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PREFACE
Database design technology has undergone significant
evolution in recent years, although business applications
continue to be dominated by the relational data model
and relational database systems. The relational model has
allowed the database designer to separately focus on logi-
cal design (defining the data relationships and tables) and
physical design (efficiently storing data onto and retrieving
data from physical storage). Other new technologies such
as data warehousing, OLAP, and data mining, as well as
object-oriented, spatial, and Web-based data access, have
also had an important impact on database design.

In this fifth edition, we continue to concentrate on tech-
niques for database design in relational database systems.
However, because of the vast and explosive changes in
new physical database design techniques in recent years, we
have reorganized the topics into two separate books: Data-
base Modeling and Design: Logical Design (5th Edition) and
Physical Database Design: The Database Professional’s Guide
(1st Edition)

Logical database design is largely the domain of applica-
tion designers, who design the logical structure of the data-
base to suit application requirements for data manipulation
and structured queries. The definition of database tables for
a particular vendor is considered to be within the domain
of logical design in this book, although many database
practitioners refer to this step as physical design.

Physical database design, in the context of these two
books, is performed by the implementers of the database
servers, usually database administrators (DBAs) who must
decide how to structure the database for a particular
machine (server), and optimize that structure for system
performance and system administration. In smaller com-
panies these communities may in fact be the same people,
but for large enterprises they are very distinct.

We start the discussion of logical database design with the
entity-relationship (ER) approach for data requirements
specification and conceptual modeling. We then take a
ix



x PREFACE
detailed look at anotherdominatingdatamodeling approach,
the Unified Modeling Language (UML). Both approaches are
used throughout the text for all the data modeling examples,
so the user can select either one (or both) to help follow the
logical design methodology. The discussion of basic
principles is supplemented with common examples that are
based on real-life experiences.

Organization
The database life cycle is described in Chapter 1. In Chap-

ter 2, we present the most fundamental concepts of data
modeling and provide a simple set of notational constructs
(the Chen notation for the ER model) to represent them.
The ERmodel has traditionally been a very popular method
of conceptualizing users’ data requirements. Chapter 3
introduces theUMLnotation for datamodeling. UML (actu-
ally UML-2) has become a standard method of modeling
large-scale systems for object-oriented languages such as
C++ and Java, and the data modeling component of UML
is rapidly becoming as popular as the ER model. We feel it
is important for the reader to understand both notations
and how much they have in common.

Chapters 4 and 5 show how to use data modeling con-
cepts in the database design process. Chapter 4 is devoted
to direct application of conceptual data modeling in logical
database design. Chapter 5 explains the transformation of
the conceptual model to the relational model, and to
Structured Query Language (SQL) syntax specifically.

Chapter 6 is devoted to the fundamentals of database
normalization through third normal form and its variation,
Boyce-Codd normal form, showing the functional equiva-
lence between the conceptual model (both ER and UML)
and the relational model for third normal form.

The case study in Chapter 7 summarizes the techniques
presented in Chapters 1 through 6 with a new problem
environment.

Chapter 8 illustrates the basic features of object-oriented
database systems and how they differ from relational data-
base systems. An “impedance mismatch” problem often
arises due to data being moved between tables in a
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relational database and objects in an application program.
Extensions made to relational systems to handle this prob-
lem are described.

Chapter 9 looks at Web technologies and how they
impact databases and database design. XML is perhaps
the best known Web technology. An overview of XML is
given, and we explore database design issues that are spe-
cific to XML.

Chapter 10 describes the major logical database design
issues in business intelligence - data warehousing, online
analytical processing (OLAP) for decision support systems,
and data mining.

Chapter 11 discusses three of the currently most popu-
lar software tools for logical design: IBM’s Rational Data
Architect, Computer Associates’ AllFusion ERwin Data
Modeler, and Sybase’s PowerDesigner. Examples are given
to demonstrate how each of these tools can be used to
handle complex data modeling problems.

The Appendix contains a review of the basic data definition
and datamanipulation components of the relational database
query language SQL (SQL-99) for those readers who lack
familiarity with database query languages. A simple example
database is used to illustrate the SQL query capability.

The database practitioner can use this book as a guide
to database modeling and its application to database
design for business and office environments and for well-
structured scientific and engineering databases. Whether
you are a novice database user or an experienced profes-
sional, this book offers new insights into database modeling
and the ease of transition from the ER model or UML
model to the relational model, including the building of
standard SQL data definitions. Thus, no matter whether
you are using IBM’s DB2, Oracle, Microsoft’s SQL Server,
Access, or MySQL for example, the design rules set forth
here will be applicable. The case studies used for the
examples throughout the book are from real-life databases
that were designed using the principles formulated here.
This book can also be used by the advanced undergraduate
or beginning graduate student to supplement a course
textbook in introductory database management, or for a
stand-alone course in data modeling or database design.
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Typographical Conventions
For easy reference, entity and class names (Employee,

Department, and so on) are capitalized from Chapter 2 for-
ward. Throughout the book, relational table names (pro-
duct, product_count) are set in boldface for readability.
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Database technology has evolved rapidly in the past three
decades since the rise and eventual dominance of relational
database systems. While many specialized database systems
(object-oriented, spatial, multimedia, etc.) have found sub-
stantial user communities in the sciences and engineering,
relational systems remain the dominant database technology
for business enterprises.

Relational database design has evolved from an art to a
science that has been partially implementable as a set of soft-
ware design aids.Many of these design aids have appeared as
the database component of computer-aided software engi-
neering (CASE) tools, and many of them offer interactive
modeling capability using a simplified data modeling
approach. Logical design—that is, the structure of basic data
relationships and their definition in a particular database
system—is largely the domain of application designers. The
work of these designers can be effectively done with tools
such as the ERwin Data Modeler or Rational Rose with
Unified Modeling Language (UML), as well as with a purely
manual approach. Physical design—the creation of efficient
data storage and retrieval mechanisms on the computing
platform you are using—is typically the domain of the
1



2 Chapter 1 INTRODUCTION
database administrator (DBA). Today’s DBAs have a variety of
vendor-supplied tools available to help design the most effi-
cient databases. This book is devoted to the logical design
methodologies and tools most popular for relational
databases today. Physical design methodologies and tools
are covered in a separate book.

In this chapter, we review the basic concepts of data-
base management and introduce the role of data modeling
and database design in the database life cycle.
Data and Database Management
The basic component of a file in a file system is a data

item, which is the smallest named unit of data that has
meaning in the real world—for example, last name, first
name, street address, ID number, and political party. A
group of related data items treated as a unit by an applica-
tion is called a record. Examples of types of records are order,
salesperson, customer, product, and department. A file is a
collection of records of a single type. Database systems have
built upon and expanded these definitions: In a relational
database, a data item is called a column or attribute, a record
is called a row or tuple, and a file is called a table.

A database is a more complex object; it is a collection of
interrelated stored data that serves the needs of multiple
users within one or more organizations—that is, an interre-
lated collection of many different types of tables. The moti-
vation for using databases rather than files has been greater
availability to a diverse set of users, integration of data for
easier access and update for complex transactions, and less
redundancy of data.

A database management system (DBMS) is a generalized
software system for manipulating databases. A DBMS
supports a logical view (schema, subschema); physical
view (access methods, data clustering); data definition lan-
guage; data manipulation language; and important utilities
such as transaction management and concurrency control,
data integrity, crash recovery, and security. Relational data-
base systems, the dominant type of systems for well-for-
matted business databases, also provide a greater degree
of data independence than the earlier hierarchical and
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network (CODASYL) database management systems. Data
independence is the ability to make changes in either the
logical or physical structure of the database without
requiring reprogramming of application programs. It also
makes database conversion and reorganization much eas-
ier. Relational DBMSs provide a much higher degree of
data independence than previous systems; they are the
focus of our discussion on data modeling.
Database Life Cycle
The database life cycle incorporates the basic steps

involved in designing a global schema of the logical database,
allocating data across a computer network, and defining
local DBMS-specific schemas. Once the design is completed,
the life cycle continues with database implementation and
maintenance. This chapter contains an overview of the data-
base life cycle, as shown in Figure 1.1. In succeeding chapters
we will focus on the database design process from the
modeling of requirements through logical design (Steps I
and II below). We illustrate the result of each step of the life
cycle with a series of diagrams in Figure 1.2. Each diagram
shows a possible formof the output of each step so the reader
can see the progression of the design process from an idea
to an actual database implementation. These forms are
discussed in much more detail in Chapters 2–6.
I. Requirements analysis. The database requirements are

determined by interviewing both the producers and users
of data and using the information to produce a formal
requirements specification. That specification includes
the data required for processing, the natural data
relationships, and the software platform for the database
implementation. As an example, Figure 1.2 (Step I) shows
the concepts of products, customers, salespersons, and
orders being formulated in the mind of the end user dur-
ing the interview process.
II. Logical design. The global schema, a conceptual data
model diagram that shows all the data and their
relationships, is developed using techniques such as
entity-relationship (ER) or UML. The data model con-
structs must be ultimately transformed into tables.
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Figure 1.1 The database life
cycle.

4 Chapter 1 INTRODUCTION
a. Conceptual data modeling. The data requirements are
analyzed and modeled by using an ER or UML dia-
gram that includes many features we will study in
Chapters 2 and 3, for example, semantics for optional
relationships, ternary relationships, supertypes, and
subtypes (categories). Processing requirements are
typically specified using natural language expressions
or SQL commands along with the frequency of occur-
rence. Figure 1.2 (Step II.a) shows a possible ER
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model representation of the product/customer data-
base in the mind of the end user.

b. View integration. Usually, when the design is large and
more than oneperson is involved in requirements anal-
ysis, multiple views of data and relationships occur,
resulting in inconsistencies due to variance in taxon-
omy, context, or perception. To eliminate redundancy
and inconsistency from the model, these views must



Step II.c Transformation of the conceptual data model to SQL tables

Step II.d Normalization of SQL tables

Step III Physical Design

create table customer
Customer

Decomposition of tables and removal of update anomalies.

Salesperson SalesVacations

Product

Salesperson

sales-name

Order Order-product

order-no order-nosales-name cust-no prod-no

addr job-leveldept

sales-name addr

Indexing

Clustering

Partitioning

Materialized views

Denormalization

job-leveldept

vacation-days

vacation-daysjob-level

cust-no

prod-no prod-name qty-in-stock

cust-name .......... (cust–no integer,
cust–name char(15),
cust–addr char(30),
sales–name char(15),
prod–no integer,
primary key (cust–no),
foreign key (sales–name)
     references salesperson,
foreign key (prod–no)
     references product):

Figure 1.2, cont’d
Further life cycle results,
step by step.

6 Chapter 1 INTRODUCTION
be “rationalized” and consolidated into a single global
view. View integration requires the use of ER semantic
tools such as identification of synonyms, aggregation,
and generalization. In Figure 1.2 (Step II.b), two possi-
ble viewsof theproduct/customerdatabase aremerged
into a single global view based on common data for
customer and order. View integration is also important
when applications have to be integrated, and eachmay
be written with its own view of the database.
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c. Transformation of the conceptual data model to SQL
tables. Based on a categorization of datamodeling con-
structs and a set of mapping rules, each relationship
and its associated entities are transformed into a set of
DBMS-specific candidate relational tables. We will
show these transformations in standard SQL inChapter
5. Redundant tables are eliminated as part of this pro-
cess. In our example, the tables in Step II.c of Figure 1.2
are the result of transformation of the integrated ER
model in Step II.b.

d. Normalization of tables. Given a table (R), a set of
attributes (B) is functionally dependent on another
set of attributes (A) if, at each instant of time, each
A value is associated with exactly one B value. Func-
tional dependencies (FDs) are derived from the con-
ceptual data model diagram and the semantics of
data relationships in the requirements analysis. They
represent the dependencies among data elements
that are unique identifiers (keys) of entities. Addi-
tional FDs, which represent the dependencies
between key and nonkey attributes within entities,
can be derived from the requirements specification.
Candidate relational tables associated with all
derived FDs are normalized (i.e., modified by
decomposing or splitting tables into smaller tables)
using standard normalization techniques. Finally,
redundancies in the data that occur in normalized
candidate tables are analyzed further for possible
elimination, with the constraint that data integrity
must be preserved. An example of normalization of
the Salesperson table into the new Salesperson and
SalesVacations tables is shown in Figure 1.2 from
Step II.c to Step II.d.
We note here that database tool vendors tend to use
the term logical model to refer to the conceptual data
model, and they use the term physical model to refer
to the DBMS-specific implementation model (e.g.,
SQL tables). We also note that many conceptual data
models are obtained not from scratch, but from the
process of reverse engineering from an existing
DBMS-specific schema (Silberschatz et al., 2010).
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III. Physical design. The physical design step involves the
selection of indexes (access methods), partitioning,
and clustering of data. The logical design methodology
in Step II simplifies the approach to designing large rela-
tional databases by reducing the number of data
dependencies that need to be analyzed. This is accom-
plished by inserting the conceptual data modeling and
integration steps (Steps II.a and II.b of Figure 1.2) into
the traditional relational design approach. The objective
of these steps is an accurate representation of reality.
Data integrity is preserved through normalization of the
candidate tables created when the conceptual data
model is transformed into a relational model. The pur-
pose of physical design is to then optimize performance.
As part of the physical design, the global schema can
sometimes be refined in limited ways to reflect pro-
cessing (query and transaction) requirements if there
are obvious large gains to be made in efficiency. This
is called denormalization. It consists of selecting domi-
nant processes on the basis of high frequency, high vol-
ume, or explicit priority; defining simple extensions to
tables that will improve query performance; evaluating
total cost for query, update, and storage; and consider-
ing the side effects, such as possible loss of integrity.
This is particularly important for online analytical pro-
cessing (OLAP) applications.
IV.Database implementation, monitoring, and modifica-
tion. Once the design is completed, the database can be
created through implementation of the formal schema
using the data definition language (DDL) of a DBMS. Then
the data manipulation language (DML) can be used to
query and update the database, as well as to set up indexes
and establish constraints, such as referential integrity.
The language SQL contains both DDL and DML con-
structs; for example, the create table command represents
DDL, and the select command represents DML.
As the database begins operation, monitoring
indicates whether performance requirements are being
met. If they are not being satisfied, modifications should
be made to improve performance. Other modifications
may be necessary when requirements change or end
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user expectations increase with good performance. Thus,
the life cycle continues with monitoring, redesign, and
modifications. In the next two chapters we look first
at the basic data modeling concepts; then, starting in
Chapter 4, we apply these concepts to the database
design process.

Conceptual Data Modeling
Conceptual data modeling is the driving component of

logical database design. Let us take a look of how this
important component came about and why it is important.
Schema diagrams were formalized in the 1960s by Charles
Bachman. He used rectangles to denote record types and
directed arrows from one record type to another to denote
a one-to-many relationship among instances of records of
the two types. The entity-relationship (ER) approach for
conceptual data modeling, one of the two approaches
emphasized in this book, and described in detail in Chapter
2, was first presented in 1976 by Peter Chen. The Chen form
of ER models uses rectangles to specify entities, which are
somewhat analogous to records. It also usesdiamond-shaped
objects to represent the various types of relationships, which
are differentiated by numbers or letters placed on the lines
connecting the diamonds to the rectangles.

The Unified Modeling Language (UML) was introduced
in 1997 by Grady Booch and James Rumbaugh and has
become a standard graphical language for specifying and
documenting large-scale software systems. The data
modeling component of UML (now UML-2) has a great
deal of similarity with the ER model, and will be presented
in detail in Chapter 3. We will use both the ER model and
UML to illustrate the data modeling and logical database
design examples throughout this book.

In conceptual data modeling, the overriding emphasis is
on simplicity and readability. The goal of conceptual
schema design, where the ER and UML approaches are
most useful, is to capture real-world data requirements in
a simple and meaningful way that is understandable by
both the database designer and the end user. The end user
is the person responsible for accessing the database and
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executing queries and updates through the use of DBMS
software, and therefore has a vested interest in the data-
base design process.
Summary
Knowledge of data modeling and database design tec-

hniques is important for database practitioners and appli-
cation developers. The database life cycle shows what
steps are needed in a methodical approach to designing a
database, from logical design, which is independent of
the system environment, to physical design, which is based
on the details of the database management system chosen
to implement the database. Among the variety of data
modeling approaches, the ER and UML data models are
arguably the most popular in use today because of their
simplicity and readability.
Tips and Insights for Database
Professionals

Tip 1. Work methodically through the steps of the
life cycle. Each step is clearly defined and has pro-
duced a result that can serve as a valid input to the
next step.
Tip 2. Correct design errors as soon as possible by going
back to the previous step and trying new alternatives.
The later you wait, themore costly the errors and the lon-
ger the fixes.
Tip 3. Separate the logical and physical design com-
pletely because you are trying to satisfy completely dif-
ferent objectives.
Logical design. The objective is to obtain a feasible
solution to satisfy all known and potential queries
and updates. There are many possible designs; it is
not necessary to find a “best” logical design, just a
feasible one. Save the effort for optimization for phys-
ical design.
Physical design. The objective is to optimize perfor-
mance for known and projected queries and updates.
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Literature Summary
Much of the early data modeling work was done by

Bachman (1969, 1972), Chen (1976), Senko et al. (1973),
and others. Database design textbooks that adhere to a sig-
nificant portion of the relational database life cycle
described in this chapter are Teorey and Fry (1982), Muller
(1999), Stephens and Plew (2000), Silverston (2001),
Harrington (2002), Bagui (2003), Hernandez and Getz
(2003), Simsion and Witt (2004), Powell (2005), Ambler and
Sadalage (2006), Scamell and Umanath (2007), Halpin and
Morgan (2008), Mannino (2008), Stephens (2008), Churcher
(2009), and Hoberman (2009).

Temporal (time-varying) databases are defined and
discussed in Jenson and Snodgrass (1996) and Snodgrass
(2000). Other well-used approaches for conceptual data
modeling include IDEF1X (Bruce, 1992; IDEF1X, 2005)
and the data modeling component of the Zachmann
Framework (Zachmann, 1987; Zachmann Institute for
Framework Advancement, 2005). Schema evolution during
development, a frequently occurring problem, is addressed
in Harriman, Hodgetts, and Leo (2004).
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This chapter defines all the major entity–relationship
(ER) concepts that can be applied to the conceptual data
modeling phase of the database life cycle.

The ER model has two levels of definition—one that is
quite simple and another that is considerably more com-
plex. The simple level is the one used by most current
design tools. It is quite helpful to the database designer
who must communicate with end users about their data
requirements. At this level you simply describe, in diagram
13



Figure 2.1 A simple form of
the ER model using the
Chen notation.
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form, the entities, attributes, and relationships that occur
in the system to be conceptualized, using semantics that
are definable in a data dictionary. Specialized constructs,
such as “weak” entities or mandatory/optional existence
notation, are also usually included in the simple form.
But very little else is included, in order to avoid cluttering
up the ER diagram while the designer’s and end user’s
understandings of the model are being reconciled.

An example of a simple form of ER model using the
Chen notation is shown in Figure 2.1. In this example we
want to keep track of videotapes and customers in a video
store. Videos and customers are represented as entities
Video and Customer, and the relationship “rents” shows a
many-to-many association between them. Both Video
and Customer entities have a few attributes that describe
their characteristics, and the relationship “rents” has an
attribute due date that represents the date that a particular
video rented by a specific customer must be returned.

From the database practitioner’s standpoint, the simple
form of the ERmodel (or UML) is the preferred form for both
datamodeling andenduser verification. It is easy to learn and
applicable to a wide variety of design problems that might be
encountered in industry and small businesses. As we will
demonstrate, the simple form is easily translatable into SQL
data definitions, and thus it has an immediate use as an aid
for database implementation.

The complex level of ER model definition includes con-
cepts that go well beyond the simple model. It includes
concepts from the semantic models of artificial intelli-
gence and from competing conceptual data models. Data
modeling at this level helps the database designer capture
more semantics without having to resort to narrative
explanations. It is also useful to the database application
Customer
N N

rents

due-datecust-id

cust-name

video-id

copy-no

title

Video
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programmer, because certain integrity constraints defined
in the ER model relate directly to code—code that checks
range limits on data values and null values, for example.
However, such detail in very large data model diagrams
actually detracts from end user understanding. Therefore,
the simple level is recommended as the basic communica-
tion tool for database design verification.

In the next section, we will look at the simple level of ER
modeling described in the original work by Chen and
extended by others. The following section presents the
more advanced concepts that are less generally accepted
but useful to describe certain semantics that cannot be
constructed with the simple model.
Fundamental ER Constructs

Basic Objects: Entities, Relationships, Attributes
The basic ER model consists of three classes of objects:

entities, relationships, and attributes.

Entities

Entities are the principal data objects about which infor-
mation is to be collected; they usually denote a person,
place, thing, or event of informational interest. A particular
occurrence of an entity is called an entity instance, or
sometimes an entity occurrence. In our example, Employee,
Department, Division, Project, Skill, and Location are all
examples of entities (for easy reference, entity names will
be capitalized throughout this text). The entity construct
is a rectangle as depicted in Figure 2.2. The entity name
is written inside the rectangle.

Relationships

Relationships represent real-world associations among
oneormore entities, andas such,havenophysical or concep-
tual existence other than that which depends upon their
entity associations. Relationships are described in terms of
degree, connectivity, and existence. These terms are defined
in the sections that follow. The most common meaning
associated with the term relationship is indicated by the
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connectivity between entity occurrences: one-to-one, one-
to-many, and many-to-many. The relationship construct is a
diamond that connects the associated entities, as shown in
Figure 2.2. The relationshipnamecanbewritten inside or just
outside the diamond.

A role is the name of one end of a relationship when each
end needs a distinct name for clarity of the relationship.
In most of the examples given in Figure 2.3, role names are
not required because the entity names combined with the
relationship name clearly define the individual roles of each
entity in the relationship. However, in some cases role
names should be used to clarify ambiguities. For example,
in the first case in Figure 2.3, the recursive binary relation-
ship “manages” uses two roles, “manager” and “subordi-
nate,” to associate the proper connectivities with the two
different roles of the single entity. Role names are typically
nouns. In this diagram one role of an employee is to be the
“manager” of up to n other employees. The other role is for
a particular “subordinate” to be managed by exactly one
other employee.
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Attributes and Keys

Attributes are characteristics of entities that provide
descriptive detail about them. A particular instance (or
occurrence) of an attribute within an entity or relationship
is called an attribute value. Attributes of an entity such as
Employee may include emp-id, emp-name, emp-address,
phone-no, fax-no, job-title, and so on. The attribute con-
struct is an ellipse with the attribute name inside (or
oblong as shown in Figure 2.2). The attribute is connected
to the entity it characterizes.

There are two types of attributes: identifiers and
descriptors. An identifier (or key) is used touniquelydetermine
an instance of an entity. For example, an identifier or key of
Employee is emp-id; each instance of Employee has a different
value for emp-id, and thus there are no duplicates of emp-id in
the set of Employees. Key attributes are underlined in the ER
diagram, as shown in Figure 2.2. We note, briefly, that you
can have more than one identifier (key) for an entity, or you
canhave a set of attributes that compose a key (see the “Super-
keys, Candidate Keys, andPrimaryKeys” section inChapter 6).

A descriptor (or nonkey attribute) is used to specify a non-
unique characteristic of a particular entity instance. For
example, a descriptor of Employee might be emp-name or
job-title; different instances of Employee may have the same
value for emp-name (two John Smiths) or job-title (many
Senior Programmers).

Both identifiers and descriptors may consist of either a
single attribute or some composite of attributes. Some
attributes, such as specialty-area, may be multivalued.
The notation for multivalued attributes is shown with a
double attachment line, as shown in Figure 2.2. Other
attributes may be complex, such as an address that further
subdivides into street, city, state, and zip code.

Keysmay also be categorized as either primary or second-
ary. A primary key fits the definition of an identifier given in
this section in that it uniquely determines an instance of an
entity. A secondary key fits the definition of a descriptor in
that it is not necessarily unique to each entity instance. These
definitions are useful when entities are translated into SQL
tables and indexes are built based on either primary or sec-
ondary keys.
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Weak Entities

Entities have internal identifiers or keys that uniquely
determine each entity occurrence, but weak entities are
entities that derive their identity from the key of a connected
“parent” entity. Weak entities are often depicted with a dou-
ble-bordered rectangle (see Figure 2.2), which denotes that
all instances (occurrences) of that entity are dependent for
their existence in the database on an associated entity. For
example, in Figure 2.2, the weak entity Employee-job-his-
tory is related to the entity Employee. The Employee-job-
history for a particular employee only can exist if there exists
an Employee entity for that employee.
Degree of a Relationship
The degree of a relationship is the number of entities

associated in the relationship. Binary and ternary
relationships are special cases where the degree is 2 and
3, respectively. An n-ary relationship is the general form
for any degree n. The notation for degree is illustrated in
Figure 2.3. The binary relationship, an association between
two entities, is by far the most common type in the natural
world. In fact, many modeling systems use only this type.
In Figure 2.3 we see many examples of the association
of two entities in different ways: Department and Division,
Department and Employee, Employee and Project, and
so on. A binary recursive relationship (e.g., “manages” in
Figure 2.3) relates a particular Employee to another
Employee by management. It is called recursive because
the entity relates only to another instance of its own type.
The binary recursive relationship construct is a diamond
with both connections to the same entity.

A ternary relationship is an association among three
entities. This type of relationship is required when binary
relationships are not sufficient to accurately describe the
semantics of the association. The ternary relationship con-
struct is a single diamond connected to three entities as
shown in Figure 2.3. Sometimes a relationship is mistak-
enly modeled as ternary when it could be decomposed into
two or three equivalent binary relationships. When this
occurs, the ternary relationship should be eliminated to



20 Chapter 2 THE ENTITY–RELATIONSHIP MODEL
achieve both simplicity and semantic purity. Ternary
relationships are discussed in greater detail in the
“Ternary Relationships” section below and in Chapter 5.

An entity may be involved in any number of relationships,
and each relationship may be of any degree. Furthermore,
two entities may have any number of binary relationships
between them, and so on for any n entities (see n-ary
relationships defined in the “General n-ary Relationships”
section below).

Connectivity of a Relationship
The connectivity of a relationship describes a constraint

on the connection of the associated entity occurrences in
the relationship. Values for connectivity are either “one”
or “many.” For a relationship between entities Department
and Employee, a connectivity of one for Department
and many for Employee means that there is at most one
entity occurrence of Department associated with many
occurrences of Employee. The actual count of elements
associated with the connectivity is called the cardinality
of the relationship connectivity; it is used much less fre-
quently than the connectivity constraint because the
actual values are usually variable across instances of
relationships. Note that there are no standard terms for
the connectivity concept, so the reader is admonished to
look at the definition of these terms carefully when using
a particular database design methodology.

Figure 2.3 shows the basic constructs for connectivity
for binary relationships: one-to-one, one-to-many, and
many-to-many. On the “one” side, the number 1 is shown
on the connection between the relationship and one of
the entities, and on the “many” side, the letter N is used
on the connection between the relationship and the entity
to designate the concept of many.

In the one-to-one case, the entity Department is man-
aged by exactly one Employee, and each Employeemanages
exactly one Department. Therefore, theminimum andmax-
imum connectivities on the “is-managed-by” relationship
are exactly one for both Department and Employee.

In the one-to-many case, the entity Department is
associated with (“has”) many Employees. The maximum
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connectivity is given on the Employee (many) side as the
unknown value N, but the minimum connectivity is known
as one. On the Department side the minimum and maxi-
mum connectivities are both one—that is, each Employee
works within exactly one Department.

In the many-to-many case, a particular Employee
may work on many Projects and each Project may have
many Employees. We see that the maximum connectivity
for Employee and Project is N in both directions, and
the minimum connectivities are each defined (implied)
as one.

Some situations, though rare, are such that the actual
maximum connectivity is known. For example, a profes-
sional basketball team may be limited by conference rules
to 12 players. In such a case, the number 12 could be placed
next to an entity called TeamMembers on themany side of a
relationship with an entity Team. Most situations, however,
have variable connectivity on the many side, as shown in
all the examples of Figure 2.3.

Attributes of a Relationship
Attributes can be assigned to certain types of relationships

aswell as to entities. Anattribute of amany-to-many relation-
ship such as the “works-on” relationship between the entities
Employee and Project (Figure 2.3) could be “task-assign-
ment” or “start-date.” In this case, a given task assignment
or start date only has meaning when it is common to an
instance of the assignment of a particular Employee to a par-
ticular Project via the relationship “works-on.”

Attributes of relationships are typically assigned only
to binary many-to-many relationships and to ternary
relationships. They are not normally assigned to one-
to-one or one-to-many relationships because of poten-
tial ambiguities. For example, in the one-to-one binary
relationship “is-managed-by” between Department and
Employee, an attribute start-date could be applied to
Department to designate the start date for that depart-
ment. Alternatively, it could be applied to Employee to
be an attribute for each Employee instance to designate
the employee’s start date as the manager of that depart-
ment. If, instead, the relationship is many-to-many, so
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that an employee can manage many departments over
time, then the attribute start-date must shift to the rela-
tionship so each instance of the relationship that
matches one employee with one department can have a
unique start date for that employee as the manager of
that department.

Existence of an Entity in a Relationship
Existence of an entity occurrence in a relationship is

defined as either mandatory or optional. If an occurrence
of either the “one” or “many” side entity must always exist
for the entity to be included in the relationship, then it is
mandatory. When an occurrence of that entity need not
always exist, it is considered optional. For example, in
Figure 2.3 the entity Employee may or may not be the
manager of any Department, thus making the entity
Department in the “is-managed-by” relationship between
Employee and Department optional.

Optional existence, defined by a 0 on the connection line
between an entity and a relationship, defines a minimum
connectivity of zero. Mandatory existence defines a mini-
mum connectivity of one. When existence is unknown,
we assume the minimum connectivity is one—that is,
mandatory.

Maximum connectivities are defined explicitly on the
ER diagram as a constant (if a number is shown on the
ER diagram next to an entity) or a variable (by default if
no number is shown on the ER diagram next to an
entity). For example, in Figure 2.3 the relationship “is-
occupied-by” between the entity Office and Employee
implies that an Office may house from zero to some var-
iable maximum (N) number of Employees, but an
Employee must be housed in exactly one Office—that
is, it is mandatory.

Existence is often implicit in the real world. For exam-
ple, an entity Employee associated with a dependent
(weak) entity, Dependent, cannot be optional, but the weak
entity is usually optional. Using the concept of optional
existence, an entity instance may be able to exist in other
relationships even though it is not participating in this
particular relationship.



Chapter 2 THE ENTITY–RELATIONSHIP MODEL 23
Alternative Conceptual Data Modeling Notations
At this point we need to digress briefly to look at other

conceptual data modeling notations that are commonly
used today and compare them with the Chen approach.
A popular alternative form for one-to-many and many-
to-many relationships uses “crow’s foot” notation for the
“many” side (see Figure 2.4a). This form was used by
some CASE tools, such as KnowledgeWare’s Information
Engineering Workbench (IEW). Relationships have no
explicit construct but are implied by the connection line
between entities and a relationship name on the connec-
tion line. Minimum connectivity is specified by either a
0 (for zero) or perpendicular line (for one) on the connec-
tion lines between entities. The term intersection entity
is used to designate a weak entity, especially an entity that
is equivalent to a many-to-many relationship. Another
popular form used today is the IDEF1X notation (IDEF1X,
2005), conceived by Robert G. Brown (Bruce, 1992). The
similarities with the Chen notation are obvious from
Figure 2.4(b). Fortunately, any of these forms is reasonably
easy to learn and read, and their equivalence for the basic
ER concepts is obvious from the diagrams. Without a
clear standard for the ER model, however, many other
constructs are being used today in addition to the three
types shown here.
Advanced ER Constructs

Generalization: Supertypes and Subtypes
The original ER model has been effectively used for

communicating fundamental data and relationship
definitions with the end user for a long time. However,
using it to develop and integrate conceptual models with
different end user views was severely limited until it could
be extended to include database abstraction concepts such
as generalization. The generalization relationship specifies
that several types of entities with certain common
attributes can be generalized into a higher-level entity
type—a generic or superclass entity, which is more com-
monly known as a supertype entity. The lower levels of
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entities—subtypes in a generalization hierarchy—can be
either disjoint or overlapping subsets of the supertype
entity. As an example, in Figure 2.5 the entity Employee is
a higher-level abstraction of Manager, Engineer, Techni-
cian, and Secretary, all of which are disjoint types of
Employee. The ER model construct for the generalization
abstraction is the connection of a supertype entity with
its subtypes, using a circle and the subset symbol on the
connecting lines from the circle to the subtype entities.
The circle contains a letter specifying a disjointness con-
straint (see the following discussion). Specialization, the
reverse of generalization, is an inversion of the same con-
cept; it indicates that subtypes specialize the supertype.

A supertype entity in one relationship may be a subtype
entity in another relationship. When a structure comprises
a combination of supertype/subtype relationships, that
structure is called a supertype/subtype hierarchy, or generali-
zation hierarchy. Generalization can also be described in
terms of inheritance, which specifies that all the attributes
of a supertype are propagated down the hierarchy to entities
of a lower type. Generalization may occur when a generic



Chapter 2 THE ENTITY–RELATIONSHIP MODEL 27
entity, which we call the supertype entity, is partitioned by
different values of a common attribute. For example, in
Figure 2.5, the entity Employee is a generalization of
Manager, Engineer, Technician, and Secretary over the
attribute job-title in Employee.

Generalization can be further classified by two important
constraints on the subtype entities: disjointness and com-
pleteness. The disjointness constraint requires the subtype
entities to bemutually exclusive.We denote this type of con-
straint by the letter “d” written inside the generalization cir-
cle (Figure 2.5a). Subtypes that are not disjoint (i.e., that
overlap) are designated by using the letter “o” inside the cir-
cle. As an example, the supertype entity Individual has two
subtype entities, Employee and Customer; these subtypes
could be described as overlapping or not mutually exclusive
(Figure 2.5b). Regardless of whether the subtypes are dis-
joint or overlapping, they may have additional special
attributes in addition to the generic (inherited) attributes
from the supertype.

The completeness constraint requires the subtypes to be
all-inclusive of the supertype. Thus, subtypes can be
defined as either total or partial coverage of the supertype.
For example, in a generalization hierarchy with supertype
Individual and subtypes Employee and Customer, the
subtypes may be described as all-inclusive or total. We
denote this type of constraint by a double line between
the supertype entity and the circle. This is indicated in
Figure 2.5(b), which implies that the only types of
individuals to be considered in the database are employees
and customers.

Aggregation
Aggregation is a form of abstraction between a supertype

and subtype entity that is significantly different from the
generalization abstraction. Generalization is often described
in terms of an “is-a” relationship between the subtype and
the supertype—for example, an Employee is an Individual.
Aggregation, on the other hand, is the relationship between
the whole and its parts and is described as a “part-of” rela-
tionship—for example, a report and a prototype software
package are both parts of a deliverable for a contract. Thus,
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in Figure 2.6 the entity Software-product
is seen to consist of component parts Program
and User’s Guide. The construct for aggrega-
tion is similar to generalization in that the
supertype entity is connected with the sub-
type entities with a circle; in this case, the let-
ter A is shown in the circle. However, there are
no subset symbols because the “part-of”
relationship is not a subset. Furthermore,
there are no inherited attributes in aggrega-
tion; each entity has its own unique set
of attributes.
Ternary Relationships
Ternary relationships are required when binary

relationships are not sufficient to accurately describe the
semantics of an association among three entities. Ternary
relationships are somewhat more complex than binary
relationships, however. The ER notation for a ternary rela-
tionship is shown in Figure 2.7 with three entities attached
to a single relationship diamond, and the connectivity of
each entity is designated as either “one” or “many.” An
entity in a ternary relationship is considered to be “one”
if only one instance of it can be associated with one
instance of each of the other two associated entities. It is
“many” if more than one instance of it can be associated
with one instance of each of the other two associated
entities. In either case, it is assumed that one instance of
each of the other entities is given.

As an example, the relationship “manages” in Figure 2.7(c)
associates the entities Manager, Engineer, and Project. The
entities Engineer and Project are considered “many”; the
entity Manager is considered “one.” This is represented
by the following assertions:

Assertion 1: One engineer, working under one manager,
could be working on many projects.
Assertion 2: One project, under the direction of one
manager, could have many engineers.
Assertion 3: One engineer, working on one project, must
have only a single manager.
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Functional dependency

Technician
uses-

notebook Project

Functional dependencies

Notebook

1

11

A technician uses exactly one notebook for
each project. Each notebook belongs to one
technician for each project. Note that a 
technician may still work on many projects
and maintain different notebooks for
different projects.

emp-id, project-name -> notebook-no
emp-id, notebook-no -> project-name
project-name, notebook-no -> emp-id

Figure 2.7 Ternary relationships: (a) one-to-one-to-one ternary relationship, (b) one-to-one-to-many
ternary relationship, (c) one-to-many-to-many ternary relationship, and

(Continued)
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Employees can use many skills on any
one of many projects, and each project
has many employees with various skills.
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Figure 2.7, cont’d (d) many-to-many-to-many ternary relationship.
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Assertion 3 could also be written in another form, using
an arrow (->) in a kind of shorthand called a functional
dependency. For example:

emp-id, project-name -> mgr-id
where emp-id is the key (unique identifier) associatedwith

the entity Engineer, project-name is the key associated
with the entity Project, and mgr-id is the key of the entity
Manager. In general, for an n-ary relationship, each entity
considered to be a “one” has its key appearing on the right
side of exactly one functional dependency (FD). No entity
considered “many” ever has its key appear on the right side
of an FD.

All four forms of ternary relationships are illustrated in
Figure 2.7. In each case the number of “one” entities
implies the number of FDs used to define the relationship
semantics, and the key of each “one” entity appears on the
right side of exactly one FD for that relationship.

Ternary relationships can have attributes in the same way
as many-to-many binary relationships can. The values of
these attributes are uniquely determined by some combina-
tion of the keys of the entities associated with the relation-
ship. For example, in Figure 2.7(d) the relationship “skill-
used” might have the attribute “tool” associated with a given
employee using a particular skill on a certain project,
indicating that a value for tool is uniquely determined by
the combination of employee, skill, and project.
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General n-ary Relationships
Generalizing the ternary form to

higher-degree relationships, an n-ary
relationship that describes some associa-
tion among n entities is represented
by a single relationship diamond with
n connections, one to each entity
(Figure 2.8). The meaning of this form
canbest bedescribed in termsof the func-

tional dependencies among the keys of the n associated
entities. There can be anywhere from zero to n FDs,
depending on the number of “one” entities. The collection of
FDs that describe an n-ary relationship must each have n
components: n � 1 on the left side (determinant) and 1 on
the right side. A ternary relationship (n ¼ 3), for example,
has two components on the left and one on the right, as we
saw in the example in Figure 2.7. In amore complex database,
other types of FDsmay also exist within an n-ary relationship.
When this occurs, the ER model does not provide enough
semantics by itself, and itmust be supplementedwith a narra-
tive description of these dependencies.

Exclusion Constraint
The normal, or default, treatment of multiple relation-

ships is the inclusive OR, which allows any or all of the
entities to participate. In some situations, however, multiple
relationships may be affected by the exclusive OR (exclu-
sion) constraint, which allows at most one entity instance
among several entity types to participate in the relationship
with a single root entity. For example, in Figure 2.9 suppose
the root entity Work-task has two associated entities,
Work-task

External-project

+

is-
assigned-

to

A work task can be assigned to
either an external project or an
internal project, but not both.

is-for

Internal-project Figure 2.9 Exclusion
constraint.
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External-project and Internal-project. At most, one of the
associated entity instances could apply to an instance of
Work-task.

Foreign Keys and Referential Integrity
A foreign key is an attribute of an entity or an equiva-

lent SQL table, which may be either an identifier or a
descriptor. A foreign key in one entity (or table) is taken
from the same domain of values as the (primary) key in
another (parent) table in order for the two tables to be
connected to satisfy certain queries on the database. Ref-
erential integrity requires that for every foreign key
instance that exists in a table, the row (and thus the
key instance) of the parent table associated with that for-
eign key instance must also exist. The referential integ-
rity constraint has become integral to relational
database design and is usually implied as a requirement
for the resulting relational database implementation.
(Chapter 5 illustrates the SQL implementation of refer-
ential integrity constraints.)

Summary
The basic concepts of the ER model and their constructs

are described in this chapter. An entity is a person, place,
thing, or event of informational interest. Attributes are
objects that provide descriptive information about entities.
Attributes may be unique identifiers or nonunique
descriptors. Relationships describe the connectivity
between entity instances: one-to-one, one-to-many, or
many-to-many. The degree of a relationship is the number
of associated entities: two (binary), three (ternary), or any
n (n-ary). The role (name), or relationship name, defines
the function of an entity in a relationship.

The concept of existence in a relationship determines
whether an entity instance must exist (mandatory) or not
(optional). So, for example, the minimum connectivity of
a binary relationship—that is, the number of entity
instances on one side that are associated with one
instance on the other side—can either be zero, if
optional, or one, if mandatory. The concept of
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generalization allows for the implementation of super-
type and subtype abstractions.

This simple form of ER models is used in most design
tools and is easy to learn and apply to a variety of indus-
trial and business applications. It is also a very useful tool
for communicating with the end user about the conceptual
model and for verifying the assumptions made in the
modeling process.

A more complex form, a superset of the simple form, is
useful for the more experienced designer who wants to
capture greater semantic detail in diagram form, while
avoiding having to write long and tedious narrative to
explain certain requirements and constraints. The more
advanced constructs in ER diagrams are sporadically used
and have no generally accepted form as yet. They include
ternary relationships, which we define in terms of the FD
concept of relational databases; constraints on exclusion;
and the implicit constraints from the relational model such
as referential integrity.

Tips and Insights for Database
Professionals

Tip 1. ER is a much better level of abstraction than
specifying individual data items or functional
dependencies, and it is easier to use to develop a con-
ceptualmodel for large databases. Themain advantages
of ERmodeling are that it is easy to learn, easy to use, and
very easy to transform to SQL table definitions.
Tip 2. Identify entities first, then relationships, and
finally the attributes of entities.
Tip 3. Identify binary relationships first whenever pos-
sible. Only use ternary relationships as a last resort.
Tip 4. ER model notations are all very similar. Pick the
notation that works best for you unless your client or
boss prefers a specific notation for their purposes.
Remember that ER notation is the primary tool for com-
municating data concepts with your client.
Tip 5. Keep the ER model simple. Too much detail
wastes time and is harder to communicate to your
client.
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Literature Summary
Most of the notation in this chapter is from Chen’s orig-

inal ER definition (1976). The concept of data abstraction
was first proposed by Smith and Smith (1977) and applied
to the ER model by Scheuermann, Scheffner, and Weber
(1980), Elmasri and Navathe (2010), Bruce (1992), and
IDEF1X (2005), among others. The application of the
semantic network model to conceptual schema design
was shown by Bachman (1977), McLeod and King (1979),
Hull and King (1987), and Peckham and Maryanski (1988).
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The Unified Modeling Language (UML) is a graphical
language for communicating design specifications for soft-
ware. The object-oriented software development commu-
nity created UML to meet the special needs of describing
object-oriented software design. UML has grown into a
standard for the design of digital systems in general.

There are a number of different types of UML diagrams
serving various purposes (Rumbaugh et al., 2005). The class
and the activity diagram types are particularly useful for
discussing database design issues. UML class diagrams
capture the structural aspects found in database schemas.
UML activity diagrams facilitate discussion on the dynamic
processes involved in database design. This chapter is an
overview of the syntax and semantics of the UML class and
activity diagram constructs used in this book. These same
concepts are useful for planning, documenting, discussing,
35
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and implementing databases. We are using UML 2.0,
although for the purposes of the class diagrams and activity
diagrams shown in this book, if you are familiar with UML
1.4 or 1.5 you will probably not see any differences.

UML class diagrams and entity–relationship (ER)
models (Chen, 1976; Chen, 1987) are similar in both form
and semantics. The original creators of UML point out
the influence of ER models on the origins of class diagrams
(Rumbaugh et al., 2005). The influence of UML has in turn
affected the database community. Class diagrams now
appear frequently in the database literature to describe
database schemas.

UML activity diagrams are similar in purpose to flow
charts. Processes are partitioned into constituent activities
along with control flow specifications.

This chapter is organized into three main sections. The
first section presents class diagram notation, along with
examples. The next section covers activity diagram nota-
tion, along with illustrative examples. Finally, the last sec-
tion concludes with a few tips for UML usage.
Class Diagrams
A class is a descriptor for a set of objects that share some

attributes and/or operations. We conceptualize classes of
objects in our everyday lives. For example, a car has attri-
butes, such as a vehicle identification number (VIN) and
mileage. A car also has operations, such as accelerate and
brake. All cars have these attributes and operations. Indivi-
dual cars differ in the details. A given car has a value for the
VIN and mileage. For example, a given car might have a
VIN of 1NXBR32ES3Z126369 with a mileage of 22,137 miles.
Individual cars are objects that are instances of the Car class.

Classes and objects are a natural way of conceptualizing
the world around us. The concepts of classes and objects
are also the paradigms that form the foundation of object-
oriented programming. The development of object-oriented
programming led to the need for a language to describe
object-oriented design, giving rise to UML.

There is a close correspondence between class diagrams
in UML and ER diagrams. Classes are analogous to entities.
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Database schemas can be diagrammed using UML. It is
possible to conceptualize a database table as a class. The
columns in the table are the attributes, and the rows are
objects of that class. For example, we could have a table
named Car with columns named “vin” and “mileage” (note
that we put table names in boldface throughout the book
for readability). Each row in the table would have values
for these columns, representing an individual car. A given
car might be represented by a row with the value
1NXBR32ES3Z126369 in the vin column, and 22,137 in
the mileage column.

The major difference between classes and entities is the
lack of operations in entities. Note that the term operation
is used here in the UML sense of the word. Stored pro-
cedures, functions, triggers, and constraints are forms of
named behavior that can be defined in databases; however,
these are not associated with the behavior of individual
rows. The term operations in UML refers to the methods
inherent in classes of objects. These behaviors are not
stored in the definition of rows within the database. There
are no operations named “accelerate” or “brake” associated
with rows in our Car table in Figure 3.1. Classes can be
shown with attributes and no operations in UML, which
is the typical usage for database schemas.

Basic Class Diagram Notation
The top of Figure 3.1 illustrates the UML syntax for a class,

showing both attributes and operations. It is also possible
to include user-defined named compartments, such as
“responsibilities.” We will focus on the class name, attributes,
and operations compartments. The UML icon for a class is a
rectangle. When the class is shown with attributes and oper-
ations, the rectangle is subdivided into three horizontal com-
partments. The top compartment contains the class name,
centered in boldface, beginningwith a capital letter. Typically,
class names are nouns. The middle compartment contains
attribute names, left justified in regular face, beginning
with a lowercase letter. The bottom compartment contains
operation names, left justified in regular face, beginning
with a lowercase letter, ending with parentheses. The paren-
thesis may contain arguments for the operation.
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Figure 3.1 Basic UML class
diagram constructs.
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The class notation has some variations, reflecting empha-
sis. Classes can be written without the attribute com-
partment and/or the operations compartment. Operations
are important in software. If the software designer wishes to
focus on the operations, the class can be shown with only
the class name and operations compartments. Showing
operations and hiding attributes is a very common syntax
usedby software designers. Database designers, on the other
hand, do not generally deal with class operations; however,
the attributes are of paramount importance. The needs of
the database designer can be met by writing the class with
only the class name and attribute compartments showing.
Hiding operations and showing attributes is an uncommon
syntax for a software designer, but it is common for database
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design. Lastly, in high-level diagrams, it is often desirable to
illustrate the relationships of the classes without becoming
entangled in the details of the attributes and operations.
Classes can be written with just the class name compart-
ment when simplicity is desired.

Various types of relationships may exist between clas-
ses. Associations are one type of relationship. The most
generic form of association is drawn with a line connecting
two classes. For example, in Figure 3.1 there is an associa-
tion between the Car class and the Driver class.

A few types of associations, such as aggregation and
composition, are very common. UML has designated
symbols for these associations. Aggregation indicates “part
of” associations, where the parts have an independent
existence. For example, a Car may be part of a Car Pool.
The Car also exists on its own, independent of any Car
Pool. Another distinguishing feature of aggregation is that
the part may be shared among multiple objects. For exam-
ple, a Car may belong to more than one Car Pool. The
aggregation association is indicated with a hollow diamond
attached to the class that holds the parts. Figure 3.1 indi-
cates that a Car Pool aggregates Cars.

Composition is another “part of” association, where the
parts are strictly owned, not shared. For example, a Frame
is part of a single Car. The notation for composition is an
association adorned with a solid black diamond attached
to the class that owns the parts. Figure 3.1 indicates that
a Frame is part of the composition of a Car.

Generalization is another common relationship. For
example, Sedan is a type of car. The Car class ismore general
than the Sedan class. Generalization is indicated by a solid
line adorned with a hollow arrowhead pointing to the more
general class. Figure 3.1 shows generalization from the
Sedan class to the Car class.

Class Diagrams for Database Design
The reader may be interested in the similarities and

differences between UML class diagrams and ER models.
Figures 3.2 through 3.5 are parallel to some of the figures
in Chapter 2, allowing for easy comparisons. We then turn
our attention to capturing primary key information in
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Figure 3.6. We conclude this section with an example
database schema of the music industry, illustrated by
Figures 3.7 through 3.10.

Figure 3.2 illustrates UML constructs for relationships
with various degrees of association andmultiplicities. These
examples are parallel to the ER models shown in Figure 2.3.
You may refer back to Figure 2.3 if you wish to contrast the
UML constructs with ER constructs.

