, x + 2y ≥ 20, and x,y ≥ 0.

3. Application exercise. Suppose that a firm plans to produce two goods, x and y, using
three factors: capital, labor, and land. The production of 1 unit of x requires 4, 8, and
1 units of capital, labor, and land, respectively. Similarly, the production of 1 unit of y
requires 1 unit each of capital, labor, and land. The maximum quantities of capital, labor,
and land available are 40, 60, and 30 units, respectively; and the profit the firm obtains
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from 1 unit of both goods is the same $1. Find the quantities of the goods that the firm
must produce to maximize its profits satisfying the constraints.

4. Application exercise. Suppose that a farmer cultivates two crops, x and y. For this, the
farmer has to use both fertilizer and pesticide. One unit of x requires a minimum of
1 unit of both fertilizer and pesticide. Similarly, 1 unit of y requires a minimum of 6
and 1 units of fertilizer and pesticide, respectively. The farmer has to use a minimum
of 30 and 10 units of fertilizer and pesticides, respectively, for the two crops. The unit
costs of x and y are $2 and $3, respectively. Find the quantities of the two crops that
minimize the farmer’s total cost while still complying with the minimum requirements
of fertilizer and pesticide.

Web supplement: S5.2.12 Mathematica applications

5.3 The simplex method

5.3.1 Introduction

In Section 5.2 we considered optimization of LP problems involving two choice variables.
But, in most practical applications, LP problems involve more than two choice variables.
Solving such problems using a graphical method is difficult. Therefore, we need an algebraic
method that can handle problems involving any number of choice variables. This is suggested
by the simplex method or the simplex algorithm.

5.3.2 Concepts and definitions

Let us first explain and define here some of the concepts that we will use throughout the rest
of this chapter. Most of these concepts will be clearer as we proceed through the next few
sections. We begin with the term algorithm. An algorithm is a fixed set of computational
rules or procedures that are used repetitively to the problem under consideration for finding
the solution to it. Each repetition of the algorithm is called an iteration. In each iteration we
move the solution closer and closer to the optimum.

The simplex method or simplex algorithm is a fixed set of computational rules or
procedures for finding the BFSs in a LP problem. For any BFS, some variables are held
at 0. Such variables are called nonbasic variables (NBVs) and all other variables are called
basic variables (BVs). The set of BVs is called the basis.

5.3.3 Iteration: the basic nature of the simplex method

As an example to illustrate the iterative nature of the simplex method, consider the two-
variable maximization LP problem (5.2.5) in Section 5.2.2, which we solved graphically
using Figure 5.2.1 and found the optimal solution x∗ = 36 and y∗ = 6. We reproduce that
problem here for convenience:

Maximize 	= 2x + 2y, subject to 2x + 3y ≤ 90,3x + 2y ≤ 120, and x,y ≥ 0 (5.3.1)

The graphs of the objective function and of the functional forms of the constraints of this
problem are illustrated in Figure 5.3.1(A), which is similar to Figure 5.2.1. We converted
the inequality constraints of this problem to equality constraints using slack variables and
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Figure 5.3.1

Table 5.3.1

Variables

Corner point x y s1 s2

A 0 0 90 120
B 0 30 0 60
D 36 6 0 0
E 40 0 10 0

the converted problem is given in equations (5.2.21) and (5.2.22). This is called the augmented
form of the original LP maximization problem (5.2.5). Let us now include the slack variables
in our discussion and construct Table 5.3.1 that gives the coordinates of the corner points
in Figure 5.3.1.

We know from our presentation in Section 5.2.4 that the optimum solution lies at the corner
point D where x∗ = 36 and y∗ = 6, and then the profit will be a maximum (	∗ = $84). Notice
an important feature of Table 5.3.1 that the coordinate values of two variables are zero for
any corner point. These corner points, as we noted earlier, are the BFSs. Our problem now
involves four variables (x, y, s1, and s2) and two constraints (n = 4 and m = 2). Therefore,
for every BFS at least n − m = 4 − 2 = 2 variables must be zero. We refer to the variables
that are zero for a BFS as the NBVs and others as the BVs. Therefore, at corner point D, x
and y are BVs and s1, and s2 are NBVs. Similarly, at corner point B, y and s2 are BVs and x
and s1 are NBVs. Notice that s1 = s2 = 0 at the optimum solution (corner point D), implying
that the two inputs are utilized completely.

We are now ready to show the iterative nature of the simplex method. For this we use
Table 5.3.1 and the modified form of Figure 5.3.1(A) as illustrated in Figure 5.3.1(B). The
augmented objective function is 	= 2x + 2y + 0s1 + 0s2 (equation (5.2.21)). Normally the
starting point of iteration is the corner point A, where both x and y are NBVs: x = y = 0.
At point A, the objective function is zero: 	 = 2x + 2y + 0s1 + 0s2 = 0 × x + 0 × y + 0 ×
s1 + 0 × s2 = 0. With this we have completed the first iteration. We can now try to see
whether the objective function attains higher values if we move along the horizontal axis
to corner point E or along the vertical axis to corner point B. In which direction we have
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to move depends on the size of the coefficient of the variable in the objective function. In
a maximization problem, we choose the variable whose coefficient has the highest positive
value. If all the NBVs have the same coefficients, as in our present problem, then the choice
is arbitrary. Therefore, we move to corner point E where, as can be seen in Table 5.3.1,
x and s1 are BVs (because x = 40> 0 and s1 = 10> 0) and y and s2 are NBVs. The value
of the objective function corresponding to corner point E is 	 = 2x + 2y + 0s1 + 0s2 =
2 × 40 + 0 × y + 0 × 10 + 0 × s2 = 80, which is higher than that at point A. Thus we have
completed the second iteration. We now move to corner point D at which the value of the
objective function is	= 2x + 2y +0s1 +0s2 = 2×36+2×6+0×0+0×0 = 84, which
is higher than that at point E. With this, we have completed the third iteration. So far our
iterations were through the route A → E → D. We can also do similar iterations through the
route A → B → D. In our present problem, we know that the optimum occurs at the corner
point D. What all this means is that the simplex algorithm involves a number of iterations in
which we move from one BFS to another, always improving upon the former, until we reach
the optimal solution.

We know that, in Figure 5.3.1, at point A both x and y are NBVs and s1 and s2 are BVs.
But as we move to point E, x becomes a BV and s2 becomes a NBV. Therefore, we say that
x is the entering variable and s2 is the departing variable at point A. Similar interpretations
can be given to these or the other variables at points B and E.

However, a question that arises now is: how does one carry out the iterations outlined
above and arrive at the optimum solution nongeometrically? The answer can be found in
two widely used approaches of the simplex method. They are the tabular approach and the
revised simplex method. Let us first explore the tabular approach of the simplex method.
We will discuss the revised simplex method in Section 5.3.6.

5.3.4 The simplex method: the tabular approach

In order to illustrate the tabular approach of the simplex method of solving LP problems, we
consider the augmented form of the example we used in Section 5.2.7 (equations (5.2.21)
and (5.2.22)). Notice that this problem can be expressed in matrix form as

Maximize 	= πTx, subject to Ax ≤ b and x ≥ 0 (5.3.2)

where πT = [
2 2 0 0

]
, xT = [

x y s1 s2
]
, bT = [

90 120
]
, and A =

[
2 3 1 0
3 2 0 1

]
.

Notice that the maximization problem in (5.3.2) can be written alternatively as

Maximize − 2x − 2y − 0s1 − 0s2 +	= 0, subject to 2x + 3y + s1 + 0s2 = 90,

3x + 2y + 0s1 + s2 = 120, and x,y,s1,s2 ≥ 0 (5.3.3)

which we represent in a table called the initial simplex tableau, as shown in Table 5.3.2.2

Let us first explain the features of Table 7.3.2. The column “RHS” in the table represents
the RHS of the problem in (5.3.3). The values in each column (other than those under RHS)
represent the coefficients of the corresponding variables in the problem in (5.3.3). If we begin
with x = y = 0 (as at point A in Figure 5.3.1(B)), then the slack variables (s1 and s2) are
the BVs and are represented by the column “BVs.” This gives us, as can be seen in the last
column, s1 = 90 and s2 = 120. Since all the variables are nonnegative, this represents a BFS.
The value of the objective function, as shown at the bottom of the last column, with x = 0,
y = 0, s1 = 90, and s2 = 120, is 	= 0.
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Table 5.3.2

BVs x y s1 s2 RHS

s1 2 3 1 0 90
s2 3 2 0 1 120

	j −πj −2 −2 0 0 0

︸ ︷︷ ︸
Indicators

Iteration 1

Let us now see if we can find a BFS with a larger value of 	. Since the slack variables do
not contribute to the objective function, 	 may increase only due to an increase in x or an
increase in y. But, which one shall we choose? The answer depends on the coefficients of
these decision variables among the indicators given in the last row. Since the coefficient with
the highest absolute value makes the highest contribution to	, that variable is chosen as the
entering variable. If there is a tie among the coefficients of the decision variable, as in our
present case with −2 and −2, the choice is arbitrary. Therefore, we choose x as the entering
variable and it becomes a BV or enters the basis. The column of the entering variable is called
the pivot column.

As stated earlier, in any BFS in the present problem two of the variables must be BVs and
the other two must be NBVs. This is true in the first BFS presented in the initial simplex
tableau. But, when we made x a BV we have in total three BVs and one NBV. Therefore, one
of the BVs must become a NBV (so that there will be two NBVs) for a new BFS. How do we
determine which variable will become a NBV or leaves the basis? The variable that leaves
the basis is the slack variable with the constant 1 in the row with the least displacement ratio
(DR), ignoring zeroes and negative values. DRs are obtained by dividing the elements in
the column of constants (RHS column) by the corresponding elements in the pivot column.
Therefore, the DRs in the present example are 90/2 = 45 and 120/3 = 40, and the least DR
is 120/4 = 40. This means that the slack variable s2 must leave the basis and must become
a NBV. The row of the leaving or departing variable (s2 in the present example) is called
the pivot row. The element, in the simplex tableau, that lies at the intersection of the pivot
column and pivot row (3 in the present example) is called the pivot element or the pivot entry.

Notice that this is true in terms of Table 5.3.1 when x = 40. Notice also that we now have
(in the new BFS) exactly two BVs (x and s1) and two NBVs (y and s2). Let us now update
Table 5.3.2 so that it will reflect the above mentioned points, as presented in Table 5.3.3.
Since s2 departed the basis and x entered the basis, we have to update Table 5.3.3 to obtain
Table 5.3.4.

Table 5.3.3

Departing
variable

BVs x y s1 s2 RHS DR

s1 2 3 1 0 90 (90/2) = 45
� s2 3 2 0 1 120 (120/3) = 40

	 −2 −2 0 0 0 (0/− 2) = 0

�

Enteringvariable

︸ ︷︷ ︸
Indicators
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Table 5.3.4

BVs x y s1 s2 RHS

s1 2 3 1 0 90
x 3 2 0 1 120

	 −2 −2 0 0 0

︸ ︷︷ ︸
Indicators

Table 5.3.5

BVs x y s1 s2 RHS

s1 0 5/3 1 −2/3 10
x 1 2/3 0 1/3 40

	 0 −2/3 0 2/3 80

︸ ︷︷ ︸
Indicators

Let us now carry out elementary row operations, as presented in Section 2.3.7, to convert
the pivot element in Table 5.3.4 to 1 and all other elements in the pivot column to zeros.
This process is also called pivoting. If we do the elementary row operations (R2 → (1/3)R2,
R1 → R1 − 2R2, and R3 → R3 + 2R2), we obtain Table 5.3.5.

We now interpret Table 5.3.5, which corresponds to the second BFS. Since x and s1 are
the BVs in the second BFS, the values of x, s1, and 	 are (as can be read from the last
column) 40, 10, and 80, respectively. This shows that the value of the objective function
improved from 0 to 80 when we moved from the first to the second BFS. Notice that this
was the value of the objective function we obtained at point E as shown in Table 5.3.1 or
in Figure 5.3.1(B).

Iteration 2

We need to continue iteration as above as long as there are negative indicators in the last
row of the last simplex tableau (Table 5.3.5). Since the absolute values of the coefficients
of y and s2 in the objective function (the last row) make a tie, they make equal contribution
to the objective function. Therefore, we arbitrarily choose y as the entering variable. The
new DRs are 10/(5/3) = 6 and 40/(2/3) = 60, which show that s1 is the departing variable.
Therefore, y enters the basis and s1 leaves the basis. We present this information, by updating
Table 5.3.5, in Table 5.3.6. Notice that, in the new or third BFS presented in Table 5.3.6,
the pivot column is the column of y, the pivot row is the row of s1, and the pivot element
is 5/3. Since s1 departed the basis and y entered the basis, we have to update Table 5.3.6 to
obtain Table 5.3.7. We shall again carry out the elementary row operations on Table 5.3.7
(R1 → (3/5)R1, R2 → R2 − (2/3)R1, and R3 → R3 + (2/3)R1) to obtain Table 5.3.8.

As before, we interpret Table 5.3.8. The last row in the table contains no negative value.
This implies that the objective function is maximized. Therefore, the optimum solution in
the third and the final BFS constitutes x∗ = 36, y∗ = 6, and 	∗ = 84. These solutions can
be read from the last column. The slack variables have zero values in the optimum solution
(s1 = s2 = 0). This means that the two factors are completely utilized. Notice that these are
precisely the results we obtained when we used the graphical method in Section 5.2.4.
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Table 5.3.6

BVs x y s1 s2 RHS DR

Departing
variable � s1 0 5/3 1 −2/3 10 (10/(5/3)) = 6

x 1 2/3 0 1/3 40 (40/(2/3)) = 60

	 0 −2/3 0 2/3 80 (80/(−2/3)) = −120

�
Enteringvariable

︸ ︷︷ ︸
Indicators

Table 5.3.7

BVs x y s1 s2 RHS

y 0 5/3 1 −2/3 10
x 1 2/3 0 1/3 40

	 0 −2/3 0 2/3 80

︸ ︷︷ ︸
Indicators

Table 5.3.8

BVs x y s1 s2 RHS

y 0 1 3/5 −2/5 6
x 1 0 −2/5 9/5 36

	 0 0 2/5 2/5 84

︸ ︷︷ ︸
Indicators

Let us now summarize the tabular approach of the simplex method of solving a standard
maximization LP problem involving n variables and m constraints. Assume that we want to

Maximize 	= π1x1 +π2x2 +·· ·+πnxn, subject to a11x1 + a12x2 +·· ·+ a1nxn ≤ b1,

a21x1 + a22x2 +·· ·+ a2nxn ≤ b2, . . .,am1x1 + am2x2 +·· ·+ amnxn ≤ bm,

and xj ≥ 0, j = 1,2,3, . . . ,n (5.3.4)

Then the steps involved in the solution to the problem are the following.

Step 1. Set up the problem using only slack variable (when the constraint appears with ≤
sign), surplus variable and artificial variable (when the constraint appears with ≥
sign), and only artificial variable (when the constraint appears with = sign). The
use of artificial variables and surplus variables are explained in the next section.

Step 2. Convert the objective function, by including the n slack variables, into
	= π1x1 +π2x2 +·· ·+πnxn + 0s1 + 0s2 +·· ·+ 0sn and then into

−π1x1 −π2x2 −·· ·−πnxn − 0s1 − 0s2 −·· · .− 0s2 +	= 0 (5.3.5)
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Table 5.3.9

BVs x1 x2 … xn s1 s2 … sn RHS

s1 a11 a12 … a1n 1 0 0 0 b1
s2 a21 a22 … a2n 0 1 0 0 b2
… … … … … … … … … …
sn am1 am2 … amn 0 0 0 1 bm

	 −π1 −π2 … −πn 0 0 0 0 0

︸ ︷︷ ︸
Indicators

Step 3. Convert the constraints (excluding the nonnegative constraints), by including the
n slack variables, into

a11x1 + a12x2 +·· ·+ a1nxn + s1 + 0s2 +·· ·+ 0sn = b1,

a21x1 + a22x2 +·· ·+ a2nxn + 0s1 + s2 +·· ·+ 0sn = b2, . . .,

am1x1 + am2x2 +·· ·+ amnxn + 0s1 + 0s2 +·· ·+ sn = bm,

am1x1 + am2x2 +·· ·+ amnxn + 0s1 + 0s2 +·· ·+ sn = bm (5.3.6)

Step 4. Construct the initial simplex tableau as in Table 5.3.9.
Step 5. If all the indicators in last row are nonnegative, then 	 has a maximum. If some

of the indicators are negative, then locate the pivot column (the column with the
largest absolute value among the indicators) or the entering variable.

Step 6. Find the DR by dividing the elements in the last column (RHS) by the corresponding
elements in the pivot column.

Step 7. Locate the pivot row (the row with the lowest DR found in step 6). The element at
the intersection of the pivot row and pivot column will be the pivot element. The
slack variable with coefficient 1 in the pivot row will be the departing variable.

Step 8. Carry out elementary row operations to convert the pivot element in step 7 to 1 and
all other elements in the pivot column to 0.

Step 9. If all the indicators after step 8 are nonnegative, then the objective function is
maximized and the maximum value of the function (	∗) will be the value in the
right bottom cell of the tableau. Then the optimum values of the BVs can be
read from the corresponding cells under the column RHS and the values of all
the NBVs will be zero. If, instead, there is at least one negative indicator in the
last column, repeat steps 5 to 9 until all the indicators appear with nonnegative
values.

5.3.5 Tabular approach of the simplex method: solution of minimization
problems

In the last section we applied the tabular approach of the simplex method to solve a
maximization problem. We now apply the tabular approach with slight modification to solve
a minimization problem. There are two widely used methods (under the simplex method) to
solve minimization problems. They are the big-M method and the two-phase method. Let us
first present the big-M method followed by the two-phase method.



[12:21 3/11/2011 5640-Ummer-Ch05.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 271 244–315

Linear programming 271

Big-M method

Notice that in a maximization problem, in which the constraints appear with ≤ sign, we added
slack variables to the left of the constraints to make them equalities. These slack variables
offered us an initial BFS. But, as we saw in the graphical solution to the minimization
problem we considered in Section 5.2.5, the origin in the graph is not a BFS because it
violated all the constraints of the problem. Moreover, if we proceed with a BFS containing
only slack variables, these variables will produce negative values in the BFS which will
violate the nonnegativity condition. Sometimes the problems may originally involve some,
or all, constraints with = or ≥ signs, which are called alternative LP problems. In such
situations, we introduce variables called artificial variables to the left of the constraints with
= or ≥ signs. Notice also that we still have to use slack variables and surplus variables on the
LHS of constraints with ≤ and ≥ signs, respectively. The artificial variables are introduced
mainly to generate an initial BFS, and these variables will be, as shown below, forced out of
the optimum solution.

As an illustration, consider the minimization problem we introduced in (5.2.11) and solved
graphically in Section 5.2.5. For convenience we reproduce the problem here with slight
variation, by incorporating the above points, as

Minimize C = 9x1 + 12x2 + 0x3 + 0x4 + MA1 + MA2,

subject to 15x1 + 10x2 − x3 − 0x4 + A1 + 0A2 = 90,

10x1 + 15x2 − 0x3 − x4 + 0A1 + A2 = 90, and x1,x2,x3,x4,A1,A2 ≥ 0 (5.3.7)

where we use x1 for x and x2 for y; x3 and x4 denote the surplus variables in the first
and the second constraints, respectively; and A1 and A2 denote the artificial variables in
the first and the second constraints, respectively. Notice the corresponding changes in the
objective function. Notice also that the coefficient(s) of the artificial variable(s) in the
objective function must be a large positive number (M ). This is why this method is called
the big-M method. We can now construct Table 5.3.10 as the initial simplex tableau on the
basis of the above problem.

Notice that Table 5.3.10 contains an inconsistency. If x1 = x2 = x3 = x4 = 0, then A1 =
A2 = 90 and, therefore, C = 180M . But, the last cell in the last row shows that C = 0. This
is the said inconsistency. To eliminate this inconsistency, we can multiply the first and the
second rows by M and add them (column-wise) to the last row. The result can be shown,
through a modified tableau, as in Table 5.3.11. Notice that an initial BFS can be read now
from Table 5.3.11: when x1 = x2 = x3 = x4 = 0, A1 = A2 = 90, C = 180M . Notice also that
this initial BFS has eliminated the inconsistency. Because C = 180M is an inconceivably
huge amount (since M is a huge value), we need to check for a new BFS that may produce a
lower value for C.

Table 5.3.10

BVs x1 x2 x3 x4 A1 A2 RHS

A1 15 10 −1 0 1 0 90
A2 10 15 0 −1 0 1 90

C −9 −12 0 0 −M −M 0

︸ ︷︷ ︸
Indicators
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Table 5.3.11

BVs x1 x2 x3 x4 A1 A2 RHS

A1 15 10 −1 0 1 0 90
A2 10 15 0 −1 0 1 90

C 25M − 9 25M − 12 −M −M 0 0 180M

︸ ︷︷ ︸
Indicators

Table 5.3.12

BVs x1 x2 x3 x4 A1 A2 RHS DR

Departing
variable

� A1 15 10 −1 0 1 0 90 (90/15) = 6

A2 10 15 0 −1 0 1 90 (90/10) = 9

C 25M − 9 25M − 12 −M −M 0 0 180M

�

Enteringvariable

︸ ︷︷ ︸
Indicators

Iteration 1. The NBV that enters the basis in a maximization problem, as we saw in
the previous section, is the NBV with the largest negative indicator. In a minimization
problem, the entering variable is that with the largest positive indicator; and, as can be
seen in Table 5.3.11, it is x1. The column that represents x1 is the pivot column. The variable
that leaves the basis can be determined, as before, by finding the DRs. The DRs (obtained
by dividing each element of the RHS column by the corresponding elements of the pivot
column) are 6 and 9. Since the smallest DR is 6, and since 1 is associated with A1, A1

leaves the basis. This means that the row that represents A1 is the pivot row. The element
at the intersection of the pivot row and pivot column is the pivot element, and it is 15
in the present example. Therefore, we have Table 5.3.12. Since A1 departed the basis and
x1 entered the basis, we have to update Table 5.3.12 to obtain Table 5.3.13. Let us now
carry out elementary row operations on Table 5.3.13 to convert the pivot element to 1 and
all other elements in the pivot column to zeros. If we do the elementary row operations
(R1 → (1/15)R1, R2 → R2 − 10R1, and R3 → R3 − (25M − 9)R1), we obtain Table 5.3.14.

Iteration 2. Since x2 has the largest positive value in the last row in Table 5.3.14, x2 enters
the basis. And since the DR is the smallest in the case of row A2, A2 leaves the basis. We can
now modify Table 5.3.14 on the basis of this information to obtain Table 5.3.15. Notice that
the pivot element now is 25/3. Since A2 departed the basis and x2 entered the basis, we have to

Table 5.3.13

BVs x1 x2 x3 x4 A1 A2 RHS

x1 15 10 −1 0 1 0 90
A2 10 15 0 −1 0 1 90

C 25M − 9 25M − 12 −M −M 0 0 180M

︸ ︷︷ ︸
Indicators
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Table 5.3.14

BVs x1 x2 x3 x4 A1 A2 RHS

x1 1 2/3 −1/15 0 1/15 0 90
A2 0 25/3 2/3 −1 −2/3 1 90

C 0 (25M − 18)/3 (10M − 9)/15 −M (−25M − 9)/15 0 30M + 54

︸ ︷︷ ︸
Indicators

Table 5.3.15

BVs x1 x2 x3 x4 A1 A2 RHS DR

Departing
variable

x1 1 2/3 −1/15 0 1/15 0 6 (6/(2/3)) = 9

�A2 0 25/3 2/3 −1 −2/3 1 30 (30/(25/3)) = 3.6

C 0 (25M − 18)/3 (10M − 9)/15 −M (−25M − 9)/15 0 30M + 54

�

Enteringvariable

︸ ︷︷ ︸
Indicators

Table 5.3.16

BVs x1 x2 x3 x4 A1 A2 RHS

x1 1 2/3 −1/15 0 1/15 0 6
x2 0 25/3 2/3 −1 −2/3 1 30

C 0 (25M − 18)/3 (10M − 9)/15 −M (−25M − 9)/15 0 30M + 54

︸ ︷︷ ︸
Indicators

Table 5.3.17

BVs x1 x2 x3 x4 A1 A2 RHS

x1 1 0 −3/25 2/25 3/25 −2/25 3.6
x2 0 1 2/25 −3/25 −2/25 3/25 3.6

C 0 0 −3/25 −18/25 (−50M − 81)/75 −M − 18/25 75.6

︸ ︷︷ ︸
Indicators

update Table 5.3.15 to obtain Table 5.3.16. Let us again carry out elementary row operations
on Table 5.3.16 to convert the pivot element to 1 and all other elements in the pivot column
to zeros. If we do the elementary row operations (R2 → (3/25)R2, R1 → R1 − (2/3)R2, and
R3 → R3 −[(25M − 18)/3]R2), we obtain Table 5.3.17.

Notice that iteration will continue as long as a positive indicator remains in the last row and
it will stop when all the indicators are nonpositive. Since all the indicators are nonpositive
in Table 5.3.17, we can stop iteration with it. This means that we have achieved the optimal
solution: C∗ = 75.6, x∗

1 = 3.6, x∗
2 = 3.6, x3 = 0, and x4 = 0. Notice also that these are exactly

the same results as those we obtained when applying the graphical method in Section 5.2.5.
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Two-phase method

The reader would have noticed that solving a minimization problem by hand using the big-M
method was a laborious task as it involved a number of calculations. The chance for errors
in these calculations is high. Moreover, when one solves minimization problems with a
computer using the big-M method, one has to specify a value for M no matter how large it
is. Due to these issues with the big-M method, an alternative method that eliminates these
issues is generally adopted and it is called the two-phase method.

As the name suggests, the two-phase method involves two phases. In phase I, we specify
the objective function in terms of the artificial variables only: minimize

∑
Ai or maximize

−∑
Ai, where Ai represents the ith artificial variable. This objective function will eliminate

the artificial variables from the basis if the problem has a feasible solution. Then we have
to eliminate the possible discrepancy in the RHS column as we did in the big-M method.
After this, we need to apply the simplex method. This is the end of the first phase of the
two-phase method; that is, when we have eliminated all the artificial variables from the basis.
If we cannot eliminate them, then there is no feasible solution to the problem. Once this
is done, the original objective function will be introduced and, then, we apply the simplex
method again.

As an illustration, let us use the example we considered with the big-M method:

Minimize C = 9x1 + 12x2 + 0x3 + 0x4 + MA1 + MA2,

subject to 15x1 + 10x2 − x3 − 0x4 + A1 + 0A2 = 90,

10x1 + 15x2 − 0x3 − x4 + 0A1 + A2 = 90, and x1,x2,x3,x4,A1,A2 ≥ 0

which we transform, as stated above, to

Minimize C = 0x1 + 0x2 + 0x3 + 0x4 + A1 + A2,

subject to 15x1 + 10x2 − x3 − 0x4 + A1 + 0A2 = 90,

10x1 + 15x2 − 0x3 − x4 + 0A1 + A2 = 90, and x1,x2,x3,x4,A1,A2 ≥ 0

On the basis of the above problem, we can construct the initial simplex tableau in Table 5.3.18.
Notice that, in Table 5.3.18, when x1 = x2 = x3 = x4 = 0, A1 = A2 = 90. But, as can be seen
from the initial tableau, C = 0.This is a discrepancy, like the one we saw in the application
of the big-M method. To eliminate this discrepancy, we multiply the first two rows by unity
(1) and add the first two cells in every column to the last cell of the same column. After doing
this, we obtain Table 5.3.19. Notice that Table 5.3.19 is devoid of the said discrepancy.
Let us now apply the simplex method to solve this minimization problem. Following the
same procedure as that adopted in the big-M method, and skipping some of the routine
steps therein, we obtain Table 5.3.20.

Table 5.3.18

BVs x1 x2 x3 x4 A1 A2 RHS

A1 15 10 −1 0 1 0 90
A2 10 15 0 −1 0 1 90

C 0 0 0 0 −1 −1 0

︸ ︷︷ ︸
Indicators



[12:21 3/11/2011 5640-Ummer-Ch05.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 275 244–315

Linear programming 275

Table 5.3.19

BVs x1 x2 x3 x4 A1 A2 RHS

A1 15 10 −1 0 1 0 90
A2 10 15 0 −1 0 1 90

C 25 25 −1 −1 0 0 180

︸ ︷︷ ︸
Indicators

Table 5.3.20

BVs x1 x2 x3 x4 A1 A2 RHS

x1 1 0 −3/25 2/25 3/25 −2/25 3.6
x2 0 1 2/25 −3/25 −2/25 3/25 3.6

C 0 0 0 0 −1/6 −1 0

︸ ︷︷ ︸
Indicators

Table 5.3.21

BVs x1 x2 x3 x4 RHS

x1 1 0 −3/25 2/25 3.6
x2 0 1 2/25 −3/25 3.6

C −9 −12 0 0 0

︸ ︷︷ ︸
Indicators

Table 5.3.22

BVs x1 x2 x3 x4 RHS

x1 1 0 −3/25 2/25 3.6
x2 0 1 2/25 −3/25 3.6

C 0 0 −3/25 −18/25 75.6

︸ ︷︷ ︸
Indicators

With Table 5.3.20, we have eliminated both artificial variables from the basis. Therefore,
we have completed the first phase. Let us now begin the second phase. In the second
phase we introduce the original objective function. With the original objective function
(after removing the artificial variables), Table 5.3.20 can be reformulated as Table 5.3.21.
We now carry out elementary row operations (R3 → R3 + 9R1 and R3 → R3 + 12R2) to
obtain the final tableau as in Table 5.3.22. Notice that in Table 5.3.22, all the values in the
last row (except in the column RHS) are nonpositive, the condition for an optimum in the
case of minimization. Therefore, we stop with the last tableau and the optimum values are
x∗

1 = 3.6, x∗
2 = 3.6, and C∗ = 75.6. These are precisely the optimum values we obtained
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when we used the graphical method in Section 5.2.5 and the big-M method earlier in the
current section.

5.3.6 Revised simplex method

We saw in the last section how the tabular approach of the simplex method can be
utilized to solve LP problems. We now consider the revised simplex method of solving
LP problems. One may wonder why we need this new method. The reason is that the revised
simplex method is computationally more efficient than the tabular approach. Instead of the
elementary row operations, the revised simplex method utilizes matrices, which reduce
computational errors as it uses, as shown below, the original data and only one inverse.
Assume that we want to

Maximize 	= πTx,subject to Ax = b and x ≥ 0 (5.3.8)

where πT = [
π1 π2 . . . πn 0 0 . . . 0

]
, xT = [

x1 x2 . . . xn s1 s2 . . . sn
]
,

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n 1 0 . . . 0

a21 a22 . . . a2n 0 1 . . . 0

. . . . . . . . . . . . 0 0 . . . 0

am1 am2 . . . amn 0 0 . . . 1

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

b1

b2

. . .

bm

⎤
⎥⎥⎥⎦ , and 0 =

⎡
⎢⎢⎢⎣

0

0

. . .

0

⎤
⎥⎥⎥⎦

We will later use the definition that

a1 =

⎡
⎢⎢⎢⎣

a11

a21

. . .

am1

⎤
⎥⎥⎥⎦ , a2 =

⎡
⎢⎢⎢⎣

a12

a22

. . .

am2

⎤
⎥⎥⎥⎦ , . . ., an =

⎡
⎢⎢⎢⎣

0

0

. . .

1

⎤
⎥⎥⎥⎦

Now suppose that B is a feasible basis of the problem in (5.3.8). Also suppose that xB
constitutes, corresponding to B, the set of BVs and that πT

B is the vector of the corresponding
coefficients in the objective function. Now eliminating n variables by treating them as zeros
gives m equations in m unknown BVs. This system of equations can be written as

BxB = b (5.3.9)

which can be pre-multiplied on both sides by the inverse of B, B−1, to obtain

xB = B−1b (5.3.10)

Notice that we introduced the inverse of the feasible basis B in equation (5.3.10). Since the
simplex method introduces only the BVs, B is always nonsingular and, therefore, B−1 will
always exist. We know that the objective function is given by	= πTx and that the current
set of BVs is given by xB. Therefore, the value of the objective function in the current BFS
can be written as 	= πB

TxB, which, using equation (5.3.10), can be written as

	= πB
TB−1b (5.3.11)
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Equation (5.3.10) gives the first BFS and equation (5.3.11) gives the value of the objective
function corresponding to the first BFS. We can now introduce a NBV, xj , into the basis to
see if it increases the value of the objective function. Then equation (5.3.12) will hold:

BxB + ajxj = b (5.3.12)

where aj represents the jth ( j = 1,2, . . . ,n) column of A. We can now pre-multiply
equation (5.3.12) by B−1 and rearrange it to obtain

xB = B−1b − B−1ajxj (5.3.13)

Equation (5.3.11) gives the old value of the objective function (that is, the value of the
objective function in the last BFS). Its new value (in the new BFS) is given by

	new = πT
BB−1b − (πT

BB−1aj −πj)xj (5.3.14)

where πj represents the coefficient of xj in the objective function. Notice that the first
part on the RHS of equation (5.3.14) is 	 given in equation (5.3.11). Therefore, using
equation (5.3.11) and denoting	j = πB

TB−1aj , we can rewrite equation (5.3.14) as

	new =	− (	j −πj)xj (5.3.15)

Equation (5.3.15) implies that the objective function of the maximization problem will
increase only if 	j − πj is negative. Therefore, the NBV is to be introduced and a new
iteration is to be carried out in a maximization problem only if 	j − πj is negative. This
condition is to be checked for every NBV. If 	j −πj is nonnegative for all xj in the case of
a maximization problem, then the current solution is optimal (which is called the optimality
criterion of the revised simplex method); if	j −πj = 0 for a NBV, then there will be multiple
optimal solutions.

Equation (5.3.15) also implies that the objective function of the minimization problem
will decrease only if πj −	j is negative. Therefore, the NBV is to be introduced and a new
iteration is to be carried out in a minimization problem only if πj −	j is negative. As in the
case of a maximization problem, this condition is to be checked for every NBV. If πj −	j

is nonnegative for all xj in the case of a minimization problem, then the current solution,
as before, is optimal and the optimality criterion of the revised simplex method is met; if
πj −	j = 0 for a NBV, then there will be multiple optimal solutions.

So far we have checked for optimality in successive iterations and determed the variable
that enters basis. Let us now consider the feasibility criterion of the revised simplex method.
Using this criterion we can determine which variable leaves the basis. For this we use
equation (5.3.13): xB = B−1b − B−1ajxj . This equation implies that xB will become negative
(and thus will violate the nonnegative condition xB ≥ 0) if xj increases for B−1aj > 0.
Therefore, we impose the condition (B−1b)i− (B−1 aj)ixj ≥ 0 or (B−1b)i /(B−1aj)I ≥ xj ,
where i = 1,2, . . . ,m. This inequality implies that the maximum value of the entering variable,
xj , is given by

xj = min{(B−1b)i/(B
−1aj)i |(B−1aj)> 0} (5.3.16)
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which implies that the basic variable xj that gives the minimum DR given in this equation
leaves the basis. This is the feasibility criterion. We can now summarize the steps involved
in the application of the revised simplex method.

Iteration 1

Step 1. Set up the problem using only slack variable (when the constraint appears with
≤ sign), surplus variable and artificial variable (when the constraint appears
with ≥ sign), and only artificial variable (when the constraint appears with =
sign).

Step 2. Set up the first BFS such that B and πB
T are its respective basis and objective

coefficient vectors.
Step 3. Find B−1 using any of the methods we discussed in Chapter 2.
Step 4. Find	j −πj = πB

TB−1aj −πj for each nonbasic variable xj . If we find	j −πj ≥ 0
(	j − πj ≤ 0) in maximization (minimization) problem for NBVS, stop at this
point. Then, the optimum solution to the problem is given by XB = B−1b and
	= πB

TXB.
Step 5. If, instead, in step 4 we find	j −πj < 0 (	j −πj > 0) for NBVs in a maximization

(minimization) problem, apply the optimality criterion and determine the variable
that enters the basis (the variable with the most negative (positive) 	j −πj value
in maximization (minimization) problems).

Step 6. Find B−1aj . If we find that all the elements of B−1aj are nonpositive, stop at this
point. Then the problem has an unbounded solution. Otherwise, find B−1b and find
the DRs for all positive elements of B−1aj . Then determine the BV that leaves the
basis (the variable with the smallest DR).

Step 7. Make a new basis, from the current basis B, by replacing the vector of the leaving
BV (aj) with the vector of the entering NBV.

Iteration 2

Step 8. Redo steps 1 to 7, and continue with fresh iterations and stop further iterations
when 	j − πj ≥ 0(	j − πj ≤ 0) in maximization (minimization) problems for
NBVs.

As an example, consider the maximization problem we solved with the graphical and
tabular methods (problem (5.3.2)). For convenience we reproduce it here with x1 = x
and x2 = y: maximize 	 = 2x1 + 2x2 + 0s1 + 0s2, subject to 2x1 + 3x2 + s1 + 0s2 =
90, 3x1 + 2x2 + 0s1 + s2 = 120, and x1,x2,s1,s2 ≥ 0, which can be written in matrix
form as

Maximize 	= πTx, subject to Ax = b and x ≥ 0 (5.3.17)

whereπT = [
π1 π2 π3 π4

]= [
2 2 0 0

]
, xT = [

x1 x2 s1 s2
]
, A =

[
2 3 1 0

3 2 0 1

]
,

b =
[

90

120

]
, 0 =

[
0

0

]
; and a1 =

[
2

3

]
, a2 =

[
3

2

]
, a3 =

[
1

0

]
, and a4 =

[
0

1

]
.
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Iteration 1

We begin the initial iteration treating the choice variables (x1 and x2) as NBVs and slack

variables (s1 and s2) as BVs. Therefore, xB,1 =
[

s1

s2

]
, B1 =

[
1 0
0 1

]
, B−1

1 =
[

1 0
0 1

]
,

and πB,1
T = [

0 0
]
, where the numerical subscript denotes the number of the iteration.

These imply that xB,1 = B1
−1b =

[
1 0
0 1

][
90
120

]
=
[

90
120

]
=
[

s1

s2

]
, and	1 = πB,1

TxB,1 =
[
0 0

][ 90
120

]
= 0.

Therefore, iteration 1 gives the solution, as expected, s1 = 90, s2 = 90, and 	0 = 0.
Let us now carry out the optimality and feasibility tests. Optimality test: 	j,1 −πB,1

T =
πB,1

TB1
−1aj − πj . Since the existing NBVs are x1 and x2, we have a1 and a2. Therefore

we obtain 	1,1 − πB,1
T = πB,1

TB1
−1a1 − π1 = [

0 0
][1 0

0 1

][
2
3

]
− 2 = −2, and

	2,1−πB,1
T =πB,1

TB1
−1a2−π2 = [

0 0
][1 0

0 1

][
3
2

]
−2 =−2, where the first subscript

of 	 denotes the number of NBV in the current basis. Since both give us the same negative
value (and, therefore, the introduction of both x1 and x2 can increase the objective function
equally), we arbitrarily choose x1 as the entering variable. Feasibility test: Notice that

B1
−1a1 =

[
1 0
0 1

][
2
3

]
=
[

2
3

]
and xB,1 = B1

−1b =
[

90
120

]
. Therefore, xj = min{(xB,1 =

B1
−1b)/(B1

−1a1)} = min{90/2, 120/3} = min{45, 40}, which implies that the current BV s2

must leave the basis (and, thus, become a NBV).

Iteration 2

The current BVs are x1 and s1, and the NBVs are x2 and s2. Therefore, xB,2 =
[

x1

s1

]
, B2 =[

2 1
3 0

]
, B2

−1 =
[

0 1/3
1 −2/3

]
, and πB,2

T = [
2 0

]
. These quantities yield xB,2 = B2

−1b

=
[

0 1/3
1 −2/3

][
90
120

]
=
[

40
10

]
=
[

x1

s1

]
and 	2 = πB,2

TxB,2 = [
2 0

][40
10

]
= 80, which

shows that the value of the objective function increased when x1 entered the basis and s2 left
the basis. We can now carry out, as above, the optimality and feasibility tests. Optimality
test: 	j,2 − πB,2

T = πB,2
TB2

−1aj − πj . Since the existing NBVs are x2 and s2, we are

using a2 =
[

3
2

]
and a4 =

[
0
1

]
. Therefore, we obtain	2,2 −πB,2

T = πB,2
TB2

−1a2 −π2 =
[
2 0

][0 1/3
1 −2/3

][
3
2

]
− 2 = (−2/3) < 0, and 	2,2 − πB,2

T = πB,2
TB2

−1a4 − πs2 =
[
2 0

][0 1/3
1 −2/3

][
0
1

]
− 0 = 2/3> 0, where the first subscript of 	 denotes the number

of NBV in the current basis. Since x2 is the only NBV with a negative value, it will only
contribute to the value of the objective function. Therefore, x2 enters the basis. Feasibility

test: We have B2
−1a2 =

[
0 1/3
1 −2/3

][
3
2

]
=
[

2/3
5/3

]
and xB,2 = B2

−1b =
[

40
10

]
. Therefore,

xj = min{(xB,2 = B2
−1b)/(B2

−1a2)} = min{40/(2/3), 10/(5/3)} = min {60, 6}, which implies
that the current BV, s1, must leave the basis.
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Iteration 3

We now have x1 and x2 as the BVs and, therefore, we have xB,3 =
[

x1

x2

]
, B3 =

[
2 3
3 2

]
,

B3
−1 =

[−2/5 3/5
3/5 −2/5

]
, and πB,3

T = [
2 2

]
. These values yield xB,3 = B3

−1b =[−2/5 3/5
3/5 −2/5

][
90
120

]
=
[

36
6

]
=
[

x1

x2

]
, and 	3 = πT

B,3xB,3 = [
2 2

][36
6

]
= 84.

Notice that the current NBVs (s1 and s2) were the BVs when we started with iteration 1.
This implies that the entry of any of these NBVs will reduce the value of the objective
function. In addition, we know from equation (5.3.15) that the value of the objective function
will increase only if 	j −πj < 0. And we know that 	j −πj > 0 for both NBVs (because
	j −πj = 84−0 = 84> 0). Therefore, the current iteration (iteration 3) yields the optimum
solution: x1 = 36, x2 = 6, and	∗ = 84. Notice also that these are exactly the same solutions
as those we obtained in Sections 5.2.4 (through the graphical method) and 5.3.4 (through the
tabular approach of the simplex method).

Let us now apply the revised simplex method to a minimization problem. For this we
consider the minimization problem we solved with the graphical method (problem (5.2.11)
in Section 5.2.5) and with the tabular approach of the simplex method (equation (5.3.8) in
Section 5.3.5). For convenience we reproduce that problem here with x1 = x and x2 = y:
minimize C = 9x1 + 12x2, subject to 15x1 + 10x2 ≥ 90, 10x1 + 15x2 ≥ 90, and x1,x2 ≥ 0.
This can again be written with surplus variables (s1 and s2) and artificial variables (A1 and A2)
as: minimize C = 9x1 +12x2 +0s1 +0s2 +MA1 +MA2, subject to −15x1 −10x2 −s1 −0s2 +
A1 + 0A2 = −90, −10x1 − 15x2 + 0s1 − s2 + 0A1 + A2 = −90, and x1,x2,s1,s2,A1,A2 ≥ 0.
As earlier, we can write this problem in matrix form as

Minimize C = cTx, subject to Ex = d and x ≥ 0 (5.3.18)

where cT = [
c1 c2 c3 c4 c5 c6

] = [
9 12 0 0 M M

]
, xT = [

x1 x2 s1 s2 R1 R2
]
,

E =
[

15 10 −1 0 1 0
10 15 0 −1 0 1

]
, d =

[
90
90

]
, and 0 =

[
0
0

]
, e1 =

[
15
10

]
, e2 =

[
10
15

]
,

e3 =
[−1

0

]
, e4 =

[
0

−1

]
, e5 =

[
1
0

]
, and e6 =

[
0
1

]
.

Iteration 1

We begin the initial iteration (iteration 1) treating the choice variables (x1 and x2) and
the surplus variables (s1 and s2) as NBVs and artificial variables (A1 and A2) as BVs.

Therefore, we have xB,1 =
[

A1

A2

]
, B1 =

[
1 0
0 1

]
, B1

−1 =
[

1 0
0 1

]
, and cB,1

T = [
M M

]
,

where the numerical subscript denotes the number of the iteration. These imply that

xB,1 = B1
−1d =

[
1 0
0 1

][
90
90

]
=
[

90
90

]
=
[

A1

A2

]
, and C1 = cB,1

TxB,1 = [
M M

][90
90

]
=

90M + 90M = 180M .
Therefore, iteration 1 gives the solution, as expected, x1 = 0, x2 = 0, s1 = 0, s2 = 0, A1 = 90,

A2 = 90, and C = 180M . Since C1 = 180M is a huge number, this solution to the minimization
problem is unacceptable. We may now check whether we can reduce the value of C through
further iterations. For this, let us now carry out the optimality and feasibility tests to determine
the variables that enter and leave the basis. Optimality test: cB,1− Cj,1 = cj− cB,1

TB1
−1ej .
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Since the existing NBVs are x1, x2, s1 and s2, we have e1 =
[

15
10

]
, e2 =

[
10
15

]
, e3 =

[−1
0

]
, and

e4 =
[

0
−1

]
. Therefore cB,1

T − C1,1 = c1− cB,1
T B1

−1e1 = 9 −[
M M

][1 0
0 1

][
15
10

]
=

9 − 25M ; cB,2
T − C2,1 = c2− cB,2

TB1
−1e2 = 12 −[

M M
][1 0

0 1

][
10
15

]
= 12 − 25M ;

cB,s1
T− Cs1,1 = cs1− cB,s1

TB1
−1e3 = 0− [

M M
][1 0

0 1

][−1
0

]
= M ; and cB,s2

T −Cs2,1

= cs2− cB,s2
TB1

−1e4 = 0− [
M M

][1 0
0 1

][
0

−1

]
= M . Since cB,1 − C1,1 = 9− 25M is

the most negative of all the above four equations, x1 is the entering variable. Feasibility test:

We know that B1
−1e1 =

[
1 0
0 1

][
15
10

]
=
[

15
10

]
and xB,1 = B−1

1 d =
[

90
90

]
. Therefore, xj =

min{(xB,1 = B1
−1d)/(B1

−1e1)} = min{90/15, 90/10} = min{6, 9}, which implies that the
current BV R1 must leave the basis (and, thus, become a NBV).

Iteration 2

The current BVs are x1 and A2 and x2, s1, s2, and A1 are NBVs. Therefore, we have xB,2 =[
x1

A2

]
, B2 =

[
15 0
10 1

]
, B1

−1 =
[

1/15 0
−2/3 1

]
, and πT

B,1 = [
9 M

]
. These quantities yield xB,2

= B−1
2 d =

[
1/15 0
−2/3 1

][
90
90

]
=
[

6
30

]
=
[

x1

A2

]
, and C2 = cB,2

TxB,2 = [
9 M

][ 6
30

]
=

54 + 30M , which shows that the value of the objective function decreased when x1 entered
the basis and A1 left the basis. We can now carry out, as above, the optimality and feasibility
tests. Optimality test: cB,2

TCj,2 = cj − cB,2
TB2

−1ej . Since the existing NBVs are x2, s1, s2,

and A1, we obtain cB,2
T − C2,2 = c2− cB,2

TB2
−1e2 = 12− [

9 M
][ 1/15 0

−2/3 1

][
10
15

]
=

−42−15M ; cB,s1
T− Cs1,2 = cs1− cBs1

TB2
−1e3 = 12− [

9 M
][ 1/15 0

−2/3 1

][−1
0

]
= 17.4;

cB,s2
T − Cs2,2 = cs2− cB,s2

TB2
−1e4 = 0− [

9 M
][ 1/15 0

−2/3 1

][
0

−1

]
= M ; and cB,A1

T −

CA1,2 = cA1 − cB,A1
TB2

−1e5 = M − [
9 M

][ 1/15 0
−2/3 1

][
1
0

]
= M− 5.4. Since cB,2

T−
C2,2 = −42 − 15M is the most negative of all the above four values, x2 is the entering

variable. Feasibility test: We know that B−1
2 e2 =

[
1/15 0
−2/3 1

][
10
15

]
=
[

2/3
25/3

]
and xB,2 =

B−1
2 d =

[
6
30

]
. Therefore, xj = min{(xB,2 = B2

−1d)/(B2
−1e1)} = min{6/(2/3), 30/(25/3)}

= min{9, 3.6}, which implies that the current BVA2 must leave the basis (and, thus, become
a NBV).

Iteration 3

We now have x1 and x2 as the basic variables and, therefore, we obtain xB,3 =
[

x1

x2

]
,

B3 =
[

15 10
10 15

]
, B3

−1 =
[

3/25 −2/25
−2/25 3/25

]
and cB,3

T = [
9 12

]
, which yield
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xB,3 = B3
−1d =

[
3/25 −2/25

−2/25 3/25

][
90
90

]
=
[

3.6
3.6

]
=
[

x1

x2

]
, and C3 = cB,3

TXB,3 =
[
9 12

][3.6
3.6

]
= 75.6.

Notice that two of the current NBVs (A1 and A2) were the BVs when we started with
iteration 1. This implies that the entry of any of these NBVs into the basis will increase
the value of the objective function. Since the surplus variables do not contribute to the
objective function, entry of these into the basis will leave the value of the objective
function unchanged. Moreover, we know that cj − Cj < 0 for all NBVs (because cj − Cj =
0 − 75.6 = −75.6 < 0). Therefore, the current iteration (iteration 3) yields the optimum
solution: x∗

1 = 3.6, x∗
2 = 3.6, and C∗ = 75.6. Notice also that these are exactly the same

solutions as those we obtained in Sections 5.2.5 (through the graphical method) and 5.3.5
(through the tabular approach (the big-M and the two-phase methods) of the simplex method).

5.3.7 Application examples

Example 1. Suppose that a small pharmaceutical firm produces three types of drugs, x1,
x2, and x3, using three types of chemicals, A, B, and C, the maximum available quantities
of which are 45, 40, and 25 units, respectively. The firm needs to use 1, 0, and 2 units,
respectively, of A, B, and C to produce one unit of x1; 0, 2, and 1 units of A, B, and C,
respectively, to produce one unit of x2; and 3, 2, and 0 units of A, B, and C, respectively, to
produce one unit of x3. The revenue that the firm obtains from one unit of x1, x2, and x3 is
$6, $5, and $3, respectively. Find the quantities of the drugs that the firm must produce to
maximize its revenue.

Solution. Let us first set up a table that summarizes the above information, as presented in
Table 5.3.23. On the basis of the information presented in Table 5.3.23, we can set up the
LP problem as

Maximize 	= 6x1 + 5x2 + 3x3, subject to x1 + 0x2 + 3x3 ≤ 45,x1 + 2x2 + 2x3 ≤ 40,

2x1 + x2 + 0x3 ≤ 25, and x1,x2,x3 ≥ 0 (5.3.19)

Let us first convert, by including slack variables, the above problem to

Maximize 	= 6x1 + 5x2 + 3x3 + 0s1 + 0s2 + 0s3,

subject to x1 + 0x2 + 3x3 + s1 + 0s2 + 0s3 = 45,

Table 5.3.23

Output x1 Output x2 Output x3 Input
requirement requirement requirement availability

Input A 1 0 3 45
Input B 1 2 2 40
Input C 2 1 0 25

Profit per unit of x1 Profit per unit of x2 Profit per unit of x3

$6 $5 $3
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Table 5.3.24

BVs x1 x2 x3 s1 s2 s3 RHS

s1 1 0 3 1 0 0 45
s2 1 2 2 0 1 0 40
s3 2 1 0 0 0 1 25

	 −6 −5 −3 0 0 0 0

︸ ︷︷ ︸
Indicators

Table 5.3.25

BVs x1 x2 x3 s1 s2 s3 RHS

x3 0 1 0 −4/11 6/11 −5/11 35/11
x2 0 0 1 3/11 1/11 1/11 125/11
x1 1 0 0 2/11 −3/11 8/11 120/11

	 0 0 0 1/11 15/11 15/11 1270/11

︸ ︷︷ ︸
Indicators

x1 + 2x2 + 2x3 + 0s1 + s2 + 0s3 = 40,

2x1 + x2 + 3x3 + 0s2 + s3 = 25, and x1,x2,x3,s1,s2,s3 ≥ 0 (5.3.20)

which is represented in the initial simplex tableau in Table 5.3.24.
Let us now carry out the operations exactly as we did earlier. Then, after three iterations,

the final tableau will be as in Table 5.3.25. Notice that in Table 5.3.25, all the values in the
last row are nonnegative (the condition for optimum in the case of maximization). Therefore,
we attained optimum. The optimum solutions are x∗

1 = 120/11, x∗
2 = 35/11, x∗

3 = 125/11,
s∗
1 = 0, s∗

1 = 0, s∗
1 = 0, and 	∗ = $1270/11.

Example 2. Assume that a company employs three salespeople, A, B, and C, temporarily
to sell its three products, x1, x2, and x3. It was directed that 1, 0, and 2 hours of A, B, and C
to be spent for the sale of 1 unit of x1; 0, 2, and 1 hours of A, B, and C to be spent for the sale
of 1 unit of x2; and 4, 2, and 0 hours of A, B, and C to be spent for the sale of 1 unit of x3.
The minimum number of hours to be spent by A, B, and C must be 40, 45, and 30 hours,
respectively. The cost of sale of one unit of x1, x2, and x3 is $4, $3, and $2, respectively.
How many units of the three goods should be sold so that the company’s total cost will be
minimum?

Solution. Let us first summarize the above information, as presented in Table 5.3.26. On
the basis of this information, we can set up the LP problem as

Minimize C = 4x1 + 3x2 + 2x3, subject to x1 + 0x2 + 4x3 ≥ 40,0x1 + 2x2 + 2x3 ≥ 45,

2x1 + x2 + 0x3 ≥ 30, and x1,x2,x3 ≥ 0 (5.3.21)
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Table 5.3.26

Salesperson One unit of x1 One unit of x2 One unit of x3 Minimum
requires requires requires hours

A 1 0 4 40
B 0 2 2 45
C 2 1 0 30

Cost per unit of x1 Cost per unit of x2 Cost per unit of x3

$4 $3 $2

which we write, using surplus and artificial variables, as

Minimize C = 4x1 + 3x2 + 2x3 + 0s1 + 0s2 + 0s3 + MA1 + MA2 + MA3,

subject to x1 + 0x2 + 4x3 − s1 − 0s2 − 0s3 + A1 + 0A2 + 0A3 = 40,

0x1 + 2x2 + 2x3 − 0s1 − s2 − 0s3 + 0A1 + A2 + 0A3 = 45,

2x1 + x2 + 0x3 − 0s1 − 0s2 − s3 + 0A1 + 0A2 + A3 = 30,

and x1,x2,x3,s1,s2,s3,A1,A2,A3 ≥ 0 (5.3.22)

We can use either the big-M method or the two-phase method to solve this problem. Since
the latter is computationally more efficient, we use that method. As required in the two-
phase method, let us write the problem by including only slack and artificial variables in the
objective function as

Minimize C = 0s1 + 0s2 + 0s3 + MA1 + MA2 + MA3,

subject to x1 + 0x2 + 4x3 − s1 − 0s2 − 0s3 + A1 + 0A2 + 0A3 = 40,

0x1 + 2x2 + 2x3 − 0s1 − s2 − 0s3 + 0A1 + A2 + 0A3 = 45,

2x1 + x2 + 0x3 − 0s1 − 0s2 − s3 + 0A1 + 0A2 + A3 = 30,

and x1,x2,x3,s1,s2,s3,A1,A2,A3 ≥ 0 (5.3.23)

On the basis of equation (5.3.23), let us construct the initial simplex tableau as in
Table 5.3.27. Now following exactly as we did in the application of the two-phase method we
can obtain, after three iterations, the final tableau of the first phase as presented in Table 5.3.28.
With this table, we have eliminated the artificial variables from the basis. Therefore, we
have completed the first phase. Let us now begin the second phase. In the second phase we
introduce the original objective function. With the original objective function (after removing
the artificial variables), Table 5.3.28 can be reformulated to obtain Table 5.3.29. Let us now
carry out elementary row operations (R4 → R4 +4R3, R4 → R4 +3R2, and R4 → R4 +2R1)
to obtain the final tableau as presented in Table 5.3.30.

Notice that, in Table 5.3.30, all the values in the last row (except those in the column
RHS) are nonpositive, the condition for optimum in the case of minimization. Therefore,
we stop the iteration with the last tableau and the optimum solution constitutes x∗

1 = 70/9,
x∗

2 = 520/36, x∗
3 = 260/36, s∗

1 = 0, s∗
2 = 0, s∗

3 = 0, and C∗ = $815/9.
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Table 5.3.27

BVs x1 x2 x3 s1 s2 s3 A1 A2 A3 RHS

A1 1 0 4 −1 0 0 1 0 0 40
A2 0 2 2 0 −1 0 0 1 0 45
A3 2 1 0 0 0 −1 0 0 1 30

C 0 0 0 0 0 0 −1 −1 −1 0

︸ ︷︷ ︸
Indicators

Table 5.3.28

BVs x1 x2 x3 s1 s2 s3 A1 A2 A3 RHS

x3 0 0 1 −8/36 −2/36 1/9 8/36 2/36 −1/9 260/36
x2 0 1 0 8/36 −16/36 −1/9 −8/36 16/36 1/9 520/36
x1 1 0 0 −1/9 2/9 −4/9 1/9 −2/9 4/9 70/9

C 0 0 0 0 0 0 −1 −1 −1 0

︸ ︷︷ ︸
Indicators

Table 5.3.29

BVs x1 x2 x3 s1 s2 s3 RHS

x3 0 0 1 −8/36 −2/36 1/9 260/36
x2 0 1 0 8/36 −16/36 −1/9 520/36
x1 1 0 0 −1/9 2/9 −4/9 70/9

C −4 −3 −2 0 0 0 0

︸ ︷︷ ︸
Indicators

Table 5.3.30

BVs x1 x2 x3 s1 s2 s3 RHS

x3 0 0 1 −8/36 −2/36 1/9 260/36
x2 0 1 0 8/36 −16/36 −1/9 520/36
x1 1 0 0 −1/9 2/9 −4/9 70/9

C 0 0 0 −16/36 −20/36 −17/9 815/9

︸ ︷︷ ︸
Indicators

5.3.8 Exercises

1. Solve the following LP problems using the tabular approach of the simplex method:
(i) maximize 	 = 30x1 + 25x2, subject to 25x1 + 20x2 ≤ 80, 20x1 + 25x2 ≤ 90, and
x1,x2 ≥ 0; (ii) maximize	= 10x1 +5x2, subject to 5x +2x2 ≤ 34, 4x1 +4x2 ≤ 40, and
x1,x2 ≥ 0; (iii) maximize	= 30x1 +25x2 +20x3, subject to 25x1 +10x2 +15x3 ≤ 80,
20x1 +25x2 +10x3 ≤ 90, and x1,x2,x3 ≥ 0; (iv) maximize	= 3x1 +2x2 +x3, subject to
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2x1 +x2 +0x3 ≤ 60, 0x1 +2x2 +x3 ≤ 80, 10x1 +15x2 +20x3 ≤ 100, x1 +x2 +2x3 ≤ 90,
and x1,x2,x3 ≥ 0.

2. Solve the LP problems in exercise 1 above using the revised simplex method.
3. Solve the following LP problems using the tabular approaches (the big-M method and

the two-phase methods) of the simplex method:
(i) minimize C = 8x1 + 10x2, subject to x1 + 3x2 ≥ 30, 4x1 + x2 ≥ 20, and x1,x2 ≥ 0;
(ii) minimize C = 5x1 + 3x2, subject to 6x + 3x2 ≥ 30, x1 + 4x2 ≥ 20, and x1,x2 ≥ 0;
(iii) minimize C = 4x1 + 3x2 + 2x3, subject to x1 + 4x2 + x3 ≥ 40, 5x1 + 4x2 + x3 ≥ 50,
2x1 + x2 + x3 ≥ 60, and x1,x2,x3 ≥ 0; (iv) minimize C = 8x1 + 5x2 + 3x3, subject to
0x1 + 4x2 + x3 ≥ 20, 5x1 + 0x2 + 4x3 ≥ 40, 4x1 + 4x2 + 0x3 ≥ 40, and x1,x2,x3 ≥ 0.

4. Solve the LP problems in exercise 3 using the revised simplex method.
5. Solve the following LP problems using the revised simplex method:

(i) maximize 	 = 3x1 + 2x2 + x3, subject to x1 + x25x3 ≥ 10, 5x1 + 2x2 + 3x3 ≤ 15,
x1 + 2x2 + x3 = 10, and x1,x2,x3 ≥ 0; (ii) minimize C = x1 + 2x2 + 3x3, subject to
x1 + x25x3 ≥ 10, 5x1 + 2x2 + 3x3 ≤ 15, x1 + 2x2 + x3 = 10, and x1,x2,x3 ≥ 0.

6. Application exercise. Suppose that a firm produces three goods (x1, x2, and x3) using
three factors (capital, labor, and land). In order to produce 1 unit of x1, the firm has to
use 2, 1, and 1 units of capital, labor, and land, respectively. Similarly, to produce 1
unit of x2, the firm has to use 1, 2, and 1 units of capital, labor, and land, respectively.
To produce 1 unit of x3, the firm has to use 1, 1, and 2 units of capital, labor, and land,
respectively. The maximum quantities of capital, labor, and land available for use are
100, 120, and 80, respectively. The unit profits that the firm obtains from x1, x2, and x3

are $20, $18, and $16, respectively. Find the quantities of the three goods that the firm
must produce to maximize its total profits using both the tabular approach of the simplex
method and the revised simplex method.

7. Application exercise. Assume that a catering firm received an order for supplying three
dishes (x1, x2, and x3) from a hostel. The dishes must contain three nutrients, A, B, and C.
Each unit of dish x1 must contain 4, 1, and 1 units of nutrients A, B, and C, respectively.
Similarly, each unit of dish x2 must contain 1, 4, and 1 units of nutrients A, B, and C,
respectively. Each unit of dish x3 must contain 1, 1, and 4 units of nutrients A, B, and C,
respectively. The minimum quantities of these nutrients in all dishes must be 60, 30, and
60 units, respectively. The cost of one unit of x1, x2, and x3 is $3, $2, and $1, respectively.
Find the quantities of the three dishes that the firm must supply to minimize its total cost
using both the tabular approach of the simplex method and the revised simplex method.

Web supplement: S5.3.9 Mathematica applications

5.4 LP: duality and sensitivity

5.4.1 Introduction

So far in this chapter, we have attempted to solve LP maximization and minimization
problems independently of one another. One might wonder if there exists any relationship
between these problems. Yes, there exists; because every LP problem is related to another LP
problem. An example can make clear this relationship between two LP problems. Assume
that a producer wants to maximize the total profits obtained from the goods produced. We can
approach the producer’s optimization problem in two ways. One approach is to maximize the
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total output produced, given the contributions of these outputs to total profit and the resource
constraints. The second approach is to minimize the total opportunity cost of producing these
goods, given the contributions to this cost of these goods and the profit constraints. The former
(called the primal) gives the maximum profit that can be achieved, and the latter (called the
dual) gives the minimum opportunity cost needed to obtain a certain level of profit. What all
this implies is that if the primal is a maximization problem, then the dual is a minimization
problem, andvice versa. However, itmust benoted that both approaches give identical optimal
values of the choice variables. We will consider duality in the context of LP problems from
Section 5.4.2 onwards. The study of the relationship between the primal and dual problems
will take us, as we will see shortly, to important theorems and interesting results. We will
also consider what is popularly called the sensitivity analysis or postoptimality analysis in
Section 5.4.9.

5.4.2 The duals of LP problems

Assume that our primal problem is to maximize the objective function in equation (5.2.29)
subject to constraints (5.2.30), the matrix representations of which were given in equation
(5.2.31) and inequalities (5.2.32), respectively. The dual of this maximization problem is a
minimization problem and can be written as

Minimize 	d = b1y1 + b2y2 +·· ·+ biyi +·· ·+ bmym (5.4.1)

Subject to a11y1 + a21y2 +·· ·+ ai1yi +·· ·+ am1ym ≥ π1,

a12y1 + a22y2 +·· ·+ ai2yi +·· ·+ am2ym ≥ π2, . . .,

a1jy1 + a2jx2 +·· ·+ aijyi +·· ·+ amjym ≥ πj, . . .,

a1ny1 + a2ny2 +·· ·+ ainyi +·· ·+ amnym ≥ πn,

and yi ≥ 0, i = 1,2,3, . . . ,m, j = 1,2, . . . ,n (5.4.2)

which can be written in matrix notations as

Minimize 	d = bTy (5.4.3)

Subject to ATy ≥ π , and y ≥ 0 (5.4.4)

where bT = [
b1 b2 .. bi .. bm

]
,

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

..

yi

..

ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a21 .. ai1 .. am1

a12 a22 .. ai2 .. am2

.. .. .. .. .. ..

a1j a2j .. aij .. amj

.. .. .. .. .. ..

a1n a2n .. ain .. amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

π1

π2

..

πj

..

πn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Assume now that our primal problem is to minimize the objective function in equa-
tion (5.2.35) subject to constraints (5.2.36), the matrix forms of which were given in
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equation (5.2.37) and inequalities (5.2.38), respectively. The dual of this minimization
problem is a maximization problem and can be written as

Maximize Cd = d1y1 + d2y2 +·· ·+ diyi +·· ·+ dmym (5.4.5)

Subject to e11y1 + e21y2 +·· ·+ ei1yi +·· ·+ em1ym ≤ c1,

e12y1 + e22y2 +·· ·+ ei2yi +·· ·+ em2ym ≤ c2, . . .,

e1jy1 + e2jx2 +·· ·+ eijyi +·· ·+ emjym ≤ cj, . . .,

e1ny1 + e2ny2 +·· ·+ einyi +·· ·+ emnym ≤ cn,

and yi ≥ 0, i = 1,2,3, . . . ,m, j = 1,2, . . . ,n (5.4.6)

which can be written in matrix notations as

Maximize Cd = dTy (5.4.7)

Subject to ETy ≤ c, and y ≥ 0 (5.4.8)

where dT = [
d1 d2 .. di .. dm

]
,

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

..

yi

..

ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,ET =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e11 e21 .. ei1 .. em1

e12 e22 .. ei2 .. em2

.. .. .. .. .. ..

e1j e2j .. eij .. emj

.. .. .. .. .. ..

e1n e2n .. ein .. emn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, and c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

..

cj

..

cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

As an example of the dual of a maximization LP problem, consider the maximization
problem (5.2.5), which we reproduce below with x1 = x and x2 = y:

Maximize 	= 2x1 + 2x2, subject to 2x1 + 3x2 ≤ 90,3x1 + 2x2 ≤ 120, and x1,x2 ≥ 0
(5.4.9)

The dual of the maximization problem (5.4.9) can be written as

Minimize 	d = 90y1 + 120y2, subject to 2y1 + 3y2 ≥ 2,3y1 + 2y2 ≥ 2, and y1,y2 ≥ 0
(5.4.10)

Similarly, as an example of a minimization LP problem, consider the minimization
problem (5.2.11), which we reproduce below with x1 = x and x2 = y:

Minimize C = 9x1 + 12x2, subject to 15x1 + 10x2 ≥ 90,

10x1 + 15x2 ≥ 90, and x1,x2 ≥ 0 (5.4.11)

The dual of the minimization problem (5.4.11) can be written as

Maximize Cd = 90y1 + 90y2, subject to 15y1 + 10y2 ≤ 9,

10y1 + 15y2 ≤ 12, and y1,y2 ≥ 0 (5.4.12)
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As another example of the dual of a minimization problem, consider the problem

Minimize C = 25x1 + 20x2 + 15x3, subject to 9x1 + 6x2 + 3x3 ≥ 30,

2x1 + 4x2 + 8x3 ≥ 20, and x1,x2,x3 ≥ 0 (5.4.13)

The dual of the minimization problem (5.4.13) can be written as

Maximize Cd = 30y1 + 20y2, subject to 9y1 + 2y2 ≤ 25,6y1 + 4y2 ≤ 20,

3y1 + 8y2 ≤ 15, and y1,y2 ≥ 0 (5.4.14)

We will solve the dual problems in (5.4.10), (5.4.12), and (5.4.14) in Section 5.4.5. We
will explore there the relationships between the solutions to the dual problems in (5.4.10)
and (5.4.12) and the solutions to their respective primal problems (5.4.9) and (5.4.11).

5.4.3 Relationships between primal and dual LP problems

Let us list below some of the important relationships that exist between the primal LP
problem and its dual.

1. If the primal LP problem is a maximization (minimization) problem, then its dual is a
minimization (maximization) problem. This means that we have to change the ≤ (≥)
sign to ≥ (≤) in the constraints when we set up the dual of a primal maximization
(minimization) problem.

2. The matrix of the coefficients of the constraints of the dual problem is the transpose of
the matrix of the coefficients of the constraints of the primal problem. Therefore, when
we set up the dual of a LP problem we need to transpose the matrix of the coefficients
of the constraints.

3. The column vector of the constants (the RHS) in the dual problem is the transpose of
the row vector of the coefficients of the objective function in the primal problem. This
implies that when we set up the dual of a LP problem we need to transpose the coefficients
of the objective function in the primal problem to form the column vector of the constants
in the dual problem.

4. The row vector of the coefficients of the objective function in the dual problem is the
transpose of the column vector of constants (the RHS) in the primal problem. Therefore,
when we set up the dual of a LP problem we need to transpose the column vector of
constants in the primal problem to obtain the row vector of the coefficients of the objective
function in the dual problem.

5. The dual of a dual LP problem is the primal LP problem.
6. The variables in both the primal problem and the dual problem are nonnegative.
7. If a LP problem involving three choice variables and two constraints (such as problem

(5.4.13)) is difficult to solve by the graphical method; its dual with two choice variables
and three constraints (given in problem (5.4.14)) can be solved by the graphical method.

5.4.4 Duality: two important theorems

We found above the important relationships that exist between the primal and the dual LP
problems. We now turn our attention to two important theorems, called duality theorems,
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which are highly useful, as we will see shortly, in deriving inferences about the solution to
the primal problem from the dual problem. These theorems are as follows.

Theorem 1. If an optimal feasible solution exists, the optimal values of the primal problem
and the optimal values of the dual problem are identical. This means that, as
per our previous notations,	∗ =	∗

d and C∗ = C∗
d .

Theorem 2. Suppose that the slack or surplus variable (also called dummy variable) in
the ith constraint of the primal problem is denoted by si and the jth dummy
variable in the dual problem is denoted by tj . If, in the optimum, x∗

j > 0, then
t∗j = 0; if y∗

i > 0, then s∗
i = 0. This means that if a choice variable in the

primal problem is nonzero in the optimum, its corresponding dummy variable
in the dual problem must be zero in the optimum; and if a choice variable in the
dual problem is nonzero in the optimum, its corresponding dummy variable
in the primal problem must be zero in the optimum. This theorem is called
complementary slackness property or complementary slackness condition or
complementary slackness principle.

5.4.5 Solution of dual problems

We attempt in this section to solve the dual problems presented in Section 5.4.2. Let us first
consider the problem in (5.4.10), which is a minimization problem. Using the two-phase
method discussed in Section 5.3.5, we can obtain the final tableau that presents the optimum
solution to this minimization problem as in Table 5.4.1.

Table 5.4.1 shows that y∗
1 = 2/5, y∗

2 = 2/5, t∗1 = 0, t∗2 = 0, and C∗
d = 84. Notice the few

remarkable outcomes we obtain when we solve a dual problem using the tabular approach of
the simplex method. The first is that the table gives the optimal solution, as just stated, to the
dual problem. The second outcome is the sufficient information it gives about the solution
to the primal problem even without directly solving it. This outcome comprises three parts.
Firstly, the optimal value of the dual objective function (C∗

d = 84) is the same as the optimal
value of the primal objective function we obtained when we solved the same primal problem
in Section 5.3.4. This is exactly what duality theorem 1 states. Secondly, the absolute values
among the indicators (36 and 6) under the columns of the dummy variables (t1 and t2 in
the present example) are the same as the optimal values of the choice variables we obtained
when we solved the primal problem in Sections 5.2.4 and 5.3.4. This can be taken as a general
rule. Since x∗

1 = 36> 0 and x∗
2 = 6> 0 in the primal solution, t∗1 = 0 and t∗2 = 0 in the dual

solution. This result is in accordance with duality theorem 2. Thirdly, the values (zeros in
the present example) among the indicators under the columns of the choice variables (y1 and
y2in the present example) are the same as the optimal values of the dummy variables (s∗

1 = 0

Table 5.4.1

BVs y1 y2 t1 t2 RHS

y1 0 1 −3/5 2/5 2/5
y2 1 0 2/5 −3/5 2/5

Cd 0 0 −36 −6 84

︸ ︷︷ ︸
Indicators
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Table 5.4.2

BVs y1 y2 t1 t2 RHS

y1 1 0 3/25 −2/25 3/25
y2 0 1 −2/25 3/25 18/25

Cd 0 0 3.6 3.6 75.6

︸ ︷︷ ︸
Indicators

and s∗
2 = 0) we obtained in the primal solution in Section 5.3.4. This can also be taken as a

general rule. Since t∗1 = 0 and t∗2 = 0, x∗
1 = 36> 0 and x∗

2 = 6> 0; and since y∗
1 = 2/5> 0,

y∗
2 = 2/5> 0, s∗

1 = 0, and s∗
2 = 0. This result is also in accordance with duality theorem 2.

