

Network Forensics

Ric Messier

Network Forensics

Network Forensics

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-32828-5
ISBN: 978-1-119-32917-6 (ebk)
ISBN: 978-1-119-32918-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limita-
tion warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials.
The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding
that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable
for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a poten-
tial source of further information does not mean that the author or the publisher endorses the information the organization or
website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this
work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017941046

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates,
in the United States and other countries, and may not be used without written permission. All other trademarks are the prop-
erty of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

This book is dedicated to Atticus and Zoey, who got me through many years.

About the Author

Ric Messier, MS, GCIH, GSEC, CEH, CISSP is an author, consultant, and educator. He has decades
of experience in information technology and information security. He has been a programmer, sys-
tem administrator, network engineer, security engineering manager, VoIP engineer, consultant, and
professor. He is a currently Director for Cyber Academic Programs at Circadence and was formerly
the Program Director for Cybersecurity and Digital Forensics at Champlain College in Burlington,
VT. He has published several books on information security and digital forensics.

About the Technical Editor

Charlie Brooks first encountered the Internet in 1978, and hasn’t strayed far from it since. Charlie
spent 25 years in software development as a developer, technical lead, and software architect, work-
ing on software systems for network management, network performance analysis, and managed
VPN services. He has been working in information security since 2005 as a course developer and
instructor, first in data storage at EMC and then in network security analysis and forensics at RSA.
Charlie has developed and taught graduate level courses in network security, data communications,
incident response and network forensics, and software security at several colleges and universities in
the Greater Boston area, including Boston University and Brandeis University. He currently teaches
and develops courses for the Continuing Professional Studies division of Champlain College in
Burlington, VT, in the master’s programs for Digital Forensics and Operational Security.

Charlie has served as a technical editor for several books, and is the author of All-In-One CHFI
Computer Hacking Forensics Investigator Certification Exam Guide from McGraw-Hill (2014), and
“Securing the Storage Infrastructure” in Information Storage and Management: Managing and Protecting
Digital Information (EMC Education, 2011). He holds an MS in Computer Information Systems from
Boston University, and the CISSP, CHFI, and CTT+ certifications.

Credits

Project Editor
Tom Dinse

Production Editor
Athiyappan Lalith Kumar

Copy Editor
Kimberly A. Cofer

Production Manager
Katie Wisor

Manager of Content Development & Assembly
Mary Beth Wakefield

Marketing Manager
Christie Hilbrich

Professional Technology & Strategy Director
Barry Pruett

Business Manager
Amy Knies

Executive Editor
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Bell

Indexer
Nancy Guenther

Cover Designer
Wiley

Cover Image
© Andrey Prokhorov/iStockphoto

Contents at a Glance

Introduction�� xxi

 1 Introduction to Network Forensics ��1

 2 Networking Basics �� 13

 3 Host-Side Artifacts �� 53

 4 Packet Capture and Analysis ��� 81

 5 Attack Types��113

 6 Location Awareness �� 143

 7 Preparing for Attacks �� 159

 8 Intrusion Detection Systems ��� 187

 9 Using Firewall and Application Logs �� 211

 10 Correlating Attacks��� 245

 11 Network Scanning �� 265

 12 Final Considerations ��� 291

 Index ��� 319

Contents

Introduction�� xxi

 1 Introduction to Network Forensics ��1
What Is Forensics? ���3

Handling Evidence ��4

Cryptographic Hashes���5

Chain of Custody ��8

Incident Response ���8

The Need for Network Forensic Practitioners��� 10

Summary��� 11

References ��� 12

 2 Networking Basics �� 13
Protocols ��� 14

Open Systems Interconnection (OSI) Model ��� 16

TCP/IP Protocol Suite��� 18

Protocol Data Units ��� 19

Request for Comments ��20

Internet Registries �� 23

Internet Protocol and Addressing���25

Internet Protocol Addresses��� 28

Internet Control Message Protocol (ICMP) �� 31

Internet Protocol Version 6 (IPv6) �� 31

Transmission Control Protocol (TCP) �� 33

Connection-Oriented Transport ��36

User Datagram Protocol (UDP) ��38

Connectionless Transport�� 39

Ports ��40

Domain Name System��� 42

Contentsxvi

Support Protocols (DHCP) ���46

Support Protocols (ARP) ��48

Summary��� 49

References ��� 51

 3 Host-Side Artifacts �� 53
Services ���54

Connections ��60

Tools ��� 62

netstat �� 63

nbstat ���66

ifconfig/ipconfig ���68

Sysinternals ��� 69

ntop �� 73

Task Manager/Resource Monitor ��� 75

ARP��� 77

/proc Filesystem �� 78

Summary���79

 4 Packet Capture and Analysis ��� 81
Capturing Packets ��� 82

Tcpdump/Tshark���84

Wireshark ��89

Taps �� 91

Port Spanning��� 93

ARP Spoofing ��94

Passive Scanning��� 96

Packet Analysis with Wireshark ��98

Packet Decoding���98

Filtering �� 101

Statistics ��� 102

Following Streams��� 105

Gathering Files �� 106

Network Miner �� 108

Summary��� 110

Contents xvii

 5 Attack Types��113
Denial of Service Attacks ��114

SYN Floods ��115

Malformed Packets ��118

UDP Floods ��� 122

Amplification Attacks �� 124

Distributed Attacks ��� 126

Backscatter ��� 128

Vulnerability Exploits ��� 130

Insider Threats��� 132

Evasion �� 134

Application Attacks �� 136

Summary��� 140

 6 Location Awareness �� 143
Time Zones ��� 144

Using whois��� 147

Traceroute ��� 150

Geolocation��� 153

Location-Based Services �� 156

WiFi Positioning��� 157

Summary��� 158

 7 Preparing for Attacks �� 159
NetFlow �� 160

Logging��� 165

Syslog ��� 166

Windows Event Logs��� 171

Firewall Logs ��� 173

Router and Switch Logs �� 177

Log Servers and Monitors ��� 178

Antivirus �� 180

Incident Response Preparation��� 181

Google Rapid Response �� 182

Contentsxviii

Commercial Offerings��� 182

Security Information and Event Management �� 183

Summary��� 185

 8 Intrusion Detection Systems ��� 187
Detection Styles �� 188

Signature-Based �� 188

Heuristic ��� 189

Host-Based versus Network-Based ��� 190

Snort �� 191

Suricata and Sagan ��� 201

Bro �� 203

Tripwire �� 205

OSSEC ��206

Architecture���206

Alerting ��� 207

Summary���208

 9 Using Firewall and Application Logs �� 211
Syslog �� 212

Centralized Logging�� 216

Reading Log Messages ��220

LogWatch ���222

Event Viewer�� 224

Querying Event Logs��� 227

Clearing Event Logs �� 231

Firewall Logs �� 233

Proxy Logs �� 236

Web Application Firewall Logs �� 238

Common Log Format �� 240

Summary��� 243

 10 Correlating Attacks��� 245
Time Synchronization �� 246

Time Zones��� 246

Contents xix

Network Time Protocol ��� 247

Packet Capture Times �� 249

Log Aggregation and Management��� 251

Windows Event Forwarding �� 251

Syslog ��� 252

Log Management Offerings ��254

Timelines��� 257

Plaso ���258

PacketTotal�� 259

Wireshark �� 261

Security Information and Event Management �� 262

Summary��� 263

 11 Network Scanning �� 265
Port Scanning �� 266

Operating System Analysis �� 271

Scripts �� 273

Banner Grabbing �� 275

Ping Sweeps�� 278

Vulnerability Scanning���280

Port Knocking�� 285

Tunneling ��286

Passive Data Gathering �� 287

Summary��� 289

 12 Final Considerations ��� 291
Encryption��� 292

Keys �� 293

Symmetric ��294

Asymmetric �� 295

Hybrid ��296

SSL/TLS �� 297

Cloud Computing ���306

Infrastructure as a Service ���306

Contentsxx

Storage as a Service ��309

Software as a Service �� 310

Other Factors �� 311

The Onion Router (TOR) �� 314

Summary��� 317

 Index ��� 319

One of the best things about the different technology fields, should you have the stomach for
it—and many don’t—is the near constant change. Over the decades I have been involved in

technology-based work, I’ve either had to or managed to reinvent myself and my career every handful
of years or less. The world keeps changing and in order to maintain pace, we have to change too. In one of
my incarnations that ended not many months ago now, I ran graduate and undergraduate programs
at Champlain College in its online division. One of my responsibilities within that role was overseeing
development of course materials. Essentially, either I or someone I hired developed the course and
then I hired people who could teach it, often the people who did the development, though not always.

In the process of developing a course on network forensics, I discovered that there wasn’t a lot of
material around that covered it. At the time, I was able to find a single book but it wasn’t one that we
could make use of at the college because of policies focused on limiting costs to students. As a result,
when I was asked what my next book would be, a book on network forensics that would explore in
more detail the ideas I think are really important to anyone who is doing network investigations
made the most sense to me.

What This Book Covers
I like to understand the why and how of things. I find it serves me better. When I understand the
why and how, I don’t get stuck in a dinosaur graveyard because at its core, technology continues
to cycle around a number of central ideas. This has always been true. When you understand what
underpins the technology, you’ll see it’s a variation on something you’ve seen before, if you stick
around long enough. As a result, what is covered in this book is a lot of “how and why” and less of
“these are the latest trendy tools” because once you understand the how and why, once you get to
what’s underneath, the programs can change and you’ll still understand what it is you are looking
at, rather than expecting the tools to do the work for you.

This is the reason why this book, while offering up some ideas about investigations, is really more
about the technologies that network investigations are looking at. If you understand how networks
work, you’ll know better where to look for the information you need. You’ll also be able to navigate
changes. While we’ve moved from coax to twisted pair to optical to wireless, ultimately the protocols
have remained the same for decades. As an example, Ethernet was developed in the 1970s and your
wireless network connection, whether it’s at home or at your favorite coffee shop down the street, still
uses Ethernet. We’re changing the delivery mechanism without changing what is being delivered.
Had you learned how Ethernet worked in the early 1980s, you could look at a frame of Ethernet traf-
fic today and still understand exactly what is happening.

Introduction

Introductionxxii

The same is true of so-called cloud computing. In reality, it’s just the latest term for outsourcing
or even the service bureaus that were big deals in the ’70s and ’80s. We outsource our computing
needs to companies so we don’t have to deal with any of the hassle of the equipment and we can
focus on the needs of the business. Cloud computing makes life much easier because delivery of
these services has settled down to a small handful of well-known protocols. We know how they all
work so there is no deciphering necessary.

At the risk of over-generalizing, for many years now there has been a significant emphasis on digital
forensics, seen particularly through the lens of any number of TV shows that glorify the work of a
forensic investigator and, in the process, get huge chunks of the work and the processes completely
wrong. So-called dead-box forensics has been in use for decades now, where the investigator gets a
disk or a disk image and culls through all the files, and maybe even the memory image for artifacts.
The way people use computers and computing devices is changing. On top of that, as more and
more businesses are affected by incidents that have significant financial impact, they have entirely
different needs.

The traditional law enforcement approach to forensics is transitioning, I believe, to more of a
consulting approach or an incident response at the corporate level. In short, there will continue to
be a growing need for people who can perform network investigations as time goes on. With so many
attackers in the business of attacking—their attacks, thefts, scams, and so on are how they make
their living—the need for skilled investigators is unlikely to lessen any time in the near future. As
long as there is money to be made, you can be sure the criminal incidents will continue.

As you read through this book, you will find that the “what’s underneath” at the heart of everything.
We’ll talk about a lot of technologies, protocols, and products, but much of it is with the intention of
demonstrating that the more things change, the more they stay the same.

How to Use This Book
I’ve always been a big believer in a hands-on approach to learning. Rather than just talking about
theories, you’ll look at how the tools work in the field. However, this is not a substitute for actually
using them yourself. All of the tools you look at in this book are either open source or have com-
munity editions, which means you can spend time using the tools yourself by following along with
the different features and capabilities described in each chapter. It’s best to see how they all behave
in your own environment, especially since some of the examples provided here may look and behave
differently on your systems because you’ll have different network traffic and configurations. Working
along with the text, you’ll not only get hands-on experience with the tools, but you will see how
everything on your own systems and networks behaves.

Introduction xxiii

How This Book Is Organized
This book is organized so that chapter topics more or less flow from one to the next.

Chapter 1 provides a foundational understanding of forensics. It also looks at what it means to
perform forensic investigations as well as what an incident response might look like and why they are
important. You may or may not choose to skim or skip this chapter, depending on how well-versed you
are with some of the basic legal underpinnings and concepts of what forensics and incident response are.

Chapter 2 provides the foundation of what you should know about networking and protocols,
because the rest of the book will be looking at network traffic in a lot of detail. If you are unfamiliar
with networking and the protocols we use to communicate across a network, you should spend a fair
amount of time here, getting used to how everything is put together.

Chapter 3 covers host-side artifacts. After all, not everything happens over the bare wire.
Communication originates and terminates from end devices like computers, tablets, phones, and a
variety of other devices. When communication happens between two devices, there are traces on
those devices. We’ll cover what those artifacts might be and how you might recover them.

Chapter 4 explains how you would go about capturing network traffic and then analyzing it.
Chapter 5 talks about the different types of attacks you may see on the network. Looking at these

attacks relies on the material covered in Chapter 4, because we are going to look at packet captures
and analyze them to look at the attack traffic.

Chapter 6 is about how a computer knows where it is and how you can determine where a com-
puter is based on information that you have acquired over the network. You can track this down in
a number of ways to varying levels of granularity without engaging Internet service providers.

Chapter 7 covers how you can prepare yourself for a network investigation. Once an incident
happens, the network artifacts are gone because they are entirely ephemeral on the wire. If you are
employed by or have a relationship with a business that you perform investigations for, you should
think about what you need in place so that when an incident happens, you have something to look
at. Otherwise you will be blind, deaf, and dumb.

Chapter 8 continues the idea of getting prepared by talking about intrusion detection systems and
their role in a potential investigation.

Along the same lines, Chapter 9 is about firewalls and other applications that may be used for
collecting network-related information.

Chapter 10 covers how to correlate all of that information once you have it in order to obtain
something that you can use. This includes the importance of timelines so you can see what happened
and in what order.

Introductionxxiv

Chapter 11 is about performing network scans so you can see what the attacker might see. Network
scanning can also tell you things that looking at your different hosts may not tell you.

Finally, Chapter 12 is about other considerations. This includes cryptography and cloud comput-
ing and how they can impact a network forensic investigation.

Once you have a better understanding of all of the different types of network communications and
all of the supporting information, I hope you will come away with a much better understanding of
the importance of making use of the network for investigations. I hope you will find that your skills
as a network investigator improve with what you find here.

Network Forensics

Introduction to Network
Forensics1

In this chapter, you will learn about:

 ■ What network forensics is
 ■ Evidence handling standards
 ■ Verification of evidence

Sitting in front of his laptop he stares at a collection of files and reflects on how easy it was to get them.
He sent an e-mail to a sales manager at his target company—almost silly how obviously fake it was—and
within minutes he knew that he had access to the sales manager’s system. It took very little time for him to
stage his next steps, which included installing a small rootkit to keep his actions from being noticed, and
to ensure his continued presence on the system wouldn’t be detected. It also provided him continued access
without the sales manager needing open the e-mail message again. That had taken place weeks back and
so far, there appeared to be no evidence that anyone had caught on to his presence not only on the system
but, by extension, on the business network the sales manager’s laptop was connected to.

It was this network that he was poring over now, looking at a collection of files related to the business’s
financial planning. There were also spreadsheets including lists of customer names, contact information,
and sales projections to those customers. No really big score but definitely some interesting starting points.
Fortunately, this user was well-connected with privileges in the enterprise network. This ended up giving
him a lot of network shares to choose from, and for the last several weeks he has been busy looking for
other systems on the network to take over. Getting access to the address book on this system was really
helpful. It allowed him to send messages looking as though they came from this user, sending co-workers
to a website that would compromise their systems with some client software, adding them to the growing
botnet he had control over. File shares were also good places to not only get documents to make use of, but
also to drop some more infected files. The key loggers that were installed have generated some interesting
information and keeping an eye on all of that is an ongoing project.

Ultimately, this is becoming quite a little stronghold of systems. It’s not exactly the best organization he’s
been in with respect to quality data from an intellectual property or large caches of credit card numbers or
even health care information. However, having more systems to continue building the botnet is always good

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics2

and at some point months or even years down the road, more interesting information may show up. In the
meantime, there may be vendors who have trust relationships with this network that could be exploited.

Once inside the network, he has so many potential places to go and places to probe. There is a lot of
data to be found and even though it appears that disk encryption is being used fairly consistently across the
organization, all of that data is accessible to him as an authenticated user on the network. Wiping logs in
places where they were turned on was trivial. This little network was all his for the taking for apparently
as long as he felt it would be useful.

Does this sound scary at all to you? In reality, this is far too common and although it’s dramatized,
it’s not that far off from how networks become compromised. Not long ago, technical intrusions were
more common than the type of attack just described. In a technical intrusion, attackers use software
vulnerabilities to get into a system remotely. This type of attack targets servers sitting in a data center
because those are exposed to the outside world. That’s not the case anymore. As we continue to learn,
attackers are using people to get into systems and networks. This was vividly illustrated in 2013 in
Mandiant’s report, “APT1: Exposing One of China’s Cyber Espionage Units” (https://www.fireeye
.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf). Attackers send e-mail
with malicious attachments, get someone to visit a website, or just simply park malicious software
on a known website and wait for people to visit in order to infect their systems. Unfortunately, this
is the world we now live in, a world where companies who haven’t had systems compromised are
becoming the minority rather than the majority.

This is one reason forensics is becoming such a hot skill to have. Well, that and the fact that the
folks on various TV shows make it seem really cool, interesting, and easy. The reality is a different
story, of course. Although the news and other media outlets make it seem as though attacks are
carried out by solo hackers (an ambiguous and misleading word), the majority of outside attacks
businesses are subject to today are perpetrated by well-funded and organized criminal enterprises.
There is money to be made from these crimes; criminals are starting to use ransom and extortion to
go directly for the money rather than trying to steal something to sell off later on.

The term forensics can be ambiguous. Because of that, it’s helpful to have an understanding of what
forensics currently is and isn’t. Particularly when it comes to network forensics, it’s more and more
becoming part of incident response. Digital forensics practitioners have to be capable of more than
locating images and deleted files that may be common for the large volume of child pornography
cases that traditional law enforcement practitioners may be looking for. Sometimes, knowing how to
extract files from a computer system isn’t enough because information can be obscured and deleted
very effectively. Certainly operating system forensics is important, but sometimes it takes more than
just understanding what happened on the system itself.

Network forensics is becoming an extremely important set of skills when it comes to situations
like the one described at the beginning of the chapter. Rather than relying on what the operating
system and disks may be able to tell you, a network forensic investigator can go to the network itself
and collect data of an attack in progress or look up historical information that may be available after

3Introduction to Network Forensics

a company has suffered a security breach with someone taking up long-term residence, someone
who has the ability to observe and piece together what they see into a coherent picture. This coher-
ent picture may include information from other sources such as firewalls, application logs, antivirus
logs, and a number of other sources.

One advantage to watching the network is that the network can’t lie. Applications may not be doing
what they are supposed to be doing. Logs may not be available or they may have been wiped. There
may be root kits installed to obscure what is happening on a system. Once a network transmission
is sent out on the wire, though, the bits are the bits.

Because of situations like the one described in the chapter-opening scenario, it’s important to
know exactly what forensics is as a practice as well as its role in incident response. Finally, there is a
need for not only forensic practitioners in general because of the large number of incidents that occur
in businesses around the world, but specifically, there is a need for network forensic practitioners.

What Is Forensics?
Before going further, let’s define some terms.

The word forensics comes from the Latin forens, meaning belonging to the public. It is related to
the word forum. If you have ever been involved in debate teams, you may be familiar with it as being
related to debate and argumentation. If you are skilled in forensics, you may make a good lawyer. It
is from this sense that the connotation of the word has come to mean something other than debate
and argumentation. Investigating evidence, in the field or in the lab, to be used in a court case is the
practice of forensics because the activity is related to the courts or trials.

This chapter expands on that by talking more specifically about digital forensics. Computer or digital
forensics is the practice of investigating computers, digital media, and digital communications for
potential artifacts. In this context, the word artifact indicates any object of interest. We wouldn’t use
the word evidence unless it’s actually presented as part of a court case. You may say that an artifact is
potential evidence. It may end up being nothing, but because it was extracted from the piles of data
that may have been handed to the investigator, we need to refer to it in a way that makes clear the
object is something of interest and potentially warrants additional investigation.

Because the word forensics is used in legal settings, you will often find that talk about forensics
is involved with law enforcement. Traditionally, that has been the case. However, because many of
the techniques and skills that are used by law enforcement are the same as those that may be prac-
ticed by an incident response specialist—someone who is investigating a suspicious event or set of
events within a business setting—the word forensics also describes the process of identifying digital
artifacts within a large collection of data, even in situations where law enforcement isn’t involved.

For our purposes, the data we are talking about collecting is network information. This may be
packet captures, which are bit-for-bit copies of all communication that has passed across a network

Network Forensics4

interface. The data collected may also come in the form of logs or aggregated data like network flow
information.

Any time you handle information that could potentially be used in a court case, it’s essential that
it be maintained in its original condition, and that you can prove that it hasn’t been tampered with.
There are ways to ensure that you can demonstrate that the evidence hasn’t been tampered with,
including maintaining documentation demonstrating who handled it. Additionally, being able to have
verifiable proof that the evidence you had at the end is the same as at the beginning is important.
The reason for this is that in a course case , technical evidence, such as that from a digital forensic
examination, is expected to adhere to an accepted set of standards.

Handling Evidence
The United States of America uses a common law legal system. This is at the federal as well as the
state level, with the exception of the state of Louisiana, which uses a civil law system. The United
Kingdom also uses a common law system. This means that legislatures enact laws and those laws
are then interpreted by the courts for their applicability to specific circumstances. After a court has
issued a ruling on a case, that case can then be used as a precedent in subsequent cases. This way
every court doesn’t have to make a wholly original interpretation of a law for every case. They build
on previous cases to create a common interpretation of the law.

When it comes to addressing technical evidence in court cases, a couple of cases are worth under-
standing. The first case, Frye vs. United States, was a case in 1923 related to the admissibility of a
polygraph test. As we continue to make technological advances, courts can have a hard time keeping
up. The Frye standard was the one of the first attempts to codify a process that could help ensure that
technical or scientific evidence being offered was standardized or accepted within the technical or
scientific community. The courts needed a way to evaluate technical or scientific evidence to ensure
that it was able to help the trier of facts determine the truth in a trial.

In essence, the Frye standard says that any scientific or technical evidence that is presented before
the court must be generally accepted by a meaningful portion of the community of those respon-
sible for the process, principle, or technique being presented. Acceptance by only a small number of
colleagues who are also working in a related area doesn’t necessarily rise to the standard of general
acceptance by the community. Scientific evidence such as that resulting from DNA testing or blood
type testing has passed this standard of reliability and veracity and is therefore allowed to be pre-
sented in a trial.

The federal court system and most U.S. states have moved past the Frye standard. Instead, they
rely on the case Daubert vs. Merrell Dow Pharmaceuticals, Inc. Essentially, the standard of deter-
mining whether scientific or technical evidence is relevant hasn’t changed substantially. What the
majority opinion in the Daubert case argued was that because the Federal Rules of Evidence (FRE)
were passed in 1975, those should supersede Frye, which was older. The Supreme Court ruled that
in cases where the FRE was in conflict with common laws, such as the standard set by Frye, the
FRE had precedence.

5Introduction to Network Forensics

The intention of the continuing progress of case law related to technical evidence is to ensure
that the evidence presented can be used to assist the trier of facts. The role of the trier of facts in a
court case is to come to the truth of the situation. Frye was used to make sure technical evidence
was accepted by a community of experts before it could be considered admissible in court. Daubert
said that because the Federal Rules of Evidence came later than Frye, it should become the standard
in cases of technical evidence. While expert witnesses are used to explain the evidence, the expert
witness alone is not sufficient. The witness is a stand-in at trial for the evidence. A witness can be
questioned and can provide clarifying information that the evidence directly cannot.

When it comes to digital evidence, we have to consider issues related to the appropriate handling
of the data because it can be easily manipulated. For that reason, there’s a risk that digital evidence
could be considered hearsay if it’s mishandled because of the FRE requirements regarding hearsay
evidence. Hearsay is relevant here because hearsay is any evidence that is not direct, meaning that
it doesn’t come from a primary source that can be questioned by the opposition. In short, because
there isn’t someone sitting on the stand indicating what they saw, it’s potentially hearsay unless it is a
recording of regular business activities. Of course, the legal aspects are much more complicated than
this short discussion might imply, but those are the essentials for those of us without law degrees.

All of this is to say that we have to handle potential evidence carefully so it cannot be questioned
as being inauthentic and an inaccurate representation of the events. Fortunately, there are ways that
we can not only demonstrate that nothing has changed but also demonstrate a complete record of
who has handled the evidence. It is essential that when evidence has been acquired that it be docu-
mented clearly from the point of acquisition using the techniques outlined in the following sections.

Cryptographic Hashes
The best way to demonstrate that evidence has not changed from the point of acquisition is to use a
cryptographic hash. Let’s say, for example, that you have an image of a disk drive that you are going
to investigate. Or, for our purposes, what may be more relevant is to say that we have a file that con-
tains all of the network communications from a particular period of time. In order to have something
we can check against later, we would generate a cryptographic hash of those files. The cryptographic
hash is the result of a mathematical process that, when given a particular data set as input, generates
a fixed-length value output. That fixed-length value can be verified later on with other hashes taken
from the same evidence. Because hashing a file will always generate the same value (that is, output),
as long as the file (the input data) hasn’t changed, courts have accepted cryptographic hashes (of suf-
ficient complexity) as a reliable test of authenticity when it comes to demonstrating that the evidence
has not changed over a period of time and repeated interactions.

Two separate sets of data creating the same hash value is called a collision. The problem of determin-
ing the collision rate of a particular algorithm falls under a particular probability theory called the
birthday paradox. The birthday paradox says that in order to get a 50% probability that two people in
a given room have the same birthday, month and day, all you need is to have 23 people in the room. In
order to get to 100% probability, you would need 367 people in the room. There is a very slim potential

Network Forensics6

for having 366 people in a room who all have a different birthday. To guarantee that you would have
a duplicate, you would need to have 367 (365 + 1 for leap day + 1 to get the duplicate). This particular
mathematical problem has the potential to open doors for attacks against the hash algorithm.

When you hear cryptographic, you may think encryption. We are not talking about encrypting the
evidence. Instead, we are talking about passing the evidence through a very complicated mathematical
function in order to get a single output value. Hashing algorithms used for this purpose are sometimes
called one-way functions because there is no way to get the original data back from just the hash value.
Similarly, for a hash algorithm to be acceptable for verifying integrity, there should be no way to have
two files with different contents generate the same hash value. This means that we can be highly con-
fident that if we have one hash value each time we test a file, the content of that file hasn’t changed
because it shouldn’t be possible to make any change to the content of the file such that the original
hash value is returned. The only way to get the original hash value is for the data to remain unaltered.

NOTE A cryptographic hash takes into consideration only the data that resides within the file. It
does not use any of the metadata like the filename or dates. As a result, you can change the name
of the file and the hash value for that file will remain the same.

NOTE Cryptography is really just about secret writing, which isn’t necessarily the same as encryp-
tion. Hashes are used in encryption processes as a general rule because they are so good at determin-
ing whether something has changed. If you have encrypted something, you want to make sure it
hasn’t been tampered with in any fashion. You want to know that what you receive is exactly what
was sent. The same is true when we are talking about forensic evidence.

For many years, the cryptographic hash standard used by most digital forensic practitioners and
tools was Message Digest 5 (MD5). MD5 was created in 1992 and it generates a 128-bit value that is
typically represented using hexadecimal numbering because it is shorter and more representative
than other methods like printing out all 128 binary bits. To demonstrate the process of hashing, I
placed the following text into a file:

Hi, this is some text. It is being placed in this file in order to get a hash value from the file.

The MD5 hash value for that file is 2583a3fab8faaba111a567b1e44c2fa4. No matter how many times
I run the MD5 hash utility against that file, I will get the same value back. The MD5 hash algorithm is
non-linear, however. This means that a change to the file of a single bit will yield an entirely different
result, and not just a result that is one bit different from the original hash. Every bit in the file will
make a difference to the calculation. If you have an extra space or an end of line where there wasn’t
one in the original input, the value will be different. To demonstrate this, changing the first letter
of the text file from an H to a G is a single-bit difference in how it is stored on the computer since
the value for H is 72 and the value for G is 71 on the ASCII table. The hash value resulting from this

7Introduction to Network Forensics

altered file is 2a9739d833abe855112dc86f53780908. This is a substantive change, demonstrating the
complexity of the hashing function.

NOTE MD5 is the algorithm but there are countless implementations of that algorithm. Every
program that can generate an MD5 hash value contains an implementation of the MD5 algorithm.

One of the problems with the MD5 algorithm, though, is that it is only 128 bits. This isn’t an
especially large space in which to be generating values, leading it to be vulnerable to collisions. As
a result, for many purposes, the MD5 hash has been superseded by the Secure Hash Algorithm 1
(SHA-1) hash. The SHA-1 hash generates a 160-bit value, which can be rendered using 40 hexadeci-
mal digits. Even this isn’t always considered large enough. As a result, the SHA-2 standard for cryp-
tographic hashing has several alternatives that generate longer values. One that you may run into,
particularly in the encryption space, is SHA-256, which generates a 256-bit value. Where the 128-bit
MD5 hash algorithm has the potential to generate roughly 3.4 × 10^38 unique values, the SHA-256
hash algorithm can yield 1.15 × 10^77 unique values. It boggles the mind to think about how large
those numbers are, frankly. Generating a SHA-1 hash against our original text file gives us a value
of 286f55360324d42bcb1231ef5706a9774ed0969e. The SHA-256 hash value of our original file is
3ebcc1766a03b456517d10e315623b88bf41541595b5e9f60f8bd48e06bcb7ba. These are all different
values that were generated against the same input file.

One thing to keep in mind is that any change at all to the data in the source file will generate a
completely different value. Adding or removing a line break, for example, would constitute remov-
ing an entire character from the file. If that were done, the file may look identical to your eyes but
the hash values would be completely different. To see the difference, you would have to view the file
using something like a hexadecimal editor to see how it is truly represented in storage and not just
how it is displayed.

You can use a number of utilities to generate these values. The preceding values were generated
using the built-in, command-line utilities on a Mac OS system. Linux has similar command-line utili-
ties available. On Microsoft Windows, you can download a number of programs, though Microsoft
doesn’t include any by default. Microsoft does, however, have a utility that you can download that
will generate the different hash values for you. The name of the utility is File Checksum Identity
Verifier (FCIV).

Any time you obtain a file such as a packet capture or a log file, you should immediately generate a
hash value for that file. MD5 hash values are considered acceptable in court cases as of the time of this
writing, though an investigation would be more durable if algorithms like SHA-1 or SHA-256, which
generate longer values, were to be used. MD5 continues to demonstrate flaws the longer it is used
and those flaws may eventually make evidence verification from MD5 hashes suspect in a court case.

Over the course of looking at packet captures in Chapter 4, we will talk about some other values
that perform similar functions. One of those is the cyclic redundancy check (CRC), which is also
mathematically computed and is often used to validate that data hasn’t been altered. These sorts of
values, though, are commonly called checksums rather than hashes.

Network Forensics8

Chain of Custody
Sometimes it seems as though TV shows like NCIS, CSI, Bones, and others that portray forensics
simultaneously advance and set back the field of forensics. Although some of the technical aspects
of forensics, including the language, are ridiculous, these shows do sometimes get things right. This
was especially true in the early days of NCIS, as an example, where everything they collected was
bagged and tagged. If evidence is handed off from one person to another, it must be documented.
This documentation is the chain of custody. Evidence should be kept in a protected and locked loca-
tion if you are going to be presenting any of it in court. Though this may be less necessary if you
are involved in investigating an incident on a corporate network, it’s still a good habit. For a start, as
noted earlier in this chapter, you never know when the event you are investigating may turn from a
localized incident to something where legal proceedings are required. As an example, the very first
well-known distributed denial of service (DDoS) attack in February 2000 appeared as a number of
separate incidents to the companies involved. However, when it came time to prosecute Michael
Calce, known as Mafiaboy, the FBI would have needed evidence and that evidence would have come
from the individual companies who were targets of the attacks—Yahoo, Dell, Amazon, and so on.

Even in the case of investigating a network incident in a business setting, documenting the chain
of custody is a good strategy. This ensures that you know who was handling the potential evidence
at any given time. It provides for accountability and a history. If anything were to go wrong at any
point, including loss of or damage to the evidence, you would have a historical record of who was
handling the evidence and why they had it.

Keeping a record of the date and time for handing off the evidence as well as who is taking respon-
sibility for it and what they intend to do with it is a good chain-of-custody plan. It doesn’t take a lot
of time and it can be very important. As always, planning can be the key to success, just as lack of
planning can be the doorway to failure. The first time you lose a disk drive or have it corrupted and
that drive had been handed around to multiple people, you will recognize the importance of audit
logs like chain-of-custody documentation. Ideally, you would perform a hash when you first obtain
the evidence to ensure that what you are getting is exactly what you expect it to be. You should have a
hash value documented so you will have something to compare your hash to in order to demonstrate
that no changes have occurred.

Incident Response
Incident response may be harder to get your head around if you are a forensic practitioner. If you are
a system or network administrator trying to get your hands around the idea of forensics, incident
response should be old hat to you. When networks belonging to businesses or other organizations
(schools, non-profits, governmental, and so on) are subject to a malware infestation, as an example,
that would probably trigger an incident response team to get the incident under control as well as

9Introduction to Network Forensics

investigate the cause of the incident. Depending on who you talk to you may get different answers,
but the process of incident response can be boiled down to four stages: preparation; detection and
analysis; containment, eradication, and recovery; and post-incident activity.

What exactly is an incident? How does an incident differ from an event? This is another area where
you may find that you get differing opinions depending on whom you talk to. Rather than getting
into a deep discussion here, let’s go with simple. An event is a change that has been detected in a
system. This could be something as simple as plugging an external drive into a system. That will
trigger a log message in most cases. That would be an event. Someone attempting to ping a system
behind a firewall where the messages are blocked and logged may be an event. An event may even
be updating system software, as in the case with a hot fix or a service pack.

An incident, on the other hand, is commonly something that is attributable to human interac-
tion and is often malicious. An incident is always an event, because every incident would result in
some sort of observable change to the system. If all of your web servers were infected by malware,
that malware would be observable on the system. It would result in events on all of the systems and
you would have an incident on your hands. A single system being infected with malware would be
an event but wouldn’t be enough to rise to a level where you would call an incident response team.

A forensic practitioner would obviously be necessary at the detection and analysis phase but they
would typically be involved in the preparation stage as well. Over the course of the book, we will be
going over some items that you may want to make sure are in place as an organization goes through
preparation stages. Preparation is a very large category of activities, including planning, but from the
standpoint of a forensic investigator, it is primarily when you make sure you will have what you
need when it comes to doing an analysis. There may also be activity when it comes to eradication, to
ensure that the source of the incident has been completely removed. Finally, a forensic investigator
would be involved in post-incident activities for lessons learned and process improvement.

In most cases, you would have an incident response team, even if it is small and ad hoc, to deal
with incidents because handling incidents is a process. The larger the organization and the more
systems involved, the larger the incident response team would likely be. Creating a team up front
would be another important activity when it comes to planning. Your organization, as part of the
creation of security policies, standards, and processes, should create an incident response team or
at least have documentation for how to handle an incident, should one occur. Considering that it’s
widely believed that a significant proportion of companies in the United States have been breached,
meaning they have had attackers compromise systems to gain unauthorized access, “should one
occur” is a bit euphemistic. In reality, I should say when an incident occurs. If you haven’t had to deal
with an incident, it may simply be a result of lack of appropriate detection capabilities.

Forensic practitioners are definitely needed as part of the incident response effort. They need not
be full-time forensic practitioners, but simply people already employed at the company who happen
to have the knowledge and skills necessary to perform a forensic investigation. They can get to the
root cause of an incident, and that requires someone who can dig through filesystems and logs and
look in other places within the operating system on the affected hosts.

Network Forensics10

Without understanding the root cause, it would be difficult to say whether the incident is under
control. It would also be difficult to know whether you have found all of the systems that may be
impacted because incidents, like unauthorized system access or malware infestations, will commonly
impact multiple devices across a network. This is especially true when there is a large commonality
in system deployments. In other words, if all systems are created from the same source image, they
will all be vulnerable in the same way. Once an attacker finds a way into one, all of the others that
have been built using the same image are easy targets.

The forensic investigator will need to be focused on identifying the source of the attack, whether
it’s a system compromise or a malware infection, to determine what may need to be addressed to
make sure a subsequent, similar attack isn’t successful. They will also need to be focused on finding
any evidence that the attacker attempted to compromise or infect other hosts on the local network. If
there is evidence of attempts against systems not on the organization’s network, the incident response
team should have the capability to reach out to other organizations, including a computer emergency
response team (CERT) that may be able to coordinate attacks across multiple organizations.

This is where you may run into the need for the collected artifacts in a larger investigation and poten-
tial criminal action. Coordinating with law enforcement will help you, as a forensic investigator, deter-
mine your best course of action if there is evidence of either substantial damage or evidence that the
attack involves multiple organizations. This is another area where planning is helpful—determining
points of contact for local and federal law enforcement ahead of time for when an incident occurs.

The Need for Network Forensic Practitioners
In early 2016, a task force was assembled to talk about how to best approach educating more profes-
sionals who are capable of filling thousands of jobs that are expected to be available in the coming
years. While this is generally referred to as a need for cybersecurity workers, the term cybersecurity is
fairly vague and covers a significant amount of ground. The federal government alone is planning on
large spending around making sure they can support a growing need for skilled and/or knowledgeable
people to prevent attacks, defend against attacks, and then respond when an attack has been detected.
The initial plan was to spend $3.1 billion to modernize and if the plan is implemented properly, there
will continue to be a need for people who are capable of responding to incidents.

This is just at the level of the federal government. Large consulting companies like Mandiant and
Verizon Business as well as the large accounting companies that are also involved in security consult-
ing are hiring a lot of people who have skills or knowledge in the area of forensics. When companies
suffer a large-scale incident, particularly smaller or medium-sized companies that can’t afford full-
time staff capable of handling a complete response, they often bring in a third party to help them out.
This has several advantages. One of them is that a third party is less likely to make any assumptions
because they have no pre-existing knowledge of the organization. This allows them to be thorough
rather than potentially skipping something in the belief they know the answer because of the way
“it’s supposed to work.” Hiring information technology people who are skilled in information security

11Introduction to Network Forensics

and forensics can be really expensive. This is especially true for smaller companies that may just
need someone who knows a little networking and some Windows administration.

Large companies will often have a staff of people who are responsible for investigations, including
those related to digital evidence. This means that the federal government, consulting companies,
and large companies are all looking for you, should you be interested in taking on work as a network
forensic investigator. This will be challenging work, however, because in addition to an understand-
ing of common forensic procedure and evidence handling, you also need a solid understanding of
networking. This includes the TCP/IP suite of protocols as well as a number of application protocols.
It also includes an understanding of some of the security technology that is commonly in place in
enterprise networks like firewalls and intrusion detection systems.

Because there is currently no end in sight when it comes to computers being compromised by
attackers around the world, there is no end in sight for the need for skilled forensics professionals.
For forensic investigators without a foundation in network protocols and security technologies, this
book intends to address that gap.

Summary
Businesses, government agencies, educational institutions, and non-profits are all subject to attack
by skilled adversaries. These adversaries are, more and more, well-funded professional organizations.
They may be some form of organized crime or they may be nation-states. The objectives of these two
types of organizations may be significantly different but the end result is the same—they obtain some
sort of unauthorized access to systems and once they are in place, they can be difficult to detect or
extricate. This is where forensics professionals come in.

Forensics is a wide and varied field that has its basis in the legal world. Forensics, in a general sense,
is anything to do with court proceedings. For our purposes, while the practice of digital forensics may
have some foundation in law enforcement professionals performing investigations as part of criminal
proceedings, the skills necessary to perform those investigations cross over to other areas. When it
comes to investigations performed within an enterprise rather than by a law enforcement agency,
the skills and techniques are the same but there may be differences in how artifacts and evidence
are handled. That isn’t always the case, of course, because even if you are just looking for the root
cause, there is a possibility of what you find being necessary as part of a court case.

Because there is a possibility that artifacts and evidence may be used in court, it’s generally a good
idea to make use of cryptographic hashes as well as keeping a chain-of-custody document. These
two activities will help you maintain accountability and a historical record of how the evidence and
artifacts were handled. This is helpful if you have to refer to the events later on.

When it comes to working in an organization that isn’t law enforcement, you may be asked to
perform forensic investigations as part of an incident response. Incident response teams are becoming
common practice at all sizes of organization. It’s just how any organization has to operate to ensure
that they can get back on their feet quickly and efficiently when an attack happens—whether it’s

Network Forensics12

someone who has infiltrated the network by sending an infected e-mail or whether it’s an attacker
who has broken into the web server through a commonly known vulnerability.

Given the number of organizations around the world that have suffered these attacks, including
several highly publicized attacks at Sony, Target, Home Depot, TJ Maxx, and countless others, there
is a real need for forensics practitioners who can work with network data. This is because companies
are using intrusion detection systems that will generate packet captures surrounding an incident
and some organizations will actually perform a wire recording on a continuous basis simply in case
an incident takes place. The network is the best place to capture what really happened because the
network—the actual wire—can’t lie.

References
Morgan, Steve. “Help Wanted: 1,000 Cybersecurity Jobs At OPM, Post-Hack Hiring Approved By DHS.”

(Forbes, January 13, 2016.) Retrieved June 22, 2016, from http://www.forbes.com/sites/
stevemorgan/2016/01/31/help-wanted-1000-cybersecurity-jobs-at-opm-post-hack-hiring-
approved-by-dhs/#3f10bfe12cd2.

Umberg, Tommy and Cherrie Warden. “Digital Evidence and Investigatory Protocols.” Digital Evidence and
Electronic Signature Law Review, 11 (2014). DEESLR, 11(0). doi:10.14296/deeslr.v11i0.2131.

Networking Basics2
In this chapter, you will learn about:

 ■ What protocols are and how they work
 ■ The basics of TCP/IP
 ■ The difference between the OSI model and the TCP/IP architecture

Sitting at his desk, he was looking for his next target. A couple of quick Google searches and digging
through various job sites gave him some ideas but he needed to know more. He was in need of addresses
and hostnames and he knew of several places he would be able to locate that information. With just a few
commands in his open terminal window he had a number of network addresses that he could start poking
at. That gave him a starting point, and a few DNS queries later he had not only network addresses but
some hostnames that went along with them. He was also able to get some contact information that could
be useful later on.

Once he had his hostnames and addresses, he could figure out what programs may be listening on the
ports that were open at those addresses. He knew that the application layer was where the money was—
all of the problems lower down in the stack had long since been corrected, so the best way into a system
was going to be through any program that was sitting behind one of those open ports. Once he knew what
applications he needed to target, he would be golden and he could make his move. There was so much that
he might be able to do with a poorly implemented web application environment, for example. He could just
see his bank account growing with all of the credit cards and other information he may be able to steal.

I wouldn’t be doing much of a job of talking about network forensics without going over the basics
of networking protocols and where all of the important information about the Internet and all of the
networks attached to it is stored. The people who are attacking networks know at least enough to
make their way around the Internet and local networks so forensics investigators need to know at
least as much as the adversaries do in order to determine what they are doing. Even if the adversary
is a piece of malware or someone internal to the company, you’ll need to understand how it got to
the system and interacted with the applications there.

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics14

We’re going to start by talking about what a protocol is. In the course of going deeper into analysis,
we’ll be talking about protocols a lot so it’s important to have a foundation on which to build those
later conversations. When we are talking about networking, the different protocols are sometimes
best thought about in layers, and that’s actually how you will see them represented. There are two
conceptual ideas for thinking about the layers of network protocols. One of them is the Open Systems
Interconnect (OSI) model, which describes seven layers in its stack. The other is the Transmission
Control Protocol/Internet Protocol (TCP/IP) suite, which has only four layers and evolved into a
model after it had finally stabilized in its implementation.

The Internet protocols associated with the Advanced Research Projects Agency (ARPA) and later
the Internet Engineering Task Force (IETF) have, almost since the very beginning, been created in an
open, collaborative manner. As such, they start as documents that are called requests for comments
(RFCs). Understanding these documents can be very useful. If there is ever a question about what
you are looking at in practice, you can refer back to the original documentation to look up details
about the protocols and standards to see what it is expected to look like.

The Internet is collaborative because it’s a global entity, and as a result a number of interested
parties want a say in how it’s managed. As a global network, information related to networks and
domains is stored a number of places. Knowing where the information is stored and how you can
look up that information will provide essential information during the course of an investigation.
Once we are done here, you will have a better understanding of how all of the information is stored
and where you can get at it.

Protocols
To explain what a protocol is, we’re going to step out of the world of networking and technology
altogether. I can’t help but think of the Goldie Hawn movie Protocol when thinking about this topic,
and though that may be dating me somewhat, it’s relevant. In the movie, Goldie Hawn plays a wait-
ress who saves the life of an Arab dignitary and ends up with a job in the State Department working
in Middle East affairs. You may be wondering why the movie is called Protocol and why this has
anything at all to do with networking. A protocol is a standard of communication. In order to have
productive conversations between two parties, we need protocols. This is especially true when you
are talking about entirely different cultures, as in the Arabic countries and the United States. For the
conversation and any negotiations to go smoothly, they rely on protocols—standards of behavior and
communication that both parties adhere to so nothing is misunderstood.

When you think about it, the same is true in the networking world. For two systems, especially
ones that speak entirely different languages, as might be the case with a Linux system trying to
communicate to a Windows system, there must be standards of behavior and communication. In
the early days of the Internet, back when it was still called the Arpanet in the late ’60s and early ’70s,
many more operating systems were around than might seem to be the case today. Although there still
are many, once you start factoring in larger systems, the day-to-day experience of the vast majority
of people is with three operating systems: Windows, macOS, and Linux. Two of those come from

Networking Basics 15

the same root operating system—Unix. However, they have just enough differences even today that
protocols are important to make sure every conversation takes place smoothly.

Most of the time, when there is a conversation about protocols, you will hear someone refer to
layers. This is because protocols are generally placed into stacks to explain how they relate to one
another. Every type of communication on a network will involve multiple protocols across multiple
layers, though each protocol is generally only aware of its own layer. There is one exception to that,
but we’ll get to it later in this chapter. Network protocols are mapped into two stacks. One is a generic
model, and the other is a description of a set of protocols specifically designed to work together. Even
the TCP/IP protocols can be mapped into the generic model, however.

Regardless of which way you think about the protocols, one important factor to keep in mind is
that every layer only ever talks to its own layer on the other side. If you think about writing someone
a letter, you can conceive of how this operates. You write a letter, you put it in an envelope, seal the
envelope, address it, put a stamp on it, and then put it in the mailbox. For every action you put into
pulling the letter together, there is a corresponding action on the receiving end. Your post office on
the sending end determines how the envelope should get to the recipient by looking at the ZIP code.
The sending post office has no interest in anything inside the envelope and really doesn’t have any
interest in the street address or the name of the recipient.

Let’s say that the letter you are sending is to someone at a business. The address you have placed
on the envelope is for the business. Once the envelope reaches the destination post office (the one that
owns the ZIP code), the postal workers there have to look at the street address in order to determine
which truck to put it on for delivery. The person driving the truck and out delivering the mail doesn’t
look at the ZIP code because it’s irrelevant—the truck only delivers to a single ZIP code. Likewise,
the name on the envelope is also irrelevant; the only important part is the street address. Once it
gets to the business and lands in the mail room or with the receptionist, or whoever gets the mail
when it arrives, that person will look at the name on the envelope and deliver it. The recipient then
gets the letter, opens it, and reads the contents.

The same is true when we talk about protocol stacks. At every point during the process of sending
and receiving, there is a specific piece of information that is intended for and handled by a specific
person or target. The ZIP code tells the sending post office how to get to the destination. The street
address tells the receiving post office how to get to the destination. The name on the envelope tells
the receiving party who the letter is actually destined for, and in the end, the letter is probably only
meaningful in any way to the recipient. None of these parties has much interest in looking at the
other information because it doesn’t help them to do their job. Certainly, each party can see the rest
of the information (except, perhaps, the contents of the letter), but they only focus on the information
they actually need. You will see this repeated over and over as we start talking about the different
protocol stacks and then the specific protocols from the TCP/IP suite of protocols.

An essential concept that you should understand before we get started is encapsulation. Regardless
of which communications stack you are referring to, data passes from one layer to another. Each
layer distinguishes itself by applying some data associated to that layer before passing it on to the
next layer down. This process is called encapsulation. Going back to our mail example, the letter is
encapsulated inside the envelope and then the person’s name is added to the envelope. After that,

Network Forensics16

the street address and then finally the ZIP code (since the city/town and state are just the long form
of the ZIP, they are redundant) are added. This addressing information encapsulates the information
that comes before, though in a less obvious way than you will get from the IP addresses and other
forms of address discussed below.

On the receiving end, the communication goes through de-encapsulation by removing the headers
that were added on the sending end before the data is sent to the next layer up the stack. You will
see this process of encapsulation as we start talking about the two different models and then, more
concretely, when we start looking at the different protocols in operation.

Open Systems Interconnection (OSI) Model
In the 1970s, a number of communication protocols including the nascent TCP were used on the Arpanet
as well as System Network Architecture (SNA) from IBM, DECnet from Digital Equipment Corporation,
and many others. The International Organization for Standardization (ISO) decided a single model was
needed to fit all communication protocols. In 1977, the ISO made use of work done by the Honeywell
Corporation to create an abstract model describing different functions used in communications sys-
tems. By 1983, it had merged its standard with a similar standard by the International Telephone and
Telegraph Consultative Committee to create the current Open Systems Interconnection (OSI) model.

NOTE The acronym “ISO” is a compromise, recognizing the different abbreviations across the
three languages used within ISO and is based on the Greek isos, meaning equal.

The OSI model consists of seven separate and distinct lay-
ers, each describing a particular set of functions and behaviors.
Although every protocol used for communication will fit into one
of these seven layers, not all communication streams will make
use of all seven layers. Some types of communication are far more
simplistic than others and may not need some of the higher layers
of the protocol stack, depending on the intention of the commu-
nication. You can see a representation of the OSI model, drawn
as a stack of boxes, in Figure 2-1.

We will go through the model from the bottom to the top,
as though we were reading a message off the wire. At the very
bottom of the stack, at layer 1, is the physical layer. The physi-
cal layer includes all of the tangible components that you can
touch—cabling, network interfaces, and the actual signaling
medium, whether it’s light or electrical. Since the name is pretty
straightforward and descriptive, this one will be the easiest to
remember and keep straight.

The next one up is the data link layer, layer 2. The data link
layer is how systems on the same physical network communicate.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 2-1: The Open Systems
Interconnection seven layer
model.

Networking Basics 17

For every layer in the stack, there is generally a way to differentiate communication streams—a
way of addressing. At layer 2, this is the Media Access Control (MAC) address. The MAC address is
attached directly to the network interface, which is why it is sometimes called the physical interface.
The data link layer makes sure that devices on the same physical network can communicate reliably
with one another. If you are using a switch on your network, the switch is operating at layer 2 because
it makes use of the MAC address to determine where to send network messages.

NOTE The MAC address is six bytes and it is expected to be globally unique, meaning no other
network interface in the world will have the same MAC address as the network interface on your
system. Those six bytes are broken into two separate sections, three bytes per section. The first
half, 24 bits, is the organizationally unique identifier (OUI) that identifies the vendor of the network
interface. The second half is the identifier for the interface itself. The OUI is something that can be
looked up in one of several online databases so if you have the OUI, you can know the vendor of
the interface.

The third layer is the network layer. Layer 3 makes sure that devices that are not on the same physi-
cal layer can communicate. Layer 3 messages typically require a router to pass messages from one
network to another. This layer also requires an address. The Internet Protocol (IP) and the Internet
Packet Exchange (IPX) protocol from Novell both operate at layer 3, providing network addresses,
as well as addresses for the hosts on those networks.

Layer 4 is the transport layer. Where previous layers were about getting messages to the host, this
is the first layer where the message has fully arrived at the host. Layer 4 allows for multiplexing of
network communications on a single host. It does this by using ports. Each network address may
have a large number of ports to communicate to. Systems that use the TCP/IP protocols will have
65,536 ports to communicate to on the different transport protocols. The User Datagram Protocol,
the Transmission Control Protocol, and the Sequenced Packet Exchange Protocol (SPX) are all at
this layer.

Layer 5 is the session layer. While the transport layer can support a connected form of communi-
cation between two systems, that is strictly system to system. Layer 5 is where the communication
stream between those two hosts is managed. Depending on the implementation and the protocols
being used, you may only have one-way traffic or you may have bi-directional traffic. The session layer
determines how that communication will happen. The protocols at this layer handle the negotiation
of the communication flow. Telnet, Secure Shell (SSH), and the File Transfer Protocol (FTP) are at
this layer, though they also are commonly said to live at the application layer as well. Many session
layer protocols straddle multiple layers.

Layer 6 is the presentation layer. This layer handles the conversion between the network com-
munication and the application. Any data encoding and decoding as well as data formatting would
be done at this layer. JPEG and GIF files are at this layer. The Hypertext Transport Protocol (HTTP)
is also at this layer. Anything that does encryption/decryption or compression would be at the
presentation layer.

Network Forensics18

Finally, layer 7 is the application layer. Any application programming interfaces (APIs) would exist
at this layer. This is where the interface to the user is.

TCP/IP Protocol Suite
The TCP/IP protocol suite was developed over a number of years and evolved into what we have today.
While it is sometimes referred to as a model, the TCP/IP protocol suite is a description of an as-built
set of protocols designed to work together. The communication protocols on the Arpanet were devel-
oped as they were determined to be necessary rather than planned well ahead of time. For instance,
initially there was no Internet Protocol (IP). The Internet Protocol was part of the Transmission
Control Program and offered connectionless service between two systems. If the two systems wanted
the communication to be connection-oriented and have the connection managed by the Transmission
Control Program rather than a higher-layer application, it would use the Transmission Control
Protocol (TCP). Eventually, IP was separated out to handle network addressing and other network
functions. On top of that, other protocols were developed. So, the TCP/IP architecture or model is
documentation of what is in place.

NOTE The TCP/IP protocol suite is sometimes referred to as the Department of Defense (DoD)
model, because the DoD provided funding for the Arpanet, where TCP and IP were developed.