Associations between classes may be reflexive, binary, or
n-ary. Reflexive association is a term we are carrying
over from ER modeling. It is not a term defined in UML,
although it is worth discussing. Reflexive association
Employee
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skill used

*
Employee

assignment
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relates a class to itself. The reflexive association in Fig-
ure 3.2 means an Employee in the role of manager is
associated with many managed Employees. The roles of
classes in a relationship may be indicated at the ends of
the relationship. The number of objects involved in the
relationship, referred to as multiplicity, may also be speci-
fied at the ends of the relationship. An asterisk indicates
that many objects take part in the association at that
end of the relationship. The multiplicities of the reflexive
association example in Figure 3.2 indicate that an
Employee is associated with one manager, and a manager
is associated with many managed Employees.

A binary association is a relationship between two clas-
ses. For example, one Division has many Departments.
Notice the solid black diamond at the Division end of the
relationship. The solid diamond is an adornment to the
association that indicates composition. The Division is
composed of Departments.

The ternary relationship in Figure 3.2 is an example of an
n-ary association—an association that relates three or
more classes. All classes partaking in the association are
connected to a hollow diamond. Roles and/or multiplicities
are optionally indicated at the ends of the n-ary association.
Each end of the ternary association example in Figure 3.2 is
marked with an asterisk, signifying many. The meaning of
each multiplicity is isolated from the other multiplicities.
Given a class, if you have exactly one object from every
other class in the association, the multiplicity is the number
of associated objects for the given class. One Employee
working on one Project assignment uses many Skills. One
Employee uses one Skill on many Project assignments.
One Skill used on one Project is fulfilled bymany Employees.

The next three class diagrams in Figure 3.2 show various
combinations of multiplicities. The illustrated one-to-one
association specifies that each Department is associated
with exactly one Employee acting in the role of manager,
and eachmanager is associatedwith exactly oneDepartment.
The diagram with the one-to-many association means that
each Department has many Employees, and each Employee
belongs to exactly one Department.

The many-to-many example in Figure 3.2 means each
Employee associates with many Projects, and each Project
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associates withmany Employees. This example also illustrates
the use of an association class. If an association has attributes,
these are written in a class that is attached to the association
with a dashed line. The association class named WorkAssign-
ment in Figure 3.2 contains two association attributes named
task-assignment and start-date. The association and the class
together form an association class.

Multiplicity can be a range of integers, written with the
minimum and maximum values separated by two periods.
The asterisk by itself carries the same meaning as the range
[0..*]. Also, if the minimum and maximum values are the
same number, then themultiplicity can be written as a single
number. For example, [1..1] means the same as [1]. Optional
existence can be specified using a zero. The [0..1] in the
optional existence example of Figure 3.2 means an Employee
in the role of manager is associated with either no Depart-
ment (e.g., upper management) or one Department.

Mandatory existence is specified whenever a multiplicity
begins with a positive integer. The example of mandatory
existence in Figure 3.2 means an Employee is an occupant
Secretaryechnician

Complete
enumeration of
subclasses

constructs (parallel to
of exactly one Office. One end of an
association can indicate mandatory
existence, while the other end may
use optional existence. This is the
case in the example, where anOffice
may have any number of occupants,
including zero.

Generalization is another type
of relationship. A superclass is a
generalization of a subclass. Special-
ization is the opposite relationship
of generalization. A subclass is a
specialization of the superclass.
The generalization relationship in
UML is written with a hollow arrow
pointing from the subclass to the
generalized superclass. The top
example in Figure 3.3 shows four
subclasses:Manager, Engineer, Tech-
nician, and Secretary. These four
subclasses are all specializations of
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the more general superclass, Employee—that is, Managers,
Engineers, Technicians, and Secretaries are types of
Employees.

Notice the four relationships share a common arrowhead.
Semantically, these are still four separate relationships. The
sharing of the arrowhead is permissible in UML, to improve
the clarity of the diagrams.

The bottom example in Figure 3.3 illustrates that a class
can act as both a subclass in one relationship and a super-
class in another relationship. The class named Individual
is a generalization of the Employee and Customer classes.
The Employee and Customer classes are in turn superclasses
of the EmpCust class. A class can be a subclass in more
than one generalization relationship. The meaning in the
example is that an EmpCust object is both an Employee
and a Customer.

Youmay occasionally find that UMLdoesn’t supply a stan-
dard symbol for what you are attempting to communicate.
UML incorporates some extensibility to accommodate user
needs, such as a note. A note in UML is written as a rectangle
with a dog-eared upper-right corner. The note can attach
to the pertinent element(s) with a dashed line(s).Write briefly
in the note what you wish to convey. The bottom diagram in
Figure 3.3 illustrates a note, which describes the Employee
and Customer classes as the “Complete enumeration of
subclasses.”
Program Electronic Documentation

Software Product

Teacher Textbook

Course

Figure 3.4 UML aggregation constructs
(parallel to Figure 2.6).
The distinction between composition and
aggregation is sometimes elusive for those new
to UML. Figure 3.4 shows an example of each,
to help clarify. The top diagram means that a
Program and Electronic Documentation both
contribute to the composition of a Software Prod-
uct. The composition signifies that the parts do
not exist without the Software Product (there
is no software pirating in our ideal world). The
bottom diagram specifies that a Teacher and
a Textbook are aggregated by a course. The aggre-
gation signifies that the Teacher and the Textbook
are part of the Course, but they also exist sepa-
rately. If a course is canceled, the Teacher and
the Textbook continue to exist.
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Figure 3.6 UML constructs illustrating primary keys.
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Figure 3.5 illustrates another
example of an n-ary relationship.
The n-ary relationship may be clari-
fied by specifying roles next to the
participating classes. A Student is an
enrollee in a class, associated with a
given Room location and a scheduled
Day and meeting Time.

The concept of a primary key arises
in the context of database design.
Often, each row of a table is uniquely
identified by the values contained in
one or more columns designated as
the primary key. Objects in software
are not typically identified in this fash-
ion. As a result, UML does not have an
icon representing a primary key. How-
ever, UML is extensible. The meaning
of an element in UML may be
extendedwith a stereotype. Stereotypes
are depicted with a short natural lan-
guage word or phrase, enclosed in
guillemets: « and ». We take advantage
of this extensibility, using a stereotype
«pk» to designate primary key attri-
butes. Figure 3.6 illustrates the stereo-
type mechanism. The vin attribute is
specified as the primary key for Cars.
This means that a given VIN identifies
a specific Car. A noteworthy rule of
thumb for primary keys: When a
composition relationship exists, the
primary key of the part includes the primary key of the
owning object. The second diagram in Figure 3.6 illustrates
this point.

Example from the Music Industry
Large database schemas may be introduced with high-

level diagrams. Details can be broken out in additional dia-
grams. The overall goal is to present ideas in a clear,
organized fashion. UML offers notational variations and an
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organizationalmechanism. Youwill sometimes find there are
multiple ways of representing the samematerial in UML. The
decisions you make with regard to your representation
depend in part on your purpose for a given diagram.
Figures 3.7 through 3.10 illustrate some of the possibilities
with an example drawn from the music industry.

Packages may be used to organize classes into groups.
Packages may themselves also be grouped into packages.
The goal of using packages is to make the overall design of
a system more comprehensible. One use for packages is to
represent a schema. You can then show multiple schemas
concisely. Another use for packages is to group related clas-
ses together within a schema, and present the schema
clearly. Given a set of classes, different people may concep-
tualize different groupings. The division is a design deci-
sion, with no right or wrong answer. Whatever decisions
are made, the result should enhance readability. The nota-
tion for a package is a folder icon, and the contents of a
package can be optionally shown in the body of the folder.
If the contents are shown, then the name of the package is
placed in the tab. If the contents are elided, then the name
of the package is placed in the body of the icon.

If the purpose is to illustrate the relationships of the
packages, and the classes are not important at the moment,
then it is better to illustrate with the contents elided.
Figure 3.7 illustrates the notation with the music industry
example at a very high level. Music is created and placed
on Media. The Media is then distributed. There is an asso-
ciation between the Music and the Media, and between
the Media and Distribution.

Let us look at the organization of the classes. The music
industry is illustrated in Figure 3.8 with the classes listed.
The Music package contains classes that are responsible
for creating the music. Examples of Groups are the Beatles
and the Bangles. Sarah McLachlan and Sting are Artists.
Groups and Artists are involved in creating the music.
We will look shortly at the other classes and how they are
Music Media Distribution Figure 3.7 Example of
related packages.
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related. The Media package contains classes that physically
hold the recordings of the music. The Distribution package
contains classes that bring the media to you.

The contents of a package can be expanded into greater
detail. The relationships of the classes within the Music
package are illustrated in Figure 3.9. A Group is an aggrega-
tion of two or more Artists. As indicated by the multiplicity
between Artist and Group [0..*], an Artist may or may
not be in a Group, and may be in more than one Group.
Composers, Lyricists, and Musicians are different types of
Artists. A Song is associated with one or more Composers.
A Song may not have any Lyricist, or any number of
Lyricists. A Song may have any number of Renditions.
A Rendition is associated with exactly one Song. A Rendition
is associated with Musicians and Instruments. A given
Musician–Instrument combination is associated with
any number of Renditions. A specific Rendition–Musician
combination may be associated with any number of
Composer MusicianLyricist

Artist

Instrument

Song

Rendition

Group

1 .. *

1 .. *

0 .. *

1 .. *

*

1
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Instruments. A given Rendition–Instrument combination is
associated with any number of Musicians.

A system may be understood more easily by shifting
focus to each package in turn. We turn our attention now
to the classes and relationships in the Media package,
shown in Figure 3.10. The associated classes from the
Music and Distribution packages are also shown, detailing
how the Media package is related to the other two
packages. The Music Media is associated with the Group
and Artist classes, which are contained in the Music
package shown in Figure 3.8. The Music Media is also
associated with the Publisher, Studio, and Producer
classes, which are contained in the Distribution package
shown in Figure 3.8. Albums and CDs are types of Music
Media. Albums and CDs are both composed of Tracks.
Tracks are associated with Renditions.

Activity Diagrams
UML has a full suite of diagram types, each of which

fulfills a need for describing a view of the design. UML
activity diagrams are used to specify the activities and the
flow of control in a process. The process may be a
workflow followed by people, organizations, or other phys-
ical things. Alternatively, the process may be an algorithm
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implemented in software. The syntax and the semantics of
UML constructs are the same, regardless of the process
described. Our examples draw from workflows that are
followed by people and organizations, since these are more
useful for the logical design of databases.

Activity Diagram Notation Description
Activity diagrams include notation for nodes, control

flow, and organization. The icons we are describing here are
outlined in Figure 3.11. The notation is further clarified
by example in the “Activity Diagrams for Workflow” section.
Subset Name 2

Activity Name

[guard]

[alternative
guard]

initial node

final node

activity node

Nodes

Control

flow

decision (branch)

fork

join

Organization

partition (swim lanes)

Subset Name 1
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The nodes include the initial node, final nodes, and
activity nodes. Any process begins with control residing
in the initial node, represented as a solid black circle.
The process terminates when control reaches a final
node, represented with a solid black circle surrounded
by a concentric circle (i.e., a bull’s-eye). Activity nodes
are states where specified work is processed. For example,
an activity might be named “Generate quote.” The name
of an activity is typically a descriptive verb or short verb
phrase, written inside a lozenge shape. Control resides in
an activity until that activity is completed. Then control
follows the outgoing flow.

Control flow icons include flows, decisions, forks, and
joins. A flow is drawn with an arrow. Control flows in the
direction of the arrow. Decision nodes are drawn as a
hollow diamond with multiple outgoing flows. Each flow
from a decision node must have a guard condition.
A guard condition is written within square brackets next
to the flow. Control flows in exactly one direction from a
decision node, and only follows a flow if the guard con-
dition is true. The guard conditions associated with a
decision node must be mutually exclusive, to avoid non-
deterministic behavior. There can be no ambiguity as to
which direction the control follows. The guards must
cover all possible test conditions, so that control is not
blocked at the decision node. One path may be guarded
with [else]. If a path is guarded with [else], then control
flows in that direction only if all the other guards fail.
Forks and joins are both forms of synchronization written
with a solid bar. The fork has one incoming flow, and
multiple outgoing flows. When control flows to a fork,
the control concurrently follows all the outgoing flows.
These are referred to as concurrent threads. Joins are the
opposite of forks; the join construct has multiple incom-
ing flows and one outgoing flow. Control flows from a join
only when control has reached the join from each of the
incoming flows.

Activity diagrams may be further organized using parti-
tions, also known as swim lanes. Partitions split activities
into subsets, organized by responsible party. Each subset
is named and enclosed with lines.
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Activity Diagrams for Workflow
Figure 3.12 illustrates theUML activity diagramconstructs

used for the publication of this book. This diagram is par-
titioned into two subsets of activities, organized by responsi-
ble party. The left subset contains Customer activities, and
the right subset contains Manufacturer activities. Activity
partitions may be arranged vertically, horizontally, or in a
grid. Curved dividers may be used, although this is atypical.
Activity diagrams can also be written without a partition.
The construct is organizational, and doesn’t carry inherent
Customer Manufacturer

Generate quoteRequest quote

[acceptable]

Review quote

[unacceptable]

Place order Enter order

Produce order

Ship order

Receive order

Generate invoiceReceive invoice

Pay Record payment
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semantics. Themeaning is suggestedby your choice of subset
names.

Control begins in the initial state, represented by the
solid dot in the upper-left corner of Figure 3.12. Control
flows to the first activity, where the customer requests a
quote (Request quote). Control remains in an activity until
that activity is completed; then the control follows the out-
going arrow. When the request for the quote is complete,
the Manufacturer generates a quote (Generate quote).
Then the Customer reviews the quote (Review quote).

The next construct is a branch, represented by a dia-
mond. Each outgoing arrow from a branch has a guard.
The guard represents a condition that must be true in order
for control to flow along that path. Guards are written as
short condition descriptions enclosed in brackets. After the
customer finishes reviewing the quote in Figure 3.12, if it is
unacceptable the process reaches a final state and termina-
tes. A final state is represented with a target (the bull’s-eye).
If the quote is acceptable, then the Customer places an
order (Place order). The Manufacturer enters (Enter order),
produces (Produce order), and ships the order (Ship order).

At a fork, control splits into multiple concurrent threads.
The notation is a solid bar with one incoming arrow
and multiple outgoing arrows. After the order ships in
Figure 3.12, control reaches a fork and splits into two
threads. The Customer receives the order (Receive order).
In parallel to the Customer receiving the order, the Manu-
facturer generates an invoice (Generate invoice), and
then the customer receives the invoice (Receive invoice).
The order of activities between threads is not constrained.
Thus, the Customer may receive the order before or after
the Manufacturer generates the invoice, or even after the
Customer receives the invoice.

At a join, multiple threads merge into a single thread.
The notation is a solid bar with multiple incoming arrows
and one outgoing arrow. In Figure 3.12, after the customer
receives the order and the invoice, then the customer will
pay (Pay). All incoming threads must complete before con-
trol continues along the outgoing arrow.

Finally, in Figure 3.12, the Customer pays, the Manufac-
turer records the payment (Record payment), and then a
final state is reached. Notice that an activity diagram may
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have multiple final states. However, there can only be one
initial state.

There are at least two uses for activity diagrams in the
context of database design. Activity diagrams can specify
the interactions of classes in a database schema. Class dia-
grams capture structure, and activity diagrams capture
behavior. The two types of diagrams can present comple-
mentary aspects of the same system. For example, one
can easily imagine that Figure 3.12 illustrates the usage of
classes named Quote, Order, Invoice, and Payment.
Another use for activity diagrams in the context of data-
base design is to illustrate processes surrounding the data-
base. For example, database life cycles can be illustrated
using activity diagrams.
Summary
UML is a graphical language that is currently very popular

for communicating design specifications for software and, in
particular, for logical database designs via class diagrams.
The similarity between UML and the ER model is shown
through some common examples, including ternary rela-
tionships and generalization. UML activity diagrams are used
to specify the activities and flow of control in processes.
Tips and Insights for Database
Professionals

Tip 1. The advantages of UML modeling are that it is
widely used in industry, more standardized than other
conceptual models, and more connected to object-ori-
ented applications. Use UML if these match your
priorities.
Tip 2. Decide what you wish to communicate first
(usually classes), and then focus your description.
Illustrate the details that further your purpose, and omit
the rest. UML is like any other language in that you can
immerse yourself in excruciating detail and lose your
purpose. Be concise.
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Tip 3. Keep each UML diagram to one page. Diagrams
are easier to understand if they can be seen in one glance.
This is not to say that youmust restrict yourself, rather you
should divide and organize your content into reasonable,
understandable portions. Use packages to organize your
presentation. If you have many brilliant ideas to convey
(of course you do!), begin with a high-level diagram that
paints the broad picture. Then follow up with a diagram
dedicated to each of your ideas.
Tip 4. Use UML when it is useful. Don’t feel compelled
to write a UML document just because you feel you need
a UML document. UML is not an end in itself, but it is an
excellent design tool for appropriate problems.
Tip 5. Accompany your diagrams with textual des-
criptions, thereby clarifying your intent. Additionally,
remember that some people are oriented verbally, others
visually. Combining natural languagewithUML is effective.
Tip 6. Take care to clearly organize each diagram.
Avoid crossing associations. Group elements together if
there is a connection in your mind. Two UML diagrams
can contain the exact same elements and associations,
and one might be a jumbled mess, while the other is ele-
gant and clear. Both convey the same meaning in UML,
but clearly the elegant version will be more successful at
communicating design issues.
Literature Summary
The definitive reference manual for UML is Rumbaugh,

Jacobson, and Booch (2005). Use Muller (1999) for more
detailed UML database modeling. Other useful UML texts
are Naiburg and Maksimchuk (2001), Quatrani (2003), and
Rumbaugh, Jacobson, and Booch (2004).
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stages of logical database design. The example introduced
in Chapter 2 is used again to illustrate the ER modeling
principles developed in this chapter.

Introduction
Logical database design is accomplished with a variety

of approaches, including the top-down, bottom-up, and
combined methodologies. The traditional approach, par-
ticularly for relational databases, has been a low-level,
bottom-up activity, synthesizing individual data elements
into normalized tables after careful analysis of the data ele-
ment interdependencies defined by the requirements anal-
ysis. Although the traditional process has been somewhat
successful for small- to medium-size databases, when used
for large databases its complexity can be overwhelming to
the point where practicing designers do not bother to use it
with any regularity. In practice, a combination of the top-
down and bottom-up approaches is used; in most cases,
tables can be defined directly from the requirements
analysis.

The conceptual data model has been most successful as
a tool for communication between the designer and the
end user during the requirements analysis and logical
design phases. Its success is due to the fact that the model,
using either ER or UML, is easy to understand and conve-
nient to represent. Another reason for its effectiveness is
that it is a top-down approach using the concept of
abstraction. The number of entities in a database is typi-
cally far fewer than the number of individual data elements
because data elements usually represent the attributes.
Therefore, using entities as an abstraction for data elements
and focusing on the relationships between entities greatly
reduces the number of objects under consideration and
simplifies the analysis. Though it is still necessary to repre-
sent data elements by attributes of entities at the con-
ceptual level, their dependencies are normally confined
to the other attributes within the entity or, in some cases,
to those attributes associated with other entities with a
direct relationship to their entity.

The major interattribute dependencies that occur in
data models are the dependencies between the entity keys,
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the unique identifiers of different entities that are captured
in the conceptual data modeling process. Special cases,
such as dependencies among data elements of unrelated
entities, can be handled when they are identified in the
ensuing data analysis.

The logical database design approach defined here
uses both the conceptual data model and the relational
model in successive stages. It benefits from the simplicity
and ease of use of the conceptual data model and
the structure and associated formalism of the relational
model. In order to facilitate this approach, it is necessary
to build a framework for transforming the variety of con-
ceptual data model constructs into tables that are already
normalized or can be normalized with a minimum of
transformation. The beauty of this type of transformation
is that it results in normalized or nearly normalized SQL
tables from the start; frequently, further normalization is
not necessary.

Before we do this, however, we need to first define the
major steps of the relational logical design methodology
in the context of the database life cycle.
Requirements Analysis
Step I, requirements analysis, is an extremely important

step in the database life cycle and is typically the most
labor intensive. The database designer must interview the
end user population and determine exactly what the data-
base is to be used for and what it must contain. The basic
objectives of requirements analysis are:
• To delineate the data requirements of the enterprise in

terms of basic data elements.
• To describe the information about the data elements

and the relationships among them needed to model
these data requirements.

• To determine the types of transactions that are intended
to be executed on the database and the interaction
between the transactions and the data elements.

• To define any performance, integrity, security, or admin-
istrative constraints that must be imposed on the
resulting database.
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• To specify any design and implementation constraints,
such as specific technologies, hardware and software,
programming languages, policies, standards, or external
interfaces.

• To thoroughly document all of the preceding in a
detailed requirements specification. The data elements
can also be defined in a data dictionary system, often
provided as an integral part of the database manage-
ment system.
The conceptual data model helps designers to accu-

rately capture the real data requirements because it
requires them to focus on semantic detail in the data
relationships, which is greater than the detail that would
be provided by functional dependencies alone.
Conceptual Data Modeling
Let us now look more closely at the basic data elements

and relationships that should be defined during
requirements analysis and conceptual design. These two
life cycle steps are often done simultaneously.

Consider the substeps in Step II.a, conceptual data
modeling, using the ER model:
• Classify entities and attributes (classify classes and

attributes in UML).
• Identify the generalization hierarchies (for both the ER

model and UML).
• Define relationships (define associations and associa-

tion classes in UML).
The remainder of this section discusses the tasks

involved in each substep.
Classify Entities and Attributes
Though it is easy to define entity, attribute, and relation-

ship constructs, it is not as easy to distinguish their roles
in modeling the database. What makes a data element an
entity, an attribute, or even a relationship? For example,
project headquarters are located in cities. Should “city”
be an entity or an attribute? A vita is kept for each
employee. Is “vita” an entity or a relationship?



Chapter 4 REQUIREMENTS ANALYSIS AND CONCEPTUAL DATA MODELING 59
The following guidelines for classifying entities and
attributes will help the designer’s thoughts converge to a
normalized relational database design:
• Entities should contain descriptive information.
• Multivalued attributes should be classified as entities.
• Attributes should be attached to the entities they most

directly describe.
Now we examine each guideline in turn.

Entity Contents

Entities should contain descriptive information. If there
is descriptive information about a data element, the data
element should be classified as an entity. If a data element
requires only an identifier and does not have relationships,
it should be classified as an attribute. With city, for exam-
ple, if there is some descriptive information such as coun-
try and population for cities, then city should be classified
as an entity. If only the city name is needed to identify
a city, then city should be classified as an attribute
associated with some entity, such as Project. The exception
to this rule is that if the identity of the value needs to be
constrained by set membership, you should create it as
an entity. For example, “state” is much the same as city,
but you probably want to have a State entity that contains
all the valid State instances. Examples of other data
elements in the real world that are typically classified as
entities include Employee, Task, Project, Department,
Company, Customer, and so on.

Multivalued Attributes

A multivalued attribute of an entity is an attribute that
can have more than one value associated with the key of
the entity. For example, a large company could have many
divisions, some of them possibly in different cities. In this
case, division or division-name would be classified as
a multivalued attribute of the Company entity (and its
key, company-name). The headquarters-address attribute
of the company, on the other hand, would normally be a
single-valued attribute.

Classify multivalued attributes as entities. In this exam-
ple, the multivalued attribute division-name should be
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reclassified as an entity Division with division-name as its
identifier (key) and division-address as a descriptor attribute.
If attributes are restricted to be single valued only, the later
design and implementation decisions will be simplified.
Attribute Attachment

Attach attributes to the entities they most directly
describe. For example, the attribute office-building-name
should normally be an attribute of the entity Department,
rather than the entity Employee. The procedure of
identifying entities and attaching attributes to entities is
iterative. Classify some data elements as entities and
attach identifiers and descriptors to them. If you find some
violation of the preceding guidelines, change some data
elements from entity to attribute (or from attribute to
entity), attach attributes to the new entities, and so forth.
Identify the Generalization Hierarchies
If there is a generalization hierarchy among entities,

then put the identifier and generic descriptors in the
supertype entity and put the same identifier and specific
descriptors in the subtype entities.

For example, suppose five entities were identified in the
ER model shown in Figure 2.5(a):
• Employee, with identifier empno and descriptors

empname, address, and date-of-birth.
• Manager, with identifier empno and descriptors

empname and jobtitle.
• Engineer, with identifier empno and descriptors

empname, highest-degree, and jobtitle.
• Technician, with identifier empno, and descriptors

empname and specialty.
• Secretary, with identifier empno, and descriptors

empname and best-skill.
Let’s say we determine, through our analysis, that the

entity Employee could be created as a generalization of
Manager, Engineer, Technician, and Secretary. Then we
put identifier empno and generic descriptors empname,
address, and date-of-birth in the supertype entity
Employee; identifier empno and specific descriptor jobtitle
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in the subtype entity Manager; identifier empno and spe-
cific descriptor highest-degree and jobtitle in the subtype
entity Engineer; etc. Later, if we decide to eliminate
Employee as an entity, the original identifiers and generic
attributes can be redistributed to all the subtype entities.
Define Relationships
We now deal with data elements that represent

associations among entities, which we call relationships.
Examples of typical relationships are works-in, works-for,
purchases, drives, or any verb that connects entities. For
every relationship the following should be specified: degree
(binary, ternary, etc.), connectivity (one-to-many, etc.),
optional or mandatory existence, and any attributes that
are associated with the relationship and not the entities.
The following are some guidelines for defining the more
difficult types of relationships.
Redundant Relationships

Analyze redundant relationships carefully. Two or more
relationships that are used to represent the same concept
are considered to be redundant. Redundant relationships
are more likely to result in unnormalized tables when
transforming the ER model into relational schemas.
Note that two or more relationships are allowed between
the same two entities as long as those relationships
have different meanings. In this case they are not consid-
ered redundant. One important case of nonredundancy is
shown in Figure 4.1(a) for the ER model and Figure 4.1(c)
for UML. If “belongs-to” is a one-to-many relationship bet-
ween Employee and Professional-association, if “located-
in” is a one-to-many relationship between Professional-
association and City, and if “lives-in” is a one-to-many
relationship between Employee and City, then “lives-in” is
not redundant because the relationships are unrelated.
However, consider the situation shown in Figure 4.1(b)
for the ER model and Figure 4.1(d) for UML. The employee
works on a project located in a city, so the “works-in”
relationship between Employee and City is redundant and
can be eliminated.
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Ternary Relationships

Define ternary relationships carefully. We define a ternary
relationship among three entities only when the concept can-
not be represented by several binary relationships among
those entities. For example, let us assume there is some
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association among entities Technician, Project, and Note-
book. If each technician can beworking on any of several pro-
jects and using the same notebooks on each project, then
three many-to-many binary relationships can be defined
(see Figure 4.2(a) for the ER model and Figure 4.2(c) for
UML). If, however, each technician is constrained to use
exactly one notebook for each project and that notebook
belongs to only one technician, then a one-to-one-to-one ter-
nary relationship should be defined (see Figure 4.2(b) for the
ER model and Figure 4.2(d) for UML). The approach to take
in ER modeling is to first attempt to express the associations
in terms of binary relationships; if this is impossible because
of the constraints of the associations, try to express them in
terms of a ternary relationship.
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binary and ternary
relationships: (a) binary
relationships, (b) different
meaning using a ternary
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different meaning using a
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The meaning of connectivity for ternary relationships is
important. Figure 4.2(b) shows that for a given pair of
instances of Technician and Project, there is only one
corresponding instance of Notebook; for a given pair of
instances of Technician and Notebook, there is only one
corresponding instance of Project; and for a given pair of
instances of Project and Notebook, there is only one
instance of Technician. In general, we know by our defini-
tion of ternary relationships that if a relationship among
three entities can only be expressed by a functional depen-
dency involving the keys of all three entities, then it cannot
be expressed using only binary relationships, which only
apply to associations between two entities. Object-oriented
design provides arguably a better way to model this situa-
tion (Muller, 1999).
Example of Data Modeling: Company Personnel
and Project Database
ER Modeling of Individual Views Based on Requirements

Let us suppose it is desirable to build a company-wide
database for a large engineering firm that keeps track of
all full-time personnel, their skills and projects assigned,
department (and divisions) worked in, engineer profes-
sional associations belonged to, and engineer desktop
computers allocated. During the requirements collection
process—that is, interviewing the end users—we obtain
three views of the database.

The first view, a management view, defines each
employee as working in a single department, and defines
a division as the basic unit in the company, consisting of
many departments. Each division and department has a
manager, and we want to keep track of each manager.
The ER model for this view is shown in Figure 4.3(a).

The second view defines each employee as having a job
title: engineer, technician, secretary, manager, and so on.
Engineers typically belong to professional associations
and might be allocated an engineering workstation (or
computer). Secretaries and managers are each allocated a
desktop computer. A pool of desktops and workstations is
maintained for potential allocation to new employees and
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for loans while an employee’s computer is being repaired.
Any employee may be married to another employee, and
we want to keep track of this relationship to avoid
assigning an employee to be managed by his or her spouse.
This view is illustrated in Figure 4.3(b).

The third view, shown in Figure 4.3(c), involves the assign-
ment of employees, mainly engineers and technicians, to
projects. Employees may work on several projects at one
time, and each project could be headquartered at different
locations (cities). However, each employee at a given location
works on only one project at that location. Employee skills
can be individually selected for a given project, but no indi-
vidual has a monopoly on skills, projects, or locations.
Global ER Schema

A simple integration of the three views just defined over
the entity Employee results in the global ER schema (dia-
gram) in Figure 4.3(d), which becomes the basis for devel-
oping the normalized tables. Each relationship in the
global schema is based on a verifiable assertion about
the actual data in the enterprise, and analysis of those
assertions leads to the transformation of these ER con-
structs into candidate SQL tables, as Chapter 5 shows.

Note that equivalent views and integration could be
done for a UML conceptual model over the class
Employee. We will use the ER model for the examples in
the rest of this chapter, however.

The diagram shows examples of binary, ternary, and
binary recursive relationships; optional and mandatory
existence in relationships; and generalization with the
disjointness constraint. Ternary relationships “skill-used”
and “assigned-to” are necessary because binary
relationships cannot be used for the equivalent notions.
For example, one employee and one location determine
exactly one project (a functional dependency). In the case
of “skill-used,” selective use of skills to projects cannot be
represented with binary relationships.

The use of optional existence, for instance, between
Employee and Division or between Employee and
Department, is derived from our general knowledge that
most employees will not be managers of any division or



68 Chapter 4 REQUIREMENTS ANALYSIS AND CONCEPTUAL DATA MODELING
department. In another example of optional existence,
we show that the allocation of a workstation to an engi-
neer may not always occur, nor will all desktops or
workstations necessarily be allocated to someone at all
times. In general, all relationships, optional existence
constraints, and generalization constructs need to be
verified with the end user before the ER model is
transformed to SQL tables.

In summary, the application of the ER model to rela-
tional database design offers the following benefits:
• Use of an ER approach focuses end users’discussions on

important relationships between entities. Some
applications are characterized by counterexamples
affecting a small number of instances, and lengthy con-
sideration of these instances can divert attention from
basic relationships.

• A diagrammatic syntax conveys a great deal of informa-
tion in a compact, readily understandable form.

• Extensions to the original ER model, such as optional
and mandatory membership classes, are important in
many relationships. Generalization allows entities to be
grouped for one functional role or to be seen as separate
subtypes when other constraints are imposed.

• A complete set of rules transforms ER constructs into
mostly normalized SQL tables, which follow easily from
real-world requirements.
View Integration
A critical part of the database design process is Step II.b,

the integration of different user views into a unified, non-
redundant global schema. The individual end user views
are represented by conceptual data models, and the
integrated conceptual schema results from sufficient anal-
ysis of the end user views to resolve all differences in per-
spective and terminology. Experience has shown that
nearly every situation can be resolved in a meaningful
way through integration techniques.

Schema diversity occurs when different users or user
groups develop their own unique perspectives of the
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world or, at least, of the enterprise to be represented in
the database. For instance, the marketing division tends
to have the whole product as a basic unit for sales, but
the engineering division may concentrate on the individ-
ual parts of the whole product. In another case, one user
may view a project in terms of its goals and progress
toward meeting those goals over time, but another user
may view a project in terms of the resources it needs
and the personnel involved. Such differences cause the
conceptual models to seem to have incompatible
relationships and terminology. These differences show
up in conceptual data models as different levels of
abstraction, connectivity of relationships (one-to-many,
many-to-many, and so on), or as the same concept being
modeled as an entity, attribute, or relationship,
depending on the user’s perspective.
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Figure 4.4 Schemas: placement of an
order: (a) the concept of order as an
entity, (b) the concept of order as a
relationship, and (c) the concept of order
as an attribute.
As an example of the latter case, in Figure 4.4
we see three different perspectives of the same
real-life situation—the placement of an order
for a certain product. The result is a variety of
schemas. The first schema (Figure 4.4a) depicts
Customer, Order, and Product as entities
and “places” and “for-a” as relationships. The
second schema (Figure 4.4b), however, defines
“orders” as a relationship between Customer
and Product and omits Order as an entity alto-
gether. Finally, in the third case (Figure 4.4c),
the relationship “orders” has been replaced by
another relationship “purchases”; order-no, the
identifier (key) of an order, is designated as an
attribute of the relationship “purchases.” In other
words, the concept of order has been variously
represented as an entity, a relationship, and an
attribute, depending on perspective.

There are three basic steps needed for
conceptual schema integration:
1. Comparison of schemas and identifying

conflicts.
2. Conformation of schemas and resolving

conflicts.
3. Merging and restructuring of schemas.
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Comparison of Schemas: Identifying Conflicts
In the first step, comparison of schemas, the designer

looks at how entities correspond and detects conflicts aris-
ing from schema diversity—that is, from user groups
adopting different viewpoints in their respective schemas.

Naming conflicts include synonyms and homonyms.
Synonyms occur when different names are given for the
same concept. These can be detected by scanning the
data dictionary, if one has been established for the data-
base. For example, the entities Product and Item are often
found to be synonyms, and one of them can be renamed
to fit the other. Homonyms occur when the same name
is used for different concepts. They can often be detected
by scanning different schemas and looking for common
names. For instance, among the attributes for the entity
Product, product-number in one schema may refer to
the model number and in another schema it may refer
to the serial number. These differences need to be
resolved as soon as possible.

Structural conflicts occur in the schema structure itself.
Type conflicts involve using different constructs to model
the same concept. In Figure 4.4, for example, an entity, a
relationship, or an attribute can be used to model the con-
cept of order in a business database.

Key conflicts occur when different keys are assigned to
the same entity in different views. For example, a key con-
flict occurs if an employee’s full name, employee ID num-
ber, and social security number are all assigned as keys.
When this occurs, modify the keys to maintain consistency.

Dependency conflicts result when users specify differ-
ent levels of connectivity (one-to-many, etc.) for similar
or even the same concepts. One resolution of such
conflicts might be to use only the most general connectiv-
ity—for example, many-to-many. If that is not semantically
correct, change the names of entities so that each type of
connectivity has a different set of entity names.

As an example of schema comparison, let us look at two
different views of overlapping data in Figure 4.5. The views
are based on two separate interviews of end users. We
adapt the interesting example cited by Batini et al. (1986)
to a hypothetical situation related to our example. In
Figure 4.5(a) we have a view that focuses on reports and
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includes data on departments that publish the reports,
topic areas in reports, and contractors for whom the
reports are written. Figure 4.5(b) shows another view, with
publications as the central focus and keywords on
publications as the secondary data. Our objective is to find
meaningful ways to integrate the two views.

We first look for synonyms and homonyms, particularly
among the entities. Note that a synonym exists between
the entities Topic-area in schema 1 and Keyword in
schema 2, even though the attributes do not match. Next
we look for structural conflicts between schemas. A type
conflict is found to exist between the entity Department
in schema 1 and the attribute dept-name in schema 2.
The resolution of these conflicts occurs in the second step:
conformation of schemas.
Conformation of Schemas: Resolving Conflicts
The resolution of conflicts often requires user and

designer interaction. The basic goal of the second step is to
align or conform schemas to make them compatible for
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integration. The entities as well as the key attributes may
need to be renamed. Conversion may be required so that
concepts that are modeled as entities, attributes, or
relationships are conformed to be only one of them.
Relationships with equal degree, roles, and connectivity
constraints are easy to merge. Those with differing
characteristics aremore difficult and, in some cases, impos-
sible tomerge. In addition, relationships that are not consis-
tent—for example, a relationship using generalization in
one place and the exclusive-OR in another—must be
resolved. Finally, assertionsmay need to bemodified so that
integrity constraints are consistent.

Techniques used for view integration include abstraction,
such as generalization and aggregation, to create new super-
a)

N

title

code

research-area

ns Topic-area

ntains Topic-areaN

title

code

research-area

e conflict: (a) schema 2.1, in
ced by Topic-area and (b)
ute dept-name has been
entity.
types or subtypes, or even the
introduction of new
relationships. As an example, the
generalization of Individual over
different values of the descriptor
attribute job-title could represent
the consolidation of two views of
the database—one based on an
individual as thebasic unit of per-
sonnel in the organization, and
another based on the classifi-
cation of individuals by job titles
and special characteristics within
those classifications.

For the example in Figure 4.5,
the resolution of the conflicts is
shown in Figure 4.6. For the
synonyms Topic-area in schema
1 and Keyword in schema 2, we
find that the attributes,while hav-
ing different names, are compati-
ble and can be consolidated. This
is shown in Figure 4.6(a),
which presents a revised schema,
schema 2.1. In schema 2.1,
Keyword has been replaced by
Topic-area. The type conflict
between the entity Department
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in schema1 and the attribute dept-name in schema2 is resol-
ved by keeping the stronger entity type, Department, and
moving the attribute type dept-name under Publication in
schema 2 to the new entity, Department, in schema 2.2 (see
Figure 4.6b).
Merging and Restructuring of Schemas
The third step consists of themerging and restructuring of

schemas. This step is driven by the goals of completeness,
minimality, and understandability. Completeness requires
all component concepts to appear semantically intact in the
global schema. Minimality requires the designer to remove
all redundant concepts in the global schema. Examples of
redundant concepts are overlapping entities and truly
semantically redundant relationships. An example of over-
lapping entities might be Ground-Vehicle and Automobile.
A redundant relationship might occur between Instructor
and Student. The relationships “direct-research” and “advise”
may ormaynot represent the same activity or relationship, so
further investigation is required to determine whether they
are redundant or not. Understandability requires that the
global schema make sense to the user.

Component schemas are first merged by superimposing
the same concepts and then restructuring the resulting
integrated schema for understandability. For instance, if a
supertype/subtype combination is defined as a result of
the merging operation, the properties of the subtype can
be dropped from the schema because they are automati-
cally provided by the supertype entity.

Continuing our example in Figures 4.5 and 4.6, at this
point we have sufficient commonality between schemas
to attempt a merge. In schemas 1 and 2.2 we have two sets
of common entities, Department and Topic-area. Other
entities do not overlap and must appear intact in the
superimposed, or merged, schema. The merged schema,
schema 3, is shown in Figure 4.7(a). Because the common
entities are truly equivalent, there are no bad side effects of
the merge due to existing relationships involving those
entities in one schema and not in the other (such a rela-
tionship that remains intact exists in schema 1 between
Topic-area and Report, for example). If true equivalence
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cannot be established, the merge may not be possible in
the existing form.

In Figure 4.7(a), there is some redundancy between
Publication and Report in terms of the relationships with
Department and Topic-area. Such a redundancy can be
eliminated if there is a supertype/subtype relationship
between Publication and Report, which does in fact occur
in this case because Publication is a generalization of
Report. In schema 3.1 (Figure 4.7b) we see the introduction
of this generalization from Report to Publication. Then in
schema 3.2 (Figure 4.7c) we see that the redundant
relationships between Report and Department and Topic-
area have been dropped. The attribute title has been
eliminated as an attribute of Report in Figure 4.7(c)
because title already appears as an attribute of Publication
at a higher level of abstraction; title is inherited by the sub-
type Report.
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The final schema, in Figure 4.7(c), expresses completeness
because all the original concepts (report, publication, topic
area, department, and contractor) are kept intact. It expresses
minimality because of the transformation of dept-name
from an attribute in schema 1 to an entity and attribute in
schema 2.2, and the merger between schema 1 and schema
2.2 to form schema 3, and because of the elimination of title
as an attribute of Report and of Report relationships with
Topic-area andDepartment. Finally, it expresses understand-
ability in that the final schema actually has more meaning
than the individual original schemas.

The view integration process is one of continual refine-
ment and reevaluation. It should also be noted that
minimality may not always be the most efficient way to
proceed. If, for example, the elimination of the redundant
relationships “publishes” and/or “contains” from schema
3.1 to 3.2 causes the time to do certain queries to be exces-
sively long, it may be better from a performance viewpoint
to leave them in. This decision could be made during the
analysis of the transactions on the database or the testing
phase of the fully implemented database.
Entity Clustering for ER Models
This section presents the concept of entity clustering,

which abstracts the ER schema to such a degree that the
entire schema can appear on a single sheet of paper or a
single computer screen. This has happy consequences for
the end user and database designer in terms of developing
a mutual understanding of the database contents and for-
mally documenting the conceptual model.

An entity cluster is the result of a grouping operation on a
collection of entities and relationships. Entity clustering is
potentially useful for designing large databases. When the
scale of a database or information structure is large and
includes a large number of interconnections among its dif-
ferent components, it may be very difficult to understand
the semantics of such a structure and tomanage it, especially
for the end users or managers. In an ER diagram with 1000
entities, the overall structure will probably not be very
clear, even to a well-trained database analyst. Clustering is
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therefore important because it provides a method to orga-
nize a conceptual database schema into layers of abstraction,
and it supports the different views of a variety of end users.

Clustering Concepts
One should think of grouping as an operation that com-

bines entities and their relationships to form a higher-level
construct. The result of a grouping operation on simple
entities is called an entity cluster. A grouping operation
on entity clusters or on combinations of elementary
entities and entity clusters results in a higher-level entity
cluster. The highest-level entity cluster, representing the
entire database conceptual schema, is called the root entity
cluster.

Figure 4.8(a) illustrates the concept of entity clustering
in a simple case where (elementary) entities R-sec (report
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section), R-abbr (report abbreviation), and Author are nat-
urally bound to (dominated by) the entity Report; and
entities Department, Contractor, and Project are not
dominated. (Note that to avoid unnecessary detail, we do
not include the attributes of entities in the diagrams.) In
Figure 4.8(b) the dark-bordered box around the entity
Report and the entities it dominates defines the entity
cluster Report. The dark-bordered box is called the EC
box to represent the idea of entity cluster. In general, the
name of the entity cluster need not be the same as the
name of any internal entity; however, when there is a single
dominant entity, the names are often the same. The EC box
number in the lower-right corner is a clustering-level num-
ber used to keep track of the sequence in which clustering
is done. The number 2.1 signifies that the entity cluster
Report is the first entity cluster at level 2. Note that all
the original entities are considered to be at level 1.

The higher-level abstraction, the entity cluster, must
maintain the same relationships between entities inside
and outside the entity cluster as occur between the same
entities in the lower-level diagram. Thus, the entity names
inside the entity cluster should appear just outside the EC
box along the path of their direct relationship to the appro-
priately related entities outside the box, maintaining consis-
tent interfaces (relationships) as shown in Figure 4.8(b). For
simplicity, we modify this rule slightly: If the relationship is
between an external entity and the dominant internal entity
(for which the entity cluster is named), the entity cluster
name need not be repeated outside the EC box. Thus, in
Figure 4.8(b), we could drop the name Report both places
it occurs outside the Report box, but we must retain the
name Author, which is not the name of the entity cluster.
Grouping Operations
The grouping operations are the fundamental compo-

nents of the entity clustering technique. They define what
collections of entities and relationships comprise higher-
level objects, the entity clusters. The operations are heuris-
tic in nature and include (see Figure 4.9):
• Dominance grouping.
• Abstraction grouping.
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(b) abstraction, (c) constraint, and (d) relationship
grouping.
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• Constraint grouping.
• Relationship grouping.

These grouping operations can
be applied recursively or used in a
variety of combinations to produce
higher-level entity clusters—that is,
clusters at any level of abstraction.
An entity or entity cluster may be
an object that is subject to com-
binations with other objects to
form the next higher level. That is,
entity clusters have the properties
of entities and can have relation-
ships with any other objects at any
equal or lower level. The original
relationships among entities are
preserved after all grouping oper-
ations, as illustrated in Figure 4.8.

Dominant objects or entities
normally become obvious from the
ER diagram or the relationship
definitions. Each dominant object
is grouped with all its related non-

dominant objects to form a cluster. Weak entities can be
attached to an entity to make a cluster. Multilevel data
objects using such abstractions as generalization and
aggregation can be grouped into an entity cluster. The
supertype or aggregate entity name is used as the entity
cluster name. Constraint-related objects that extend the
ER model to incorporate integrity constraints such as the
exclusive-OR can be grouped into an entity cluster. Also,
ternary or higher-degree relationships can potentially be
grouped into an entity cluster. The cluster represents the
relationship as a whole.
Clustering Technique
The grouping operations and their order of precedence

determine the individual activities needed for clustering.
We can now learn how to build a root entity cluster from
the elementary entities and relationships defined in the
ER modeling process. This technique assumes that a
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top-down analysis has been performed as part of the
database requirements analysis and that the analysis has
been documented so that the major functional areas and
subareas are identified. Functional areas are often defined
by an enterprise’s important organizational units, business
activities, or, possibly, by dominant applications for pro-
cessing information. As an example, recall Figure 4.3,
which can be thought of as having three major functional
areas: company organization (management view); project
management (employee assignment view); and employee
data (employee view). Note that the functional areas are
allowed to overlap. Figure 4.3 uses an ER diagram resulting
from the database requirements analysis to show how clus-
tering involves a series of bottom-up steps using the basic
grouping operations. The following list explains these
steps.
1. Define points of grouping within functional areas.

Locate the dominant entities in a functional area
through the natural relationships, local n-ary relation-
ships, integrity constraints, abstractions, or just the
central focus of many simple relationships. If such
points of grouping do not exist within an area, consider
a functional grouping of a whole area.

2. Form entity clusters. Use the basic grouping operations
on elementary entities and their relationships to form
higher-level objects, or entity clusters. Because entities
may belong to several potential clusters, we need to
have a set of priorities for forming entity clusters. The
following set of rules, listed in priority order, defines
the set that is most likely to preserve the clarity of the
conceptual model.
a. Entities to be grouped into an entity cluster should

exist within the same functional area—that is, the
entire entity cluster should occur within the bound-
ary of a functional area. For example, in Figure 4.3,
the relationship between Department and Employee
should not be clustered unless Employee is included
in the company organization functional area with
Department and Division. In another example, the
relationship between the supertype Employee and
its subtypes could be clustered within the employee
data functional area.
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b. If a conflict in choice between two or more potential
entity clusters cannot be resolved (e.g., between two
constraint groupings at the same level of prece-
dence), leave these entity clusters ungrouped within
their functional area. If that functional area remains
cluttered with unresolved choices, define functional
subareas in which to group unresolved entities,
entity clusters, and their relationships.

3. Form higher-level entity clusters. Apply the grouping
operations recursively to any combination of elemen-
tary entities and entity clusters to form new levels of
entity clusters (higher-level objects). Resolve conflicts
using the same set of priority rules given in Step 2. Con-
tinue the grouping operations until all the entity
representations fit on a single page without undue com-
plexity. The root entity cluster is then defined.

4. Validate the cluster diagram. Check for consistency of
the interfaces (relationships) between objects at each
level of the diagram. Verify the meaning of each level
with the end users.
The result of one round of clustering is shown in

Figure 4.10, where each of the clusters is shown at level 2.
Summary
Conceptual data modeling, using either the ER or UML

approach, is particularly useful in the early steps of the data-
base life cycle, which involve requirements analysis and log-
ical design. These two steps are often done simultaneously,
particularly when requirements are determined from
interviews with end users and modeled in terms of data-to-
data relationships and process-to-data relationships. The
conceptual data modeling step (ER approach) involves the
classification of entities and attributes first, then identifica-
tion of generalization hierarchies and other abstractions,
and finally the definition of all relationships among entities.
Relationships may be binary (the most common), ternary,
and higher-level n-ary. Data modeling of individual
requirements typically involves creating a different view for
each end user’s requirements. Then the designer must inte-
grate those views into a global schema so that the entire
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database is pictured as an integrated whole. This helps to
eliminate needless redundancy—such elimination is partic-
ularly important in logical design. Controlled redundancy
can be created later, at the physical design level, to enhance
database performance.