Let us now consider the problem in (5.4.12), which is a maximization problem (the primal
of which we solved in Sections 5.2.5 and 5.3.5). Following the tabular approach of the simplex
method discussed in Section 5.3.4, we can obtain the final tableau that presents the solution
to this maximization problem as presented in Table 5.4.2. Table 5.4.2 shows that the optimal
solution comprises y∗

1 = 3/25, y∗
2 = 18/25, t∗1 = 0, t∗2 = 0, and C∗

d = 75.6. We can read, as
stated above, the solution to the primal problem from the table as x∗

1 = 3.6, x∗
2 = 3.6, s∗

1 = 0,
s∗
2 = 0, and C∗ = 75.6. Notice that C∗

d = 75.6 = C∗, as stated by duality theorem 1. Since
x∗

1 = 3.6> 0 and x∗
2 = 3.6> 0, t∗1 = 0 and t∗2 = 0; and since s∗

1 = 0 and s∗
2 = 0, y∗

1 = 3/25> 0
and y∗

2 = 18/25> 0, as stated by duality theorem 2.
Lastly, we shall consider the solution of the minimization problem in (5.4.13). We know

that we have to use artificial variables to solve this problem and that the use of these variables
is more cumbersome than to solve maximization problems. Another issue with problem
(5.4.13) is that it involves three choice variables and, therefore, we cannot use the graphical
method. However, finding the solution to this minimization problem is a simple matter if
we solve its dual because the solution to this dual, as stated above, will yield the solution to
its primal. Therefore, we attempt to solve the maximization problem (5.4.14), which is the
dual of the minimization problem (5.4.13). Following the tabular approach of the simplex
method discussed in Section 5.3.4, we can obtain the final tableau that presents the solution
to this maximization problem as in Table 5.4.3. Table 5.4.3 shows that the optimal solution
comprises y∗

1 = 255/99, y∗
2 = 10/11, t∗1 = 0, t∗2 = 10/11, t∗3 = 0, and C∗

d = 95.4. We can read
from Table 5.4.3, as in the previous examples, the solution to the primal problem: x∗

1 = 2.73,
x∗

2 = 0, x∗
3 = 1.81, s∗

1 = 0, s∗
2 = 0, s∗

2 = 0, and C∗ = 95.4. This example illustrates how
we can find comparatively easily the solution to a complicated primal problem using the
solution to its dual.

Table 5.4.3

BVs y1 y2 t1 t2 t3 RHS

y1 1 0 12/99 0 −1/33 255/99
t2 0 0 −6/11 1 −24/66 10/11
y2 0 1 −1/22 0 9/66 10/11

Cd 0 0 2.73 0 1.81 95.4

︸ ︷︷ ︸
Indicators
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5.4.6 Duality: economic interpretations

We saw above that the solution to the dual of a primal LP problem could be used to read
the solution to the primal too. However, the dual problems also possess some economic
meanings. We now attempt to see these economic meanings, popularly called economic
interpretations, of dual LP problems.

Let us begin with the general maximization problem in matrix forms in (5.2.31) and
(5.2.32). For convenience we reproduce the problem here: Maximize 	 = πTx subject to
Ax ≤ b and x ≥ 0, where πT is the row vector of the coefficients of the objective function,
x is the column vector of the choice variables, A is the matrix of the coefficients of the LHS
of the constraints, and b is the column vector of the RHS of the constraints. The dual of this
maximization problem is a minimization problem and is given in (5.4.3) and (5.4.4) in matrix
forms. We reproduce it also here minimize 	d = bTy subject to ATy ≥ π and y ≥ 0. The
only new factor in this dual is the column vector y.

As we saw, every LP problem has three elements: the objective function, the technical
constraints, and the nonnegativity constraints. In all the maximization problems our objective
was to maximize total profit, 	, which was expressed in monetary units (dollars). For 	
to be a monetary unit, the contribution of the jth good (xj) must be in monetary units;
that is, πj must be in monetary unit. Therefore, we considered πj in terms of dollars. This
meant that our aim was to maximize the dollar value of the objective function. However, the
elements of the matrix A are the technical coefficients and the elements of b are the maxi-
mum availabilities of the resources to be used in the production of the goods given by the
elements of x, which is a sensible restriction. This means that the total quantities of the
resources used up in the production process must be less than or equal to the total availabi-
lities of the resources, which is a meaningful restriction. The nonnegativity condition means
that the quantities of the goods (choice variables) produced must be nonnegative, which,
again, is a meaningful restriction.

We can now consider the dual of the primal maximization problem. The dual is a
minimization problem. In the dual objective function, 	d = bTy, bT is the transpose of
the column vector of resources. We know that 	∗

d =	∗ in optimum. This implies that 	d

must also be in monetary or dollar terms. For	d to be in dollar terms, y must be expressed in
dollar terms. In fact, the vector y is the vector of imputed values, also called accounting price,
or shadow price, or opportunity cost, of the resources (in the vector bT) used in the production
process. Therefore, in the dual problem our objective is to minimize the total opportunity cost
because 	d represents the total opportunity cost. Now consider the constraints in the dual
problem. A particular element, say aji, of AT of a particular constraint shows the quantity of
the ith resource used in the production of different goods. If we multiply this element by yi

we obtain the opportunity cost of producing one unit of good xj . Therefore, the LHS of the ith
constraint gives the total opportunity cost of using one unit of a particular resource. The RHS
of the corresponding constraint shows the profit from one unit of xj . What this means is that
the total opportunity cost of producing one unit of a good must be equal to (or greater than, if
the good is not produced in the optimum) the profit from that unit. As before, this is a sensible
restriction, for otherwise profit can be increased through a reallocation of the resources and
the current position would not be optimum. Lastly, the nonnegativity condition states that
the opportunity costs of each resource must be nonnegative, which, again, is sensible.

Let us now give an economic interpretation to the dual of the primal minimization
problem given in (5.2.37) and (5.2.38), which we reproduce here for convenience: minimize
C = cTx subject to Ex ≥ d, and x ≥ 0, where cT is the row vector of the coefficients of
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the objective function, x is the column vector of the choice variables, E is the matrix of the
coefficients of the LHS of the constraints, and d is the column vector of the RHS of the
constraints. The dual of this minimization problem is a maximization problem and is given
in (5.4.7) and (5.4.8) in matrix forms. We reproduce it here: maximize Cd = dTy, subject to
ETy ≤ c, and y ≥ 0. The only new notation in this dual, as before, is the column vector y.

As in the case of a primal maximization problem, cT is expressed in dollar terms (i.e. the
imputed value per unit of the nutrient). This implies that C also is expressed in terms of
dollars. Since C∗ = C∗

d at the optimum, C∗
d must also be in dollars. For C∗

d to be in dollars,
y, as before, must be in dollars because dT is in physical units. This means that, as in the
dual of a maximization problem, y represents the imputed values of the nutrients in the dual
of a minimization problem. Therefore, the constraint ETy ≤ c implies that the total imputed
value of a particular nutrient in one unit of the corresponding food item must be equal to (or
less than, when the corresponding food item is not produced at the optimum) the cost per
unit of the food item. It is needless to state that y ≥ 0, as imputed values cannot be negative.

5.4.7 Revised simplex method for dual problems

In Section 5.3.6 we presented the revised simplex method. In the revised simplex
method we employed two criteria: the optimality criterion and the feasibility criterion. In
Section 5.4.5, we solved dual LP problems using the tabular approach of the simplex method.
As we have seen that the revised simplex method is computationally more efficient than the
tabular approach, we explore here the closely related revised simplex method for solving
dual problems, which is more efficient as it is useful in sensitivity analysis, a topic to be
dealt with in Section 5.4.9. This method also involves the application of two criteria with
the same names as those referred to above. Since we have already learned how to solve dual
LP problems using the tabular approach of the simplex method, our aim here is not to apply
this new method but to use it later in sensitivity analysis. Therefore, we will not present the
applications of the revised simplex method for dual problems here.

Assume that our primal problem is to maximize 	= πTx, subject to Ax ≤ b and x ≥ 0.
The dual of this maximization problem is to minimize 	d = bTy, subject to ATy ≥ π and
y ≥ 0. Notice that π , πT, b, bT, x, y, A, and AT are all defined the same as before. Before
we proceed further, we need to augment AT by the coefficients of the surplus and artificial
variables and define aT

1 , aT
2 , . . ., aT

m so that they will respectively be

ATaugI =

⎡
⎢⎢⎢⎣

a11 a21 .. am1 1 0 .. 0 −1 0 .. 0

a12 a22 .. am2 0 1 .. 0 0 −1 .. 0

.. .. .. .. .. .. .. .. .. .. .. ..

a1n a2n .. amn 0 0 .. 1 0 0 .. −1

⎤
⎥⎥⎥⎦ ,

and a1
T =

⎡
⎢⎢⎢⎣

a11

a12

..

a1n

⎤
⎥⎥⎥⎦ ,a2

T =

⎡
⎢⎢⎢⎣

a21

a22

..

a2n

⎤
⎥⎥⎥⎦ , . . .,am

T =

⎡
⎢⎢⎣

0
0
..

−1

⎤
⎥⎥⎦

Now suppose that F is a feasible basis of the above dual. Also suppose that yF constitutes,
corresponding to F, the set of BVs and that bF

T is the vector of the corresponding coefficients
in the dual objective function. Now eliminating n variables by treating them as zeros gives
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m equations in m unknown BVs. This system of equations can be written as

FyF = π (5.4.15)

which can be pre-multiplied on both sides by the inverse of F, F−1, to obtain

yF = F−1π (5.4.16)

Notice that we introduced the inverse of the feasible basis F in equation (5.4.16). Since
the simplex method introduces only the BVs, F is always nonsingular and, therefore, F−1

will always exist. We know that the objective function is given by 	d = bTy and that the
current set of BVs is given by yF. Therefore, the value of the objective function in the current
BFS can be written as 	d = bF

TyF, which, using equation (5.4.16), can be written as

	d = bF
TF−1π (5.4.17)

Equation (5.4.16) gives the first BFS and equation (5.4.17) gives the value of the objective
function corresponding to the first BFS. We can now introduce a NBV, yi, into the basis to
see if it decreases the value of the objective function. Then the following equation will hold:

FyF + ai
Tyi = π (5.4.18)

where ai
T represents the ith (i = 1,2, . . . ,m) column of ATaugI. We can now pre-multiply

equation (5.4.18) by F−1 and rearrange it to obtain

yF = F−1π − F−1ai
Tyi (5.4.19)

Equation (5.4.17) gives the old value of the objective function (that is, the value of the
objective function in the last BFS). Its new value (in the new BFS) is given by

	d,new = bT
FF−1π − (bT

FF−1aT
i − bi)yi (5.4.20)

Notice that the first part on the RHS of equation (5.4.20) is	d in equation (5.4.17). Therefore,
using equation (5.4.17) and denoting	d,i = bT

FF−1aT
i , we can rewrite equation (5.4.20) as

	d,new =	d − (	d,j − bi)yi (5.4.21)

Equation (5.4.21) implies that the objective function of the dual minimization problem
will decrease only if	d, i −bi is positive. Therefore, the NBV is to be introduced and a new
iteration is to be carried out in a dual minimization problem only if 	d, i − bi is positive.
This condition is to be checked for every NBV. If 	d, i − bi is nonpositive for all yi in the
case of a dual minimization problem, then the current solution is optimal, which is called
the optimality criterion in the case of the revised simplex method for dual minimization
problems.

Equation (5.4.21) also implies that the objective function of the dual maximization
problem will increase only if 	d, i − bi is negative. Therefore, the NBV is to be introduced
and a new iteration is to be carried out in a dual maximization problem only if 	d, i − bi is
negative. As in the case of a dual minimization problem, this condition is to be checked for
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every NBV. If	d, i −bi is nonnegative for all yi in the case of a dual maximization problem,
then the current solution, as before, is optimal.

So far, we were checking for optimality in successive iterations and determining the
variable that enters basis. Let us now consider the feasibility criterion in the case of the
revised simplex method for dual minimization problems. This is, as in the case of the revised
simplex method, determined by the DRs. The leaving variable is the one with the smallest
DR. This condition is valid for both dual minimization and dual maximization cases.

5.4.8 Dual simplex method

In Section 5.4.5 we applied the tabular approach of the simplex method along with artificial
variables to solve dual LP problems. There is a closely related method, called the dual
simplex method, which can be used to solve dual minimization LP problems without the
use of artificial variables. We demonstrate this method here.

Recall that in the normal simplex method, also called the primal simplex method, we
continued iterations, holding feasibility, until we reached the optimum solution. That is, in
the primal simplex method we were searching for optimality holding feasibility in successive
iterations. In the dual simplex method we do the opposite; that is, we search for feasibility
holding optimality. What this means is that while in the primal simplex method we start with
a basic and feasible solution and continue iterations until the optimum solution is reached, in
the dual simplex method we start with a basic optimum but infeasible solution and continue
iterations until feasibility is attained. As in the case of the primal simplex method, we have
two criteria in the dual simplex method also. They are the dual feasibility criterion and the
dual optimality criterion.

The dual feasibility criterion determines the variable that leaves the current basis.
Therefore, the dual feasibility criterion states that the variable with the most negative value
(ties are broken arbitrarily) leaves the current basis. The row of this variable is named as the
pivot row. Notice that the iteration is terminated if all the variables in the current basis are
nonnegative.

The dual optimality criterion is used to determine the current NBV that enters the basis.
This criterion states that the NBV with the lowest absolute ratio, obtained by dividing the
coefficients of the objective function in each iteration by the corresponding elements in the
pivot row (except those under the RHS column), which must necessarily be negative, enters
the basis. The column of this variable is named as the pivot column. The element at the
intersection of the pivot row and pivot column is the pivot element.

As an application of the dual simplex method, consider the minimization problem (5.4.10),
which is the dual of the maximization problem (5.4.9). Let us first multiply both sides of the
constraints of this dual problem by −1 to convert ≥ inequalities into ≤ inequalities, and then
use the slack dummy variables t1 and t2 to convert the ≤ inequalities into equalities (=).
After doing this the problem becomes

Minimize 	d = 90y1 + 120y2 + 0t1 + 0t2, subject to − 2y1 − 3y2 + t1 + 0t2 = −2,

− 3y1 − 2y2 + 0t1 + t2 = −2, and y1,y2, t1, t2 ≥ 0 (5.4.22)

On the basis of problem (5.4.22), we can set up the initial dual simplex tableau as given
in Table 5.4.4. Notice that no indicator in Table 5.4.4 has a negative value indicating that
the current basic solution is optimal. Since the current dummy variables take negative values
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Table 5.4.4

BVs y1 y2 t1 t2 RHS

t1 −2 −3 1 0 −2
t2 −3 −2 0 1 −2

	d 90 120 0 0 0

︸ ︷︷ ︸
Indicators

Table 5.4.5

BVs y1 y2 t1 t2 RHS

y2 2/3 1 −1/3 0 2/3
t2 −5/3 0 −2/3 1 −2/3

	d 10 0 40 0 −80

︸ ︷︷ ︸
Indicators

(t1 = −2 and t2 = −2), the current basic solution is not feasible. Therefore, we continue to
search for optimal but feasible solution.

Iteration 1

Let us first invoke the two criteria of the dual simplex method to determine the leaving and
entering variables. Feasibility criterion: Since both current BVs (t1 and t2) have the same
negative values, we choose t1 as the leaving variable and therefore the row of t1 is the pivot
row. Optimality criterion: We divide each element of the last row (except under the RHS
column) of Table 5.4.4 by the corresponding elements of the pivot row to obtain the lowest
absolute ratio 40 (discarding 0 and infinite values). Therefore, y2 is the current NBV that enters
the basis, and the column of y2 is the pivot column. This implies that −3 is the pivot element.
We can now carry out the elementary row operations (R1 → (−1/3)R1, R2 → R2 +2R1, and
R3 → R3 −120R1) to obtain Table 5.4.5. Notice that, as before, no indicator in Table 5.4.5 has
negative value indicating that the current basic solution is optimal. Since the current dummy
variable t2 takes a negative value (t2 = −2/3), the current basic solution is not feasible.
Therefore, we continue to search for optimal but feasible solution.

Iteration 2

Let us again invoke the two criteria of the dual simplex method to determine the leaving
and entering variables. Feasibility criterion: Since t2 is the only current basic variable with
a negative value, t2 is the leaving variable and therefore the row of t2 is the pivot row.
Optimality criterion: Since y1 has the least absolute ratio (6), y1 is the current NBV that
enters the basis. This implies that −5/3 is the pivot element. We can now carry out the
elementary row operations (R2 → (−3/5)R1, R1 → R1 − (2/3)R2, and R3 → R3 − 10R2) to
obtain Table 5.4.6.

Notice that no indicator in Table 5.4.6 has a negative value indicating that the current
basic solution is optimal. Moreover, no variable in the current basis has a negative value
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Table 5.4.6

BVs y1 y2 t1 t2 RHS

y2 0 1 −3/5 2/5 2/5
y1 1 0 2/5 −3/5 2/5

	d 0 0 36 6 −84

︸ ︷︷ ︸
Indicators

indicating that the current basis is feasible. Since we have achieved optimality and feasibility
simultaneously, the last dual simplex tableau gives the solution to the dual minimization
problem and it is y∗

1 = 2/5, y∗
2 = 2/5, and 	∗

d = 84. This is exactly the same solution as
that we obtained for problem (5.4.10) in Section 5.4.5. Table 5.4.6 also gives us the solution
to the primal problem in (5.4.9), x∗

1 = 36, x∗
2 = 6, and 	∗ = 84, again as in the solution to

problem (5.4.10) in Section 5.4.5. The reader will have noticed the advantage of the dual
simplex method over the primal simplex method in solving dual LP problems: the former
does not require the use of the artificial variables.

Let us now outline the steps involved in the application of the dual simplex method in
solving dual minimization LP problems. These steps are the following.

Step 1. Transform those constraints in the problem with ≥ sign to ≤ sign by multiplying
by −1.

Step 2. After step 1, introduce dummy variables.
Step 3. Set up the initial dual simplex tableau. Notice that if the optimality condition is

satisfied and if at least one of the current BVs has a negative value, the dual simplex
method must be applied.

Step 4. If the dual simplex method is applicable, carry out the feasibility criterion test.
The current BV with the most negative value will leave the basis. The row of this
variable is the pivot row.

Step 5. Carry out the optimality criterion test. The current NBV with the least absolute value
(obtained by dividing the coefficients of the objective function by the corresponding
elements of the pivot row, barring the element under the RHS column, and
discarding zero and infinite values) enters the basis. The column of the entering
variable is the pivot column. The element at the intersection of the pivot row and
pivot column is the pivot element.

Step 6. Carry out elementary row operations to convert the pivot element to 1 and all other
elements in the pivot column to 0.

Step 7. Repeat steps 4 to 6 above until all basic variables have nonnegative values.

5.4.9 Sensitivity analysis

We live in a dynamic world and, therefore, most economic activities change over time. Since
LP is an approach to solving some of the problems related to economic activities, one may
visualize corresponding changes in the structure of a LP problem. It is possible to cite many
forms of changes in the structure of a LP problem. Since a meaningful analysis of all these
changes is beyond the scope of this book, we confine our analysis to the effects of only the
following three changes:
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1. Changes in the coefficients of the objective function; that is, changes in the vector π (in
the maximization problem).

2. Changes in the vector aj of a NBV xj in the maximization problem, or changes in the
vector ai of a NBV yi in the dual minimization problem.

3. Changes in the constants of the constraints or changes in the RHS of constraints; that is,
changes in the vector b.

These changes in a particular LP problem may produce corresponding changes in the
optimal solution as well as its feasibility. Sensitivity analysis is defined as the analysis or
study of how sensitive the optimal solution and its feasibility are to the above listed changes
in a LP problem. This analysis is also called post-optimality analysis because it is carried out
after the optimum solution is achieved.

Sensitivity analysis can be carried out using the matrix approach (presented in the revised
primal simplex method and revised dual simple method presented in Sections 5.3.6 and
5.4.7, respectively) or the tabular approach of the simplex method with specific, numerical
examples. Since the former is more general than the latter, we employ the matrix approach
to carry out the sensitivity analyses of the above mentioned changes.

Our main aim here is to see how the above listed three changes affect the optimal solution,
the optimality criterion, and the feasibility criterion (presented in Sections 5.3.6 and 5.4.7)
of both the primal and the dual. In the case of the primal problem, the optimal solution
(equation (5.3.10)), the optimality criterion (which can be derived from equation (5.3.14)),
and the feasibility criterion (equation (5.3.13)), respectively, are

xB = B−1b (5.4.23)

πB
TB−1aj −πj ≥ 0 (5.4.24)

and

xB = B−1b − B−1aj xj (5.4.25)

Similarly, in the case of the dual problem, the optimal solution (equation (5.4.16)),
the optimality criterion (which can be derived from equation (5.4.20)), and the feasibility
criterion (equation (5.4.19)), respectively, are

yF = F−1π (5.4.26)

bF
TF−1ai

T − bi ≤ 0 (5.4.27)

and

yF = F−1π − F−1ai
Tyi (5.4.28)

Let us first consider the effects of changes in the vector π on the optimal solutions, and the
optimality and feasibility criteria, of both primal and dual problems. The vector π does not
appear in equations (5.4.23) and (5.4.25) and inequality (5.4.27). Therefore, changes in the
vector π have no effect on the optimal solution to the primal problem, its feasibility criterion,
and the optimality criterion of the dual problem. But the changes in the vector π do affect the
optimality criterion of the primal problem, the optimal solution to the dual problem, and the
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feasibility criterion of the dual problem because π appears in equations (5.4.24) and (5.4.26)
and in inequality (5.4.28), respectively.

We now consider the effect of a change in the vector aj (ai) of a NBV xj (yi) in a
maximization (dual minimization) problem. Notice that this change may affect equations
(5.4.23)–(5.4.28). Therefore, a change in the vector aj (ai) may affect the optimal solution,
the optimality criterion, and feasibility criterion of both the primal and the dual problems.

Let us now consider the third case: the effect of changes in the vector b. The vector b
appears in equations (5.4.23), (5.4.25), and (5.4.27). Therefore, changes in the vector b have
effects on the optimal solution to the primal problem and its feasibility criterion, and on
the optimality criterion of the dual problem. These changes do not create impacts on the
optimality criterion of the primal problem, and on the optimal solution to the dual problem
and on its feasibility criterion.

The sensitivity analyses we have carried out so far in this section are based on the
assumption that the changes mentioned in π , ai (or aj), and b are discrete. But, we are
aware that this assumption is restrictive because these changes could be continuous. An
analysis of the impacts of continuous changes in π , ai (or aj), and b is called parametric
programming. Since this topic is beyond the scope of this book, we do not attempt to present
it here.

5.4.10 Application examples

Example 1. Solve the dual of problem (5.3.19) in example 1 in Section 5.3.7 and interpret
the solution to the dual.

Solution. The primal problem in (5.3.19) is a maximization problem with solution x∗
1 =

120/11, x∗
2 = 35/11, x∗

3 = 125/11, s∗
1 = 0, s∗

2 = 0, s∗
3 = 0, and 	∗ = 1270/11. The dual of

this problem can be set up as

Minimize 	d = 45y1 + 40y2 + 25y3, subject to y1 + y2 + 2y3 ≥ 6,0y1 + 2y2 + y3 ≥ 5,

3y1 + 2y2 + 0y3 ≥ 3, and y1,y2,y3 ≥ 0 (5.4.29)

Using the two-phase method discussed in Section 5.3.5, we can obtain the final tableau that
presents the solution to this minimization problem as presented in Table 5.4.7. This shows
that the optimal solution comprises y∗

1 = 1/11, y∗
2 = 15/11, and y∗

3 = 25/11; t∗1 = 0, t∗2 = 0,
and t∗3 = 0; and 	∗

d = 1270/11. We can read from the last row of the table, as we obtained
and presented above, the solution to the primal problem: x∗

1 = 120/11, x∗
2 = 35/11, and

x∗
3 = 125/11; s∗

1 = 0, s∗
2 = 0, and s∗

3 = 0; and	∗ = 1270/11. Notice that	∗
d = 1270/11 =	∗,

as stated by duality theorem 1. Since x∗
1 = 120/11> 0,x∗

2 = 35/11> 0, and x∗
3 = 125/11> 0,

t∗1 = 0, t∗2 = 0, and t∗3 = 0; and since s∗
1 = 0, s∗

2 = 0, and s∗
3 = 0, y∗

1 = 1/11> 0, y∗
2 = 15/11> 0,

and y∗
3 = 25/11> 0, as stated by duality theorem 2.

The economic interpretation of the solution to the dual problem presented above is as
follows. Since the optimal value of the primal objective function is equal to the optimal value
of the dual objective function, the total profit to the firm is equal to the total opportunity
cost of using the resources. If the optimal values of the choice variables in the dual problem
are substituted into its constraints, we will find that the LHSs of the constraints equal their
RHSs. This means that the total opportunity cost of producing one unit of each good is equal
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Table 5.4.7

BVs y1 y2 y3 t1 t2 t3 RHS

y1 1 0 0 −2/11 4/11 −3/11 1/11
y3 0 0 1 −6/11 1/11 2/11 25/11
y2 0 1 0 3/11 −6/11 −1/11 15/11

	d 0 0 0 −120/11 −35/11 −125/11 1270/11

︸ ︷︷ ︸
Indicators

Table 5.4.8

BVs y1 y2 y3 t1 t2 t3 RHS

y1 1 0 0 1/9 −2/9 2/9 2/9
y3 0 0 1 4/9 1/9 −1/9 17/9
y2 0 1 0 −2/9 4/9 1/18 5/9

Cd 0 0 0 70/9 520/36 260/36 815/9

︸ ︷︷ ︸
Indicators

to the profit per unit from that good. Since the optimal values of the dual choice variables
are positive (that is, y∗

i > 0), the nonnegativity condition is also satisfied.

Example 2. Solve the dual of problem (5.3.21) in example 2 in Section 5.3.7 and interpret
the solution to dual.

Solution. The primal problem in (5.3.21) is a minimization problem with solution x∗
1 =

70/9, x∗
2 = 520/36, x∗

3 = 260/36, s∗
1 = 0,s∗

2 = 0,s∗
3 = 0, and C∗ = 815/9. The dual of this

problem can be set up as

Maximize Cd =40y1 + 45y2 + 30y3, subject to y1 + 0y2 + 2y3 ≤ 4,

0y1 + 2y2 + y3 ≤ 3,4y1 + 2y2 + 0y3 ≤ 2, and y1,y2,y3 ≥ 0 (5.4.30)

Following the tabular approach of the simplex method discussed in Section 5.3.4, we
can obtain the final tableau that presents the solution to this maximization problem as
in Table 5.4.8. This shows that the optimal solution comprises y∗

1 = 2/9, y∗
2 = 5/9, and

y∗
3 = 17/9; t∗1 = 0, t∗2 = 0, t∗3 = 0; and C∗

d = 815/9. We can read from the table, as
before, the solution to the primal problem: x∗

1 = 70/9, x∗
2 = 520/36, and x∗

3 = 260/36;
s∗
1 = 0,s∗

2 = 0,s∗
3 = 0; and C∗ = 815/9. Notice that C∗

d = 815/9 = C∗, as stated by duality
theorem 1. Since x∗

1 = 70/9> 0, x∗
2 = 520/36> 0, and x∗

3 = 260/36> 0t∗1 = 0, t∗2 = 0, and
t∗3 = 0; and since s∗

1 = 0,s∗
2 = 0, and s∗

3 = 0, y∗
1 = 2/9> 0, y∗

2 = 5/9> 0, and y∗
3 = 17/9> 0,

as stated by duality theorem 2.
The economic interpretation of the solution to the dual problem presented above is as

follows. Since the optimal value of the primal objective function is equal to the optimal value
of the dual objective function, the total cost to the firm is equal to the total imputed value.
If the optimal values, in the dual problem, of the choice variables are substituted into its
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constraints, we will find that the LHSs of the constraints equal their RHSs. This means that
the total imputed value of producing one unit of each food item is equal to the price per
unit of that item. Since the optimal values of the dual choice variables are positive (that is,
y∗

i > 0), the nonnegativity condition is also satisfied.

5.4.11 Exercises

1. Solve the duals of the LP problems in exercise 1 of Section 5.3.8 using both the tabular
approach of the simplex method and the dual simplex method.

2. Solve the duals of the LP problems in exercise 3 of Section 5.3.8 using both the tabular
approach of the simplex method and the dual simplex method.

3. Solve the duals of the LP problems in exercise 5 of Section 5.3.8 using both the tabular
approach of the simplex method and the dual simplex method.

4. Application exercise. Solve the dual of the LP problem in exercise 6 of Section 5.3.8
using both the tabular approach of the simplex method and the dual simplex method.

5. Application exercise. Solve the dual of the LP problem in exercise 7 of Section 5.3.8
using both the tabular approach of the simplex method and the dual simplex method.

5.5 Transportation and assignment problems

5.5.1 Introduction

So far in this chapter we have been concerned with primal and dual LP problems, their
solutions, and the related topics. In this section we shall present and solve a particular type
of LP problem called the transportation problem. We shall also present and solve a problem,
which is closely related to transportation problem, called the assignment problem.

Let us first consider the transportation problem. The assignment problem will be dealt
with in Section 5.5.6. We bring home the meaning of the transportation problem with a
simple example. Suppose that a company has two production plants, one each in Mumbai
and New Delhi in India, which produce an identical good. This company also has two
distribution centers for the good, one each in Kolkata and Chennai, also in India. The places
where the plants are situated are called the sources (m) and the places where the distribution
centers are situated are called the warehouses, or the shops, or the destinations (n). Therefore,
we have m = 2 and n = 2 in our present example. The company transports all the good it
produces at the sources (Mumbai and New Delhi) to the destinations (Kolkata and Chennai).
The total amount of the good available at the ith source and the total quantity of the good
transported to the jth destination (where i = 1,2 and j = 1,2 in the present example) are
called the supply and the demand for the good, from the ith source and at the jth destination,
respectively. For convenience, we represent Mumbai and New Delhi by source 1 or supply
1 (denoted by s1) and source 2 or supply 2 (denoted by s2), respectively; and Kolkata and
Chennai by destination 1 or demand 1 (denoted by d1) and destination 2 or demand 2 (denoted
by d2), respectively.

To transport the good from a particular source to a particular destination, there is a
particular cost per unit of the good. Thus, the total transportation cost of the company is
the total cost of transporting goods from m sources to n destinations. Therefore, the objective
of the company is to devise a transportation plan that minimizes its total transportation cost.
This is the essence of the transportation problem.
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5.5.2 Structure of the transportation problem

Like a LP problem, a transportation problem also has three elements: the objective function,
the constraints, and the nonnegativity condition. We assume that the cost of transporting one
unit of the good from the ith source to the jth destination is constant, and we denote it by cij .
We denote the quantity of the good transported from the ith source to the jth destination by
xij . This means that the total cost of transporting xij units of the good from the ith source to
the jth destination is given by cijxij . Therefore, the total transportation cost to the company in
our present two-source–two-destination example is C = c11x11 + c12x12 + c21x21 + c22x22.
This means that the company’s objective is to minimize this total cost. Notice that, as in the
LP problems, the objective function in the transportation problem also is linear.

Another important ingredient of the transportation problem is the set of constraints. For
the time being, we assume that the total quantity of the good supplied from m sources is
equal to the total quantity of the good demanded at n destinations. This type of transportation
problem where the total supply is equal to the total demand is called a balanced transportation
problem. We will consider unbalanced transportation problems in examples 2 and 3 in
Section 5.5.5. Thus the constraints of the problem, in the case of our present example, can be
written as x11 + x12 = s1, x21 + x22 = s2, x11 + x21 = d1, x12 + x22 = d2. The last important
element of the transportation problem is the nonnegativity constraint, xij > 0. This implies
that the quantity of the good transported from the ith source to the jth destination must be
nonnegative.

Therefore, the transportation problem with our present example can be written as

Minimize C = c11x11 + c12x12 + c21x21 + c22x22,

subject to x11 + x12 + 0x21 + 0x22 = s1,0x11 + 0x12 + x21 + x22 = s2,

x11 + 0x12 + x21 + 0x22 = d1,0x11 + x12 + 0x21 + x22 = d2,

and xij ≥ 0, i = 1,2, j = 1,2 (5.5.1)

The problem in (5.5.1) can be written using sigma notations as

Minimize
m=2∑
i=1

n=2∑
j=1

cijxij, subject to
n=2∑
j=1

xij = si,

m=2∑
i=1

xij = dj, and xij ≥ 0 (5.5.2)

or using matrices as

Minimize C = cTx, subject to Ax = s and x ≥ 0 (5.5.3)

where cT = [
c11 c12 c21 c22

]
, xT = [x11 x12 x21 x22 ], A =

⎡
⎢⎢⎣

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦,

and sT = [
s1 s2 d1 d2

]
.

5.5.3 General transportation problem

Instead of two sources and two destinations as in the example considered in the last section,
assume now that the company has i sources and j destinations, where i = 1,2, . . . ,m and
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j = 1,2, . . . ,n. Then the company’s problem is to

Minimize C =
m∑

i=1

n∑
j=1

cijxij, subject to
n∑

j=1

xij = si

and
m∑

i=1

xij = dj, i = 1,2, . . . ,m, j = 1,2, . . . ,n, and xij ≥ 0 (5.5.4)

or in matrix notation as

Minimize C = cTx, subject to Ax = s and x ≥ 0 (5.5.5)

where cT = [
c11 c12 .. c1n c21 c22 .. c2n .. cm1 cm2 .. cmn

]
,

xT = [
x11 x12 .. x1n x21 x22 .. x2n .. xm1 xm2 .. xmn

]
,

sT = [ s1 s2 .. sm d1 d2 .. dn ], and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 .. 1 0 0 .. 0 .. 0 0 .. 0

0 0 0 0 1 1 .. 1 .. 0 0 0 0

.. .. .. .. .. .. .. .. .. .. .. .. ..

0 0 0 0 0 0 0 0 0 1 1 .. 1

.. .. .. .. .. .. .. .. .. .. .. .. ..

1 0 0 0 1 0 0 0 .. 1 0 0 0

0 1 0 0 0 1 0 0 .. 0 1 0 0

0 0 1 0 0 0 1 0 .. 0 0 1 0

0 0 0 1 0 0 0 1 .. 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The problem in (5.5.4) or (5.5.5) is the general transportation problem.

5.5.4 General transportation algorithm: methods of finding the initial BFS and
the optimality test

Methods of finding the initial BFS

Before we begin the general transportation algorithm, we need to be clear about the nature
of the solution to a transportation problem. Consider our m-source–n-destination transpor-
tation problem presented in problem (5.5.4). Notice that there are m + n constraints in the
problem. But there are only m+n−1 independent constraints because any BFS that satisfies
the m + n − 1 constraints of the problem will satisfy the last constraint and, therefore, the
last constraint is redundant. This means that only m + n − 1 routes will be used in the
cost-minimizing transportation plan. However, the total number of available routes is equal
to m × n.

Let us now state the general transportation algorithm. It involves four steps: (1) find an
initial BFS; (2) test for optimality; (3) improve the BFS if it is not optimal; and (4) repeat
the last two steps until optimal solution is achieved. Let us first consider the case of the
initial BFS. In the case of a standard LP problem, we begin iterations with an initial BFS,
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Table 5.5.1

Destinations

1 2 3 … n Supply wi

1
c11 c12 c13 … c1n s1 w1x11 x12 x13 … x1n

2
c21 c22 c23 … c2n s2 w2x21 x22 x23 … x2n

S
ou

rc
es 3

c31 c32 c33 … c3n s3 w3x31 x32 x33 … x3n

…
… … … … …

… …
… … … … …

m
cm1 cm2 cm3 … cmn sm wmxm1 xm2 xm3 … xmn

Demand d1 d2 d3 … dn

vj v1 v2 v3 … vn

and then move to BFSs through successive iterations. Exactly like this, we need to find an
initial BFS to move forward in the transportation problem also. The question now is how
we can find an initial BFS in the transportation problem. There are several methods in the
literature for this. We demonstrate three of the most frequently used methods: the north-west
corner method, the least-cost method, and Vogel’s approximation method. But, before we
explore these methods, we shall construct Table 5.5.1, corresponding to problem (5.5.4),
which can be used in the demonstrations of all three methods mentioned above. Notice that
all the elements in this table are familiar to us except those in the row vj and in the column
wi, which will be explained shortly.

(1) The north-west corner method. In this method we begin with cell (1, 1), the north-
west corner cell. Hence the name the north-west corner method. Allocate the maximum
possible amount to this cell (that is, to x11) such that the constraints are not violated (that is,
the minimum of s1 and d1). After this and if supply still remains, we move one cell to the
right. Notice that at each step we allocate the maximum possible amount to the cell under
consideration without violating the constraints. In any allocation, the sum of a particular
row should not exceed the supply indicated in that row and the sum of a particular column
should not exceed the demand indicated in that column. Moreover, any allocation should be
nonnegative.

(2) The least-cost method. This method uses the cheapest destination first; that is, we
allocate the maximum possible quantity to the cell which has the lowest per unit cost (break
ties arbitrarily). Then, allocate the maximum possible quantity to the cell which has the
second lowest per unit cost; and continue like this until we achieve a feasible plan. It must
be emphasized that the constraints must be satisfied in these processes.

(3) Vogel’s approximation method. This method is an improvement over the least-
cost method. It takes into account both the row and column cost differences (i.e. the
difference in costs in supplying from a particular source to different destinations and the
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difference in costs in meeting the demand of a particular destination from different sources,
respectively). In this method, for each row (or column) we calculate the difference between
the second smallest and the smallest unit costs of the unassigned cells (variables). Find
the row (column) with the largest above difference, and allocate the maximum possible
quantity of the good to the cell with the smallest unit cost (break ties arbitrarily) in that
row (column). We have to recalculate the differences and repeat the last procedure until all
demands are met.

Notice that in all the above three methods of finding the initial BFS, the variables (cells)
that are assigned values are called BVs and the variables that are not assigned values (or are
assigned zero) are called NBVs in the initial BFS. In our examples that follow, we denote
the values that are assigned to BVs in boldfaces.

Optimality test

Now consider the column wi and the row vj . Choose any one wi or vj and assign it zero
value, and find the remaining wi and vj such that, for each basic variable, the condition
wi + vj = cij is satisfied. After this, find the value cij − wi − vj for each NBV. If the value
cij −wi −vj is nonnegative for each NBV, then the solution is optimal. Otherwise, the current
solution is not optimal. This method of testing optimality using the multipliers wi and vj (with
the condition wi + vj = cij) is called the method of multipliers.

Improving the initial BFS

If the optimality test gives us a solution that is not optimal, how do we improve the initial BFS?
The procedure is as follows. The cell (variable) with the most negative value in cij −wi − vj

(in the optimality test above) is the entering variable. Now establish a loop that connects the
entering variable with the current nonbasic cells, and allocate the maximum possible quantity
(without violating the constraints) to this entering variable.

5.5.5 Application examples of solutions to transportation problems

Example 1. Consider our example presented in problem (5.5.1). Assume that the supply
from the first source, Mumbai, is 100 units (s1 = 100) and the supply from the second source,
New Delhi, is 50 units (s2 = 50); and that the demand at the first destination, Kolkata, is
80 units (d1 = 80) and the demand at the second destination, Chennai, is 70 units (d2 =
70). Also assume that the unit transportation costs (in dollars) between the sources and the
destinations are as given in Table 5.5.2. Find the transportation plan that minimizes the
company’s total transportation cost.

Table 5.5.2

Destinations

d1 d2

Sources
s1 5 2
s2 3 4
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Table 5.5.3

Destinations

1 2 Supply wi

S
ou

rc
es 1

5 2
100 w1x11 x12

2
3 4

50 w2x21 x22

Demand 80 70

vj v1 v2

Table 5.5.4

Destinations

1 2 Supply wi

S
ou

rc
es 1

5 2
100 w1x11 80 � x12 20

�

2
3 4

50 w2x21 x22 50

Demand 80 70

vj v1 v2

Solution. Notice that the total supply (s1 + s2 = 100 + 50 = 150) is equal to the total
demand (d1 +d2 = 80+70 = 150). Therefore, this is an example of a balanced transportation
problem. Let us first set up Table 5.5.3, which can be used to find the initial BFS. Although
we can use any of the three methods presented in the previous section to find an initial
BFS, the easiest one is the north-west corner method and we will use only that method in
this book. Following this method, we can allocate the maximum possible quantity of the
good from source 1 to destination 1. This quantity is 80 and it is shown by bold type in
cell (1, 1) in Table 5.5.4. Since the demand at destination 1 is met by this allocation, we
move to cell (1, 2) and allocate to it the remaining quantity (20) in the supply from source 1.
These two allocations exhaust s1 and, therefore, we move down to cell (2, 2). Since we have
already allocated 20 units to destination 2, we need only allocate the remaining requirement
at destination 2, which is 50 units. These 50 units can be allocated from s2 which exhausts
the supply at s2. These allocations give us the initial BFS without violating the constraints
(that is, the total quantity supplied is equal to the total quantity demanded and there is no
negative allocation). These allocations are shown in Table 5.5.4.

It can be seen from Table 5.5.4 that we have, in the initial BFS, x11 = 80, x12 = 20, and
x22 = 50. Therefore, the total transportation cost in the initial BFS is C = c11x11 + c12x12 +
c21x21 + c22x22 = 5 × 80 + 2 × 20 + 3 × 0 + 4 × 50 = $640. Let us now determine whether
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Table 5.5.5

Destinations

1 2 Supply wi

S
ou

rc
es 1

5 2
100 w1x11 30 x12 70

2
3 4

50 w2x21 50 x22

Demand 80 70

vj v1 v2

the initial BFS found above is optimal or not. For this we use the optimality test described in
the last section. But, to carry out the optimality test, we need to find wi and vj with respect
to the BVs (those variables that are assigned values in the initial BFS). Since the first row
contains more BVs, we choose w1 = 0. We know from the last section that wi + vj = cij .
Therefore, we have the following result:

Cell (1, 1) ⇒ w1 + v1 = c11 ⇒ 0 + v1 = 5 ⇒ v1 = 5

Cell (1, 2) ⇒ w1 + v2 = c12 ⇒ 0 + v2 = 2 ⇒ v2 = 2

Cell (2, 2) ⇒ w2 + v2 = c22 ⇒ w2 + 2 = 4 ⇒ w2 = 2

The next step in this method is to find the value cij −wi −vj in the case of each NBV (cell).
There is only one NBV in the last tableau and its cell is cell (2, 1). Therefore, c21 −w2 −v1 =
3−2−5 =−4. Since this value is negative, the current (or the initial) BFS is not optimal. This
implies that we have to carry out the above procedure again. Notice that the above optimality
test showed that cell (2, 1) has the most negative (the only negative) value and, therefore, we
have to allocate the maximum possible quantity to that cell without violating the constraints.
This gives us Table 5.5.5. It can be seen from Table 5.5.5 that we have, in the current BFS,
x11 = 30, x12 = 70, and x21 = 50. Therefore, the total transportation cost in the current BFS
is C = c11x11 + c12x12 + c21x21 + c22x22 = 5×30+2×70+3×50+4×0 = $440. Notice
that the total transportation cost (C) in the current BFS is smaller ($440) than that ($640) in
the initial BFS.

Let us now determine, as before, whether the current BFS found above is optimal or not.
For this we use the optimality test with w1 = 0. We know that wi + vj = cij. Therefore,
we have the following result:

Cell (1, 1) ⇒ w1 + v1 = c11 ⇒ 0 + v1 = 5 ⇒ v1 = 5

Cell (1, 2) ⇒ w1 + v2 = c12 ⇒ 0 + v2 = 2 ⇒ v2 = 2

Cell (2, 1) ⇒ w2 + v1 = c21 ⇒ w2 + 5 = 3 ⇒ w2 = −2

The next step is to find the value cij − wi − vj in the case of each NBV (cell). There is
only one NBV in the last tableau and its cell is cell (2, 2), which gives us c22 − w2 − v2 =
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Table 5.5.6

Destinations

d1 d2 d3

Sources
s1 5 2 2
s2 3 6 4
s3 (dummy) 0 0 0

4− (−2)−2 = 4. Since this value is nonnegative, the current BFS is optimal. Therefore, the
optimum solution is x∗

11 = 30,x∗
12 = 70,x∗

21 = 50,x∗
22 = 0, and C∗ = $440. This means

that the company must ship 30 units from Mumbai to Kolkata, 70 units from Mumbai
to Chennai, 50 units from New Delhi to Kolkata, and zero units from New Delhi to
Chennai to minimize its total transportation cost. The minimum total transportation cost
will be $440.

Example 2. We continue with example 1 above. Assume now that the company has
a third destination in the city of Kochi (denoted by d3) in India to which (along with
transportation to Kolkata and Chennai) it has to transport the good. The total quantity of
the good supplied is 350 units (200 units from the plant in Mumbai and 150 from the plant in
New Delhi) and the total quantity demanded is 375 units (150, 75, and 150 units demanded
at Kolkata, Chennai, and Kochi, respectively). The unit costs of transportation to these three
destinations are given in Table 5.5.6. Find the quantities of the good that the company has
to transport from the sources to the destinations so that the total cost of transportation is
a minimum.

Solution. Notice that the total quantity demanded (375 units) is larger than the total quantity
supplied (350 units). Therefore, this is a case of an unbalanced transportation problem. To
make the problem balanced, we add a dummy source (denoted by s3) which accounts for
the difference in the demand and supply (25 units = 375 units − 350 units). Since the
dummy source never supplies any quantity, its coefficients in the objective function are
zero (as can be seen in Table 5.5.6). Therefore, we can construct Table 5.5.7, which gives
the complete information on the problem. We can solve this problem following the same
procedures as those we applied in the solution to the problem in example 1 above. Rather
than repeating this, we present the optimum solution in Table 5.5.8. This table shows that the
optimal solution to the problem in the present example isx∗

11 = 0,x∗
12 = 50,x∗

13 = 150,x∗
21 =

150,x∗
22 = 0,x∗

23 = 0,x∗
31 = 0,x∗

32 = 25,x∗
33 = 0, and C∗ = $850. Notice that in the optimum

allocation, destination 2 obtains 25 units fewer than its demand.

Example 3. We continue with example 1 above. Assume now that the company has a
third source in the city of Kochi (denoted by s3) in India from which (along with sources in
Mumbai and New Delhi) it has to transport the good. The total quantity of the good supplied
now is 400 units (200, 150, and 50 units from the plants in Mumbai, New Delhi, and Kochi,
respectively) and the total quantity demanded is 350 units (175 units each at Kolkata and
Chennai). The unit costs of transportation to these three destinations are given in Table 5.5.9.
Find the quantities of the good that the company has to transport from the sources to the
destinations so that the total cost of transportation is minimum.



[12:21 3/11/2011 5640-Ummer-Ch05.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 309 244–315

Linear programming 309

Table 5.5.7

Destinations

1 2 3 Supply wi

S
ou

rc
es

1
5 2 2

200 w1x11 x12 x13

2
3 6 4

150 w2x21 x22 x23

3
(dummy)

0 0 0
25 w3x31 x32 x33

Demand 150 75 150

vj v1 v2 v3

Table 5.5.8

Destinations

1 2 3 Supply

S
ou

rc
es

1
5 2 2

200
x11 x12 50 x13 150

2
3 6 4

150
x21 150 x22 x23

3
(dummy)

0 0 0
25

x31 x32 25 x33

Demand 150 75 150

Table 5.5.9

Destinations

d1 d2 d3

Sources s1 5 2 0
s2 3 6 0
s3 4 2 0

Solution. Notice that the total quantity supplied (400 units) is larger than the total quantity
demanded (350 units). This is another case of an unbalanced transportation problem. To
make the problem balanced, we add a dummy destination (denoted by d3) which accounts
for the difference in the supplied and demanded (50 units = 400 units − 350 units)
quantities. Since the dummy destination never accepts any quantity, its coefficients in the
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Table 5.5.10

Destinations

1 2 3 Supply wi
(dummy)

S
ou

rc
es 1

5 2 0
200 w1x11 x12 x13

2
3 6 0

150 w2x21 x22 x23

3
4 2 0

50 w3x31 x32 x33

Demand 175 175 50

vj v1 v2 v3

Table 5.5.11

Destinations

1 2 3 Supply
(dummy)

S
ou

rc
es 1

5 2 0
200

x11 x12 150 x13 50

2
3 6 0

150
x21 150 x22 x23

3 4 2 0 50
x31 25 x32 25 x33

Demand 175 175 50

objective function are zero (as can be seen in Table 5.5.9). Therefore, we can construct
Table 5.5.10, which gives the complete information on the problem. As earlier, we present
the optimum solution to the problem in Table 5.5.11. It shows that the optimal solution to the
problem in the present example is x∗

11 = 0,x∗
12 = 150,x∗

13 = 50,x∗
21 = 150,x∗

22 = 0,x∗
23 = 0,

x∗
31 = 25,x∗

32 = 25,x∗
33 = 0, and C∗ = $900. Notice that in the optimum allocation source 1

supplies 50 units more than what is demanded.

5.5.6 Assignment problem

Assignment problem is an optimization problem in which a firm or a company assigns a
particular job or task to a particular worker, and still attempts to minimize the total assignment
cost. This is a special kind of transportation problem in which workers are sources and jobs or
tasks are destinations. As in the case of transportation problems, the total number of workers
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Table 5.5.12

Jobs

1 2 3 … n … n

W
or

ke
rs

1 c11 c12 c13 … c1j … c1n 1
2 c21 c22 c23 … c2j … c2n 1
3 c31 c32 c33 … c3j … c3n 1
… … … … … … … … …
in ci1 ci2 ci3 … cij … cin 1
… … … … … … … … …
n cn1 cn2 cn3 … cnj … cnn 1

1 1 1 … 1 … 1

(the supply) may be equal to the total number of jobs (the demand) giving us the balanced
assignment problem; or unbalanced assignment problem if the number of workers is not equal
to the number of jobs. We can always balance an unbalanced assignment problem, as we did
in the case of the transportation problem, by introducing dummy workers or dummy jobs.

The general assignment problem with i(i = 1,2, . . . ,n) workers and j ( j = 1,2, . . . ,n) jobs
can be constructed as presented in Table 5.5.12, where cij is the cost of assigning the ith
worker to the jth job. The values in the last column and the last row show that the problem
is a balanced assignment problem.

We can now state that the company’s problem is to

Minimize C =
n∑

i=1

n∑
j=1

cijxij, i = 1,2, . . . ,n, j = 1,2, . . . ,n,

subject to
n∑

i=1

xij = 1,
n∑

j=1

xij = 1, and xij = 0 or 1 (5.5.6)

Notice that xij in problem (5.5.6) represents worker i assigned to job j. The value

C =
n∑

i=1

n∑
j=1

cijxij is the total cost to the company of assigning i workers to j jobs, which

the company wants to minimize. Since the problem is a balanced problem, the first constraint
states that a particular job is assigned to only one worker and the second constraint states that
a worker is assigned to only one job. And the last constraint states that if the ith worker is
assigned the jth job, then xij = 1; otherwise xij = 0. Since the assignment problem presented
in (5.5.6) obeys the structure of a transportation problem, it can be solved with the methods
we used to solve the transportation problem. However, there is a more efficient method, called
the Hungarian method, to solve assignment problems. The Hungarian method involves the
following steps.

Step 1. Find the smallest unit cost in each row of Table 5.5.12. Subtract this from the every
other element in that row.

Step 2. After step 1, find the smallest unit cost in each column of Table 5.5.12. Subtract
this from the every other element in that column. These two steps give us the table
of revised cost matrix.



[12:21 3/11/2011 5640-Ummer-Ch05.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 312 244–315

312 Linear programming

Table 5.5.13

Jobs

1 2 3

W
or

ke
rs 1 15 12 11 1

2 13 10 14 1
3 12 16 13 1

1 1 1

Table 5.5.14

Jobs

1 2 3

W
or

ke
rs 1 3 2 0 1

2 1 0 3 1
3 0 6 2 1

1 1 1

Step 3. Determine whether there exists a feasible assignment with only zero costs (and
without two zero costs in any row or column) in the revised cost matrix obtained
after step 2. If it exists, we have attained the optimal assignment.

Step 4. If there does not exist a feasible assignment, draw the fewest number of straight
lines passing through zeros in the revised cost matrix. Find the lowest number not
touched by a straight line in the revised cost matrix. Then subtract from this number
the every other number not touched by a straight line and add it to the every other
number touched by two straight lines. Repeat from step 3.

5.5.7 Application examples of solutions to assignment problems

Example 1. Suppose that a company has three jobs to be assigned to three workers. The
costs, in dollars, of assigning these jobs to these workers are given in Table 5.5.13. Determine
the assignment plan that minimizes the company’s total cost.

Solution. If we carry out the operations in steps 1 and 2 of the Hungarian method detailed
in the last section, we obtain the revised cost matrix presented in Table 5.5.14. The result in
Table 5.5.14 shows that there exists a feasible assignment with only zero costs (and without
two zero costs in any row or column) in the revised cost matrix. This means that we have
achieved the optimum assignment plan. In this optimum plan, the company must assign the
first, the second, and the third worker the third, the second and the first job respectively. Then
the minimum total cost to the company will be C∗ = $11 + $10 + $12 = $33.

Example 2. Assume that a company has three jobs to be assigned to four workers. The
costs, in dollars, of assigning these jobs to these workers are given in Table 5.5.15. Determine
the assignment plan that minimizes the company’s total cost.
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Table 5.5.15

Jobs

1 2 3 4
(dummy)

W
or

ke
rs

1 6 8 4 0 1
2 5 3 1 0 1
3 4 2 1 0 1
4 3 4 1 0 1

1 1 1 1

Table 5.5.16

Jobs

1 2 3 4
(dummy)

W
or

ke
rs

1 3 6 3 0 1
2 2 1 0 0 1
3 1 0 0 0 1
4 0 2 0 0 1

1 1 1 1

Solution. If we carry out the operations in steps 1 and 2 of the Hungarian method detailed
in the last section, we obtain the revised cost matrix presented in Table 5.5.16. The result in
Table 5.5.16 shows that there is a feasible assignment with only zero costs in the revised cost
matrix. This means that we have achieved the optimum assignment plan. In this optimum
plan, the company must assign the first, the second, the third, and the fourth worker, the
fourth (dummy), the third, the second, and the first job, respectively. Then the minimum total
cost to the company will be C∗ = $0 + $1 + $2 + $3 = $6.

5.5.8 Exercises

1. Suppose that a firm has three plants in three cities and three warehouses in three other
cities. The firm wants to transport the good produced in these plants to the warehouses.
The total supplies from three plants and the total demands at the warehouses along
with the associated transportation costs (in dollars) per unit of the good are given in
Table 5.5.17. Find the transportation plan that minimizes the firm’s total cost.

2. Suppose that a firm has three plants in three cities and two warehouses in three other
cities. The firm wants to transport the good produced in these plants to the warehouses.
The total supplies from the plants and the total demands at the warehouses along with the
associated transportation costs (in dollars) per unit of the good are given in Table 5.5.18.
Find the transportation plan that minimizes the firm’s total cost.

3. Suppose that a firm has three plants in three cities and three warehouses in three other
cities. The firm wants to transport the good produced in these plants to the warehouses.
The total supplies from the plants and the total demands at the warehouses along with the
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Table 5.5.17

Warehouses

1 2 3 Supplies

P
la

nt
s 1 5 8 4 50

2 2 3 5 200
3 8 8 9 50
Demands 75 100 125

Table 5.5.18

Warehouses

1 2 Supplies

P
la

nt
s 1 10 10 100

2 15 15 50
3 10 15 50
Demands 75 100

Table 5.5.19

Warehouses

1 2 3 Supplies

P
la

nt
s 1 2 3 5 100

2 3 6 5 125
3 5 3 2 75
Demands 100 200 100

Table 5.5.20

Jobs

1 2 3 4

W
or

ke
rs

1 8 12 9 10 1
2 15 10 11 12 1
3 16 18 20 22 1
4 19 14 12 10 1

1 1 1 1

associated transportation costs (in dollars) per unit of the good are given in Table 5.5.19.
Find the transportation plan that minimizes the firm’s total cost.

4. Suppose that a company has four jobs to be assigned to four workers. The costs, in
dollars, of assigning these jobs to these workers are given in Table 5.5.20. Determine
the assignment plan that minimizes the company’s total cost.
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Table 5.5.21

Jobs

1 2 3 4

W
or

ke
rs

1 6 4 8 3 1
2 1 5 3 7 1
3 3 1 2 4 1
4 7 6 5 8 1

1 1 1 1

5. Suppose that a company has four jobs to be assigned to four workers. The costs, in
dollars, of assigning these jobs to these workers are given in Table 5.5.21. Determine
the assignment plan that minimizes the company’s total cost.

Web supplement: S5.5.9 Mathematica applications



[12:21 3/11/2011 5640-Ummer-Ch06.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 316 316–352

6 Nonlinear programming

6.1 Introduction

We introduced the classical approach to optimization in Chapter 4. In that chapter we
considered both unconstrained and constrained optimization problems. These problems
possessed two salient features. The first is that the objective functions and the constraint
functions in these problems can take linear or nonlinear forms. The second is that the
constraints of these problems are equality constraints. We then explored the methods of
solving these optimization problems. Notice that the optimal values of the choice variables
in classical optimization problems may take any sign, positive or negative.

In Chapter 5 we extended our analysis of optimization to LP problems. The reader
would have noticed that we imposed three conditions in the LP approach to optimization.
The first is that in optimization involving LP problems both the objective functions and
the constraints are linear, in contrast to the classical approach where both the objective
function and constraints can be linear or nonlinear in forms. The second condition is that
although the constraints are linear, they are, again in contrast to the classical approach,
inequality constraints. The third is the nonnegativity condition – that is, the choice variables
should have nonnegative optimum solutions. We then explored several methods of solving
LP problems.

We now turn our attention in the present chapter to more general optimization problems –
optimization problems that involve linear or nonlinear objective functions and constraints.
Notice that we continue to impose the nonnegativity constraint here too. An optimization
problem that involves a linear or nonlinear objective function with linear or nonlinear
constraints and the nonnegativity condition is called a nonlinear programming (NLP)
problem. We shall see shortly that the classical and LP approaches to optimization address
problems that are special cases of NLP problems.

6.2 NLP: general ideas

6.2.1 Nonlinear relationships

As we saw in Chapter 4, many of the relationships in economics, business, and finance tend
to be nonlinear in nature. For example, consider the graph in Figure 4.2.7(B). This graph
shows the case of a short-run production function of a firm with labor as the variable input.
It also shows that as the quantity of labor employed increases, total output increases at an
increasing rate in the beginning and then increases at a diminishing rate. If the price and
cost functions are assumed to be constant, then the firm’s total profit function will follow a
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form similar to that of the shape of its total output function. These imply that the output or
profit function (that is, the objective function) of the firm takes a nonlinear form. Similarly,
a consumer’s utility function rarely takes the form of a linear line. Instead, it usually follows a
nonlinear form such as the one exemplified by indifference curves. Moreover, the constraints
that a firm or a consumer faces are also normally nonlinear in form. One can cite many
examples such as these from economics.

In real-world business and financial problems, the relationships are also normally expressed
in the form of nonlinear functions. It is difficult for a manager of a company to assume that
the function that represents the objective of the company or the functions that represent
its constraints are linear functions of the choice variables. In fact, in most cases, they are
nonlinear functions of the choice variables. One can find many examples of these nonlinear
relationships in product mix problems, portfolio selection problems, etc.

6.2.2 NLP: a general maximization problem

In this section we set up a general NLP maximization problem involving n choice variables
and m constraints. As in LP problems, the number of choice variables may be greater than, less
than, or equal to the number of constraints. Suppose that a firm produces xj ( j = 1,2,3, . . . ,n)
goods using bi (i = 1,2,3, . . . ,m) resources, and that the firm’s aim is to maximize its total
profit 	 (which is a function, linear or nonlinear, of the quantity of the goods produced)
subject to the m constraints as given by

Maximize 	= f (x1,x2,x3, . . . ,xj, . . . ,xn), subject to g1(x1,x2,x3, . . . ,xj, . . . ,xn) ≤ b1,

g2(x1,x2,x3, . . . ,xj, . . . ,xn) ≤ b2,g
3(x1,x2,x3, . . . ,xj, . . . ,xn) ≤ b3, . . .,

gi(x1,x2,x3, . . . ,xj, . . . ,xn) ≤ bi, . . .,g
m(x1,x2,x3, . . . ,xj, . . . ,xn) ≤ bm, and xj ≥ 0

(6.2.1)

Notice that some or all of the constraints in the NLP maximization problem (6.2.1)
may appear with equality signs. All the functions in problem (6.2.1) are assumed to be
differentiable. If all of the constraints appear with equality signs, then we have a classical
maximization problem, as those presented in Section 4.4. If both the objective function and
the constraints are linear, then we have a LP problem, as those presented throughout in
Chapter 5. This is the reason why we stated at the end of Section 6.1 that a NLP problem is
the most general optimization problem we found so far in this book and that the classical and
LP optimization problems are special cases of the general NLP problem.

Notice that the set of critical values (x∗
1,x

∗
2,x

∗
3, . . . ,x

∗
j , . . . ,x

∗
n) that satisfies all the

constraints in problem (6.2.1) is called the feasible set. The reader would have noticed that
we can convert a maximization problem into a minimization problem by multiplying the
objective function and the constraints of the former by −1. Similarly, a particular ≤ constraint
can be converted into a ≥ constraint (and vice versa) by multiplying the former by −1. The
maximization problem (6.2.1) can also be written succinctly as

Maximize 	= f (xj), j = 1,2,3, . . . ,n, subject to gi(xj) ≤ bi,

i = 1,2,3, . . . ,m, and xj ≥ 0 (6.2.2)
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6.2.3 NLP: a general minimization problem

Let us now set up a general NLP minimization problem involving n choice variables and m
constraints. Again the number of choice variables may be greater than, less than, or equal to
the number of constraints. Suppose that a firm employs ci (i = 1,2, . . . ,m) factors to produce
xj ( j = 1,2, . . . ,n) goods and that the firm’s aim is to minimize its total cost C (which
is a function, linear or nonlinear, of the quantity of the output produced) subject to the m
constraints as

Maximize C = h(x1,x2,x3, . . . ,xj, . . . ,xn), subject to g1(x1,x2,x3, . . . ,xj, . . . ,xn) ≥ c1,

g2(x1,x2,x3, . . . ,xj, . . . ,xn) ≥ c2,g
3(x1,x2,x3, . . . ,xj, . . . ,xn) ≥ c3, . . .,

gi(x1,x2,x3, . . . ,xj, . . . ,xn) ≥ ci, . . .,g
m(x1,x2,x3, . . . ,xj, . . . ,xn) ≥ cm, and xj ≥ 0

(6.2.3)

Notice that some or all of the constraints in the NLP minimization problem (6.2.3)
may appear with equality signs. All the functions in problem (6.2.3) are assumed to be
differentiable. If all of the constraints appear with equality signs, then we have a classical
minimization problem as stated previously. If both the objective function and the constraints
are linear, then we have a LP problem. Notice that the set of values (x∗

1,x
∗
2,x

∗
3, . . . ,x

∗
j , . . . ,x

∗
n)

that satisfies all the constraints in problem (6.2.3) is called, as in a NLP maximization problem,
the feasible set. The minimization problem (6.2.3) can also be written succinctly as

Minimize C = h(xj), j = 1,2,3, . . . ,n, subject to gi(xj) ≥ ci,

i = 1,2,3, . . . ,m, and xj ≥ 0 (6.2.4)

6.2.4 NLP: geometric forms of objective functions and constraints

Let us first consider the geometric forms that are normally assumed by objective functions
in a NLP problem in the subjects of our interest. An objective function in a NLP problem
may assume either a nonlinear form or a linear form. One linear form that is frequently
encountered in the literature is similar to the the function

Maximize 	= f (x1,x2) = 2x1 + 4x2 (6.2.5)

the graphs of which for different values of 	 are illustrated in Figure 6.2.1(A). Notice that
higher lines in this figure represent higher levels of 	 and, therefore, the aim in a NLP
maximization problem that involves the objective function in equation (6.2.5) is to attain the
highest possible line.

Another form of the objective function that we will use later is a nonlinear form as

Maximize 	= h(x1,x2) = 50x1 + 50x2 − 5x2
1 − 5x2

2 (6.2.6)

the graphs of which, for different values of 	, are illustrated in Figure 6.2.1(B). Notice
that the smaller circles in this figure represent higher levels of 	, and the maximum of 	
(that is, 	 = 250) is when x1 = 5 and x2 = 5. Therefore, the aim in a NLP maximization
problem with the objective function in equation (6.2.6) is to attain the smallest possible
circle or move as close as possible to point B from points such as A or C. Notice also that we
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Figure 6.2.1

have divided the x–y space into four subspaces, southwest (SW), northwest (NW), northeast
(NE), and southeast (SE). The portions of the graphs that lie in the SW space are similar to
indifference curves or isoquants.

The third form of the objective function that we will use later is of the form

Minimize C = j(x1,x2) = (x1 − 5)2 + (x2 − 5)2 = x2
1 − 10x1 + x2

2 − 10x2 + 50 (6.2.7)

the graph of which, for different values of C, is illustrated in Figure 6.2.2(A). The reader
would have noticed that the smaller circles in this figure represent smaller levels of C, and
the minimum of C (that is, C = 0) is when x1 = 5 and x2 = 5. Therefore, the aim in a NLP
minimization problem with the objective function in equation (6.2.7) is to attain the smallest
possible circle or move as close as possible to point B from points such as A or C. Notice that,
as before, we have divided the x–y space into four subspaces, southwest (SW), northwest
(NW), northeast (NE), and southeast (SE). Notice also that the portions of the graphs that lie
in the SW space are similar to indifference curves or isoquants.

The last form of the objective function that we will consider in this section is the linear
form

Minimize C = k(x1,x2) = x1 + x2 (6.2.8)

the graph of which is illustrated, for different values of C, in Figure 6.2.2(B). Since the
lower lines in this figure represent lower C, the aim in a NLP minimization problem with the
objective function in equation (6.2.8) is to attain the lowest possible line.

Let us now illustrate the generally used geometric forms of constraints in NLP problems.
These forms, as in the case of the objective functions illustrated in Figures 6.2.1 and 6.2.2,
may be either nonlinear or linear. Let us first consider the nonlinear form of a constraint in a
NLP problem. Suppose that our constraint is of the form

g1(x1,x2) = x2
1 + x2

2 ≤ 4 (6.2.9)
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which can be plotted to yield the curve GH in Figure 6.2.3(A). As can be seen, the set of
points in the area OGH (including those on the boundary) is the set of feasible points (the set
of points that satisfies the constraint (6.2.9)). Assume now that we have another constraint as

g2(x1,x2) = x2
1 + x2 ≤ 3 (6.2.10)

which is plotted to obtain the curve IJ in Figure 6.2.3(A). The set of points in the area OIJ
(including those on the boundary) is the set of feasible points (the set of points that satisfies
the constraint (6.2.10)). Therefore, the set of feasible points that satisfies both constraints
(inequalities (6.2.9) and (6.2.10)) simultaneously is given by the set of points in the area
OGKJ (including the points on the boundary).

Another set of constraints that we will use later consists of constraints that are linear in
form and are given by the inequalities

g3(x1,x2) = x1 ≤ 10,g4(x1,x2) = x2 ≤ 4, and g5(x1,x2) = x1 + 3x2 ≤ 15 (6.2.11)

the graphs of which are illustrated in Figure 6.2.3(B). The set of feasible points that satisfies
all three constraints simultaneously is given by the set of points in the area DEFGH (including
the points on the boundary) in this figure.

The third set of constraints we will use later consists of constraints that are also linear and
are given by

g6(x1,x2) = x1 + x2 ≤ 6 and g7(x1,x2) = x1 + 2x2 ≥ 8 (6.2.12)

the graphs of which are illustrated in Figure 6.2.4(A). Notice that the set of feasible points
that satisfies both constraints simultaneously is given by the set of points in the triangle DEF
(including the points on the boundary) in this figure.
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The last set of constraints we will use later comprises linear and nonlinear inequality
constraints as follows:

g8(x1,x2)=0.5x1+x2 ≥3, g9(x1,x2)=x1+0.5x2 ≥3, and g10(x1,x2)=x2
1 +x2

2 ≥8
(6.2.13)
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the graphs of which are illustrated in Figure 6.2.4(B). Notice that the set of feasible points
that satisfies all these constraints simultaneously is given by the set of points in the area
above the line ABD (including the points on the boundary) in this figure.

6.2.5 Geometric solution of NLP problems: maximization cases

Let us now attempt to solve few NLP problems. Although there are many methods to
solve NLP problems, we will discuss only three methods in this book. The first of these
three methods, the geometric method, will be explored in the current section. The second
method, popularly called the Kuhn–Tucker conditions, will be detailed in Section 6.3. The
third method, called the trial-and-error method, will be discussed in Section 6.3.10. Although
the Kuhn–Tucker conditions are applicable in the case of NLPproblems involving any number
of choice variables, the geometric method is applicable in the case of NLP problems involving
a maximum of two choice variables, and the trial-and-error method can be applied when the
number of the choice variables is very few.

Suppose that we want to maximize the objective function in equation (6.2.5), the graph of
which is illustrated in Figure 6.2.1(A), subject to the constraint given in inequalities (6.2.9)
and (6.2.10), the graphs of which are illustrated in Figure 6.2.3(A). For convenience we
reproduce these two sets of graphs in a single figure as illustrated in Figure 6.2.5(A).

The set of feasible points in Figure 6.2.5(A) is the set of points in the region OGNKJ
(including the points on the boundary). Our aim in this problem, as in a LP maximization
problem, is to push the objective function in the northeast direction. We know that we cannot
attain, given the constraints, those lines of the objective function that lie outside the area
OGNKJ. The only graph of the objective function that is acceptable is the one that is tangent
to one of the constraints (g1(x1,x2) = x2

1 + x2
2 ≤ 4) at point N. Therefore, the optimum of the

objective function occurs at this point of tangency. This implies that the optimum solution
satisfies only one constraint (g1(x1,x2) = x2

1 + x2
2 ≤ 4) exactly.

Notice that at the optimum point N, the slope of the objective function (	 = f (x1,x2) =
2x1 + 4x2) is equal to the slope of the constraint (g1(x1,x2) = x2

1 + x2
2 ≤ 4). The slope of the

objective function is −1/2. The slope of the constraint can be found as follows. Let us first
write the inequality constraint g1(x1,x2) = x2

1 + x2
2 ≤ 4 as an equality constraint g1(x1,x2) =

x2
1 + x2

2 = 4. We then write it as a new function G1(x1,x2) = x2
1 + x2

2 − 4 = 0, which is
now in the form of an implicit function. We can now apply the technique of differentiation
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of implicit functions (discussed in Section 3.3.12) to obtain the slope of the constraint as
dx2/dx1 = −[∂G1/∂x1]/[∂G1/∂x2] = −2x1/2x2. Since the slope of the objective function
is equal to the slope of the constraint, we can write −2x1/2x2 = −1/2, or 2x1 = x2. If we
substitute this equation into g1(x1,x2) = x2

1 + x2
2 = 4 and simplify, we obtain x∗

1 = 0.894427.
If we substitute this value again into the constraint g1(x1,x2) = x2

1 + x2
2 = 4 and simplify, we

obtain x∗
2 = 1.78885. Then the optimal (maximum) value of the objective function can be

found by substituting these optimal values of the choice variables into the objective function.
This yields 	∗ = f (x∗

1,x
∗
2) = 2x∗

1 + 4x∗
2 = 2 × 0.894427 + 4 × 1.78885 = 8.94427.

The reader would have noticed an important feature of the solution of the maximization
problem illustrated in Figure 6.2.5(A): point N is not a corner point. We know from Chapter 5
that the optimum solution to a LP problem always occurs at a corner point of the feasible
region. In contrast to this, the optimum solution to a NLP problem may occur at any
point (not just at a corner point), as at point N, of the set of feasible points. Another
important feature of the solution illustrated in this figure is that, as mentioned above, it
satisfies only one constraint exactly. Therefore, the optimal solution to a NLP problem may
not always satisfy all the constraints of the problem exactly, as in classical optimization
problems.

So far we have been concerned with maximizing a linear objective function subject to
nonlinear constraints. Let us now attempt to maximize a nonlinear objective function subject
to linear constraints. For this consider the nonlinear objective function in equation (6.2.6),
the graph of which is illustrated in Figure 6.2.1(B), and the constraints in inequality (6.2.11),
the graphs of which are illustrated in Figure 6.2.3(B). For convenience we reproduce these
two sets of graphs in a single figure as illustrated in Figure 6.2.5(B).

If the present problem were a free optimization problem, then the optimum solution
would be x∗

1 = x∗
2 = 5, and the maximum value of the objective function would be

	 = h(x∗
1,x

∗
2) = 50x∗

1 + 50x∗
2 − 5x2∗

1 − 5x2∗
2 = 50 × 5 + 50 × 5 − 5 × 52 − 5 × 52 = 250.

This happens, as can be seen in Figure 6.2.5(B), at the centre of the circle (point B). Notice
that the coordinate point (5, 5) corresponding to point B lies outside the set of feasible points
(represented by the set of points in the area DEFIGH, including the points on the boundary).
This implies that we cannot achieve the level of 	 represented by that point (	 = 250).
But, notice that the graph of the constraint x1 + 3x2 ≤ 15 is tangent to one of the graphs of
the objective function 	= h(x1,x2) = 50x1 + 50x2 − 5x2

1 − 5x2
2 at point I. Any movement,

from point I, in the southwest direction reduces the value of the objective function; and any
movement in the northeast direction will increase the value of the objective function but will
violate at least one of the constraints. Hence, this point of tangency, given the constraints,
yields the maximum value of the objective function.

How do we find the optimal solution that occurs at point I in Figure 6.2.5(B)? Notice
that at point I the slope of the objective function is equal to the slope of the constraint
x1 + 3x2 ≤ 15. We know that the slope of this constraint, if we treat it as a function, is
−1/3. Notice also that we can convert the objective function	= h(x1,x2) = 50x1 +50x2 −
5x2

1 −5x2
2 into an implicit function as H (x1,x2) = 50x1 +50x2 −5x2

1 −5x2
2 −	= 0. We can

now use the technique of implicit differentiation to find the slope of the implicit function
H (x1,x2) = 50x1 +50x2 −5x2

1 −5x2
2 −	. This slope is dx2/dx1 = −[∂H/∂x1]/[∂H/∂x2] =

−[(50− 10x1)]/[(50− 10x2)]. Equating this to the slope of the constraint (−1/3), we obtain
x1 = (10+x2)/3. Substituting this result into the equation x1 +3x2 = 15, we obtain x∗

2 = 3.5.
Substituting the last result into x1+3x2 = 15 yields x∗

1 = 4.5. Therefore, the maximum value of
the objective function, given the constraints, is	= h(x∗

1,x
∗
2) = 50x∗

1 +50x∗
2 −5x2∗

1 −5x2∗
2 =

50 × 4.5 + 50 × 3.5 − 5 × 4.52 − 5 × 3.52 = 237.5.
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6.2.6 Geometric solution of NLP problems: minimization cases

In the previous section, we considered the topic of NLP maximization problems. We now
attempt to solve NLP minimization problems geometrically. Suppose that our aim is to
minimize the objective function in equation (6.2.7), the graph of which is illustrated in
Figure 6.2.2(A), subject to constraints in inequality (6.2.12), the graphs of which are presented
in Figure 6.2.4(A). For convenience, we reproduce these two sets of graphs in a single figure
as illustrated in Figure 6.2.6(A).