Whereas the OSI model is seven layers, TCP/IP, or the Internet Protocol suite, is only four lay-
ers. While it is much simplified over the OSI model, you will see that all of the same functions are
described within the four layers. Even though the Internet uses the Internet Protocol suite to operate,
it’s more common in my experience at Internet service providers and network equipment vendors for
networking professionals to refer to the layers of the OSI model, partly because of the granularity it
offers, which helps to differentiate the functionality being referred to.

The first layer of TCP/IP is the Link layer. This encompasses functionality from the first two lay-
ers of the OSI model. Both the physical and the data link layer of the OSI model are represented in
this layer, so the same functionality and examples from those layers apply here. This is where the
MAC address lives and this layer makes sure that systems on the same physical network can com-
municate with one another.

The second layer is the Internet layer. This is the same as the network layer in the OSI model. This
is where IP lives. IP provides network addressing and helps to ensure that messages can get from one
network to another. IP is a routable protocol, though not all network layer protocols are. Of course,
every host on a network gets its own address, so talking about network addressing is incomplete.
The important distinction, though, is that the bulk of any IP address is the network address. The
smallest portion is the actual host component. This reflects the large number of networks that are
connected together across the Internet where the number of hosts on any given network is compara-
tively much smaller.

Networking Basics 19

The third layer is the Transport layer, corresponding to layer 4 in the OSI model. It shares the
same name between the OSI model and the TCP/IP model. This is where multiplexing on each system
happens, through the use of ports. Ports provide a way for multiple applications to listen simultane-
ously on the same IP address as well as for multiple applications to originate traffic using separate
source ports, allowing return traffic to get back to the correct application.

Finally, the fourth and last layer in the TCP/IP model is the Application layer. While it shares the
same name as layer 7 in the OSI model, it encompasses all of the functions of layers 5–7 of the OSI
model. Applications reside here. If they need presentation functions or session management, the
applications take care of all of that and those functions aren’t broken out and described separately
from the application itself.

As you can see, the TCP/IP model is quite a bit simpler to think about than the OSI model. If you
want to get fine-grained about functionality, though, the OSI model is better as a reference point.
Ultimately, they are both just for conceptualizing and referring to the functions without specific
reference to the protocols in use.

Protocol Data Units
We’ve talked about the various layers of the two communication models. Ultimately, the purpose for
those models is to build different means for multiple systems to communicate with one another. The
protocols don’t exist for the purpose of the protocols. They exist to be able to effectively and efficiently
send data from one system to another. The data is wrapped up with the different headers from each
layer that allow the receiving system to identify where the data is headed, including what application.

As different protocols add their headers, encapsulating the data that is already there, the result is
a different chunk of data than what was there before the protocol got its say. The resulting chunk of
data, just as the chunk of data that started out, is called a protocol data unit (PDU). Each layer of the
communications stack has a different protocol data unit associated with it. This means that at most
layers, we use a different word to describe the chunk of data, or protocol data unit, we are looking at.

In order to talk about the different words, we are going to start at the very top of the stack. This
is because when a message is being prepared for sending, it starts at the application. The application
creates data. The protocol data unit at the application layer is just “data.” As we move down through
the presentation and session layers, we are still talking about just data. You may not actually be
working with protocols in layers 5–7, so there isn’t really a PDU associated with it. It’s just the data
until we get to layer 4 of the OSI model.

Once we get to the transport layer, whether we are talking about the OSI model or the TCP/IP
model, we are talking about the data that has the transport headers stacked on top. After those head-
ers, which include the source and destination port numbers, are in place, you have a segment if you
are using TCP and a datagram if you are using the User Datagram Protocol (UDP). The segment or
datagram is then handed to IP to add some additional headers.

Network Forensics20

The IP headers include the source and destination IP address as well as some additional informa-
tion, including indications as to whether what we have is a just a fragment of a larger communication
stream or just an individual message. Once the IP headers are on and sitting atop the TCP or UDP
headers, you have a packet. A few protocols may be in use at layer 2, including Ethernet, Asynchronous
Transfer Mode (ATM), Point to Point Protocol (PPP), or 802.11 (WiFi). No matter what the protocol
is, there will be a set of headers that includes the source and destination MAC addresses. Once the
layer 2 headers are on, you have a frame. The frame is what is placed onto the network.

Once the frame is converted to the right signaling mechanism, either an optical signal or an elec-
trical signal, we are looking at bits. In the end, no matter what data you are sending, it is sent a bit at
a time. If you are looking at the data as it is passing across the network, you are looking at a stream
of bits. Later on, we’ll look at more details of the different protocols you will see as we start pulling
these messages—frames, packets, segments, and datagrams—apart.

Request for Comments
The very first request for comment (RFC) was written in 1969 by Steve Crocker. Crocker created RFCs
and not only wrote the first, but wrote several others as well over the years. RFCs make available on
the Internet the best possible technical description of protocols and processes. In 1969, the Advanced
Research Projects Agency (ARPA) awarded a contract to Bolt, Beraneck, and Newman (BBN) to design
and build a network that was capable of including hosts from around the country. The idea was to
connect research facilities at universities and government agencies in order to facilitate collaboration
and allow for more efficient use of limited computing resources. At the time, computers were very
large and very expensive, so being able to network the computers that did exist allowed for research
to be conducted across the country without having to necessarily duplicate computing resources.

BBN had to design and build the very first system that was capable of moving packets from one
system to another over the telephony network that was in place at the time. Initially, the device used to
create the network was called the Interface Message Processor (IMP). You may think of it as a router,
considering what it does. Such devices simply didn’t exist, though, so the functionality of a router was
handled in a specialized interface built into a Honeywell computer with software designed to move
messages from the computer on site to the network, on its way to the destination IMP. The very first
RFC specified the software that was to run on the IMP. Just as a point of history and also to give you
a sense of what an RFC looks like, you can see the very first part of the very first RFC in Figure 2-2.

In addition to historical curiosities, RFCs provide detailed design documentation for processes
and protocols. Of course, there is also the occasional joke, like the periodic April Fool’s Day RFC
that introduces protocols like the transmission of IP datagrams over avian carrier. This RFC was
issued in 1990 and was inspired by a scene from the movie Monty Python and the Holy Grail. Much
more to the point, though, if you are ever interested in knowing how a particular protocol like TCP,
IP, UDP, HTTP, or any of hundreds of other protocols, enhancements and processes, works, you can
get the last word by reading the RFC.

Networking Basics 21

Figure 2-2: The top of RFC 1.

Currently, the Internet Engineering Task Force (IETF) manages all RFCs and it’s responsible for
providing oversight of the various working groups and discussion groups that work on creating
the protocols and standards that the Internet operates using. It’s worth noting, perhaps, that all of the
various protocols in use are open and entirely voluntary. Any vendors choosing to implement a
protocol or standard developed by the IETF veers from the written description at their peril. Not
because anyone from the IETF is going to come knock their door down and wag a finger at them
telling them they did something wrong. Instead, any vendor that implements a protocol or standard
at variance with how it is written runs the risk of simply not functioning with other devices that
do adhere more closely to the written specifications. Most hardware manufacturers don’t have the
luxury of developing products that only work with their own products, but some have certainly tried.

There is, though, quite a bit of latitude in most of the protocols. As you might imagine, the docu-
mentation can run to dozens of pages in some cases but not every aspect of a protocol is required
in order to be considered in compliance. Words and phrases are used in RFCs to indicate whether
a particular set of functionality is required or if it’s just a “nice to have” feature. In fact, an entire
RFC was written to describe the level of requirement. RFC 2119 was written in 1997 and is flagged
as a Best Current Practice, another category of RFCs. The word “must” (as well as its counterpart
“must not”) indicates a hard requirement. In other words, don’t follow this at your peril, lest you be
considered not in compliance and not entirely functional. The word “should” (and its counterpart
“should not”) means that aspect or feature is recommended. Finally, the word “may (and “may not”)
indicates something that is optional.

The language of the RFCs is usually specific, though it’s not always clear and often leaves the door
open to interpretation. This is especially the case when actual implementation details are left out. If a
random number is called for, as is the case in some of the lower-layer protocols like IP and TCP, the

Network Forensics22

RFCs don’t specify how that random number is to be generated. This means that some vendors will
choose to implement one way while others will implement in a completely different way. Despite the
intentions of the engineers who write these documents, the challenge with English or any language
is the multitude of ways to interpret a collection of words. Where you may read a passage in the TCP
RFC one way, I may read it slightly differently. This may be similar to case law, as discussed in the
previous chapter. Different people will read the RFC in different ways. Over time, there comes to be
a generally understood way that things are to work.

For a long time, one man managed the RFCs. Jon Postel was the editor of the RFCs and the man
who assigned Internet addresses up until his death in 1998. Of course, the Internet has grown sub-
stantially since that time and it now takes a much larger organization to take on the work he did
for years. Literally thousands more RFCs have been written in the intervening years. Not all RFCs
actually become anything. The idea of an RFC is to throw something out into the community of
engineers and professionals working on the Internet infrastructure who then comment on it (it is
a request for comments, after all). The document remains as an RFC until such time as it becomes
a standard, which may never happen. Many widely used protocols have remained RFCs. This may
be because they remain works in progress that are continuing to be altered, amended, and revised.
However, the original RFC does not usually get revised; instead, another RFC is written to docu-
ment changes to the original and a note may be added that it supersedes or makes obsolete the
older document, if that’s the case.

One example of this altered functionality through successive RFCs is for the Session Initiation
Protocol (SIP), which is a protocol used primarily for Voice Over IP (VOIP). SIP itself has gone through
two RFCs for the two versions that have been released. In addition, though, it has a large number of
extensions. In fact, so many extensions have been written for SIP that in 2009, RFC 5411 was writ-
ten as an Informational RFC to document all of the extension RFCs that have been written for SIP.
In that case, you have the primary RFC, RFC 3261, which documented the second version of SIP, as
well as a large number of extensions and then a whole RFC just to provide an index and glossary of
all of those extensions.

All of the RFCs are public documents, so you can read up on the various protocols to see what
the documentation says about how they are supposed to work. If you go to the tools site at IETF
(tools.ietf.org), you can search for RFCs as well as get the complete list of all of the available
RFCs, including much of the original documentation for how the Arpanet was to have worked, if
you are interested in seeing the evolution of the various protocols and processes across the Internet.

To save you some trouble reading through all of the various RFCs, which can be difficult reading
unless you have a particular taste for it, we will go over some of the finer points of the protocols you
are likely to run into just so you are familiar with how they are meant to work in general, as well
as what you should expect to see once we start actually looking at packets in great detail later on.

Networking Basics 23

Internet Registries
The Internet runs on numerical addresses, which we get into in the “Internet Protocol Addresses”
section later in this chapter. The problem with this is that humans are simply lousy at remembering
numbers without context. Instead, we like to use names. Using names requires organizing related
names together, usually grouped into domains, and each domain has an owner. Additionally, the
addresses aren’t handed out randomly. They are assigned to owners and the owners need to be tracked
to make sure that any changes that need to be made come from the right people. Domains are man-
aged the same way. All of this is to say that a fair amount of information needs to be tracked and that
information is, much like the Internet itself, scattered in repositories around the world.

At the very top level is the Internet Corporation for Assigned Names and Numbers (ICANN).
Previously, the job of handing out addresses was handled by one man—Jon Postel. However, he passed
away at about the same time that the number of networks was beginning to increase at a significant
rate. The time had come to create an entity that could handle not only handing out addresses but
also administering all of the names. ICANN owns the entire Internet address space, ultimately, but it
hands out blocks to other organizations that then assign them to Internet service providers or com-
panies that have need for large address spaces. These organizations that are the tier below ICANN are
called Regional Internet Registries (RIRs). They are responsible for handling regional management
of addressing and numbers associated with routing traffic on the Internet.

In North America, the RIR is the American Registry for Internet Numbers (ARIN). ARIN not only
takes care of the United States and Canada but also parts of the Caribbean and Antarctica. Africa’s
RIR is the African Network Information Center (AfriNIC). Asia and parts of the Pacific Ocean are
handled by the Asia-Pacific Network Information Center (APNIC). APNIC takes care of the countries
in Asia as well as New Zealand, Australia, and other neighboring countries. The Latin American
and Caribbean Network Information Center (LACNIC) handles Latin America and the parts of the
Caribbean that aren’t handled by ARIN. Finally, the Reséaux IP Européens Network Coordination
Centre (RIPE) takes care of Europe, Russia, the Middle East, and Central Asia.

If you need to know who owns a particular block of IP addresses, you can check with these RIRs.
This is typically done using the whois utility, which is available as part of some operating systems
like Linux or macOS. You can also do these lookups using various web interfaces. As an example,
you can see the result of a whois using the website GeekTools shown in Figure 2-3. This particular
lookup was on a common IP address, 4.2.2.1. This is for one of the servers that are used around the
world by Level 3 Communications to translate IP addresses to names and vice versa. The results
indicate that this particular address is part of a much larger block. This particular block was inherited
when Level 3 acquired Genuity. Genuity was a direct descendent of BBN by way of some acquisitions
and spin offs.

Network Forensics24

Figure 2-3: A whois lookup on 4.2.2.1.

The whois results will tell you the entire block that the IP address belongs to as well as, probably
more importantly, who owns it. Not shown in this particular capture are the contact addresses. When
we are talking about owners of IP address blocks, each company has to provide an abuse contact, a
contact for the network operations center, and a technical contact. The abuse contact is who someone
would get in touch with should any sort of network abuse like spam or a denial of service attack appear
to be originating from that network. The network operations center (NOC) is the team responsible
for operating the network. This means they keep it running; if there is any problem with getting to
this network, someone would likely want to get in touch with the NOC. The technical contact is
someone who is technically responsible for the IP addressing. This could be someone who may be
handling all of the systems that take care of routing traffic through the network. In most cases, you
will find these contacts are generic in nature, meaning they aren’t a specific person. In the case of
Level 3, they use the same phone number for all of the contacts and that phone number will get you
in touch with the network operations staff. The e-mail addresses provided are role addresses and
not addresses for specific people.

In the case of smaller network allocations, as in those for a company specifically, you may end up
with actual people who you can get in touch with. This isn’t to say that you won’t get in to`uch with
a person at Level 3, but you may end up with a name and a direct e-mail address for a much smaller
organization. This is becoming less and less likely, however. There are a couple of reasons for this.
The first is that people tend to change jobs after a period of time. If you register with contact infor-
mation for a specific person, that contact will need to be updated when that person leaves and then

Networking Basics 25

updated again when the next person leaves. It’s better to just use generic contact information that can
be adjusted internally as needed. This is especially true since only the contacts can make changes
to records with the RIRs.

Another reason is that these databases are public, which makes it very easy to mine them for
information. These databases were used by people who were looking for addresses to send solicita-
tion messages to. Typically, these were unsolicited commercial e-mail (UCE) messages, though I’m
reluctant to use the term “spam” because that generally connotes bogus messages and these weren’t
necessarily bogus. They were trying to sell people something, though. This isn’t to say that the spam-
mers didn’t also harvest addresses from these databases, however. As a result, it was just wiser not
to have personal and direct e-mail addresses or phone numbers in the contact records with the RIRs.

Of course, the public availability of this information is one reason why trying to make contact
through one of these e-mail addresses isn’t likely to get you very far when it comes to large Internet
service providers (ISPs) specifically. When I was working at Genuity and involved in operations
security, many hundreds of messages came into the abuse mailbox each day. Most of these were junk
mail of one sort or another. There was a team responsible for attempting to keep up with the volume
of messages that might be from someone who actually needed help. However, that was only a frac-
tion of the entire volume of messages. It may be useful to remember that if the address isn’t simply
a sinkhole you will likely get an automated response and it may take some time to reach a person.

Internet Protocol and Addressing
We aren’t going to spend any more time on the data link layer than we did earlier. Suffice it to say
that you have MAC addresses and those MAC addresses are used to get frames from an originating
system to another system. These are important concepts for a networking professional, but for our
purposes all you really need to know is that the MAC address exists and, for the most part, it identi-
fies a particular network interface. What is important is to have a pretty solid understanding of the
Internet Protocol (IP). We’re going to look at what IP is for and how it works.

The primary purpose of IP is to make sure that data gets from one end to the other. You may hear
about the end-to-end principle and it’s the job of IP to make that happen. This means that when UDP
or TCP has a datagram or segment to transmit, it hands that off to IP. The IP layer then encapsulates
the data and puts a header on it with appropriate addressing to ensure that it gets from the source
host all the way to the destination host. The addresses used are structured in such a way that allows
for routing, meaning that the packets can find their way through the network by simply knowing
their destination. The network itself determines the pathway based solely on the destination address.

Before we go any further, we should look at what the header for an IP packet looks like. In
Figure 2-4 you can see the diagram from RFC 791, which described IP in 1981. The header fields
you see in this diagram have remained unchanged since then.

Network Forensics26

Figure 2-4: IP header diagram.

The first four bits (half a byte) of the header are the version number. Currently you may see either
a 4 or 6 in that field because the predominant version across the Internet at the moment of this writ-
ing is version 4, or IPv4. For the last decade and a half or more, there has been a move to get service
providers and businesses to switch to version 6, or IPv6. The IPv6 header looks different than the IPv4
header, primarily because the length of the IP address has increased dramatically. We’ll take a look at
the IPv6 header in the “Internet Protocol Version 6 (IPv6)” section later in this chapter. The second
half of the first byte (half a byte is sometimes called a nibble) is the length of the header. The minimum
length for an IP header is 20 bytes. This particular field is calculated as the number of 32-bit words.
Since 32 bits is 4 bytes, the minimum (and common) value you will see in this field is 5. That means
20 bytes, since the 4 bytes in 32-bits times the value 5 in the header field is 20 bytes.

The second byte is used for Type of Service (ToS). This was originally meant to be used to provide
a value that might allow devices in the network to prioritize traffic. While the ToS may be used, it
has effectively been superseded by other methods to prioritize traffic. Because these aren’t strictly
relevant to us for the most part, we’re not going to go into those mechanisms or the additional fields
that may be in use to support them. Just know that the second byte is the ToS byte.

Byte number three is the total length of the packet. This includes all of the headers as well as the
data. Because the IP layer only knows what it is doing, it is the length of its own header plus the data,
which would include the layer 4 header. This value will not include the data link header. This value
is in octets and the length of this field is 2 bytes, or 16 bits.

The next 16 bits is the identification field. This is used to identify related packets. If a datagram
has to be fragmented in order to be sent out on the wire, the IP ID field will be the same across all of
the fragments. The reason that a datagram may be fragmented is because each layer-2 protocol has
what is called a maximum transmission unit (MTU). This means that there is a maximum size of a
frame that can be sent whether the frame is being sent over Ethernet, Asynchronous Transfer Mode
(ATM), Frame Relay, or some other layer-2 protocol. In the case of Ethernet, the MTU is 1500 bytes.
This includes all of the headers. (I reference Ethernet here because it is a common layer-2 protocol
used by copper cabling on local area networks as well as WiFi networks.) If IP has to break up a
datagram, which could be 65,536 bytes, into multiple fragments in order to get it out on the wire, it
will use the IP ID field to identify all of the different fragments.

Networking Basics 27

The next three bits are used for flags, though only two of the three are actually used. One is the
Don’t Fragment (DF) bit and it is the second bit since the first bit is unused. The third bit is the More
Fragments (MF) bit. If this bit is set to 1, there are more fragments associated with this particular
packet. If it is 0, there are no more fragments, which may mean that the datagram wasn’t fragmented
before transmission. If a datagram or segment only requires a single packet to be sent, this flag will
be set in the IP header, indicating that the receiving party shouldn’t look for any additional transmis-
sions before sending this message up the stack to the next layer. The next 13 bits in the IP header
tell the receiving system where to place the data in the puzzle that is the datagram.

If a 5500-byte datagram is sent, for example, the first packet will have an offset value of 0. This
indicates that it is the first piece in the puzzle. Think of the puzzle as a space that has 5500 bytes
or puzzle pieces in it except that the puzzle pieces often come bound together in larger, consecutive
chunks. The first packet is carrying 1450 bytes in its payload. The next packet will have an offset
of 1450. This is because the count starts at 0 so 1450 bytes takes us to a position of 1449 from the
first packet being laid in. The next packet will take us from 1450 to 2899. Let’s say the next two
packets, for whatever reason, only had 1000 bytes for payload but they don’t arrive in order. When
the fourth packet arrives, there will be a blank spot starting at position 2900 up through position
3899 and the fourth packet will get placed into positions 3900 through 4899. When the third packet
does come in, though it arrives after the fourth packet, it will get placed into the 5500-byte chunk
in the correct position.

It’s the potential for packets coming in out of order that necessitates this field to begin with. Because
the Internet is created using something called packet switching, meaning each packet finds its own
way through the network, each packet could potentially take a different route, which may mean
that a route that initially seemed faster may have gotten slower after the packet was sent, causing
it to arrive at its destination after one that was sent later in the stream. In reality, all offsets will be
a multiple of 64 (8 bytes). The numbers used for this example were used to make the math slightly
easier to follow. The starting to count at zero issue can be confusing for some so using multiples of 10
rather than 64 seems easier to digest as a concept. Because you won’t generally be the one to reorder
packets into datagrams, this is all conceptual anyway.

After the offset field is a byte that is used for the time to live (TTL). Each time a packet traverses
a routing device, the time to live is decremented by 1. If the time to live field becomes 0, the packet
is discarded and a message is returned to the sending system using the Internet Control Message
Protocol (ICMP, discussed later in this chapter, indicating that time was exceeded in transit. This
simply means that the allotted time for the packet to get to its destination expired. A single byte
means that you could have a TTL of 255. In practice, the TTL value is rarely that high. It’s more
likely to be 40 or 64, or sometimes higher. In network terms, anything more than 64 hops away, or
passes through a routing device, is a very long way away. Nowhere on the Internet is generally that
far away unless there is an error in getting the packet to its destination.

The next byte is the protocol field. This value tells the receiving computer what the next header
is going to be so it knows what to look for. Each protocol has a defined value. TCP, for example,

Network Forensics28

is protocol 6 whereas UDP has a protocol number of 17. One reason that UDP has a much higher
number is that IP was originally intended to be the datagram delivery service. UDP was created later
to take on that role. The protocol field lets any program doing packet decoding determine how to
decode the next set of headers.

The two bytes following the protocol number are the header checksum. A mathematical computa-
tion is performed on the header and only the header. The value that is obtained is called a checksum.
This allows the receiving system to also calculate a checksum on the received header to determine
whether it had been damaged in transit. If the checksums match, the header is considered to be
complete and intact.

The checksum is followed by 8 bytes (64 bits) for the source and destination IP addresses, in that
order. The source address is necessary so the receiving computer not only knows who sent the mes-
sage but, more importantly, knows where to send any messages back to. In the case of a conversation,
the addresses are reversed on a return message. The IP addresses are composed of 4 bytes for an IPv4
address and are constructed in a particular way. There are also some specific addresses that anyone
looking at network communications should be aware of.

Internet Protocol Addresses
An IP address is composed of 4 bytes and these bytes are generally displayed being separated by a
period or dot. Because of this, the addresses are sometimes called dotted quads. Each component of
the address is 8 bits, and each component is sometimes called an octet. You would have four octets in
an IPv4 address and the complete address may be called a dotted quad. Simple, right? Well, it actu-
ally gets more complex than that. An IP address is broken up into two components that are different
from the bytes that the address is composed of. In every IP address is a network address and a host
address. The important thing to know is how you tell the difference between the network component
and the host component. In fact, the network itself has no idea which is which. As you can see in
the IP header, the only thing you are provided is the address for the source and the address for the
destination. How does one know which is the network part and which is the host part?

This begins on the sending computer’s side. Every system, when you configure an IP address to
a network interface, also has a subnet mask that tells the computer which is the network part and
which is the host part. Like the IP address, a subnet mask is composed of 4 bytes. The subnet mask
is used to identify which bits are in use for the subnet component of the IP address. For example,
assume that 255.255.255.0 is your subnet mask. Because 255 is the maximum value of a byte, you
know that all the bits in each of the first three octets are used for the network. Because no bits are in
use in the last octet, that whole byte is used for the host address. Every host address belongs to the
subnet identified in the first three octets of the IP address.

Let’s look further at this. If you have an IP address of 172.16.42.25 and a subnet mask of 255.255.255.0,
the network component of the IP address is 172.16.42. The 25 is the host address. Subnet masks can
sometimes get quite a bit more complicated than this and for the most part, you wouldn’t worry that much

Networking Basics 29

about them. What you need to know is that the subnet mask tells the sending computer which destination
hosts are on the local network and which are not. If a destination host is in the local network, the sending
computer will just send straight to the MAC address and there would be no need to do anything else.
If a destination host is not on the local network, the computer will forward the message off using the
MAC address of whatever gateway (router) is associated with the destination address.

Each computer has a table called a routing table so it knows where to send packets in case it has
multiple interfaces. If there is a single network interface, there is usually just a single default gateway
and all packets that are going to another network will be sent to that gateway to be handled there.
Once the packet hits the gateway or router, the router would consult its own routing table. As the
packet gets closer, the path to the destination gets more specific because the network designations
will get tighter. In a very simple example, the first router may know how to get to the 172.0.0.0
network so it forwards off to a router that knows about that network. That router may know about the
172.16.0.0 network and so it forwards off to the next router it knows that knows about the 172.16.42.0
network. Because that router is on the same 172.16.42.0 network as the destination, it then forwards
the frame off using the MAC address of the .42 system, which it either knows or can figure out. That,
in an exceedingly small nutshell, is routing. The bits associated with the network address are used
on the sending side to determine whether a packet is destined for a local network. Once the packet
leaves that network, the subnet mask is never referred to or determined again. The routing tables
across the Internet allow the packet to get to its destination, without ever really needing to know the
subnet mask of the target system.

Because every byte of the address can hold values between 0 and 255, those are the theoretical
potential values of each octet in the IP address. In practice, something else happens. First, in the
very first octet, the maximum value you will see in a real IP address is 223. This is because, initially,
addresses were broken up into classes, based on the bit pattern in the first octet. If the highest-order
bit was a 0, the address was a Class A address. That would give you values of 0–127 in the first octet.
A Class B address would have a bit pattern starting with 10 with the high-order bits. That would
give you values from 128–191. A Class C address would have a bit pattern of 110 giving values of
192–223. A Class D address would be 1110 and have values of 224–239. The problem is that Class
D addresses are reserved for multicasting. You may see those addresses, but they would be used for
streaming media, typically, and never as an actual IP address of a real system.

In addition to values over 223 in the first octet, there are certain address ranges that you won’t see
on the open Internet. Large blocks of addresses were set aside early on for private addresses. These
private addresses are used on local networks where the messages never need to get out onto the open
Internet as they are. If they do need to get out onto the open Internet, a process called network address
translation (NAT) has to happen where the private addresses are converted (or translated) to another
address that can be sent out onto the open Internet. These private addresses are commonly referred
to as non-routable because, by convention, they are not ever put into routing tables on the Internet.
They may be used internally to corporate networks but they are never routed between carriers. The
private addresses were allocated by classes. Table 2-1 shows the three blocks of private addresses.

Network Forensics30

Table 2-1: Private Addresses

Class Network Address Subnet Mask Range

A 10.0.0.0 255.0.0.0 10.0.0.0-10.255.255.255

B 172.16.0.0 255.240.0.0 172.16.0.0-172.31.255.255

C 192.168.0.0 255.255.0.0 192.168.0.0-192.168.255.255

The usage of private addresses is specified in RFC1918 and so the various blocks in the table are
sometimes called RFC1918 addresses. Any of these blocks can be used on any private network at any
time. You will commonly see the address range 192.168.0.0–192.168.0.255 or maybe 192.168.1.0–
192.168.1.255 in use on home networks since those addresses are often used on networking devices
designed for home use. The router on a home network, often part of a cable or DSL modem, hands out
addresses from these ranges as a default. That means that if you have the address range 192.168.1.0–
192.168.1.255, the vast majority of people who have the same device you are using will also have
that address range on their networks. However, because the devices are translating your IP address
for you, there is no fear of the packets from your computer getting lost. Out in the real world on
the Internet, your packets will have the IP address that your service provider has given your router.

NOTE The first and last address out of each range of addresses is not used because they have spe-
cial purposes. The first address, such as 192.168.1.0 out of the range 192.168.1.0–192.168.1.255, is
the network address. It identifies and belongs to the network. The last address, such as 192.168.1.255
in the aforementioned range, is the broadcast address. It is used to communicate to all hosts in that
network range.

One other range of addresses you will not see in practice is the 127.0.0.0 block of addresses ending
at 127.255.255.255. The most common address you will find from that block, by far, is 127.0.0.1. This
is the localhost or loopback address. This address refers to the system you are on. Any attempt to
communicate with any of the addresses in the 127 block will remain on the system that originated
the communication. While the .1 address is the one you will most commonly see configured on your
computer, any of the addresses out of the 16,777,214 possible addresses in the block can be used as
a loopback address.

NOTE Although you may not run across it as often unless you work a lot with network engi-
neers, there is another way of indicating how large the subnet is. If you have a subnet mask of
255.255.255.0, you have 3 bytes of 8 bits that are used to indicate the subnet. That is 24 bits. The
Classless Internet Domain Routing (CIDR) notation to indicate that is /24. If the network you were
on is 172.16.5.0 and the subnet were 255.255.255.0, the shorter way to indicate that is 172.16.5.0/24.
In other words, you count up the number of bits that are used for the network part of the address
and just use that number rather than converting it into a dotted-quad value.

Networking Basics 31

IP has no capability of determining whether packets that are sent have been received. What IP
offers is best-effort delivery. IP will do what it can to make sure that the datagrams and segments
get where they need to go. It does this by making sure that the packets are addressed correctly. The
system that does the addressing just assumes that the network will take care of the rest, which it
will if nothing catastrophic happens. One reason for this best-effort delivery model is to make sure
that IP isn’t adding additional overhead. IP takes care of network addressing and once the network
addressing is in place, all of the intermediate systems, called routers, take care of the delivery. If
packets are lost because of a network failure, the sending system will have no idea that it has hap-
pened based on IP alone.

Internet Control Message Protocol (ICMP)
There is a partner protocol called Internet Control Message Protocol (ICMP). Among other purposes,
ICMP is used to transmit error messages. If something happened to the IP packet in the network,
one of the devices along the path might send an ICMP error message back to the sending host. This
assumes that the router was capable of sending when the failure occurred, which may not always
be the case. However, the objective of ICMP is to provide a means for error and other control mes-
sages to be transmitted through the network. You may see ICMP used for diagnostic purposes as
well, including determining whether a system is up. ICMP echo requests are generally called pings
because the utility used to send those messages is called ping. When a system is up, it will send back
an ICMP echo reply. The utility is called ping because it acts like sonar on an ocean-going vessel.
A ship looking for a submarine, for example, would send a sonic burst that sounds like ping, then
wait to hear an echo. This is what the ping program does. You may find indications that ping is short
for Packet Internet Groper, but in reality, ping was named for what sonar sounds like.

Internet Protocol Version 6 (IPv6)
Once the Internet was opened to commercial interests rather than being limited to the academic and
research purpose it had long had, there was a significant expansion. A number of factors, including
the lower cost of personal computers and more network-friendly operating systems, meant that a lot
more people were getting online either through the company they worked for or at home through an
Internet service provider (ISP) that allowed them to use a modem to connect to the network. This
increase in usage meant a lot more need for IP addresses. Because an IP address is 32 bits long, a
maximum number of 4.3 billion addresses are available. Many of those immediately get dropped out
because of the RFC1918 and loopback address spaces. Other addresses, above the multicast address
range, are simply unused. Even if the whole 32 bits of address space were usable, there simply weren’t
enough addresses to allow for the large numbers of people who were getting online starting in the
mid-1990s. Because of the limited number of addresses, private addresses were often implemented,
particularly on home networks. The router or some other device would replace the private address
with an Internet-routable address in a process called network address translation (NAT).

Network Forensics32

The next version of IP was designed to fix the issue of limited address space as well as a few other
problems in the existing version 4 of the protocol. The first thing that was necessary was an increase in
the number of potential addresses. At the time IP was originally designed, it was felt that 32 bits would
be more than adequate considering that only very large and expensive computers were connected to
the network. This time, to avoid similar problems in the future, the address space was dramatically
increased. Instead of 32 bits, IPv6 has 128 bits in every IP address. While on the face of it, that looks
like a factor of 4 increase in the number of addresses, keep in mind that capacity doubles for every
bit increase. Instead of multiplying the number of addresses available by 4, we are multiplying the
number of addresses by 2^96. This is the difference between the new 128-bit addresses and the 32-bit
addresses previously used. What this means is that you multiply the current 4 billion addresses by
7.9 * 10^28 to get the total number of IPv6 addresses, which is 3.4 * 10^34.

Because it would be a lot of work to represent the address in decimal, since you would have
sixteen 3-digit numbers, an IPv6 address is represented as sixteen hexadecimal digit pairs. Each
pair of hexadecimal digits represents a single byte since ff is equal to 255, which is the maximum
value of a byte. Rather than dots, the hexadecimal digit pairs are separated by colons. With IPv6,
you might see something like fe80:0000:0000:0000:0000:8b11:fc3f:7015. You will see a lot of 0s in
the middle, and since that takes up a lot of space for no good reason, we can shorthand the address
to be fe80::8b11:fc3f:7015. The :: means fill all of this in with 0s. Since we were missing 8 bytes, all
of those 8 bytes there are just 0s.

The address space wasn’t the only fix that was put into IPv6. The specification for IPv4 doesn’t
include any capacity for privacy or preventing tampering. A number of extensions, originally devel-
oped for IPv6, called IPSec (for IP Security) were added onto IPv4 by various vendors to allow net-
works and individual users to communicate with, say, a corporate network in an encrypted and private
manner. Since all of this was created for IPv6, it’s no surprise that IPv6 has all of these features and
capabilities natively. This ability to support end-to-end encryption without requiring the session
layer to provide encryption, is a large leap forward for privacy but it will also make life much harder
for network forensic investigators since all of the information will be encrypted.

One advantage introduced by IPv6 is the ability for each host to automatically configure itself
with a network address that all other hosts on the network could get to. Previously, that typically
required a special system called a Dynamic Host Configuration Protocol (DHCP) server that handed
out IP addresses and other network configuration information. Without a DHCP server in IPv4, hosts
would assign themselves link-local addresses, sometimes called zeroconfig addresses. There is no guar-
antee that hosts assigned these addresses could communicate with other hosts on the same physical
network. While the need for DHCP doesn’t entirely go away, systems can automatically configure
their network address. Rather than contacting a DHCP server, they send out a message looking for
the router on the local network. The router replies with the network address. The system appends its
MAC address since all MAC addresses are expected to be globally unique, so there should never be
two systems with the same MAC address on the same network. This avoids the potential for multiple
systems with the same IP address. IPv6 also supports its own version of DHCP, referred to as DHCP6,
which provides host configuration in a similar way to the older version of DHCP.

Networking Basics 33

The considerably larger address space and the utilization of the already unique MAC address
alleviates the need for the private addresses previously used. While there are a number of other
enhancements over IPv4 in IPv6, the address space and the use of encryption and verification of
message contents are really the two big ones that would impact a network forensic investigator.

Transmission Control Protocol (TCP)
As mentioned previously, IP offers best-effort delivery. However, many applications need some-

thing better than best effort. Most of the time, you want packets you are sending to be guaranteed
to get to the destination host so there needs to be another means to guarantee the delivery of the
application data. Of course, it could be left up to the application protocol but that would be a lot of
duplication. Instead, the transport protocol layer could be used to provide that guaranteed delivery.
Of the different transport layer protocols available, the Transmission Control Protocol (TCP) offers
guaranteed delivery meaning that the sending host will either get the message through or receive a
message indicating why a failure occurred. In reality, there is no getting around a catastrophic net-
work failure or outage but TCP is designed in such a way that messages are tracked to ensure they
get to their destination, in order. If this doesn’t happen, the application will be notified by TCP that
a failure occurred. Since a communication stream between two endpoints may require a number of
segments before being considered complete, those segments need to be in order or they simply won’t
make any sense. Imagine, for example, reading “love run smooth never did The course of true.” That’s
what happens when you get chunks of data out of order. You may be able to look at that and rear-
range the words to get the line from A Midsummer Night’s Dream, but it would be quite a bit better if
all the words were in the correct order to begin with.

To understand how TCP works, we need to take a look at the TCP header. Keep in mind that the
TCP header encapsulates the data that is being sent by the application. The encapsulated data is
then sent on to IP to be addressed. In Figure 2-5 you can see the header as diagrammed in RFC793,
published in September 1981 as the specification for how TCP was intended to work.

TCP has its own manner of addressing to make sure the correct application running on the sys-
tem gets the segments. Where IP uses an IP address to make sure the packets get to the correct host
system, TCP makes use of ports. This is a way of allowing multiplexing so many applications can
be communicating at the same time. Ports in TCP are 16-bit values, and just as there are source and
destination addresses, there are source and destination ports. The first 32 bits of a TCP header are
the source and destination port. Because there are 16 bits, you can have values of 0 to 65535. This
gives you a total of 65,536 ports available to applications.

NOTE The first 1024 ports, 0–1023, are called privileged ports. That means that only the admin-
istrative user can establish a listener on those ports. Applications with listener ports are server
applications. Applications that are clients are assigned ephemeral ports, meaning they are transient
and will go away as soon as the application no longer needs them.

Network Forensics34

Figure 2-5: TCP header diagram.

After the ports, the next 32 bits is the sequence number. The sequence number is expected to be a
random number established at the beginning of a communication stream. The sequence number is
incremented by the number of bytes transmitted as the communication progresses. The sequence
number allows all of the segments to be in order since the receiving system will know exactly where
in the stream a particular segment belongs. The sending system is responsible for maintaining the
sequence number as it transmits. It is directly related to the acknowledgment number.

The acknowledgment number is the next 32 bits. The acknowledgment number is sent by the receiv-
ing system to the sending system to indicate the next number byte it expects. Let’s say that the initial
sequence number for a communication stream is 545. The sending system had transmitted 20 bytes.
In order to indicate to the sending system it had received 20 bytes, the receiving system would send
back an acknowledgment of 565, indicating it had received bytes 545–564 (20 bytes) and was awaiting
byte number 545. If the sending system had sent 40 bytes but it only received an acknowledgment
for 20 bytes, it would know that after a specific period of time it would need to retransmit. This is
how TCP defines guaranteed delivery. The sending and receiving parties keep track of where they are
in the conversation and acknowledge everything that is sent. If an acknowledgment isn’t received,
the sending system needs to retransmit until it either receives an acknowledgment or the number of
sends, determined by the operating system implementation though three is the specified minimum,
is reached, at which point the connection will generate an error.

The data offset, which is a 4-bit value, indicates where the data begins. This effectively tells the
receiving system how long the TCP header is. Because the TCP header supports optional values, it
is not fixed length so there needs to be a value in the header that indicates where the data can be
found. There are 6 bits after the offset that are reserved and used for nothing. This is followed by 6
bits that are used for flags. These flags are either set or not set, so a single bit represents a single flag.
The flags available in TCP are as follows:

 ■ URG—The urgent flag indicates that the urgent pointer field is significant and should be read.

Networking Basics 35

 ■ ACK—The acknowledgment field has a value that should be read. This flag would be set if a
receiving system were sending an acknowledgment back to a sending system to indicate where
in the data stream they were.

 ■ PSH—Data coming in on a TCP connection is held for a period of time. This is a process called
buffering. Once a buffer is full, the data will be sent up to the application. If a segment comes
in with the PSH flag set, the data in the buffer will be pushed up to the application, regardless
of whether the buffer is full.

 ■ RST—If this flag is set, the connection is reset, meaning that any communication that may be
ongoing is terminated. If a system wants to communicate again, it needs to re-establish the
connection.

 ■ SYN—This flag is used to indicate that there is a sequence number that needs to be synchronized.
The receiving system should make note of the sequence number for further communications
with the sending system.

 ■ FIN—This flag is used to indicate that communication is ending. No further messages are going
to be sent from the sending system.

After the flag bits are 16 bits of a window field. The window field indicates the number of bytes
(including this field) the sender of the message is willing to accept. This means that the sender of
this message will send an acknowledgment prior to the window that tells the receiving system when
it should expect acknowledgments from the sender. If the number of bytes transmitted goes outside
of this window, there is likely a problem that needs to be addressed with retransmits.

The next 16 bits are the checksum. This is a calculation that indicates whether the header and
the data associated with it have been corrupted in any way. This field will allow the receiver to also
calculate a checksum and make sure it is equivalent to the checksum sent. If not, there is something
wrong with the message. While the checksum is being calculated, the checksum field itself is filled
with 0s in order to ensure the calculation is consistent on both ends, since it won’t be filled in at the
time it is being calculated on the sending end.

Finally, in the standard TCP header is the urgent pointer. If the URG flag is set, this indicates
where the receiving system should be looking for the urgent data. This field is an offset value from
the sequence number in this segment. After the urgent pointer field, there may be options. In order
to get aligned to a multiple of 32 (4 bytes), the header may have some padding if the options don’t line
up correctly. After any optional header fields is the data that is being transmitted for the application.
The standard TCP header is 20 bytes long. If there are no options in either the IP header or the TCP
header, the total length of the IP and TCP headers together is 40 bytes.

You can start to see how TCP manages to provide guaranteed delivery to the applications it ser-
vices. One piece that is missing from what you have seen in this section is the communication that
establishes some of the header fields between the sender and the receiver. When two systems want to
start communicating over TCP, they perform a three-way handshake that establishes the important
data fields. It’s the three-way handshake that establishes a connection between the two systems.

Network Forensics36

NOTE While this chapter has primarily been using the word “byte,” the RFCs for the protocols
described here use the word “octet.” The reason for this is that the byte wasn’t a standardized value.
Some bytes were 8 bits while others were 10 bits. It depended entirely on the system. To avoid any
confusion, the word octet is used to indicate an 8-bit value. For our purposes, because the byte on
personal computers is 8 bits, the two words are synonymous.

Connection-Oriented Transport
TCP not only provides guaranteed delivery, it also makes use of connections. This means that before
two systems begin to transmit actual data, they go through a process to establish a connection. The
process is called the three-way handshake. It’s actually a four-step process but two of the steps have
been collapsed into a single segment, making it three segments that are transmitted. The three-way
handshake guarantees that both parties are alive and reachable, which prevents one side from pre-
tending they are someone else. It also establishes the sequence number that is needed to guarantee
orderly delivery during the communication between the two systems.

The very first segment that is sent is called a SYN message. This is because the SYN flag is set. This
flag tells the receiving host that it should take note of the initial sequence number (ISN). That will
be the value that the remainder of the communication is built on since every message of data that
is sent will increment the sequence number by the number of bytes sent. This allows the two hosts
to both know where in the communication stream they are. The diagram in Figure 2-6 shows the
first message with the SYN flag set and the initial sequence number established. This initial message
would generally be originated from a client looking to establish a connection with a server in order to
obtain a service. If you were looking to connect to a web server, for instance, you would go through
this process between your system and the system the web server application is on.

Figure 2-6: SYN message.

Networking Basics 37

The second segment that is sent is a collapse of two steps into a single message. The first part is
the ACK, indicating that the ISN has been received. The ACK indicates that the acknowledgment
field has a value that will be the ISN + 1, indicating that the first message has been received and the
recipient is awaiting the very first byte of data. At this point, no actual application data has been
transmitted so the segments only include headers and no data payloads. The second part of the mes-
sage is the server establishing its own ISN. As a result, the SYN flag is also set. Since both ends of
the communication are expected to be sending data, both parties need to keep track of where they
are in the communication stream and both need to acknowledge receipt of segments. This would be
impossible with just one sequence number. Both ends need to have their own sequence number. This
segment will have both the SYN and ACK flags set and it will also have values in both the sequence
number and acknowledgment number fields. Because both the SYN and ACK flags are set, this is
commonly called the SYN/ACK message.

The SYN/ACK message establishes to the client that the server is alive and responsive to messages.
The server responds to the source IP address in the SYN message. Assuming that the SYN/ACK
doesn’t generate any errors, the client is expected to also be up and responsive. The last message in
the handshake is the response to the SYN message from the server. This is a segment that has the
ACK flag set and the acknowledgment field is set to the server’s ISN + 1 to indicate that the initial
sequence number was received and the client is ready to receive data from the server.

Once the three-way handshake is complete, the two systems have a foundation on which to build
a communication stream. Because pretending to have a different IP address is so easy, the full hand-
shake is important to protect against spoofing. Spoofing is when one system pretends to be another
one. Because both ends of a TCP communication have to establish ISNs and respond as though they
know the ISN, it mostly protects against spoofing. Spoofing is commonly used in an attack against TCP
servers, though. If an attacker sends just the initial SYN message with a spoofed source IP address, the
server will respond to the bogus SYN message to a system (the real owner of the falsified IP address)
that isn’t expecting it. This leaves the connection in a half-open state. The server is awaiting the ACK
message so it holds a buffer open for the expected connection with the other system. Because a finite
number of buffers can be held open like this, a SYN flood, as this attack is called, is focused on using
up all of those buffers so legitimate clients won’t be able to establish connections with the server.

When one system receives an unexpected TCP message, as in the case of the real owner of the
spoofed IP address, it will respond with a message with the RST flag set. This reset message tells
the sending system that it has no idea what is going on so shut down what it’s doing and stop send-
ing messages. It’s a simple way of saying don’t bug me with these unsolicited communications. If the
SYN/ACK makes it to a live system that sends back a RST message, the half-open connection will
get torn down. As a result, the best way to perform a SYN flood is with source addresses that won’t
respond. If the spoofed source doesn’t respond to the SYN/ACK with a RST, the host under attack
will leave the connection half-open for longer.

Network Forensics38

During the course of a conversation, both sides will send periodic messages with the ACK flag
sent and the acknowledgment number indicating the next byte number that is expected. As noted
previously, the spread of these acknowledgments is based on the size of the window. The size of the
window can change through the course of the conversation, depending on the conversation and how
smoothly it is going from a network flow perspective.

When the conversation is over, both sides will need to tear down the connection. This is a two-
step process, just as the connection is set up using two steps in both directions. Rather than a SYN
and then an ACK, both sides will send a message with the FIN flag set, indicating that the party
sending the FIN is done communicating. The only response to a FIN is an ACK. All this says is that
the sending party is done sending messages and the receiving party has acknowledged that. This
doesn’t say that the receiving party is done sending messages itself. Because there are two pathways
in every conversation, A➪B and B➪A, both parties need to indicate separately that they are done
communicating. If A is done talking, it will send the FIN and B would respond with an ACK. B may
still have things to say. It can continue to transmit and A would be required to ACK any messages
that are sent by B until B sends a FIN. Once A receives the FIN from B, it sends an ACK back.

This ends up creating a four-way teardown, and this is necessary because it’s not possible to com-
pletely synchronize when both parties are prepared to tear down. It’s easiest and quickest to allow
both sides to initiate their own teardowns separately. In practice, you will generally see the two FIN
messages from both sides happen at about the same time. It would be unusual for there to be a long
interval between the two parties sending their teardown requests. Once the teardown is complete,
the connection can be removed from the connection table that each operating system keeps track of.

User Datagram Protocol (UDP)
Where TCP offers a connection-oriented service, the User Datagram Protocol (UDP) is connectionless.
This means that there is no establishment of a connection and no tracking at the operating system of
the communication between the two systems. Every communication message is done as a one-off. At the
operating system level, there is no tracking. Messages are sent and promptly forgotten. By this, I mean
that the network stack within the operating system kernel, the core of the operating system, handles
UDP and TCP messages. If any tracking is done, it can be done within the application.

You may be wondering, if TCP offers guaranteed delivery and sequencing and all the other good-
ness it has to offer, why would anyone have any use for UDP? In reality, there are a lot of uses for
UDP. UDP is fast and lightweight. It has little in the way of overhead and you don’t have to wait
for a connection to be established before you send a message along. Once the application has prepared
a message, it’s out the door. Any application that is concerned with speed, like streaming video, will
want to use UDP. If you are streaming video, you don’t want to be hung up waiting for a particular
segment to arrive if there is out-of-order delivery. With UDP, you send it on its way; if one or two
datagrams are dropped or lost or arrive out of order, they are simply discarded or forgotten. You
likely won’t miss them at all. Waiting for them would cause a jarring experience for watching or

Networking Basics 39

listening. Trying to insert out-of-order messages into the stream when they arrive would be similarly
jarring, though for different reasons. As a result, UDP is best for any application that needs real-time
transmission capabilities.

Because the protocol itself doesn’t do a lot other than offer
a means of transport and multiplexing, the headers are very
simple. This also helps with speed because fewer bytes, even if
it’s not all that many fewer for each datagram, means it can get
to the recipient much faster and requires less processing on the
receiving end. Figure 2-7 shows the short header that UDP uses.

Just as with TCP, the first 4 bytes are the source port and
the destination port. Because each port field is composed of 2
bytes, there are 65,536 ports available in UDP. Again, there is
a source and a destination so the datagram not only knows the address when it gets to the system,
but also any response can come back to the right port on the system that originated the message. Of
course, with a UDP message, there is no guarantee of any response. This is not to say that the mes-
sages will get lost. Instead, UDP itself specifies no response to any message it receives. As a result,
communications can be entirely one-way if that is the way the application wants it to be.

After the port numbers is the length field. As with TCP, this provides the size of the data to the
receiving end so it knows how many bytes will be read as part of this datagram. Since the length field
is 2 bytes, the maximum size of a UDP datagram is 65,535 bytes. That is the maximum value of 16 bits,
expressed in hexadecimal as 0xFFFF. Although the UDP datagram can be up to 65,535 bytes long,
it would never go out onto the wire intact. The IP layer would fragment it on the way out and then
reassemble it at the receiving end before forwarding the reassembled datagram up to the UDP layer.

After the length field is the checksum. This verifies that the datagram that has been received is the
same one that has been sent. Just as with TCP, it is calculated as though there were 0s in that field.

That’s really it. A total of 8 bytes in the UDP header. There are no options. That is all that is needed
to make UDP work. Of course, because it’s so simple, there are some challenges that the application
layer needs to take care of.

Connectionless Transport
Where IP is best-effort delivery and TCP is connection-oriented and considered guaranteed, nothing
is guaranteed with UDP other than the best-effort delivery used by the underlying IP layer. UDP is, in
contrast to TCP, connectionless. TCP makes use of the three-way handshake to establish a baseline
for communication. It uses this baseline to ensure segments are delivered through the process of
acknowledgments. UDP has no such handshake, and as a result, UDP datagrams are sent out onto
the network in the hopes that they arrive at their destination. Since there is no defined behavior for
how a system receiving a UDP message is supposed to act, the sending system has no way of knowing
that the datagram has been received. All of that behavior is left up to the application to take care of.

Figure 2-7: UDP header diagram.

Network Forensics40

Some applications take advantage of the almost transient nature of UDP datagrams, considering
they leave almost no trace in terms of connection states. As an example, the Domain Name System
(DNS) uses UDP transport for requests for an IP address from a hostname. Most systems are con-
figured with multiple DNS systems for looking up IP addresses. These systems will often request
information from more than one DNS server at a time. Since sending the request out doesn’t get
any sort of acknowledgment, the requestor can’t know whether it was received unless it receives an
answer, and those can sometimes be delayed or lost. As a result, systems can send multiple DNS
requests nearly simultaneously to increase the chances of getting an answer without worrying about
any overhead or additional time. The first DNS server to respond to the request effectively wins. Any
additional responses are just discarded.

Ports
At the transport layer, ports are used to provide multiplexing. It’s the way we provide an address at
that layer to make sure that the correct application gets the message that has been sent its way. This
has been referenced a few times but it may be helpful to dig a little deeper into ports to understand
how the concept operates on a running system. There are a number of ways of conceptualizing the
idea of ports. You could think about a wall of mailboxes, as you might see in your local post office.
Messages go in and are retrieved. The problem with mailboxes as an analogy is that mailboxes are
more store and forward than the real-time nature of ports, meaning a message may sit in a mailbox
for a period of time until the message is retrieved. In reality, there may be a bit of that going on at
the program level, depending on how the program has been written. Network communication, when
we are talking about sending a segment or a datagram to a TCP or UDP port, is real time, though.

In the end, everything is about the applications communicating. The ports identify who is doing
the communicating and the ports are handled by the operating system kernel. For our purposes,
let’s say there are two types of programs: a server and a client. The server has something to offer
to the rest of the network. The client is a program that consumes the services offered by the server
application. Perhaps the most common example of this model is the web server and the web browser.
When you communicate with www.google.com, you are sending a request from your web browser to
the web server sitting in a Google data center. On one side, you have the server. On the other, you
have the client.

On the server side, the program that is performing the server functions sends a request to the
operating system asking to bind to a particular port. Because only one application can be bound
to a port at any time, the operating system is the final arbiter and it uses a first-come, first-served
approach. In other words, if someone gets there before you, you’ve lost out. If the port is available,
the operating system will say okay. At that point, the application will begin listening on that port.
This means that the application will wait to be informed of a connection request coming from a cli-
ent. You can see one of those requests in Figure 2-8.

Networking Basics 41

Figure 2-8: Client to server communication.

In the TCP header, you can see the source port and the destination port. The destination port is
the port the server is listening on. The destination port in this message is 80, one of the well-known
ports assigned to the Hypertext Transfer Protocol (HTTP) for web communication. A well-known port
is one that has been assigned to a particular service like HTTP (web), FTP (file transfer), DNS, and a
number of others. Essentially, a well-known port is the default port number for commonly used appli-
cation protocols. Just because a port is commonly assigned to a particular service doesn’t constrain
the port that can be used by a server. You can establish a web server on port 5489 if you want to. It’s
just that the web browser expects to go to port 80, so you would need to do something extra to get a
client to communicate with that server.

On the source port side, operating systems make use of a block of port numbers that are handed
out on an as-needed basis. Since they are for temporary use, they are called ephemeral ports. They are
assigned and returned as the communication is established and torn down. The Internet Assigned
Numbers Authority (IANA) is responsible for IP addresses and also port number assignments for
the well-known ports. IANA recommends using ports 49152–65535 for ephemeral ports. This isn’t a
requirement, however. Many Linux kernels use 32768–61000 for ephemeral ports. Modern Windows
systems have used the IANA-recommended ports for ephemeral port assignment but the ports can
be redefined if a system administrator wants to.

A small number of ports are reserved for administrative access only. The program may have to
have administrative or root user permissions in order to establish a listener on ports below 1024.
Any port over 1023 can be used as a listener by anyone on the system, though ports 1024–49151 are
in a block of ports whose assignment is managed by the Internet Assigned Numbering Authority
(IANA). While any programming running as any user can use the numbers, they may collide with a
service that has already been assigned that number. Since programs that use the low-numbered ports
are often considered essential services, they were grouped together with the assumption that these
essential services could only be started by an administrator at the system level and not a program
that any user on the system could start up.