Finally, an entity cluster is a grouping of entities and
their corresponding relationships into a higher-level
abstract object. Clustering promotes the simplicity that is
vital for fast end user comprehension. In Chapter 5 we take
the global schema produced from the conceptual data
modeling and view integration steps and transform it into
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SQL tables. The SQL format is the end product of logical
design, which is still independent of any particular data-
base management system.
Tips and Insights for Database
Professionals

Tip 1. Clearly state the database requirements before
doing any ER/UML (conceptual) modeling. Describe
what goes into the database (requirements coverage),
what comes out of the database (queries), and flexibility
for future possible usage.
Tip 2. Best order of ER modeling—entities first, then
relationships, then attributes for entities, and finally
attributes for relationships when appropriate. You
can iterate on relationships and attributes.
Tip 3. Identify binary relationships first whenever pos-
sible. Only use ternary relationships as a last resort.
Avoid modeling n-ary relationships (n greater than 2),
whenever possible, by using equivalent binary relation-
ships. If you can’t avoid this, follow the strict rules of
functional dependencies to model appropriately.
Tip 4. Keep the conceptual model simple. Too much
detail wastes time and is harder to convey to your client.
Tip 5. Interact often with the end user (client), if pos-
sible, to make sure all assumptions you make are also
true for the client’s view of the database.
Tip 6. Entity clustering is optional. Only consider
it when the ER diagram is massive and there is a
need to increase the level of abstraction to more
clearly convey the basic concepts (relationships) in
the database.
Literature Summary
Conceptual data modeling is defined in Tsichritzis

and Lochovsky (1982), Brodie, Mylopoulos, and Schmidt
(1984), Nijssen and Halpin (1989), and Batini, Ceri, and
Navathe (1992). Discussion of the requirements data
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collection process can be found in Martin (1982), Teorey
and Fry (1982), and Yao (1985). View integration has prog-
ressed from a representation tool (Smith and Smith, 1977)
to heuristic algorithms (Batini, Lenzerini, and Navathe,
1986; Elmasri and Navathe, 2010). These algorithms are
typically interactive, allowing the database designer to
make decisions based on suggested alternative integration
actions. A variety of entity clustering models have been
defined that provide a useful foundation for the clustering
technique shown here (Feldman and Miller, 1986; Dittrich,
Gotthard, and Lockemann, 1986; Teorey et al., 1989).
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This chapter focuses on the database life cycle step that
is of particular interest when designing relational
databases: transformation of the conceptual data model
to candidate tables and their definition in SQL (Step II.c).
There is a natural evolution from the entity–relationship
(ER) and Unified Modeling Language (UML) data models
to a relational schema. The evolution is so natural, in fact,
that it supports the contention that conceptual data
modeling is an effective early step in relational database
85
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development. This contention has been proven to some
extent by the widespread commercialization and use of
software design tools that support not only conceptual
data modeling but also the automatic conversion of these
models to vendor-specific SQL table definitions and integ-
rity constraints.
Transformation Rules and SQL Constructs
Let’s first look at the ER and UML modeling constructs

in detail to see how the rules about transforming the con-
ceptual data model to SQL tables are defined and applied.
Our example is drawn from the company personnel and
project conceptual schemas illustrated in Figure 4.3 (see
Chapter 4).

The basic transformations can be described in terms of
the three types of tables they produce:
• SQL table with the same information content as the orig-

inal entity from which it is derived. This transformation
always occurs for entities with binary relationships
(associations) that are many-to-many, one-to-many on
the “one” (parent) side, or one-to-one on either side
(see Figures 5.1 and 5.2); entities with binary recursive
relationships that are many-to-many (see Figures 5.3
and 5.4); and entities with any ternary or higher-degree
relationship (see Figures 5.5 and 5.6), or a generalization
hierarchy (see Figures 5.7 and 5.8).

• SQL table with the embedded foreign key of the parent
entity. This transformation always occurs for entities with
binary relationships that are one-to-many for the entity
on the “many” (child) side (see Figures 5.1 and 5.2), for
one-to-one relationships for one of the entities (see
Figures 5.1 and 5.2), and for each entity with a binary
recursive relationship that is one-to-one or one-to-many
(see Figures 5.3 and 5.4). This is one of the two most
common ways design tools handle relationships, by
prompting the user to define a foreign key in the child
table that matches a primary key in the parent table.

• SQL table derived from a relationship, containing the
foreign keys of all the entities in the relationship. This
transformation always occurs for relationships that are
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binary and many-to-many (see Figures 5.1f and 5.2f),
relationships that are binary recursive and many-to-
many, (see Figures 5.3c and 5.4c), and all relationships
that are of ternary or higher degree (see Figures 5.5 and
5.6). This is the other most common way design
tools handle relationships in the ER and UML models.
A many-to-many relationship can only be defined in
terms of a table that contains foreign keys that match
the primary keys of the two associated entities. This new
table may also contain attributes of the original relation-
ship—for example, a relationship “enrolled-in” between
two entities Student andCoursemight have the attributes
term and grade, which are associated with a particular
enrollment of a student in a particular course.
The following rules apply to handling SQL null values in

these transformations:
• Nulls are allowed in an SQL table for foreign keys of

associated (referenced) optional entities.
• Nulls are not allowed in an SQL table for foreign keys of

associated (referenced) mandatory entities.
• Nulls are not allowed for any key in an SQL table

derived from a many-to-many relationship because only
complete row entries are meaningful in the table.
Figures 5.1 through 5.8 show how SQL-created table

statements can be derived from each type of ER or UML
model construct. Note that in each SQL table definition,
the term primary key represents the key of the table that
is to be used for indexing and searching for data.
Binary Relationships
A one-to-one binary relationship between two entities is

illustrated in Figure 5.1(a)–(c). Note that the UML-equiva-
lent binary association is given in Figure 5.2(a)–(c).

When both entities are mandatory (Figure 5.1a), each
entity becomes a table, and the key of either entity can
appear in the other entity’s table as a foreign key. One of
the entities in an optional relationship (see Department
in Figure 5.1b) should contain the foreign key of the other
entity in its transformed table. Employee, the other entity
in Figure 5.1(b), could also contain a foreign key (dept_no)
with nulls allowed, but this would require more storage



Figure 5.1 ER model: one-to-one binary relationship between two entities:
(a) one-to-one, both entities mandatory, (b) one-to-one, one entity optional, one mandatory,
(c) one-to-one, both entities optional,
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space because of the much greater number of Employee
entity instances than Department instances. When both
entities are optional (Figure 5.1c), either entity can contain
the embedded foreign key of the other entity, with nulls
allowed in the foreign keys.



(d)

(e)

(f)

Figure 5.1, cont’d. (d) one-to-many, both entities mandatory, (e) one-to-many, one entity mandatory, one
optional, and (f) many-to-many, both entities optional.
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Figure 5.2 UML: one-to-one binary relationship between two entities: (a) one-to-one, both entities
mandatory, (b) one-to-one, one entity optional, one mandatory, (c) one-to-one, both entities optional,
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The one-to-many relationship can be shown as either
mandatory or optional on the “many” side, without affect-
ing the transformation. On the “one” side it may be either
mandatory (Figure 5.1d) or optional (Figure 5.1e). In all
cases the foreign key must appear on the “many” side,



(d)

(e)

(f)

Figure 5.2, cont’d (d) one-to-many, both entities mandatory, (e) one-to-many, one entity mandatory, one
optional, and (f) many-to-many, both entities optional.
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which represents the child entity, with nulls allowed for for-
eign keys only in the optional “one” case. Foreign key con-
straints are set according to the specific meaning of the
relationship and may vary from one relationship to another.
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The many-to-many relationship, shown in Figure 5.1(f)
as optional for both entities, requires a new table con-
taining the primary keys of both entities. The same trans-
formation applies to either the optional or mandatory
case, including the fact that the “not null” clause must
appear for the foreign keys in both cases. Note also that
an optional entity means that the SQL table derived from
it may have zero rows for that particular relationship. This
does not affect “null” or “not null” in the table definition.
Binary Recursive Relationships
A single entity with a one-to-one relationship implies

some form of entity occurrence pairing, as indicated by
the relationship name. This pairing may be completely
optional, completely mandatory, or neither. In all of these
cases (Figure 5.3a for ER and Figure 5.4a for UML), the
pairing entity key appears as a foreign key in the resulting
table. The two key attributes are taken from the same
domain but are given different names to designate their
unique use. The one-to-many relationship requires a
foreign key in the resulting table (Figure 5.3b). The foreign
key constraints can vary with the particular relationship.

Themany-to-many binary recursive relationship is shown
as optional (Figure 5.3c) and results in a new table; it could
also be defined asmandatory (using the word “must” instead
of “may”). Both cases have the foreign keys defined as “not
null.” Inmany-to-manyrelationships, foreignkeyconstraints
on delete and update must always be cascaded because
each entry in the SQL table depends on the current value
or existence of the referenced primary key.
Ternary and n-ary Relationships
An n-ary relationship has (n þ 1) possible variations of

connectivity: all n sides with connectivity “one”; (n � 1)
sides with connectivity “one” and one side with connectivity
“many”; (n � 2) sides with connectivity “one” and two sides
with “many”; and so on until all sides are “many.”

The four possible varieties of a ternary relationship
are shown in Figure 5.5 for the ER model and Figure 5.6
for UML. All variations are transformed by creating an



(a)

(b)

(c)

Figure 5.3 ER model: binary recursive relationship: (a) one-to-one, both sides optional, (b) one-to-many,
“one” side mandatory, “many” side optional, and (c) many-to-many, both sides optional.
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SQL table containing the primary keys of all entities;
however, in each case the meaning of the keys is differ-
ent. When all three relationships are “one” (Figure 5.5a),
the resulting SQL table consists of three possible distinct
keys. This represents the fact that there are three



(a)

(b)

(c)

Figure 5.4 UML: binary
recursive relationship: (a)
one-to-one, both sides
optional, (b) one-to-many,
“one” side mandatory,
“many” side optional, and
(c) many-to-many, both
sides optional.
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functional dependencies (FDs) that are needed to
describe this relationship. The optionality constraint is
not used here because all n entities must participate in
every instance of the relationship to satisfy the FD con-
straints. (See Chapter 6 for more discussion of functional
dependencies.)

In general, the number of entities with connectivity
“one” determines the lower bound on the number of FDs.
Thus, in Figure 5.5(b), which is one-to-one-to-many, there
are two FDs; in Figure 5.5(c), which is one-to-many-to-
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many, there is only one FD. When all relationships are
“many” (Figure 5.5d), the relationship table is all one com-
posite key unless the relationship has its own attributes. In
that case, the key is the composite of all three keys from
the three associated entities.

Foreign key constraints on delete and update for ter-
nary relationships transformed to SQL tables must always
be cascade because each entry in the SQL table depends
on the current value of, or existence of, the referenced
primary key.
Generalization and Aggregation
The transformation of a generalization abstraction can

produce separate SQL tables for the generic or supertype
entity and each of the subtypes (Figure 5.7 for the ER
model and Figure 5.8 for UML). The table derived from
the supertype entity contains the supertype entity key and
all common attributes. Each table derived from subtype
entities contains the supertype entity key and only the
attributes that are specific to that subtype. Update integrity
is maintained by requiring all insertions and deletions
to occur in both the supertype table and relevant subtype
table—that is, the foreign key constraint cascade must
be used. If the update is to the primary key of the super-
type table, then all subtype tables as well as the supertype
table must be updated. An update to a nonkey attribute
affects either the supertype or one subtype table, but not
both. The transformation rules (and integrity rules) are
the same for both the disjoint and overlapping subtype
generalizations.

Another approach is to have a single table that includes
all attributes from the supertype and subtypes (the whole
hierarchy in one table) with nulls used when necessary.
A third possibility is one table for each subtype, pushing
down the common attributes into the specific subtypes.
There are advantages and disadvantages to each of these
three approaches. Several software tools are now supporting
all three options (Fowler, 2003; Ambler, 2003).

Database practitioners often add a discriminator to the
supertype when they implement generalization. The dis-
criminator is an attribute that has a separate value for each



Figure 5.5 ER model: ternary and n-ary relationships: (a) one-to-one-to-one,
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subtype and indicates which subtype to use to get further
information. This approach works up to a point. However,
there are situations requiring multiple levels of supertypes
and subtypes, where more than one discriminator may be
required.



Figure 5.5, cont’d (b) one-to-one-to-many,

Chapter 5 TRANSFORMING THE CONCEPTUAL DATA MODEL TO SQL 97



Figure 5.5, cont’d (c) one-to-many-to-many, and
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The transformation of an aggregation abstraction also
produces a separate table for the supertype entity and each
subtype entity. However, there are no common attributes
and no integrity constraints to maintain. The main function
of aggregation is to provide an abstraction to aid the view
integration process. In UML, aggregation is a composition
relationship, not a type relationship, which corresponds to
a weak entity (Muller, 1999).



(d)

Figure 5.5, cont’d (d) many-to-many-to-many ternary relationships.
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Multiple Relationships
Multiple relationships among n entities are always con-

sidered to be completely independent. One-to-one, one-
to-many binary, or binary recursive relationships resulting
in tables that are either equivalent or differ only in the
addition of a foreign key can simply be merged into a sin-
gle table containing all the foreign keys. Many-to-many or
ternary relationships that result in SQL tables tend to be
unique and cannot be merged.



Figure 5.6 UML: ternary and n-ary relationships: (a) one-to-one-to-one,
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Weak Entities
Weak entities differ fromentities only in their need for keys

from other entities to establish their uniqueness. Otherwise,
they have the same transformation properties as entities, and
no special rules are needed. When a weak entity is already
derived from two or more entities in the ER diagram, it can
be directly transformed into a table without further change.



Figure 5.6, cont’d (b) one-to-one-to-many,
Continued
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Transformation Steps
The following list summarizes the basic transformation

steps from an ER diagram to SQL tables:
• Transform each entity into a table containing the key

and nonkey attributes of the entity.



Figure 5.6, cont’d (c) one-to-many-to-many, and
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• Transform every many-to-many binary or binary recur-
sive relationship into a table with the keys of the entities
and the attributes of the relationship.

• Transform every ternary or higher-level n-ary relation-
ship into a table.

Now let us study each step in turn.



(d)

Figure 5.6, cont’d (d) many-to-many-to-many ternary relationships.
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Entity Transformation
If there is a one-to-many relationship between two

entities, add the key of the entity on the “one” side (the
parent) into the child table as a foreign key. If there is a
one-to-one relationship between one entity and another
entity, add the key of one of the entities into the table for



Figure 5.7 ER model:
generalization and
aggregation.

Figure 5.8 UML:
generalization and
aggregation.
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the other entity, thus changing it to a foreign key. The addi-
tion of a foreign key due to a one-to-one relationship can
be made in either direction. One strategy is to maintain
the most natural parent–child relationship by putting the
parent key into the child table. Another strategy is based
on efficiency: Add the foreign key to the table with fewer
rows.

Every entity in a generalization hierarchy is transformed
into a table. Each of these tables contains the key of the
supertype entity; in reality, the subtype primary keys are
foreign keys as well. The supertype table also contains
nonkey values that are common to all the relevant entities;
the other tables contain nonkey values specific to each
subtype entity.

SQL constructs for these transformations may include
constraints for not null, unique, and foreign key. A primary
key must be specified for each table, either explicitly from
among the keys in the ER diagram or by taking the com-
posite of all attributes as the default key. Note that the pri-
mary key designation implies that the attribute is not null
and unique. It is important to note, however, that not all
DBMSs follow the ANSI standard in this regard—it may
be possible in some systems to create a primary key that
can be null. We recommend that you specify “not null”
explicitly for all key attributes.

Many-to-Many Binary Relationship
Transformation

In this step, every many-to-many binary relationship is
transformed into a table containing the keys of the entities
and the attributes of the relationship. The resulting table
will show the correspondence between specific instances
of one entity and those of another entity. Any attribute of
this correspondence, such as the elected office an engineer
has in a professional association (Figure 5.1f), is consid-
ered intersection data and is added to the table as a non-
key attribute.

SQL constructs for this transformation may include
constraints for not null. The unique constraint is not used
here because all keys are composites of the participating
primary keys of the associated entities in the relationship.
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The constraints for primary key and foreign key are
required, because a table is defined as containing a com-
posite of the primary keys of the associated entities.
Ternary Relationship Transformation
In this step, every ternary (or higher n-ary) relationship

is transformed into a table. Ternary or higher n-ary
relationships are defined as a collection of the n primary
keys in the associated entities in that relationship, with
possibly some nonkey attributes that are dependent on
the key formed by the composite of those n primary keys.

SQL constructs for this transformation must include
constraints for not null, since optionality is not allowed.
The unique constraint is not used for individual attributes,
because all keys are composites of the participating pri-
mary keys of the associated entities in the relationship.
The constraints for primary key and foreign key are
required because a table is defined as a composite of the
primary keys of the associated entities. The unique clause
must also be used to define alternate keys that often occur
with ternary relationships. Note that a table derived from
an n-ary relationship has n foreign keys.
Example of ER-to-SQL Transformation
ER diagrams for the company personnel and project data-

base (see Chapter 4) can be transformed to SQL tables. A
summary of the transformation of entities and relationships
to SQL tables is illustrated in the following lists.

SQL tables derived directly from entities (see Figure 4.3d):
division
department
employee
manager
secretary
engineer
technician
skill
project
location
prof_assoc
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desktop
SQL tables derived from many-to-many binary or many-

to-many binary recursive relationships:
belongs_to
SQL tables transformed from ternary relationships:
skill_used
assigned_to

Summary
Entities, attributes, and relationships in the ER model

and classes, attributes, and associations in UML can be
transformed directly into SQL table definitions with some
simple rules. Entities are transformed into tables, with
all attributes mapped one-to-one to table attributes.
Tables representing entities that are the child (“many” side)
of a parent–child (one-to-many or one-to-one) relationship
must also include, as a foreign key, the primary key of the
parent entity. A many-to-many relationship is transformed
into a table that contains the primary keys of the associated
entities as its composite primary key; the components of
that key are also designated as foreign keys in SQL. A ternary
or higher-level n-ary relationship is transformed into a table
that contains the primary keys of the associated entities;
these keys are designated as foreign keys in SQL. A subset
of those keys can be designated as the primary key,
depending on the functional dependencies associated with
the relationship. Rules for generalization require the inheri-
tance of the primary key from the supertype to the subtype
entities when transformed into SQL tables. Optionality con-
straints in the ER or UML diagrams translate into nulls
allowed in the relational model when applied to the “one”
side of a relationship. In SQL, the lack of an optionality con-
straint determines the not null designation in the create
table definition.
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Tips and Insights for Database
Professionals

Tip 1. Use software (CASE) tools when possible (e.g.,
ERwin). These transformations are fairly mechanical in
nature.
Tip 2. Entities become tables.
Tip 3. Simple attributes become data items in tables.
Tip 4. Complex attributes—consider redefining as
entities (tables) with foreign keys back to the parent
entity (its primary key).
Tip 5. One-to-one or one-to-many relationships must
be connected by primary key/foreign key pairs
between tables.
Tip 6. Many-to-many relationships become an “inter-
connect” table that simulates two equivalent one-to-
many relationships.
Tip 7. n-ary relationships becomes an “interconnect”
table with primary key/foreign key pairs to simulate
actual relationships among attributes.
Tip 8. Generalization defines a table for the supertype
entity and all subtype entities. Analyze carefully before
creating extra tables; ask, “Are they really needed?”; if so,
then maintain the primary key/foreign key connection.
Tip 9. Analyze the SQL tables you defined to deter-
mine which data is redundant, and also where there
is insufficient data to answer typical queries stated in
the requirements specifications. Make adjustments as
needed to avoid these problems.
Literature Summary
Definition of the basic transformations from the ER

model to tables is covered in McGee (1974), Wong and Katz
(1979), Sakai (1983), Martin (1983), Hawryszkiewyck
(1984), Jajodia and Ng (1984), and for UML in Muller
(1999).
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This chapter focuses on the fundamentals of normal
forms for relational databases and the database design
step that normalizes the candidate tables (Step II.d of the
database design life cycle). It also investigates the equiva-
lence between the conceptual data model (e.g., the
entity–relationship (ER) model) and normal forms for
tables. As we go through the examples in this chapter it
should become obvious that good, thoughtful design of a
conceptual model will result in databases that are either
already normalized or can be easily normalized with minor
changes. This illustrates the beauty of the conceptual
modeling approach to database design, in that the experi-
enced relational database designer will develop a natural
gravitation toward a normalized model from the beginning.
109



Sales

product-name

vacuum cleaner
computer
refrigerator
DVD player
radio
CD player
vacuum cleaner
vacuum cleaner
refrigerator
television

1458
2730
2460
519
1986
1817
1865
1885
1943
2315

Dave 
Qiang
Mike S
Peter 
Charle
C.V. R
Charle
Betsy
Dave 
Sakti 

order-no cus

Figure 6.1 Single table
database.
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For most database practitioners, the first three sections
of this chapter cover the critical normalization needed for
everyday use, through Boyce-Codd Normal Form (BCNF).
The final section describes an algorithm for finding the
minimum set of third normal form (3NF) tables when the
initial design of tables becomes large and unwieldy.
Fundamentals of Normalization
Relational database tables, whether they are derived

from ER or Unified Modeling Language (UML) models,
sometimes suffer from some rather serious problems in
terms of performance, integrity, and maintainability. For
example, when the entire database is defined as a single
large table, it can result in a large amount of redundant
data and lengthy searches for just a small number of target
rows. It can also result in long and expensive updates, and
deletions in particular can result in the elimination of use-
ful data as an unwanted side effect.

Such a situation is shown in Figure 6.1, where products,
salespersons, customers, and orders are all stored in a sin-
gle table called Sales. In this table we see that certain prod-
uct and customer information is stored redundantly,
wasting storage space. Certain queries, such as “Which
customers ordered vacuum cleaners last month?,” would
require a search of the entire table. Also, updates, such as
changing the address of the customer Dave Bachmann,
Bachmann
 Zhu
tolarchuck

Honeyman
s Antonelli
avishankar
s Antonelli

 Karmeisool
Bachmann
Pramanik

Austin
Plymouth
Ann Arbor
Detroit
Chicago
Mumbai
Chicago
Detroit
Austin
East lansing

6
10
8
3
7
8
7
8
6
6

1-3-03
4-15-05
9-12-04
12-5-04
5-10-05
8-3-02
10-1-04
4-19-99
1-4-04
3-15-04

Carl Bloch
Ted Hanss
Dick Phillips
Fred Remley
R. Metz
Paul Basile
Carl Bloch
Carl Bloch
Dick Phillips
Fred Remley

t-name cust-addr credit date sales-name
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would require changing many rows. Finally, deleting an
order by a valued customer, such as Qiang Zhu (who
bought an expensive computer), if that is his only out-
standing order, deletes the only copy of his address and
credit rating as a side effect. Such information may be dif-
ficult (or sometimes impossible) to recover. These pro-
blems also occur for situations in which the database has
already been set up as a collection of many tables, but
some of the tables are still too large.

If we had a method of breaking up such a large table
into smaller tables so that these types of problems would
be eliminated, the database would be much more efficient
and reliable. Classes of relational database schemes or
table definitions, called normal forms, are commonly used
to accomplish this goal. The creation of a normal form
database table is called normalization. Normalization is
accomplished by analyzing the interdependencies among
individual attributes associated with those tables and tak-
ing projections (subsets of columns) of larger tables to
form smaller ones.

Let us first review the basic normal forms that have
been well established in the relational database literature
and in practice.
A table is in first normal
form (1NF) if and only if
all columns contain only
atomic values—that is,
each column can have
only one value for each
row in the table.
First Normal Form
Relational database tables, such as the Sales table

illustrated in Figure 6.1, have only atomic values for each
row for each column. Such tables are considered to be in
first normal form, the most basic level of normalized
tables.

To better understand the definition for first normal
form, it helps to know the difference between a domain,
an attribute, and a column. A domain is the set of all pos-
sible values for a particular type of attribute, but may be
used for more than one attribute. For example, the domain
of people’s names is the underlying set of all possible
names that could be used for either customer-name or
salesperson-name in the database table in Figure 6.1. Each
column in a relational table represents a single attribute,
but in some cases more than one column may refer to dif-
ferent attributes from the same domain. When this occurs,
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the table is still in 1NF because the values in the table are
still atomic. In fact, standard SQL assumes only atomic
values and a relational table is by default in 1NF. A nice
explanation of this is given in Muller (1999).

Superkeys, Candidate Keys, and Primary Keys
A table in 1NF often suffers from data duplication,

update performance degradation, and update integrity
problems, as noted above. To understand these issues bet-
ter, however, we must define the concept of a key in the
context of normalized tables. A superkey is a set of one or
more attributes that, when taken collectively, allows us to
identify uniquely an entity or table. Any subset of the
attributes of a superkey that is also a superkey and not
reducible to another superkey is called a candidate key.
A primary key is selected arbitrarily from the set of candi-
date keys to be used in an index for that table.

As an example, in Table 6.1 a composite of all the
attributes of the table forms a superkey because duplicate
rows are not allowed in the relational model. Thus, a trivial
superkey is formed from the composite of all attributes in a
table. Assuming that each department address (dept_addr)
in this table is single valued, we can conclude that the
composite of all attributes except dept_addr is also a
superkey. Looking at smaller and smaller composites of
attributes and making realistic assumptions about which
Table 6.1 Report Table

dept_
no

dept_
name

dept_
addr

author_
id

author_
name

author_
addr

15 design argus1 53 tremaine rutgers

15 design argus1 44 bolton mathrev

15 design argus1 71 koenig mathrev

27 analysis argus2 26 fry folkstone

27 analysis argus2 38 umar prise

27 analysis argus2 71 koenig mathrev
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attributes are single valued, we find that the composite
(report_no, author_id) uniquely determines all the other
attributes in the table and is therefore a superkey. However,
neither report_no nor author_id alone can determine a row
uniquely, and the composite of these two attributes cannot
be reduced and still be a superkey. Thus, the composite
(report_no, author_id) becomes a candidate key. Since it
is the only candidate key in this table, it also becomes
the primary key.

A table can have more than one candidate key. If, for
example, in Table 6.1, we had an additional column for
author_ssn, and the composite (report_no, author_ssn)
uniquely determined all the other attributes of the table, then
both (report_no, author_id) and (report_no, author_ssn)
would be candidate keys. The primary key would then be
an arbitrary choice between these two candidate keys.

Other examples of multiple candidate keys can be seen in
Figure 5.5 (see Chapter 5). In Figure 5.5(a) the table
uses_notebook has three candidate keys: (emp_id,
project_name), (emp_id, notebook_no), and (project_name,
notebook_no); and in Figure 5.5(b) the table assigned_to
has two candidate keys: (emp_id, loc_name) and (emp_id,
project_name). Figures 5.5(c) and (d) each have only a single
candidate key.
Second Normal Form
In explaining the concept of second normal form (2NF)

and higher, we introduce the concept of functional depen-
dence, which was briefly described in Chapter 2. The prop-
erty of one or more attributes uniquely determining the
value of one or more other attributes is called functional
dependence (FD). Given a table R, a set of attributes B is
functionally dependent on another set of attributes A if,
at each instant of time, each A value is associated with only
one B value. Such a functional dependence is denoted by
A -> B. In the preceding example from Table 6.2, let us
assume we are given the following functional dependen-
cies for the table report:

report: report_no -> editor, dept_no

dept_no -> dept_name, dept_addr
author_id -> author_name, author_addr



A table is in second
normal form (2NF) if
and only if it is in 1NF
and every nonkey
attribute is fully
dependent on the
primary key. An
attribute is fully
dependent on the
primary key if it is on the
right side of an FD for
which the left side is
either the primary key
itself or something that
can be derived from the
primary key using the
transitivity of FDs.
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An example of a transitive FD in the report table is the

following:

report_no -> dept_no
dept_no -> dept_name
Therefore, we can derive the FD (report_no ->

dept_name) since dept_name is transitively dependent on
report_no.

Continuing our example, the composite key in Table 6.1,
(report_no, author_id), is the only candidate key and is there-
fore the primary key. However, there exists one FD (dept_no
-> dept_name, dept_addr) that has no component of the
primary key on the left side, and two FDs (report_no -> edi-
tor, dept_no and author_id -> author_name, author_addr)
that contain one component of the primary key on the left
side, but not both components. As such, the report table
does not satisfy the condition for 2NF for any of the FDs.

Consider the disadvantages of 1NF in the report table.
Report_no, editor, and dept_no are duplicated for each
author of the report. Therefore, if the editor of the report
changes, for example, several rows must be updated. This
is known as the update anomaly, and it represents a poten-
tial degradation of performance due to the redundant
updating. If a new editor is to be added to the table, this
can only be done if the new editor is editing a report: both
the report number and editor number must be known to
add a row to the table, because you cannot have a primary
key with a null value in most relational databases. This is
known as the insert anomaly. Finally, if a report is with-
drawn, all rows associated with that report must be
deleted. This has the side effect of deleting the information
that associates an author_id with author_name and
author_addr. Deletion side effects of this nature are known
as delete anomalies. They represent a potential loss of
integrity, because the only way the data can be restored is
to find the data somewhere outside the database and insert
it back into the database. All three of these anomalies
represent problems to database designers, but the delete
anomaly is by far the most serious because you might lose
data that cannot be recovered.

These disadvantages can be overcome by transforming
the 1NF table into two or more 2NF tables by using the
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projection operator on a subset of the attributes of the 1NF
table. In this example we project report over report_no,
editor, dept_no, dept_name, and dept_addr to form
report1; and project report over author_id, author_name,
and author_addr to form report2; and finally, project
report over report_no and author_id to form report3. The
projection of report into three smaller tables has preserved
the FDs and the association between report_no and
author_no that was important in the original table. Data
for the three tables is shown in Figure 6.2. The FDs for
these 2NF tables are:

report1: report_no -> editor, dept_no

dept_no -> dept_name, dept_addr

report2: author_id -> author_name,
author_addr
report1

report2

report3

report–no

4216

5789

woolf

koenig

15

27

design

analysis

argus 1

argus 2

dept–no dept–name dept–addreditor

author–id

53
44
71
26
38
71

mantei
bolton
koenig
fry
umar
koenig

cs-tor
mathrev
mathrev
folkstone
prise
mathrev

author–addrauthor–name

report–no

4216
4216
4216
5789
5789
5789

53
44
71
26
38
71

author–id

Figure 6.2 2NF tables.
report3: (report_no, author_id) is a
candidate key (no FDs)

We now have three tables that satisfy the
conditions for 2NF, and we have eliminated
the worst problems of 1NF, especially
integrity (the delete anomaly). First, editor,
dept_no, dept_name, and dept_addr are
no longer duplicated for each author of a
report. Second, an editor change results in
only an update to one row for report1.
And third, andmost important, the deletion
of the report does not have the side effect of
deleting the author information.

Not all performance degradation is
eliminated, however; report_no is still
duplicated for each author and deletion
of a report requires updates to two tables
(report1 and report3) instead of one.
However, these are minor problems com-
pared to those in the 1NF report table.

Note that these three tables in 2NF
could have been generated directly from
an ER (or UML) diagram that equivalently
modeled this situation with entities Author
and Report and a many-to-many relation-
ship between them.



A table is in third normal
form (3NF) if and only if
for every nontrivial
functional dependency
X -> A, where X and
A are either simple or
composite attributes,
one of two conditions
must hold: either
attribute X is a superkey,
or attribute A is a
member of a candidate
key. If attribute A is a
member of a candidate
key, A is called a prime
attribute. Note: A trivial
FD is of the form
YZ -> Z.

report11

report–no dept–no

15
27

4216
5789

editor

report2

author–id author–name a

koenig
fry
umar
koeing

mantei
bolton

53
44
71
26
38
71

woolf
koenig
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Third Normal Form
The 2NF tables we established in the previous section

represent a significant improvement over 1NF tables.
However, they still suffer from the same types of
anomalies as the 1NF tables, although for different
reasons associated with transitive dependencies. If a tran-
sitive (functional) dependency exists in a table, it means
that two separate facts are represented in that table, one
fact for each functional dependency involving a different
left side. For example, if we delete a report from the data-
base, which involves deleting the appropriate rows from
report1 and report3 (see Figure 6.2), we have the side
effect of deleting the association between dept_no,
dept_name, and dept_addr as well. If we could project
report1 over report_no, editor, and dept_no to form table
report11, and project report1 over dept_no, dept_name,
and dept_addr to form table report12, we could eliminate
this problem. Example tables for report11 and report12
are shown in Figure 6.3.

In the preceding example, after projecting report1 into
report11 and report12 to eliminate the transitive depen-
dency report_no -> dept_no -> dept_name, dept_addr
we have the following 3NF tables and their functional
dependencies (and example data in Figure 6.3):

report11: report_no -> editor, dept_no
report12: dept_no -> dept_name, dept_addr
report12

uthor–addr

cs-tor
mathrev
mathrev
folkstone
prise
mathrev

report3

author–idreport–no

4216
4216
4216
5789
5789
5789

53
44
71
26
38
71

dept–no dept–addr

argus1
argus2

design
analysis

15
27

dept–name

Figure 6.3 3NF tables.



A table R is in Boyce-
Codd normal form
(BCNF) if for every
nontrivial FD X ->A, X is
a superkey.
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report2: author_id -> author_name, author_addr
report3: (report_no, author_id) is a candidate key (noFDs)

Boyce-Codd Normal Form
Third normal form, which eliminates most of the

anomalies known in databases today, is the most common
standard for normalization in commercial databases and
computer-aided software engineering (CASE) tools. The few
remaining anomalies can be eliminated by the Boyce-Codd
normal form. Boyce-Codd normal form is considered to be
a strong variation of 3NF.

BCNF is a stronger form of normalization than 3NF
because it eliminates the second condition for 3NF, which
allowed the right side of the FD to be a prime attribute.
Thus, every left side of an FD in a table must be a superkey.
Every table that is BCNF is also 3NF, 2NF, and 1NF, by the
previous definitions.

The following example shows a 3NF table that is not
BCNF. Such tables have delete anomalies similar to those
in the lower normal forms.

Assertion 1: For a given team, each employee is directed
by only one leader. A team may be directed by more
than one leader.

emp_name, team_name -> leader_name

Assertion 2: Each leader directs only one team.
leader_name -> team_name

The following table is 3NF with a composite candidate
key (emp_name, team_name).
team:
 emp_name
 team_name
 leader_name
Sutton
 Hawks
 Wei

Sutton
 Condors
 Bachmann

Niven
 Hawks
 Wei

Niven
 Eagles
 Makowski

Wilson
 Eagles
 DeSmith
The team table has the following delete anomaly: If
Sutton drops out of the Condors team, then we have no
record of Bachmann leading the Condors team. As shown
by Date (2003), this type of anomaly cannot have a lossless
decomposition and preserve all FDs. A lossless decomposi-
tion requires that when you decompose the table into two



Figure 6.4 ER diagram for
employee database.
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smaller tables by projecting the original table over two
overlapping subsets of that table, the natural join of those
subset tables must result in the original table without any
extra unwanted rows. The simplest way to avoid the delete
anomaly for this kind of situation is to create a separate
table for each of the two assertions. These two tables are
partially redundant, enough so to avoid the delete anom-
aly. This decomposition is lossless (trivially) and preserves
functional dependencies, but it also degrades update per-
formance due to redundancy, and necessitates additional
storage space. The trade-off is often worth it because the
delete anomaly is avoided.

The Design of Normalized Tables:
A Simple Example

The example in this section is based on the ER diagram
in Figure 6.4 and the following FDs. In general, FDs can be
given explicitly, derived from the ER diagram, or derived
from intuition—that is, from experience with the problem
domain.
1. emp_id, start_date -> job_title, end_date
2. emp_id -> emp_name, phone_no, office_no, proj_no,

proj_name, dept_no
3. phone_no -> office_no
emp-id
dept-no

proj-no

proj-name

proj-start-date

proj-end-date

emp-name
dept-name

mgr-id

phone-no

office-no

Emp-history

N
job-title

start-date

end-date

Employee

has

works-on Project

works-in

manages

Dept

1

11

1

1

N

N
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4. proj_no -> proj_name, proj_start_date, proj_end_date
5. dept_no -> dept_name, mgr_id
6. mgr_id -> dept_no

Our objective is to design a relational database schema
that is normalized to at least 3NF and, if possible, mini-
mize the number of tables required. Our approach is to
apply the definition of 3NF given previously to the FDs
given above, and create tables that satisfy the definition.

If we try to put FDs 1–6 into a single table with the com-
posite candidate key (and primary key) (emp_id, start_date)
we violate the 3NF definition, because FDs 2–6 involve left
sides of FDs that are not superkeys. Consequently, we need
to separate FD 1 from the rest of the FDs. If we then try to
combine 2–6 we have many transitivities. Intuitively, we
know that 2, 3, 4, and 5 must be separated into different
tables because of transitive dependencies. We then must
decide whether 5 and 6 can be combined without loss of
3NF; this can be done because mgr_id and dept_no are
mutually dependent and both attributes are superkeys in a
combined table. Thus, we can define the following tables
by appropriate projections from 1–6.

emp_hist: emp_id, start_date -> job_title, end_date
employee: emp_id -> emp_name, phone_no, proj_no,

dept_no
phone: phone_no -> office_no
project: proj_no -> proj_name, proj_start_date,

proj_end_date
department: dept_no -> dept_name, mgr_id
mgr_id -> dept_no

This solution, which is BCNF as well as 3NF, maintains

all the original FDs. It is also a minimum set of normalized
tables. In the “Determining the Minimum Set of 3NF
Tables” section, we will look at a formal method of deter-
mining a minimum set that we can apply to much more
complex situations.

Alternative designs may involve splitting tables into parti-
tions for volatile (frequently updated) and passive (rarely
updated) data, consolidating tables to get better query per-
formance, or duplicating data in different tables to get better
query performance without losing integrity. In summary, the
measures we use to assess the trade-offs in our design are:
• Query performance (time).
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• Update performance (time).
• Storage performance (space).
• Integrity (avoidance of delete anomalies).
Normalization of Candidate
Tables Derived from ER Diagrams

Normalization of candidate tables (Step II.d in the data-
base life cycle) is accomplished by analyzing the FDs
associated with those tables: explicit FDs from the data-
base requirements analysis (“The Design of Normalized
Tables: A Simple Example” section), FDs derived from the
ER diagram, and FDs derived from intuition.

Primary FDs represent the dependencies among the
data elements that are keys of entities—that is, the inter-
entity dependencies. Secondary FDs, on the other hand,
represent dependencies among data elements that com-
prise a single entity—that is, the intraentity dependencies.
Typically, primary FDs are derived from the ER diagram,
and secondary FDs are obtained explicitly from the
requirements analysis. If the ER constructs do not include
nonkey attributes used in secondary FDs, the data
requirements specification or data dictionary must be con-
sulted. Table 6.2 shows the types of primary FDs derivable
from each type of ER construct.

Each candidate table will typically have several primary
and secondary FDs uniquely associated with it that deter-
mine the current degree of normalization of the table.
Any of the well-known techniques for increasing the
degree of normalization can be applied to each table, to
the desired degree stated in the requirements specification.
Integrity is maintained by requiring the normalized table
schema to include all data dependencies existing in the
candidate table schema.

Any table B that is subsumed by another table A can
potentially be eliminated. Table B is subsumed by another
table A when all the attributes in B are also contained in
A, and all data dependencies in B also occur in A. As a triv-
ial case, any table containing only a composite key and
no nonkey attributes is automatically subsumed by any
other table containing the same key attributes because



Table 6.2 Primary FDs Derivable from ER
Constructs

Degree Connectivity Primary FD

Binary or one-to-one 2 ways: key(one side) -> key(one side)

Binary Recursive one-to-many key(many side) -> key(one side)

many-to-many none (composite key from both sides)

Ternary one-to-one-to-one 3 ways: key(one), key(one) -> key(one)

one-to-one-to-many 2 ways: key(one), key(many) -> key(one)

one-to-many-to-many 1 way: key(many), key(many) -> key(one)

many-to-many-to-many none (composite key from all three sides)

Generalization none none (secondary FD only)

Chapter 6 NORMALIZATION 121
the composite key is the weakest form of data dependency.
If, however, tables A and B represent the supertype and
subtype cases, respectively, of entities defined by the gen-
eralization abstraction, and A subsumes B because B has
no additional specific attributes, the designer must collect
and analyze additional information to decide whether or
not to eliminate B.

A table can also be subsumed by the construction of a
join of two other tables (a “join” table). When this occurs,
the elimination of a subsumed table may result in the loss
of retrieval efficiency, although storage and update costs
will tend to be decreased. This trade-off must be further
analyzed during physical design with regard to processing
requirements to determine whether elimination of the sub-
sumed table is reasonable.

To continue our example company personnel and proj-
ect database, we want to obtain the primary FDs by apply-
ing the rules in Table 6.2 to each relationship in the ER
diagram in Figure 4.3 (see Chapter 4). The results are
shown in Table 6.3.

Next we want to determine the secondary FDs. Let us
assume that the dependencies in Table 6.4 are derived
from the requirements specification and intuition.



Table 6.3 Primary FDs Derived from the
ER diagram in Figure 4.3

dept_no -> div_no in Department from relationship “contains”

emp_id -> dept_no in Employee from relationship “has”

div_no -> emp_id in Division from relationship “is-headed-by”

dept_no -> emp_id from binary relationship “is-managed-by”

emp_id -> desktop_no from binary relationship “is-allocated”

desktop_no -> emp_id from binary relationship “is-allocated”

emp_id -> workstation_no from binary relationship “has-allocated”

workstation_no -> emp_id from binary relationship "has-allocated"

emp_id -> spouse_id from binary recursive relationship “is-married-to”

spouse_id -> emp_id from binary recursive relationship “is-married-to”

emp_id, loc_name -> project_name from ternary relationship “assigned-to”

Table 6.4 Secondary FDs Derived from the
Requirements Specification

FD Entity

div_no -> div_name, div_addr Division

dept_no -> dept_name, dept_addr, mgr_id Department

emp_id -> emp_name, emp_addr, office_no, phone_no Employee

skill_type -> skill_descrip Skill

project_name -> start_date, end_date, head_id Project

loc_name -> loc_county, loc_state, zip Location

mgr_id -> mgr_start_date, beeper_phone_no Manager

assoc_name -> assoc_addr, phone_no, start_date Prof-assoc

desktop_no -> computer_type, serial_no Desktop

workstation_no -> computer_type, serial_no Workstation
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Normalization of the candidate tables is accomplished
next. In Table 6.5 we bring together the primary and sec-
ondary FDs that apply to each candidate table. We note
that for each table except employee, all attributes are func-
tionally dependent on the primary key (denoted by the left



Table 6.5 Candidate Tables (and FDs) from ER
Diagram Transformation

division div_no -> div_name, div_addr

div_no -> emp_id

department dept_no -> dept_name, dept_addr, mgr_id

dept_no -> div_no

dept_no -> emp_id

employee emp_id -> emp_name, emp_addr, office_no, phone_no

emp_id -> dept_no

emp_id -> spouse_id

spouse_id -> emp_id

manager mgr_id -> mgr_start_date, beeper_phone_no

secretary none

engineer emp_id -> desktop_no

technician none

skill skill_type -> skill_descrip

project project_name -> start_date, end_date, head_id

location loc_name -> loc_county, loc_state, zip

prof_assoc assoc_name -> assoc_addr, phone_no, start_date

desktop desktop_no -> computer_type, serial_no

desktop_no -> emp_id

workstation workstation_no -> computer_type, serial_no

workstation_no -> emp_id

assigned_to emp_id, loc_name -> project_name

skill_used none

belongs_to none
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side of the FDs), and are thus BCNF. In the case of the
employee table we note that spouse_id determines emp_id
and emp_id is the primary key; thus, spouse_id can be
shown to be a superkey (see Superkey Rule 2 in the “Deter-
mining the Minimum Set of 3NF Tables” section). There-
fore, employee is found to be BCNF.

In general, we observe that candidate tables, like the
ones shown in Table 6.5, are fairly good indicators of the
final schema and normally require very little refinement
to get to 3NF or BCNF. This observation is important—
good initial conceptual design usually results in tables
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that are already normalized or are very close to being
normalized, and thus the normalization process is usually
a simple task.

Determining the Minimum
Set of 3NF Tables

A minimum set of 3NF tables can be obtained from
a given set of FDs by using the well-known synthesis
algorithm developed by Bernstein (1976). This process is
particularly useful when you are confronted with a list of
hundreds or thousands of FDs that describe the semantics
of a database. In practice, the ERmodeling process automat-
ically decomposes this problem into smaller subproblems:
The attributes and FDs of interest are restricted to those
attributes within an entity (and its equivalent table) and
any foreign keys that might be imposed upon that table.
Thus, the database designer will rarely have to deal with
more than 10 or 20 attributes at a time, and in fact, most
entities are initially defined in 3NF already. For those tables
that are not yet in 3NF, only minor adjustments will be
needed in most cases.

In the following, we briefly describe the synthesis algo-
rithm for those situations where the ER model is not useful
for the decomposition. In order to apply the algorithm, we
make use of the well-known Armstrong axioms, which
define the basic relationships among FDs.

Inference Rules (Armstrong Axioms)
Reflexivity
 If Y is a subset of the attributes of X, then X ->
Y (i.e., if X is ABCD and Y is ABC, then X -> Y;
trivially, X -> X).
Augmentation
 If X -> Y and Z is a subset of table R (i.e., Z
is any attribute in R), then XZ -> YZ.
Transitivity
 If X -> Y and Y -> Z, then X -> Z.

Pseudotransitivity
 If X -> Y and YW -> Z, then XW -> Z.
(Transitivity is a special case of
pseudotransitivity when W ¼ null.)
Union
 If X -> Y and X -> Z, then X -> YZ (or
equivalently X -> Y,Z).
Decomposition
 If X -> YZ, then X -> Y and X -> Z.
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These axioms can be used to derive two practical rules
of thumb for deriving superkeys of tables where at least
one superkey is already known.

Superkey Rule 1 Any FD involving all attributes of a table
defines a superkey as the left side of the FD.

Given: Any FD containing all attributes in the table R(W,
X,Y,Z), i.e. XY -> WZ.

Proof:
1. XY -> WZ as given.
2. XY -> XY by applying the reflexivity axiom.
3. XY -> XYWZ by applying the union axiom.
4. XY uniquely determines every attribute in table R, as

shown in 3.
5. XY uniquely defines table R, by the definition of a table

as having no duplicate rows.
6. XY is therefore a superkey, by definition.

Superkey Rule 2 Any attribute that functionally determines
a superkey of a table is also a superkey for that table.

Given: Attribute A is a superkey for table R(A,B,C,D,E),
and E -> A.

Proof:
1. Attribute A uniquely defines each row in table R, by the

definition of a superkey.
2. A -> ABCDE by applying the definition of a superkey

and a relational table.
3. E -> A as given.
4. E -> ABCDE by applying the transitivity axiom.
5. E is a superkey for table R, by definition.

Before we can describe the synthesis algorithm, we
must define some important concepts. Let H be a set of
FDs that represents at least part of the known semantics
of a database. The closure of H, specified by Hþ, is the
set of all FDs derivable from H using the Armstrong axioms
or inference rules. For example, we can apply the transitiv-
ity rule to the following FDs in set H:

A-> B, B -> C, A -> C, and C -> D
to derive the FDs A ->D and B ->D. All six FDs constitute the
closure Hþ. A cover of H, called H0, is any set of FDs from
whichHþ can be derived. Possible covers for this example are:
1. A -> B, B -> C, C -> D, A -> C, A -> D, B -> D (trivial

case where H0 and Hþ are equal)
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2. A -> B, B -> C, C -> D, A -> C, A -> D
3. A -> B, B -> C, C -> D, A -> C (this is the original set H)
4. A -> B, B -> C, C -> D

A nonredundant cover of H is a cover of H that contains
no proper subset of FDs that is also a cover. In this exam-
ple, cover 4 is nonredundant. The following synthesis
algorithm requires nonredundant covers.

3NF Synthesis Algorithm

Given a set of FDs, H, we determine a minimum set of
tables in 3NF.
H:
 AB -> C
 DM -> NP

A -> DEFG
 D -> M

E -> G
 L -> D

F -> DJ
 PQR -> ST

G -> DI
 PR -> S

D -> KL
From this point the process of arriving at the minimum
set of 3NF tables consists of five steps:
1. Eliminate extraneous attributes in the left sides of the

FDs.
2. Search for a nonredundant cover, G of H.
3. Partition G into groups so that all FDs with the same left

side are in one group.
4. Merge equivalent keys.
5. Define the minimum set of normalized tables.

Now we discuss each step in turn, in terms of the pre-
ceding set of FDs, H.

Step 1: Elimination of Extraneous Attributes

The first task is to get rid of extraneous attributes in the
left sides of the FDs. The following two relationships (rules)
among attributes on the left side of an FD provide the
means to reduce the left side to fewer attributes.

Reduction Rule 1 XY -> Z and X -> Z¼> Y is extraneous on
the left side (applying the reflexivity and transitivity axioms).

Reduction Rule 2 XY -> Z and X -> Y ¼> Y is extraneous;
therefore, X -> Z (applying the pseudotransitivity axiom).
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Applying these reduction rules to the set of FDs in H,
we get:

DM -> NP and D -> M ¼> D -> NP
PQR -> ST and PR -> S ¼> PQR -> T

Step 2: Search for a Nonredundant Cover

We must eliminate any FD derivable from others in H
using the inference rules. The transitive FDs to be
eliminated are:

A-> E and E -> G ¼> eliminate A -> G
A-> F and F -> D ¼> eliminate A -> D

Step 3: Partitioning of the Nonredundant Cover

To partition the nonredundant cover into groups so that
all FDs with the same left side are in one group, we must
separate the nonfully functional dependencies and transi-
tive dependencies into separate tables. At this point we
have a feasible solution for 3NF tables, but it is not neces-
sarily the minimum set.