If our problem were a free optimization problem, then the optimum solution would be
x∗

1 = x∗
2 = 5, and the minimum value of the objective function would be C = h(x∗

1,x
∗
2) =

(x∗
1 −5)2 + (x∗

2 −5)2 = 0. This occurs, as can be seen in Figure 6.2.6(A), at the centre of the
circle (point B). But, the present problem is a NLP problem. Therefore, the set of feasible
points is the set of points in or on the triangle DEF. The graph of the objective function is
tangent to the higher constraint (x1 + x2 ≤ 6) at point G. Any movement, from point G, in
the southwest direction increases the value of the objective function, and any movement in
the northeast direction will reduce the value of the objective function but will violate at least
one of the constraints (specifically, the constraint x1 + x2 ≤ 6). Hence, this point of tangency
between the objective function and the constraint x1 +x2 ≤ 6 gives, given the two constraints,
the minimum value of the objective function.

How do we find the optimal solution that occurs at point G in Figure 6.2.6(A)? Notice
that at point G the slope of the objective function is equal to the slope of the constraint
x1 + x2 ≤ 6. We know that the slope of this constraint, if we treat it as a function, is −1.
Notice also that we can convert the objective function C = h(x1,x2) = (x1 − 5)2 + (x2 − 5)2

into an implicit function as H (x1,x2) = (x1 − 5)2 + (x2 − 5)2 − C = 0. We can now use the
technique of implicit differentiation to find the slope of the implicit function H (x1,x2) =
(x1 −5)2 + (x2 −5)2 −C as dx2/dx1 = −[∂H/∂x1]/[∂H/∂x2] = −[2(x1 −5)]/[2(x2 −5)] =
−(x1 − 5)/(x2 − 5). Equating this to the slope of the constraint (−1), we obtain x1 = x2.
Substituting this last result into the equation x1 + x2 = 6, we obtain 2x1 = 6 or x∗ = 3.

0
0

0 1 2 3 4 5
0

1

2

3

4

5

2

3

5

E

D

A

G

F

B

C

A

B

D

4

6

8

10
x2 x2

x1 x1
2 3 54 6

(A) (B)
8 10

Figure 6.2.6



[12:21 3/11/2011 5640-Ummer-Ch06.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 325 316–352

Nonlinear programming 325

Since x1 = x2, we have x∗
1 = x∗

2 = 3. Therefore, the minimum value of the objective function
is C∗ = h(x∗

1,x
∗
2) = (x∗

1 − 5)2 + (x∗
2 − 5)2 = (3 − 5)2 + (3 − 5)2 = 8.

Let us now geometrically solve a NLP minimization problem involving a linear objective
function and a set of linear and nonlinear constraints. For this we use the objective
function in equation (6.2.8), the graph of which is illustrated in Figure 6.2.2(B) for different
levels of C, subject to constraints in (6.2.13), the graphs of which are illustrated in
Figure 6.2.4(B). As earlier, we reproduce these two sets of graphs in a single figure as
illustrated in Figure 6.2.6(B).

We know from Figure 6.2.6(B) that the set of feasible points is the set of points on or above
the line ABD. The graph of the objective function is tangent to the constraint x2

1 + x2
2 ≥ 8

at point B. Any movement, from point B, in the southwest direction will violate at least
one of the constraints and any movement in the northeast direction will increase the value
of the objective function. Hence, this point of tangency between the objective function and
the constraint x2

1 + x2
2 ≥ 8 gives, given the constraints, the minimum value of the objective

function.
We can find the optimal solution that occurs at point B following the same procedure

as the one we adopted earlier. Notice that at point B the slope of the objective function is
equal to the slope of the constraint x2

1 + x2
2 ≥ 8. We know that the slope of the objective

function is −1. The slope of the constraint g10(x1,x2} = x2
1 + x2

2 ≥ 8 can be found by
treating it as an equation and differentiating the result implicitly. Converting it into an
equation we obtain G10(x1,x2} = x2

1 + x2
2 − 8 = 0. The slope of this implicit function is

dx2/dx1 = −[∂G10/∂x1]/[∂G10/∂x2] = −2x1/2x2 = −x1/x2. Equating this to the slope of
the objective function (−1), we obtain x1 = x2. Substituting this result into the equation
x2

1 + x2
2 = 8, we obtain x2

2 + x2
2 = 8 or x∗

2 = 2. Since x1 = x2, we have x∗
1 = x∗

2 = 2.
Therefore, the minimum value of the objective function is C∗ = k(x∗

1,x
∗
2) = x∗

1 + x∗
2 =

2 + 2 = 4.

6.2.7 LP and NLP: important differences

We presented the main features of the objective function and the constraints of NLP problems
in Section 6.2.4. Let us now identify those important features that distinguish a NLP problem
from a LP problem.

1 In a LP problem that has an optimal solution, the feasible region always constitutes a
convex set. In a NLP problem that has an optimal solution, the feasible region may not
always constitute a convex set.

2 In a minimization (maximization) LP problem our aim was to push down (up) the
objective function and, thereby, to decrease (increase) the value of the objective
function, as low (high) as possible without violating the constraints. In a minimization
(maximization) NLP problem, such a push may increase (decrease) the value of the
objective function (as can be seen in Figures 6.2.2(A) and 6.2.1(B)).

3 In a LP problem that has an optimal solution, the optimal solution occurs at one of the
corner points of the convex set. In a NLP problem that has an optimal solution, the optimal
solution may occur at any point, not just at the corner point, of the feasible region(s) (as can
be seen in Figures 6.2.5 and 6.2.6).

4 In a LP problem that has an optimal solution, the number of variables (including dummy
variables) with positive optimal values will be equal to the number of constraints in the
problem. In a NLP problem that has an optimal solution, the number of variables with
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positive optimal values may or may not be equal to the number of constraints in the
problem.

5 In a LP problem that has an optimal solution, a local optimum is also a global optimum.
In a NLP problem, a local optimum may not be the same as the global optimum.

Because of these differences between LP and NLP problems, the methods applied in
Chapter 5 to solve LP problems are not suitable to solve NLP problems. Therefore, new
methods are needed. There are a number of methods in the literature that are employed
to find quantitative optimal solutions to NLP problems. However, we do not explore these
methods in this book; instead we present in Section 6.3 few results that offer qualitative
characterization of optimal solutions. These results are called Kuhn–Tucker conditions.

6.2.8 Application examples

Example 1. Assume that a consumer’s total utility, U , from the consumption of two goods,
x1 and x2, is given by the Cobb–Douglas utility function U = f (x1,x2) = x1/2

1 x1/2
2 . Also

assume that the consumer has a maximum of $7 to spend on these two goods, and that
the unit price of each good is $1. Find the quantities of the two goods that maximize the
consumer’s total utility.

Solution. Notice that the objective function in this problem is nonlinear in form and, when
plotted for different values of U , the utility function will give us an indifference map. The
constraint the consumer faces (the budget constraint) is linear in form, and can be constructed
as x1 +x2 ≤ 7. We can now plot the nonlinear utility function and the linear budget constraint
to obtain the graphs in Figure 6.2.7(A). Notice that at point C the indifference curve that
represents total utility U = 3.5 is tangent to the budget line. This means that the highest
attainable indifference curve (the indifference curve that represents total utility U = 3.5)
has the same slope as that of the budget line. Therefore, we can obtain the solution to the
utility maximization problem if we find the values of x1 and x2 corresponding to point C.
We know that the slope of the budget line is −1. Let us write the utility function as F(x1,x2) =
f (x1,x2) − U = x1/2

1 x1/2
2 − U = 0. Notice that this function is now an implicit function.

The slope of the indifference curve (corresponding to U = 3.5) can be found as dx2/dx1 =
−[∂F/∂x1]/[∂F/∂x2] = −x2/x1. Since the slope of the budget line and the slope of the
indifference curve are equal at point B, we have dx2/dx1 = −x2/x1 = −1, which simplifies
to x1 = x2. Substituting this result into the budget constraint and simplifying (after treating
it as an equation) we obtain x∗

1 = x∗
2 = 3.5. If we substitute this solution into the objective

function we obtain U ∗ = f (x∗
1,x

∗
2) = x∗1/2

1 x∗1/2
2 = (3.5)1/2(3.5)1/2 = 3.5. Therefore, given the

constraint, the consumer must consume 3.5 units of both goods to maximize the total utility
and the maximum total utility will be 3.5. The reader may want to compare the geometric
solution to the present problem illustrated in Figure 6.2.7(A) with the solution presented
in Figure 3.8.3(A).

Example 2. Suppose that the total output produced by a firm using two factors, capital
(K) and labor (L), is given by the CES production function Q = f (K,L) = [0.5K−0.5 +
0.5L−0.5]−2. Also, suppose that the wage rate is $10, the interest rate is 10 percent, and the
maximum fund for investment available with the firm is $100. How many units of the two
factors should the firm employ to maximize its total output?
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Solution. Notice that the objective function in this problem is, as in the last example,
nonlinear in form and, when plotted for different values of Q, the production function will
give us an isoquant map. The constraint that the firm faces (the isocost line) is linear in form,
and can be written as 0.1K +10L ≤ 100. We can now plot the nonlinear production function
and the linear isocost line to obtain the graphs in Figure 6.2.7(B). Notice that at point C the
isoquant that represents total output Q = 22.227 is tangent to the isocost line. This means that
the highest attainable isoquant (the isoquant that represents total output Q = 22.227) has the
same slope as that of the isocost line. Therefore,we canobtain the solution to thepresent output
maximization problem if we find the values of K and L corresponding to point C. We know
that the slope of the isocost line is −100. Let us write the production function as F(K,L) =
f (K,L)−Q =[0.5K−0.5 +0.5L−0.5]−2 −Q = 0, which is now an implicit function. The slope
of the isoquant (treating Q as a constant) can be found as dK/dL = −[∂F/∂L]/[∂F/∂K] =
−K3/2/L3/2. Since the slope of the isocost line and the slope of the isoquant are equal at point
C, we have dK/dL =−K3/2/L3/2 =−100, which simplifies to K = 1002/3L. Substituting this
result into the equation for the isocost line and simplifying, we obtain K∗ = 177.262 and L∗ =
8.227. If we substitute this solution into the objective function we obtain Q∗ = f (K∗,L∗) =
[0.5K∗−0.5 + 0.5L∗−0.5]−2 = [0.5(177.3)−0.5 + 0.5(8.2)−0.5]−2 = 22.277. Therefore, given
the constraint, the firm must employ 177.262 units of capital and 8.227 units of labor to
maximize the total output and the maximum total output will be 22.277 units. As in the last
example, compare the geometric solution to the present problem illustrated in Figure 6.2.7(B)
with the solution presented in Figure 3.8.3(B).

Example 3. Assume that an individual lives for two periods, period 1 and period 2. Her
consumption in period 1 is denoted by C1 and that in period 2 is denoted by C2. Her income
in period 1 is denoted by Y1 and that in period 2 is denoted by Y2. She can either consume or
save Y1 completely, or can consume a part of Y1 and save the remaining part. Also assume
that the interest rate is constant over the periods and is given by r. If she saves a part of Y1,
the total money at her disposal in period 2 will be Y2 + (Y1 − C1)(1 + r). Therefore, her
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consumption in period 2 will be C2 = Y2 + (Y1 − C1)(1 + r), which is called intertemporal
budget constraint. Also assume that the total utility that she receives from her consumption
in the two periods is given by the function U = g(C1,C2) = lnC1 + lnC2, which is called an
intertemporal utility function. Find the minimum amount of money she has to spend in the
two periods, given Y1 = $5000, Y2 = $10 000, and r = 0.1, such that she attains intertemporal
utility of at least 17.9 units.

Solution. Given Y1 = $5000, Y2 = $10 000, and r = 0.1, we can write the intertemporal
budget constraint C2 = Y2 + (Y1 − C1)(1 + r) as C2 = 10 000 + (5000 − C1)(1 + 0.1) or as
1.1C1 + C2 = 15 500. In this problem, this budget constraint is the objective function and it
can be written as E = h(C1,C2) = 1.1C1 + C2 = 15 500. Notice that this objective function
is linear in form. Moreover, the intertemporal utility function is the constraint in the present
problem, and it is nonlinear in form. Let us plot the linear objective function for different
values of E and the nonlinear constraint as presented in Figure 6.2.8(A). As can be seen, the
constraint (intertemporal utility at least equal to 17.9 units) is given by the nonlinear curve.
The linear objective functions (for different levels of E) are represented by the straight lines.
The minimum E satisfying the constraint is given by the line BD. This line is tangent to the
constraint at point C. This implies that the coordinates of point C will optimize (minimize) the
objective function. Notice that both the constraint and the objective function have the same
slope at point C. The slope of the objective function is −1.1. To find the slope of the constraint
U = g(C1,C2) = lnC1 + lnC2, as we did earlier, we first convert it into an implicit function
and then differentiate it with respect to C1. The resulting implicit form is G(C1,C2) =
lnC1 + lnC2 − U = lnC1 + lnC2 − 17.9 = 0. Differentiating this implicit function with
respect to C1, we obtain dC2/dC1 = −[∂G/∂C2]/[∂G/∂C1] = −C2/C1. Setting this result
to the slope of the objective function (−1.1), we obtain −C2/C1 = −1.1 or C2 = 1.1C1.
Substituting this result into the objective function 1.1C1 + C2 = 15 500 and simplifying
yields C∗

1 = $7045.4545 and C∗
2 = $7750. Therefore, the individual must spend $7045.4545

and $7750 in the first and second periods, respectively, to obtain an intertemporal utility of
at least 17.9 units.
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The reader would have noticed that the individual spends more than her income in the first
period. The difference is Y1 −C1 = $5000−$7045.4545 = −$2045.4545, which is achieved
through borrowing. But, the individual’s consumption in the second period is less than her
income in that period. This means that she saves a part of the second period’s income, and
the amount saved is Y2 − C2 = $10 000 − $7750 = $2250. The individual uses this amount
($2250) to pay back the principal borrowed in the first period ($2045.4545) plus the interest
on that ($204.5454).

Example 4. Assume that a consumer buys two goods x1 and x2 and that the unit price of
each good is $1. What should be the minimum expenditure on the two goods if the consumer
wants to obtain at least 3.5 units of total utility from the two goods if the utility function is
of the Cobb–Douglas form: U = f (x1,x2) = x1/2

1 x1/2
2 ?

Solution. Notice that the objective function in this problem is linear and is given by
E = g = (K,L) = 1x1 + 1x2 = x1 + x2. Moreover, the constraint is nonlinear and is given by
U = f (x1,x2) = x1/2

1 x1/2
2 = 3.5. The graphs of the objective function for different values of E

and the constraint are illustrated in Figure 6.2.8(B). As can be seen, the lowest possible graph
of the objective function, given the constraint, is represented by the line DE, and this line
is tangent to the constraint that represents U = 3.5 at point B. Therefore, the coordinates of
point B will give the solution to the problem. If we follow the same procedure as that adopted in
the solutions to the earlier examples, we find that x∗

1 = 3.5, x∗
2 = 3.5, and E∗ = $7. This means

the consumer has to purchase 3.5 units of both goods such that the minimum total expenditure
is E∗ = $7 and that the total utility is at least 3.5 units. Notice the similarity between the
solution to the present problem and the solution to the problem in example 1 above.

6.2.9 Exercises

1. Solve the following NLP problems geometrically:
(i) maximize 	 = f (x1,x2) = √

x1 + x2, subject to 6x1 + x2 ≤ 10 and x1 + 6x2 ≤ 10;
(ii) maximize	= f (x1,x2) = √

x1 +√
x2, subject to x1 ≤ 10, x2 ≤ 10, and x1 + x2 ≥ 5;

(iii) maximize 	= f (x1,x2) = √
x1 ×√

x2, subject to x2
1 + x2

2 ≤ 9.
2. Solve the following NLP problems geometrically:

(i) minimize C = h(x1,x2) = √
x1 + √

x2, subject to
√

x1
√

x2 ≥ 10; (ii) minimize C =
h(x1,x2) = 6x1 + 3x2, subject to

√
x1

√
x2 ≥ 50; (iii) minimize

√
x1

√
x2, subject to

x1 ≤ 4, x2 ≤ 3, and x1 + x2 ≥ 6.

Web supplement: S6.2.10 Mathematica applications

6.3 Algebraic solution of NLP problems: Kuhn–Tucker conditions

6.3.1 Introduction

In Chapter 4 we discussed how to optimize a function, whether linear or nonlinear, without
constraints and with linear or nonlinear equality constraints using the methods of the classical
approach. We found there that the FOC for a relative optimum of the function was that the
first partial derivative(s) of the function with respect to each choice variable(s) was (were)
zero in the case of unconstrained problems and the first partial derivative(s) of the Lagrangian
function with respect to each choice variable(s) was (were) zero in the case of constrained
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problems. This FOC in some problems could give us solutions which involved negative
optimal values for the choice variables. Although we did not invoke there the nonnegativity
condition, all our application examples in Chapter 4 and in Section 6.2 in the present chapter
were chosen such that the optimal solution involved only nonnegative values for the choice
variables. The reason was that it would be nonsensical for a producer to produce or for a
consumer to consume negative quantities of some good.

One might wonder what impact it would make on the optimal solution if we invoked
the nonnegativity condition explicitly. As an example, consider the function y = f (x) =
1 + [6x/(x4 + 2)] whose graph on the closed interval [−4, 4] on its domain is illustrated in
Figure 6.3.1(A). As can be seen, the minimum of the function y = f (x) = 1 +[6x/(x4 + 2)]
on the closed interval [−4, 4] on its domain occurs at point A (when x < 0). If our
problem were to minimize the present function without the nonnegativity restriction, then
we would choose this point. But, if we restrict the domain of the function to the closed
interval [0, 4], the minimum of the function is certainly different: it is at point B (=1
when x = 0).

As another example, consider the function y = g(x) = 1 − [6x/(x4 + 2)] whose graph on
the closed interval [−4, 4] on its domain is illustrated in Figure 6.3.1(B). This graph shows
that the maximum of the function on the closed interval [−4, 4] on its domain occurs at
point D (when x < 0). If our problem were to maximize the present problem without the
nonnegativity restriction, then we would choose this maximum point. But, if we restrict the
domain of the function to the closed interval [0, 4], the maximum of the function is different:
it is at point E (=1 when x = 0).

The above two examples show the effect of nonnegative restrictions on the values that
the choice variable(s) can take at the optimum. A curious reader might wonder whether one
can develop a FOC (similar to those in the case of free or equality-constrained optimization
problems) given nonnegativity and inequality constraint(s). The answer is yes; and this FOC
was developed by H. W. Kuhn and A. W. Tucker and, hence, is known as the Kuhn–Tucker
conditions. Before we begin the presentation and applications of these conditions, let us
consider the general, not the specific as given above, consequence of the nonnegativity
restrictions.
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6.3.2 Nonnegativity condition and Kuhn–Tucker FOCs for optima
of univariate functions

Suppose that we wish to maximize a univariate function subject only to the nonnegative
restriction. This problem can be written as

Maximize y = f (x), subject to x ≥ 0 (6.3.1)

The problem in (6.3.1) may lead to any one of the three types of solutions illustrated in
Figure 6.3.2. The graph in Figure 6.3.2(A) shows that the function attains a relative maximum
when x = 0 (at point A). Notice that the derivative of the function at x = 0 is zero. Since this
maximum occurs at the boundary of the feasible region (on the vertical axis), it is called a
boundary solution. The graph in Figure 6.3.2(B) shows that a relative maximum occurs at
point B where the derivative of the function is zero; that is, f '(x) = 0 at x = 0. Since this
relative maximum occurs at an interior point of the feasible region, it is called an interior
solution. The graphs in Figure 6.3.2(C) show, as in Figure 6.3.2(A), boundary solutions at
points C and D. At these two points we have f '(x) < 0 at x = 0. What these results imply
is that, if we invoke the nonnegativity condition, a local maximum of the function is not
restricted to the point where f '(x) = 0 (as in the FOC for a free maximization problem
without nonnegativity restriction), but it may occur even at boundary points where f '(x)< 0.
These results are presented in Table 6.3.1. We can combine the three results in Table 6.3.1
to obtain

f '(x) ≤ 0,x> 0, and x f '(x) = 0 (6.3.2)

Let us now interpret the results in (6.3.2). The first one, f '(x) ≤ 0, states that at the local
maximum the first derivative must be either negative or zero. The second one, x> 0, is just

Table 6.3.1

Point f '(x) x

Figure 6.3.2(A) A 0 0
Figure 6.3.2(B) B 0 > 0
Figure 6.3.2(C) C, D < 0 0
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a restatement of the nonnegativity condition. The third one, x f '(x) = 0, says that if x > 0
then the first derivative must be zero; or if x = 0 then the first derivative must be either
negative or zero. Therefore, as observed in Figure 6.3.2, the three results in (6.3.2) constitute
the Kuhn–Tucker FOCs (or necessary conditions) for a local maximum with nonnegativity
restriction. In fact, as we will see in Section 6.4.2, they are also the sufficient conditions (and
the conditions for a global maximum) if certain conditions are satisfied.

Now suppose that our aim is to minimize a univariate function subject only to the
nonnegative restriction. This problem can be written as

Minimize y = f (x), subject to x ≥ 0 (6.3.3)

The problem in (6.3.3) may lead to, as in the case of the maximization problem discussed
above, any one of the three types of solutions illustrated in Figure 6.3.3. The graph
in Figure 6.3.3(A) shows that the function attains a relative minimum when x = 0 (at
point H). But the derivative of the function at x = 0 is zero; that is, f '(x) = 0 at x = 0.
Since this minimum occurs at the boundary of the feasible region (on the vertical axis), it is
a boundary solution. Figure 6.3.3(B) shows that a relative minimum occurs at point I where
the derivative of the function is zero; that is, f '(x) = 0 at x> 0. Since this relative minimum
occurs at an interior point of the feasible region, it is an interior solution. Figure 6.3.3(C)
illustrates, as in Figure 6.3.3(A), boundary solutions at points J and K. At these two points
we have f '(x)> 0 and x = 0. What these results imply is that, if we invoke the nonnegativity
condition, a local minimum of the function is not restricted to the point where f '(x) = 0 (as
in the FOC for a free minimization problem without nonnegativity restriction), but it may
occur even at boundary points where f '(x) > 0. These results are presented in Table 6.3.2.
We can combine the three results in Table 6.3.2 to obtain

f '(x) ≥ 0,x ≥ 0, and x f '(x) = 0 (6.3.4)

Let us now interpret the results in (6.3.4). The first one, f '(x) ≥ 0, states that at the
local minimum the first derivative must be either positive or zero. The second one, x ≥ 0,
is a restatement of the nonnegativity condition. The third one, x f '(x) = 0, says that if
x > 0 then the first derivative must be zero; or if x = 0 then the first derivative must be
either positive or zero. Therefore, as observed in Figure 6.3.3, the three results in (6.3.4)
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Table 6.3.2

Point f '(x) x

Figure 6.3.3(A) H 0 0
Figure 6.3.3(B) I 0 > 0
Figure 6.3.3(C) J, K > 0 0

constitute the Kuhn–Tucker FOCs (or necessary conditions) for a local minimum with
nonnegativity restriction. As before, as we will see in Section 6.4.2, they are also the
sufficient conditions (and the conditions for a global minimum) if certain conditions are
satisfied.

6.3.3 Nonnegativity condition and Kuhn–Tucker FOCs for optima of
multivariate functions

So far we have been concerned with the problem of optimizing a simple univariate function
with the nonnegativity restriction. Let us now consider the case of optimizing a more general
problem involving n variables but with, again, the nonnegativity restriction. Let us begin
with the problem

Maximize y = f (x1,x2, . . . ,xn), subject to xj ≥ 0, where j = 1,2, . . . ,n (6.3.5)

Generalizing the statements in (6.3.2), we can write the Kuhn–Tucker FOCs for a local
maximum of the function in problem (6.3.5) as

fj ≤ 0, xj ≥ 0, and xj fj = 0 (6.3.6)

Similarly, the general minimization problem is

Minimize y = f (x1,x2, . . . ,xn), subject to xj ≥ 0, where j = 1,2, . . . ,n (6.3.7)

As in the case of the above maximization problem, generalizing the statements in (6.3.4), we
can write the Kuhn–Tucker FOCs for a local minimum of the function in problem (6.3.7) as

fj ≥ 0, xj ≥ 0, and xj fj = 0 (6.3.8)

6.3.4 Alternative Kuhn–Tucker FOCs for optima of univariate functions with
one constraint: Lagrangian forms

We can obtain the Kuhn–Tucker FOCs (or the necessary conditions) alternatively using
Lagrangian functions. Assume that we want to maximize the problem (6.3.1) with one
inequality constraint g(x) ≤ c. Suppose that we treat the inequality constraint as an
equality constraint and disregard the nonnegativity restriction. Then we can set up the
Lagrangian function (exactly as a classical constrained optimization problem we dealt with
in Chapter 4) as

L = f (x) +λ[c − g(x)] (6.3.9)
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We can now differentiate partially the Lagrangian function in equation (6.3.9) with respect
to x and λ (the Lagrangian multiplier) to yield

Lx = f '(x) −λg'(x) ≤ 0,x ≥ 0,xLx = 0,Lλ = c − g(x) ≥ 0,λ≥ 0, and λLλ = 0
(6.3.10)

which constitute the Kuhn–Tucker FOCs (or necessary conditions) for a global maximum
of a univariate function with nonnegativity restriction and with one inequality (linear or
nonlinear) constraint.

We can obtain similar Kuhn–Tucker FOCs (or necessary conditions) for the univariate
minimization problem in (6.3.3) with one inequality constraint g(x) ≥ c. Assume that we
want to minimize the problem (6.3.3) subject to the inequality (linear or nonlinear) constraint
g(x) ≥ c and the nonnegativity restriction. Then, as we set up equation (6.3.9), we can set up
the Lagrangian function as

L = f (x) +λ[c − g(x)] (6.3.11)

As above, we can differentiate partially the Lagrangian function in equation (6.3.11) with
respect to x and λ to yield

Lx = f '(x) −λg'(x) ≥ 0,x ≥ 0,xLx = 0,Lλ = c − g(x) ≤ 0,λ≥ 0, and λLλ = 0
(6.3.12)

which constitute the Kuhn–Tucker FOCs (or necessary conditions) for a global minimum
of a univariate function with nonnegativity restriction and with one inequality (linear or
nonlinear) constraints.

6.3.5 Kuhn–Tucker FOCs for optima of multivariate functions with many
constraints: Lagrangian forms

Assume that our problem now is as the one given in (6.3.5). Assume also that, in addition
to the nonnegativity restriction, we also face i, i = 1,2, . . . ,m, inequality constraints,
gi(x1,x2, . . . ,xn) ≤ ci. Then, exactly as we set up the Lagrangian function in equation (6.3.9),
we can set the Lagrangian function of the present problem as

L = f (x1,x2, . . . ,xn) +
m∑

i=1

λ i[ci − gi(x1,x2, . . . ,xn)] (6.3.13)

The Kuhn-Tucker FOCs for a local maximum in the case of the present multivariable,
multiconstrained problem (the multivariable, multiconstrained analogue of the conditions
given in (6.3.10), which pertains to the maximum of a univariate, single-constrained problem)
can be written as

Lj ≤ 0,xj ≥ 0,xj Lj = 0,Lλ i ≥ 0,λ i ≥ 0, and λi Lλ i = 0 (6.3.14)

Assume now that our problem is the one given in problem (6.3.7). As above, assume also
that, in addition to the nonnegativity restriction, we also face i, i = 1,2, . . . ,m, inequality
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constraints, gi(x1,x2, . . . ,xn) ≥ ci. Then we can set up the Lagrangian function of the present
problem as

L = f (x1,x2, . . . ,xn) +
m∑

i=1

λi[ci − gi(x1,x2, . . . ,xn)] (6.3.15)

The Kuhn–Tucker FOCs for a local minimum in the case of the present multivariable,
multiconstrained problem (the analogue of the conditions given in (6.3.12) pertaining to
the minimum of a univariate, single-constrained problem) can be written as

Lj ≥ 0,xj ≥ 0,xj Lj = 0,Lλ i ≤ 0,λi ≥ 0, and λi Lλ i = 0 (6.3.16)

6.3.6 Economic interpretations of Kuhn–Tucker maximum conditions

Let us first present a general interpretation of the Kuhn–Tucker conditions for a NLP
maximum problem, presented in (6.3.14). The first term, Lj ≤ 0, called the marginal condition,
is to conform to the first inequality ( f '(x) ≤ 0) in (6.3.2). The second term, xj ≥ 0, is to conform
to the nonnegativity restriction. The third term, xj Lj = 0, represents the complementary
slackness condition. This term shows that if xj > 0, then Lj = 0; or if xj = 0, then Lj < 0.
Notice that they both could be zero simultaneously (that is, xj = 0 and Lj = 0). The fourth
term, Lλ i ≥ 0, is a mere restatement of the inequality constraint. Since the shadow price of a
particular resource cannot be negative, the fifth term, the ith Lagrange multiplier (λi), must
be nonnegative (λi ≥ 0). The sixth term, λiLλi = 0, represents the complementary slackness
in the case of the Lagrange multiplier. It shows that if the ith Lagrange multiplier is positive
(λi > 0) then Lλ i = 0; or if Lλ i ≥ 0, then λi = 0; or if λi = 0, then Lλ i = 0.

We now provide an economic interpretation of the Kuhn–Tucker conditions for a maxi-
mum. Assume that the problem that gave rise to the Lagrangian function in equation (6.3.13) is
a firm’s problem of maximizing its total profit from the production of xj (where j = 1,2, . . . ,n)
goods using ci (where i = 1,2, . . . ,m) factors. Then the following statements are valid: fj
represents the marginal profit of the jth good, λi stands for the shadow price or the imputed
cost of the ith factor, ci shows the total available quantity of the ith factor, gi

j denotes the

quantity of the ith factor employed in producing the marginal unit of the jth good, λi gi
j

represents the marginal imputed cost of the ith factor employed in producing the marginal
unit of the jth good, and

∑m,n
i=1,j=1 λi gi

j denotes the total marginal imputed cost of the jth

good. Given these, the first marginal condition (Lj = fj −∑m,n
i=1,j=1 λi gi

j ≤ 0) in (6.3.14)
implies that the marginal profit of the jth good must be less than or equal to its total marginal
imputed cost. If x∗

j > 0 in the optimum, then the complementary slackness condition implies
that the marginal profit of the jth good must be equal to its total marginal imputed cost
(Lj = fj −∑m,n

i=1,j=1 λi gi
j = 0). If the marginal profit of the jth good is less than its total

marginal imputed cost (Lj = fj −∑m,n
i=1,j=1 λi gi

j < 0), then the complementary slackness
condition implies that the jth good will not be produced in the optimum (x∗

j = 0). Another
noteworthy term in condition (6.3.14) is Lλi ≥ 0, which states that the firm must operate
within its resource constraint. We know that the shadow price or the imputed cost of the
ith factor cannot be negative (that is, λi ≥ 0). Then the complementary slackness condition
(λiLλi = 0) in (6.3.14) requires that if the ith factor is not fully used in the production process
(if Lλi = ci − gi(x1,x2, . . . ,xn) > 0), then its imputed cost must be zero (or λi = 0). If the
ith factor is completely used in the production process (if Lλi = ci − gi(x1,x2, . . . ,xn) = 0),



[12:21 3/11/2011 5640-Ummer-Ch06.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 336 316–352

336 Nonlinear programming

then its imputed cost must be positive (that is, λi > 0). In addition to the interpretation
we just gave, we can also give another interpretation to the Lagrange multiplier, λi. We
know from Section 4.4.9 that λi is a measure of the effect, in the optimum, on the objective
function of a change in the ith constraint. If the ith constraint is binding in the optimum (if
Lλ i = ci −gi(x1,x2, . . . ,xn) = 0), then (as required by the complementary slackness condition)
profit will increase (decrease) if the ith constraint is increased (decreased). On the other hand,
if the ith constraint is not binding in the optimum (if Lλi = ci − gi(x1,x2, . . . ,xn)> 0), then
(again as required by the complementary slackness condition) a change in the ith constraint
will leave profit unchanged. This completes the economic interpretation of the Kuhn–Tucker
condition for a maximum presented in (6.3.14).

6.3.7 Economic interpretations of Kuhn–Tucker minimum conditions

We begin with a general interpretation of the Kuhn–Tucker conditions for a minimum of
NLP problems, presented in (6.3.16). The first marginal condition, Lj ≥ 0, is to conform
to the first inequality (f '(x) ≥ 0) in (6.3.4). The second term, xj ≥ 0, is to conform to the
nonnegativity restriction. The third term, xj Lj = 0, presents the complementary slackness
condition. This term shows that if xj > 0, then Lj = 0; or if xj = 0, then Lj ≥ 0; or if xj = 0,
then Lj = 0. The fourth term, Lλ i ≤ 0, is only a restatement of the inequality constraint. Since
the imputed value of a particular product cannot be negative, the ith Lagrange multiplier
(λi) in the fifth term must be nonnegative (λi ≥ 0). The sixth term, λi Lλ i = 0, represents the
complementary slackness condition in the case of the Lagrange multiplier. It shows that if
the ith Lagrange multiplier is positive (λi > 0), then Lλ i = 0; or if Lλ i ≤ 0, then λi = 0.

We now provide an economic interpretation of the Kuhn–Tucker conditions for a mini-
mum. Assume that the problem that gave rise to the Lagrangian function in equation (6.3.15)
is a firm’s problem of minimizing its total cost of using xj ( j = 1,2, . . . ,n) factors in
producing given quantities of i (i = 1,2, . . . ,m) goods. Then the following statements are
valid: fj represents the marginal cost of the jth factor, λi stands for the imputed value of
the ith good, ci shows the quantity of the ith good, gi

j denotes the quantity of the ith good

produced using the marginal unit of the jth factor, λi gi
j represents the total marginal imputed

value of the ith good produced using the marginal unit of the jth factor, and
∑m,n

i=1,j=1λi gi
j

denotes the total marginal imputed value of the ith good produced using the marginal unit

of the jth factor. Given these, the first marginal condition
(
Lj = fj −∑m,n

i=1,i=1λi gi
j ≥ 0

)
in (6.3.16) implies that the marginal cost of the jth factor must be greater than or equal
to the total marginal imputed value of the ith good produced using the marginal unit of
the jth factor. If x∗

j > 0 in the optimum, then the complementary slackness condition in
(6.3.16) implies that the marginal cost of the jth good must be equal to the marginal imputed

value
(
Lj = fj −∑m,n

i=1,j=1λi gi
j = 0

)
. If the marginal cost of the jth factor is greater than the

marginal imputed value, then the complementary slackness condition implies that the jth
factor will not be used in the optimum (or x∗

j = 0). Another noteworthy term in condition
(6.3.16) is Lλi ≤ 0, which states (since Lλi ≤ 0 is a mere restatement of the constraint
gi(x1,x2, . . . ,xn) ≥ ci) that the firm must operate within its output constraints. We know
that the imputed value of the ith good cannot be negative (λi ≥ 0). Then the complementary
slackness condition (λi Lλi = 0) in (6.3.16) requires that if the constraint of the ith good
is not binding, then its imputed value must be zero (λi = 0). If that constraint is binding,
then its imputed value must be positive (λi > 0). In addition to these interpretations, we
can also give another interpretation (as in the last section) to the Lagrange multiplier, λi.
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We know that λi is a measure of the effect, in the optimum, on the objective function
of a change in the ith constraint. If the ith constraint is binding in the optimum, then (as
required by the complementary slackness condition) the cost will increase (decrease) if the
ith constraint is increased (decreased). On the other hand, if the ith constraint is not binding
in the optimum, then (again as required by the complementary slackness condition) a change
in the ith constraint will leave cost unchanged. This completes the economic interpretation
of the Kuhn–Tucker condition for a minimum presented in (6.3.16).

6.3.8 Examples of Kuhn–Tucker maximum conditions

As an example of the application of the Kuhn–Tucker maximum conditions in (6.3.14),
consider the problem in the first example in Section 6.2.5, which we solved geometri-
cally. This problem was to maximize 	 = f (x1,x2) = 2x1 + 4x2 subject to constraints
g1(x1,x2) = x2

1 + x2
2 ≤ 4 and g2(x1,x2) = x2

1 + x2 ≤ 3. Therefore, the Lagrangian function
corresponding to equation (6.3.13) in the present example can be set up, with i = 1,2 and
j = 1,2, as

L = f (x1,x2, . . . ,xn) +
m∑

i=1

λ i[ci − gi(x1,x2, . . . ,xn)]

= 2x1 + 4x2 +λ1[4 − x2
1 − x2

2]+λ2[3 − x2
1 − x2] (6.3.17)

The Kuhn–Tucker conditions corresponding to (6.3.14) in this example are

L1 = 2 − 2λ1x1 − 2λ2x1 ≤ 0,x1 ≥ 0,x1 L1 = 0,L2 = 4 − 2λ1x2 −λ2 ≤ 0,x2 ≥ 0,

x2L2 = 0,Lλ1 = 4 − x2
1 − x2

2 ≥ 0,λ1 ≥ 0,λ1 Lλ1 = 0,Lλ2 = 3 − x2
1 − x2 ≥ 0,

λ2 ≥ 0, and λ2Lλ2 = 0 (6.3.18)

Our problem now is to find the values of x1, x2, λ1, and λ2 that will satisfy all the
conditions in (6.3.18). We have already obtained, from the geometric solution to the present
problem in Section 6.2.5, the optimal values of the choice variables: x∗

1 = 0.894427 and
x∗

2 = 1.78885. Substituting these values in L1 and L2 and simplifying yields λ∗
1 = 1.11704

and λ∗
2 = 0.

Let us now check whether the above optimal values satisfy the Kuhn–Tucker conditions in
(6.3.18). If we substitute the optimal values into L1, L2, Lλ1 , and Lλ2 in (6.3.18), we can see
that they indeed satisfy them. Moreover, these optimal values are such that x1 ≥ 0, x2 ≥ 0,
λ1 ≥ 0, and λ2 ≥ 0. Since x∗

1 > 0, x∗
2 > 0, and λ∗

1 > 0, one can verify that L1 = 0, L2 = 0,
and Lλ1 = 0, as required by the complementary slackness condition. And, since λ2 = 0, it
can be verified that Lλ2 > 0 (again, as required by the complementary slackness condition).
Therefore, the optimal values x∗

1 = 0.894427, x∗
2 = 1.78885, λ∗

1 = 1.11704, and λ∗
2 = 0 satisfy

all the Kuhn–Tucker conditions for a local maximum of the objective function subject to the
constraints in the present NLP problem.

As another example, consider the problem in the second example in Section 6.2.5,
which we solved geometrically. This problem was to maximize 	 = h(x1,x2) = 50x1 +
50x2 − 5x2

1 − 5x2
2 subject to constraints g3(x1,x2) = x1 ≤ 10, g4(x1,x2) = x2 ≤ 4, and
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g5(x1,x2) = x1 + 3x2 ≤ 15. Therefore, the Lagrangian function corresponding to equation
(6.3.13) in the present example can be set up, with i = 3,4,5 and j = 1,2, as

L = f (x1,x2, . . . ,xn) +
m∑

i=1

λ i[ci − gi(x1,x2, . . . ,xn)]

= 50x1 + 50x2 − 5x2
1 − 5x2

2 +λ3[10 − x1]+λ4[4 − x2]+λ5[15 − x1 − 3x2] (6.3.19)

The Kuhn–Tucker conditions corresponding to (6.3.14) in this example are

L1 = 50 − 10x1 −λ3 −λ5 ≤ 0,x1 ≥ 0,x1 L1 = 0,L2 = 50 − 10x2 −λ4 − 3λ5 ≤ 0,

x2 ≥ 0,x2 L2 = 0,Lλ3 = 10 − x1 ≥ 0,λ3 ≥ 0,λ3 Lλ3 = 0,Lλ4 = 4 − x2 ≥ 0,λ4 ≥ 0,

λ4 Lλ4 = 0,Lλ5 = 15 − x1 − 3x2 ≥ 0,λ5 ≥ 0, and λ5 Lλ5 = 0 (6.3.20)

Our problem now is to find the values of x1, x2, λ3, λ4, and λ5 that will satisfy all the
conditions in (6.3.20). We have already obtained, from the geometric solution to the present
problem in Section 6.2.5, the optimal values of the choice variables: x∗

1 = 4.5 and x∗
2 =

3.5. Substituting these values into L1 and L2 and simplifying yields 5 − λ3 − λ5 = 0 and
15 −λ4 + 3λ5 = 0. One set of solutions for the last SLSEs is λ∗

3 = 0, λ∗
4 = 0, and λ∗

5 = 5.
Let us now check whether the above optimal values satisfy the Kuhn–Tucker conditions

in (6.3.20). If we substitute the optimal values into L1 and L2 in (6.3.20), we can see that they
indeed satisfy these inequalities. Moreover, these optimal values are such that x1 ≥ 0, x2 ≥ 0,
λ3 ≥ 0, λ4 ≥ 0, and λ5 ≥ 0. Since x∗

1 > 0 , x∗
2 > 0, L1 = 0, and L2 = 0, the complementary

conditions x1 L1 = 0 and x2L2 = 0 are also satisfied. Besides, we obtain Lλ3 = 10 − x∗
1 =

10−4.5 = 5.5 ≥ 0, Lλ4 = 4− x∗
2 = 4−3.5 = 0.5 ≥ 0, and Lλ5 = 15− x∗

1 −3x∗
2 = 15−4.5−

3 × 3.5 = 0. Since λ∗
3 = 0, λ∗

4 = 0, and λ∗
5 = 5 and since Lλ3 > 0, Lλ4 > 0, and Lλ5 = 0, all

the complementary slackness conditions in (6.3.20) are also satisfied. Therefore, the optimal
values x∗

1 = 4.5 and x∗
2 = 3.5, and λ∗

3 = 0, λ∗
4 = 0, and λ∗

5 = 5 satisfy all the Kuhn–Tucker
conditions for a local maximum of the objective function subject to the constraints in the
present NLP problem.

6.3.9 Examples of Kuhn–Tucker minimum conditions

As an example of the application of the Kuhn–Tucker minimum conditions in (6.3.16),
consider the problem in the first example in Section 6.2.6, which we solved geometrically.
This problem was to minimize C = j(x1,x2) = (x1 − 5)2 + (x2 − 5)2 = x2

1 − 10x1 + x2
2 −

10x2 + 50 subject to the constraints g6(x1,x2) = x1 + x2 ≤ 6 or g6(x1,x2) = −x1 + −x2 ≥
−6 and g7(x1,x2) = x1 + 2x2 ≥ 8. Therefore, the Lagrangian function corresponding to
equation (6.3.15) in the present example can be set up, with i = 6,7 and j = 1,2, as

L = j(x1,x2, . . . ,xn) +
m∑

i=1

λ i[ci − gi(x1,x2, . . . ,xn)]

= 50 + x2
1 − 10x1 + x2

2 − 10x2 +λ6[−6 + x1 + x2]+λ7[8 − x1 − 2x2] (6.3.21)
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The Kuhn–Tucker conditions corresponding to (6.3.16) in this example are

L1 = 2x1 − 10 +λ6 −λ7 ≥ 0,x1 ≥ 0,x1L1 = 0,L2 = 2x2 − 10 +λ6 − 2λ7 ≥ 0,x2 ≥ 0,

x2 L2 = 0,Lλ6 = 6 − x1 − x2 ≤ 0,λ6 ≥ 0,λ6 Lλ6 = 0,Lλ7 = 8 − x1 − 2x2 ≤ 0,

λ7 ≥ 0, and λ7 Lλ7 = 0 (6.3.22)

As earlier, our problem now is to find the values of x1, x2, λ6, and λ7 that will satisfy
all the conditions in (6.3.22). We have already obtained, from the geometric solution to the
present problem in Section 6.2.6, the optimal values of the choice variables: x∗

1 = x∗
2 = 3.

Substituting these values into L1 and L2 in (6.3.22) and simplifying yields λ∗
6 = 4 and λ∗

7 = 0.
We can now check whether the above optimal values satisfy the Kuhn–Tucker conditions

in (6.3.22). If we substitute the optimal values into L1 and L2 in (6.3.22), we can see that
they indeed satisfy them. Moreover, these optimal values satisfy x1 ≥ 0, x2 ≥ 0, λ6 ≥ 0,
and λ7 ≥ 0. Since x∗

1 = x∗
2 = 3 > 0, L1 = 0, and L2 = 0, the complementary slackness

conditions x1L1 = 0 and x2 L2 = 0 are also satisfied. From the inequalities Lλ6 and Lλ7 in
(6.3.22) we obtain Lλ6 = 0 and Lλ7 = −1 < 0. Since λ∗

6 = 4 and λ∗
7 = 0 and since Lλ6 = 0

and Lλ7 = −1< 0, all the complementary slackness conditions are satisfied. Therefore, the
optimal values x∗

1 = x∗
2 = 3, λ∗

6 = 4, and λ∗
7 = 0 satisfy all the Kuhn–Tucker conditions

for a local minimum of the objective function subject to the constraints in the present
NLP problem.

As another example, consider the problem in the second example in Section 6.2.6, which
we solved geometrically. This problem was to minimize C = k(x1,x2) = x1 + x2 subject
to constraints g8(x1,x2) = 0.5x1 + x2 ≥ 3, g9(x1,x2) = x1 + 0.5x2 ≥ 3, and g10(x1,x2) =
x2

1 + x2
2 ≥ 8. Therefore, the Lagrangian function corresponding to equation (6.3.16) in the

present example can be set up, with i = 8,9,10 and j = 1,2, as

L = k(x1,x2, . . . ,xn) +
∑m

i=1
λ i[ci − gi(x1,x2, . . . ,xn)]

= x1 + x2 +λ8[3 − 0.5x1 − x2]+λ9[3 − x1 − 0.5x2]+λ10[8 − x2
1 − x2

2] (6.3.23)

The Kuhn–Tucker conditions corresponding to (6.3.16) in this example are

L1 = 1 − 0.5λ8 −λ9 − 2λ10x1 ≥ 0,x1 ≥ 0,x1 L1 = 0,L2 = 1 −λ8 − 0.5λ9 − 2λ10x2 ≥ 0,

x2 ≥ 0,x2 L2 = 0,Lλ8 = 3 − 0.5x1 − x2 ≤ 0,λ8 ≥ 0,λ8 Lλ8 = 0,

Lλ9 = 3 − x1 − 0.5x2 ≤ 0,λ9 ≥ 0,λ9 Lλ9 = 0,Lλ10 = 8 − x2
1 − x2

2 ≤ 0,

λ10 ≥ 0, and λ10 Lλ10 = 0 (6.3.24)

As in the previous example, our problem here is to find the values of x1, x2, λ8, λ9, and λ10

that will satisfy all the conditions in (6.3.24). We have already obtained, from the geometric
solution to the present problem presented in Section 6.2.6, the optimal values of the choice
variables: x∗

1 = x∗
2 = 2. Substituting these values into L1 and L2 and simplifying will yield

λ∗
8 = λ∗

9 = λ∗
10 = 0.1818.

We can now check whether the above optimal values satisfy the Kuhn–Tucker conditions
in (6.3.24). If we substitute the above optimal values into L1 and L2 in (6.3.24), we can
see that they indeed satisfy these inequalities. Moreover, these optimal values are such that
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x∗
1 ≥ 0, x∗

2 ≥ 0, λ8 ≥ 0, λ9 ≥ 0, and λ10 ≥ 0. Since x∗
1 = x∗

2 = 10 > 0, L1 = 0, and L2 = 0,
the complementary slackness conditions x1 ∂L1 = 0 and x2 L2 = 0 are also satisfied. We
can also obtain Lλ8 = 0, Lλ9 = 0, and Lλ10 = 0. Since λ∗

8 = λ∗
9 = λ∗

10 = 0.1818 and since
Lλ8 = 0, Lλ9 = 0, and Lλ10 = 0, all the complementary slackness conditions in (6.3.24) are
satisfied. Therefore, the optimal values x∗

1 = x∗
2 = 2 and λ∗

8 = λ∗
9 = λ∗

10 = 0.1818 satisfy all
the Kuhn–Tucker conditions for a local minimum of the objective function subject to the
constraints in the present NLP problem.

6.3.10 Trial-and-error method of solving NLP problems

So far we have been using the geometric forms of the objective function and the constraints
of NLP problems to find the values of the choice variables in the problem that optimize
the objective function subject to the constraints and satisfy the associated Kuhn–Tucker
conditions. Let us now attempt to see whether we can find these optimal values of the choice
variables from the corresponding Kuhn–Tucker conditions. This is basically, as we outline
below, a trial-and-error method.

Suppose that we wish to maximize 	 = f (x1,x2) = x1x2 subject to the constraint
g(x1,x2) = x1 + x2 ≤ 10 = c. Then, following our discussion in Section 6.3.5, the Lagrangian
function associated with this problem can be set up as

L = f (x1,x2) +λ[c − g(x1,x2) = x1x2 +λ[10 − x1 − x2] (6.3.25)

We can derive from function (6.3.25) the Kuhn–Tucker maximum conditions

L1 = x2 −λ≤ 0,x1 ≥ 0,x1L1 = 0,L2 = x1 −λ≤ 0,x2 ≥ 0,

x2L2 = 0,Lλ = 10 − x1 − x2 ≥ 0,λ≥ 0, and λLλ = 0 (6.3.26)

Let us now attempt to find the values of x1, x2, and λ that satisfy all the Kuhn–Tucker
maximum conditions in (6.3.26). Since x1 and x2 must be nonnegative, suppose that we
begin by choosing the lowest possible nonnegative values: x1 = x2 = 0. When x1 = x2 = 0,
the first two marginal conditions (L1 and L2) imply that −λ≤ 0 or λ≥ 0. When λ≥ 0, the
last complementary slackness condition (λLλ = 0) implies that the partial derivative of the
Lagrangian function with respect to the Lagrangian multiplier (Lλ) must be zero. But, in
fact, it is 10 (Lλ = 10 − x1 − x2 = 10 − 0 − 0 = 10 ≥ 0), which is contradictory. Therefore,
x1 = x2 = 0 does not satisfy the associated Kuhn–Tucker conditions.

The above trial suggests that we need to use positive values for x1 and x2. If we continue
to carry out trials similar to the one above with x1 > 0 and x2 > 0, we can see that any value
below or above x1 = x2 = 5 does not satisfy the Kuhn–Tucker maximum conditions. With
x1 = x2 = 5 the first two complementary slackness conditions imply that L1 = L2 = 0 and, for
this to happen, λmust be 5. When λ= 5, the last complementary slackness condition implies
that Lλ = 0 and this is true only when x1 = x2 = 5. These results imply that x∗

1 = x∗
2 = 5

and λ = 5 satisfy all the Kuhn–Tucker maximum conditions and, therefore, the function
	= f (x1,x2) = x1x2 attains a maximum subject to the constraint g(x1,x2) = x1 + x2 ≤ 10;
and the maximum of the function is 	∗ = f (x∗

1,x
∗
2) = x∗

1x∗
2 = 5 × 5 = 25.

As another example, suppose that we wish to minimize the function C = h(x1,x2) =
x2

1 + x2
2 subject to the constraint g(x1,x2) = x1 + x2 ≥ 50. Then, following our discussion in
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Section 6.3.5, the Lagrangian function associated with this problem can be set up as

L = f (x1,x2) +λ[c − g(x1,x2)] = x2
1 + x2

2 +λ[50 − x1 − x2] (6.3.27)

We can derive from function (6.3.27) the Kuhn–Tucker minimum conditions

L1 = 2x1 −λ≥ 0,x1 ≥ 0,x1L1 = 0,L2 = 2x2 −λ≥ 0,x2 ≥ 0,

x2L2 = 0,Lλ = 50 − x1 − x2 ≤ 0,λ≥ 0, and λLλ = 0 (6.3.28)

As before, let us attempt to find the values of x1, x2, and λ that satisfy all the Kuhn–Tucker
minimum conditions in (6.3.28). Since x1 and x2 must be nonnegative, suppose that we begin
by choosing the lowest possible nonnegative value: x1 = x2 = 0. When x1 = x2 = 0, the
first two marginal conditions (L1 and L2) imply that −λ ≥ 0 or λ ≤ 0. We know from the
second condition in (6.3.28) that λ cannot be negative. When λ= 0, the last complementary
slackness (λLλ = 0) condition implies that the partial derivative of the Lagrangian function
with respect to the Lagrangian multiplier (Lλ) must be nonpositive. But, in fact, it is 50
(Lλ = 50 − x1 − x2 = 50 − 0 − 0 = 50 ≥ 0), which is contradictory. Therefore, x1 = x2 = 0
does not satisfy the associated Kuhn–Tucker conditions.

As in the last example, the above trial for the present example suggests that we need
to use positive values for x1 and x2. If we continue to carry out trials similar to the one
above with x1 > 0 and x2 > 0, we can see that any value below or above x1 = x2 = 25
does not satisfy the Kuhn–Tucker minimum conditions. With x1 = x2 = 25 the first two
complementary slackness conditions imply that L1 = L2 = 0, and for this to happen λ must
be 50. When λ= 50, the last complementary slackness condition implies that Lλ = 0 and this
is true only when x1 = x2 = 25. These results imply that x∗

1 = x∗
2 = 25 and λ= 50 satisfy all

the Kuhn–Tucker minimum conditions and, therefore, the function C = h(x1,x2) = x2
1 + x2

2
subject to the constraint g(x1,x2) = x1 + x2 ≥ 50 attains a minimum; and the minimum of
the function is C∗ = h(x∗

1,x
∗
2) = x∗2

1 + x∗2
2 = 252 + 252 = 1250.

6.3.11 Application examples

Example 1. Consider the problem in example 1 in Section 6.2.8. Does the solution
we obtained to this problem (x∗

1 = x∗
2 = 3.5) satisfy the Kuhn–Tucker maximum condi-

tions (6.3.14)?

Solution. The problem was to maximize U = f (x1,x2) = x1/2
1 x1/2

2 subject to x1 + x2 ≤ 7.
Then, Lagrangian function for this problem is

L = f (x1,x2) +λ[c − g(x1,x2)] = x1/2
1 x1/2

2 +λ[7 − x1 − x2] (6.3.29)

The Kuhn–Tucker conditions associated with this problem are

L1 = (1/2)x−1/2
1 x1/2

2 −λ≤ 0,x1 ≥ 0,x1 L1 = 0,L2 = (1/2)x1/2
1 x−1/2

2 −λ≤ 0,x2 ≥ 0,

x2 L2 = 0,Lλ = 7 − x1 − x2 ≥ 0,λ≥ 0, and λLλ = 0 (6.3.30)

We know from Section 6.2.8 that the optimal solution to the present problem is x∗
1 =

x∗
2 = 3.5. If we substitute these values into L1 and L2 in (6.3.30), we obtain λ = 0.5.
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Since L1 = 0 and L2 = 0 for x∗
1 = x∗

2 = 3.5 and λ = 0.5, and since x∗
1 = x∗

2 = 3.5 > 0, the
complementary slackness conditions x1 L1 = 0 and x2L2 = 0 are satisfied. Since Lλ = 0 for
x∗

1 = x∗
2 = 3.5, and since λ= 0.5> 0, the last complementary slackness condition (λLλ = 0)

is also satisfied. Therefore, the optimal solution (x∗
1 = x∗

2 = 3.5 and λ= 0.5) to the problem
satisfies all the Kuhn–Tucker maximum conditions.

Example 2. Check whether the solution to the problem in example 2 in Section 6.2.8
satisfies the Kuhn–Tucker maximum conditions in (6.3.14).

Solution. The problem in this example was to maximize Q = f (K,L) = [0.5K−0.5 +
0.5L−0.5]−2 subject to 0.1K + 10L ≤ 100. Then, the Lagrangian function (La) for this
problem is

La = f (K,L) +λ[c − g(K,L)] = [0.5K−0.5 + 0.5L−0.5]−2 +λ[100 − 0.1K − 10L]
(6.3.31)

The Kuhn–Tucker conditions associated with this problem are

LaK = −2[Z]−3(−0.5)K−3/2 − 0.1λ≤ 0,K ≥ 0,

K LaK = 0,LaL = −2[Z]−3(−0.5)L−3/2 − 10λ≤ 0,L ≥ 0,LLaL = 0,

Laλ=100 − 0.1K−10L ≥ 0,λ≥ 0, and λLaλ = 0, where Z =[0.5K−0.5+0.5L−0.5]
(6.3.32)

We know from Section 6.2.8 that the optimal solution to the problem is K∗ = 177.262 and
L∗ = 8.227. If we substitute these values into LaK and LaLin (6.3.32), we obtain λ= 0.4435.
Since LaK = 0 and LaL = 0 for K∗ = 177.262, L∗ = 8.227, and λ = 0.4435 and since
K∗ = 177.262> 0 and L∗ = 8.227> 0, the complementary slackness conditions K LaK = 0
and LLaL = 0 are satisfied. Since Laλ = 0 for K∗ = 177.262 and L∗ = 8.227, and since
λ = 0.4435 > 0, the last complementary slackness condition (λLaλ = 0) is also satisfied.
Therefore, the optimal solution (K∗ = 177.262, L∗ = 8.227, and λ= 0.4435) to the problem
satisfies all the Kuhn–Tucker maximum conditions.

Example 3. Check whether the solution to the problem in example 3 in Section 6.2.8
satisfies the Kuhn–Tucker minimum conditions in (6.3.16).

Solution. The problem in this example was to minimize E = h(C1,C2) = 1.1C1 + C2

subject to U = g(C1,C2) = lnC1 + lnC2 ≥ 17.9. Then, the Lagrangian function for this
problem is

L = h(C1,C2) +λ[c − g(C1,C2)] = 1.1C1 + C2 +λ[17.9 − lnC1 − lnC2] (6.3.33)

The Kuhn–Tucker conditions associated with this problem are

L1 = 1.1 − (λ/C1) ≥ 0,C1 ≥ 0,C1L1 = 0,L2 = 1 − (λ/C2) ≥ 0,C2 ≥ 0,C2 L2 = 0,

Lλ = 17.9 − lnC1 − lnC2 ≤ 0,λ≥ 0, and λLλ = 0 (6.3.34)

We know from Section 6.2.8 that the optimal solution to the problem is C∗
1 = $7045.4545

and C∗
2 = $7750. If we substitute these values into L1 and L2 in (6.3.34) we obtain λ= 7750.
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Since L1 = 0 and L2 = 0 for C∗
1 = 7045.4545, C∗

2 = 7750, and λ = 7750, and since C∗
1 =

$7045.4545 and C∗
2 = $7750, the complementary slackness conditions C1 L1 = 0 and C2L2 =

0 are satisfied. Since Lλ = 0 for C∗
1 = $7045.4545 and C∗

2 = $7750, and since λ= 7750, the
last complementary slackness condition (λLλ = 0) is also satisfied. Therefore, the optimal
solution C∗

1 = 7045.4545, C∗
2 = 7750, and λ= 7750 to the problem satisfies all the Kuhn–

Tucker minimum conditions.

Example 4. Does the solution (x∗
1 = 3.5, x∗

2 = 3.5, and E∗ = $7) obtained for the problem
in example 4 in Section 6.2.8 satisfy the Kuhn–Tucker minimum conditions (6.3.16)?

Solution. The problem in this example was to minimize E = g = (K,L) = 1x1 + 1x2 =
x1 + x2 subject to U = f (x1,x2) = x1/2

1 x1/2
2 = 3.5. Then, the Lagrangian function for this

problem is

L = g(x1,x2) +λ[c − g(x1,x2)] = x1 + x2 +λ[3.5 − x1/2
1 x1/2

2 ] (6.3.35)

The Kuhn–Tucker conditions associated with this problem are

L1 = 1 − 0.5λx−1/2
1 x1/2

2 ≥ 0,x1 ≥ 0,x1 L1 = 0,L2 = 1 − 0.5λx1/2
1 x−1/2

2 ≥ 0,x2 ≥ 0,

x2 L2 = 0,Lλ = 3.5 − x1/2
1 x1/2

2 ≤ 0,λ≥ 0, and λLλ = 0 (6.3.36)

We found in Section 6.2.8 that the optimal solution to the problem was x∗
1 = 3.5 and

x∗
2 = 3.5. If we substitute these values into L1 and L2 in (6.3.36), we obtain λ = 2. Since

L1 = 0 and L1 = 0 for x∗
1 = 3.5, x∗

2 = 3.5, and λ = 2, and since x∗
1 = x∗

2 = 3.5 > 0, the
complementary slackness conditions x1 L1 = 0 and x2 L2 = 0 are satisfied. Since Lλ = 0 for
x∗

1 = 3.5 and x∗
2 = 3.5, and since λ = 2 > 0, the last complementary slackness condition

(λLλ = 0) is also satisfied. Therefore, the optimal solution (x∗
1 = 3.5, x∗

2 = 3.5, and λ= 2) to
the problem satisfies all the Kuhn–Tucker maximum conditions.

6.3.12 Exercises

1. Determine whether the solutions to the problems in exercise 1 in Section 6.2.9 satisfy
the associated Kuhn–Tucker conditions.

2. Determine whether the solutions to the problems in exercise 2 in Section 6.2.9 satisfy
the associated Kuhn–Tucker conditions.

3. Application exercise. Suppose that the total utility that a consumer obtains from the
consumption of two goods, x1 and x2, is given by the Cobb–Douglas utility function
U = f (x1,x2) = x0.6

1 x0.4
2 . Also suppose that the consumer’s budget constraint is given by

0.5x1 + 0.5x2 ≤ 10. Find the quantities of the two goods that maximize the consumer’s
total utility such that they satisfy the associated Kuhn–Tucker conditions.

4. Application exercise. Suppose that the total output that a producer obtains from the
employment of two factors, K and L, is given by the Cobb–Douglas production function
Q = f (K,L) = K0.6L0.4. Also suppose that the producer’s budget constraint is given by
2K + 3L ≤ 9. Find the quantities of the two factors that maximize the producer’s total
output such that they satisfy the associated Kuhn–Tucker conditions.
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6.4 NLP: Extensions

6.4.1 Boundary irregularities and constraint qualification

In Section 6.2 we presented, among others, the general nature of solutions of NLP
problems. We then employed the geometric method to solve a number of NLP problems.
After this, in Section 6.3, we made use of the Kuhn–Tucker conditions, and stated that these
conditions were the necessary conditions for an optimal solution. However, this assertion
was based on the assumption that the feasible region of the problem under consideration
was a well-behaved feasible region; that is, the feasible region did not involve boundary
irregularities.

We found that the optima in all the examples we considered in Section 6.3 satisfied the
Kuhn–Tucker conditions. This was so because the feasible regions of the problems were
all well-behaved or the feasible regions did not involve boundary irregularities. It could
happen that an optimum solution to a NLP problem may not always satisfy the Kuhn–Tucker
conditions simply due to boundary irregularities caused by some constraint(s). This is the
topic to which we turn our attention in the present section.

A boundary irregularity is often, but not solely, caused by the presence of one or more
cusps on the boundary of the feasible region of the problem. A cusp is a sharp turning in the
graph, such as the one at point C on the graph of the function x2 = f (x1) = (2 − x1)3 shown
in Figure 6.4.1(A). Notice that the function has negative slopes on either side of point C. But
the slope at point C is zero.

Let us now see how the presence of cusps causes an optimum solution not to satisfy the
Kuhn–Tucker optimum conditions. Assume that our objective is to maximize	= f (x1,x2)
= x1. It is unnecessary to state that we have nonnegativity condition, that is, x∗

1, x∗
2 , andλ∗ ≥ 0.

Let us now plot the graphs of the objective function for different values of 	, together with
the constraint illustrated in Figure 6.4.1(A), as shown in Figure 6.4.1(B).

Notice that the feasible region in Figure 6.4.1(B) is represented by the set of points in the
area ABC. Since the objective function involves only one choice variable (x1), our aim
is to push the graph of this function forward until it coincides with x1 = 2. Therefore,
the objective function will be maximized at x1 = 2. We can now attempt to see whether
this optimum solution (point (x∗

1,x
∗
2) = (2,0)) satisfies the Kuhn–Tucker condition for

a maximum in (6.3.14). For this, we first construct the associated Lagrangian function as

L = f (x1,x2,λ) = f (x1,x2) +λ[g(x1,x2) − c] = x1 +λ[(2 − x1)3 − x2] (6.4.1)
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Then the associated Kuhn–Tucker conditions can be written as

L1 = 1 + 3λ(2 − x1)2 ≤ 0,x1 ≥ 0,x1 L1 = 0,L2 = −λ≤ 0,x2 ≥ 0,x2 L2 = 0,

Lλ = (2 − x1)3 − x2 ≥ 0,λ≥ 0, and λ Lλ = 0 (6.4.2)

If we substitute the optimal solution (x∗
1,x

∗
2) = (2,0) into L1 in (6.4.2) we obtain the

contradictory result (1 ≤ 0), which violates that inequality. Therefore, the optimal solution we
obtained above for the present problem invalidates the Kuhn–Tucker maximum conditions.
This is due to the presence of a cusp on the boundary of the feasible region.

So far we have been concerned with the nature of an irregularity of the boundary of the
feasible region and how it affects the Kuhn–Tucker conditions. The reader might wonder
why the presence of such irregularities invalidates the Kuhn–Tucker conditions. A careful
inspection of Figure 6.4.1 would suggest that at point C the graph of the constraint x2 =
g(x1) = (2−x1)3 is tangent to the graph of the nonnegativity condition for the second choice
variable (x2). In other words, the two constraints are indistinguishable at that point. This is
the reason why boundary irregularities such as cusps invalidate Kuhn–Tucker conditions.

Therefore, we impose a condition on the constraints of the NLP problems that they do not
have cusps on their graphs. This condition is called, in the literature, constraint qualification.
Since such boundary irregularities as cusps are not normally encountered in the subjects of our
interest and since the cost of mathematics involved is larger than the associated benefit, we do
not present here a mathematical treatment of constraint qualification. But it can be shown that
if this constraint-qualification condition is met, that is, if the constraints of the problem do not
involve cusps or if the feasible region of the problem does not involve boundary irregularities,
then an optimal solution to a NLP problem will invariably satisfy the associated Kuhn–Tucker
conditions. In other words, if the constraint qualification is satisfied (which is implied when
the constraints are linear), then the Kuhn–Tucker conditions are necessary conditions for an
optimum of the concerned NLP problem.

6.4.2 Concave programming

We stated above that when we imposed the constraint qualification on a NLP problem, then
an optimal solution to the problem would satisfy the Kuhn–Tucker conditions. In this event,
the Kuhn–Tucker conditions can be considered as the necessary conditions for an optimum.
However, if we impose few conditions on the nature of not just the constraints but also of the
objective functions, we can be sure that if there exists an optimum point then that point will
satisfy the Kuhn–Tucker conditions such that the Kuhn–Tucker conditions are considered
as the sufficient (or even necessary and sufficient) conditions for an optimum. Moreover, if
there is such an optimum point, then that optimum point will be the global optimum point.

Notice that, in Sections 4.3.5 and 4.4.10, we mentioned that a knowledge of the nature
of the objective functions (concavity and convexity in the case of unconstrained problems,
and quasiconcavity and quasiconvexity in the case of constrained problems) obviated the
need to check the SOCs to determine the optima. In other words, we stated the SOCs or
the sufficient condition for an optimum in terms of the nature of the objective functions.
In a similar fashion, as we mentioned above and as we state below, we can establish the
sufficient condition for optima in the case of NLP problems in terms of concavity and
convexity of the objective functions and the constraints. We know from our presentation
in Section 4.3.5 that, for the function U = f (x1,x2,x3, . . . ,xn), if d2U is positive (negative)
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definite, then the function has a global minimum (maximum); and if d2U is positive (negative)
semidefinite, then the function has a local minimum (maximum). We also know from our
presentation there that the curvature (the nature of the n-dimensional hyperplane) of the
function U = f (x1,x2,x3, . . . ,xn) is determined by the sign of the associated quadratic form
(equation (3.8.9)); that is, the sign of d2U . If d2U is positive (negative) definite, then the
function is strictly convex (concave) and the function has a global minimum (maximum);
and if d2U is positive (negative) semidefinite, then the function is convex (concave) and the
function has a local minimum (maximum). We know from Sections 2.8.2 and 2.8.3 and from
Sections 4.3.2–4.3.4 how to determine the sign of d2U .

Suppose now that we want to maximize 	= f (xj), j = 1,2, . . . ,n, subject to constraints
gi(xj) ≤ ci, i = 1,2, . . . ,m, and to the nonnegativity restriction (xj ≥ 0). Also suppose
that f (xj) and gi(xj) are concave differentiable and convex differentiable, respectively, and
that f (x∗

j ) is a point on f (xj) that satisfies the Kuhn–Tucker conditions for a maximum.
Then, f (x∗

j ) is a global maximum of f (xj) subject to the constraints and the nonnegativity
restrictions. This statement is called Kuhn–Tucker necessary and sufficient conditions for
a maximum in NLP problems. It is also called the Kuhn–Tucker sufficiency theorem for a
maximization NLP problem.

Now suppose that we want to minimize C = h(xj), j = 1,2, . . . ,n, subject to constraints
ki(xj) ≥ ci, i = 1,2, . . . ,m, and to the nonnegativity restriction (xj ≥ 0). Also suppose
that h(xj) and ki(xj) are convex differentiable and concave differentiable, respectively, and
that h(x∗

j ) is a point on h(xj) that satisfies the Kuhn–Tucker conditions for a minimum.
Then, h(x∗

j ) is a global minimum of h(xj) subject to the constraints and the nonnegativity
restrictions. This statement is called Kuhn–Tucker necessary and sufficient conditions for a
minimum in NLP problems. It is also called the Kuhn–Tucker sufficiency theorem for a NLP
minimization problem.

The process of the application of Kuhn–Tucker sufficiency theorems for NLP maximi-
zation and minimization problems is called concave programming. This process is so named
due to the fact that Kuhn and Tucker used the inequality ≥ in all the constraints and used the
negative of the convex objective function (h(xj)) in minimization problem. This implies that
each constraint even in a maximization problem is considered to be concave (gi(xj) ≥ ci).
Notice that our formulation above can be transformed into the formulation used by Kuhn
and Tucker if we multiply the objective function h(xj) in the minimization problem and the
constraints gi(xj) ≤ ci in maximization problem by −1. This transformation will give us both
the objective function and the constraints in both maximization and minimization problems
in concave form. Hence, the name concave programming.

The issue now is to determine whether a function is convex or concave. In the case of a
univariate function, we know that the function will be convex (concave) around the point
x∗ on its domain if its second derivative, evaluated around x∗, is positive (negative), and it
is strictly convex (concave) if its second derivative is positive (negative) for every value on
its domain. We also know that a straight line is convex (as well as concave) and not strictly
convex (concave). We know now, given our recap presented earlier in this section, how to
determine the curvature of multivariate functions.

Notice that the application examples we considered in Section 6.2.8 yielded optimal
solutions that were consistent with the Kuhn–Tucker conditions. Let us now check whether
the objective functions and constraints are concave (convex) and convex (concave),
respectively, for maximization (minimization) problems in these examples.

Consider first example 1 in Section 6.2.8. The objective function in this example was
U = f (x1,x2) = x1/2x1/2 and the constraint was x1 + x2 ≤ 7. The second partial derivatives
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of the objective function are f11 = (−1/4)x−3/2
1 x1/2

2 , f22 = (−1/4)x1/2
1 x−3/2

2 , and f12 =
(1/4)x−1/2

1 x−1/2
2 = f21. If these partial derivatives are evaluated at the optimum values of

x∗
1 = x∗

2 = 3.5, we obtain f11 = −3.06, f22 = −3.06, and f12 = 0.07 = f21. This implies
that the first and the second principal minors of the associated discriminant are −3.06 < 0
and 9.359 > 0, respectively. Since these principal minors alter in sign with the first being
negative, the quadratic form associated with the objective function is negative definite.
Therefore, the function is concave around x∗

1 = x∗
2 = 3.5. Since the constraint in the problem

forms a straight line when it is considered as an equation, it is convex. Therefore, the
Kuhn–Tucker sufficiency conditions for a maximum are satisfied in the case of example
1 in Section 6.2.8.

We just found that the function U = f (x1,x2) = x1/2
1 x1/2

2 in the first example in Section 6.2.8
is concave around x∗

1 = x∗
2 = 3.5. We can deduce this conclusion if we draw the three-

dimensional graph of the function as illustrated in Figure 6.4.2(A). The graph shows that
the function increases as x1 and x2 increase, at a decreasing rate. This suggests that the
function is concave. Notice that the curve U ∗ = 3.5 = c in this figure, which is also called an
indifference curve, is the two-dimensional graph of the points x1 and x2 for the given value of
U ∗ = 3.5 = c. This curve is also called the level set of the function U = f (x1,x2) = x1/2x1/2

for U ∗ = 3.5 = c. If we use different values for U = ci (such as c1,c2, . . . ,cn) we obtain
different level sets (such as U1 = x1/2

1 x1/2
2 = c1, U2 = x1/2

1 x1/2
2 = c2, . . ., Un = x1/2

1 x1/2
2 = cn)

and the two-dimensional graphs of these levels sets constitute an indifference map such as
the one illustrated in Figure 6.2.7(A).

Now consider the second example in Section 6.2.8. The problem in this example was
to maximize Q = f (K,L) = [0.5K−0.5 + 0.5L−0.5]−2 subject to 0.1K + 10L ≤ 100. Taking
the partial derivatives of the objective function and evaluating them at the optimum values
K∗ = 177.262 and L∗ = 8.227, we obtain fKK = −0.000154, fLL = −0.07219, and fKL =
0.00334 = fLK . This implies that the first and the second principal minors of the associated
discriminant are −0.000154 < 0 and 0.00000032 > 0, respectively. Since these principal
minors alter in sign with the first being negative, the quadratic form associated with
the function Q = f (K,L) = [0.5K−0.5 + 0.5L−0.5]−2 is negative definite and, therefore,
the function is concave around K∗ = 177.262 and L∗ = 8.227. Since the constraint in the
problem forms a straight line when it is considered as an equation, it is convex. Therefore,
the Kuhn–Tucker sufficiency conditions for a maximum are satisfied in the case of example 2
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in Section 6.2.8. We can deduce this conclusion if we draw the three-dimensional graph of
the function as illustrated Figure 6.4.2(B). The figure shows that the function increases as K
and L increase, at a decreasing rate. This suggests that the function is concave. Notice that the
curve Q∗ = 22.227 = q in this figure, which is also called an isoquant, is the two-dimensional
graph of the points of K and L for the given value of Q∗ = 22.227 = q. This curve is also
called the level set of the function Q = f (K,L) = [0.5K−0.5 +0.5L−0.5]−2 for Q∗ = 3.5 = q.
If we use different values for Q = qi (such as q1,q2, . . . ,qn), we obtain different level sets
(such as Q1 = q1, Q2 = q2,…, Qn = qn) and the two-dimensional graphs of these levels sets
constitute an isoquant map such as the one illustrated in Figure 6.2.7(B).