Network Forensics42

NOTE Because UDP uses what is effectively one-way communication, a source port isn’t required
in a UDP header, depending on whether the application expects a response. In cases where no
response is expected, a source port may not be assigned and the value 0 may be used instead.

Domain Name System
While systems are all provided IP addresses in order to communicate across the Internet, we aren’t
great at memorizing IP addresses. Not only that, IP addresses can change and if the address changes,
everyone would have to memorize the new address, assuming they can even discover it. It’s far easier
for people to remember hostnames because there is usually some context for that. In the early days
of the Arpanet, a hosts file was shared to all of the sites on the network. This hosts file was centrally
maintained and when changes were made, the edited file had to be redistributed to the entire network.
As the Arpanet continued to grow, it became clear that the hosts file approach wasn’t sustainable or
scalable. In response, the Domain Name System (DNS) was created. DNS alleviated the challenge of
maintaining and distributing an up-to-date hosts file but also allowed multiple hosts with the same
name as long as they belonged to different domains.

A domain is a way of organizing multiple hosts into a single naming group. Each host will have
its own hostname, which is the common name that is provided to it, and every host will belong to
a domain. When you put the hostname and the domain name together, you have a fully-qualified
domain name (FQDN). The FQDN says that you are as specific as you can be with respect to what
host you are referring to. If I were to just mention zaphod, calvin, or opus, for example, there may
be countless systems around the Internet with those names. The way to get to a unique system is to
add the domain name to it and make it an FQDN.

NOTE There are ways to have an FQDN refer to multiple IP addresses for the purposes of load
balancing, but for simplicity we are going to assume a one-to-one relationship between FQDN and
IP address.

Domains are organized hierarchically. At the very top are the top-level domains (TLDs). While the
most well-known ones are likely to be .com, .net, .edu, .gov, and .org, all of the country-specific
domains like .sk, .us, and .ca are all TLDs. Basically, when you carve up a domain name, the
chunk after the last dot is the TLD. Beneath the TLDs are second-level domains. In the case of a US
business, this might be the business name as would be the case of Microsoft.com, Google.com, or
ATT.net. Businesses in other countries, since they may be using the country identifier for their TLD,
may have a different organizational structure. At a basic level, though, imagine it as the hierarchy

Networking Basics 43

shown in Figure 2-9. At the top of the hierarchy are the TLDs, which would be the right-most part
of the domain name. You then build on that by adding additional components right-to-left as you
work down the hierarchy.

.COM

Google

Labs Wireless www

www wwwmail

www www ctlonline

ATT ATT IANA Champlain YaleMicrosoft

.NET .ORG .EDU

Figure 2-9: Domain hierarchy.

Underneath the second-level domains are the subdomains. You may not run into these, though
some businesses have them. For example, wireless.att.com is a subdomain of att.com. At some
point, though, you start adding on hostnames. In the case of wireless.att.com, the website would
be the FQDN www.wireless.att.com. That is the website for the subdomain wireless.att.com,
which is a different host than www.att.com.

In order to get from a hostname to an IP address, we have to do a DNS lookup, called resolving
the address. There are two types of DNS servers. One is an authoritative server, which is the server
you want to go to in order to get definitive answers about hosts within a particular domain. Every
domain will have a set of authoritative servers. Performing a whois lookup on a domain name will
give you the authoritative servers for that domain because the RIRs store the name servers along
with the remainder of the records for the domain. The following code shows the three authoritative
servers for the domain ATT.COM. To determine an IP address in the domain ATT.COM, the most
accurate answer will always be with one of these hosts:

Name Server: ns1.attdns.com
Name Server: ns2.attdns.com
Name Server: ns3.attdns.com

The other type of DNS server, and the type that your system would be interacting with on a regular
basis, is the caching or local DNS. As one example, Google maintains a caching DNS server for public
use at 8.8.8.8. My ISP is Comcast and one of my DNS servers is 75.75.75.75. These are the servers
your computer will contact in order to look up IP addresses and other DNS information. It does this
using a recursive query. Because DNS information is a hierarchy, the query starts at the very top and
successive queries get more specific until we have the information that we are looking for. Let’s look

Network Forensics44

at how this would work, using www.wireless.att.com as an example. You can follow the hierarchy
on this one by referring to Figure 2-9. Additionally, you can follow the queries in Figure 2-10. The
first query goes from your computer to the caching DNS server, which does all of the work from there.

www.wireless.att.com

Root
Server

.com
Server

att.com
Server

wireless.att
.com

Server
att

.co
m

.com
www.wireless.att.com

w
ireless.att.com

1

2

3 4
5

Your Computer Caching
Server

Figure 2-10: Recursive DNS query diagram.

Every DNS server has a set of hints, which are the addresses of the root name servers. The root
name servers have addresses of the appropriate DNS servers for the TLDs. The second query goes
from the caching DNS server to the root servers to get the IP address for the .com DNS server. The
third query goes to the .com DNS server to get the IP address for the domain att.com. The fourth
query goes to the domain server for att.com asking about wireless.att.com. Finally, once we know
the IP address for the subdomain wireless.att.com, we can ask about the hostname www.wireless
.att.com, getting an address back that can be returned to your computer. All of these requests are
done over UDP, which allows them to be quick. Still, though, it takes time to make the number of
requests that are involved in the query referenced in Figure 2-10. This is why the local servers are
called caching servers. In order to save time, they cache responses so they don’t have to look up the
information every time.

Domain records are stored in zones and every zone has a set of metadata associated with it. This
metadata is stored in a Start of Authority (SOA) record in the DNS server. The SOA record provides a
serial number for the zone, which can indicate whether the zone was updated since the last time the
SOA was queried. If the serial number is different, information in the zone has changed. Additionally,
the SOA record has timer information indicating when information within the zone will time out.
Caching servers pay attention to this information in order to determine how long they can hold onto
a record. We can see the values associated with the records in the trace of the query www.wireless
.att.com done using the dig command in Figure 2-11.

The first query gets the root server values. Because of the size of the Internet, there are a lot of
root servers. The second query gets the value for the DNS servers associated with the .com domain.
Again, there are a number of these in order to accommodate the large number of queries directed

Networking Basics 45

there. The third query gets the address of the att.com domain name servers. In this case, att.com
doesn’t have a separate set of DNS servers for their wireless.att.com subdomain so there isn’t an
additional query. The numbers you see in the second column of the answer output are the time to
live (TTL) values for each answer. The TTL value is in seconds. The long values associated with the
root name servers indicate that they don’t expect values to be changed very often and they don’t want
to get a lot of queries, so caching servers should hold onto the values for a long time. Comparatively,
the TTL for www.wireless.att.com is much shorter.

Figure 2-11: DNS query trace.

A number of commands can be used to perform IP address lookups. On the Linux and macOS
side, you can use dig, nslookup, or host. On a Windows system, nslookup is installed by default. In
order to use another utility, you could find and install one or use Microsoft’s PowerShell. There are
also web interfaces that would allow you to perform lookups, like the one at Google. Google allows
you to perform a dig query like the one in Figure 2-11 at https://toolbox.googleapps.com/apps/
dig/. In addition to looking up IP addresses from hostnames, you can look up hostnames from IP
addresses, mail server addresses, and other resource records for the domain. DNS uses a number of
different record types to distinguish what the record indicates. Using a tool like dig, you can specify
which record type you want to look up.

Network Forensics46

Support Protocols (DHCP)
You will run into a large number of protocols after you have looked at enough network traffic and over
the course of the book, we will look into some of them in more detail. Two protocols are required for
basic network functioning, though, that you will see on a regular basis. The first and most straight-
forward is the Dynamic Host Configuration Protocol (DHCP) for IPv4, which is a little different than
the one for IPv6. This protocol is used to automatically configure a number of network-related set-
tings on any system that needs to be configured. For the most part, you may be used to just starting
up a new computer, adding it to your local network—either by plugging an Ethernet cable into the
computer or, more often, adding the computer to the WiFi network—and you’re ready to go. This
is because there is a DHCP server running on your network. Most consumer devices like Wireless
Access Points (WAPs) or cable/DSL modem/routers include DHCP servers. This makes life consider-
ably easier for people. All they need to do is do some basic settings on the WAPs or modem/routers
and then get started. This assumes they don’t want to take the defaults, including the Service Set
Identifier (SSID) that comes on the WAP. This is the network name and it’s generally a good idea to
change it to something more unique to you. However, if you don’t want to change, it’s usually very
simple to add one of these devices to your network and then just add your computer to the network.
DHCP takes care of all of the configuration details.

The way DHCP works is a client, meaning a computer that needs configuration settings, sends
out a request called a DHCP Discovery message, looking for a DHCP server. This is an IP packet, but
we have a small snag because the host in question doesn’t have an IP address. For this reason, the
DHCP server must be on the local network where the client system can just use a broadcast address
at layer 2, as you can see in Figure 2-12. The broadcast MAC address is ff:ff:ff:ff:ff:ff.

Figure 2-12: Layer 2 broadcast request.

There are ways around having the DHCP server directly on every local network if you are dealing
with an enterprise network, but that’s done in the network infrastructure and the requests will look
identical. While the layer 2 addressing is very straightforward since every network interface has its
own MAC address, there is still the challenge of filling in details in the IP header. We still don’t yet
have an IP address. As a result, a system looking for an IP address uses 0.0.0.0 as a source address
since all of the communication is being done on the local network and won’t need any routing that
would require a real source IP address. The client system has no idea where to find the DHCP server,
either from a layer 2 addressing perspective or a layer 3 addressing perspective. Since that’s the
case, the system needs to use a broadcast address in the IP header. The broadcast address for IP is

Networking Basics 47

255.255.255.255, so the source is all 0s (all bits set to 0) and the destination is all 255s (all bits set to
1). DHCP uses UDP as the transport protocol and uses 67 as the destination port to the server. The
source port on the client side is port 68.

Once the DHCP server is located on the network, the server replies with an Offer datagram. The
offer includes all of the configuration parameters the client will need, based on how the DHCP server
has been configured.

If a system already has an IP address it wants to request, it will skip the discovery and offer and
move to the DHCP, which is the next step for a system that has gone through the first two steps. To
save time, the client system will try to reuse an IP address it already knows about—the last IP address
it received from a DHCP server. For systems that are fixed, meaning they are desktops that don’t
move, this will work well since the IP address likely won’t change much, if ever. Systems that are more
mobile are more prone to having changes of IP addresses because they are on different networks,
depending on where they have been. As a result, the IP address they request may have nothing at all
to do with the IP network they are on, so the DHCP server will need to provide them with another
one, rather than just acknowledging the one they already have.

When the DHCP server responds, it does so with a DHCP ACK message, indicating that the
configuration that has been requested, based either on the offer or on the existing configuration, is
acceptable to the server. You can see a portion of this message in Figure 2-13. The ACK message from
the DHCP server confirms the requested IP address since, in this case, the address was requested
on the same network as the system previously had an address on. In addition, the DHCP server pro-
vided a number of other configuration settings. Figure 2-13 shows some of these settings.

Figure 2-13: DHCP ACK message.

Network Forensics48

The settings are provided in options, as you can see. The options are defined by various RFCs and
each option is variable length, based on the needs of the option. Some of the options may include the
subnet mask, the router address, and the domain name server. On Windows networks, the DHCP
server may include additional options for Windows-specific parameters including a name server for
Windows naming. On UNIX networks, a system may get an option for an X-Windows server indi-
cating where applications can display windows across a network. This is just a small sample of the
different parameters that may be provided to a client. There are dozens of options defined that can
be passed to the client.

NOTE DHCP is based on the bootstrap protocol (Bootp) that was developed as a way to provide an IP
configuration to diskless workstations that had no ability to store an IP address. Bootp provides the
IP address based on a stored MAC address.

Support Protocols (ARP)
We have gone through the process of how to look up IP addresses from FQDNs but that’s only good
if you need to know the IP address. You would only use the IP address if you were looking to route
your packet across the Internet or just between two different networks internal to your corporate
network. If you are already on the target network and you are looking to get the frame to its des-
tination, you need to know the MAC address. There is no database that stores IP address to MAC
address information. Instead, you simply ask the network. The Address Resolution Protocol (ARP)
is a helper protocol that is used to ask for the MAC address that belongs to a particular IP address.
ARP is a very simple protocol that is very lightweight. IPv6 has an equivalent protocol called the
Neighbor Solicitation Protocol.

When your system needs to fill in layer 2 information for a frame in order to get it out on the wire,
it would use an ARP request. You can see an example of the ARP request in Figure 2-14. The request
has information about the protocols in use like Ethernet and IP. It also includes an Opcode to indicate
that it is a request. Because it is a request, the target MAC address field is empty. The source MAC
and IP address are filled in with the requesting system.

Figure 2-14: ARP request.

Networking Basics 49

The response to this request would come from the system that owns the IP address being asked
about. It would have the Opcode of 2 for a Reply and the requested MAC address would be filled in.
If you are looking at these requests and responses using network diagnostic tools, the ARP exchange
is often short-handed as who-has and is-at. The who-has is the request for information and the is-at is
the response.

There is an issue with ARP, though. There is no validation for the information that is being pro-
vided. As a result, anyone can pretend to be anyone else. Of course, if you are relying on the operating
systems to just do their job, they are always going to respond with the correct information. Since systems
commonly cache information about IP address and MAC address resolution in an ARP table to avoid
having to ask again, an attacker can circumvent the whole process by just telling everyone that a target
IP address is-at the MAC address belonging to the attacker. If the attacking system keeps sending that
information out on a regular basis, the systems on the network will all store that information and never
ask. As a result, anyone wanting to communicate with an IP address will address the layer 2 frame with the
attacker’s MAC. This means the attacker will receive all the traffic that was supposed to go to the victim.

This doesn’t work for very long if the victim stops getting anything at all on their system. If the
network appears to be down because all of the frames are being sent to the attacker, the attacker
won’t get much information that is really useful. Additionally, the victim may quickly notice their
system isn’t working very well. Instead, what the attacker does is forward the hijacked frames onto
the victim. The attacker gets to see all of the traffic without completely disrupting the network com-
munications of the victim. This process is called ARP spoofing. It does require that the attacker be
on the physical network or at least have access to a system on the physical network.

Summary
Entire books are written about the topic of networking. This was a very quick breeze through some
of the important protocols that you would run across regularly as a forensic investigator. Since you
are working with networks and network protocols as a forensic investigator, you need to know how
the protocols work so you will know what you are looking at when you are investigating.

When we talk about networking, it’s sometimes easier to have a model to refer to so you can talk
about functionality more easily rather than getting it confused by talking about specific protocols.
Fortunately, we have two models we can use to specifically talk about functionality. Both of these
models use layers to separate the functions used in the process of communications. One of them is
specific to a set of protocols and the model or architecture was designed as the protocols were being
developed. This is the TCP/IP or DoD model and it has just four layers: data link, internet, transport,
and application.

The second model often used to describe network functionality is the OSI Reference Model. The
OSI model was developed separately from any protocol and was only created as a way of describing

Network Forensics50

communications conceptually. The OSI model has seven layers: physical, data link, network, trans-
port, session, presentation, and application.

The TCP/IP model maps into the OSI model. The data link layer from the TCP/IP model is rep-
resented in the physical and data link layers in the OSI model. Similarly, the session, presentation,
and application layers in the OSI model are represented in the application layer in the TCP/IP model.

If you want to know anything about any of the protocols discussed in this chapter, the very best
place to go is to the Request for Comments (RFC) document. The Internet Engineering Task Force
manages the entire RFC process and its website is where you can locate any of the RFCs starting from
the very beginning of the Arpanet in 1969. Understanding the language of the RFCs, the specific
words and phrases used in them to indicate how the protocols are meant to work and what features
are necessary versus nice to have, will help you to read and interpret them better. They are, after all,
descriptions of protocols. This means they aren’t implementation specifics, but instead are guides to
implementing the protocols so your implementation will work with someone else’s implementation.

You may have noticed in the discussion about the different protocols that the OSI “layers” were
referenced. For example, layer 2 refers to a local network, where addressing is done using the Media
Access Control (MAC) address. The layer 2 header, including the MAC address, will get removed
any time the frame passes across a network or layer 3 device. The process of adding headers is called
encapsulation and that will get done every time a message gets passed from one layer to another.

In order to get data off your local area network to another network, you need an IP address.
Transmitting packets from one network to another is done using a process called routing. The rout-
ing is managed by network devices that understand routing, commonly called routers. These routers
will get messages through the network understanding how best to get to the destination network. IP
is a best-effort service and handles the process of breaking up datagrams or segments into packets,
based on the maximum transmission unit of the underlying network medium. If the datagram or
segment has to be fragmented, IP has a header field to indicate that the packet is a fragment and
where the fragment goes in the entire segment or datagram.

Above the network layer is the transport layer where TCP and UDP live. TCP is a connection-
oriented protocol. Systems create a connection using the three-way handshake before they can start to
send data. The three-way handshake, using two TCP flags—SYN and ACK—ensures that both systems
are there, available on the particular port and responding. Ports are used to allow for multiplexing.
Without ports, systems would be limited to a single application since every communication would
come into the system without a way of addressing between the different listening applications. Ports
are essentially used to redirect network communication to an application that is meant to handle
the network communication. The other commonly used transport protocol is UDP. Where TCP is
connection-oriented, offering guaranteed delivery, UDP is connectionless and there is no guarantee
offered by the protocol for delivery. All the application using UDP gets is the best-effort delivery of IP.

There are two supporting protocols that you will see a lot if you are looking at network com-
munications. The first is the Dynamic Host Configuration Protocol (DHCP). DHCP allows systems
to not require specific network configuration. Instead, the system requests its configuration and a

Networking Basics 51

DHCP server will provide the network configuration for the system. DHCP will not only provide the
IP address and subnet mask, but also the router address, time server information, and a number of
other configuration parameters that may be necessary based on the needs of the network the system
is on. The other support protocol that is far more essential than DHCP, since some networks will use
static network configurations, is the Address Resolution Protocol (ARP). ARP is used to translate IP
addresses to MAC addresses. Although you can look up an IP address from a hostname using the
Domain Name System (DNS), there is no database associated with mapping IP addresses to MAC
addresses. Systems on the network use ARP in order to let the systems do the mapping. A system
needing a MAC address asks the network by providing an IP address. The system owning that IP
address responds with the MAC address.

All of this foundation will serve you well as we start to really dig into network communications in
a very hands-on way in the next chapter. We will be capturing real packets and pulling them apart
to see how all of the protocols work more closely.

References
Crocker, S., “Host Software,” RFC 1, DOI 10.17487/RFC0001, April 1969, <http://www.rfc-editor.org/

info/rfc1>.

Day, J., & Zimmermann, H. (1983). The OSI reference model. Proceedings of the IEEE Proc. IEEE, 71(12), 1334-
1340. doi:10.1109/proc.1983.12775

Droms, R., “Dynamic Host Configuration Protocol,” RFC 1531, DOI 10.17487/RFC1531, October 1993, <http://
www.rfc-editor.org/info/rfc1531>.

Postel, J., “Internet Protocol,” STD 5, RFC 791, DOI 10.17487/RFC0791, September 1981, <http://www.rfc-
editor.org/info/rfc791>.

Postel, J., “User Datagram Protocol,” STD 6, RFC 768, DOI 10.17487/RFC0768, August 1980, <http://www.rfc-
editor.org/info/rfc768>.

Postel, J., “Transmission Control Protocol,” STD 7, RFC 793, DOI 10.17487/RFC0793, September 1981, <http://
www.rfc-editor.org/info/rfc793>.

Host-Side Artifacts3
In this chapter, you will learn about:

 ■ Network-based artifacts that operating systems retain
 ■ Tools that can be used to extract those artifacts
 ■ Protocols and ports that make up services offered over the network
 ■ Connections and the states that connections can have

He sits at his computer, typing away, looking for the next system on the network to compromise. He
is talking to his target over the network and is aware that a savvy user could identify the communica-
tion stream. Because his target is a computer protected by a corporate firewall, he wasn’t able to set up a
listening service. In this case, he would only do that on other systems on this network. He can get access
to them through this computer more easily than having all of them trying to communicate out. The great
thing about firewalls for his purposes is that they typically allow network traffic out without much in the
way of restrictions. This is especially true if what is being transmitted looks an awful lot like a commonly
used protocol over well-known ports.

One challenge to this approach is that a savvy user may be able to detect his communication. He has
done his best to cover his tracks but there is always a possibility of being caught. For the moment he is safe,
but because every passing day continues to leave the door to his detection open, he works fast and tries
to be smart, restricting the network traffic to a minimum where he can. If what he does is mostly during
off-hours while the user is home and entirely unaware, avoiding detection is quite a bit easier.

Network forensics can take advantage of the fact that every operating system has to keep track
of network communications. When the operating system keeps track of something, it’s possible to
extract that information. Most operating systems provide programs that are capable of presenting
information about network communications, but not all users are aware of these programs and not
all of them are as easy to use as a typical application is. Most are command-line–based, which may
scare some people. Once you get the hang of how to use them and how to read their output, though,
they are invaluable.

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics54

In order for systems to communicate, one of those systems has to be listening. That is done with a
type of program that is commonly called a service. Services are implemented differently on different
operating systems but the end result is the same—when a network service is running, a program is
listening for network communication to arrive. Understanding more about those networks and how
to determine what is running is important.

Attackers may use something called a rootkit to help disguise their existence on the system. A rootkit
may open up a network service called a backdoor, allowing the attacker to more easily get into the sys-
tem remotely at any time. Backdoors are useful because, if the service the attacker exploited was later
patched, the attacker wouldn’t be able to continue to use that way in. So, a backdoor allows continued
access, regardless of what happens to the original entry vector. A rootkit may also install programs that
will hide the existence of the attacker. This may include overwriting the programs that are included with
the operating system that will tell you what is being done on the network. Fortunately, we don’t have
to rely on the operating system for these sorts of tools. Third-party programs are available that don’t
rely on anything having to do with the programs and libraries provided by the operating environment.

Services
Imagine that you want to read the latest news about your favorite mobile operating system. Maybe
Google is working on a new one and you need to know the release date. What do you do? You
might use Google Chrome to connect to Google to search for a page that has information about the
release date. What is happening is that your browser (Chrome) is making a connection to a service
on a system on Google’s network. This service is a program that takes Hypertext Transfer Protocol
(HTTP) requests on TCP port 443. HTTP is the protocol being used but port 443 indicates that it has
been encrypted. Port 80 is commonly for unencrypted communication. Ultimately, a service is just a
program that runs, mostly quietly, in the background waiting for connections from client programs
across the network. Any computer system may have a number of services running and the majority
of them will start when the computer boots. The operating environment knows about these services
and starts them automatically when the computer starts up.

NOTE Most programs you use run in the foreground, meaning you can see them running. A
program running in the background commonly can’t be seen. In the case of services, there is usually
no visible component. The operating environment starts the service and gives it processor time to
perform whatever tasks it is responsible for.

Each operating system will engage with its services in different ways, both from an administrative
perspective as well as how the services are handled by the operating system. From a management
perspective, perhaps Windows is the easiest to understand. Windows also offers the most options in
terms of how services are started up. To make it easier to see this and understand it, take a look at
the screen capture of the Services applet from Windows 10 in Figure 3-1. You can see a list of some
of the services available on the system.

Host-Side Artifacts 55

On a Windows system, a service is a program that has no user interface component, so it isn’t
visible to the user. Additionally, a Windows service is a program that is written in a particular way
so that it responds to interactions from the Service Control Manager. A service is expected to be able
to start and stop, based on messages from the Service Control Manager. Services also have multiple
startup options. The Service Control Manager may start the service automatically when the system
starts; it may also start automatically with a delayed start or it may be set to start manually. A service
that starts manually either has to be started by a user through the Services system utility or it can be
started if another system requires it as a dependency in order to operate correctly. You can see the
Properties dialog box for the Block Level Backup Engine Service with the different startup options
showing in Figure 3-2.

This is not to say that programs that listen for network connections have to be Windows services,
but if you want a program that starts automatically at boot and runs quietly in the background lis-
tening for requests, it has to be a Windows service. One way to check whether a service is installed
and running is to simply open the Services utility and look for a Status indication, as demonstrated
in Figure 3-1. Services that aren’t running have no entry in the Status column.

Unix-like operating systems have programs that can run in the background as well. A service
on a Unix-like system is typically called a daemon, named, in part, for the benevolent spirits from
Greek mythology. Since macOS (formerly Mac OS X) is based on a Unix-like operating system,

Figure 3-1: Windows Services applet.

Network Forensics56

it uses daemons. However, macOS doesn’t use the same means to start services as Unix-like operat-
ing systems traditionally do. The macOS startup program is launchd. It serves the same function as
a program like init on a traditional Unix-like operating system.

NOTE The spelling of daemon comes from the Greek, but the idea of a helper sitting quietly
doing work without being seen comes from Maxwell’s Demon. Maxwell’s Demon was a thought
experiment related to the Second Law of Thermodynamics and conceived by James Clerk Maxwell
in 1867. Maxwell’s Demon controlled a door between two gas-filled chambers, opening it to allow
fast moving (hot) molecules to pass from one chamber to the other.

Services on a macOS system are stored as property list files in /Library/LaunchDaemons, as
shown in Figure 3-3. The program that is the actual service process is stored as a string in the
ProgramArguments key. You can see that the program in the com.microsoft.autoupdate.helpertool
launch daemon is /Library/PrivilegedHelperTools/com.microsoft.autoupdate.helpertool. It
may go without saying but this is a daemon that runs in the background, helping Microsoft products
on this system stay up to date.

Figure 3-2: Windows Service Properties dialog.

Host-Side Artifacts 57

NOTE A property list is a collection of key/value pairs. The key is referred to in order to retrieve
the value so a program can retrieve stored information about the user, environment, or other
maintained configuration of the program. For example, if a program wants to store the value of the
location of the primary application window, it may have two keys, XVal and YVal, to indicate the origin
of the window, and two more keys, Xsize and Ysize, to indicate the number of pixels the window
requires. This lets the program orient itself in the same location when it is run again. The key value
pairs might be:

XVal: 10
YVal: 50
Xsize: 1000
Ysize: 740

Whereas Microsoft uses the Windows registry to store configuration settings, Apple uses property
list files, sometimes called “plists.”

Linux systems may have two different ways to manage services, depending on what distribution
they are. Traditional Unix systems use init as the process that starts everything and services that
start at boot time are managed by init. Services that are managed by init use shell scripts for their

Figure 3-3: macOS launch daemons.

Network Forensics58

management: start, stop, restart, status. Similar to Windows and the Service Control Manager, these
scripts are expected to respond to particular messages. These messages are parameters that are passed
on a command line into the script. In Figure 3-4, you can see a listing of the /etc/init.d/ direc-
tory where all of the startup scripts are kept on a system that operates using init. At the bottom of
Figure 3-4 is a section of the service script for the Secure Shell (SSH) service. This is the piece of the
script that responds to a request for status. Similar sections handle the start and stop requests. In
the case of this script, it also handles a number of other requests like restart and reload, though not
all services will handle other management functions.

NOTE Programs like init and systemd are superprocesses (or supervisory processes) that are
responsible for managing all the processes running on the system. If you were to show a genealogy
of processes on a Linux or Unix-like system where you started with the first process and flowed
to child processes and the children of children, the very top of the tree would be systemd or init.
They are the superprocess because everything begins with them.

Figure 3-4: Linux service scripts.

Host-Side Artifacts 59

Not all Linux systems use init, however. A newer system super process that would be responsible
for starting and managing system services is named systemd. There are a number of reasons for moving
to a different super process and one of those has to do with the complexities associated with system
startup and services conflicting or starting out of order. On a traditional init-based system, the ser-
vices are started in alphanumeric order based on how they are named in the directory where they are
located. This requires a special naming convention for those directories. Commonly, the directories
would be based on run level, which is a numeric designation based on the functionality expected from
the system—single-user, networking, graphical user interface and networking, and so on. In those
directories would be a series of links to the scripts in /etc/init.d/. The links would be named based
on whether they were intended to be used to start up or kill the service. Startup scripts have names
starting with S, followed by a number indicating the order in which the script was to start. If your
service relied on another service to be operating, your service would need to have a higher number.

In systemd-based systems, each service gets a configuration file indicating dependencies. In other
words, you can specify which services have to be operating for yours to function correctly. Listing 3-1
shows an example of one of those startup configuration files for the postfix mail service. The sys-
temd configuration also allows the service to indicate whether other services would conflict. As an
example, this configuration file indicates that sendmail and exim, both also mail transfer agents,
would conflict, so if they are running, this service shouldn’t even bother trying to start because
they would try to listen on the same port and two applications can’t listen on the same port.

Listing 3-1: Postfix Systemd Configuration File

[Unit]
Description=Postfix Mail Transport Agent
After=syslog.target network.target
Conflicts=sendmail.service exim.service

[Service]
Type=forking
PIDFile=/var/spool/postfix/pid/master.pid
EnvironmentFile=-/etc/sysconfig/network
ExecStartPre=-/usr/libexec/postfix/aliasesdb
ExecStartPre=-/usr/libexec/postfix/chroot-update
ExecStart=/usr/sbin/postfix start
ExecReload=/usr/sbin/postfix reload
ExecStop=/usr/sbin/postfix stop

[Install]
WantedBy=multi-user.target

No matter what the operating system is, not all services relate to network communications. Many
services are simply about providing background functionality to the system and other services. Just
because you see a number of services on a system doesn’t mean that you are looking at a lot of pro-
grams that are providing network connections or even potential network connections to other systems.

Network Forensics60

Connections
When it comes to network connections, we are primarily talking about TCP communication. TCP
communication can be thought of as stateful because there is always a state to any communication.
When you hear the term stateful, you may think firewalls since one type of firewall is a stateful
firewall, meaning that it keeps track of the state of network communications between two systems.
Stateful firewalls not only have to keep track of the state of TCP communication, which can be dis-
cerned by looking at any given packet or set of packets that are passing between two systems, but they
will also generally keep track of the state of other protocols simply in order to make determinations
about what traffic should and shouldn’t be allowed through the firewall. However, before we go any
further, we should talk about the different states.

First, we have a network service. This is a program that is listening on a network interface.
Programs that have TCP listeners have to bind to a port and IP address to announce their intention
to start listening for network traffic. This essentially registers an endpoint with the operating sys-
tem kernel so if any network communication comes in on the registered port, the kernel will know
where to send the data. Once the program has registered the port it wants to listen on by binding to
that port, it can start to listen for connections. At this point, the port is in a listening state. As you
see in the “Tools” section later in this chapter, the port and program can both be demonstrated to
be in a listening state.

Every connection in TCP exists as a particular state, shown in Table 3-1. As we start to look at some
of the tools that provide information about the state of connections, it may be helpful to understand
what each state means and how we get to that particular state.

Recall from Chapter 2 that the first communication is a SYN message. Once the program has
received the SYN message, the communication is in a SYN-RCVD state, indicating that the SYN
message has been picked up by the operating system. The other end of the communication is in a
SYN-SENT state at that point. Because we are only partway to our final goal of a completed connec-
tion, the communication stream is considered half-open while the operating system waits for the
final leg of the three-way handshake. During this period of time, it will hold out a small piece of
memory assuming that the connection will complete. Once the three-way handshake is completed,
the communication is considered to be ESTABLISHED.

NOTE TCP is sometimes presented as a state machine. A state machine is a way of thinking about
systems. In the case of TCP, each connection can be in only one state at a given time. When an event
happens, the state machine, TCP in this case, may transition to another state. However, much like a
flowchart, the transitions between states is understood ahead of time. As an example, you wouldn’t
transition from FIN-WAIT to SYN-SENT because that’s not how the state machine (TCP) has been
developed to behave.

In the process of tearing a connection down, there are also a number of different states. If a system
sends a FIN to the other end of the conversation, it must then wait for that other end to send a FIN

Host-Side Artifacts 61

of its own before the connection is fully torn down. While it is waiting for that FIN, the connection
will be in FIN-WAIT state (if this is the first side to tear down, it will be FIN-WAIT-1). If a system
receives a FIN from the other side but is waiting for the application handling the communication to
complete and request a FIN, the connection is in CLOSE-WAIT state because it is half-closed and
waiting to start the process of fully closing the communication channel. Once the application says
okay, we’re done; the system can send its own FIN. During the brief duration that the FIN has been
sent but the corresponding ACK hasn’t been received, the connection is in CLOSING state. A con-
nection will also be in a TIME-WAIT state. This is the brief duration, and there is a timer specified
by the protocol definition that governs this, while the connection is being torn down and the system
is waiting to make sure the ACK in response to a FIN on the other side has been received. When
the other party sends their own FIN and are waiting for a response, that is FIN-WAIT-2. Unlike the
three-way handshake, the teardown of the connections recognizes that both are capable of commu-
nication so each end has to originate its own teardown.

Table 3-1: TCP Connection States

State Description

CLOSED The port has no program waiting to communicate on it. Because there is no
program associated with it, there are no communication streams.

LISTENING The application has bound to a port and is waiting for connections.

SYN-SENT The operating system has sent a SYN message to the other side so this would be on
the client side because clients initiate requests to services in most cases.

SYN-RCVD A SYN message has been received and the communication stream is considered
half-open at this point until an ACK has been received in response to the SYN-ACK
that would be sent back to the client.

ESTABLISHED Once the three-way handshake has been completed, the communication stream is
considered to be ESTABLISHED.

FIN-WAIT This may be waiting for an ACK to a FIN that has been sent or it may be the case that
a FIN has been sent and an ACK received and the system is now waiting for the FIN
on the other side to be sent.

CLOSE-WAIT The system in question has received a FIN and sent back an ACK. It is now waiting for
the application on its side to complete in order to be able to send a FIN.

CLOSING This is the state where one side is completely torn down with a FIN and correspond-
ing ACK but the other side has sent a FIN without receiving an ACK back yet.

TIME-WAIT A timer is responsible for this condition. Once you receive a FIN message and send
back an ACK, the system has no way of knowing that the ACK has been received
without getting an ACK back and that would turn into an infinite loop of ACK mes-
sages. Instead, the system waits a specified amount of time, holding the connection
in a TIME-WAIT state just to be safe. Once the timer has elapsed, the communication
is finally completely torn down.

Network Forensics62

While an application is running and it has been bound to a port, that port is considered to be in a
LISTENING state but the other side of that is CLOSED. If a port has no program listening, the port
is simply considered CLOSED. The vast majority of ports on a system—recall that there are 32,768
ports available for TCP communication—are in a CLOSED state.

Keep in mind that while a communication stream can be in an ESTABLISHED state, the applica-
tion and therefore the port can and will still be listening because the operating system allows for
multiple communication streams to a given port. Any TCP-based communication is described by a
four-tuple, meaning there are four pieces of information you need. Any connection is described by
the ports and IP addresses on both ends. For every communication pathway, there is a source and
destination IP address as well as a source and destination port. Because communication is bidirec-
tional, one system’s source port is the other system’s destination port. Each side will have a four-tuple
describing the connection with the source and destinations swapped on each end.

While UDP traffic is entirely stateless, some systems like firewalls or any device that has a firewall
built into it will have to maintain a state table. Once a UDP message has gone out, there is a chance
a response will be received. If you are blocking UDP ports except for responses to messages that
have gone out, you need to maintain a table to keep track of the four-tuple in order to match source
and destination IPs and ports to make sure the return traffic is allowed back in. While UDP itself
is stateless, stateful firewalls will have to keep track of the state of network communication just to
make sure everything continues to work as expected.

While this might seem to be largely theoretical—because the communication happens so quickly
you wouldn’t be able to tell what state any communication is in—programs are available that will
show you the state of network communications. This is a crucial artifact because network communi-
cations are kept by the operating system. This means the information about those communications
is stored in memory. All it takes is the right tool to pull that information out and the ability to read
it correctly once it is out.

Tools
As you are looking for artifacts, you will likely be working on a live system. Once you have shut down
the system, all of the network artifacts go away. Network information is retained in memory and
not on disk because everything is in operating system data structures. The only way to retain any of
the information for offline analysis is to get a memory capture. Otherwise, you have to look at the
system while it is up and running. There are challenges with this, one of which is that you may be
detected if what you are investigating is a system compromise. Once you are poking around on the
system, your adversary can see what you are doing and potentially adjust accordingly. This makes it
harder to investigate what is really happening. Subsequent chapters look at investigating from outside
the system; in this chapter, the only way to get to what the host knows is to actually be on the host.

The second challenge associated with performing an investigation on the host itself is that your
tools may be compromised. Each system comes with a number of built-in utilities that are used for
diagnostics while the system is operating. Because these utilities are built in, they can be compromised

Host-Side Artifacts 63

by an attacker so any output they provide may be suspect. Fortunately, we aren’t limited to just the
utilities that are provided with each operating environment. A number of third-party utilities are
available as well. This is especially important if the third-party utilities can be run independently
without making use of any of the installed libraries on the system.

netstat
Netstat is a command-line utility that provides a lot of network information. If you need to know
what the routing table looks like, meaning what IP address packets going off the local network need
to be sent to based on their destination address, you would use netstat. In addition to the routing
table, netstat provides a list of all of the open communication streams, as Figure 3-5 shows. The
netstat –a command displays all of the existing and active communications including their state. In
the top part of the figure, you can see that a large number of communications are in the ESTABLISHED
state. This means that they are communicating over TCP and they have completed the three-way
handshake. It could mean that they are actively transmitting or receiving or it could simply be that
there is an open connection that hasn’t been torn down because there is an expectation of further
messages being sent back and forth.

Figure 3-5: Connection list from netstat.

Network Forensics64

This is just one of the types of information that netstat can provide. To display the routing table,
you can use the netstat –r command. That will provide the list of all of the network routes that
your particular system knows about. In most cases on desktop systems, you will have a number of
routes to devices on your local network but there will really only be a single route to other networks.
The destination in that case will be 0.0.0.0, meaning that any network that isn’t local goes to the
gateway (router) that is specified by IP address. netstat –r and netstat –a (shown in Figure 3-5)
display human-readable addresses where possible. This means that netstat will do lookups prior
to providing any output. The addresses shown in the Foreign Address column in the list of active
communications are primarily text. Because the column isn’t wide enough to support the length of
the hostname, much of it has been truncated but what is shown is a fully qualified domain name
(FQDN) or at least as much of one as can fit into the column.

Having netstat perform lookups can be time consuming. To save time—which would be long
if you had unplugged the system from the network since you’d be waiting for a lot of network
timeouts—you can add –n to the command line. This tells netstat to use numeric output and not to
do any of the lookups. Addresses are not the only part of the output that get looked up. Port numbers,
which are addresses for layer 4, also get translated into names that may mean more to someone than
just the number. You may not know off the top of your head, for instance, that https is port 443 or
that imaps is port 993. Both of those are referenced in the output in Figure 3-5.

Another feature of netstat is its ability to just output network statistics related to the amount of
traffic that has come across or out of the system. You will get different statistics based on the operat-
ing system you are on. Although you can run netstat on Windows, Linux, and macOS, the different
implementations will get you different sets of data. As an example, Figure 3-6 shows a small amount
of the data that is available using netstat –s on a macOS system. Detailed statistics are available for
different protocols like TCP, UDP, IP, ICMP, IPv6, and others.

On a Kali Linux system, the output is very different and not as detailed using the same netstat
–s command. You can see in Listing 3-2 that the limited amount of network traffic notwithstanding,
the output looks very different on this system. The netstat implementation on Linux systems is dif-
ferent from that on other systems. As an example, you can use –listening on a Linux system and
get a list of just the programs that are listening.

Listing 3-2: Linux netstat –s Output

Tcp:
 44 active connections openings
 6 passive connection openings
 4 failed connection attempts
 1 connection resets received
 1 connections established
 102047 segments received
 60609 segments send out
 125 segments retransmited
 0 bad segments received.
 11 resets sent

Host-Side Artifacts 65

Using netstat, you can get the list of ports that are in listening mode, as we’ve seen. Just knowing
that a port is open and there is an application listening on it doesn’t provide you a lot of informa-
tion because any program could be listening on that port. The best approach is to get the process
that is listening. Even if you see a common port like 80 listening, it could be that the port had been
hijacked by a rogue process so it’s best to verify. Some implementations will provide you the process
identification number and the program name, as you can see in Listing 3-3, which shows the output
from a Kali Linux system.

Listing 3-3: Getting Process IDs Using netstat

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:9390 0.0.0.0:* LISTEN 673/openvasmd
tcp 0 0 127.0.0.1:9391 0.0.0.0:* LISTEN 681/openvassd: Wait
tcp 0 0 127.0.0.1:9392 0.0.0.0:* LISTEN 592/gsad
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 18979/sshd
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 683/cupsd
tcp 0 0 127.0.0.1:5432 0.0.0.0:* LISTEN 748/postgres
tcp 0 188 172.30.42.25:22 172.30.42.16:55140 ESTABLISHED 5009/1

Figure 3-6: Protocol-based network statistics from netstat.

Network Forensics66

All of the information that netstat provides is stored in the kernel memory space in specific data
structures that the operating system has to keep track of. This information can be retrieved using
other tools that can also query the operating system to get the information, but it’s not actually writ-
ten down anywhere on disk. Even on Linux systems, the /proc directory will contain some of this
information, but the “files” you will find in that directory are not files that are stored on disk. They
are ways to access kernel memory and data structures that are stored there. This means that if you
want to get this information, you have to do it while the system is running, and netstat is a good way
of retrieving it using a single utility.

Though we have so far only looked at macOS and Linux, Windows also has an implementation of
netstat that provides much the same sort of information as the implementations on macOS and Linux.
However, netstat focuses on just TCP/IP protocols. Windows also uses other protocols, especially to
communicate with other Windows systems.

nbstat
In 1983, as networking on personal computers was getting underway, the company Sytek developed an
interface for networking called Network Basic Input Output System (NetBIOS) as a complement to the
system BIOS that provided a way for programs to get access to the hardware. NetBIOS was developed
as an application programming interface (API) so that programs would have a way to get access to the
network. Since that time, NetBIOS has been adapted multiple times to allow it to continue to work on
different technologies and different operating systems. Currently, the implementation is referred to
as NetBT (or NBT), which is short for NetBIOS over TCP/IP. NetBT makes the same API calls avail-
able over a different set of network and transport protocols than NetBIOS was originally designed for.

Windows systems have been using NetBT for the past couple of decades as a way to allow Windows
systems to communicate with one another for the purpose of file and print sharing, among other
reasons. NetBT provides a name service, a session service, and a datagram service. The name service
allows systems to find one another on the network. This is separate from the domain name system
(DNS), because NetBT was intended to provide local naming rather than naming across the Internet.
In that sense, it is similar to the media access control (MAC) address, which would never be commu-
nicated beyond a routing device. The fact that NetBT is NetBIOS over TCP/IP means that the naming
of systems is expected to be unique over a larger area than originally intended by NetBIOS. It also
means that we are effectively carrying NetBIOS inside of TCP/IP, a practice which is commonly called
tunneling. The session service is in place to allow systems to establish communication between them.

The nbtstat utility is used to get statistics related to NetBT. Using nbtstat, you can get name infor-
mation on your Windows network. Part of the output, as shown in Figure 3-7, is the type of name.
This is stored in the last byte of the name because the last byte helps to address the case where the
same name may be used for multiple purposes on the Windows network. The last byte, displayed
between brackets (< >), is shown in hexadecimal.

The last byte may mean that the name represents a workstation, domain controller, master browser,
or a file server. You may run across other values if you work on networks that are heavily dependent

Host-Side Artifacts 67

on Windows components like Windows Active Directory and Windows Exchange Server. In a listing
of nbtstat on a large network, you will typically see multiple entries for each name value. The reason
for this is that each Windows client may also be a file server or a Messenger client.

The nbtstat utility is capable of displaying all of the names that your local workstation is registered
with. Additionally, you can see the cache of the registered names and their associated IP addresses
that the system you are on knows about. If there is nothing in the cache, it doesn’t mean there aren’t
other systems on the network; it just means this particular system hasn’t seen any communication
from them.

The cache will show the IP address and its associated NetBIOS name. This is not the same as any
hostname this system may have that’s loaded into DNS. Your system can have a NetBIOS name and
a DNS hostname and they can be two separate things. The NetBIOS name is the name you provide
to Windows so it’s the name the system knows about. DNS is configured on a separate system so
the Windows system knows nothing directly about that hostname. Matching these two up requires
communication between the people responsible for them. That doesn’t always happen, but in most
cases it doesn’t matter, although it’s sometimes worth being aware that you could have two systems
on the same network sharing the same name. You could also have a system that has one name in

Figure 3-7: nbtstat output.

Network Forensics68

one context, outside of the local network, and another name in the context of the local network.
When you are looking for machines based on a name you may have been provided, you should know
that you could be looking in two different places for that name.

ifconfig/ipconfig
One of the most fundamental networking utilities is ifconfig, short for interface configuration. The
purpose of ifconfig is to show the IP address configuration for the network interfaces on your system.
On Windows systems, this utility is called ipconfig (IP configuration), and it also provides other
information that you won’t get using ifconfig on Linux or macOS, including the DNS servers that
have been configured on the system. Figure 3-8 shows the output from ifconfig on a Linux system.
Other Unix-like operating systems, including macOS, will look very similar to this.

In addition to the IP address and associated subnet mask, you can see that the media access control
(MAC) address is also displayed. ifconfig tells us that our link connection is Ethernet and refers to the
MAC address as HWaddr, but the MAC address and the hardware address are the same. Additionally,
ifconfig displays the IPv6 addresses that are associated with the interface, if there are any. A number
of parameters that have been set on the interface are also displayed. One of these is the maximum
transmission unit (MTU), indicating how large a message can be sent on the wire. In this case, it’s
1500 bytes, which is the standard Ethernet MTU. You can also see the statistics associated with the
interface, including the number of bytes transmitted and the number received.

By comparison, you can see the output of ipconfig on a Windows system in Figure 3-9. On a
Windows system, ipconfig is used for more than simply displaying IP information that is associated
with network interfaces. You could use ipconfig to release a network address that had been dynami-
cally configured and you can also renew that address. If you are having problems with your network
interface, ipconfig may be a way to make sure that you have a good DHCP-assigned address. While

Figure 3-8: ifconfig output.

Host-Side Artifacts 69

it may be a little more time consuming than other ways of doing the same thing, if you are already at
the command line running diagnostics it may be quicker. As noted earlier, you can see in this output
that additional IP configuration like the DNS servers are provided as well. You can also dump the
local DNS cache by using /displaydns.

Although the same information that is available from these utilities is available in other places, you
may have instances where you have to go to the command line to get this information. Sometimes
graphical interfaces become unstable or unreliable and you need to drop to a command line and just
type a command or two to get the information you need.

Sysinternals
In the mid-1990s, a pair of developers named Bryce Cogswell and Mark Russinovich started up a
website named ntinternals that later became Winternals. A number of programs were available on
this website and the collection of tools began to grow. These were programs that exposed some of
the internals of the Windows operating system in ways that would be useful for developers, system
administrators, and now forensic investigators. About a decade after the website began, Microsoft
acquired the site, the tools, and Russinovich and Cogswell. The collection of tools is now called

Figure 3-9: ipconfig output.

Network Forensics70

Windows Sysinternals and, other than a password recovery tool that was previously available, all of
the tools are available through Microsoft’s website.

A large number of highly useful utilities are available. You can download them individually or
just download a zip file with the entire suite of utilities. At the time of this writing, 121 programs are
available, though some of those are just 64-bit implementations of 32-bit programs that are also in
the suite. Though not all of the programs are unique, there is still a significant number and over the
years, a fair number of people have found them to be very useful. As a result, we’re going to spend
some time looking at the programs that relate to host-side network artifacts. As the list continues to
grow, we aren’t going to cover everything that is of value but instead highlight the ones specifically
relevant to network forensics from the standpoint of identifying network connections and their rela-
tion to running processes.

NOTE One significant advantage to the Sysinternals tools is that they run standalone, meaning
they don’t need to be installed in order to get all of the libraries and registry keys created. You can
run these from a directory on your system or from an external drive like a USB storage device. This
allows you ensure the output from these programs has not been compromised by libraries that have
been hijacked by an attacker.

The first program we are going to talk about, shown in Figure 3-10, is TCPView. This graphi-
cal user application provides information similar to netstat. One advantage to this view over what
is available from netstat is that you can easily sort this view. Additionally, it is updated in real
time, which netstat can also do if you provide it an interval of time that you want to elapse before
the information is updated. If a program terminates while you have TCPView open, the entry for the
program in the list will get a red background. Once it has completely terminated, the entry will be
removed from the list. The second column shown in Figure 3-10 is the process identification num-
ber (PID). As with the other columns, you can sort by the PID column. You can also get the process
properties by right-clicking a process and selecting it. Just knowing the name of the process may be
inadequate. For example, the first entry in this list is dasHost.exe, which may not be immediately
familiar to you and appear suspicious as a result. Viewing the properties shows that this is the Device
Association Framework Provider Host from Microsoft. The Device Association Framework Provider
Host maintains pairing relationships with devices like Bluetooth headphones.

In addition to TCPView, Sysinternals provides a console view program. Using the TCPView Console
program (TCPVCon), you can get a listing of the programs that are communicating on the network
using a text-based or console-based view. Where you can get screen captures of the information in
the graphical interface, as in Figure 3-10, you would be able to get a text file from TCPView Console
that you could then put into a spreadsheet or word processing document in order to present in
different ways.

Sysinternals also comes with PsFile, which can list files that someone else on the network may
have open on your system. As an example, see Figure 3-11. In this case, one text file was opened but

Host-Side Artifacts 71

Figure 3-10: TCPView.

Figure 3-11: Looking at remotely opened files with PsFile.

Network Forensics72

in order to get to that file, directories also had to be opened. You can see the list using PsFile. All of
these entries needed to be opened to get to that one text file from a remote system. PsFile did not
need to have any parameters. If you just run PsFile, you will get the list of all the files that are open
on this system that are being accessed from a remote system.

The Sysinternals suite comes with the Process Explorer, a utility that provides complete access
to the details of each process including allocated memory, the process identification number,
the process owner, where it was run from, and any active network communications. In
Figure 3-12, the background list displays the properties of one of the processes. This particular
process has a number of UDP listeners. Based on what shows in this list, no one is communicating
with this process. It is just waiting for a message to come in. While you have to look at each process
individually to get this information, the other utilities in this suite should be able to provide the
process identification number so that you can get more process details from Process Explorer. This
includes all of the external libraries that the program is using, shown in the lower pane. It can also
show handles the program has open, which would indicate either files or network streams that the
program is responsible for.

Figure 3-12: Network listeners with Process Explorer.

Host-Side Artifacts 73

With nearly 100 unique utilities, the Sysinternals suite has far more functionality than has been
covered here and it’s worth having the full suite in your bag of tools. The programs we have talked
about here are related to getting information about network activity. Other network utilities such as
PsPing are more for diagnostics and troubleshooting and less to gather information about what is
happening from a network communication perspective. These are all, of course, limited to being used
on Windows systems because they were written using the very detailed and rich Windows application
programming interfaces. The following sections discuss programs that can be used on the Linux side.

ntop
The top utility is used to show which processes are taking the most resources on a system. The
resources measured by top are CPU and memory. This doesn’t help when we are looking for net-
work information. Fortunately, there is an analog to top on the network side and it’s called ntop.
The ntop utility provides a list of the top talkers on the network along with additional statistics. For
example, Figure 3-13 shows the IP statistics gathered by running ntop for a short period of time. To
get this information, ntop runs in the background as a service, collecting network data. To look at
what ntop shows you, use a web browser to connect to http://localhost:3000. The ntop application
listens there for a browser to connect and launches a web application as the interface to the user.

Figure 3-13: IP statistics using ntop.

Network Forensics74

Figure 3-13 shows the list of hosts that have been seen. If ntop can’t locate a hostname by per-
forming a lookup, it displays just the IP address as in the case of the first entry. That is the system
that ntop is running on but because it’s a private IP address with no local DNS server or other way
to provide a hostname, it has no DNS entry. ntop can also provide you a summary of the top talkers
that were seen on the network interface on this system. In most cases, that will be the traffic that
was sent from and destined to this system. In some cases, you can set up a system to run ntop and
funnel more traffic to it to gather this information. In Figure 3-14, you can see some of the top talkers
from the last hour prior to this capture. What you get here is the minute-by-minute listing of all of
the systems that were communicating. If traffic was seen during that minute, it will show up in the
block corresponding to that minute.

The challenge with ntop is that it needs to be installed on a system and it needs to be listening.
This can be highly intrusive. A service also needs to be running in order to gather information. If
the service isn’t running and collecting data, you won’t see anything. The web interface won’t exist,
for a start, because there will be no application listening on the port for the interface. Beyond that,
though, if you start ntop without the service just to get to the web interface, no data will have been
collected to look at. So using ntop takes some planning. Even if ntop was installed but not noticed
by an attacker, the activities of the service—running, collecting data, and listening on a network
interface—are also easy to notice.

Figure 3-14: Top talkers using ntop.

Host-Side Artifacts 75

One advantage of ntop is that, unlike some utilities, you can install and run it on multiple operating
systems. There are some utilities that are only available on specific operating systems. That’s especially
true with utilities that come with the operating environment. Windows, as an example, has a lot of
programs and utilities built in that can be used for monitoring and diagnostics.

Task Manager/Resource Monitor
Windows Task Manager provides a view into network activity, though you may be more familiar with
it as a way to look at process lists. Over the last several releases of Windows, the Task Manager has
become a very powerful monitoring utility. When you start it up, you will get a list of applications
that you are running. In Windows 10, if you click the “More details” link, you will get a set of tabs
across the top allowing you to view more details about different resources on the system including
Processes and Performance. The Performance tab displays dynamic graphs that show how the CPU,
Memory, Network, and Disk are performing. You can see the network activity in Figure 3-15. Though
this doesn’t have a lot of detail, it does show a running graph of how much network traffic is coming
into and going out of your system.

Figure 3-15: Task Manager Ethernet display.

Network Forensics76

This view does not show what is happening with applications or even the ports that are open and
being used. To get access to that information, you can open the Resource Monitor from the Task
Manager. As its name suggests, the Resource Monitor allows you to get more specific information
about various resources. Again, just like in the Task Manager, you can look at Memory, Network,
Disk, and CPU. The Network tab provides a quick view of a lot of the information we have been talk-
ing about. You can see a portion of this Network tab in Figure 3-16. This provides a place to look at
all of the network communications with details and statistics. If you look at the TCP Connections
section, you can see all of the processes, the process ID, the local address, the remote address, the
packet count, and the latency value.

NOTE Latency is a measure of how long it takes to get from one end of a communication stream
to the other.

One advantage of looking at the Resource Monitor is that you can see the listening ports quickly
in a way that can be sorted. On top of seeing the applications that are listening and the information
about the ports they are listening on, you can also see the firewall state. Windows has a built-in
firewall and, though we haven’t talked about it to this point, just because an application is listening

Figure 3-16: Resource Monitor.