These nonfully functional dependencies must be put
into separate groups (potential tables):

AB -> C
A-> EF
The groups with the same left side are:

G1: AB -> C
G2: A -> EF
G3: E -> G
G4: G -> DI
G5: F -> DJ
G6: D -> KLMNP
G7: L -> D
G8: PQR -> T
G9: PR -> S
Step 4: Merge of Equivalent Keys (Merge of Tables)

In this step we merge groups with left sides that are
equivalent (e.g., X -> Y and Y -> X imply that X and Y are
equivalent). This step produces a minimum set of tables.
1. Write out the closure of all left side attributes resulting

from Step 3, based on transitivities.
2. Using the closures, find tables that are subsets of other

groups and try to merge them. Use Superkey Rule 1 and
Superkey Rule 2 to establish if the merge will result in
FDs with superkeys on the left side. If not, try using the
axioms tomodify the FDs to fit the definition of superkeys.
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3. After the subsets are exhausted, look for any overlaps
among tables and apply Superkey Rules 1 and 2 (and
the axioms) again.
In this example, note that G7 (L -> D) has a subset of

the attributes of G6 (D -> KLMNP). Therefore, we merge
to a single table, R6, with FDs D -> KLMNP, L -> D,
because it satisfies 3NF: D is a superkey by Superkey Rule
1 and L is a superkey by Superkey Rule 2.

Step 5: Definition of the Minimum Set of Normalized Tables

The minimum set of normalized tables has now been
determined. We define these tables below in terms of the
table name, the attributes in the table, the FDs in the table,
and the candidate keys for that table:

R1: ABC (AB -> C with key AB)
R2: AEF (A -> EF with key A)
R3: EG (E -> G with key E)
R4: DGI (G -> DI with key G)
R5: DFJ (F -> DJ with key F)
R6: DKLMNP (D -> KLMNP, L -> D, with keys D, L)
R7: PQRT (PQR -> T with key PQR)
R8: PRS (PR -> S with key PR)
Note that this result is not only 3NF, but also BCNF,

which is very frequently the case. This fact suggests a prac-
tical algorithm for a (near) minimum set of BCNF tables:
Use Bernstein’s algorithm to attain a minimum set of 3NF
tables, then inspect each table for further decomposition
(or partial replication, as shown in the “Boyce-Codd Nor-
mal Form” section above) to BCNF.

Summary
In this chapter we defined the constraints imposed on

tables, most commonly the functional dependencies, or FDs.
Based on these constraints, practical normal forms for data-
base tables are defined: 1NF, 2NF, 3NF, and BCNF. All are
based on the types of FDs present. In this chapter, a practical
algorithm for finding the minimum set of 3NF tables is given.

The following statements summarize the functional
equivalence between the ER model and normalized tables:
1. Within an entity. The level of normalization is totally

dependent on the interrelationships among the key
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and nonkey attributes. It could be any form from
unnormalized to BCNF.

2. Binary (or binary recursive) one-to-one or one-to-many
relationship. Within the “child” entity, the foreign key
(a replication of the primary key of the “parent”) is func-
tionally dependent on the child’s primary key. This is at
least BCNF, assuming that the entity by itself, without
the foreign key, is already BCNF.

3. Binary (or binary recursive) many-to-many relationship.
The intersection table has a composite key and possibly
some nonkey attributes functionally dependent on it.
This is BCNF.

4. Ternary relationship:
a. one-to-one-to-one ¼> three overlapping composite

keys, BCNF
b. one-to-one-to-many ¼> two overlapping composite

keys, BCNF
c. one-to-many-to-many ¼> one composite key, BCNF
d. many-to-many-to-many ¼> one composite key with

three attributes, BCNF
In summary, we observed that a good, methodical con-

ceptual design procedure often results in database tables
that are either normalized (BCNF) already, or can be nor-
malized with very minor changes.
Tips and Insights for Database
Professionals

Tip 1. Analyze the potential for performance benefits
first before normalizing; you want to see if perfor-
mance gains can be had.
a. Potential to reduce storage space by reducing redun-

dancy (potential, but not guaranteed).

b. Potential to reduce update time (as a result of

reducing redundancy).
c. Potential to reduce query time (as a result of

smaller tables).
Tip 2. Boyce-Codd normal form (BCNF), a variant of
third normal form (3NF), is the most practical goal
for tables in relational databases. It is easy to con-
ceptualize (has the simplest definition) and eliminates
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almost all delete anomalies, and thus preserves data
integrity to a high degree. Most entities in ER models
translate directly to BCNF tables. Those entities that
don’t can usually be split into BCNF tables by simple
decomposition applying the BCNF definition.
Tip 3. Consider denormalization if performance is
compromised too much by normalization. Sometimes
you can trade off the increase in update cost due to
redundancy versus lower query cost due to redundancy,
and still maintain data integrity.
Literature Summary
Good summaries of normal forms can be found in Date

(2003), Kent (1983), Dutka and Hanson (1989), and Smith
(1985). Algorithms for normal form decomposition and
synthesis techniques are given in Bernstein (1976), Fagin
(1977), and Maier (1983). The earliest work done in normal
forms was by Codd (1970, 1974) and by Armstrong (1974).
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The following example illustrates how to proceed through
the requirements analysis and logical design steps of the
database life cycle, in a practical way, for a relational database.

Requirements Specification
The management of a large retail store would like a

database to keep track of sales activities. The requirements
analysis for this database led to the six entities and their
unique identifiers shown in Table 7.1.

The following assertions describe the data relationships:
• Each customer has one job title, but different customers

may have the same job title.
• Each customer may place many orders, but only one

customer may place a particular order.
• Each department has many salespeople, but each sales-

person must work in only one department.
• Each department has many items for sale, but each item

is sold in only one department (“item” means item type,
like IBM PC).

• For each order, items ordered in different departments
must involve different salespeople, but all items ordered
131



Table 7.1 Requirements Analysis Results

Entity Entity Key
Key Length (max)
in characters

Number of
Occurrences

Customer cust-no 6 80,000

Job job-no 24 80

Order order-no 9 200,000

Salesperson sales-id 20 150

Department dept-no 2 10

Item item-no 6 5000
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within one department must be handled by exactly one
salesperson. In other words, for each order, each item
has exactly one salesperson; and for each order, each
department has exactly one salesperson.
For physical design (access methods, etc.) it is necessary

to determine what kind of processing needs to be done on
the data—that is, what are the queries and updates needed
to satisfy the user requirements, and what are their
frequencies? In addition, the requirements analysis should
determine if there will be substantial database growth (i.e.,
volumetrics); what time frame that growth will take place
over; and whether the frequency and type of queries and
updates will change, as well. Decay as well as growth
should be estimated, as each will have a significant effect
on the later stages of database design.
Design Problems
1. Using the information given and, in particular, the five

assertions, derive a conceptual data model and a set of
functional dependencies (FDs) that represent all the
known data relationships.

2. Transform the conceptual data model into a set of can-
didate SQL tables. List the tables, their primary keys,
and other attributes.

3. Find the minimum set of normalized (BCNF) tables that
are functionally equivalent to the candidate tables.
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Logical Design
Our first step is to develop a conceptual data model

diagram and a set of FDs to correspond to each of the
assertions given. Figure 7.1 presents the diagram for
the entity–relationship (ER) model and Figure 7.2 shows
the equivalent diagram for the Unified Modeling Language
(UML). Normally, the conceptual data model is developed
without knowing all the FDs, but in this example the non-
key attributes are omitted so that the entire database
can be represented with only a few statements and FDs.
The results of this analysis, relative to each of the
assertions given, are shown in Table 7.2.

The candidate tables needed to represent the semantics
of this problem can be derived easily from the constructs
for entities and relationships. Primary keys and foreign
keys are explicitly defined.
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1

1

1order-
dept-sales

order-
item-sales

Department hires

contains

Item

1Salesperson

1
1

1

N

N
N

N

Order

places

N

N
N

has Job

Figure 7.1 Conceptual data
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Figure 7.2 Conceptual data
model diagram for UML.

Table 7.2 Results of the Analysis of the
Conceptual Data Model

ER Construct FDs

Customer(many): Job(one) cust-no -> job-title

Order(many): Customer(one) order-no -> cust-no

Salesperson(many): Department(one) sales-id -> dept-no

Item(many): Department(one) item-no -> dept-no

Order(many): Item(many): Salesperson(one) order-no, item-no -> sales-id

Order(many): Department(many): Salesperson(one) order-no, dept-no -> sales-id
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create table customer

(cust_no char(6),

job_title varchar(256),

primary key (cust_no),

foreign key (job_title) references job
on delete set null on update cascade);
create table job

(job_no char(6),

job_title varchar(256),

primary key (job_no));

create table order

(order_no char(9),

cust_no char(6) not null,

primary key (order_no),

foreign key (cust_no) references customer
on delete set null on update cascade);
create table salesperson

(sales_id char(10)

sales_name varchar(256),

dept_no char(2),

primary key (sales_id),

foreign key (dept_no) references department
on delete set null on update cascade);
create table department

(dept_no char(2),

dept_name varchar(256),

manager_name varchar(256),

primary key (dept_no));

create table item

(item_no char(6),

dept_no char(2),

primary key (item_no),

foreign key (dept_no) references department
on delete set null on update cascade);
create table order_item_sales

(order_no char(9),

item_no char(6),

sales_id varchar(256) not null,
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primary key (order_no, item_no),

foreign key (order_no) references order

on delete cascade on update cascade,

foreign key (item_no) references item

on delete cascade on update cascade,

foreign key (sales_id) references salesperson

on delete cascade on update cascade);

create table order_dept_sales

(order_no char(9),

dept_no char(2),

sales_id varchar(256) not null,

primary key (order_no, dept_no),

foreign key (order_no) references order
om

rim

ust

rde

ale

tem

rde

rde
on delete cascade on update cascade,

foreign key (dept_no) references department

on delete cascade on update cascade,

foreign key (sales_id) references salesperson

on delete cascade on update cascade);
Note that it is often better to put foreign key definitions
in separate (alter) statements. This prevents the possibility
of getting circular definitions with very large schemas.

This process of decomposition and reduction of tables
moves us closer to a minimum set of normalized (BCNF)
tables, as shown in Table 7.3.

The reductions shown in this section have decreased
storage space and update costs and have maintained the
normalization of BCNF (and thus 3NF). On the other hand,
position and Reduction of Tables

ary Key Likely Nonkeys

_no job_title, cust_name, cust_address

r_no cust_no, item_no, date_of_purchase, price

s_id dept_no, sales_name, phone_no

_no dept_no, color, model_no

r_no, item_no sales_id

r_no, dept_no sales_id
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however, we have potentially higher retrieval cost—for
example, given the transaction “list all job_titles”—and
have increased the potential for loss of integrity because
we have eliminated simple tables with only key attributes.
Resolution of these trade-offs depends on your priorities
for your database.

The details of indexing are covered in the companion
book Physical Database Design (Lightstone et al., 2007).
However, during the logical design phase of defining SQL
tables, it makes sense to start considering where to create
indexes. At a minimum, all primary keys and all foreign
keys should be indexed. Indexes are relatively easy to
implement and store, and make a significant difference in
reducing the access time to stored data.
Summary
In this chapter we developed a global conceptual

schema and a set of SQL tables for a relational database,
given the requirements specification for a retail store data-
base. The example illustrates the database life cycle steps
of conceptual data modeling, global schema design, trans-
formation to SQL tables, and normalization of those tables.
It summarizes the techniques presented in Chapters 1–6.
Tips and Insights for Database
Professionals

Tip 1. Separate the logical and physical design steps to
satisfy different objectives.
Tip 2. Tune a database periodically after initial imple-
mentation is completed.
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Object orientation is a standard feature of many modern
programming languages and software systems. This notion
has also been incorporated into data management sys-
tems. In this chapter we will study the interplay of object
orientation and databases. Programming languages in
which application software is written play a large role in
this interplay, and will be discussed. This will also lead
naturally into a discussion of how to store XML data in a
relational database (see Chapter 9).
139
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This chapter begins with an overview describing
object orientation. The following two sections continue
with a discussion of object-oriented and object-relational
databases.

Object Orientation
The world is modeled as a collection of objects that

interact with one another. Correspondingly, software is
also designed as a collection of interacting objects. A soft-
ware object is a logical unit: a bundle of data and pro-
cedures that belong together. Frequently, a software
object represents a real-world object.

Figure 8.1 shows a real-world object and its representa-
tion as a collection of software objects. Observe that many
components of the real-world object have been pulled out
and represented as objects themselves, which indeed they
are. All edges in this figure represent inclusion links. What
unit of information comprises a software object is a design
decision. In this example, the designer has chosen to
tire

chassis seats doors

tire

body

engine

car

(a)

(b)

hp

fuel

no-cyl

mfr

shape

tire
tire

Figure 8.1 (a) A real-world object and (b) its representation as a
collection of software objects.
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represent each tire as a separate object, but grouped all four
doors together as a single object. Objects have attributes,
which are shown only for the engine object in the figure.

There are several notions central to most object-
oriented systems. Note that there is no single agreed upon
hard definition of an object-oriented system or database;
rather, there is a list of properties, most of which one
would expect an object-oriented system to have. We briefly
describe some central notions below.

Classes and Instances
Many objects are similar. Similar objects are grouped

together into a class. Individual objects in the class are
called instances of the class. From a programming perspec-
tive, data structures and methods are associated with the
class, and are part of the class definition. From a database
perspective, one can think of each relation as a class, and
each tuple (or record) in the relation as an instance of
the relation class.

Inheritance
Often, there are related classes that share someproperties

but not all. For example, a vehicle may be a car, truck, or
motorcycle, each of which has some unique properties (for
example, the number of axles is a variable that matters for
trucks, is unnecessary for cars (which always have two),
and is meaningless for motorcycles). Yet, all vehicles share
many commonproperties, such as owner,model year, brand
name, registration number, etc. In such situations, inheri-
tance is useful, as we have already seen with the generali-
zation hierarchy in the context of entity-relationship (ER)
design in Chapter 2. Inheritance is a central concept in
object-oriented systems.

Identity
A crucial property of object-oriented systems is the

notion of object identity. Over time, attributes of an object
may change value; however, its identity remains the same.
Think of a person—over their lifetime there are likely to be
several changes of address, phone number, and so on;
there may even be changes in name; however, we know
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that it is still the same person even with the new name and
new address—their identity has not changed. In an object-
oriented system, the identity of an object is a hidden, sys-
tem-managed attribute. Programs cannot directly access
or manipulate the value of this attribute. However, one
can compare the identities of two object instance variables
to see if they indeed refer to the same object instance. Two
object instances are distinct if their identities are different,
even if they are identical on every other attribute.

Encapsulation
Typically, to interact with an object, it suffices to know

its behavior. There is no need to know how this behavior
is implemented. The notion of encapsulation is that an
object makes only its interface public. Following this disci-
pline permits changes to the internal implementation of an
object with no impact on the correctness of other code. In
contrast, if we did not use encapsulation, whenever any
change is made anywhere, we would have to worry about
all the places in our code that could possibly be impacted.
Note that both the behavior and the interface of an object
are determined by the class the object belongs to. When we
talk about encapsulation, we are considering object clas-
ses. (In contrast, when we talk about object identities, we
are considering object instances—it makes no sense to talk
about the identity of an object class.)

Abstraction
Abstraction is a central concept in all of computer sci-

ence, but is particularly important in the context of object
orientation. The basic idea is to strip away the details and
retain exactly as much of real-life complexity as is required
for the task at hand. In other words, given the complexity
of the world around us, do not try to reflect all of this
complexity. Rather, choose only what is required. When
real-world objects are placed into classes, there is usually
a process of abstraction—we make choices about the
properties of the objects we really care about, and ignore
differences between objects in other respects.

There is no formal definition of object orientation.
There is no complete list of properties for objects. As such,
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we have focused here on the most important cha-
racteristics of object orientation. Object orientation is a
core part of the computer science curriculum at most
universities today. Most programmers learn at least the
basic concepts of object orientation, and its use in
programming languages such as Cþþ and Java.
Object-Oriented Databases
Given the importance of object orientation to much of

computer science, a natural question to consider is what
this means in the context of databases. In the late 1980s
and early 1990s, object-oriented databases were developed
as an attempt to address this question. In this section,
we will describe the main features of object-oriented
databases. However, before doing so, it is worthwhile to
consider key differences between programming language
models of data and database models of data: a difference
popularly known as the impedance mismatch.

The Impedance Mismatch
When you run a computer program, it explicitly reads

any input it requires, performs the computations it is sup-
posed to perform, and then explicitly writes its output.
While the program is running, it has many variables that
it is manipulating. These variables have values, and the
state of the program is recorded in the computer system
memory (or virtual memory). However, once the program
stops running, it has no data saved. The program releases
all of the system memory it had acquired. The typical
source of program input and destination of program out-
put is a file. Multiple programs can run simultaneously
on a computer, but each works with its own private data
in its part of the system memory. Even if multiple programs
read inputs from the same system files, any manipulations
they performed on that data are their own, unless expli-
citly communicated to others through a heavyweight
mechanism.

In contrast, a database system is designed for sharing
persistent data. The data in a database does not go away
when some program stops running. Furthermore, it is
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expected that multiple applications will access the
database concurrently, and database systems build exten-
sive transaction management support for this purpose.

For these reasons, data does not pass easily between the
database world and the programming language world. The
database wants to see queries and updates in a language
such as SQL, whereas the program wants to read to and
write from a sequential file. Furthermore, the unit of access
for a relational database is a set of records—when an SQL
query is run, the result is itself a relation (or table) with a
schema determined by the query, and this relation, in gen-
eral, may have any number of records in it. In contrast, the
unit of access for the program is at most one record at a
time. Usually, the program has to execute code on a per-
record basis. For example, reading a record into a program
involves the steps of obtaining the record in database
format, parsing it, using its content to populate elements
of a suitable data structure in the program (or an instance
of an appropriate object class), and then manipulating it as
required. If the database provides a set of records, these
have to be “held” in a temporary space while the program
loops through and processes the set one record at a time.

In short, transferring data between a database and an
application program is an onerous process, because of
both difficulty of programming and performance over-
head. This difficulty is attributed to an impedance mis-
match between databases and programming systems.
Note that the impedance mismatch is not on account of
object orientation; it is equally present if the programming
system is not object-oriented.
Object-Relational Mapping
Beyond the impedance mismatch just described, there

is also a mismatch of “schema.” Typically, a program is
written in an object-oriented programming language, such
as Java or Cþþ. The unit of input and output is an object,
which often has a complex structure, including potentially
repeated subelements and references to other objects. In
contrast, relational databases have normalized schema,
designed according to the principles discussed in the pre-
ceding chapters. Typically, the information contained in
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an object does not fit into a single tuple (or record). Rather,
it is “shredded” across multiple records in multiple tables.

Figure 8.2 shows the car object from Figure 8.1 as a col-
lection of tables. Included objects (such as engine) have
been placed in their own tables. If we do not do this, the
car table would have hundreds of attributes. Observe also
that we have no choice, if we want a normalized design,
with respect to the ownership data—some cars, such as
C2, may have had only one owner, while others, such as
C1, may have had many. There is no way to include all this
ownership history within a single car record as a collection
of software objects. Observe that many components of the
real-world object have been pulled out and represented as
objects themselves, which indeed they are. All edges in this
figure represent inclusion links. What unit of information
comprises a software object is a design decision. In this
example, the designer has chosen to represent each tire
as a separate object, but grouped all four doors together
as a single object. Objects have attributes, which are shown
only for the engine object in the figure.

If you use object-relational mapping software, it will
take care of the mapping and at least paper over the
impedance mismatch. There are dozens of software sys-
tems with object-relational mapping capability, such as
car engine body tire1 tire2 tire3 tire4

C1 E23 B35 T2417 T2418 T2419 T2420
C2 E99 B77 T2819 T2820 T3219 T3220

engine shape num-
cylinders

fuel manufacturer horsepower

E23 V 8 Gasoline Ford 150
E99 Straight 4 Diesel Chrysler 120

body chassis seats doors
B35 H5 S3 D4
B77 H7 S7 D7

car owner purchase date
C1 Arnold Jan. 2010
C1 Betty Jan. 2011
C1 Charlie May 2011
C2 Diane April 2011

Figure 8.2 The car object of
Figure 8.1 represented as a
collection of tables.
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Hibernate, ADO.NET Entity Framework, Django, Toplink,
and ActiveRecord. In the less likely scenario that you have
to manage the mapping yourself, there is a need to first
define the database schema and then the mapping. Since
the object classes in the programming language have
already been defined, this is a very different schema design
problem than the green fields design discussed in the rest
of this book. The choices are limited greatly by the object
classes already defined. Yet, there remains considerable
choice, and the factors in evaluating these choices are sim-
ilar to the general case. We discuss the major differences
below.

The space of design choices is limited by two extremes.
At one extreme, each object is mapped to a table. Some-
times this may not be possible. For example, there is no way
to capture in one table an object that includes other objects
in a nested structure. There is also no way to represent set-
valued attributes. In such cases, one has to create additional
tables through the standard normalization process.

At the other extreme, each attribute can be shredded
into its own table, with a two-column schema: an object
ID column and an attribute column. The object can then
be reconstructed by joining together all records from mul-
tiple tables with the same object ID. There are no normali-
zation issues at this extreme.

The trade-off between the two extremes, and design
choices in between, is primarily driven by performance.
Since the database is expected to be accessed through the
program, and since the program object class design is
already fixed, there is less of a concern regarding the
matching of schema to real-world objects, ease of expressing
SQL queries, etc.
Persistent Programming Languages
A simple way to address the impedance mismatch is to

permit programming languages to make selected objects
persistent and then take care of the consequences “under
the hood.” If the programming language is object-oriented,
we get the beginnings of an object-oriented database.

There are many issues to consider regarding persistent
objects. First, a persistent object must have a referenceable
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location on disk, similar to a file locator. The identifier of
the persistent object must be sufficient to find this loca-
tion. Usually, this is implemented by having the identifier
be the location address. But now an object identifier for a
persistent object is a disk address, and therefore much big-
ger than an identifier for a regular (transient, in-memory)
program object, for which the identifier is a location in
memory.

This immediately leads to the second issue, having to do
with object references. Object-oriented systems frequently
include references to other objects. Traditional object sys-
tems use object identifiers for this purpose. Now that
identifiers for persistent and in-memory objects are differ-
ent, this difference impacts not only the object being
identified, but also objects that reference them.

Figure 8.3 shows how pointers must be manipulated, as
objects are moved in and out of the memory buffer. In
Figure 8.3(a), there are four objects on the disk, with per-
sistent pointers between them. In Figure 8.3(b), a copy of
object B is brought into memory. Pointers from B both
point to objects not in memory, so they remain unchanged.
Pointers to B from objects on disk (such as A) do not need
B
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Figure 8.3 Persistent and
in-memory pointers are
different: (a) four objects on
disk, with persistent
pointers between them,
(b) a copy of object B is
brought into memory,
(c) object A is brought into
memory, and (d) object B is
now placed back into disk
and object C is brought into
memory instead.
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to be changed, because A cannot have its pointers
dereferenced while being on disk. In Figure 8.3(c), Object
A is also brought into memory. Now, any pointers between
A and B become in-memory pointers rather than persistent
pointers. But pointers to and from disk objects remain
unchanged. Finally, in Figure 8.3(d) Object B is now placed
back into disk, and object C brought into memory instead.
All pointers to B from in-memory objects, such as A, have
to be converted back to persistent pointers. However, poi-
nters between C and in-memory objects, such as A, now
become in-memory pointers.

One way to address these challenges with persistent
objects is to have two distinct “flavors” of objects: those
that are persistent, and those that are in-memory. Thus,
for example, we could have an object class Queue and
another object class Persistent_queue. Object instances of
the former type would have ordinary object identifiers,
whereas those of the latter would have the large persistent
object identifiers.

However, this proposed solution introduces more pro-
blems of its own. When an object is referenced, the
referencing object must know whether the object it
references is persistent or not. Furthermore, it makes no
sense for a persistent object to reference an in-memory
object, because the latter may not be there the next time
someone looks at the persistent object. These choices are
not easy to make, and could lead to a combinatorial explo-
sion of object types, one for each different type of refer-
ence. Furthermore, we require that objects be in memory
to operate on them. Therefore, access to persistent objects
will involve copying them into temporary in-memory
objects, of a different object class, before manipulating
them. That is to say, to be able to add an entry to a persis-
tent queue, we have to copy it into an in-memory queue,
add the entry, and then copy it back to the persistent
queue. This is a great deal of computational effort and
complexity for a simple task.

To avoid these difficulties, object-oriented database sys-
tems introduce a requirement for orthogonality between
persistence and type. By this we mean that types in the per-
sistent program language, or object classes in our terms,
should not specify whether they are persistent. It should
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be possible to take an object of any class and make it per-
sistent, without requiring transfer to a different persistent
class.

Meeting this requirement is no easy feat, and is usually
performed using some form of pointer swizzling. All object
references in a persistent object are, obviously, persistent,
disk-based pointers. When the object is read into memory,
these references can be converted (swizzled) into in-
memory pointers if the objects referred to are in memory,
or are proactively also brought into memory. There are
engineering decisions with regard to how proactive to be,
and implementation complexity in maintaining a table of
persistent objects currently read in. The exact choices
made differ between implementations, and are beyond
the scope of this book.
Features of Object-Oriented Database Systems
Once we have achieved the ability to move objects easily

between in-memory application programs and persistent
storage, the impedance mismatch is largely resolved. How-
ever, there remain many database features that are missing
from the persistent programming language idea expressed
above. Foremost among these is a declarative query facility,
allowing a programmer to specify objects of interest from a
potentially large collection.

While there is no formal definition of an object-oriented
database system, there is broad consensus on a set of
expected features. These were captured in an Object-
Oriented Database System Manifesto (see Atkinson et al.,
1989). The manifesto has two lists of features: a first list
that is mandatory and a second list that is optional. In
effect, the second list has features that many object-
oriented database systems have, but have been deemed
not required in every object-oriented database system.
We will walk through these lists of features below.

Mandatory features of object-oriented database systems
can be divided in three main categories:

Mandatory: basic programming features.
• Computational completeness. Relational databases are

not computationally complete. For example, SQL was
not able to express recursion until recently. In contrast,
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most programming languages are computationally
complete in that any computable function can be
expressed in the language. We require that this also be
true for the data manipulation language of an object-
oriented database system.

• Extensibility. Users should be able to define new types
in addition to system-defined types that come with
the database. Objects of the two types should be
manipulated in the same manner—there should be no
visible difference in the way they are referenced in the
data manipulation language, even if there are significant
differences in the implementation.
Mandatory: features that have to do with object

orientation.
• Complex objects
• Object identity
• Encapsulation
• Types and classes
• Class or type Hierarchies.

We have previously discussed inheritance in the context
of ER diagrams. Object-oriented systems typically deal with
inheritance in a much more serious way. To this end, we
identify a sequence of progressively more restrictive inheri-
tance policies. We say that a type t substitution inherits from
a type t0, if any place where we can have an object of type t0,
we can substitute for it an object of type t. Inclusion inheri-
tance states that t is a subtype of t0, if every object of type t is
also an object of type t0. Clearly, if inclusion holds, then sub-
stitution is possible. So inclusion inheritance is a special
case of substitution inheritance. Constraint inheritance is
next and is a special case of inclusion inheritance. Here,
t is a subtype of a type t0, if it consists of all objects of type
t that satisfy a given constraint. If the constraint is that
objects of type t0 contain additional, more specific informa-
tion, then we have specialization inheritance. Figure 8.4
illustrates the four types of inheritance.
• Overriding, overloading, and late binding. If a single

function name applies to multiple functions it is called
overloading. Thus, for numbers 2 and 3, we may have
2 þ 3 ¼ 5, but for strings 2 and 3, we may have 2 þ 3 ¼ 23.
The operator þ has been overloaded to mean addition
in the former case and concatenation in the latter case.
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Inclusion Inheritance 

Constraint Inheritance 

Specialization Inheritance 

Figure 8.4 A Venn diagram
showing the four types of
inheritance, and how each
completely includes the
next.
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Overriding of an inherited method occurs when the inher-
iting class defines its own implementation in preference to
the one inherited. For example, a class Parallelogram may
define a method area as a*b*siny. A class Rectangle may
inherit from the Parallelogram class but redefine the
method area more simply as just a*b, since y is 90 degrees
in this case. A class Square may inherit from the Rectangle
class, and further redefine the method area as a2. Which of
these function implementations to usemay not be evident
at compile time if we simplywrite x.area(). If at runtime the
system can determine the type of x and choose the correct
method implementation, that is called late-binding.
Mandatory: features that are central to a database

system. These features set an object-oriented database
system apart from a persistent programming language.
• Persistence. Ordinary programming languages do not

have persistence: All program data is lost when the
program terminates, except what has explicitly been
written to a file. The persistence facility allows data
elements to remain forever, until explicitly deleted.

• Secondary storage management. Databases usually are
too large to fit in main memory, and their implementa-
tion is cognizant of this.

• Concurrency.
• Recovery.
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• Adhocquery facility. In SQL, simplequeries are very simple
to express. In typical programming languages, there is so
much bookkeeping stuff to do that a simple selection
could take many lines of code. Object-oriented databases
must somehowmake it easier than this for users.
Optional features. These are features found in many

object-oriented database system implementations, and in
the minds of some people somehow associated with
object-oriented databases, but not accepted, at least by
the manifesto writers, as necessary for a system to call
itself an object-oriented database.
• Multiple inheritance. The type Square inherits from

both the type Rhombus and the type Rectangle. There
are many difficult issues that arise, not the least of
which is what precisely is inherited, particularly when
there are differences between the parent types (Rhom-
bus and Rectangle, respectively) in their attributes and
methods.

• Type checking and type inferencing. Type checking is
where the system uses its knowledge of the functionality
of declared types to catch programming errors. For
example, multiplication is meaningless for strings, so
there is a type error if we write a¼b*c, where b and c
are strings. (Of course, this would have been a fine thing
to say if b and c were integers.) Type inferencing is when
the programmer does not declare the type in advance,
and the system determines this by seeing what oper-
ations are invoked. For example, seeing the characters
23, the system may not know whether to interpret these
as the string 23 or the number twenty-three. If it sees a
statement such as a¼23*2, then it knows 23 couldn’t
have been a string—it must be an integer.

• Distribution. Whether a database is centralized or dis-
tributed has nothing to do with object orientation. That
this property is even mentioned is a historical artifact.

• Design transactions. Another historical artifact on
account of the fact that at the time object-oriented sys-
tems were being developed, researchers were also
studying systems that effectively supported long-lived
transactions, such as those executed by human designers.
(Traditional database transactions are optimized for
short transactions.)
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• Versions. This is yet another historical artifact. When
human design is involved, it is often useful to keep mul-
tiple versions of objects around.
Open features. Finally, with a view to being inclusive,

the manifesto explicitly left completely open the choice of:
• Programming paradigm—for example, imperative,

logical, or functional.
• Representation system. What the atomic types are, from

which more complex object types are built.
• Type system. Many different techniques have been

proposed for the definition of new types.
• Uniformity. The question is whether metadata is uni-

formly treated as a first-class object in the same way
as data. Is a type an object? Is a method itself an object?
Object-Relational Databases
Relational databases had the lion’s share of the market

at the time object-oriented databases were created. In a
very successful defensive move, relational database
vendors scrambled to add object-oriented concepts to rela-
tional databases, thereby undercutting the market poten-
tial for object-oriented databases even before they had a
chance to mature and become a market threat. The
resulting products were not fully object-oriented. In fact,
retaining the basic relational look and feel, as well as full
compatibility with the pure relational databases in wide
use, was a priority. In consequence, these databases were
called object-relational.
User-Defined Functions and Abstract Data
Types

A central feature that object-relational systems add to
relational databases is the notion of an abstract data type.
Traditional databases have a small set of predefined types
(such as integer, date, double precision, etc.). An abstract
data type (ADT) permits a complex object class to be
defined as a database type. Instances of this data type
can then be stored as attribute values in a table column
of which the type has been defined as this ADT.
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Storing a complex object as an attribute value limits the
database to treating the object as an uninterpreted set of
bits. But we may want the database to access components
of the object. For example, we may wish to perform a
selection based on the value of an attribute of the object.
Or perhaps we want to define a sort order on the objects.
For the database to be able to accomplish these tasks, user-
defined functions are introduced. These are functions
defined by the user, as the name suggests, rather than by
the database system, and may be invoked during query
processing. User-defined functions are invaluable in the
manipulation of abstract data types, but they may be of
use even otherwise. For example, we may wish to represent
a yearly revenue attribute as the summation of four quar-
terly revenue attributes for every product class. The yearly
revenue is clearly a redundant attribute. Nonetheless, one
can imagine scenarios where we would want to store this
explicitly, whether in the same table as the quarterly revenue
or in a separate yearly revenue table (one row per product
class in either case). A user-defined function could be used
to compute the yearly revenue from the quarterly revenues,
even though all fields involved are of type integer.

Support for user-defined functions in database systems
introduces several challenges. The first involves security—
poorly written code could corrupt the database. Database
system builders have to take precautions to protect against
this. Most systems perform a careful balancing act between
giving users unfettered ability to do what they need to and
preventing them from doing harm. The second challenge is
performance—the database system may not know how long
any user-defined function will run. This makes it difficult to
perform the usual query optimization that is so important
for database performance. Most database systems request
hints from users regarding the expected runtimes of user-
defined functions, and make conservative assumptions
where this information is not available.
An Evaluation of Object-Relational Systems
A relational database with user-defined functions and

abstract data types is called object-relational. Note that
such a database does not provide true object orientation.
In particular, the type system for abstract data types could
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be limited with respect to what a full-fledged programming
language provides. Certainly, we do not have notions
such as late binding. Furthermore, there is no notion of
object identity.

In spite of these limitations, object-relational systems
are in wide use today, and most experts generally agree
that the relational database vendors have successfully
fended off competition from object-oriented database sys-
tems by providing enough object-oriented functionality to
satisfy most users. Some functionality not provided can
be simulated. For example, object-relational systems do
not have a notion of object identity, as mentioned above.
However, relational database systems do have a notion of
identifier key in many relational tables—for example, a
Student table will have a student_id field as the primary
key, an Employee table will have employee_id as the pri-
mary key, and so forth. These ID fields are visible to the
user, but in effect serve the role of “object identifiers” for
the object represented by the record. While the user could
manipulate these fields, we do not expect the user to
manipulate them, and in this way we weakly achieve the
desired identifier behavior.
Design Considerations
When objects are stored in a relational database, there

are many choices with regard to how this is done, as
discussed above. With abstract data types, we have even
more options. At one extreme, we could encapsulate the
entire object and store it as a single attribute of a suitable
abstract data type. At the other extreme, each part of the
object can be its own attribute, and each object will then
correspond to a record (or even multiple records, if there
are nested objects or repeated attributes). The advantage
of the former is that all of the member functions (or met-
hods) associated with the object class can still be used.
Some or all of them can even be registered as user-defined
functions and made available to be called within the data-
base. However, what these functions do, and what the
values are for individual component attributes in the
object, are all not visible to the database, and hence can
only be used in limited ways when processing queries.
In contrast, the latter design exposes all components of



Figure 8.5 An example of a
“mixed object size” table:
(a) an image ID and note ID
are used as foreign keys,
and (b) notes and images
are stored in files outside
the database system.
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the object to the database, making it possible to query on,
and return, parts of objects. The disadvantage is that there
is no longer an integral object on which the original object
member functions (or methods) can be run. Rather, new
user-defined functions must be created to mimic the
object methods that we wish to retain.

Sometimes, objects can be very large. This is particu-
larly true when they contain multimedia content. One
facility relational databases provide is that of “large
objects.” The idea is simply to have a database type for
a large collection of bits that the database system does
not attempt to interpret. This interpretation is left to some
external application. Such objects are often called binary
large objects (or BLOBs).

Figure 8.5 shows an example of a “mixed object size”
table that may be created by the radiology department in
a hospital. Each record has several small attributes, such
as patient ID, date of X-ray, etc. In addition, there are two
unusual fields: one, with radiologist’s notes, is large, per-
haps a few kilobytes; the second is very large, several
megabytes, and contains the radiological image. A typical
design in such cases is to place the text report and the
image into a separate storage area. This figure shows two
ways of accomplishing this partitioning. In Figure 8.5(a),
an image ID and a note ID are used (as foreign keys) in
the table at hand. A separate image table (not shown
in the figure) is created, with the image ID as the key.
Similarly, a separate notes table is also created. In
Figure 8.5(b), notes and images are stored in files outside
Patient Body Part Date Time Radiologist Notes Image

P2345 Knee Feb 2, 2011 3.45 p.m. R2 N5 I5
P1278 Wrist Aug 11, 2010 9.20 a.m. R2 N7 I7

(a)

Patient Body Part Date Time Radiologist Notes Image

P2345 Knee Feb 2, 2011 3.45 p.m. R2 a.txt a.bmp
P1278 Wrist Aug 11, 2010 9.20 a.m. R2 b.txt b.bmp

(b)
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the database system. File names are recorded in the data-
base to match images and notes with patient, date, etc.

Large object attributes have special design considerations.
Usually, in a relational database, the unit of manipulation is
the record. When a selection is performed, the entire record
is retrieved, even if only some attributes of the record
are actually required for display or downstream processing.
If the discarded attributes are small, the additional cost of
retrieving the entire record is not large. However, when
there is a large attribute, it is extremely wasteful to retrieve it
only to discard it. Furthermore, standard relational data-
base backend processing is designed on the assumption
that many records fit on a page. Some operations, such as a
relational scan, can become extremely expensive if the
record is very large.

To address this challenge we can separate the large
object from the database record and store it separately.
One way to do this is to have a file for each large object,
and store the file name in the record. In this way, the size
of the record is greatly reduced, and the large object is
fetched only when it is required. The disadvantage is that
the large object is no longer managed in the database. In
consequence, for example, transactional consistency
guarantees no longer apply to data in the large object.

In summary, there is a choice of placing large objects in
the table or putting them in a separate file. The larger the
object, the greater the cost of having it be part of the record.
At some size, it becomes preferable to store it separately,
even though such separation introduces its own issues.

Recognizing this trade-off, modern database systems
often provide facilities to store each BLOB-valued attribute
separately from the rest of the record it is part of. This is a
form of vertical partitioning of the table. Note that the
BLOB partition only has a single attribute, and even the
table key is not replicated. This is really a second-class par-
tition, linked from the main partition that has the rest of
the table. Since the BLOB is not interpreted by the data-
base, there is no possibility of an index.

Thus far we have considered two extremes: full-fledged
objects that aremanaged by the database system, and BLOBs
that are left completely uninterpreted. Some systems also
provide facilities at an intermediate point, in the form of
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character large objects (or CLOBs).Here, the database system
knows that the large object is a string of characters. As
such, functions can be provided to process these character
strings. However, any additional structure within the CLOB
is not visible to the database system. For example, if a long
book (or anXMLdocument) is stored as aCLOB, the database
system will know about the character strings in the docu-
ment, but nothing about its paragraphs or sections.

Summary
Object orientation is a popular programming paradigm,

and is widely used in modern programs. Central features of
object-oriented systems include inheritance, identity,
encapsulation, and abstraction. Objects bear some resem-
blance to entities in an ER model. For example, both
objects and entities have attributes. Entities participate in
relationships while objects have links to other objects.

The notion of types (or classes) is central in object-
oriented systems. Each object has a type, and is considered
an instance of its type.

Typical database systems are relational and not object-
oriented. This results in an “impedance mismatch” as data
is moved between tables in a relational database and
objects in the application program. Considerable effort
can be spent in marshalling arguments and moving data
between the two.

Object-oriented database systems have been proposed
as a means for addressing this mismatch by having the
database system explicitly designed to support objects
with links. There are many technical challenges in this
regard, not the least of which is how to translate between
in-memory pointers and disk pointers transparently when
the respective address spaces are different, as are the space
requirements for a pointer. One common solution to this
particular problem is known as pointer swizzling.

There are many flavors of systems that try to marry
concepts from object orientation and databases. These run
the gamut from persistent programming languages
to object-relational systems. There is no formal definition of
what precisely is an object-oriented database system. How-
ever, there is a widely accepted manifesto jointly written by
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several leaders in the field that lays out the defi-
ning characteristics of an object-oriented database system.

Rather than build an object-oriented database, one
could also attempt to manage better the mismatch
between object-oriented systems and relational databases.
Toward this end, relational database systems have added
some object management capabilities, including support
for large objects, user-defined functions, and abstract data
types. In parallel with these efforts, there are also many
tools that simplify and automate the task of storing object
data in a relational database.

Tips and Insights for Database
Professionals

Tip 1. Understand the respective strengths and weak-
nesses of object-oriented programming systems and
of relational databases. The former are computationally
complete, have sophisticated type management, and
often better match the user view of the world; the latter
are easier to manipulate in bulk, are easier to scale
efficiently, and provide superior support for concurrency.
Tip 2. Recognize that most commercially available
database systems today are object-relational in that
they are not only relational databases, but also have
at least some support for objects.
Tip 3. Exploit the complementary strengths of rela-
tional and object-oriented technology in designing
your application flow. Since there remains an imped-
ance mismatch, you will need to pay attention to make
sure you are not crossing the boundary between the
two more often than you need to.
Tip 4. Use commercial object-relational mapping
software to simplify your life and better manage the
impedance mismatch.

Literature Summary
Object-oriented programming as a concept was first

described in the context of the Smalltalk language by
Goldberg (1983), though earlier uses of the object concept
in programming can be found, for example, in Simula 67
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(see Kirkerud, 1989). Today, the Object Management Group
(www.omg.org) serves as a central clearinghouse for infor-
mation related to object orientation. Among other things,
they also specify the standard for UML (www.uml.org).

There were many independent efforts at introducing
some features of object orientation to databases and some
features of persistence to programming languages. The
Object-Oriented Database System Manifesto (see Atkinson
et al., 1989) brought the community together to define the
key characteristics of an object-oriented database. Over the
next several years, a group called the Object Data Manage-
ment Group carefully defined the standard, and published
a book by Cattell (2000). A current portal for information
on object-oriented databases is www.odbms.org.

http://www.omg.org
http://www.uml.org
http://www.odbms.org
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The eXtensibleMarkup Language (XML) has become a very
popular way to represent data and transfer it between systems.
XML also underlies many important Web technologies, and
therefore is important when we consider the use of databases
in the context of the Web. We begin this chapter with a quick
overviewof XML in the first section.We thendiscuss XMLdata-
base design in the second section. We conclude, in the third
section, with a discussion ofWeb-based database applications.

XML

Background
Whenever two parties have to share information, they

have to agree on how this information is to be represented.
161
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This agreement can come at several levels. Consider two
humans trying to share some written information. A first
step is to agree on the alphabet to be used. But that is not
enough—if I write in German and you only know French, it
is the same alphabet, but there can be no sharing. A sec-
ond step is to agree on the language. Let us say we have
settled on English. Even that is not quite enough—if I give
you a document written in “legalese,” or a scientific paper
replete with medical terms, you are likely to have difficulty
withmany of the terms and language constructs I use. Finally,
even having the same vocabulary may not be enough—think
of how many times you have had misunderstandings
because some meaning was misconstrued by the reader.

In the same vein, there is a hierarchy of levels at which
standards can be established for the interchange of infor-
mation. Each step up in the hierarchy makes sharing that
much easier. To begin with, all modern computation is
performed using a binary systemwith ones and zeroes. That
much has been standard. Initially, each computer manu-
facturer had their own way of representing characters as
zeroes and ones. Moving data from one brand of machine
to another would involve painstaking recoding of individual
characters. ASCII (and its successor universal character
representations) came along and established a standard at
the level of characters. But data was still shared as “streams”
of characters. XML provides a standard syntax for repre-
senting arbitrary data structures. Now, computers and
programs can share data structures instead of sharing
character strings. Think of how you write programs in your
favorite programming language. Chances are that you spend
considerable effort reading in a stream of input characters,
parsing this stream, and populating data structures before
you get to doing anything useful in the program. In turn,
the output is written out as a stream of characters. With
XML, you can directly read in relevant data structures,
perform the manipulations desired, and then write out data
structures into XML.

Having a shared syntax for data structures still does not
mean that there is perfect sharing of information. The next
level up is the sharing of terminology and structural
constructs. This turns out to be hard to do in a global
way. However, the extensibility of XML has permitted
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shared-interest communities to define their own tag sets
and schemas in XML to create their own markup language.
Thus, we have ChemML, BioML, StatML, MathML, etc.—
hundreds of languages that are easy to create and modify
on top of XML, and serve as effective local standards.
We can think of XML as comparable to English, and each
of the specialized languages like the professional jargon
used by various disciplines.
Definitions in XML
A markup language is a way of indicating, in a document,

any items of interest, including items such as headings,
paragraph boundaries, and highlighted concepts. Popular
markup languages include LaTex for document processing
andHTMLforWebpageconstruction.Mostmarkup languages
define a set of tagswith associatedmeanings. For example, the
tag <P> in HTML indicates the beginning of a new paragraph.

As noted, XML stands for eXtensible Markup Language,
and was explicitly designed from the ground up with
extensibility in mind. There are no predefined tags in XML.
A tag <P> can refer to a paragraph boundary as in HTML,
or to something entirely different, such as a price attribute.
Obviously, markup is not very useful if it does not have
meaning. The expectation is that groups of users will define
sets of tags for which they agree on a shared meaning.
This has facilitated the proliferation of XML-based markup
languages, one for each application niche and user
community, as described above.

An XML document is said to be well formed if (1) it has a
matching end tag for every start tag, and if this start–end
pair is properly nested either completely included in,
completely including, or completely nonoverlapping with
every other start–end tag pair, and (2) it has a “root” tag pair
enclosing the entire document. Note that well-formedness
is a purely syntactic property—it says nothing about what
the tags are or what they mean. See Figure 9.1.

To be able to understand anXMLdocument, one needs to
know what the structure of the document is and what tags it
contains. Such information about the structure of each doc-
ument type is stated in a Document Type Definition (DTD).
The notion of a DTD was first introduced in an influential



<document>
<title> Not Well-Formed Example </title>
<P>

This document would look better in many colors.
<font color¼”red”>
So we have made this text red,

</P>
<P>

It is good to continue the same color across paragraphs.
</font>
But not forever.

</P>
</document>
(a)

<item>
<name> socks </name>
<color> blue </color>
<price>$5.00</price>

</item>
<item>

<name> shoes </name>
<color> black </color>

</item>
(b)

Figure 9.1 Two XML
documents that are not
well formed: (a) the <P>
and <font> tags do not
nest properly and (b)
there is no root tag.
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markup language called SGML, of which XML can be con-
sidered a lightweight version. Thus, each XML document
has a type specified in a DTD. This description could be
included directly with the document itself, in a preamble;
or it could merely be a reference to (the URL of) a DTD
defined elsewhere. Think of this the way you treat variable
declarations in software. Most of the time, you declare
variables in separate header files that are then included into
your source files. But occasionally you may have additional
declarations to make in your file itself (e.g., for some local
variables). Also, for small projects, you may choose to do
everything in one file without pulling out the declarations
into a separate include file. In a similar vein, one expects
that in most situations, documents will use known DTDs
from some agreed on (within some community of interest)
standard source. But occasionally, the creators of an XML
document may wish to define their own DTD.

An XML document is said to be valid if it follows the
rules specified in its DTD. Note that an XML document

http://server:port/path#fragment?search
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must be well formed before we can even begin to check its
validity. Note also, that there can be well-formed XML
documents that either do not specify a DTD at all, or are
invalid with respect to a specified DTD.

Much of XML’s heritage derives from document
markup, and indeed the definitions given so far all clearly
show this heritage. However, once you have the ability to
specify tags of your choice, it becomes straightforward
to encode databases in XML. For example, Figure 9.2 shows
a relational table, of which the encoding in XML is in
Figure 9.3. The resulting encoded relation is still called an
XML document, even though it is really an XML repre-
sentation of a database table. Multiple tables can also be
encoded in a single XML document, merely by surrounding
the set of individual table encodings with a <database>

tag, as shown in Figure 9.4.
As databases began to be encoded in XML, the expres-

siveness of DTDs was found to be rather limiting. The
notion of document type was “upgraded” to the notion
of schema and a formal XML Schema Definition (XSD)
language was developed. With this, we now require a valid
XML document to follow the schema specified in its XSD
(Figure 9.5).

XML elements may have attributes in addition to sub-
elements. An attribute is used to record a property of, or
some information about, the element. In contrast, a sub-
element is an element in its own right that just happens to
be included as part of its parent element. For example,
the paragraphs that are part of a document should be
its subelements, while the date of creation should be an
attribute. However, there are also limitations to attributes,
which sometimes force things that are really attributes
to be recorded as subelements. Attributes cannot have
id name address

123 Acme 3 Canyon Drive, Hell, MI, 48169

248 Perfection 5 Cloudy Way, Paradise, MI 49768

345 Foobar 88 Forever Loop, Purgatory, MI 49042

689 Far Out 55 Nowhere Road, Lost River, MN 56756

Figure 9.2 A relational
table, shown encoded in
the document of
Figure 9.3.

image of Figure 9.2
http://server:port/path#fragment?search


Figure 9.3 A valid XML
document. The preamble is
the DTD.