The third example in Section 6.2.8 was a minimization problem. The objective function
of this problem was E = h(C1,C2) = 1.1C1 + C2 and the constraint was U = g(C1,C2) =
lnC1 + lnC2. Notice that the objective function in this example is a straight line when it
is considered as an equation and, therefore, is convex. The second partial derivatives of
the constraint function are g11 = −1/C2

1 , g22 = −1/C2
2 and g12 = 0 = g21. If these partial

derivatives are evaluated at the optimum values of C∗
1 = $7045.4545 and C∗

2 = $7750,
we obtain g11 = −0.00000002 and g22 = −0.000000017. This implies that the first and
the second principal minors of the associated discriminant are negative and positive,
respectively. Since the principal minors alter in sign with the first being negative, the
quadratic form associated with the function U = g(C1,C2) = lnC1 + lnC2 is negative
definite and, therefore, the function is concave around C∗

1 = $7045.4545 and C∗
2 = $7750,

which can be seen from the plot of the function in Figure 6.4.3(A). Therefore, the Kuhn–
Tucker sufficiency conditions for a minimum are satisfied in the case of example 3
in Section 6.2.8.

The last example in Section 6.2.8 was also a minimization problem. The objective
function of this problem was E = g = (K,L) = 1x1 + 1x2 = x1 + x2 and the constraint
function was U = f (x1,x2) = x1/2

1 x1/2
2 = 3.5. Notice that the objective function in this

example, as in the previous case, is a straight line when it is considered as an equation and,
therefore, is convex. The second partial derivatives of the constraint function when
evaluated at the optimum values x∗

1 = x∗
2 = 3.5 are f11 = −0.0714, f22 = −0.0714, and

f12 = −0.0714 = f21. This implies that the first and the second principal minors of the
associated quadratic form are −0.0714 and 0.0051, respectively. Since the principal minors
alter in sign with the first being negative, the quadratic form of the function U = f (x1,x2) =
x1/2

1 x1/2
2 is negative definite and, therefore, the function is concave, which is evident from the

plot of the function in Figure 6.4.3(B). Therefore, the Kuhn–Tucker sufficiency conditions
for a minimum are satisfied in the case of example 4 in Section 6.2.8.
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6.4.3 Quasiconcave programming

In the last section, we noticed that if the objective function and constraints are concave
(convex) and convex (concave), respectively, in a NLP maximization (minimization)
problem and if there exists a point on the function of the objective function that satisfies
the associated Kuhn–Tucker conditions, then that point would be the global maximum
(minimum) of the objective function. However, these concavity and convexity (of the
objective function and the constraints) seem to be rather strong. It seems that the situation
would have been much simpler if we had somewhat weaker conditions. In fact, there exists
a theorem, called the Arrow-Enthoven theorem, which suggests a set of weaker conditions
for global optima in NLP problems.

The Arrow–Enthoven sufficiency theorem states that if the objective function, f (xj),
j = 1,2, . . . ,n, and the constraints, gi(xj), i = 1,2, . . . ,m, in a NLP maximization problem
are quasiconcave and quasiconvex, respectively, and if there exists a point on the objective
function f (x∗) that satisfies the Kuhn–Tucker maximum conditions, then that point will be
a global maximum of the objective function if f (xj) is concave, or if fj(x∗)> 0 for some j,
or if fj(x∗)< 0 for at least one j.

Similarly, the Arrow–Enthoven sufficiency theorem states that if the objective function,
h(xj), j = 1,2, . . . ,n, and the constraints, ki(xj), i = 1,2, . . . ,m, in a NLP minimization
problem are quasiconvex and quasiconcave, respectively, and if there exists a point on
the objective function h(x∗) that satisfies the Kuhn–Tucker minimum conditions, then that
point will be a global minimum of the objective function if h(xj) is convex, or if hj(x∗)< 0
for some j, or if hj(x∗)> 0 for at least one j.

Arrow and Enthoven used the ≥ sign in the constraints of the maximization problem
in their original work. Given this, their theorem for a maximization NLP problem stated
suggests that both the objective function and the constraints must be quasiconcave. Therefore,
the application of the Arrow–Enthoven theorem is also called quasiconcave programming.
The reader will have noticed that the Arrow–Enthoven theorem is weaker than the
Kuhn–Tucker sufficiency theorem.

6.4.4 Quadratic programming

So far in this chapter, we have been concerned with NLP problems in which the objective
functions and the constraints are of different functional forms. Suppose now that the objective
function is quadratic and the constraint(s) is (are) linear. Such a NLP problem is called a
quadratic NLP problem and its solution algorithm is called quadratic programming (QP).

It can be shown that if a feasible solution to a NLP problem involving a quadratic
objective function and linear constraint(s) exists, then that will be a unique global optimal
solution. Since the mathematical cost of proving this exceeds the resulting benefit, we do not
attempt it here. Instead, we state here that the solution to a QP problem can be obtained by
applying the first phase of the two-phase method demonstrated in Section 5.3.5.

As an example, suppose that our problem is the same as that in the first example in
Section 6.3.10. The problem is to maximize 	= f (x1,x2) = x1x2 subject to the constraints
g(x1,x2) = x1 +x2 ≤ 10 = c and xj ≥ 0, where j = 1,2. We can now construct the Lagrangian
function as

L = f (x1,x2) +λ[c − g(x1,x2)]+
2∑

j=1

αjxj = x1x2 +λ[10 − x1 − x2]+α1x1 +α2x2

(6.4.3)
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Notice that we have introduced nonnegativity condition in the present problem through the
last two terms in equation (6.4.3). We can derive from equation (6.4.3) the Kuhn–Tucker
maximum conditions as

L1 = x2 −λ+α1 ≤ 0,x1 ≥ 0,x1L1 = 0,L2 = x1 −λ+α2 ≤ 0,x2 ≥ 0,x2L2 = 0,

Lα1 = x1 ≥ 0,α1 ≥ 0,α1Lα1 = 0,Lα2 = x2 ≥ 0,α2 ≥ 0,α2Lα2 = 0,

Lλ = 10 − x1 − x2 ≥ 0,λ≥ 0, and λLλ = 0 (6.4.4)

Based on the Kuhn–Tucker maximum conditions in (6.4.4), we can reformulate the
problem using dummy variables (s1, s2, and s3) and artificial variables (A1 and A2) as

Maximize −A1−A2, subject to 0x1+x2 −λ+α1+0α2+A1+0A2+s1 + 0s2 + 0s3 = 0,

x1 + 0x2 −λ+ 0α1 +α2 + 0A1 + A2 + 0s1 + s2 + 0s3 = 0,

x1 + x2 + 0λ+ 0α1 + 0α2 + 0A1 + 0A2 + 0s1 + 0s2 − s3 = 10,

x1,x2,α1,α2,s1,s2,s3,λ≥ 0,α1x1 = 0,α2x2 = 0, and λs1 = 0 (6.4.5)

We can now set up the initial tableau based on problem (6.4.5) as in Table 6.4.1. If we
now follow the same procedure as the one we used in the first phase of the two-phase
method discussed in Section 5.3.5, we can find the optimal solution to the present problem
as x∗

1 = x∗
2 = λ = 5. We can obtain the optimal value of the objective function if we

substitute x∗
1 = x∗

2 = λ= 5 into it: 	∗ = f (x∗
1,x

∗
2) = x∗

1x∗
2 = 5 × 5 = 25. Notice that this

is the same optimal solution as that obtained in Section 6.3.10.
As another example, suppose that our problem is the same as the problem in the second

example in Section 6.3.10. This problem is to minimize C = h(x1,x2) = x2
1 + x2

2 subject to
the constraint g(x1,x2) = x1 + x2 ≥ 50 = c and xj ≥ 0, where j = 1,2. We can now construct
the Lagrangian function as

L = h(x1,x2) +λ[c − g(x1,x2) −
2∑

j=1

αjxj = x2
1 + x2

2 +λ[50 − x1 − x2]−α1x1 −α2x2

(6.4.6)

Table 6.4.1

BVs x1 x2 λ α1 α2 A1 A2 s1 s2 s3 RHS

A1 0 1 −1 1 0 1 0 1 0 0 0
A2 1 0 −1 0 1 0 1 0 1 0 0
s1 1 1 0 0 0 0 0 0 0 −1 10

	j 0 0 0 0 0 −1 −1 0 0 0 0

︸ ︷︷ ︸
Indicators
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Table 6.4.2

BVs x1 x2 λ α1 α2 A1 A2 A3 s1 s2 s3 RHS

A1 2 0 −1 −1 0 1 0 0 −1 0 0 0
A2 0 2 −1 0 −1 0 1 0 0 −1 0 0
A3 1 1 0 0 0 0 0 1 0 0 1 50

	j 0 0 0 0 0 −1 −1 −1 0 0 0 0

︸ ︷︷ ︸
Indicators

Notice that, as in the last problem, we have introduced the nonnegativity restriction
into equation (6.4.6). We can derive from equation (6.4.6) the Kuhn–Tucker minimum
conditions

L1 = 2x1 −λ−α1 ≥ 0,x1 ≥ 0,x1L1 = 0,L2 = 2x2 −λ−α2 ≥ 0,x2 ≥ 0,x2L2 = 0,

Lα1 = −x1 ≤ 0,α1 ≥ 0,α1Lα1 = 0,Lα2 = −x2 ≤ 0,α2 ≥ 0,α2Lα2 = 0,

Lλ = 50 − x1 − x2 ≤ 0,λ≥ 0, and λLλ = 0 (6.4.7)

Based on the Kuhn–Tucker maximum conditions in (6.4.7), we can reformulate the problem
using dummy variables (s1, s2, and s3) and artificial variables (A1, A2, and A3) as

Maximize A1 + A2 + A3, subject to 2x1 + 0x2 −λ−α1 − 0α2 + A1 + 0A2 + 0A3 − s1

+ 0s2 + 0s3 = 0,0x1 + 2x2 −λ− 0α1 −α2 + 0A1 + A2 + 0A3 + 0s1 − s2 + 0s3 = 0,

x1 + x2 + 0λ− 0α1 − 0α2 + 0A1 + 0A2 + A3 + 0s1 + 0s2 + s3 = 50,

x1,x2,α1,α2,s1,s2,s3,λ≥ 0,α1x1 = 0,α2x2 = 0, and λs1 = 0 (6.4.8)

We can now set up the initial tableau based on problem (6.4.8) as presented in Table 6.4.2.
As in the last example, if we now follow the same procedure as the one we used in the first
phase of the two-phase method discussed in Section 5.3.5, we can find the optimal solution
as x∗

1 = x∗
2 = 25. We can obtain the optimal value of the objective function if we substitute

x∗
1 = x∗

2 = 25 into it: C∗ = h(x∗
1,x

∗
2) = x∗2

1 + x∗2
2 = 252 + 252 = 1250. Notice that this is the

same optimal solution as that we obtained in Section 6.3.10.

6.4.5 Exercises

1. Use the trial-and-error method to solve the following NLP problems:
(i) maximize 	= f (x1,x2) = x1 + x2 − x2

1 − x2
2, subject to x1 + x2 ≤ 10, and x1, x2 ≥ 0;

(ii) minimize C = h(x1,x2) = x2
1 + x2

2, subject to x1 + x2 ≥ 10, and x1, x2 ≥ 0.
2. Solve (i) and (ii) in exercise 1 above using the QP algorithm.
3. Application exercise. Suppose that the total utility that a consumer obtains from the

consumption of two goods, x1 and x2, is given by the function U = f (x1,x2) = x1/2
1 +x1/2

2 .
Also suppose that the consumer’s budget constraint is 3x1 +2x2 ≤ 30. Find the quantities
of the two goods that maximize the consumer’s utility function subject to the budget
constraint using the trial-and-error method.
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4. Application exercise. Suppose that the total expenditure that a firm has to incur by
employing two factors, x1 and x2, is given by the function C = g(x1,x2) = x2

1 + x2
2. Also

suppose that the firm’s output constraint is given by x1 + x2 ≥ 10. Find the quantities
of the two factors that the firm has to employ such that the firm’s total expenditure is
minimum subject to the output constraint using the QP algorithm.
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7.1 Introduction

We found in the last three chapters that every economic agent was aiming at optimizing
own objective function. Although we did not state it explicitly, in all our analyses so far
in this book, except examples 4 through 6 in Section 4.2.8, we maintained an important
assumption that the agent’s action of optimizing own objective function was independent
of other agents’ actions of optimizing their objective functions. So far in this book we have
developed and applied the mathematical tools that are required to find the answers to questions
such as under what conditions a rational economic agent optimizes its independent objective
function subject to (or not subject to) constraints.

The above mentioned assumption is a strong restriction given the facts we observe
around us. Many of the real-world actions of economic agents are not independent, but
interdependent. The interdependencies may be either competitive or cooperative in nature.
One good example is the decision of firms in oligopoly markets regarding quantities of output
they must produce, the prices they have to fix, advertisement expenditures they must incur,
etc. Another example is the decision of countries regarding the duties they have to impose
on imports, subsidies to be provided to exports, etc. Examples like these are numerous in the
subjects of our interest.

The question that arises, therefore, is how one can incorporate the above mentioned
interdependencies into an agent’s objective functions and optimize them. An important
branch of mathematics called game theory deals with optimization of interdependent
objective functions. The first systematic work on game theory and its applications to the
subjects of our interest was the book entitled Theory of Games and Economic Behavior
authored by J. von Neumann and O. Morgenstern and published in 1944. Since then there
have been considerable developments in the theory of games and their applications in
various fields including economics, business, and finance. It was in recognition of the
importance of game theory and its applications in these branches of knowledge that the
1994 Nobel Prize in Economics was awarded to game theorists John Harsanyi, John Nash,
and Reinhard Selten. It seems that it is unnecessary to state that a reasonable understanding
of game theory and its applications in economics, business, and finance is indispensable for
a proper comprehension of some of the models that undergraduates have to learn in these
disciplines. Therefore, we turn our attention to elementary game theory and its applications
in this chapter.
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7.2 Static games of complete and perfect information

7.2.1 Concepts and definitions

Before we present the basics of game theory, we need to introduce some concepts and define
them. The full import of many of these concepts and definitions will become clearer as we
proceed through the rest of this chapter. Let us begin with the term game. A game is a set of
rules in which two or more players interact in a setting of strategic interdependence. Strategic
interdependency is a situation where the actions of a player or a group of players affect, and
are affected by, the actions of other players or other groups of players. We can now define
game theory as a mathematical toolkit that helps make optimal decisions under conditions
of strategic interdependence among the players who engage in a game.

A game may involve two or more players. Players of a game may be individuals, firms,
organizations, political parties, governments, etc. They make the strategic decisions in the
context of games and, therefore, they are also called strategic decision-makers. A strategic
decision or, in short, a strategy, constitutes a set of decisions, plans, or actions to be followed
by each player during the course of the game. A strategy may be either a pure strategy
(also called a deterministic strategy) or a mixed strategy (also called a randomized strategy).
A pure strategy is a strategy in which a player makes a deterministic (or nonrandom or
specific) action or decision. A mixed strategy is a strategy in which a player makes random
choice (that is, choice based on probabilities) among possible actions or decisions (or pure
strategies).

In addition to players and strategic decisions, a game involves rules, outcomes, and
payoffs. Rules of a game are predetermined and contain a set of information including who
starts the game, what information the players possess, how the players start the game, etc.
The result of the game represents the outcome of the game. The results may be expressed
in cardinal units such as dollars or in ordinal units such as utility obtained. The payoff of a
game is the net gain or value of the objective function associated with a possible outcome of a
game. A player’s utility function or objective function is generally called that player’s payoff
function. An optimal strategy in a game is the strategy that maximizes a player’s expected
payoffs.

7.2.2 Classification of games

One can classify games in different ways. One way to distinguish games is based on the
timings of decisions taken in games. If decisions are taken by all the players simultaneously,
then such games are called static games or simultaneous games. Static games are also called
one-shot games or one-time games because in these games each player chooses a single
action and then the game ends. This implies that static games are single-period games. If
a single-period game is played over and over again, it becomes a multiperiod game and is
called a repeated game. If in a game a player takes a decision and makes a move only after
another player has already done that, such games are called sequential games. Sequential
games are also called dynamic games or multistage games. We are primarily concerned with
static games in the present section. Dynamic games are discussed in Sections 7.4 and 7.5.

Another way to classify games is based on the nature of information that the players
possess. If every player of a game knows every aspect of the game, then the game is
called a game of complete information. This suggests that the strategies and payoffs are
common knowledge in games of complete information. If one or more players of a game
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possess information that is unknown to the other players, or if in a game the strategies
and payoffs are not common knowledge, then that game is called a game of incomplete
information.

Another classification, which is similar to but not identical to the last classification, is
based on whether the player has information on the previous decisions or moves in the game.
If every player has information on all the previous moves or decisions taken in a game,
then that game is called a game of perfect information. In contrast, if players do not possess
information on some of the previous decisions or moves taken in a game, then that game
is called a game of imperfect information. Since a meaningful exposition and solution of
games of incomplete and imperfect information are beyond the scope of this book, we will
not attempt them and, instead, we will concentrate only on games of complete and perfect
information.

Games may also be classified on the basis of the value of the payoffs. If in a two-player
game the gain of a player is exactly equal to the loss of the other player, then that game is
called a zero-sum game. Therefore, in a zero-sum game the payoff of one player is just the
negative of the payoff of the other player. Otherwise it is called a nonzero-sum game. If the
sum of payoffs in a game is a nonzero constant, then such a game is called a constant-sum
game. If the sum of payoffs is not constant but a variable, then such a game is called a
variable-sum game.

The last classification we introduce here is based on whether the players can enter into
binding contracts or not. If in a game the players can make binding contracts and enforce
them, then that game is called a cooperative game. But, if the players cannot make such
contracts and enforce them in a game, then that game is called a non-cooperative game.

7.2.3 Representation and solution of games

As in the case of the classification of games, one can represent games in different ways.
One way to represent a game is to write the strategies and payoffs of players in a table with
columns and rows, which is called a payoff matrix. This method is called the normal-form
representation or the strategic-form representation of a game.

Let us demonstrate the normal-form representation of a two-player, two-strategy game.
Suppose that we represent the ith player’s jth strategy by si

j , where i = 1,2 and j = 1,2.

Therefore, the complete set of strategies for the ith player is given by Si = {si
1,s

i
2}. Notice

that si
j ∈ Si. As an example, in a two-player game, the set of player A’s strategies is

given by SA = {sA
1 ,s

A
2 }. Now suppose that we represent the ith player’s payoff function

is given by π i:π i = π i(si
j). This implies that the ith player’s payoff function depends on

the strategies chosen by all the players (si
j) in the game. We denote a two-player game by

Table 7.2.1

Player B’s strategies

sB
1 sB

2

Player A’s
strategies

sA
1 πA(sA

1 ,s
B
1 ), πB(sA

1 ,s
B
1 ) πA(sA

1 ,s
B
2 ), πB(sA

1 ,s
B
2 )

sA
2 πA(sA

2 ,s
B
1 ), πB(sA

2 ,s
B
1 ) πA(sA

2 ,s
B
2 ), πB(sA

2 ,s
B
2 )
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G = {Si,π i} = {SA,SB;πA,πB}. The payoff matrix of this game is presented in Table 7.2.1.
This tabular form of the representation of a game, as mentioned earlier, is called the
normal-form representation of the game.

Let us now extend the normal-form representation of a two-person, two-strategy game to
the case of an n-person, n-strategy game. In this type of game the complete set of strategies,
or the strategy profile, for the ith player is given by Si = {si

1,s
i
2, . . . ,s

i
n} and the ith player’s

payoff function is given byπ i:π i =π i(si
j), where j ( j = 1,2, . . . ,n) represents the jth strategy

and i (i = 1,2, . . . ,n) represents the ith player. We denote this n-person, n-strategy game by
G = {Si,π i} = {SA,SB, . . . ,Sn;πA,πB, . . . ,πn}. We know that the ith player’s opponent will
choose some strategy when the ith player chooses the strategy si

j . For convenience we denote

this response strategy of the ith player’s opponent by s−i
j .

Another form of representation of a game is called the extensive form, which is usually
used in the representation of dynamic or sequential games. We will discuss the extensive-
form representation of dynamic games in detail in Sections 7.4 and 7.5. For the purpose of
exposition, we continue with the above two-player, two-strategy game. In dynamic games
one player moves (i.e. takes a decision) first. Then the other player takes a decision in response
to the decision of the first player.

The extensive-form representation of a game is based on game trees. A game tree shows
the players of a game, the order of their moves, the information available to them, and their
payoffs. Notice that a game tree is similar to a decision tree. Both are used to determine an
optimal course of action. But, they differ in the sense that the former is used to arrive at an
optimal course of action in situations that involve strategic decisions and the latter is used to
arrive at an optimal course of action in situations that do not involve strategic decisions.

A game tree contains decision nodes, or simply nodes, line segments or branches, root
of the game, subroots, and terminal nodes. Decision nodes normally represent the location
where the designated player’s moves are shown and branches represent decisions or actions
taken by these players. In our example, assume that player A moves first. Then, this game
can be represented in extensive form as shown by the game tree in Figure 7.2.1. In this figure,
the ball or the node at point PA is called the root of the game and the nodes at points PB

are called the subroots of the game. Finally, the balls adjacent to the payoffs are called the
terminal nodes of the game.

Figure 7.2.1 shows that, since player A (denoted by PA) is the first mover, PA can choose
either strategy sA

1 or strategy sA
2 . But player B (denoted by PB) decides its strategy on the basis

of the choice already made by PA. If PA decides to choose strategy sA
1 , then PB decides to

PA

PB

PB

πA(s1
A, s1

B), πB(s1
A, s1

B)

πA(s2
A, s1

B), πB(s2
A, s1

B)

πA(s2
A, s2

B), πB(s2
A, s2

B)

πA(s1
A, s2

B), πB(s1
A, s2
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s2
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Figure 7.2.1
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choose either strategy sB
1 or strategy sB

2 . If PB decides to choose strategy sB
1 , then PA’s payoff

will be πA(sA
1 ,s

B
1 ) and PB’s payoff will be πB(sA

1 ,s
B
1 ). If PA decides to choose strategy sB

2 ,
then PA’s payoff will be πA(sA

1 ,s
B
2 ) and PB’s payoff will be πB(sA

1 ,s
B
2 ). Similarly, if PB’s

response to PA’s strategy sA
2 is sB

1 , then PA’s and PB’s payoffs will be πA(sA
2 ,s

B
1 ) and

πB(sA
2 ,s

B
1 ), respectively. Likewise, if PB’s response to PA’s strategy sA

2 is sB
2 , then the payoffs

of PA and PB will be πA(sA
2 ,s

B
2 ) and πB(sA

2 ,s
B
2 ), respectively.

Let us now consider the issue of solving a game. Solving a game is the same as finding
the equilibrium or equilibria in a game. However, the solution to a game depends on the
type of the game; that is, whether the game is static or dynamic. In a static or single-period
game, the solution can be achieved by finding the Nash equilibrium (or Nash equilibria) of
the game. But, in a dynamic or multiperiod game the solution can be achieved by finding
the subgame-perfect Nash equilibrium. We discuss Nash equilibrium and subgame-perfect
Nash equilibrium in Sections 7.3 and 7.5, respectively.

7.2.4 Games of conflict or non-cooperation: zero-sum games

We stated in Section 7.2.2 that if the gain of a player in a two-player game is exactly equal
to the loss of the other player, then the game was called a zero-sum game. That is, in a
zero-sum game the payoff of one player is just the negative of the payoff of the other player.
Let us first consider a general zero-sum, two-player, two-strategy game. The normal-form
representation of this type of game is given in Table 7.2.2.

Let us now present an example of a zero-sum game called the game of Matching Pennies.
There are two players, players A and B, in this game. Each player is assumed to put down a
penny simultaneously with either heads up or tails up. Therefore, we state that each player
has two strategies: heads or tails. The outcome of the game is assumed to be like this: if the
players’ strategies match or if the pennies match (i.e. if both pennies land heads or tails up),
then player B pays $10 to player A; otherwise (i.e. if the pennies do not match), player A pays
$10 to player B. The normal-form representation of this game is given in Table 7.2.3. We will
attempt to see whether this game has an equilibrium or equilibria in Sections 7.2.7 and 7.3.10.

Table 7.2.2

Player B’s strategies

sB
1 sB

2

Player A’s
strategies

sA
1 πA(sA

1 ,s
B
1 ), −πB(sA

1 ,s
B
1 ) −πA(sA

1 ,s
B
2 ), πB(sA

1 ,s
B
2 )

sA
2 −πA(sA

2 ,s
B
1 ), πB(sA

2 ,s
B
1 ) πA(sA

2 ,s
B
2 ), −πB(sA

2 ,s
B
2 )

Table 7.2.3

Player B’s strategies

Heads Tails

Player A’s Heads 10, −10 −10, 10
strategies Tails −10, 10 10, −10
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Notice that each player’s payoffs, in Table 7.2.3, are equal to the negative of the other
player’s payoffs. Therefore, the sum of the payoffs is always equal to zero. This is the reason
why these types of games are called a zero-sum games. Since the interests of the players
in zero-sum games are opposed, these games are also called games of conflict or games of
non-cooperation.

7.2.5 Games of conflict or non-cooperation: nonzero-sum games

In the last section we presented zero-sum games with the example of Matching Pennies.
However, most of the games that the students of the subjects of our interest encounter are
nonzero-sum (either constant-sum or variable-sum) games. As we stated earlier, in nonzero-
sum games, the payoffs do not add up to zero. In most nonzero-sum games the interest of the
players are opposed and, therefore, they are also called games of conflict.

For the purpose of illustration, let us consider the famous example of Prisoner’s Dilemma.
The story behind this game is as follows. Two persons are arrested by police for being
allegedly involved in a crime. These two persons are brought to a prison and are held in
two separate cells such that they cannot interact in any form. Then the police start to extract
a confession from them. Each person is secretly offered the deal: “If you confess while
your accomplice does not, then you will get a light punishment of 1 year in jail while your
recalcitrant accomplice will get a punishment of 8 years in jail. If you are the only one who
does not confess, then you will spend 8 years in jail. If you both confess, you both will get
some mercy and spend 4 years in jail. If you both do not confess, you both will be jailed for
2 years.” The normal-form representation of this game is given in Table 7.2.4. We assume
here that both players wish to minimize the time they spend in jail. Notice the negative signs
in the payoffs in the table. We also assume that the time spent in jail is a loss and, therefore,
negative values are assigned to the payoffs. Notice also that the payoffs in the table do not
add up to zero. This is the reason why these types of games are called nonzero-sum games.
We will attempt to see whether this game has an equilibrium or equilibria in Sections 7.2.7
and 7.2.8.

7.2.6 Games of cooperation or coordination: nonzero-sum games

So far we have been concerned with games involving conflicts of interests. But, game theory
is not just concerned with conflicts of interests; it also deals with cooperation or coordination
among the players in games. As an illustration, consider the famous example of the Battle
of the Sexes. In this game, a man and a woman are planning to spend an evening together.
But they have different tastes in entertainment. The man prefers wrestling while the woman
prefers to go to the opera. As the payoff matrix of this game presented in Table 7.2.5 shows,
the man would most prefer to go to wrestling with the woman, but prefers going to the opera

Table 7.2.4

Prisoner 2’s strategies

Don’t confess Confess

Prisoner 1’s Don’t confess −2, −2 −8, −1
strategies Confess −1, −8 −4, −4
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Table 7.2.5

Woman’s strategies

Wrestling Opera

Man’s Wrestling 2, 1 0, 0
strategies Opera 0, 0 1, 2

with the woman to watching wrestling alone. Similarly, the woman would most prefer to go
to the opera, but prefers watching wrestling with the man to going to the opera alone. Notice
the special feature of the payoffs in this game. If the two players stick to their preferences,
their payoffs will be zero. But, if they cooperate (that is, understand each other’s preferences
and act accordingly) their payoffs are positive. We will attempt to see whether this game has
an equilibrium or equilibria in the next section.

7.2.7 Dominant and dominated strategies

We presented both zero-sum and nonzero-sum games, whether conflict or cooperation in
nature, in the last few sections. The reader might wonder what outcome these games will
generate. Therefore, our aim in the present section is to find the outcomes of the games we
presented above. Consider first the Prisoner’s Dilemma game introduced in Section 7.2.5,
the payoffs matrix of which is presented in Table 7.2.4.

A careful look at the payoffs in Table 7.2.4 suggests that the prisoners face a dilemma.
If the prisoners can communicate, they can cooperate by agreeing not to confess and
receive a lighter punishment of 2 years each in jail. But, the assumption is that they cannot
communicate. Even if they can, can they trust each other and cooperate? The answer is,
probably, not. But then what deters them from cooperating. A careful inspection of the
payoffs shows that if they decide to cooperate and, later, if one prisoner decides to cheat
the other, the prisoner who cheats will receive a lighter punishment of 1 year in jail (and the
other will receive a longer punishment), which is better than the 2-year jail period when they
cooperate. This will be the feeling of either prisoner. This suggests that cooperation is highly
unlikely in these types of games. Then the best each prisoner can do, regardless of the decision
of the other prisoner, is to confess and receive a jail term of 4 years. Such a strategy is called a
strictly dominant strategy. Let us now formally define a strictly dominant strategy. Suppose
that in a normal-form game G = {Si,π i} = {SA,SB, . . . ,Sn;πA,πB, . . . ,πn}, strategy si•,
where si• ∈ Si, is a possible strategy for player i. Then si• is a strictly dominant strategy for
player i, if for each possible combination of the other players’ strategies, player i’s payoff
from playing si• is strictly higher than playing any other strategy si• �= si, if for all si ∈ Si:

π i(sA=1,sB=2, . . . ,si−1,si•,si+1, . . . ,sn)>π i(sA=1,sB=2, . . . ,si−1,si,si+1, . . . ,sn)
(7.2.1)

What inequality (7.2.1) implies is that si is a strictly dominant strategy for player i if it
maximizes the ith player’s payoff regardless of the strategy chosen by the rival player(s).
This is exactly the idea we applied in the last paragraph. Notice that if a player has a strictly
dominant strategy in a game, then that player is expected to play that strategy no matter
what the opponents do. In our present example, each player (prisoner) has a strictly dominant
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strategy, “Confess.” Notice also that the optimal outcome when they can cooperate and when
the cooperation is binding is (−2, −2); that is, when they choose “Don’t Confess, Don’t
Confess.” This is called a social optimum. But, the self-interests of the prisoners result in
a social suboptimum outcome (−4, −4). If each player has a dominant strategy, then the
outcome of the game is called equilibrium in dominant strategies. Therefore, “Confess,
Confess” is the equilibrium in dominant strategies in the Prisoner’s Dilemma game.

So far in this section we were considering strictly dominant strategies. But, the existence
of strictly dominant strategies is not common in many games. Notice that the dominance
of a particular strategy may depend on the strategy chosen by the rival(s). However, one
can still use the idea of dominant strategies to eliminate some other strategies as possible
choices. We know that a rational player will not play some strategies that are dominated
by some other strategies. Strategies that are dominated by some other strategies are called
dominated strategies. We now formally define a dominated strategy as follows. Suppose that
in a normal-form game G ={Si,π i}= {SA,SB, . . . ,Sn;πA,πB, . . . ,πn}, strategies si• and si••,
where si•,si•• ∈ Si, are two possible strategies for player i. Then si•• is a strictly dominated
strategy for player i, if for each possible combination of the other players’ strategies, player
i’s payoff from playing si• is strictly higher than that from playing si•• if

π i(sA=1,sB=2, . . . ,si−1,si•,si+1, . . . ,sn)>π i(sA=1,sB=2, . . . ,si−1,si••,si+1, . . . ,sn)
(7.2.2)

Let us now consider the example of the Battle of the Sexes presented in Section 7.2.6. The
payoff matrix of this game is presented in Table 7.2.5. Our aim here is to see if there are any
strictly dominant strategies in this game. We know from inequality (7.2.1) that a dominant
strategy for player i is a strategy that maximizes the payoff of the ith player irrespective of
the strategy chosen by the other player(s). Applying this definition, we see from Table 7.2.5
that the man’s strictly dominant strategy is to watch wrestling while the woman’s strictly
dominant strategy is to go to the opera. Therefore, there are two strictly dominant strategies
in this game.

Lastly, consider the example of Matching Pennies presented in Section 7.2.4. The payoff
matrix of this game is presented in Table 7.2.3. Is there any strictly dominant strategy in this
game? A careful inspection of the table reveals that the optimal decision of player 2 depends
on what player 1 does, and vice versa. Therefore, there is no strictly dominant strategy in
this game.

7.2.8 Iterated elimination of strictly dominated strategies

Having discussed the meaning of strictly dominant and dominated strategies, let us now
attempt to see how we can use these concepts to find the equilibrium, if it exists, in a game.
One can find the equilibrium or equilibria in some games through successive elimination,
or iterated elimination, of strictly dominated strategies. This process of elimination will
continue until all the strictly dominated strategies are eliminated and will stop when only the
strictly dominant strategies are left or when the equilibrium set of strategies remain.

We know from our demonstration in the last section that a rational player will never play
a strictly dominated strategy. Since the player is assumed to be rational, elimination of strictly
dominated strategies will not affect the outcome of the game. In fact, strictly dominated
strategies are redundant. Therefore, a new game can be constructed from the original game
if we eliminate a strictly dominated strategy for a player. If this new game still has a strictly
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dominated strategy for any one of the players, that too can be eliminated. One can continue
this process until all the strictly dominated strategies for all the players are eliminated. As an
illustration, consider the simple example of the Prisoner’s Dilemma game discussed earlier,
the payoff matrix of which is presented in Table 7.2.4.

Prisoner 1 conjectures that prisoner 2 is rational and vice versa. Given this rationality
assumption, prisoner 1 knows that prisoner 2 will never choose “Don’t Confess.” The reason
for this belief on the part of player 1 is that the number of years in jail for prisoner 2 will be
either 2 or 8 if prisoner 2 chooses “Don’t Confess.” But the jail terms will be either 1 or 4
years if prisoner 2 chooses “Confess.” The jail terms in the latter event are shorter than the
jail terms in the former event. Since prisoner 2 is rational, prisoner 2 will not choose “Don’t
Confess.” This implies that “Don’t Confess” is the strictly dominated strategy for prisoner 2.
Therefore, we can eliminate the strictly dominated strategy “Don’t Confess” from prisoner
2’s strategies. This gives a new game with the payoff matrix given in Table 7.2.6(A). Notice
that this table shows that prisoner 2 does not have any choice now but to confess. But, prisoner
1 has two choices: either confess or not. Since prisoner 1 will be much better off with the
choice “Confess” and since prisoner 1 is rational, prisoner 1’s strictly dominated strategy is
“Don’t Confess,” which can be eliminated. This leads us to a new and final payoff table with
only one set of strategies (strictly dominant strategies or equilibrium strategies) as presented
in Table 7.2.6(B). This process of successive deletion of strictly dominated strategies is called
iterated elimination of strictly dominated strategies.

As another illustration, consider an example of a game involving two players and three
strategies. The strategies and the associated payoffs (benefits) in the original game are
presented in Table 7.2.7. Assume that higher payoffs are preferred.

Let us first consider player 2’s strategies. For this player, “Right” is a strictly dominated
strategy because the payoffs from the strategies “Left” and “Centre” are strictly higher than
the payoffs from the strategy “Right.” Since player 2 is assumed to be rational, player 2 will
not choose “Right” and, therefore, the strategy “Right” can be eliminated, which generates a
new game with its associated payoffs as shown in Table 7.2.8(A). As can be seen, neither of
the remaining two strategies of player 2 is strictly dominated. But, for player 1 the strategy

Table 7.2.6(A)

Prisoner 2’s strategy

Confess

Prisoner 1’s Don’t confess −8, −1
strategies Confess −4, −4

Table 7.2.6(B)

Prisoner 2’s strategy

Confess

Prisoner 1’s
Confess −4, −4

strategy
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Table 7.2.7

Player 2’s strategies

Left Center Right

Player 1’s
strategies

Top 4, 5 5, 3 3, 0
Middle 5, 4 4, 3 2, 0
Bottom 3, 2 2, 3 5, 1

Table 7.2.8(A)

Player 2’s strategies

Left Center

Player 1’s
strategies

Top 4, 5 5, 3
Middle 5, 4 4, 3
Bottom 3, 2 2, 3

Table 7.2.8(B)

Player 2’s strategies

Left Center

Player 1’s Top 4, 5 5, 3
strategies Middle 5, 4 4, 3

“Bottom” is strictly dominated by both “Top” and “Middle” strategies. Since player 1 is
rational, player 1 will not play the strategy “Bottom” and, therefore, that strategy can be
eliminated to obtain the game presented in Table 7.2.8(B). Notice that, as can be seen in
Table 7.2.8(B), neither of player 1’s strategies is now strictly dominated. But, for player 2
the strategy “Centre” is strictly dominated by the strategy “Left.” Therefore, we eliminate the
strategy “Centre” to obtain the fourth game presented in Table 7.2.9(A). As can be seen, player
2 is left with only one strategy (“Left”) and player 1 is left with two strategies (“Top” and
“Middle”). It is now easy to infer that the strategy “Top” for player 1 is a strictly dominated
strategy and, therefore, that strategy can be eliminated. After doing this, we arrive at the final
payoff matrix presented in Table 7.2.9(B). Notice that, in Table 7.2.9(B), we have arrived

Table 7.2.9(A)

Player 2’s strategy

Left

Player 1’s Top 4, 5
strategies Middle 5, 4
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Table 7.2.9(B)

Player 2’s strategy

Left

Player 1’s
Middle 5, 4

strategies

Table 7.2.10

Pepsi’s strategies

Advertise Don’t advertise

Coke’s strategies
Advertise 30, 20 40, 0
Don’t advertise 10, 15 30, 5

at the equilibrium of the game with player 1 choosing the strategy “Middle” and player 2
choosing the strategy “Left.” Then their respective payoffs will be 5 and 4.

7.2.9 Application examples

Example 1. Suppose that two soft-drinks companies, Coca-Cola (denoted by Coke) and
Pepsi, are competing in a small duopoly market. We know that their products are cola
drinks. Suppose that their research departments found a positive relationship between
advertisement and sales (and the resulting profits). They need to decide whether they have
to undertake advertisements. Coke expects immediate response decisions, for any of its
decisions, from Pepsi, and vice versa. The strategies and the payoff (in millions of dollars)
matrix of this advertisement game are presented in Table 7.2.10. Determine whether there is
a strictly dominated strategy for each company. Also determine the equilibrium of the game,
if any, through the process of iterated elimination of strictly dominated strategies.

Solution. This is an example of a nonzero-sum, non-cooperative, static game. We know
from our discussion in Section 7.2.7 that a strategy is a strictly dominated strategy for a
particular player if it gives the player a strictly lower payoff than the player’s other strategies.
We also know from there that a rational player will not play a strictly dominated strategy and,
therefore, we can eliminate that strategy from the set of strategies of the player. Following
these ideas, we can infer from Table 7.2.10 that “Don’t Advertise” is a strictly dominated
strategy for Pepsi because the payoffs from “Don’t Advertise” are lower than the payoffs from
the strategy “Advertise” (0 < 20 and 5 < 15). This implies that “Advertise” is the strictly
dominant strategy for Pepsi. Therefore, we can eliminate the strategy “Don’t Advertise”
from the set of strategies for Pepsi. Similarly, “Don’t Advertise” is the strictly dominated
strategy for Coke (because 10 < 30 and 30 < 40) and its strictly dominant strategy is
“Advertise” and, therefore, the strategy “Don’t Advertise” can be eliminated from the set
of strategies for Coke. After these eliminations, the resulting payoff matrix will comprise
only one strategy: “Advertise” for both Pepsi and Coke. Therefore, the equilibrium of the
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Table 7.2.11

AMD’s strategies

Low price Medium price High price

Intel’s
strategies

Low price 40, 40 50, 40 60, 30
Medium price 40, 50 50, 50 50, 30
High price 30, 60 30, 50 30, 30

game is “Advertise, Advertise” with payoffs $30 million and $20 million for Coke and Pepsi,
respectively.

Example 2. Suppose that two of the important computer chip manufacturers in the world,
Intel Corporation and AMD Corporation, both based in the USA, need to set the prices of
their newly introduced processors. Any price set by Intel is expected to affect the sales and
the profits of AMD, and vice versa. Moreover, any price decision by Intel is expected to
bring an immediate response from AMD, and vice versa. Suppose that their strategies and
the associated payoffs (in millions of dollars) of the two companies are as represented by
Table 7.2.11. Determine whether there is a strictly dominated strategy for each company.
Also determine the equilibrium of the game, if any, through the process of iterated elimination
of strictly dominated strategies.

Solution. This is an example of a nonzero-sum, cooperative, static game. Following our
discussion of strictly dominant and strictly dominated strategies in Section 7.2.7, “High
Price” is the strictly dominated strategy (by both the other two strategies) for Intel. Therefore,
the strategy “High Price” can be eliminated from the strategies of Intel. After this, neither of
Intel’s remaining strategies is strictly dominated. But, in the resulting game, AMD’s strategy
“High Price” is now strictly dominated by its other two strategies and, therefore, it can be
eliminated to obtain the second game. Notice that although we started with a three-strategy
game, in the second game both Intel and AMD have only two strategies: “Low Price” and
“Medium Price.” Notice also that in the second game neither of Intel’s nor AMD’s remaining
strategies is strictly dominated.

The absence of strictly dominated strategies suggests us to think differently. Notice that if
both companies choose “Low Price” their payoffs will be smaller ($40 million each). Since
both are rational, they both will not choose that strategy. If Intel chooses “Low Price” and
AMD chooses “Medium Price,” then the payoff of the former will be larger than that of the
latter suggesting that the latter will move to “Low Price” resulting in the former receiving
smaller payoffs. The same result can be inferred if AMD chooses “Low Price” and Intel
chooses “Medium Price.” If they cooperate, instead of competing, and both choose “Medium
Price,” their payoffs will be higher. Since the companies are assumed to be rational, they
both will choose “Medium Price” and each of their payoffs will be $50 million. Therefore,
the only equilibrium in the present game is the cooperative strategy “Medium Price” for both
Intel and AMD.

Example 3. Assume that two of the world’s leading passenger aircraft manufacturers,
Boeing based in the USA and Airbus based in France, want to frame sales strategies
for the coming financial year. Assume also that their strategies will be successful only if
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Table 7.2.12

Airbus’s strategies

Existing markets Emerging markets

Boeing’s strategies
Existing markets −2, −2 5, 5
Emerging markets 5, 5 −2, −2

one of them concentrates on the emerging markets (of Asia, Eastern Europe, Africa, and
South America) and the other concentrates on the existing markets (of Western Europe,
Oceania and North America). A single market cannot accommodate the aircrafts of both
manufacturers and each manufacturer can concentrate only on one market. Their strategies
and associated payoffs (in billions of dollars) are presented in Table 7.2.12. Determine the
strictly dominant or dominated strategies, if any, in this game. What will be the equilibrium
of the game?

Solution. This is another example of a nonzero-sum, cooperative, static game. As the
payoffs in Table 7.2.12 suggests, it is not in the interests of both Boeing and Airbus to
concentrate in the same market; if they do, they both will make a loss of $2 billion. Notice
that there is no strictly dominant or strictly dominated strategy for either manufacturer in
this game. The best they can do is to choose separate markets. But, then, how do they
choose these markets? Suppose now that Airbus reveals its intention of concentrating on
“Emerging Markets” through a press release. Then the best Boeing can do is to concentrate
on “Existing Markets.” Therefore, the strategy profile “Emerging Markets” and “Existing
Markets” constitutes an equilibrium of the game, and the resulting payoffs will be $5 billion
each. Once the strategies are decided, no manufacturer will unilaterally deviate from it; if
it does, the resulting payoffs will not be in the interests of both manufacturers. Notice also
that the strategy profile “Emerging Markets” for Boeing and “Existing Markets” for Airbus
is also equally good. Therefore, the present game involves two equilibria or has multiple
equilibria.

Example 4. Suppose that two of the world’s leading breakfast cereal producers, Kellogg
and General Mills (GM), both based in the USA, face a duopoly market. Also suppose that
they both plan to introduce two new types of cereal (diet and sweet), one each by Kellogg
and GM, which will be successful if only one of them produce a particular type. Suppose
again that a previous variant of diet cereals produced by GM was not as popular among
customers as that produced by Kellogg. If both produce the same type, the market will be
glutted with this type of cereal and the payoffs they gain are assumed to be considerably small.
The strategies and the associated payoffs (in millions of dollars) of these two companies are
given in Table 7.2.13. Determine the strictly dominant or dominated strategies, if any, in this
game. What will be the equilibrium of the game?

Solution. This is another example of a nonzero-sum, non-cooperative, static game. It can be
inferred from Table 7.2.13 that “Diet Cereal” is a strictly dominated strategy for GM because
the payoffs from its “Sweet Cereal” strategy are strictly larger than those from “Diet Cereal”
strategy (100 > 30 and 40 > 30). Notice that Kellogg does not have a strictly dominant
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Table 7.2.13

GM’s strategies

Diet cereal Sweet cereal

Kellogg’s Diet cereal 30, 30 80, 100
strategies Sweet cereal 80, 30 30, 40

(or dominated) strategy in this game. Its choice depends on the choice of GM. Since GM is a
rational player, Kellogg knows for sure that GM will choose “Sweet Cereal.” Then, the best
Kellogg can do is to produce “Diet Cereal.” Therefore, the equilibrium of the game is the
strategy profile “Diet Cereal” for Kellogg and “Sweet Cereal” for GM and receive payoffs
of $80 million and $100 million, respectively.

7.2.10 Exercises

1. Find the equilibrium, if any, for the games whose payoff matrices are as presented in
Tables 7.2.14(A)–(D) using iterated elimination of strictly dominated strategies.

Table 7.2.14(A)

Player 2’s strategies

s2
1 s2

2

Player 1’s
strategies

s1
1 5, 3 4, 6

s1
2 1, 2 0, 2

Table 7.2.14(B)

Player 2’s strategies

s2
1 s2

2

Player 1’s
strategies

s1
1 5, 3 4, 6

s1
2 1, 2 0, 2

Table 7.2.14(C)

Player 2’s strategies

s2
1 s2

2

Player 1’s
strategies

s1
1 0, 0 5, 8

s1
2 8, 5 −1, −1
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Table 7.2.14(D)

Player 2’s strategies

s2
1 s2

2

Player 1’s
strategies

s1
1 4, 4 1, 1

s1
2 0, 0 5, 5

2. Find the equilibrium, if any, for the games whose payoff matrices are presented in
Tables 7.2.15(A) and (B) using iterated elimination of strictly dominated strategies.

Table 7.2.15(A)

Player 2’s strategies

s2
1 s2

2 s2
3

Player 1’s
strategies

s1
1 10, 9 9, 8 2, 2

s1
2 5, 7 4, 4 1, 4

s1
3 6, 8 7, 7 3, 5

Table 7.2.15(B)

Player 2’s strategies

s2
1 s2

2 s2
3

Player 1’s
strategies

s1
1 9, 10 9, 8 2, 2

s1
2 5, 7 4, 4 1, 4

s1
3 8, 6 7, 7 5, 3

3. Application exercise. Assume that two of the world’s leading word processor suppliers,
Microsoft and Corel, plan to decide the prices of their word processors (Microsoft’s Word
and Corel’s WordPerfect) for the next financial year. They both have three strategies:
decrease the price, keep the price constant, or increase the price. They are assumed
to decide the strategies simultaneously. Their strategies and the associated payoffs
(in billions of dollars) are presented in Table 7.2.16(A). Determine the equilibrium,
if any, in the game.

4. Application exercise. Assume that two of the leading mobile phone service providers in
Europe, Vodafone and Orange, plan to chalk out strategies to attract customers. They both
have the same strategies: either charge lower call rates or increase talk-time. Assume that
their payoffs (in billions of dollars) from these strategies are as given in Table 7.2.16(B).
Determine the equilibrium, if any, in this game.
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Table 7.2.16(A)

Corel’s strategies

Decrease Constant Increase

Microsoft’s
strategies

Decrease 3, 2 3, 1 3, 0
Constant 1, 2 2, 1 3, 0
Increase 2, 3 1, 1 1, 0

Table 7.2.16(B)

Vodafone’s strategies

Low call rate Increased talk-time

Orange’s Low call rate −1, −1 1, 2
strategies Increased talk-time 2, 1 0, 0

5. Application exercise. Suppose that two of the world’s leading personal computer
manufacturers, Dell and Compaq, need to decide the quality of the new models they
are planning to introduce. Also suppose that the available quality levels are high quality,
medium quality, and low quality. The payoff (in millions of dollars) matrix of the two
companies is given in Table 7.2.17. Determine the equilibrium, if any, in this game.

Table 7.2.17

Dell’s strategies

High quality Medium quality Low quality

Compaq’s
strategies

High quality 50, 50 40, 75 20, 100
Medium quality 75, 40 40, 40 30, 80
Low quality 100, 20 80, 30 100, 100

7.3 Static games of complete and perfect information:
Nash equilibrium

7.3.1 Introduction

In Section 7.2 we presented the preliminaries of game theory. We also presented, in
Sections 7.2.7–7.2.9, the meaning of strictly dominant and dominated strategies and found
how one could determine the equilibrium in a game, if it existed, using the method of the
iterated elimination of strictly dominated strategies. Although this method is based on the
idea that a rational player will not play strictly dominated strategies, the method is based on
two restrictive assumptions.

Notice that the whole idea of iterated elimination of strictly dominated strategies is based
on the assumption of rationality of the players. Rationality in the present context means
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that each player makes use of all the available information to choose among strategies so as
to maximize the player’s payoffs. This assumption is required in each iterative step in the
elimination of strictly dominated strategies. Moreover, we need to assume that players know
about each other’s rationality, or that rationality is a common knowledge.

Another assumption that is required for the application of the method of iterated elimi-
nation of strictly dominated strategies is that the game has strictly dominated strategies.
In some games, all the strategies may survive iterated elimination; that is, there may not
always be strictly dominated strategies in some games. In such games it is difficult to find
the equilibrium of the game through the application of the method of elimination of strictly
dominated strategies.

Therefore, we require a concept that does not rely on the aforesaid assumptions. This
is given by Nash equilibrium, one of the most widely used concepts in game theory, due
to John Nash. We will see shortly that optimal strategies in a Nash equilibrium always
survive iterated elimination of strictly dominated strategies. Since the concept of Nash
equilibrium is vital in game theory, we devote this section to its definition, discussion, and
applications.

7.3.2 Pure-strategy Nash equilibrium: definition

Let us now define a pure-strategy Nash equilibrium in a normal-form game G = {Si,π i} =
{SA,SB, . . . ,Sn;πA,πB, . . . ,πn}. The set of strategies (sA∗

,sB∗
, . . . ,sn∗

), in a normal-form,
pure-strategy game G = {Si,π i} = {SA,SB, . . . ,Sn;πA,πB, . . . ,πn}, is a Nash equilib-
rium if the payoff for player i from playing si∗ is higher than or equal to the payoff
for player i from playing si, where si∗,si ∈ Si, and all other n − 1 players playing
(sA=1∗

,sB=2∗
, ....,s(i−1)∗ ,s(i+1)∗, . . . ,sn∗

), or if

π i(sA=1∗
,sB=2∗

, . . . ,s(i−1)∗,si∗,s(i+1)∗, . . . ,sn∗
)

≥ π i(sA=1∗
,sB=2∗

, . . . ,s(i−1)∗,si,s(i+1)∗, . . . ,sn∗
) (7.3.1)

The definition of the pure-strategy Nash equilibrium given in inequality (7.3.1) implies that
each player’s strategy is that player’s best response to the strategies chosen by the other
players in the game. Notice that in a Nash equilibrium no player has the incentive to switch
strategies because si∗ is as good as or better than any other strategy for player i. This implies
that a Nash equilibrium is a stable equilibrium.

The reader would have noticed two important features of the definition of pure-strategy
Nash equilibrium given in inequality (7.3.1). The first relates to the weak inequality (≥) in
(7.3.1). It is possible that there may exist other strategies for the ith player that are at least
as good as the strategy si∗ . But, Nash equilibrium only requires that the ith player does not
gain anything additional from switching strategies. The second feature is that more than one
set of strategies may satisfy the condition for Nash equilibrium; that is, there may be more
than one Nash equilibrium in a single game.

7.3.3 Pure-strategy Nash equilibrium: alternative representation

In the last section we defined a pure-strategy Nash equilibrium assuming that the strategy sets
are discontinuous or discrete. One can alternatively define a pure-strategy Nash equilibrium
that is especially useful when the strategy sets are continuous. This alternative representation
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is based on the concept of the best-response functions. One can find the ith player’s best
response for each possible strategy chosen by the rivals of the ith player. This can be found
by solving the problem

Maximize π i(si∗,sA=1∗
,sB=2∗

, . . . ,s(i−1)∗,s(i+1)∗, . . . ,sn∗
) (7.3.2)

Assume now that the payoff in problem (7.3.2) is continuous and differentiable. We
can then solve this problem using the classical approach to unconstrained optimization
presented in Chapter 4. From the FOC of this approach, we can obtain the ith player’s
best response (si∗) as a function of (sA=1∗

,sB=2∗
, . . . ,s(i−1)∗,s(i+1)∗ , . . . ,sn∗

). Let us denote
this function by si∗ = f i(sA=1∗

,sB=2∗
, . . . ,s(i−1)∗,s(i+1)∗, . . . ,sn∗

). Similarly, we can find the
best-response functions of the other players in the game. Notice that for a Nash equilibrium
to exist, the players’ strategies must be best responses to one another. In other words, the
Nash equilibrium strategies (sA=1∗

,sB=2∗
, . . . ,s(i−1)∗,si∗,s(i+1)∗, . . . ,sn∗

) will be solution to
the system of simultaneous equations

sA=1∗ = f 1(sB=2∗
, . . . ,s(i−1)∗,si∗,s(i+1)∗, . . . ,sn∗

),

sB=2∗ = f 2(sA=1∗
, . . . ,s(i−1)∗,si∗,s(i+1)∗, . . . ,sn∗

), . . .,

s(i−1)∗ = f (i−1)(sA=1∗
,sB=2∗

, . . . ,si∗,s(i+1)∗, . . . ,sn∗
),

si∗ = f i(sA=1∗
,sB=2∗

, . . . ,s(i−1)∗,s(i+1)∗ , . . . ,sn∗
),

s(i+1)∗ = f (i+1)(sA=1∗
,sB=2∗

, . . . ,s(n−1)∗,si∗, . . . ,sn∗
), . . .,

and sn∗ = f n(sA=1∗
,sB=2∗

, . . . ,s(i−1)∗,si∗,s(i+1)∗, . . . ,s(n−1)∗) (7.3.3)

Suppose that our game is a normal-form game with two players and two strategies. Also
suppose that player A’s best response to sB∗

by player B is sA∗
and that player B’s best

response to sA∗
by player A is sB∗

. Then player A’s and player B’s best-response functions,
following the general case presented in system (7.3.3), can be written as

sA∗ = f A(sB∗
) and sB∗ = f B(sA∗

) (7.3.4)

which were the ideas we used in the name of reaction functions in the solutions to
application examples 4 through 6 in Section 4.2.8.

7.3.4 Relationship between dominant and Nash equilibrium strategies

We learned from our earlier discussions that if, in a normal-form game, there exists a
strictly dominant strategy for a player, then all other strategies for the player must be strictly
dominated strategies. We then used the method of iterated elimination of strictly dominated
strategies to find the equilibrium of the game.

Notice that a Nash equilibrium is based on two assumptions. The first assumption relates
to the rationality of players as in the case of iterated elimination. Each player is assumed to
act rationally. The second assumption is that each player’s beliefs or conjectures about the
strategies that the other player(s) will choose are correct. Therefore, in a Nash equilibrium
the beliefs of the two (or all) players are mutually consistent.
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Let us now explore the distinction between the dominant strategy equilibrium, the
equilibrium obtained through iterated elimination of strictly dominated strategies, and Nash
equilibrium in a normal-form game with two players and two strategies. An equilibrium in
dominant strategies implies that player 1 is doing the best it can no matter what player 2 is
doing and player 2 is doing the best it can no matter what player 1 is doing. But, in a Nash
equilibrium, player 1 is doing the best it can given what player 2 is doing and player 2 is
doing the best it can given what player 1 is doing.

Let us now see the relationships between strictly dominant strategies and Nash equilibrium
strategies. Suppose that we have an n-person, n-strategy normal-form game. Suppose also that
iterated elimination of strictly dominated strategies in this game yields an equilibrium. Then,
one can show that this equilibrium obtained through iterated elimination of strictly dominated
strategies is also a unique Nash equilibrium in the game. This means that dominant strategy
equilibria are always Nash equilibria. But, all Nash equilibria are not dominant strategy
equilibria. It can also be shown that Nash equilibrium strategies will always survive iterated
elimination of strictly dominated strategies.

7.3.5 Pure-strategy Nash equilibrium: examples

Example 1. Let us now apply the definition of Nash equilibrium presented in inequality
(7.3.1) to some concrete cases. For this, consider first the Prisoner’s Dilemma example we
exposed in Section 7.2.5 the payoff matrix of which is presented in Table 7.2.4. Find the
Nash equilibrium, if any, in this game.

Solution. We know that a Nash equilibrium is in which prisoner 1 is doing the best it
can given what prisoner 2 is doing and prisoner 2 is doing the best it can given what prisoner
1 is doing. First of all, let us attempt to find prisoner 1’s best responses in the game. For this
we need to find the best row response, the best response of prisoner 1, to each column choices
by prisoner 2. These best responses of prisoner 1 are shown in boldface in the payoff matrix
in Table 7.3.1(A). It can be seen from this table that if prisoner 2 chooses “Don’t Confess,”
then the best response of prisoner 1 is to choose “Confess” because it maximizes prisoner
1’s payoff (−1), shown in boldface in the table. Similarly, if prisoner 2 chooses “Confess,”
then prisoner 1’s best response is to choose “Confess,” again because it maximizes prisoner
1’s payoff (−4), shown in bold type in the table.

Let us now see the best responses of prisoner 2 given the strategies chosen by prisoner 1.
For this we need to find the best column response, the best response of prisoner 2, to each
row choices by prisoner 1. These best responses of prisoner 2 are shown in boldface in the
payoff matrix in Table 7.3.1(B). This shows that if prisoner 1 chooses “Don’t Confess,” then
the best response of prisoner 2 is to choose “Confess” because it maximizes prisoner 2’s
payoff (−1), shown in boldface in the table. Similarly, if prisoner 1 chooses “Confess,” then

Table 7.3.1(A)

Prisoner 2’s strategies

Don’t confess Confess

Prisoner 1’s Don’t confess −2, −2 −8, −1
strategies Confess −1, −8 −4, −4
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Table 7.3.1(B)

Prisoner 2’s strategies

Don’t confess Confess

Prisoner 1’s Don’t confess −2, −2 −8, −1
strategies Confess −1, −8 −4, −4

Table 7.3.2(A)

Prisoner 2’s strategies

Don’t confess Confess

Prisoner 1’s Don’t confess −2, −2 −8, −1
strategies Confess −1, −8 −4, −4

Table 7.3.2(B)

Woman’s strategies

Wrestling Opera

Man’s Wrestling 2, 1 0, 0
strategies Opera 0, 0 1, 2

prisoner 2’s best response is to choose “Confess” because it maximizes prisoner 2’s payoff
(−4), shown in boldface in the table. We can now present the best responses of both prisoners
in a single payoff matrix as given in Table 7.3.2(A).

Notice that the only set of strategies (strategy profile) that is mutually consistent
is the set comprising strategies “Confess, Confess.” This was exactly the result we
obtained in Section 7.2.8 when we applied the method of iterated elimination of strictly
dominated strategies. This result corroborates our statement in the last section that if iterated
elimination of strictly dominated strategies yields an equilibrium, that equilibrium must be
a Nash equilibrium.

Example 2. Consider the example of the Battle of the Sexes we exposed in Section 7.2.6.
The payoff matrix of this game is presented in Table 7.2.5. Find the Nash equilibrium,
if any, in this game.

Solution. Notice that there is no strictly dominated strategy for either the man or the
woman in the payoff matrix of this game. We can now attempt to see if there is any Nash
equilibrium in this game. For this we apply the definition of Nash equilibrium given in
inequality (7.3.1).

First of all, let us attempt to find the man’s best responses in the game. The payoff matrix
is given in Table 7.2.5. For this we need to find the best row response, the best response of the
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man, to each column choices by the woman. These best responses of the man are shown in
boldface in the payoff matrix in Table 7.3.2(B). Le us now see the best responses of the woman
given the strategies chosen by the man. For this we need to find the best column response,
the best response of the woman, to each row choices by the man. These best-responses of
the woman also are shown in boldface in the payoff matrix in Table 7.3.2(B). As this table
shows, there are two mutually consistent sets of strategies or strategy profile in this game:
“Wrestling, Wrestling” and “Opera, Opera.” Therefore, there are two Nash equilibria in the
game of the Battle of the Sexes.

Example 3. Consider the second example of the two-person, three-strategy game we
discussed in Section 7.2.8. The payoff matrix of this game is presented in Table 7.2.7. Find
the Nash equilibrium, if any, in this game.

Solution. To find if there is any Nash equilibrium in this game, we apply the definition
of Nash equilibrium given in inequality (7.3.1). First of all, let us attempt to find player 1’s
best responses in the game. For this, as earlier, we need to find the best row response, the
best response of player 1, to each column choices by player 2. These are shown in boldface
in the pay off matrix in Table 7.3.3(A). Let us now see the best responses of player 2 given
the strategies chosen by player 1. For this we need to find the best column response, the best
response of player 2, to each row choices by player 1. These are also shown in boldface in
Table 7.3.3(A). As the payoff matrix in Table 7.3.3(A) shows, there is only one mutually
consistent set of strategies or strategy profile in this game: “Middle, Left.” Therefore, there
is only one Nash equilibrium in this game. Notice that we identified this set of strategies as
the set of dominant strategies in the solution to the example at the end of Section 7.2.8.

Example 4. Consider the example of the Matching Pennies game we discussed in
Section 7.2.4. The payoff matrix of this game is presented in Table 7.2.3. Find the Nash
equilibrium, if any, of this game.

Table 7.3.3(A)

Player 2’s strategies

Left Center Right

Player 1’s
strategies

Top 4, 5 5, 3 3, 0
Middle 5, 4 4, 3 2, 0
Bottom 3, 2 2, 3 5, 1

Table 7.3.3(B)

Player 2’s strategies

Heads Tails

Player 1’s Heads 10, −10 −10, 10
strategies Tails −10, 10 10, −10
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Solution. As the payoff matrix in Table 7.2.3 shows, no player has a strictly dominant
or dominated strategy in this game. If we apply the definition of Nash equilibrium given
in inequality (7.3.1), we find that the best response for player 1 is to choose “Heads” and
“Tails” if player 2 chooses “Heads” and “Tails,” respectively. Similarly, the best response
for player 2 is to choose “Tails” and “Heads” if player 1 chooses “Heads” and “Tails,”
respectively. We represent these best responses of both players in bold type in the payoff
matrix given in Table 7.3.3(B).

As can be seen from Table 7.3.3(B), no set of strategies or strategy profile is mutually
consistent. Therefore, the game of Matching Pennies does not have a Nash equilibrium in
pure strategies. One might wonder why there is no Nash equilibrium in this game. The
reason is that one player will always try to outguess the other player at every possible set
of strategies. What this implies is that one player will always try to switch strategy at every
possible set of strategies. Therefore, one cannot predict a stable, consistent set of strategies
in this game.

7.3.6 Best-response functions and Nash equilibrium

In Section 7.3.3 we observed that the best-response functions of players in a normal-form
game can be used to find the Nash equilibrium solution(s) of the game. In this section we
attempt to see how one does this in concrete cases.

Suppose that we have a simple normal-form game with two players (A and B) and
one strategy for each player (sA and sB). Also suppose that the payoff functions of these
players areπA =πA(sA,sB) = 1000sA−(sA)2−sAsB andπB =πB(sA,sB) =1000sB −(sB)2−
sAsB. Differentiating the first equation with respect to sA and the second equation with respect
to sB, setting the results to zero, and solving for sA and sB yield sA = f (sB) = 500 − 0.5sB

and sB = f (sA) = 500−0.5sA, respectively. Notice that sA = f (sB) = 500−0.5sB is the best-
response function of player A and sB = f (sA) = 500−0.5sA is the best-response function of
player B. As we stated at the end of Section 7.3.3, the solution of these two SLSEs gives
us the Nash equilibrium in the present example. Therefore, the Nash equilibrium solutions
are sA = 333.333 and sB = 333.333. We can also find this solution if we graph the two
best-response functions in a two-dimensional figure.

Notice an interesting relationship between the above game and its solution and the
solution to the Cournot duopoly problem in example 4 of Section 4.2.8. If we treat sA = qA,
sB = qB, πA =	A, and πB =	B, then the above game theory problem is identical with the
Cournot duopoly problem. This is an example of the direct application of game theory to
the subjects of our interest. Notice that the solutions we obtained for the other two duopoly
problems in examples 5 (Stackelberg duopoly problem) and 6 (Bertrand duopoly problem)
in Section 4.2.8 can be recast in terms of game theory.

7.3.7 Mixed strategies

So far in this chapter we have been concerned exclusively with games of pure strategies:
games that involve specific choices or games in which players do not randomly mix pure
strategies. In the present section we explore the meaning of mixed strategy. The definition
of mixed-strategy Nash equilibrium is presented in Section 7.3.8. It is assumed that the
reader is familiar with the basics of probability for the purposes of this discussion.

Some games, like the Matching Pennies game, may not have a Nash equilibrium in pure
strategies. Moreover, in many of the games in the subjects of our interest players randomize
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their choices of strategies by choosing the probabilities with which they play their strategies.
We stated earlier that a mixed strategy is a strategy in which a player makes a random choice
(that is, a choice based on probabilities) among possible actions or decisions. The notion of
mixed strategy is constructed on the assumption that in a game without strictly dominant or
dominated strategies a player has no way of knowing which strategy his opponent(s) will
choose. This uncertainty about the opponent’s action forces the player to randomize strategies
such that the player will be indifferent to the strategies chosen by the opponent.

Let us first define a mixed strategy in an N -person game in M pure strategies.
Suppose that player i has Si = {si

1,s
i
2, . . . ,s

i
M } pure strategies in a normal-form game

G = {SA,SB, . . . ,Si, . . . ,SN ;πA,πB, . . . ,π i, . . . ,πN }. Then a mixed strategy for player i
is a probability distribution pi = (pi

1,p
i
2, . . . ,p

i
M ), where 0 ≤ pi

m ≤ 1 and
∑M

m=1 pi
m =pi

1 +
pi

2 + ·· · + pi
M = 1. In the probability distribution pi = (pi

1,p
i
2, . . . ,p

i
M ), pi

mstands for the
probability with which the ith player plays the mth pure strategy.

7.3.8 Mixed-strategy Nash equilibrium

We know that in a Nash equilibrium every player of the game has the best response (payoff)
given the decision(s) of his opponent(s). But, when players randomize their strategies, what
a particular player attempts to optimize, given the choice of his opponent(s), is not the actual
associated payoff but the expected value of all the player’s payoffs in the game. Therefore,
we need to calculate first the expected value of the payoffs, or the expected payoffs, in a game
before we define mixed-strategy Nash equilibrium of the game.

Suppose that player i has Si = {si
1,s

i
2, ....,s

i
M } pure strategies in a normal-form game

G = {SA,SB, . . . ,Si, . . . ,SN ;πA,πB, . . . ,π i, . . . ,πN }. Then a mixed strategy for player i is
a probability distribution pi = (pi

1,p
i
2, . . . ,p

i
M ), where 0 ≤ pi

m ≤ 1 and
∑M

m=1 pi
m =pi

1 +pi
2 +

·· ·+ pi
M = 1. Then the expected value of the payoffs, or simply the expected payoff, to the

ith player can be written as

E(π i) = pi
1 p j

1 π
i
11 + pi

1 p j
2 π

i
12 +·· ·+ pi

1 p j
M π

i
1M + pi

2 p j
1 π

i
21 + pi

2 p j
2 π

i
22

+·· ·+ pi
2 p j

M π
i
2M +·· ·+ pi

M p j
1 π

i
M1 + pi

M p j
2 π

i
M2 +·· ·+ pi

M p j
M π

i
MM (7.3.5)

where p i
m (m = 1,2, . . . ,M ) is the probability with which the ith player, i �= j, chooses the

mth strategy. Notice that we can condense equation (7.3.5) as

E(π i) =
∑M

m=1
pi

m p j
mπ

i
mm (7.3.6)

We are now ready to define a mixed-strategy Nash equilibrium. Suppose that we have

four probability vectors pi∗
m, pj∗

m, pi•
m, and pj•

m. Then the probabilities in vectors pi∗
m and pj∗

m

constitute a Nash equilibrium if, for all other probabilities in the vectors pi•
m and pj•

m, the
following inequalities are satisfied:

∑M

m=1
pi∗

mp j∗
m π

i
mm ≥

∑M

m=1
pi•

mp j∗
m π

i
mm and

∑M

m=1
pi∗

mp j∗
m π

j
mm ≥

∑M

m=1
pi∗

mp j•
m π

j
mm

(7.3.7)

where pi∗
m ∈ pi∗

m and p j∗
m ∈ p j∗

m , pi•
m ∈ pi•

m and p j•
m ∈ p j•

m . The inequalities in (7.3.7) can
also be written alternatively using equation (7.3.6). Suppose that the expected payoffs of
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the ith and the jth players when players i and j choose probabilities in vectors pi∗
m and

p j∗
m , are given, respectively, by E(π i∗) =∑M

m=1 pi∗
mp j∗

m π
i
mm and E(π j∗) =∑M

m=1 pi∗
mp j∗

m π
j

mm.
Also suppose that the expected payoffs of the ith and the jth players, when players i
and j, respectively, choose probabilities in vectors pi•

m and pj•
m, are given by E(π i•) =∑M

m=1 pi•
mp j∗

m π
i
mm and E(π j•) =∑M

m=1 pi∗
mp j•

mπ
j

mm. Then, the probabilities in vectors pi∗
m and

p j∗
m constitute a Nash equilibrium if, for all other probabilities in the vectors pi•

m and p j•
m , the

inequalities in (7.3.8) are satisfied:

E(π i∗ ) ≥ E(π i•) and E(π j∗) ≥ E(π j•) (7.3.8)

Inequalities (7.3.7) or (7.3.8) imply that the probabilities in vectors pi∗
m and pj∗

m constitute

a Nash equilibrium if no other probabilities (for example, those in vectors pi•
m and pj•

m) yield
a higher payoff for either player (i and j).

7.3.9 Computation of mixed-strategy Nash equilibrium

Let us now consider the question of how one can find the mixed-strategy Nash equilibrium
in practice. We consider one of the simplest possible games: a normal-form game with two
players (A and B) and two pure strategies which is a special case of the mixed-strategy Nash
equilibrium with N players and M pure strategies given in inequality (7.3.7). In this case,
the expected payoffs, similar to equation (7.3.5), of player A and player B can be written,
respectively, as

E(πA) = pA
1 pB

1π
A
11 + pA

1 pB
2π

A
12 + pA

2 pB
1π

A
21 + pA

2 pB
2π

A
22

and

E(πB) = pA
1 pB

1π
B
11 + pA

1 pB
2π

B
12 + pA

2 pB
1π

B
21 + pA

2 pB
2π

B
22

⎫⎪⎪⎬
⎪⎪⎭ (7.3.9)

We know that pA
1 +pA

2 = 1 and pB
1 +pB

2 = 1, which imply that pA
2 = 1−pA

1 and pB
2 = 1−pB

2 ,
respectively. If we define pA

1 = p and pB
1 = q, we obtain pA

2 = 1 − p and pB
2 = 1 − q. Using

these notations, we can rewrite equation (7.3.9) as

E(πA) = pqπA
11 + p(1 − q)πA

12 + (1 − p)qπA
21 + (1 − p)(1 − q)πA

22

and

E(πB) = pqπB
11 + p(1 − q)πB

12 + (1 − p)qπB
21 + (1 − p)(1 − q)πB

22

⎫⎪⎪⎬
⎪⎪⎭ (7.3.10)

Notice an important feature of the two equations in (7.3.10). The expected payoff of player A
(E(πA)) is a linear function of p for given q and the expected payoff of player B (E(πB))
is a linear function of q for given p. Also notice that player A’s problem is to choose the
probabilities (p and (1 − p)) with which to play the strategies such that the expected payoff
(E(πA) in (7.3.10)) is maximum. Similarly, player B’s problem is to choose the probabilities
(q and (1 − q)) with which to play the strategies such that the expected payoff (E(πB) in
(7.3.10)) is maximum. Three of the generally adopted methods to solve this problem are the
application of the classical optimization approach (presented in Chapter 4), the NLP approach
(presented in Chapter 6), and the geometric or graphical method (presented in Section 7.6.4).