Host-Side Artifacts 77

doesn’t mean that anyone can get to the application. The Windows firewall can block traffic to that
application, even based on the application, meaning all you need to do is tell the Windows Firewall
that the application in question should not be using the network and it won’t matter what ports are
in use. Using the Resource Monitor, you can collect the listener ports and see whether anyone can
reach the application as long as the Windows firewall is running. In other words, you can gather
two pieces of information at the same time—whether the application has ports that are listening for
traffic and whether the Windows Firewall is going to allow any remote system to communicate over
those ports. The Windows Firewall will not prevent the application from listening on those ports,
but it can prevent inbound communications from getting to the application.

ARP
The address resolution protocol (ARP) allows systems to perform lookups from IP addresses to MAC
addresses. The MAC address is required for two systems to communicate on a local network. It is
also required for a system to get something off the local network because the MAC address of the
router is necessary as the destination address in the Ethernet header. Each system maintains a cache
of the address resolutions to save time when it wants to send a message out on the local network.

Operating systems that have a TCP/IP protocol stack will typically have the arp utility installed,
though arp is only useful if you are communicating using IPv4. The arp utility allows you to man-
age the ARP cache on the local system. Figure 3-17 shows the entire ARP cache on my system. By
default, arp will attempt to perform reverse DNS lookups on the IP address, though since none of
these addresses can be resolved, you will see a ? in place of the hostname.

NOTE In IPv6, the Neighbor Discovery Protocol replaces the arp command. As we will discover in
subsequent chapters, arp has a few security issues that IPv6 is attempting to remove from networks,
including the ability to pretend to be someone else on the network in order to receive their messages.

Figure 3-17: ARP cache.

Network Forensics78

Using the arp utility, you can display specific entries based on hostname instead of displaying all
of the cache. You can also delete specific entries. If you run into a case where your local ARP cache is
wrong, you can delete the entry and force the system to ask again. In most cases, you will get the MAC
address, though if the system can’t do a resolution, you will see (incomplete). This is for addresses
that the system knows about but the host at that address can’t be reached. As an example, if you were
to try to ping a system on your local network that isn’t responding, that IP address will show up in
the ARP cache because it was an IP address you tried to get to. Because it wasn’t responsive, perhaps
because it was down, there is no MAC address to provide. The entry is there but it’s incomplete so
the arp utility indicates that much.

/proc Filesystem
Linux systems have a pseudo-filesystem that is an interface to the kernel memory. The data structures
associated with processes are available through the /proc filesystem. Every proc entry includes a
large collection about the process and all of the resources that are available to it. In each case, you
get access to the resources by going to the directory named for the process ID number. Underneath
that, you will find a number of other directories. One of those directories is the net directory, the
contents of which you can see in Figure 3-18. It contains all of the networking resources and statistics
available to the process.

Only processes that use network resources will have much useful information in this directory.
Each file will have data relevant to the name of the file. As an example, the contents of the tcp file are
the details about the sockets in use with TCP. You can see the contents of the tcp file for the Nginx
process in Listing 3-4. In the first line, you can see the socket listening on port 80. This may not be
apparent immediately because the value representing that is 50. The 50 you see is in hexadecimal
and converting that to decimal is as simple as multiplying 5 by 16, because the 5 is in the 16’s place.
When you multiply those two values, you get 80.

Listing 3-4: Contents of tcp File

 sl local_address rem_address st tx_queue rx_queue tr tm->when
retrnsmt uid timeout inode

Figure 3-18: /proc entry for Nginx web server.

Host-Side Artifacts 79

 0: 00000000:0050 00000000:0000 0A 00000000:00000000 00:00000000
00000000 0 0 36271 1 0000000000000000 100 0 0 10 0
 1: 0101007F:0035 00000000:0000 0A 00000000:00000000 00:00000000
00000000 0 0 22036 1 0000000000000000 100 0 0 10 0
 2: 00000000:0BB8 00000000:0000 0A 00000000:00000000 00:00000000
00000000 0 0 26025 1 0000000000000000 100 0 0 10 0

Summary
When you are looking at network information, you can get a lot of data from asking the host directly
because every operating system keeps track of the network communications passing across its inter-
faces. In most cases, you can get access to that information by using system utilities but you may not
want to use them because they may have been compromised. In that case, you can use third-party
utilities, especially those that can be run without being installed. One source of those utilities on
the Windows side is Microsoft, which provides the Sysinternals suite for free. The Sysinternals suite
includes a lot of useful diagnostic utilities and programs. Some of the Sysinternals programs can be
used to extract a lot of details related to the connections between the local system and remote systems.

Operating systems also include a number of utilities that are necessary for looking at network
connections. The netstat utility, as an example, provides network statistics about listening ports
and connections between two systems. The arp utility can be used to highlight systems on the local
network that the system under investigation has received some communication from. ARP is the
protocol used to identify and communicate with systems on the local network, so the arp utility
provides information about the communication of that protocol, specifically the addresses that your
system knows about.

The Windows Sysinternals team and your friendly, local operating system are not the only places
to be finding tools that can be used to extract information about what the operating system knows
about network connections and communications. In fact, as noted previously, your operating system
utilities may have been corrupted by a rootkit that is altering what you see. If you can find tools that
you can load up to a portable drive, like those provided by Sysinternals or even a vendor like Nirsoft, you
have a way to corroborate what you are getting from your operating system.

Packet Capture and
Analysis4

In this chapter you will learn about:

 ■ What a packet is
 ■ How to capture packets
 ■ Utilities used to capture packets like tcpdump and Wireshark
 ■ How to use Wireshark to analyze captures
 ■ Challenges associated with packet captures on networks

He has begun to move into the servers and away from the desktops, feeling like he has enough desktops
from this particular network under his belt. The challenge with the servers, though, is that they are likely
to be better monitored. This may mean that an administrator has a packet capture running. Even if he is
encrypting his communication to the server, he realizes that anyone capturing packets would be able to
see at least where he is coming from and that backdoor port is going to look a little suspicious over time.
Fortunately, it isn’t that hard to determine whether an administrator is capturing packets. Checking out
the list of running programs will work, searching for well-known programs that will do that. On top of that,
it’s possible to see whether the network interface has been placed into the mode necessary to capture traffic.

Unfortunately, he is aware that just because no one is watching him from this system doesn’t mean that
no one is watching him from somewhere else. It could be that a network administrator is watching using
a spanning port or a network tap. Nothing much to do about it, though. Encrypt and move fast. Hope any
users or system administrators don’t see it and shut everything down before he can get the good stuff and
maybe even find another system to move off to.

One of the most important skills you can acquire when it comes to any sort of network analysis is
capturing packets and performing analysis. When it comes to doing network investigations, the wire
is your friend. Packet capture captures what happens on the wire, and what happens on the wire is
true and accurate because there is nothing to get in the way. With applications, there are a lot of ways
to get it wrong. Even the operating system can be tricked into providing you incorrect information if
malware has infected the system. However, once you are down to reading electrical signals or light
pulses off a cable, you have exactly what is happening. Of course, it is possible to perform this capture

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics82

on a system that may, in fact, be infected but so far there is no malware that has gotten so low that
it can get between what is being transmitted out to the network and the capture of that information.

For the most part, this is information you can absolutely rely on. Nothing is hidden and there
isn’t a lot of poking and prodding needed to find additional information. Applications that are com-
municating across the network have to use the same protocols on both ends and they are generally
well-known protocols. If they don’t each use the same protocols, it would be like someone talking
Japanese to someone else who is speaking Portuguese. Neither is going to be able to understand the
other very well. From a networking perspective, you may as well simply not send anything out or
just drop it on the floor, as we say in the networking world.

Fortunately for us, some excellent resources are available that can help us with both capturing and
analyzing the network data. One that we will spend a lot of time with in this chapter, Wireshark, has
made life much easier for anyone who wants to do anything with networks. Wireshark provides a lot
of capabilities and does an incredible amount of analysis and decoding. This is especially amazing
considering that it costs nothing and goes well beyond the capabilities of the early protocol analyz-
ers that cost thousands of dollars.

While Wireshark is a graphical program, which makes visualization easier and more convenient,
you won’t always have the luxury of having a graphical interface. As a result, you will need to rely
on console programs like tcpdump and tshark to do the collection of packets for you. If you aren’t
seeing what you need in the console output, you can then import a saved packet capture from them
to perform analysis using Wireshark.

When it comes to capturing packets, you need to consider where you are actually going to capture
the packets you need. You can do it on an endpoint device, like a desktop computer, but that requires
installing software. You may not want to install this software on the endpoint you are trying to pay
attention to, for a variety of reasons. Fortunately, you have other ways to capture those same packets
on a separate device, while still getting all of the data that would be available on the target device.
This is one of the great things about networks in general and network forensics specifically—you
have a number of ways and places to get the same information and it will always be the same.

While Wireshark has a lot of capability when it comes to capturing and analyzing captures, when
it comes to forensics, there are other tools that can do some of the heavy lifting for you. One of those
is a program called NetworkMiner. Using NetworkMiner, you can capture traffic off the network,
just as you can with Wireshark and tcpdump. Rather than showing you just the packets for you to
analyze, NetworkMiner will pull useful files and other interesting evidence out of the capture. A tool
like this makes life quite a bit easier for forensics practitioners.

However, no matter what tool you are using, or where in the network you are using it, we have to
capture some packets, so let’s start there.

Capturing Packets
While we call it capturing packets—and in the end, it’s packets that we are looking at—in reality
what we are capturing is frames. Remember that when we are talking about data structures at the

Chapter 4 Packet Capture and Analysis 83

wire level, we are talking about frames. When you are capturing on a local area network (LAN), you
are going to be looking at Ethernet frames. Ethernet, by default, has a maximum transmission unit
(MTU) of 1500 bytes, including the headers. Any packet that is larger than that will be fragmented
into smaller frames. Once you have the data captured, you can put it all back together, of course.
However, each unit of data you are capturing is a frame.

Packet capture programs insert themselves into the network stack, meaning they are in the middle
of the operating system, which is responsible for getting frames out onto the network. Prior to the
frames being sent to the network interface to be converted to either an electrical signal or a radio
signal, the packet capture program will grab copies of the frames and store them. This may just be
long enough to display the header information, as may be the case with a command-line capture
program, or they may write the frames out to disk in a specially formatted file that can be opened
later on to display the frames for analysis. Similarly, on the way in, before the frames are handed up
to the higher layers of the network stack, the packet capture program will take copies.

Because these programs are engaged in some of the input/output functions of the operating system,
they require administrative privileges. Not every user is going to be capable of capturing packets.
A Windows system may require that you elevate the privileges of the packet capture program or it
may interface with a service that is operating with elevated privileges. Other operating systems like
macOS and Linux will also require elevated privileges to capture the packets.

Another reason why the elevated privileges are necessary is because the network interface needs to
be configured to operate in a special mode. By default, network interfaces will only respond to mes-
sages that are addressed directly to them or sent to a broadcast address. Because the network interface
carries its own MAC address, it knows whether a frame coming in matches either its MAC address
or the ff:ff:ff:ff:ff:ff address of a broadcast message. Any other messages are going to be dropped by
default and not passed up to the operating system. To capture packets, the network interface needs
to be told to capture everything that is seen and pass it up to the operating system. When a network
interface is capturing all messages, it is said to be in promiscuous mode.

NOTE In a network that uses switches, only traffic destined for that system comes across the
network interface, which is not how networks used to operate many years ago. As a result, a net-
work interface that is set into promiscuous mode on a switched network won’t see anything that
it wouldn’t normally see anyway. There are ways to get around this and they will be covered later.

There was a time when only specially constructed network interfaces were capable of this particu-
lar mode, which is one reason why network analyzers could be so expensive. These days, however,
nearly all network interfaces can be placed into promiscuous mode. This means that any system
can become a network analyzer using free software, which really changes the game when it comes
to packet analysis.

There is another special mode that is necessary on wireless networks, referred to as monitor mode.
With wireless networks being more commonplace, you can capture the wireless frames easily but
what you won’t see, unless you have a wireless interface that supports monitor mode, is the radio

Network Forensics84

headers. This is the communication between the client device and wireless access point. In most cases,
this information isn’t necessary but sometimes it’s useful to see. Not all packet capture programs
are capable of turning on monitor mode and not all wireless interfaces are capable of supporting it.
If you need to capture the radio frames from a set of wireless communication, because those will
show you authentication to the wireless network and other useful information, you need to make
sure you have an interface that can be set into monitor mode.

A number of programs are available to do packet capture; this chapter covers the most com-
mon ones. Although others may be available, they will often behave very similarly, including the
command-line parameters needed to make the program operate. As a result, we aren’t going to be
exhaustive in talking about different packet capture programs, but you will be able to get a good
handle on the process.

Tcpdump/Tshark
Tcpdump is a program that has been available on Unix operating systems for decades. Various ver-
sions of the program existed in various states on different Unix-like operating systems for over a
decade before they were finally collected into a single project in 1999. In the meantime, other packet
capture programs were available, like snoop on the Sun Solaris operating system. While there may
have been implementations of tcpdump available for Linux prior to 1999, tcpdump has been available
as a package on most if not all Linux distributions. There has also been a port available for Windows
called windump that runs on the same underlying packet capture library that tcpdump uses.

By default, tcpdump will print summary header details of each frame that it captures. This is
all you get unless you tell it you are looking for something else. By default, without any additional
options, Listing 4-1 shows what a packet capture looks like using tcpdump.

Listing 4-1: Packet Capture Using tcpdump

kilroy@oliver:~$ sudo tcpdump
tcpdump: data link type PKTAP
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on pktap, link-type PKTAP (Apple DLT_PKTAP), capture size
262144 bytes
20:42:04.498961 IP 172.30.42.19.vcom-tunnel >
st-routers.mcast.net.vcom-tunnel: UDP, length 182
20:42:04.503756 IP6 2601:19b:c601:ec00:703e:e7ce:d930:beb9.55010 >
cdns01.comcast.net.domain: 39462+ PTR? 19.42.30.172.in-addr.arpa. (43)
20:42:04.522661 IP6 cdns01.comcast.net.domain >
2601:19b:c601:ec00:703e:e7ce:d930:beb9.55010: 39462 NXDomain 0/0/0 (43)
20:42:04.524207 IP6 2601:19b:c601:ec00:703e:e7ce:d930:beb9.62817 >
cdns01.comcast.net.domain: 6428+ PTR? 7.0.0.224.in-addr.arpa. (40)
20:42:04.585214 IP6 cdns01.comcast.net.domain >
2601:19b:c601:ec00:703e:e7ce:d930:beb9.62817:

Chapter 4 Packet Capture and Analysis 85

6428 1/0/0 PTR st-routers.mcast.net. (74)
20:42:04.586750 IP6 2601:19b:c601:ec00:703e:e7ce:d930:beb9.61338 >
cdns01.comcast.net.domain: 1541+ PTR?
9.b.e.b.0.3.9.d.e.c.7.e.e.3.0.7.0.0.c.e.1.0.6.c.b.9.1.0.1.0.6.2.ip6.
arpa. (90)
20:42:04.619422 IP6 cdns01.comcast.net.domain >
2601:19b:c601:ec00:703e:e7ce:d930:beb9.61338: 1541 NXDomain 0/1/0 (171)
20:42:04.620773 IP6 2601:19b:c601:ec00:703e:e7ce:d930:beb9.50271 >
cdns01.comcast.net.domain: 52826+ PTR?
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.d.e.e.f.8.5.5.0.1.0.0.2.ip6.
arpa. (90)
20:42:04.642004 IP6 cdns01.comcast.net.domain >
2601:19b:c601:ec00:703e:e7ce:d930:beb9.50271: 52826 1/0/0 PTR
cdns01.comcast.net. (122)

The summary information shows the time that the packet was captured, the protocol in use, the
source and destination address, and then some additional information, based on the type of packet.
As an example, the first packet shows that it’s a UDP packet and the length is 182 bytes. The fourth
packet down indicates that there was a DNS request for a PTR record. If you look at the end of each
of the addresses that are shown, you will notice that there is a port number. However, it may not look
like a port number. In the very first packet, the source address is 172.30.42.19.vcom-tunnel. The
first part of that is the IP address but the second, vcom-tunnel, is the name for port number 8001.
Some port numbers are considered well-known and registered. Tcpdump is capable of looking up
the name associated with the port and printing that out. It does this by default, though it doesn’t
have to. Similarly, you will see that it prints out the hostname for each address that has a hostname.
It has to do a lookup to print that out, however.

You can also ask tcpdump to provide more detail in the summary output. All you need to do is
add a -v to the command line. This tells tcpdump that you are looking for additional verbosity in
the output. Listing 4-2 shows a sample of tcpdump output with the additional verbosity. However,
this is still just a summary of the header information and doesn’t include any of the contents of the
packet. There is no data shown here.

Listing 4-2: tcpdump Capture with Verbose Setting

kilroy@oliver:~$ sudo tcpdump -v
tcpdump: data link type PKTAP
tcpdump: listening on pktap, link-type PKTAP (Apple DLT_PKTAP), capture
size 262144 bytes
20:51:30.683950 IP6 (flowlabel 0x32bf0, hlim 64, next-header TCP (6)
payload length: 20) 2601:19b:c601:ec00:703e:e7ce:d930:beb9.62799 >
2606:2800:11f:17a5:191a:18d5:537:22f9.https: Flags [F.], cksum 0xb169
(correct), seq 1776269065, ack 1937819765, win 8192, length 0
20:51:30.687980 IP6 (flowlabel 0x249d4, hlim 255, next-header UDP (17)
payload length: 98) 2601:19b:c601:ec00:703e:e7ce:d930:beb9.58865 >
cdns01.comcast.net.domain: [udp sum ok] 55887+ PTR?

Network Forensics86

9.f.2.2.7.3.5.0.5.d.8.1.a.1.9.1.5.a.7.1.f.1.1.0.0.0.8.2.6.0.6.2.ip6.
arpa. (90)
20:51:30.753189 IP6 (hlim 57, next-header UDP (17) payload length: 98)
cdns01.comcast.net.domain > 2601:19b:c601:ec00:703e:e7ce:
d930:beb9.58865: [udp sum ok] 55887 ServFail 0/0/0 (90)
20:51:30.753466 IP6 (flowlabel 0x249d4, hlim 255, next-header UDP (17)
payload length: 98) 2601:19b:c601:ec00:703e:e7ce:d930:beb9.58865 >
cdns02.comcast.net.domain: [udp sum ok] 55887+ PTR?
9.f.2.2.7.3.5.0.5.d.8.1.a.1.9.1.5.a.7.1.f.1.1.0.0.0.8.2.6.0.6.2.ip6.
arpa. (90)
20:51:30.787209 IP6 (hlim 56, next-header UDP (17) payload length: 98)
cdns02.comcast.net.domain > 2601:19b:c601:ec00:703e:e7ce:d930:
beb9.58865: [udp sum ok] 55887 ServFail 0/0/0 (90)
20:51:30.787441 IP (tos 0x0, ttl 255, id 49528, offset 0, flags [none],
proto UDP (17), length 118)
 172.30.42.16.58865 > cdns01.comcast.net.domain: 55887+ PTR?
9.f.2.2.7.3.5.0.5.d.8.1.a.1.9.1.5.a.7.1.f.1.1.0.0.0.8.2.6.0.6.2.ip6.
arpa. (90)
20:51:30.853846 IP (tos 0x40, ttl 58, id 0, offset 0, flags [DF], proto
UDP (17), length 118)
 cdns01.comcast.net.domain > 172.30.42.16.58865: 55887 ServFail 0/0/0
(90)
20:51:30.854057 IP (tos 0x0, ttl 255, id 1754, offset 0, flags [none],
proto UDP (17), length 118)
 172.30.42.16.58865 > cdns02.comcast.net.domain: 55887+ PTR?
9.f.2.2.7.3.5.0.5.d.8.1.a.1.9.1.5.a.7.1.f.1.1.0.0.0.8.2.6.0.6.2.ip6.
arpa. (90)
20:51:30.887574 IP (tos 0x40, ttl 57, id 0, offset 0, flags [DF], proto
UDP (17), length 118)

What you get, as you can see in the output, is additional header information. In the first packet
shown, you can see the payload length as well as the flags and the checksum. The sequence number
and acknowledgment number that are in the TCP headers are shown here as well. What you can
also see is that the checksums have been validated and have checked out. With IPv6, there is a next
header field to indicate what the next protocol beyond IP is. The first two packets are both IPv6 and
they both have different next header fields. One of them indicates that the next header is TCP
and the other’s next header is UDP.

So far, we are talking about just summary information. We can get some additional information
out of tcpdump by adding an additional v to the command-line parameters. To get more of a protocol
decode, you can use -vv with tcpdump. You can see more details in the packet capture in Listing 4-3.

Listing 4-3: Protocol Decode with tcpdump

20:20:27.806833 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has
172.30.42.1 tell 172.30.42.19, length 46
20:20:28.011816 IP (tos 0x0, ttl 128, id 57005, offset 0, flags [none],
proto UDP (17), length 328)

Chapter 4 Packet Capture and Analysis 87

 172.30.42.1.bootps > broadcasthost.bootpc: [udp sum ok] BOOTP/DHCP,
Reply, length 300, xid 0xaad02101, Flags [Broadcast] (0x8000)
 Server-IP 172.30.42.1
 Client-Ethernet-Address b8:27:eb:11:c2:5a (oui Unknown)
 Vendor-rfc1048 Extensions
 Magic Cookie 0x63825363
 DHCP-Message Option 53, length 1: NACK
20:20:28.243372 IP (tos 0x0, ttl 64, id 10615, offset 0, flags [DF],
proto TCP (6), length 64)
 172.30.42.16.56969 > 40.84.149.239.https: Flags [S], cksum 0xe9b9
(correct), seq 3595239578, win 65535, options [mss 1460,nop,wscale
5,nop,nop,TS val 662952483 ecr 0,sackOK,eol], length 0
20:20:28.319312 IP (tos 0x20, ttl 112, id 22932, offset 0, flags [DF],
proto TCP (6), length 60)
 40.84.149.239.https > 172.30.42.16.56969: Flags [S.], cksum 0x0ce2
(correct), seq 2509957292, ack 3595239579, win 8192, options [mss
1440,nop,wscale 8,sackOK,TS val 267796383 ecr 662952483], length 0
20:20:28.319361 IP (tos 0x0, ttl 64, id 13051, offset 0, flags [DF],
proto TCP (6), length 52)
 172.30.42.16.56969 > 40.84.149.239.https: Flags [.], cksum 0x4b46
(correct), seq 1, ack 1, win 4105, options
[nop,nop,TS val 662952559 ecr 267796383], length 0
20:20:28.320520 IP (tos 0x0, ttl 64, id 12940, offset 0, flags [DF],
proto TCP (6), length 271)
 172.30.42.16.56969 > 40.84.149.239.https: Flags [P.], cksum 0xbd8d
(correct), seq 1:220, ack 1, win 4105, options [nop,nop,TS val 662952560
ecr 267796383], length 219
20:20:28.327423 IP (tos 0x0, ttl 64, id 34667, offset 0, flags [DF],
proto TCP (6), length 295)
 172.30.42.16.56568 > edge-star-shv-01-lga3.facebook.com.https: Flags
[P.], cksum 0xfb46 (correct), seq 57304:57547, ack 10212, win 4096,
options [nop,nop,TS val 662952567 ecr 1157808256], length 243
20:20:28.327574 IP (tos 0x0, ttl 64, id 13595, offset 0, flags [DF],
proto TCP (6), length 1450)
 172.30.42.16.56568 > edge-star-shv-01-lga3.facebook.com.https: Flags
[.], cksum 0x7bdc (correct), seq 57547:58945, ack 10212, win 4096,
options [nop,nop,TS val 662952567 ecr 1157808256], length 1398

Much of this looks like what you have seen before. A couple of lines here, though, are a bit more
telling in terms of the additional detail. The very first line is an ARP request. Tcpdump is actually
decoding the packet for you. Rather than simply presenting the raw data, it’s telling you what the
packet is really doing. In an ARP message like the one shown, the raw data would be binary and you
would have to do a lookup for what the operation code (opcode) means. This is what tcpdump has
done. Tcpdump is telling you that this is an ARP request and the request is for the MAC address of
172.30.42.1. The system that has 172.30.42.1 should reply to 172.30.42.19.

Another packet that stands out is the next one down, which is a dynamic host configuration proto-
col (DHCP) message. To locate the individual packets in a capture like this, find the timestamp. That
will indicate the start of each packet. This decode indicates that this has an option code of 53, which

Network Forensics88

indicates what type of message this is. In this case, it is a non-acknowledgment (NACK), which is
typically used by the server to indicate there was a problem with a request. The message we are look-
ing at has originated from 172.30.42.1, which is the IP address of the DHCP server on the network.

Other packets that have been captured in this sample provide varying degrees of useful informa-
tion. In most cases, rather than just a summary of the headers, tcpdump is providing a decode of
all of the header information. This means that tcpdump is not presenting the information to you as
it would be if you were just to look at the data. Instead, it is converting the data to something that
is more meaningful to us. The next-to-last packet shows that the Push flag is set, as an example.
In the actual packet data, it doesn’t say Push. It’s a single bit that is set. Tcpdump also provides us
with the checksum value and the fact that it is correct, meaning tcpdump calculated a checksum on
the packet and it is the same as the one that was transmitted.

Again, header information is great. You will very often need data. This means that you need to
grab the entire packet and you will also need to make sense of the data you have. As fond as I am
of console-based (text-based) programs, this is a case for a graphical interface because it’s easier to
visualize and break the packet apart in ways we don’t see in the console. However, tcpdump is a
great way to safely capture data. It’s also a good way to get captures from nearly any system. You can
make use of a lightweight sensor or even a less powerful computer to capture packets using tcpdump.
Graphical interfaces are far more complex. What we are going to do below is make sure that we are
not only capturing all of the data, but we are also writing the results out to a file on the disk. You
can see the necessary flags for tcpdump in Listing 4-4.

Listing 4-4: Capturing and Saving Packets

kilroy@oliver:~$ sudo tcpdump -s 0 -w capture.pcap
tcpdump: data link type PKTAP
tcpdump: listening on pktap, link-type PKTAP (Apple DLT_PKTAP), capture
size 262144 bytes

The -s flag tells tcpdump that we are using a snap length of 0, which really tells tcpdump to use the
maximum value. By default, tcpdump will only capture 68 bytes, because that will generally ensure
that you get the header information necessary for tcpdump to do the decoding that it is capable of.
What we need is the entire packet and not just the first 68 bytes. The -w flag says to write out to the
disk. The value after the flag indicates the filename that will be used to store the packet capture to.

One aspect of tcpdump that may be of some value, and that we will cover in more detail in the
“Filtering” section later in this chapter, is filters. You will find that in the filtering section later in
this chapter. You can add a filter onto the command line to tell tcpdump which packets you want to
capture. As an example, you can specify a host. When you tell tcpdump that you only want to cap-
ture based on a host, the only packets that will be captured are ones where the source or destination
addresses match the value that was provided to tcpdump with the host parameter. You can also tell

Chapter 4 Packet Capture and Analysis 89

tcpdump which protocols you want to capture. These filters, called Berkeley Packet Filters, will help
you limit the capture size so you can focus on the data that you are really interested in looking at.

One advantage of learning how tcpdump works is that other packet capture programs will use
the same command-line parameters. All you need to do to get packets captured is to change the
name of the program. One such program that works on the command line but makes use of the same
command-line parameters as tcpdump is tshark, which is a command-line program that comes with
Wireshark.

Wireshark
Many years ago, protocol analyzers were very expensive devices with special network interfaces and
software that could communicate with the network interfaces to extract and present network data.
In 1998, Gerald Combs was working for a small Internet service provider and he decided he was
going to write his own protocol analyzer. What he wrote was originally called Ethereal, but eventu-
ally became what is now Wireshark.

The Wireshark project, which has undergone ownership changes, now has well over one thousand
contributors listed on its website. As it has grown, it has continued to add a lot of functionality. Unlike
tcpdump and tshark, Wireshark is a graphical interface. Where tshark will just present you a summary
and the highlights of the important information, mostly from the packet headers, Wireshark includes
a number of modules called dissectors. These dissectors are what make Wireshark so valuable.

NOTE There are issues running Wireshark to perform captures because it can require adminis-
trative privileges. This can lead to the potential to exploit vulnerabilities in Wireshark and provide
administrative-level access to the attacker. This is one reason why it can be better to use tcpdump
or tshark to capture packets and then use Wireshark to do the analysis. The problem tends to be in
the protocol dissectors, which are modules that plug into Wireshark, and while tcpdump can do
some protocol dissection, it doesn’t do so with the use of plugin modules that allow for the exten-
sion of functionality like Wireshark does.

While it is not generally recommended to do this directly, Wireshark can be used to capture
packets. In Figure 4-1, you can see Wireshark after it has been started. In this instance, I am using
Wireshark 2.0.4, which has a different interface than the 1.x version, which can still be used. On
the welcome page in Wireshark, you have quick links that can be used to start captures. Under the
Capture header is a box where you can provide a capture filter, which can narrow the number of
packets that will be captured. Below the capture filter box is the list of interfaces available to capture
from. In this figure, it may be difficult to see but there is a very small graph indicating network usage
next to interfaces that are actually sending or receiving network traffic. On this system, only the
WiFi interface, en0, is engaged in network communication.

Network Forensics90

Figure 4-1: The Wireshark interface.

While using Wireshark, you can immediately start investigating traffic while it is in the process of
capturing. In Figure 4-2, you see Wireshark in the middle of a capture. Three panes are worth look-
ing at in the Wireshark window. The top is the list of frames that have been captured. The middle is
the list of headers. This list can be broken out to have Wireshark explain everything in something
closer to plain language that you can read. The bottom pane shows the raw data. This includes a
hexadecimal dump of each byte as well as an ASCII decode of those bytes on the right-hand side. Not
all of the bytes can be decoded to a printable ASCII value, which is why you may see a lot of dots (.).
That just indicates that there is a byte there but it can’t be printed.

Like tcpdump, Wireshark will put the network interface into promiscuous mode to capture all
of the packets that pass by the interface. Putting the interface into promiscuous mode, as it is a
hardware-related function, requires administrative access. Some systems will introduce a system
service that handles the capture and then passes them up raw to Wireshark, which keeps Wireshark
from needing to operate in administrative mode. Instead, the service that does the capturing runs
in an administrative mode while Wireshark can run as any user. If Wireshark does have a vulner-
ability that has been exploited, the exploit only runs with the permissions of whatever user is run-
ning Wireshark. While it’s still not ideal to have Wireshark exploited, it’s better to do it with limited
permissions rather than allowing the attacker to have complete run of the system.

No matter what program you use to capture packets, the issue is going to be how you get pack-
ets to the system. In a normal network configuration, what you are going to see is packets that are

Chapter 4 Packet Capture and Analysis 91

destined for the system anyway as well as any broadcast messages. Though this may be all that you
need, there will be times when you need to get access to all network traffic. This is not something
that can be done using the packet capture software alone. To get everything, we need additional help.

Figure 4-2: The Wireshark Interface.

Taps
In most modern networks, if a system is connected using a cable, it is with a multi-wire, copper
Ethernet cable and the cable is plugged into a switch on the opposite end from the system. Years
ago, systems were connected using hubs. A hub is a broadcast device when it comes to networking.
Essentially, any signal that comes into a port in a hub is repeated back out to every other port in the
hub. Because that consumes potential bandwidth and can impact performance on all systems on
the network, switches have become far more common. A switch takes a look at the Ethernet header
to determine what the destination MAC address is. Based on the destination MAC, the switch does
a lookup using content addressable memory (CAM) to determine the port that the frame should be
directed to. As a result, when switches are used, the only traffic that gets sent to a system is a frame
that is addressed to the system in addition to broadcast traffic, which goes to all ports.

The reason for using switches is that hubs cause problems with performance. The network con-
nection between you and the hub gets filled with network communications that aren’t destined for
you. You can alleviate that by using a switch, even though the hub guarantees that everyone on the

Network Forensics92

network will see what everyone else is doing. One way to get traffic from a particular network segment
over a short period of time is to use a hub. It’s not going to make any of the users on the other end
very happy because they won’t be able to use the maximum bandwidth on their connection. Instead,
they will be sharing the overall bandwidth on the network with everyone else.

Another way to get traffic that is really destined to other systems is to use something called a tap,
sometimes called a test access point (tap). The thing about copper network connections is that they
consist of two pairs of thin copper wires. One pair is responsible for transmitting data and the other
pair is responsible for receiving. Perhaps it’s obvious but when two systems communicate with one
another, it’s necessary for the transmit wires to be copied over to the receive wires. This is done by
the hub or the switch, depending on what you are using. To intercept communications over copper
wires, the tap is inserted into the middle of what would normally be a single wire. As a result, you
have the wire running from the computer into the tap and then another wire coming out of the tap
going to the switch or router, depending on where you are capturing your traffic. The tap sits in
the middle of what would otherwise be a single, uninterrupted cable, and includes a monitor port. The
monitor port is where the traffic passing through the tap gets sent so it can be plugged into a device
capturing traffic. You can see a basic diagram of what a tap would look like in Figure 4-3.

Net A Net B Mon A Mon A

Figure 4-3: Copper network tap.

The reason for having two cables coming out is that it would be impossible to combine the two
signals without causing corruption. Because both transmit pairs could be communicating simul-
taneously, trying to combine the two signals could end up having one signal cancelling the other
out because you are talking about adding two electrical signals together. The waveforms from those
electrical signals have the potential to either cancel each other out or amplify. Either way, you don’t
end up with two sets of data together; you end up with a single set of totally unusable data. Because
you can’t combine waveforms at the electrical layer, you have to have two cables that you can monitor.

In the case of copper connections that use electrical signals, the tap just repeats the signal across
two separate cables. This is easy to do using basic electronics so copper taps are fairly simple. Not
all connections these days are copper, however. Some connections make use of fiber cables that
carry light pulses, either from a laser source or a light emitting diode (LED) source. Light is not as
simple to duplicate, however. But there are other ways to capture light that you can’t do with copper.
Essentially, you split the signal by shaving a small portion of it off. This approach is referred to as a

Chapter 4 Packet Capture and Analysis 93

passive tap because no active electronics are involved. You’re just taking a portion of the light, as you
might by using a mirror with the sun’s rays, and diverting it somewhere else. This approach reduces
the signal, because you are diverting a portion of it.

You don’t have to use a passive tap, though, if you are concerned about inadequate signal at
the far end. There are active taps that do re-create the light signal. This means you have 100% of the
signal going to the far end. It also means that you need some additional electronics, though, to take
the light signal and repeat it. As a result, active taps are more expensive than passive taps. They also
require a power source because of the electronics.

Just like copper cabling, fiber also splits into transmit and receive because you can’t send light in
two different directions on the same fiber strand. Just as with the copper, you would end up with the
potential for cancelling the signals out or amplifying them and in the end, you’d have an unusable
signal. Unlike copper Ethernet cables, though, fiber cables are not combined into a single jack. Both
the transmit and receive fibers would have their own terminal connector. As a result, fiber taps will
have two connectors for both the entry and exit cables and then you would also have the monitor
cables as well.

Port Spanning
Taps are not the only way to get traffic. With enterprise-grade switches, you may have the ability
to have the switch copy traffic from one port to another. This is called port spanning. Cisco refers to
this as using a Switch Port Analyzer (SPAN) port. Normally, you would mirror one port to another,
though it’s possible to mirror all of the traffic on a single network segment, a virtual local area net-
work (VLAN), to a single port. The challenge with mirroring an entire network segment is that you
are trying to cram multiple network signals down a single pipe. This is called oversubscription. If you
have twenty 1-gigabit ports that you are mirroring to a single 1-gigabit port, you have the very real
potential of losing a lot of data. If you have even a tenth of the bandwidth used on all of the connec-
tions, you have two times more data than you have the bandwidth to acquire.

NOTE Traditionally, networks are segmented physically. If you want to connect a number of
systems on the same physical network, you connect them all to the same switches. The moment
you connect a system to a switch with other systems, every system is visible to the others because
they are all on the same layer 2 network. To segment systems using the same physical switches, you
need to use logical separation. Virtual local area networks (VLANs) are a way of providing layer 2
separation within the same physical network equipment.

Not all switches are capable of supporting this sort of mirroring, but most businesses will have
switches that can support this activity. Consumer-grade switches won’t be able to support this, but
this doesn’t mean that you are out of luck if you don’t have a tap or a switch that is capable of port
spanning.

Network Forensics94

ARP Spoofing
On the local network, all communication is done using MAC addresses. The network itself is used to
perform lookups on these addresses to resolve IP addresses to MAC addresses and vice versa. This
means that every system is expected to respond when its number is called, so to speak. If one system
is looking for the MAC address that belongs to an IP address, it will send out an Address Resolution
Protocol request, sometimes referred to as a who-has request because that’s how tcpdump and other
packet capture programs render it in shorthand English. In some cases, a system that doesn’t actually
own that IP address will respond if it knows that the IP address will be reached by using it. This is
called a proxy ARP, meaning that one system is acting as a proxy for another system, promising to
pass the message along, much like kids in elementary school might.

To speed things up, every system will typically cache an ARP resolution in a table locally to prevent
having to do a request the next time it needs to communicate with a particular address. A system
may do this even if it just happens to notice an ARP message go by that it didn’t request. This is
commonly done in the implementation of the TCP/IP protocols on systems because it’s efficient and
can improve response times.

The problem with ARP is there is simply no way to verify that the messages being sent on the
network are legitimate. I might, for example, send out a message in response to a request that I
see go by. If my response beats the legitimate host, I will win and the message will come to me.
Attackers may use this technique, called ARP spoofing, to get messages that are legitimately meant
for someone else. It actually gets more complicated than this, though. I may not even bother wait-
ing for someone to ask to know who a particular address belongs to. I may just send out a message
telling everyone that a particular IP address belongs to my MAC address. When an ARP response is
sent without any ARP request, the response is called a gratuitous ARP.

A gratuitous ARP is sent to everyone on the network using the broadcast MAC address ff:ff:ff:ff:ff:ff.
Because systems are commonly set to just cache ARP mappings to save time later on, these messages
are cached and the receiving systems have no way of knowing that they are bogus. An attacker can
actually send these gratuitous ARP messages for any number of systems on the network. It may not
just be a single host. Ideally, if I wanted to capture a particular communication flow, I would need
to spoof both ends of the connection or else I’m only getting half of the conversation. I can easily go
beyond just a pair of hosts, however. Using this technique, I could have all the traffic on the network
sent to me. You can see this in Listing 4-5.

Listing 4-5: tcpdump Output of ARP Spoofing

20:42:57.234477 ARP, Reply 172.30.42.23 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28
20:42:57.234591 ARP, Reply 172.30.42.1 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28
20:42:57.245649 ARP, Reply 172.30.42.20 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28
20:42:57.245780 ARP, Reply 172.30.42.1 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28

Chapter 4 Packet Capture and Analysis 95

20:42:57.256978 ARP, Reply 172.30.42.19 is-at f4:5c:89:b7:2c:89
oui Unknown), length 28
20:42:57.257038 ARP, Reply 172.30.42.1 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28
20:42:57.267220 ARP, Reply 172.30.42.12 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28
20:42:57.267265 ARP, Reply 172.30.42.1 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28
20:42:57.278285 ARP, Reply 172.30.42.2 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28
20:42:57.278349 ARP, Reply 172.30.42.1 is-at f4:5c:89:b7:2c:89
(oui Unknown), length 28

Looking closely at this, you can see that several IP addresses have been said to belong to a single
MAC address. Fortunately, this is not complicated. A number of programs are capable of performing
this particular technique. The technique is sometimes called ARP poisoning because what you are
doing is corrupting (poisoning) the ARP cache on different hosts on the network. This particular
ARP poisoning was done using a program called Ettercap. Ettercap comes with different interfaces.
Once of them is fully graphical. You can also run it using just the command-line interface, specifying
your targets. In Figure 4-4, you can see the console-based interface, which can be used if you need
to do ARP spoofing but you don’t have the ability to use a graphical interface.

Figure 4-4: Ettercap in Curses mode.

Network Forensics96

One of the challenges with ARP poisoning is that once you have the packet, it isn’t going to the
intended destination. This causes two problems. The first is that people will start to get suspicious
that the network isn’t working. Second, even if the users don’t really catch on quickly, the systems
that are communicating will because they will be expecting regular responses if they are communi-
cating over TCP, which will commonly be the case. If they stop getting response messages, they will
determine that the connection has failed and just tear it down. This means that to continue getting
all the messages that you want, you need to find a way to make sure all the messages you are getting
get forwarded to their intended target. This behavior is not common for most operating systems by
default because it effectively turns your system into a router, since you are taking packets in and then
forwarding them back out again on the same interface.

While ARP spoofing may not be the best approach to collecting network information, it is one
approach to making sure you can collect network information. If you are using ARP spoofing, you
can use any packet capture program to bring the packets in because they are being sent to you. Any
ARP poisoning program can be used alongside a packet capture program to acquire packets from
across the network, regardless of whether you are on a switched network, because all of the systems
are being told to just send you everything and they will comply.

Passive Scanning
Another technique to keep in mind is passive scanning. This particular approach just watches the
data that passes across the network and reports specific details to you. With this approach, you aren’t
gathering all of the information that you would using a full packet capture that you were analyzing
in Wireshark. You also aren’t getting just a summary of header information, as you would get from
tcpdump or tshark. Instead, a passive scanner will present you with useful details from all of the
different layers. A passive scanner will just run quietly, observing data that is passing across
the network interface. A well-known scanner that uses this technique is p0f. Using p0f, you will end
up with output that looks like the results shown in Listing 4-6. The output you receive will vary, of
course, depending on what traffic it is seeing.

Listing 4-6: p0f Output

.-[172.30.42.16/55629 -> 199.58.85.40/80 (http request)]-
|
| client = 172.30.42.16/55629
| app = Chrome 51.x or newer
| lang = English
| params = none
| raw_sig = 1:Host,Connection=[keep-alive],
Upgrade-Insecure-Requests=[1],User-Agent,Accept=[text/html,
application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8],
?Referer,Accept-Encoding=[gzip, deflate, sdch],Accept-Language=[en-US,
en;q=0.8]:Accept-Charset,Keep-Alive:Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko)

Chapter 4 Packet Capture and Analysis 97

Chrome/53.0.2785.116 Safari/537.36
|
`----

.-[172.30.42.16/55630 -> 199.58.85.40/80 (syn+ack)]-
|
| server = 199.58.85.40/80
| os = Linux 3.x
| dist = 11
| params = tos:0x08
| raw_sig = 4:53+11:0:1460:mss*10,4:mss,sok,ts,nop,ws:df:0
|
`----

.-[172.30.42.16/55630 -> 199.58.85.40/80 (mtu)]-
|
| server = 199.58.85.40/80
| link = Ethernet or modem
| raw_mtu = 1500
|
`----

.-[172.30.42.16/55629 -> 199.58.85.40/80 (uptime)]-
|
| server = 199.58.85.40/80
| uptime = 26 days 9 hrs 36 min (modulo 49 days)
| raw_freq = 1000.00 Hz
|
`----

What we can tell from this output is that there is a browser that is open and communicating with
Google. The very first block of information tells us that the browser is Google Chrome, and includes
the version number. We get the source and destination IP addresses and the source and destina-
tion port numbers. Looking more closely at the raw signature (raw_sig), it appears this browser
is running on a Mac OS X system. This particular piece of information isn’t that surprising because
it was captured on the system that I am writing on and it happens to be a macOS system.
Because it’s providing information about the system where p0f is running, that’s less interesting or
useful. However, p0f isn’t done.

Looking at the next block of information, it appears that the destination address belongs to a
system that is running Linux and the kernel version is in the 3.x line. p0f was able to determine
this based on the SYN/ACK message that it observed. The message type is in the very top line of the
message block. Further down, p0f was able to determine that the remote system has been up for over
26 days. By really pulling all of the packets apart and doing deep investigation, it has been able to
provide a lot of information that we may miss by simply doing packet captures and looking at them.

This is not to discount using packet capture programs, however. A good packet capture pro-
gram, like Wireshark, will provide a lot of tools that we will be able to make use of to do network
investigations.

Network Forensics98

Packet Analysis with Wireshark
Ethereal, later Wireshark, started out as a decent, free alternative to very expensive packet capture
software, and it has evolved into a very mature and useful program. Using Wireshark, we can extract
a lot of information because Wireshark will do a lot of analysis for us without us needing to go dig-
ging into messages one at a time. Wireshark keeps track of a lot of information as it gathers each
frame and it also does a lot of the decoding and dissection for us. Additionally, it will provide a lot
of statistics about the capture, which can be very useful for certain types of investigations. While
the capture is displayed as individual frames, Wireshark will also gather all of the related frames
together for us, presenting us with a plaintext view of the data from the conversation. This can save
us from trying to pick pieces out of individual frames to add them to information from other frames.

In some cases, the communication will have a number of files that are being transmitted. Consider
a typical web page view. In addition to the text that you are seeing on the page, often graphics files
and potentially other files are brought in to create the entire experience. You could extract the data
from each individual frame and collect it all together or you could just let Wireshark do that for you.
Wireshark has a number of other capabilities, and we will be spending some time in subsequent
chapters going over some of those. For now, let’s talk about some of the basics that we will need as
we go forward.

Packet Decoding
Perhaps the most important feature that Wireshark offers is the ability to decode the packet, provid-
ing details in plaintext. This saves us from having to do decoding on our own. As an example, you
can see part of the decoding that Wireshark does in Figure 4-5. At the top of the screen capture,
Wireshark has broken the different layers of the packet into its components. Each line constitutes
a different layer and set of headers or data. You may also note that I said packet and not frame. The
reason is that Wireshark has very helpfully collected all of the frames to present it all together without
much additional work on my part.

Figure 4-5: Wireshark decode.

Chapter 4 Packet Capture and Analysis 99

The first thing to notice, as mentioned previously, is that you get a line for each layer, starting
with the physical layer. Wireshark provides a summary of how many bytes were captured and which
interface they were captured on. When you get to the data link layer, you will see the MAC addresses
but Wireshark has done us a favor by looking up the vendor from the first three bytes, which con-
stitute the organizationally unique identifier (OUI). In the network layer, Wireshark has provided a
lookup of the source IP address. What we don’t see is Wireshark providing a lookup at the transport
layer. This is configurable, however. Going to the View menu, as you can see in Figure 4-6, we can
have Wireshark either provide us with the name resolutions, or not.

Figure 4-6: Name Resolution view.

One thing to keep in mind is that some of these name resolutions will require additional network
traffic. In the case of the network layer, for example, it’s not as though www.mobileread.com was
provided in the packet that was captured. Instead, there was an IP address and Wireshark did the
lookup. That lookup required Wireshark to initiate a DNS request. In the middle of the capture, you
will see these DNS lookups as Wireshark observes traffic with addresses that need to be resolved.

TIP To limit the amount of traffic captured, disable name resolution while you are capturing,
whether that’s in Wireshark, tcpdump, tshark, or another capture program.

Digging a little more deeply into the packet, we can look at how Wireshark has broken out all of
the pieces of the different headers. In Figure 4-7, you can see how each of the different fields in the
IP header has a line telling you what the field is and the value of that field. This includes breaking
out the value of each of the flag fields, as in the fragmentation flags. If you want to see the individual
flag bit values, you can click the little arrow on the left-hand side of that field. Otherwise, Wireshark
has provided the value of the byte and a brief explanation of what that value means. In the flags byte,
we have a value of 0x02, which means that the Don’t Fragment bit has been set.

Network Forensics100

Figure 4-7: Header field values.

Similarly, you can see the different header fields for TCP have been decoded for us. In this view,
we can see the actual value of the sequence and acknowledgment numbers. In most cases, how-
ever, Wireshark will take care of those values for us, providing relative values instead. This means
that Wireshark will keep track of the base value and present that to us as if it were 0. Every subsequent
value will be the amount incremented over the base value. In some cases, it may be easier for you to
see the actual values that are being used so you can tell Wireshark to provide the values that are sent
rather than the values that Wireshark will compute. Because the values are so large, it’s generally
easier to just allow Wireshark to compute the value rather than trying to keep track of it manually.

Wireshark will also provide you with the checksum, which is the value that is computed across
different sections of the packet to ensure it hasn’t been corrupted. You can have Wireshark com-
pute the checksum or not. Disabling checksum validation can improve performance very slightly.
If checksum validation is enabled, Wireshark will be able to tell you whether the checksum is valid.
By default, Wireshark will not compute the checksum for you because often modern operating systems
along with the network drivers will offload the checksum computation to the network hardware.
This can end up with it appearing that the checksums are incorrect.

In addition to all of the decoding, Wireshark will also provide the raw packet data. This is shown
in the bottom pane of the Wireshark capture window. You can see in Figure 4-8 the raw capture data
from the packet that was shown earlier. This provides the raw bytes on the left-hand side, displayed
in hexadecimal. On the right, in a traditional hexadecimal dump format, is the ASCII decode. The
ASCII decode shows any printable characters. Otherwise, all you will see is a dot because the char-
acter can’t be printed. What we can see in this particular pane, though, in addition to seeing the raw

Chapter 4 Packet Capture and Analysis 101

data, is where each value is located. As an example, the IP header checksum field has been selected.
This is the 9th and 10th byte in the first line. At the very bottom, in the status line, Wireshark tells
us the field that has been selected.

Figure 4-8: Raw packet data.

This is just a very quick overview of the different areas for which Wireshark does decoding of
the packet for us. In addition to decode details, Wireshark keeps track of a lot of other useful infor-
mation for us. We will take a look at some statistics that Wireshark provides a little later on in the
Statistics section. One thing you may notice if you have started to do any captures on your own is
that Wireshark captures a lot of information. The more information you capture, the more disk space
you are using, if you are storing. Also, the more you capture, the more you have to wade through
as you are looking for specific information. Having a way to narrow down whether what you are
capturing or looking at is helpful. Wireshark offers a very rich filtering capability.

Filtering
Wireshark will allow for the use of both display and capture filters. You have a number of ways to
perform filtering. In the display filter box above the list of frames captured, Wireshark will offer
suggestions when you start typing. Filtering using protocols is easy. All you need to do is type the
protocol, as in ICMP, HTTP, TCP, or UDP. Wireshark will then display all frames that match the pro-
tocol that you have specified. Beyond that, though, you can get into the specifics of the protocol. As an
example, you can indicate that you want to just display packets where the IP address is 172.30.42.1.
To display only those packets, you could type ip.addr == 172.30.42.1. This tells Wireshark that
either the source or destination addresses should be the IP address specified. Note that Wireshark
uses two equal signs to specify a match.

If you only want to see the packets where the source address is a particular address, you can
specify ip.src_host as the parameter you want to match. Different protocols are capable of breaking
out different parameters to filter on. As an example, if you are trying to filter through a lot of web

Network Forensics102

traffic, you can specify different parameters of HTTP. You may only want to look for POST methods,
meaning you are looking for where the client is sending information to the server. To filter based on
that, you would use HTTP.request.method == POST. This would show you only packets that include
a message to a web server where the request is a POST rather than a GET or any other method.

The filter box is not the only place that you can specify a filter, however. You can automatically
create a filter by right-clicking any packet in your list. You will get a context menu that allows you
to choose either Apply as Filter or Prepare a Filter. In either case, you will be able to use that specific
packet to either include or exclude. The difference between Apply and Prepare is that with Apply,
the filter is immediately applied, whereas selecting Prepare places the prepared filter into the filter
box so you can edit as you would like.

Wireshark keeps track of a lot of information and to perform some of these types of filters, it
identifies communication streams. When system A starts to communicate with system B, Wireshark
will know, based on the same source and destination IP addresses and port numbers, that a number
of frames may belong to that particular stream. Because it keeps track of all of that information,
Wireshark can present you with specific conversations without you having to do a lot of work.

Statistics
Wireshark digs through the entire packet as it is displaying and
decoding packets. In the process, it learns a lot about the entire data
set. Using the various statistics that Wireshark provides, we can get a
much better look at the entire capture. You can see the entire Statistics
menu in Figure 4-9. In the middle of the menu are a number of
protocol-specific statistics. These may not be useful to you, depending
on whether you have captured any of those protocols. As a result, we
can start with a broader view of the entire capture.

Two statistics views display similar information: the Conversations
view and the Endpoints view provide specific details about the
number of packets that are being transmitted. In the Endpoints
view, this is displayed solely by the address that is responsible for
the traffic. In the Conversations view, you will see both endpoints.
Figure 4-10 shows the Conversations view. The difference between
Conversations and Endpoints is that the Endpoints view only shows
the endpoint and not the aspects that are related to the conversation.
In the Conversations view, you will see the counts in both directions
with addresses associated with both ends. In the Endpoints view, you
will see A ➪ B and B ➪ A counts without distinguishing between
different B hosts. All those counts show is how many bytes are going
out versus coming in.

Figure 4-9: Statistics menu.

Chapter 4 Packet Capture and Analysis 103

Figure 4-10: Conversations view.

Both of these statistics views provide both byte and packet counts. Because packets are variable
length, just having a byte count won’t tell you the number of packets. You similarly can’t get a packet
count based on the number of bytes. Both pieces of information can be important. You may also
note that you can enable address resolution. This will provide address resolution of the vendor for
the MAC address and if you click other tabs, you would be able to see names where Wireshark was
able to look them up. As an example, Wireshark would provide the hostname that belonged to an
IP address or the name of a port that had been used, assuming it was one of the well-known ports.

While you can sort the captured frames to organize the list by sender or recipient, using either the
Conversations or Endpoints view is more convenient to be able to get a complete list of the endpoints
and the conversations that are happening. One reason for that is the number of frames. Even if you
are sorting your list of frames by the sender, each sender may have dozens or hundreds of frames.
You would need to still read down through the entire list to make note of the different senders you
have captured. Using the Endpoints statistics is much more convenient. Once you know who your
endpoints are, you could move on to the Conversations view to determine who those endpoints are
communicating with.

Using the Conversations view, you can get a look at the ports that are being used. If you click the
TCP tab at the top, you will get a list of the conversations between source and destination and on
that tab, you will see the ports on both the source and destination side. This may be able to tell you
what is happening between these two systems, but it could also be that the ports don’t tell you what
you need to know. Another way of looking at the packet capture is to look at the Protocol Hierarchy
view. This view, seen in Figure 4-11, can not only tell you where all of the data is being transmitted,
but can also provide you with some outliers as well. Skimming through the packet capture may not
tell you that there is an odd or unexpected protocol being used.

Network Forensics104

Figure 4-11: Protocol Hierarchy view.

As an example, scrolling down through the Protocol Hierarchy view, there was an entry for the
Internet Control Message Protocol (ICMP). This seemed unexpected, so right-clicking that protocol
allows me to create a filter. If you select Apply as Filter, Wireshark will prepare a filter for you based
on the characteristics of what you have selected. Since I have ICMP highlighted, applying the filter
based on that protocol places ICMP into the filter box at the top of the capture window. Wireshark
will then only display frames that are using ICMP, as the display filter has indicated, and all other
frames will be hidden.