<?xml version¼"1.0" ?>

<!DOCTYPE SUPPLIER-TABLE [
<!ELEMENT SUPPLIER-TABLE (SUPPLIER-TUPLEþ)>
<!ELEMENT SUPPLIER-TUPLE(ID, NAME, ADDRESS)>
<!ELEMENT ID(#PCDATA)>
<!ELEMENT NAME(#PCDATA)>
<!ELEMENT ADDRESS(#PCDATA)>
]>

<SUPPLIER-TABLE>
<SUPPLIER-TUPLE>

<ID> 123 </ID>
<NAME> Acme </NAME>
<ADDRESS> 3 Canyon Drive, Hell, MI 48169</ADDRESS>

</SUPPLIER-TUPLE>
<SUPPLIER-TUPLE>

<ID> 248 </ID>
<NAME> Perfection </NAME>
<ADDRESS> 5 Cloudy Way, Paradise, MI 49768</ADDRESS>

</SUPPLIER-TUPLE>
<SUPPLIER-TUPLE>

<ID> 345 </ID>
<NAME> Foobar </NAME>
<ADDRESS> 88 Forever Loop, Purgatory, MI 49042</ADDRESS>

</SUPPLIER-TUPLE>
<SUPPLIER-TUPLE>

<ID> 689 </ID>
<NAME>Far Out </NAME>
<ADDRESS> 55 Nowhere Road, Lost River, MN 56756 </

ADDRESS>
</SUPPLIER-TUPLE>

</SUPPLIER-TABLE>
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structure—if we wish to record the first and last names of
a document author separately, there is no way to have
these as part of a single author attribute. One could (very
inelegantly) have two separate attributes for author-
firstname and author-lastname, or accept placing author
as a subelement of the document. Furthermore, attributes
cannot be repeated: They must have unique values. If the
document has multiple authors, these cannot all be
recorded as separate author attributes. We either have to
include all author names into a single attribute, or make
author a subelement.

image of Figure 9.3
http://server:port/path#fragment?search


<DATABASE>
<SUPPLIER-TABLE>

<SUPPLIER-TUPLE>
<ID> 123 </ID>
<NAME> Acme </NAME>
<ADDRESS> 3 Canyon Drive, Hell, MI 48169</ADDRESS>

</SUPPLIER-TUPLE>
<SUPPLIER-TUPLE>

<ID> 248 </ID>
<NAME> Perfection </NAME>
<ADDRESS> 5 Cloudy Way, Paradise, MI 49768</ADDRESS>

</SUPPLIER-TUPLE>
<SUPPLIER-TUPLE>

<ID> 345 </ID>
<NAME> Foobar </NAME>
<ADDRESS> 88 Forever Loop, Purgatory, MI 49042</ADDRESS>

</SUPPLIER-TUPLE>
<SUPPLIER-TUPLE>

<ID> 689 </ID>
<NAME>Far Out </NAME>
<ADDRESS> 55 Nowhere Road, Lost River, MN 56756 </ADDRESS>

</SUPPLIER-TUPLE>
</SUPPLIER-TABLE>
<OTHER-TABLE>

<OTHER-TUPLE>
<PART>widget </PART>
<PRICE> 2 </PRICE>
<QUANTITY> 4 </QUANTITY>

</OTHER-TUPLE>
</OTHER-TABLE>
</DATABASE>

Figure 9.4 An XML
encoding of multiple
relational tables.

<?xml version¼"1.0" encoding¼"ISO-8859-1" ?>
<xs:schema xmlns:xs¼"http://www.w3.org/2001/XMLSchema">

<xs:element name¼"SUPPLIER-TABLE">
<xs:complexType>

<xs:element name¼"SUPPLIER-TUPLE" minOccurs¼1
maxOccurs¼"unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name¼"ID" type¼"xs:positiveInteger "/>
<xs:element name¼"NAME" type¼"xs:string"/>
<xs:element name¼"ADDRESS" type¼"xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 9.5 The schema
corresponding to the
document of Figure 9.3.

image of Figure 9.4
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Figure 9.6 An Orders table,
used as a running example.
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XML Design
XMLprovides great flexibility in structuring information—

the syntax itself imposes few restrictions and permits the
complete individualization of each element occurrence.
However, if anyone is to use XML data, it is important to
use this flexibility in a responsible way—there should be
some sense to the structure, some pattern in which the
information is represented. These structural patterns are
captured in an XML DTD or schema definition. In the next
section, we consider some of the issues to keep in mind
while creating such patterns.

As should be evident from the history of XML, it is a for-
mat suitable for representing text documents as well as
databases. This flexibility permits XML databases to man-
age text fields in a much richer way than is possible with
relational databases. The interplay between text and
structured data is discussed in the “Text” section.

Schema Design
In a relational table, each row represents a relationship,

which could be rendered in an English sentence. Consider
a table Orders with columns partnum, supplierID, price,
and quantity as shown in Figure 9.6. A row in it, with the
tuple of values 123, ABC, 5, and 10 can be read as “10 units
of part 123 are ordered from supplier ABC at a price of 5
dollars each.” The astute reader will notice that the English
sentence includes a great deal of semantics not present in
the column names: the price is in dollars, it applies per
unit and not to the whole order, and so on.

Now consider the same data in XML (Figure 9.7). We
may have a supplier element with a part element below
it, and price and quantity as subelements of part. There
isn’t a single unique tuple that is pulled out. However,
partnum supplierID price quantity

123 ABC 5 10

258 DEF 9 3

389 GH 2 22

image of Figure 9.6
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Figure 9.7 One XML design
representing the table in
Figure 9.6: (a) XML
document and (b) an
intuitive graphical
representation.

<Supplier supplierID¼"ABC">
<Part partnum¼"123">

<Price> 5 </Price>
<Quantity> 10 </Quantity>

</Part>
</Supplier>
<Supplier supplierID¼"DEF">

<Part partnum¼"258">
<Price> 9 </Price>
<Quantity> 3</Quantity>

</Part>
</Supplier>
<Supplier supplierID¼"GH">

<Part partnum¼"389">
<Price> 2 </Price>
<Quantity> 22 </Quantity>

</Part>
</Supplier>

(a)

Part [partnum]

Supplier [supplierID] 

Price Quantity

(b)
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any ancestor–descendant path in the graph should “make
sense” in that it should be interpretable as an English sen-
tence. Begin with single-element “sentences” such as
“There is a part.” These obviously are okay. The ID of the
part has to be made an attribute of the element. Our
one-element sentence then reads, “There is a part with
ID 123.” The maximum path length is now 3, and we can
form a sentence that reads “10 units of part 123 are
ordered from supplier ABC,” and another sentence that

image of Figure 9.7
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Figure 9.8 Another XML
design representing the
table of Figure 9.6.
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reads “Part 123 is ordered from supplier ABC at a price of
5.” Notice that the price is determined by part and sup-
plier, and not by the order or order quantity. If we expect
the price to be different for different orders, even from
the same supplier, we may need to introduce an additional
node order below supplier, and then make part, price, and
quantity all children of order, as shown in Figure 9.8.

The main point of the above example is to show
that there is an issue with database design in the XML
context. There are many different types of errors possible.
A few common ones are:

Incorrectly promoting an element to an attribute. An
attribute at any level in the XML tree should apply to
the entire subtree below it. If an attribute of an element X
is irrelevant with respect to an element Y, descendant of X,
then it is likely that the attribute really should have been
rendered as an element, child of X. See Figure 9.9. In
most XML implementations, attributes are dereferenced
much more quickly than child subelements. So there is an
efficiency reason to use attributes rather than subelements.
Incorrect use of an attribute as an element. Essential
information about an element, of possible concern to
its descendants, should be included in the element
itself, as an attribute, rather than being pulled out in a
subelement. For example, the ID of a supplier should
Part [partnum]

Supplier [supplierID] 

Price Quantity

Order



Person [Age]

Street Zipcode

Address

StateCity

Figure 9.9 Age is related to
person in the same manner
as Address, so it should not
be an attribute while
Address is a subelement.
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be part of the supplier element, and not in a separate
suppID subelement. Note that attributes must be single
valued and cannot have structure. These restrictions
are significant, and can require that certain attributes
be treated as subelements, even though they are logi-
cally attributes based on the argument above.
Inadequately grouped data. Information that forms a sin-
gle logical unit should be grouped together under a com-
mon parent element. For example, if a supplier’s address
has a street, city, state, and zip, recorded as four different
elements, these should be grouped together as children
of an address element. In the relational world, such
grouping is often not performed. For example, in a single
table, we would have these four fields and also supplier
name, telephone number, year established, etc. Looking
at the table structure, all these fields are coequal without
any additional structure among them. See Figure 9.10.
Promoting data to metadata. Since XML permits the
schema to change from one part of the database to
another, it is easy to fall into the trap of making every-
thing into an element tag. Things that are data should
remain data. For example, it would be bad design to
have 50 different tags, one for each state, rather than
record the state name as data. See Figure 9.11.
Demoting metadata into data. This is an error that is
less likely in XML databases. However, it is very com-
mon in relational databases that have to represent
semi-structured data. For example, one could create a
table with three columns: objectID, attributeName, and



(a)

(b)

Supplier [SuppID]

Street ZipcodeStateCity

Phone

Name
YearEstablished

Supplier [SuppID]

Street Zipcode

Address

StateCity

PhoneName YearEstablished

Figure 9.10 Two schema
designs: (a) a design with
inadequate grouping, and
(b) a better design.

(b)

Employee [EmpID]

SexPhone

Name
JobClass

(a)

Employe [EmpID]

Female

Faculty

Staff

Male

Phone

Name
Administrator

Figure 9.11 Two schema
designs: (a) a design with
improperly promoted data,
and (b) a better design.

172 Chapter 9 XML AND WEB DATABASES



Chapter 9 XML AND WEB DATABASES 173
attributeValue. With such a table you can represent
anything you wish! But note that attributeName is a
column that stores as values information that is better
represented as real names of attributes. See Figure 9.12.

Text
XML is very similar to HTML and therefore is great for

representing text. XML tags provide a means for structuring
text documents. A very simple, completely unstructured doc-
ument could have just a start and an end tag, with thousands
of words of text in between. Of course, the typical XML docu-
ment has muchmore structure than this. However, there still
could be large amounts of text between any pair of tags.

In short, a pure text document is represented in XML as
a set of nested tags, just as a database is. In the case of a
document, the tags may represent document constructs,
such as chapter, section, paragraph, etc., whereas in a data-
base, the tags represent schema elements as we saw above.
Thus, there is an opportunity to merge text documents
and structured databases. It is straightforward to have an
arbitrarily complex document be a schema element any-
where in an XML database. In fact, it is just as straightfor-
ward to have an arbitrarily complex database be a
component of an XML document that otherwise contains
text. XML even permits the two types of elements to be inter-
mixed, leading to arbitrarily deep nestings of documents in
databases in documents. See Figure 9.13.

Let us consider how this works in practice, by looking at a
couple of examples at different points in the spectrum of
objectID attributeName attributeValue

123 Title Iliad

123 Author Homer

123 Price 22

135 Title Macbeth

135 Author Shakespeare

135 Price 17

135 Year 1605
Figure 9.12 A triple store
showing demoted metadata.

http://server:port/path#fragment?search


<SALES-REPORT Date¼”Jan 11, 2011”>
<To> Bertha the Boss </To>
<From> Wally Worker </From>
<Report>
There was a healthy uptick in our sales last quarter, across all product categories, as you will see from
the table below.

<Table Caption¼”Fourth Quarter Sales by Category”>
<Product-Category>

<Name> Twist Ties </Name>
<Sales> 260 </Sales>
<Previous-Quarter-Sales> 220 </Previous-Quarter Sales>

</Product-Category>
<Product-Category>

<Name> Shoestrings </Name>
<Sales> 480 </Sales>
<Previous-Quarter-Sales>200 </Previous-Quarter Sales>
<Footnote> Previous quarter sales do not include sales of Cowlick Corp., which we have since

acquired, and whose sales are included in the fourth quarter numbers. </Footnote>
</Product-Category>
<Product-Category>

<Name> Bungee Cords </Name>
<Sales> 770 </Sales>
<Previous-Quarter-Sales> 740 </Previous-Quarter Sales>

</Product-Category>
<Table>

Whereas we expect continued growth in the shoestring category this quarter, on account of our recent
acquisition of Cowlick Corp., whether we see growth in other product categories will depend primarily
on the state of the overall economy.
</Report>
</SALES-REPORT>

Figure 9.13 An XML document with nested data.
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balancing text and structure. For our first example, consider
a structured database with an address field. In a typical
relational database design, this address fieldmay be a single
variable-length character string. With XML, there is an
opportunity to break down the address into its components,
each as a separate XML element. Note that the flexibility of
XML, where some elements may be absent, is important
here—one address may have an apartment number, for
example, and another may not. Because of these differences
in the expected structure of addresses, it is painful to pull out
individual components of a street address for a relational
database. Indeed, this decomposition is rarely done beyond

image of Figure 9.13
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city, state, ZIP code, and country—street addresses are
almost always stored as a single string.With this decomposi-
tion in place in XML, we are able to ask queries about street
addresses that would be very difficult otherwise. For exam-
ple, with an address represented as in Figure 9.14, one can
issue queries such as “Find persons who live in apartment
number 23 (of their building or housing complex).”

For a second example, consider a bibliographic database
that includes abstracts of articles. The abstract is a text
“field” that may have additional document structure inter-
nal to it, such as multiple paragraphs, a keyword list, and
so on. The primary way in which this case differs from the
previous one (the example about street addresses) is that
the quantity of text is much greater. In consequence,
<InternationalFriendsAddresses>
<Address>

<Name> Maria Eder </Name>
<Street> Gartenweg </Street>
<Number> 8 </Number>
<Locality> Rafing </Locality>
<PostCode> 3741 </PostCode>
<City> Pulkau </City>
<Country> Austria </Austria>

</Address>
<Address>

<Name> LIM Chee-Seung </Name>
<Apt> Flat 23 </Apt>
<Floor> 12/F </Floor>
<Building> Acacia Building</Building>
<Number> 120 </Number>
<Street> Kennedy Road </Street>
<Locality> Wan Chai </Locality>
<City> Hong Kong </City>
<Country> China </Country>

</Address>
<Address>

<Name> John Smith </Name>
<Number> 15 </Number>
<Street> Downing Street </Street>
<Apt> 3C </Apt>
<City> London </City>
<PostCode> EC1Y 8SY </PostCode>
<Country> United Kingdom </Country>

</Address>
</InternationalFriendsAddresses>

Figure 9.14
A heterogeneous list of
addresses, each
decomposed into multiple
XML elements, all within a
single XML document.

image of Figure 9.14
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selection queries are unlikely to specify the whole text field
or even large parts of it. Rather, we may specify a few query
terms and want “relevant” text snippets to be found. This is
how information retrieval works, and this query paradigm
is very different from that of a database, where a query is
defined as the satisfaction of a logic predicate with a very
well-defined answer set. Putting these two query paradigms
together is hard, and is the subject of continuing research.
XML Data in an RDBMS
Relational database management systems (RDBMSs) are

ubiquitous, and XML data is often stored in an RDBMS. The
simplest way to do this is to treat the entire XML document
as a single BLOB: a large data object of which the inner details
are not interpreted by the relational database. The drawback
of this setup is that the entire XML object has to be retrieved
from thedatabase and into anXMLdatamanagement system
before any data from it can be accessed. This can be expen-
sive, particularly when the size of the XML stored is large.
One attempt to manage size could be to divide the XML
database to be stored into multiple XML documents, each
stored in a separate BLOB. But then, we would still need to
extract labels or indexing attributes to be able to determine
which BLOBs to access in response to any query.

With object-relational capabilities, one can define a user-
definedXML“type” andbuild suitable user-defined functions
(UDFs) with it. This way, some of the difficulties mentioned
above can be ameliorated. Nonetheless, since UDFs remain
second-class citizens in a relational database, this sort of
implementation usually still leaves a lot to be desired.

The typical way to store XML data in an RDBMS is to
“shred” it into records that can be stored in relational tables.
Each data element and each attribute in the XML becomes
an attribute value in the relational representation. Each
relational record represents a set of related elements and
attributes.Ourchallenge is to create sets of relational records
with identical structures, which can be represented as a
table, given the heterogeneity and repetition so common in
XML. The design considerations we face are similar to those
for object-relational mapping, as discussed in Chapter 8.
See the example shown in Figure 9.15.



<Library>
<Book>

<ISBN> 123 </ISBN>
<Title> A Fun Book </Title>
<Publisher>

<Name> Crown </Name>
<Address>

<Street> 3 Canyon Drive </Street>
<City> Hell, MI </City>
<Zip> 48169 </Zip>

</Address>
</Publisher>
<Author>

<Name> Bonzo </Name>
<Institution> Ringling Brothers </Institution>

</Author>
</Book>
<Book>

<ISBN> 258 </ISBN>
<Title> Database Design </Title>
<Publisher>

<Name> Elsevier </Name>
<Address>

<Street> 5 Cloudy Way </Street>
<City> Paradise, MI </City>
<Zip> 49768 </Zip>

</Address>
</Publisher>
<Author>

<Name> Teorey </Name>
<Institution> University of Michigan </Institution>

</Author>
<Author>

<Name> Lightstone </Name>
<Institution> IBM </Institution>

</Author>
</Book>

</Library>

ISBN Title PubName PubAddrStreet PubAddrCity PubAddrZip

123 A Fun Book Crown 3 Canyon Drive Hell, MI 48169

258 Database Design Elsevier 5 Cloudy Way Paradise, MI 49768

ISBN authorName authorInstitution

123 Bonzo Ringling Bros.

258 Teorey U. Michigan

258 Lightstone IBM

Figure 9.15 An XML document and its relational representation.

image of Figure 9.15
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Figure 9.16 An overview of
HTTP: A request from the
client gets a response from
the server.
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Web-Based Applications
Databases often power websites today. The Web is the

medium through which many databases are accessed.
In this section, we will first present an overview of how data
is organized on theWeb, and thendiscuss someof the design
considerations when databases are placed on the Web.
An Overview of HTTP
The Internet makes it possible for computers around

the world to communicate with one another. Using these
facilities, the first services constructed included email and
file transfer. In 1994, Tim Berners-Lee built a system con-
necting files on the Internet in a new way—this is what
has grown into “the Web” today.

The central notion of the Web is that there is asymmetry
between servers and clients. There are Web servers that
have information resources (files, Web pages, database
query results) that they can provide to remotely located
Web clients. How precisely this transfer is orchestrated is
specified in the HyperText Transfer Protocol (HTTP).

HTTP is a request/response protocol (Figure 9.16). The
protocol begins with a request from the client to the server,
followed by a response from the server to the client. A typ-
ical request from the client is to ask the server for a
resource, to which a typical response is for the server to
provide the resource. There is no way for the server to ini-
tiate communication using HTTP.
Client Server

Request

Response

Internet

image of Figure 9.16
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Communication in each direction includes a header,
with all sorts of useful fields, and an optional body, with
the actual payload. HTTP specifies the fields that may be
included in the header, and the exact format in which to
specify each field. The body is just treated as a bucket of
bits by HTTP: It is not manipulated in any way. The client
and server each implement HTTP, by which we mean that
they write out headers in the manner specified by HTTP
and also read and interpret HTTP headers.

HTTP defines eight methods, or types of requests that
can be made. The GETmethod is by far the one used most
often. The client specifies the resource of interest to it, in a
request that looks something like this:

GET /foo.html HTTP/1.1

Referer: http://www.google.com/search?q¼webþdatabases

The server, in response, will send the file foo.html back,
if indeed such a file exists at the server. The response also
includes, among other things, a status code field in its
header—for example, “200 OK” or “404 Not found.”

Thus, the response may have a header that looks as
follows, along with a body that comprises the requested
resource (foo.html):

HTTP/1.1 200 OK

Server: Apache/2.2.11 (Unix)

Content-Type: text/html

GET has some limitations—for example, no more than
1024 bytes may be used. The POST method is similar to
GET, except that it has a body in addition to the request
header. Whenever copious or complex information is to
be sent as part of the request, POST is the method used.
The flexibility afforded by having a separate body part
comes at a cost: Storing POST requests is problematic,
since just the header does not suffice. Similarly, POST
requests are difficult to link to or bookmark. Note that
the POSTmethod is also a request that receives a response,
similar to the response for GET. In other words, even
though the name of the method is POST, it also can be
used to “get” a remote resource.

Since the HTTP protocol is asymmetric, different pieces
of software implement the client and the server. The HTTP
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client protocol is implemented by Web browsers, such as
Internet Explorer, Firefox, and Chrome. Web browser soft-
ware usually has a great deal of additional functionality:
HTTP itself is a simple protocol, and a basic client imple-
mentation is only a very small part of the code in these
browsers.

Web server software implements the HTTP server proto-
col. The Apache Web server is the leading Web server today,
and is perhaps the best-known example of open-source
software. Internet Information Services, by Microsoft, is
another popular Web server.

Web server software runs onmachines that are also called
Web servers. In consequence, there is some ambiguity when
people speak of Web servers. When “a server is unreachable,”
it could be the machine or the software that is meant; in
many cases, the difference may not be material. Since we
are primarily concerned with software in this book, when-
ever we say “Web server” we mean the Web server software.
Resources
The unit of access in HTTP is a resource, which is most

often just an HTML file. However, in general, a resource can
be any unit of transfer. Indeed, HTTP requests often are for
resources that are images, remotely invoked Web services,
outputs of dynamically executed programs, and so on. Of
course, for a resource to be requested and transferred, itmust
first be identified. This leads to the following, somewhat
circular, definition for a resource: A resource is any object
on the Web that has a Uniform Resource Identifier (URI).

Resources on the Web are typically identified by means
of a Uniform Resource Locator (URL). (We will say more
about URI versus URL in a moment.) A URL is of the form
http://server:port/path#fragment?search.

The server part of the URL may be specified as a human-
understandable host name or as a network-understandable
IP address. An Internetwide domain name service (DNS)
is used to translate a server machine name, such as
www.umich.edu, to a numeric IP address, which may look
something like 135.22.87.1. A Web browser can take a URL,
find the server specification part of it, and have that
converted to an IP address using DNS.

http://server:port/path#fragment?search
http://www.umich.edu


Client

Server

Request

Response

Internet

DNS Server Name

Server IP 
Address

Figure 9.17 Address lookup
in HTTP. The DNS query
loop happens before the
client can send its request
to the server.
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The IP address identifies the computer to connect to,
just as a street address identifies a house in the real world
(Figure 9.17). A single computer will usually support
dozens of ports. Think of each port as a separate door lead-
ing to a separate apartment in the building identified by
the IP address. By convention, particular ports are used
for particular applications. Thus, port 25 is for email
(SMTP), port 53 is for DNS, and so on. By convention, port
80 is for HTTP, and port 443 for HTTPS (a secure variant of
HTTP that is beyond the scope of discussion in this book).
However, a computer can be configured to have additional
ports that can accept HTTP requests. Numbers frequently
chosen for these additional ports are 8000 and 8080.

Typically, the path specifies a file name, and this is the
file to be retrieved and returned. What if the URL specifies
a directory? The server may have a convention in this case.
Typically, it will look for a file called index.htm or index
.html, and return this file if it exists. If not, perhaps the
server should provide a directory listing. Exactly which file
to look for, and what else to do, is completely up to the
way the Web server has been configured: Neither the HTTP
protocol nor the definition of a URL will specify this.

The fragment specification merely points to a portion of
the resource being retrieved. In a typical implementation,
with HTML, the entire resource is still obtained, while the
fragment of focus is just identified. In other words, the
server does nothing differently with this specification.
Due to this, browsers may frequently not send the frag-
ment specification to the server. Rather, they may keep this
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local, and once the file has been retrieved, use the frag-
ment specification to scroll down when displaying the file
and position the cursor at the desired location.

The search specification provides a general-purpose
mechanism to send parameters to the Web server that
could be used to modify the request. We will have much
more to say about this in the next section.

In the manner described above, a URL explicitly
describes exactly where a resource of interest is located in
the Internet. Sometimes we may be interested in specifying
a resource without tying it down to a particular file loca-
tion on a particular host machine. In such cases, we use
a Uniform Resource Name (URN). The syntax for a URN
is rather simple. It is just: urn:nid:nss.

Here, nid is a namespace identifier andnss is a namespace-
specific string. In other words, the resource has nss as its
name, but since we’d like names to be unique, we make sure
to obtain a name for the resource from some authority that
manages names in some conceptual space. This is the
namespace identifiedby thenss. For example,many countries
have national identification numbers or social security
numbers for their citizens. If you want to identify a person
uniquely, you can “name” them by their national identifica-
tion number (the nss), but you also have to say which country
you got this from (thenid). This notionof namespace iswidely
used in XML, where it is commonplace to have tags such as
abc:form, which means we are specifying a form as defined
in the abc namespace. There may be other forms defined
in other namespaces, but those are completely irrelevant:
Wehave explicitly stated the specific formweare interested in.

A URI is a way of identifying a resource of interest
unambiguously. We could do so by name, using a URN,
or by location, using a URL. In the context of HTTP
requests, most resources are identified by URL.
Dynamic Pages
In the simplest case, the resources managed by a Web

server comprise a set of files that have been created in
the past. The Web server simply determines the file name
(including directory path) from the HTTP request and
sends the file back to the requester (provided the file exists,
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and is readable). As a website grows, and there is more
information that it would like to be able to provide, it
quickly becomes cumbersome to create a separate HTML
page for each possible information request and store it as
a separate file.

It is commonplace for the requested resource not to be
a simple static HTML page, but rather a “dynamic page,”
where the entire page, or a chunk of it, is obtained by
executing a program. Of course, if any deterministic pro-
gram is executed repeatedly, without changing inputs, it
will produce the same results every time. This is not very
interesting. The benefit of dynamic pages is obtained when
programs are run with different input parameters, speci-
fied in the resource request. The definition of a URL pro-
vides for this in the form of the search string that comes
at the end of the URL. This string is typically not
interpreted by the Web server. Rather it is passed on to
the program identified by the path part of the URL. This
program then executes with the search string as the input
parameter. The output produced is sent back by the server
as the response to the request.

Let us make this a bit more concrete. If the requested
resource is to be displayed as a Web page, then the output
of the program must be an HTML file. Furthermore, the
program need not accept only a single input parameter—
logically, it could have as many parameters as appropriate:
We merely have the entire set of parameters all encoded
into a single search string. (In fact, for security reasons,
many websites encrypt search strings so that the client
does not learn what the structure of the program on the
server side is and what sorts of parameters it accepts.)
Finally, there is nothing that prevents the program from
calling other programs and passing along some or all of
the invocation parameters obtained from the search string.

What would these programs compute? In theory, it
could be anything at all. In practice, the purpose is to pop-
ulate the information of interest on the result Web page.
Frequently, this information is obtained by performing a
database lookup. In other words, the server-side program
uses the information in the search string to generate a
query that it issues to a local database. It then uses the
database result to populate a Web page that it sends back



Figure 9.18 A single HTTP
request can require the
server to do many things
(such as collect information
from multiple places) to
generate a Web page in
response.
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to the client. Of course, there is no reason to restrict the
program to issuing a single database query—there could
be a string of queries and arbitrary additional computation
involved in generating the final result desired.

For example, consider the ABC Company that maintains
an electronic parts catalog.When a user browses this catalog
and clicks on a particular widget of interest, which happens
to have a part number of 12345, an HTTP request is sent to
ABC’s Web server, to run the program show_detail with a
search string of 12345. The show_detail program issues a
database query to pull up a nice image for the part, another
query to pull up the technical specifications, yet another
query for the price, and so on. It combines the results of all
these queries to generate a nice-looking Web page, which
it returns as the result to the client. A great deal of work
happened behind the scenes to respond to a simple click.
See Figure 9.18.

Website Structure
Now that we understand how Web servers operate, let

us look at the logical structure of a website. As shown in
Figure 9.19, there are three tiers. At the user-facing end is
the Web server, and the software that stitches the final
result together. This is often called the presentation tier.
Next is the application tier with the bulk of the business
logic and computation. Finally, at the back end is the data-
base tier. Here, we have the databases that store the
information required by the other tiers (and typically also
for business operations beyond the website).
Client ABC
Web
Server

Request
show_detail (12345)

Response
page with 
merged
information

Internet
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Figure 9.19 Multiple tiers in
a website.
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As websites become popular, load management be-
comes an issue. The usual solution is to replicate servers
and have a simple dispatcher manage the flow of requests.
With a three-tier architecture, such replication decisions
can be made independently at each layer. For example, if
the application logic is the most compute-intensive piece,
we could replicate servers at the middle tier without having
to replicate the presentation layer server or the database.
Summary
In this chapter, we took a look at Web technologies and

how they impact databases. XML is perhaps one of the best
known of these, and definitely the one that has had the
greatest impact on databases today. In the first section we
presented an overview of XML, and in the second section
we explored some database design issues that are specific
to XML, beyond the more general design issues considered
in the bulk of this book. Most databases today are accessed
across the Web, so it is important to understand the impact
of this context. We got an overview of Web technologies
in the third section, followed by a description of the archi-
tecture of databases in websites.
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Tips and Insights for Database
Professionals

Tip 1. XML is a universal way of packaging and com-
municating structured information. It has become a
standard just like ASCII has become a standard. Even
if you never actually manipulate information in XML
directly, expect to use it as a “wire format” to transfer
data between systems.
Tip 2. When data is represented in XML, good design is
just as important as for relational databases. Even
though the bulk of this book is about relational database
design, and even though most people mean relational
design when they speak of database design, the same
sorts of design considerations apply to all types of data
representations, including XML.
Tip 3. While XML provides a convenient way to inte-
grate text with structured data, the query paradigms
for the two are very different. Text is often accessed
through keyword queries and through approximate
specification. Databases are queried in a controlled,
structured way. If one of these types of information pre-
dominates in a mixed document, which query paradigm
to use is obvious. If there is a more even mix, it is likely
that one or the other type of data will not be handled as
well by the query system as we would like.
Tip 4. Database-backed websites with a three-tier archi-
tecture require careful partitioning of work between
tiers. Data-intensive work goes in the database server,
while presentation-intensive work goes in the front-end
HTTP server. The remainder, which is the core application
logic, runs on the application servers in the middle.
Literature Summary
The XML standard is defined by the World Wide Web

Consortium (W3C), an international society devoted to the
development of Web standards and the long-term growth
of the Web. The latest standards for the XML language
itself, and also for a range of XML-related technologies, can
be found at http://www.w3.org/standards/xml/. There are

http://www.w3.org/standards/xml/
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many excellent tutorials on XML and related technologies
available on the Web, such as http://www.w3schools.com/
xml/default.asp. A good listing of common XML design
patterns is at http://www.xmlpatterns.com/patterns.shtml.
XML mapping to relational databases is in many commer-
cial and noncommercial products. A listing is maintained
at http://www.rpbourret.com/xml/XMLDatabaseProds.htm.
This site also has academic work in this area. Web
technologies are explained at various levels of detail in
numerous books and even more websites. An interested
reader should have no difficulty finding as much additional
information as desired.

http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/xml/default.asp
http://www.xmlpatterns.com/patterns.shtml
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
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Business intelligence has become a buzzword in recent
years. The database tools found under the heading of
business intelligence include data warehousing, online
analytical processing (OLAP), and data mining. The func-
tionalities of these tools are complementary and interre-
lated. Data warehousing provides for the efficient storage,
maintenance, and retrieval of historical data. OLAP is a
service that provides quick answers to ad hoc queries
against the data warehouse. Data mining algorithms find
patterns in the data and report models back to the user.
All three tools are related to the way data in a data ware-
house is logically organized, and performance is highly
sensitive to the database design techniques used in
189
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Barquin and Edelstein (1997). The encompassing goal for
business intelligence technologies is to provide useful
information for decision support.

Each of the major DBMS vendors is marketing the tools
for data warehousing, OLAP, and data mining as business
intelligence. This chapter covers each of these technolo-
gies in turn. We take a close look at the requirements for
a data warehouse, its basic components and principles of
operation, the critical issues in the design of a data ware-
house, and the important logical database design elements
in a data warehouse environment. We then investigate the
basic elements of OLAP and data mining as special query
techniques applied to data warehousing.
Data Warehousing
A data warehouse is a large repository of historical data

that can be integrated for decision support. The use of a
data warehouse is markedly different from the use of oper-
ational systems. Operational systems contain the data
required for the day-to-day operations of an organization.
This operational data tends to change quickly and con-
stantly. The table sizes in operational systems are kept
manageably small by periodically purging old data. The
data warehouse, by contrast, periodically receives histori-
cal data in batches, and grows over time. The vast size of
data warehouses can run to hundreds of gigabytes, or even
terabytes. The problem that drives data warehouse design
is the need for quick results to queries posed against huge
amounts of data. The contrasting aspects of data war-
ehouses and operational systems result in a distinctive
design approach for data warehousing.

Overview of Data Warehousing
A data warehouse contains a collection of tools for

decision support associated with very large historical
databases, which enables the end user to make quick and
sound decisions. Data warehousing grew out of the tech-
nology for decision support systems (DSSs) and executive
information systems (EISs). DSSs are used to analyze data
from commonly available databases with multiple sources,
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and to create reports. The report data is not time critical in
the sense that a real-time system is, but must be timely for
decision making. EISs are like DSSs, but more powerful,
easier to use, and more business specific. EISs were
designed to provide an alternative to the classic online
transaction processing (OLTP) systems common to most
commercially available database systems. OLTP systems
are often used to create common applications, including
those with mission-critical deadlines or response times.
Table 10.1 summarizes the basic differences between OLTP
and data warehouse systems.

The basic architecture for a data warehouse environ-
ment is shown in Figure 10.1. The diagram shows that
the data warehouse is stocked by a variety of source
databases from possibly different geographical locations.
Each source database serves its own applications, and the
data warehouse serves a DSS/EIS with its informational
requests. Each feeder system database must be reconciled
with the data warehouse data model; this is accomplished
during the process of extracting the required data from the
feeder database system, transforming the data from the
feeder system to the data warehouse, and loading the data
into the data warehouse (see Cataldo, 1997).
Table 10.1 Comparison between OLTP and Data
Warehouse Systems

OLTP Data Warehouse

Transaction oriented Business process oriented

Thousands of users Few users (typically under 100)

Generally small (MB up to several GB) Large (from hundreds of GB up to several TB)

Current data Historical data

Normalized data (many tables, few columns

per table)

Denormalized data (few tables, many columns

per table)

Continuous updates Batch updates*

Simple to complex queries Usually very complex queries

*There is currently a push in the industry toward “active warehousing,” in which the warehouse receives data in
continuous updates. See the “View Maintenance” section later in the chapter for further discussion.
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Core Requirements for Data Warehousing

Let us now take a look at the core requirements and
principles that guide the design of data warehouses (DWs).
See Simon (1995), Barquin and Edelstein (1997), Chaudhuri
and Dayal (1997), and Gray and Watson (1998).
1. DWs are organized around subject areas. Subject areas

are analogous to the concept of functional areas, such as
sales, project management, or employees, as discussed
in the context of ER diagram clustering in the “Entity
Clustering for ER Models” section. Each subject area
has its own conceptual schema and can be represented
using one or more entities in the ER data model or by
one or more object classes in the object-oriented data
model. Subject areas are typically independent of indi-
vidual transactions involving data creation or mani-
pulation. Metadata repositories are needed to describe
source databases, DW objects, and ways of transforming
data from the sources to the DW.

2. DWs should have some integration capability. A com-
mon data representation should be designed so that all
the different individual representations can be mapped
to it. This is particularly useful if the warehouse is
implemented as a multidatabase or federated database.
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3. The data is considered to be nonvolatile and should be
mass loaded. Data extraction from current databases
to the DW requires that a decision should be made
whether to extract the data using standard relational
database (RDB) techniques at the row or column level
or specialized techniques for mass extraction. Data
cleaning tools are required to maintain data quality—
for example, to detect missing data, inconsistent data,
homonyms, synonyms, anddatawithdifferent units.Data
migration, data scrubbing, and data auditing tools handle
specialized problems in data cleaning and transforma-
tion. Such tools are similar to those used for conventional
relational database schema (view) integration. Load
utilities take cleaned data and load it into the DW, using
batch-processing techniques. Refresh techniques propa-
gate updates on the source data to base data and derived
data in the DW. The decision of when and how to refresh
is made by the DW administrator and depends on user
needs (e.g., OLAP needs) and existing traffic to the DW.

4. Data tends to exist at multiple levels of granularity. Most
important, the data tends to be of a historical nature,
with potentially high time variance. In general, however,
granularity can vary according to many different dimen-
sions, not only by timeframe but also by geographic
region, type of product manufactured or sold, type of
store, and so on. The sheer size of the databases is a
major problem in the design and implementation of
DWs, especially for certain queries, updates, and sequ-
ential backups. This necessitates a critical decision
between using an RDB or a multidimensional database
(MDD) for the implementation of a DW.

5. The DW should be flexible enough to meet changing
requirements rapidly. Data definitions (schemas) must
be broad enough to anticipate the addition of new types
of data. For rapidly changing data retrieval requirements,
the types of data and levels of granularity actually
implemented must be chosen carefully.

6. The DW should have a capability for rewriting history—
that is, allowing for “what-if” analysis. The DW should
allow the administrator to update historical data tempo-
rarily for the purpose of “what-if” analysis. Once the
analysis is completed, the data must be correctly rolled
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back. This condition assumes that the data is at the
proper level of granularity in the first place.

7. A usable DW user interface should be selected. The
leading choices today are SQL, multidimensional views
of relational data, or a special-purpose user interface.
The user interface language must have tools for retriev-
ing, formatting, and analyzing data.

8. Data should be either centralized or distributed physi-
cally. The DW should have the capability to handle
distributed data over a network. This requirement will
become more critical as the use of DWs grows and the
sources of data expand.
The Life Cycle for Data Warehouses

Entire books have been written about select portions of
the data warehouse life cycle. Our purpose in this section
is to present some of the basics and give the flavor of data
warehousing. We strongly encourage those who wish to
pursue data warehousing to continue learning through
other books dedicated to data warehousing. Kimball and
Ross (1998, 2002) have a series of excellent books covering
the details of data warehousing activities.

Figure 10.2 outlines the activities of the data warehouse
life cycle. The life cycle begins with a dialog to determine
the project plan and the business requirements. When
the plan and the requirements are aligned, design and
implementation can proceed. The process forks into three
threads that follow independent time lines, meeting up
before deployment (see Figure 10.2). Platform issues are
covered in one thread, including technical architectural
design, followed by product selection and installation.
Data issues are covered in a second thread, including
dimensional modeling and then physical design, followed
by data staging design and development. The special
analytical needs of the users are pursued in the third
thread, including analytic application specification follo-
wed by analytic application development. These three
threads join before deployment. Deployment is followed
by maintenance and growth, and changes in the require-
ments must be detected. If adjustments are needed, the
cycle repeats. If the system becomes defunct, then the life
cycle terminates.
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The remainder of our data warehouse section focuses
on the dimensional modeling activity. More comprehen-
sive material can be found in Kimball and Ross (1998,
2002) and Kimball and Caserta (2004).
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Logical Design
We discuss the logical design of data warehouses in this

section; physical design issues are covered in Lightstone
et al. (2007). The logical design of datawarehouses is defined
by the dimensional data modeling approach. We cover
the schema types typically encountered in dimensional
modeling, including the star schema and the snowflake
schema. We outline the dimensional design process, adher-
ing to the methodology described by Kimball and Ross
(2002). Then we walk through an example, covering some
of the crucial concepts of dimensional data modeling.

Dimensional Data Modeling

The dimensional modeling approach is quite different
from the normalization approach typically followed when
designing a database for daily operations. The context of
data warehousing compels a different approach to meeting
the needs of the user. The need for dimensional modeling
will be discussed further as we proceed. If you haven’t been
exposed to data warehousing before, be prepared for some
new paradigms.

The Star Schema

Data warehouses are commonly organized with one
large central fact table, and many smaller dimension tables.
This configuration is termed a star schema; an example is
shown in Figure 10.3. The fact table is composed of two
types of attributes: dimension attributes and measures.
The dimension attributes in Figure 10.3 are CustID,
ShipDateID, BindID, and JobId. Most dimension attributes
have foreign key/primary key relationships with dimension
tables. The dimension tables in Figure 10.3 are Customer,
Ship Calendar, and Bind Style. Occasionally, a dimension
attribute exists without a related dimension table. Kimball
and Ross refer to these as degenerate dimensions. The JobId
attribute in Figure 10.3 is a degenerate dimension (more
on this shortly). We indicate the dimension attributes that
act as foreign keys using the stereotype «fk». The primary
keys of the dimension tables are indicated with the stereo-
type «pk». Any degenerate dimensions in the fact table
are indicated with the stereotype «dd». The fact table also
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contains measures, which contain values to be aggre-
gated when queries group rows together. The measures in
Figure 10.3 are Cost and Sell.

Queries against the star schema typically use attributes
in the dimension tables to select the pertinent rows from
the fact table. For example, the user may want to see cost
and sell for all jobs where the Ship Month is January
2005. The dimension table attributes are also typically used
to group the rows in useful ways when exploring summary
information. For example, the user may wish to see the
total cost and sell for each Ship Month in the Ship Year
2005. Notice that dimension tables can allow different
levels of detail the user can examine. For example, the Fig-
ure 10.3 schema allows the fact table rows to be grouped
by Ship Date, Month, Quarter, or Year. These dimension
levels form a hierarchy. There is also a second hierarchy
in the Ship Calendar dimension that allows the user to
group fact table rows by the day of the week. The user
can move up or down a hierarchy when exploring the data.
Moving down a hierarchy to examine more detailed data is
a drill-down operation. Moving up a hierarchy to summa-
rize details is a roll-up operation.

Together, the dimension attributes compose a candidate
key of the fact table. The level of detail defined by the dimen-
sion attributes is the granularity of the fact table. When
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designing a fact table, the granularity should be the most
detailed level available that any user will wish to exam-
ine. This requirement sometimes means that a degenerate
dimension, such as JobId in Figure 10.3, must be included.
The JobId in this star schema is not used to select or group
rows, so there is no related dimension table. The purpose
of the JobId attribute is to distinguish rows at the correct
level of granularity.Without the JobId attribute, the fact table
would group together similar jobs, prohibiting the user
from examining the cost and sell values of individual jobs.

Normalization is not the guiding principle in data ware-
house design. The purpose of data warehousing is to provide
quick answers to queries against a large set of historical data.
Star schema organization facilitates quick response to queries
in the context of the data warehouse. The core detailed data
is centralized in the fact table. Dimensional information and
hierarchies are kept in dimension tables, a single join away
from the fact table. The hierarchical levels of data contained
in the dimension tables of Figure 10.3 violate 3NF, but these
violations to the principles of normalization are justified.
The normalization process would break each dimension table
in Figure 10.3 into multiple tables. The resulting normalized
schema would require more join processing for most queries.
The dimension tables are small in comparison to the fact
table, and typically slow changing. The bulk of operations
in the data warehouse are read operations. The benefits of
normalization are low when most operations are read only.
The benefits of minimizing join operations overwhelm the
benefits of normalization in the context of data warehousing.
Themarked differences between the datawarehouse environ-
ment and the operational systemenvironment lead to distinct
design approaches. Dimensional modeling is the guiding
principle in data warehouse design.

Snowflake Schema

The data warehouse literature often refers to a variation of
the star schema knownas the snowflake schema. Normalizing
the dimension tables in a star schema leads to a snowflake
schema. Figure 10.4 shows the snowflake schema analogous
to the star schema of Figure 10.3. Notice that each hierar-
chical level becomes its own table. The snowflake schema is
generally losing favor. Kimball and Ross strongly prefer the
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star schema due to the speed and simplicity. Not only does
the star schema yield quicker query response, it is also easier
for the user to understandwhen building queries. We include
Select a Business Process

Determine Granularity

Choose Dimensions

Identify Measures

Figure 10.5 Four-step
dimensional design process
in Kimball and Ross (2002).
the snowflake schema here for completeness.

Dimensional Design Process

We adhere to the four-step dimensional
design process promoted by Kimball and
Ross. Figure 10.5 outlines the activities in
the four-step process.

Dimensional Modeling Example

Congratulations, you are now the owner
of the ACME Data Mart Company! Your
company builds data warehouses. You con-
sult with other companies, design and de-
ploy data warehouses to meet their needs,
and support them in their efforts.

Your first customer is XYZ Widget, Inc.
XYZ Widget is a manufacturing company
with information systems in place. These
are operational systems that track the cur-
rent and recent state of the various business
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processes. Older records that are no longer needed for
operating the plant are purged. This keeps the operational
systems running efficiently.

XYZ Widget is now ten years old, and growing fast. The
management realizes that information is valuable. The CIO
has been saving data before it is purged from the operational
system. There are tens of millions of historical records, but
there is no easy way to access the data in a meaningful way.
ACME Data Mart has been called in to design and build a
DSS to access the historical data.

Discussions with XYZ Widget commence. There are
many questions they want answered by analyzing the
historical data. You begin by making a list of what XYZ
wants to know.

XYZ Widget Company Wish List

1. What are the trends of our various products in terms of
sales dollars, unit volume, and profit margin?

2. For those products that are not profitable, can we
drill down and determine why the product is not
profitable?

3. How accurately do our estimated costs match our
actual costs?

4. When we change our estimating calculations, how are
sales and profitability affected?

5. What are the trends in the percentage of jobs that ship
on time?

6. What are the trends in productivity by department, for
each machine, and for each employee?

7. What are the trends in meeting the scheduled dates for
each department, and for each machine?

8. How effective was the upgrade on machine 123?
9. Which customers bring the most profitable jobs?

10. How do our promotional bulk discounts affect sales
and profitability?
Looking over the wish list, you begin picking out the

business processes involved. The following business pro-
cesses list is sufficient to satisfy the items on the wish list.

Business Processes

1. Estimating
2. Scheduling
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3. Productivity tracking
4. Job costing

These four business processes are interlinked in the XYZ
Widget company. Let’s briefly walk through the business
processes and the organization of information in the oper-
ational systems, so we have an idea of what information is
available for analysis. For each business process, we’ll
design a star schema for storing the data.

Estimating Process

The estimating process begins by entering widget
specifications. The type of widget determines which machi-
nes are used to manufacture the widget. The estimating
software then calculates estimated time on each machine
used to produce that particular type of widget. Each
machine ismodeledwith a standard setup time and running
speed. If a particular type of widget is difficult to process on
a particular machine, the times are adjusted accordingly.
Each machine has an hourly rate. The estimated time is
multiplied by the rate to give labor cost. Each estimate stores
widget specifications, a breakdown of the manufacturing
costs, the markup and discount applied (if any), and the
price. The quote is sent to the customer. If the customer
accepts the quote, then the quote is associated with a job
number, the specifications are printed as a job ticket, and
the job ticket moves to scheduling.

We need to determine the granularity before designing a
schema for the estimating data warehouse. The granularity
should be at the most detailed level, giving the greatest
flexibility for drill-down operations when users are explor-
ing the data. The most granular level in the estimating pro-
cess is the estimating detail. Each estimating detail record
specifies information for an individual cost center for a
given estimate. This is the finest granularity of estimating
data in the operational system, and this level of detail is
also potentially valuable for the data warehouse users.

The next design step is to determine the dimensions.
Looking at the estimating detail, we see that the associated
attributes are the job specifications, the estimate number
and date, the job number and win date if the estimate
becomes a job, the customer, the promotion, the cost center,
the widget quantity, estimated hours, hourly rate, estimated
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cost, markup, discount, and price. Dimensions are those
attributes that the users want to group by when exploring
the data. The users are interested in grouping by the various
job specifications and by the cost center. The users also need
to be able to group by date ranges. The estimate date and the
win date are both of interest. Grouping by customer and
promotion are also of interest to the users. These become
the dimensions of the star schema for the estimating process.

Next, we identify themeasures. Measures are the columns
that contain values to be aggregated when rows are grouped
together. The measures in the estimating process are esti-
mated hours, hourly rate, estimated cost, markup, discount,
and price.

The star schema resulting from the analysis of the esti-
mating process is shown in Figure 10.6. There are five widget
qualities of interest: shape, color, texture, density, and size.
For example, a given widget might be a medium, round, red,
fuzzy, fluffy widget. The estimate and job numbers are inclu-
ded as degenerate dimensions. The rest of the dimensions
andmeasures are as outlined in the previous two paragraphs.

Dimension values are categorical in nature. For example,
a given widget might have a density of fluffy or heavy. The
«fk» shape id

Estimating Detail Color

Density

Estimate Date

Customer

Cost Center

widget quantity
estimated hours
hourly rate
estimated cost
markup
discount
price

color id«fk»
texture id«fk»
density id«fk»
size id«fk»
estimate date id«fk»

win date id«fk»

customer id«fk»
promotion id«fk»
cost center id«fk»

estimate number«dd»

job number«dd»
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values for the size dimension include small, medium, and
large. Measures tend to be numeric, since they are typically
aggregated using functions such as sum or average.

The dimension tables should include any hierarchies
that may be useful for analysis. For example, widgets are
offered in many colors. The colors fall into categories by
hue (e.g., pink, blue) and intensity (e.g., pastel, hot). Some
even glow in the dark! The user may wish to examine all
the pastel widgets as a group, or compare pink versus blue
widgets. Including these attributes in the dimension table
as shown in Figure 10.7 can accommodate this need.

Dates can also form hierarchies. For example, the user
may wish to group by month, quarter, year, or the day of
the week. Date dimensions are very common. The esti-
mating process has two date dimensions: the estimate date
and the win date. Typically, the date dimensions have anal-
ogous attributes. There is an advantage in standardizing
the date dimensions across the company. Kimball and Ross
(2002) recommend establishing a single standard date
dimension, and then creating views of the date dimension
for use in multiple dimensions. The use of views provides
for standardization, while at the same time allowing the
attributes to be named with aliases for intuitive use when
multiple date dimensions are present. Figure 10.8 illus-
trates this concept with a date dimension and two views
named Estimate Date and Win Date.

Scheduling Process

Let’s move on to the scheduling process. Scheduling
uses the times calculated by the estimating process to plan
the workload on each required machine. Target dates are
assigned to each manufacturing step. The job ticket moves
into production after the scheduling process completes.
Date

date id«pk» «pk»estimate date id
date description
month
quarter
year
day of week

estimate date description
estimate month
estimate quarter
estimate year
estimate day of week

win date description
win month
win quarter
win year
win day of week

«pk» win date id

Win DateEstimate Date

Figure 10.8 Date
dimensions showing
attributes.
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XYZ Widget, Inc. has a shop floor automatic data collec-
tion (ADC) system. Each job ticket has a bar code for the
assigned job number. Each machine has a sheet with bar
codes representing the various operations of that machine.
Each employee has a badge with a bar code representing
that employee. When an employee starts an operation,
the job bar code is scanned, the operation bar code is
scanned, and the employee bar code is scanned. The com-
puter pulls in the current system time as the start time.
When one operation starts, the previous operation for that
employee is automatically stopped (an employee is unable
do more than one operation at once). When the work on
the widget job is complete on that machine, the employee
marks the job complete via the ADC system. The infor-
mation gathered through the ADC system is used to update
scheduling, track the employee’s work hours and pro-
ductivity, and also track the machine’s productivity.