[12:26 3/11/2011 5640-Ummer-Ch07.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 377 353–419

Game theory 377

We first apply the classical approach to this optimization problem. Let us now partially
differentiate the first equation with respect to p and the second equation with respect to q.
These partial derivatives will be

∂E(πA)/∂p = qπA
11 + (1 − q)πA

12 − qπA
21 − (1 − q)πA

22

and

∂E(πB)/∂q = pπB
11 − pπB

12 + (1 − p)πB
21 − (1 − p)πB

22

⎫⎪⎪⎬
⎪⎪⎭ (7.3.11)

Notice that ∂E(πA)/∂p (or ∂E(πB)/∂q) in (7.3.11) is not a function of p (or q), but of
q (or p). Also notice that ∂E(πA)/∂p (or ∂E(πB)/∂q) may be positive, negative, or zero. If
∂E(πA)/∂p (or ∂E(πB)/∂q) is positive, player A (or B) will choose the maximum possible
value of 1 for p (or q), which will imply that player A (or B) will choose the pure strategy sA

1
(or sB

1 ). If ∂E(πA)/∂p (or ∂E(πB)/∂q) is negative, player A (or B) will choose the minimum
possible value of 0 for p (or q), which will imply that player A (or B) will choose the pure
strategy sA

2 (or sB
2 ). But, when ∂E(πA)/∂p (or ∂E(πB)/∂q) is zero, E(πA) (or E(πB)) is the

same for all 0 ≤ p (or q) ≤ 1. Since the payoff of player A (or B) is the same for any mixed
strategy (that is, for all possible levels of p or q), player A (or B) is indifferent between any
mixed-strategy choices. Therefore, one can state that an equilibrium for player A (or B) to play
mixed strategies is valid only if ∂E(πA)/∂p (or ∂E(πB)/∂q) is zero. In other words, a mixed-
strategy Nash equilibrium will exist only if ∂E(πA)/∂p = 0 (or ∂E(πB)/∂q = 0). Notice
that this is the FOC in the classical approach to optimization without constraints. Therefore,
setting ∂E(πA)/∂p (and ∂E(πB)/∂q) in equation (7.3.11) to zero and simplifying yields

p∗ = πB
22 −πB

21

πB
11 −πB

12 −πB
21 +πB

22

and q∗ = πA
22 −πA

12

πA
11 −πA

12 −πA
21 +πA

22

(7.3.12)

Equations (7.3.12) give us the Nash equilibrium in our simple two-player mixed-strategy
game. But how does one make sure that the equilibrium probabilities in equation (7.3.12) are
strictly nonnegative? We know that in a classical optimization problem there is no way for
one to guarantee that the optimal values of the choice variables (probabilities in the present
case) are always nonnegative. Although the above procedure of finding the mixed-strategy
Nash equilibrium based on the classical method of optimization may yield nonnegative
equilibrium probabilities in most mixed-strategy games, the inherent problem (the possibility
of negative optimal probabilities) just noted forces us to use some more robust methods in
those cases where we end up with negative optimal probabilities.

We know that one such method is given by the Kuhn–Tucker conditions in the NLP
approach we explored in Chapter 6. But, to apply the Kuhn–Tucker conditions, we need to
specify the objective function and the constraints. The objective function of player A allowing
for mixed strategies, in a two-player, two-pure-strategy normal-form game, is to maximize
the expected payoff; that is, to maximize E(πA) = pqπA

11 + p(1 − q)πA
12 + (1 − p)qπA

21 +
(1 − p)(1 − q)πA

22 (the first equation in (7.3.10)). The constraints of player A are p +
(1 − p) = 1, p ≥ 0, and (1 − p) ≥ 0. Therefore, player A’s problem is to

Maximize E(πA) = pqπA
11 + p(1 − q)πA

12 + (1 − p)qπA
21 + (1 − p)(1 − q)πA

22,

subject to p + (1 − p) = 1,p ≥ 0, and (1 − p) ≥ 0 (7.3.13)
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Assume now that the objective function and the constraints in problem (7.3.13) are as
those required for the fulfillment of the Kuhn–Tucker sufficiency theorem presented in
Section 6.4.2. Then we can set up the Lagrangian function as

L = pqπA
11 + p(1 − q)πA

12 + (1 − p)qπA
21 + (1 − p)(1 − q)πA

22

+λ1[1 − p − (1 − p)]+λ2p +λ3(1 − p) (7.3.14)

from which we can derive the Kuhn–Tucker maximum conditions. Solution of these
conditions will yield the nonnegative optimal probability p∗.

Similarly, the objective function of player B allowing for mixed strategies, in a two-
player, two-pure-strategy normal-form game, is to maximize the expected payoff; that is,
to maximize E(πB) = pqπB

11 + p(1 − q)πB
12 + (1 − p)qπB

21 + (1 − p)(1 − q)πB
22 (the second

equation in (7.3.10)). The constraints of player B are q+ (1−q) = 1, q ≥ 0, and (1−q) ≥ 0.
Therefore, player B’s problem is to

Maximize E(πB) = pqπB
11 + p(1 − q)πB

12 + (1 − p)qπB
21 + (1 − p)(1 − q)πB

22,

subject to q + (1 − q) = 1,q ≥ 0, and (1 − q) ≥ 0 (7.3.15)

Assume now, as above, that the objective function and the constraints in problem (7.3.15)
are as those required for the fulfillment of the Kuhn–Tucker sufficiency theorem discussed
in Section 6.4.2. Then we can set up the Lagrangian function as

L = pqπB
11 + p(1 − q)πB

12 + (1 − p)qπB
21 + (1 − p)(1 − q)πB

22

+λ1[1 − q − (1 − q)]+λ2q +λ3(1 − q) (7.3.16)

from which we can derive the Kuhn–Tucker maximum conditions. Solution of these
conditions will yield the nonnegative optimal probability q∗.

We now state two important theorems. The first theorem is that every finite-player, finite-
mixed-strategy game has a Nash equilibrium. The second theorem is that every finite-player,
finite-pure-strategy game has at least one Nash equilibrium in pure or mixed strategies.
The proofs of these theorems require the application of advanced topics such as fixed-point
theorem and, therefore, we do not present them here.

7.3.10 Computation of mixed-strategy Nash equilibrium: examples

Example 1. Consider the game of Matching Pennies introduced in Section 7.2.4. We
found in example 4 in Section 7.3.5 that this game did not have a Nash equilibrium in
pure strategies. Determine the Nash equilibrium of this game in mixed strategies.

Solution. The payoff matrix of this is presented in Table 7.2.3. Based on this table
and following equations (7.3.10), we can write the expected payoffs of players A and B,
respectively, as

E(πA) = pqπA
11 + p(1 − q)πA

12 + (1 − p)qπA
21 + (1 − p)(1 − q)πA

22

= pq10 − p(1 − q)10 − (1 − p)q10 + (1 − p)(1 − q)10 (7.3.17)
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and

E(πB) = pqπB
11 + p(1 − q)πB

12 + (1 − p)qπB
21 + (1 − p)(1 − q)πB

22

= −pq10 + p(1 − q)10 + (1 − p)q10 − (1 − p)(1 − q)10 (7.3.18)

Differentiating equations (7.3.17) and (7.3.18) partially with respect to p and q, respectively,
and setting the results to zero, we obtain equations (7.3.12). We can now plug the payoffs
from Table 7.2.3 into equations (7.3.12) to obtain

p∗ = πB
22 −πB

21

πB
11 −πB

12 −πB
21 +πB

22

= −10 − 10

−10 − 10 − 10 + (−10)
= 1

2

and

q∗ = πA
22 −πA

12

πA
11 −πA

12 −πA
21 +πA

22

= 10 − (−10)

10 − (−10) − (−10) + 10
= 1

2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.3.19)

which can also be obtained through direct simplification of the results after the said
differentiation.

Let us now interpret the results in equations (7.3.19). Although there is no pure-strategy
Nash equilibrium for the Matching Pennies game, it has a mixed-strategy Nash equilibrium
with optimal probabilities p∗ = 1/2 and q∗ = 1/2. Each player is doing the best they
can given the strategies of the other player. If we substitute the optimal probabilities into
equations (7.3.17) and (7.3.18) we find that the expected payoff of each player is zero; that is,
E(πA∗

) = E(πB∗
) = 0. Notice an important feature of the mixed-strategy Nash equilibrium

given in equations (7.3.19): neither player has any incentive to play this equilibrium (mixed)
strategy. What this means is that if player A chooses p∗ = 1/2, any probability (including
q∗ = 1/2) will give the same expected payoff to player B. And, if player B chooses q∗ = 1/2,
any probability (including p∗ = 1/2) will give the same expected payoff to player A.
Therefore, there is no guarantee that a player will choose the mixed-strategy equilibrium
given that the other player chooses it. This is an issue with most mixed-strategy Nash
equilibria.

Example 2. Consider the game of the Battle of the Sexes introduced in Section 7.2.6.
We found in example 2 in Section 7.3.5 that this game has two Nash equilibria in pure
strategies (“Wrestling, Wrestling” and “Opera, Opera”). Determine the Nash equilibrium of
this game in mixed strategies.

Solution. The payoff matrix of this game is presented in Table 7.2.5. Based on this table
and following equations (7.3.10), we can write the expected payoff of the man and the
woman, respectively, as

E(πA) = pqπA
11 + p(1 − q)πA

12 + (1 − p)qπA
21 + (1 − p)(1 − q)πA

22

= pq2 + p(1 − q) × 0 + (1 − p)q × 0 + (1 − p)(1 − q) × 1 (7.3.20)
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and

E(πB) = pqπB
11 + p(1 − q)πB

12 + (1 − p)qπB
21 + (1 − p)(1 − q)πB

22

= pq × 1 + p(1 − q) × 0 + (1 − p)q × 0 + (1 − p)(1 − q) × 2 (7.3.21)

where the superscripts A and B represent the man and the woman, respectively. Differentiat-
ing equation (7.3.20) partially with respect to p and equation (7.3.21) partially with respect to
q and setting the results to zero, we obtain equations (7.3.12). We can now plug the payoffs
from Table 7.2.5 into equations in (7.3.21) to obtain

p∗ = πB
22 −πB

21

πB
11 −πB

12 −πB
21 +πB

22

= 2 − 0

1 − 0 − 0 + 2
= 2

3

and

q∗ = πA
22 −πA

12

πA
11 −πA

12 −πA
21 +πA

22

= 1 − 0

2 − 0 − 0 + 1
= 1

3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.3.22)

which can also be obtained through direct simplification of the results after the said
differentiation.

As earlier, we shall analyze the results in equations (7.3.22). The mixed-strategy Nash
equilibrium in the present example is that the probability of the man going to watch wresting
is p∗ = 2/3 and that of the woman going to watch wrestling is q∗ = 1/3. Therefore, their
probabilities of going to the opera will be 1−p∗ = 1/3 and 1−q∗ = 2/3, respectively. Each
player is doing the best they can, given the strategies of the other player. If we substitute the
optimal probabilities into equations (7.3.20) and (7.3.21) we find that the expected payoff of
each player is 2/3; that is, E(πA∗

) = E(πB∗
) = 2/3. Notice an important feature of the mixed-

strategy Nash equilibrium given in equations (7.3.22): both the man and the woman would
prefer their pure-strategy Nash equilibria to the mixed-strategy Nash equilibrium because
the former gives better payoffs than does the latter. This is an example that in some games
mixed strategies may yield undesirable solutions.

7.3.11 Maximin and minimax regret strategies

We stated in Section 7.3.1 that the dominant strategy equilibrium or the equilibrium attained
through the iterated elimination of strictly dominated strategies is based on the cyclic
assumption of the common knowledge of the rationality of each player in a normal-form
game in pure strategies. Moreover, as we saw until now in its exposition and applications,
the concept of Nash equilibrium also relies heavily on the assumption of players’ rationality,
though not cyclic in nature.

However, in the real world one or more players in a game may behave irrationally either
bymistakeor intentionally. This typeof behavior on thepart of someplayersmaybedisastrous
to those players who behave with the false assumption that their rivals behave rationally. We
can cite an example of a two-player, two-strategy normal-form game to drive home this
point. Assume that the two players are the two fast-food giants McDonald’s and Kentucky
Fried Chicken (KFC) and that their strategies are price decisions. Also assume again that
McDonald’s is in a better position in terms of market reputations. Let their payoffs (in millions
of dollars) be those presented in the payoff matrix in Table 7.3.4(A).
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Table 7.3.4(A)

KFC’s strategies

Low price High price

McDonald’s Low price 0, 0 5, −50
strategies High price 10, 5 10, 10

Table 7.3.4(B)

KFC’s strategies Row min.

Low price High price

McDonald’s
strategies

Low price 0, 0 5, −50 0

High price 10, 5 10, 10 �10

Column min. �0 −50

Let us first analyze the payoff matrix in Table 7.3.4(A). The payoff matrix shows that
“High Price” is the strictly dominant strategy for McDonald’s. But, KFC does not have a
strictly dominant strategy and its strategy depends on the strategy chosen by McDonald’s.
Since McDonald’s strictly dominant strategy is “High Price,” it will choose that strategy and,
therefore, the best that KFC can do is to choose “High Price.” Therefore, “High Price, High
Price” (boldface in the table) is the only Nash equilibrium strategy profile in the game, which
yields a payoff of $10 million to both firms.

However, a moment’s thought could suggest some other outcome to the game. If KFC
is absolutely certain about the assumed rationality of McDonald’s, then the above outcome
is certain to occur. But, if KFC suspects that McDonald’s may choose “Low Price” instead
(either by mistake or intentionally to teach KFC a lesson), then it would be disastrous for KFC
to choose “High Price” because it would incur a loss of $50 million should McDonald’s choose
“Low Price.” The worst payoffs that KFC can expect when it chooses “Low Price” and “High
Price” are $0 and a loss of $50 million, respectively. These column minimum payoffs are given
in the last row of Table 7.3.4(B). Similarly, the worst payoffs for McDonald’s if it chooses
“Low Price” and “High Price” are $0 and $10 million, respectively. These row minimum
payoffs are given in the last column of Table 7.3.4(B). KFC will now attempt to maximize
the minimum gains, or choose the best of the worst payoffs, that can be obtained from the
choice of its strategies, which is the strategy with $0 when it chooses “Low Price” and shown
in a circle in the last row. Such a strategy is called a maximin strategy or secure strategy. A
maximin strategy is a strategy that maximizes the minimum gain that can be earned. Notice
that McDonald’s can also do the same, which is identical to its dominant strategy “High
Price” shown in a circle in the last column. Therefore, the equilibrium of the game when
both companies choose their maximin strategies is not the Nash equilibrium strategies (“High
Price, High Price”), but the “High Price, Low Price” strategies; that is, McDonald’s chooses
“High Price” strategy and KFC chooses “Low Price” strategy (boldface) yielding $10 million
and $5 million, respectively. The reader would have noticed that a maximin strategy is a way
of risk-averse approach to a game.
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Table 7.3.5(A)

KFC’s strategies Row min.

Low price High price

McDonald’s
strategies

Low price 40, 40 20, 60 �20

High price 60, 20 18, 18 18

Column min. �20 18

Table 7.3.5(B)

KFC’s strategies

Low price High price

McDonald’s
strategies

Low price 60 − 40 = 20 20 − 20 = 0
High price 60 − 60 = 0

-------------
---------------

-20 − 18 = 2 --
-

Suppose now that we modify that previous game and the payoff matrix of this modified
game is as presented in Table 7.3.5(A). Notice that neither company has a strictly dominant
strategy in this game. But, there are two Nash equilibrium strategies, shown in boldface:
“Low Price, High Price” and “High Price, Low Price.” Notice also that the strategies
“Low Price, Low Price,” which are boxed, constitute maximin strategies for the companies.
This means that, as in the last game, the maximin and Nash equilibrium strategies are
different in the modified game.

However, the modified game above leads us to another possibility. Since the players of
a game are assumed to be rational, every player of the game believes that the other players
take rational decisions. If this does not happen or if some player behaves irrationally, then
the player who chooses their best strategy believing that the other players would choose their
best strategies may end up with lower payoff and regret later. In this event, every player of the
game would attempt to minimize the opportunity loss they might incur. Opportunity loss is the
difference between a player’s best payoff and the lowest payoff when the opponent chooses a
particular strategy. These opportunity losses of McDonald’s are presented in Table 7.3.5(B).
Therefore, in the present modified game, the opportunity losses for McDonald’s in deciding
“Low Price” and “High Price” when KFC chooses “Low Price” are 60 − 40 = 20 and
60 − 60 = 0, respectively. Similarly, the opportunity losses for McDonald’s in deciding “Low
Price” and “High Price” when KFC chooses “High Price” are 20− 20 = 0 and 20 − 18 = 2,
respectively. Since the aim of McDonald’s is to choose the strategy that minimizes the
possible positive opportunity loss, its strategy is “High Price” because it incurs the minimum
of the maximum possible positive opportunity losses. Such a strategy is also called a minimax
regret strategy or a savage strategy. Since the payoff matrix is symmetric, KFC’s minimax
regret strategy also is “High Price.” Therefore, the equilibrium in the modified game, if
both companies follow minimax regret strategies, is “High Price, High Price,” shown in the
dashed box in Table 7.3.5(B). The reader would have noticed that the minimax regret strategy
is different from the minimax and Nash equilibrium strategies of the game.
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7.3.12 Application examples of pure- and mixed-strategy Nash equilibria and
maximin-strategy equilibria

Example 1. We know from microeconomics that a firm’s objective in a Cournot oligopoly
market is to choose the quantity of output that it produces, given the quantity of output
chosen by its rivals, such that it maximizes its profit. Firms are assumed to produce identical
products. Since the quantity of output produced by a firm must be nonnegative and is assumed
to be a continuous variable, the set of strategies that the ith firm faces can be written as

Si = {qi|qi ≥ 0} (7.3.23)

Assume that the inverse demand function that firms in the market face is linear and is
given, with b> 0, by

P = f (q) = a − bq = a − b
∑n

i=1
qi, where q =

∑n

i=1
qi (7.3.24)

and that the average cost denoted by AC and marginal cost denoted by MC of every firm are
equal and constant at c

ACi = MCi = c (7.3.25)

which implies that the total cost (denoted by C) of the ith firm is given as

Ci = cqi (7.3.26)

Given equations (7.3.23)–(7.3.26), find the output of the ith firm that maximizes its profit;
that is, find the Cournot–Nash equilibrium output for the ith firm. Also find the Cournot–Nash
equilibrium market output, the price, and the payoff (profit) of each firm.

Solution. Given equations (7.3.23)–(7.3.26), we can write the ith firm’s total revenue

function as Ri = Pqi = [a − bq]qi =
[
a − b

∑n−i
k=1 qk − bqi

]
qi, which can be written as

Ri = aqi −bq2
1 = aqi −b

∑n−i
k=1 qkqi −bq2

i . Therefore, using equation (7.3.26), we can write
the profit function of the ith firm as

	i = aqi − b
∑n−i

k=1
qkqi − bq2

i − cqi (7.3.27)

Let us now partially differentiate equation (7.3.27) with respect to qi and set the result to
zero as the FOC for an optimum of the ith firm’s profit:

∂	i

∂qi
= a − b

∑n−i

k=1
qk − 2bqi − c = 0 (7.3.28)

Notice that the SOC for an optimum of the ith firm’s profit is satisfied as the second partial
derivative of equation (7.3.28) is negative (since b> 0, as assumed). Solving equation (7.3.28)
for qi yields

q∗
i = a − c

2b
− 1

2

∑n−i

k=1
qk (7.3.29)

The reader would have noticed the two important features of equation (7.3.29). If firm
i is the only firm in the market (i.e. if firm i is a monopoly), then the last term in the
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equation will be zero. This implies that the optimum output of the monopoly will be
(a − c)/2b. Moreover, since costs and demand functions are exactly equal for each firm,
equation (7.3.29) also implies that each firm produces the same optimal level of output (i.e.
q∗

k = q∗
i ). This helps us rewrite equation (7.3.28), the FOC for an optimum of the ith firm’s

profit, as ∂	k/∂qk = a − b
∑n−i

k=1 q∗
k − 2bq∗

k − c = 0. Since firm i is one of the firms in the
market, we can write the last equation as ∂	k/∂qk = a− (n−1)bq∗

k −2bq∗
k −c = 0. Solving

this equation for q∗ yields

q∗
k = a − c

b(n + 1)
(7.3.30)

Therefore, the Cournot–Nash equilibrium output of each firm is q∗
k = [a − c]/[b(n + 1)].

Notice that the Cournot–Nash equilibrium market output will be the sum of the Cournot–
Nash equilibrium output of each firm:

q∗ =
∑n

k=1
q∗

k = nq∗
k = n

[
a − c

b(n + 1)

]
=
[

n

n + 1

] [
a − c

b

]
(7.3.31)

The inverse demand function is already given as P = f (q) = a − bq = a −∑n
i=1 qi. This

equation becomes, in Cournot–Nash equilibrium, P∗ = f (q∗) = a − bq∗ = a −∑n
k=1 q∗

k .
Using equation (7.3.30), the last equation can be written as P∗ = a − q∗ = a − nq∗

k or as

P∗ = a + nc

n + 1
(7.3.32)

Lastly, the Cournot–Nash equilibrium payoff or profit of each firm can be found by
substituting the cost function (equation (7.3.26)) and the Cournot–Nash equilibrium output
of each firm (equation (7.3.30)) into the payoff function of each firm (equation (7.3.27)).
Once we simplify the resulting expression we obtain the Cournot–Nash equilibrium payoff
of each firm as

	∗
i = (a − c)2

b(n + 1)2
(7.3.33)

Now suppose that there are only two firms (n = 2) in the oligopoly market; that is, the
market is a duopoly market. We denote the output of these two firms by qA and qB. Then
equations (7.3.30)–(7.3.32) imply that q∗

A = q∗
B = (a − c)/3b, q∗ = (2/3)[(a − c)/b], and

P∗ = (a+2c)/3. Also suppose that the inverse demand function (equation (7.3.23)) is given
as P = f (q) = a − bq = a −∑2

i=1 qi = a − qA − qB, where a = 1100, and the total cost
functions (equation (7.3.26)) of the two firms are CA = cqA = 100qA and CB = cqB = 100qB.
We know from the inverse demand function that b = 1. Substituting the values a = 1100,
CA = cqA = 100qA, CB = cqB = 100qB, n = 2, and b = 1 into equations (7.3.30)–(7.3.33)
we obtain q∗

A = q∗
B = (a − c)/3b = (1100 − 100)/3 × 1 = 333.333, q∗ = (2/3)[(a − c)/b] =

(2/3)[(1100−100)/1] = (2/3)×1000 = 666.666, P∗ = (a+2c)/3 = (1100+2×100)/3 =
1300/3 = 433.333, and	∗

i = [(a − c)2]/[b(n + 1)2] = [(1100 − 100)2]/(2 + 1)2 = 111 112.
The total industry profit can be found by multiplying the profit of an individual firm by the
number of firms. Therefore, in the present case, the industry profit is n	∗

i = n[(a − c)2/

b(n + 1)2] = 2 × [(1100 − 100)2/(2 + 1)2] = 2 × 111 112 = 222 224. Notice that these are
exactly the same results as those we obtained when we solved the problem in example 4 in
Section 4.2.8.
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Example 2. We know from microeconomics that a firm’s objective in a Bertrand oligopoly
market with differentiated products is to choose the price of the product that the firm
produces, given the price chosen by its rivals, such that it maximizes its profit. Since the
price of a product must be nonnegative and is assumed be a continuous variable, the set of
strategies that the firm faces can be written as

Si = {pi|pi ≥ 0} (7.3.34)

Since the products are differentiated, the quantity demanded of the ith firm’s output can be
written as

qi = a − pi + bpj (7.3.35)

where 0< b< 1 and i �= j. The average cost (AC) and the marginal cost (MC) of every firm
are equal and constant, and are given by

ACi = MCi = c = ACj = MCj (7.3.36)

which implies that the total cost (denoted by C) of the ith firm is given by

Ci = cqi (7.3.37)

Given equations (7.3.34)–(7.3.37), find the output (i.e. the Bertrand–Nash equilibrium output)
of the ith firm that maximizes its profit. Also find the Bertrand–Nash equilibrium market price
and payoff (profit) of each firm.

Solution. Given equations (7.3.34)–(7.3.37), we can write the ith firm’s total revenue
function as Ri = piqi = api − p2

i + bpipj . Therefore, using equation (7.3.37), we can write
the profit function of the ith firm as 	i = Ri − Ci = api − p2

i + bpipj − cqi. Then using
equation (7.3.35) we can rewrite profit function of the ith firm as

	i = Ri − Ci = api − p2
i + bpipj − c[a − pi + bpj] = api − ac − p2

i + cpi + bpipj − cbpj

(7.3.38)

Partially differentiating equation (7.3.38) with respect to pi we obtain

∂	i/∂pi = a − 2pi + c + bpj (7.3.39)

and setting it to zero (the FOC for an optimum of the ith firm’s profit) and solving for pi, we
obtain the ith firm’s best-response (or reaction) function as

pi = [a + c + bpj]/2 (7.3.40)

Since the cost and demand functions are similar for all other firms in the market or following
the same procedure as above with the demand function qj = a − pj + bpi, we can write the
best-response function of the jth firm as

pj = [a + c + bpi]/2 (7.3.41)
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Solving equations (7.3.40) and (7.3.41) simultaneously gives us the Bertrand–Nash equilib-
rium prices chosen by every firm in the market as

p∗
i = [a + c]/[2 − b] = p∗

j (7.3.42)

The Bertrand–Nash equilibrium output of the ith firm can be found by substituting
equation (7.3.42) into equation (7.3.35):

q∗
i = a − p∗

i + bp∗
j = a − a + c

2 − b
+ b

a + c

2 − b
= a + (b − 1)

a + c

2 − b
= q∗

j (7.3.43)

Lastly, the Bertrand–Nash equilibrium profit of the ith firm can be found by substituting
equation (7.3.42) into equation (7.3.38):

	∗
i = ap∗

i − ac − p∗2
i + cp∗

i + bp∗2
i − cbp∗

i =	∗
j (7.3.44)

As in the last example, suppose now that we have two firms in the market, i and j,
with demand functions as in equation (7.3.35). Also suppose that a = 30, b = 0.5, and
c = 20. Plugging these values in equations (7.3.40) and (7.3.41), we obtain the best-
response functions of firms i and j as pi = 25 + 0.25pj and pj = 25 + 0.25pi, respectively.
Solving these two equations simultaneously we obtain the Bertrand–Nash equilibrium price
(equation (7.3.42)): p∗

i = (a + c)/(2 − b) = (30 + 20)/(2 − 0.5) = 33.33 = p∗
j . This implies

that the Bertrand–Nash equilibrium output of the two firms, as per equation (7.3.43), will be
q∗

i = a + (b − 1)[(a + c)/(2 − b)] = 30 + (0.5 − 1)[(30 + 20)/(2 − 0.5)] = 13.33 = q∗
j . The

Bertrand–Nash equilibrium payoff of the firms can be found by substituting equation (7.3.42)
into equation (7.3.44). This yields 	∗

i = 	∗
j = 177.75. Notice that these are exactly the

same results as those we obtained when we solved the same problem in example 6 in
Section 4.2.8.

Example 3. Suppose that the ith herder (i = 1,2, . . . ,n) in a village plans to graze si number
of sheep on a green with limited area, which is a common property of the village community.
The total number of sheep in the village is S = ∑n

i=1 si = s1 + s2 + ·· · + sn. The cost of
buying and grazing a sheep is constant, c, and equal for all herders and the payoff (in the
form of milk, wool, meat, etc.) that the ith herder obtains from grazing the si number of
sheep on the green is siV (S) = V (s1 + s2 +·· ·+ si−1 + si + si+1 +·· ·+ sn). Since the green
is limited in area, there is a maximum number of sheep (SM ) that can be grazed on the green.
This implies that if S < SM , V (S) > 0; and, if S ≥ SM , V (S) = 0, which means there are
diminishing returns to grazing sheep on the green (that is, V '(S)> 0 and V ''(S)< 0). The ith
herder’s problem is to decide the number of sheep to graze on the green (or determine the
value of si, which is assumed to be continuous) such that it maximizes the herder’s payoff,
given the decisions of other herders. Find the Nash equilibrium payoff of each herder and
compare this to the social optimum.

Solution. This problem is called the problem of the commons. The strategy space for each
herder is any number of sheep in between zero and infinity. Notice that when the ith herder’s
strategy is to graze si number of sheep, the other n − i herders’ strategies are to graze
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s1,s2, . . . ,si−1,si+1, . . . ,sn number of sheep. Then the ith herder’s net payoff from the si

number of sheep can be written as

siV (s1 + s2 +·· ·+ si−1 + si + si+1 +·· ·+ sn) − csi (7.3.45)

Notice that for S∗ = (s∗
i +s∗

2 +·· ·+s∗
i−1 +s∗

i +s∗
i+1 +·· ·+s∗

n) to be a Nash equilibrium, then
s∗
i (for every i) must maximize the ith herder’s payoff function in equation (7.3.45), given

that the other n − i herders choose (s∗
i + s∗

2 + ·· · + s∗
i−1 + s∗

i+1 + ·· · + s∗
n). As the FOC for

the maximum of the ith herder’s payoff function, we partially differentiate equation (7.3.45)
with respect to si and set the result to zero to obtain

V (S∗) + s∗
i V '(S∗) = c (7.3.46)

Since the cost and payoff functions are identical for each herder, S∗ = (s∗
i + s∗

2 + ·· · +
s∗
i−1 + s∗

i + s∗
i+1 +·· ·+ s∗

n) = ns∗
i or s∗

i = S∗/n. Substituting this result into equation (7.3.46),
we obtain

V (S∗) +[S∗/n]V '(S∗) = c (7.3.47)

which gives the Nash equilibrium number of sheep every herder plans to graze on the green.
But, one might wonder what the socially optimum number of sheep is that could be

grazed on the grass. To answer this, we can set up the society’s payoff function, following
the above procedure, as SsV (Ss) − Ssc, where the superscript ‘s’ denotes that the variable
represents the society. Then, the society’s problem, for 0 ≤ S <∞, is to

Maximize SsV (Ss) − Ssc (7.3.48)

Then, partially differentiating equation (7.3.48) with respect to Ss and setting the result to
zero, we obtain the FOC for a maximum of this payoff function as

V (Ss∗) + Ss∗V '(Ss∗) = c (7.3.49)

Notice that equations (7.3.47) and (7.3.49) both equal the constant c. For this to happen we
must have the inequality

S∗ > Ss∗ (7.3.50)

This implies the sum of the Nash equilibrium number of sheep chosen by each herder exceeds
the socially optimal number of sheep. This means that the green would be overutilized.
This overutilization of a public good (the green in our present example) and the problems
associated with it are popularly known as the tragedy of the commons.

Let us now consider a special case of the above problem of commons with n = 2.
Therefore, we have S = ∑2

i=1 si = s1 + s2. Suppose that the payoff and cost per sheep
to both herders when herder 1 chooses to graze s1 number of sheep and herder 2 chooses
to graze s2 number of sheep are given by $800 and (s1 + s2)2, respectively. Therefore, the
total payoffs (corresponding to equation (7.3.45)) to herder 1 and herder 2 (when herder 1
chooses to graze s1 number of sheep and herder 2 chooses to graze s2 number of sheep)
are given by s1V (s1,s2) = 800s1 − s1(s1 + s2)2 and s2V (s1,s2) = 800s2 − s2(s1 + s2)2,
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respectively. Then the problem of herder 1 is to find s1 such that the total payoff
s1V (s1,s2) = 800s1 − s1(s1 + s2)2 = 800s1 − s3

1 −2s2
1s2 − s1s2

2 is maximum and the problem
of herder 2 is to find s2 such that the total payoff s2V (s1,s2) = 800s2 − s2(s1 + s2)2 =
800s2 − s2s2

1 − 2s1s2
2 − s3

2 is maximum. Partially differentiating these two functions with
respect to s1 and s2, respectively, we obtain ∂s1V (s1,s2)/∂s1 = 800 − 3s2

1 − 4s1s2 − s2
2 and

∂s2V (s1,s2)/∂s2 = 800−3s2
2 −4s1s2 − s2

1, respectively. The FOCs for optima of the payoff
functions s1V (s1,s2) and s2V (s1,s2) are ∂s1V (s1,s2)/∂s1 = 0 and ∂s2V (s1,s2)/∂s2 = 0,
respectively. Therefore, setting these partial derivatives to zero we obtain 800 − 3s∗2

1 −
4s∗

1s∗
2 − s∗2

2 = 0 and 800 − 3s∗2
2 − 4s∗

1s∗
2 − s∗2

1 = 0, respectively. Since the payoff and cost
conditions of both herders are identical, we can use s∗

1 = s∗
2. Then, we can write the FOCs as

800 − 3s∗2
1 − 4s∗2

1 − s∗2
1 = 0 and 800 − 3s∗2

2 − 4s∗2
2 − s∗2

2 = 0. The only admissible solution
from these two equations is s∗

1 = s∗
2 = 10. Notice that the SOCs are also satisfied: since

s∗
1 = s∗

2 = 10 > 0, ∂2V (s1,s2)/∂s2
1 < 0 and ∂2V (s1,s2)/∂s2

2 < 0. This means that the Nash
equilibrium number of sheep each herder must graze on the green such that each herder’s
payoff will be maximum is 10. In this equilibrium each herder obtains a payoff equal to
s1V (s1,s2) = s1V (s1,s2) = 800 × 10 − 10(10 + 10)2 = $4000 and the two herders’ total
payoff will be equal to $8000.

Now consider the society’s problem of optimizing its payoff function corresponding to
equation (7.3.48): maximize SsV (Ss) − Ssc = Ss(800 − Ss2) = Ss800 − Ss3. Then the FOC
for an optimum of this payoff function is ∂(Ss800 − Ss3)/∂Ss = 800 − 3S∗s2 = 0, with the
meaningful value for S∗s ∼= 16. The SOC is also satisfied: ∂(Ss800−Ss3)/∂Ss2 = −6S∗s< 0.
Therefore, the socially optimal number of sheep to be grazed on the green is approximately 16.
Then the society’s optimal payoff will be S∗s(800 − S∗s2) = 16(800 − 162) = $8704. The
implications of these results are that the socially optimal payoff exceeds the sum of the
Nash equilibrium payoffs and that the Nash equilibrium use of the green exceeds its socially
optimal use. The reader would have noticed the similarity between the socially optimal and
Nash equilibrium solutions to the Prisoner’s Dilemma game encountered earlier and the
socially optimal and Nash equilibrium solutions to the present example of the problem of
the commons.

Example 4. Suppose that two of the leading British banks, NatWest and Barclays, need
to decide whether they have to increase or decrease the interest rates on commercial loans.
Their payoffs (in billions of dollars) from these strategies are presented in Table 7.3.6(A).
Determine the pure-strategy Nash equilibrium, if any, of this game. What will be the mixed-
strategy Nash equilibrium of this game? Do you expect the banks to play mixed strategies
instead of pure strategies? What will be the outcome of the game if both banks follow maximin
strategies?

Table 7.3.6(A)

Barclay’s strategies

Decrease Increase

NatWest’s Decrease −1, −1 4, 0
strategies Increase 0, 4 2, 2
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Table 7.3.6(B)

Barclay’s strategies Row min.

Decrease Increase

NatWest’s
strategies

Decrease −1, −1 4, 0 −1

Increase 0, 4 2, 2 �0

Column min. −1 �0

Solution. The payoff matrix presented in Table 7.3.6(A) shows that neither bank has a
strictly dominant strategy. However, if NatWest decides to decrease (increase) its rate, then
the best response of Barclays is to increase (decrease) its rate. Similarly, if Barclays decides
to decrease (increase) its rate, then the best response of NatWest is to increase (decrease) its
rate. Therefore, there are two pure-strategy Nash equilibria in this game, “Decrease, Increase”
and “Increase, Decrease,” with associated payoffs (4, 0) and (0, 4), respectively. These are
shown in boldface in the payoff matrix in the table.

Let us now find the mixed-strategy Nash equilibrium of this game. Following equations
(7.3.10), we can write the expected payoffs of NatWest (N) and Barclays (B), respectively, as

E(πN) = pqπN
11 + p(1 − q)πN

12 + (1 − p)qπN
21 + (1 − p)(1 − q)πN

22

= −pq + p(1 − q)4 + (1 − p)q × 0 + (1 − p)(1 − q)2 (7.3.51)

E(πB) = pqπB
11 + p(1 − q)πB

12 + (1 − p)qπB
21 + (1 − p)(1 − q)πB

22

= −pq + p(1 − q) × 0 + (1 − p)q × 4 + (1 − p)(1 − q)2 (7.3.52)

Differentiating equations (7.3.51) and (7.3.52) partially with respect to p and q, respectively,
and setting the results to zero, we obtain (corresponding to equations (7.3.12))

p∗ = 2 − 4

−1 − 0 − 4 + 2
= 2

3
and q∗ = 2 − 4

−1 − 4 − 0 + 2
= 2

3
(7.3.53)

Therefore, equations (7.3.53) imply that NatWest must choose the strategy “Decrease” with
probability 2/3 and the strategy “Increase” with probability 1/3; and Barclays must choose
the strategy “Decrease” with probability 2/3 and “Increase” with probability 1/3. Then their
expected payoffs will be E(π∗N ) = −p∗q∗ + p∗(1 − q∗)4 + (1 − p∗)q∗ × 0 + (1 − p∗)(1 −
q∗)2 = 2/3 and E(πB∗

) = −p∗q∗ +p∗(1−q∗)×0+ (1−p∗)q∗ ×4+ (1−p∗)(1−q∗)2 = 2/3.
These results imply that one bank may not be interested in choosing mixed strategy as the
expected payoffs of that bank will always be considerably lower than the pure-strategy Nash
equilibrium payoff of that bank.

Lastly, we consider the case of maximin strategies by both banks. We know that there
is no dominant strategy for either bank in this example. If NatWest decides to choose
“Decrease” and “Increase” its worst payoffs are −1 and 0, respectively. The maximum
of these minima (or maximin) is 0 and, therefore, NatWest must choose “Increase” as its
maximin strategy. Likewise, if Barclays chooses “Decrease” and “Increase” its worst payoffs
are −1 and 0, respectively. The maximum of these minima (or maximin) is 0 and, therefore,
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Barclays must choose “Increase” as its maximin strategy. These maximin strategies are
illustrated in circles in Table 7.3.6(B). These observations imply that both banks choose
“Increase” as their maximin strategies, which give them equal payoff (2, 2), which is shown
in a box in Table 7.3.6(B). Notice that the maximin payoffs are much better than the mixed-
strategy payoffs (2/3, 2/3) for both banks and better than the Nash equilibrium payoff to
one bank.

7.3.13 Exercises

1. Find the pure-strategy Nash equilibrium (equilibria), if any, in the two hypothetical games
whose payoff matrices are presented in Tables 7.3.7(A) and (B). Payoffs are in millions
of dollars.

Table 7.3.7(A)

Player 2’s strategies

s2
1 s2

2

Player 1’s
strategies

s1
1 1, 1 0, 0

s1
2 0, 0 1, 1

Table 7.3.7(B)

Player 2’s strategies

s2
1 s2

2 s2
3

Player 1’s
strategies

s1
1 2, 3 2, 3 3, 5

s1
2 2, 2 4, 4 2, 0

s1
3 5, 4 3, 2 2, 3

2. Find the pure-strategy Nash equilibrium, if any, in the two hypothetical games whose
payoff matrices are presented in Table 7.3.8(A) and (B). Find the mixed-strategy Nash
equilibrium of these games. What strategy do you expect the players to play? Payoffs
are in millions of dollars.

Table 7.3.8(A)

Player 2’s strategies

s2
1 s2

2

Player 1’s
strategies

s1
1 50, 50 100, 0

s1
2 0, 100 25, 25
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Table 7.3.8(B)

Player 2’s strategies

s2
1 s2

2

Player 1’s
strategies

s1
1 50, 50 0, 0

s1
2 0, 0 25, 25

3. Find the pure-strategy Nash equilibrium, if any, in the hypothetical game whose payoff
matrix is presented in Table 7.3.9(A). What will be the outcomes of the game if the
players are risk averse or if they play maximin strategies? What will be the socially
optimal (collusive or cooperative) outcome of the game? Payoffs are in millions of
dollars.

Table 7.3.9(A)

Player 2’s strategies

s2
1 s2

2

Player 1’s
strategies

s1
1 25, 25 500, 500

s1
2 200, 200 −25, −25

Table 7.3.9(B)

India’s strategies

Open Close

USA’s strategies
Open 50, 40 15, 30
Close 30, 15 10, 10

4. Application exercise. Suppose that the USA and India are considering whether to open
or close their respective import markets for certain products. The associated payoffs (in
billions of dollars) are presented in Table 7.3.9(B). Determine the Nash equilibrium, if
any, of this game. What will be the outcome of this game if both countries followed
maximin strategies?

5. Application exercise. Suppose that Dell (based in the USA) and Sony (based in Japan)
operate in a Cournot duopoly market for personal computers. The inverse demand
function they face is identical and is given by P = (qD + qS)−0.5, where P denotes
price per unit of personal computer in dollars, and qD and qS denote the number of
personal computers manufactured by Dell and Sony, respectively. The unit cost is equal
to $500 and is the same for both Dell and Sony. Find the Nash equilibrium of this game.

6. Application exercise. Suppose that the car manufactures Ford and General Motors (both
based in the USA) compete in a Bertrand duopoly market for differentiated models of
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two of their cars. The demand functions for Ford’s and General Motors’ cars are given
by qF = 10 000−pF +0.5pG and qG = 10 000−pG +0.5pF, where subscripts F and G
represent Ford and General Motors, respectively. The unit cost of Ford’s car is $8000
and that of General Motors’ car is $9000. Find the Nash equilibrium quantities, prices,
and profits of the two manufacturers.

7.4 Dynamic games of complete and perfect information

7.4.1 Introduction

So far in this chapter we are dealing with static or simultaneous games. We found that in
these games players take decisions or choose their strategies simultaneously. We represented
these games in normal form. In normal-form representation, we used the payoff matrix or the
best-response functions for discrete and continuous strategy spaces, respectively. We then
attempted to find the solutions to these games using the concept of Nash equilibrium. We
stated that every finite game has a Nash equilibrium in either pure or mixed strategies. And we
applied the concept of Nash equilibrium to games involving many real-world problems. We
also demonstrated minimax and minimax regret strategies and applied them to specific cases.

However, in the real world most of the strategic interactions and interdependencies are
not static but dynamic in nature. In oligopoly markets, a firm normally takes its decisions
regarding choice variables in response to the decisions already taken by its rival(s). Similarly,
a government usually takes its decisions regarding import duties or export subsidies in
response to the decisions already taken by other countries with which it trades. One can cite
many examples like these. Analyses of these chronological interactions cannot be carried
out in the framework of static games. This necessitates that we consider another area of
game theory called dynamic games.

7.4.2 Differences between static and dynamic games

Let us now turn our attention to the differences between static and dynamic games. We
stated in Section 7.2.2 that dynamic games were multistage games of which an important
class was sequential games. We know from Section 7.2.2 that if, in a game, a player takes a
decision and makes a move only after another player has already done that, such games are
called sequential games. This implies that the order with which players play is important in
sequential games and it is immaterial in static games.

Another important difference between the two classes of games lies in the form of their
representations. As stated above, we use the normal form with payoff matrix and the best-
response functions for discrete and continuous strategy spaces, respectively, to represent
static games. But, dynamic games with discrete strategy spaces are normally represented in
extensive form as illustrated in Figure 7.2.1. Notice that the extensive-form representation
of dynamic games is based on the device called game trees. And dynamic games with
continuous strategy spaces are represented by best-response functions.

In addition to the differences in the order of play and the methods of representation, static
and dynamic games also differ in solution methods. We know that static games rely heavily
on the concept of Nash equilibrium to find the solutions. This concept of Nash equilibrium is
largely inapplicable in the case of dynamic games as it could suggest unreasonable outcomes.
Therefore, we will make use of a richer concept called subgame-perfect Nash equilibrium to
determine the solutions to dynamic games.
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We know from Section 7.2.2 that if every player of a game knows every aspect of the
game, then the game is called a game of complete information. If some player(s) of a game
possesses information that is unknown to the other player(s), then that game is called a
game of incomplete information. We also know that if every player has information on
all the previous moves or decisions taken in a game, then that game is called a game
of perfect information; and if some players do not possess some information on some
of the previous decisions taken in a game, then that game is called a game of imperfect
information. As stated there, we will only consider dynamic games of complete and perfect
information.

7.4.3 Extensive-form representation of sequential games

We have already given an example of a two-player sequential game in Figure 7.2.1. We will
see shortly that it is much easier to represent sequential games in extensive form. Before
we do this, we need to stipulate what an extensive form is. An extensive form stipulates the
following elements:

1 the set of players;
2 the order of actions by players;
3 the set of actions by players;
4 the set of information that players possess at each action; and
5 the payoffs to players corresponding to combinations of actions.

Let us now consider the representation of a one-player game with two possible actions.
As an example, assume that the player is a firm (denoted by FA) and that the actions are
whether the firm wants to enter (denoted by E) a new market or stay out (denoted by O). The
nodes, the branches, and the associated payoffs of this simple hypothetical entry game are
represented by the extensive form shown in Figure 7.4.1(A). Notice that the solution to this
game is that FA chooses the action that yields it the highest payoff.

Now suppose that FA has already entered the market. Also suppose that another firm,
FB, is considering entering the same market. Suppose also that FB also has to decide
whether to enter the market or stay out of it. If FB enters the market, the market will be
shared by both firms. Let us first represent this hypothetical entry game in normal form
as shown in Figure 7.4.1(B). The extensive form of this hypothetical entry game with
two firms is illustrated in Figure 7.4.2(A). We will see shortly how we can solve games
like these.

FA

E

O

(A) (B)

Firm B’s Strategies

Firm A’s
Strategies

Enter

Enter p A
E,E = p B

E,E

p A
O,E = p B

O,E

p A
E,O = p B

E,O

p A
O,O = p B

O,O

Stay Out

Stay Out

p A
E

p A
O

Figure 7.4.1



[12:26 3/11/2011 5640-Ummer-Ch07.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 394 353–419

394 Game theory

E

O

(A) (B)

FB

FA

FB

E

O

E

O

πA
EE, πB

EE

πA
EO, πB

EO

πA
OE, πB

OE

πA
OO, πB

OO

Firm A’s Strategies

Firm B’s
Strategies

Stay
Out

Enter

Fight if Firm
B Enters

Accommodate
if Firm B

Enters

0, 3

−2, −1

0, 3

2, 1

Figure 7.4.2

7.4.4 Weakness of Nash equilibrium in dynamic games

We mentioned in Section 7.4.2 that the application of the concept of Nash equilibrium to
determine the solution to dynamic games might yield unreasonable results. Let us cite an
example to confirm this statement. For this purpose we revise the above hypothetical entry
game slightly. Suppose that firm A has already entered the market and firm B is planning
to enter the market. Then firm A has two strategies: either to fight firm B or accommodate
firm B. Suppose also that the payoffs (in millions of dollars) in the revised hypothetical
entry game are as those presented in Figure 7.4.2(B).

As the payoff matrix in Figure 7.4.2(B) shows, no firm has a strictly dominant strategy.
Notice that there are two pure-strategy Nash equilibria in this game: “Stay Out, Fight if
firm B Enters” and “Enter, Accommodate if firm B Enters.” But, a moment’s thought would
suggest that the first Nash equilibrium is not a reasonable one. Notice that “Accommodate
if firm B Enters” is the optimal choice for firm A if firm B enters the market. Given this,
firm B can foresee that firm A will accommodate if firm B enters the market. In other words,
firm A’s threat of fighting if firm B enters the market is a noncredible threat or an empty
threat. Then it is certain that firm B will enter the market and firm B and firm A will obtain
payoffs $2 million and $1 million, respectively.

7.4.5 Solution to dynamic games: sequential rationality and backward induction

In the last section we found that the application of the concept of Nash equilibrium to dynamic
games could yield unreasonable results. Let us now introduce the concept of sequential
rationality to rule out these types of unreasonable results. The concept of sequential rationality
stipulates that each player’s strategy should identify optimal actions at every decision node
on the game tree. What this implies is that a player’s strategy at any node on the game tree
must suggest moves that are optimal for that player given the opponents’ strategies. We now
illustrate the sequential form of the game (whose normal form is presented in Figure 7.4.2(B))
in Figure 7.4.3(A) to explain the meaning of sequential rationality. It can be inferred from
this figure that “Fight” if firm B enters the market is not an optimal strategy for firm A. This
is what sequential rationality suggests.
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Let us now attempt to solve the present entry game. For this we use a procedure called
backward induction, which can eliminate unreasonable Nash equilibria and yield only
reasonable Nash equilibria. This procedure involves four steps.

Step 1. Observe the payoffs at the last set of nodes of the game tree.
Step 2. Determine the optimal behavior of the player at the nodes immediately before the

last set of nodes on the basis of the observation in step 1.
Step 3. Eliminate strategies that are not optimal as in step 2 and erase (truncate) those

branches in the game tree.
Step 4. Redraw the game tree and continue as above.

We can now apply the above steps to our example of the entry game. Since this is a game
of complete and perfect information, firm A knows that firm B will enter the market and
the best, after firm B entered, for firm A is to choose “Accommodate.” Therefore, we can
eliminate the branches of the strategy “Fight” from the node FA, and then redraw the game
tree as shown in Figure 7.4.3(B). Given this, firm A now has no choice; and firm B now
has two choices: either “Stay Out” or “Enter” with associated payoffs $0 and $2 million,
respectively. It is now clear that firm B will enter and earn the payoff equal to $2 million.
This is illustrated in Figure 7.4.3(C). Therefore, the solution to the present entry game is
that firm B enters the market and firm A accommodates firm B; and firm B and firm A earn
payoffs equal to $2 million and $1 million, respectively.

We now state an important theorem, called Zermelo’s theorem, without proof. This theorem
states that every finite, extensive-form game has a pure-strategy Nash equilibrium that can
be attained through the procedure of backward induction. Besides, if no player has the same
payoffs at any two terminal nodes, then the game has a unique Nash equilibrium that can
also be attained through the procedure of backward induction.

7.4.6 Dynamic games of complete and perfect information:
application examples

Example 1. Suppose that two of the major Indian automobile manufacturers, Tata (T) and
Mahindra (M), plan to decide whether they concentrate on the manufacture of low-end (LE)
or high-end (HE) models of cars for the next few years. The payoffs (in billions of dollars) of
the two manufacturers are as presented in Figure 7.4.4(A). Assume that T announces first its
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decision to manufacture the LE model car called Nano. Present this game in extensive form
and solve the game using backward induction.

Solution. Notice that the payoff matrix in Figure 7.4.4(A) shows that no manufacturer
has a strictly dominant strategy. However, there are two pure-strategy Nash equilibria in
this game: the strategy profiles “LE, HE” and “HE, LE.” The extensive form of this game
is illustrated in Figure 7.4.4(B). Let us now apply the procedure of backward induction
and the principle of sequential rationality to solve this game. For this we move backwards
from the last set of nodes, the nodes at the payoffs. Examining the payoffs at the last set
of nodes, we can infer that sequential rationality dictates that M will not choose HE and
LE models if T chooses HE and LE models, respectively. The optimal choices for M are
to choose LE and HE models if T chooses HE and LE models, respectively. Therefore,
we can truncate the game tree in Figure 7.4.4(B) by eliminating nonoptimal choices by M
to obtain the game tree illustrated in Figure 7.4.5(A). Since T is supposed to announce
the model first, it will clearly announce the LE model because it will give T a higher
payoff of $3 billion than if it announces the HE model which yields a payoff of $2 billion.
Then the optimal choice for M is to manufacture the HE model cars. We can once again
truncate the game in Figure 7.4.5(A) to obtain the game tree in Figure 7.4.5(B). This figure
yields the solution that T concentrates on manufacturing LE model cars and M concentrates
on manufacturing HE model cars and their payoffs will be $3 billion and $2 billion,
respectively.
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Example 2. Suppose that the inverse demand function that two firms, A and B, face in
a Stackelberg duopoly market with identical products is given by P = a − bq, where a
and b are constants and q = qA + qB. Suppose also that the average and marginal costs
of both duopolists are constant and equal (c), that A announces its quantity first, and that
the strategy space for both firms is continuous. Find the profit-maximizing quantities of
products, price, total market output, and the maximum profit for both firms if a = 1100,
b = 1, and c = 100.

Solution. This is an example of a leader–follower model in oligopoly. The price
that prevails in the market is P = a − bq = a − bqA − bqB. The total revenue of A is
RA = PqA = qA(a − bq) = qA(a − bqA − bqB) = qAa − bq2

A − bqAqB and its total cost is
CA = cqA. Therefore, A’s total profit or payoff is πA = RA −CA = aqA −bq2

A −bqAqB −cqA.
Similarly, the total revenue of B is RB = PqB = qB(a − bq) = qB(a − bqA − bqB) =
aqB − bq2

B − bqAqB and its total cost is CB = cqB. Therefore, B’s total profit or payoff is
πB = RB − CB = aqB − bq2

B − bqAqB − cqB.
Notice that A announces its quantity first and, therefore, it is the leader. This implies

that B is the follower; that is, it announces its quantity as a response or reaction to the
announcement by A. We can now find the reaction function of B to a given quantity
announced by A. This can be found by partially differentiating B’s payoff function with
respect to its quantity, setting the result to zero (the FOC) and solving for qB. The result will
be qB = (a−c−bqA)/2b. We can now substitute the last equation into the payoff function of
A to obtain πA = RA −CA = (1/2)[aqA −bq2

A − cqA]. We now partially differentiate the last
equation with respect to qA, set the result to zero, and simplify to yield q∗

A = (a − c)/2b.
Substituting the last equation into qB = (a − c − bqA)/2b and simplifying yields q∗

B =
(a − c)/4b. Therefore, the optimal total output in the market will be q∗ = q∗

A + q∗
B =

[3(a−c)/4b] and the optimal market price will be P∗ = a−bq∗ = a−bq∗
A −bq∗

B = (a+3c)/4.
A’s optimal payoff will be π∗

A = aq∗
A − bq2∗

A − bq∗
Aq∗

B − cq∗
A = (a − c)2/8b and B’s optimal

payoff will be π∗
B = aq∗

B − bq2∗
B − bq∗

Aq∗
B − cq∗

B = (a − c)2/16b.
Let us now plug the values a = 1100, b = 1, and c = 100 into the above results to find

the profit-maximizing quantities of output, price, total market output, and the maximum
profit of the two firms. The profit-maximizing output of A (the leader) is q∗

A = (a − c)/2b =
(1100 − 100)/2 × 1 = 500 and the profit-maximizing output of B (the follower) is q∗

B =
(a − c)/4b = (1100 − 100)/4 × 1 = 250. The profit-maximizing market output is q∗ = q∗

A +
q∗

B = 3(a − c)/4b = 3(1100 − 100)/4 × 1 = 750. The profit-maximizing market price will
be P∗ = (a + 3c)/4 = (1100 + 3 × 100)/4 = $350. The maximum profit for A will be π∗

A =
(a − c)2/8b = (1100 − 100)2/8 × 1 = $125 000 and that for B will be π∗

B = (a − c)2/16b =
(1100−100)2/16×1 = $62 500. The maximum industry profit will be π∗

A +π∗
B = $187 500.

Notice that these are exactly the results as those we obtained as the solution to the first
problem in example 5 in Section 4.2.8.

Example 3. Suppose that the demand functions that two firms, A and B, face in a Bertrand
duopoly market with differentiated products are given by qA = a − bpA + dpB and qB =
a − bpB + dpA, respectively, where a, b, and d are constants. Suppose also that the average
and marginal costs of both duopolists are constant and equal to c, that A announces its price
first, and that the strategy space for both firms is continuous. Find the profit-maximizing
prices for both firms, quantities, total market output, and the maximum profit if a = 30,
b = 1, c = 20, and d = 0.5.
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Solution. The total revenue of A is RA = pAqA = pA(a−bpA +dpB) = apA −bp2
A +dpApB

and its total cost is CA = cqA = c(a − bpA + dpB) = ac − bcpA + cdpB. Therefore, A’s total
profit or payoff is πA = RA − CA = apA − bp2

A + dpApB − ac + bcpA − cdpB. Similarly, the
total revenue of B is RB = pBqB = pB(a−bpB +dpA) = apB −bp2

B +dpApB and its total cost
is CB = cqB = c(a− bpB + dpA) = ac − bcpB + cdpA. Therefore, B’s total profit or payoff is
πB = RB − CB = apB − bp2

B + dpApB − ac + bcpB − cdpA.
Notice that A announces its price first and, therefore, it is the leader. This implies

that B, the follower, announces its price as a response or reaction to the announcement
by A. We can now find the reaction function of B to a given price announced by A.
This can be found by partially differentiating B’s payoff function with respect to its
price, setting the result to zero (the FOC), and solving for pB, which will yield pB =
(a+bc+bpA)/2b. We can substitute the last equation into the payoff function of A to obtain
πA = RA −CA = apA −bp2

A +dpA[(a+bc+dpA)/2b]−ac+bcpA − cd[(a+bc+dpA)/2b].
We now partially differentiate the last equation with respect to pA, set the result to zero, and
simplify to obtain p∗

A = (bcd − cd2 +2b2c +ad +2ab)/(4b2 −2d2). Substitution of the last
equation into pB = (a+bc+bpA)/2b yields p∗

B = {a+bc+[(2ab+ad +bcd +2b2c−ad2)/
(4b2 − 2d2)]}/2b.

Let us now substitute the values a = 30, b = 1, c = 20, and d = 0.5 into p∗
A and p∗

B. This
yields the optimal prices p∗

A = $34.3 and p∗
B = $42. The maximum profits of the two firms

can be obtained by substituting these optimal prices into their respective profit functions.
This will give us π∗

A = ap∗
A − bp∗2

A + dp∗
Ap∗

B − ac + bcp∗
A − cdp∗

B = $239 and π∗
B = ap∗

B −
bp∗2

B + dp∗
Ap∗

B − ac + bcp∗
B − cdp∗

A = $113.3. The optimal quantities of outputs produced by
the firms will be q∗

A = a− bp∗
A + dp∗

B = 16.7 and q∗
B = a− bp∗

B + dp∗
A = 5.15. Therefore, the

optimal market output will be q∗
A + q∗

B = 16.7 + 5.15 = 21.85.

Example 4. Suppose that the demand function that two firms, A and B, face in a Bertrand
duopoly market with identical products is given by q = f (p), where q represents the total
quantity demanded in the market and p denotes the price that prevails in the market such
that p = min(pA,pB), where pA and pB denote the prices set by A and B, respectively.
Suppose also that the average and marginal costs of both duopolists are constant and equal
to c and that the strategy space for both firms is continuous. Determine the outcome of
this game if the duopolists choose their prices simultaneously as in static games, and if A
announces its price (pA) first and B reacts to this by choosing its price (pB) as in dynamic
(sequential) games.

Solution. Since the products of the duopolists are identical, the duopolist with lower price
will serve the entire market. If the duopolists’ prices are equal, they will share the market
equally. Therefore, the demand function for A’s product can be given as qA = q = f (pA)
if pA < pB, qA = q/2 = f (pA)/2 if pA = pB, and qA = 0 if pA > pB. Similarly, the demand
function for B’s product can be given as qB = q = f (pB) if pB < pA, qB = q/2 = f (pB)/2 if
pB = pA, and qB = 0 if pB > pA.

If the duopolists choose their prices simultaneously as in static games, A’s profit or payoff
function can be written as πA = pAqA − cqA if pA < pB, πA = (pAqA − cqA)/2 if pA = pB,
and πA = pAqA − cqA = 0 if pA > pB. Similarly, B’s profit or payoff function can be written
as πB = pBqB − cqB if pB < pA, πB = (pBqB − cqB)/2 if pB = pA, and πB = pBqB − cqB = 0
if pB > pA. What these functions imply is that as long as one firm chooses a price slightly
lower than that of the other firm but slightly above the average cost, it can capture the
entire market and make a positive profit. Therefore, both firms will continue to undercut
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the price of the other firm until their prices are equal to the constant and identical average
cost. Therefore, equilibrium of this simultaneous move game will be when both firms choose
prices equal to the identical average cost and their profits are zero; that is, p∗

A = p∗
B = c and

π∗
A = π∗

B = 0.
If the duopolists choose their prices sequentially with firm A choosing its price first, the

outcome of the game could be different from that outlined above. If the game is a dynamic
(sequential) game, then the game could exhibit multiple outcomes or equilibria; the above
static outcome (equilibrium) would be just one of them. This can be shown as follows. Since
A chooses its price first, B will always react to A’s choice. This implies that we can write B’s
reaction function as p∗

B = RB(pA). But, we know from above that B will attempt to undercut
the price of A by a very small amount (ε) if A’s price is above c or choose a price at least
equal to c if A’s price is equal to c. Therefore, we have the condition p∗

B = pA − ε if pA > c
or p∗

B ≥ c if pA = c. The interesting result here is that both firms could end up earning zero
profits irrespective of their choices of prices. This implies that all the combinations of prices
satisfying pA ≥ c and p∗

B = RB(pA) are equilibrium combinations of prices in the present
sequential game.

7.4.7 Exercises

1. Suppose that two players (A and B) engage in a hypothetical game of complete and perfect
information with two strategies (1 and 2). The payoff matrix of this game is presented
in Table 7.4.1(A). Is (are) there any pure-strategy Nash equilibrium (equilibria) in the
static form of the game? If yes, what is (are) it (they)? If A moves first in the dynamic
(sequential) form, what will be the outcome of the game?

Table 7.4.1(A)

Player B’s strategies

Strategy 1 Strategy 2

Player A’s Strategy 1 −10, −5 10, 15
strategies Strategy 2 15, 10 −5, −10

Table 7.4.1(B)

Player B’s strategies

Strategy 1 Strategy 2

Player A’s Strategy 1 15, 10 30, 15
strategies Strategy 2 20, 20 5, 10

2. Suppose that two players (A and B) engage in a hypothetical game of complete and perfect
information with two strategies (1 and 2). The payoff matrix of this game is presented
in Table 7.4.1(B). Is (are) there any pure-strategy Nash equilibrium (equilibria) in the
static form of the game? If yes, what is (are) it (they)? If A moves first in the dynamic
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(sequential) form, what will be the outcome of the game? If B moves first, what will be
the outcome of the game?

3. Suppose that two players (A and B) engage in a hypothetical game of complete and perfect
information with two strategies (1 and 2). The payoff matrix of this game is presented
in Table 7.4.2(A). Is (are) there any pure-strategy Nash equilibrium (equilibria) in the
static form of the game? If yes, what is (are) it (they)? If A moves first in the dynamic
(sequential) form, what will be the outcome of the game? Is there any possibility for a
credible threat from one player in this game? Is there any possibility for collusion and
better payoffs for both players?

Table 7.4.2(A)

Player B’s strategies

Strategy 1 Strategy 2

Player A’s Strategy 1 2, 6 2, 6
strategies Strategy 2 0, 0 3, 2

Table 7.4.2(B)

Player B’s strategies

Strategy 1 Strategy 2

Player A’s Strategy 1 10, 10 −10, 15
strategies Strategy 2 15, −10 5, 5

4. Suppose that two players (A and B) engage in a hypothetical game of complete and
perfect information with two strategies (1 and 2). The payoff matrix of this game is
presented in Table 7.4.2(B). Is (are) there any pure-strategy Nash equilibrium (equilibria)
in the static form of the game? If yes, what is (are) it (they)? If A moves first in the
dynamic (sequential) form, what will be the outcome of the game?

5. Application exercise. Assume that we have a Stackelberg oligopoly market with inverse
demand function P = a − Q (where Q denotes the market output and p denotes
the market price) and that each oligopolist’s cost is zero. Also assume that one of
the oligopolists, the leader, moves first and announces its quantity of output and all
other n oligopolists, the followers, decide their quantities of output in response to the
announcement by the leader. Determine the profit-maximizing output of the leader. Do
the leader’s profit-maximizing quantity of output and total profit depend on the number
of the followers?

6. Application exercise. Suppose that the demand functions that two firms, A and B, face
in a Bertrand duopoly market with identical products are given by qA = a − bpA + dpB

and qB = a − bpB + dpA, respectively, where a, b, and d are constants. Suppose also
that the average and marginal costs of both duopolists are constant and equal to zero,
that A announces its price first, and that the strategy space for both firms is continuous.
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Find the profit-maximizing prices, quantities, total market output, and the maximum
profit of both firms if a = 30, b = 1, and d = 0.5.

7.5 Dynamic games of complete and imperfect information: subgame
perfect Nash equilibrium

7.5.1 Introduction

In Sections 7.2 and 7.3 we demonstrated how we could find the equilibrium or equilibria
in the case of static games of complete and perfect information using strictly dominant or
dominated strategies, Nash’s equilibrium concept, maximin strategies, and mixed strategies.
In Section 7.4 we demonstrated how one could find the outcomes of dynamic (sequential)
games using the ideas of sequential rationality and backward induction.

The reader would have noticed the discussion of the shortcoming of the concept of Nash
equilibrium when it is applied to find the equilibrium in the case of dynamic games. We
observed that the application of the concept of Nash equilibrium to the determination of the
outcomes or equilibrium in the case of dynamic games might yield unreasonable results.
We also observed that the reason for this anomaly is the fact that the concept of Nash
equilibrium, when it is applied as such and without modification or rectification, may not
always satisfy the principle of sequential rationality. Therefore, our attempt in the present
section is directed at deriving the concept of Nash equilibrium that satisfies the principle of
sequential rationality. In other words, our aim is to present a refined form of the concept of
Nash equilibrium that can be applied to find the equilibrium of dynamic games such that it
will not yield unreasonable predictions or results.

7.5.2 Subgames

Let us begin this section with the definition of a subgame. A subgame can be informally
defined as the part of a game that remains to be played beginning at any node of the game.
However, we present here a formal definition of a subgame. A subgame in an extensive-form
game is a portion of the game that

1 begins at a decision node, other than the terminal node;
2 contains all the decision and terminal nodes that follow the beginning node in 1; and
3 does not contain the nodes that do not follow the beginning node in 1.

As an example of exposition, consider the extensive form of the game of complete and
perfect information illustrated in Figure 7.2.1, which we modify slightly as illustrated in
Figure 7.5.1(A). The game comprises three subgames. The first subgame is the game starting
at the top decision node PB and the second subgame is the game starting at the bottom decision
node PB. Notice that these two subgames are represented by innermost, dashed rectangles
and these rectangles contain the respective decision nodes, strategies, and associated payoffs.
The top decision node PB of the top subgame is called the subroot of that subgame, as is
the bottom decision node PB. These two subgames are called proper subgames. Therefore,
there are two subroots in the present game. Notice also that the original game itself is a
subgame and is contained in the outermost, dotted-dashed rectangle and it is called the trivial
subgame. This suggests that every trivial subgame is the original game itself or every game
is a subgame of itself. The root of a trivial subgame, such as point P1 in the figure, is called
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the trivial subroot. Therefore, there are three subgames in total in the game presented in
Figure 7.5.1(A).

A few more points are worth mentioning in the context of subgames. In a subgame once
a player starts to play from the subroot, the player cannot discontinue the play or return and
look for alternatives, and has to continue to play the game until its ends. Notice that each
subgame in Figure 7.5.1(A) is like a fresh game. It can be shown that each subgame will
have a unique subgame Nash equilibrium (SNE) and the total number of SNEs will at least
be equal to the number of subgames. It can also be shown that a unique SNE, referred to as
subgame perfect Nash equilibrium (SPNE) can be identified from the set of all SNEs. These
are the topics to which we turn below.

7.5.3 SNEs and SPNE

Our main aim in this section is to state a Nash equilibrium definition that can be applied
to dynamic games and that precludes unreasonable predictions. We have already developed
and described all the prerequisites for such a definition. We are now ready to define a SPNE.
A Nash equilibrium is subgame perfect if the players’ strategies induce a Nash equilibrium
in every subgame. It must be noted that every SPNE is a SNE, but the converse is not true.

It must be emphasized that one can use the idea of SPNE in the case of dynamic games
just as one uses the concept of Nash equilibrium in the case of static games. The pertinent
question at this juncture is how one finds a SPNE. For this one can move in the spirit
of backward induction. The required steps are as follows. Firstly, identify all the smallest
subgames that involve terminal nodes in the original game. Secondly, replace each subgame
with the payoffs from one of its Nash equilibria. Thirdly, consider the initial nodes in these
subgames as the terminal nodes in a truncated version of the original game. Fourthly, find
the smallest subgames in this truncated game that involve terminal nodes and replace each of
these subgames with the payoffs from one of its Nash equilibria. Lastly, continue backwards
as above until a SPNE is reached. This procedure is called generalized backward induction.

One might wonder what relationship exists between the idea of backward induction and the
idea of SPNE. These two ideas are the same in the case of any game of perfect information.
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What this means is that any equilibrium found, in any game of perfect information, through
backward induction is a SPNE and any SPNE satisfies backward induction. The main
difference between these two ideas is that while the idea of backward induction is useful
in the case of games of perfect information, the idea of SPNE can be used in the case of
games of perfect information and games of imperfect information (which we do not consider
in this book) alike. In other words, the latter is more general than the former.

In Section 7.4.5 we stated Zermelo’s theorem that every finite, extensive-form game has
a pure-strategy Nash equilibrium that can be attained through the procedure of backward
induction and that if no player has the same payoffs at any two terminal nodes, then the game
has a unique Nash equilibrium that can also be attained through the procedure of backward
induction. A similar statement can be made in the case of subgames. Every finite game of
perfect information has a pure-strategy SPNE and if no player has the same payoffs at any
two terminal nodes, then there is a unique SPNE.

It must be emphasized that any SPNE is a Nash equilibrium because the game itself is a
subgame. It must also be emphasized that every Nash equilibrium is not a SPNE. The last
statement shows the main purpose behind the development of the idea of SPNE; that is,
it eliminates unreasonable Nash equilibrium or equilibria.

7.5.4 SPNE: examples

Example 1. Consider the dynamic game we presented in Section 7.4.3, which is reproduced
in Figure 7.5.1(B) with slight modification. Find the SPNE of this game.

Solution. We found in Section 7.4.5 that no firm has a strictly dominant strategy in this
game. We also found there that there were two Nash equilibria in this game: “Stay Out, Fight
if firm B Enters” and “Enter, Accommodate if firm B Enters.” The extensive form of this
game presented in Section 7.4.5 yields, through the application of sequential rationality and
backward induction and as shown in Figure 7.4.3(C), the solution to the game: firm B enters
the market and firm A accommodates firm B.

Notice that the dynamic form of the same game presented in Figure 7.5.1(B) has three
subgames: the game itself and the subgames that begin with A’s decision nodes, FA. This
implies that there must be at least three SNEs for the game and one of these three SNEs
must be the SPNE. Then, following the steps outlined in the last section, we find that the
optimal strategy for FA if FB decides to enter is to accommodate, and the optimal strategy for
FA if FB decides to stay out is either fight or accommodate. Therefore, again following the
steps mentioned, we can redraw the game tree as illustrated in Figure 7.5.2(A). Notice that
the optimal strategy for FB, given the choices of strategies by FA after FB decided to enter
or stay out, is to enter. Therefore, the SPNE in the present game is {Enter, (Accommodate,
Accommodate)} and the payoffs for FA and FB will be $1 million and $2 million, respectively.
This result is identical to the result we obtained in Section 7.4.5. The reader would have
noticed that SPNE precludes the unreasonable outcome mentioned earlier. This suggests that
any equilibrium found, in any game of complete and perfect information, through backward
induction is a SPNE and any SPNE satisfies backward induction.

Example 2. Consider the game of the car model decisions of two Indian automobile
manufacturers Tata (T) and Mahindra (M) we solved in example 1 in Section 7.4.6. The
extensive form of this game illustrated in Figure 7.4.4(B) is reproduced in Figure 7.5.2(B)
for convenience. Find the SPNE of this game.
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Solution. Let us first identify the subgames of this game. These are illustrated in
Figure 7.5.3(A). As can be seen, there are three subgames in this game: one is the original
game enclosed in the outer dotted-dashed rectangle, and the other two are those shown with
dashed rectangles, whose subroots start at the two decision nodes of M. This implies that
there should be at least three SNEs in this game. We can now use the steps outlined in
Section 7.5.3. Following these steps and using the notion of backward induction we see that
the optimal strategy for M, if T chooses HE, is LE. Similarly, the optimal strategy for M, if T
chooses LE, is HE. On the basis of these results we can redraw the game tree as illustrated in
Figure 7.5.3(B). As can be seen, the optimal strategy for T, given the choices of strategies by
M, is to manufacture the LE model. Therefore, the SPNE in the present game is {LE, (HE,
LE)} and the payoffs for T and M will be $3 million and $2 million, respectively. This result
is identical to the result we obtained in Section 7.4.6. This again suggests that any equilibrium
found, in any game of complete and perfect information, through backward induction is a
SPNE and any SPNE satisfies backward induction.
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Example 3. Suppose that FA and FB are firms that produce identical products in a duopoly
market, and that FA is the leader and FB is the follower. Also suppose that FA has to decide
whether it has to set a high price or low price for its product. No matter what price FA decides,
FB will immediately react by setting either a high price or a low price. Suppose again that
the payoffs, in millions of dollars, from these decisions are as those illustrated in the game
tree in Figure 7.5.4(A). Find the SPNE of this game.

Solution. Let us first identify the subgames of this game. These are illustrated in
Figure 7.5.4(B). As can be seen, there are three subgames in this game: one is the original
game enclosed in the outer dotted-dashed rectangle, and the other two are those shown with
dashed rectangles, whose subroots start at the two decision nodes of FB. This implies that
there should be at least three SNEs in this game. We can now use the steps outlined in
Section 7.5.3. Following these steps and using the notion of backward induction we see that
optimal strategy for FB, if FA chooses “High,” is “Low.” Similarly, the optimal strategy for
FB, if FA chooses “Low,” is “Low.” On the basis of these results we can redraw the game
tree as illustrated in Figure 7.5.4(C). As can be seen, the optimal strategy for FA, given the
choices of strategies by FB, is to choose the strategy “Low.” Therefore, the SPNE in the
present game is {Low, (Low, Low)} and the payoffs for FA and FB will be $4 million and
$2 million, respectively. Notice the advantage for FA being the first mover, which is called
the first mover advantage in a game. The first mover advantage in a game is the additional
payoff that a player obtains, over and above the payoff that the player would have obtained
when all the players of the game moved simultaneously, just because the player happens to
be at the trivial subroot of the game.

Example 4. Except for the bilateral air travel services, Air India (AI) was the monopoly of
air travel services from India to Western Europe and North America for about half a century.
As a consequence of the liberalization policy of the Government of India, private carriers
such as Jet Airways (JA) entered the market recently. The entry of JA into the market led to
strategic decisions by both companies. AI being the incumbent and the leader of the market,
the follower JA often has to take strategic decisions regarding air fares in order to attract
passengers. Suppose that both carriers have three choices: increase the fare, keep the fare
constant, and decrease the fare. Suppose also that this dynamic game with the payoffs of both
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carriers is as represented by the game tree illustrated in Figure 7.5.5(A). Determine SNEs
and SPNE of this game.

Solution. As before, let us first identify the subgames of this game. These are illustrated
in Figure 7.5.5(B). As can be seen, there are four subgames in this game: one is the original
game enclosed in the outer dotted-dashed rectangle, and the other three are those, shown
with dashed rectangles, whose subroots start at the two decision nodes of AI. This implies
that there should be at least four SNEs in this game. We can now use the steps outlined
in Section 7.5.3. Following these steps and using the notion of backward induction we see
that optimal strategy for AI, if JW chooses “Increase,” is “Decrease.” Similarly, the optimal
strategies for AI, if JW chooses “Constant” and “Decrease,” are “Decrease” and “Decrease,”
respectively. On the basis of these results we can redraw the game tree as illustrated in
Figure 7.5.5(C). As can be seen in this panel, the optimal strategy for JA, given the choices
of strategies by AI, is to choose the strategy “Decrease.” Therefore, the SPNE in the present
game is {Decrease, (Decrease, Decrease, Decrease)} and the payoffs for JW and AI will
be $1 billion and $2 billion, respectively. Notice the advantage for AI because of being
the leader.