Another statistics view that can be very useful is the IP statistics. As you saw in the Statistics menu,
at the bottom there are entries for IPv4 Statistics and IPv6 Statistics. When you select one of those,
you get a flyout menu offering the choice of All Addresses; Destinations and Ports; and IP Protocol
Types or Source and Destination Addresses. Selecting Destinations and Ports shows you a view like
the one in Figure 4-12. The advantage of this view is that you are able to see what the burst rate
for the traffic is. The burst rate tells you what the peak speed is so you know how fast the traffic was
moving at its fastest. This does not mean that it was sustained at that rate, just that it peaked there.

In the last column on the right, you will also see the time that the burst started. Looking at the
capture window in Wireshark, the time, relative to the start of the capture, is in the second column
from the left. Using this column, you can identify the point in the capture where the traffic burst
started. Once you have identified the point in the capture where the burst starts, you may want to be
able to identify the complete traffic stream. Fortunately, there are ways to do that using Wireshark.

Chapter 4 Packet Capture and Analysis 105

Figure 4-12: IPv4 statistics view.

Following Streams
As mentioned previously, Wireshark keeps track of the different streams that have been captured. To
filter based on just one stream, all you need to do is right-click one of the frames from that stream
and select Apply as Filter using Selected. That will create a filter based on specific details from the
packet, which may include the IP address. That’s not the only way, though, that you can filter on
a stream. Additionally, while TCP is often referred to as a stream-based communication protocol,
Wireshark also keeps track of the communications that happen over UDP and can identify a UDP
stream as well. Wireshark will use internally stored information to do this filtering.

Right-clicking one of the frames that’s potentially part of a stream you are interested in will allow
you to select Follow Stream from the context menu. This will immediately apply a filter by identify-
ing the stream that Wireshark has attached the frame to. In Figure 4-13, you can see the filter that
Wireshark has applied is tcp.stream eq 69. This is not the sort of information that you will find looking
at the packet itself without Wireshark. Only Wireshark knows that stream number. If you were to
open up the TCP header information, you would find a value that Wireshark has applied indicating
the stream index. In addition to applying a filter using the stream index, Wireshark will also collect
all of the data from the packets and present it in a single view. You can see that in Figure 4-13 as well.

Network Forensics106

Figure 4-13: Follow stream.

While the plaintext of the capture here has been rendered by doing an ASCII translation, Wireshark
is capable of performing a decode in other ways as well, including EBCDIC, C strings, hex dumps,
UTF-8, Yet Another Markup Language (YAML), or raw. In this case, the web traffic was sent using
ASCII for the encoding, but that won’t always be the case depending on where you are in the world
and the protocol that may be in use. Wireshark can help with just about any decode type that you
may run across.

Following TCP streams works well if you have any plaintext that you want to be able to read across
a number of frames or packets. It’s considerably harder to try to extract all of that data manually.
It’s not impossible, because you can extract the data from each packet and put it together yourself,
but it’s quite a bit harder. If you have a text file that’s being transmitted, you can still use the Follow
Stream feature to get the contents. If you have binary content, that’s harder to deal with. Wireshark
can handle that, though.

Gathering Files
There likely will be a lot of files in a packet capture. This may not be immediately apparent,
however. If you were just capturing web traffic, for instance, it may not occur to you that the data

Chapter 4 Packet Capture and Analysis 107

that is coming across the wire is a collection of files. Every image is another file. A web page may
also contain JavaScript files if they are imported into the page rather than being included directly
into the Hypertext Markup Language (HTML). Often, pages will include a number of other files as
well, including Portable Document Format (PDF) files or Java applets, Flash scripts, or a number of
other file types. This is just from web traffic. On a corporate network, files are being sent back and
forth on a regular basis between file shares or as print documents.

Using Wireshark, you can identify all of the files from a packet capture. You can do this by just
going to the File menu and selecting Export Objects. That gives you the option to select protocols
that you want Wireshark to look at, including HTTP or the Server Message Block (SMB), which is
a protocol that Windows systems will use to share files. Once you select which protocol you want,
you will get a window like the one in Figure 4-14, which shows a list of all of the files that have been
discovered being transmitted over HTTP from this capture. This list is mostly images that were
grabbed from a couple of web searches, but it also contains PDFs.

Figure 4-14: Exporting files.

Once you have the list of files, you can select a single file and export that from the capture or you
could just export all of the files from the capture. Again, though, this is protocol specific. Using a
different protocol, like SMB, we get a different list from the same capture. Figure 4-15 shows a list
of files that were identified as being transmitted over SMB. Just as in the previous case, you can see

Network Forensics108

where the files came from. The hostname column shows the host and the file share that each file came
from. You will also see the content type. In the case of web content, you will see the Multipurpose
Internet Mail Extensions (MIME) type. SMB doesn’t use MIME types, though, so all we see in the
content type column is FILE. The filename itself is in the last column.

Figure 4-15: Files shared over SMB.

The one case for which this won’t work is where the content has been encrypted. Encryption may
use the Secure Sockets Layer (SSL) or the Transport Layer Security (TLS) encryption mechanisms.
Web traffic that has been encrypted can’t be decrypted using Wireshark unless you have the keys.
In the majority of cases, you won’t be able to get the keys to perform the decryption. If you were able
to easily obtain the keys, the encryption wouldn’t be of much value.

In cases where files are being transmitted across different protocols, you may need to go through
the process of exporting the data from the individual packets. Wireshark is not the only program
that can extract a lot of useful information from a packet capture, however.

Network Miner
Other programs are capable of extracting information from a packet capture. One of these is Network
Miner, by Netresec. You can buy a professional version, and there is also a free version. The profes-
sional version adds a number of additional features that may be useful if you end up using this a lot,

Chapter 4 Packet Capture and Analysis 109

but for our purposes here, the free version will work fine. Because Network Miner is written in .NET,
it can be run not only on Windows, but any operating system that can run the open source Mono
platform. Network Miner will take the pcap file format that Wireshark writes and use that as input,
extracting information like files, credentials, messages, keywords, and parameters.

Using Network Miner will save you a lot of time and effort that would be required to search for
and extract information manually. Figure 4-16 shows a partial list of all of the files that were identi-
fied in the pcap. This includes the usual set of files that you would expect to see like image files,
JavaScript files, cascading style sheet (CSS) files, or other documents. The list shown here includes
certificate files that are associated with the encryption that is being used. When a client and server
negotiate encryption, there is information that is shared. During the packet capture, files associated
with that negotiation were captured.

Figure 4-16: Files captured using Network Miner.

Looking at the tabs across the top, you can see other types of assets that have been captured.
Wireshark can provide you a list of all of the endpoints and Network Miner will give you a list of
hosts. Network Miner provides additional details about the host on the same tab, where in Wireshark
you may need to look in more than one place to get this information. Each IP address shown in the
hosts tab on Network Miner can be drilled open to get the MAC address, open ports, traffic statistics,
and sessions. If available, Network Miner will tell you what the operating system is. Network Miner

Network Forensics110

will also provide you with the hop distance, meaning how many routers the packets had to traverse
to get to the system where the packets were captured.

What you will also notice on the hosts page in Network Miner is that the MAC address associated
with the IP address is shown. In most cases, the MAC address will be for the gateway device on the
network. The MAC address shown in the hosts in Figure 4-17 is for the router on this network.
The only way to have the real MAC address associated with the IP address is for the two systems to
be on the same physical network; otherwise, you get the MAC that’s associated with the gateway used
to get to the destination network. Network Miner, like Wireshark, will also provide the decoding of
the MAC address to indicate the vendor of the network interface.

Figure 4-17: Hosts tab in Network Miner.

Summary
While there are certainly tools that will do a lot of the work for you in terms of decoding and analysis,
it’s still important to understand how to make use of those tools and also know what the information
you are looking at means. There is no big report that will be created by these tools to tell you every-
thing you need to know so you still need to know how to perform investigations of network attacks.

Chapter 4 Packet Capture and Analysis 111

Much of what we do in the rest of this book will be based on the information in this chapter because
network investigations will often require taking a look at the data being transmitted over the network.

To start with, you have to be able to capture network traffic. There are programs you can use for
that. Although Wireshark will provide a graphical interface that will allow you to capture data, there
are problems with using Wireshark for that task. To capture network traffic, the application doing the
captures requires administrative privileges and once you have enabled those privileges, you run
the risk of exposing your system. You may also try to capture data on systems without graphical
interfaces, so in either case, tcpdump, windump, or tshark may be good options. They are free and
they use the same command-line options, based on how tcpdump has functioned for years. Using
one of these command-line options, you can store data into pcaps that can then be opened later on
in a graphical interface for analysis.

One of the challenges of performing packet captures is that networks are currently designed to
only send relevant packets to systems. This is done using a network switch that knows the physical
(MAC) address of all of the systems on the network. Based on that, only packets that are destined
for a host, whether directly or via broadcast, will be captured on end devices. To get more packets
requires something like a port span (SPAN port) on a switch, a hub that sends all packets out to all
ports, or another technique like ARP poisoning to get traffic to a device that is capturing the network
traffic and storing it for future investigation.

Wireshark provides a lot of functionality when it comes to analyzing network traffic. At first glance,
just looking at the packets that have been captured, you can see a lot of the decoding that Wireshark
does for you. For a start, it provides readable explanations for all of the header information. It will
also break out the different header layers, explaining them individually rather than just presenting
them in a single incoherent chunk. Wireshark can also perform resolutions of names at the network
and transport layers. Saving steps for name resolution as well as vendor lookups from MAC addresses
can be very helpful as you are starting to look at a packet capture.

Statistics to get an overall look at the capture are helpful as well. When you start up a capture or
load a saved capture, you may see just a collection of thousands and thousands of individual frames.
You need to have a way to organize all of those frames into aggregated data to have a place to start.
The various statistics views can be very helpful to show you the endpoints and conversations as well
as the different protocols that are available in the packet capture. Once you see where the bulk of the
information is, you may be able to start looking a little more deeply. You may also use the various
statistics as a place to create filters of the data, which will allow you to only show the data you really
want to see, hiding extraneous data.

Filtering is an essential skill to have when working with Wireshark. Wireshark allows for both
display and capture filters, allowing you to only look at data that you really want to look at. The
filters will provide you with functionality to narrow the data based on addresses, ports, streams, or
another specific field from headers available from different protocols. Wireshark will automatically
create some filters for you or you can just type in your own filters to the display filter box. Once you
have the ability to filter, you can start to actually look at the data.

Network Forensics112

Wireshark will also allow you to extract files from the packet captures. Beyond files, though, a lot
of other types of data may be of interest. Credentials may be one type of data that you want to collect.
Network Miner will automatically extract credentials, files, session information, and other types of
data from the packet captures. You could acquire a packet capture using tcpdump, tshark, or even
Wireshark, save it as a pcap file, and then load that pcap into Network Miner. Network Miner will
do a lot of automatic extraction for you, presenting the different data types in tabs.

Fortunately, programs like Wireshark, tcpdump, and Network Miner are not limited to a specific
operating system. Instead, they run across multiple platforms. Wireshark has versions available for
Windows, Linux, and macOS. Tcpdump will run on Linux and macOS with a port named windump
available for Windows systems. Network Miner is portable due to the fact that it is written in .NET and
there is an open source project called Mono that implements .NET on systems other than Windows.
This enables you to become highly skilled as a network investigator, no matter what platform you
are using as your primary operating system.

Attack Types5
In this chapter you will learn about:

 ■ Common attack types
 ■ How to recognize different attacks
 ■ Ways attackers can try to evade detection

The good news is that the tools are easy to come by. He had everything he needed and now, he had
some systems he could use. The best part of this was having all of the tools that he needed available to just
grab from whatever system he had compromised. They were so simple and yet so effective. One of the best
parts was being able to launch one attack from one system in order to disguise an actual exploitation and
compromise from somewhere else. One gets lost in the noise of the other. It’s easy enough to blind those who
may be paying attention by just giving them way too much to look at. This night, he was going to launch
one attack that looked to be coming from one place while coming after a web application from somewhere
completely different.

The best thing about the web attack is that for the most part it just looked like anyone else visiting the
website. The other attack is just to be certain no one is really paying any attention since it’s hard to be cer-
tain what sort of detection is in place within the victim network. It’s best to just throw up a smoke screen.
With so many compromised systems at his disposal from months and months of work, it’s easy enough to
do a little misdirection just to make sure that the important work happens without anyone really seeing
it. Plus, why not? After all, it costs him nothing to just kick off a couple of programs on some systems that
he has remote access to. Even if those systems are detected and somehow blocked from additional access,
they are completely expendable. There are so many more where they came from.

There are a number of different ways to conduct attacks across the network. Some are, by their
very nature, noisier and easier to see than others. Often, they have entirely different purposes. We
are going to cover the different attack types, their purpose, and how you may be able to go about
detecting them. This will include different tools that you may use to gather evidence that the attack
occurred as well as tools you can use to dissect and better understand the attack.

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics114

When it comes to any incident response activities, application attacks have the potential for leav-
ing lasting marks. They should leave logs behind somewhere. They will also potentially trigger any
alerting mechanism that’s in place. An application attack is all about trying to send something to a
listening application that will provide the attacker some form of access or information he didn’t have
before. The objective is not always about system compromise or obtaining root-level (administrative)
access. This is important to keep in mind. Not all attackers are interested in acquiring another sys-
tem. Understanding the potential objective is useful in order to identify where the attack is headed.

If you know what to look for, attacks aren’t usually that hard to spot, as long as you are looking
for them. The problem is that often organizations aren’t looking for them or they aren’t look-
ing in the right places. On top of that, attackers know that they can be spotted easily enough so
they are often looking for ways to obscure their attacks. This is a process called evasion, meaning they
are looking to evade blocking or detection on the part of the victim, and attackers may obscure their
attacks in a number of ways.

Of course, the crown jewel of attacks, or at least the supposed crown jewel, is system compromise.
This may come through an application attack by exploiting the business logic of an application. It
may also come from exploiting a bug in the application program that can lead to access to the system.
Not all exploits necessarily lead to system-level access. The exploits are targeted at applications but
they aren’t usually about taking advantage of the way an application works. Instead, they are usually
about bypassing the application code in order to run code injected by the attacker. This may seem
like a subtle difference, but the potential impact of the two paths can be significantly different.

One attack that’s actually quite easy is the attempt to simply take a service offline. This doesn’t
require crashing a program since sometimes applications will remain running but unresponsive. No
understanding of the application and how it works is needed. It’s typically just ignorant brute force
used in an attempt to cause an outage at the victim service. Because this is the easiest type of attack,
we are going to start with it.

Denial of Service Attacks
We have previously talked a lot about services, which are just applications designed to provide some-
thing to the user. They run in the background on systems, and the services we are talking about
are network-based for the most part. Other ways exist to take services down, but the attacks that
are potentially the most dangerous are the ones that attack from the network. Any service that doesn’t
have a network component can be protected more easily than those that are exposed to the outside
world. Strong authentication measures and physical protections by keeping unauthorized users from
getting access to the systems and services can help to protect what system owners care about most.

NOTE A service can also simply be the functionality of the operating system and not a specific
application. Attacking the network stack itself, which resides in the operating system kernel, can
cause multiple applications to no longer be available. Causing the operating system itself to crash
can also be an effective denial of service. DoS attacks don’t have to be targeted solely at applications.

Attack Types 115

A denial of service attack is about one thing: making a service unavailable to a user. This could
be making it so that customers can’t get to a web-based shopping application, which will have an
immediate impact to the business that owns the application because users will not be spending
money there. Of course, the customers may come back at a later time so the money may not be
completely lost, but it is, at a minimum, an annoyance to both the business and the customer.
The service does not have to necessarily be taking out the application itself. If you take a system
entirely offline by getting it to fail completely, you have done the same thing as knocking the
application offline.

Keep in mind that the goal of any denial of service attack is just to deny service to the average user.
In some cases, the attacks will look a lot like regular communications. It may simply be the volume
that is different. Flooding, which is a volume-based attack, is a fairly common strategy. Its goal is just
to utterly consume the available resources. However, there is a very easy solution to combat it—all
you need to do is increase the resources you have. This doesn’t make the attacks go away, but it does
make mounting them more difficult.

Resource consumption attacks are not the only way to go about taking service away. Another
strategy is to cause the service to fail or crash. You can do this, potentially, by triggering a bug
in the application that causes it to fail or get hung. One way to do this may be to send it input
that it doesn’t expect. If applications are poorly tested, they may not respond well to unexpected
input. As a result, the application may simply not know what to do and it may stop unexpectedly
as a result.

SYN Floods
One very easy attack is a SYN flood. This is actually a two-pronged attack in some ways. Remember
how the three-way handshake works: the first system sends a TCP message with the SYN flag set,
and the receiving system sends back a TCP message with both the SYN and ACK flags set. In the
midst of all of that, the sequence numbers are set, but for this attack, that’s irrelevant. The attack
could set the sequence number to any number because there is simply no intention to ever establish
a connection. Once the attacker sends the initial SYN and the victim responds with the SYN/ACK,
the connection is in a half-open state. While the system awaits the final ACK in order to establish the
connection, it has to maintain that half-open connection.

Systems don’t have unlimited resources. In most cases, at least when these attacks began to be
popular, a system only had so many slots available for these half-open connections. Once the num-
ber of slots was exhausted, no one else could attempt to establish a connection. Think about a mail
retrieval system with a collection of cubbyholes where mail goes. As messages come in, each recipient
gets a temporary cubbyhole that is held until the message is retrieved. It’s a problem if no one ever
comes to collect the messages in those cubbyholes because soon there is no space to put any new
messages coming in.

In the case of a SYN flood, legitimate messages come in looking exactly like the attacking messages.
Everyone, legitimate user or attacker, sends a SYN message to begin a conversation. The legitimate
users will respond to the SYN/ACK with an ACK, removing the “message” from the cubbyhole and

Network Forensics116

freeing that slot back up. The attackers won’t respond and won’t free up the slot. Eventually, when
the cubbyholes, or slots, are entirely full, even legitimate users won’t be able to establish connections
with the system. This prevents the three-way handshake from completing, so no one gets access to
the application because the connection won’t get passed up to it until the three-way handshake is
complete.

The objective of a SYN flood is to simply fill up the slots that the target system has available for
half-open connections. Once the attacker has done this, no one else can start a connection, which
means that no one can complete a connection and get access to whatever service is listening on that
port. Of course, you might argue that all you need to do is increase the number of slots available to
hold more half-open connections, especially since the half-open connections eventually time out
and free the slot that was being held. That is one way of addressing the situation, and it does work,
but only to a point. Because you can have an unlimited number of half-open connections, for this to
be a permanent solution you would ultimately need to have unlimited available resources, which is
probably not a realistic expectation.

This brings up the second prong of the SYN flood attack. Its initial target is the operating system,
where the slots for the half-open connections are recorded. If the operating system can handle a
large number of half-open connections, it takes many more SYN requests to get the application to
shut down. At some point, the attacker may send in so many requests that he simply congests the
network connection in to the target operating system and application.

Imagine a four-lane road with toll collectors taking money from cars as they zip by. Someone who
wants to stop the cars from getting through can get a large number of cars together and send them
to the toll booths. Because toll collectors can only work so fast, the heavy traffic begins to cause a
backup. Even automatic toll systems will eventually get bogged down, resulting in a backup. Add
more booths, more cars are necessary. Eventually, you simply run out of space to add more booths
to take on the additional flood of traffic. This is the same thing with a SYN flood. What started out
as a resource exhaustion attack on the memory slots available for half-open connections turns into
a bandwidth exhaustion attack as more network traffic takes the operating system down with half-
open requests.

Fortunately, SYN floods are easy enough to spot if you know what you are looking for. What you
see, when you start looking at the network traffic, is a whole lot of SYN messages and the correspond-
ing SYN/ACK messages without any ACK messages coming back. You can see a sample of a SYN flood
captured using tcpdump in Figure 5-1. One thing to make note of is that the time remains identical
for all of the frames seen in the capture. This is because the SYN messages were sent with a pause
of only a microsecond between each frame, so the messages are coming very quickly. The moment
a frame hits the wire, it’s only a microsecond before the next one is sent. It can be challenging to
read this because the received messages are being interleaved with the responses that are being sent.

Attack Types 117

Figure 5-1: tcpdump of a SYN flood.

What you will see, though, in Figure 5-1 as well as any capture of a SYN flood, is the initial SYN
coming in and the target system responding with a SYN of its own, as well as an acknowledgment
number to indicate that it received the attacker’s SYN message. Ideally what happens is that the
attacker randomizes the source address, as happened in this case. With the source address random-
ized, the attacker doesn’t get the SYN/ACK back. Some random system on the network receives a
SYN/ACK and responds with an RST packet to indicate that the SYN/ACK is erroneous. There are
no RST packets shown in this capture session. When using entirely random source addresses, the
source address may simply not be reachable so the SYN/ACK may never reach its destination, mean-
ing that the RST packet will never come. The SYN/ACK messages and any RST message end up
further clogging the network connection. The more messages the merrier when it comes to resource
congestion attacks.

In the case of an attempt to overwhelm the target operating system and prevent it from taking on
any new connection attempts, the RST packets are mostly meaningless, though it does take a small

Network Forensics118

amount of processing to look at them and decide what to do. It may not be much, but it’s also not
nothing. A large number of RST messages coming back through the network is also an indication
that something is going on. Similarly, if you are seeing a large number of SYN/ACK messages on the
way in without any corresponding SYN messages on the way out, it’s likely that your IP address is
being used as a spoofed source of a SYN flood attempt. It doesn’t much matter what your address is.
When someone is just looking for an IP address that isn’t theirs, any address will do. It may be yours.

Listing 5-1 shows a capture of some spoofed messages. The initial message comes in looking like
a normal SYN message. The SYN/ACK that goes back will be sent to that IP address.

Listing 5-1: Spoofed Source Messages

19:09:44.959980 IP 51.100.51.149.senomix07 > 172.30.42.12.ssh:
Flags [S], seq 322567809, win 64, length 0
19:09:44.960052 IP 172.30.42.12.ssh > 51.100.51.149.senomix07:
Flags [S.], seq 734173946, ack 322567810, win 65535,
options [mss 1460], length 0

Spoofing addresses in network transmissions is easy to do. Because there are no protections in IP
against spoofing the address, it falls to the other protocols to provide protections. This is part of the
function of the three-way handshake. You can’t create a complete connection with another system
by pretending to be someone else using just TCP. Unfortunately, protecting against spoofing at the
TCP layer doesn’t protect against these attacks. Spoofed addresses, though, are not the only malicious
packet manipulation that can cause problems.

Malformed Packets
Every protocol has a definition. This may be written up in a request for comments (RFC) document
or in some other document managed by some group other than the Internet Engineering Task Force
(IETF). The protocol definition is used to document expected behaviors of devices supporting the
protocol. The moment you have behaviors that are off-book, the program responsible for taking the input
and doing something with it may have problems. These issues can take place anywhere along the
network stack.

Historically, there have been issues with large packets that require fragmentation, as just one
example of malformed packets. In the case where the fragmentation offsets overlap, the target system
may not be able to correctly assemble the packet. Let’s say that you have packet sizes of 100 bytes
but your fragmentation offsets indicate that the second packet should start at the 90th byte. The
third packet indicates that it should be placed at the 150th byte, but of course the third packet really
starts at the 201st byte. This particular attack was called a Teardrop attack. Some operating systems
were incapable of correctly assembling the packets from the received frames, so they simply crashed
(some versions of Linux and Windows were susceptible to this attack). Figure 5-2 shows a capture
of a Teardrop attack.

Attack Types 119

Figure 5-2: Packet capture of a Teardrop attack.

The packet capture in Figure 5-2 shows a number of packet fragments. You can see that the first
frame is 380 bytes but the second frame indicates that the offset is 376. This creates an overlap
because the next fragmented frame should be at offset 380, not at offset 376. A packet that starts at
byte 0 and includes 380 bytes will end at byte 379. Wireshark is often very good at identifying errors
in the packet capture, but in this case it hasn’t recognized that this packet can’t be reassembled with
the information that has been provided in the frames that have been received.

Another attack focused on the lower end of the network stack was the local area network denial
(LAND) attack. To trigger this vulnerability, you would spoof the source address and set it to be the
same as the destination address. You then send a SYN message to the target. This makes it appear as
though the system is sending a message to itself and, not being able to recognize what is going on, it
responds to itself over and over. This would cause the target operating system to lock up.

A number of other attacks have been developed over the years. Invariably, they exploit incorrect
boundary checking or poor input validation. The IP stacks have mostly been repaired to resist attacks
against the network and transport protocols.

This, however, leaves the application layer open to attack. Being able to recognize the attack that
is happening requires an understanding of the protocol and what it should look like. It can take a
lot of work to understand even a small number of the application-layer protocols. In some instances,
however, these attacks may be easier to spot. Consider the case of the Hypertext Transfer Protocol
(HTTP). A very simple HTTP message to a server would look like the GET request shown in Listing 5-2.

Listing 5-2: Simple HTTP Get Request

kilroy@oliver:~/Downloads$ telnet www.microsoft.com 80
Trying 2001:559:19:882::b1f...
Connected to e2847.dspb.akamaiedge.net.
Escape character is ‘^]’.
GET / HTTP/1.1
Host: www.microsoft.com

HTTP/1.1 200 OK
Server: Apache

Network Forensics120

This request was initiated manually in order to show how the request works at a very basic level
without a lot of other headers that a browser might commonly add. After all of the connection infor-
mation, you can see the request GET / HTTP/1.1. This says we are trying to GET the default index
page at the top level. The / is the top level of the web server and if there is no specific page request,
the web server is expected to just reply with the default page in that directory. After the Uniform
Resource Identifier (URI) is the protocol and version. In this case, this is HTTP/1.1. Version 1.1 of
the HTTP protocol definition requires that we specify a host because there may be many virtual
hosts at a particular IP address. On the next line, the Host: field indicates which specific host the
request is being addressed to. A blank line tells the receiving server that the request is complete and
it can respond. After the blank line here, you can see the first two header lines that were sent back
from the server in question.

By contrast, let’s take a look at a malformed HTTP request. These may be very common attacks
because a lot of important information is available over web servers that use HTTP to communicate
with their clients, whether those are mobile applications or web browsers. Additionally, the means
to perform these attacks are readily available. A number of open source programs are capable of gen-
erating these malformed requests. The practice of creating malformed requests for testing purposes
is called fuzzing. Software vendors can use this sort of negative testing to ensure their software can
handle unexpected input; but just as easily, attackers can use this testing software to determine
whether or not a piece of software is vulnerable to a malformed packet attack.

One of these pieces of software, called Peach, was used to generate the capture shown in Figure
5-3. This shows the ASCII decode of the payload of the packets that were captured. This message
should simply be ignored by the web server receiving it but some web servers may try to handle it
and get hung up on the fact that it appears to be multiple incomplete requests in a single line. That
could potentially cause a crash.

Figure 5-3: Malformed HTTP request.

This particular message is based on something that is legal. It’s a long repetition of a legitimate GET
request, which is the client attempting to retrieve a page or file. Because the server can’t guess what
is intended, all it knows is that the message isn’t legitimate based on the protocol definition of HTTP.

Malformed requests can be created in a number of ways, and any of them can potentially cause
problems. Ultimately, the best way to detect malformed requests is to better understand the proto-
col you are working with. In many cases, application-layer protocols use text-based commands to

Attack Types 121

exchange information between the client and the server. An example is shown in Listing 5-3. This is
a manual exchange between a Post Office Protocol version 3 (POP3) server and a text-based network
client where I was able to just issue commands to the server.

Listing 5-3: POP3 Server Interaction

Connected to localhost.
Escape character is ‘^]’.
+OK Dovecot ready.
user mailuser
+OK
pass P4ssw0rd!
+OK Logged in.
list
+OK 0 messages:
.
get A
-ERR Unknown command: GET
retr A
-ERR Invalid message number: A

Not all protocols are readable in this way. You can look at the request and determine what it is.
The other way to develop a protocol is to use a binary protocol. Whereas you can read a text-based
protocol, a binary protocol encodes information into the bytes. Rather than being able to read the
information just by looking at it, a protocol may say that a GET request is really an operation code
of 42. That 42 can be encoded into a byte containing the value of 42. Where GET would normally be
three bytes with each letter taking a byte all to itself, we can simplify this and compress it. Binary
protocols may take much less transmission space, but they are also harder to troubleshoot because
you need special decoders to be able to translate the binary protocol into something that a support
person can read.

NOTE Other ways of encoding data may not be binary. As an example, Abstract Syntax Notation
One (ASN.1) uses numbers separated by dots as a way of encoding what may be hierarchical data.

In the POP3 example, it’s plain what is happening. The very first command issued is user. This
tells the server that we are passing in the username and that’s the parameter that goes with the
command. After that, we provide the password using the pass command. The server even provides
usable and readable responses. It could just give back numeric status codes that the programs on
either end would know about. Instead, it sends human-readable text. There are two errors in this
session, either of which could be mishandled by a server. The first is trying to use get, which is an
HTTP request, in order to retrieve a message. Because the server doesn’t recognize the command, it
rejects it. The second is using a letter in place of the expected numeric value.

Network Forensics122

The correct command to retrieve a message is retr so that is the next command tried. The correct
way to use this command is to provide a message number that you want to retrieve. Normally, if there
were messages, the list command would provide a message number followed by the number of lines
in the message as an indication of the message size. As you see in the session, it’s not a number but
a letter that is passed in. This is illegal as far as the protocol is concerned. However, this particular
server handles it correctly by generating an error message.

NOTE While the command GET would use 3 bytes if the message were encoded in ASCII, some
languages use more characters than can be represented in a single byte. As a result, multibyte char-
acter sets are available as well. If you needed to ncode using multiple bytes, you would use Unicode
rather than ASCII.

Malformed requests are not always malicious. Poorly written client programs may generate bad
requests. In most cases, application software will correctly handle and generate errors on bad mes-
sages. However, there are still cases where server software, or even client software, may not be well-
developed. Bad requests can cause conditions that are poorly handled. Whether it’s intended or not,
poorly handled errors can cause software to crash, and once the software has crashed, you have a
denial of service condition.

Depending on the transport protocol used, the application may need to handle additional aspects
of client control. Whereas TCP handles admission control, there is no such admission control using
UDP. This can lead to more code that could go wrong on the server side. Additionally, it opens the
door to more processing by the application.

UDP Floods
The purpose of a UDP flood would likely be to just consume all available network bandwidth. Because
the operating system is doing none of the admission control that it does with TCP, the application does
a lot more work, potentially, using UDP. This can run up the amount of processor resources being
used. Send a large amount of spoofed requests into the application and the application will waste
CPU cycles trying to determine whether the request means anything or if it’s just a lot of garbage.
Because of this, a UDP flood has the potential to be a problem for services.

At the operating-system level, we are looking at binary protocols where a TCP header is just a num-
ber of bits and bytes that are put together in well-defined way. Binary protocols require significantly
less processing. As a general rule, the application knows how long the message coming in is going
to be. It also knows where to look for the specific fields to determine what is being requested. This
is not true when it comes to text-based protocols. At the application layer, these text-based protocols
can require a lot of processing to handle. Requests can be variable length. Parameters are variable.
String and character processing for operations like comparisons is more computationally intensive
than that required for numeric processing, as would be the case in binary protocols.

Attack Types 123

If all an attacker is looking to do is flood the pipe, he can just send a large volume of UDP
messages. You can see an example of this in Figure 5-4, which is a packet capture of a UDP flood. You
may notice in this case that the source port number increments, which is a result of the tool that is
being used, but the source IP address remains constant. With a UDP attack, it would be common for
the application to not respond to improper requests so there would be no risk of the sending party
getting responses, which would be potentially as problematic to the sender as the receiver in terms
of bandwidth consumed. You will see from this example that all of the messages are one way. There
are also thousands of UDP messages being sent per second.

Figure 5-4: UDP flood packet capture.

The payload was generated by the attack tool. Each packet includes 400 bytes of payload. Because
there is no expectation that the application will respond, it doesn’t matter what the payload is.
However, it appears that the payload isn’t random either. Every packet has the same payload. This
makes it easier to spot. A random payload with random source addresses may make it harder to
identify other than simply looking for large packets to the same destination address and port. A lot
of messages that have nothing to do with the application listening on the destination port will stand
out, particularly if they are coming in at a very high rate of speed.

Bogus messages are not the only ones that can be problematic. Some UDP protocols use a type of
encoding called Abstract Syntax Notation One (ASN.1). This type of encoding is represented as dot-
ted numeric values, meaning that you have a series of numeric values separated by dots. You can see
one of these values in Figure 5-5. This is an SNMP request. SNMP, as well as other protocols, makes
use of ASN.1. Parsing ASN.1 requests can also be computationally costly. Not as costly, perhaps, as
text-based transmissions, but still costly. As a result, rather than just sending bogus requests to a
UDP port, if you were to find a port that is open that you wanted to target and it used a protocol that
you knew, you could send legitimate requests to the port and let the requests eat up CPU cycles in
addition to the I/O.

Network Forensics124

Figure 5-5: SNMP request.

From the perspective of the attacker, UDP requests are easier. It’s considerably easier to spoof an
address using UDP as the transport protocol because there is no verification of the source address at
the operating system level as there is with TCP. If an attacker is going to be challenged using UDP
as the transport protocol, it would have to be done by the application, and that just means more
resources used. UDP also makes other types of spoofing attacks easier. We’ll look at an example of
another way UDP can be used in the next section.

Amplification Attacks
If you are trying to attack your target, it’s easiest if you can make use of others to help you out in that
effort. Let someone else do the work for you. This was the case many years ago with what was called a
Smurf attack. A Smurf attack relied on spoofing a source IP address and sending an ICMP echo request,
commonly known as a ping message, to the broadcast address of a network block. If the network
was not correctly configured, every host on that network that received the echo request would send
an echo response back to the spoofed source. This could potentially be thousands of responses to a
single request and all of those responses would be returned to the spoofed source address, belonging
to the attacker’s target. Of course, protecting against this just means ensuring that responses don’t go
back to an address not on your network if the destination is to the broadcast address. In Figure 5-6,
you can see the list of the top-ten Smurf amplifiers known on the Internet in January 2010. This was
the furthest back I was able to go using the Wayback Machine, and since the cleanup efforts had been
long underway at that point, the biggest network only shows 86 duplicate messages.

Figure 5-6: Smurf amplifier registry.

Attack Types 125

The more duplicate messages, the larger the amplification. When sending an ICMP echo request,
a payload can be set and the payload will be included in the response. This is a good way to dra-
matically increase the amount of bandwidth being used. If you can get several hundred amplifiers
all responding simultaneously with 1200 bytes each, that will consume a lot of bandwidth. When
these attacks were most common, it was possible to get tens of thousands of hosts all responding to
messages directed to the broadcast address. You can see an example of the multiple replies in Listing
5-4. In most cases, this particular attack won’t work very well. Despite having a dozen or so hosts on
this network, only two hosts are responding to ICMP echo requests to the broadcast.

Listing 5-4: Pinging a broadcast address

kilroy@oliver:~$ ping 172.30.42.255
PING 172.30.42.255 (172.30.42.255): 56 data bytes
64 bytes from 172.30.42.16: icmp_seq=0 ttl=64 time=0.074 ms
64 bytes from 172.30.42.23: icmp_seq=0 ttl=64 time=4.135 ms
64 bytes from 172.30.42.16: icmp_seq=1 ttl=64 time=0.110 ms
64 bytes from 172.30.42.23: icmp_seq=1 ttl=64 time=3.400 ms

Though this particular attack won’t work very well, there are other amplifier attacks. Since low-cost
attacks are economically advantageous, new amplifier attacks pop up periodically because there are
adversaries who are looking for them. Another amplifier attack that became common in 2013 used the
domain name system (DNS). Like the Smurf attack, this was also a reflected attack, meaning that
the attacker spoofs a source so the attack is actually bounced off other hosts in order to create the
effect. The attack is actually quite simple. Because DNS requests are commonly done over UDP, this
very simple spoofing attack just requires an open DNS resolver somewhere. Fortunately, a number
of those are available, including the Google server at 8.8.8.8.

Most DNS requests won’t generate a lot of traffic in response to a request. As a result, it’s important
to select a type of request that will generate the largest response possible. Using the ANY request,
you will get all available information back. However, even that may not be an enormous response.
In Figure 5-7, you can see the result from a DNS ANY request for the DNS zone microsoft.com. The
response is only 775 bytes. Other zones may yield more information.

Of course, considering that the query itself was only 31 bytes, there is a significant amplification
achieved. A single host may not be able to really generate much in the way of attack traffic. The better
approach is to get a lot of hosts involved to issue a number of DNS requests with the source address
always the target. This way, you are guaranteed to generate a large amount of network traffic. The
more systems you can have participating in the attack, the better chance you will have of knocking
your target offline.

Network Forensics126

Figure 5-7: DNS ANY request result.

Distributed Attacks
Not all denial of service attacks are distributed, but with large quantities of bandwidth being the
normal state for businesses and even many end users, it’s quite a bit harder to generate enough attack
traffic as a solo practitioner than it used to be. As a result, we have distributed denial of service
attacks (DDoS). A distributed denial of service attack consists of multiple attackers distributed around
the Internet. The primary reason to use attackers from a number of locations is to ensure they can
generate a lot of outbound bandwidth in order to cause problems with the victim. Multiple attackers
at a single site are going to be constrained by the amount of bandwidth available at that site. If the
attacker can’t generate enough outbound traffic, the victim will be able to mitigate the attack and it
will fail because the services will remain up and functional.

A distributed attack needs to be coordinated. A number of attackers all generating attacks at vastly
different times will not be enough to cause an outage at the victim. There are two ways to perform
this coordination. The first is to use a common communication stream like an Internet Relay Chat
(IRC) server, which allows all of the participants to be in one virtual location at the same time and
receive the start message so everyone can go all at once. More common, though, is for the attack to
be perpetrated by a number of systems that are connected through malicious software on each of
them. This client software is generally installed without the user’s knowledge and the system owner
has no idea his system is being used to attack other systems.

When a computer system has been infected with this software, it gets attached to a botnet.
The botnet is a collection of bots, which are computer systems owned by someone else but under

Attack Types 127

the control of the botnet owner. Botnets are complex systems that involve not just the bots but also
an entire command and control infrastructure, also composed of infected systems.

NOTE A bot is a semi-autonomous entity that can perform work. This is probably a shortening
of the word robot but bots have been around in different contexts, including outside the realm of
computing, for many years. When you have a network of bots, you have a botnet.

The idea of a botnet began in the late 1990s with a piece of software written by a German computer
security specialist who went by the name Mixter. Mixter wrote the Tribe Flood Network (TFN) as
a denial of service attack tool. TFN became TFN2K. In early 2000, the world witnessed the very
first large and public distributed denial of service attack. It was accomplished using the program
Stacheldraht, which is the German word for barbed wire. Stacheldraht took elements of TFN2K
along with another program named Trin00 and added in encryption. The Stacheldraht attacks were
launched by a Montreal teen who went by the name MafiaBoy and were targeted at eBay, Yahoo, and
other large and well-known companies on the Internet.

Since 2000, we have seen a number of other enormous botnet attacks against businesses. The
largest attack known at this time was an attack against the British Broadcasting Corporation (BBC)
and it measured more than 600 gigabits per second. What isn’t clear is how long that attack was
sustained. The attack of the Mirai botnet on the site belonging to Brian Krebs was also reported to
be above 600 gigabits per second. Other attacks that took place over the course of several months in
2012–2013 were targeted at a number of US banks by hacktivists in the Middle East. These attacks
were often several hundred megabits per second and were sustained attacks lasting weeks at a time.

It’s easy enough to detect that these attacks are happening. What is considerably harder is know-
ing where they are coming from. Machines involved in the attacks are generally spread around the
world, but they don’t use their own IP addresses so you can’t use IP identification mechanisms to
determine who is involved. From the perspective of an enterprise, there is nothing that can be done
to mitigate the attack because the goal is generally to overload the network connection from the
Internet service provider (ISP) to the business. The business only has control over what happens on
its end of the connection, and once the attack gets to any device that the business has any control
over, the network connection is already overloaded. Firewall rules will stop the attack from getting
into the business, but that won’t stop the traffic from filling the connection to the ISP.

Even the ISP can likely only protect the business by attempting to set filters at its end of the con-
nection. Because the attack traffic will generally look like real traffic—a SYN message to a web server,
for instance—it can be difficult to distinguish a real message from an attack message. Commonly,
legitimate messages will get caught in the crossfire and dropped, propagating the attack in the pro-
cess of trying to mitigate it.

The best way to really protect against an attack like this is at the source. However, it can be chal-
lenging to determine where the attack originates. There can be a very large number of origin points

Network Forensics128

on large ISP networks. With millions of botnet clients around the world participating, it is difficult
to block the messages as they enter the ISP’s network. Not long after the Stacheldraht attacks, a pair
of engineers at UUNet, an ISP at the time, developed a means of identifying the sources of attacks.

Backscatter
When spoofed messages hit a target, the target will respond to the IP address in the IP header, even
though it’s bogus. Because these IP addresses are typically random, the responses to the bogus
messages will be spread all over the Internet, including to a number of IP addresses that are either
not in use or are unreachable. The attack tools don’t bother to see if the IP address is actually alive
before using it as part of attacks, so you will see a large number of SYN/ACK messages that are sent
to hosts that will never receive them because they are either not up, not existent, or behind firewalls
and unreachable. These response messages are called backscatter and they can be plotted.

Backscatter can be observed using a network telescope, which is sometimes called a black hole. This
is a system that is designed to observe network traffic. In particular, what it is looking for is traffic
to unused IP addresses. Many of these unused IP addresses are from unallocated or reserved space.
If traffic is destined to unallocated or reserved space, it is considered suspicious by default. With
nothing on the other end to receive the message, there is no reason to have sent it to begin with.
Much of this traffic likely comes from spoofed attacks, so it is useful to set up systems to observe
this type of traffic.

Backscatter is the sort of network activity that is best seen in large networks that will see much
of this activity and also be able to control where it goes. If, however, the local network starts to see
a lot of messages either to or from unallocated network space, it is likely that there is an attack hap-
pening. Table 5-1 shows addresses that, if seen, may indicate something malicious is happening in
your network.

Table 5-1: Martian Addresses

Network Range Use

0.0.0.0-0.255.255.255 Unused network

10.0.0.0-10.255.255.255 RFC1918 Private addressing

100.64.0.0-100.127.255.255 Carrier grade Network Address Translation address

127.0.0.0-127.255.255.255 Loopback addressing

169.254.0.0-169.254.255.255 Zero configuration addressing

172.16.0.0-172.31.255.255 RFC1918 Private addressing

192.0.0.0-192.0.0.255 Internet Engineering Task Force Protocol assignments

192.0.2.0-192.0.2.255 Used for testing

Attack Types 129

Network Range Use

192.168.0.0-192.168.255.255 RFC1918 Private addressing

198.18.0.0-198.19.255.255 Benchmark testing

198.51.100.0-198.51.100.255 Testing

203.0.113.0-203.0.113.255 Testing

224.0.0.0-239.255.255.255 Multicast

240.0.0.0-255.255.255.255 Reserved

This is a list of network addresses that messages should never have as a source address coming
in from the Internet. Anything in this address range is considered to be a Martian because anything
that comes from these blocks is coming from Mars, meaning from somewhere that a packet clearly
can’t come from. The multicast addresses may be a destination address but shouldn’t be source
addresses. If you are on a network that uses RFC1918 private addressing, you will of course see
the IP addresses from that range on your local network. Because RFC1918 traffic is, by convention,
non-routable on the Internet, you should never see those messages coming in from your Internet
connection. Even if a message from the inside of your network made it to the outside with one of the
private addresses in place as a source, there would be no way for the recipient to return the message
so you’d never see it coming back in. Messages appearing to come from RFC1918 space would typi-
cally be attack traffic.

NOTE Unicast messages are those where the destination is a single host. Multicast traffic is where
there are multiple destinations for the message but the recipients are still specific and they would
have asked to be recipients. Broadcast traffic is being sent to everyone, regardless of whether they
asked for it or not.

While none of these addresses should ever appear as source addresses coming into your network,
this is not the entire collection of messages that would be unlikely to be seen. There are still collec-
tions of unallocated addresses scattered around the Internet and under the control of a large number
of organizations . While all of the IP addresses have been allocated by the regional Internet registries,
there are still companies that have unused blocks of IP addresses. Because of this, it’s hard to gener-
ate a complete list of all of the addresses from which you would never see a message, but the ones
just shown are a good start.

In order to capture these messages, the routers on the network could be configured to send all
traffic destined for the Martian addresses off to a specific host for capture. Larger or growing volumes
of traffic to your monitoring device may provide you a heads-up that a denial of service attack may
be happening. In some cases, firewalls and routers are configured to simply drop or discard these
messages. Reverse path verification is the term for routers ensuring that the packet should be coming

Network Forensics130

in on a particular interface. Although this keeps bad traffic from going any further along a network
path, discarding the messages provides no way to analyze the events.

Cisco developed a feature in its routers named NetFlow. Using NetFlow, which has now been
implemented in non-Cisco devices as well, you can get a view of what the traffic flows on your net-
work look like. This may be a way to better observe the Martian traffic because the metadata about
the messages are aggregated. You will be able to see the interface the traffic has arrived on, the source
and destination IP addresses, the source and destination ports as well as the IP protocol (for example,
TCP, ICMP, UDP, and so on), and IP type of service. You will also get the time and date that the flow
started and the duration of the communication.

Vulnerability Exploits
Denial of service attacks are fairly easy and therefore common, but they are primarily annoying.
They can cause outages, which can lead to a loss of business during the time that the attacks are
underway. However, far worse than that is a system compromise. While it can be common for a
system compromise to happen by sending users malicious software, there are still other attacks
that can lead to system compromise. With network services allowing attackers to send data into an
application, those attackers can send specially crafted messages that can allow them to gain access
to the system, often without any type of authentication. As an example, Figure 5-8 shows an attack
against a distributed program compilation service called distcc.

Figure 5-8: distcc attack.

Attack Types 131

This is a packet capture showing the attack, and Wireshark has flagged that there is a problem.
If you look at the ASCII decode in the bottom, you can see a very short program that was sent to the
distcc server. This particular distcc server has a vulnerability where the attacker can send command-
line interface commands and have them executed by the server process. As a result, this particular
payload (the portion of the attack that is actually being run on the server) contains a command to
the server to initiate a network connection back to the attacker using the telnet client. The attacker
has a process running waiting for the connection back from the victim server. Once the reverse
connection is made, the attacker has a direct connection to target server. Using that connection, the
attacker can issue shell commands, just as though he had a command-line session open physically
on the target system.

Although this is an attack that is easy to see because it is in plaintext, not all attacks are like that.
Perhaps more commonly, attacks that exploit vulnerabilities make use of the language that machines
use. Instead of text-based commands, your computer uses binary operation codes that the proces-
sor can understand. One attack technique is a buffer overflow. The program takes in data into small
memory chunks called buffers. The buffer is a fixed size and if the attacker can push more data
into the buffer than it is intended to hold, the successive memory locations beyond the fixed-size
buffer will be overwritten. This allows the attacker to inject code that the processor will execute.
This code will be binary, which means it may not be values that can be represented as printable
characters. You can see an example of an overflow attack in Figure 5-9.

Figure 5-9: Buffer overflow attack.

This particular attack is an overflow attack against the password input to a File Transfer Protocol
(FTP) server. PASS is the command to the FTP server indicating that the subsequent parameter is the
password for the previously submitted username. This attack overflows the buffer that has been set
aside for the password field. What you can see in this screen capture is the binary data represented
in ASCII characters. Most of them are not printable, and those characters are represented as just
dots rather than a recognizable character. There are some recognizable characters there, but that’s
just because occasionally the binary data necessary to make the attack work aligns with an ASCII
value for a printable character.

Network Forensics132

This particular attack is easier to see because FTP is a text-based protocol. The information that
is being transmitted should be in plaintext and easily readable by people. In this case, we have a
mixture of plaintext and binary data. This suggests that there is probably something that shouldn’t be
happening going on. Again, though, this requires some familiarity with the protocols that are being
used. In order to see what shouldn’t be happening, it’s important to know what should be happening.

Other attacks are possible against vulnerable services. Buffer overflows continue to be possible,
despite them being well-known attack vectors for about thirty years and well-documented as possible
ways to break into systems for about the last twenty.

Another attack style that you may run across is called a format string attack. When a computer
program is written in the C programming language, the programmer will use a collection of input/
output functions that make use of something called a format string. The format string allows for a
variable number of data parameters. As an example, the format string “%d %d %s %f” indicates that
two decimal values, followed by a string and a floating-point value, are how the input or output
should be formatted. The data parameters have a space between them. Another formatting value is
a %x. If the user has control over input that will later be sent back to the user in some manner, there
are sometimes ways that the format string can be entered. In some cases, programmers will make
use of the printf output function without specifying a format string. In that case, if the attacker has
specified the format string, the printf function will then have to find the actual values elsewhere.
This type of attack targets a family of functions—fprintf, printf, and sprintf.

In place of the expected input provided by the user, since what the user presented is being used as
a format string, the printf function makes use of the next values in memory. Using this technique,
an attacker can extract the contents of memory using a specially crafted set of input. Fortunately,
in this case, the attack is in plaintext since the format string is provided just as shown in the previ-
ous paragraph. If you see a collection of values going to a service where a letter follows the percent
symbol, you may be looking at a format string. In most cases, the format string is a way to obtain
information that may be used to attack the service. However, the %n format string value may allow a
user to place a value into memory by specifying an address to write the data to.

These attacks can be used by unauthenticated adversaries from anywhere that can reach the service.
However, this doesn’t mean that the attackers are only on the outside. Services may still be avail-
able over the network but may only be available on the internal network, either because of firewalls
blocking external access or because they are available only over private networks. The business can
protect services from external attacks in a number of ways.

Insider Threats
It has long been considered a truism in the information security space that the majority of losses come
by way of insiders. This may be changing in light of the attacks by criminal organizations looking
to steal information being kept by the business. Additionally, there are some attackers from other
countries looking to get intellectual property. No matter what the case is, though, not all attacks

Attack Types 133

originate from outside of the organization. When it comes to insider threats and attacks, the same
attack types mentioned previously are still possible, but there are others as well.

It’s not uncommon for users in an organization to continue to gather permissions for various
resources on the network without ever dropping any of the permissions as they change jobs and
need access to additional file shares and applications. Although new employees commonly go
through a background check, circumstances change and some employees may make use of infor-
mation they shouldn’t have access to. They could sell the information or they could just corrupt it
because they are dissatisfied with the company.

One of the challenges with data theft is that it can be difficult to determine that it’s happened. It’s
not like the files just disappear. Someone can steal sensitive information and leave the information
in place at the same time. A digital copy is just as good as the original because they are identical.
This data loss is a serious problem for businesses.

Even if data is well-protected inside the organization and only the right users have access to it, it
may not only be those users who get the data. When a user’s system has been infiltrated by malware,
the attacker who has control over the malware can also get access to the information. The malware
may be running with the same permissions as the user of the system that has been infected. If the
malware is a remote access trojan (RAT), the malware owner will have access to the system and any
file shares it can get to that the user has permissions to. Once the attacker has a foothold on the
network, he can start pulling any available data out and sending it to another system off the network
where the attacker can store, sift, organize, and later sell or make use of it.

NOTE In its legitimate guise, a RAT is known as a Remote Administration Tool.

Because these sorts of attacks can appear to be legitimate, it is much harder to identify them.
Currently, data loss prevention (DLP) software is available. External attackers will try to forward
data out to external systems and that can be observed. Looking for specific keywords in data trans-
missions like “confidential” or “sensitive,” or even patterns like those common for credit cards or
Social Security numbers can help to detect an exfiltration, which is the process of sending data out
of an organization.

In the case of an actual attack, like a denial of service or a vulnerability exploitation, businesses
may not be looking inside their network. Firewalls and intrusion detection systems are common on
the outside of the organization. Depending on the business and the architecture it has in place, the
business may not be paying attention to what’s happening on its local, internal network. In the case
of a vulnerability exploit, this is going to be coming from an internal IP address. This makes it easy
to track, assuming that facilities are in place to detect it even happening.

Denial of service attacks from inside the network are a little more problematic simply because
they aren’t passing through an external network connection. Instead, they are coming through the
switches inside the network, and those physical links generally have more bandwidth capacity than
the external connections. While spoofing is common in denial of service attacks, it may be less

Network Forensics134

effective in an internal attack. If the attack is against a system on the same network, meaning it is only
passing through switches and not through a router, the frame will have the source MAC address on it.

NOTE Any network that can be reached strictly through layer-2 addressing is sometimes called
a broadcast domain. It indicates that all of the hosts on the network can be reached with a layer-2
broadcast message. In networks that don’t use switches, this is also called a collision domain (although
because switches have generally removed the potential for collisions, the term “collision domain”
is outmoded).

Because the MAC address is bound to the physical interface and isn’t generally changed, it is pos-
sible to track the message back to its source by just identifying the owner of the MAC address. While
there may not be one database anywhere that maps MAC address to a system name or location, it
is possible to determine which switch port the MAC address is connected to. This will generally
allow you to identify the physical location of the system that was involved in the attack. As soon as
a frame hits a router, though, the layer-2 header with the MAC address is stripped off and the packet
is forwarded out through another interface. This makes it slightly harder, though not impossible, to
track the attack back through the network to the source.

Evasion
Attackers will generally want to evade detection and prevention. An attack won’t be very successful
if it is easily detected. A number of evasive techniques can make it more difficult to locate an attack
or even identify it as an attack after the fact. As an example, let’s look again at the distcc attack. This
time, some evasive methods have been used. The first, which you can see in Figure 5-10, is fragment-
ing the packet into small frames. Where before you could see the entire attack in the same packet,
the same is not true here. You can’t see the shell commands in this particular frame. Just looking at
this frame, it’s hard to determine that anything bad is happening. Without the Wireshark warning
that it is a malformed packet, you may not look any further.

Figure 5-10: Attack evasion using fragmentation.

Attack Types 135

The next frame associated with this fragmented packet would have pieces of the shell commands
that were sent with this attack. This particular fragmentation attack used 40-byte fragments, though
an attacker could break the packet down to even smaller fragments, which could make it harder to
detect. When it comes to detection efforts that are going on in real time, the system would have
to reassemble the entire packet before doing any detection. Since waiting for all of the fragments is
time consuming and it impacts the latency associated with the exchange, not all detection engines
will spend the effort doing the recompile. This is especially true if the detection is happening in-line,
meaning that it is between the user and the server he is communicating with. An attacker can take
advantage of the unwillingness to impact the user experience by waiting for all of the fragments.

In addition to fragmentation, an attacker may reorder the fragments and also delay the different
fragments. An attacker doesn’t really care how long the entire attack takes but when it comes to pro-
tection, delays are not generally tolerated. Any impact to the user experience when business relies
on speed and efficiency of communication is a no-go. As a result, these types of evasion attacks may
be successful. All it takes is a piece of software that is capable of chopping up packets prior to send-
ing them off to the network. In the case shown in Figure 5-10, the evasion was done by Metasploit,
which is the software used to generate the attack. Evasion options are provided by Metasploit. If an
attack isn’t being performed from a tool like Metasploit that can handle the evasion natively, other
tools like fragroute can perform the fragmentation after the attack tool has sent the message.