The design of a star schema for the scheduling process
begins by determining the granularity. The most detailed
scheduling table in the operational system has a record
for each cost center applicable to manufacturing each
job. The users in the scheduling department are interested
in drilling down to this level of detail in the data ware-
house. The proper level of granularity in the star schema
for scheduling is determined by the job number and the
cost center.

Next we determine the dimensions in the star schema
for the scheduling process. The operational scheduling
system tracks the scheduled start and finish dates and
times, as well as the actual start and finish dates and
times. The estimated and actual hours are also stored
in the operational scheduling details table, along with a
flag indicating whether the operation completed on time.
The scheduling team must have the ability to group
records by the scheduled and actual start and finish times.
Also critical is the ability to group by cost center. The
dimensions of the star schema for scheduling are the
scheduled and actual start and finish dates and times,
and the cost center. The job number must also be included
as a degenerate dimension to maintain the proper granu-
larity in the fact table. Figure 10.9 reflects the decisions
on the dimensions appropriate for the scheduling process.



Scheduling DetailCost Center

Sched Start Date

Sched Start Time

Sched Finish Date

Sched Finish Time

Actual Start Date

Actual Start Time

finished on time
estimated hours
actual hours

Actual Finish Date

Actual Finish Time

cost center id«fk»
sched start date id«fk»
sched start time id«fk»
sched finish date id«fk»
sched finish time id«fk»
actual start date id«fk»
actual start time id«fk»
actual finish date id«fk»
actual finish time id«fk»

job number«dd»

Figure 10.9 Star schema for
the scheduling process.
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The scheduling team is interested in aggregating the
estimated hours and, also, the actual hours. They are also
very interested in examining trends in on-time perfor-
mance. The appropriate measures for the scheduling star
schema include the estimated and actual hours and a flag
indicating whether the operation was finished on time.
The appropriate measures for scheduling are reflected in
Figure 10.9.

There are several standardization principles in play in
Figure 10.9. Note that there are multiple time dimensions.
These should be standardized with a single time dimension,
along with views filling the different roles, similar to the
approach used for the date dimensions. Also, notice the Cost
Center dimension is present both in the estimating and
the scheduling processes. These are actually the same, and
should be designed as a single dimension. Dimensions
can be shared betweenmultiple star schemas. One last point:
The estimated hours are carried from estimating into sched-
uling in the operational systems. These numbers feed into
the star schemas for both the estimating and the scheduling
processes. The meaning is the same between the two
attributes; therefore, they are both named “estimated hours.”
The rule of thumb is that if two attributes carry the same
meaning, they should be named the same, and if two
attributes are named the same, they carry the samemeaning.
This consistency allows discussion and comparison of infor-
mation between business processes across the company.
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Employee

Figure 10.10 Star schema
for the productivity tracking
process.
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Productivity Tracking

The next process we examine is productivity tracking.
The granularity is determined by the level of detail available
in the ADC system. The detail includes the job number, cost
center, employee number, and the start and finish dates and
times. The department managers need to be able to group
rows by cost center, employee, and start and finish dates
and times. These attributes therefore become the dimensions
of the star schema for the productivity process, shown in
Figure 10.10. The managers are interested in aggregating
productivity numbers, including the widget quantity pro-
duced, the percentage finished on time, and the estimated
and actual hours. Since these attributes are to be aggregated,
they become the measures shown in Figure 10.10.

There are often dimensions in common between star
schemas in a data warehouse, because business processes
are usually interlinked. A useful tool for tracking the com-
monality and differences of dimensions across multiple
business processes is the data warehouse bus (Kimball
and Ross, 2002). Table 10.2 shows a data warehouse bus
for the four business processes in our dimensional design
example. Each row represents a business process. Each
column represents a dimension. Each x in the body of
the table represents the use of the given dimension in the
given business process. The data warehouse bus is a handy
means of presenting the organization of a data warehouse
at a high level. The dimensions common between multiple
business processes need to be standardized or “conformed”
in Kimball and Ross’ terminology. A dimension is
Actual Start Date

Actual Start Time

Actual Finish Date

Actual Finish Time

Productivity Detail

job number«dd»
cost center id«fk»
employee id«fk»
actual start date id«fk»
actual start time id«fk»
actual finish date id«fk»
actual finish time id«fk»

estimated hours

widget quantity
finished on time

actual hours
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conformed if there exists a most detailed version of that
dimension, and all other uses of that dimension utilize a
subset of the attributes and a subset of the rows from that
most detailed version. Conforming dimensions ensures
that whenever data is related or compared across business
processes, the result is meaningful.

Job Costing

The data warehouse bus also makes some design dec-
isions more obvious. We have taken the liberty of choosing
the dimensions for the job costing process. Table 10.2
includes a row for the job costing process. When you
compare the rows for estimating and job costing, it quickly
becomes clear that the two processes share most of the
same dimensions. It probably makes sense to combine
these two processes into one star schema. This is especially
true since job costing analysis requires comparing esti-
mated and actual values. Figure 10.11 is the result of
combining the estimating and job costing processes into
one star schema.



Shape

Texture

Size

Win Date

Promotion

Invoice Date

Figure 10.11 Star schema
for the job costing process.
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Summarizing Data

The star schemas we have covered so far are excellent
for capturing the pertinent details. Having fine granularity
available in the fact table allows the users to examine data
down to that level of granularity. However, the users will
often want summaries. For example, the managers may
often query for a daily snapshot of the job costing data.
Every query the user may wish to pose against a given star
schema can be answered from the detailed fact table. The
summary could be aggregated on-the-fly from the fact table.
There is an obvious drawback to this strategy. The fact table
containsmanymillions of rows, due to the detailed nature of
the data. Producing a summary on-the-fly can be expensive
in terms of computer resources, resulting in a very slow
response. If a summary table were available to answer the
queries for the job costing daily snapshot, then the answer
could be presented to the user blazingly fast. The schema
for the job costing daily snapshot is shown in Figure 10.12.
Job Costing Detail Color

Density

Estimate Date

Customer

Cost Center

widget quantity
estimated hours
hourly rate
estimated cost
markup
discount
price
actual hours
actual cost

shape id«fk»

color id«fk»
texture id«fk»
density id«fk»

size id«fk»

estimate date id«fk»

win date id«fk»

customer id«fk»

promotion id«fk»

cost center id«fk»

invoice date id«fk»

estimate number«dd»

job number«dd»



Invoice Date

Job Costing Daily Snapshot

widget quantity
estimated hours
estimated cost
price
actual hours
actual cost

invoice date id«fk»
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Notice that most of the dimensions used
in the job costing detail are not used
in the snapshot. Summarizing the data
has eliminated the need for most
dimensions in this context. The daily
snapshot contains one row for each day
that jobs have been invoiced. The num-
ber of rows in the snapshot would be in
Figure 10.12 Schema for
the job costing daily
snapshot.
the thousands. The small size of the snapshot allows for a
very quick response when a user requests the job costing
daily snapshot. When there are a small number of summary
queries that occur frequently, it is a good strategy to materi-
alize the summary data needed to answer the queries
quickly.

The daily snapshot schema in Figure 10.12 also allows
the user to group by month, quarter, or year. Materializing
summary data is useful for quick response to any query
that can be answered by aggregating the data further.
Online Analytical Processing
Designing and implementing strategic summary tables

is a good approach when there is a small set of frequent
queries for summary data. However, there may be a need
for some users to explore the data in an ad hoc fashion.
For example, a user who is looking for types of jobs that
have not been profitable needs to be able to roll up and
drill down various dimensions of the data. The ad hoc
nature of the process makes predicting the queries impos-
sible. Designing a strategic set of summary tables to
answer these ad hoc explorations of the data is a daunting
task. OLAP provides an alternative.

OLAP is a service that overlays the data warehouse. The
OLAP system automatically selects a strategic set of sum-
mary views, and saves the automatic summary tables
(ASTs) to disk as materialized views. The OLAP system also
maintains these views, keeping them in step with the fact
tables as new data arrives. When a user requests summary
data, the OLAP system figures out which AST can be used
for a quick response to the given query. OLAP systems are
a good solution when there is a need for ad hoc exploration



210 Chapter 10 BUSINESS INTELLIGENCE
of summary information based on large amounts of data
residing in a data warehouse.

OLAP systems automatically select, maintain, and use
the ASTs. Thus, an OLAP system effectively does some of
the design work automatically. This section covers some
of the issues that arise in building an OLAP engine, and
some of the possible solutions. If you use an OLAP system,
the vendor delivers the OLAP engine to you. The issues and
solutions discussed here are not items that you need to
resolve. Our goal here is to remove some of the mystery
about what an OLAP system is and how it works.
The Exponential Explosion of Views
Materialized views aggregated from a fact table can

be uniquely identified by the aggregation level for each
dimension. Given a hierarchy along a dimension, let 0 rep-
resent no aggregation, 1 represent the first level of aggrega-
tion, and so on. For example, if the Invoice Date dimension
has a hierarchy consisting of date id, month, quarter,
year, and “all” (i.e., complete aggregation), then date id is
level 0, month is level 1, quarter is level 2, year is level 3,
and “all” is level 4. If a dimension does not explicitly
have a hierarchy, then level 0 is no aggregation, and level
1 is “all.”

The scales so defined along each dimension define a
coordinate system for uniquely identifying each view in a
product graph. Figure 10.13 illustrates a product graph in
two dimensions. Product graphs are a generalization of
the hypercube lattice structure introduced by Harinarayan
et al. (1996), where dimensions may have associated
hierarchies. The top node, labeled (0, 0) in Figure 10.13,
represents the fact table. Each node represents a view
with aggregation levels as indicated by the coordinate.
The relationships descending the product graph indicate
aggregation relationships. The five shaded nodes indicate
that these views have been materialized. A view can be
aggregated from any materialized ancestor view. For exam-
ple, if a user issues a query for rows grouped by year and
state, that query would naturally be answered by the view
labeled (3, 2). View (3, 2) is not materialized, but the query
can be answered from the materialized view (2, 1) since
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(2, 1) is an ancestor of (3, 2). Quarters can be aggregated
into years, and cities can be aggregated into states.

The central issue challenging the design of OLAP sys-
tems is the exponential explosion of possible views as the
number of dimensions increases. The Calendar dimension
in Figure 10.13 has five levels of hierarchy, and the Cus-
tomer dimension has four levels of hierarchy. The user
may choose any level of aggregation along each dimen-
sion. The number of possible views is the product of the
number of hierarchical levels along each dimension. The
number of possible views for the example in Figure 10.13
is 5 � 4 ¼ 20. Let d be the number of dimensions in a data
warehouse. Let hi be the number of hierarchical levels in
dimension i. The general equation for calculating the num-
ber of possible views is given by Eq. 10.1:

Possible views ¼ Phi

d

i¼1
(10.1)

If we express Eq. 10.1 in different terms, the problem of
exponential explosion becomes more apparent. Let g be
the geometric mean of the number of hierarchical levels
in the dimensions. Then Eq. 10.1 becomes Eq. 10.2:

Possible views ¼ gd (10.2)
(1, 0)

(0, 0)

Fact Table Customer Dimension
(second ordinate)

Calendar Dimension
(first ordinate)

0: cust id0: date id
1: city1: month

2: quarter
3: year
4: all

2: state
3: all

(0, 1)

(0, 2)

(0, 3)

(1, 3)

(1, 2)

(1, 1)(2, 0)

(3, 0)

(4, 0) (3, 1)

(4, 1)

(4, 2) (3, 3)

(4, 3)

(3, 2) (2, 3)

(2, 2)

(2, 1)

Figure 10.13 Product graph
labeled with aggregation
level coordinates.
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Figure 10.14 A plan for
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As dimensionality increases linearly, the number of pos-
sible views explodes exponentially. If g ¼ 5 and d ¼ 5, there
are 55 ¼ 3125 possible views. Thus, if d ¼ 10, then there are
510 ¼ 9,765,625 possible views. OLAP administrators need
the freedom to scale up the dimensionality of their data
warehouses. Clearly, the OLAP system cannot create and
maintain all possible views as dimensionality increases.
The design of OLAP systems must deliver quick response
while maintaining a system within the resource limitations.
Typically, a strategic subset of views must be selected for
materialization.

Overview of OLAP
There are many approaches to implementing OLAP

systems presented in the literature. Figure 10.14 maps out
one possible approach, which will serve for discussion.
The larger problem of OLAP optimization is broken into
four subproblems: view size estimation, materialized view
selection, materialized view maintenance, and query opti-
mization with materialized views. This division is generally
true of the OLAP literature, and is reflected in the OLAP
system plan shown in Figure 10.14.
cremental Data

Queries

Quick Responses

Sample Data View Size Estimation

View Selection

Estimate Request
Estimated View

Size

View Costs Strategically Selected
Views

View Usage
Current Views

View Maintenance

Query Optimization
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We describe how the OLAP processes interact in Figure
10.14, and then explore each process in greater detail. The
plan for OLAPoptimization shows Sample Datamoving from
the Fact Table into View Size Estimation. View Selection
makes an Estimate Request for the view size of each view it
considers for materialization. View Size Estimation queries
the Sample Data, examines it, and models the distribu-
tion. The distribution observed in the sample is used to
estimate the expected number of rows in the view for the full
dataset. The Estimated View Size is passed to View Selection,
which uses the estimates to evaluate the relative benefits of
materializing the various views under consideration. View
Selection picks Strategically Selected Views for materialization
with the goal of minimizing total query costs. View Mainte-
nance builds the original views from the Initial Data from
the Fact Table, and maintains the views as Incremental Data
arrives from Updates. View Maintenance sends statistics on
View Costs back to View Selection, allowing costly views to
be discarded dynamically. View Maintenance offers Current
Views for use by Query Optimization. Query Optimization
must consider which of the Current Views can be utilized to
most efficiently answer Queries from Users, giving Quick
Responses to theUsers. ViewUsage feeds back intoView Selec-
tion, allowing the system to dynamically adapt to changes in
query workloads.
View Size Estimation
OLAP systems selectively materialize strategic views

with high benefits in order to achieve quick response to
queries, while remaining within the resource limits of the
computer system. The size of a view affects how much disk
space is required to store the view. More importantly, the
size of the view determines in part how much disk input/
output will be consumed when querying and maintaining
the view. Calculating the exact size of a given view requires
calculating the view from the base data. Reading the base
data and calculating the view is the majority of the work
necessary to materialize the view. Since the objective of
view materialization is to conserve resources, it becomes
necessary to estimate the size of the views under consider-
ation for materialization.
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Cardenas’ formula (1975) is a simple equation (Eq. 10.3)
that is applicable to estimating the number of rows in
a view:

Expected distinct values ¼ v
�
1� ð1� 1=vÞn

�
(10.3)

where n is the number of rows in the fact table, and v is the
number of possible keys in the data space of the view.

Cardenas’ formula assumes a uniform data distribution.
However, many data distributions exist. The data distribu-
tion in the fact table affects the number of rows in a view.
Cardenas’ formula is very quick, but the assumption of a
uniform data distribution leads to gross overestimates of
the view size when the data is actually clustered. Other
methods have been developed to model the effect of data
distribution on the number of rows in a view.

Faloutsos et al. (1996) present a sampling approach
based on the binomial multifractal distribution. Parameters
of the distribution are estimated from a sample. The num-
ber of rows in the aggregated view for the full dataset is then
estimated using the parameter values determined from
the sample. Eqs. 10.4 and 10.5 are presented from their
paper for this purpose:

Expected distinct values ¼
Xk
a¼0

Ck
a

�
1� ð1� PaÞn

�
(10.4)

Pa ¼ Pk�að1� PÞa (10.5)

Figure 10.15 illustrates an example. Order k is the decision
tree depth. Ck

a is the number of bins in the set reachable
by taking some combination of a left edges and k � a
right edges in the decision tree. Pa is the probability of
reaching a given bin of which the path contains a left
edges, and n is the number of rows in the dataset. Bias P
is the probability of selecting the right edge at a choice
point in the tree.

The calculations of Eq. 10.4 are illustrated with a small
example. An actual database would yield much larger
numbers, but the concepts and the equations are the same.
These calculations can be done with logarithms, resulting
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Figure 10.15 Example of a
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distribution tree.
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in very good scalability. Based on Figure 10.15, given five
rows, calculate the expected distinct values using Eq. 10.4:

Expected distinct values ¼
1�

�
1� ð1� 0:729Þ5

�
þ 3�

�
1� ð1� 0:081Þ5

�

þ3�
�
1� ð1� 0:009Þ5

�
þ 1�

�
1� ð1� 0:0001Þ5

�
� 1:965

(10.6)

The values of P and k can be estimated based on sample
data. The algorithm used in Faloutsos et al. (1996) has
three inputs: the number of rows in the sample, the fre-
quency of the most commonly occurring value, and the
number of distinct aggregate rows in the sample. The value
of P is calculated based on the frequency of the most com-
monly occurring value. They begin with

k ¼ d log2ðdistinct rows in sampleÞe (10.7)

and then adjust k upwards, recalculating P until a good fit
to the number of distinct rows in the sample is found.

Other distribution models can be utilized to predict the
size of a view based on sample data. For example, the use
of the Pareto distribution model has been explored in
Nadeau and Teorey (2003). Another possibility is to find
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Figure 10.16 Example
hypercube lattice structure.
From Harinarayan et al. (1996).
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the best fit to the sample data for multiple distribution
models, calculate which model is most likely to produce
the given sample data, and then use that model to predict
the number of rows for the full dataset. This would require
calculation for each distribution model considered, but
should generally result in more accurate estimates.
Selection of Materialized Views
Most of the published works in the problem of material-

ized view selection are based on the hypercube lattice
structure of Harinarayan et al. (1996). The hypercube lattice
structure is a special case of the product graph structure,
where the number of hierarchical levels for each dimension
is two. Each dimension can either be included or excluded
from a given view. Thus, the nodes in a hypercube lattice
structure represent the power set of the dimensions.

Figure 10.16 illustrates the hypercube lattice structure
with an example from Harinarayan et al. (1996). Each node
of the lattice structure represents a possible view. Each node
is labeled with the set of dimensions in the “group by” list
for that view. The numbers associated with the nodes repre-
sent the number of rows in the view. These numbers are
normally derived from a view size estimation algorithm, as
discussed previously. However, the numbers in Figure 10.16
follow this same example. The relationships between nodes
indicate which views can be aggregated from other views. A
c = Customer
p = Part
s = Supplier

{c} 0.1M

{c, p} 6M
given view can be calculated from any
materialized ancestor view.

We refer to the algorithm for sele-
cting materialized views introduced
by Harinarayan et al. (1996) as HRU.
The initial state for HRU has only the
fact table materialized. HRU calculates
the benefit of each possible view
during each iteration, and selects the
most beneficial view for materializa-
tion. Processing continues until a pre-
determined number of materialized
views is reached.

Table10.3 shows thecalculations for the
first two iterations of HRU. Materializing



Table 10.3 Two Iterations of HRU,
Based on Figure 10.16

Iteration 1 Benefit Iteration 2 Benefit

{p, s} 5.2M � 4 ¼ 20.8M

{c, s} 0 � 4 ¼ 0 0 � 2 ¼ 0

{c, p} 0 � 4 ¼ 0 0 � 2 ¼ 0

{s} 5.99M � 2 ¼ 11.98M 0.79M � 2 ¼ 1.58M

{p} 5.8M � 2 ¼ 11.6M 0.6M � 2 ¼ 1.2M

{c} 5.9M � 2 ¼ 11.8M 5.9M � 2 ¼ 11.8M

{} 6M � 1 0.8M � 1
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{p, s} saves 6M� 0.8M¼ 5.2M rows for each of four views: {p, s}
and its threedescendants: {p}, {s}, and {}. Theview {c, s} yieldsno
benefit ifmaterialized, since anyquery that canbe answeredby
reading 6Mrows from{c, s} canalsobe answeredby reading6M
rows from the fact table {c, p, s}. HRUcalculates the benefits of
eachpossible viewmaterialization.Theview {p, s} is selected for
materialization in the first iteration. The view {c} is selected in
the second iteration.

HRU is a greedy algorithm that does not guarantee an
optimal solution, although testing has shown that it usually
produces a good solution. Further research has built upon
HRU, accounting for the presence of index structures,
update costs, and query frequencies.

HRU evaluates every unselected node during each itera-
tion, and each evaluation considers the effect on every
descendant. The algorithm consumes O(kn2) time where
k¼ jviews to selectj and n¼ jnodesj. This order of complexity
looks very good; it is polynomial time. However, the result is
misleading. The nodes of the hypercube lattice structure
constitute a power set. The number of possible views is there-
fore 2d where d ¼ jdimensionsj. Thus, n ¼ 2d, and the time
complexity of HRU is O(k22d). HRU runs in time exponen-
tially relative to the number of dimensions in the database.

The Polynomial Greedy Algorithm (PGA) of Nadeau and
Teorey (2002) offers a more scalable alternative to HRU.
PGA, like HRU, also selects one view for materialization
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{p, s}

{s}

{}

Table 10.5

Candidates
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{s}

{c}
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with each iteration. However, PGA divides each iteration
into a nomination phase and a selection phase. The first
phase nominates promising views into a candidate set.
The second phase estimates the benefits of materializing
each candidate, and selects the view with the highest eval-
uation for materialization.

The nomination phase begins at the top of the lattice; in
Figure 10.16, this is the node {c, p, s}. PGA nominates the
smallest node from among the children. The candidate
set is now {{p, s}}. PGA then examines the children of
{p, s} and nominates the smallest child, {s}. The process
repeats until the bottom of the lattice is reached. The can-
didate set is then {{p, s}, {s}, {}}. Once a path of candidate
views has been nominated, the algorithm enters the selec-
tion phase. The resulting calculations are shown in
Tables 10.4 and 10.5.
4 First Iteration of PGA, Based on
Figure 10.16

Iteration 1 Benefit

5.2M � 4 ¼ 20.8M

5.99M � 2 ¼ 11.98M

6M � 1

Second Iteration of PGA, Based on
Figure 10.16

Iteration 2 Benefit

0 � 2 ¼ 0

0.79M � 2 ¼ 1.58M

5.9M � 2 ¼ 11.8M

6M � 1
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Compare Tables 10.4 and 10.5 with Table 10.3. Notice
PGA does fewer calculations than HRU, and yet in this
example reaches the same decisions as HRU. PGA usually
picks a set of views nearly as beneficial as those chosen
by HRU, and yet PGA is able to function when HRU fails
due to the exponential complexity. PGA is polynomial
relative to the number of dimensions. When HRU fails,
PGA extends the usefulness of the OLAP system.

The materialized view selection algorithms discussed so
far are static; that is, the views are picked once and then
materialized. An entirely different approach to the selec-
tion of materialized views is to treat the problem similar
to memory management as shown in Kotidis and
Roussopoulos (1999). The materialized views constitute a
view pool. Metadata is tracked on usage of the views. The
system monitors both space and update window con-
straints. The contents of the view pool are adjusted
dynamically. As queries are posed, views are added appro-
priately. Whenever a constraint is violated, the system
selects a view for eviction. Thus, the view pool can improve
as more usage statistics are gathered. This is a self-tuning
system that adjusts to changing query patterns.

The static and dynamic approaches complement each
other and should be integrated. Static approaches run fast
from the beginning, but do not adapt. Dynamic view
selection begins with an empty view pool, and therefore
yields slow response times when a data warehouse is first
loaded; however, it is adaptable and improves over time.
The complementary nature of these two approaches has
influenced our design plan in Figure 10.14, as indicated
by Queries feeding back into View Selection.
View Maintenance
Once a view is selected for materialization, it must be

computed and stored. When the base data is updated, the
aggregated view must also be updated to maintain consis-
tency between views. The original view materialization and
the incremental updates are both considered as view
maintenance in Figure 10.14. The efficiency of view main-
tenance is greatly affected by the data structures imple-
menting the view. OLAP systems are multidimensional,
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and fact tables contain large numbers of rows. The access
methods implementing the OLAP system must meet the
challenges of high dimensionality in combination with
large row counts. The physical structures used are deferred
to the companion book Physical Database Design by
Lightstone et al. (2007).

Most of the research papers in the area of view mainte-
nance assume that new data is periodically loaded with
incremental data during designated update windows. Typi-
cally, the OLAP system ismade unavailable to the users while
the incremental data is loaded in bulk, taking advantage of
the efficiencies of bulk operations. There is a downside to
deferring the loading of incremental data until the next
update window. If the data warehouse receives incremental
data once a day, then there is a one-day latency period.

There is currently a push in the industry to accommo-
date data updates close to real time, keeping the data
warehouse in step with the operational systems. This is
sometimes referred to as active warehousing and real-time
analytics. The need for data latency of only a few minutes
presents new problems. How can very large data structures
be maintained efficiently with a trickle feed? One solution
is to have a second set of data structures with the same
schema as the data warehouse. This second set of data
structures acts as a holding tank for incremental data,
and is referred to as a delta cube in OLAP terminology.
The operational systems feed into the delta cube, which
is small and efficient for quick incremental changes. The
data cube is updated periodically from the delta cube, tak-
ing advantage of bulk operation efficiencies. When the user
queries the OLAP system, the query can be issued against
both the data cube and the delta cube to obtain an up-
to-date result. The delta cube is hidden from the user.
What the user sees is an OLAP system that is nearly current
with the operational systems.
Query Optimization
When a query is posed to an OLAP system, there may be

multiple materialized views available that could be used to
compute the result. For example, if we have the situation
represented in Figure 10.13, and a user issues a query to
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group rows by month and state, that query is naturally
answered from the view labeled (1, 2). However, since (1,
2) is not materialized, we need to find a materialized
ancestor to obtain the data. There are three such nodes
in the product graph of Figure 10.13. The query can be
answered from either node (0, 0), (1, 0), or (0, 2). With
the possibility of answering queries from alternative
sources, the optimization issue arises as to which source
is the most efficient for the given query. Most existing
research focuses on syntactic approaches. The possible
query translations are carried out, alternative query costs
are estimated, and what appears to be the best plan is
executed. Another approach is to query a metadata table
containing information on the materialized views to deter-
mine the best view to query against, and then translate the
original SQL query to use the best view.

Database systems containmetadata tables that hold data
about the tables and other structures used by the system.
The metadata tables facilitate the system in its operations.
Here is an example where a metadata table can facilitate
the process of finding the best view to answer a query in an
OLAP system. The coordinate system defined by the aggre-
gation levels forms the basis for organizing the metadata
for tracking the materialized views. Table 10.6 displays the
metadata for the materialized views shaded in Figure 10.13.
The two dimensions labeled Calendar and Customer form
the composite key. The Blocks column tracks the actual
Table 10.6 Example of Materialized View
Metadata

Dimensions Blocks ViewID
Calendar Customer

0 0 10,000,000 1

0 2 50,000 3

0 3 1000 5

1 0 300,000 2

2 1 10,000 4
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number of blocks in each materialized view. The ViewID
column is used to identify the associated materialized view.
The implementation stores materialized views as tables
where the ViewID formspart of the table name. For example,
the row with ViewID ¼ 3 contains information on the
aggregated view that is materialized as table AST3 (short
for automatic summary table 3).

Observe the general pattern in the coordinates of the
views in the product graph with regard to ancestor
relationships. Let Value(V, d) represent a function that
returns the aggregation level for view V along dimension
d. For any two views Vi and Vj, Vi 6¼ Vj, Vi is an ancestor
of Vj if and only if for every dimension d of the composite
key, Value(Vi, d) � Value(Vj, d). This pattern in the keys can
be utilized to identify ancestors of a given view by querying
the metadata. The semantics of the product graph are
captured by the metadata, permitting the OLAP system to
search semantically for the best materialized ancestor view
by querying the metadata table. After the best materialized
view is determined, the OLAP system can rewrite the
original query to utilize the best materialized view, and
proceed.
Data Mining
Two general approaches are used to extract knowledge

from a database. First, a user may have a hypothesis to
verify or disprove. This type of analysis is done with stan-
dard database queries and statistical analysis. The second
approach to extracting knowledge is to have the computer
search for correlations in the data, and present promising
hypotheses to the user for consideration. The methods
included here are data mining techniques developed in
the fields of Machine Learning and Knowledge Discovery.

Data mining algorithms attempt to solve a number of
common problems. One general problem is categorization:
Given a set of cases with known values for some parameters,
classify the cases. For example, given observations of pati-
ents, suggest a diagnosis. Another general problem type is
clustering: Given a set of cases, find natural groupings of
the cases. Clustering is useful, for example, in identifying
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market segments. Association rules, also known as market
basket analysis, are another common problem. Businesses
sometimes want to know what items are frequently
purchased together. This knowledge is useful, for example,
when decisions are made about how to lay out a grocery
store. There are many types of data mining available. Han
and Kamber (2001) cover data mining in the context of
data warehouses and OLAP systems. Mitchell (1997) is a
rich resource, written from the machine learning perspec-
tive. Witten and Frank (2000) give a survey of data mining,
along with freeware written in Java available from the Weka
website (www.cs.waikato.ac.nz/ml/weka). TheWeka website
is a good option for those who wish to experiment with and
modify existing algorithms. The major database vendors
also offer data mining packages that function with their
databases.

Due to the large scope of data mining, we focus on two
forms of data mining: forecasting and text mining.
Forecasting
Forecasting is a form of data mining in which trends are

modeled over time using known data, and future trends
are predicted based on the model. There are many differ-
ent prediction models with varying levels of sophistication.
Perhaps the simplest model is the least squares line model.
The best-fit line is calculated from known data points
using the method of least squares. The line is projected
into the future to determine predictions. Figure 10.17 shows
a least squares line for an actual dataset. The crossed
(jagged) points represent actual known data. The circular
(dots) points represent the least squares line. When the
least squares line projects beyond the known points, this
region represents predictions. The intervals associated
with the predictions in our figures represent a 90% predic-
tion interval. That is, given an interval, there is a 90% prob-
ability that the actual value, when known, will lie in that
interval.

The least squares line approach weights each known
data point equally when building the model. The predicted
upward trend in Figure 10.17 does not give any special
consideration to the recent downturn.

http://www.cs.waikato.ac.nz/ml/weka


Figure 10.17 Least squares
line. Courtesy of Ubiquiti Inc.

224 Chapter 10 BUSINESS INTELLIGENCE
Exponential smoothing is an approach that weights
recent history more heavily than distant history. Double
exponential smoothing models two components: level
and trend (hence, “double” exponential smoothing). As
the known values change in level and trend, the model
adapts. Figure 10.18 shows the predictions made using
double exponential smoothing, based on the same dataset
used to compute Figure 10.17. Notice the prediction is now
more tightly bound to recent history.

Triple exponential smoothing models three components:
level, trend, and seasonality. This is more sophisticated
than double exponential smoothing, and gives better pre-
dictions when the data does indeed exhibit seasonal behav-
ior. Figure 10.19 shows the predictions made by triple



Figure 10.18 Double
exponential smoothing.
Courtesy of Ubiquiti Inc.
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exponential smoothing, based on the same data used to
compute Figures 10.17 and 10.18. Notice the prediction
intervals are tighter than in Figures 10.17 and 10.18. This is
a sign that the data varies seasonally; triple exponential
smoothing is a good model for the given type of data.

Exactly how reliable are these predictions? If we revisit
the predictions after time has passed and compare the pre-
dictionswith theactual values, are they accurate? Figure 10.20
shows the actual data overlaid with the predictions made in
Figure 10.19. Most of the actual data points do indeed lie
within the prediction intervals. The prediction intervals look
very reasonable. Why don’t we use these forecast models to
make our millions onWall Street? Take a look at Figure 10.21,
a cautionary tale. Figure 10.21 is also based on the triple



Figure 10.19 Triple
exponential smoothing.
Courtesy of Ubiquiti Inc.
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exponential smoothing model, using four years of known
data for training, compared with five years of data used in
constructing the model for Figure 10.20. The resulting pre-
dictions match for four months, and then diverge greatly
from reality. The problem is that forecast models are built
on known data, with the assumption that known data forms
a good basis for predicting the future. This may be true most
of the time; however, forecast models can be unreliable
when the market is changing or about to change drastically.
Forecasting can be a useful tool, but the predictions must be
taken only as indicators.

The details of the forecast models discussed here, as
well as many others, can be found in Makridakis et al.
(1998).



Figure 10.20 Triple
exponential smoothing with
actual values overlaying
forecast values, based on
five years of training data.
Courtesy of Ubiquiti Inc.
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Text Mining
Most of the work on data processing over the past few

decades has utilized structured data. The vast majority of
systems in use today read and store data in relational
databases. The schemas are organized neatly in rows and
columns. However, there are large amounts of data that
reside in free-form text. Descriptions of warranty claims
are written in text. Medical records are written in text. Text
is everywhere. Only recently has the work in text analysis
made significant headway. Companies are now marketing
products that focus on text analysis.

Let’s look at a few of the possibilities for analyzing text
and their potential impact. We’ll take the area of automo-
tive warranty claims as an example. When something goes



Figure 10.21 Triple
exponential smoothing with
actual values overlaying
forecast values, based on
four years of training data.
Courtesy of Ubiquiti Inc.
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wrong with your car, you bring it to an automotive shop for
repairs. You describe to a shop representative what you’ve
observed going wrong with your car. Your description is
typed into a computer. A mechanic works on your car,
and then types in observations about your car and the
actions taken to remedy the problem. This is valuable
information for the automotive companies and the parts
manufacturers. If the information can be analyzed, they
can catch problems early and build better cars. They can
reduce breakdowns, saving themselves money, and saving
their customers frustration.

The data typed into the computer is often entered in a
hurry. The language includes abbreviations, jargon, mis-
spelled words, and incorrect grammar. Figure 10.22 shows
an example entry from an actual warranty claim database.



7 DD40 BASC 54566 CK OUT AC INOP PREFORM PID CK CK PCM
PID ACC CK OK OPERATING ON AND OFF PREFORM POWER AND
GRONED CK AT COMPRESOR FONED NO GRONED PREFORM
PINPONT DIAG AND TRACE GRONED FONED BAD CO NECTION
AT S778 REPAIR AND RETEST OK CK AC OPERATION

Figure 10.22 Example
verbatim description in
warranty claim. Courtesy of

Ubiquiti Inc.

7 DD40 Basic 54566 Check Out Air Conditioning Inoperable Perform PID
Check Check Power Control  Module PID Accessory Check OK Operating
On And Off Perform Power And Ground Check At Compressor Found No
Ground Perform Pinpoint Diagnosis And Trace Ground Found Bad
Connection At Splice 778 Repair And Retest OK Check Air Conditioning
Operation

Figure 10.23 Cleaned-up
version of description in
warranty claim. Courtesy of

Ubiquiti Inc.
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As you can see, the raw infor-
mation entered on the shop floor
is barely English. Figure 10.23
shows a cleaned-up version of
the same text.

Even the cleaned-up version
is difficult to read. The com-
panies paying out warranty
claims want each claim cate-
gorized in various ways, to track
what problems are occurring.
One option is to hire many peo-
ple to read the claims and deter-
mine how each claim should be
categorized. Categorizing the
claims manually is tedious
work. A more viable option,
developed in the last few years,
is to apply a software solution.
Automated Coding

Primary Group: Electrical
Subgroup: Climate Control
Part: Connector 1008
Problem: Bad Connection
Repair: Reconnect
Location: Engin. Cmprt.

Confidence

90%
85%
93%
72%
75%
90%

Figure 10.24 Useful
information extracted from
verbatim description in
warranty claim. Courtesy of

Ubiquiti Inc.
Figure 10.24 shows some of the information
that can be gleaned automatically from the
text in Figure 10.22.

The software processes the text, determin-
ing the concepts likely represented in the text.
This is not a simple word search. Synonyms
map to the same concept. Some words map
to different concepts depending on the con-
text. The software uses an ontology that relates
words and concepts to each other. After each
warranty is categorized in various ways, it
becomes possible to obtain useful aggregate
information, as shown in Figure 10.25.
Summary
Data warehousing, OLAP, and data mining are three

areas of computer science that are tightly interlinked and
marketed under the heading of business intelligence. The
functionalities of these three areas complement each other.
Data warehousing provides an infrastructure for storing
and accessing large amounts of data in an efficient and
user-friendly manner. Dimensional data modeling is the
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Figure 10.25 Aggregate
data from warranty claims.
Courtesy of Ubiquiti Inc.
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approach best suited for designing data warehouses. OLAP
is a service that overlays the data warehouse. The purpose
of OLAP is to provide quick response to ad hoc queries,
typically involving grouping rows and aggregating values.
Roll-up and drill-down operations are typical. OLAP sys-
tems automatically perform some design tasks, such as
selecting which views to materialize in order to provide
quick response times. OLAP is a good tool for exploring
the data in a human-driven fashion, when a person has a
clear question in mind. Data mining is usually computer-
driven, involving analysis of the data to create likely
hypotheses that may be of interest to users. Data mining
can bring to the forefront valuable and interesting structure
in the data that would otherwise have gone unnoticed.
Tips and Insights for Database
Professionals

Tip 1. To construct a data warehouse for a major
application, use the four-step star schema dimen-
sional data modeling (design) process by Kimball
and Ross (2002): (1) select the business processes
involved in satisfying a company’s data warehouse
information requirements; (2) for each business pro-
cess, determine the granularity needed for drill-down
operations; (3) determine the dimensions needed
(attributes the users want to group by); and (4) identify
the measures, or columns, to be aggregated when rows
are grouped together.
Tip 2. When designing a fact table for a star schema,
make the level of granularity the same as the most
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detailed level available that any user would want to
examine.
Tip 3. Normalization is not required for the fact table
in a star schema. You want quick answers to queries,
thus a single join away from the fact table to answer a
query is highly desirable. To accomplish this, data is
best stored in dimensional tables and hierarchies.
Tip 4. When designing for multiple business pro-
cesses, use a data warehouse bus to present at a high
level the organization of the dimensions across
the business processes. Conform dimensions that are
common across multiple business processes, thereby
promoting consistent usage of terms and more mean-
ingful discussions across business units.
Tip 5. If two business processes utilize mostly the
same dimensions, consider whether it makes sense
to implement the two into one star schema.
Tip 6. Use an OLAP system to store and maintain
automatic summary tables as materialized views of
commonly asked queries so future query response
times will be minimized.
Tip 7. Use data warehousing and OLAP systems to
obtain specific summary data from known detailed
data. Use data mining techniques and systems to collect
statistical data to support or disprove hypotheses
(knowledge) about the data.
Literature Summary
The evolution and principles of data warehouses can be

found in Barquin and Edelstein (1997), Cataldo (1997),
Chaudhuri and Dayal (1997), Gray and Watson (1998),
Kimball and Ross (1998, 2002), and Kimball and Caserta
(2004). OLAP is discussed in Barquin and Edelstein (1997),
Faloutsos, Matia, and Silberschatz (1996), Harinarayan,
Rajaraman, and Ullman (1996), Kotidis and Roussopoulos
(1999), Nadeau and Teorey (2002, 2003), and Thomsen
(1997). Data mining principles and tools can be found in
Han and Kamber (2001), Makridakis, Wheelwright, and
Hyndman (1998), Mitchell (1997), The University of Waikato
(2005), and Witten and Frank (2000), among many others.
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Database design is just one part of the analysis and
design phase of creating effective business application
software (see Figure 11.1), but it is often the part that is
the most challenging and the most critical to perform.
In the previous chapters, we explored the classic ways of
creating efficient and effective database designs, including
ER modeling and the transformation of ER models into
constructs by transformation rules. We also examined nor-
malization, normal forms and denormalization, and spe-
cific topologies used in warehousing, such as star schema.
All this information may leave your head spinning!
233



Figure 11.1 Business system
life cycle. Courtesy of IBM Corp.
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This chapter focuses on commercially
available tools to simplify these design
processes. These computer-aided sys-
tem engineering, or CASE, tools provide
functions that assist in system design.
CASE tools are widely used in numerous
industries and domains, such as circuit
design, manufacturing, and architec-
ture. Logical database design is another
area where CASE tools have proven
effective. This chapter explores the
offerings of the major vendors in this
space: IBM, Computer Associates, and
Sybase. Each of these companies offers
powerful, feature-rich technology for
developing logical database designs
and transitioning them into physical
databases you can use.
Although it is impossible to present information on soft-
ware products without some subjectivity and comment,
we have sincerely attempted to discuss the capabilities of
these products with minimal product bias or critique. Also,
it is impossible to describe the features of these products
in great detail in a chapter of this sort (a user manual of
many hundred pages could be written describing each), so
we have set the bar slightly lower, with the aim of surveying
these products to give the reader a taste for the capabilities
they provide. Further details can be obtained from the
manufacturer’s websites, which are listed in the “Literature
Summary” section at the end of the chapter.
Introduction to the CASE Tools
In this chapter we will introduce some of the most popu-

lar and powerful products available for helping with logical
database design: IBM’s Rational Data Architect, Computer
Associates’ AllFusion ERwin Data Modeler, and Sybase’s
PowerDesigner. These CASE tools help the designer develop
a well-designed database by walking through a process of
conceptual design, logical design, and physical creation,
as shown in Figure 11.2.



Figure 11.2 Database
design process.
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Computer Associates’ AllFusion ERwin DataModeler has
been around the longest. A stand-alone product, AllFusion
ERwin’s strengths stem from relatively strong support of
physical database modeling, the broadest set of technology
partners, and third-party training. What it does it does well,
but in recent years it has lagged in some advanced features.
Sybase’s PowerDesigner has come on strong in the past few
years, challenging AllFusion ERwin. It has some advantages
in reporting, and advanced features that will be described
later in this chapter. IBM’s Rational Data Architect is a
newproduct that supplants IBM’s previous product Rational
Rose Data Modeler. Its strength lies in strong design check-
ing; rich integrationwith IBM’s broad software development
platform, including products from their Rational, Informa-
tion Management, and Tivoli divisions; and advanced
features that will be described below.

In previous chapters, we have discussed the aspects
of logical database design that CASE tools help design,
annotate, apply, and modify. These include, for example,
entity–relationship (ER) and Unified Modeling Language
(UML) modeling, and how this modeling can be used to
develop a logical database design. Within the ER design,
there are several types of entity definitions and relation-
ship modeling (unrelated, one-to-many, and many-to-many).
These relationships are combined and normalized into sch-
ema patterns known as normal forms (e.g., 3NF, snowflake
schema). An effective design requires the clear definition of
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keys, such as the primary key, the foreign key, and unique keys
within relationships. The addition of constraints to limit the
usage (and abuses) of the system within reasonable bounds
or business rules is also critical. The effective logical design
of the database will have a profound impact on the perfor-
mance of the system, as well as the ease with which the data-
base system can be maintained and extended.

There are several other CASE products that we will not
discuss in this book. A few additional products worth
investigating include Datanamic’s DeZign for Databases,
QDesigner by Quest Software, Visible Analyst by Standard,
and Embarcadero ER/Studio. The Visual Studio .NET Enter-
prise Architect edition includes a version of Visio with some
database design stencils that can be used to create ER
models. The cost and function of these tools varies wildly,
from open-source products up through enterprise software
that costs thousands of dollars per license.

The full development cycle includes an iterative cycle
of understanding business requirements; defining product
requirements; analysis and design; implementation; test
(component, integration, and system); deployment; admin-
istration and optimization; and change management. No
single product currently covers that entire scope. Instead,
product vendors provide, to varying degrees, suites of
products that focus on portions of that cycle. CASE tools
for database design largely focus on the analysis and design
portion, and to a lesser degree, the testing portion of this
iterative cycle.

CASE tools provide software that simplifies or automates
some of the steps described in Figure 11.2. Conceptual
design includes steps such as describing the business
entities and functional requirements of the database;
logical design includes definition of entity relationships
and normal forms; and physical database design helps
transform the logical design into actual database objects,
such as tables, indexes, and constraints. The software tools
provide significant value to database designers by:
1. Dramatically reducing the complexity of conceptual and

logical design, both of which can be rather difficult to
do well. This reduced complexity results in better data-
base design in less time and with less skill requirements
for the user.
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2. Automating transformation of the logical design to the
physical design (at least the basic physical design). This
not only reduces time and skill requirements for the
designer, but significantly removes the chance of man-
ual error in performing the conversion from the logical
model to the physical data definition language (DDL),
which the database server will “consume” (i.e., as input)
to create the physical database.

3. Providing the reporting, roundtrip engineering, and
reverse engineering that make such tools invaluable in
maintaining systems over a long period of time. System
design can and does evolve over time due to changing
and expanding business needs. Also, the people who
design the system (sometimes teams of people) may not
be the same as those charged with maintaining the
system. The complexity of large systems combined with
the need for continuous adaptability virtually necessitates
the use of CASE tools to help visualize, reverse engineer,
and track the system design over time.
You can find abroader list of available database design tools

at the website Database Answers (www.databaseanswers.com/
modelling_tools.htm), maintained by David Alex Lamb at
Queen’s University in Kingston, Canada.

Key Capabilities to Watch for
Design tools should be able to help you with both data

modeling and logical database design. Both processes are
important. A good distinction between these appears on
the Database Answers website.

For data modeling, the question you are asking is: What
does the world being modeled look like? In particular, you
are looking for similarities between things. Then you iden-
tify a “supertype” of a thing that may have subtypes—for
example, Corporate Customers and Personal Customers.
If, for example, supplier contacts are conceptually different
things from customer contacts, then the answer is that
they should be modeled separately. On the other hand, if
they are merely subsets of the same thing, then treat them
as the same thing.

For database design, you are answering a different
question: How can I efficiently design a database that will

http://www.databaseanswers.com/modelling_tools.htm
http://www.databaseanswers.com/modelling_tools.htm
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support the functions of a proposed application or
website? The key task here is to identify similarities
between entities so that you can integrate them into the
same table, usually with a “Type” indicator. For example,
a Customer table, which combines all attributes of both
Corporate Customers and Personal Customers. As a result,
it is possible to spend a great deal of time breaking things
out when creating a data model, and then collapsing them
back together when designing the corresponding database.

Support for programmable and physical design attri-
butes with a design tool can also expand the value a tool pro-
vides. In database terms, aspects to watch for will include
support for indexes, uniqueness, triggers, and stored
procedures.

The low-end tools (selling for less than U.S. $100 or
available as open-source) provide the most basic function-
ality for ER modeling. The higher-end products provide the
kinds of support needed for serious project design, such as:
• Complete roundtrip engineering
• UML design
• Schema evolution; change management
• Reverse engineering of existing systems
• Team support, allowing multiple people to work on the

same project concurrently
• Integration with Eclipse and .NET and other tooling

products
• Component and convention reuse (being able to reuse

naming standards, domains, and logical models over
multiple design projects)

• Reusable assets (e.g., extensibility, template)
• Reporting
The Basics
All of the products in question provide strong, easy-to-use

functions for both data modeling and database design. All of
these products provide the ability to graphically represent
ER relationships. These tools also provide transformationpro-
cesses to map from an ER model into an SQL design (DDL),
using the transformation types described earlier in Chapter 5:
• Transform each entity into a table containing the key

and nonkey attributes of the entity.
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• Transform every many-to-many binary or binary recur-
sive relationship into a relationship table with the keys
of the entities and the attributes of the relationship.

• Transform every ternary or higher-level n-ary relation-
ship into a relationship table.
Similarly, these tools produce the transformation table

types described in Chapter 5:
• An entity table with the same information content as

the original entity.
• An entity table with the embedded foreign key of the

parent entity.
• A relationship table with the foreign keys of all the

entities in the relationship.
Chapter 5 also described rules for null transformations that
must apply, and the CASE tools typically enforce these.

These CASE tools also help with the modeling of nor-
mal forms and denormalization to develop a true physical
schema for your database, as described in Chapter 5. The
tools provide graphic interfaces for physical database design
as well as basic modeling of uniqueness, constraints, and
indexes. Figure 11.3 shows an example of IBM’s Rational
Data Architect’s GUI for modeling ERs. Figure 11.4 shows a
similar snapshot of the interface for Computer Associates’
AllFusion ERwin Data Modeler.

After creating an ER model, the CASE tool enables easy
modification of the model and its attributes through graphi-
cal interfaces. An example is shown in Figure 11.5 with IBM’s
Rational Data Architect, illustrating attribute editing. Of these
CASE tools, Rational Data Architect has perhaps the most
useful UML modeling function for data modeling and
design. Its predecessor, Rational Rose Data Modeler, was the
industry’s first UML-based data modeler, and IBM has
continued its development in this area with Rational Data
Architect. UML provides a somewhat richer notation than
information engineering (IE) entity–relationship diagram
(ERD) notation, particularly for conceptual and logical data
modeling. However, the IE-ERD notation is older and more
commonly used. One of the nice aspects of Rational Data
Architect is the ability toworkwith eitherUMLor IE notation.

Figure 11.6 shows the AllFusion ERwin screen for defining
the cardinality of entity relationships. It is worth noting that
many relationships do not need to enter this dialog at all.



Figure 11.3 Rational Data
Architect ER modeling.
Courtesy of IBM Rational

Division.
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Generating a Database from a Design
To really take your design to the next level (i.e., a practical

level) you will need a good design tool that can interact with
the specific database product you use to actually create the
DDL and associated scripts or commands that create and
modify the basic database for you. For instance, using the
example of Chapter 7, we have created an ER model con-
taining sales relationships, shown in Table 11.1.