7.5.5 Exercises

1. For the extensive-form games involving two players illustrated in Figures 7.5.6(A) and
(B), determine the SNEs and SPNE. The payoffs are in dollars.

2. For the extensive-form games involving two players illustrated in Figure 7.5.7(A) and
(B), determine the SNEs and SPNE. The payoffs are in dollars.

3. Consider a two-stage game in which player 1 chooses x1 in the first stage and players 2 and
3 simultaneously choose x2 and x3, respectively, in the second stage of the game. Assume
that their payoff functions are π1 = x2 + x3 + x1x2 + x1x3, π2 = (20− x2 − x3)x2 − x1x2,
and π3 = (20 − x2 − x3)x3 − x1x3, respectively. Find the SPNE of this game.

4. Consider a two-stage game in which players 1 and 2 choose x1 and x2, respectively, in
the first stage, and players 3 and 4 simultaneously choose x3 and x4, respectively, in the
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second stage of the game. Assume that their payoff functions are π1 = x1(x3 + x4), π2 =
x2(x3 +x4), π3 = (20−x3 −x4)x3 −x1x3 −x2x3, and π4 = (20−x3 −x4)x4 −x1x4 −x2x4,
respectively. Find the SPNE of this game.

5. Application exercise. Suppose that the demand for the ith firm’s product in a Bertrand
duopoly market with differentiated products is given by qi = 20 − pi + 0.5pj , where
i �= j, and that the cost of production is zero. Find the SPNE of this game if
firm 1 moves first by choosing its price p1 and firm 2 follows by choosing its
price p2.

6. Application exercise. Suppose that the inverse market demand function in a Stackelberg
duopoly market with identical products is given by P = 100 − 4(q1 + q2), where P
denotes the market price, and that the cost of production is zero for both firms. Find the
SPNE of this game if firm 1 moves first by choosing its quantity q1 and firm 2 follows
by choosing its quantity q2.
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7.6 Game theory: extensions

7.6.1 Introduction

Our main aim in this section is the exposition of few aspects of game theory that
we have not explored so far. The first aspect we discuss here is a class of games
called repeated games. The second aspect is an important set of strategies referred to as
minimax strategies. The third aspect is concerned with the exposition of the geometric
solution of games. The last aspect is a discussion of the connection between game theory
and LP.

7.6.2 Repeated games: meaning and Nash equilibrium

The reader would have noticed that all the static games of complete and perfect information
we considered in Sections 7.2 and 7.3 were played only once. But, in the real world, many
of the static games of complete and perfect information are played repeatedly. Such static
games are called repeated games of complete and perfect information. In other words, a
repeated game is a static, simultaneous move game that is played over and over again, where
all players possess complete knowledge of the strategies chosen by all the players in all the
previous stages of the game.

If a static game of complete and perfect information is repeated a finite number of times,
then it is called a finitely repeated game of complete and perfect information. If a static game
of complete and perfect information is repeated an infinite number of times, then it is called
an infinitely repeated game of complete and perfect information. It is unnecessary to state
that a finitely repeated game has a final or ending stage while an infinitely repeated game
does not have a final or ending stage. A finitely repeated game may have a certain end or an
uncertain end. In the former the players know when the game will end, while in the latter the
players know that the game will end but not when the game will end or not know the stage
in which the game will end.

One might wonder why we are concerned with repeated games. Consider a static
simultaneous move game of complete and perfect information. If this game is played over
many stages, each player in the game will be able to base their own actions on the other
players’ past actions. This will open up the possibilities of threats and promises. A player
may threaten to take action that may affect the other players unfavorably; or may promise
to cooperate, which may affect the other players favorably. This suggests that the idea of
subgame perfection, which is based on the credibility of threats and promises, may have
an important role to play in repeated games.

Let us first consider a finitely repeated game of complete and perfect information with a
certain end. As an example, consider a variant of the Prisoner’s Dilemma game presented in
Table 7.6.1(A). Suppose that this game is played in two stages, that the payoff for the two-
stage game is the sum of the payoffs from the two stages, and that there is no discounting.
Assume that higher values in the table are preferred. Find the Nash equilibrium of this
two-stage game. What difference will it make if the game is continued for a finite n stages?

Notice that if the game in Table 7.6.1(A) were played just once, there would be two
non-cooperative Nash equilibria: (A2, B2) and (A3, B3) with payoffs (10, 10) and (2, 2),
respectively. Notice also that of these two, Nash equilibrium (A3, B3) is unreasonable and
the only reasonable Nash equilibrium, or the SPNE, is (A2, B2). Had the players cooperated,
they would have chosen the strategies (A1, B1) and their payoffs would have been much



[12:26 3/11/2011 5640-Ummer-Ch07.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 409 353–419

Game theory 409

Table 7.6.1(A)

Player B’s strategies

B1 B2 B3

Player A’s
strategies

A1 20, 20 5, 25 0, 0
A2 25, 5 10, 10 0, 0
A3 0, 0 0, 0 2, 2

Table 7.6.1(B)

Player B’s strategies

B1 B2 B3

Player A’s
strategies

A1 30, 30 15, 35 10, 10
A2 35, 15 20, 20 10, 10
A3 10, 10 10, 10 12, 12

higher (20, 20). The reader would have noticed that this mutually advantageous cooperative
outcome is not possible in the first stage of the game as each player has an incentive to defect
and switch to strategies (A2, B2).

Let us now attempt to see the outcome of the game in its second stage. It is interesting to
notice that the first-stage Nash equilibrium will also be the second-stage Nash equilibrium.
The reason is that the second stage of the game is a “new game” as the first stage game and
no player can improve payoff by switching strategies. Therefore, if both players follow the
strategies (A2, B2) then their payoff will be 10 + 10 = 20 as shown in Table 7.6.1(B). The
second stage payoffs presented in this table are obtained by adding the Nash equilibrium
payoff of each player in the first stage of the game to the payoffs in the first stage (presented
in Table 7.6.1(A)). The reader can verify that no other strategy profile can constitute a Nash
equilibrium in the second stage of the game. Moreover, one can also verify that a threat of
playing A3 (B3) by A (B), in the event that both A and B decide to cooperate and choose A1

and B1, respectively, but one of them defects, is not a credible threat.
Suppose now that, instead of two stages, the game is repeated for a finite n times. What

will be the outcome of the game in its final, nth stage? The reader would have guessed that
a retaliatory move by choosing A3 (B3) by A (B) in the nth stage is not possible because the
nth stage is the final stage and there is no stage after the final stage to carry out retaliation or
threat. This suggests that the first-stage Nash equilibrium (A2, B2) will also be the nth-stage
Nash equilibrium. This also suggests that, if retaliation is possible, it must be in the (n−1)th
stage, the effective final stage. But, the same nth-stage result also occurs in the (n−1)th stage
with the same Nash equilibrium. Thus, the search for a credible threat moves all the way
back from the nth stage to the first stage where we found that cooperation or retaliation is
not viable. This suggests that in a finitely repeated game of complete and perfect information
with pure strategies and with certain end the Nash equilibrium strategies of the first stage
will be played in every subsequent stage of the game.

We now consider a finitely repeated game of complete and perfect information with pure
strategies and with uncertain end. Notice that the only difference between this game and
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the game we considered above is that in the former the players do know only that the
game will end in some stage, but do not know the stage in which the game will end; in
the latter the players do know both. But, what difference will this make to the outcome of
the game?

To answer the above question, we begin by assuming that α, where 0 ≤ α ≤ 1, denotes the
probability that the game will end in the second stage. This suggests that (1−α), (1−α)2, . . .,
and (1 − α)n−1 denote the probabilities that the game will be played in the second stage,
third stage,…, and nth stage of the game, respectively. Now consider the game presented
in Table 7.6.1(A). We know from above (A2, B2) is the only reasonable Nash equilibrium
strategy profile in this game and the cooperative strategy profile (A1, B1) is mutually more
beneficial than (A2, B2). Then, if both players choose the agreed and cooperative strategy
(A1, B1), the expected payoff to each player will be 20[1 + (1 − α) + (1 − α)2 + ·· · +
(1 −α)n−1]. But if one player defects and the other does not in the first stage (and chooses
the Nash equilibrium strategy in the remaining stages of the game), the expected payoff
to the player will be 25(1) + 10[1 + (1 − α) + (1 − α)2 + ·· · + (1 − α)n−1]. It is easy to
see that defection is profitable only if 25(1) + 10[(1 − α) + (1 − α)2 + ·· · + (1 − α)n−1] >
20 + 20[(1 −α) + (1 −α)2 + ·· · + (1 −α)n−1], which can be simplified to obtain (5/10)>
[(1−α)+ (1−α)2 + . . .+ (1−α)n−1]. Notice that the RHS of the last inequality represents
a geometric series with the initial term s1 = 1 − α and the common ratio k = 1 − α. Then
applying equation (1.10.10) yields (5/10)> s1/(1 − k) = (1 −α)/α, or 0.5> (1 −α)/α, or
α > (1/3) = 0.33. These results suggest that defection is profitable if the probability that
the game will end in the second stage is greater than 0.33. Notice that if α = 1 and α = 0,
a finitely repeated game becomes a single-stage game with certain end and an infinitely
repeated game, respectively.

We saw above that cooperation among players in a repeated game is highly unlikely.
However, there are a few types of agreements which bind the players to cooperation.
One such agreement or enforcement mechanism is a cartel, which is a formal agreement
among firms or countries to allocate market shares and to increase group profits. There are
evidences that even these types of formal agreements of cooperation may break down at
times. Under these circumstances players of the game often resort to other enforcement
mechanisms called trigger strategies such as tit-for-tat strategy, preemptive strategy, etc.
A trigger strategy is a strategy in which a player cooperates with other players if they
cooperate and defects if they do not cooperate. It is, in fact, a retaliatory strategy adopted by a
player when other players adopt unanticipated strategies. A tit-for-tat strategy is a strategy in
which a player does exactly the same as other players of the game do; that is, it is a strategy in
which the player cooperates if the opponents cooperate and defects if the opponents defect.
A preemptive strategy is a strategy in which a player moves before other players of the
game so that the player can preempt or forestall some of the strategy options of the other
players. A preemptive strategy, if available and if chosen, manifests in the form of first-mover
advantage.

Our remaining task in this section is a presentation of infinitely repeated games. We know
that an infinitely repeated game does not have a final stage. For the purpose of illustration
consider the modified Prisoner’s Dilemma game illustrated in Table 7.6.1(A). We found
earlier in this section that if this game is played only once or repeated for a finite number of
times, the only reasonable Nash equilibrium is the strategy profile (A2, B2). We also found
that the mutually beneficial, cooperative outcome (A1, B1) is not a possible Nash equilibrium
strategy profile because of the incentive for each player to switch strategies. What will be the
outcome of this game if it is played for an infinite number of times?
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We approach the present problem slightly differently. Given the practices of many of the
big business corporations around the globe, we assume that player A publicly announces that
it will play A1 in the first stage; that it will play A1 in the second stage if B cooperates and
plays B1 in the first stage; and that it will play the retaliatory or trigger strategy A2 in the
second stage and thereafter if B does not play B1 in the first stage. If these happen, then the
outcome of the game will be considerably different.

Notice that when A announced its plan to play A1 and if B plays B1 in every stage of this
infinitely repeated game, the payoffs to each player will be 20+20+20+·· · . These payoffs
are better than that obtained when both players play the Nash equilibrium strategy profile
(A2, B2): 10+10+10+·· ·< 20+20+20+·· · . Moreover, if B violates the agreement and
plays B2 in the first stage and A sticks to A1, then the payoff to B will be 25+10+10+10+·· · ,
which is less than what B obtains when B plays B1. Thus, it is in the interest of B not to violate
the agreement. Since the payoff matrix in Table 7.6.1(A) is symmetric, the same conclusion
is true for player A. Therefore, the strategy profile (A1, B1) is a Nash equilibrium strategy
profile if the game is repeated infinitely. In fact, it is the only reasonable Nash equilibrium or
is the SPNE. The reader would have noticed that the strategy profile (A1, B1), which is not a
Nash equilibrium strategy profile in a single-stage or finitely repeated game with a particular
payoff matrix, becomes the SPNE in an infinitely repeated game with the same payoff matrix
and that cooperation is now possible. But, it should be emphasized that the strategy profile
(A1, B1) could cease to be a Nash equilibrium strategy profile and cooperation may again be
not possible if there is a slight change in the payoff matrix.

7.6.3 Maximin and minimax strategies

In Section 7.3.11 we defined a maximin strategy for a player as a strategy that maximizes
the minimum gain that can be obtained from the choice of different strategies of the player.
Here we discuss a closely related concept called minimax strategy. But, before this, consider
the hypothetical zero-sum, two-player, two-strategy game presented in Table 7.6.2(A).

Since the game presented in Table 7.6.2(A) is a zero-sum game, the payoffs in each cell of
the table are such that the gain of player A is equal to the loss of player B. The payoffs of only
player A are given in Table 7.6.2(B). This table shows that there exists a clear distinction
between the objectives of the two players. The minimum gains that A can obtain from B, no
matter what strategy B chooses, are the minimum values in each row against A’s strategies.
These minimum values are written under the column “Row min.” Similarly, the maximum
payoffs that B has to concede to A, no matter what strategy A chooses, are the maximum
values in each column under B’s strategies. Clearly, A wants to choose the strategy that
yields the maximum from the minimum gains; that is, A follows the maximin principle or
maximin strategy. Similarly, B wants to choose the strategy that concedes the minimum from

Table 7.6.2(A)

Player B’s strategies

B1 B2 B3

Player A’s
strategies

A1 2, −2 4, −4 3, −3
A2 5, −5 1, −1 2, −2
A3 6, −6 5, −5 3, −3
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Table 7.6.2(B)

Player B’s strategies Row min.

B1 B2 B3

Player A’s
strategies

A1 2 4 3 2
A2 5 1 2 1

A3 6 5
-------------
---------------

- 3 --
- �3

Column max. 6 5 �3

the maximum losses; that is, B follows the minimax principle or minimax strategy. These
suggest that A is the maximizer and B is the minimizer in this game.

Defining the payoffs in of Table 7.6.2(B) by πA
ij , where πA

ij denotes the gain of A (or the
loss of B) when A chooses the ith strategy and B chooses the jth strategy, and i = 1,2, . . . ,m
and j = 1,2, . . . ,n, we obtain from the maximin and minimax strategies that maximin πij =
max{2, 1, 3} = 3 and minimax πij = min{6, 5, 3} = 3, respectively. These values are circled
in the table. Notice that the strategies that correspond to maximin πij = 3 and minimaxπij = 3
are A3 and B3, respectively. The reader would have noticed that maximin πij ≤ minimax πij .

In a two-player, zero-sum, pure strategy, static game with payoff matrix πij , the payoff
determined by the maximin principle is called the lower value of the game and we denote it by
V−; and the payoff determined by the minimax principle is called the upper value of the game
and we denote it by V −. Notice that V− = V − = 3 in our present example, and this common
value is called the saddle point or equilibrium point of the game. The payoff determined by
maximin and minimax principles is called the value of the game, denoted by V . This means
that V = 3 in our example. The strategies that correspond to maximin and minimax principles
or to the value of the game are called optimal strategies. Therefore, the optimal strategies in
the present example are A3 and B3 for A and B, respectively. Since both players do not have
an incentive to move away from the optimal strategies, the optimal strategies yield a stable
solution to the game. A two-player, zero-sum, pure strategy, static game with payoff matrix
πA

ij is said to be a fair game if V− = V − = V = 0. A game is a strictly determinable game

if V− = V − = V �= 0 and, therefore, the present game is a strictly determined game. The
reader would have guessed that if V > 0 (V < 0), then the game is in favor of the maximizer
(minimizer). It must be emphasized that in most two-player, zero-sum, pure strategy, static
games with payoff matrix πij we have the inequality V− ≤ V ≤ V − or maximin πij ≤ V ≥
minimax πij , which is called the fundamental theorem of game theory.

7.6.4 Geometric solution of games with mixed strategies

We now attempt to see how zero-sum games with mixed strategies can be solved
geometrically. For this consider our Matching Pennies game introduced in Section 7.2.4.
The payoff matrix of this game is reproduced in Table 7.6.3(A). The payoff matrix of player
A is given in Table 7.6.3(B). It is clear from Table 7.6.3(B) that maximin πij = −10 �=
minimax πij = 10. Since the payoff matrix in Table 7.6.3(A) is symmetric, the same is also
true for player B. Therefore, the game does not have a stable solution and a saddle point in
pure strategies. This suggests that we apply mixed strategies to solve this game.
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Table 7.6.3(A)

Player B’s strategies

Heads Tails

Player A’s Heads 10, −10 −10, 10
strategies Tails −10, 10 10, −10

Table 7.6.3(B)

Player B’s strategies Row min.

Heads Tails

Player A’s
strategies

Heads 10 −10 −10
Tails −10 10 −10
Column max. 10 10

Therefore, we need to use mixed strategies, introduced in Section 7.3.7, to determine the
equilibrium of this game. Suppose that A plays “Heads” with probability p and “Tails” with
probability 1−p. On the basis of these probabilities, we can write the expected payoffs of A
when B plays “Heads” and “Tails,” respectively, as

EA
H (p) = 10p +[−10(1 − p)] = −10 + 20p (7.6.1)

and

EA
T (p) = −10p + 10(1 − p) = 10 − 20p (7.6.2)

Notice that A receives the maximum of these two expected payoffs if B responds correctly
to any value that A chooses for p. Therefore, A’s expected payoff can be written as

EA(p) = max(EA
H ,E

A
T ) (7.6.3)

One might wonder how the two equations (7.6.1) and (7.6.2) differ from the expected
payoff of A given in the first of equations (7.3.10). Equations in (7.6.1) and (7.6.2) can be
derived from the first of equations (7.3.10) if we let q = 1 and q = 0 (and using the numerical
payoffs), respectively. We know from Section 7.3.9 that the payoff of A is the same for
any mixed strategy (that is, for all possible levels of p) and, therefore, A will be indifferent
between any mixed-strategy choices. Using this result, we can equate equations (7.6.1) and
(7.6.2) to obtain p = 1/2.

We can now plot the expected payoffs of player A given in equations (7.6.1) and (7.6.2)
to obtain the graphs in Figure 7.6.1(A). Notice that the lines representing the two equations
cross each other at point E. The thick line with a twist at point E represents the part of the
line EA

H to the left of point E and the part of the line EA
T to the right of point E. This thick line

represents EA(p) in equation (7.6.3). Notice also that point E defines the value of p. It can
be seen from the horizontal axis that p = 1/2. The expected payoff of player A, as can be
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Figure 7.6.1

seen from the vertical axis, is 0. These results are identical to the results we obtained when
we solved the same problem using the classical approach to optimization in example 1 in
Section 7.3.10.

Similarly, we can find the minimum expected loss of B. Suppose that B plays “Heads”
with probability q and “Tails” with probability 1−q. Then the expected losses of B when A
plays “Heads” and “Tails,” respectively, are

EB
H (q) = 10q +[−10(1 − q)] = −10 + 20q (7.6.4)

and

EB
T (q) = −10q + 10(1 − q) = 10 − 20q (7.6.5)

Notice that B concedes the minimum of these two expected payoffs. Therefore, B’s expected
loss can be written as

EB(q) = min(EB
H ,E

B
T ) (7.6.6)

We can now plot the expected loss of player B given in equations (7.6.4) and (7.6.5) to obtain
the graphs in Figure 7.6.1(B). Notice that the lines representing the two equations cross each
other at point E. The thick line with a twist at point E represents the part of the line EB

T to the
left of point E and the part of the line EB

H to the right of point E. This thick line represents
EB(q) in equation (7.6.6). Notice also that point E defines the value of q. It can be seen from
the horizontal axis that q = 1/2. The expected loss of B, as can be seen from the vertical axis,
is 0. As above, these results are identical to the results we obtained when we solved the same
problem using the classical approach to optimization in example 1 in Section 7.3.10.

As another example, consider the payoffs of player A in a two-person, zero-sum game
presented in Table 7.6.4(A). It is clear from Table 7.6.4(B) that maximin πij = 2 �= minimax
πij = 3. Since the payoff matrix in Table 7.6.4(A) is symmetric, the same is also true for
player B. Therefore, the game does not have a stable solution and a saddle point in pure
strategies. This suggests that we apply mixed strategies to solve this game.

Therefore, we need to use mixed strategies, as earlier, to determine the equilibrium of this
game. Suppose that A plays A1 with probability p and A2 with probability 1 − p. On the
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Table 7.6.4(A)

Player B’s strategies

B1 B2

Player A’s A1 1 4
strategies A2 3 2

Table 7.6.4(B)

Player B’s strategies Row min.

B1 B2

Player A’s
strategies

A1 1 4 1
A2 3 2 2
Column max. 3 4

basis of these probabilities, we can write the expected payoff of A when B plays B1 and B2,
respectively, as

EA
B1

(p) = 1p +[3(1 − p)] = 3 − 2p (7.6.7)

and

EA
B2

(p) = 4p + 2(1 − p) = 2 + 2p (7.6.8)

Notice that A receives the maximum of these two expected payoffs if B responds correctly
to any value that A chooses for p. Therefore, A’s expected payoff can be written as

EA(p) = max(EA
B1
,EA

B2
) (7.6.9)

We can now plot the expected payoffs of A given in equations (7.6.7) and (7.6.8) to obtain
the graphs in Figure 7.6.2(A). Notice that the lines representing the two equation cross each
other at point E. The thick line with a twist at point E represents the part of the line EA

B2
to the

left of point E and the part of the line EA
B1

to the right of point E. This thick line represents

EA(p) in equation (7.6.9). Notice also that point E defines the value of p. It can be seen from
the horizontal axis that p = 1/4, which implies that 1 − p = 3/4. Therefore, the expected
value of the payoffs to A is 2.5.

Let us now consider B’s problem, which is to minimize the expected loss. Assume that B
plays B1 with probability q and B2 with probability 1 − q. Then we can write the expected
loss to B when A plays A1 and A2, respectively, as

EB
A1

(q) = 1q +[4(1 − q)] = 4 − 3q (7.6.10)

and

EB
A2

(q) = 3q + 2(1 − q) = 2 + q (7.6.11)
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Notice that B concedes the minimum of these two expected payoffs. Therefore, B’s expected
loss can be written as

EB(q) = min(EB
A1,E

B
A2) (7.6.12)

We can now plot the expected loss of B given in equations (7.6.10) and (7.6.11) to obtain
the graphs in Figure 7.6.2(B). Notice that the lines representing the two equations cross each
other at point E. The thick line with a twist at point E represents the part of the line EB

A1 to the
left of point E and the part of the line EB

A2 to the right of point E. This thick line represents
EB(q) in equation (7.6.12). Notice also that point E defines the value of q. It can be seen from
the horizontal axis that q = 1/2, which implies that 1 − q = 1/2. The expected value of loss
to B, as can be seen from the vertical axis, is 2.5.

The reader would have noticed that the optimum probabilities in both the examples we
have solved in this section are such that the maximum of the minimum expected gains to one
player is exactly equal to the minimum of the maximum expected loss to the other player.
This is true for any two-person, zero-sum game. Therefore, we have the theorem, called the
minimax theorem, that states for any two-person, zero-sum game there exist optimal strategies
p∗ and q∗ such that the maximum of the minimum expected gains to one player is exactly
equal to the minimum of the maximum expected loss to the other player.

7.6.5 Connection between game theory and LP

Since they are both concerned with optimization, one might wonder if there is any connection
between game theory and LP. Yes, there is a close connection between game theory and LP.
Specifically, every zero-sum, two-person, static game can be solved by converting it into an
associated LP problem and every LP problem can be converted into a zero-sum, two-person
game. We are now ready to explore this connection. For this we make use of a general payoff
matrix (the generalized form of the payoff matrix presented in Table 7.2.1) of the payoffs to
player A when player A chooses the strategy sA

i and player B chooses the strategy sB
j , where

i = 1,2, . . . ,m and j = 1,2, . . . ,n as presented in Table 7.6.5.
The reader would have noticed that, since this is a zero-sum game, πij may be either

a positive value or a negative value. We know that A is interested in finding a best mixed
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Table 7.6.5

Player B’s strategies

sB
1 sB

2 … sB
j … sB

n

�

Prob. �
q1 q2 … qj … qn

P
la

ye
r

A
’s

st
ra

te
gi

es

sA
1 p1 π11 π12 … π1j … π1n

sA
2 p2 π21 π22 … π2j … π2n

… … … … … … … …

sA
i pi πi1 πi2 … πij … πin

… … … … … … … …

sA
m pm πm1 πm2 … πmj … πmn

strategy, that is, a best set of probabilities. Notice that
∑m

i=1 pi = 1 and pi ≥ 1; and
∑n

j=1 qj = 1
and qj ≥ 1. Player A wants to find the optimal probabilities (or mixed strategies) such that
the expected payoff to A is maximum. A’s minimum expected payoff when B chooses the
strategy sB

1 is given by EA
sB
1

= p1π11 + p2π21 + ·· ·+ piπi1 + ·· ·+ pmπm1; and when B plays

sB
j , A’s minimum expected gain will be EA

sB
j

= p1π1j + p2π2j + ·· · + piπij + ·· · + pmπmj .

We denote the maximum of these minimum expected gains of A by Z−. Then we have
inequalities corresponding to the last two equations as p1π11 + p2π21 + ·· · + piπi1 + ·· · +
pmπm1 ≥ Z− and p1π1j +p2π2j +·· ·+piπij +·· ·+pmπmj ≥ Z−. Dividing both sides of the
last two inequalities by Z− we obtain (p1/Z−)π11 + (p2/Z−)π21 +·· ·+ (pi/Z−)πi1 +·· ·+
(pm/Z−)πm1 ≥ 1 and (p1/Z−)π1j + (p2/Z−)π2j +·· ·+ (pi/Z−)πij +·· ·+ (pm/Z−)πmj ≥ 1.
If Z− < 0, then the direction of the last two inequalities must be reversed by multiplying
them by −1. If Z− = 0, then a constant must be added to every element of the payoff matrix
in Table 7.6.5 so that the revised value of the game (with the revised payoff matrix) becomes
positive. Similarly, if any πij < 0 in the payoff matrix, then a constant must be added to every
element in the matrix so that the least element will be zero. But, once the optimal solution
is obtained (in both cases above), the correct value of the game can be found by subtracting
the constant from the revised value of the game. Let us now define xi = pi/Z−. Then the
last two inequalities can be rewritten as π11x1 +π21x2 + ·· · +πi1xi + ·· · +πm1xm ≥ 1 and
π1jx1 +π2jx2 +·· ·+πijxi +·· ·+πmjxm ≥ 1. We know that maximizing Z− is equivalent to
minimizing 1/Z−. We can now write the LP version of player A’s game problem presented
in Table 7.6.5 by expanding i and j in the last inequality as

Minimize 1/Z− = x1 + x2 +·· ·+ xi +·· ·+ xm,

subject to π11x1 +π21x2 +·· ·+πi1xi +·· ·+πm1xm ≥ 1,

π12x1 +π22x2 +·· ·+πi2xi +·· ·+πm2xm ≥ 1, . . .,

π1jx1 +π2jx2 +·· ·+πijxi +·· ·+πmjxm ≥ 1, . . .,

π1nx1 +π2nx2 +·· ·+πinxi +·· ·+πmnxm ≥ 1, and x1,x2, . . . ,xm ≥ 0 (7.6.13)
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Let us now approach B’s problem. Player B wants to find the optimal probabilities (or
mixed strategies) such that the expected loss to B is minimum. B’s minimum expected loss
when A chooses the strategy sA

1 is given by EB
sA
1
= q1π11 +q2π12 +·· ·+qjπ1j +·· ·+qnπ1n;

and when A plays sA
i , B’s minimum expected loss will be EB

sA
i

= q1πi1 + q2πi2 + ·· · +
qjπij + ·· · + qnπin. We denote the minimum of these maximum expected losses of player
B by Z−. Then we have inequalities corresponding to the last two equations as q1π11 +
q2π12 + ·· · + qjπ1j + ·· · + qnπ1n ≤ Z− and q1πi1 + q2πi2 + ·· · + qjπij + ·· · + qnπin ≤ Z−.
Dividing both sides of the last two inequalities by Z− we obtain (q1/Z−)π11 + (q2/Z−)π12 +
·· ·+ (qj/Z−)π1j +·· ·+ (qn/Z−)π1n ≤ 1 and (q1/Z−)πi1 + (q2/Z−)πi2 +·· ·+ (qj/Z−)πij +
·· · + (qn/Z−)πin ≤ 1. Let us now define yj = qj/Z−. Then the last two inequalities can be
rewritten as π11y1 +π21y2 + ·· ·+πi1yj + ·· ·+πm1yn ≤ 1 and πi1y1 +πi2y2 + ·· ·+πijyj +
·· · + πinyn ≤ 1. We know that minimizing Z−is equivalent to maximizing 1/Z−. We can
now write the LP version of B’s game problem presented in Table 7.6.5 by expanding i and
j in the last inequality as

Maximize 1/Z− = y1 + y2 +·· ·+ yj +·· ·+ yn,

subject to π11y1 +π12y2 +·· ·+π1jyj +·· ·+π1nyn ≤ 1,

π21y1 +π22y2 +·· ·+π2jyj +·· ·+π2nyn ≤ 1, . . .,

πi1y1 +πi2y2 +·· ·+πijyj +·· ·+πinyn ≤ 1, . . .,

πm1y1 +πm2y2 +·· ·+πmjyj +·· ·+πmnyn ≤ 1, and y1,y2, . . . ,yn ≥ 0 (7.6.14)

The reader would have noticed that A’s LP problem in (7.6.13) is the dual of B’s LP problem
in (7.6.14) and vice versa. This implies that Z−∗ = Z∗−; that is, the expected gain to player
A is equal to the expected loss to player B in the optimum. Since the problems in (7.6.13)
and (7.6.14) are the duals of each other, the solution to one can be obtained from the optimal
simplex tableau of the other.

So far we have converted a two-person, zero-sum game into an equivalent LP problem.
One can do the opposite also; that is, convert a LP problem into an equivalent two-person,
zero-sum game. Although one can carry out the latter conversion, the benefits from that
outweigh the associated costs. Moreover, we know from Chapter 5 that it is much easier to
solve LP problems using the methods presented therein. Therefore, we do not present here
the conversion of a LP problem into a game. Instead, the interested reader can consult the
bibliography at the end of the book.

As an example, consider the two-person, zero-sum Matching Pennies game introduced in
Section 7.2.4 and solved using the classical approach to optimization in Section 7.3.10 and
geometrically in Section 7.6.4. The matrix showing the payoffs of both players in this game are
presented in Table 7.6.3(A). The matrix of the payoffs of A is presented in Table 7.6.3(B).
Notice that in Table 7.6.3(B), π11 = 10, π12 = −10, π21 = −10, and π22 = 10; and that
sA
1 = Heads, sA

2 = Tails, sB
1 = Heads, and sB

2 = Tails. Our problem is to present the LP
versions of the game problems that both players face and solve them using the LP approach
to optimization.

Using the values in Table 7.6.3(B) and following the derivation of problems in
equations (7.6.13) and (7.6.14), and using constants (10) in the case of negative πij in
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the payoff table, we can write the LP versions of the game problems of players A and
B, respectively, as

Minimize 1/Z− = x1 + x2, subject to 20x1 − 0x2 ≥ 1,0x1 + 20x2 ≥ 1, and x1,x2 ≥ 0

Maximize 1/Z− = y1 + y2, subject to 20y1 − 0y2 ≤ 1,0y1 + 20y2 ≤ 1, and x1,x2 ≥ 0
(7.6.15)

Notice that in the last two problems xi = pi/Z− and yj = qj/Z−. Solving these two problems
using the methods presented in Chapter 5, we obtain that 1/Z−∗revised = 1/Z∗

−revised = 1/10

and x∗ = y∗ = 1/20. These imply that Z−∗revised = Z∗
−revised = 10. We now need to subtract

the constant (10) added to the elements of the payoff matrix from Z−∗revised = Z∗
−revised = 10

to obtain the old but correct Z−∗ and Z∗−. Therefore, we have Z−∗ = Z∗− = Z−∗revised −
10 = Z∗

−revised − 10 = 0. Since x∗
1 = p∗

1/Z
−∗revised = 1/20, x∗

2 = p∗
2/Z

−∗revised = 1/20, y∗
1 =

q∗
1/Z

∗
−revised = 1/20, and y∗

2 = q∗
2/Z

∗
−revised = 1/20; we have p∗

1 = x∗
1 ×Z−∗revised = (1/20)×

10 = 1/2, p∗
2 = x∗

2 × Z−∗revised = (1/20) × 10 = 1/2, q∗
1 = y∗

1 × Z∗
−revised = (1/20) × 10 =

1/2, and q∗
2 = y∗

2 × Z∗
−revised = (1/20) × 10 = 1/2. In short, we obtain Z−∗ = Z∗− = 0 and

p∗
1 = p∗

2 = q∗
1 = q∗

2 = 1/2. Notice that these results are identical to the results we obtained in
Sections 7.3.10 and 7.6.4 when we solved the same problem using the classical approach to
optimization and geometrically, respectively.

As another example, consider the second two-person, zero-sum game we solved geometri-
cally in the last section. The matrix showing the payoffs of player A in this game is presented
in Table 7.6.4(A). Notice that in this table, π11 = 1, π12 = 4, π21 = 3, and π22 = 2; and that
sA
1 = A1, sA

2 = A2, sB
1 = B1, and sB

2 = B2. Our problem is to present the LP versions of the
game problems that both players face and solve them using the LP approach to optimization.

Using the values in Table 7.6.4 and following the derivation of problems (7.6.13)
and (7.6.14), we can write the LP versions of the game problems of players A and B,
respectively, as

Minimize 1/Z− = x1 + x2, subject to x1 + 3x2 ≥ 1,4x1 + 2x2 ≥ 1, and x1,x2 ≥ 0

Maximize 1/Z− = y1 + y2, subject to y1 + 4y2 ≤ 1,3y1 + 2y2 ≤ 1, and y1,y2 ≥ 0
(7.6.16)

Notice that, as before, in the last two problems xi = pi/Z− and yj = qj/Z−. Solving these two
problems using the methods presented in Chapter 5, we obtain that 1/Z−∗ = 1/Z∗− = 2/5,
x∗

1 = 1/10, x∗
2 = 3/10, and y∗

1 = y∗
2 = 1/5. These imply that Z−∗ = Z∗− = 5/2 = 2.5. Since

x∗
1 = p∗

1/Z
−∗ = 1/10, x∗

2 = p∗
2/Z

−∗ = 3/10, y∗
1 = q∗

1/Z
∗− = 1/5, and y∗

2 = q∗
2/Z

∗− = 1/5;
we have p∗

1 = x∗
1 × Z−∗ = (1/10) × (5/2) = 1/4, p∗

2 = x∗
2 × Z−∗ = (3/10) × (5/2) = 3/4,

q∗
1 = y∗

1 × Z∗− = (1/5) × (5/2) = 1/2, and q∗
2 = y∗

2 × Z∗
−d = (1/5) × (5/2) = 1/2. In short,

we obtain Z−∗ = Z∗− = 5/2 = 2.5, p∗
1 = 1/4, p∗

2 = 3/4, and q∗
1 = q∗

2 = 1/2. Notice that
these results are identical to the results we obtained in the last section.
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8 Integral calculus

8.1 Introduction

In the first three chapters of this book we developed the necessary mathematical tools
required for the analyses of many of the relationships one finds in the fields of economics,
business, and finance. We then applied these tools to analyze some of these relationships
in Chapters 4–7. These relationships involved variables and parameters or constants. In all
our analyses so far we have been mainly interested in the properties of the variables when
they attain some equilibrium position(s). We have also been interested in the comparison of
the properties of the variables in different equilibrium positions attained after changes in the
parameters. The former analysis is called statics or static analysis and the latter analysis is
called comparative statics or comparative static analysis.

We considered numerous examples of static and comparative static analyses in previous
chapters. As a recap, consider the problem in example 6 in Section 1.6.7. In this problem we
first wanted to find the pre-tax equilibrium (point E in Figure 1.6.6(A)) and then wanted to
find the post-tax equilibrium (point Et). We then compared these two equilibrium positions.
Finding the pre-tax equilibrium price and quantity demanded and supplied is called static
analysis. Similarly, finding the post-tax equilibrium price and quantity, and its comparison
with the pre-tax equilibrium price and quantity, is called comparative static analysis. The
reader would have noticed that we have carried out earlier several such static and comparative
static analyses.

But, an astute reader would have noticed an important deficiency in static and comparative
static analyses. Consider, again for simplicity, the pre-tax equilibrium point E and the
post-tax equilibrium point Et in Figure 1.6.6(A). The reader might ask what happens to
the variables, price and quantity, when we move from the pre-tax equilibrium position to
the post-tax equilibrium position. In other words, the evolution of the variable(s) is also
important, just as their equilibrium values or properties. We could not study or analyze the
evolution of variables in different relationships we have considered so far because we did not
develop the required mathematical tools for such an analysis. Therefore, our major aim in the
present chapter is to develop one of those mathematical tools that can be used to analyze the
evolution of variables. This type of analysis is called in the literature dynamics or dynamic
analysis.

An astute reader would have also guessed that dynamic analyses involve time. Once again,
consider the example of the impact of a tax on price and quantity we mentioned above. It
is difficult for one to think that the pre-tax equilibrium values of price and quantity would
change and attain new, post-tax equilibrium values at the same time as the tax is imposed.
It is unnecessary to state that it will take some time before the post-tax equilibrium values
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are reached. The justification for this delay in attaining new equilibrium position is that both
consumers and producers or suppliers require some time to adjust their demand and supply.
What all this implies is that time plays a crucial role in dynamic analysis. Therefore, we need
to introduce time explicitly into dynamic analyses.

The introduction of time is sometimes necessary even if we are not interested in the
comparison of equilibrium positions of variables. This is particularly so if we wish to
explore the independent evolution of some variables. Such variables are numerous in
the subjects of our interest. Examples of such variables include the movements of gross
domestic product, per capita income, consumption expenditure, national debt, investment,
exports and imports, corporate profits, stock or share prices, and so on. In many cases,
we may be interested in the evolution, or the chronological movements, of these and
other variables. It is again unnecessary to state that the movements of these variables are
time-conditioned.

However, a natural question that arises here is how one introduces time. Time can be
introduced in two ways: either in discrete form or in continuous form. In the former case,
the variable under consideration is expected to change only once in a period of time; for
example, in a week, in a month, in a year, etc. But, in the latter case, the variable is expected
to change at every possible point in time. An example of the former is the annual compounding
of interest on a bank deposit and an example of the latter is the continuous compounding
of interest on another deposit. If a variable is evolving continuously over time, then the
study of its evolution can be carried out using integral calculus or differential equations.
And if the variable is evolving discretely over time, its evolution can be studied using
difference equations. We will study the evolution of variables only using integral calculus
in this book. The other two, with some other supplements, are presented on the website of
the book.

8.2 Indefinite integrals

8.2.1 Introduction

One of the types of integrals we present in this book is called the indefinite integral. For the
purpose of exposition of indefinite integrals, we use a simple example. Assume that the total
profit, 	, of a company varies as time, t, varies. Also assume that the rate of change of the
total profit of the company is given by the first derivative

d	/dt = (1/3) t−2/3 (8.2.1)

which implies that, since d	/dt = (1/3)t−2/3 > 0 for any t > 0, the total profit of the
company is an increasing function of time. Moreover, since d2	/dt2 = (−2/9)t−5/3 < 0 for
any t > 0, the total profit of the company increases at a diminishing rate. The problem now
is how one can obtain the time path of the company’s total profit function that will yield
the rate of change given in equation (8.2.1). In other words, we need to find the original
total profit function, which is a function of time, on the basis of the rate of change of that
function given in equation (8.2.1). This original function is also called in the literature the
primitive function. The reader would have noticed that the rate of change in equation (8.2.1)
is a derived function. Therefore, the question is how one can find the primitive function from
the derived function.
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The method of finding the primitive function from the derived function is called inte-
gration. The branch of mathematics concerned with this method is called integral calculus.
The reader would have noticed that in differential calculus we were interested in finding the
derived function from the primitive function. Here in integral calculus we do the opposite:
find the original, primitive function from the derived function. For this reason, some authors
state that integration is the opposite of differentiation. We explore this idea in detail in the
following sections.

8.2.2 Constants of integration and multiple primitive functions

Consider again the rate of change of the total profit given in equation (8.2.1). A visual
inspection of that derived function would suggest that a form of the primitive total profit
function is	= f (t) = t1/3. An astute reader might wonder why we said “a” form, instead of
“the” form. The reason is that a multitude of primitive functions would give us the derived
function in equation (8.2.1).

As an example, consider the primitive function 	 = f (t) = t1/3. The derivative of
this function with respect to t would yield the derived function in equation (8.2.1). Now
consider the primitive function 	 = f (t) = t1/3 + C, where C is a constant that may
take any value, which gives the same derived function. The only difference between the
two primitive functions 	 = f (t) = t1/3 and 	 = f (t) = t1/3 + C is the presence of
the constant C in the latter. Notice that we can generate an infinite number of primitive
functions using infinite number of values for the constant. Therefore, the most general
primitive function of the derived function in equation (8.2.1) is 	 = f (t) = t1/3 + C. We
will see in Section 8.3.2 that the last equation is the integral of the derived function.
The above discussion can be illustrated geometrically, as presented in Figure 8.2.1, with
the graph of the derived function d	/dt = (1/3)t−2/3 and the graphs of the primitive
function 	 = f (t) = t1/3 + C with differing values for the constant C (0, 1, and 2). Since
the graphs of the primitive functions are simply vertical translations, they all have the
same slope.

Since all the above mentioned primitive functions would yield the same derived function
in equation (8.2.1), we cannot derive a unique primitive function unless we are given addi-
tional information about the value that the constant takes. What is this additional information?

Π = t1/3+2

Π = t1/3+1

Π = t1/3+0

0 1 2 3 4
t0

1

2

3

4

5
Π

Π/t = (1/3)t−2/3

Figure 8.2.1
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This additional information is called in the literature initial condition or boundary condition,
which we will discuss in Section 8.3.11.

8.2.3 Integration as anti-differentiation

In the last two sections we mentioned that integration was the process of deriving the primitive
function or the parental function on the basis of the derived function or the progeny function.
In this section we use an even simpler example to elucidate the real meaning of integration.

Suppose that we have a univariate function F(x). Also suppose that the first derivative
of this function with respect to x is F ′(x) = f (x). Then integration is the process of finding
F(x) using F ′(x) or f (x). What this means is that in integration we are going back from the
progeny function to the parental function.

As an example, suppose that F ′(x) = f (x) = x2. How do we find F(x) using F ′(x) =
f (x) = x2? As mentioned in the last section, a large number of parental functions would give
us the derivative F ′(x) = f (x) = x2. Therefore, following our discussion in the last section and
as we shall see in Section 8.3.2, the most general parental function for this progeny function
can be written as F(x) = (1/3)x3 + C. Notice that if we differentiate this parental function
with respect to x we will obtain the progeny function: F ′(x) = f (x) = d[(1/3)x3 + C]/dx =
x2. This result shows that integration of the derivative or the progeny function yields the
primitive or parental function. In other words, integration is the opposite of differentiation
or is anti-differentiation.

8.2.4 Notations and concepts

For our further exposition of integral calculus and its applications in the fields of our
interest we need to specify some notations and define some concepts.

We denoted the derived or the derivative function by F ′(x) = f (x). And we know that
integration is the procedure of finding a parent function or a primitive function F(x) using
F ′(x) = f (x). This procedure is written in standard symbol as

∫
F ′(x)dx = ∫

f (x)dx. This
symbolic form is called the indefinite integral of F ′(x), or of f (x), with respect to the
variable x. The reason why it is called the indefinite integral is due to both the presence
of the general constant C in the parental function and the nonspecification of the interval of
values that the variable x can take. We will see in Section 8.4 that integration of a function
over a certain interval will remove the said constant.

In the above indefinite integral
∫

F ′(x)dx = ∫
f (x)dx, the elongated “S,” that is, the sign

∫
,

is called the integral sign. The function F ′(x) = f (x), which we intend to integrate, is called the
derived or derivative function or the integrand. We found in the last section that

∫
F ′(x)dx =∫

f (x)dx = F(x) + C. The constant C in the result of integration is called the constant of
integration. The part dx in

∫
F ′(x)dx = ∫

f (x)dx shows the variable of integration; in our
present case, x is the variable of integration.

8.3 Rules of integration

We presented the rules of differentiation of various types of functions in Section 3.3.
Similarly, in the current section, we present some of the important rules of integration.
Unlike in the case of the rules of differentiation, we will not attempt to validate these rules
of integration. However, we will present numerical examples of these rules.
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8.3.1 Constant function rule

Assume that the function we want to integrate is a constant function given by f (x) = k , where
k is a constant. Then the integral of f (x) with respect to x is

∫
f (x)dx =

∫
kdx = F(x) + C = kx + C (8.3.1)

The reader would have noticed that the basic idea here is that we need to obtain the derivative
function if we differentiate the original function with respect to the independent variable. This
is easy to check in the present case: d[∫ f (x)dx]/dx =d[kx+C]/dx = k . The derivative of the
primitive function is equal to the integrand, which checks with the result in equation (8.3.1).
As a numerical example, consider the constant function f (x) = 2. The integral of f (x) = 2
with respect to x is

∫
f (x)dx = ∫

2dx = F(x) + C = 2x + C.

8.3.2 Power function rule

Suppose that the function we want to integrate is a power function given by f (x) = xn, where
n �= −1 is a constant. Then the integral of f (x) with respect to x is

∫
f (x)dx =

∫
xndx = F(x) + C = xn+1

n + 1
+ C (8.3.2)

We can check whether the integral is correct or not by differentiating the integral with
respect to the independent variable (x). Thus, we obtain d[∫ f (x)dx]/dx = d[{xn+1/

(n + 1)}+ C]/dx = xn, which checks with equation (8.3.2).
As an example, consider the derived function we used in Section 8.2.2. Equation

(8.2.1) gives the function as F ′(t) = f (t) = (1/3)t−2/3. The integral of this function is∫
f (t)dt = ∫

(1/3)t−2/3dt = (1/3)
∫

t−2/3dt = F(t)+C = (1/3){1/[(−2/3)+1]}t(−2/3)+1 +
C = t1/3 + C. As before, we can check whether the result we obtained is correct or
not. Differentiating the integral with respect to t, we obtain d[F(t) + C]/dt = d[t1/3 +
C]/dt = (1/3)t(1/3)−1 = (1/3)t−2/3. This shows that the result we obtained above is correct.
As another example, consider the function f (x) = x2. The integral of this function is∫

f (x)dx = ∫
x2dx = F(x) + C = (1/3)x3 + C. Notice that this is the same result as that

we obtained in Section 8.2.3. If we differentiate the integral with respect to x we obtain
d[F(x)+C]/dx = d[(1/3)x3 +C]/dx = 3x2/3 = x2, which indeed is equal to the integrand.

8.3.3 Logarithmic rule

Suppose that we a have function of the form f (x) = 1/x = x−1, where x> 0. Then the integral
of f (x) with respect to x is

∫
f (x)dx =

∫
1

x
dx = F(x) + C = ln x + C, x> 0 (8.3.3)

Notice that we used the restriction x > 0 in the integral in equation (8.3.3). The reason is
that negative values do not have logarithms. If we use the restriction that x �= 0, then the
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integral of f (x) = 1/x = x−1 is

∫
f (x)dx =

∫
1

x
dx = F(x) + C = ln |x|+ C, x �= 0 (8.3.4)

As earlier, we can check whether the integral in equation (8.3.3) or (8.3.4) is correct or not by
differentiating it with respect to x. Differentiating the integral in equation (8.3.3) we obtain
d[F(x) + C]/dx = d[ln x + C]/dx = 1/x = x−1. This result is equal to the integrand and,
therefore, the integral we obtained is correct.

8.3.4 Exponential function rule

Assume that we have an exponential function of the form f (x) = ex. Then the integral of
f (x) with respect to x is

∫
f (x)dx =

∫
exdx = F(x) + C = ex + C (8.3.5)

The reader would have noticed the resemblance between the integral and derivative of an
exponential function. These two differ only in respect of the constant C. If C = 0, then the two
are identical. The reader would have also noticed that d[F(x)+C]/dx = d[ex +C]/dx = ex;
that is, the derivative of the integral is the same as the integrand.

A variant of the rule in equation (8.3.5) is the integral of the function f (x) = ek x, where k
is a constant. Then the integral of f (x) = ek x is

∫
f (x)dx =

∫
ekxdx = F(x) + C = [ek x/k]+ C (8.3.6)

It is unnecessary to say that the derivative of the integral in equation (8.3.6) is the integrand
because d[F(x) + C]/dx = d[(ek x/k) + C]/dx = ek xk/k = ek x. Instead of an exponential
function with e as its base, suppose that we have an exponential function of the form
f (x) = ak x. Then the integral of f (x) with respect to x is

∫
f (x)dx =

∫
axdx = F(x) + C = [ak x/k lna]+ C (8.3.7)

Notice that the derivative of the integral in equation (8.3.7) with respect to x is d[F(x) +
C]/dx = d[(akx/k lna)+C] = (1/k lna).akx. lna.k = akx, which is identical to the integrand.

As a numerical example, consider the function f (x) = e2x. The integral of this function
with respect to x is

∫
f (x)dx = ∫

e2xdx = F(x) + C = (e2x/2) + C. One can check that this
result is correct as the derivative of the integral (e2x/2)+C with respect to x is identical to the
integrand f (x) = e2x. Similarly, consider the function f (x) = 52x. The integral of this function
with respect to x is

∫
f (x)dx = ∫

52xdx = F(x) + C = (52x/2ln5) + C. If we differentiate
the integral with respect to x we obtain d [F(x) + C]/dx = d[(52x/2ln5) + C]/dx = (52x ×
2ln5/2ln5) = 52x, which is identical to the integrand and, therefore, the integral obtained
is correct.
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8.3.5 Constant multiple of a function rule

Suppose that we have a function multiplied by a constant, such as kf (x), where k is
a constant. The integral of this function is∫

kf (x)dx = F(x) + C = k

∫
f (x)dx (8.3.8)

which implies that the integral of a function multiplied by a constant is equal to the constant
times the integral of the function. This rule helps us place the constant term on the LHS of the
integral sign. As an example, consider the function f (x) = 6x5. The integral of this function
can be written as

∫
6x5dx = 6

∫
x5dx = F(x)+C = 6×[1/(5+1)]x5+1 +C = 6(1/6)x6 +C =

x6 + C. Notice that we obtain the integrand when we differentiate the integral with respect
to x: d[x6 + C]/dx = 6x5.

8.3.6 Sum–difference rule

Assume that we have a function generated by combining two functions f (x) and g(x). Then
the integral of the sum of these two functions is equal to the sum of the integrals of the two
individual functions. Similarly, the integral of the difference of the two functions is equal to
the difference of the integrals of the two individual functions. In other words, we have∫

[ f (x) + g(x)]dx =
∫

f (x)dx +
∫

g(x)dx (8.3.9)

and ∫
[ f (x) − g(x)]dx =

∫
f (x)dx −

∫
g(x)dx (8.3.10)

As an example, consider the sum of the functions f (x) = e2x and g(x) = 52x. Then,
using equation (8.3.9), we can write the integral of the sum of the two functions as∫ [f (x) + g(x)]dx = ∫ [e2x + 52x]dx = ∫

e2xdx + ∫
52xdx. We know from Section 8.3.4 that∫

e2xdx = (1/2)e2x +C1 and
∫

52xdx = (1/2ln5)52x +C2, where C1 represents the constant
C in

∫
e2xdx = (1/2)e2x +C and C2 represents the constant C in

∫
52xdx = (1/2ln5)52x +C.

Therefore, by combining these two results we obtain
∫ [f (x) + g(x)]dx = ∫ [e2x + 52x]dx =∫

e2xdx + ∫
52xdx = (1/2)e2x + C1 + (1/2ln5)52x + C2. Now letting C1 + C2 = C, we can

write the integral as
∫ [f (x) + g(x)]dx = ∫ [e2x + 52x]dx = ∫

e2xdx + ∫
52xdx = (1/2)e2x +

(1/2ln5)52x + C.
As another example, consider the difference of the functions f (x) = 2x and g(x) = x. We

know by now that the integral of f (x) = 2x2 is
∫

f (x)dx = ∫
2xdx = 2

∫
xdx = 2(1/2)x2 +C1

and the integral of g(x) = x is
∫

g(x)dx = ∫
xdx = (1/2)x2 +C2. Therefore, the integral of the

difference of the two functions can be written, using equation (8.3.10), as
∫ [f (x) − g(x)]dx =∫ [2x − x]dx = ∫

2xdx − ∫
xdx = (2/2)x2 + C1 − (1/2)x2 − C2 = x2 − (1/2)x2 + C1 − C2.

Letting C1 − C2 = C we can write the last equation as
∫ [f (x) − g(x)]dx = (1/2)x2 + C.

8.3.7 Substitution rule

Sometimes we may come across functions that cannot be integrated using any of the rules
presented so far. As an example, consider the function f (x) = 3x2(x3 + 5)99. How do we
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find the integral of this function? Before attempting to find the integral, we can apply
equation (8.3.8) to place the constant 3 to the LHS of the integral sign. But we cannot
do this for x2 as x is the variable of integration. One might think that one can use the binomial
theorem to expand the (x3 + 5)99 term of the integrand and then integrate. But this will be a
Herculean task and, therefore, is not advisable. Then, what is the way ahead? Here, the chain
rule of differentiation (equation (3.3.8)) comes to our help. We first develop the method, and
then apply the method to solve the problem.

Suppose that we have two functions of the form F(u) and u = U (x) and that we write
F(u) = F[U (x)] = F(x). Differentiating this equation with respect to x using the chain rule
we obtain F ′(u) = F ′[U (x)]U ′(x) = F ′(x). We now denote F ′(u) by f (u), U ′(x) by u(x), and
F ′(x) by f (x). Therefore, the last equation can be written as f (u) = f (u)u(x) = f (x). Let us
now take the first differential of the last equation to obtain f (u)du = f (u).u(x)dx = f (x)dx.
Since u(x) = du/dx, the last equation can be rewritten as f (u)du = f (u)(du/dx)dx = f (x)dx.
If we now integrate the last equation, we obtain

∫
f (u)du = ∫

f (u)(du/dx)dx = ∫
f (x)dx =

F(u) + C = F(x) + C. Therefore, we can write

∫
f (x)dx =

∫
f (u)[du/dx]dx =

∫
f (u)du (8.3.11)

which is called the substitution rule of integration.
As an example, consider the function f (x) = 3x2(x3+5)99. First, we treat u = U (x) = x3+5.

Notice that the first term in the integrand, 3x2, is the first derivative of u = U (x) = x3 +5 with
respect to x; that is, du/dx = 3x2. From this equation we can obtain dx = du/3x2. Therefore,
the integral can be written as

∫
f (x)dx = ∫

3x2u99du/3x2 = ∫
u99du = (u100/100)+C. We can

now substitute u = U (x) = x3 +5 back into this integral to obtain
∫

f (x)dx = (u100/100)+C =
[(x3 +5)100/100]+C. We can check to see if the result we obtained is correct. Differentiating
the integral with respect to x yields d[∫ f (x)dx]/dx = d[{(x3 + 5)100/100} + C]dx =
[100(x3 + 5)99/100] × 3x2 = 3x2(x3 + 5)99, which is precisely the integrand with which
we started.

As another example, consider the function f (x) = 3e3x−5dx. Assume now that u = U (x) =
3x − 5. This gives us du/dx = 3 or dx = du/3. Therefore, the integral can be written as∫

f (x)dx = ∫
3e3x−5dx = ∫

3eudx = ∫
3eudu/3 = ∫

eudu = eu + C. We can now substitute
u = U (x) = 3x−5 back into this integral to obtain

∫
f (x)dx = e3x−5 +C. Verifying this result

confirms that d[∫ f (x)dx]/dx = d[e3x−5 + C]/dx = 3e3x−5, which checks with the integrand.
Consider the function f (x) = (2x + 1)/(x2 + x). Now let u = U (x) = x2 + x. This

gives us du/dx = 2x + 1 or dx = du/(2x + 1). Therefore, the integral can be written
as

∫
f (x)dx = ∫

(2x + 1)/(x2 + x)dx = ∫ [(2x + 1)/u]dx = ∫ [(2x + 1)/u].[du/(2x + 1)] =∫
(1/u)du = ln |u|+ C. We can now substitute u = U (x) = x2 + x back into this integral

to obtain
∫

f (x)dx = ln |x2 + x|+ C. We can verify the result we obtained by differentiating
the integral with respect to x. Differentiation of the integral with respect to x gives
d[∫ f (x)dx]/dx = d[ln(x2 + x)]/dx = [1/(x2 + x)](2x + 1) = (2x + 1)/(x2 + x), which
confirms that the result obtained is correct.

We have seen so far in this section that if the integral is a constant multiple of another
function and its derivative (that is, u = U (x) and du/dx), then integration by substitution
is possible. Notice that this substitution rule reverses the operation of the chain and the
power function rules of differentiation. However, a careful reader would have noticed that
the substitution method can only be used in the special case where one term of the integrand
is the first derivative of the other term of the integrand. But, we rarely encounter these types
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of integrands. However, in many cases, particularly when the integrand appears as a constant
multiple of another function and its derivative, the substitution rule is helpful. The steps of
applying the substitution rule are as follows.

Step 1. Find a substitution that simplifies the integrand; that is, try to select u = U (x) so
that du becomes a part of the integrand.

Step 2. Try to express the integrand in terms of u and du only (and eliminate the original
variable x and its differential dx).

Step 3. Evaluate the new integral and express the result in terms of the original variable x.

8.3.8 Integration by parts

We found in the previous section that if the integrand can be expressed as a constant multiple
of a function and its first derivative (that is, u = U (x) and du/dx), then we could apply the
substitution rule. But, many of the integrands we find in the subjects of our interest cannot
be expressed like this. Examples include integrands such as

∫
xexdx,

∫
x2e2xdx,

∫
x ln xdx,

etc. In such situations we have to apply another rule of integration called integration by parts.
While the substitution rule of integration relies on the chain rule of differentiation, integration
by parts relies on the product rule of differentiation (equation (3.3.6)). In fact, integration by
parts reverses the process of differentiating a product of two functions.

Suppose that we have three functions: u = f (x), v = g(x), and z(x) = f (x)(gx). Then,
from the product rule of differentiation, we know that d[z(x)]/dx = d[f (x)g(x)]/dx =
f (x)g ′(x) + g(x)f ′(x). Let us now integrate both sides of the last equation to obtain∫

[d[z(x)]/dx]dx = ∫
[d[f (x)g(x)]/dx]dx = ∫

f (x)g′(x)dx + ∫
g(x)f ′(x)dx. This can be

written as
∫

dz = ∫
d[f (x)g(x)] = ∫

f (x)g′(x)dx + ∫
g(x)f ′(x)dx, or as z = f (x)g(x) =∫

f (x)g′(x)dx + ∫
g(x)f ′(x)dx, or as

∫
f (x)g′(x)dx = f (x)g(x) − ∫

g(x)f ′(x)dx, or as

∫
g(x)f ′(x)dx = f (x)g(x) −

∫
f (x)g′(x)dx (8.3.12)

Using the definitions u = f (x) and v = g(x), we can write equation (8.3.12) in a more
convenient form as∫

udv = uv −
∫

vdu or
∫

vdu = uv −
∫

udv (8.3.13)

The result in equation (8.3.12) or (8.3.13) is called the rule of integration by parts.
As an example, consider the problem

∫
xex dx. Assume that f (x) = x and that g′(x) = ex.

The last equation implies that g(x) = ex. Notice that f (x)g′(x) = xex is now equivalent
to the integrand on the LHS of equation (8.3.12). Therefore, we can write the integral as∫

f (x)g ′(x)dx = ∫
xexdx =f (x)g(x) − ∫

g(x)f ′(x)dx = xex − ∫
ex × 1dx = xex − ∫

exdx =
xex −ex +C, where we applied the exponential rule of integration presented in Section 8.3.4.
We can now check whether the result we obtained is correct or not. Differentiating the
integral with respect to x we obtain d[xex − ex + C]/dx = xex + ex − ex = xex, which is
precisely our integrand and, thus, confirms the result.

As another example, consider the problem
∫

x2e2xdx. Assume that f (x) = x2 and that
g′(x) = e2x. The last equation implies that g(x) = e2x/2. Notice that f (x)g′(x) = x2e2x

is now equivalent to the integrand on the LHS of equation (8.3.12). Therefore, we
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can write the integral as
∫

f (x)g′(x)dx = ∫
x2e2xdx =f (x)g(x) − ∫

g(x)f ′(x)dx = (x2e2x/2) −∫
(e2x/2) × 2xdx = (x2e2x/2) − ∫

xe2xdx. In order to find the term
∫

xe2xdx in the last
result we can again use the rule of integration by parts. Assume that f (x) = x
and that g′(x) = e2x . The last equation implies, as before, that g(x) = e2x/2. Therefore, we can
write

∫
f (x)g′(x)dx = ∫

xe2xdx =f (x)g(x) − ∫
g(x)f ′(x)dx = (xe2x/2) − ∫

(e2x/2) × 1dx.
Since

∫
(e2x/2) × 1dx = (e2x/2 × 2) = (e2x/4) + C, the last equation can be written as∫

f (x)g′(x)dx = ∫
xe2xdx =f (x)g(x) − ∫

g(x)f ′(x)dx = (xe2x/2) − (e2x/4) + C. Therefore,
combining this result with the result in the last paragraph we can write

∫
x2e2xdx =f (x)g(x)−∫

g(x)f ′(x)dx = (x2e2x/2)−∫
xe2xdx = (x2e2x/2)−(xe2x/2)+(e2x/4)+C. Let us now check

the result by differentiating
∫

x2e2xdx =(x2e2x/2)− (xe2x/2)+ (e2x/4)+C with respect to x
to obtain d[(x2e2x)/2− (xe2x/2)+ (e2x/4)+C]/dx = (1/2)[2x2e2x +2xe2x]− (1/2)[2xe2x +
e2x] + (1/4)2e2x = x2e2x + xe2x − xe2x − (e2x/2) + (e2x/2) = x2e2x, which is the integrand
with which we started.

As the last example, consider the problem
∫

x ln xdx. Assume that f (x) = ln x and that
g′(x) = x. The last equation implies that g(x) = x2/2. Notice that f (x)g′(x) = g′(x)f (x) = x ln x
is now equivalent to the integrand on the LHS of equation (8.3.12). Therefore, we can
write the integral as

∫
f (x)g′(x)dx = ∫

g′(x)f (x)dx =∫
x ln xdx =f (x)g(x) − ∫

g(x)f ′(x)dx =
(x2/2) ln x − ∫

(x2/2)(1/x)dx = (x2/2) ln x − (1/2)
∫

xdx =(x2/2) ln x − (1/2)(x2/2) + C =
(x2/2) ln x− (x2/4)+C. We now check if this result is correct. Differentiation of the integral
with respect to x yields d[(x2 ln x/2)− (x2/4)+C]/dx = (1/2)[x2(1/x)+2x ln x]− (2x/4) =
(x/2) + x ln x − (x/2) = x ln x, which is the integrand of the problem.

8.3.9 Integration by partial fractions

Sometimes, one may still come across some functions that are difficult to be integrated using
the rules we have presented so far. It is often possible to express these functions as partial
fractions and then integrate them. This method is called integration by partial fractions.

As an example, consider the problem
∫

(1/x2 + x − 2)dx. How do we find this integral?
Notice that the denominator of the integrand can be expressed as x2 + x −2 = (x −1)(x +2).
Let us now write A/(x − 1) + B/(x + 2) = 1/(x − 1)(x + 2) = 1/(x2 + x − 2). Therefore, the
integrand can be written as

∫
1/(x2 + x − 2)dx = ∫ [A/(x − 1) + B/(x + 2)]dx. Our problem

now is to find the values of A and B such that they satisfy the last equation. By combining
the like terms in the equation A/(x − 1) + B/(x + 2) = 1/(x − 1)(x + 2) = 1/(x2 + x − 2) we
can obtain 1 = A(x + 2) + B(x − 1) = Ax + 2A − B + Bx = (A + B)x + (2A − B). Notice that
for this equality to hold, the coefficients of the x terms on the LHS of the equation must
equal the coefficients of the corresponding x terms on the RHS of the equation. Therefore,
we have (A+B) = 0 and (2A−B) = 1. The last two equations can be solved simultaneously
to obtain A = 1/3 and B = −1/3. This method of finding the coefficients (A and B in the
present case) is called the method of undetermined coefficients.

The above values of A and B help us rewrite the integral as
∫

1/(x2 + x − 2)dx = ∫ [A/(x−
1) + B/(x + 2)]dx = ∫ [{(1/3)/(x − 1)} − {(1/3)/(x + 2)}]dx = ∫ [{1/3(x − 1)} − {1/3(x +
2)}]dx. The last integral can now be written using the sum–difference rule of integration
as
∫

1/3(x − 1)dx − ∫
1/3(x + 2)dx, or as (1/3)

∫
1/(x − 1)dx − (1/3)

∫
1/(x + 2)dx. We can

now use the logarithmic rule of integration to find (1/3)
∫

1/(x − 1)dx − (1/3)
∫

1/(x + 2)dx.
The result is (1/3) ln |x − 1| − (1/3) ln |x + 2| + C = (1/3)[ln |(x − 1)/(x + 2)| ] + C. We
now check whether the result obtained is correct or not. Differentiating the integral with
respect to x we find that d [(1/3) ln |x − 1|− (1/3) ln |x + 2|+ C]dx = (1/3)[1/(x − 1)] −
(1/3)[1/(x + 2)] = [(1/3)/(x − 1)] − [(1/3)/(x + 2)]. Since A = 1/3 and B = −1/3, and
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d[(1/3) ln |x − 1| − (1/3) ln |x + 2| + C] = [A/(x − 1)] + [B/(x + 2)] = 1/(x2 + x − 2), the
result obtained is correct.

As seen above, the essential problem in integrating functions such as the one we dealt
with in the last example or related ones is to convert the integrand into partial fractions and
determine the values of the constants. After this, one can apply the rules of integration
presented in previous sections. Notice that the integrand may not always be as easy as
the one in the last problem. Sometimes the integrand may take forms, among others, such
as 5x/(x2 + 7x + 10); (x2 − 10)/(x2 + 7x + 10); (x + 2)/(x2 + 2x + 1); (x + 1)/x2(x − 1);
(x + 1)/(x3 + x); and 1/(x + 1)(x2 + x + 1). The first problem, as said above, is to express
these integrands as partial fractions: 5x/(x2 + 7x + 10) = 5x/(x + 5)(x + 2) = [A/(x + 5)]+
[B/(x + 2)], or 5x = A(x + 2) + B(x + 5)); (x2 − 10)/(x2 + 7x + 10) = 1 − (7x − 20)/
(x2 + 7x + 10) = 1 − (7x − 20)/(x + 5)(x + 2), which can be fractioned into parts as
(7x − 20)/(x + 5)(x + 2) = [A/(x + 5)] − [B/(x + 2)] implying 7x − 20 = A(x + 2) +
B(x + 5); (x + 2)/(x + 1)(x + 1) = [A/(x + 1)] + [B/(x + 1)], or x + 2 = A(x + 1) + B;
(x + 1)/x2(x − 1) = [A/x] + [B/x2] + [C/(x − 1)], or x + 1 = Ax(x − 1) + B(x − 1) + Cx2;
(x + 1)/(x3 + x) = (x + 1)/x(x2 + 1) = [A/x] + (Bx + C)/(x2 + 1), which implies that
x+1 = A(x2+1)+(Bx+C)x; and 1/(x+1)(x2+x+1) =[A/(x+1)]+(Bx+C)/(x2+x+1),
or 1 = A(x2 + x + 1) + (Bx + C)(x + 1), respectively. We can now determine the values of
the constants as presented in the solution to the last example. Once these are obtained,
it is straightforward to apply the rules of integration presented so far and find each of
the integrals.

8.3.10 Integration by tables

Many of the integration problems we encounter in the subjects of our interest can be solved
by applying one or more of the rules or methods of integration presented so far. But, the
solution to some of the more complicated problems requires additional rules or formulas.
People who evaluate complicated integrals often make use of a table called a table of integrals.
A table of integrals is a list of integration formulas applied to evaluate integrals. This list
contains many formulas applicable to integrals involving different forms of integrands and
can be found in most mathematical formula books or handbooks.

The formulas in the table of integrals are normally categorized as “forms involving
(a + bu),” “forms involving (

√
a + bu),” etc. In these categorizations a and b denote

constants and u denotes the variable of integration. When one carries out integration by
tables, one first finds the category that is closest to the integrand. After this, one finds the
formula under the closest category that matches the integrand exactly after the values of the
constants are assigned.

One may sometimes find in the table a formula under the closest category that matches
the given integrand exactly. But, if one does not find in the table a formula that matches the
integrand exactly, the method of substitution may convert the given integrand into a form
that matches a particular formula in the table exactly. Notice that, as we have seen before,
one may have to apply a particular formula more than once to evaluate a given integral.

As an example, consider the function f (x) = 1/(x2 − 4). How can we integrate this
function? Notice that we cannot apply directly any of the rules we have presented so far
to find the integral. Here, the table of integrals comes to our help. Using any standard table
of integrals we can obtain the result as

∫
f (x)dx = ∫ [1/(x2 − 22)]dx = (1/4) ln[(x − 2)/

(x + 2)]+ C.
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8.3.11 Integration with initial and boundary conditions

We know from our discussion in Section 8.2.2 that an indefinite integral always contains
a constant, C. Our exposition of integral calculus so far has shown that we can derive
primitive functions by integrating the derived function. However, we know that we cannot
derive a unique primitive function unless we are given additional information regarding
the value that the constant takes. This additional information is what we referred to
earlier as initial conditions or boundary conditions, to which we turn our attention in this
section.

It is possible, in many problems, to uniquely determine the constant of integration C,
and thereby uniquely specify the primitive function. This determination of the constant
of integration is done by using initial conditions or boundary conditions. An initial
condition specifies a value F(x) = F(0) for the integral function F(x), when x = 0.
A boundary condition specifies a value F(x) = F(x0) for the integral function F(x),
when x = x0. Determining the unique primitive function using the initial condition that
F(x) = F(0) when x = 0 and using the boundary condition that F(x) = F(x0) when x = x0

are called in the literature the initial-value problem and the boundary-value problem,
respectively.

As an example, consider the function F ′(x) = f (x) = x2. Then, applying the power
function rule of integration, we obtain

∫
F ′(x)dx = ∫

f (x)dx = ∫
x2dx = F(x) + C =

(1/3)x3 + C. We now use the initial condition that F(x) = F(0) = 1 when x = 0. This
gives us the unique value for the constant C as F(0) = (1/3)x3 + C = (1/3).03 + C = 1,
which implies that C = 1. Using this value of the constant we can write the integral as∫

F ′(x)dx = ∫
f (x)dx = ∫

x2dx = F(x) = (1/3).x3 + 1 = 1 + (1/3).x3. Notice that we have
now obtained a unique primitive function.

We can also find the unique primitive function using a boundary condition F(x) = F(x0)
when x = x0 = 2. Notice that in the boundary condition, x = x0 is a nonzero value. If we
substitute F(x) = F(x0) = 3 when x = x0 = 2 in the integral, we obtain F(2) = (1/3).x3 +
C = (1/3).23 + C = (8/3) + C = 3. This implies that C = 1/3. Therefore, the primitive
function with the boundary condition F(x) = F(x0) = 3 when x = x0 = 2 can be written as∫

F ′(x)dx = ∫
f (x)dx = ∫

x2dx = F(x) = (1/3).x3 + (1/3) = (1/3) + (1/3).x3. The reader
would have noticed that the primitive function is still a function of x irrespective of the fact
that we used a boundary condition or an initial condition. This suggests that the indefinite
integral can take any value depending upon the value assumed by x. This also suggests that
the indefinite integral is still an indefinite integral, and the use of the above conditions does
not change its nature.

As another example, consider the derived function we used in Section 8.2.2. Equation
(8.2.1) gives this derived function: d	/dt = F ′(t) = f (t) = (1/3)t−2/3. We found in
Section 8.3.2 that the primitive function that can be obtained by integrating this derived
function with respect to t is 	 = F(t) = t1/3 + C. Suppose that we use the initial
condition that F(t) = F(0) = 1 when t = 0. Therefore, substituting t = 0 in 	 = F(t) =
t1/3 + C and setting the result to 1, we obtain F(0) = 01/3 + C = 1, which implies that
C = 1. Therefore, we can write the unique primitive function as 	 = F(t) = t1/3 + 1 =
1 + t1/3. If we plot this function in a figure, we obtain a graph identical to that of
	 = 1 + t1/3 in Figure 8.2.1. Notice that we can carry out making the constant definite
using boundary or initial conditions in almost all the integrands we have considered
so far.
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8.3.12 Partial integrals

So far in this chapter we have been concerned with integration of univariate functions.
We are now ready to consider integration of multivariate functions. But, before this let us
summarize the topic of differentiation of multivariate functions or partial differentiation
presented in Section 3.7 as it has a similarity with integration of multivariate functions.
Assume that we have a multivariate function y = F(x1,x2, . . . ,xi, . . . ,xn). Then we found the
rate of change of the dependent variable y when one of the independent variables, say xi,
changes by an infinitesimally small amount by differentiating y with respect to xi by treating
all other variables as constants and called this rate of change as the partial derivative of y
with respect to xi and denoted it by ∂y/∂xi = ∂F/∂xi = Fxi.

One might ask whether one can do a similar operation in integral calculus. The answer is
yes; one can integrate a derived multivariate function with respect to one of the independent
variables of the function by treating all other independent variables as constants, which
will yield an anti-derivative or a primitive function. The process of finding an anti-
derivative or a primitive function from the derived multivariate function is called partial
anti-differentiation or partial integration. The integral obtained through partial integration is
called the partial integral. Notice that partial anti-differentiation is the reverse operation of
partial differentiation. Notice also that, as in the case of integration of univariate functions,
we can uniquely determine the primitive function by using initial or boundary conditions.