Other types of evasion are based on encoding the data in a way that is more difficult for some
tools and humans to read correctly. As an example, Base64 is a type of encoding where any type of
data can be converted to human-readable text strings. This is a way of taking non-printable data
and making it printable so it can be manipulated. Binary data, depending on how it is represented,
can’t be copied and pasted, for example. However, if the binary data is converted to Base64, it can be
copied and pasted from one place to another and then it can be reconverted back to the binary data
that it originated as. Entire programs can be converted to Base64 and transmitted. To show you,
Listing 5-5 is a text string that has been converted to Base64.

Listing 5-5: Base64 Encoded Data.

VGhpcyBpcyBiYXNlNjQgZW5jb2RlZA==

The original string read “This is base64 encoded” though it didn’t have the quotes. A number
of other types of encoding exist. URL encoding takes non-alphanumeric characters and converts
them to the hexadecimal value associated with the ASCII number for the character. To identify it
as a URL-encoded character, it is preceded by a percent sign. You will often see %20, for instance, in
URL-encoded strings. The hexadecimal value 20 is 32 in decimal and 32 is a space character in ASCII
so if you see %20, what you are looking at is just a space. You may also run across HTML encoding,
which takes some characters and converts them to their HTML notation. As an example, < becomes
< because it is the less-than symbol.

Network Forensics136

Another type of encoding that isn’t easy to read but is easy to identify and decode is decimal encod-
ing. The string shown in Listing 5-6 reads “This is decimal encoding but it has been decimal encoded.”

Listing 5-6: Decimal-encoded Value

This is deci
mal encoding

In decimal encoding, each character is preceded by an ampersand (&) and a pound sign (#) to
indicate that it is a character that has been decimal-encoded. The numeric value is the decimal for
the ASCII character that is being represented. The first character in Listing 5-4 is a T, which is deci-
mal 84 on the ASCII table. When it comes to these encoded values, there are a number of ways to
perform the decoding. Some browsers will allow extensions or plugins that may provide decoding
capabilities either directly or through a toolbar. A number of web pages can also perform encoding
and decoding—a quick Google search will turn up several pages. If you see anything in network
traffic that appears to be encoded, you can extract the ASCII of the transmission and attempt to do
the decoding. Each type of encoding looks different, but once you have seen enough of them, you
will be able to differentiate them easily.

Application Attacks
We have talked about different application-layer attacks like fuzzing, vulnerabilities, and malformed
packets, but other application attacks exist. Client vulnerabilities are an issue as well. These may
be triggered by sending malicious files in the case of something like a vulnerability in a Portable
Document Format (PDF) reader. Web browsers are also common applications that can be attacked.
In many cases, the attacker will try to get the browser to open a malicious Java or Flash applet.
It may also be possible to take advantage of a buffer overflow in either the browser itself or one of
the add-ons, like the handler for PDFs or Flash.

Because these attacks are going after the browser, you will see them by looking through the HTTP
messages going back and forth between the browser and the malicious server. In Figure 5-11, you
can see an attack between a rogue server and a client. This particular attack was designed to go after
an issue with the Firefox web browser. You can see the initial HTTP request from the browser going
to the web server. Though it’s just a standard GET request, the URL looks suspicious. It appears like
a random string. On top of that, if you look at the Host: line, you can see that the port the request
went to is port 8080. While it’s not out of the realm of possibility since some web servers, and espe-
cially proxy servers, will listen on port 8080, it’s also not common. The default port for web servers
is port 80.

Attack Types 137

Figure 5-11: Attack against Firefox browser.

The entire communication is far too long to include here, but you can see that some JavaScript is
being used for Base64 encoding. This is being sent to the web browser. At some point, the browser
would probably run this function to encode some data. Though it’s not included here, there would be
a Base64 decode function as well. What also isn’t included is the applet that was sent to the browser
to be executed. Fortunately, if you have the packet capture, you can extract any applet that may be
included in the attack. The applet can then be deconstructed to determine what it is trying to do.

Considering the prevalence of web applications and the usage of web browsers, it’s not surprising
that a large number of attacks are run against them. We’ll take a look at some of them here. The first
one that we’ll look at makes use of the Structured Query Language (SQL), which is used to interface
with a database server. Because web applications generally need to store data, from usernames and
passwords to credit cards and retail products and a wide variety of data in between, the web applica-
tion needs to be able to interact with the database server. This happens with SQL statements that are
executed on the database server. These statements are commonly called queries.

A SQL injection attack is one where the attacker generates some SQL that is expected to be sent in
to the application server and then passed through to the database server. Often, this would be a SQL
fragment to take advantage of the fact that within the application is another SQL fragment that the
user input is intended to be merged with to create a fully functional SQL query. In Figure 5-12, you
can see a SQL injection attack that was used to get the list of users out of the database. The initial

Network Forensics138

SQL statement was intended to compare a user ID with the one from the database in order to print
information about that user. By appending ‘ or ‘a’ = ‘a we trick the SQL server to close the partial
query it has, presumably checking the user ID column against the value we were supposed to put
in. Once the initial query is closed with the ‘ we can append our own SQL fragment. What we are
doing is saying that if the user ID is ‘’, meaning blank, or as long as ‘a’ is equal to ‘a’, every row
in the database would be considered a match and printed.

Figure 5-12: SQL injection attack.

Because the request is being sent as part of the URL, you can see an example of URL encoding.
Special characters and spaces are not allowed in URLs. Since this SQL query includes a number of
these characters, the URL had to be encoded to be passed to the server. You can see the SQL attack at
the top of the screen capture in the GET line. The response, which you can only see the HTTP header
for, was a successful listing of all of the users that were stored in the database.

Another attack that you may see is a cross-site scripting attack (XSS). This is where the attacker
sends JavaScript into the server so that it can be executed within a browser on the system of an
unsuspecting user. The reason it’s called cross-site scripting isn’t because the JavaScript is spread
across sites, but because using JavaScript, the attacker can obtain information about sites the user
has visited other than the site the JavaScript came from.

There are two types of cross-site scripting (XSS) attacks. The first is a reflected attack. This means
the attack has to be part of the URL. With a specially crafted URL, you can send it to users and
get them to click on the link. For example, the URL http://www.badtarget.com/index.php?name=
guest<script>alert(‘attacked’)</script> would be an example of XSS embedded into the URL.
The JavaScript embedded in the URL will then be executed by the target’s browser. The other type
of attack is a persistent XSS attack. With this attack, the attacker sends the JavaScript into a web
application. The JavaScript is then stored in the database for the web application. Once it is in the

Attack Types 139

database, it is available for attacking any subsequent visitors. Consider a guestbook on a website,
as is the case in Figure 5-13. The attacker sends in some JavaScript, and it gets stored so that every
visitor that comes and visits the guestbook will cause the JavaScript to be executed.

Figure 5-13: XSS attack.

Guestbooks are not the only types of web applications that can be attacked. Any web application
that takes user data and stores it, then displays it back to other users is a good target for an XSS
attack. Similarly, any page that takes input from the user and sends it into the server as part of the
URL can also be attacked using the reflected style of XSS. A number of ways exist to protect against
this attack, but XSS attacks are still very common, especially with lesser-known applications.

Another web application attack is command injection, where the attacker sends commands into a
web server to be run by the operating system. In an attack like this, you will see the operating sys-
tem shell command being sent along with the HTTP. XML attacks use a crafted Extensible Markup
Language (XML) message to get sent into the web application that then parses the XML. This is a
way to get data or even make changes from the operating system.

Web applications are also susceptible to fuzzing attacks. Any application that takes input from the
user and acts on that data may be manipulated into doing something with that data. If the application
is expecting a particular type of information, like a password as in the FTP attack shown earlier, and
it gets something else, the application may mishandle it. This is just as true with web applications
as it is with traditional programs. Fuzzing attacks try to get the web application to crash or to give
up information that may allow the attacker to attack the server or application in a different way.

Though there are a number of attack types against web applications, the advantage to these attacks
is that they are in a form that can be identified, as they are text-based. Since these are not binary

Network Forensics140

attacks, they can be read. While they may be encoded, the decoding will commonly be easy because
the data will often be Base64 or URL encoded when the communication is taking place between a
web server and a web browser.

Summary
When it comes to the networked world, attackers can cause damage to systems and networks in a
number of ways. Some of them, like denial of service (DoS) attacks, require no sophistication or
even much in the way of knowledge or expertise. A denial of service attack often simply requires
brute force. This may mean just generating a large amount of traffic to be sent to the target. A SYN
flood, for example, isn’t even always about overloading the network connection. Initially, it was just
about sending so many SYN messages that the server couldn’t accept any additional half-open con-
nections. This is not to say that a SYN flood can’t also be about overloading the network connection
so legitimate traffic can’t get through. Any sort of flood, whether it’s a SYN flood, a UDP flood, or an
ICMP flood, can be cause for concern because these types of attacks require help from the Internet
Service Provide (ISP) to mitigate. By the time the traffic hits a device on the enterprise network,
it’s too late because the network connection is already full. All of the inbound bandwidth is being
consumed by the attack.

A denial of service attack like a flooding attack requires volume. Modern systems and network
connections can take a lot, so it’s unlikely a single system could generate enough volume itself to
have much of an impact. This is where amplifiers are essential. A Smurf attack, for example, will
make use of misconfigured networks and ICMP messages to generate a large number of duplicate
messages targeted at the victim. DNS requests can also be used to generate amplification attacks.

With attacks like Smurf attacks, DNS amplification attacks, and even SYN floods, the attacker will
spoof a source address. Any response to a spoofed source address will not return to the attacker, but
instead will return to the owner of that address. In some cases, the address may be unallocated or
unused. It may be part of a reserved block of addresses. When responses go back to systems that don’t
exist, this is called backscatter. Backscatter analysis can be used to obtain evidence that a denial of
service attack is underway.

Although a denial of service attack is bad because it prevents legitimate users from gaining access
to services offered, other attacks may be of even more concern. Vulnerability exploits can lead to
system compromise, putting the system under the control of the attacker. This may result in data
theft and corruption. Protecting against these sorts of attacks is a challenge that businesses gener-
ally take seriously. They introduce detection and prevention systems to counter these attacks. The
attackers respond by utilizing evasion techniques including encoding and fragmentation to allow
the attack to succeed and not be detected.

Vulnerability exploits against programs are a problem, because it can allow attackers to control the
flow of execution of the program. There are other ways to attack applications, however. While these

Attack Types 141

are still vulnerabilities, it’s not the same as attacking the application code to control the execution
flow in order to get direct access to a system shell, which is a common objective. Web applications
are popular ways to provide functionality to users. Attacking web applications requires skill, but not
in the same way that other attacks might. Though these attacks may also use encoding techniques,
they are primarily plaintext attacks, which can help with the detection of the attack.

Detecting these attacks requires understanding different encoding techniques as well as under-
standing some protocol basics to know when something isn’t right. Fortunately, a lot of application
protocols like SMTP, FTP, and HTTP are text-based, so may even be understood just by looking at
the commands, since they are often some form of English word.

Location Awareness6
In this chapter, you will learn about:

 ■ The impact of time zones on investigations
 ■ How to get location information from the network
 ■ How location-based services work with Web applications
 ■ How to get location information from WiFi

He sits in the dim glow of his laptop screen, knowing he is more than half a world away from the system
he is really working on. It’s late at night and the world outside is blanketed by darkness. He moves carefully
on the system because, while it’s late at night where he is and dark, it would be light and into the business
day on the system he is connected to. Fortunately, he isn’t directly connected to the system on the other end.
Instead, he has bounced through a couple of intermediate systems. He knows that even if someone were
watching, having those additional hops in between will make it harder to track him down.

The time difference is something that he always has to factor in to make sure he isn’t being too noisy
while the legitimate user of the system is trying to use it. If he is using too much network or too much disk,
that may get noticed because it will cause performance problems and the user may well take notice of the
changes on the system. As a result, he always has to be aware of where the system he has compromised is.
He has a number of ways to know this but the easiest is just checking the time zone setting on the system.
This isn’t always accurate, however, since some servers use Greenwich Mean Time (GMT) as their time
zone to be able to line up log files across an organization into a consistent timeline. It will also only give
him a region and not a specific location, though he doesn’t need that so much.

Systems can identify where they are located in a number of ways. Some of this information is
available from the network, and can be as simple as just a time zone from a DHCP server. However,
smartphone applications that became reliant on global positioning systems (GPS) to obtain a location
have driven a need for devices to get locations in other ways. While mobile applications can acquire
location information, they are not alone in this capability. If you visit particular websites, you may
notice that your web browser asks if you want to provide a location to the website. Your computer

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics144

may use different strategies to acquire the location information and provide it to the server that is
requesting it.

As more systems become mobile, whether they were designed to be permanently mobile like
smartphones and tablets, or whether they are just sometimes mobile like a laptop, the device needs
to be more aware of where it is in time and space. There are a number of reasons for this. One reason
is that many applications want to know where you are in order to provide more accurate informa-
tion. Not all devices have global positioning systems (GPS), however, so to provide the same level of
service, there needed to be a means that would allow systems without GPS to know where they are.

Although databases are available that track information related to WiFi networks in order to
provide location-based services, other ways exist to get information about where a system may be
located. As a starting point, just knowing what public Internet Protocol (IP) address is being used
can provide information about the location of the system. You can get this information in different
ways with varying levels of accuracy.

NOTE Acquiring a physical location can provide a point of information that may be relevant to
an investigation. While location information is important, because it can tie a particular computer
to a physical location, that doesn’t mean that the user can necessarily be tied to that same location.

Time Zones
When it comes to computers, time is relative. Every computer can be configured to know what time
zone it is in. This allows computers around the world to correlate events across multiple systems
because their timestamps can place events in a consistent time line. A time zone is a recognition that
the Earth is a sphere that revolves in space, providing us with a way to measure the passage of time.
Because it’s a sphere, different parts of the globe are at different times of the day. This is because we
use the sun’s position in the sky to calculate time. When the sun is directly overhead, more or less,
we consider this to be noon. Since the sun is more or less directly overhead at different moments (it
would be directly overhead for me on the East Coast when it is nowhere near to being overhead in
Los Angeles, for example), we use time zones so that time appears to be normalized. Noon is when
the sun is essentially overhead.

The origin or reference time zone is based on the observatory in Greenwich, England. In the 1800s,
in light of the importance of the Greenwich Observatory to astronomy and navigation, the prime
meridian 0 was established to run through Greenwich. This means that the line of longitude with
a degree of 0 is the line of longitude that runs through Greenwich. Every other line of longitude is
calculated mathematically based on an origin of that prime meridian.

Chapter 6 Location Awareness 145

NOTE Longitude and latitude are ways of breaking the globe up into measurable units. They
provide a way of location orientation at any point on the sphere we call Earth. Lines of longitude
are those that run from one pole to the other and as such, the measurement is east and west. Where
Greenwich, England is 0, anything to the west starts counting positively from there to the opposite
side of the world at 180 degrees. Longitude measurements east of Greenwich are measured in nega-
tive numbers to –180. This means that in total, there are 360 degrees of longitude around the world.

It’s necessary to keep time zones in mind as you are working with any piece of information that
has a timestamp. You need to know the time zone the system is in so you can create a coherent
understanding of when events happened. Coincidentally, if you are told the time zone, you have a
better understanding of where the system is. This is not a guarantee, however, because many systems
are configured not to provide that information in their network communications. As an example,
Listing 6-1 shows a set of HTTP headers with a timestamp that shows that the time is set to be GMT,
or Greenwich Mean Time.

Listing 6-1: HTTP Headers Showing Timestamp

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Type: text/html; charset=utf-8
Expires: -1
Server: Microsoft-IIS/7.5
X-AspNetMvc-Version: 3.0
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Mon, 07 Nov 2016 03:04:07 GMT
Content-Length: 38588

Operating systems handle time zones in different ways. In a Linux system, for example, there may
be a file in the /etc directory that points to a file providing specific details about the time zone. You
can see in Listing 6-2 that the /etc/localtime file points to a different file altogether, indicating
that this system is on the East Coast. Not all Unix-like operating systems will use links to point to
the zone file. Some will use a copy of the zone file to stand for the /etc/localtime file. While the
time zone suggests it’s in New York, New York is just one of the cities that has been designated to
indicate what time zone the system is in. The properties of the location “New York” convey to the
system that it is in the East Coast time zone and also adheres to daylight savings time. Although you
can set the time zone using the graphical user interface components, ultimately what is happening
is the time zone is set using the /etc/localtime file.

Network Forensics146

Listing 6-2: Time Zone

kilroy@oliver:~$ ls -la /etc/localtime
lrwxr-xr-x 1 root wheel 36 Sep 20 13:37 /etc/localtime ->
/usr/share/zoneinfo/America/New_York
kilroy@oliver:~$ date
Mon Oct 17 21:34:47 EDT 2016

The process is different on a Windows system, but just as with Linux, everything related to time
is relative to where you are in the world in relation to Greenwich Mean Time. In Figure 6-1, you
can see a partial list of the time zones that are available to be configured in Windows. According to
documentation at Microsoft’s Developer’s Network, 75 possible time zones can be configured on a
Windows system.

Figure 6-1: Windows time zones.

Unlike Linux systems where configuration files are typically stored in plaintext files in the /etc
directory, Windows systems store their configuration in the registry. As you can see in Figure 6-2,
the time zone setting on a Windows system is stored by name in the registry. The key holding this
information is HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Time zoneInformation.

Chapter 6 Location Awareness 147

Figure 6-2: Windows registry time zone settings.

Time zones are useful to know about and they can provide some general direction about where
systems are located. The challenge, though, is that time zones are not always that reliable. Any user
can set any time zone on their system. Additionally, when laptops or other mobile devices move
around, the time zone typically remains unchanged, unless the user dislikes the clock on her com-
puter being wrong for the duration of her stay in a different location. Some protocols will include
the time zone that has been configured on the server sending the information. However, since this
is configured, it may not provide an accurate physical location. What you have is whatever location
has been configured on the server.

Using whois
The Internet registries can also provide a large amount of location-related information about IP
addresses. When blocks of IP addresses are allocated, the information about the new owner is reg-
istered with one of the regional Internet registries. The same is true with domain names and other
identifying information related to the Internet. Using this information can also help to provide loca-
tion information, though, as suggested below, it may not be sufficient. One of the challenges with using
the Internet registries is that IP address blocks are generally registered to a company and while the
company’s business information, including address and phone number potentially, may be available
in the registry, there is no guarantee that the IP address you have identified is located at the address
provided. Large companies commonly have a headquarters and a number of other locations. The IP
address would probably be registered to the headquarters, and the physical address of the corporate
headquarters is what you will be able to identify.

The IP address could very well be located in a satellite office somewhere because once IP addresses
are allocated to a company, no one bothers to check to see where the addresses are being used. That
is entirely up to the discretion of the company the addresses have been registered to.

Network Forensics148

It’s also possible that the information provided within the Internet registry is the service provider
that was originally provided with the IP address block. Service providers may hand out blocks for
the use of their customers without actually assigning ownership of the block to the company that is
using it. This may also provide you some location information, however. In the case of smaller ser-
vice providers, which may be more likely to engage in this practice because of the limited number of
address blocks they have been able to get, their customers are likely to be local to them. If you were
a small business in Vermont, for instance, it would be highly unlikely for you to make use of a small
service provider in Colorado. This means that if you find that the address you have is registered to
a service provider in Colorado in, say, Durango, you have a good idea that the customer who is using
the IP address is likely also located in or near Durango.

While none of this may be all that useful if you are thinking about just getting to an end goal, a lot
of information can be obtained from a lookup at an Internet registry. Fortunately, you can perform
these lookups in a number of ways. One way is to just use the whois command. You can see the use
of a command-line version of whois in Listing 6-3.

Listing 6-3: whois Output

kilroy@oliver:~$ whois 4.2.2.1
comment text removed from this output
NetRange: 4.0.0.0 - 4.255.255.255
CIDR: 4.0.0.0/8
NetName: LVLT-ORG-4-8
NetHandle: NET-4-0-0-0-1
Parent: ()
NetType: Direct Allocation
OriginAS:
Organization: Level 3 Communications, Inc. (LVLT)
RegDate: 1992-12-01
Updated: 2012-02-24
Ref: https://whois.arin.net/rest/net/NET-4-0-0-0-1

OrgName: Level 3 Communications, Inc.
OrgId: LVLT
Address: 1025 Eldorado Blvd.
City: Broomfield
StateProv: CO
PostalCode: 80021
Country: US
RegDate: 1998-05-22
Updated: 2012-01-30
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
Ref: https://whois.arin.net/rest/org/LVLT

Using whois, we can see that the owner of the IP address 4.2.2.1—a common DNS caching server
that can be used by anyone on the Internet—is Level 3 Communications. Level 3 is located in

Chapter 6 Location Awareness 149

Broomfield, CO, though from personal knowledge I can tell you that 4.2.2.1 specifically is not located
there. However, in smaller organizations that are not Internet service providers, this information
may be useful.

If you are not comfortable with command-line utilities or you don’t have a Unix-based system to
run whois from, you can accomplish the same thing in other ways. For example, whois utilities are
available for Windows. You can find them in places where you can get access to free utility software.
Additionally, a number of websites will provide you the ability to do whois lookups. These sites work
identically to the whois utility that was shown earlier. An example of one of these sites is shown in
Figure 6-3. This particular site is at www.whois.com, though a number of other websites will also
work. Some of these sites that offer whois lookups only work with domain names, so you have to be
sure that you have a site that will do IP address lookups in addition to domain names.

Figure 6-3: whois lookup.

This whois lookup is for a different IP address than the lookup done earlier. It’s done from the
same block of IP addresses, though. You may have noticed from the whois lookup that Level 3 owns
the entire 4.x.x.x block of addresses, so anything else in that block of addresses will show Level 3

Network Forensics150

as one of the owners. Since IP addresses are handed out in a hierarchical fashion, you may see a
chain of owners, depending on whether the block has been re-assigned or just temporarily assigned.

As noted before, you can also look up domain names using the same techniques. Domain names
are less specific than IP addresses, though you can still obtain the same location information. As
you see in Figure 6-3, physical addresses are provided. However, companies that own domain names
may have multiple locations so this is just one piece of information. It may be necessary to locate
additional pieces of information to be clearer about the location.

Related to using whois, you can also use DNS to obtain location information. At the moment of
this writing, the public IP address of my cable modem is 73.219.13.135. Using DNS tools, I can obtain
the hostname of that IP address. Though I could do this lookup in multiple ways, I am using the host
utility provided in the Linux distribution I am using in Listing 6-4 to obtain the hostname.

Listing 6-4: Host Lookup of IP Address

kilroy@oliver:~$ host 73.219.13.135
135.13.219.73.in-addr.arpa domain name pointer
c-73-219-13-135.hsd1.vt.comcast.net.

Using the hostname, I can determine that the IP address is located in Vermont, which is correct.
I can tell that by the portion of the hostname that says vt.comcast.net. This is a subdomain that
Comcast uses to house IP addresses and other DNS resources for customers in Vermont. Not all
organizations use their DNS hostnames to indicate where those hostnames are located, but generally
Internet service providers do because it makes troubleshooting quite a bit easier. These hostnames
can also be identified in more of a bulk fashion, so even if the hostname with the location isn’t your
target, it’s possible to get a collection of hostnames that can point at a particular geographic region.

Traceroute
Traceroute is a diagnostic tool used by technical professionals looking to identify a problem with
network routing. Traceroute works by making use of the time to live (TTL) IP header field. Normally,
IP packets include a default IP header value. Every time a packet passes through a routing device,
the time to live field is decremented. Once the TTL reaches 0, the device that decremented the field
to 0 returns an ICMP error message to the source of the original message indicating that time to live
has been exceeded in transit. Traceroute makes use of this capability. Traceroute will send a message
out to a destination with increasing TTL values. The first packet being sent has a TTL of 1. When the
very first router (the default gateway on your network) receives the message, it decrements the TTL
to 0 and responds with the ICMP error message. Once the sending system receives the message, it
has the IP address of the first router.

Chapter 6 Location Awareness 151

The sender only has the IP address, though, which means that the system running traceroute
has to do a DNS lookup to get the hostname that is associated with the IP address. This is a reverse
lookup and requires that whoever owns the IP address has the pointer (PTR) record configured in
the DNS server. A reverse address, provided by a PTR record is good to have but it is not required.
They are a convenience, and PTR records can be even less likely to be configured. Generally, how-
ever, service providers will keep their DNS records up to date. Because they are the ones who will
commonly include location information in the hostnames, they are the ones we are going to be most
concerned with.

To get an idea where something is located using traceroute information, you simply run a
traceroute and look at the output. Once you get the hang of it, reading the location out of the traceroute
is fairly easy. The example shown in Listing 6-5 was done from a Mac OS X system and the utility
is named traceroute. On a Linux system, it will also be named traceroute. On a Windows system,
because traceroute exceeded the 8-character limit of the 8.3 naming convention from the DOS days,
the utility is named tracert. Even though the 8.3 naming restrictions no longer exist, the name of the
utility has remained tracert, presumably for consistency’s sake. Pathping is another Windows utility
that can be used to identify a network path.

Listing 6-5: Traceroute Output

kilroy@oliver:~$ traceroute www.google.com
traceroute to www.google.com (172.217.1.68), 64 hops max,
52 byte packets
 1 172.30.42.1 (172.30.42.1) 1.397 ms 1.031 ms 1.509 ms
 2 96.120.70.65 (96.120.70.65) 9.103 ms 8.709 ms 8.679 ms
 3 ge-4-19-ur01.wolcott.ct.hartford.comcast.net (68.86.237.249)
 8.289 ms 8.348 ms 7.690 ms
 4 te-7-3-ur05.foxboro.ma.boston.comcast.net (68.86.224.201) 16.035 ms
 be-127-ar01.needham.ma.boston.comcast.net (68.86.225.113)
 17.467 ms 17.706 ms
 5 he-0-11-0-0-ar01.needham.ma.boston.comcast.net (162.151.112.17)
 17.431 ms
 be-7015-cr02.newyork.ny.ibone.comcast.net (68.86.90.217) 24.078 ms
 he-0-11-0-0-ar01.needham.ma.boston.comcast.net (162.151.112.17)
 15.502 ms
 6 be-7015-cr02.newyork.ny.ibone.comcast.net (68.86.90.217) 23.984 ms
 hu-0-10-0-1-pe02.111eighthave.ny.ibone.comcast.net (68.86.86.254)
 23.333 ms
 be-7015-cr02.newyork.ny.ibone.comcast.net (68.86.90.217) 24.226 ms
 7 hu-0-10-0-1-pe02.111eighthave.ny.ibone.comcast.net (68.86.86.254)
 22.760 ms 23.178 ms 22.462 ms
 8 209.85.245.116 (209.85.245.116) 23.303 ms 24.226 ms 25.214 ms

Network Forensics152

 9 209.85.245.181 (209.85.245.181) 25.803 ms
 209.85.245.116 (209.85.245.116) 24.113 ms
 209.85.245.181 (209.85.245.181) 24.221 ms
10 lga15s44-in-f4.1e100.net (172.217.1.68) 24.938 ms
 209.85.245.181 (209.85.245.181) 24.647 ms
 lga15s44-in-f4.1e100.net (172.217.1.68) 23.942 ms

As noted earlier, the very first thing I get in the output is the IP address of the default gateway on
my local network. I am in the habit of using addresses from the 172.16.0.0/12 range on my networks.
This is a range of private IP addresses, just as the 192.168.0.0 address range is, which is more com-
mon on home networks. Because I don’t have a DNS server that includes any of my local systems
in it, there is no reverse lookup to be had for that address. The first place we get a real hostname is
on line 3. You can see the hostname listed as ge-4-19-ur01.wolcott.ct.hartford.comcast.net.
This is a port on a network device in Hartford, CT. The ge indicates that this is a gigabit Ethernet
(ge) port. The numbers after that could indicate slot and port in a large chassis. The ur01 indicates a
router. Service providers will sometimes use short names to indicate the type of router within the
network. If you see cr, it is probably a core router, meaning a device in the core or deep inside
the network. An ar router would be an access router, where customers may commonly connect.

NOTE A couple of notes on the traceroute responses. First, the times shown are the round trip
times to the individual host in the path. Second, in cases where you see multiple entries associated
with a particular hop, it means that there are multiple pathways that are the same network distance
to the destination.

In general, you will see the type of interface followed by the slot and port numbers, if they exist, in
the first part of the hostname. After that, you may well see the location information. In some cases, as
in lines 3–5, the name will be pretty straightforward. You are seeing multiple entries on those lines
because traceroute sends three messages. If there are multiple paths through the network to get to a
particular location, each successive message may hit a different router in the network. That appears
to be the case here. It may also indicate some routing distribution or load balancing, depending on
where the message is located.

In some cases, the hostnames are even more specific, depending on the provider. The Comcast
entries that include ibone indicate there are routers at 111 8th Avenue in Manhattan. This particular
building is owned by Google and has a meet-me room where multiple carriers get together and hand
off traffic to one another. The traceroute goes through a few hops in that building before departing
to a number of IP addresses that don’t have reverse lookups associated with them. Because of that,
we don’t really know where they are located. However, the traceroute terminates at the hostname
lga15s44-in-f4.1e100.net.

The domain name le100.net is a domain name that Google uses to identify servers within its
network. This particular hostname enables us to identify another way of looking at locations within
service provider hostnames. For a long time, it was fairly common for service providers to identify

Chapter 6 Location Awareness 153

locations within their network by the code for the airport in the city where the devices are located.
If you see a three-letter indicator in a hostname, it may well be an airport code. LGA is LaGuardia
Airport, located on Long Island. LGA provides services to Manhattan, so the servers that we have
terminated at are located in New York. This doesn’t necessarily provide us with a building address,
though. Google owns only a small number of buildings in New York City and of those buildings,
not all of them house data centers. There is a good chance that the building we have terminated at
is also located in 111 8th Avenue.

Traceroute can provide a lot of details that are not only useful for network engineers, but also can
provide some location information for investigators, once you learn how to read the output. While
IP addresses do map to hostnames, you can get locations from IP addresses in other ways. There is
nothing about an IP address that inherently provides a location, but with a little help, we can get
fairly specific about where the IP address is located, if you know how to read the hostname that is
associated with the IP address.

Geolocation
When Voice over IP (VoIP) services became commonplace, there was a challenge. Federal regula-
tions require telecommunications providers to be able to support enhanced 911 (E-911) services
to phone subscribers. Anyone dialing 911 should be able to be located by the phone network. In a
traditional phone network, this is easy because the phones are hard-wired to the central office and
each subscriber has an address associated with it. If a call comes from a particular phone number
using a wired line, it’s guaranteed that the call has come from a specific physical address because
hard-wired lines can’t be moved. When the caller dials 911, the central office knows which public
service access point (PSAP) to route the call to.

VoIP, though, uses interface devices that convert traditional phones and the signals they use to IP.
These devices can be taken anywhere. As long as they can get an IP address and can communicate
with the servers within the VoIP provider network, there is nothing to prevent the service from being
used. That, however, causes problems for the service providers because they are required to be able
to hand off location information for their subscriber. As noted earlier, there is nothing inherent about
an IP address that can provide physical addresses, and while it is possible to read hostnames and
network paths to get some location out of them, the hostname and network path don’t have nearly
the specificity required by E-911.

At a minimum, the service provider needs to be able to know which PSAP to route the call to.
There are a number of ways to do this, including just hard-coding the subscriber into a database
associated with a particular PSAP. VoIP services are not the only ones where location information
from IP addresses is important or at least very useful. As a result, there are databases that will keep
track of that information, as well as web interfaces that can perform lookups from IP addresses. In
fact, some of these websites will tell you where you are based on your IP address.

Network Forensics154

As it turns out, a number of geolocation providers and some of the websites that you can do
lookups from will provide information from the different databases. Just to demonstrate some of the
challenges associated with looking up geographic location from an IP address, you will sometimes
get different locations. To highlight that point, Figure 6-4 shows location information related to an
IP address belonging to Google. This is information from three different databases, though the site
in question, www.iplocation.net, provides results from many other databases. While two of them
appear to show the same location, when you look at the latitude and longitude, they are quite differ-
ent. The two showing the same city will map to very different locations.

Figure 6-4: Geolocation lookup.

The third location is not only in a different city and state but most of the way across the United
States. A fourth database shows New York and the fifth shows Mountain View again. As a result, you
have a start on a location from the IP address but it is by no means definitive. In some cases, all the
lookup service is doing is running a whois, getting the owner of the IP address, and providing the
city for that owner. As previously discussed, that’s not always that useful.

Chapter 6 Location Awareness 155

One of the databases at db-ip.com is not only more accurate but will also use IPv6 to perform a
lookup. Some of the backbone providers are using IPv6 to communicate back and forth. In Figure 6-5,
you can see a lookup of my external IPv6 address. While the address belongs to Comcast, db-ip.com
isn’t just providing the location of the IP address according to whois because that would be based on
Comcast’s address, which is not in Vermont. However, while we are very close to a real location, the
database maps this address to a town that is nearby rather than the town I am actually located in.

Figure 6-5: db-ip.com lookup.

The company MaxMind maintains several databases related to location information and mapping
network information. These databases can be integrated with Wireshark to save the effort of perform-
ing multiple lookups using a web interface. You can download lite versions of the databases from
MaxMind and then tell Wireshark where the databases are using the preferences settings. There is
a configuration setting for the locations of GeoIP databases. MaxMind provides databases for both
IPv4 and IPv6 as well as information about the autonomous system (AS) number used by service
providers for routing purposes, the city where the address is located, and the address in longitude
and latitude form.

Once you have a packet capture, you can look at the Endpoints dialog box in the Statistics menu.
This collection of information will give you IP addresses that were found in your packet capture,
and if there are entries in the MaxMind databases, they will display the information. You can see
an example of this in Figure 6-6.

Network Forensics156

Figure 6-6: GeoIP lookup using Wireshark.

Wireshark provides fields for the country the IP address appears to be located in as well as the
AS number associated with the service provider, which also yields the name of the service provider.
Finally, you can also see the city, longitude, and latitude columns that are associated with the IP
address. Not all IP addresses will be able to be looked up in the database. This is especially true in
the case of private addresses, because a private address can be associated with multiple networks
around the world. As a result, any packets captured from a system on my local network will have no
entries in the location columns.

Location-Based Services
Laptops and other mobile systems that don’t have the capability to use GPS still have a need for
location-based services. As web applications get more functionality and have to provide the same
or similar services as truly mobile devices like smartphones, semi-mobile devices like laptops, or
even immobile systems like desktop computers, there is a need for the application provider to obtain
location-based information. The World Wide Web Consortium (W3C) has developed an application
programming interface, called the Geolocation API, and a set of specifications that will allow devices
that don’t have GPS capability to also provide a location.

This interface is commonly provided in web pages using JavaScript. The JavaScript makes calls
to a navigator object looking for the GeoIP information. This may simply be based on information
about the IP address that is known using techniques referenced earlier. Other ways exist to obtain
location information, however, and there is a good chance that this will continue to change over time.
When your browser asks if it is okay to provide location information to the website you are visiting,
it is probably using this W3C location interface.

Chapter 6 Location Awareness 157

WiFi Positioning
One way to get information about where people may be is to get someone to report on those people.
This may be a self-check-in where the user provides information about himself in one form or
another. However, it may also be that other people are collecting information and sharing it with a
public database. This is partly the case when it comes to the WiFi Positioning System (WPS). WPS
is an attempt to provide a way to locate systems using the wireless networks they are connected to.
Databases are available to locate WiFi networks, and some of these databases are populated by users
who collect the information and submit it to the database provider.

One of these database providers is WiGLE, which is a database for wireless hotspots around the
world. Using WiGLE, you can view maps of locations and see the different WiFi networks that may
be available within a particular geographic area. WiFi networks not only have a Service Set Identifier
(SSID) associated with them, which is the network name, but they also have a Basis Service Set
Identifier (BSSID). This looks like and often is a MAC address. The wireless access point, as a network
device, has a MAC address associated with the network interface. This MAC address may become
the BSSID for the wireless network to provide a layer-2 addressable identifier for the network.

WiGLE and other similar databases will not only store SSID information, but also store BSSID
information. You can see an example of both BSSIDs and SSIDs in Figure 6-7.

Figure 6-7: Geolocation lookup.

Network Forensics158

The map shown is a part of the website at wigle.net, and is a location nearby where I am writing
this. You can search locations and zoom in on the map. You can see SSIDs like Zombies ate My WiFi,
as well as BSSIDs, which just appear to be MAC addresses, and they are quite likely to just be MAC
addresses. Because urban or suburban areas are likely to have large numbers of WiFi networks in
close proximity, all of these WiFi networks just get overlaid on top of one another on the map. It
takes zooming in very closely to be able to differentiate one network from another. Of course, by that
point, you may have lost some context.

This is one way that systems can obtain information about their position. Locating systems in
physical space can be challenging, and using volunteers to provide information about WiFi networks
helps with that effort.

Summary
Locating addresses on the Internet is challenging. You can use a number of tools to help narrow the
scope of a search, but very little is highly accurate. You can start with something very broad like using
time zone information in network transmissions, if a time zone has been transmitted that is useful. As
we have seen, it is not uncommon for servers to simply use Greenwich Mean Time as a time zone because
it saves on calculating a relative address with other servers within the infrastructure. This may be more
commonly the case with large providers that would have systems scattered across multiple time zones.

The Internet registries can be used to locate information about addresses and domain names using
tools like whois, but even that isn’t going to be very accurate. You may be able to get a location from
the IP address of small businesses, but with larger businesses or service providers, the best you are
going to be able to get is the address of the headquarters. This may be nowhere near where the IP
address is actually being used. Fortunately, in the case of service providers, DNS information may
be useful in providing a location. However, at best, this may provide a city. Rarely will a hostname
provide a specific address. As we look at DNS hostnames, we can make use of the traceroute utility
to identify the path that packets take through the network, and since service providers will often use
location information in the hostname, we can see a geographic path using traceroute.

Databases can provide more specific information about IP addresses, but even those databases,
providing AS numbers, longitude and latitude, countries, and service provider names, are often just
using information about the owner of the IP address, which may have nothing at all to do with the
user of the IP address. However, you can make use of these databases with programs like Wireshark to
perform lookups so you can identify locations from within Wireshark. This is far easier than trying to
do manual lookups one address at a time. Wireshark will also map all of your addresses, placing dots
on a world map indicating where the addresses you have seen are located.

Browsers can provide location information to web applications to provide services similar to
the global positioning system. However, even these are not always highly accurate, as they rely on
volunteers to obtain the information and submit it to the database provider. A number of databases
will track information about WiFi networks around the world, and this can be useful in providing
location information, but it’s not a guarantee.

Preparing for Attacks7
In this chapter, you will learn about:

 ■ How to prepare for attacks
 ■ How to acquire and manage NetFlow data
 ■ How to ensure adequate logging is in place
 ■ The value of collecting information in a Security Information and Event Management system

He sits at his keyboard, making notes about targets. He knows, based on the size of his target, how much
work he will need to do to be harder to spot as he takes on another target. Targets that are less likely to
have any detection in place. These same targets may also be less likely to have any ability to look back at
historical data. Targets that aren’t doing much in the way of detection or logging are much easier because it
means he will have to do much less work to avoid detection and also very little work to clean up after himself.

He connects to a fresh target and immediately checks to see whether there is anything running locally
that might send any data anywhere, whether it’s a host-based intrusion detection system or just log data.
Desktop systems are far less likely to have these protections on them and because they often have permis-
sions to where all of the interesting data is, they make great systems to attack. Easier to gain and retain
access without anyone being aware and once he has access, he can continue to extract data and gain access
to additional systems on the network without worrying about covering tracks or cleaning up anything. Life
is so much easier when no one is paying any attention to what you’re doing.

You won’t always be able to rely on having a packet capture to look at when something happens
that you want to investigate. In most cases, you will have to rely on a number of other artifacts as a
starting point; these artifacts may be your only shot at determining what happened, so it’s important
that you have access to them. This may not be your call, unfortunately. Setting up incident detection
systems, logging, antivirus, and other systems that will be useful for you is not typically a forensic
investigator’s responsibility. Of course, if you are the sole system and network administrator, you
may also be expected to perform investigations.

Although this is data you will need to investigate later on, you need to have it configured up front.
If you are on an incident response team for a company, you will need to make a case for having these

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics160

systems and configurations in place ahead of time. You will also need to know whether you need
them, based on the circumstances, before you can expect an organization to invest in systems that
will support these capabilities. Though having the data is essential when it comes to performing
an investigation, businesses don’t exist to perform investigations, so someone needs to justify the
expenditure for systems or storage. Being prepared for investigations can be expensive.

There are many ways you can prepare for incidents ahead of time. Your resources and network may
support most of what will be covered in this chapter. Depending on the likelihood of attack against
your infrastructure, your organization may be okay with spending what is necessary to implement
the storage required to have information on hand to respond to an incident. You will need to do the
work to determine the likelihood as well as the costs that may be associated with response without
having data to determine root cause and initial point of entry. Without this information, you may
be susceptible again if the organization is incapable of closing the holes.

Network devices are capable of generating a fair amount of data, including the flows of traffic pass-
ing through them. This can be captured using Cisco’s NetFlow protocol, even if you aren’t running
Cisco devices. Additionally, enabling logging on network devices will help to provide information.
All of these logs and other pieces of data, of course, will require storage space. As part of determining
costs to present to management, you will need to understand how long you will want to store your
data for and how much space you will need, based on the record size and volume.

NetFlow
NetFlow is a protocol that was developed by Cisco Systems as a way of providing data that could
be used to troubleshoot a network. Although this capability was developed primarily for network
administrators to use, it also provides a lot of capability for a network forensic investigator. Like the
other capabilities discussed in this chapter, it has to be enabled ahead of time to provide any value.
If it isn’t enabled and the architecture necessary to collect and store it isn’t in place, you won’t have
any NetFlow data to look at.

Speaking of architectures, you will need systems in place in addition to the device that will gener-
ate the data for you. The device that will generate the data will commonly be a router. Though Cisco
developed this particular protocol, it has been adopted by other vendors as well, like Nortel and
Juniper. Other developers that have not adopted NetFlow specifically may have developed something
similar, so just because the company you are working with doesn’t have NetFlow doesn’t mean you
are out of luck. It may require a little more investigation to determine what is in place so that func-
tionality can be enabled. Each device, whether it’s a router or a switch, would need to have NetFlow
enabled. You can see a diagram of a simple NetFlow collection architecture in Figure 7-1.

Once you have devices generating NetFlow data, you need a system in place to handle the collec-
tion. This system is called a NetFlow Collector. In Figure 7-1, the Collector is in the middle of the
diagram. Each device that creates NetFlow data forwards it to the Collector. The Collector stores
the data, and different types of Collectors may store their data in a different format. A Collector is
just software that can run on any system. The only thing that is guaranteed with NetFlow is what

Preparing for Attacks 161

data is gathered and how it is transmitted. Even that is based on the protocol version because that
determines what is transmitted. For that reason, the device generating the data needs to know what
version is being used.

Switch

Collector Analysis Station

Router A

Router B

Router C

Figure 7-1: NetFlow diagram.

The Collector stores the NetFlow data in whatever format the software that handles the collection
chooses to store it in. What you need then is an analysis station. In Figure 7-1, you can see this on
the right-hand side of the diagram. Though the diagram depicts this as a laptop, indicating that it is
probably on the user side, the analysis can be done in a variety of ways. The simplest analyzer is a
program that will take the collected NetFlow data and dump it out in a text-based format, as you can
see in Figure 7-2. This was done using the flow-tools package on a Linux system, which includes a
number of utilities for collecting, reporting, and manipulating NetFlow data. You can see the source
and destination interface as well as the source and destination ports in the output in Figure 7-2. You
can also see the protocol, in hexadecimal, abbreviated to Pr.

Network Forensics162

Figure 7-2: NetFlow output.

This is just a simple text-based, tabular format, but other tools can be used to present information
in different ways. The diagram indicates a single laptop, but some analysis applications can be imple-
mented in multiple systems. This may be done using a web-based interface, which would require an
application to decode the stored data and also a web application that will take the decoded data and
present it in a web browser in the way the user has requested. Other analysis applications may be
native applications that need to be installed on the operating system you are performing the analysis
on. You may also be able to look at NetFlow data using a mobile application on a phone or a tablet,
depending on what operating system you are using.

An advantage to using tools like the flow-tools package is the ability to take the format the data
is stored in and generate different types of output. One of those is comma-separated value (CSV)
files. Using CSV output, you would be able to easily import the data into a spreadsheet program like
Microsoft Excel or Google Sheets and manipulate it. This includes sorting, which will help to com-
bine all of the source or destination IP addresses together since, by default, the output will be based
on time with the earliest flows at the beginning of the output and the latest at the end. Being able to
sort will help to bring a better sense of what may be happening. Using a spreadsheet program will
also help you to search through the data better. Figure 7-3 shows sorted output, with one row high-
lighted because it lists a large number of packets. Following up on this, it may be useful to re-sort
based on the number of packets or the number of octets, which may yield something else of interest.

If you are familiar with database programs, you can export to a database like MySQL using
flow-tools. This would allow you to generate queries to pull out specific data from the entire flow.
Spreadsheet programs will also allow some of this functionality, but database programs are designed
for easy and efficient retrieval. Large quantities of flow data may be difficult to search and manipulate
in a spreadsheet program, which may force you to use something like MySQL or SQLite.

Preparing for Attacks 163

Figure 7-3: NetFlow output in Microsoft Excel.

It’s important to note that the output isn’t always in decimal form. In Figure 7-2, the output is in
hexadecimal. As noted above, the Pr column is the protocol and although it shows 11, that’s really
16+1 or 17, which is the protocol number for UDP. Figure 7-4 has similar output as that shown earlier
but the values are in decimal, rather than hexadecimal. The protocol is shown to be 17, indicating
UDP, and the port values are also in decimal. It’s important to know which base number system you
are looking at. There is a significant difference between 50 and 80, for instance. If you were to look
up 50 as the port number, thinking it were decimal, you’d come up with the Remote Mail Checking
Protocol, which is a protocol you may never have heard of before. In fact, 50 is the hexadecimal value
of 80 decimal. You may be more familiar with 80 as being the TCP port number for HTTP (web) traffic.

NOTE If you are unfamiliar with hexadecimal, it is a number system based on 16 rather than 10.
Rather than counting each position from 0–9, you count from 0–F. 10 in hexadecimal is equivalent to
16 in decimal, which means F is equivalent to 15. 100 would be the same as 256, leaving FF as 255.

You may also note that Figure 7-4 lacks the Sif and Dif columns. Because NetFlow data often comes
from routers or switches, where packets or frames are forwarded from one interface to another, it is
useful to know what the source and destination interfaces are. This will tell you where the packet

Network Forensics164

or frame originally came from, which can be essential in looking at spoofing cases where the source
IP address (or MAC address) is different from the legitimate address. In combination with a routing
or ARP table, you may be able to spot instances of spoofing that would otherwise be difficult to see.

Figure 7-4: NetFlow output with decimal values.

As an example, let’s say that you have a router with two interfaces where interface 0 is on the out-
side, facing the Internet, while interface 1 is on the inside. You are using a private address space on
the inside of your network—172.20.100.0/24. If you were to see that address coming in on interface
0 while looking at NetFlow data, you would know that it’s not a legitimate flow. In fact, the reverse
flow would never reach the router so you would only ever see one direction of flow. These sorts of
discrepancies can be isolated using NetFlow data.

One of the challenges with NetFlow data is the amount of storage space it can consume if you
are running it full time. Even though you are capturing just a summary of the headers and not the
entire packet, it can still be space consuming over a period of time. This is especially true if you
have a significant number of devices generating NetFlow data and your network is busy. There are
trade-offs, of course. As an investigator, you want as much data as you can get your hands on. The
network administrative team and the system administrators, however, may have something else to
say about this. NetFlow data causes more network traffic running through the network since it needs
to be transported from the device generating it to the device storing it. The Collector is another sys-
tem that needs to be maintained, and if there is a large amount of storage, it is not only a cost to the
business but is also a storage device that needs to be maintained and monitored. These are all factors
that need to be taken into account when thinking about whether to turn NetFlow on.

It may be possible to turn NetFlow on but then establish a rotation for older NetFlow files so they
are either discarded or pushed off to near-line or off-line storage rather than taking up space on a
live disk. These are challenging decisions to make, though, because you may have no idea how far

Preparing for Attacks 165

back you need to go to isolate the source of an infection or intrusion. The NetFlow data will help you
to do that, but only if you have access to it. This is where having other data in place will be helpful
because you may be able to use it as a fallback or, better, to correlate with.

Logging
You may initially think about logging from an operating system perspective, where it is commonly
discussed, since operating systems create and store logs. However, it’s more complicated than that.
As noted in the previous section, it is important to have either data to replace primary sources like
NetFlow or data to correlate with primary sources like NetFlow or packet captures during a network
investigation. But from a networking perspective, there is a lot more to look at, including not only
the operating system and application logs, but also any network devices like routers and switches.
They can often have important information when it comes to investigating network incidents. This
is where logging comes in.

While logging systems often store the log data on the device where it is generated, larger enterprises
may be more likely to store their logs on centralized logging systems. This makes a lot of sense. For
a start, trusting logs on any endpoint is probably a mistake. Any device that interacts with users in
some way or is exposed to a larger network has the potential to be compromised. Once a system has
been compromised, everything on it is suspect, including any log files that may be stored there. An
attacker could easily manipulate the log files once he gains the necessary access, which may include
administrative privileges. This could include wholesale deletion of the logs or even manipulation of
individual log entries.

Centralized log servers also provide a backup to anything stored locally. Administrators may
choose to store logs more permanently on central log servers than on the endpoint systems. The log
server would be configured with larger storage so the logs on each server could be rotated to leave the
disk space there for where it is needed—serving the application that the server was implemented for.
The central log server may be considered to be the primary source for log data, even though I referred
to it as a backup. This simply means that it’s a place to archive logs but since the logs have been
moved off of potentially untrustworthy endpoint systems, they may be considered a primary source.

Using a centralized log server also allows log watching to be done in one place rather than tak-
ing up processing on every server. With all the logs being forwarded to a single server, that server
can become the place where logs are watched for anomalies. This is common in intrusion detection
systems, where logs may be monitored for specific events in order to trigger alerts based on those
events. There may be some latency involved in the detection because it requires the log entry to be
forwarded off the server that generated the log, but in practice that shouldn’t be very long, assuming
the logs are not batched up for sending, which can slow down delivery. If each entry is forwarded off
as it is created, the delay is milliseconds for the log to be sent to the log server and then it is depen-
dent on the log watching service and how regularly it is watching the logs.

Network Forensics166

A number of systems can do centralized logging, including both commercial and open source
offerings. Depending on your needs, you may use a unified offering that can do log gathering as well
as monitoring and alerting. You may also choose to use separate applications for the log hosting and
the monitoring or alerting.

Syslog
Syslog is an old Unix-based logging system. It was initially developed as part of the mail server
Sendmail. Since that time, it has become the predominant way of logging on Unix-like systems. This
includes Linux, Solaris, AIX, HP-UX, and macOS, to a degree. There have been other implementations
aside from the original syslog, including rsyslog and syslog-ng, but the specification for how syslog
functions remains the same. For consistency, most of the references from here will be to the standard
or generic implementation: syslog. If there is a reference to a specific implementation, the name of
that program will be used. Syslog originally functioned as a de facto standard until it was eventually
fully standardized by the Internet Engineering Task Force (IETF).

Syslog specifies different facilities, which indicate what type of event the log entry is. Using these
facilities, the syslog server can determine how the log entry is disposed of. Each facility may be sent
off to a different log file. The latest request for comment (RFC), document, RFC 5424, specifying how
syslog is to function, defines the facilities shown in Table 7-1.

Table 7-1: Syslog Facilities

Facility code Keyword Description

0 kern kernel messages

1 user user-level messages

2 mail mail system

3 daemon system daemons

4 auth security/authorization messages

5 syslog messages generated internally by syslogd

6 lpr line printer subsystem

7 news network news subsystem

8 uucp UUCP subsystem

9 - clock daemon

10 authpriv security/authorization messages

11 ftp FTP daemon

12 - NTP subsystem

Preparing for Attacks 167

Facility code Keyword Description

13 - log audit

14 - log alert

15 cron scheduling daemon

16 local0 local use 0 (local0)

17 local1 local use 1 (local1)

18 local2 local use 2 (local2)

19 local3 local use 3 (local3)

20 local4 local use 4 (local4)

21 local5 local use 5 (local5)

22 local6 local use 6 (local6)

23 local7 local use 7 (local7)

In addition to facilities, the syslog standard specifies levels of severity. This helps the applications
to generate a log entry for a wide range of events and the system administrator can then determine
which levels of those log entries they care about. As an example, a system administrator may only
care to write out logs with a severity of Critical or higher. While the system and applications may
generate log events for other severities, the syslog server, which is responsible for determining the
disposition of each log event, may choose to discard those other log events. The latest specification
for syslog, defined in RFC 5424, defines the severities shown in Table 7-2.

Table 7-2: Syslog Severity Levels

Value Severity Keyword Description

0 Emergency emerg System is unusable

1 Alert alert Should be corrected immediately

2 Critical crit Critical conditions

3 Error err Error conditions

4 Warning warning
May indicate that an error will occur if action is not
taken

5 Notice notice Events that are unusual, but not error conditions

6 Informational info Normal operational messages that require no action

7 Debug debug
Information useful to developers for debugging the
application

Network Forensics168

You will notice that higher severities have lower numbers. The most severe log entry will have a
severity level of 0. This may seem counterintuitive unless you are just used to that being the way it
is. You might think that a higher number may correspond to a higher severity. Starting at 0 follows a
common computer programming numbering scheme and it allows you to begin with what you most
care about, with other numbers added later on as desired. The way it is currently defined allows all
potential severities to be stored in three bits because the values of severity run from 0 to 7, and those
values can all be represented with just three bytes.

A common syslog configuration file will include lines specifying what to do about log events based
on facility and severity. In Figure 7-5, you can see a sample syslog configuration. This is from an
Ubuntu Linux installation, using the rsyslog package. You should be able to see that entries include
both the facility as well as the severity. This is done by specifying the facility followed by a dot (.)
and then the severity. In some cases, if you want to indicate that every severity should be included,
you would use the asterisk (*).

Figure 7-5: Sample syslog configuration file.

Each entry indicates what to do with the log events, typically by specifying a file to write the
events out to. If you don’t care as much about whether a particular event makes it to the log file, you
can add a dash before the filename, as you will see in some cases in Figure 7-5. This tells syslog to
just not bother writing the file out to disk after each log event. Instead, it will retain the log entry in
memory until the buffer needs to be synced to disk.