The CASE tools will automatically generate the required
scripts, including the DDL specification to create the
actual database, and will provide you with an option to
apply those changes to an actual database, as follows:

create table customer (cust_no char(6),
job_title varchar(256),

primary key (cust_no),



Figure 11.4 AllFusion ERwin
Data Modeler ER modeling.
Picture from Computer

Associates.
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foreign key (job_title) references job

on delete set null on update cascade);

create table job (job_title varchar(256),

primary key (job_title));

create table order (order_no char(9),

cust_no char(6) not null,

primary key (order_no),

foreign key (cust_no) references customer

on delete cascade on update cascade);

create table salesperson (sales_name varchar(256),

dept_no char(2),

primary key (sales_name),

foreign key (dept_no) references department

on delete set null on update cascade);

create table department (dept_no char(2),

primary key (dept_no));



Figure 11.5 Property editing
with IBM’s Rational Data
Architect. Courtesy of IBM

Rational Division.
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create table item (item_no char(6),

dept_no char(2),

primary key (item_no),

foreign key (dept_no) references department

on delete set null on update cascade);

create table order_item_sales (order_no char(9),

item_no char(6),

sales_name varchar(256) not null,

primary key (order_no, item_no),

foreign key (order_no) references order

on delete cascade on update cascade,

foreign key (item_no) references item

on delete cascade on update cascade,

foreign key (sales_name) references salesperson

on delete cascade on update cascade);



Figure 11.6 Specifying one-to-
many relationships with ERwin.
Courtesy of Computer Associates.

Table 11.1 ER Model Containing Sales
Relationships

ER Construct FDs

Customer(many): Job(one) cust-no -> job-title

Order(many): Customer(one) order-no -> cust-no

Salesperson(many): Department(one) sales-name -> dept-no

Item(many): Department(one) item-no -> dept-no

Order(many): Item(many): Salesperson(one) order-no, item-no -> sales-name

Order(many): Department(many): Salesperson(one) order-no, dept-no -> sales-name
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create table order_dept_sales (order_no char(9),

dept_no char(2),

sales_name varchar(256) not null,

primary key (order_no, dept_no),

foreign key (order_no) references order
on delete cascade on update cascade,

foreign key (dept_no) references department

on delete cascade on update cascade,



Figure 11.7 ERwin schema
generation for a DB2
database. Picture from IBM

(www.redbooks.ibm.com/

abstracts/redp3714.html?Open).
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foreign key (sales_name) references salesperson

on delete cascade on update cascade);
It is worth noting that with all the CASE tools we discuss
here, the conversion of the logical design to the physical
design is quite rudimentary. These tools help create basic
database objects, such as tables and, in some cases, indexes.
However, the advanced features of the database server are
often not supported—where they are supported, the CASE
tool is usually behind by two or three software releases.
Developing advanced physical design features, such asmul-
tidimensional clustering ormaterialized views, is far beyond
the capabilities of the logical design tools we are discussing.
Advanced physical database design is often highly depen-
dant on data density and data access patterns. One feature
of Rational Data Architect that stands out is that it provi-
des linkages with the automatic computing (self-managing)
capabilities within DB2 to provide semi-automated selec-
tion of advanced physical design attributes.

Figure 11.7 shows an example with ERwin schema
generation, generating the DB2 DDL directly from the ER
model designed within ERwin.

http://www.redbooks.ibm.com/abstracts/redp3714.html?Open
http://www.redbooks.ibm.com/abstracts/redp3714.html?Open
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Other very important capabilities shared by these tools
include the ability to reverse-engineer existing databases
(for which you may not have an existing ER or physical
UML model), and the ability to automatically materialize
the physical model or incremental changes of a model
onto a real database. This capacity enables you to syn-
chronize your database design with a real database as
you make changes. This capability is massively useful for
incremental application and database development, as
well as for incremental maintenance.

Database Support
All of these products support a large array of database

types. Certainly, all of the major database vendors are
supported by each of these products (i.e., DB2 UDB, DB2
zOS, Informix IDS, Oracle, SQL Server), and a much larger
set is supported through ODBC. However, what really
matters most to the application developer is whether the
database he or she is programming toward is directly
supported by the CASE design tool. Database support is
not equal between these products. Also, very significantly,
each database product will have unique features of its own
(such as reverse scan indexes, informational constraints,
and so forth) that are not standard. One of the qualitative
attributes of a good database design tool is whether it
distinguishes and supports the unique extensions of indi-
vidual database products. Each of the products has a strong
history for doing so: in descending order, AllFusion ERwin
Data Modeler, PowerDesigner, and Rational Data Architect.
Notably, IBM’s Rational Data Architect has a somewhat
smaller range of supported databases than the other
products, though it does support all the major database
platforms. However, Rational Data Architect can be
expected over time to have the tightest integration with the
DB2 and Informix families, since all of these products
are developed by IBM. Database designers are advised to
investigate the level of support provided by a CASE tool for
the database being developed toward, to ensure the level
of support is adequate. Figure 11.8 shows an example of
database server selection with the AllFusion ERwin Data
Modeler.



Figure 11.8 DBMS selection
in AllFusion ERwin Data
Modeler. Picture from

Computer Associates

(http://iua.org.uk/conference/

Autumn%202003/Ruth%

20Wunderle.ppt#9).
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Collaborative Support
All three of these products are designed for collaborative

development, so thatmultiple developers canwork together
to design portions of a database design, either supporting
different applications or collaborating on the same portions.
These collaboration features fall into two domains:
1. Concurrency control. This form of collaboration ensures

that multiple designers do not modify the same compo-
nent of the database design at the same time. This is
comparable in software development terms to a source
code control system.

2. Merge and collaboration capabilities. This formof collabo-
ration enables designers to combine designs or merge
their latest changes into a larger design project. These
merging capabilities compare components between what
is already logged into the project system and what a
designer wishes to add or modify. The CASE tools identify
the conflicting changes and visually identify them for the
designer, who can decide which changes should be kept
and which ones discarded in favor of the model currently
defined in the project.
Figure 11.9 shows Sybase’s PowerDesigner merge GUI,

which identifies significant changes between the existing
schema and the new schema being merged. In particular,
notice how the merge tool has identified a change in
Table_1 Column_4, which has changed base types. The tool

http://www.iua.org.uk/conference/Autumn&percnt;202003/Ruth&percnt;20Wunderle.ppt#9
http://www.iua.org.uk/conference/Autumn&percnt;202003/Ruth&percnt;20Wunderle.ppt#9
http://www.iua.org.uk/conference/Autumn&percnt;202003/Ruth&percnt;20Wunderle.ppt#9


Figure 11.9 Merge process
with PowerDesigner.
Courtesy of Sybase.
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also found that Table_2 and Table_3, which exist in the
merging design, were not present in the base design.
AllFusion ERwin Data Modeler and Rational Data Architect
have similar capabilities for merging design changes.
Distributed Development
Distributed development has become a fact of life

for large enterprise development teams, in which groups
of developers collaborate from geographically diverse
locations to develop a project. The phenomenon is not
only true across floors of a building, or between sites in a
city, but now across states, provinces, and even countries.
In fact, outsourcing of software development has become
a tour de force, with many analysts projecting that the aver-
age enterprise will ultimately outsource 60% of application
work, shifting aspects of project development to locations
with cheaper labor. As theMETAGroup said in its September
16, 2004 Offshore Market Milieu report: “With global
resources costing one-third to one-fifth that of American
employees—without accounting for hidden costs—and



Figure 11.10 IBM’s Rational
MultiSite software for
massively distributed
software management.
Courtesy of IBM Rational

Division.
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having higher process discipline, offshore strategies now per-
vade North American IT organizations.”

Therefore, developers of database software working in a
distributed collaborative environment need to consider
the collaborative and distributed qualities of CASE tools
for database design. The trend toward collaborative
development and distributed development shows no sign
of slowing; rather, it is on the increase. In the existing space,
IBM’s Rational MultiSite software, shown in Figure 11.10,
allows the best administration across geographically diverse
locations for replicating project software and data and
subsequently merging the results. Rational MultiSite is a
technology layered on top of Rational ClearCase and Ratio-
nal ClearQuest (development and source code control
products) to allow local replicas of Rational ClearCase and
Rational ClearQuest repositories. Rational MultiSite also
handles the automatic synchronization of the replicas. This
is particularly useful for companies with distributed devel-
opment who wish to have fast response times for their
developers via access to local information, and such repli-
cation is often an absolute requirement for geographically
distributed teams.
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Application Life Cycle Tooling Integration
The best CASE tools for database design are integrated

with a complete suite of application development tools that
cover the software development life cycle. This allows the
entire development team to work from an integrated tool
platform, rather than the data modelers being off in their
own world. Only the largest vendors offer this, and in fact
true tooling integration across the development life cycle
is somewhat rare. This solution is, in a very real way, the
philosopher’s stone of development infrastructure vendors.
All the vendors who produce software development pla-
tforms have been working to develop this breadth during
the past two decades. The challenge is elusive simply because
it is hard to do well. The three companies we are discussing
here all have broad offerings, and provide some degree of
integration with their database design CASE technology.

ForComputer Associates, theAllFusion brand is a family of
development life cycle tools. It is intended to cover designing,
building, deploying, and managing e-business applications.
Sybase also has a broad product suite, and their strength is
in the collaborative technology. From a design perspective,
the ability to plug Sybase’s PowerDesigner into their popular
Sybase PowerBuilder application development tooling is a
very nice touch, as seen in Figure 11.11. The IBM tooling is
clearly the broadest based, and their new IBM Software
Development Platform, which is built heavily but not exclu-
sively from their Rational products, covers everything from
requirements building to portfoliomanagement, source code
control, architectural design constraints, automated testing,
performance analysis, and cross-site development. A repre-
sentation of the IBM Software Development Platform is
shown in Figure 11.12.

Design Compliance Checking
With all complex designs, and particularly when multi-

ple designers are involved, it can be very hard to maintain
the integrity of the system design. The best software
architects and designers grapple with this by defining
design guidelines and rules. These are sometimes called
design patterns and anti-patterns.



Figure 11.11 Sybase’s
PowerDesigner plug-in to
Sybase PowerBuilder.
Picture from Berndt Hambock

(www.isug.com/emea/PBUGG.

html).
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Adesign pattern is a design principle that is expected to be
generally adhered to within the system design. Conversely,
an anti-pattern is precisely the opposite. It represents flaws
in the system design that can occur either through violation
of the design patterns or through explicit definition of an
anti-pattern. The enforcement of design patterns and anti-
patterns is an emerging attribute of the best CASE tools for
systems design in general, and database design in particular.
Figure 11.13 shows an example of the interface used in
Rational Data Architect for compliance checking, which
scans the system to enforce design patterns and check for
anti-patterns. Some degree of support for design pattern
and anti-pattern checking exists in AllFusion ERwin Data
Modeler and Sybase’s PowerDesigner as well. The compli-
ance checking in IBM’s Rational products is the most
mature in general, with the notion of design patterns and

http://www.isug.com/emea/PBUGG.html
http://www.isug.com/emea/PBUGG.html


Figure 11.12 IBM’s
Software Development
Platform. Courtesy of IBM

Rational Division.
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anti-patterns being a key philosophical point for IBM’s Ratio-
nal family of products. Some examples of things these com-
pliance checkers will scan for include:
• Complete roundtrip engineering
• Design and normalization

• Discover first, second, and third normal forms
• Index and storage

• Check for excessive indexing
• Naming standards
• Security compliance
• Sarbanes-Oxley compliance

• Check for valid data model and rules
• Model syntax checks
Reporting
Reporting capabilities are a very important augmentation

of the design capabilities in CASE tools for database design.
These reports allow you to examine your ER and UML
modeling and database schema in both graphical and textual
formats. The Sybase products have a superb reputation for
reporting features; their products enable you to generate



Figure 11.13 Modeling and
database compliance
checking. Courtesy of IBM

Rational Division.
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reports in common formats like Microsoft Word. Reporting
can include both the modeling and the annotations that the
designer has added. It can cover physical data models, con-
ceptualdatamodels,object-orientedmodels (UML),business
processmodels, and semistructure data using XML.Notice in
Figure 11.14 how the fourth page, which contains graphics,
can be oriented in landscape mode, while the remaining
pages are kept in portrait mode. AllFusion ERwin and
Rational Data Architect also provide rich reporting features,
though PowerDesigner has the richest capabilities.

Modeling a Data Warehouse
In Chapter 10 we discussed the unique design con-

siderations required for data warehousing and decision
support. Typically, warehouses are designed to support com-
plex queries that provide analytic analysis of your data.
As such, they exploit different schema topologymodels, such



Figure 11.14 Reporting
features with Sybase’s
PowerDesigner. Courtesy of

Sybase.
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as star schema and horizontal partitioning. They typically
exploit data views andmaterialized data views, data aggrega-
tion, and multidimensional modeling far more extensively
than other operational and transactional databases.

Traditionally, warehouses have been populated with data
that is extracted and transformed from other operational
databases. However, more and more companies are moving
to consolidate system resources and provide real-time ana-
lytics by either feeding warehouses data in near-real-time
(with a few minutes latency) or entirely merging their trans-
actional data stores with their analytic warehouses into a
single server or cluster. These trends are known as active
data warehousing, and pose even more complex design
challenges. There is a vast need for CASE tooling in this space.

Sybase offers a CASE tool known as Sybase Industry
Warehouse Studio (IWS). Sybase IWS is really a set of
industry-specific, prepackaged warehouses that require
some limited customization. Sybase IWS tooling provides
a set of wizards for designing star schemas and dimen-
sional tables, and for implementing denormalization,
summarization, and partitioning; as usual, the Sybase tools
are strong on reporting facilities.

The industry domains covered by IWS are fairly
reasonable—they include IWS for Media, IWS for Healthcare,
IWS for Banking, IWS for Capital Markets, IWS for Life
Insurance, IWS for Telco, IWS for Credit Cards, IWS for
P&C Insurance, and IWS for CRA.

IBM’s DB2 Cube Views (shown in Figure 11.15) provides
OLAP and multidimensional modeling. DB2 Cube Views
allows you to create metadata objects to dimensionally
model OLAP structures and relational data. The graphical
interface allows you to create, manipulate, import, or
export cube models, cubes, and other metadata objects.

Sybase IWS uses standard database design constructs
that port to many database systems, such as DB2 UDB, Ora-
cle, Microsoft SQL Server, Sybase Adaptive Server Enter-
prise, and Sybase IQ. In contrast, IBM’s DB2 Cube Views is
designed specifically to exploit DB2 UDB. The advantage
of DB2 Cube Views is that it can exploit product-specific
capabilities in the DB2 database that may not be generally
available in other databases. Some examples of this include
materialized query tables (precomputed aggregates and
cubes), multidimensional clustering, triggers, functional



Figure 11.15 DB2 Cube
Views interface. Courtesy of

IBM Rational Division.
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dependencies, shared-nothing partitioning, and replicated
MQTs. The dependence of Sybase IWS on the lowest com-
mon denominator database feature provides flexibility
when selecting the database server but may prove
extremely limiting for even moderately sized marts and
warehouses (i.e., larger than 100 GB), where advanced
access and design features become critical.

To summarize and contrast, Sybase offers portable ware-
house designs that require minimal customization and are
useful for smaller systems, and DB2 Cube Views provides
significantly richer and more powerful capabilities, which
fit larger systems, require more customization, and necessi-
tate DB2 UDB as the database server.

AllFusion ERwin Data Modeler has basic support to
model OLAP and multidimensional databases, but does
not have the same richness of tooling and wizards that
the other companies offer to actually substantially simplify
the design process of these complex systems.
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Semistructured Data—XML
XML (eXtensible Markup Language) is a data model

consisting of nodes of several types linked together with
ordered parent–child relationships to form a hierarchy.
One representation of that data model is textual—there are
others that are not text! XML has increasingly become a data
format of choice for data sharing between systems. As a
result, increasing volumes of XML data are being generated.

While XML data has some structure it is not a fully
structured format, such as the table definitions that come
from a fully structured modeling using ER with IE or UML.
XML is known in the industry as a semistructured format:
It lacks the strict adherence of schema that structured data
schemas have, yet it has some degree of structure that
distinguishes it from completely unstructured data, such
as image and video data.

Standards are forming around XML to allow it to be used
for database style design and query access. The dominant
standards are XML Schema and XML Query (also known as
XQuery). Alsoworth noting is the OMGXMI standard, which
defines a standard protocol for defining a structured format
for XML interchange, based on an object model. Primarily
for interfacing reasons, UML tools such as MagicDraw
have taken XMI seriously and have therefore become the
preferred alternatives in the open-source space.

XML data is text based and self-describing (meaning that
XML described the type of each data point, and defines its
own schema). XML has become popular for Internet-based
data exchange based on these qualities as well as being
“well-formed.” Well-formed is a computer science term,
implying XML’s grammar is unambiguous through the use
of mandated structure that guarantees terms are explicitly
prefixed and closed. Figure 11.16 shows the conceptual
design of a semistructured document type named “Recipe.”
Figure 11.17 shows an XML document for a hot dog recipe.
Notice that the file is completely textual.

IBM’s Rational Data Architect and Sybase’s PowerDesigner
have taken the lead in being early adopters of XML data
modeling CASE tools. Both products support the modeling
of semistructured data through XML and provide graphical
tooling for modeling XML hierarchies.



Recipe

Title

Ingredienttext

text text text text text text text

Ingredient Ingredient Ingredient Step Step Step text Calories FatGrams CarboGrams ProteinGrams

NutritionComment

<!..comment..>

PreparationIngredients

Figure 11.16 An XML
schema for a recipe.

Figure 11.17 An XML
document for a hot dog.
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Summary
There are several good CASE tools available for computer-

assisted database design. This chapter has touched on some
of the features for three of the leading products: IBM’s Ratio-
nal Data Architect, Computer Associates’ AllFusion ERwin
Data Modeler, and Sybase’s PowerDesigner. Each provides
powerful capabilities to assist in developing ER models
and transforming those models to logical database designs
and physical implementations. All of these products support
a wide range of database vendors, including DB2 UDB, DB2
zOS, Informix Data Server (IDS), Oracle, SQL Server, and
many others through ODBC support. Each product has
different advantages and strengths. The drawbacks a product
may have now are certain to be improved over time, so dis-
cussing the relative merits of each product in a book can be
somewhat of an injustice to a product that will deliver
improved capabilities in the near future.

At the time of authoring this text, Computer Associates’
AllFusion ERwin Data Modeler had advantages as a mature
product with vast database support. The AllFusion products
don’t have the advanced complex feature support for XML
and warehousing/analytics, but what they do support, they
do well. Sybase’s PowerDesigner sets itself apart with its
superior reporting capabilities. IBM’s Rational Data Architect
has the best integration with a broad software application
development suite of tooling, and the most mature use of
UML. Both the Sybase and IBM tools are blazing new ground
in their early support for XML semistructured data and for
CASE tools for warehousing andOLAP. The best products pro-
vide the highest level of integration into a larger software
development environment for large-scale collaborative, and
possible geographically diverse, development. These CASE
tools can dramatically reduce the time, cost, and complexity
of developing, deploying, and maintaining a database design.

Tips and Insights for Database
Professionals

Tip 1. Database designers are strongly encouraged
to use one of the powerful and feature-rich CASE
tools for developing logical database designs and
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transitioning them into physical databases they can
use. For a current list of tools, see www.database
answers.com/modeling_tools.htm.
Tip 2. The chief motivations for selecting and using
CASE tools are:

1. Desire to dramatically reduce the complexity of
conceptual and logical designs.

2. Automatically transform a logical design into SQL
table definitions or other data definition language
constructs.

3. Obtain automatic reporting and reverse engineer-
ing capability.

Tip 3. Use lower-end tools (in the U.S. $100 range) if
you only want to do ER modeling. Use higher-end
tools for more complex tasks such as schema evalua-
tion, UML design, reverse engineering, multiperson
team support, integration with other software
development tools, design compliance checking, or
reporting
Tip 4. The best CASE tools for database design are
those that are integrated with a complete suite of
application tools that cover the entire software devel-
opment life cycle. Examples of the most prominent of
these tools, shown in this chapter, are:

1. IBM’s Rational Data Architect
2. ComputerAssociates’ AllFusionERwinDataModeler
3. Sybase’s PowerDesigner

Tip 5. CASE tools for active data warehousing, deci-
sion support, and XML data modeling are available
in today’s marketplace.
Literature Summary
Current logical database design tools can be found inman-

ufacturerwebsites, DatabaseAnswers, IBMRational Software,
Computer Associates, Sybase PowerDesigner, Directory of
Data Modeling Resources (Infogoal), Objects by Design,
Understanding Relational Databases: Referential Integrity,
and Widom.

http://www.databaseanswers.com/modeling_tools.htm
http://www.databaseanswers.com/modeling_tools.htm


APPENDIX
THE BASICS OF SQL
Structured Query Language, or SQL, is the ISO-ANSI
standard data definition language and data manipulation
language for relational database management systems
(DBMSs). Individual relational database systems use
slightly different dialects of SQL syntax and naming rules,
and these differences can be seen by consulting the SQL
user guides for those systems. In this text, where we
explore each step of the logical and design portion of the
database life cycle, many examples of database table crea-
tion and manipulation make use of SQL syntax.

The basic use of SQL can be learned quickly and easily
through reading this appendix. The more advanced features,
such as statistical analysis and presentation of data, require
more study and are beyond the reach of the typical non-
programmer. However, SQL views can be set up by the data-
base administrator (DBA) to help the nonprogrammer to
set up repetitive queries, and other languages, such as forms,
are being commercially sold for nonprogrammers. For the
advanced database programmer, embedded SQL (in C pro-
grams, for instance) is widely available for the most complex
database applications that need the power of procedural
languages.

This appendix introduces the reader to the basic con-
structs for the SQL-99 (and SQL-92) database definition,
queries, and updates through a sequence of examples with
some explanatory text. We start with a definition of SQL
terminology for data types and operators. This is followed
by an explanation of the data definition language (DDL)
constructs using the create table command and including a
definition of the various types of integrity constraints such
as foreign keys and referential integrity. Finally, we take a
detailed look at the SQL-99 data manipulation language
(DML) features through a series of both simple and more
complex practical examples of database queries and updates.
261
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The specific features of SQL as implemented by the
major vendors IBM, Oracle, and Microsoft can be found
in the references at the end of this appendix.
SQL Names and Operators
This section gives the basic rules for SQL-99 (and

SQL-92) data types and operators.
• SQL names have no particular restrictions, but vendor-

specific versions of SQL do have some restrictions. For
example, in Oracle, names of tables and columns
(attributes) can be up to 30 characters long, must begin
with a letter, and can include the following symbols: a–z,
0–9, _, $, and #. Names should not duplicate reserved words
or names for other objects (attributes, tables, views, indexes)
in the database.

• Data types for attributes: character, character varying,
numeric, decimal, integer, smallint, float, double preci-
sion, real, bit, bit varying, date, time, timestamp, interval.

• Logical operators: and, or, not, ( ).
• Comparison operators: ¼, <>, <, <¼, >, >¼, ( ), in, any,

some, all, between, not between, is null, is not null, like.
• Set operators:

• union—combines queries to display any row in each
subquery

• intersect—combines queries to display distinct rows
common to all subqueries

• except—combines queries to return all distinct rows
returned by the first query but not the second (this
is “minus” or “difference” in some versions of SQL)

• Set functions: count, sum, min, max, avg.
• Advanced value expressions: CASE, CAST, row value

constructors. The CASE expression is similar to the
CASE expressions in programming languages in which
a select command needs to produce different results
when there are different values of the search condition.
The CAST expression allows you to convert data of one
type to a different type, subject to some restrictions.
Row value constructors allow one to set up multiple-
column value comparisons with a much simpler expres-
sion than is normally required in SQL (see Melton and
Simon, 1993, for detailed examples).
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Data Definition Language
The basic definitions for SQL objects (tables and views)

are:
• create table—defines a table and all its attributes
• alter table—adds new columns, drops columns, or

modifies existing columns in a table
• drop table—deletes an existing table
• create view, drop view—defines/deletes a database view

(see “SQL Views” section)
Some versions of SQL also have create index/drop index,

which defines/deletes an index on a particular attribute or
composite of several attributes in a particular table.

The following table creation examples are based on a
simple database of three tables: customer, item, and order.
(Reminder, we put table names in boldface throughout the
book.)

create table customer

(cust_num numeric,
cust_name char(20),
address varchar(256),
credit_level numeric,
check (credit_level >¼ 1000),
primary key (cust_num));
Note that the attribute cust_num could be defined as
“numeric not null unique” instead of explicitly defined as
the primary key, since they both have the same meaning.
However, it would be redundant to have both forms in the
same table definition. The check rule is an important integ-
rity constraint that tells SQL to automatically test each in-
sertion of credit_level value for something greater than or
equal to 1000. If not, an error message should be displayed.

create table item

(item_num numeric,
item_name char(20),
price numeric,
weight numeric,
primary key (item_num));

create table order
(ord_num char(15),
cust_num numeric not null,
item_num numeric not null,
quantity numeric,
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total_cost numeric,
primary key (ord_num),
foreign key (cust_num) references customer

on delete no action on update cascade,
foreign key (item_num) references item

on delete no action on update cascade);
SQL, while allowing for the above format for primary
key and foreign key, recommends a more detailed format,
shown below for table order.

constraint pk_constr primary key (ord_num),
constraint fk_constr1 foreign key (cust_num)
references customer (cust_num)
on delete no action on update cascade,

constraint fk_constr2 foreign key (item_num)
references item (item_num)
on delete no action on update cascade);

Here, pk_constr is a primary key constraint name, and
fk_constr1 and fk_constr2 are foreign key constraint
names. The word “constraint” is a keyword, and the object
in parentheses after the table name is the name of the pri-
mary key in that table referenced by the foreign key.

The following constraints are common for attributes
defined in the SQL create table commands:
• Not null. A constraint that specifies that an attribute

must have a non-null value.
• Unique. A constraint that specifies that the attribute is

a candidate key—that is, it has a unique value for every
row in the table. Every attribute that is a candidate
key must also have the constraint “not null.” The con-
straint “unique” is also used as a clause to designate
composite candidate keys that are not the primary
key. This is particularly useful when transforming ter-
nary relationships to SQL.

• Primary key. The primary key is a set of one or more
attributes, which, when taken collectively, allows us to
identify uniquely an entity or table. The set of attributes
should not be reducible (see “Superkeys, Candidate
Keys, and Primary Keys” section in Chapter 6). The des-
ignation “primary key” for an attribute implies that the
attribute must be “not null” and “unique,” but the SQL
keywords NOT NULL and UNIQUE are redundant for
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any attribute that is part of a primary key, and need not
be specified in the create table command.

• Foreign key. The referential integrity constraint specifies
that a foreign key in a referencing table column must
match an existing primary key in the referenced table.
The references clause specifies the name of the
referenced table. An attribute may be both a primary
key and a foreign key, particularly in relationship tables
formed from many-to-many binary relationships or
from n-ary relationships.
Foreign key constraints are defined for row deletion on

the referenced table and for the update of the primary
key of the referenced table. The referential trigger actions
for delete and update are similar:
• on delete cascade—the delete operation on the

referenced table “cascades” to all matching foreign keys.
• on delete set null—foreign keys are set to null when they

match the primary key of a deleted row in the
referenced table. Each foreign key must be able to
accept null values for this operation to apply.

• on delete set default—foreign keys are set to a default
value when they match the primary key of the deleted
row(s) in the reference table. Legal default values include
a literal value, “user,” “system user,” or “no action.”

• on update cascade—the update operation on the pri-
mary key(s) in the referenced table “cascades” to all
matching foreign keys.

• on update set null—foreign keys are set to null when
they match the old primary key value of an updated
row in the referenced table. Each foreign key must be
able to accept null values for this operation to apply.

• on update set default—foreign keys are set to a default
value when they match the primary key of an updated
row in the reference table. Legal default values include
a literal value, “user,” “system user,” or “no action.”
The “cascade” option is generally applicable when either

the mandatory existence constraint or the ID dependency
constraint is specified in the ER diagram for the referenced
table, and either “set null” or “set default” is applicable
when optional existence is specified in the ER diagram for
the referenced table (see Chapters 2 and 5).
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Some systems, such as DB2, have an additional option
on delete or update, called “restricted.” “Delete restricted”
means that the referenced table rows are deleted only if
there are no matching foreign key values in the referencing
table. Similarly, “update restricted” means that the
referenced table rows (primary keys) are updated only if
there are no matching foreign key values in the referencing
table.

Various column and table constraints can be specified
as “deferrable” (the default is “not deferrable”), which
means that the DBMS will defer checking this constraint
until you commit the transaction. Often this is required
for mutual constraint checking.

The following examples illustrate the alter table and drop
table commands. The first alter table command modifies
the cust_name data type from char(20) in the original def-
inition to varchar(256). The second and third alter table
commands add and drop a column, respectively. The add
column option specifies the data type of the new column.

alter table customer
modify (cust_name varchar(256));

alter table customer
add column cust_credit_limit numeric;

alter table customer
drop column credit_level;

drop table customer;

Data Manipulation Language
Data manipulation language commands are used for

queries, updates, and the definition of views. These concepts
are presented through a series of annotated examples, from
simple to moderately complex.

SQL Select Command
The SQL select command is the basis for all database

queries. We look at a series of examples to illustrate the
syntax and semantics for the select command for the most
frequent types of queries in everyday business applications.
To illustrate each of the commands we assume the follow-
ing set of data in the database tables:



item table

item_num item_name price weight

125 phaser 350 2

137 beam 1500 250

143 shield 4500 3000

175 fusionMissile 2750 500

211 captainsLog 50 2

234 starShip 25,000 15,000

356 sensor 245 15

368 intercom 1200 75

399 medicalKit 75 3

customer table
cust_num cust_name address credit_level

001 Kirk Enterprise 10

002 Spock Enterprise 9

003 Scotty Enterprise 8

004 Bones Enterprise 8

005 Gorn PlanetoidArena 1

006 Khan CetiAlphaFive 2

007 Uhura Enterprise 7

008 Chekov Enterprise 6

009 Sulu Enterprise 6

order table
ord_num cust_num item_num quantity total_cost

10012 005 125 2 700

10023 006 175 20 55,000

10042 003 137 3 4500

10058 001 211 1 50

10232 007 368 1 1200

10266 002 356 50 12,250

(Continued)
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order table—Cont’d
ord_num cust_num item_num quantity total_cost

10371 004 399 10 750

11070 009 143 1 4500

11593 008 125 2 700

11775 006 125 3 1050

12001 001 234 1 25,000

customer name

Bones

Kirk

Scotty

Spock

268 Appendix THE BASICS OF SQL
Basic Commands
1. Display the entire customer table. The asterisk (*)

denotes that all records from this table are to be read
and displayed.
select *
from customer;

This results in a display of the complete customer table
(as shown above).

2. Display customer name, customer number, and credit
level for all customers on the Enterprise with credit level
greater than 7. Order by ascending sequence of cus-
tomer name (the order by options are asc, desc). Note
that the first selection condition is specified in the
“where” clause and succeeding selection conditions are
specified by “and” clauses. Character type data and
other nonnumeric data are placed inside single quotes,
but numeric data is given without quotes. Note that use-
ful column names can be created by using formatting
commands (which are not shown here).
select cust_name, cust_num, credit_level
from customer
where address ¼ ‘Enterprise’
and credit_level > 7
order by cust_name asc;
customer no. credit level

004 8

001 10

003 8

002 9
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3. Display all customer and order item information (all
columns), but omitting customers with credit level
above 6. In this query the “from” clause shows the defi-
nition of abbreviations c and o for tables customer and
order, respectively. The abbreviations can be used any-
where in the query to denote their respective table
names. This example also illustrates a “join” between
table customer and table order using the common attri-
bute name cust_num, as shown in the “where” clause.
The join finds matching cust_num values from the two
tables and displays all the data from the matching rows,
except where the credit number is 7 or above, and
ordered by customer number.
select c.*, o.*
from customer as c, order as o
where c.cust_num ¼ o.cust_num
and c.credit_level < 7
order by cust_no asc;
cust.
no.

cust.
name address

credit
level

order
no.

item
no. qty

total
cost

005 Gorn PlanetoidArena 1 10012 125 2 700

006 Khan CetiAlphaFive 2 11775 125 3 1050

006 Khan CetiAlphaFive 2 10023 175 20 55000

008 Chekov Enterprise 6 11593 125 2 700

009 Sulu Enterprise 6 11070 143 1 4500
Union and Intersection Commands
1. Which items are ordered by customer 002 or customer

007? This query can be answered in two ways, one with
a set operator (union) and the other with a logical oper-
ator (or).
select item_num, item_name, cust_num, cust_name
from order
where cust_num ¼ 002
union
select item_num, item_name, cust_num, cust_name
from order
where cust_num ¼ 007;

select item_num, item_name, cust_num, cust_name
from order
where (cust_num ¼ 002 or cust_num ¼ 007);



item no.

125

125

item no. item name customer no. customer name

356 sensor 002 Spock

368 intercom 007 Uhura

count (order)

11
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2. Which items are ordered by both customers 005 and
006? All the rows in table order that have customer 1 are
selected and compared to the rows in order that have
customer 3. Rows from each set are compared with all
rows from the other set, and those that have matching
item numbers have the item numbers displayed.
item n

phaser

phaser
select item_num, item_name, cust_num, cust_name
from order
where cust_num ¼ 005
intersect
select item_num, item_name, cust_num, cust_name
from order
where cust_num ¼ 006;
ame customer no. customer name

005 Gorn

006 Khan
Aggregate Functions
1. Display the total number of orders. This query uses the

SQL function “count” to count the number of rows in
table order.
select count(*)
from order;
2. Display the total number of customers actually placing
orders for items. This is a variation of the count function
and specifies that only the distinct number of customers
are to be counted. The “distinct” modifier is required
because duplicate values of customer numbers are likely
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to be found, because a customer can order many items
and will appear in many rows of table order.
select count (distinct cust_num)
from order;
distinct count (order)

9

3. Display the maximum quantity of an order of item
number 125. The SQL “maximum” function is used to
search the table order, select rows where the item num-
ber is 125, and display the maximum value of quantity
from the rows selected.
select max (quantity)
from order
where item_num ¼ 125;
max (quantity)

3

4. For each type of item ordered, display the item number
and total order quantity. Note that item_num and
item_name in the select line must be in a “group by”
clause. In SQL any attribute to be displayed in the result
of the select command must be included in a “group by”
clause when the result of an SQL function is also to be
displayed. The “group by” clause results in a display
of the aggregate sum of quantity values for each value
of item_num and item_name. The aggregate sums will
be taken over all rows with the same value of item_num.
select item_num, item_name, sum(quantity)
from order
group by item_num, item_name;
item no. item name sum(quantity)

125 phaser 7

137 beam 3

143 shield 1

175 fusionMissile 20

211 captainsLog 1

(Continued)



item no. item name sum(quantity)

234 starShip 1

356 sensor 50

368 intercom 1

399 medicalKit 10

item no.

125

customer name

Chekov

Gorn

Khan
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5. Display item numbers for all items ordered more than
once. This query requires the use of the “group by”
and “having” clauses to display data that is based on a
count of rows from table order having the same value
for attribute item_num.
select item_num, item_name
from order
group by item_num, item_name
having count(*) >1;
item name

phaser
Joins and Subqueries
1. Display customer names for customers who order item

number 125. This query requires a join (equijoin) of the
customer and order tables in order to match customer
names with item number 125. Including the item_num
column in the output verifies that you have selected the
item number you want. Note that the default ordering
of output is typically ascending by the first column.
select c.cust_name, o.item_num
from customer as c, order as o
where c.cust_num ¼ o.cust_num
and item_num ¼ 125;
item no.

125

125

125
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This query can be equivalently performed with a sub-
query (sometimes called a nested subquery) with the follow-
ing format. The select command inside the parentheses is a
nested subquery and is executed first, resulting in a set of
values for customer number (cust_num) selected from the
order table. Each of those values are compared with
cust_num values from the customer table, and matching
values result in the display of the customer name from the
matching row in the customer table. This is effectively a
join between the customer and order tables with the selec-
tion condition of item number 125.

select cust_name, order_num
from customer
where cust_num in
(select cust_num
from order
where item_num ¼ 125);
2. Display customer names who order at least one item
priced over 1000. This query requires a three-level nested
subquery format. Note that the phrases “in,” “¼ some,”
and “¼any” in the “where” clauses are often used as equiv-
alent comparison operators (seeMelton and Simon, 1993).
select c.cust_name
from customer as c
where c.cust_num in

(select o.cust_num
from order as o
where o.item_num ¼ any
(select i.item_num
from item as i
where i.price > 1000));
customer name

Khan

Kirk

Scotty

Sulu

Uhura
3. Which customers have not ordered any item priced over
100? Note that one can equivalently use “not in” instead
of “not any.” The query first selects the customer numbers



customer name

Bones

customer name

Sulu
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from all rows from the join of tables order and itemwhere
the item price is over 100. Then it selects rows from table
customer where the customer number does not match
any of the customers selected in the subquery, and dis-
plays the customer names.
select c.cust_name
from customer as c
where c.cust_num not any

(select o.cust_num
from order as o, item as i
where o.item_num ¼ i.item_num
and i.price > 100);
4. Which customers have only ordered items weighing
more than 1000? This is an example of the universal
quantifier “all.” First the subquery selects all rows from
table item where the item weight is over 1000. Then it
selects rows from table order where all rows with a
given item number match at least one row in the set
selected in the subquery. Any rows in order satisfying
this condition are joined with the customer table and
the customer name is displayed as the final result.
select c.cust_name
from customer as c, order as o
where c.cust_num ¼ o.cust_num
and o.item_num ¼ all

(select i.item_num
from item as i
where i.weight > 1000);
Note that Kirk has ordered one item weighing over 1000
(starShip), but he has also ordered an item weighing under
1000 (captainsLog), so his name does not get displayed.
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SQL Update Commands
The following SQL update commands relate to our

continuing example and illustrate typical usage of inser-
tion, deletion, and update of selected rows in tables. The
following command adds one more customer (klingon) to
the customer table.

insert into customer
values (010,’klingon’,’rogueShip’,4);

This next command deletes all customers with credit
levels less than 2.

delete from customer
where credit_level < 2;

The following command modifies the credit level of any
customer with level 6 to level 7.

update customer
set credit_level ¼ 7
where credit_level ¼ 6;

Referential Integrity
The following update to the item table resets the value

of item_num for a particular item, but because item_num
is a foreign key in the order table, SQL must maintain ref-
erential integrity by triggering the execution sequence
named by the foreign key constraint “on update cascade”
in the definition of the order table, as defined previously.
This means that, in addition to updating a row in the item
table, SQL will search the order table for values of
item_num equal to 368 and reset each item_num value to
370.

update item
set item_num ¼ 370
where item_num ¼ 368;

If this update had been a “delete” instead, such as the
following:

delete from item
where item_num ¼ 368;

then the referential integrity trigger would have caused
the additional execution of the foreign key constraint “on
delete set default” in the order table (as defined previously),
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which finds every row in the order table with item_num
equal to 368 and takes the action setup in the default. A typi-
cal action for this type of database might be to set item_num
to either null or a predefined literal value to denote that the
particular item has been deleted; this would then be a signal
to the system that the customer needs to be contacted
to change the order. Of course, the system would have to
be set up in advance to check for these values periodically.

SQL Views
A view in SQL is a named, derived (virtual) table that

derives its data from base tables, the actual tables defined
by the create table command. While view definitions can
be stored in the database, the views (derived tables) them-
selves are not stored, but derived at execution time when
the view is invoked as a query using the SQL select com-
mand. The person who queries the view treats the view
as if it were an actual (stored) table, unaware of the differ-
ence between the view and the base table.

Views are useful in several ways. First, they allow com-
plex queries to be set up in advance in a view, and the nov-
ice SQL user is only required to make a simple query on the
view. This simple query invokes the more complex query
defined by the view. Thus, nonprogrammers are allowed to
utilize the full power of SQL without having to create com-
plex queries. Second, views provide greater security for a
database because the DBA can assign different views of
the data to different users and control what any individual
user sees in the database. Third, views provide a greater
sense of data independence—that is, even though the base
tables may be altered by adding, deleting, or modifying
columns, the view querymay not need to be changed.While
the view definition may need to be changed, that is the job
of the DBA, not the person querying the view.

Views may be defined hierarchically—that is, a view defi-
nition may contain another view name as well as base table
names. This allows for some views to become quite complex.

In the following example, we create a view called
“orders” that shows which items have been ordered by
each customer and how many. The first line of the view
definition specifies the view name and (in parentheses)
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lists the attributes of that view. The view attributes must
correlate exactly with the attributes defined in the select
statement in the second line of the view definition:
create view orders (customer_name, item_name, quantity) as
select c.cust_name, i.item_name, o.quantity
from customer as c, item as i, order as o
where c.cust_num ¼ o.cust_num
and o.item_num ¼ i.item_num;
The create view command creates the view definition,
which defines two joins among three base tables customer,
item, and order; and SQL stores the definition to be executed
later when invoked by a query. The following query selects all
the data from the view “orders.” This query causes SQL to
execute the select command given in the preceding view de-
finition, producing a tabular result with the column headings
for customer_name, item_name, and quantity.

select *
from orders;

Views are usually not allowed to be updated, because
the updates would have to be made to the base tables that
make up the definition of the view. When a view is created
from a single table, the view update is usually unambigu-
ous, but when a view is created from the joins of multiple
tables, the base table updates are very often ambiguous
and may have undesirable side effects. Each relational sys-
tem has its own rules about when views can and cannot be
updated.
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EXERCISES
ER and UML Conceptual Data Modeling
Problem 2.1. Draw a detailed ER diagram for a car
rental agency database (e.g., Hertz). Keep track of the cur-
rent rental location of each car and its current condition
and history of repairs, along with information for a
local office, including customer information, expected
return date, return location, and car status (ready, being-
repaired, currently-rented, being-cleaned). Select attributes
from your intuition about the situation and list them sepa-
rately from the diagram, but in associationwith a particular
entity or relationship in the ER model.
Problem 2.2. Given the following assertions for a rela-
tional database that represents the current term enroll-
ment at a large university, draw an ER diagram for this
schema that takes into account all the assertions given.
There are 2000 instructors, 4000 courses, and 30000
students. Use as many ER constructs as you can to
represent the true semantics of the problem.
Assertions:

• An instructor may teach one or more courses in a

given term (average ¼ 2.0 courses).
• An instructor must direct the research of at least

one student (average ¼ 2.5 students).
• A course may have none, one, or two prerequisites

(average ¼ 1.5 prerequisites).
• A course may exist even if no students are currently

enrolled.
• All courses are taught by exactly one instructor.
• The average enrollment in a course is 30 students.
• A student must select at least one course per term

(average ¼ 4.0 course selections).
Problem 3.1. Draw a detailed UML diagram for a car
rental agency database (e.g., Hertz). Keep track of the
285
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current rental location of each car and its current
condition and history of repairs, along with informa-
tion for a local office, including customer information,
expected return date, return location, and car
status (ready, being-repaired, currently-rented, being-
cleaned). Select attributes from your intuition about
the situation, and list them separately from the
diagram, but in association with a particular class in
the UML diagram.
Problem 3.2. Given the following assertions for a rela-
tional database that represents the current term enroll-
ment at a large university, draw a UML diagram for
this schema that takes into account all the assertions
given. There are 2000 instructors, 4000 courses, and
30000 students. Use as many UML constructs as you
can to represent the true semantics of the problem.
Assertions:
• An instructor may teach none, one, or more courses

in a given term (average ¼ 2.0 courses).
• An instructor must direct the research of at least

one student (average ¼ 2.5 students).
• A course may have none, one, or two prerequisites

(average ¼ 1.5 prerequisites).
• A course may exist even if no students are currently

enrolled.
• All courses are taught by only one instructor.
• The average enrollment in a course is 30 students.
• A student must select at least one course per term

(average ¼ 4.0 course selections).
Conceptual Data Modeling and
Integration

Problem 4.1. The following ER diagrams represent two
views of a video store database as described to a data-
base designer. Show how the two views can be
integrated in the simplest and most useful way by
making all necessary changes on the two diagrams.
State any assumptions you need to make.
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Transformation of the Conceptual
Model to SQL

Problem 5.1.
a. Transform your integrated ER diagram from Problem

4.1 into an SQL database with five to ten rows per table
of data you can make up to fit the database schema.
b. Demonstrate your database by displaying all the fol-
lowing queries:
1. Which video store branches have Shrek in stock

(available) now?
2. In what section of the store (film category) can you

find The Terminator?
3. For customer Annika Sorenstam, what titles are

currently being rented and what are the overdue
charges, if any?

4. (Any query of your choice—show what your system
can really do!)
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Normalization and Minimum
Set of Tables

Problem 6.1. Given the table R1(A, B, C) with FDs A ->
B and B -> C:
a. Is A a superkey for this table?

b. Is B a superkey for this table?
c. Is this table in 3NF, BCNF, or neither?
Problem 6.2. Given the table R1(A,B,C,D) with FDs AB -
> C and BD -> A:
a. What are all the superkeys of this table?

b. What are all the candidate keys for this table?
c. Is this table in 3NF, BCNF, or neither?
Problem 6.3. The following FDs represent a set of air-
line reservation system database constraints. Design a
minimum set of BCNF tables, preserving all FDs, and
express your solution in terms of the code letters given
below (a time-saving device for your analysis). Is the
set of tables you derived also BCNF?
reservation_no -> agent_no, agent_name,
airline_name, flight_no, passenger_name

reservation_no -> aircraft_type, departure_date,
arrival_date, departure_time, arrival_time

reservation_no -> departure_city, arrival_city,
type_of_payment, seating_class, seat_no

airline_name, flight_no -> aircraft_type,
departure_time, arrival_time

airline_name, flight_no -> departure_city,
arrival_city, meal_type

airline_name, flight_no, aircraft_type -> meal_type

passenger_name -> home_address, home_phone,
company_name

aircraft_type, seat_no -> seating_class

company_name -> company_address, company_phone

company_phone -> company_name
A: reservation_no

B: agent_no

C: agent_name

D: airline_name
E: flight_no

F: passenger_name

G: aircraft_type

H: departure_date
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I: arrival_date

J: departure_time

K: arrival_time

L: departure_city

M: arrival_city

N: type_of_payment

P: seating_class
Q: seat_no

R: meal_type

S: home_address

T: home_phone

U: company_name

V: company_address

W: company_phone
Problem 6.4. Given the following set of FDs, find the
minimum set of 3NF tables. Designate the candidate
key attributes of these tables. Is the set of tables you
derived also BCNF?
a. J -> KLMNP

b. JKL -> MNP
c. K -> MQ

d. KL -> MNP
e. KM -> NP
f. N -> KP
Logical Database Design
(Generic Problem)

Problem 7.1. Design and implement a small database
that will be useful to your company or student
organization.
a. State the purpose of the database in a few sentences.

b. Construct an ER or UML class diagram for the

database.
c. Transform your ER or UML diagram into a working

database with five to ten rows per table of data you
can make up to fit the database schema. You should
have at least four tables, enough to have some inter-
esting queries. Use Oracle, DB2, SQL Server, Access,
or any other database system.
d. Show that your database is normalized (BCNF) using
FDs derived from your ER diagram and from personal
knowledge of the data. Analyze the FDs for each table
separately (this simplifies the process).

e. Demonstrate your working database by displaying the
results of four queries. Pick interesting and complex
queries (impress us!).
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OLAP
Problem 10.1. As mentioned in Chapter 10, hypercube
lattice structures are a specialization of product graphs.
Figure 10.16 shows an example of a three-dimensional
hypercube lattice structure. Figure 10.13 shows an
example of a two-dimensional product graph. Notice
the two figures are written using different notations.
Write the hypercube lattice structure in Figure 10.16
using the product graph notation introduced with
Figure 10.13. Keep the same dimension order. Don’t
worry about carrying over the view sizes. Assume the
Customer, Part, and Supplier dimensions are keyed by
customer id, part id, and supplier id, respectively. Shade
the nodes representing the fact table and the views
selected for materialization as indicated in the “Selec-
tion of Materialized Views” section in Chapter 10.



SOLUTIONS TO SELECTED
EXERCISES
Problem 2.2.

Instructor

directs-res

Student

teaches Course

enrolled-in

term

N

N

N

N1

has-prereq

N

1

1

Problem 3.2.

Student

Course

Enrollment

Instructor
1 * 

1 .. * 

0 .. 2

prerequisite

term 

*

1 .. * 
teacher

advisor

researcher
Problem 4.1. Connect Movie to Video-copy as a 1-to-n
relationship (Video-copy at the n side), or use a general-
ization from Movie to Video-copy with Movie as the
supertype and Video-copy as the subtype.
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Problem 6.1. Given the table R1(A, B, C) with FDs A ->
B and B -> C:
a. Is A a superkey for this table? Yes
b. Is B a superkey for this table? No
c. Is this table in 3NF, BCNF, or neither? Neither 3NF nor

BCNF.
Problem 6.3. Minimum set of 3NF (and BCNF) tables:
R1: ABCDEFHINQ with key A and FD A ->

BCDEFHINQ (and A -> P optional).
R2: DEGJKLMR with key DE and FD DE -> GJKLMR.
R3: FSTU with key F and FD F -> STU.
R4: UVW with keys U and W and FDs U -> VW and

W-> U.
R5: GQP with key GQ and FD GQ -> P.
Problem 6.4. Given these FDs, begin Step 1 (LHS
reduction):
a. J -> KLMNP
b. JKL -> MNP First, eliminate K and L since J -> KL in

(a), merge with (a).
c. K -> MQ
d. KL -> MNP Third, eliminate L since K -> MNP from

merged (c), (d) is redundant.
e. KM -> NP Second, eliminate M since K -> M in (c),

merge with (c).
f. N -> KP
End of Step 1; begin Step 2 (RHS reduction for
transitivities):
a. J -> KLMNP First, reduce by eliminating MNP since K

-> MNP.
b. K ->MQNP Second, reduce by eliminating P since N ->

P.
c. N -> KP
End of Step 2 and consolidation in Step 3:
a. J -> KL
b. K -> MNQ (or K -> MNPQ) First, merge (b) and (c)

for Superkey Rules 1 and 2.
c. N -> KP (or N -> K)
Steps 4 and 5:
a. J -> KL Candidate key is J (BCNF).
b. K -> MNPQ and N -> K Candidate keys are K and N

(BCNF).
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Problem 10.1.