As an example, consider the derived function of two independent variables Fx1 =
f (x1,x2) = 2x1x2 + x2. Suppose that we want to integrate this function with respect to xi.
Therefore, we can write the integrand as

∫
Fx1dx1 = ∫

f (x1,x2)dx1 = ∫
(2x1x2 + x2)dx1.

Applying the rules of integration presented earlier and treating x2 as a constant, we can rewrite
the integrand as

∫
Fx1dx1 =2x2

∫
x1dx1 + x2

∫
1dx1. This integral can be evaluated, again

using the rules presented earlier, to obtain
∫

Fx1dx1 =2x2.(1/2).x2
1 +C1(x2)+x2x1 +C2(x2).

Letting C = C(x2) = C1(x2)+C2(x2), we can rewrite the last equation as
∫

Fx1dx1 =x2x2
1 +

x2x1 +C(x2). We can now verify the result by partially differentiating the integral with respect
to x1. This yields ∂[∫ Fx1dx1]/∂x1 =∂[x2x2

1 + x2x1 +C(x2)]/∂x1 = f (x1,x2) = 2x1x2 + x2 =
Fx1, which is the integrand in the present example. Notice that the constant is a function of
x2, which implies that ∂[C(x2)]/∂x1 = 0.

Suppose that, instead of integrating the function Fx1 = f (x1,x2) = 2x1x2 +x2 with respect
to x1, we want to integrate it with respect to x2. Therefore, we can write the integrand as∫

Fx1dx2 = ∫
f (x1,x2)dx2 = ∫

(2x1x2 + x2)dx2. Following the same procedure as above, we
can rewrite the integrand as

∫
Fx 1dx2 =2x1

∫
x2dx2 + ∫

x2dx2. This integral can be evaluated
to obtain

∫
Fx 1dx2 =2x1.(1/2).x2

2 +C2(x1)+(1/2).x2
2 +C2(x1). Letting C =C(x1)=C2(x1)+

C2(x1), we may rewrite the last equation as
∫

Fx 1dx2 =x1x2
2 + (1/2).x2

2 + C(x1). We can
now verify the result by partially differentiating the integral with respect to x2. This yields
∂[∫ Fx 1dx2]/∂x2 =∂[x1x2

2 +(x2
2/2)+C(x1)]/∂x2 = f (x1,x2) = 2x1x2 +x2 = Fx 1 , which is the

integrand in the present example. Notice that the constant is a function of x2, which implies
that ∂[C(x1)]/∂x2 = 0.

As another example, consider the derived function of three independent variables Fx1 =
f (x1,x2,x3) = x1x2 + x2x3 + x1x3. Suppose that we want to integrate this function with
respect to x1. Therefore, we can write the integrand as

∫
Fx1dx1 = ∫

f (x1,x2,x3)dx1 =∫
(x1x2 + x2x3 + x1x3)dx1. Applying the rules of integration presented earlier and treating

x2 and x3 as constants, we can rewrite the integrand as
∫

Fx 1dx1 =x2
∫

x1dx1 + x2x3
∫

1dx1

+ x3
∫

x1dx1. This integral can be evaluated to obtain
∫

Fx1dx1 =x2(x2
1/2) + C1(x2,x3) +

x2x3x1 + C2(x2,x3) + x3(x2
1/2) + C3(x2,x3). Letting C = C(x2,x3) = C1(x2,x3) + C2(x2,x3)
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+C3(x2,x3), we may rewrite the last equation as
∫

Fx1dx1 =x2(x2
1/2)+ x2x3x1 + x3(x2

1/2)+
C(x2,x3). Notice that this result can be verified by partially differentiating the integral
with respect to x1. Notice also that the constant is a function of x2 and x3, which implies
that ∂[C(x2,x3)]/∂x1 = 0. One can also integrate the function with respect to x2 and x3.
Moreover, one can also carry out integration of multivariate functions involving any number
of independent variables.

8.3.13 Multiple integrals

In the last section we explored partial integrals using a few examples. In the present
section we explain the meaning of multiple integral. Notice that when we integrate a
multivariate derived function with respect to one of its independent variables the result
(the primitive function) will still be a function of the same independent variables. We can
now use this primitive function again to integrate with respect to the remaining independent
variables. In other words, we can continue to integrate the multivariate derived function
iteratively. This procedure is called multiple integration and the result is called a multiple
integral.

The reader would have noticed a connection between partial integration and multiple
integration. For example, consider the derived function Fx1 = f (x1,x2). In the last section we
found that the integral with respect to one of the variables of the integrand, say x1, is called
the partial integral of the function with respect to x1 and is denoted by

∫
Fx1dx1. Suppose

now that we integrate this result with respect to the other variable of the integrand, x2. Then
we denote it by

∫ [∫ Fx1dx1]dx2 or by
∫ ∫

Fx1dx1 dx2, which is called the double integral
or, more precisely, the double-indefinite integral of the function Fx1 = f (x1,x2). When the
derived function is a function of three variables such as Fx1 = f (x1,x2,x3), then we denote
the multiple integral by

∫ [∫ [∫ Fx1dx1]dx2]dx3 or by
∫ ∫ ∫

Fx1 dx1dx2dx3, which is called the
triple integral or triple-indefinite integral of the function Fx1 = f (x1,x2,x3). This suggests
that multiple integration is nothing but partial integration carried out iteratively.

As an example, consider the integrand in the first example we considered in the last
section: Fx1 = f (x1,x2) = 2x1x2 + x2. Suppose that we want to find out

∫ [∫ Fx1dx1]dx2 =∫ ∫
Fx1dx1dx2. For this, we first integrate the integrand with respect to x1, and then

integrate the result with respect to x2. We obtained the first result in the last section
and, therefore, we simply write it here,

∫
Fx1dx1 =x2x2

1 + x2x1, where the constant
is omitted for convenience. Let us now integrate this result with respect to x2 to
yield

∫ [∫ Fx1dx1]dx2 = ∫ ∫ [x2x2
1 + x2x1]dx2. This integral can be evaluated to obtain

x2
1

∫
x2dx2 + x1

∫
x2dx2 = x2

1(x2
2/2) + x1(x2

2/2), where we have again omitted the constant.
Therefore, we may write

∫ [∫ Fx1dx1]dx2 = x2
1(x2

2/2) + x1(x2
2/2). Notice that we can now

verify this result by partially differentiating the double integral with respect to x1 and x2.
As another example, consider the integrand in the third example in the last section: Fx1 =

f (x1,x2,x3) = x1x2 +x2x3 +x1x3. Suppose that we want to find out
∫ [∫ [∫ Fx1dx1]dx2]dx3 =∫ ∫ ∫

Fx1 dx1dx2dx3. For this, we first integrate the integrand with respect to x1, then integrate
the result with respect to x2, and, lastly, integrate the result with respect to x3. We obtained at
the end of the last section the result of integrating the function with respect to x1 and, therefore,
we simply write it here:

∫
Fx1dx1 =x2(x2

1/2)+ x2x3x1 + x3(x2
1/2). We can now integrate the

last result with respect to x2 to yield
∫ [∫ Fx1dx1]dx2 = ∫ [x2(x2

1/2)+x2x3x1 +x3(x2
1/2)]dx2 =

(x2
2/2)(x2

1/2) + (x2
2/2)x3x1 + x3(x2

1/2)x2. Lastly, we can integrate the last result with respect
to x3 to yield

∫ [∫ [∫ Fx1dx1]dx2]dx3 = ∫ [(x2
2/2)(x2

1/2) + (x2
2/2)x3x1 + x3(x2

1/2)x2]dx3 =
(x2

2/2)(x2
1/2)x3 + x1(x2

2/2)(x2
3/2) + (x2

3/2)(x2
1/2)x2. Notice that in the last three results we
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have omitted the constants for convenience. We can verify that this result is correct by
partially (and successively) differentiating the integral with respect to its arguments.

8.3.14 Application examples

Example 1. Suppose that the rate of change of the total revenue of a firm that sells a good
is given by R′ = F ′(x) = 50 − x − x2, where x is the quantity of the good sold by the firm.
Determine the inverse demand function for the firm’s good assuming that the firm’s total
revenue is zero when the firm sells no unit of the good.

Solution. Total revenue R = F(x) is obtained by integrating the marginal revenue
function R′ = F ′(x) = 50 − x − x2. Once we obtain the total revenue function we can
divide it by the total output sold to obtain the demand function. Applying the rules of
integration presented earlier, we can find the total revenue function as R = F(x) =∫

F ′(x)dx = ∫
(50 − x − x2)dx =∫

50dx − ∫
xdx − ∫

x2dx = 50x + C1 −(x2/2) − C2 −
(x3/3) − C3. Let us now define C = C1 − C2 − C3. Therefore, the firm’s total revenue can
be written as R = F(x) = 50x − (x2/2) − (x3/3) + C. Notice the initial condition: when the
firm sells no unit of the good (i.e. when x = 0) the total revenue of the firm is zero (that is,
R = F(0) = 0). This implies that C = 0. We can now make the firm’s total revenue function
definite as R = F(x) = 50x − (x2/2)− (x3/3). But, we know that total revenue is the product
of price (p) per unit of the good sold and the quantity of the good sold (x). Therefore, we
can write the total revenue function as R = p.x = F(x) = 50x − (x2/2)− (x3/3). Dividing the
total revenue by the number of the goods sold, we obtain the inverse demand function for
the good sold by the firm as R/x = p.x/x = F(x)/x = 50 − (x/2) − (x2/3).

Example 2. Assume that the marginal cost to a firm of producing x units of a good is given
by F ′(x) = e1+0.5x/2. Assume also that the firm’s fixed cost is $100. Find the firm’s total
cost function.

Solution. Total cost function can be found by integrating the marginal cost function with
respect to x. Integrating the marginal cost function, using the rules in equations (8.3.1)
and (8.3.6), with respect to x yields F(x) = ∫

F ′(x)dx = (1/2).
∫

e1+0.5xdx = e1+0.5x + C.
Notice that the firm’s total cost is $100 when the firm does not produce any unit of the
good; that is, the initial condition is F(0) = $100 when x = 0. Therefore, we can write F(0) =
e1+0.5(0) +C = 100, which implies that e+C = 100 or C = 100−e = 100−2.178 = 97.282.
Therefore, the firm’s total cost function can be written as F(x) = 97.282 + e1.5x.

Example 3. Suppose that a consumer’s marginal utility when x units of a good are
consumed is given by F ′(x) = 1/x. Find the consumer’s total utility function assuming that
the consumer’s total utility is zero when the consumer consumes one unit of the good.

Solution. Total utility function can be found by integrating the marginal utility function
with respect to x. Integrating the marginal utility function using the logarithmic rule given
in equation (8.3.3) with respect to x yields F(x) = ∫

F ′(x)dx = ∫
(1/x)dx = ln x +C. Notice

that the consumer’s total utility is zero when the consumer consumes one unit of the good;
that is, the boundary condition is F(0) = 0 when x = 1. This implies that C = 0 (i.e. F(1) =
ln 1 + C = 0 + C = 0). Therefore, the consumer’s total utility function can be written as
F(x) = ln x.
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Example 4. Assume that the marginal revenue from the sale of a good by a firm is given
by the function R′ = F ′(x) = (1/2)x−1/2(1+ x1/2). Find the point elasticity of demand when
x = 4 and determine the nature of demand.

Solution. The formula for point elasticity of demand is given by equation (3.3.21):
�= (p/x) ÷ (dp/dx). To apply this equation we need to find the inverse demand function. For
this we need to integrate the marginal revenue function and obtain the total revenue function.
If we divide the total revenue function by the quantity of the good sold, we will obtain
the inverse demand function. Therefore, we first integrate the marginal revenue function
with respect to x:

∫
R′(x)dx = ∫

F ′(x)dx = ∫
(1/2).x−1/2(1 + x1/2)dx. Let us now use the

substitution rule in equation (8.3.11). For this assume that u = (1+ x1/2), which implies that
du/dx = (1/2)x−1/2 or dx = 2(du/x−1/2). Therefore, R = F(x) = ∫

R′(x)dx = ∫
F ′(x)dx =∫

(1/2)x−1/2u2(du/x−1/2) = ∫
udu = (u2/2) + C. Substituting u = (1 + x1/2), we obtain

R = F(x) = ∫
R′(x)dx = ∫

F ′(x)dx = [(1 + x1/2)2/2] + C. Assume for convenience that
C = 0. This helps us write the total revenue function as R = (1+ x1/2)2/2. But, total revenue
is equal to the product of price (p) and the quantity of the good sold (x). Therefore, we
can write R = (1 + x1/2)2/2 = p.x, or the inverse demand function as p = (1 + x1/2)2/2x,
which implies that when x = 4, p = (1 + 41/2)2/2 × 4 = 9/8. Having found the inverse
demand function, we can apply the formula for point elasticity. But, for this, we need
to find the derivative of the inverse demand function with respect to x. This is given by
dp/dx = [x1/2(1 + x1/2) − (1 + x1/2)2]/2x2; and, when x = 4, dp/dx = −3/32. Therefore,
the point elasticity of demand for the firm’s good when price p = 9/8 and quantity x = 4 is
�= (p/x)/(dp/dx) = [(9/8)/4]/(−3/32) = −2.66. Since |−2.66| = 2.66> 1, the demand
for the firm’s good is elastic.

Example 5. Suppose that the rate of change of the total profit (	) of a company with respect
to time (t) is given by 	′(t) = ln(t + 1). Suppose also that the total profit of the company
when t = 0 is zero. Find the time path of the company’s total profit.

Solution. Total profit function can be found by integrating the marginal profit function
	′(t) = ln(t + 1) with respect to t. To integrate this marginal profit function we can use
the technique of integration by parts given in equation (8.3.13). For this assume that u =
ln(t + 1) and dv = dt. These equations imply that du = [1/(t + 1)]dt and v = t. Therefore,
applying equation (8.3.13), we can write the integral as	(t) = ∫

	′(t)dt = ∫
ln(t + 1)dt or as∫

udv = uv −∫
vdu = t ln(t +1)−∫ [t/(t + 1)]dt. We can now use the method of integration

by partial fractions to evaluate the last term in the previous equation. After doing this, we
obtain 	(t) = ∫

	′(t)dt = ∫
ln(t + 1)dt = t ln(t + 1) − ∫ [1 − 1/(t + 1)]dt = t ln(t + 1) −

t − C1 + ln(t + 1) + C2. Denoting C = C2 − C1, the last result can be written as 	(t) =∫
	′(t)dt = ∫

ln(t + 1)dt = t ln(t + 1)− ∫ [1 − 1/(t + 1)]dt = t ln(t + 1)− t + ln(t + 1)+C.
Since	(0) = 0 when t = 0, the unique time path of the company’s total profit can be written
as 	(t) = ln(t + 1)[t + 1]− t.

Example 6. Assume that a firm’s marginal cost of producing x units of a good is given by
F ′(x) = (25x2 − 248x + 15)/(x2 − 10x + 1). Find the firm’s total cost function if the fixed
cost is $1000.

Solution. The firm’s total cost can be found by integrating the marginal cost function with
respect to x. For this we can apply the technique of integration by partial fractions presented
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in Section 8.3.9. Notice that the marginal cost function F ′(x) = (25x2 − 248x + 15)/(x2 −
10x +1) can be fractioned into F ′(x) = 25+ (2x −10)/(x2 −10x +1). We can now integrate
the marginal cost function to obtain F(x) = ∫

F ′(x)dx = ∫ [25 + (2x − 10)/(x2 − 10x + 1)]
dx = 25x + C1 + ln(x2 − 10x + 1) + C2. Treating C = C1 + C2, we can write the total cost
function as F(x) = 25x + ln(x2 − 10x + 1) + C. The initial condition is that the fixed cost
is $1000 when the firm does not produce any output. This means that F(0) = 25 × 0 +
ln(02 − 10 × 0 + 1) + C = C = $1000. Therefore, the total cost function can be written as
F(x) = 1000 + 25x + ln(x2 − 10x + 1).

8.3.15 Exercises

1. Find the following indefinite integrals:
(i)
∫

1dx; (ii)
∫

(1/2x2)dx; (iii)
∫ [(x2/2) − (2/x2)]dx; (iv)

∫
(x100/2)dx;

(v)
∫

(x2 + 2x)dx; (vi)
∫

(
√

x −√
4x3)dx; (vii)

∫
0dx; (viii)

∫
(e + e)dx.

2. Find the following indefinite integrals:
(i)
∫ [ex + (1/e−x)]dx; (ii)

∫ [(ex + e3x)/ex]dx; (iii)
∫ [e5x2 ]dx;

(iv)
∫ [xe5x2 ]dx; (v)

∫ [1/(1 + x)]dx; (vi)
∫ [1/(x2 + x)]dx; (vii)

∫ [1/(1 + 2x)]dx;
(viii)

∫ [(ex − e−x)/(ex + e−x)]dx.
3. Find the following indefinite integrals:

(i)
∫

2x(1 + x2)dx; (ii)
∫

3x2(1 + x3)49 dx; (iii)
∫

23xdx; (iv)
∫

(2x + 1)(x2 + x + 1)5dx;
(v)

∫
5x(2+x2)5dx; (vi)

∫
(1+x)9/10dx; (vii)

∫ [3x2/(x3+1)]dx; (viii)
∫ [1/(2x+1)]dx;

(ix)
∫

x2ex3
dx.

4. Find the following indefinite integrals:
(i)

∫
x2(1 + x)2dx; (ii)

∫
x2exdx; (iii)

∫ [2x/(1 + x)2]dx; (iv)
∫ [(1 − x)/(1 + x)2]dx;

(v)
∫ [ln x/x2]dx; (vi)

∫
xex2

dx; (vii)
∫

xex+1 dx; (viii)
∫ [x/(1 + x)2]dx.

5. Find the following indefinite integrals:
(i)
∫ [4x/(x2 + 3x + 2)]dx; (ii)

∫ [4/(x2 − 1)]dx; (iii)
∫ [x2/(x2 + 3x + 2)]dx;

(iv)
∫ [(x2 + 2x)/(x2 + 3x + 2)]dx; (v)

∫ [(x + 2)/(x2 + 2x + 1)]dx;
(vi)

∫ [(x + 2)/(x2 − 2x + 1)]dx; (vii)
∫ [(x + 2)/(x3 − 2x2 + x)]dx.

6. Find the following partial integrals:
(i)
∫

(y + x + xy)dx; (ii)
∫ [(y/x) + (x/y) + yex]dx; (iii)

∫
ydx; (iv)

∫
yzdx;

(v)
∫

(yz/x)dx; (vi)
∫

(y + x + xy)dy; (vii)
∫ [(y/x) + (x/y) + yex)dy; (viii)

∫
ydy;

(ix)
∫

xzdy; (x)
∫ [xz/y]dy.

7. Find the following multiple integrals:
(i)
∫ ∫

dxdy; (ii)
∫ ∫ ∫ [(y/x) + (x/y)]dxdy; (iii)

∫ ∫
xydxdy; (iv)

∫ ∫ ∫
dxdydz;

(v)
∫ ∫ ∫ [(1/x) + (1/y) + (1/z)]dxdydz; (vi)

∫ ∫ ∫
(xyz)dxdydz;

(vii)
∫ ∫ ∫ [(x/y) + (y/z) + (z/x)]dxdydz.

8. Application exercise. Assume that an investor purchased a company’s share for
$150. The rate of change of the price (P′(t)) of the share with respect to time (t)
is given by the function P′(t) = 7e0.07t . Find the time path of the price of the
share.

9. Application exercise. Assume that the marginal propensity to consume in an economy is
given by the function dC/dY = (4/5)−3/4

√
4Y , where C and Y denote the aggregate

consumption and national income (in billions of dollars) of the economy, respectively.
Find the aggregate consumption function assuming that aggregate consumption is
$80 billion when income is $100 billion. Also find the economy’s aggregate saving
function.
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10. Application exercise. Suppose that a company’s marginal cost function and marginal
revenue function are given by dC/dq = 5 + 5q and dR/dq = 200 − 2q, respectively,
where q, C, and R denote the quantity of output produced, the total cost, and the total
revenue, respectively. Determine, ignoring the fixed cost, the level of output at which
total cost is equal to total revenue.

11. Application exercise. Assume that the rate of change of the capital stock of an economy
with respect to time is given by dK/dt = 10t1/3, where K and t denote the capital
stock and time, respectively. Find the function that represents the capital stock of the
economy assuming that the economy’s capital stock is zero at time t = 0.

Web supplement: S8.3.16 Integration of trigonometric functions

Web supplement: S8.3.17 Mathematica applications

8.4 Definite or Riemann integrals

8.4.1 Introduction

So far in this chapter we were exploring the meaning of indefinite integrals. These integrals
are called indefinite integrals because we do not specify the values that the variable(s) of
the integrand could take. Moreover, every integration process we have carried out so far
had yielded a constant, the value of which had to be specified through initial or boundary
conditions. We also explored the important rules and techniques of evaluating indefinite
integrals and applied them to solve a number of problems that frequently arise in the fields
of our interest.

However, in many problems one may need to evaluate integrals such that the variable of
integration assumes values within some specified intervals on the domain of the variable.
Such an integral is called the definite integral or the Riemann integral. We first attempt to
explain the meaning of definite integrals before moving on to some of the other aspects and
applications of definite integrals.

8.4.2 Method of exhaustion and the meaning of definite integral

Let us begin with a simple function: y = f (x) = 2x. The graph of this function is illustrated
in Figure 8.4.1(A). Notice that when x = 1, y = f (1) = 2 × 1 = 2. This value of y is shown
alongside the vertical line starting from x = 1. The reader would have noticed that the shaded
area in the figure, denoted by A, is a triangle labeled by CBD.

What is the area of this triangle? We know that the area of a triangle is equal to half of the
length of the adjacent side (l) times the length of the opposite side (h) of the triangle; that is,
(1/2) × (l × h) units. Since l = 1 and h = 2 in our present example, the area of the triangle
is (1/2) × (l × h) = (1/2) × (1 × 2) = 1 unit. Let us use another method, called the method
of exhaustion, to find this area. The method of exhaustion is more general and is based on
the summation of areas of rectangles or other suitable polygons. Notice that a rectangle is
an element of the set of general polygons.

Let us now divide the closed interval [0, 1] on the domain of the function into two closed
subintervals with equal length: [x0,x1] = [0,1/2] and [x1,x2] = [1/2,1]. This is illustrated
in Figure 8.4.1(B). Notice that �x = x1 − x0 = x2 − x1 = 1/2; that is, the subintervals have
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the same length of 1/2 units. As can be seen from this figure, we now have two sub-areas,
as represented by A1 and A2. What we do here is to use these sub-areas to approximate the
area A in Figure 8.4.1(A).

Notice that the bases of the circumscribed rectangles in Figure 8.4.1(B) are the associated
subintervals and the heights of these rectangles are the associated maximum values of
the function on those subintervals. Since the function is an increasing function on the
subintervals, the maximum values of the function occur when x takes the right-end values of
the subintervals. Therefore, the area represented by A1, using the right-end value x1 of the
subinterval [x0,x1] is given by�xf (x1) =�xf (1/2) = (1/2)f (1/2); and the area represented
by A2, using the right-end value x2 of the subinterval [x1,x2], is given by �xf (x2) =
�xf [(2/2) = 1] = (1/2)f (2/2). Thus sum of the areas of the two rectangles in this figure can
be written as�xf (x1)+�xf (x2) =�xf (1/2)+�xf [(2/2) = 1]= (1/2)f (1/2)+(1/2)f (2/2),
which we denote by SR,2, where the subscript R,2 shows that we used the right-end values
of the two subintervals; or (using the function) as

SR,2 =
∑2

i=1
�xf (xi) =�xf (x1) +�xf (x2) =�x[f (x1) + f (x2)]

=�x[f (1/2) + f (2/2)] = (1/2)[f (1/2) + f (2/2)]
= (1/2)[2 × (1/2) + 2 × (2/2)] = 1.5 units (8.4.1)

Above, we approximated the area of the triangle in Figure 8.4.1(A) using the right-end
values of the two subintervals in Figure 8.4.1(B). Similarly, we can also approximate the area
of the triangle in Figure 8.4.1(A) using the left-end values of the two subintervals (rectangles)
in Figure 8.4.1(B), as illustrated in Figure 8.4.2(A). Notice that of the two rectangles in
Figure 8.4.1(B), only one rectangle is existent and the other rectangle is nonexistent if we
use the left-end values of the subintervals and for all values of x ≥ 0.

Notice that the bases of the inscribed rectangles in Figure 8.4.2(A) are the associated
subintervals and the heights of these rectangles are the associated minimum values of the
function on these subintervals. Since the function is an increasing function on the subintervals,
the minimum values of the function occur when x takes the left-end values on the subintervals.
Therefore, the area when x0 = 0 in this figure (the area of the nonexistent rectangle) using
the left-end value x0 of the subinterval [x0,x1] is given by �xf (x0) =�xf (0) = (1/2)f (0);
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and the area represented by A3, using the left-end value x1 of the subinterval [x1,x2],
is given by�xf (x1) =�xf (1/2) = (1/2)f (1/2). Thus the sum of the areas of the two inscribed
rectangles in this figure can be written as �xf (x0) +�xf (x1) = (1/2) × f (0) + (1/2)f (1/2),
which we denote SL,2, where the subscript L,2 shows that we used the left-end values of the
two subintervals; or (using the function) as

SL,2 =
∑1

i=0
�xf (xi) =�xf (x0) +�xf (x1)

=�x[ f (0)+f (1/2)]=(1/2)[ f (0)+f (1/2)]=(1/2)[2 × 0+2 × (1/2)]=0.5 units
(8.4.2)

Let us now compare the results in equations (8.4.1) and (8.4.2) with the result we
obtained at the beginning of this section. We found at the beginning of the section that
the area of the triangle in Figure 8.4.1(A) was 1 unit. But, through approximations, we
obtained the area as 1.5 units when approximated it from above using the circumscribed
rectangles (Figure 8.4.1(B) or equation (8.4.1)) and 0.5 units when we approximated
the area from below using the inscribed rectangles (Figure 8.4.2(A) or equation (8.4.2)).
Clearly, equation (8.4.1) overestimates the area by 1.5 − 1 = 0.5 units and equation (8.4.2)
underestimates it by 1 − 0.5 = 0.5 units. Notice that when we approximated the area from
above using Figure 8.4.1(B), we included the shaded areas of triangles above the graph of
the function leading to overestimation and when we approximated the area from below using
Figure 8.4.2(A), we excluded the unshaded areas of triangles below the graph of the function
leading to underestimation.

A pertinent question is: can we eliminate or reduce the errors of approximations
(overestimation and underestimation)? Yes; we can, if we increase the number of subintervals
and, thereby, the number of rectangles. Suppose that we divide the interval [0, 1] on the domain
of the function into four subintervals of equal length: [x0,x1] = [0,1/4], [x1,x2] = [1/4,1/2],
[x2,x3] = [1/2,3/4], and [x3,x4] = [3/4,1]. This is illustrated in Figure 8.4.2(B). Notice that
�x = x1 − x0 = x2 − x1 = x3 − x2 = x4 − x3 = 1/4; that is, all the subintervals have the same
length of 1/4 units. As can be seen, we now have four sub-areas, as represented by A7, A6, A5,
and A4. We again attempt to use these sub-areas to approximate the area A in Figure 8.4.1(A).

Notice that, as before, the bases of the circumscribed rectangles in Figure 8.4.2(B) are the
associated subintervals and the heights of the circumscribed rectangles are the associated
maximum values of the function on those subintervals. Since the function is an increasing
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function on the subintervals, the maximum values of the function occur when x takes the
right-end values on the subintervals. Therefore, the area represented by A7 using the right-
end value x1 of the subinterval [x0,x1] is given by �xf (x1) = �xf (1/4) = (1/4)f (1/4);
the area represented by A6 using the right-end value x2 of the subinterval [x1,x2] is given
by �xf (x2) = (1/4)f (2/4); the area represented by A5 using the right-end value x3 of the
subinterval [x2,x3] is given by�xf (x3) = (1/4)f (3/4); and the area represented by A4 using
the right-end value x4 of the subinterval [x3,x4] is given by �xf (x4) = (1/4)f [(4/4) = 1].
Thus the sum of the areas of the four rectangles in Figure 8.4.2(B) can be written as�xf (x1)+
�xf (x2) +�xf (x3) +�xf (x4) = (1/4)[f (1/4) + f (2/4) + f (3/4) + f (4/4) = 1]. We denote
this sum by SR,4, where the subscript R,4 shows that we used the right-end values of four
subintervals. Now using the function, we can write

SR,4 =
∑4

i=1
�xf (xi) =�xf (x1) +�xf (x3) +�xf (x2) +�xf (x4)

=�x

[
f

(
1

4

)
+f

(
2

4

)
+f

(
3

4

)
+f

(
4

4

)]
= 1

4

[
2

(
1

4

)
+2

(
2

4

)
+2

(
3

4

)
+2(1)

]

= 1

4
[0.5 + 1 + 1.5 + 2] = 5

4
= 1.25 units (8.4.3)

Similarly, we can now approximate the area of the triangle in Figure 8.4.1(A) using the
left-end values of the four subintervals as illustrated in Figure 8.4.3(A). Following the same
procedure as before, the sum of the areas of the four inscribed rectangles, including the
rectangle at x0 = 0 that does not exist, when we use the left-end values of the four subintervals
can be written as

SL,4 =
∑4

i=1
�xf (xi) =�xf (x0) +�xf (x1) +�xf (x2) +�xf (x3)

=�x

[
f (0) + f

(
1

4

)
+ f

(
2

4

)
+ f

(
3

4

)]
= 1

4

[
2(0) + 2

(
1

4

)
+ 2

(
2

4

)
+ 2

(
3

4

)]

= 1

4
[0 + 0.5 + 1 + 1.5] = 3

4
= 0.75 units (8.4.4)

How do the results in equations (8.4.3) and (8.4.4) compare with those in equations
(8.4.1) and (8.4.2)? Compared with the results in equations (8.4.1) and (8.4.2), the results
in equations (8.4.3) and (8.4.4) are closer to the true area of the triangle in Figure 8.4.1(A),
which is 1 unit. However, the errors in approximations (overestimation and underestimation)
still persist. But, the magnitudes of these errors are less now than they were before. One
might wonder why the errors in approximations decreased. The reason is that we increased
the number of subintervals from two to four. If we increase the number of subintervals more
and more, the errors in the approximations of the sum of the areas below and above the graph
of the function and above the respective subintervals will decrease.

But, what is meant by increasing the number of subintervals? We first split the closed
interval [0, 1] into two closed subintervals [0, 1/2] and [1/2, 1]. Then we found the areas of
the rectangles corresponding to these subintervals. After this, we split the same closed interval
into four closed subintervals [0, 1/4], [1/4, 1/2], [1/2, 3/4], and [3/4, 4/4 = 1]. And, again,
we found the areas of the rectangles corresponding to these subintervals. When we increase
the number of the splits, we are in fact reducing the magnitude by which x changes; that is,
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we are reducing the size of�x. If we continue to reduce the size of�x (that is, if we increase
the number of subintervals), then�x will tend to but not be equal to zero. As a result, the sizes
of the triangles above (below) the graph of the function that we incorrectly included (excluded)
in the calculations of the areas of the circumscribed (inscribed) rectangles will reduce and
will tend to zero. This is the reason why we get closer approximations of the area of the
triangle in Figure 8.4.1(A) when we increase the subintervals of the rectangles. However, the
results in equations (8.4.1)–(8.4.4) suggest that the area of the triangle in Figure 8.4.1(A) lies
in between the area of the inscribed rectangles and the area of the circumscribed rectangles.
Therefore, we have the inequality

SL ≤ A ≤ SR (8.4.5)

where we have omitted the subscripts that represent the number of subintervals. Let us now
generalize the above results. Suppose that we divide the closed interval [0, 1] into n equal
subintervals. Then the length of any particular subinterval,�x, will be�x = 1/n. Moreover,
the right-end values of the subintervals will be x = 1/n, 2/n, . . ., (n − 1)/n, and n/n = 1.
Then, following the above procedure, the sum of the areas of the n circumscribed rectangles
can be written as

SR,n =
∑n

i=1
�xf (xi) =�xf (x1) +�xf (x2) +·· ·+�xf (xn−1) +�xf (xn)

=�x

[
f

(
1

n

)
+ f

(
2

n

)
+·· ·+ f

(
n − 1

n

)
+ f

(n

n
= 1

)]

= 1

n

[
2

(
1

n

)
+ 2

(
2

n

)
+·· ·+ 2

(
n − 1

n

)
+ 2

(n

n
= 1

)]

= 2

n2
[1 + 2 +·· ·+ (n − 1) + n]

= 2

n2
[1 + 2 +·· ·+ (n − 1) + n] (8.4.6)
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The sum presented in equation (8.4.6) is called a Riemann sum. Notice that the terms inside
the square brackets of the last line, [1+2+·· ·+ (n−1)+n], constitute an arithmetic series
with the first term being s1 = 1, the last term being sn = n, and the common difference being
a = 1. Therefore, we can use equation (1.10.4) to find the sum of those terms. Thus we get
the sum n(1 + n)/2. Therefore, we can rewrite equation (8.4.6) as

SR,n = 2

n2

[
n(1 + n)

2

]
= n + 1

n
(8.4.7)

Similarly, the left-end values of the subintervals will be x = 0, 1/n, 2/n, . . ., and
(n − 1)/n. Then, again following the above procedure, the sum of the areas of the n inscribed
rectangles can be written as

SL,n =
∑n

i=0
�xf (xi) =�xf (x0) +�xf (x1) +·· ·+�xf (xn−1)

=�x

[
f (0) + f

(
1

n

)
+ f

(
2

n

)
+·· ·+ f

(
n − 1

n

)]

= 1

n

[
2 × 0 + 2

(
1

n

)
+ 2

(
2

n

)
+·· ·+ 2

(
n − 1

n

)]
= 2

n2
[0 + 1 + 2 +·· ·+ (n − 1)]

= 2

n2
[0 + 1 + 2 +·· ·+ (n − 1)] (8.4.8)

The sum presented in equation (8.4.8) is also called a Riemann sum. Notice that, as before,
the terms inside the square brackets of the last line, [0 + 1 + 2 + ·· · + (n − 1)], constitute
an arithmetic series with the first term being s1 = 0, the last term being sn = (n − 1),
and the common difference being a = 1. Therefore, we can again use equation (1.10.4)
to find the sum of those terms. Thus we get the sum n(n − 1)/2. Therefore, we can rewrite
equation (8.4.8) as

SL,n = 2

n2

[
n(n − 1)

2

]
= n − 1

n
(8.4.9)

An astute reader would have noticed a similarity between equations (8.4.7) and (8.4.9).
This similarity lies in the identical values of SR,n and SL,n when n → ∞. If we take limits of
both sides of equations (8.4.7) and (8.4.9) we obtain

lim
n→∞SR,n = lim

n→∞

(
n + 1

n

)
= lim

n→∞

(
n

n
+ 1

n

)
= lim

n→∞

(
1 + 1

n

)
= 1

and

lim
n→∞SL,n = lim

n→∞

(
n − 1

n

)
= lim

n→∞

(
n

n
− 1

n

)
= lim

n→∞

(
1 − 1

n

)
= 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(8.4.10)

The results in equation (8.4.10) show that, as n → ∞ (that is, as the number of subintervals
becomes infinitely large or as �x → 0), the sum of the circumscribed rectangles has the
same value of 1 unit as has the sum of the inscribed rectangles. Notice that this is the
true area of the triangle. In equation (8.4.10) what we do is find the limiting values of



[12:27 3/11/2011 5640-Ummer-Ch08.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 443 420–467

Integral calculus 443

the Riemann sums presented in equations (8.4.6) and (8.4.8). Therefore, as the number of
subintervals increases, the Riemann sums approach a common limiting value and that value
is the area under the curve.

Equation (8.4.10) shows that the limit is common for both sums, SR,n and SL,n. This is not
always true for any arbitrary function. But, this is true for all the functions we consider in
this book. This implies that we can use, for the functions we use in this book, either SR,n or
SL,n; therefore, we will use SR,n from now onwards.

The common limiting value of 1 of the Riemann sums in equations (8.4.10) is popularly
called the definite integral or the Riemann integral of the function y = f (x) = 2x when x
varies from x = 0 to x = 1 and is generally written as∫ 1

0
f (x)dx =

∫ 1

0
2xdx = 1 (8.4.11)

So far in this section we were attempting to find the area of a given region by circumscribing
or inscribing n rectangles. If the sum of the areas of the n circumscribed rectangles and the
sum of the areas of the n inscribed rectangles tend to the common limit, as n becomes infinitely
large, this limit is defined as the area of the given region. This method of determining the
area of a region is called the method of exhaustion. This was the method that we have applied
above in the present section.

8.4.3 Notations and concepts

We introduced some notations and concepts of indefinite integral in Section 8.2.4. Similarly,
we introduce some notations and concepts of definite integral in the present section. Notice
that in equation (8.4.11) we integrated the function y = f (x) = 2x from x = 0 to x = 1.

Instead of a specific function, suppose that we use a general function y = f (x), the RHS of
which may be of any form, defined on the closed interval [x = a, x = b]. Suppose also that we
want to integrate this general univariate function from x = a to x = b (instead of from x = 0
to x = 1) such that a< b. Notice that we can now find the sums (as we did in the last section)
SR,n and SL,n. Suppose again that the common limit of SR,n and SL,n, as n → ∞, exists. Then
we have the statement that the common limit of SR,n and SL,n is called the definite integral
of y = f (x) over the closed interval [x = a, x = b] and is written as

lim
n→∞

∑n

i=1
�xf (xi) →

∫ b

a
f (x)dx (8.4.12)

The statement (8.4.12) gives the definition of a general definite integral. In this definition,
the numbers a and b are called the limits of integration: a is the lower limit and b is the upper
limit. As before, dx shows the variable with respect to which integration is performed or the
variable of integration, and f (x) is the integrand.

One important feature of the definition (8.4.12) is worth mentioning. We know from the last
section that the integral of a function over a closed interval on its domain represents the area
of the function under the graph of the function and above the horizontal axis corresponding
to that interval. If f (x) is negative on that interval, then the integral will also be negative. This
does not mean that the area represented by that integral is negative implying that the common
limit may not represent an area. Since area can never be negative, one should interpret it as
the negative of the area. In short, the definite integral is just a real number and it may or may
not represent an area.
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8.4.4 Fundamental theorem of integral calculus

In Chapter 3 we found that the limit of the difference quotient of a function when the
independent variable of the function changed by an infinitesimally small amount was called
the derivative of the function. In the last section we found that the limit of the Riemann sum
was called the definite integral. In the present section we attempt to explore an important
relationship that exists between the derivative of a function and the integral of that function,
which will help us evaluate definite integrals more efficiently. It will also help us determine
the change in the value of a function if we know the rate of change of that function.

Let us begin with a function that is continuous on a closed interval [a, b] on its domain,
such as the function y = f (x) illustrated in Figure 8.4.3(B). How do we find the area A or
abcd, the area bounded by the function and the interval [a, b]? We know from the last section
that this area is given by the integral

∫ b
a f (x)dx, which can be found by applying the method

of exhaustion. But, we know by now that the application of the method of exhaustion is a
tedious job. Therefore, the question is: is there a more efficient alternative method to find
this area? The answer is yes and that is the topic to which we now turn our attention.

Now consider area A in Figure 8.4.3(B). Suppose that we pick a value of x, such that
a ≤ x ≤ b, in the closed in interval [a, b], such as x in Figure 8.4.4(A). Notice that area A
increases as we push x ahead along the x-axis in the interval. This means that area A or axed
is a function of x; that is, A(x). Therefore, we have denoted the area by A(x) in the figure
and this function is called an area function. Notice also that A(x = a) = A(a) = 0; that is,
there is no area below the graph of the function from one point on the closed interval to that
point itself. Similarly, A(b) gives the entire area from point x = a to x = b; that is, A = A(b)
or A = A(b) = ∫ b

a f (x)dx.
We know from above that as x increases, the area A(x) also increases. Suppose now that

we increase x by a positive amount �x. This implies that A(x +�x) is the area amgd in
Figure 8.4.4(B). Therefore,�A = A(x +�x)−A(x) gives the difference of the areas axed in
Figure 8.4.4(A) and amgd in Figure 8.4.4(B).

Let us now magnify this change in area (�A) as illustrated in Figure 8.4.5(A). A visual
inspection of the figure suggests that the change in area (�A) cannot be smaller than the
area �xf (x) and cannot be larger than the area �xf (x +�x). In other words, the change
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in area must lie between the areas �xf (x) and �xf (x +�x). This, in symbols, becomes
�xf (x) ≤ A(x +�x) − A(x) ≤�xf (x +�x). Notice that if �x < 0, the last inequality will
be reversed. Dividing all the three parts of the last inequality by �x yields f (x) ≤ [A(x +
�x)−A(x)]/�x ≤ f (x +�x). Taking the limit, as�x tends to zero, of the last inequality we
obtain an important result that lim

�x→0
f (x) ≤ lim

�x→0
[{A(x+�x)−A(x)}/�x] ≤ lim

�x→0
f (x+�x).

This inequality can be written as f (x) ≤ lim
�x→0

[{A(x +�x) − A(x)}/�x] ≤ f (x). What does

the limit, as �x tends to zero, of the expression inside the last square brackets stand for? It
is, as we presented in Chapter 3, the derivative of the area function A(x) with respect to its
independent variable x; that is, A′(x) = lim

�x→0
[{A(x +�x) − A(x)}/�x]. Therefore, we have

the result

A′(x) = f (x) (8.4.13)

What does equation (8.4.13) imply? It implies that the derivative of the area function A(x)
(or A′(x)) is the graph’s height function f (x). In other words, the derivative of A(x) is f (x);
or A(x) is an anti-derivative of f (x). Suppose now that F(x) is another anti-derivative of
f (x). We know from Section 8.2.2 that the two anti-derivatives differ only by a constant C.
Therefore, we can write A(x) = F(x)+C. We stated earlier in the present section that A(a) = 0.
This implies that, when x = a (or when x takes the value of the left-end of the closed
interval), A(a) = F(a) + C, or F(a) + C = 0, or C = −F(a). Substituting C = −F(a) into
A(x) = F(x) + C, we obtain A(x) = F(x) − F(a). If x = b or if x takes the right-end value of
the closed interval, the previous equation can be recast as A(b) = F(b)−F(a). But, we stated
earlier that A = A(b) or A = A(b) = ∫ b

a f (x)dx. Therefore, we have the result

A = A(b) =
∫ b

a
f (x)dx = F(b) − F(a) = [F(x)] b

a (8.4.14)

Notice that to represent the expression [F(x)] b
a in equation (8.4.14), some writers use

expressions such as F(x)] b
a, F(x)

∣∣ b
a, b

a

∣∣F(x), etc.



[12:27 3/11/2011 5640-Ummer-Ch08.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 446 420–467

446 Integral calculus

A meticulous reader would have noticed by now the relationship between a definite integral
and anti-differentiation. Equation (8.4.14) shows that to find the area under the graph of a
continuous, positive function and over a closed interval [a, b] on the function’s domain
(that is, to find

∫ b
a f (x)dx), all one needs to do is to find an anti-derivative of the integrand

f (x), denoted by F(x), and subtract the value of F(x) when x takes the left-end value of the
interval (that is, when x = a) from the value of F(x) when x takes the right-end value of the
interval (that is, when x = b); that is, find F(b) − F(a). This result is called the fundamental
theorem of integral calculus (FTIC).

Let us now state the FTIC formally: if a function f (x) = F ′(x) is positive and continuous
on a closed interval [a, b] and if F(x) is an anti-derivative of f (x), then the area bounded
by the function and the closed interval on the domain of the function is given by∫ b

a f (x)dx = F(b) − F(a). The reader would have noticed the distinction between a definite
integral and an indefinite integral. We found in the last section that a definite integral, such as∫ b

a f (x)dx, is just a number and this number is the limit of a sum. But, the FTIC implies that
the indefinite integral

∫
f (x)dx, which is a function of x and an anti-derivative of F ′(x) = f (x),

can be used to find the limit of the sum in the definite integral. The FTIC also implies that all
the rules of indefinite integral we exposed in Section 8.3 are applicable in the case of definite
integral.

So far our exposition of the FTIC has been based on a positive-valued function. Many
functions may be negative-valued or some portion(s) of a single function may be negative-
valued. How do we find the area bounded by the graph of a negative-valued function and the
closed interval [a, b] on the domain of the function? Suppose that f (x) = F ′(x) is continuous
on the closed interval [a, b] with f (x) ≤ 0 for all x ∈ [a, b]. Notice that the graph of the
function f (x) = F ′(x), the x-axis, and the vertical lines x = a and x = b still enclose an area
even though f (x) = F ′(x) is negative. Notice also that the area referred to here (or any other
area) cannot be negative. Now suppose that F(x) is an anti-derivative of f (x). We can now
define the area as the negative of the integral; that is, as

∫ b
a f (x)dx = −[F(b) − F(a)].

Let us now apply the FTIC to few specific examples. As the first example, consider the
problem posed at the beginning of Section 8.4.2. This problem was to find the area bounded
by the graph of the function y = f (x) = 2x and the closed interval [0, 1] on the x-axis. Notice
that in the present problem a = 0 and b = 1. In the spirit of equation (8.4.14), the problem can
be restated as

∫ b=1
a=0 f (x)dx = ∫ 1

0 2xdx. We know that the integral
∫

f (x)dx = ∫
2xdx = F(x)+

C = (2x2/2) + C. Therefore, we can write the definite integral as
∫ 1

0 2xdx = F(b) − F(a) =
[F(x) + C] b

a =[(2x2/2)+C]1
0 =[{(2×12)/2}+C]−[{(2×02)/2}+C]= 1+C −0−C = 1,

which is exactly the result obtained at the beginning of Section 8.4.2 and with equations
(8.4.10) and (8.4.11). The reader would have noticed that it is much easier to use the FTIC
to evaluate a definite integral than to use the method of exhaustion.

As another example, consider evaluating
∫ b=2

a=1 f (x)dx = ∫ 2
1 (2x + 1)dx. We know that

the integral
∫

f (x)dx = ∫
(2x + 1)dx = (2x2/2) + x + C = F(x) + C. Therefore, we can

write the definite integral as
∫ 2

1 f (x)dx = ∫ 2
1 (2x + 1)dx = F(b) − F(a) = [F(x) + C] b

a =
[(2x2/2) + x + C]21 =6 + C − 2 − C = 4.

8.4.5 Properties of definite integrals

In this section we present, without proofs, some of the important properties of definite
integrals. As we shall see later, these properties are highly useful in solving problems.



[12:27 3/11/2011 5640-Ummer-Ch08.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 447 420–467

Integral calculus 447

All the properties we present are concerned with continuous functions f (x) and g(x), and
three points a, b, and c, such that a < b < c, on a closed interval [a, c] on the domains of
the functions.

Property I. Reversing the order of limits, or interchanging the limits, of integration
changes only the sign and not the absolute value of the definite integral.
In other words,

∫ b

a
f (x)dx = −

∫ a

b
f (x)dx (8.4.15)

Property II. If the two limits of a definite integral are identical, then the definite integral
is zero. That is,∫ a

a
f (x)dx = 0 (8.4.16)

Property III. The sum of the definite integral from point a to b and the definite integral
from b to c is equal to the definite integral from a to c. This means that

∫ c

a
f (x)dx =

∫ b

a
f (x)dx +

∫ c

b
f (x)dx (8.4.17)

Property IV. The definite integral of the sum or the difference of two functions, f (x) and
g(x), is equal to the sum or difference of the integrals of the two functions.
This means that∫ b

a
[ f (x) ± g(x)]dx =

∫ b

a
f (x)dx ±

∫ b

a
g(x)dx (8.4.18)

Property V. The definite integral of a constant, k , times the function f (x) is equal to the
constant times the definite integral of the function f (x). That is,

∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx (8.4.19)

Property VI. The definite integral of the negative of the function f (x) is equal to the
negative of the definite integral of f (x). Symbolically, we have

∫ b

a
−f (x)dx = −

∫ b

a
f (x)dx (8.4.20)

8.4.6 Indefinite integral from definite integral

We defined definite integral in equation (8.4.14). This definition was given symbolically as∫ b
a f (x)dx = F(b) − F(a) = [F(x)] b

a. In fact, to find the definite integral we were appending
the two limits, the lower limit a and the upper limit b, to the indefinite integral

∫
f (x)dx. In

other words, we obtained the definite integral from the indefinite integral by appending the
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limits to the latter. A pertinent question at this stage is: can one derive the indefinite integral
from the definite integral? The answer is yes. The procedure is outlined below.

Notice that in Figure 8.4.4(A) we represented the area as a variable A(x). This represen-
tation of the area is based on the assumption that the lower limit a of the closed interval is a
constant, while a point x in the interval is treated as a variable. This means that as x increases,
the area A(x) also increases. Let us now replace the upper limit b of the interval by the variable
of integration x. Then the integral can be written as

∫ x
a f (x)dx. If we evaluate this, we will

obtain
∫ x

a f (x)dx = F(x) − F(a). Since a is a constant, −F(a) must be a numerical value
and can be treated as a constant C. Therefore, we can write the last equation as

∫ x
a f (x)dx =

F(x)+C. If we differentiate this integral with respect to x what we obtain is d[∫ x
a f (x)dx]/dx =

d [F(x) + C]/dx = F ′(x) = f (x). Notice that the last term of this equation is nothing but the
integrand of the definite integral. In other words, it is the indefinite integral. This shows
the connection between the definite integral and indefinite integral.

8.4.7 Area under a curve

In Section 8.4.2 we defined the area of a region, using the method of exhaustion, as the
limit of a sum and then found this limit by equation (8.4.12). We later found in Section 8.4.4
(equation (8.4.14)) that this sum could also be found by using the FTIC. In the present section
we use the FTIC (equation (8.4.14)) to find the areas bounded by specific functions.

Suppose that we have a function of the form y = f (x) = 1/(2 + x) and a closed interval
on its domain given by [a = 1, b = 2]. Our problem is to find the area abcd bounded by
the graph of the function and the closed interval, as illustrated in Figure 8.4.5(B). Applying
equation (8.4.14) we can obtain this area by integrating the function y = f (x) = 1/(2 + x)
from point a to point b; that is, by evaluating

∫ b
a f (x)dx = F(b) − F(a) = [F(x)] b

a.

Since
∫

f (x)dx = ∫ [1/(2 + x)]dx = ln(2 + x) + C, we can write
∫ b

a f (x)dx = F(b) − F(a) =
[F(x)] b

a = [ln(2 + x) + C] b
a. And since a = 1 and b = 2, the last equation can be written as∫ 2

1 f (x)dx = [F(x)] 2
1 = [ln(2 + x) + C] 2

1 = [ln 4 + C]− [ln 3 + C] = ln 4 − ln 3 = ln[4/3] =
0.287. Therefore, the area abcd in Figure 8.4.5(B) is 0.287 units.

As another example, consider the function y = f (x) = 4− x with the closed interval given
by [a = 2, d = 6] on its domain. Our problem now is to find the sum of the areas abc
and cde, which are bounded from above by the graph of the function and from below by
the closed subinterval [a = 2, c = 4] and bounded from above by the closed subinterval
[c = 4, d = 6] and from below by the same graph of the function, respectively, as illustrated
in Figure 8.4.6(A).

We first split the closed interval [a = 2, d = 6] into two: [a = 2, c = 4] and [c = 4, d = 6].
We can then find the area abc under the graph and above the interval [a = 2, c = 4] and
then the area under the interval [c = 4, b = 6] and above the graph separately by applying
Property III in equation (8.4.17) of definite integral:

∫ d
a f (x)dx = ∫ c

a f (x)dx + ∫ d
c f (x)dx.

The area under the graph and above the interval [a = 2, c = 4] is given by
∫ c

a f (x)dx =
F(c)−F(a) = [F(x)] c

a. Since
∫

f (x)dx = F(x)+C = ∫
(4 − x)dx = 4x − (x2/2) + C, we can

write
∫ c

a f (x)dx = F(c) − F(a) = [F(x) + C] c
a = [4x − (x2/2) + C]ca. And since a = 2 and

c = 4, the last equation can be written as
∫ c=4

a=2 f (x)dx = [F(x)] 4
2 = [4x − (x2/2) + C]42 =

[8 + C] − [6 + C] = 2. Therefore, the area abc in Figure 8.4.6(A) is 2 units. This result
is true because the area abc is the area of the triangle abc whose height (h) and length
(l) are 2 units each. Therefore, the area of the triangle is (1/2) × h × l = (1/2) × 2 × 2 =
2 units.
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Let us now find the area cde, which is below the interval [c = 4, d = 6] and above the
graph of the function. Notice that the value of the function to the right of point c = 4 is
negative. This implies that the integral of the function from c = 4 to d = 6 will be negative.
Therefore, we shall multiply, as stated at the end of Section 8.4.4, the integral by −1 to
make the area positive. The area above the graph and below the interval [c = 4, d = 6]
is given by −∫ d

c f (x)dx. Since
∫

f (x)dx = [4x − (x2/2) + C], we can write −∫ d
c f (x)dx =

−[F(d) − F(c)] = − [F(x) + C] d
c = −[4x − (x2/2) + c]dc . And since c = 4 and d = 6, the

last equation can be written as −∫ d=6
c=4 f (x)dx = − [F(x)] 6

4 = −[4x − (x2/2)+C]64 = −{[6+
C] − [8 + C]} = 2. Therefore, the area cde in Figure 8.4.6(A) is 2. This result is also true
because the area cde is the area of the triangle cde whose height (h) and length (l) are
2 units each. Therefore, the area of the triangle is, as before, (1/2)×h× l = (1/2)×2×2 =
2 units.

Adding the two areas abc and cde we obtain abc + cde = 2 + 2 = 4 units. Therefore, the
total area we required in Figure 8.4.6(A) is 4 units. This result is again true because adding
the two trianglesabc and cde we will obtain a square. The length of the square is l = 2 units
and its height is h = 2 units. Therefore, the area of the square is h × l = 2 × 2 = 4 units.

8.4.8 Area between curves

So far we have been concerned with the determination of areas that are bounded by their
respective graphs and the closed intervals on their respective domains. How can we determine
the area bounded by two functions and a common closed interval on the domains of the two
functions? Suppose that the two functions we have are f (x) and g(x) and their common closed
interval is [a, b]. Our problem is to determine the area cdeh bounded by these two functions
and the vertical lines that represent the end points of the functions’ common closed interval,
as illustrated in Figure 8.4.6(B).

We know how to find the area below the graph of the function f (x) and above the interval
[a, b]; that is, the area adeb in Figure 8.4.6(B). This is found by integrating the function f (x)
from point a to point b; that is, by evaluating

∫ b
a f (x)dx. Similarly, the area below the graph

of the function g(x) and above the interval [a, b] or the area achb can be found by evaluating∫ b
a g(x)dx. If we subtract the latter value from the former value we obtain the required area.
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Therefore, applying Property IV in equation (8.4.18) of definite integral, we can write the
area cdeh as

∫ b
a [f (x) − g(x)]dx = ∫ b

a f (x)dx − ∫ b
a g(x)dx.

As an example, assume that we have two functions f (x) = 10 + 14x2 − 2.5x3 and
g(x) = 20 − 2.5x2 + 1.25x3, the graphs of which are illustrated in Figure 8.4.7(A).
Also assume that we need to find the shaded area between the two graphs. To find
this area we can apply the above result:

∫ b
a [f (x) − g(x)]dx = ∫ b

a f (x)dx − ∫ b
a g(x)dx.

We know that
∫ b=4.253

a=0.87 f (x)dx = ∫ 4.253
0.874.253 (10+12x2 − 2.25x3)dx = [F(x) + C] 4.253

0.87 =[
10x + 4x3 − 0.5625x4 + C

]4.253
0.87 ≈ 185.629−C and

∫ b=4.253
a=0.87 g(x)dx = ∫ 4.253

0.87 (5−2.25x2 +
1.25x3)dx = [G(x) + C] 4.253

0.87 = [
5x − 0.75x3 + 0.3125x4 + C

]4.253
0.87 ≈ 106.165 − C. There-

fore, we obtain the area as
∫ b

a f (x)dx − ∫ b
a g(x)dx = [185.629 − C] − [106.165 − C] ≈

79.464 units.
As another example, suppose that we have two functions f (x) = x and g(x) = x2, and their

common closed interval [a = 0, b = 1], as illustrated in Figure 8.4.7(B). Our problem is to
find the shaded area bounded by these two functions above their common closed interval.
To find this area, we can again apply Property IV in equation (8.4.18) of definite integral.
Therefore, we can write the required area as

∫ b
a [f (x) − g(x)]dx = ∫ b

a f (x)dx − ∫ b
a g(x)dx.

We know that
∫ b=1

a=0 f (x)dx = ∫ 1
0 f (x)dx = [F(x) + C] b=1

a=0 = [(x2/2) + C]10 = 1/2 and∫ b=1
a=0 g(x)dx = ∫ 1

0 x2dx = [G(x) + C] b=1
a=0 = [(x3/3) + C]1

0 = 1/3. Therefore, we obtain the

required area as
∫ b

a [f (x) − g(x)]dx = ∫ b
a f (x)dx − ∫ b

a g(x)dx = (1/2) − (1/3) = 1/6 units.

8.4.9 Average value of a function

We know from the solution to the problem in example 4 in Section 1.11.3 that the arithmetic
mean or the average, denoted by x̄, of n numbers xi, where i = 1,2, . . . ,n, is the sum of these
numbers divided by n; that is, x̄ =∑n

i=1 xi/n. But, what about the average value of a function?
Consider the function that represents the total profit of a firm, which sells a good, given by
	= f (x) = 5x−x2, where	 denotes total profits in dollars and x denotes the quantity of the
good sold. The graph of this function is illustrated in Figure 8.4.8(A). How do we find the
average profit of the firm when the firm sells quantities in between 1 and 3 units of the good?
In other words, what will be firm’s average profit over the closed interval [a = 1, b = 3] on



[12:27 3/11/2011 5640-Ummer-Ch08.tex] Job No: 5640 UMMER: Basic Mathematics for Economics, Business and Finance Page: 451 420–467

Integral calculus 451

0

A B

C

Δy

Δx
D

x

z

yi

yj

y

xjxi

a b

c

d
f(x)

0 1 2

(A) (B)
3 4

x0

1

2

3

4

5

6

7
Π

Figure 8.4.8

the domain of the firm’s profit function? The answer to this question seems to be difficult
as there are an infinite number of values in the closed interval. Then, how do we solve the
problem? The method of solving problems like these is explained below.

As we split the interval into n subintervals of equal length in the method of exhaustion in
Section 8.4.2, we can split the interval [a = 1, b = 3] in Figure 8.4.8(A) into n subintervals
of equal length. Therefore, each subinterval will have length equal to �x = (b− a)/n. After
this we can find the profit at a point in every subinterval. Then we can take the average of
these sub-profits as an approximation to the average profit over the interval [a = 1, b = 3].
As we stated in the method of exhaustion, this approximation will improve as the number of
subintervals increases; that is, the approximate average value of the function will tend to the
true average value of the function as n → ∞. In other words, the average value of the profit
function can be written as

	̄= (1/n)[ f (x1) + f (x2) +·· ·+ f (xi) +·· ·+ f (xn)] (8.4.21)

where 	̄ denotes the average profit or the average value of the function and xi denotes the
value of x in the ith subinterval. We know from above that (b − a) measures the length of
the closed interval in Figure 8.4.8(A). Let us multiply equation (8.4.21) by [(b−a)/(b−a)]
to obtain

	̄= (1/n)[ f (x1) + f (x2) +·· ·+ f (xi) +·· ·+ f (xn)][(b − a)/(b − a)]

= 1

(b − a)

[
(b − a)

n
f (x1) + (b − a)

n
f (x2) +·· ·+ (b − a)

n
f (xi) +·· ·+ (b − a)

n
f (xn)

]

= 1

(b − a)
[ f (x1)�x+f (x2)�x+·· ·+f (xi)�x+·· ·+f (xn)�x]= 1

(b − a)

n∑
i=1

f (xi)�x
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In the third step of the last equation we used our above result �x = (b−a)/n. Now suppose
that we increase the number of subintervals to infinity. Therefore, in the limit as n → ∞, if
the limit exists, equation (8.4.12) states that the sum on the RHS of the last equation will be
replaced by

∫ b
a f (x)dx. Therefore, we have the following result:

	̄= lim
n→∞

1

(b − a)

∑n

i−1
f (xi)�x = 1

(b − a)
lim

n→∞
∑n

i−1
f (xi)�x = 1

(b − a)

∫ b

a
f (x)dx

(8.4.22)

Let us now define the average value of a function formally. Suppose that we have a function
f (x). Then the average value of this function over a closed interval [a, b] on its domain is
given by f (x̄) = [1/(b − a)]∫ b

a f (x)dx.
We are now ready to find the average value of the profit function: 	 = f (x) =

5x−x2. Therefore, the average profit over the closed interval [a = 1, b = 3] on the function’s
domain can be found by applying equation (8.4.22). The result is 	̄= [1/(b−a)]∫ b

a f (x)dx =
[1/(b − a)]∫ 3

1 (5x − x2)dx = F(b) − F(a) = [F(x) + C] b
a = [F(x) + C] 3

1. Since F(x) + C =
(5x2/2) − (x3/3) + C, the last equation can be written as 	̄ = [1/(3 − 1)]{[F(x) + C] 3

1} =
[1/(3−1)]×[(5x2/2)−(x3/3)+C]3

1, which can be simplified to obtain 	̄= (1/2)[(5x2/2)−
(x3/3) + C]3

1 = 5.66. Therefore, the firm’s average profit over the closed interval [a = 1,
b = 3] on the function’s domain is $5.66.

8.4.10 Definite partial integrals

In Section 8.3.12, we saw how to find indefinite integrals where the integrands are multivariate
functions such as f (x1,x2), f (x1,x2,x3), etc. So far in the present section we have been
concerned with evaluating definite integrals where the integrands are univariate functions.
We now extend our exposition of definite integrals to the case where the integrands are
multivariate functions.

Notice that we evaluated univariate definite integrands by first finding the primitive
function using the rules of indefinite integrals, and then applying the lower and upper limit
to the primitive function. We may follow the same procedure in evaluating definite integrals
involving multivariate integrands. However, as in the case of finding indefinite integrals with
multivariate integrands, we must treat all variables other than the variable of integration as
constants when we evaluate a definite partial integral with multivariate integrands. Notice
also that definite partial integrals are indefinite partial integrals appended with the limits of
integration.

As an example, consider the first problem we solved in Section 8.3.12. This problem is to
find the indefinite integral of the function f (x1,x2) = 2x1x2 + x2 with respect to x1. Let us
now find the definite integral of the function when x1 varies from 0 to 1. Notice that here only
x1 is varying and, therefore, x1 is the variable of integration and x2 is a constant. Following
the symbol we used for definite integral, and using the result

∫
(2x1x2 + x2)dx1 =x2x2

1 +
x2x1 + C, we may write the current problem symbolically as

∫ 1
0 f (x1,x2)dx1 = ∫ 1

0 (2x1x2 +
x2)dx1, which can be evaluated to obtain

∫ 1
0 (x2

1x2 + x1x2)dx1 = [F(x1,x2)] 1
0 = [x2

1x2 +
x1x2 + C] 1

0 = 2x2.
As another example, consider the second problem we solved in Section 8.3.12. This

problem is to find the indefinite integral of the function f (x1,x2) = 2x1x2 + x2 with respect
to x2. Let us now find the definite integral of the function when x2 varies from 0 to 1.
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Notice that, unlike in the last example, x2 is the variable of integration in the present
problem and, therefore, x1 is a constant. Following the symbol we used for definite integral,
and using the result

∫
Fx1dx2 =x1x2

2 + (x2
2/2) + C, we may write the current problem

symbolically as
∫ 1

0 f (x1,x2)dx2 = ∫ 1
0 (2x1x2 + x2)dx2, which can be evaluated to obtain∫ 1

0 (2x1x2 + x2)dx2 = [F(x1,x2)]10 = [x1x2
2 + (x2

2/2) + C]10 = (1/2) + x1.
As the final example, consider integrating the function f (x1,x2,x3) = x1 + x2 + x3 +

x1x2 + x1x3 when x1 varies from 0 to 2. Therefore, we have
∫ 2

0 f (x1,x2,x3)dx1 =∫ 2
0 (x1 + x2 + x3 + x1x2 + x1x3)dx1 = [F(x1,x2,x3)]2

0. We know that the indefinite integral
of (x1 + x2 + x3 + x1x2 + x1x3) with respect to x1 is

∫
(x1 + x2 + x3 + x1x2 + x1x3)dx1 =

(x2
1/2)+ x1x2 + x1x3 + (x2

1x2/2)+ (x2
1x3/2)+C. Therefore, we have the result

∫ 2
0 (x1 + x2 +

x3 +x1x2 +x1x3)dx1 = [(x2
1/2)+x1x2 +x1x3 + (x2

1x2/2)+ (x2
1x3/2)+C]20 = [2+2x2 +2x3 +

2x2 + 2x3 + C]− C = 2[1 + 2x2 + 2x3].

8.4.11 Definite multiple integrals

In Section 8.3.13, we explored indefinite multiple integrals or iterated indefinite integration
of multivariate functions such as Fx1 = f (x1,x2) and Fx1 = f (x1,x2,x3). In the present section
we present definite multiple integrals or definite integration of multivariate functions. Before
we begin this, let us attempt to present a geometric representation of definite integrals of
multivariate functions.

Notice that we have already interpreted the definite integrals of a univariate function as
the area under the graph of the function and above the chosen closed interval on the domain
of the function. The question is: can one give such a geometric interpretation to the definite
integrals of multivariate functions? The answer is yes in the case of definite integrals of
bivariate functions. Since a geometric representation of functions involving more than two
independent variables is not possible, we restrict the geometric representation of definite
integrals to the case of integrands with two independent variables.

Suppose that we have a multivariate function given by z = f (x,y) with the closed intervals
[xi,xj] and [yi,yj] on its domain. Suppose also that the graph of the function and the intervals
are as illustrated in Figure 8.4.8(B). Our problem is to determine the volume, not the area,
bounded by the intervals [xi,xj] and [yi,yj] and the function; that is, the lightly shaded area
between the two-dimensional x,y-plane (or ABCD) defined by the intervals [xi,xj] and [yi,yj]
and the three-dimensional plane or the surface defined by the function f (x,y), as illustrated
in the figure.

Recall that we used the method of exhaustion with rectangles to find the area bounded
by a univariate function in Section 8.4.2. The same method can be used to determine the
volume of the region bounded by a bivariate function and a two-dimensional space such as
the one referred to above. For this first consider the object, like the one at the center of the
two-dimensional space ABCD, with base area equal to�x×�y and height equal to the value
of the function corresponding to the point at the top of the object. We know that the volume
of this object is equal to its base times its height. We can now construct n similar objects such
that the required region is exhausted and find the sum of the volumes of all these objects.
But, notice that as n → ∞, the sum of the volumes of the n objects will tend to the volume
of the required region. And this sum is given by the multiple integral∫ yj

yi

∫ xj

xi

f (x,y)dxdy (8.4.23)
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which is also called a double-definite integral. If the integrand involves three variables, such
as f (x1,x2,x3), then the sum of the volumes of the n objects when n → ∞ will be given by
the definite multiple integral∫ zj

zi

∫ yj

yi

∫ xj

xi

f (x,y,z)dxdydz (8.4.24)

which is also called a triple-definite integral.
Let us now apply the idea to find the definite integrals of multivariate functions. As an

example, consider the problem in the first example of the last section. This problem was to
find the partial definite integral of the function f (x,y) = 2xy + y, where x = x1 and y = x2,
with respect to x. Let us now find the double-definite integral of the function when x varies
from 0 to 1 and y varies from 0 to 1. The problem can be written as

∫ y=1
y=0

∫ x=1
x=0 f (x,y)dxdy =∫ 1

0

∫ 1
0 [2xy + y]dxdy. First, we can integrate the function with respect to x treating y as

constant, and then integrate the result with respect to y. We have already obtained the result
for the first step as the solution to the problem in the first example in the last section. This result
was

∫ 1
0 f (x,y)dx = ∫ 1

0 (2xy + y)dx = 2y. Therefore, we can write
∫ y=1

y=0

∫ x=1
x=0 f (x,y)dxdy =∫ 1

0 [∫ 1
0 (2xy + y)dx ]dy = ∫ 1

0 2ydy. We now integrate this result with respect to y. The result

is
∫ 1

0 2ydy = [y2]1
0 = 1.

As another example, consider the problem in the last example of the last section. Treating
x = x1, y = x2, and z = x3, we can reformulate the integrand in that example as f (x,y,z) =
x + y + z + xy + xz. Let us now find the triple-definite integral of the function when x, y, and
z vary from 0 to 1. The problem can be written as

∫ 1
0 [∫ 1

0 [∫ 1
0 [(x + y + z + xy + xz)dx]dy]dz.

Firstly, we can integrate the function with respect to x treating y and z as constants;
secondly, integrate the result in the last step with respect to y treating z as constant;
and, thirdly, integrate the result in the last step with respect to z. Therefore, following
these steps, we obtain

∫ 1
0 [∫ 1

0 [(1/2) + y + z + (y/2) + (z/2)]dy]dz,
∫ 1

0 [(5/4) + (3z/2)]dz,

and
∫ 1

0 [(5/4) + (3z/2)]dz = [(5z/4) + (3z2/4) + C] = 2.

8.4.12 Application examples

Example 1. This example is concerned with income distribution. Let x denote the
cumulative percentage of people, from the poorest to the richest, who receive income
in an economy and that y = f (x) denotes the cumulative percentage of income. This
suggests that on the graph of the function y = f (x) = x there exists perfect equality in
the distribution of income, as illustrated in Figure 8.4.9(A). Suppose that we have another
function y = g(x) = (x/4) + (6x2/8), where the variables possess the same interpretation
as they do in the case of y = f (x). The graph represented by this function, or the function
itself, is called a Lorentz curve. The degree of deviation from equality is computed by the
coefficient of inequality for a Lorentz curve, which is the area between y = f (x) = x and
y = g(x) = (x/4) + (6x2/8). Determine the coefficient of inequality for the Lorentz curve
y = g(x) = (x/4) + (6x2/8).

Solution. Our aim is to determine the area bounded by the equality curve (the graph
of the function y = f (x) = x) and the Lorentz curve (the graph of the function y =
g(x) = (x/4) + (6x2/8)) over the common closed interval [0, 1]. These graphs are illus-
trated in Figure 8.4.9(A). As presented in Section 8.4.8, the area between f (x) = x and
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y = g(x) = (x/4) + (6x2/8) can be found by integrating the two functions and subtracting
the latter from the former. Assume that an anti-derivative of f (x) is F(x) + C and that
of g(x) is G(x) + C. Then, the required area can be written as

∫ 1
0 f (x)dx − ∫ 1

0 g(x)dx.

We know that
∫ 1

0 f (x)dx = ∫ 1
0 xdx = [F(x) + C]10 = [(x2/2)]1

0 = 1/2. Similarly, we can

obtain
∫ 1

0 g(x)dx = ∫ 1
0 [(x/4) + (6x2/8)]dx = [G(x) + C]10 = [(x2/8) + (6x3/24) + C]1

0 =
(1/8) + (6/24) = 9/24 = 0.375. Therefore, the required area is

∫ 1
0 f (x)dx − ∫ 1

0 g(x)dx =∫ 1
0 xdx − ∫ 1

0 [(x/4) + (6x2/8)]dx = (1/2) − (9/24) = 0.5 − 0.375 = 0.125. Therefore, the
coefficient of inequality for the present Lorentz curve is 0.125.

Example 2. Assume that the inverse demand for and the inverse supply of a good are given
by the functions P = f (x) = 15 − 0.5xd and P = g(x) = 5 + 0.5xs, respectively, where P,
xd , and xs denote the price of the good in dollars, the quantity demanded of the good, and
the quantity supplied of the good, respectively. Find the consumers’ surplus and producers’
surplus.

Solution. Let us first plot the graphs of the two functions, as illustrated in Figure 8.4.9(B).
Notice that the equilibrium price P∗ and quantity x∗

d = x∗
s of the good are determined by

the intersection of the demand and supply functions as at point E in the figure. Equating the
demand and supply functions, we obtain the equilibrium price P∗ and quantity x∗

d = x∗
s as

P∗ = 10 (point B) and x∗
d = x∗

s = 10 (point F), respectively. This means that in equilibrium
(point E), the price of the good will be $10 and 10 units of the good are demanded and
supplied.

Consumers’ surplus is defined as the extra amount of money over the equilibrium price
that consumers are willing to pay to obtain the good. Therefore, consumers’ surplus is the
difference or the area between what the consumers are willing to pay (the area below the
demand curve, or the area 0CEF) and what they are actually paying (the area 0BEF). This
area is equal to the area of the triangle BEC. This area can be found by subtracting the
area 0BEF (which equals the area below P∗ = 10) from the area 0CEF. We know that
definite integral can be used to approximate this area. Thus, in terms of definite integral, this
area can be written, following our demonstration in Section 8.4.8, as

∫ 10
0 15 − 0.5x − 10]dx,
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where x = xd. If we integrate the last integral we obtain [15x − 0.25x2 − 10x]10
0 = 25.

Therefore, the consumers’ surplus in the present example is equal to $25.
Producers’ surplus is defined as the extra amount of money over the cost price that a

producer receives when it produces the equilibrium quantity of the good. Therefore, the diff-
erence or the area between what the producer is receiving when he produces the equili-
brium quantity (the area 0BEF) and what it costs for him to produce the equilibrium quantity
of the good (the area 0AEF). This area is equal to the area of the triangle AEB. To determine
this area, we can subtract the area 0AEF from the area 0BEF (which equals the area below
P∗ = 10). This, in terms of definite integral, can be written as

∫ 10
0 [10 − 5 − 0.5x]dx, where

x = xs. If we integrate the last integral we obtain [10x −5x −0.25x2] 10
0 = 25. Therefore, the

producers’ surplus in the present example is equal to $25.
Let us now present the general formulas for the consumers’ and producers’ surpluses.

Suppose that the general inverse demand and supply functions of a good are given by P = f (xd)
and P = g(xs), respectively, which can be equated and solved for the equilibrium price P∗.
Substitution of P∗ in the inverse demand and supply functions gives us the equilibrium
quantity x∗ = x∗

d = x∗
s . Then the consumers’ surplus is given by

∫ x∗

0
[(xd) − P∗]dxd (8.4.25)

and the producers’ surplus is given by∫ x∗

0
[P∗ − g(xs)]dxs (8.4.26)

Example 3. Suppose that a firm’s marginal revenue function is as that in example 1 in
Section 8.3.14: F ′(x) = f (x) = 50− x − x2. Find the change in the firm’s total revenue when
sales increase from 2 to 4 units of the good.