Preparing for Attacks 169

As mentioned earlier, you can use one log setup for centralized logging. A syslog server can be used
as a centralized log server as well as having the syslog server forward log entries off to a centralized log
server. Syslog was initially designed to use UDP as the transport protocol, but since UDP doesn’t have
guaranteed delivery, you may want to make use of TCP. The rsyslog server allows you to use either
TCP or UDP. The configuration setting for rsyslog to act as a syslog server is shown in Listing 7-1.

Listing 7-1: Rsyslog Configuration for Listening

provides UDP syslog reception
#module(load="imudp")
#input(type="imudp" port="514")

provides TCP syslog reception
#module(load="imtcp")
#input(type="imtcp" port="514")

In addition to listening, rsyslog can be configured to forward log entries off to another server.
This is a different set of configuration entries and, just as with listening, you can forward with both
TCP and UDP. The entries in Listing 7-2 show how you would forward syslog entries off to a remote
server. There are two entries here for both TCP and UDP. Commonly, syslog uses the well-known
port 514 but it is possible to use a different port. You can see that in the first configuration file entry
where the port 10514 is used instead of the default port. The first line also uses TCP, indicated by
the @@ before the IP address. In order to forward using UDP, you would use the second example with
a single @. You will also see *.*, which mirrors the way the log file entries look. What this means is
every criticality and every severity will be forwarded off to the central log host. It is then up to the
log host to determine what to do with those entries, based on its configuration file.

Listing 7-2: Forwarding syslog Entries

This uses TCP and a non-default port to forward to
the port specified must match where the server is listening
. @@192.168.86.34:10514
This uses UDP for the transport protocol and the default port
. @192.168.85.10

Once you have a syslog server established, you will then have log entries—you may have several
log files to look at, depending on what your syslog configuration looks like. In Figure 7-6, you can see
a sample of one of the logs. This particular log is the auth.log that stores information about authenti-
cation events. You can see entries for sudo, which is a way for a user to gain temporary superuser or
administrative privileges. Additionally, there are entries for logins to an FTP server, pure-ftpd. Logs
from services like this one can be used to correlate the NetFlow data we looked at before.

Network Forensics170

Figure 7-6: syslog entries.

Each entry includes a date and time stamp indicating when the event was generated. This is followed
by the name of the system that generated the entry, quichelorraine in our case. After that is the name
of the program that created the entry, followed by the message that was created by the application.
Up through the name of the program is all created by the syslog server. The message originates with
the application. Though the date and time stamp, the system name, and the name of the program are
all going to be accurate based on the system configuration, the message from the application is only
going to be as good as the programmer who wrote the program. If the programmer(s) was less inclined
to be specific, the message won’t be very useful. Good programmers recognize the importance of being
clear and specific in log messages to help with troubleshooting, though, so most programs writing to
syslog will generate useful entries.

Each syslog entry may only be useful if you understand the application that created it, however.
As an example, if you didn’t know what sudo was, you may not understand the entry about a ses-
sion being opened. In this case, what that means is the user used sudo to gain temporary elevated
permissions. Just having the logs alone may not be as helpful. In addition to having the logs, it may
be necessary to have an understanding of the different applications that are logging.

Different services may generate their own logs and they may be stored in the same location as
the logs syslog creates. As an example, the Apache web server will commonly store its logs in /var/
log in a directory specific to Apache. On the Ubuntu system we have been looking at, the Apache
logs are in /var/log/apache2, but on other systems, they may be in a directory named /var/log/
httpd. Because it’s the Apache server that writes these logs out, it’s necessary to look at the Apache
configuration settings to determine where the logs for that service are located. These logs can be

Preparing for Attacks 171

essential to correlate with any network information that is gathered, whether it’s packet capture data
or NetFlow data.

You would use syslog on Linux systems and other Unix-like systems, and it’s possible to forward
logging events on a Windows system to a syslog server. On Windows systems, however, you would
primarily use the Windows Event Log to look for Windows logs.

Windows Event Logs
The Windows Event Log has been around since Windows NT was released in 1993. Since then, the
Windows Event Logs have gone through different iterations. In the most recent iterations of Event
Logs, Microsoft has moved toward structured XML for storing log information on disk. Most of the
time, users and administrators will use the Event Viewer, as seen in Figure 7-7. One advantage of
the Event Viewer is that it collects everything into one interface. As you can see, Windows has a lot
of Application logs in addition to the Windows logs. You can see this on the left-hand side of the
interface. If you expand the Applications and Services section, you’ll see that each vendor has its
own folder for logs. Under the Microsoft folder, each system service has its own place to store logs.
This is an extensive list, so having one place to look at all of them without having to wade through
a single file for specific applications is helpful.

Figure 7-7: Windows Event Viewer.

Network Forensics172

Since the underlying storage of the events is not just plaintext lines as in syslog, but instead in an
XML format, using the Event Viewer will help you extract all of the relevant information and present
it in a meaningful way so it’s easier to quickly parse the event. You don’t have to read through the
entire line, as you would with syslog. Instead, you can just look at the section of the event that most
interests you. As an example, in Figure 7-8, you can see a single event selected in the top from the
Security log. This is an audit event indicating that special privileges have been assigned to a login. At
the bottom of the interface, each part of the event is broken out so you can look directly at the section
you are most interested in. You may want to find the Event ID so you can look it up with Microsoft
on their TechNet pages to learn more about the event. You can find that in the bottom section with
its own header. This ability to quickly parse an event can be helpful.

Figure 7-8: A Windows event.

While the Event Viewer will also allow you to filter and search, there are other ways to look at
the Event Logs on Windows. One method is to use the PowerShell, which implements cmdlets to

Preparing for Attacks 173

perform functions. One cmdlet that can be used to get access to the logs is Get-WinEvent. Using
this cmdlet, you can get text-based representations of the events. You can see an example of its use
in Figure 7-9. You need to specify which log you want to look at and in this case, we are looking at
the Security log, just as we did earlier. You don’t get the detail here as you did in the Event Viewer,
but you can get a complete look at all of the events. Get-WinEvent has a number of other parameters
that can be used to get more detail and change the way the data is extracted. For example, you may
only be interested in 50 events. If that’s the case, you would add –MaxEvents. You can also specify
Xpath filters to get a limited view of the events.

Figure 7-9: Using PowerShell for Windows events.

As with syslog, there are reasons you may want to look at the Windows Event Logs as either a start-
ing point for a network forensic investigation or a way to correlate on the operating system side what
was seen in the network. While the network never lies, in the sense that what you see on the wire is
exactly what was sent on the wire, you may not have the entire picture without correlating with the
operating system.

Firewall Logs
Firewall logs are another important tool when it comes to looking into network incidents. A number
of different types of firewalls exist, of course, and we’re going to look at a couple of them. Regardless of
what firewall you may have access to, firewalls will commonly log what they are doing. This may include
how the firewall is operating or the logs may relate to specific rules that have been configured. As an
example, the logs shown in Listing 7-3 resulted from an iptables rule on a Linux system indicating that
all communications to port 80 be logged.

Network Forensics174

Listing 7-3: iptables Log Entries

Jan 7 14:13:22 quichelorraine kernel: [12167.418837] IN=ens33 OUT=
MAC=00:0c:29:bd:3d:3e:f4:5c:89:b7:2c:89:08:00 SRC=192.168.86.21
DST=192.168.86.34 LEN=52 TOS=0x00 PREC=0x00 TTL=64 ID=44256 DF
PROTO=TCP SPT=53542 DPT=80 WINDOW=4096 RES=0x00 ACK URGP=0
Jan 7 14:14:07 quichelorraine kernel: [12212.670359] IN=ens33 OUT=
MAC=00:0c:29:bd:3d:3e:f4:5c:89:b7:2c:89:08:00 SRC=192.168.86.21
DST=192.168.86.34 LEN=40 TOS=0x00 PREC=0x00 TTL=64 ID=65033
PROTO=TCP SPT=53542 DPT=80 WINDOW=4096 RES=0x00 ACK URGP=0
Jan 7 14:14:53 quichelorraine kernel: [12258.205046] IN=ens33 OUT=
MAC=00:0c:29:bd:3d:3e:f4:5c:89:b7:2c:89:08:00 SRC=192.168.86.21
DST=192.168.86.34 LEN=40 TOS=0x00 PREC=0x00 TTL=64 ID=6319
PROTO=TCP SPT=53542 DPT=80 WINDOW=4096 RES=0x00 ACK URGP=0
Jan 7 14:16:29 quichelorraine kernel: [12354.182134] IN=ens33 OUT=
MAC=00:0c:29:bd:3d:3e:f4:5c:89:b7:2c:89:08:00 SRC=192.168.86.21
DST=192.168.86.34 LEN=64 TOS=0x00 PREC=0x00 TTL=64 ID=27954 DF
PROTO=TCP SPT=53625 DPT=80 WINDOW=65535 RES=0x00 SYN URGP=0
Jan 7 14:16:29 quichelorraine kernel: [12354.186483] IN=ens33 OUT=
MAC=00:0c:29:bd:3d:3e:f4:5c:89:b7:2c:89:08:00 SRC=192.168.86.21
DST=192.168.86.34 LEN=52 TOS=0x00 PREC=0x00 TTL=64 ID=28090 DF
PROTO=TCP SPT=53625 DPT=80 WINDOW=4117 RES=0x00 ACK URGP=0
Jan 7 14:17:00 quichelorraine kernel: [12385.337712] IN=ens33 OUT=
MAC=00:0c:29:bd:3d:3e:f4:5c:89:b7:2c:89:08:00 SRC=192.168.86.21
DST=192.168.86.34 LEN=52 TOS=0x00 PREC=0x00 TTL=64 ID=23849 DF
PROTO=TCP SPT=53625 DPT=80 WINDOW=4117 RES=0x00 ACK URGP=0
Jan 7 14:17:13 quichelorraine kernel: [12398.025122] IN=ens33 OUT=
MAC=00:0c:29:bd:3d:3e:f4:5c:89:b7:2c:89:08:00 SRC=192.168.86.21
DST=192.168.86.34 LEN=52 TOS=0x00 PREC=0x00 TTL=64 ID=56388 DF
PROTO=TCP SPT=53625 DPT=80 WINDOW=4117 RES=0x00 ACK FIN URGP=0
Jan 7 14:17:13 quichelorraine kernel: [12398.029197] IN=ens33 OUT=
MAC=00:0c:29:bd:3d:3e:f4:5c:89:b7:2c:89:08:00 SRC=192.168.86.21
DST=192.168.86.34 LEN=52 TOS=0x00 PREC=0x00 TTL=64 ID=64227 DF
PROTO=TCP SPT=53625 DPT=80 WINDOW=4117 RES=0x00 ACK URGP=0

While these logs may look obtuse and arcane at first glance, they are easier to understand if you
carefully review them. Each entry here indicates the IN and OUT interfaces, which would be relevant
if this host were configured as a network firewall, forwarding packets from one interface to another,
rather than just an individual Linux host with iptables running on it. Additionally, you can see the
MAC address, the SRC and DST (source and destination) IP addresses, as well as statistics related to
the packet such as the length (LEN) and the type of service (TOS). You can also see the source and
destination ports (SPT and DPT) Using this knowledge, the log entries should make much more sense.

Different firewalls will generate different looking logs, of course. You may also get different sta-
tistics from different firewalls. As an example, the PFSense firewall, based on FreeBSD, will show

Preparing for Attacks 175

you the state of network connections. Providing a connection state may be a common thing across
stateful firewalls, which have to pay attention to the state of each connection in order to determine
whether or not connections are allowed. This means that the firewall knows whether the message
is new—it hasn’t been seen before.

A SYN message, the first message in a TCP three-way handshake, is recognized as a new mes-
sage by a stateful firewall. An established connection is one that has been seen and been previously
allowed. This means the firewall is aware that there has been previous communication and there is
an entry in the state table. A related connection is one that is associated to but not directly part of an
established connection. This may be something like an FTP transmission where a second connection
is established from the server back to the client to transmit files.

In Figure 7-10, you can see a section of the state table from the PFSense firewall. This shows the
different flows, meaning the connections from one system to another, as well as the state they are
in. Additionally, you can see the number of bytes that have been transmitted over the course of
that communication stream. The state table will also indicate which interfaces the communication
was seen on. In most cases in this screen capture, the communication is over the WAN port, which
is the external interface as far as the firewall is concerned. The LAN port is the one on the inside of
the network.

No matter which firewall you are using, having the ability to look at the logs will provide you
with some different points of correlation to events seen on the network. Additionally, you may see
events that you wouldn’t see in other places. The firewall may log packets that were dropped. This
is not something you would see on the network because they would just not be responded to. You
may assume that the packet was dropped by the firewall, but with the firewall log to correlate with
other evidence, you may know for sure.

This is not to say that all firewalls will log dropped messages. The iptables firewall, included with
Linux, does not automatically log dropped packets, for instance. The person writing the rule would
have to either set a policy to log all dropped messages or set a log and a drop message for every-
thing that was being dropped. Without the overall policy, there may be some messages that don’t
get logged when they are dropped. This is an area where some guidance can be provided to firewall
administrators. The firewall can provide an important point of insight to an investigator, especially
when it comes to messages that have been identified as ones that shouldn’t be seen in the network.

One thing to keep in mind is that firewalls are commonly located on the edges of networks, but your
idea of an edge may be different from a network administrator’s. An easy place to see an edge is anywhere
the enterprise network touches a service provider. This is a boundary point between two networks so it’s
clearly an edge. However, to a network administrator, the data center may be its own network and any
connection to the outside world, even if it’s to the internal business network, is an edge. This is because
the data center is commonly where the most sensitive information is stored. As a result, there may be

Network Forensics176

a firewall between the data center networks and every other network in the business. Another place
where you may find a firewall is the connection between a WiFi network and the rest of the internal
network. The primary point here is that you may find firewalls turning up interesting information in
an area you may consider the inside of the network. Different areas of an enterprise network may have
different security needs and thus some will have more restrictive rules applied than others.

Figure 7-10: PFSense firewall state table.

Preparing for Attacks 177

Just as with other logs, firewall logs take up disk space. With large networks, firewalls can generate a
lot of log data. This may be one reason why not all dropped packets get logged. Since there are adversar-
ies everywhere, there are often port scans and ping sweeps happening on a regular basis. Logging all of
this activity when it is dropped can consume valuable resources. As a result, it’s important to consider
the trade-offs. How much visibility do you want with regard to network information provided by the
firewall logs as compared with how much it will cost in disk space and processing by the firewall and
log monitor?

Router and Switch Logs
Routers and switches are capable of generating logs, not surprisingly. There are a number of reasons
why you may care about the logs these devices can generate. For a start, the logs will indicate who
has accessed the administrative interfaces for these devices. You will be able to see who has been
doing work on the device and when they were doing it. This may include failed attempts to access
the device, which could provide an indication that someone is trying to break into the administrative
interface. You may also get accounting information associated with configuration changes. This may
be helpful to understand why the network is behaving differently than it had previously. A number
of administrative logs can be helpful in uncovering this information.

It is important to keep in mind that routers and switches have multiple interfaces, by design. There are
interfaces where the business of the device takes place—whether it’s an Ethernet or serial interface for the
router to forward packets from one interface to another or whether it’s the Ethernet interface each system
on the network plugs into on a switch—and there are administrative interfaces. Typically, the administra-
tive functions happen on a separate interface. Switch ports, for example, don’t have an IP address so they
can’t be directly addressed anyway. However, there is a separate interface where an administrator could
connect using SSH or HTTP to perform management functions.

Beyond the administrative traffic and logs, however, routers will often have the ability to perform
rudimentary access control using access control lists (ACLs). An ACL is a very basic type of firewall,
in the sense that it can cause the firewall to drop or allow packets as they come through. Whereas a
higher level firewall can make more complex decisions, a standard ACL commonly looks at source
and destination addresses and port numbers, though there are extended ACLs that can provide more
functionality. Packets an ACL drops may get logged and these logs are worth taking a look at, just
as firewall logs are.

On the switch side, since it operates at Layer 2, there are no IP addresses or ports to make deci-
sions on. The best that can happen is to assign a MAC address to a particular port. If a device is
plugged into a port with the wrong MAC address, that may get logged and that would be of interest,
potentially, because it may demonstrate someone trying to connect a rogue device to the network.

Network Forensics178

Additionally, switches will commonly keep track of traffic passed across different interfaces. Routers
will do the same thing. Looking at statistics provided by these network devices can be helpful in
detecting unexpected activity on the network.

Log Servers and Monitors
Earlier, we talked about using a syslog server as a centralized log host, but there are other log servers
you can use. An advantage of using a log management package is the other functionality that you
can get. In addition to just collecting logs and storing them, packages like Nagios or Splunk will
allow you to more completely manage the logs by helping with search and analysis. Just collecting
logs and allowing them to sit on a disk isn’t particularly helpful to an organization, even if having
the logs later on will help you as a forensic investigator. If the logs are just collected and allowed to
sit, you may never know there is something to look at. This attitude toward logging may be a cause
of organizations having suffered breaches without being aware for years. The evidence could be in
the logs and they simply aren’t doing any analysis or monitoring.

Nagios began life in the late 1990s as a monitoring solution designed to run on Linux. Currently
Nagios has commercial offerings as well as an open source offering that can be installed. Part of the
functionality offered by Nagios is being a log management solution. Nagios, like so many other pro-
grams these days, uses a web interface for a console. You can see the Nagios console in Figure 7-11.
Configuring Nagios for monitoring and log management requires manipulating the configuration
files on disk. You can add in multiple services to manage and it supports monitoring multiple types
of systems and services.

Another popular solution for log management and monitoring is Splunk. Splunk has commercial
offerings but it also offers a light version for free if you want to try it out to see how it operates.
Splunk can be configured to look at logs on a local system where the Splunk server is running. The
configuration page on the web interface is shown in Figure 7-12. You can also configure it to be a syslog
listener for other systems to send log data to. On the left-hand side of the interface shown in Figure
7-12, you can see TCP/UDP. Selecting enables you to configure Splunk to be a listener for syslog data.

Once you have data configured, Splunk indexes the data and enables you to search all of your data
sources for patterns. You can also set up alerts, based on information you care about looking at. In
fact, Splunk will analyze the logs and locate patterns for you. You can see this in Figure 7-13. On the
Ubuntu system Splunk was installed on, Splunk looked through more than 15,000 events to isolate
100 patterns, which are shown. You will see a percentage on the left-hand side of the display. This
indicates the percentage of the total events where this particular log entry shows up. Selecting the
event will provide a total number of instances, the ability to view the events, and a chance to create
an alert based on this particular event.

Preparing for Attacks 179

Figure 7-11: Nagios monitoring console interface.

Figure 7-12: Splunk data configuration.

Network Forensics180

Figure 7-13: Splunk patterns.

Although you can perform analysis on large data sets without acquiring commercial tools, using a
tool like Splunk or another log management or analysis program can make life considerably easier. This
is even truer when you have more systems. In this case, 15,000 events were generated over the course
of less than 24 hours. Not long after taking the screen capture showing 15,000 events, the number of
events had risen to 18,000 and that’s only on a single host. You can see how having a program to do
analysis and management of logs for you could be very helpful. This is not to say that you should rush
out and get Splunk; a number of log management systems are available, and based on your needs and
budget you may find a different one to be more suitable.

Antivirus
Antivirus programs can be a useful source of information during an analysis. The logs should be able
to indicate not only if and when a file has been isolated as potentially problematic, but also when the
definitions have been updated. As you may know, antivirus programs rely on definitions of known
malware in order to be able to identify a file as a virus. If the program doesn’t have a definition, it
can’t identify the virus. This is one way systems can still be infected in spite of running antivirus,
even if the definitions are regularly updated. Until someone has created a definition, the virus is
going to go undetected. Knowing when the definitions have been updated, as well as which malware
has been added in each definition set, can help to get a timeline that may aid in your investigation.

Preparing for Attacks 181

Some enterprise systems may not allow users the control over what happens when a file has been
isolated and removed. However, if the specific implementation you are looking at does allow that
control, you may be able to see when users have removed files from quarantine. Again, this can help
you with timeline analysis and it may also provide you with filenames to investigate further.

Keep in mind that as you look at enterprise antivirus programs, you may need to look in different
places for the log files. They may be stored on the local systems in text files or they may be in the
Windows Event system. The location depends entirely on the package used and the way it handles
logging. Some packages, if they are multi-platform, may just write logs to disk directly so they don’t
have to rewrite the logging portion of the software for each platform they operate on. Writing to disk
will be the same across all platforms, so it’s easy to do once and include on all implementations. You
may also find that logs are pushed back to an enterprise console, so they may be stored on a server.
Again, you may need to look for them in different places on the server. It is entirely dependent on
the implementation of the antivirus software.

Incident Response Preparation
When an incident occurs you will be much happier if you have systems and capabilities in place ahead
of time. On the business side, there should be a policy in place that creates an incident response team
(IRT). The IRT should make collective decisions regarding how they are going to prepare themselves.
This may include making recommendations for different capabilities in the network like enabling
NetFlow or having a log management system in place. As with anything else, these will need to be
justified from a cost perspective. This requires understanding the potential for an incident to occur
as well as the types of incidents that may occur.

This is not a place to be Chicken Little. It’s important to be reasonable, rational, and objective
when creating potential scenarios. If you go into this saying the world is coming to an end you aren’t
likely to be taken seriously. You need to be able to really understand the business, what the threats
are, and their potential for manifestation. This will help with scale so you aren’t asking for the larg-
est possible solution just because it will make your job easier. You need to accept that you won’t get
everything you would really like to have just because it may one day make your job easier. Resources
will always be limited. If you are not already a part of the incident response team, working closely with
the incident response team on developing a plan that is both workable and reasonable is important.

This is another place where thinking ahead and some software may be beneficial. When you have
a virus outbreak, for instance, there will be an impact on hosts. In the end, many attacks that take
place on the network have an impact on the hosts. They will not always be just distributed denial
of service (DDoS) attacks that your service provider will have to handle, because nothing you are
able to do has any impact other than to further flood your network connection sending out RST or
other network messages.

You may need to be able to pull data back to a central place quickly to correlate what you are see-
ing on the network. Software packages can help with that. In fact, a number of software packages are

Network Forensics182

available that can help with incident response and forensic investigations. Log management solutions
will be covered in another chapter. While much of this is done on the host, it is useful to be able to
correlate your network traffic with what is happening on the host. Some of these software packages
will not only look at host artifacts like what is on the disk, but they will also look at memory. In the
case of a network attack, particularly when it comes to a malware infestation and communication
with a command and control server on the Internet, memory analysis can be essential.

Google Rapid Response
Google Rapid Response (GRR) is an open source offering from Google that helps to give you quick
access to systems on the network in the case of an incident. GRR uses a client/server model where
you install the server somewhere and employ a web interface to use it. Then, you install clients on
the endpoints you have control over. The endpoints communicate with the server so you can quickly
gather information from them. When something happens, you will want to pull data and do some
analysis. Using the Hunt feature, you can search for specific types of data from your clients. You can
see a sample of some of the things GRR can hunt for in Figure 7-14.

As noted at the end of the previous section, investigating memory can be important during an inci-
dent. In some types of attacks, it is essential. GRR makes use of Rekall, which is a memory analysis
tool forked from Volatility. Rekall can extract information from memory dumps, assuming it has an
understanding of how the memory is laid out for that particular operating system. Different operat-
ing systems, including different versions of operating systems, have different memory layouts when
it comes to locating data structures within the kernel that point to where processes are in memory
as well as other information that the kernel keeps track of, like network connections.

Of course, GRR can also look at files on the clients, though that would fall under the category of
operating system forensics. It is hard to peel apart network forensics and operating system forensics
sometimes, though, since what happens on the network doesn’t stay on the network. In many cases,
you are using the network to corroborate what you are seeing on the host, or you are using the host
to corroborate what you are seeing on the network. A tool like GRR can help to corroborate your
other, more purely network-based artifacts.

Commercial Offerings
GRR certainly isn’t alone when it comes to incident response software. One of the early commercial
offerings in this space was Carbon Black. Carbon Black also offered a client/server model where the
server is used for clients to communicate with. The server functions as a console for an analyst to
communicate with in order to interact with the clients. Using the console, an analyst can extract
necessary data when an incident occurs. This is similar to the way GRR works.

As the need for endpoint protection has become more obvious, other companies have gotten into
the space and the ones already there, like Carbon Black, are moving away from strictly focusing on
incident response prep and more toward detection and response. This response can include prevention

Preparing for Attacks 183

or protection and less strictly from an investigatory perspective. Walking through the vendor booths
at a recent BlackHat event, it became clear that many companies that didn’t previously have any offer-
ings in the investigatory space are suddenly interested there. Other companies, like CrowdStrike, are
newer and are involved in incident response, investigation, and endpoint protection. CrowdStrike
uses a Software as a Service (SaaS) cloud-based model for its service offering, which is a little differ-
ent from others in the space.

Figure 7-14: GRR hunt.

Even venerable forensic software vendors like Guidance Software, makers of EnCase, are getting in
on the incident response action. In addition to EnCase, which is good at a more traditional dead box
forensics investigation, Guidance Software, along with other companies that have forensic software,
have offerings that are moving more toward the incident response model, recognizing that more and
more, live analysis, including detection and perhaps prevention, is necessary given the adversaries
companies are facing. Of course, a company like Guidance Software and its multiple offerings can
integrate across different type of investigations if you are using all of its solutions.

Security Information and Event Management
One type of software that you may see more and more of in the enterprise space is for security
information and event management (SIEM). This is considered an intelligence platform that merges
some of what we talked about earlier with respect to log management along with an alerting or event

Network Forensics184

management platform. In this way, an operations team can get access to all of the information they
need as well as manage the event from start to finish. You don’t have to create events (tickets) any
longer in one system while taking information from another. The idea of a SIEM is to put all of the
intelligence and the workflow into a single system. This hopefully prevents the need to stare at mul-
tiple screens simultaneously or take your eyes off one screen in order to work in another as you enter
notes about an event. Everything comes together in one unified system. This can help to minimize
blind spots by not having data scattered across multiple repositories, viewed by multiple groups.
Additionally, pulling everything together helps with correlation since there could be multiple events
happening on multiple systems that are all related to the same incident. Pulling it all together helps
to reduce time spent by multiple groups working the same issue.

An advantage to this type of system is the ability to perform correlation across multiple sources
of information. Events are not always isolated, meaning they don’t always originate in the network
and stay there. They also don’t originate on a single host and stay there. There are generally multiple
sources of information, as we have discussed. The advantage of a SIEM is that you can provide all of
your data sources to the SIEM and it can handle correlation across multiple data points. This does
generally mean, though, that you have to understand your network and data points well enough to
be able to generate rules to allow the SIEM to create alerts or events that you can follow up on.

The danger of a system like this is simply information overload, though that danger is not at all
limited to a SIEM. However, if you have all of your information sources in a single system, there
may be either a desire to create a lot of rules to look for potential problems or there may be a lack
of understanding of how everything comes together, such that there may not be enough or even the
right rules in place to be able to see what is happening. As always, it comes down to defining what
you care about so you can only look at those things without needing to look at everything else.

Used correctly, a SIEM provides an extraordinary amount of power by combining disparate data
sources from your hosts and your network devices, including intrusion detection systems as well as
routers, switches, and firewalls. However, as suggested before, just because you can look at something
doesn’t mean that you should be spending your time there. It’s tempting to alert on everything and
follow up on it, but a much smarter and more efficient approach is to identify what you care about so
you can pay attention to just that. A SIEM offers the potential to weed out the things you don’t care
about while still retaining that information in case you need it later on.

As with the log management solutions, a SIEM needs to act as a log server in order to consume all
of the different data sources. This means that it can act as a syslog server and you can point all of your
Unix-like systems at it. There may be clients that get installed to collect other types of information
in addition to being able to act as a log host.

In addition to the commercial offerings in this space, some open source offerings may be worth
investigating. OSSIM is one that is currently managed by a company named AlienVault. OSSIM is
an entire Linux distribution that you install and get all of the capabilities of the SIEM rather than
having to install applications on top of an existing operating system. Considering this is security
information, you want your operating system installation to be as hardened as possible. OSSIM takes

Preparing for Attacks 185

the need to install and harden the operating system out of your hands, which should make the vault
where your security information is kept harder to get into.

Prelude is another piece of open source software that purports to function as a SIEM in that it
takes information from multiple, disparate sources like logs and intrusion detection systems, both
network and host-based, and collects them together. Prelude can be installed on any Unix-like operat-
ing system and includes a web-based console called Prewikka that functions as the interface. As with
other, similar solutions, Prelude uses agents that communicate back to a manager. The web interface
communicates with the manager to display all of the information that has been funneled into Prelude.

You may find that you don’t need a SIEM for your purposes, but because it is a possibility as a
place to aggregate a lot of data sources, including log data from network devices, it’s useful to know
that these types of software exist. Because you can create alerts from them, it can help to know when
there is an incident worth looking at, assuming that the alert has been created correctly.

Summary
Network and host-based investigations are inextricably linked because nothing happens in isolation.
As a result, some of what we have talked about in this chapter revolves around collecting information
from hosts. This is done in order to correlate with the network information you hopefully already
have in place. The network data will tell you how they got there and what was sent, that you may
not get from application logging. This information that you can collect as a point of correlation is log
data from network-based sources like switches, routers, and firewalls or it can be logs from operating
systems where network services are running. Because almost nothing stays in the network, network
attacks are often targeted at specific network services. Understanding what is happening with the
services and the operating systems can help you get a better grip on what is happening in the network.

A number of software packages and solutions can also help with the enormous volume of infor-
mation that is accumulating. This may be a log management solution or a security information and
event management solution. Incident response solutions are also available that can help with not only
collecting information, but making it easier to perform an investigation when an incident happens.

In the end, a lot of it comes down to being prepared. All of these solutions require they be in place
ahead of time, whether it’s configuring NetFlow on your network devices or acquiring a software
package to aid in the investigation. Enterprises should have incident response teams, which can help
to set priorities, and define and implement solutions that need to be in place ahead of an investigation.
Because an incident response team is often, and probably should be, cross-functional, there may be
members of the network or security groups participating. This means they would be able to provide
guidance on what is in place and what needs to be done.

Keep in mind that resources are always limited. Prioritizing needs and making a case for expen-
ditures is essential. This is best done through logical, rational, and objective analysis of the potential
for incidents and what is absolutely essential when it comes to performing an investigation.

Intrusion Detection
Systems8

In this chapter, you will learn about:

 ■ The value of intrusion detection systems to an investigation
 ■ Different types of intrusion detection systems
 ■ Challenges that can be associated with intrusion detection systems

It may seem obvious to talk about intrusion detection systems (IDS) in a book about network
forensics, though you may ask, if an IDS is in place, how much need is there for forensic investiga-
tion? The answer is that, in addition to identifying intrusions as they take place, an IDS can also be
used to simply generate data that could be used during the course of an investigation. As a result,
understanding how an IDS works and how to interpret the output can be beneficial to an investigator.
This includes different styles of detection that may be used, the architectures that may be in place
and, most specifically, the logs and alerts that the different systems will generate.

A number of intrusion detection systems are available, both commercial and open source, but the
rules that are used by Snort, which started as an open source IDS, are used in a number of other places,
which makes it useful to understand. As a result, we will be covering the use and implementation of
Snort. We will also talk about Suricata, another open source IDS, that uses Snort rules to function.
Finally, Bro is referred to as a network security monitor but it will do much the same thing that
Snort and other intrusion detection systems do. Because all of these are based on the use of rules, an
investigator can make use of their understanding of writing rules to help create data that could be
used in the course of an investigation. This is especially true if the case is ongoing.

While the common purpose of an IDS is generally thought to be the creation of alerts so opera-
tions staff can follow up on them, there is no reason not to make use of the detection capabilities to
just create log messages. An IDS can be a useful tool when it comes to performing network forensic
investigations.

The alerts an IDS generates are ideally sent to a management or monitoring console. Not all alerts
are sent to these consoles to be acted on, though, depending on their severity. It’s also possible for
alerts to simply be missed by operations staff. In fact, some attackers will trigger a flood of bogus

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics188

alerts in order to slip a real attack in through the noise. When that happens, the attack is logged
by the IDS but a system may end up being compromised without anyone seeing that it happened or
being able to do anything about it.

There is value for intrusion detection systems from the perspective of a forensic investigation as
well as security operations staff. The value may be different, but the functionality is versatile enough
that it can work for both populations.

Detection Styles
Intrusions can be difficult to detect, which may seem obvious by reading through the news. Because
it can sometimes be a challenge to determine bad traffic from good traffic, there are different ways
of making that determination. Challenging problems often have multiple solutions, after all. One of
the issues is that illegitimate traffic can look very much like legitimate traffic. Intrusion detection
shares some of the same challenges as anti-virus solutions. Often, we don’t know what something
bad looks like until the bad thing has happened. Using the approach of identifying bad events and
determining what they look like is called signature-based detection. Another approach that intru-
sion detection systems can take is to sort out normal activity from what appears abnormal. That is
referred to as heuristic detection.

Signature-Based
Signature-based intrusion detection systems rely on someone to identify a pattern in the malicious
network traffic. This pattern is the signature. Because this identification relies on noticing that some-
thing bad has happened, there is a very good chance that multiple systems could be breached or
attacked prior to someone figuring out what the signature should look like. Think of this as using
someone’s fingerprints or a mug shot after a crime has been committed as a way to be able to identify
the person who has committed the crime. They are great for identifying that person if they commit
a crime again, but it first required that a crime be committed in order for the identifying marker to
be captured. This is what signature-based identification is—a crime (bad/malicious traffic) has to
happen before the identification (signature) can be created.

This signature-based identification is a common approach to intrusion detection, just as it’s a
common approach to antivirus programs. When it comes to intrusion detection at the network level,
the signature may be any number of individual pieces of data or a number of them together. A network
signature may be the source IP address, for instance. Any traffic coming from a particular IP address
may need to be flagged as being bad in order to generate an alert. It may come down to particular
ports that are in use. For instance, you may want to flag whether someone is trying to use the Internet
Relay Chat protocol. This means that traffic occurring on port 6667 would be flagged for alert.

Signatures are not limited to just the header information, whether it’s IP headers or transport-layer
headers like TCP or UDP. An IDS can look at the packet data and signatures can be generated based

Intrusion Detection Systems 189

on that. This may require decoding of data in the application protocol, and the IDS may have ways
of handling that or else the signature may be designed specifically to address even binary protocols.

You may read this description and think about firewalls. In reality, there is some similarity between
them. When it comes to firewalls, the objective is to make decisions about whether to block or allow.
An intrusion detection system doesn’t make such decisions on its own, though it may be integrated
with a firewall to pass along information that could be used to establish firewall rules. If an IDS is
placed correctly within the network architecture, it may be able to detect and alert on traffic that a
firewall may block. This may mean you could get additional information about traffic that isn’t get-
ting inside your network but is still targeted at your network. You may also find traffic that should
be blocked by the firewall but is showing up

Creating rules requires knowledge and skill. There can be considerable complexity in how to
develop an appropriate rule to detect information. We’ll get into some basics of some of the rule types
in the “Snort” section later in this chapter, but just enough to barely scratch the surface. Complex
rules that a network forensic investigation may need could take a lot of practice and a fair amount of
knowledge of protocols and certainly of the attack or intrusion that is under investigation.

Rules are at their very core sets of patterns. Each of these patterns needs to be compared to every
packet that comes through the IDS. The more patterns there are, the more comparisons need to happen.
When it comes to simply matching on the headers, the location for each header field is known, which
makes it easier to do the matching. The IDS can jump straight to the location in the header and determine
whether or not the pattern is there. When it comes to looking deeper into the packets, however, that’s a
different story. Each byte needs to be checked against the pattern. That’s far more processor-intensive
and time-consuming than knowing exactly where a piece of information may be located.

Heuristic
A heuristic detection system is sometimes referred to as anomaly-based. It is based on the idea that
we can know what normal network traffic looks like, and anything that is not normal is an anomaly.
If traffic that is not normal is seen by the IDS, alerts get generated. Just as a signature is like a mug
shot or set of fingerprints, an anomaly-based system is like a door alarm or, perhaps more accurately,
a motion detector. Motion detectors expect a particular set of circumstances—a lack of motion. When
any motion occurs, it’s an anomaly and the system alerts on it.

The problem with approaches like this is the potential for alerts that aren’t really intrusions. You
can see this in the case of a motion detector perhaps more easily than trying to think about it from
a network perspective. If a window is left open and a breeze comes up, it may rustle a piece of paper.
That rustle may be enough to trip the motion detector. But even though the alarm goes off, there is
no intrusion; no burglar has entered the premises. As another example, you may have left something
in a precarious position before setting the alarm and leaving the premises. It may have appeared to
be stable and not moving at all, but it could slip and eventually fall. This is another movement that
may trigger an alarm.

Network Forensics190

From the standpoint of a security engineer, an anomaly-based system can be challenging because
it may require a lot of tuning to keep the baseline up to date. The baseline determines what is con-
sidered normal so that anomalies can be detected. From the standpoint of a forensic investigator,
though, an anomaly-based IDS can be useful. It may provide a lot of data about anything that occurs
that isn’t normal, which may be a lot of information. The problem is that, unlike signature-based
systems, there is no control over what gets detected. Another problem is that, as mentioned earlier,
attack traffic can look like regular traffic. If someone is attacking a web server, they will do it using
HTTP, which is the protocol that the web server understands. This is not to say it will look entirely
normal, but it may look normal enough that it will be difficult to differentiate between the attack
and regular traffic unless the IDS is good.

Any heuristic or anomaly-based IDS requires a baseline to work from. This means the system has
to go through a period of learning. The baseline then needs to be checked as traffic comes through.
How the baseline is implemented depends entirely on the vendor who has developed the software.
Once the baseline has been created, you will always need to check against the baseline. A signature-
based IDS can have multiple rules, and the number of rules can increase over time. This can increase
the processing needs of a signature-based IDS. This makes signature-based different from heuristic
because signatures are constantly updating, but a baseline remains a baseline until something sig-
nificant changes, such that the baseline needs to be altered.

Host-Based versus Network-Based
In addition to two different detection styles, there are also two types of IDS. The first is network-based
and the second is host-based, and though we are primarily concerned with the former, it’s worth
talking about both. Although a host-based IDS doesn’t have network information, it could be used
as corroborating information in an investigation. It’s also important to make a distinction between
them. While the goal is to detect intrusions at the time they happen, or at least very near the time, the
method for detecting the intrusion is very different. Network intrusion detection systems are focused
on looking at packets, while host-based intrusion detection systems are focused on what happens on
the host. As noted in Chapter 4, the network can’t lie. The signals on the wire are what has happened.

There is a challenge with network intrusion detection systems (NIDS), however, that can’t be
addressed easily. If traffic is encrypted, the NIDS can’t do any detection on the payload because it’s
encrypted. The NIDS would be limited to looking at the headers through the transport layer, which
cannot be encrypted. The only way for a NIDS to be able to detect encrypted traffic is for it to have
the decryption key, but if the NIDS has the decryption key, it’s a violation of end-to-end encryption
and confidentiality. We’ll get into encryption in more detail later on, but it would be very uncom-
mon for a NIDS to have encryption keys. A host-based IDS, on the other hand, detects events after
the decryption process has already happened. A host-based IDS is looking at the events within the
operating system after the network traffic has been received and action has been taken by the receiv-
ing application.

Intrusion Detection Systems 191

Although we make a distinction between a network IDS and a host-based IDS, it’s also true that
you can run a network IDS on a host. The difference there is what is being analyzed. A network IDS
looks at traffic that has either been fed directly into the IDS from the network interface or has been
captured and saved. In the software we will be looking at here, you can use tcpdump or Wireshark
to capture the data and store it for analysis offline. This can be helpful if the engagement you are
working on has managed to capture some data. Capturing data this way doesn’t mean that the
opportunity to analyze it through an IDS has been lost. You can feed the packet capture (pcap) file
into your IDS to generate alerts. This can save a lot of time in your analysis, because you don’t have
to manually dig through the packet capture yourself.

NOTE The pcap file format started life in the early 1990s as the BSD Packet Filter (BPF). It has
since evolved into the pcap format with an associated application programming interface (API)
and library called libpcap. The libpcap library is part of what makes tcpdump work, but it has also
been utilized in numerous other programs as well, including the programs we will be looking at in
this chapter.

The analysis does require that you have relevant rules set up for what you are looking for.
With the systems we are looking at here, there needs to be a rule established for the IDS to alert on.
These systems won’t just automatically detect bad traffic for you. Even if you were using an anomaly-
based system, the bad traffic you were looking for would have to look enough like an anomaly to be
detected. An IDS is not a magic bullet to alert on every type of bad network traffic that was available.

The first software package we’ll be taking a look at here is Snort. The Snort rules can be used across
multiple packages, which makes learning how to read and create the rules useful, even if you aren’t
using Snort itself. Snort has been around for a long time but another old software package called Bro
has seen a lot of use in recent years, especially by incident response professionals. Bro is actually a
network monitoring framework, but it can be used to create a network IDS. Because of its power and
flexibility, it’s worth looking at.

Snort
Though Snort is not the first network IDS, it has been around for a long time and exists in both open
source and commercial offerings. The commercial version of Snort was Firepower, offered by the
company Sourcefire (which was acquired by Cisco in 2013). Snort was created by Martin Roesch
in 1999. Snort is highly configurable and can be run on multiple operating systems and hardware
platforms. Rather than relying on libpcap as it once did, Snort has introduced a Data Acquisition
(DAQ) layer. The DAQ provides an abstraction for the means of handling packets, which decouples
it from libpcap so other libraries can be used, depending on the platform Snort is running on. While
you’ll likely be using Snort on either Windows or Linux and they will use some flavor of libpcap, the
software is capable of running on other systems, including systems like an IDS appliance running a
real-time operating system.

Network Forensics192

Snort has been around long enough that it is not only mature in the sense of capabilities, but it
has also had a lot of contributors, which provides for a lot of functionality. Before you even get to
the point where you can start thinking about the rules you are going to enable or write, you need
to think about the capabilities you want to enable and how you want those capabilities configured.
Snort allows for a lot of configurability and also adds external functionality like preprocessors. This
means a user can enable that additional functionality from one of the preprocessors that Snort has
built in, or someone with knowledge and skill can add their own preprocessor.

Preprocessors
Snort is highly configurable, including not only multiple options for output but also the ability to add
modular plug-ins called preprocessors. The preprocessors that have been enabled run before any of
the rules are processed, but after the packet has been decoded by Snort. Snort handles packets but
each packet may not tell the whole story, and if the detection were based solely on a packet, it would
be easy to bypass detection. The only thing an attacker would need to do would be to break apart the
communication so the entire sequence of bad traffic wasn’t confined to a single packet. A complete
conversation can take place over a large number of packets, and since TCP is a stream-based protocol,
one of the preprocessors available with Snort is one to reconstruct a TCP stream in order to better
perform more complex detection.

Even though TCP is a stream-oriented protocol, conversations also happen over UDP. The protocol
itself doesn’t support streams, but that doesn’t mean streams don’t happen using UDP. The Trivial File
Transfer Protocol (TFTP) is an example of a protocol that streams data but uses UDP as the transport
protocol. Just like firewalls will keep track of state with UDP communications, Snort can also keep
track of the state of UDP communications. This is even more important, perhaps, with UDP because
UDP communication can be easily spoofed. Someone can easily inject packets that could mimic an
existing stream, so having an IDS that can look for bad injections is important. Not all higher-level
protocols support anti-spoofing measures, after all, which means injections can be possible.

On top of preprocessors for reconstructing lower-layer protocols like TCP and UDP are a number
of application-layer protocol preprocessors. When so many attacks happen at the application layer,
getting some additional help there is valuable. SMTP, POP, HTTP, and SSH are all preprocessors that
are available within Snort, and anyone with programming skill can add additional preprocessors.
The objective of the preprocessor is to make it easier to detect more complex attacks.

Each preprocessor comes with configuration settings that alter the behavior of Snort. Different
configurations can enable better detection. As an example, the Session preprocessor is about manag-
ing streams of different protocols. You can enable the preprocessor to track streams for TCP, ICMP,
and UDP, but you can also disable that ability on a per-protocol basis. This session tracking can
be resource-intensive because Snort has to maintain data for each session. To limit the amount of
resources Snort is consuming, particularly if the network were to come under attack, the Session
preprocessor can be configured to limit the number of streams it is keeping track of.

Intrusion Detection Systems 193

This is just one example of the type of configurability that is available within the Snort
preprocessors. Each of the preprocessors will have their own settings that can be manipulated within
the Snort configuration. An example of the default configuration for the Session preprocessor is
shown in Listing 8-1.

Listing 8-1: Snort Stream Preprocessor Configuration

preprocessor stream5_global: track_tcp yes, \
 track_udp yes, \
 track_icmp no, \
 max_tcp 262144, \
 max_udp 131072, \
 max_active_responses 2, \
 min_response_seconds 5
preprocessor stream5_tcp: policy windows, detect_anomalies,
require_3whs 180, \
 overlap_limit 10, small_segments 3 bytes 150, timeout 180, \
 ports client 21 22 23 25 42 53 79 109 110 111 113 119 135 136 137
 139 143 \ 161 445 513 514 587 593 691 1433 1521 1741 2100
 3306 6070 6665 6666 6667 6668 6669 \ 7000 8181 32770 32771
 32772 32773 32774 32775 32776 32777 32778 32779, \
 ports both 80 81 311 383 443 465 563 591 593 636 901 989 992 993
 994 995 1220 1414 1830 2301 2381 2809 3037 3128 3702 4343
 4848 5250 6988 7907 7000 7001 7144 7145 7510 7802 7777
 7779 \ 7801 7900 7901 7902 7903 7904 7905 7906 7908 7909
 7910 7911 7912 7913 7914 7915 7916 \ 7917 7918 7919 7920
 8000 8008 8014 8028 8080 8085 8088 8090 8118 8123 8180 8243
 8280 8300 8800 8888 8899 9000 9060 9080 9090 9091 9443 9999
 11371 34443 34444 41080 50002 55555

This configuration sample says that we want to track TCP and UDP but we don’t want to track ICMP
within the stream5_global preprocessor, which is the module name for the Session preprocessor we
have been discussing. Additionally, TCP and UDP have different settings for the maximum number
of sessions that Snort will track using this preprocessor. The max_active_responses setting indicates
the number of responses Snort will provide. Snort can be configured to respond to messages that it
receives. It does this to protect the system or network. In order to drop sessions that are unwanted,
Snort can be configured to send a RST message or an ICMP error message. This setting configures
the maximum number of those messages that will be sent. Without this setting, Snort could be co-
opted into participating in a denial of service attack because it could be replying to a large number of
bogus messages, flooding the network connection in reverse. This way, Snort can send an appropriate
response to a mistaken connection attempt and ignore anything that is malicious beyond that, other
than any alert that has been configured.

Network Forensics194

The stream5 preprocessor can be configured to have a different policy based on the operating
system at the target. The configuration shown in Listing 8-1 indicates that the policy specified is for
Windows systems. This particular policy states that in order to be considered a session within TCP,
the three-way handshake has to be completed within 180 seconds. This is not the default setting for
this module. By default, the module will track sessions that have not completed a three-way hand-
shake. The policy also says that a maximum of three small segments are allowed before the anomaly
gets flagged. According to the policy, a small segment is one that is 150 bytes or less.

Because some rules have a directionality component, it is necessary to track which end is the client
and which end is the server. You can see this differentiation in the policy where ports on which the
stream reassembly will take place are noted, based on client, server, or both. You can limit the amount
of stream reassembly done by limiting the number of ports. You can also disable reassembly for ports
that may not be in use on the network on which you are running Snort. If you don’t have services
there and there are no rules, there is no point in having Snort bother to reassemble the stream for you.
Remember, Snort relies on rules to do alerting. Aside from easily flagged anomalies at the protocol level
like small segments, Snort won’t reconstruct an FTP stream, for instance, and start flagging problems
with FTP if you don’t have any rules that are targeting FTP communications. Some of the preproces-
sors have detections built in but for the most part, it all comes down to the rules you have enabled.

Configuration
Most instances of Snort have a very extensive configuration file that is included by default, if you
are using either a package created by your Linux maintainer or you are using a Windows installer.
While this is helpful because of the amount of documentation that is included in the configuration
file, it can also be overwhelming to look at all of the available configuration settings. The file that
you will typically look at is very long and has a lot of configurations that you can manipulate. In
most cases, the way that Snort is set up by default will work fine for you. However, you may want to
take a look at some settings either because you have to set them up or because they may potentially
make your life easier.

As one example, Snort knows nothing at all about your network design and layout. However, you
can tell Snort what all of your internal networks are so it can differentiate between what is internal
and theoretically trusted and what is entirely external. The configuration keyword Snort uses for
setting these variables is ipvar. Using ipvar, you can create variables that can be used later on. For
instance, setting ipvar HOME_NET tells Snort what IP addresses are considered to be in your home
or internal network. Anything outside of that may be considered external, especially if you were to
use the configuration setting ipvar EXTERNAL_NET !$HOME_NET. This says anything that is not in the
variable HOME_NET should be considered EXTERNAL_NET.

NOTE The use of the $ symbol in front of a variable name essentially dereferences it. This means
that if I were to use $HOME_NET, what I really mean is that I want this replaced with the contents of
the HOME_NET variable.

Intrusion Detection Systems 195

To make life easier for your rules later on, you can get even more granular by telling Snort
where all of the different server types are on your network. The configuration fragment shown in
Listing 8-2 will tell Snort where different server types may be located.

Listing 8-2: Fragment of snort.conf with Server Settings

List of DNS servers on your network
ipvar DNS_SERVERS $HOME_NET

List of SMTP servers on your network
ipvar SMTP_SERVERS $HOME_NET

List of web servers on your network
ipvar HTTP_SERVERS $HOME_NET

List of sql servers on your network
ipvar SQL_SERVERS $HOME_NET

List of telnet servers on your network
ipvar TELNET_SERVERS $HOME_NET

List of ssh servers on your network
ipvar SSH_SERVERS $HOME_NET

List of ftp servers on your network
ipvar FTP_SERVERS $HOME_NET

List of sip servers on your network
ipvar SIP_SERVERS $HOME_NET

Similar to ipvar, you can use portvar to set port variables. This may be helpful to configure
SSH_PORTS and then use the variable in your rules. If you are using multiple SSH ports on your net-
work rather than using the single, default port, having a variable that can be referenced is quite a bit
easier than having to re-create or alter rules in order to catch SSH attacks. Referencing SSH_PORTS in
the rule allows you to change SSH_PORTS in the configuration file, and all the rules get the changes
automatically once Snort has re-read the configuration file and re-loaded the rules. This shorthand
can save a lot of time and maintenance work.

In addition to ipvar and portvar, you can also use var to specify variables. These variables may be
useful if you are setting directories, as in the location where Snort may find preprocessors and rules.
This allows you to set whatever directory you like for your rules and even move them around. All you
have to do is change the variable, and anything that references that variable automatically gets changed.

You can configure a number of settings, which will typically result in either more or fewer
alerts, depending on how you have your settings configured. The configuration file fragment shown
in Listing 8-3 configures a number of settings that will change the way Snort alerts on behaviors.

Network Forensics196

Listing 8-3: Snort.conf fragment with Configuration Settings

Stop Alerts on experimental TCP options
config disable_tcpopt_experimental_alerts

Stop Alerts on obsolete TCP options
config disable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts
config disable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:
config disable_tcpopt_alerts

Stop Alerts on invalid ip options
config disable_ipopt_alerts

Alert if value in length field (IP, TCP, UDP) is greater the length
 of the packet
config enable_decode_oversized_alerts

The comments, indicated by a # at the beginning of the line, provide documentation about what
each configuration setting is doing. Most of the ones you can see here are based on disabling certain
alert types. This is likely because the alerts would generally be false positives. If you are interested
in seeing more of each of these types of alerts, you can easily change disable to enable in the
configuration file and then restart Snort. The new changes will be picked up and you will start
to see more of these alerts. In some situations, more of these types of alerts are good. The default
for these is disable because most people are not going to be particularly concerned with them.
Modern operating systems are generally going to be okay with handling the types of attacks that
these sorts of alerts may flag. Since there is little danger, any alert would just create more data than
the security operations team probably needs to have.

NOTE Remember that when it comes to alerts, more is not better. On the operations side, every
alert should be looked at. Creating a lot more alerts has the potential to overwhelm the operations
or monitoring team. This could end up in legitimate attacks being missed because they were buried
in a lot of alerts that were meaningless. Enabling all available rules is almost never the way to go.

The preprocessor section is extensive, if you are choosing to enable all or even most of the prepro-
cessors. If your network is typical, it will likely have a mixture of server types, and the preprocessors
that help to decode and translate the different protocols are helpful in getting useful alerts. Because
of that, each preprocessor needs to be enabled and then configured. The stream5_tcp configuration
settings shown earlier are only one section of the entire configuration for the Sessions preprocessor.
UDP would also have a set of configurations, as would ICMP were it enabled. This is also just a single

Intrusion Detection Systems 197

preprocessor. Snort has a number of available preprocessors, and each would have a number of lines
of configuration settings.

The next important section is where you indicate the output types. This isn’t only about where you
output to but also about what gets output—Snort can output alerts but it can also output packets,
which provide the traces necessary to see what actually happened. You could also configure Snort
to output both. Snort has no problem at all with providing output in multiple forms simultaneously.
You can see the default configuration settings for the snort.conf file in Listing 8-4.

Listing 8-4: Snort.conf Output Section

unified2
Recommended for most installs

output alert_fast: alerts

output unified2: filename merged.log, limit 128, nostamp,
 mpls_event_types, vlan_event_types
output unified2: filename snort.log, limit 128, nostamp,
mpls_event_types, vlan_event_types

Additional configuration for specific types of installs
output alert_unified2: filename snort.alert, limit 128, nostamp
output log_unified2: filename snort.log, limit 128, nostamp

syslog
output alert_syslog: LOG_AUTH LOG_ALERT

pcap
output log_tcpdump: tcpdump.log

The one change from the default that was installed on an Ubuntu Linux system is the addition
of output alert_fast: alerts. This tells Snort to just dump alerts out to a file without any of the
other data. In the unified2 output type, Snort is sending both alerts and packets to a single alert
file. Even this has a number of settings that determine how and what is being logged. As an example,
the limit of the file size in megabytes is 128. If you want larger output file sizes, you can configure
that. This also indicates that MPLS and VLAN event types should be included, though those settings
also require that Snort has been compiled with that ability built in. If Snort was not configured that
way, these output types would not be created because Snort would have no way of generating them.
When Snort is built from source code, features have to be enabled that turn on the ability to output
in particular ways, such as to a database.

The output provided by Snort can be difficult to parse easily, which is why additional software may
be required. This additional software can also be necessary because some of the output types have

Network Forensics198

been removed from Snort. The program barnyard2 can read the Snort unified2 output and forward
the data along to other output types, including databases.