Customer Dimension 
(first dimension) 

0: cust id 
1: all (0, 0, 0) 

Fact Table 

Part Dimension 
(second dimension) 

0: part id 
1: all 

Supplier Dimension 
(third dimension) 

0: supplier id 
1: all 

(1, 0, 0) 

(1, 1, 0) 

(0, 0, 1)(0, 1, 0) 

(1, 0, 1) (0, 1, 1)

(1, 1, 1) 



Glossary
activity diagram (UML)—a process workflow model (diagram) showing
the flow from one activity to the next.

aggregation—a special type of abstraction relationship that defines a
higher-level entity that is an aggregate of several lower-level entities;
a “part-of” relationship. For example, a Bicycle entity is an aggregate
of Wheel, Handlebar, and Seat entities.

association—a relationship between classes (in UML). Associations can
be binary, n-ary, reflexive, or qualified.

attribute—a primitive data element that provides descriptive detail
about an entity; a data field or data item in a record. For example,
lastname would be an attribute for the entity Customer. Attributes
may also be used as descriptive elements for certain relationships
among entities.

automatic summary table (AST)—materialized (summary) views or
aggregates of data saved by OLAP for future use to reduce query
time.

binary recursive relationship—a relationship between one occurrence
of an entity with another occurrence of the same entity.

binary relationship—a relationship between occurrences of two
entities.

BLOB—binary large object, often containing multimedia types of data
or images.

Boyce-Codd normal form (BCNF)—a table is in Boyce-Codd normal
form if and only if for every functional dependency X -> A, where X
and A are either simple or composite attributes (data items), X must
be a superkey in that table. This is a strong form of 3NF and is the
basis for most practical normalization methodologies.

candidate key—any subset of the attributes (data items) in a superkey
that is also a superkey and is not reducible to another superkey.

CASE tool—computer-aided software engineering tool, or software
design tool, to assist in the logical design of large or complex
databases. For example, AllFusion ERwin Data Modeler, Rational
Data Architect, or PowerDesigner.

class—a concept in a real-world system, represented by a noun in UML;
similar to an entity in the ER model.

class diagram (UML)—a conceptual data model; a model of the static
relationships between data elements of a system (similar to an ER
diagram).

completeness constraint—double line symbol connecting a supertype
entity with the subtypes to designate that the listed subtype entities
represent a complete set of possible subtypes.
295



296 Glossary
composition—a relationship between one class and a group of other
classes in UML; the class at the diamond (aggregate) end of the
relationship is composed of the class(es) at the small (component)
end; similar to aggregation in the ER model.

conceptual data model—an organization of data that describes the
relationships among the primitive data elements. For example, in the
ER model, it is a diagram of the entities, their relationships, and their
attributes.

connectivity of a relationship—a constraint on the count of the
number of associated entity occurrences in a relationship, either one
or many.

data item—the basic component of a data record in a file or database
table; the smallest unit of information that has meaning in the real
world. For example, customer last name, address, identification
number.

data mining—a way of extracting knowledge from a database by
searching for correlations in the data in order to present promising
hypotheses to the user for analysis and consideration.

data model—an organization of data that describes the relationships
among the primitive and composite data elements.

data warehouse—a large repository of historical data that can be
integrated for decision support.

database—a collection of interrelated stored data that serves the needs
of multiple users; a collection of tables in the relational model.

database administrator (DBA)—person in a software organization who
is in charge of designing, creating, and maintaining the databases of
an enterprise. The DBA makes use of a variety of software tools
provided by a DBMS.

database life cycle—an enumeration and definition of the basic steps in
the requirements analysis, design, creation, and maintenance of a
database as it evolves over time.

database management system (DBMS)—a generalized software system
for storing and manipulating databases. For example, Oracle, IBM’s
DB2, and Microsoft SQL Server or Access.

DBA—see database administrator.
degree of a relationship—the number of entities associated in the

relationship: recursive binary (1 entity), binary (2 entities), ternary
(3 entities), n-ary (n entities).

denormalization—the consolidation of database tables to increase
performance in data retrieval (query), despite the potential loss of
data integrity. Decisions on when to denormalize tables are based on
cost–benefit analysis by the DBA.

deployment diagram (UML)—shows the physical nodes on which a
system executes. This is more closely associated with physical
database design.

dimension table—the smaller tables used in a data warehouse to
denote the attributes of a particular dimension such as time,
location, customer characteristics, product characteristics, etc.
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disjointness constraint (d)—symbol in an ER diagram to designate that
the lower-level entities in a generalization relationship have
nonoverlapping (disjoint) occurrences. If the occurrences overlap,
then use the designation (o) instead of (d) in the ER diagram.

entity—a data object that represents a person, place, thing, or event of
informational interest; corresponds to a record in a file when stored.
For example, you could define Employee, Customer, Project, Team,
and Department as entities.

entity cluster—the result of a grouping operation on a collection of
entities and relationships in an ER model to form a higher-level
abstraction that can be used to more easily keep track of the major
components of a large-scale global schema.

entity instance (or occurrence)—a particular occurrence of an entity.
For example, an instance of the entity Actor would be Johnny Depp.

entity–relationship (ER) model—a conceptual data model involving
entities, relationships among entities, and attributes of those entities.

entity–relationship (ER) diagram—a diagram (or graph) of entities and
their relationships, and possibly the attributes of those entities.

exclusion constraint—a symbol (þ) between two relationships in the
ER model that have a common entity that implies that either one
relationship must hold at a given point in time, or the other must
hold, but not both.

existence dependency—there exists a dependency between two entities
such that one is dependent for its existence on the other and cannot
exist alone. For example, an Employee Work-history entity cannot
exist without the corresponding Employee entity. Also refers to the
connectivity between two entities as being mandatory or optional.

fact table—the dominating table in a data warehouse and its star
schema, containing dimension attributes and data measures at the
individual data level.

file—a collection of records of the same type. For example, an employee
file is a collection of employee records.

first normal form (1NF)—a table is in first normal form if and only if
there are no repeating columns of data taken from the same domain
and having the same meaning.

foreign key—any attribute in an SQL table (key or nonkey) that is taken
from the same domain of values as the primary key in another SQL
table and can be used to join the two tables (without loss of data
integrity) as part of an SQL query.

functional dependency (FD)—the property of one or more attributes
(data items) that uniquely determines the value of one or more other
attributes (data items). Given a table R, a set of attributes B is
functionally dependent on another set of attributes A if, at each
instant of time, each A value is associated with only one B value.

generalization—a special type of abstraction relationship that specifies
that several types of entities with certain common attributes can be
generalized (or abstractly defined) with a higher-level entity type, a
supertype entity; an “is-a” relationship. For example, Employee is a
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generalization of Engineer, Manager, and Administrative-assistant
based on the common attribute job-title. A tool often used to make
view integration possible.

global schema—a conceptual data model that shows all the data and
their relationships in the context of an entire database.

key—a generic term for a set of one or more attributes (data items) that,
taken collectively, allows one to identify uniquely an entity or a
record in an SQL table; a superkey.

logical design—the steps in the database life cycle involved with the
design of the conceptual data model (schema), schema integration,
transformation to SQL tables, and table normalization; the design of
a database in terms of how the data is related, but without regard to
how it will be stored.

lossless decomposition—a decomposition of an SQL table into two or
more smaller tables is lossless if and only if the cycle of table
decomposition (normalization) and the recomposition through
joining the tables back through common attributes can be done
without loss of data integrity.

mandatory existence—a connectivity between two entities that has a
lower bound of one. For example, for the “works-in” relationship
between an Employee and a Department, every Department has at
least one Employee at any given time. Note: If this is not true, then
the existence is optional.

multiplicity—in UML, the multiplicity of a class is an integer that
indicates how many instances of that class are allowed to exist.

normalization—the process of breaking up a table into smaller tables to
eliminate problems with unwanted loss of data (the egregious side
effects of losing data integrity) from the deletion of records, and
inefficiencies associated with multiple data updates.

object-relational database—a relational database with object-oriented
concepts added. While not fully object oriented, object-relational
database systems still successfully compete with object-oriented
database systems.

online analytical processing (OLAP)—a query service that overlays a
data warehouse by creating and maintaining a set of summary views
(automatic summary tables, or ASTs) to allow for quick access to
summary data.

optional existence—a connectivity between two entities that has a
lower bound of zero. For example, for the “occupies” relationship
between an Employee and an Office, there may exist some Offices
that are not currently occupied.

package—in UML, a package is a graphical mechanism used to
organize classes into groups for better readability.

physical design—the step in the database life cycle involved with the
physical structure of the data—that is, how it will be stored,
retrieved, and updated efficiently. In particular, it is concerned with
issues of table indexing and data clustering on secondary storage
devices (disks).
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primary key—a key that is selected from among the candidate keys for
an SQL table to be used to create an index for that table.

qualified association—in UML, an association between classes may
have constraints specified in the class diagram.

record—a group of data items treated as a unit by an application; a row
in a database table.

reflexive association—in UML, a reflexive association relates a class to
itself.

referential integrity—a constraint in an SQL database that requires that
for every foreign key instance that exists in a table, the row (and thus
the primary key instance) of the parent table associated with that
foreign key instance must also exist in the database.

relation—a table in a relational database.
relationship—real-world association among one or more entities. For

example, “purchased” could be a relationship between Customer
and Product.

requirements specification—a formal document that defines the
requirements for a database in terms of the data needed, the major
users and their applications, the physical platform and software
system, and any special constraints on performance, security, and
data integrity.

row—a group of data items treated as a unit by an application; a record;
a tuple in relational database terminology.

schema—a conceptual data model that shows all the relationships
among the data elements under consideration in a given context; the
collection of table definitions in a relational database.

second normal form (2NF)—a table is in second normal form if and only
if each nonkey attribute (data item) is fully dependent on the primary
key—that is, either the left side of every functional dependency (FD)
is a primary key or can be derived from a primary key.

star schema—the basic form of data organization for a data warehouse,
consisting of a single large fact table and many smaller dimension
tables.

subtype entity—the higher-level abstract entity in a generalization
relationship.

superkey—a set of one or more attributes (data items) that, taken
collectively, allows one to identify uniquely an entity or a record in a
relational table.

supertype entity—the lower-level entity in a generalization relationship.
table—in a relational database, the collection of rows (or records) of a

single type (similar to a file).
ternary relationship—a relationship that can only be defined among

occurrences of three entities.
third normal form (3NF)—a table is in third normal form if and only if

for every functional dependency X -> A, where X and A are either
simple or composite attributes (data items), either X must be a
superkey or A must be a member attribute of a candidate key in that
table.
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tuple—a row in a relational table; a record.
UML—Unified Modeling Language; a popular form of diagramming

tools used to define data models and processing steps in a software
application.

view integration—a step in the logical design part of the database life
cycle that collects individual conceptual data models (views) into a
single unified global schema. Techniques such as generalization are
used to consolidate the individual data models.

XML—the eXtensible Markup Language used to represent data and
transfer it between systems, particularly for Web technologies.
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QUERY OPTIMIZATION AND
PLAN SELECTION
It is a capital mistake to theorize before one has the data.

Insensibly one begins to twist facts to suit theories, instead of

theories to suit facts.

—Sir Arthur Conan Doyle (1859–1930)
If you ever wanted to learn to play the piano, there are
many different approaches that people have tried over
the past three centuries. The traditional recommended
way is to sign up with a professional teacher and take
lessons one-on-one. Others have tried a variety of methods
of self-instruction, such as using books like Piano for
Dummies, watching videos, or just getting some sheet
music and starting to play. Regardless of which method
you choose, there is another variable, namely how to pro-
ceed to learn the piece you want to play: hands separate
and then together, hands together from the beginning,
learning in sections, etc. Therefore, to get to the final goal,
there are literally dozens and possibly hundreds of paths
one can take to get the final “correct” result. The quality
of the result may vary, but you can get there many different
ways. For database queries there are also multiple paths
leading to the same result, and it is important to be able
to analyze the different paths for the quality of the result;
that is, to be able to analyze the performance of the system
for each path to the correct result and choose the best path
to get you there.

This chapter focuses on the basic concepts of query
optimization needed to understand the interactions
3
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between physical database design and query processing.
We start with a simple example of query optimization
and illustrate how input/output (I/O) time estimation tec-
hniques can be applied to determining which query execu-
tion plan would be best. We focus here on the practical
trade-off analysis needed to find the best query execution
plan to illustrate the process.

3.1 Query Processing and Optimization
The basic steps of query processing are:

1. Scanning, parsing, and decomposition of an SQL query.
This step checks for correct SQL query syntax and
generates appropriate error messages when necessary.
The output of this step is an intermediate form of the
query known as a query tree or query execution plan.

2. Query optimization. This step includes both local and
global optimization. Global optimization determines the
order of joins and the order of selections and projections
relative to the joins. It also involves restating (recasting)
nested join queries into flat queries involving the same
joins. This is the main concept described in this chapter.
Local optimization determines the index method for
selections and joins. Both kinds of optimization are
based on estimates of cost (I/O time) of the various alter-
native query execution plans generated by the optimizer.
The cost model is based on a description of the database
schema and size, and looks at statistics for the attribute
values in each table involved in queries.

3. Query code generation and execution. This step uses
classical programming language and compiler techni-
ques to generate executable code.
3.2 Useful Optimization Features in
Database Systems

In addition to the basics of query processing and opti-
mization described above, there are many useful features
in database management systems today that aid the data-
base administrator, application developer, and database
system itself to process queries more efficiently.
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3.2.1 Query Transformation or Rewrite
Modern databases (e.g., Oracle, DB2, SQL Server) trans-

form (rewrite) queries into more efficient forms before
optimization takes place. This helps tremendously with
query execution plan selection. Examples of the more
popular query rewrites are transforming subqueries into
joins or semi-joins, pushing down the group by operations
below joins, the elimination of joins on foreign keys when
the tables containing the results of the join are no longer
used in the query, converting outer joins to inner joins
when they produce equivalent results, and replacing a view
reference in a query by the actual view definition (called
view merging).

A very common transformation is the materialized view
rewrite. If some part of a query is equivalent to an existing
materialized view, then the code is replaced by that view.
Oracle, for instance, performs a materialized view trans-
formation, then optimizes both the original query and
the rewritten query and chooses the more efficient plan
between the two alternatives.

Rewrites are especially common in data warehouses
using the star schema format. In Oracle, for instance, joins
of the fact table with one or more dimension tables are
replaced by subqueries involving both tables, using special
(bitmap) indexes on the fact table for efficiency.
3.2.2 Query Execution Plan Viewing
How do you know what plan your database chose for

the most recent query? All modern database products pro-
vide some facility for the user to see the access plan.
In DB2 and Oracle it is called Explain or Explain Plan
(the graphical version is called Visual Explain). This facility
describes all the steps of the plan, the order in which tables
are accessed for the query, and whether an index is used to
access a table. The optimizer selects the best plan from
among the candidate plans generated.

3.2.3 Histograms
Many database systems (e.g., DB2, SQL Server, Oracle)

make use of stored histograms of ranges of attribute values
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from the actual database to help make better estimates
of selectivities for selection and join operations, so
costs for query execution plans can be estimated more
accurately.

3.2.4 Query Execution Plan Hints
AlongwithExplain, planhints havebecomeamajor fixture

in the database industry, allowing application programmers
(users) to force certain plan choices, removing uncertainty
in many cases. Hints are programmer directives to an SQL
query that can change the query execution plan. They are
supported by all of the major database systems. While made
widely available, they should be used only when major
performance problems are present. As an example of the
use of a hint, a user can set up an experiment to compare a
suboptimal index with an optimal index (and therefore an
optimal plan) and see if the performance difference is worth
the overhead to use the optimal index, especially if it is used
only for this query.
3.2.5 Optimization Depth
Different database products have different search depth,

the simplest being greedy search, but there are usually more
advanced dynamic programming-based approaches as well.
Often the search depth is a configurable parameter.
3.3 Query Cost Evaluation—An Example
The example in this section assumes that we have a basic

query execution plan to work with, and focuses on query
cost evaluation to minimize I/O time to execute the
query whose plan we are given. It illustrates the benefit of
applying well-known query optimization strategies to a
simple real-life problem. Although the problem is elemen-
tary, significant improvements in query time can still be
achieved using heuristic rules, and the definition of those
rules can be clearly illustrated.

Let us assume a simple three-table database (Date,
2003) with the following materialization of tables: part,
supplier, and the intersection table shipment.



Part (P) Supplier (S) Shipment (SH)
pnum pname wt snum sname city status snum pnum qty shipdate

p1 bolt 3 s1 brown NY 3 s1 p2 50 1-4-90

p2 nail 6 s2 garcia LA 2 s1 p3 45 2-17-90

p3 nut 2 s3 kinsey NY 3 s2 p1 100 11-5-89

s2 p3 60 6-30-91

s3 p3 50 8-12-91

Attribute name and size (bytes), and table name and size:
supplier: snum(5), sname(20), city(10), status(2) ¼> 37 bytes in one record in supplier
part: pnum(8), pname(10), wt(5) ¼> 23 bytes in one record in part
shipment: snum(5), pnum(8), qty(5), shipdate(8) ¼> 26 bytes in one record in shipment
Note: Assumed block size (bks) ¼ 15,000 bytes.
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3.3.1 Example Query 3.1
“What are the names of parts supplied by suppliers in

New York City?” If we translate the query to SQL we have

SELECT p.pname

FROM P, SH, S

WHERE P.pnum ¼ SH.pnum

AND SH.snum ¼ S.snum

AND S.city ¼ ’NY’;

Possible join orders of three tables ¼ 3! ¼ 6:
1. S join SH join P
2. SH join S join P
3. P join SH join S
4. SH join P join S
5. S � P join SH
6. P � S join SH

There are six possible join orders of these three tables,
given the two joins specified in the query. Orders 1 and
2 are equivalent because of the commutativity of joins: A join
B is equivalent to B join A. By the same rule, orders 3 and 4
are equivalent, and orders 5 and 6 are equivalent. Orders 5
and 6 are to be avoided if at all possible because they
involve the Cartesian product form of join when there are
no overlapping columns. When this occurs the size of the
resulting table is the product of the rows in the individual
tables and can be extremely large. Also, the data in the
new table is arbitrarily connected.
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We are left with orders 1 and 3 as the reasonable options
to consider. Within these two orders, we can also consider
doing the joins first or doing the selections first. We can
also consider doing the queries with indexes and without
indexes. We now do a cost estimate for these four among
the eight possible alternatives:
• Option 1A: Order 1 with joins executed first, selections

last, without indexes.
• Option 1B: Order 1 with selections executed first, joins

last, without indexes.
• Option 3A: Order 3 with joins executed first, selections

last, without indexes.
• Option 3B: Order 3 with selections executed first, joins

last, without indexes.
Intuitively we know that option 1B improves on 1A

because joins are by far the most costly operations, and if
we can reduce the size of the tables before joining them, it
will be a lot faster than joining the original larger tables.
In option 1B we also explore the possibility of using indexes.

In these examples we only consider queries and not
updates to illustrate the efficiency of executing selections
first and using indexes. In practice, query optimizers
must consider updates.

Finally, we use sequential block accesses (SBA) and
random block accesses (RBA) as estimators for I/O time
since there is a linear relationship between SBA or RBA
and I/O time, and I/O time is a generally accepted form
of cost comparison in database operations.
Option 1A Cost Estimation: Brute-Force Method
of Doing All Joins First, with No Indexes

We summarize the basic sizes of records, counts of
records, and counts of blocks accessed sequentially in the
following table. The tables TEMPA, TEMPB, and so on,
are temporary tables formed as the result of intermediate
operations during the course of the query.

This approach is detailed below and summarized in
Figure 3.1 using the query execution plan notation of
Roussopoulos (1982). The query execution plan dictates
that the joins are executed first, then the selections. We
use merge joins, so no indexes are used in this option.



RESULT
10K

TEMPC
10K

TEMPB
100K

TEMPA
100K

TEMPA P

PNUM

S SH

S
SNUM, SNAME,

CITY, STATUS 200

SH
SNUM, PNUM, QTY,

SHIPDATE 100K

P
PNUM, PNAME,

WT 100

SNUM

p
PNAME

CITY=′NY′

Figure 3.1 Query execution plan for option 1A.

Table Row Size No. Rows BF Scan Table (no. Blocks)

supplier (S) 37 bytes 200 405 1

part (P) 23 bytes 100 652 1

shipment (SH) 26 bytes 100K 576 174

TEMPA (S join SH) 58 bytes 100K 258 388

TEMPB (TEMPA join P) 73 bytes 100K 205 488

TEMPC (select TEMPB) 73 bytes 10K 205 49

BF is the blocking factor or rows per block (estimated with average row size).
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For each step we first estimate the number of records
accessed, then sequential blocks accesses, then take a sum
of SBAs. We assume each table is stored on disk after
each operation and then must be read from disk to do the
next operation.
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Step 1. Join S and SH over the common column snum
forming TEMPA (snum, sname, city, status, pnum, qty,
shipdate) at 58 bytes per row (record). If a sort of a table
is required before executing a merge join, the estimated
cost of an M-way sort is approximately 2 � nb � logM nb
(O’Neil, 2001; Silberschatz, 2006) where nb is the number
of blocks (pages) in the table to be sorted. In these
examples, M ¼ 3. However, in this case we don’t need to
sort SH since table S is very small, less than one block,
so we only need to scan SH and compare in fast memory
with one block of S.

Number of block accesses ðstep 1Þ
¼ read Sþ read SHþwrite TEMPA
¼ ceilingð200=405Þ þ ceilingð100K=576Þ

þceilingð100K=258Þ
¼ 1þ 174þ 388
¼ 563:

Step 2. Join P and TEMPA over the common column
pnum forming TEMPB.

Number of block accesses ðstep 2Þ
¼ read Pþ sort TEMPA þ read TEMPA
þwrite TEMPB

¼ 1þ 2� 388� log3 388þ 388þ 488
¼ 1þ 4214þ 388þ 488
¼ 5, 091:

Step 3. Select TEMPB where city ¼ ‘NY’ forming TEMPC
(same attributes as TEMPB) at 73 bytes per row. Assume
NY has 10% of all suppliers.

Number of block accesses ðstep 3Þ
¼ read TEMP þwrite TEMPC
¼ 488þ 49 ¼ 537:

Step 4. Project TEMPC over pname forming RESULT
(pname) at 10 bytes per row.
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Number of rows ¼ 10K ðread TEMPCÞ
Number of block accesses ðstep 4Þ
¼ read TEMPC
¼ 49:

In summary, for the entire query (option 1A) we have
the following totals:

Number of block accesses for query ðoption 1AÞ
¼ 563þ 5, 091þ 537þ 49 ¼ 6, 240:

Option 1B Cost Estimation: Do All Selections (Including
Projections) before Joins, without Indexes (and an
Exploration of the Potential Use of Indexes)
Table
Row
Size

No.
Rows BF

Scan Table
(no. Blocks)

supplier (S) 37 B 200 405 1

part (P) 23 B 100 652 1

shipment (SH) 26 B 100K 576 174

TEMP1 (select from S) 37 B 20 405 1

TEMP2 (project over SH) 13 B 100K 1,153 87

TEMP3 (project over P) 18 B 100 833 1

TEMP4 (TEMP1 semi-join TEMP2) 13 B 10K 1,153 9

TEMP5 (TEMP4 semi-join TEMP3) 18 B 10K 833 13
This approach is detailed below and summarized in
Figure 3.2.

Step 1. We first select S where city ¼ ‘NY’ forming
TEMP1 (snum, sname, city, status) at 37 bytes per row.
Because this is a very small table, we avoid creating an
index and just scan the table instead.

Number of block accesses ðstep 1Þ
¼ read Sþwrite 10% of rows to TEMP1
¼ 1þ 1
¼ 2:



RESULT
PNAME 10K

TEMP5
PNUM, PNAME

10K

TEMP4
SNUM, PNUM

10K

TEMP4 TEMP3

PNUM

TEMP1 TEMP2

SNUM

TEMP1
SNUM, SNAME,

CITY, STATUS 20

TEMP2
SNUM, PNUM 100K

S
SNUM, SNAME,

CITY, STATUS 200

SH
SNUM, PNUM, QTY,

SHIPDATE 100K

P
PNUM, PNAME,

WT 100

TEMP3
PNUM, PNAME 100

p
(TEMP5)
PNAME

p
SNUM, PNAME (P)

p
SNUM, PNUM (SH)City=′NY′ (S)

Figure 3.2 Query execution
plan for option 1B.
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Step 2. We then project SH over snum, pnum forming
TEMP2 (snum, pnum) at 13 bytes per row. No indexes
are required since a projection operation requires a full
table scan.

Number of block accesses ðstep 2Þ
¼ read SHþwrite TEMP2
¼ 174þ 87
¼ 261:

Step 3. Next we project P over pnum, pname forming
TEMP3 (pnum, pname) at 18 bytes per row. Again, no
index is required for a projection operation.

Number of block accesses ðstep 3Þ
¼ read Pþwrite TEMP3
¼ 1þ 1
¼ 2:



Chapter 3 QUERY OPTIMIZATION AND PLAN SELECTION 13
Step 4. Now we want to do a semi-join (a combined join
and projection) with TEMP1 with TEMP2 (essentially
joining smaller versions of S and SH), forming TEMP4
(snum, pnum) at 13 bytes per row, which has the same
scheme as TEMP2. Note that sorting of TEMP2 is not
required here because TEMP1 is a very small table
(much less than one block). Even with 10% hit rates of
records in TEMP2, virtually every block will be accessed
because of the very large blocking factor. Therefore, we
don’t need an index in this situation.

Number of block accesses ðstep 4Þ
¼ read TEMP1þ read TEMP2

þwrite TEMP4
¼ 1þ 87þ 9
¼ 97:

Step 5. Now we have TEMP4 (snum, pnum) and TEMP3
(pnum, pname) that need to be joined over pnum. To
accomplish this with a minimum of I/O cost we do a
semi-join with TEMP4 projected over pnum before join-
ing with TEMP3 and forming TEMP5 (pnum, pname)
with 18 bytes per row. No sorting of TEMP4 is required
because TEMP3 is very small (less than one block).

Number of block accesses ðstep 5Þ
¼ read TEMP4þ read TEMP3

þwrite TEMP5
¼ 9þ 1þ 13
¼ 23:

Step 6. Finally we project TEMP5 over pname for the
final result.

Number of rows ¼ 10K ðread TEMP5Þ
Number of block accesses ðstep 6Þ
¼ read TEMP5
¼ 13:

In summary, the total cost of answering the query using
this approach is as follows:

Number of block accesses for the query ðoption 2AÞ
¼ 2þ 261þ 2þ 97þ 23þ 13
¼ 398:



Option 1A

Option 1B
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We now compare the two approaches:
Block Accesses

6,240 executing joins first

398 executing joins last
It is clearly seen that the use of table reduction tech-
niques (early selections and projections) has the potential
of greatly reducing the I/O time cost of executing a query.
Although in this example indexes were not required, in
general they can be very useful to reduce I/O time further.

3.4 Query Execution Plan Development
A query execution plan is a data structure that represents

each database operation (selections, projections, and joins)
as a distinct node. The sequence of operations in a query
execution plan can be represented as top down or bottom
up. We use the bottom-up approach, and Figures 3.1 and 3.2
are classic examples of the use of query execution plans to
denote possible sequences of operations needed to complete
SQL queries. An SQL query may have many possible execu-
tion sequences, depending on the complexity of the query,
and each sequence can be represented by a query execution
plan. Our goal is to find the query execution plan that
finds the correct answer to the query in the least amount of
time. Since the optimal solution to this problem is often too
difficult and timeconsuming todetermine relative to the time
restrictions imposed on database queries by customers,
query optimization is really a process of finding a “good”
solution that is reasonably close to the optimal solution, but
can be quickly computed.

Apopularheuristic formanyqueryoptimizationalgorithms
in database systems today involves the simple observation
from Section 3.3 that selections and projections should be
done before joins because joins tend to be by far the most
time-costly operations. Joins should be done with the smallest
segments of tables possible, that is, those segments that have
only the critical data needed to satisfy the query. For instance
in Example Query 3.1, the supplier records are requested for
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suppliers in New York, which represents only 10% of the
supplier table. Therefore, it makes sense to find those records
first, store them in a temporary table, and use that table as
the supplier table for the join between supplier and shipment.
Similarly, only the columns of the tables in a join that have
meaning to the join, the subsequent joins, and the final display
of results need to be carried along to the join operations.
All other columns should be projected out of the table before
the join operations are executed.

To facilitate the transformation of a query execution
plan from a random sequence of operations to a methodi-
cal sequence that does selections and projections first and
joins last, we briefly review the basic transformation rules
that can be applied to such an algorithm.

3.4.1 Transformation Rules for Query
Execution Plans

The following are self-evident rules for transforming
operations in query execution plans to reverse the sequence
and produce the same result (Silberschatz, 2006). Allow
different query trees to produce the same result.

Rule 1. Commutativity of joins: R1 join R2 ¼ R2 join R1.
Rule 2. Associativity of joins: R1 join (R2 join R3)
¼ (R1 join R2) join R3.
Rule 3. The order of selections on a table does not affect
the result.
Rule 4. Selections and projections on the same table
can be done in any order, so long as a projection does
not eliminate an attribute to be used in a selection.
Rule 5. Selections on a table before a join produce the
same result as the identical selections on that table after
a join.
Rule 6. Projections and joins involving the same
attributes can be done in any order so long as the
attributes eliminated in the projection are not involved
in the join.
Rule 7. Selections (or projections) and union operations
involving the same table can be done in any order.
This flexibility in the order of operations in a query exe-

cution plan makes it easy to restructure the plan to an
optimal or near-optimal structure quickly.



16 Chapter 3 QUERY OPTIMIZATION AND PLAN SELECTION
3.4.2 Query Execution Plan Restructuring
Algorithm

The following is a simple heuristic to restructure a query
execution plan for optimal or near-optimal performance.
1. Separate a selection with several AND clauses into a

sequence of selections (rule 3).
2. Push selections down the query execution plan as far as

possible to be executed earlier (rules 4, 5, 7).
3. Group a sequence of selections as much as possible

(rule 3).
4. Push projections down the plan as far as possible (rules

4, 6, 7).
5. Group projections on the same tables, removing

redundancies.
Figure 3.1 illustrates a query execution plan that

emphasizes executing the joins first using a bottom-up
execution sequence. Figure 3.2 is the same plan, trans-
formed to a plan that executes the joins last using this
heuristic.
3.5 Selectivity Factors, Table Size, and
Query Cost Estimation

Once we are given a candidate query execution plan to
analyze, we need to be able to estimate the sizes of the
intermediate tables the query optimizer will create during
query execution. Once we have estimated those table sizes,
we can compute the I/O time to execute the query using
that query execution plan as we did in Section 3.3. The
sizes of the intermediate tables were given in that
example. Now we will show how to estimate those table
sizes.

Selectivity (S) of a table is defined as the proportion of
records in a table that satisfies a given condition. Thus,
selectivity takes on a value between zero and one. For
example, in Example Query 3.1, the selectivity of records
in the table supplier that satisfies the condition WHERE
city ‘NY’ is 0.1, because 10% of the records have the value
NY for city.
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To help our discussion of selectivity, let us define the
following measures of data within a table:
• The number (cardinality) of rows in table R: card(R).
• The number (cardinality) of distinct values of attribute

A in table R: cardA(R)
• Maximum value of attribute A in a table R: maxA(R)
• Minimum value of attribute A in a table R: minA(R)

3.5.1 Estimating Selectivity Factor for a Selection
Operation or Predicate

The following relationships show how to compute
the selectivity of selection operations on an SQL query
(Ozsu, 1991).

The selectivity for an attribute A in table R to have a spe-
cific value a in a selected record applies to two situations.
First, if the attribute A is a primary key, where each value
is unique, then we have an exact selectivity measure

SðA ¼ aÞ ¼ 1=cardAðRÞ: 3.1

For example, if the table has 50 records, then the selectivity
is 1/50 or 0.02.

On the other hand, if attribute A is not a primary key and
has multiple occurrences for each value a, then we can also
use Equation 3.1 to estimate the selectivity, but we must
acknowledge that we are guessing that the distribution
of values is uniform. Sometimes this is a poor estimate, but
generally it is all we can do without actual distribution
data to draw upon. For example, if there are 25 cities out of
200 suppliers in the supplier table in Example Query 3.1,
then the number of records with ‘NY’ is estimated to be
cardcity(supplier) ¼ 200/25 ¼ 8. The selectivity of ‘NY’ is
1/cardcity(supplier) ¼ 1/8 ¼ 0.125. In reality, the number
of records was given in the example to be 10%, so in this
case our estimate is pretty good, but it is not always true.

The selectivity of an attribute A being greater than (or
less than) a specific value a also depends on a uniform
distribution (random probability) assumption for our
estimation:

SðA > aÞ ¼ ðmaxAðRÞ � aÞ=ðmaxAðRÞ � minAðRÞÞ: 3.2

SðA < aÞ ¼ ða� minAðRÞÞ=ðmaxAðRÞ � minAðRÞÞ: 3.3
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The selectivity of two intersected selection operations
(predicates) on the same table can be estimated exactly if
the individual selectivities are known:

SðP and QÞ ¼ SðPÞ � SðQÞ, 3.4

where P and Q are predicates.
So if we have the query

SELECT city, qty

FROM shipment

WHERE city ¼ ’London’

AND qty ¼ 1000;

where P is the predicate city ¼ ‘London’ and Q is the
predicate qty ¼ 1000, and we know that

Sðcity ¼ ‘London’Þ ¼ :3, and
Sðqty ¼ 1000Þ ¼ :6, then the selectivity of the

entire query,
Sðcity ¼ ‘London’ AND qty ¼ 1000Þ ¼ :3� :6 ¼ :18:

The selectivity of the union of two selection operations
(predicates) on the same table can be estimated using the
well-known formula for randomly selected variables:

SðP or QÞ ¼ SðPÞ þ SðQÞ � SðPÞ � SðQÞ 3.5

where P and Q are predicates.
So if we take the same query above and replace the inter-

section of predicates with a union of predicates, we have:
SELECT city, qty
FROM shipment

WHERE city ¼ ’London’

OR qty ¼ 1000;
Sðcity ¼ ‘London’Þ ¼ :3
Sðqty ¼ 1000Þ ¼ :6
Sðcity ¼ ‘London’ OR qty ¼ 1000Þ ¼ :3þ :6� :3� :6 ¼ :72:
3.5.2 Histograms
The use of average values to compute selectivities can

be reasonably accurate for some data, but for other data
it may be off by significantly large amounts. If all databases
only used this approximation, estimates of query time
could be seriously misleading. Fortunately, many database
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management systems now store the actual distribution of
attribute values as a histogram. In a histogram, the values
of an attribute are divided into ranges, and within each
range, a count of the number of rows whose attribute falls
within that range is made.

In the example above we were given the selectivity of
qty ¼ 1000 to be .6. If we know that there are 2,000 differ-
ent quantities in the shipment table out of 100,000 rows,
then the average number of rows for a given quantity
would be 100,000/2,000 ¼ 50. Therefore, the selectivity of
qty ¼ 1000 would be 50/100,000 ¼ .0005. If we have stored
a histogram of quantities in ranges consisting of integer
values: 1, 2, 3, 4, . . . . . ., 1,000, 1,001,. . . . . .2,000, and found
that we had 60,000 rows containing quantity values equal
to 1,000, we would estimate the selectivity of qty ¼ 1000
to be .6. This is a huge difference in accuracy that would
have dramatic effects on query execution plan cost estima-
tion and optimal plan selection.
3.5.3 Estimating the Selectivity Factor for a Join
Estimating the selectivity for a join is difficult if it is based

on nonkeys; in the worst case it can be a Cartesian product
at one extreme or nomatches at all at the other extreme. We
focus here on the estimate based on the usual scenario for
joins between a primary key and a nonkey (a foreign key).
Let’s take, for example, the join between a table R1, which
has a primary key, and a table R2, which has a foreign key:

cardðR1 join R2Þ ¼ S� cardðR1Þ � cardðR2Þ, 3.6

where S is the selectivity of the common attribute used in
the join, when that attribute is used as a primary key. Let’s
illustrate this computation of the selectivity and then the
size of the joined table, either the final result of the query
or an intermediate table in the query.

3.5.4 Example Query 3.2
Find all suppliers in London with the shipping date of

June 1, 2006.
SELECT supplierName
FROM supplier S, shipment SH



(a) Join executed first

(b) Join executed last
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Figure 3.3 Query execution
plan for cases 1 and 2.
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WHERE S.snum ¼ SH.snum

AND S.city ¼ ’London’

AND SH.shipdate ¼ ’01-JUN-2006’;
Let us assume the following data that describes the
three tables: supplier, part, and shipment:
• card(supplier) ¼ 200
• cardcity(supplier) ¼ 50
• card(shipment) ¼ 100,000
• cardshipdate(shipment) ¼ 1,000
• card(part) ¼ 100

There are two possible situations to evaluate:
1. The join is executed before the selections.
2. The selections are executed before the join.
IPMENT
100K

EMP02
100

HIPMENT
100K

1-Jun-2006
Case 1: Join Executed First

If the join is executed first we know
that there are 200 suppliers (rows in
the supplier table) and 100,000 ship-
ments (rows in the shipment table),
so the selectivity of supplier number
in the supplier table is 1/200. Now
we apply Equation 3.6 to find the cardi-
nality of the join, that is, the count
of rows (records) in the intermediate
table formed by the join of supplier
and shipment:

cardðsupplier join shipmentÞ
¼ SðsnumÞ � cardðsupplierÞ
� cardðshipmentÞ

¼ ð1=200Þ � 200� 100, 000
¼ 100, 000:

This is consistent with the basic
rule of thumb that a join between a
table R1 with a primary key and a
table R2 with the corresponding for-
eign key results in a table with the
same number of rows as the table
with the foreign key (R2). The query
execution plan for this case is shown
in Figure 3.3(a). The result of the two
selections on this joined table is:
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cardðresultÞ ¼ Sðsupplier:city ¼ ‘London’Þ
� Sðshipment:shipdate ¼
‘01-JUN-2006’Þ � card
ðsupplier join shipmentÞ

¼ ð1=50Þ � ð1=1, 000Þ � 100, 000
¼ 2 rows:

Case 2: Selections Executed First

If the selections are executed first, before the join, the
computation of estimated selectivity and intermediate
table size is slightly more complicated, but still straight-
forward. We assume there are 50 different cities in the sup-
plier table and 1,000 different ship dates in the shipment
table. See the query execution plan in Figure 3.3(b).

Sðsupplier:city ¼ ‘London’Þ ¼ 1=cardcityðsupplierÞ ¼ 1=50:
Sðshipment:shipdate ¼ ‘01-JUN-2006’Þ

¼ 1=cardshipmentðshipmentÞ
¼ 1=1, 000:

We now determine the sizes (cardinalities) of the results
of the two selections on supplier and shipment:

cardðsupplier:city ¼ ‘London’Þ
¼ ð1=50Þ � ð200 rows in supplierÞ ¼ 4 rows:

cardðshipment:shipdate ¼ ‘01-JUN-2006’Þ
¼ ð1=1; 000Þ � ð100; 000Þ ¼ 100 rows:

These two results are stored as intermediate tables,
reduced versions of supplier and shipment, which we will
now call ‘supplier’ and ‘shipment’:

cardð‘supplier’Þ ¼ 4ðNote: ‘supplier’ has 4 rows with city
¼ ‘London’:Þ

cardð‘shipment’Þ ¼ 100ðNote: ‘shipment’ has 100 rows
with shipdate ¼ ‘01-JUN-2006’:Þ

Now that we have the sizes of the two intermediate
tables we can apply Equation 3.6 to find the size of the
final result of the join:
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cardð‘supplier’ join ‘shipment’Þ
¼ SðsnumÞ � cardð‘supplier’Þ � cardð‘shipment’Þ
¼ ð1=200Þ � 4� 100
¼ 2:

The final result is 2 rows, that is, all the suppliers in
London with the ship date of 01-JUN-2006.

We note that both ways of computing the final result
have the same number of rows in the result, but the
number of block accesses for each is quite different. The
cost of doing the joins first is much higher than the cost
for doing the selections first.
3.5.5 Example Estimations of Query Execution
Plan Table Sizes

We now revisit Figures 3.1 and 3.2 for actual table sizes
within the query execution plan for Example Query 3.1.
Option 1A (Figure 3.1)

For the query execution plan in Figure 3.1 we first join
supplier (S) and shipment (SH) to form TEMPA. The size
of TEMPA is computed from Equation 3.6 as

cardðTEMPAÞ ¼ S� ðcardðsupplierÞ � cardðshipmentÞÞ
¼ 1=200� 200� 100, 000 ¼ 100, 000 rows,

where S ¼ 1/200, the selectivity of the common attribute in
the join, snum.

Next we join TEMPA with the part table, forming
TEMPB.

cardðTEMPBÞ ¼ S� ðcardðTEMPAÞ � cardðpartÞÞ
¼ 1=100� 100, 000� 100 ¼ 100, 000 rows,

where S ¼ 1/100, the selectivity of the common attribute in
the join, pnum.

Finally we select the 10% of the rows from the result
that have city ¼ ‘NY’, giving us 10,000 rows in TEMPC
and the final result of the query. We note that the 10% ratio
holds through the joins as long as the joins involve primary
key–foreign key pairs (and do not involve the attribute
city).
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Option 1B (Figure 3.2)

In Figure 3.2 we look at the improved query execution
plan for option 1B.

TEMP1 is the result of selecting city ¼ ‘NY’ rows from
supplier, with selectivity .1 using Equation 3.1, giving us
200 rows (supplier) � .1 ¼ 20 rows in TEMP1.

TEMP2 is the result of projecting columns snum and
pnum from shipment, and therefore has the same number
of rows as shipment, 100,000. Similarly, TEMP3 is the result
of a projection of pnum and pname from the part table,
and has the same number of rows as part, 100.

TEMP4 is shown as the semi-join of TEMP1 and TEMP2
over the common attribute, snum. We note that a semi-
join can be represented by a join followed by a projection
of pnum and snum from the result. Applying Equation
3.6 to this join:

cardðTEMP4Þ ¼ S� cardðTEMP1Þ � cardðTEMP2Þ
¼ 1=200� 20� 100, 000
¼ 10, 000 rows,

where S ¼ 1/200, the selectivity of the common attribute of
the join, snum.

TEMP5 is shown as the semi-join of TEMP4 and TEMP3
over the common attribute, pnum. Again we apply
Equation 3.6 to this join:

cardðTEMP5Þ ¼ S� cardðTEMP4Þ � cardðTEMP3Þ
¼ 1=100� 10, 000� 100
¼ 10, 000 rows,

where S ¼ 1/100, the selectivity of the common attribute of
the join, pnum.

The final result, taking a projection over TEMP5, results
in 10,000 rows.
3.6 Summary
This chapter focused on the basic elements of query

optimization: query execution plan analysis and selection.
We took the point of view of how the query time can be
estimated from the sequential and random block accesses
needed to execute a query. We also looked at the
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estimation of intermediate table size in a query made up of
a series of selections, projections, and joins. Table size is a
critical measure of how long merge joins take, whereas
index definitions help determine how long indexed or hash
joins take to execute.
Tips and Insights for Database
Professionals
• Tip 1. Indexes can greatly improve query time and

should be an integral part of a query optimizer.
Automated tools used by Microsoft and IBM integrate
index design with query optimization. Some basic esti-
mates for query time for a given query execution plan
can be manually estimated, with or without indexes.
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A SIMPLE PERFORMANCE
MODEL FOR DATABASES
Performance is your reality. Forget everything else.

—Harold Geneen
This appendix presents a simple performance cost
model for evaluating physical design methods and tradeoffs
among various designs. The model includes estimations for
input/output (I/O) time and network delays.
A.1 I/O Time Cost—Individual
Block Access

A block (or page) has been traditionally the basic unit of
I/O fromdisk to fastmemory (RAM). It can range in size from
2 to 16 KB, although 4,096 bytes (4 KB) is themost typical size
in many systems. Blocks usually include many rows in a
table, but occasionally a large row can span several blocks.
In recent years, prefetch buffers have been used more often
in operational systems to increase I/O efficiency. Prefetch
buffers are typically 64 KB (in DB2, for instance). In some
systems the disk track is the I/O transfer size of choice.

Block access cost
¼ disk access time to a block from a random

starting location
¼ average disk seek timeþ average rotational
delay þ block transfer:

A.1
1
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Disk access time is becoming much faster with new
technologies, and currently we can estimate the access
time to a 4 KB block to be well below 10 ms in a shared-
disk environment. For example, an IBM U320 146 GB hard
drive has an average seek time of 3.6 ms, average rotational
delay of 2 ms for a half rotation (at 15,000 RPM), and a
transfer rate of 320 MB/sec. For this disk, the expected
block access cost in a shared-disk environment is:

I=O timeð4 KB block access in a shared diskÞ
¼ 3:6 msþ 2 msþ 4 KB=320 MB=sec ¼ 5:6 ms:

I=O timeð64 KB prefetch buffer in a shared diskÞ
¼ 3:6 msþ 2 msþ 64 KB=320 MB=sec ¼ 5:8 ms:

In a dedicated disk environment, the disk-seek compo-
nent is rarely needed, so the time is considered negligible.

I=O timeð4 KB block access in a dedicated diskÞ
¼ 2 msþ 4 KB=320 MB=sec ¼ 2:0 ms:

I=O timeð64 KB prefetch buffer access in a dedicated diskÞ
¼ 2 msþ 64 KB=320 MB=sec ¼ 2:2 ms:
A.2 I/O Time Cost—Table Scans
and Sorts

Disk technologies that create higher speeds plus special
prefetching hardware can also make table scans and
sorting operations extremely efficient. The total I/O time for
a full table scan is computed simply as the I/O time for a
single block or prefetch buffer, whichever applies, times
the total number of those I/O transfers in the table.

Sorting, which is a part of many queries, especially those
needing a sort-merge join, has progressed well beyond
the simple two-way sorts of the past. The estimated cost of
an M-way sort is approximately 2 � nb � logM nb, where
nb is the number of blocks in the table to be transferred to
memory from disk (O’Neil, 2001; Silberschatz, 2006). In the
examples in this book, we use M ¼ 3 to represent three-
way sorts.
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A.3 Network Time Delays
Network delays can be significant compared to I/O

delays, and when data is accessed across a network, the
following model can be used, which is very similar to
the disk I/O model.

Network delay ¼ propagation timeþ transmission time,

A.2

where

Propagation time ¼ network distance=propagation speed,

A.3

and

Transmission time ¼ packet size=network
transmission rate:

A.4

The propagation speed is estimated to be 200,000 km/sec,
which is approximately two-thirds of the speed of light,
taking into account normal degradations of transmission
media from the theoretical speed of light of approximately
300,000 km/sec. The network distance is given in kilometers
(km). If the network media you are using has a known
propagation delay, then substitute the known value for
200 km/ms in the equation. Rough approximations are
considered reasonable here to get “ballpark” estimates of
total time.

The transmission time for a packet on a network is the
time to get the packet on or off the network to or from the
controlling device in the local computer system. It is analo-
gous to the transfer time for a block on a disk. The trans-
mission rate is given in bits/second and packet size is given
in bytes. We assume an 8-bit per byte conversion factor.

For example, the time to send one packet of 1,500 bytes
(let’s say its one block of data) over an Ethernet with a
transmission rate of 1 Gb/sec in a wide area network
(WAN) at a network distance of 1,000 kilometers would be:

Network time¼ 1, 000 km=200, 000 km=secþ 1, 500 bytes
� 8 bits=byte=1 Gb=sec

¼ :005 secþ :000012 sec
¼ :005012 secðor 5:012 msÞ:
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For a local area network (LAN) with a network distance of
.1 km, we get:

Network time¼ :1 km=200, 000 km=secþ 1, 500 bytes
� 8 bits=byte=1 Gb=sec

¼ :0000005 secþ :000012 sec
¼ :0000125 secðor :0125 msÞ:

Putting these numbers in perspective, higher-speed
Ethernet networks have very small transmission times,
and for longer distances of WANs, the total network time
is dominated by the propagation time. In this case, the typ-
ical values for network time (that is, the propagation time)
are in the same range as disk I/O times, and need to be
considered in the estimate of total response time.

For LANs where network distances may be less than .1
km, the dominating delay is transmission time, but neither
time in this example is significant compared to typical disk
I/O times. Thus, in LANs we can consider network delays
to be negligible unless there are extremely large packets
or trains of packets.
A.4 CPU Time Delays
CPU time delays aremainly dependent on the processing

required by the database application, and are largely inde-
pendent of the I/O operations. Those CPU delays caused
by the software to manage the I/O are usually negligible
compared to the I/O times, and are even further diminished
when they overlap the I/O operations. Our model assumes
database systems to be I/O-bound and considers CPU
delays as negligible.
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