Solution. We know that the integral of the marginal revenue function yields the total
revenue function. If we integrate the function from 2 to 4, we will obtain the change in
total revenue. We obtained in the solution to the problem in example 1 in Section 8.3.14
that, after ignoring the constant C, the total revenue of the firm as R = F(x) = ∫

F ′(x)dx =∫
(50 − x − x2)dx =50x − (x2/2) − (x3/3). Let us now take the limits of integration to get

�R =�F(x) = ∫ 4
2 F ′(x)dx = [F[x]] 4

2 = [50x − (x2/2)− (x3/3)]4
2 ≈ $81.34. This means that

the firm’s total revenue will increase by $81.34 if it increases production from 2 to 4 units of
the good.

Example 4. Suppose that $100 invested in the share of a company is expected to grow by
the function f (x) = 100e0.08x, where x denotes time in years. What will be the value of this
share after 12 years?

Solution. The value of the share at the time of investment (that is, at x = 0) is $100
because f (0) = 100e0.08×0 = 100. To find the value of the investment after 12 years,
we need to integrate the function from time x = 0 to x = 12. Therefore, integrating the
function f (x) = 100e0.08x from x = 0 to x = 12 we obtain

∫ 12
0 f (x)dx = ∫ 12

0 100e0.08xdx =
[100(e0.08x/0.08)]12

0 = 3264.62 − 1250 = 2014.62. Therefore, the value of the investment
after 12 years will be $2014.62.
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Example 5. What will be the present value of receiving $100 each year for six years when
the discount rate r = 0.08 is compounded continuously? What will be the accumulated sum
of these receipts?

Solution. Suppose that a person invests P amount of money in a bank account at interest
rate r when the bank compounds interest annually. The amount of money in the account after
one year will be Ft = P + r.P = P(1 + r). The amount of money in the account after the
second year will be Ft = P(1 + r)(1 + r) = P(1 + r)2. The amount of money in the account
after t years will be

Ft = P(1 + r)t (8.4.27)

where (1 + r) is called the growth factor and r is called the rate of growth. The present
value of the future amount of money Ft received in t years from now can be obtained from
equation (8.4.27) as

P = Ft(1 + r)−t (8.4.28)

where r is called the discount rate. Finding the present value of a future sum of money is
called discounting. Suppose now that the bank applies compound interest, compounding the
interest m times a year. Given compound interest, the amount in the person’s account after t
years will be

Ft = P [1 + (r/m)]m× t (8.4.29)

Last, assume that the bank compounds interest infinitely; that is, m → ∞. Then
equation (8.4.29) can be written as Ft = lim

m→∞P[1 + (r/m)]m×t . Multiplying the exponent

by r/r and moving the limit operator beyond P, the last equation can be written as
Ft = P lim

m→∞[1 + (r/m)](m/r)×r × t . Letting n = r/m, the last equation can be written as

Ft = P{ lim
m→∞[1 + (1/n)]n}r × t . Using equation (1.10.14), this result can be written as

Ft = Per × t (8.4.30)

where e denotes the base of natural logarithm. Therefore, the present value of Ft amount of
money to be received in t years from now, when the discount rate is r, is

P = Fte
−r × t (8.4.31)

The reader would have noticed that it is the constant discount rate r that is treated either
discretely or continuously in equations (8.4.27)–(8.4.31). The independent variable (t) in
these equations is still treated discretely. That is, the future sum(s) of money is received at
specific point(s) in time, say, at the end of the first year, second year, and so on. But, what if
the future sums are received as a continuous stream of receipts (at every point in time)? How
can we find the present value of such continuous future streams of receipts?

Assume that an individual receives a sum of money every year and, therefore, we can
consider the sum as a function of time; that is, we can treat it as f (t). This sum is received
between the closed time interval [t = 0, t = T ]. Assume also that we divide this interval
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into n subintervals of equal length �t. Then the sum received over the ith subinterval,
where i = 1,2, . . . ,n, of time will be f (ti)�ter × t and the present value of this sum will be
f (ti)�te−r × t . Therefore, the present value of the sums received over all other subintervals
can be written as

∑T
t=0 f (ti)�te−r × t . Treating f (t) as F , we can write the last result as∑T

t=0 F�te−r × t . We know that as the number of subintervals n increase,�t → 0. But, when
�t → 0, we know from equation (8.4.12) that the sum can be approximated by the definite
integral, which gives the formula to find the present value of continuous future stream of
receipts as

∫ T

0
Fe−r× tdt = [Fe−r × t/(−r)]T

0 = (F/r)[1 − e−r ×T ] (8.4.32)

We defined above the present value of the sum of the continuous future stream of
receipts over the entire subintervals as the definite integral

∫ T
0 e−r × t f (t)dt. One might wonder

what the total value or the accumulated sum of this continuous future stream of receipts
would be. We can find this future value or the accumulated sum of continuous future stream
of receipts by applying the formula

∫ T

0
Fer(T−t)dt (8.4.33)

Having developed the required tools, let us now attempt to solve the problem in
the present example. In our example, F = 100, r = 0.08, and t = 6 years. Therefore,
applying the formula for the present value of continuous future stream of receipts
(equation (8.4.32)) we obtain

∫ T
0 Fe−r×tdt = ∫ 6

0 100e−0.08tdt = [100(e−0.08t)/(−0.08)]6
0 =

[(100e−0.08×6)/(−0.08)] − [(100e−0.08×6)/(−0.08) = 477. Therefore, the present value of
receiving $100 each year for six years is $477.

We can now find the accumulated sum of receiving $100 each year for six years
using the formula

∫ T
0 Fer(T−t)dt (equation (8.4.33)). Therefore, we have

∫ T
0 Fer(T−t)dt =∫ T

0 100e0.08(6−t)dt = ∫ 6
0 100e0.08(6−t)dt = ∫ 6

0 100e0.48−0.08tdt = 100e0.48
∫ 6

0 e−0.08×tdt =
[161.6 × (e−0.08×t)/(−0.08)]60 = [−2020e−0.08×t]60 = −1250 + 2020 = 770. Therefore, the
accumulated sum after six years will be $770.

Example 6. Consider the problem in example 4 above. In this example, $100 invested in
the share of a company is expected to grow by the function f (x) = 100e0.08x , where x denotes
time in years. What will be the average value of this share after 12 years?

Solution. We can apply equation (8.4.22) to solve this problem. To apply this equation
we define a = 0 and b = 12. Then we can write

_
f (x) = [1/(b − a)]∫ b

a f (x)dx = [1/(12 −
0)]∫ 12

0 100e0.08x dx = (100/12)
∫ 12

0 e0.08x dx = 8.33
∫ 12

0 e0.08x dx = [8.33e0.08x/0.08]12
0 =

[104.13e0.08x]12
0 = 272 − 104.13 = 167.87. Therefore, the average value of this share after

12 years will be $167.87.

Example 7. Suppose that the marginal cost in dollars of a firm is given by the function
f (x) = 100 − 10x + x2, where x denotes the quantity of output produced. What will be total
cost of increasing output from x = 10 to x = 20?
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Solution. We know that we obtain the total cost function when we integrate the marginal
cost function. Therefore, the total cost function is TC = ∫

f (x)dx. If we evaluate this
integral using the limits x = 10 to x = 20, we obtain the total cost of increasing output
from x = 10 to x = 20. Notice that TC = ∫

f (x)dx = ∫
(100 − 10x + x2)dx = [100x − 5x2 +

(x3/3)+C]. Therefore, evaluating this integral from x = 10 to x = 20 we obtain
∫ 20

10 f (x)dx =∫ 20
10 (100 − 10x + x2)dx = [100x−5x2 + (x3/3)]20

10 = 2666.67−833.33 = 1833.34. Thus, the
total cost of increasing output from 10 to 20 units is $1833.34.

Example 8. Assume that the total investment, in billions of dollars, in an economy is a
function of time (t) and is given by I = f (t) = 10 t3/4. Find the total capital formation for the
first five years.

Solution. The total capital formation in the economy is given by
∫

f (t)dt = K(t), where
K(t) denotes the level of capital at time t. Therefore, the total capital formation in the
economy during the first five years (that is, from time t = 0 to t = 5) can be written as∫ 5

0 f (t)dt = ∫ 5
0 10t3/4dt = [40t7/4/7]5

0 = 95.53. Therefore, the level of capital formation in
the economy is $95.53 billion during the first five years.

Example 9. Assume that the Oil and Natural Gas Commission of India (ONGC) estimates
that the yearly rate of oil extraction (in millions of barrels) from its offshore site Bombay
High is given by the function f (t) = 40e1−t . ONGC also believes that the stock of oil at
the site will be exhausted in 50 years. What will be total quantity of oil that the company
can extract from Bombay High if the above rate of extraction is continued for the next
50 years?

Solution. To find the total quantity of oil that can be extracted during the next 50 years
if the rate of extraction is f (t) = 40e1−t , we need to integrate the function with respect to
time from t = 0 to t = 50. Therefore, we obtain

∫ 50
0 f (t)dt = ∫ 50

0 40e1−tdt = [−40e1−t]50
0 =

−2.241+108.73 = 108.731. This means that the total quantity of oil that ONGC can extract
from Bombay High before oil deposits are exhausted is 108.731 million barrels.

Example 10. Assume that an individual has a choice of either going for work with only high
school education or going for work after obtaining an undergraduate degree in economics,
business, or finance. If the individual decides to go for work with only high school education,
the salary (in dollars) over the years will be given by the function g(t) = 8000e0.05 t ;
and if the individual decides to go for work after obtaining a degree, the salary over
the years will be given by the function f (t) = 12000e(0.05+0.02) t . If the individual works
for 25 years, what will be the difference in total salary earned over the entire period
of work?

Solution. Notice that the individual’s salary at the beginning of work (when t = 0)
will be g(0) = 8000e0.05×0 = $8000 with high school education and will be f (0) =
12 000e(0.05+0.02)×0 = $12 000 with a degree. Notice also that the total salary from work after
undergraduate education is given by the definite integral

∫ 25
0 f (t)dt = ∫ 25

0 12 000e(0.05+0.02) t

dt = ∫ 25
0 12 000e0.07 tdt = $815 075. Similarly, the total salary from work with only high

school education is given by the definite integral
∫ 25

0 g(t)dt = ∫ 25
0 8000e0.05 tdt = $398 455.

If we subtract the latter value from the former value, we obtain $416 620, which is the
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difference between the total salaries for work for 25 years with undergraduate education and
with only high school education.

Example 11. Assume that the total quantity of a good produced by a firm using capital (K)
and labor (L) is given by the Cobb–Douglas production function f (K,L) = K0.7L0.3. What
will be the total increase in output if the firm increases the quantities of capital and labor to
10 units each from the present levels of 5 units each?

Solution. Notice that the present integrand is a function of two variables, K and L, and,
therefore, the integrand will make a three-dimensional plane when it is graphed. As we
noticed in Section 8.4.11, the definite integral of this function over the intervals [5 ≤ K ≤ 10]
and [5 ≤ L ≤ 10] will give us the volume of the region below the graph of the function and
above the intervals. This area will be equal to the increase in output when the firm increases
capital and labor by the stated amounts.

We can now apply the method of evaluating definite integrals of multivariate integrands
covered in Section 8.4.11. Therefore, we can write the double-definite integral of the present
problem as

∫ 10
5 [∫ 10

5 [f (K,L)]dK]dL = ∫ 10
5 [∫ 10

5 [K0.7L0.3]dK]dL. Evaluating this integral

will yield
∫ 10

5 {[K1.7L0.3/1.7]10
5 }dL = ∫ 10

5 20.41L0.3dL = [20.41L1.3/1.3]10
5 = 186.013.

Therefore, the increase in output when the firm increases the quantities of capital and labor
from 5 units each to 10 units each will be 186.013 units.

8.4.13 Exercises

1. Evaluate the following definite integrals:
(i)

∫ 1
0 5dx; (ii)

∫ 1
0 5xdx; (iii)

∫ 1
0 x(1 − x)2dx; (iv)

∫ 1
0 (1 − x)4dx; (v)

∫ 1
0 (1/5x)dx;

(vi)
∫ 1

−1 (x2 + 1)3dx; (vii)
∫ 1

−1 ex2
dx; (viii)

∫ 1
−1 6e3xdx; (ix)

∫ 1
−1 [5/(5 + ex)]dx.

2. Evaluate the following definite integrals:
(i)
∫ 1

0 2x(x2 + 1)3dx; (ii)
∫ 1

0 [2x/(x2 + 1)3]dx; (iii)
∫ 1

0 [4x/((x2 − 1))]dx;

(iv)
∫ 1

0 2xex2+4dx.
3. Evaluate the following definite integrals:

(i)
∫ 1

0 xexdx; (ii)
∫ 1

0 2xe−4xdx; (iii)
∫ 1

0 5x(x − 1)1/2dx; (iv)
∫ 1

0 [x/(ex)]dx.
4. Evaluate the following definite integrals:

(i)
∫ 1

0 [(x + 2)/(x2 + 2x + 1)]dx; (ii)
∫ 1

0 [(x + 2)/(x2 − 2x + 1)]dx;

(iii)
∫ 1

0 [(x + 2)/(x3 − 2x2 + x)]dx.
5. Evaluate the following definite integrals:

(i)
∫ 1

0

∫ 1
0 x2y2dxdy; (ii)

∫ 1
0

∫ 1
0 (x/y)dxdy; (iii)

∫ 1
0

∫ 1
0

∫ 1
0 x2y2z2dxdydz;

(iv)
∫ 1

0

∫ 1
0

∫ 1
0 (2x + 2y + 2z)dxdxydz.

6. Find the volumes of the following regions defined by the given functions and the given
intervals using definite integrals:
(i) f (x) = x2 − 3x, 1 ≤ x ≤ 4; (ii) f (x) = 5 + x − x2, −2 ≤ x ≤ 2; (iii) f (x) = 2x2 +
x, −2 ≤ x ≤ 2; (iv) f (x,y) = xy, 0 ≤ x ≤ 2 and 0 ≤ x ≤ 2; (v) f (x,y) = x + y, 0 ≤ x ≤
2 and 0 ≤ x ≤ 2; (vi) f (x,y) = x − y, 0 ≤ x ≤ 2 and 0 ≤ x ≤ 2.

7. Application exercise. Suppose that a firm’s marginal cost in dollars of producing x units
of its output is given by f (x) = dC/dx = 10 + 0.4x, where C denotes the firm’s total
cost in dollars. Determine the change in the firm’s total cost if it decides to increase
output from x = 50 units to x = 60 units.
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8. Application exercise. Assume that a firm’s marginal revenue in dollars from the sale
of x units of its output is given by f (x) = dR/dx = 50/x1/2, where R denotes the firm’s
total revenue in dollars. Determine the change in the firm’s total revenue if it decides
to increase output from x = 100 units to x = 150 units.

9. Application exercise. Determine the coefficient of inequality for the Lorentz curve
f (x) = (5x2 + x)/6.

10. Application exercise. Assume that the inverse demand for a good is given by the function
f (x) = 25 − x2, where x denotes the quantity of the good demanded. Determine the
consumers’ surplus if the equilibrium price is $10.

11. Application exercise. Assume that the inverse supply of a good is given by the function
f (x) = 10 + x2, where x denotes the quantity of the good supplied. Determine the
producers’ surplus if the equilibrium price is $5.

12. Application exercise. Assume that the inverse demand for and supply of a good
are given by the functions f (x) = 10 − 0.5x and g(x) = 5 + 0.5x, respectively.
Determine the consumers’ surplus and producers’ surplus when the market is in
equilibrium.

13. Application exercise. Suppose that a person purchased a used car for $5000 the
value of which is expected to decline by f (x) = 5000e−0.06 x every year, where x
denotes time in years. What will be the total decline in the value of the car after five
years?

14. Application exercise. What will be the present value of receiving $1000 each year for
five years when the interest rate r = 0.1 is compounded continuously? What will be the
accumulated sum of these receipts?

15. Application exercise. Assume that the total quantity of a good produced by a firm using
capital (K) and labor (L) is given by the Cobb–Douglas production function f (K,L) =
K0.5L0.5. What will be total increase in output if the firm increases the quantity of
capital from 10 units to 20 units?

Web supplement: S8.4.14 Mathematica applications

8.5 Improper integrals

8.5.1 Introduction

In Section 8.4 we were primarily concerned with evaluating definite integrals whose limits
(both lower and upper) were well defined. In other words, these limits were assumed to be
finite numbers. But, one question emerges now is what happens if the limits tend to infinity.
We will see in Section 8.5.2 how we can integrate functions where the limits of integration
tend to infinity.

We have also integrated functions that could generate bounded regions. That is, we have
dealt with integrals with which we are able to measure areas of bounded regions. Sometimes
one may come across unbounded regions and want to determine the areas of such regions.
We will present this topic in Section 8.5.3.

In our exposition of integral calculus we have maintained an important assumption that
the integrands are continuous functions of some variable(s). But, as we saw in Section 1.8.4,
one can find many functions, in the subjects of our interest, which are discontinuous. How
can we integrate such functions? This topic will be presented in Section 8.5.4.
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Figure 8.5.1

8.5.2 Improper integrals: integration with infinite limits

As we mentioned in the last section, we sometimes need to evaluate definite integrals with
limits approaching infinity. This topic is taken up here. It is easier to understand the meaning
of improper integrals (with infinite limits) with the help of the graph of the function y = f (x)
illustrated in Figure 8.5.1.

Suppose that we want to evaluate the definite integral
∫ b

a f (x)dx. If the lower limit (a) of
this integral approaches negative infinity, or the upper limit (b) approaches positive infinity,
or both the lower and the upper limits approach infinity, negative and positive, respectively,
then we may write the integral as

∫ b

−∞
f (x)dx = lim

a→ − ∞

∫ b

a
f (x)dx (8.5.1)

∫ +∞

a
f (x)dx = lim

b→ + ∞

∫ b

a
f (x)dx (8.5.2)

and ∫ +∞

−∞
f (x)dx = lim

a→ − ∞,b→ + ∞

∫ b

a
f (x)dx (8.5.3)

respectively. In terms of the graph in Figure 8.5.1, the improper integrals in equations
(8.5.1)–(8.5.3) give the areas under the graph of the function and above the intervals[−∞, b],
[a,∞], and [−∞,+∞], respectively. The integrals in equations (8.5.1)–(8.5.3) are called
improper integrals or, more precisely, improper integrals with infinite limit(s). If the limits
in equations (8.5.1)–(8.5.3) exist, then the improper integral is said to be convergent; if the
limits do not exist, then the improper integral is said to be divergent.

As an example, consider the integral
∫ +∞

1 (1/x4)dx. Notice that this integral is an improper
integral because the upper limit of the integral is infinity and that the limits of this integral
are identical to those in equation (8.5.2) if we treat a = 1 and b → +∞. Therefore, we can
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write the integral in the form of equation (8.5.2) as
∫ +∞

1 (1/x4)dx = lim
b→+∞

∫ b
1 (1/x4)dx =

lim
b → +∞

[−x−3/3]b
1 = (−1/3b3) + 1/3 = 0 + 1/3 = 1/3. This result shows that the given

improper integral converges to 1/3.
As another example, consider the integral

∫ 0
−∞ e2xdx. Notice that this integral is an

improper integral because the lower limit of the integral is infinity and that the limits of this
integral are identical to those in equation (8.5.1) if we treat a → −∞ and b = 0. Therefore,
we can write the integral in the form of equation (8.5.1) as

∫ 0
−∞ e2xdx = lim

a→−∞
∫ 0

a e2xdx =
lim

a → −∞[e2x/2]0
a = lim

a→−∞[(1/2) − (e2a/2)] = (1/2) − 0 = 1/2. This result shows that the

given improper integral converges to 1/2.
As the last example, consider the improper integral

∫ +∞
−∞ e2xdx. Notice that this integral is

an improper integral because both the lower and the upper limits of the integral are infinity
and that the limits of this integral are identical to those in equation (8.5.3) if we treat a →
−∞ and b → +∞. Therefore, we can write the integral in the form of equation (8.5.3) as∫ +∞

−∞ e2xdx = lim
a→−∞,b→+∞

∫ b
a e2xdx. We have already evaluated the integral with its lower

limit tending to infinity in the last example and obtained
∫ 0

−∞ e2xdx = lim
a→ − ∞

∫ 0
a e2xdx =

1/2. We can now evaluate the integral with its upper limit tending to infinity to obtain∫ +∞
0 e2xdx = lim

b→ + ∞
∫ b

0 e2xdx = lim
b→+∞

[e2x/2]b0 = lim
b→+∞

[(e2b/2) − (1/2)] = ∞. Although

the part
∫ 0

−∞ e2xdx of the integral
∫ +∞

−∞ e2xdx converges to the finite value of 1/2, the other

part
∫ +∞

0 e2xdx does not converge to a finite value. Therefore the integral
∫ +∞

−∞ e2xdx does
not converge; instead, it diverges.

8.5.3 Improper integrals: integration with infinite integrands

In all our examples so far in the case of definite integrals, most of the integrands or the
functions we integrated were finite integrands or finite functions. What this means is that
most of the functions we integrated could give us a specific value for the function when the
variable of integration assumed any value within the interval over which integration was
carried out. Because of this nature of the integrands, we were able to measure the regions
under (above) the graph of the function and above (below) the specified interval. This implies
that all the regions we considered so far were bounded regions or regions bounded by the
function and the interval(s). But, some integrands can generate unbounded regions, even with
finite limits, as the region illustrated in Figure 8.5.1.

Notice that the graph of the function f (x) in Figure 8.5.1 is continuous and is not defined
at a = 0. When x → 0, f (x) becomes infinite. The problem now is to evaluate the integral∫ b

a f (x)dx; that is, to determine the area under the graph of the function and over the half-
open interval (a, b]. How do we proceed? The trick is as follows. Suppose that we pick a
number k in (a, b]. Therefore, we can write the integral as

∫ b

a
f (x)dx = lim

k→0+

∫ b

a+k
f (x)dx (8.5.4)

If the limit exists, then the integral in equation (8.5.4) is said to be convergent. The integral
in equation (8.5.4) is another type of improper integral or, more specifically, improper integral
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with infinite integrand. In the spirit of equation (8.5.4), we can also write

∫ b

a
f (x)dx = lim

k→0+

∫ b−k

a
f (x)dx (8.5.5)

Sometimes, we may need to integrate functions that are not defined at both limits; that
is, the integrand is not defined at both a and b. In this case, we can apply Property III
(equation (8.4.17)) of definite integrals. Therefore, we can write, with a number c that lies
between a and b,

∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ d

c
f (x)dx (8.5.6)

if the integrals on the RHS of equation (8.5.6) converge.
As an example, consider the integral

∫ 4
k f (x)dx = ∫ 4

k (1/
√

x)dx. Therefore, following

equation (8.5.4), we can write the integral as
∫ 4

k f (x)dx = ∫ 4
k (1/

√
x)dx = [2x1/2]4k =

4 − 2k1/2. This result approaches 4 when k → 0. Therefore, the improper integral in the
present example is convergent and the area below the graph of the function and the half-open
interval (a, b] is 4 units.

As another example, consider the integral
∫ 1

−1 (1/x2)dx. Notice that this integral is an
improper integral because the integrand approaches infinity as x approaches zero. Suppose
that we write this integral as the sum of two integrals:

∫ 1
−1 (1/x2)dx = ∫ 0

−1 (1/x2)dx +∫ 1
0 (1/x2)dx = ∫ 0

−1 x−2dx + ∫ 1
0 x−2dx. Notice that the last equation is similar to

equation (8.5.6). Let us now evaluate the last integral using equation (8.5.5). The first part of
the last integral can be evaluated to obtain

∫ 0
−1 x−2dx = lim

k→−0

∫ k
−1 x−2dx = lim

k→−0
[−1/x]k−1 =

lim
k→−0

[(−1/k)+1] = ∞. Similarly, the second part of the integral can be evaluated to obtain∫ 1
0 x−2dx = lim

k→+0

∫ 1
k x−2dx = lim

k→+0
[−1/x]1

k = lim
k→−0

[−1 + (1/k)] = ∞. These two results

imply that
∫ 1

−1 (1/x2)dx = ∫ 0
−1 (1/x2)dx+∫ 1

0 (1/x2)dx = ∫ 0
−1 x−2dx+∫ 1

0 x−2dx =∞+∞=
∞; that is, the integral is infinity and, therefore, it is divergent.

8.5.4 Integrals of discontinuous functions

As we mentioned in Section 8.5.1, in our exposition of integral calculus so far we have
maintained an important assumption that the integrands are continuous functions of some
variable(s). But, as we saw in Section 1.8.4, one can find many functions, in the subjects of
our interest, which are discontinuous. As an example, consider the graph of the function in
Figure 8.5.2(A). How do we integrate the discontinuous function y = f (x) in this figure over
the interval [a, d]?

Our problem is to integrate the discontinuous function y = f (x) in Figure 8.5.2(A) over
the interval [a, d] or to determine the area under the graph y = f (x) and above the interval
[a, d]. For this we can proceed as follows. Assume that a function g(x) is equal to f (x) in
the subinterval [a, d] that has the same value as f (x) when x → −b. Then, we can write∫ b

a f (x)dx = ∫ b
a g(x)dx. The portions of the function f (x) corresponding to other subintervals
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can be treated similarly. Therefore, we obtain the result

∫ d

a
f (x)dx =

∫ b

a
g(x)dx +

∫ c

b
h(x)dx +

∫ d

c
j(x)dx (8.5.7)

where h(x) and j(x) are functions that are considered to be equal to the function f (x) in
intervals [b, c) and [c, d], respectively. Therefore, equation (8.5.7) shows that the integral∫ d

a f (x)dx is equal to the sum of the integrals
∫ b

a g(x)dx,
∫ c

b h(x)dx, and
∫ d

c j(x)dx; or the area
aeghijd is equal to the sum of the areas aegb, bhijc, and cjd.

8.5.5 Application examples

Example 1. Suppose that a bond possessed by an individual gives a perpetual cash flow
of $1000 every year and that the discount rate is 8 percent. Determine the present value of
this bond or the present value of the perpetual cash flow in this case.

Solution. We saw in the solution to example 5 in Section 8.4.12 that the present value of
a continuous stream of future receipts (Ft) with discount rate (r) for a finite period of time
(T ) is given by equation (8.4.32):

∫ T
0 Fe−r × tdt = [Fe−rt/(−r)]T0 = (F/r).[1 − e−rt]. Since

in the present example the receipts are perpetual, the last equation can be written, using
equation (8.4.12), as

∫ +∞

0
Fe−r×tdt = lim

T→+∞[
∫ T

0
Fe−r tdt] = lim

T→+∞[(F/r) × (1 − e−r t)]T
0 = F/r (8.5.8)

Notice that the last integral represents an improper integral. In the present example,
F = 1000 and r = 0.08. Then applying the last result we obtain

∫ +∞
0 Fe−r×tdt =

lim
T→+∞[∫ T

0 1000e−0.08t]dt = F/r = 12 500. Therefore, the present value of a bond that

gives a perpetual cash flow of $1000 at discount rate of 8 percent is $12 500.
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Example 2. Suppose that the inverse demand function for a good is given by p = 100/q2,
where p denotes the price in dollars per unit of the good and q denotes the quantity of the
good demanded. Determine the consumers’ surplus when the price is p = $25.

Solution. We need to determine the consumers’ surplus when the price is $25. Consumers’
surplus is equal to the area under the graph of the demand function and above the price. But,
notice that the area is unbounded because it tends to infinity as q → 0 or as p → ∞.

However, we know that the required area is equal to the integral
∫ +∞

25 f (q)dq =∫ +∞
25 (100/q2)dq. Notice that this integral is similar to the integral in equation (8.5.2) and,

therefore, we can write it as
∫ +∞

25 f (q)dq = lim
b→+∞

∫ b
25 f (q)dq. This last integral can be evalu-

ated to obtain
∫ +∞

25 f (q)dq = lim
b→+∞

∫ b
25 f (q)dq = lim

b→+∞
∫ b

25 (100/q2)dq = lim
b→+∞

[−100/q]b
25

= lim
b→+∞

[(−100/b) + 4] = 4. Therefore, the consumers’ surplus in the present example is

equal to $4.

Example 3. Suppose that the inverse demand function for a good is given by p = 100/q,
where p denotes the price in dollars per unit of the good and q denotes the quantity of the
good purchased. Determine the consumers’ surplus when the price is p = $25.

Solution. Let us first plot the graph of the demand function p = f (q) = 100/q, which is
illustrated in Figure 8.5.2(B). We need to determine the consumers’ surplus when the price
is $25. Consumers’ surplus is equal to the area under the graph of the demand function
and above the price. This implies that we need to determine the area under the graph of
the function and above the line BC. But, notice that the area is unbounded because it tends
to infinity as q → 0 or as p → ∞. But, we know that the required area is equal to the
integral

∫ +∞
25 f (q)dq = ∫ +∞

25 (100/q)dq. Notice that this integral is similar to the integral in

equation (8.5.2) and, therefore, we can write it as
∫ +∞

25 f (q)dq = lim
b→+∞

∫ b
25 f (q)dq. This last

integral can be evaluated to obtain
∫ +∞

25 f (q)dq = lim
b→+∞

∫ b
25 f (q)dq = lim

b→+∞
∫ b

25 (100/q)dq =
lim

b→+∞
[100 × lnq] b

25 = lim
b→+∞

[100 × lnb − 100 × ln 25] = ∞. Therefore, the consumers’

surplus in the present example is equal to infinity. This suggests that the integral in the
present example is divergent.

8.5.6 Exercises

1. Evaluate the following integrals if they exist. Which of them are divergent or
convergent?
(i)
∫ +∞

0 (1/x)dx; (ii)
∫ 0

−∞ (1/x)dx; (iii)
∫ +∞

1 (1/
√

x)dx; (iv)
∫ +∞

−∞ (2 + 2x)dx;

(v)
∫ +∞

0 e1−xdx; (vi)
∫ +∞

0 e−rxdx; (vii)
∫ 0

−∞ e−rxdx; (viii)
∫ +∞

0 e2xdx; (ix)
∫ 0

−∞ e2xdx;

(x)
∫ +∞

3 [1/(x − 2)2]dx.
2. Application exercise. Suppose that a piece of land gives a perpetual cash flow of $1 000

every year and that the discount rate is 6 percent. Determine the present value of this
piece of land.

3. Application exercise. Suppose that the inverse demand function for a good is given by
p = 3

√
125/q, where p denotes the price in dollars per unit of the good and q denotes the
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quantity of the good purchased. Determine the change in consumers’ surplus when the
price declines from $27 to $8.

4. Application exercise. Assume that the per capita income in an economy is expected to
grow at f (t) = 80 000/(2 + t)2. What will be the long run (that is, t → ∞) per capita
income in the economy?

Web supplement: S8.5.7 Integration and probability distributions
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Notes

1 Review of basics

1 A phantasmagoria is a fast-changing and confused group of real or imagined images, one following
the other, as in a dream.

2 A list of Greek letters is given at the end of the book.
3 Notice that the radical sign (

√
), by default, refers to the positive root. Therefore, 41/2 = ±2 but√

4 = +2.
4 Notice that, although Properties I through VII are expressed in natural logarithmic forms (ln)

for convenience, all these properties (except III and IV) are equally applicable for common
logarithms.

5 We present three methods here. The fourth method, using matrices, will be presented in Chapter 2.
6 Although we use mainly the < sign, these properties are applicable to signs ≤, ≥, and >.
7 Notice that the quantity of goods cannot be negative. Therefore, the nonnegative constraint is

implicitly assumed in this example.
8 Notice that we are at the moment considering univariate functions; that is, functions with one

independent variable (say, x). Later we will consider multivariate functions; that is, functions with
more than one independent variable.

9 A function is a one-to-one function if each value in the range corresponds to exactly one value in
the domain. A function is an onto function if each value in the range corresponds to more than one
value in the domain.

2 Linear algebra: vectors and matrices

1 Notice that, for the properties to hold, all the vectors must be of the same dimension.

4 Classical optimization

1 “Optima” is the plural of “optimum,” and “extrema” is the plural of “extremum.”
2 Although a relative minimum and a relative maximum occur at point F and G respectively in

Figure 4.2.2, we have ruled out these cases as the first derivative is not defined at these points.
3 Notice that points A and B are inflection points.
4 Notice that the SOC or the sufficient conditions (4.2.3) and (4.2.4) are similar to the second

parts of the conditions (4.2.1) and (4.2.2), respectively. Since it is much easier to work with the
inequalities in (4.2.3) and (4.2.4), we will use them in our later presentations.

5 It is much easier to work with differentials when we have a multivariate objective function. This
is the reason why we introduce the application of differentials in optimization problems. However,
one may still find it easier to work with the FOC and SOC using the derivatives stated in the
previous section.

6 Although one can use the discriminants, the Hessians, or the characteristic roots to determine the
sign of the quadratic forms (as presented in Sections 2.8.2–2.8.4), we will use the discriminants.

7 The Lagrangian function can also be set up as L = h(x1,x2,λ) = x1/2
1 +x1/2

2 −λ(2x1 +4x2 −40). We
follow the form in equation (4.4.3) because we can use it to interpret the meaning of the Lagrangian
multiplier.
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8 All economic agents will be at some point on the budget constraint when the agents optimize their
objective functions. This implies that, as in the present example, the agent utilizes the complete
resource. Then the constraint is said to be a binding constraint. A binding constraint is a special
feature of optimization with equality constraints. In optimization problems involving inequality
constraints, the available resources may or may not be utilized completely. In this case, the constraint
is said to be a nonbinding constraint.

5 Linear programming

1 An extreme point or a basic solution can be found by using the basis theorem. This theorem states
that a solution in which at least n−m variables equal zero is an extreme point. Then, one can find an
extreme point or a basic solution by setting n−m variables equal to zero and solving the m equations
for the remaining m variables. The total number of basic solutions or extreme points can be found
by applying the formula for combinations, n!/(m!(n − m)!), given in equation (1.10.12).

2 The bottom row of the first column of the tableau contains the value 	j − πj . Although we
will hereafter drop πj from this position for convenience, it will still contain the value 	j − πj .
See equations (5.3.11) and (5.3.15) for more on	j and 	j −πj .
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absolute maximum 196, 201, 204, 215
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267; inequalities 34; properties of 34
accounting price 292
accumulated sum 457, 458
aggregate consumption 145
aggregate saving 145
algorithm 264
annual compounding 421
anti-differentiation 423, 446: partial 432
area: under a curve 442, 448–9; between curves

449–50, 454–5; exhaustion method of
calculating 437–43

arithmetic mean 67, 450
arithmetic operations 7
arithmetic progression 57–8, 63
Arrow-Enthoven theorem 349
assignment problems 301, 310–11: balanced

311–12; Hungarian method of solving
311–13; unbalanced 311, 312–13

associative law: of matrix operations 84, 86; of
real number operations 9; of set operations 5;
of vector operations 72, 73

augmented matrix 89: elementary row operations
on 89–90; row reduction of 91

augmented objective function 255
autonomous consumption expenditure 188
autonomous government expenditure 188
autonomous investment 188, 189
autonomous tax 188–9
average cost 48, 55, 203, 205, 218, 383, 285,

398–9
average rate of change 129
average value of a function 450–2
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basis 264
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379–80

Bertrand duopoly market 207, 374, 397, 398
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constrained
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boundary condition 423
boundary-value problem 431
budget constraint 221–2, 222, 223, 225, 226,

237–8, 240, 241–2, 326: intertemporal 328
budget equation 36
budget line 36, 79, 190, 221–2, 222, 238, 326
budget set 36

capital formation 459
cartel 410
Cartesian coordinate system 37, 38, 39
Cartesian product 39
cash flow, perpetual 465
centre of expansion 169
certain end 408, 409, 410
CES production function see constant elasticity

of substitution production function
characteristic equation 124–6
characteristic polynomial 124;

see also characteristic equation
characteristic roots 124; see also eigenvalue
characteristic vector 124; see also eigenvector
chronological interactions 392
Cobb-Douglas production function 47–8, 47,

178–9, 189, 240, 460: properties of 176–7
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multivariate functions 452–4, 459–60; partial
452–3; properties of 446–7; triple- 454

degeneracy 256, 259
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62, 143, 145, 146, 147, 167, 216, 383, 384,
397, 434, 435, 466; inelastic 145; law of 145;
point elasticity of 144–5, 146–7, 435; theory
of 150; unitary elastic 145

dependent variable 14
derivative(s), multivariate functions: cross

partial 175; first partial 175; first total 186;
higher partial 175; implicit partial 187–8;
mixed partial 175; nth partial 175; partial
114–15, 173–5; second partial 116–17, 123,
124, 175; second total 186–7; third partial
175; total 185–7, 189

derivative(s), univariate functions 130–2: of
combinations of functions 136–7; of
composite functions 138–9; of a constant
function 135; and curvature of curves 152–3,
154, 158–61; of exponential functions 140–1;
of functions with a constant 136; higher order
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148–9; of implicit functions 142; of inverse
functions 141–2; l’Hôpital’s rule and 149–50;
of logarithmic functions 139–40; nth 148;
nth-order 148; of power functions 135; of
product of two functions 137; of quotient of
two functions 138; second 148; second-order
148; third 148; third-order 148

destinations 301
determinant of matrix of second partial

derivatives 117–20, 212: first principal minor
of 117–19, 212; second principal minor of
117–19, 212; sub- 117

determinants 95: bordered Hessian 121–4;
evaluating 95–8; expansion by co-factors
evaluation of 98; of 4x4 matrices 98; Hessian
120; Laplace expansion of 98; main diagonal
elements of 95; of matrix of second partial
derivatives see determinant of matrix of
second partial derivatives; off-diagonal
elements of 95; properties of 96–7; Saurrus’
rule for evaluating 96; sub- 117; sub-matrices
and 97–8; of 3x3 matrices 96; of 2x2 matrices
95; vanishing 96

diet problem 248, 254
difference, set 4, 4
difference equations 421
difference quotient 129
differentiability, univariate functions: continuity

condition for 132; necessary condition for
132; smooth function condition for 132;
sufficient condition for 132

differential calculus 128; see also differentiation
differential equations 421
differentials, first 181
differentials, multivariate functions: first total

184; higher 183; higher total 183–4; negative
definite total 117–18; negative semidefinite
117; nth 183; partial 183, 188–9; positive
definite total 117–18; positive semidefinite
total 117; rules of 184; second 183;
second total 184; third 183; total 116–17,
182–3, 189

differentials, univariate functions 180–2:
higher 183

differentiation: of multivariate functions
see differentiation, multivariate functions; of
univariate functions see differentiation,
univariate functions

differentiation, multivariate functions 173:
composite 184–7; higher partial 175; implicit
187–8; partial 173–4; total 185–7

differentiation, univariate functions 131–2: chain
rule of 138–9; composite function rule of
138–9; constant function rule of 135;
difference rule of 136–7; exponential rule of
140–1; function-with-constant rule of 136;
higher order 148–9; implicit function rule of

142; inverse function rule of 141–2;
logarithmic 142; logarithmic rule of 139–40;
power function rule of 135; power rule of 139;
product rule of 137; quotient rule of 138; sum
rule of 136–7

diminishing returns 176, 177–8, 386: law of 151;
to scale 176

direct product 39
discounting 408, 457
discount rate 457, 465
discriminant of quadratic form 117–20, 212
discriminating monopolist 216
disjoint sets 4
displacement ratio 267
disposable income 168, 188
distance 75
distribution parameter 48, 177
distributive law: of matrix operations 86; of real

number operations 9; of set operations 5;
of vector operations 72, 73

domain 40
dual 287; see also linear programming problems,

dual
duality theorems 289–90
dual simplex method 295–7
dummy destination 309
dummy source 308
duopolist 204
dynamic analysis 420–1
dynamic games 354: backward induction

solution method for 394–9, 402–3; extensive
form representation of 393, 393, 394, 396;
subgame perfect Nash equilibrium solution of
392, 402–6; vs. static games 392; weakness of
Nash equilibrium in 394; see also game theory

dynamics 420

e 61: series expansion of 61–2
econometrics 69
eigenvalue 124–6
eigenvector 124–6
elasticity of output 47, 176
elasticity of substitution 176, 177, 178, 240,

241, 242
empty set 3
empty threat 394
equality, set 3
equations 14: constant 16; cubic 16, 17;

exponential 16–17; functions vs. 41;
higher-powered 16; intercepts of 15; linear
see linear equations; logarithmic 16–17;
multivariable 14; nonlinear 16, 22;
one-variable 14–15; parameters of 15;
polynomial, general 15–16, 116; quadratic 16,
17–18, 116; rational 16, 18; single-variable
14–15; solution of 14, 17–18; supply 18,
24–7; types of 15; univariate 14–15
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equilibrium 24
equilibrium point 412
equilibrium price 24–6, 386, 420, 455–6
equilibrium quantity 24–7, 455–6
equi-marginal principle 238
equi-marginal utility 238
Euclidian n-space 74
Euler’s theorem 176, 177, 178
excess demand (ED) 24, 25
excess supply (ES) 24; see also surplus
expected return 47
expected value 375
exponential series 62
exponents 9–10: irrational 11; power rule of 10;

product rule of 10; quotient rule of 10; rational
10–11

extrema 194: constrained see constrained
multivariate functions;
quasiconcavity/quasiconvexity and
constrained 236–7; unconstrained bivariate
function see extrema, unconstrained bivariate
function; unconstrained n-variable function
see extrema, unconstrained n-variable
function; unconstrained trivariate function see
extrema, unconstrained trivariate function;
univariate function see extrema, univariate
function

extrema, unconstrained bivariate function:
convexity/concavity and 215; necessary
condition using derivatives for 208–11, 210;
necessary condition using differentials for
211–13, 211, 212; sufficient condition using
derivatives 209–11, 210; sufficient condition
using differentials 211–13, 211, 212

extrema, unconstrained n-variable function:
convexity/concavity and 215–16; necessary
condition using differentials for 214–15, 215;
sufficient condition using differentials
214–15, 215

extrema, unconstrained trivariate function:
necessary condition using differentials for
213–14, 213; sufficient condition using
differentials 213–14, 213

extrema, univariate function 194–6, 203–7:
absolute 200–2; convexity/concavity and 202;
necessary condition using derivatives for
196–7, 198; necessary condition using
differentials for 199–200, 201; sufficient
condition using derivatives 197–8, 198;
sufficient condition using differentials
200, 201

extreme point 211, 246, 263
extreme point theorem 249, 251
extreme values see extrema
extreme-value theorem 201
extremum: global 196; relative 196;

see also extrema

factorial(s) 59–60: n 59
feasibility criterion 277–8, 293, 295, 296, 297,

298–9: dual 295
feasibility test 279, 281
feasible basis 276, 293
feasible points 245
feasible region 245: bounded 246; empty 246,

256–7; nonempty 246; unbounded 246, 256–7,
463; well-behaved 344

finite set 3
first differentials 181; see also differentials,

univariate functions
first-order condition (FOC) 116: for constrained

bivariate function extrema 223, 224–6, 228,
228–9; for constrained n-variable function
extrema 231–5, 233, 234; for constrained
trivariate function extrema 229–31, 230;
Kuhn-Tucker 332–5; for unconstrained
bivariate function extrema 208–13, 210, 211,
212; for unconstrained n-variable function
extrema 214–15, 215; for unconstrained
trivariate function extrema 213, 213–14; for
univariate function extrema 196–7, 198,
199–200, 201, 203–6; see also necessary
condition

Fisher index number 67
fixed-point theorem 378
FOC see first-order condition
free optimization problem 220, 221, 236
function(s): antitonic 47; approximation of a

169; area 444; augmented objective 255;
average 241, 242; average value of a 450–2;
best-response 369–70, 374, 385, 392;
Cobb-Douglas utility 326, 329; combination
of 42–3, 48; composite 43; composition of 43,
48; compound 43–4, 48–9; concave see
concave functions; constant 44, 45;
continuous 44–5, 54–5, 132, 461, 464; convex
see convex functions; cost 48, 133–4, 144,
151, 194, 203, 206, 251, 262, 316, 384, 434,
435–6, 459; cubic 44, 45; curvature of
see curvature; definition of 40; derivative of
130–2; derived 130, 421; differentiability of
132; differentiation of see differentiation;
discontinuous 45, 45, 54, 464–5; equations vs.
41; expansion of 169; see also Maclaurin
series; Taylor series; explicit 46: exponential
44, 45; finite 463; function-of- 43;
homogeneous 176; implicit see implicit
functions; intertemporal utility 328; inverse
45–6, 46; isotonic 47; Lagrangian see
Lagrangian function; linear 44, 45, 245;
logarithmic 44, 45; logarithmic composite
function 140; marginal 131, 241, 242;
maximum of 116; minimum of 116;
monotonic 47; multivariable 47; multivariate
see multivariate functions; objective 193;
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one-to-one 45; onto 46; optimum of 116;
parental 423; payoff 354; piecewise 43–4,
51–2, 52; polynomial 44, 169; primitive 130,
421, 431; profit 63, 194, 205–7, 216, 250, 255,
262, 316–17, 383, 385, 398, 421, 422, 435,
451–2; progeny 423; quadratic 44, 45;
quasiconcave see quasiconcave functions;
quasiconvex see quasiconvex functions;
reaction 204, 205, 206–7, 206, 370, 385, 397,
398, 399; smooth 45, 132, 201; social benefit
function 194; step 45, 46; transformation of a
169; trivariate 213; univariate see univariate
functions; utility 190, 193

future value 458

game(s): Battle of the Sexes 358–9, 360, 372–3,
379–80; classification of 354; of complete
information 354; of conflict 358; see also
Prisoner’s Dilemma game; constant-sum 355,
358; cooperative 355, 358–9, 360; definition
of 354; dynamic see dynamic games; entry
393; fair 412; first mover advantage in 405; of
imperfect information 355, 403; of incomplete
information 355; lower value of the 412;
Matching Pennies 357–8, 360, 373–4, 378–9,
412–16, 418–19; multiperiod 354; multistage
354; see also dynamic games; non-cooperative
355, 357–8, 359–60; nonzero-sum 355,
358–60, 363–6; normal-form representation of
355–6; one-shot 354; see also static games;
one-time 354; see also static games; outcomes
see outcomes, game; payoff matrix
representation of 355–6; of perfect
information 355; Prisoner’s Dilemma 358,
359–60, 361, 371–2; problem of the commons
386–8; repeated see repeated games;
risk-averse approach to 381; root of the 356;
sequential 354 see sequential games;
simultaneous 354; see also static games;
single-period 354; static see static games;
strategic-form representation of 355; strategies
see strategy; strictly determinable 412; theory
see game theory; trees 356, 356–7; upper
value of the 412; value of the 412;
variable-sum 355, 358; zero-sum see zero-sum
games; see also subgames

game theory 353–4: definition of 354; dominated
strategies 360–5; fundamental theorem of 412;
and linear programming 416–20; maximin
strategies 380–2, 388–90, 411–12; minimax
regret strategies 382; minimax strategies
411–12; minimax theorem 416; mixed
strategies 354, 374–5, 412–16; Nash
equilibrium see Nash equilibrium; strictly
dominant strategies 359–60; see also
game(s)

game trees 356, 356–7: vs. decision trees 356

Gauss-Jordan elimination method: for finding
inverse of a square matrix 103–5; for solving
SSLEs 91, 93, 103

geometric progression 58–9, 63: finite 59;
infinite 59

geometric series 59, 64
global extremum 196
globality theorem 263
global maximum 196, 204, 215–16, 236, 263,

332, 334, 346, 349
global minimum 196, 202, 203, 215–16, 236,

263, 333, 334, 346, 349
growth: factor 457; rate of 457

half-space 262: closed 262; open 262
Hessian determinant 120: bordered see bordered

Hessian
Hessian matrix 120: bordered 121–2
horizontal change 19: ratio of vertical change

to 19
hyperplanes 79: feasible 262; objective 262;

supporting 263

implicit functions 46, 46: differentiation of 142;
differentiation of multivariate 187–8;
production 190; utility 190

implicit function theorem 187
implicit production function 190
implicit utility function 190
imputed values 292, 293, 300, 336
income: disposable 168, 188; distribution of 454;

national 64, 145, 176, 177, 188
increasing returns to scale 176
indefinite integrals 421, 423: derived from

definite integral 447–8; double- 433; multiple
433–4; partial 432–3; triple- 433

independent variable 14
index of summation 65
indifference curve 152, 189–90, 238, 326, 347
indifference map 326, 347
inequalities: double 29, 29; linear see

inequalities, linear; nonlinear 28; strong 163;
weak 163

inequalities, linear 244: properties of 29; solution
of 29–30, 34–5; systems of 31–2; in two
variables 30–1, 30, 40, 35–6

inequality constraints, 28, 221, 245, 316
inferior good 179
infinite set 3
infinitesimally small 130
infinite solution 21
initial condition 423
initial simplex tableau 266–7, 267, 271, 271,

274, 274, 283, 283, 284, 285
initial-value problem 431
inflection point 160–1
input-output analysis 69
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input plane 80
input space 80
integers 7
integral calculus 421, 422: fundamental theorem

of 444–6; see also integrals; integration
integrals: definite see definite integrals; double

433; improper 462–6; indefinite see indefinite
integrals; multiple 433–4, 453–4; partial
432–3, 452–3; Riemann 437; see also definite
integrals; table of 430; triple 433; see also
integral calculus; integration

integral sign 423
integrands 423: finite 463; infinite 463–4
integration 422: with boundary conditions 431;

constant function rule of 424, 434; constant
multiple of a function rule of 426; constants of
422–3; differentiation vs. 423; of
discontinuous functions 464–5; exponential
function rule of 425, 434; with infinite
integrands 463–4; with infinite limits 462–3;
with initial conditions 431; limits of 443, 452,
461; logarithmic rule of 424–5, 434; lower
limit of 443; multiple 433–4; of multivariate
functions 432–4, 452–4; partial 432–3; by
partial fractions 429–30, 435–6; by parts
428–9, 435; power function rule of 424;
substitution rule of 426–8, 435;
sum-difference rule of 426; by tables 430;
upper limit of 443; variable of 423; see also
integral calculus; integrals

intercept 15: x- 15; y- 15
intersection: of a line with a curve 129; set 4, 4, 5
intertemporal utility 328
intervals 28, 32–3: bounded 32; closed 32, 32,

33; half-closed 32, 32; half-open 32, 32, 33;
open 32, 32, 33

inverse: functions 45–6, 46, 141–2; demand
curve 26, 27; demand function 49, 56, 62, 143,
145, 146, 147, 167, 216, 383, 384, 397, 434,
435, 466; Gauss-Jordan elimination method of
finding matrix 103–5; laws of real numbers 9;
of a matrix 91, 102–5, 111–12; multiplicative
102; supply curve 26, 27

investment multiplier 64
isocost line 80, 190–1, 239, 251–2, 255, 327
isoprofit lines 250, 252, 253, 254, 258
isoquant 190
isoquant map 327, 348
iterated elimination of strictly dominated

strategies 360–4, 368–9
iteration 264–70

Jacobian see Jacobian determinant
Jacobian determinant 114–15
Jacobian matrix 113–15
Jacobian test 115
Jensen’s inequalities 157

Kuhn-Tucker conditions 322: boundary
irregularities and 344–5; complementary
slackness condition and 335–43; concave
programming and 345–8; economic
interpretations of 335–7; examples of 337–40,
341–3; Lagranian forms and 333–5; marginal
condition and 335, 336, 340, 341;
nonnegativity condition and 331–3, 335;
quasiconcave programming and 349

Kuhn-Tucker sufficiency theorem 346, 349

Lagrangian function 120–3, 224–34, 237–41,
333–5, 337–44, 349–50, 378

Lagrangian method see Lagrange multiplier
method

Lagrangian multiplier 120, 224–9, 235–8
Lagrange multiplier method 224–9, 228, 237–42
Laplace expansion 98
Laspeyres price index 67
latent root 124; see also eigenvalue
latent vector 124; see also eigenvector
law of demand 145
law of diminishing marginal utility 150
law of diminishing returns 151
leader-follower model 397
least common denominator 21
l’Hôpital’s rule 149–50
limits 50–2, 51, 52: of average rate of change

130; continuity and 53–5; evaluation of 53, 55;
of integration 443, 452, 461; left-side 50–2;
one-sided 50; properties of 52; right-side 50–2

line(s): finding equation for straight 18–20,
23–4; literal description of 18; parallel 20;
parametric equation of 77; parametric
representation of 77; perpendicular 20; secant
129–30; tangent 129–30

linear equations 16: solution of 17; systems of
20–2; see also line(s)

linear programming (LP) 152, 244–6: additivity
assumption in 246; assumptions of 246;
divisibility assumption in 246; and game
theory 416–20; geometric method 249;
graphical method 249–55, 257–9;
proportionality assumption in 246; simplex
method see simplex method; slack/surplus
variables and 255–6; tabular approach
266–75, 282–3; see also linear programming
problems; nonlinear programming

linear programming problems: alternative 271;
assignment see assignment problems; dual see
linear programming problems, dual; longhand
form of 260, 261; mathematical form of
259–61; matrix form of 260, 261; nonlinear
programming problems vs. 325–6; optimal
solution existence for 261–3; sensitivity
analysis of solutions of 293, 297–9; shorthand
form of 260; solving see linear programming;
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standard forms of 259–61; transportation
see transportation problems; see also linear
programming

linear programming problems, dual 286–9:
duality theorems and 289–90; dual simplex
method for solving 295–7; economic
interpretations of 292–3, 299, 300;
relationships with primal problem 289; revised
simplex method for 293–5; tabular solution of
290–1, 300; two phase solution of 299–300;
see also linear programming

local maximum 196, 202, 215, 216, 236, 263,
331–2, 333, 346

local minimum 196, 202, 215, 216, 236, 263,
332–3, 335, 346

logarithms 11: change of base formula of 13;
common 11–12; inversion of base formula of
13; natural 11–12; properties of 12–13

Lorentz curve 454–5: coefficient of inequality
for 454–5

Maclaurin expansion see Maclaurin series
Maclaurin series 169–71: vs. Taylor series 172;

with remainder 172
mapping 40
margin 130
marginal analysis 128, 131
marginal cost 128, 133–4, 143–4, 151, 336, 383,

385, 434–6, 459
marginal function 131, 241, 242
marginal product 128, 131, 134: of capital 174,

176, 178; of labor 151, 174, 176–7, 178
marginal propensity to consume 64, 134, 145
marginal propensity to save 134, 145
marginal rate of substitution 190, 238
marginal rate of technical substitution 191
marginal return 128, 131
marginal revenue 128, 131, 143, 145–6, 147, 151
marginal social benefit 128, 131, 134
marginal social cost 128, 131
marginal utility 128, 131, 133, 144, 150, 238,

434: of money 238
Marshall-Edgeworth index number 67
Matching Pennies game 357–8, 360, 373–4,

378–9, 412–16, 418–19
matrices 65–6, 81–2: addition of see matrix

addition; adjoint 99, 102–3; augmented
see augmented matrix; characteristic 124;
characteristic equation of 124; characteristic
roots of 124; co-factor 99, 103; column 83;
determinants of see determinants; diagonal
82; diagonal elements of 82; diagonal of 82;
dimension of 82; equality of 83; Hessian
see Hessian matrix; identity 82; inverse of 91,
102–5, 111–12; invertible 102–3; Jacobian
113–15; linear independence of rows/columns
of 108–9, 113; lower triangular 82; main

diagonal of 82; minor of 97, 109;
multiplication of see matrix multiplication;
nonsingular 111, 113; null 82; order of 82;
rank of 108–9; rectangular 82; reduced row
echelon forms of 91; row 83; row echelon
forms of 91–2; scalar multiplication of see
matrices, scalar multiplication of; of second
partial derivatives see matrix of second partial
derivatives; singular 111, 113; singularity of
115; size of 82; skew symmetric 86; square
see square matrix; and SSLEs 87–91; sub- 97;
subtraction of see matrix subtraction;
symmetric 86; trace of 125; transposition of
see matrix transposition; triangular 82; unit
matrix 82; upper triangular 82

matrices, scalar multiplication of 83: properties
of 83

matrix see matrices
matrix addition 83–4: conformability condition

for 84; properties of 84
matrix multiplication 84–6: conformability

condition for 85–6; properties of 86
matrix of second partial derivatives: determinant

of see determinant of matrix of second partial
derivatives; trace of 125

matrix subtraction 83–4: conformability
condition for 84; properties of 84

matrix transposition 86–7: properties of 87
maximin principle 411, 412
maximization 194: constrained 221–3
maximize 412
maximum value: absolute 196, 201, 204, 215; of

function 116; global 196, 204, 215–16, 236,
263, 332, 334, 346, 349; local 196, 202, 215,
216, 236, 263, 331–2, 333, 346; relative
196–200, 204, 208, 211, 215, 331; see also
extrema

mean deviations 67
mean-value theorem 172
method of exhaustion 437–43, 453–4
method of undetermined coefficients 429
minimax principle 412
minimax theorem 416
minimization 194
minimizer 412
minimum value: absolute 196, 201, 202, 203,

215; of function 116; global 196, 202, 203,
215–16, 236, 263, 333, 334, 346, 349; local
196, 202, 215, 216, 236, 263, 332–3, 335, 346;
relative 196–200, 203, 208, 210, 215, 332;
see also extrema

minors 97: bordered principal 121; nth bordered
principal 121; second bordered principal 121;
signed 97

modulus 33
monomial 16
monopoly 383–4
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multiple solutions 21
multiproduct firm 217, 218–19
multivariate functions 47–8: constrained see

constrained multivariate functions; definite
integrals 452–4, 459–60; derivatives of
see derivative(s), multivariate functions;
differentials of see differentials, multivariate
functions; differentiation of see
differentiation, multivariate functions;
integration of 432–4, 452–4; optimization
problems using unconstrained 216–19

Nash equilibrium 357: best-response functions
and 374; in dynamic games 394–9, 401;
mixed-strategy 375–80, 388–90; pure-strategy
369–74, 378, 383–90; in repeated games
408–11; subgame 402–6; subgame perfect
392, 402–6

national income 64, 145, 176, 177, 188
natural logarithm 11–12
n-dimensional space 38
necessary condition: for differentiability of

univariate functions 132; for extrema of
constrained multivariate functions 228, 230,
233, 234; for extrema of unconstrained
bivariate functions 209–12, 210, 211, 212; for
extrema of unconstrained n-variable functions
215; for extrema of unconstrained trivariate
functions 213; for extrema of univariate
functions 196–7, 198, 200, 201; Kuhn-Tucker
332–4, 344, 345–6; see also first-order
condition

negative definite total differential 117
negative semidefinite total differential 117
neighborhood 187
neoclassical marginalism 244
n! 59
noncredible threat 394
nonlinear programming (NLP) 316–17;

see also nonlinear programming problems
nonlinear programming problems: algebraic

solution of 329–40; boundary solution of 331,
332; constraint qualifications for 344–5;
general maximization 317; general
minimization 318; geometric forms of
constraints in 319–22; geometric forms of
objective functions in 318–19; geometric
method of solving 322–5, 326–9; interior
solution of 331, 332; Kuhn-Tucker conditions
and see Kuhn-Tucker conditions; quadratic
349–50; trial-and-error method of solving 322,
340–1; vs. linear programming problems
325–6; see also nonlinear programming

nonlinear system of equations 22–3
nonnegativity condition 245, 271, 292, 301, 316,

330, 331–3, 345, 350; see also constraint(s):
nonnegativity

nonpositive 273
nontrivial solutions 93, 112, 113, 124
nonzero-sum games 355, 358–60, 363–6
normal good 179
n-space 74
nth derivative 148
nth-order derivative 148
n-tuple 74
null set 3
numbers: absolute value of 33; classification of

7–8, 8; complex see complex numbers;
counting 7; finite 431; imaginary 8; integer 7;
irrational 8; modulus of 33; natural 7; negative
8; positive 7, 8; prime 7; rational 7–8; real
see real numbers; whole 7

objective functions 193: interdependent 353
oligopoly market 204, 206, 207, 384, 392:

Bertrand 385; Cournot 383; leader-follower
model 397; Stackelberg 400

one-dimensional space 38, 73
one-space 73, 74
opportunity cost 286–7, 292, 299
opportunity loss 382
optima see extrema
optimal allocation of resources 193
optimality criterion 277, 278, 293, 294, 295, 296,

297, 298–9: dual 295
optimality test 279, 280–1, 305, 307
optimization 28, 31: classical approach to

193–244, 245, 316, 329–30, 370, 377;
constrained 221; game theory approach to see
game theory; linear programming approach to
see linear programming; multiconstraint 221;
nonlinear programming approach to
see nonlinear programming

optimization problems, unconstrained
multivariate functions 216–19

optimization problems, univariate functions:
constrained 120–4; differential use in
116–20; n independent variable 119–20,
122–4; three independent variable 118–19;
two independent variable 116–18,
119, 122

optimization problems with n variables: and
multiple constraints 233–5, 234; and one
constraint 231–3, 233

optimization problems with 3 variables,
constrained 229–31, 230

optimization problems with 2 variables,
constrained 220–3: Lagrange multiplier
method of solving 224–9, 228, 237–42;
substitution method for solving 223–4

optimum 116: FOCs see first-order condition;
relative 198, 200, 201, 209, 214, 329; SOCs
see second-order condition

ordered pair 38–9
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ordinate 38
origin 37, 38
outcomes, game 354: equilibrium in dominant

strategies 3690; social optimum 360; social
suboptimum 360

output elasticity: of capital 176, 177; of labor
176, 177

own-price elasticity 179

Paasche price index 67
parameters 420
payoff function 354
payoffs, game 354: expected 354, 375
parallel lines 20
parameterization 78
parameters 15
partial derivatives see derivative(s), multivariate

functions
partial fractions 429
permutations 60
perpendicular lines 20
π 66
pivot column 267, 268, 270, 272, 273, 295,

296, 297
pivot element 267, 268, 270, 272, 273, 295,

296, 297
pivot entry 267
pivoting 268
pivot row 267, 268, 270, 272, 295, 296, 297
plane(s) 37, 77–9: parametric equation of 78–9
players, game 354: cooperation mechanisms

410; rational 360, 368–9
point elasticity of demand 144–5, 146–7, 435
point-slope form 19
polygons 437
polynomials 15–16: degree of 16; first-degree

16; general form of 15; linear form 116;
nth-degree 16; quadratic form 116;
second-degree 16; third-degree 16;
zero-degree 16

positive definite total differential 117
positive semidefinite total differential 117
postoptimality analysis 287
power series 169
power set 4
present value 457–8, 465
price elasticity 179
primal 286
primal simplex method 295
principles of microeconomics 182
Prisoner’s Dilemma game 358, 359–60, 361,

371–2
problem of the commons 386–8
production function 47: Cobb-Douglas see

Cobb-Douglas production function; linear
homogeneous 176, 177–8

products of numbers 66

public good 384
Pythagorean theorem 75

quadrants 37, 38
quadratic equations: general form of 16; solution

by factoring 17; solution by quadratic formula
17–18

quadratic form 116: discriminant of 117–20,
212; sign definiteness of 116–25

quadratic formula 17–18
quadratic programming (QP) 349–50
quasiconcave functions: determinantal test to

identify 166, 167; properties of 166; strictly
164–6; weak 165–6

quasiconcave programming 349
quasiconcavity 164, 236: strict 164; weak 164
quasiconvex functions: determinantal test to

identify 167, 167; properties of 166; strictly
164–6; weak 165–6

quasiconvexity 165, 236: strict 165; weak 165

range 40
rate of change 129, 142: instantaneous 130, 142;

percentage 143; relative 143
ratio of vertical change to horizontal change 19
real numbers 8: properties of 9
real solution 17
rectangles 437: circumscribed 438, 439, 441,

442, 443; inscribed 438–9, 440, 441, 442, 443
rectangular coordinate system see Cartesian

coordinate system
regions, unbounded 463
relation 40
relative extremum 196
relative maximum 196–200, 204, 208, 211,

215, 331
relative minimum 196–200, 203, 208, 210,

215, 332
relative share of capital 176, 177
relative share of labor 176, 177
remainder 169
repeated games 354, 408: finitely 408–10;

infinitely 408, 410–11
Riemann integral 437, 443; see also definite

integrals
Riemann sum 442–3, 444
root of the game 356
rules, game 354
rules of differentiation: chain rule 138–9;

composite function rule 138–9; constant
function rule 135; difference rule 136–7;
exponential rule 140–1;
function-with-constant rule 136; implicit
function rule 142; inverse function rule 141–2;
logarithmic rule 139–40; power function rule
135; power rule 139; product rule 137;
quotient rule 138; sum rule 136–7
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saddle point 117, 209, 210, 210, 212, 412
Sarrus’ rule 96
scalar 71
scalar multiplication of vectors 71, 71: properties

of 71–2
secant line 129–30
second derivative 148
second-order condition (SOC) 116, 117, 120,

121: for constrained bivariate function
extrema 223, 224, 225–6, 228, 228–9; for
constrained n-variable function extrema
122–3, 233, 233–5, 234; for constrained
trivariate function extrema 230, 230;
Kuhn-Tucker 345; for unconstrained bivariate
function extrema 209–13, 210, 211, 212; for
unconstrained n-variable function extrema
214–16, 215; for unconstrained trivariate
function extrema 213, 213–14; for univariate
function extrema 197–200, 198, 200, 201,
203–5; see also sufficient condition

second-order derivative 148
sensitivity analysis 287, 293, 297–9
sequence 56: arithmetic 58; convergent 56, 57,

62–3; divergent 56–7, 57, 62–3; finite 56;
finite arithmetic 58; finite geometric 59;
functions and 41; geometric 58; infinite 56

sequential games 354, 356, 392: extensive form
representation of 393, 393, 394; see also game
trees; see also dynamic games

sequential rationality 394
series 57: arithmetic 58; convergent 57;

divergent 57; exponential 62; finite 57; finite
arithmetic 58; geometric 59, 64; infinite 57;
infinite geometric 59

set(s): boundary point of 163; bounded 164;
closed 163; compact 164; complementary 3;
correspondence between elements of two 40;
definition of 2; difference 4; disjoint 4;
elements of 2; empty 3; feasible 221, 317;
finite 3; infinite 3; interior point of 163;
intersection 4; level 347–8; members of 2; null
3; open 163; operations on 4–5; power 4;
set-builder form of representing 3; solution 14;
tabular form of representing 3; unbounded
164; union 4; universal 3; vs. ordered pair
38–9

set theory 2–7
shadow price 236, 292, 335
share of capital 177
share of labor 177
shortage 24, 25∑

see sums
simplex algorithm 264, 266
simplex method 249: big-M method of 270–3;

graphical approach to 264–6; for
maximization problems, tabular approach to
266–70, 282–3; for minimization problems,

tabular approach to 270–5; revised 266,
276–82; two phase method of 270, 274–5,
283–5; see also dual simplex method

slope 18–19: of a curve 130
slope-intercept form 20
SOC see second-order condition
solution(s), SSLE 245–6: basic 246; basic

feasible (BFSs) 246; degenerate BFS 256,
258–9; feasible 245; multiple 245; multiple
optimal 256, 258; optimal 246; optimum
feasible 246

sources 301
square matrix 82: determinant of see

determinants; inverse of 91, 102–5; minors of
97; nonsingular 111, 113; powers of a 87;
properties of inverse of 105; singular 111, 113

square root 10
SSF see system of simultaneous functions
SSLE see system(s) of simultaneous linear

equations
stable solution 412
Stackelberg duopoly market 206, 374, 397
Stackelberg equilibrium 206–7
standard deviation 67
static analysis 420
static games 354, 392: Battle of the Sexes 358–9,

360, 372–3, 379–80; Matching Pennies 357–8,
360, 373–4, 378–9, 412–16, 418–19; Nash
equilibrium and see Nash equilibrium;
nonzero-sum 355, 358–60, 363–6;
normal-form representation of 355–6; payoff
matrix representation of 355–6; Prisoner’s
Dilemma 358, 359–60, 361, 371–2; repeated
see repeated games; solution of see Nash
equilibrium; vs. dynamic games 392; zero-sum
355, 357–8, 360; see also game theory

statics 420
stationary point 198
stationary value 198–9
strategic decision-makers 354
strategic decisions 354
strategic interdependence 354
strategy 354: deterministic 354; dominated

360–5; equilibrium 361; maximin 380–2,
388–90, 411–12; minimax 411–12; minimax
regret 382; mixed 354, 374–5, 412–16;
optimal 354, 412; preemptive 410; pure 354;
randomized 354; retaliatory 410; savage 382;
secure 381; strictly dominant 359–60;
tit-for-tat 410; trigger 410

strategy profile 356
strong inequalities 163
subgame(s) 401–6: proper 401; trivial 401–2
subroots 356, 401: trivial 402
subset 3: proper 3
subsidiary condition 221
sub-spaces 262
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substitute good 179
substitution parameter 48, 177
sufficient condition: for differentiability of

univariate functions 132; for extrema of
multivariate objective functions with
constraints 228, 230, 233, 234; for extrema of
n-variable functions 215; for extrema of
unconstrained bivariate functions 210, 211,
212; for extrema of unconstrained trivariate
functions 213; for extrema of univariate
functions 196–8, 198, 200, 201; Kuhn-Tucker
332–3, 344, 345–6; see also second-order
condition

sums 64–6: double 65–6; multiple 65
superset 3
supply equation 18, 24–7
surface 453
surplus 24: consumers’ 455–6, 466; producers’

455, 456
system of simultaneous functions (SSF) 114:

existence of solutions of a 114–15
system(s) of simultaneous linear equations

(SSLE) 20–2, 69: augmented matrices and
solution of 88–91; consistent 110, 113;
Cramer’s rule for solving 99–101; elimination
method for solving 22; existence of solutions
of a 110–11, 113, 114–15; graphical method
for solving 21, 24–7; higher-order 22;
homogeneous 88, 93, 112, 124, 125;
inconsistent 110, 113; Gauss-Jordan
elimination method for solving 91, 93, 103;
Gauss-Jordan method for solving 91, 93, 103;
Gauss method for solving 91–2; inverse
matrix use in solving 105–7; matrices and
87–91; n x m 20; nonhomogeneous 112;
solutions of see solution(s), SSLE;
substitution method for solving 21–2;
uniqueness of solutions of a 111–12, 113

tangent line 129–30
Taylor expansion see Taylor series
Taylor series 169, 171–2: with remainder 172
Taylor theorem 172
terminal nodes 356
theory of production 151
third derivative 148
third-order derivative 148
three-dimensional space 38
3-space 74
total derivative 185–7, 189; see also

derivative(s), multivariate functions
total differential 116–17, 182–3, 189; see also

differentials, multivariate functions
total differentiation 183, 185
total fixed cost 48
total variable cost 48
trade-off 221

tragedy of the commons 387
transportation problems 301–3, 305–10:

balanced 302–8; finding initial basic feasible
solutions for 303–5; least-cost method for
finding initial basic feasible solution 304;
method of multipliers optimality test 305;
north-west corner method for finding initial
basic feasible solution 304, 306; optimality
test for solutions of 305; unbalanced 302,
308–10; Vogel’s approximation method for
finding initial basic feasible solution 304–5

trinomial 16
trivial solution 93, 112, 113
two-dimensional space 38
two-space 74
2-tuple 73

uncertain end 408, 409
unconstrained optimization problem 220
ungrouped data 67
union, set 4, 4, 5
unique solution 21: of a SSLE 111–12, 113
univariate functions 37, 41–7: derivatives of

see derivative(s), univariate functions;
differentiability of see differentiability,
univariate functions; differentials of see
differentials, univariate functions;
differentiation of see differentiation,
univariate functions; extrema of see extrema,
univariate function; linearization of 169;
optimization problems using see optimization
problems, univariate functions

universal set 3
unknown 14
utility maximization 120

variables 14: artificial 269, 271, 274, 275, 278,
284, 291, 295, 297; basic (BV) 264, 265,
266–8, 270, 276, 278, 279–82, 293–4, 296–7,
305, 307; continuous 128; decision 245, 246,
249; departing 266, 267, 267, 268, 269, 270,
272, 273; dependent 14; dummy 290, 295;
entering 266, 267, 267, 268, 269, 270, 272,
272, 273, 277, 279, 281, 296, 297, 305;
independent 14, 184–5; nonbasic (NBV) 264,
265–7, 270, 272, 277–82, 294–299, 305, 307;
slack 255–6, 265, 266–7, 268, 269–71, 278,
279, 282, 284, 290, 295; surplus 256–6, 269,
271, 278, 280, 282, 284, 290, 293

variance 67
vector(s) 69: addition of 70, 71; see also vector

addition; characteristic 124; collinear 70;
column 69; component of 69; convex
combination of 161–3; coplanar 70; dimension
of 69; displacement 78; dot product of 73;
equal 70; geometric representation of 69, 70;
inner product of 73; length of a 75–6; like 70;
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linear combination of 72; linear dependence of
72, 108; linear independence of 73, 108–9;
line through 76–7; multiplication of 73, 79;
n- 69; normal 78; norm of a 75; null 70;
orthagonal 76; orthagonality of 76, 79–80;
plane through 77–9; product of 73; row 69;
scalar multiplication of see scalar
multiplication of vectors; scalar product of 73;
spaces see vector space(s); subtraction of 70,
71; 2- 69; unit 70; unlike 70; zero 70

vector addition 70, 72: properties of 71–2
vector space(s) 73–5: n-dimensional 74;

one-dimensional 74; three-dimensional 74;
two-dimensional 74

Venn diagram 4, 4, 5–6, 6
vertex 263
vertical change 19: ratio of horizontal

change to 19

vertical line test 40–1, 42
volume of a region 453: method of exhaustion

calculation of 453–4

weak inequalities 163

x-coordinate 21
x-intercept 15

y-coordinate
y-intercept 15
Young’s theorem 175

Zermelo’s theorem 395, 403
zero solution 93, 112
zero-sum games 355, 357–8, 360, 411–12:

geometric solution of 412–16
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Greek alphabet

Name Lowercase Uppercase Name Lowercase Uppercase

Alpha α A Omega ω �

Beta β B Omicron o O

Chi χ X Pi π 	

Delta δ � Phi φ �

Epsilon ε E Psi ψ �

Eta η H Rho ρ P

Gamma γ � Sigma σ 


Iota ι I Tau τ T

Kappa κ K Theta θ �

Lambda λ � Upsilon υ ϒ

Mu μ M Xi ξ "

Nu ν N Zeta ζ Z
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