Rules
As hinted at earlier, while preprocessors and other capabilities are important to Snort, the rules are
the heart of what happens. Although you can create your own rules, a substantial number of rules
can be provided for you. By default, the Snort source doesn’t come with rules. Some Linux distribu-
tions will include some rules with the Snort package but that’s not always the case. Because rules are
regularly being contributed, these additional signatures need to be downloaded. This means that new
rules need to be pulled, and Snort doesn’t come with the ability to do that without help. You can use
a program like pulledpork to regularly download the new sets of rules that are available. Pulledpork
and other automatic rules managers require an oinkcode that can be obtained for free from Snort.org.

New rules are typically based on new types of attacks. Because rules can be so specific, new rules
are needed to really target the specifics of newer attacks. This is especially important because the
message that is configured in the rule indicates the type of attack. A generic rule may match a num-
ber of different types of attacks, but that would require additional work on the part of the operations
staff looking at the alerts. This means they would have to do an investigation before they determine
what happened and whether something needs to be done. More detail in the message can help to
easily determine the response that would be needed. This additional detail can result in a lot of new
rules with a lot of detail in them.

To understand how Snort rules are constructed, let’s look at a couple of very simple rules, shown
in Listing 8-5. The lines have been numbered to makes things clear, but the numbers would not be
included in a rules definition. It just makes it easier to see where one rule stops and the next starts
because the lines can appear to run on if you aren’t familiar with what to look for.

Listing 8-5: Snort Rules

1. alert icmp any any -> any any (msg:"Large ICMP packet"; dsize:>1200;
 reference:arachnids,246; classtype:bad-unknown; sid:200049; rev:4;)
2. alert tcp any any -> any any (msg: "SYN scan"; flow: not_established,
to_server; threshold: type threshold, track by_src, count 15,
seconds 60; flags: S; sid: 100090; rev: 1;)

The first rule is based on the ICMP protocol. The rule says that messages can come from anywhere
and be destined anywhere. The any any indicates source address and port, and though there are
no ports in ICMP, the structure of the rule remains the same. Once we have identified the source,
destination, and the protocol, we can start looking at what the rule actually says. This all takes place
inside the parentheses.

The order of the pieces of the rule doesn’t make any difference. Each keyword that is essential
to the rule is followed by a colon. The first keyword is msg and it indicates what should be included

Intrusion Detection Systems 199

in the alert should this rule trigger. This particular rule is paying attention to the data size (dsize).
What we are looking for is an ICMP packet with a payload larger than 1200 bytes. The reference
keyword indicates where to go for additional information. arachnids indicates that the rule may
have come from the database at WhiteHats.com. This particular rule doesn’t care what type of ICMP
message is sent, just that the packet size is large.

After the reference, we indicate the classtype. This is a way of categorizing the rule, which can
allow for additional statistics related to what is being detected. This type of information can provide
insight into the areas where resources may be deployed based on the attacks that are common. The
classtype allows you to pull a number of specific rules into a single bucket. Finally, the Snort ID
(SID/sid) is just a numerical identifier to identify the particular rule, and the revision number. If the
rule changes, the revision number can also change to indicate there have been alterations to the rule.

The second rule uses TCP rather than ICMP but we are still looking at any source address and port
as well as destination address and port. In order to change that, we can use classless interdomain
routing notation. For example, you could say alert any any -> 10.0.0.0/8 80 to indicate that
the destination is anything on the 10. (sometimes pronounced ten dot) network with a destination
port of 80. This means the rule applies to the web port on anything on the private address range of
10.0.0.0–10.255.255.255.

These, as indicated, are very simple rule examples with only a subset of capabilities of Snort. The
rules in Listing 8-6 are much more complex with more checks.

Listing 8-6: More Complex Snort Rules

1. alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"COMMUNITY ICMP
Linux DoS sctp Exploit"; icode:2; itype:3; content:"|28 00 00 50 00
00 00 00 F9 57 1F 30 00 00 00 00 00 00 00 00 00 00 00 00|";
reference:nessus,19777; classtype:attempted-user; sid:100000164;
rev:2;)
2. alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB
msqueue andx bind attempt"; flow:established,to_server; content:"|00|";
 depth:1; content:"|FF|SMB"; within:4; distance:3; pcre:"/^(\x75|\x2d|
\x2f|\x73|\xa2|\x2e|\x24|\x74)/sR"; byte_test:1,!&,128,6,relative;
content:"%"; depth:1; offset:39; byte_jump:2,0,little,relative; content:
"&|00|"; within:2; distance:29; content:"|5C|PIPE|5C 00|"; distance:4;
nocase; byte_jump:2,-17,relative,from_beginning,little; pcre:"/^.
{4}/R"; content:"|05|"; within:1; byte_test:1,!&,16,3,relative; content:
"|0B|"; within:1; distance:1; content:"|B0 01|R|97 CA|Y|D0 11 A8 D5 00
A0 C9 0D 80|Q"; within:16; distance:29; flowbits:
set,smb.tree.bind.msqueue; flowbits:noalert; reference:cve,2003-0995;
reference:url,www.eeye.com/html/Research/Advisories/AD20030910.html;
reference:url,www.microsoft.com/technet/security/bulletin/MS03-026.mspx;
classtype:protocol-command-decode; sid:3164; rev:2;)

The first rule is an ICMP rule, much like the first rule in Listing 8-5. Unlike that rule, which
didn’t care what ICMP type was being sent, this rule checks that. This rule is looking for an ICMP

Network Forensics200

destination unreachable message (type 3) and more specifically, protocol unreachable (code 2). This
is a message that would be originated by a system if a sender were trying to communicate using a
protocol not supported by the recipient. You will also note that there is a content field in the rule. This
content is specified as hexadecimal bytes, indicating that the data is likely binary in nature and not
representable in an ASCII format, which would present as a readable string, just as this text that you
are reading is. If the data translates to unprintable characters, it needs to be represented as bytes and
hexadecimal is a quick way of representing that information. A single 8-bit byte can be represented
as two hexadecimal characters rather than a string of eight 0s and 1s. The rule comes from a set of
community-contributed rules, as indicated by the message that gets sent if the alert is triggered.

The second rule is quite a bit longer because it is looking for more detailed information within
the packet. This rule also indicates flow designation, which was discussed earlier. First, this is an
established connection, meaning that the three-way handshake has been completed and the two
systems are in conversation. The rule specifies that it should only apply on messages directed to
the server. The server would be the recipient of the initial SYN message and the client is the sender.

NOTE Regardless of the type of system you may be looking at, clients originate requests to serv-
ers. A web server can originate a request to another system, even a desktop, but the web server
originating the request would be the client in that communication stream.

Beyond the flow, the rest of the rule primarily deals with the content of the message. Using key-
words like within and distance, you can specify where in the message to look for specific content.
When writing rules, you can indicate exactly where in the message to start looking by using the
offset keyword. This is the byte location as offset by the beginning of the data portion of the packet.
This doesn’t include the headers from the transport and network protocols. Only the data portion of
the packet is considered when it comes to offsets. It may be hard to see but there is an offset indicated
in this rule. The offset indicates 39 bytes from the start of the data payload in the packet.

To determine where to stop, you have to use a keyword like depth. As an example, in this rule, you
can see that it specifies |00| as the very first byte in the packet. This is indicated by the depth of 1.
If we wanted to allow that |00| byte to be within the first three bytes, we could specify a depth of 3.

You can match on multiple contents within the packet. Once you have found the first match, you
can tell Snort where to start looking for the next match. You do this with the distance keyword,
which indicates how far away from the first match Snort should start looking for the next one. A
distance of three bytes is essentially the offset from the last content match point. Whereas distance
tells Snort to jump ahead, within says that a match must occur within the specified number of bytes.
The within: 16 in Listing 8-6 says that the match must occur within 16 bytes of the last match and
no further than that. Between distance and within, you get the upper and lower bounds of where
Snort should be looking for a match.

Intrusion Detection Systems 201

There are different ways to look for content within a packet. The first is by byte values using a
hexadecimal notation. The second is an ASCII-printable string. You could indicate that you are
looking for the content “n00bz,” which would be a human-readable string and not bytes that are not
represented in a way humans can easily read. Another way to look for content is to use pattern match-
ing, such as Perl compatible regular expressions (PCRE). Regular expressions are ways to program-
matically identify patterns where you may know what content should look like without necessarily
knowing what the content actually is. As an example, Listing 8-7 shows a way of identifying phone
numbers using a regular expression. We don’t know what the phone number is necessarily, just that
we are looking for something that looks like a phone number in its pattern.

Listing 8-7: PCRE for Telephone Number

'/^((([0-9]{1})*[- .(]*([0-9]{3})[- .)]*[0-9]{3}[- .]*[0-9]{4})+)*$/'

Using this collection of rule settings, you can get very specific about what you are looking for.
This does, though, require that you can read the data. There are two problems here. The first is that
you need to have collected enough data to know exactly what the rule should look like. The second
is that if you get very specific, but patterns within the packets change from one packet to another,
your rule won’t match. As an example, if the pattern in half of the packets associated with an intru-
sion is |00 0C| and the other half is |00 0B| but you only saw half of them and your rule is based on
|00 0C|, then you’ll miss half of the messages. Your detection is only as good as your rule and your
rule is only as good as the information you have that led to the creation of the rule.

Suricata and Sagan
Suricata is an open source intrusion detection system that can use Snort rules to operate. In addition,
it can output to the same unified2 output format as Snort. When Suricata was developed, it had
the advantage of being multithreaded where Snort was single-threaded. The multithreaded design
allowed for better performance with Suricata because multiple execution threads could be operating
on messages at the same time. Snort has since moved to a multithreaded program design in version
3.0. Suricata was also designed to be more oriented toward application layer protocols. When it was
developed, it had the capacity to do advanced work with HTTP. As mentioned earlier, Snort supports
multiple preprocessors to handle application-layer protocols like HTTP.

One significant difference between Snort and Suricata is the configuration file. Whereas Snort uses a
complex configuration file with different ways of setting information, Suricata is very straightforward,
using YAML (Yet Another Markup Language or YAML Ain’t Markup Language), which is a way of
serializing data in a human-readable format. YAML uses a simple and straightforward way of storing
complex data. Unlike XML, YAML doesn’t have as much overhead but is similarly self-documenting

Network Forensics202

if used correctly. The default Suricata configuration file provided on an Ubuntu system is detailed
and large, just as the Snort configuration file is. Because it’s in YAML, though, it looks quite a bit
different, as shown in Listing 8-8.

Listing 8-8: Suricata Configuration Fragment

Configure the type of alert (and other) logging you would like.
outputs:

 # a line based alerts log similar to Snort's fast.log
 - fast:
 enabled: yes
 filename: fast.log
 append: yes
 #filetype: regular # 'regular', 'unix_stream' or 'unix_dgram'

 # Extensible Event Format (nicknamed EVE) event log in JSON format
 - eve-log:
 enabled: yes
 filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
 filename: eve.json
 #prefix: "@cee: " # prefix to prepend to each log entry
 # the following are valid when type: syslog above
 #identity: "suricata"
 #facility: local5
 #level: Info ## possible levels: Emergency, Alert, Critical,
 ## Error, Warning, Notice, Info, Debug

At the top level, we have a configuration block. The block is for outputs. The : indicates that what
comes after is all of the parameters that go with the outputs section. YAML uses whitespace to indi-
cate where in the block it is. Everything at the same indentation level belongs to the same level of
configuration. Fast and eve-log are two different sections of outputs, and everything indented under
those two belong to each section header. Under fast, for instance, we have the parameter enabled.
This fragment of configuration indicates that fast output has been enabled. We can also see that there
is a filename. All fast alerts are to be written to the log file fast.log. It also indicates to append to
the log file. The filetype is commented out, as indicated by the line starting with a #. The subsequent
comment, which would be left in place if the line was uncommented, indicates that the options for
this parameter are regular, unix_stream, or unix_dgram. The latter two would be used in the case
of network output. Stream indicates using TCP while dgram, short for datagram, would be for UDP.

Sagan isn’t so much a network intrusion detection system as a correlation engine. A correlation
engine is used to pull together disparate sources and make sense of them. It is included here because
it uses a similar structure to Snort’s configuration file and also uses Snort’s rule format. This allows
Sagan to be used with an existing Snort installation. The same programs that can parse output and

Intrusion Detection Systems 203

pull rules for Snort can also be used for Sagan. Using Sagan, scripts can be triggered based on an
alert. This allows Sagan to respond to alerts rather than simply alerting on them.

While there is no particular reason to use either Suricata or Sagan to perform analysis of the
network, you should be aware that if you happen to run into one of these installations, you can use
what you know about Snort to create rules. One disadvantage to both Suricata and Sagan is that by
comparison with Snort, the documentation level isn’t as high. This is not to say that they should be
discounted, however. Both continue to be actively developed. Both have had releases within a mat-
ter of days or weeks of this writing. While intrusion detection systems are generally only as good
as their rules, there is enough additional functionality in both of these software packages to make
them worth looking at.

Bro
Bro has been around about as long as Snort has. It was first described as an intrusion detection system
in 1999 by Vern Paxson at the Lawrence Berkeley National Laboratory. Paxson was also affiliated
with the AT&T Center for Internet Research. The intention of Bro was to provide a network intrusion
detection system that could support high-speed connections like Fiber Distributed Data Interface
(FDDI). At the time Bro was developed, FDDI was about as fast as you could go. The challenge with
network intrusion detection systems at the time was that the hardware available for these systems to
run on was insufficient to keep up with a fully utilized network. It was not uncommon for network
intrusion detection systems to run on slower network links and sometimes at only half-duplex, which
meant that the link could either transmit or receive but not both at the same time.

Unlike Snort and the other IDSs that we have looked at, where rules that are essentially pattern
matching are written for detection of events, Bro has an entirely different way of looking at events.
Rules are not simply ways of identifying packets and alerting on them. Instead, Bro is based around
the idea of policies and events. Bro is event-driven, which means that when events happen, functions
get called. Bro provides a lot of flexibility, as compared to an IDS like Snort, that provides a small
number of actions that can be triggered. Bro, by contrast, allows you to write scripts to perform the
detection and also handle how you want to respond. This not only allows for custom alerting but
also for reacting to events. An example of an event response is shown in Listing 8-9.

Listing 8-9: Bro Event Script

event http_reply(c: connection, version: string, code: count, reason:
string)
 {
 if (/^[hH][tT][tT][pP]:/ in c$http$uri && c$http$status_code
== 200)
 print fmt("A local server is acting as an open proxy: %s",
cidresp_h);
 }

Network Forensics204

This script triggers when an HTTP reply is seen by Bro. The script looks for http without caring
about case and also for the status code to be equal to 200. The status code 200 means success. To be
clear, the script isn’t generating the event. It is responding to the event. Bro generates the event based
on either watching network traffic or by looking at data in the pcap file provided to Bro.

The architecture and design of Bro provides a lot of power. The scripting language used by Bro
provides more flexibility when it comes to identifying packages. Even though the Snort rules syntax
is very rich and powerful, the scripting language enables you to dig deep into the data that has been
provided. Like most scripting languages, the one used by Bro supports constants, local variables, data
types, and sets. Additionally, Bro supports tables, which can allow for quick lookup of information.

The bro_init event gets triggered when the system is started up and should be handled by scripts
that you are writing. This allows the script to initialize anything that needs to happen within the
context of the script, including creating logs. The function Log::create_stream will generate a log
file that can be written to within the script. Anything can be sent to the log file. If you can generate
a piece of data programmatically, you can write that data out to the log you have created. This means
you can provide much more context than you might otherwise be able to using just a Snort rule.

It does mean, however, that writing event handlers for Bro can be quite a bit more complex than
writing Snort rules. It requires learning a little about programming and also understanding the
nature of event-driven systems. Using an event-driven system, you are waiting on events to happen
rather than driving the behavior of the script yourself. Once an event happens, you have control over
whatever data has been generated by the event. However, you are still bound within the context of
the event. This is not nearly the same as starting from scratch with a script that you have written
yourself. In fact, in many regards, while you are bound within the context that Bro provides to you,
you are also provided with a number of frameworks that can make your life quite a bit easier.

Where languages like Python, C++, or C# have libraries that may be provided by the vendor to
make life easier for the programmer, Bro has frameworks. These frameworks provide the ability
to do things like simple pattern matching, using the signature framework. The signature framework
allows someone to write more traditional rules that are based on pattern matching. A simple signa-
ture is shown in Listing 8-10.

Listing 8-10: Bro Signature

signature basic_http {
 ip-proto == tcp
 dst-port == 80
 payload == /GET/
 event "Found a GET request"
}

This signature simply looks for a GET request in a web communication. The destination port is
80, which is the well-known port for web-based communications. The signature framework allows

Intrusion Detection Systems 205

for signatures to be written based on network and transport protocol headers. This includes source
and destination address and port. In addition to basic content matches, the signature framework
also directly supports HTTP by allowing matches in the http-request, http-request-header, http-
request-body, http-reply-header, and http-reply-body. In addition, Bro supports FTP and finger
within the signature framework. All of this is just the start of what the signature framework for Bro
is capable of doing.

Other frameworks offered by Bro include file analysis and logging. Additionally, Bro offers a
NetControl framework that allows Bro to interface with external network devices like firewalls. Bro
can also interface with routers and switches. This turns Bro into an intrusion prevention system
because it can send messages to devices that are capable of blocking traffic, telling them what traffic
should be blocked. Functions like drop_address, drop_connection, redirect_flow, quarantine_host,
whitelist_address, and whitelist_subnet all provide a lot of control over how Bro can have other
devices respond to threats.

Using a tool like Bro, a network administrator can not only generate a lot of data that could be used
by a forensic investigator or incident responder, but also can protect the enterprise at the same time.

Tripwire
Tripwire is very different from the IDS tools we have talked about so far. It is, however, useful to provide
correlation with the other IDS results. Tripwire is a host-based IDS and was long focused on identifying
file changes. Commercial versions of Tripwire have moved on to broader functionality but when most
people hear Tripwire, they think of monitoring files. Other programs like Samhain can provide similar
functionality. Programs like Samhain and Tripwire generate a table of cryptographic hashes of the con-
tents of critical system files. Periodically, the program runs through the filesystem, generates hashes
of all of the critical system files that have been configured, and compares them against the database.
If there are changes, Tripwire generates an alert indicating that the file has changed.

This sounds pretty simple based on that description. In actuality, it takes a lot more work to ensure
that the system itself is protected. If an attacker broke into a system and found Tripwire running, it
should be easy to just update the database once any critical system file was altered. This means that
it shouldn’t be easy to update the database. It should require additional protections like passphrases
to unlock the cryptographic keys that have been used to encrypt the database.

As mentioned, Tripwire is not the only program to offer this functionality, though it was the
first. It was originally developed in the early ’90s and was contributed as open source in 2000.
There is currently an open source version of Tripwire in addition to the commercial offering by the
company of the same name. Although it doesn’t have anything to do with network traffic directly,
it can be used to correlate attacks. Attackers who gain access to systems will likely make changes.
This may be especially true with regard to anything related to system services since the attacker will
probably want some sort of remote access. This could include a backdoor or just a process that
 periodically checks another system like a command and control server. Because configuration changes
need to happen in order for an attacker to install that kind of software, Tripwire and other, similar,
software can help generate the alerts necessary to provide correlation.

Network Forensics206

OSSEC
OSSEC is another host-based intrusion detection system, which means it’s not directly related
to network forensics. In addition to file integrity monitoring, which is what Tripwire does, it also
offers monitoring for rootkits, log monitoring, and process monitoring. While file integrity is important,
monitoring of file integrity is limited to files that have been configured to be checked. Files can be
added to the system without any notice being taken. If we are only looking for changes to existing
files, and not new ones being added, we could have a problem if they are malicious files. Also, as
noted earlier, file integrity checks are not perfect. This is why the additional checks offered by OSSEC
are important. A rootkit detection capability determines when backdoors have been added to the
system. This may also include alteration of system programs that could otherwise be used to detect
the existence of the rootkit.

Log monitoring is important, even in cases where there is file integrity checking. This is especially
true when log monitoring is done in real time and alerts are sent off-system. Anything that is on
the system is suspect because it could be altered by the attacker. This includes log entries that may
disguise their events, like any audit logs that may exist. Process monitoring is another important
aspect because attackers may start up additional processes in order to accomplish what they need to
do, whether it’s to steal data or join the system to a botnet. The process monitoring can detect that
behavior.

In cases where the network traffic is encrypted so the behaviors can’t be seen within the packet
captures, this level of insight can be incredibly important. The network traffic can provide evidence
that the communication is happening between the local system and a remote system, and a tool like
OSSEC can provide some additional evidence of what is happening on the local system.

Fortunately, OSSEC is multiplatform, like the other tools we have been talking about. It is also
open source and free to use. This makes it another valuable tool to have in your arsenal as you are
investigating incidents and attacks.

Architecture
One of the challenges associated with network intrusion detection is gathering the network traffic.
This can lead to the use of sensors rather than full-blown IDS devices. The sensors may have some
limited intelligence, sending traffic back to a more centralized system that has more intelligence
in it. Even when using sensors, there is still the challenge of getting the traffic to the IDS. Modern
networks use switches. Switches send network traffic only to the target machine. This keeps systems
isolated and network performance high. For an intrusion detection system to work, however, all
network traffic needs to get to the IDS.

Fortunately, there are ways to accomplish this. Most switches have the ability to use something
called a port span, span port, or port mirror. This means that you can specify a switch port to send

Intrusion Detection Systems 207

some portion of traffic or all traffic to, so that traffic that is being sent to one system also gets sent
to the switch port where the IDS is installed.

While this is good, it can also be problematic. Even at a small scale, if you have ten 1G interfaces
that are being mirrored to a single 1G port, you have a problem. Oversubscription works pretty well
since most network connections are barely used, and you can get away with oversubscription in
most cases. There comes a time, however, when you simply have too much data for the port you are
trying to cram that data down. This is why determining the architecture ahead of time is important.
Understanding what your network architecture looks like and what your utilization looks like will
help determine the number of IDS devices you need in order to gather all data.

You don’t have to span end ports, of course. You can span trunk ports, which are the ports that
link switches to one another. In doing only the trunk ports, though, you have the issue of missing
all of the host-to-host communication within the switch itself. Any communication that happens
within the switch remains within the switch and never gets to the trunk port. The same is true with
virtual environments where communications may remain within a virtual switch and never make
it somewhere to be analyzed.

These are all problems that can be solved, however. They require planning and understanding of
the infrastructure that is in place. They also require knowing exactly what it is you are looking for.
It may not be necessary to monitor every single network connection within your network—more is
not necessarily better. In fact, in this case, more can be decidedly worse since you’ll just have made
a lot more data that you need to look through. Finding the needle in the haystack isn’t made easier
by adding in more hay that may potentially include a needle. It could just simply be a lot more hay
that you have to wade through.

In cases where you need to isolate a single device and you don’t have access to the network infra-
structure, you may be able to use a tap. These exist for both copper and fiber interfaces. A tap allows
you to insert a device in the middle of the connection between the end system and the network device.
Bro can be configured as a software tap if the host is configured to bridge two interfaces. This will
then have connections that can be sent to the IDS device so network traffic gets to it without impact-
ing any of the network infrastructure.

When it comes to monitoring IDS alerts, additional infrastructure may be necessary. We’ll come
to some of that in the next section, but as a start, a monitoring console may be useful. This allows
an operator to get the alerts that the IDS is generating.

Alerting
The rules we have looked at provide an indication of what the alerts will look like. If the rules are
well-constructed, the alerts will provide a good indication as to what has happened. There will be
additional information in the alert aside from just the message that has been indicated in the rule.

Network Forensics208

Listing 8-11 shows a log sample. This particular log sample from Snort highlights the importance of
good rules, and also of the challenge associated with false positives.

Listing 8-11: Snort Alert File

02/19-22:29:48.037186 [**] [1:100090:1] SYN scan [**] [Priority: 0]
{TCP} 192.168.86.65:57531 -> 192.168.86.83:80
02/19-22:29:48.091657 [**] [1:100090:1] SYN scan [**] [Priority: 0]
{TCP} 192.168.86.65:57546 -> 192.168.86.83:80
02/19-22:29:48.167276 [**] [1:100090:1] SYN scan [**] [Priority: 0]
{TCP} 192.168.86.65:57561 -> 192.168.86.83:80
02/19-22:30:11.142697 [**] [1:100090:1] SYN scan [**] [Priority: 0]
{TCP} 192.168.86.65:57576 -> 192.168.86.27:2869
02/19-22:33:09.277492 [**] [1:100090:1] SYN scan [**] [Priority: 0]
{TCP} 192.168.86.65:57593 -> 157.240.2.7:443
02/19-22:38:08.796005 [**] [1:100090:1] SYN scan [**] [Priority: 0]
{TCP} 192.168.86.65:57620 -> 157.240.2.7:443

This set of alerts came about through the use of a web scanner on a vulnerable web application.
You can see that there are no alerts based on the active scanning, which should have included send-
ing SQL injection messages, command injection messages, and other web-based attacks. These alerts
suggest that there was a SYN scan taking place. The rule that triggered the SYN scan alert was just
looking for a number of SYN messages in a short period of time. Because the web scanner was using
a number of threads to run the scan, it appeared to Snort as though there was a SYN scan going on.

The alert messages you can see indicate that there was a SYN scan, which is the message that was
set in the rule. Additionally, you get the Snort ID (SID), 1000090. This is definable by the person who
wrote the rule. The protocol that was used to generate this alert was TCP, as indicated by the alert
entry. Finally, you see the source IP address and port as well as the destination IP address and port.
This is the output that is generated from the fast alert module in Snort. Entries from the unified2
log module would look considerably different and also typically require additional scripts to generate
useful output. This was just a text-based log file that was easily readable.

Summary
Intrusion detection systems can provide a lot of assistance when it comes to analysis of network
communications. This includes both live captures where the IDS is running on the system where
the packets are being captured, and also offline analysis where another system has performed the
packet capture and the IDS is run against the packet capture file. This requires that packet capture
software like tcpdump or Wireshark be run on the system where the analysis is needed. Adding
intrusion detection software can be too much of a burden from a processing perspective, but packet

Intrusion Detection Systems 209

capture software may be lightweight enough to be able to capture packets for analysis on another
system where the IDS software is running.

In addition to commercial IDS software, open source solutions are available as well. Snort has long
been considered a de facto standard when it comes to network intrusion detection. In fact, the Snort
rules are so widely known that other software packages like Suricata and Sagan have adopted usage
of these rules. Each of these has their own benefits, of course, but the rules they use are the same as
those used by Snort. Another open source IDS is Bro, which has the capability of using signatures
like Snort does but is also an event-driven monitoring solution that requires a script to handle events
and determine what to do about them. Bro doesn’t use signatures in a traditional sense since what
can be done in a Bro script could be more complicated and address more situations, including gener-
ating statistics. Snort also has the capability to have very complex signatures to detect very specific
events, just as Bro is capable of. The difference is that the capability of doing something about the
event and subsequent detection comes with Bro where Snort would require external capabilities to
do anything further.

One consideration that should be addressed in the implementation of IDS, even on a temporary
basis, is the location of the IDS within the network. It may be that you need to monitor several
network connections at once and while that’s possible, there is a potential for oversubscribing
the network connection to the IDS if port spanning or port mirroring is used. This means that it is
necessary to address the needs of the monitoring you are performing in order to determine whether
you will have adequate network infrastructure to support your planned implementation.

Using Firewall and
Application Logs9

In this chapter, you will learn about:

 ■ Using syslog and how to read syslog output
 ■ Windows Event logs
 ■ Different types of firewall logs

Sitting at his computer, he realizes that everything he sends across the wire has the potential to be
logged somewhere. This may be at the firewall that he may be passing through transparently or it may be a
result of the program he is connecting to logging his actions. The best thing to do is to not leave any traces
at all, but that’s not a realistic expectation. As a result, when he gets into a system, one thing he makes
sure to do is to track down the logs. He has tools that are capable of cleaning out log files. The question he
ponders is whether it’s worth it, based on whether logs are being pushed off to another system for storage
and analysis. If logs are being sent somewhere else, discrepancies might raise more questions. This means
doing a little digging.

He looks at the processes that are running to see whether there are agents set up for some of the popular
log management systems. He also checks the network connections to see if there is something that has
escaped him in the process tables. Finally, he goes looking at the logs themselves just to see what sort of
trail there may be, based on how much is being logged. Some businesses barely bother logging at all. Those
businesses are much easier to deal with. Once he is satisfied there is little being logged, he is free to move
on. Depending on the permissions he has managed to obtain, he may even turn down some of the logging
before he really starts working.

One of the challenges with network forensic analysis is that anything that happens on the net-
work is gone the moment it happens. The wires don’t store anything and there are no remnants once
packets have traversed the wires. This is completely unlike magnetic hard drives that may store
information even after the sectors have been written over. Even solid state hard drives may hold
onto information. Where older networks were sometimes store and forward, meaning they would
hold onto information until the connection to the next hop came online, modern networks are real time.
Nothing is left behind once the packet has passed through.

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics212

This makes performing an investigation on network-based attacks much harder, unless you have
the infrastructure and storage capacity to store all of the traffic that has passed across all of the
nodes in your network. This is where it’s useful to have some additional help. While the complete
packets will have passed through, other locations can provide correlating information that can help
to determine what happened over the network.

Network communication doesn’t happen in isolation. It’s not like it starts nowhere, passes into the
ether, and disappears. Applications are the beginning and the end of network communication—clients
on one end and servers on the other. Where clients don’t often generate log files, servers typically do.
This includes the operating system where the server resides. Between the operating system logging
network-related events and the applications logging connections and other important events, you
can build up additional information to support the efforts of network investigations.

Both Windows and Linux provide subsystems that can be used by applications and the operat-
ing system. Windows systems use an event subsystem that is primarily seen by users in the Event
Viewer. On the Linux side, there is a logging system called syslog. Although you will find different
implementations of syslog, the underlying concepts are the same. With both of these system logging
infrastructures, services and other applications can generate logs. These logs are managed by a single
entity, meaning that they have a consistent structure and format, so the same tools can be used to
investigate and analyze those logs.

Not every application and server makes use of the existing system logging infrastructure.
Sometimes, a service like a web server may use its own log format and logging system. Other ser-
vices that generate logs that can be beneficial in a network forensic analysis are firewalls. Firewalls
come in many forms, including what some may think of as traditional firewalls that block packets.
Other firewalls may be focused on applications, like web transactions. This may be a proxy server,
a form of application layer gateway. A web application firewall (WAF) is another form of firewall.

All of these log systems include different formats for the log files. While there may be different
needs when it comes to analyzing the logs, one advantage to log files is they are often just text-based.
This means that if you know what you are looking for, you can read the logs with your eyes rather
than needing to look for a tool that can read the logs for you. This is not always the case, however.

Syslog
Syslog started life as part of an electronic mail system called Sendmail. The developer of Sendmail
created a logging system to go along with it. The logging system was useful enough that it began to be
adopted by others and is now the de facto logging standard on Unix-like operating systems, including
Linux. This does not mean that the implementation has remained the same over the decades since
syslog was created. Syslog has been implemented over multiple types of Unix by a number of different
vendors. In the time that Linux has been around, there have been different syslog implementations,
including rsyslog and syslog-ng.

Although it was originally developed as part of Sendmail, syslog became standardized. In 2001, it
was documented in RFC 3164, which has since been obsoleted by RFC 5424. Syslog is a text-based

Using Firewall and Application Logs 213

logging system, and each log entry has two pieces. The first is what the syslog server itself generates.
The second part is what is provided by the application. Additionally, syslog provides the ability to
generate multiple log files. It is able to do this because syslog isn’t just a service that takes messages
from an application and writes out timestamped logs. The syslog standard defines both facilities
and severities. The facilities are used to determine which log to write the message out to, or whether
to do anything with it at all. The severity can be used to determine whether or not the log message
should be written.

Although the facility is determined by the application generating the log message, the facilities are
designed to indicate the area of functionality the log message belongs in. This helps to isolate related
messages into one place. With related log messages in one place, you don’t have to dig through a lot
of extraneous entries to find the information that is most relevant to you. Table 9-1 shows the facili-
ties that have been defined for syslog in RFC 5424, though they are essentially the same as those
defined in RFC 3164.

Table 9-1: Syslog Facilities

Code Facility

0 Kernel

1 User

2 Mail

3 Daemons

4 Security/Authorization

5 Internal to the syslog daemon

6 Line printer (lpr)

7 Network news (nntp)

8 Unix-to-Unix Copy (UUCP)

9 Clock

10 Security/Authorization

11 FTP

12 NTP

13 Log audit

14 Log alert

15 Clock daemon (formerly cron in RFC 3164)

16–23 Local use 0–7 (local0–local7)

Network Forensics214

In addition to facilities, syslog uses severities to categorize messages. Even within a facility, you
can determine how much you want to see in your log files. Applications may generate a number of
levels of messages, depending on what is happening within the application. Starting up, the applica-
tion may send an Informational message just to provide a marker as to when the application started
up. Table 9-2 shows the severities that are defined for syslog.

Table 9-2: Syslog Severities

Code Severity

0 Emergency

1 Alert

2 Critical

3 Error

4 Warning

5 Notice

6 Informational

7 Debug

According to RFC 5424, syslog defines a priority as being the facility code multiplied by 8 then
adding the severity code. The lowest number has the highest priority. If the kernel fails and generates
an emergency message, you’d have a 0 if you multiply the 0 for the kernel message by the 0 for the
emergency. In fact, any emergency or any kernel message would automatically give you a priority
of 0 because anything multiplied by 0 is 0. As we work further into messages, you can end up with
a local7 debug message and that would have a priority of 191. The priority is not included in the log
files themselves. The priority is calculated as above. In the case just noted, I know that the facility is
local7, which has a value of 23 so to get the priority, I multiply 23 by 8 and then add 7, which is the
value for a debug message. The values used came from the syslog RFC.

Because no standards are defined for what files are used for any message, you would rely on the
configuration file for the syslog implementation on your system. As with other configuration files on a
Unix-like operating system, you would find the syslog configuration in the /etc directory. The exact
file will depend on the specific implementation of syslog used. Listing 9-1 shows part of the configu-
ration from rsyslog on an Arch Linux system. The different implementations of syslog do establish
default locations because of the configuration file that is packaged with the software. However, that
doesn’t mean that files or even locations can’t be altered easily by way of the configuration file. This
means that even two systems that are using rsyslog may have different files in use.

Using Firewall and Application Logs 215

Listing 9-1: rsyslog.conf

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log

mail.info -/var/log/mail.info
mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err

news.crit /var/log/news/news.crit
news.err /var/log/news/news.err
news.notice -/var/log/news/news.notice

Note that all of the log files are in the /var/log directory. Though it is not required, it is a con-
vention that makes log files easier to locate on an unfamiliar system. The Filesystem Hierarchy
Standard (FHS) is used on the majority of Linux and other Unix-like systems. If you are working on
a Unix-like system, you can generally be sure that the log files, regardless of what is being logged,
will be in /var/log.

The notation used here is one of facility.severity. In cases where you see an * being used, it
is a wildcard that matches anything. The line that says lpr.* indicates that any severity from the
lpr facility will be logged in /var/log/lpr.log. This indicates that everything being generated
on that facility will be logged. You can be even more granular than that, however. As an example,
mail.info messages are being logged into /var/log/mail.info. All informational messages on the
mail facility are being logged into that file. Error messages in the mail system are logged to a different
file. For ease of quick understanding, the human-readable versions of the numeric codes are used.
If all you saw was numbers in the file, it would take more time to determine where the information
you wanted was being kept. Of course, if you look at the /var/log directory on most systems, you
will get a pretty good idea of what you are looking for.

You will see that the filenames are generally descriptive. Mail messages are stored in files named
with some variation of “mail.” User-related messages on the user facility are stored in the file
user.log. You could have guessed that just based on the name of the file. What you don’t get is what
is being logged. By default, many of these are set to log everything that comes in. If you have a very
active system, this can consume disk space and you may be able to limit what is being logged. In the
case of a forensic investigation, though, you may want to see more in the way of messages than less.

Network Forensics216

Centralized Logging
One challenge when it comes to investigating systems that are either desktops or end-user reach-
able servers is that logs may have been altered. If an attacker or malicious user gains access to the
system, meaning they can run programs on the hardware, they may be able to tamper with log files.
One potential solution for this is to introduce a centralized log host. The central log server listens
for messages from other systems in the network, storing them. This will help reduce the potential for
tampering because you don’t have to rely on the logs on the endpoint being the only logs available.
If logs are also stored on the endpoint, they can be checked for validity against those stored on the
centralized log system.

There are a number of ways to establish a centralized log system. One of the easiest is to just
use syslog. In addition to specifying how a log system may work with organization and messages,
syslog also includes the potential for sending messages over the wire. This includes specifications
on the sending and receiving side. Initially, syslog was sent over UDP for the transport layer. UDP
was faster and had less overhead, and since most syslog messages may typically have been sent over
the local network, or at least within the enterprise, it was seen as less likely that messages would be
lost. Modern implementations may be sent over longer distances and log messages are considered,
perhaps, more important. As a result, syslog supports transport over both TCP and UDP. Regardless
of the transport protocol used, the port number is 514.

The syslog server we have been using, rsyslog, can just as easily be configured to both receive
and send log messages. The rsyslog package uses modules to enable functionality, and in order to
enable receiving messages, we need to enable the modules that provide that functionality. Both TCP
and UDP have their own modules. The configuration file fragment shown in Listing 9-2 enables that
functionality.

Listing 9-2: rsyslog Configuration for Receiving Log Messages

provides UDP syslog reception
module(load="imudp")
input(type="imudp" port="514")

provides TCP syslog reception
#module(load="imtcp")
#input(type="imtcp" port="514")

The configuration shows that the module for UDP has been enabled. The lines for TCP are there
but are commented out, meaning they don’t get read by rsyslog. They are only there as notes for
someone working on the configuration file who may later want to enable the functionality. The
first line related to UDP tells rsyslog to load the module named imudp. The second tells rsyslog to

Using Firewall and Application Logs 217

accept input over UDP on port 514. Though this is the default port, you can change this parameter
to run over a different port, if you prefer. Similarly, with the TCP connections, you can specify a port
you want to listen on. This is something to keep in mind, though. If you use something other than
the default port, the client end of the connection will need to be similarly configured, otherwise the
server won’t receive the messages from the client.

Once you have a syslog server set up, you can start receiving messages from different systems.
Unless you do something different, however, all of the messages will be dumped into the files as
indicated in Listing 9-2. It may be useful to configure a template that uses some variables to make
sure messages from each separate host end up in their own files. You can use the lines in Listing 9-3
to make sure that logs from different locations end up in different places.

Listing 9-3: rsyslog Configuration for Remote Systems

$template Msgs, "/var/log/%fromhost%/%programname%.log"
. ?Msgs

The first line defines the template using the variables %fromhost% and %programname%. In place
of fromhost, you could use the similar variable fromhost-ip, which always uses the sending host’s
IP address rather than whatever hostname may be configured. Similarly, you could use hostname or
source. The difference between these two and the two mentioned before is that if you have multiple
syslog systems that are forwarding, the fromhost and fromhost-ip variables are the ones that are
just before the host you have this configuration on. In other words, they will provide the informa-
tion from the host that the log message was received from, rather than the host the message was
generated on. This may be an important distinction if you have multiple forwarding syslog servers
in your messaging chain.

NOTE While I have referred to them as variables, because they are used like a variable name
might be used in a script or program, rsyslog refers to them as properties. rsyslog keeps track of a
number of other properties that could be used in templates.

Once you have your syslog server set up, you need to enable the client to forward messages to the
server. This is easy to do. You can also enable syslog servers to not only forward all log messages,
but also have them log locally. This is useful if your log server becomes unreachable for some rea-
son. If your log server goes down, you may lose those messages during the period of time the server
is unreachable unless you have local logging enabled. So, in addition to the entries in Listing 9-3
indicating where to log locally, you may have entries like those in Listing 9-4 to forward messages
to a log server.

Network Forensics218

Listing 9-4: rsyslog Configuration for Remote Logging on Clients

. @192.168.86.20:514
. @@192.168.86.10:514

The first line with the single @ sign indicates that the transport protocol should be UDP, which
is the default transport. If you want to use TCP instead, you need to use a second @ sign to indicate
that. You will also note that there is a :514 at the end of each of these lines. This indicates the port.
You would need to use whatever port you had specified when you were setting up your server. While
the entries here use IP addresses, you can also use hostnames. There are trade-offs for each of these
choices. The IP address means you can log even if DNS, for whatever reason, is down or unreachable.
The hostname means you don’t have to reconfigure all of your syslog files if you happen to change
the IP address where your syslog server is at some point.

Syslog is not the only possibility for a central syslog server. Another possibility is NXLog, which
is a log management package offered by IBM. There is a community edition in addition to the com-
mercial offering. An example of an NXLog configuration file is shown in Listing 9-5.

Listing 9-5: NXLog Configuration File

##
Global directives
##
User nxlog
Group nxlog

LogFile /var/log/nxlog/nxlog.log
LogLevel INFO

##
Modules
##
<Extension _syslog>
 Module xm_syslog
</Extension>

<Input in1>
 Module im_udp
 Port 514
 Exec parse_syslog_bsd();
</Input>

<Input in2>
 Module im_tcp
 Port 514
</Input>

Using Firewall and Application Logs 219

<Output fileout1>
 Module om_file
 File "/var/log/nxlog/logmsg.txt"
 Exec if $Message =~ /error/ $SeverityValue =
 syslog_severity_value("error");
 Exec to_syslog_bsd();
</Output>

<Output fileout2>
 Module om_file
 File "/var/log/nxlog/logmsg2.txt"
</Output>

##
Routes
##
<Route 1>
 Path in1 => fileout1
</Route>

<Route tcproute>
 Path in2 => fileout2
</Route>

In addition to being able to handle syslog as a central log host, NXLog has a number of other
capabilities. You can see where multiple inputs are specified. The inputs specified are for both TCP
and UDP listeners for syslog messages. One thing NXLog offers is the ability to add functions to
each definition. This allows for special handling to be defined on inputs and outputs. Since it’s a log
management solution, NXLog also provides the ability to consume non-syslog messages in order to
store everything into a single place. The outputs are specified in the configuration file as well. You can
specify log files to write to or you could also send messages to other log hosts. You can have NXLog
installed on your remote systems, collect all of the logs, whether they are syslog or otherwise, and
send them off to a central, managed log system. This central, managed log system could be running
NXLog or it could be using some other log service.

Another feature NXLog offers is routing. This would allow you to have a normal configuration for
regular operations and a separate route for logs that are related to forensic investigations. The ability
to quickly create custom routing for log messages with some or all of the configured inputs is one of
the benefits of using a log management system over just a basic syslog installation.

Of course, NXLog is not the only log management system that’s available. There are others as well,
including Splunk, which has a lite version for small installations. This is akin to the community ver-
sion of NXLog. Also, you can use the Elastic Stack, which is sometimes called ELK. (The name has
changed from ELK, which was an acronym for Elastic, Logstash, and Kibana, a collection of programs
that were used for log management.) The different components are used for search, acquisition and
storage, and a user interface that can be used for management or data visualization. Splunk similarly
offers a user interface component that can be used to search and visualize the data you are collecting.

Network Forensics220

Reading Log Messages
Getting all of your log messages safely to a central log host is one thing, but it’s meaningless unless
you know what you are looking at. Fortunately, syslog messages are in plain text. While they are not
designed to be read like a book, they are at least not stored in a binary format. Nor are they stored in
a more complicated format like Extensible Markup Language (XML) or JavaScript Object Notation
(JSON). Although both of those are also plain text, they contain a lot of overhead describing the
data, which can make it harder to quickly parse visually. That’s not to say that you can’t parse XML
or JSON, but there is just more text to look at. Syslog messages are single lines and if you know what
you are looking at, they are easy to read. You can see an example of log entries in Listing 9-6.

Listing 9-6: Syslog Messages

Mar 12 17:09:01 zulu CRON[5296]: (root) CMD ([-x
/usr/lib/php/sessionclean] && /usr/lib/php/sessionclean)
Mar 12 17:17:01 zulu CRON[5352]: (root) CMD (cd / && run-parts
--report /etc/cron.hourly)
Mar 12 17:36:25 zulu systemd[1]: Time has been changed
Mar 12 17:36:25 zulu systemd[1]: snapd.refresh.timer:
Adding 3h 27.866580s random time.
Mar 12 17:36:25 zulu systemd[1]: apt-daily.timer:
Adding 5h 42min 4.381482s random time.
Mar 12 17:36:25 zulu systemd[5610]: Time has been changed
Mar 12 17:39:01 zulu CRON[5360]: (root) CMD
([-x /usr/lib/php/sessionclean] && /usr/lib/php/sessionclean)
Mar 12 18:01:08 zulu systemd-timesyncd[34299]: Synchronized to time
server 91.189.94.4:123 (ntp.ubuntu.com).

Let’s take the first two lines since they are similar. The first part of each line is the timestamp,
including the date. This is followed by the name of the system the log was created on, zulu. After
that is the name and process ID of the program that created the message. In both cases, the message
was created by cron, which is a program used to schedule tasks. The process ID is different from one
to the other, meaning the cron process ran twice, starting up a different set of tasks.

The next part of the message is what the application has created for the message. What both
of these messages say is that the root user ran a set of tasks. The first one was sessionclean, related
to the PHP programming language and web programming in particular. The second line says that
cron was asked to run a report on the tasks it is configured to run hourly.

Looking at the remaining lines, you can see that systemd produced some messages, cron produced
another message, and finally systemd-timesyncd generated a message relating to synchronizing the
clock with a time server. These messages came out of the syslog file that was used on the system
the logs were collected on for most log messages. Not all log messages are logged to the syslog file,
though. Specifically, authorization messages are logged to a different file on this system. You can see
an example of the sorts of messages that are in an authorization log in Listing 9-7.

Using Firewall and Application Logs 221

Listing 9-7: Auth.log Messages

Mar 12 17:00:12 zulu sudo: pam_unix(sudo:session): session closed for
user root
Mar 12 17:00:50 zulu sshd[5179]: pam_unix(sshd:auth): authentication
failure; logname= uid=0 euid=0 tty=ssh ruser=
rhost=192.168.86.65 user=kilroy
Mar 12 17:00:52 zulu sshd[5179]: Failed password for kilroy from
192.168.86.65 port 52820 ssh2
Mar 12 17:00:57 zulu sshd[5179]: Accepted password for kilroy from
192.168.86.65 port 52820 ssh2
Mar 12 17:00:57 zulu sshd[5179]: pam_unix(sshd:session): session opened
for user kilroy by (uid=0)
Mar 12 17:00:57 zulu systemd-logind[4338]: New session 123 of user
kilroy.
Mar 12 17:01:14 zulu sudo: kilroy : TTY=pts/0 ; PWD=/home/kilroy ;
USER=root ; COMMAND=/usr/bin/apt install modsecurity
Mar 12 17:01:14 zulu sudo: pam_unix(sudo:session): session opened for
user root by kilroy(uid=0)
Mar 12 17:01:14 zulu sudo: pam_unix(sudo:session): session closed for
user root
Mar 12 17:01:19 zulu sudo: kilroy : TTY=pts/0 ; PWD=/home/kilroy ;
USER=root ; COMMAND=/usr/bin/apt install mod-security
Mar 12 17:01:19 zulu sudo: pam_unix(sudo:session): session opened for
user root by kilroy(uid=0)
Mar 12 17:01:20 zulu sudo: pam_unix(sudo:session): session closed for
user root
Mar 12 17:01:59 zulu sudo: kilroy : TTY=pts/0 ; PWD=/home/kilroy ;
USER=root ; COMMAND=/bin/cat /var/log/apache2/modsec_audit.log

The format is the same here, though the content is different. The entries you can see may be
authorization-related, but they all come from different applications and subsystems. The first entry, for
example, comes from sudo, which is the program that is used to get administrative access to the sys-
tem. Sudo makes use of pam_unix. PAM is the pluggable authentication modules library on Unix-like
operating systems that performs a number of functions related to authorization and authentication.

Other entries are from the secure shell daemon (sshd). The second and third entries (time stamps
17:00:50 and 17:00:52 respectively) appear to be the result of a mistyped password since the fourth
entry indicates that a password was accepted for that user. Knowing what PAM and sudo are helps to
make the rest of the log entries much more easily understandable. The sudo entries relate to running
specific programs that need elevated privileges. You can see the programs and the arguments needed
by the program in the COMMAND= section of the log entry. The same log entry also indicates what user
called sudo. Additionally, since sudo not only allows users to run with effective root permissions,
you can see the user whose context the program is running in. In these cases, it’s always root, but
sudo may allow for any program to be run as a separate user.

As indicated while looking at the configuration in the “Syslog” section earlier in this chapter,
different log files will contain entries from different applications for different purposes. The basic

Network Forensics222

structure of the syslog files is the same. Once you get used to how the log entries look, you can read
any of them. This doesn’t always mean you will be able to understand what’s going on, because each
application generates its own messages, and sometimes the log message is only useful to the developer
of the application. That’s not the ideal circumstance, but the log entries are created by the software
developer. They are not generally designed to be read by end users.

LogWatch
Log management systems let you query the log data you have available to you. If you just have a small
setup, you may not need something as elaborate or complex as a log management system. However,
the need to keep an eye on events is still important, particularly if what you are investigating is ongo-
ing. Even in the case of smaller setups, you may need help keeping an eye on logs and extracting
important details. One program you can use is called LogWatch, which is a log analyzer and reporter.

LogWatch can be configured with a number of options to look at log files and services. It will
present a report when you run it with output you have specified. An example of what you can see
when you run LogWatch is shown in Listing 9-8.

Listing 9-8: LogWatch Output

 ################### Logwatch 7.4.0 (03/01/11) ####################
 Processing Initiated: Fri Mar 17 17:34:28 2017
 Date Range Processed: yesterday
 (2017-Mar-16)
 Period is day.
 Detail Level of Output: 10
 Type of Output/Format: stdout / text
 Logfiles for Host: boingers.washere.com
 ##

 --------------------- System Configuration Begin ---------------------

 CPU: 2 AMD FX(tm)-8350 Eight-Core Processor at 4012MHz
 Machine: x86_64
 Release: Linux 3.10.0-514.10.2.el7.x86_64
 Total Memory: 3791 MB
 Free Memory: 3037 MB

 ---------------------- System Configuration End ----------------------

 --------------------- clam-update Begin ------------------------

 No updates detected in the log for the freshclam daemon (the
 ClamAV update process). If the freshclam daemon is not running,
 you may need to restart it. Other options:

Using Firewall and Application Logs 223

 A. If you no longer wish to run freshclam, deleting the log file
 (default is freshclam.log) will suppress this error message.

 B. If you use a different log file, update the appropriate
 configuration file. For example:
 echo "LogFile = log_file" >>
 /etc/logwatch/conf/logfiles/clam-update.conf
 where log_file is the filename of the freshclam log file.

 C. If you are logging using syslog, you need to indicate that your
 log file uses the syslog format. For example:
 echo "*OnlyService = freshclam" >>
 /etc/logwatch/conf/logfiles/clam-update.conf
 echo "*RemoveHeaders" >>
 /etc/logwatch/conf/logfiles/clam-update.conf

 ---------------------- clam-update End -------------------------

 --------------------- Disk Space Begin ------------------------

 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/cl-root 23G 1.4G 22G 6% /
 devtmpfs 1.9G 0 1.9G 0% /dev
 /dev/sda1 1014M 184M 831M 19% /boot

LogWatch will provide summaries of the events of the last day and typically runs as a scheduled
job with the output being mailed to a user. This may be the root user or anyone else who needs to see
the output from the program. Having the summaries can be very beneficial because it’s a lot easier
to look at a summary of the Linux firewall logs or the mail activity than it is to have to try to read
and search without any idea where to begin. Having the summary statistics and some of the details
in aggregate will provide a good starting point. LogWatch can be a very valuable tool that can point
out problems you may not have otherwise seen.

The e-mail logs can also be problematic to look through. If you were being attacked with spear
phishing, the rejected messages from guessed-at addresses may get lost in the noise of all the other
traffic that is going through your mail system. Using a tool like LogWatch, you will see that a large
number of messages were rejected by the mail system. This may be a warning that something is
going on that you should pay attention to. You may also be able to track attacks on a web server since
LogWatch will present all of the errors that were triggered. A large number of errors showing up may
indicate that an attack is going on and it may require additional investigation. The LogWatch output
will provide enough detail that you can find the specific log entries in order to find a timestamp.
The timestamp will provide you a reference point to see what else was going on at that point. Having
your times synchronized across your systems helps the process of reconstructing events. You’ll see
this point echoed several times throughout this book because of its importance.

Network Forensics224

Event Viewer
Where syslog runs on Unix-like systems as the de facto logging system, on Windows systems, you
can count on the Event Logs and being able to view them using the Event Viewer. The logs that
are available on Windows systems fall into two categories: Windows logs and applications and
services logs. The Windows logs are grouped into three primary categories: Application, Security,
and System. Two other log categories were added in recent versions of Windows: setup and forwarded
logs. The three primary categories have been around for as long as there have been Windows logs.
The Application log contains information related to applications. The Security log contains auditing
information, logon information, and events related to resource utilization. The System log contains
events related to the operating system itself. This might be messages from device drivers, for instance.

Since Windows Vista, the logs have been stored in XML. You can view the XML directly through
the Windows Event Viewer, as shown in Figure 9-1. Looking at the details of any event in the Event

Figure 9-1: Windows Event Viewer displaying XML.

Using Firewall and Application Logs 225

Viewer, you can select the XML view and see the event in its XML form. The XML is read and the
information in it is presented in the UI without all of the metadata describing each field.

If we were to look at the same event in the UI without looking at the details, you would see what is in
Figure 9-2. This presents the information in a way that you can parse quickly. There are headers for all of
the fields, bracketed by <>, which can make the information self-documenting. Because the information is
spread out, the information may be easier to take in. XML can be a dense way to present a lot of informa-
tion and if you are less familiar with it, it can be harder to determine what information relates to what else.

The five categories of Windows logs are events that have system-wide impact. Windows enables other
applications to generate log data that doesn’t have any impact on the operating system and may not be
critical to the system overall. The Applications and Services Logs are where those logs go. Different
categories of information can be stored in Applications and Services Logs. In Figure 9-3, you can see
Hardware Events, Internet Explorer, Key Management Service, ThinPrint Diagnostics, and Windows

Figure 9-2: Windows Event Viewer displaying details.

Network Forensics226

PowerShell. Additionally, there is another folder you can see labeled Microsoft. Inside this folder are
all the various Windows applications and components. Each of them will have their own event log.

Four subtypes of logs are stored within the Applications and Services logs. These are Admin,
Operational, Analytic, and Debug. You can see one Windows component that has logs for two of
these subtypes in Figure 9-4. On the left-hand side of the screen capture, under DHCPv6-Client, you
can see two logs. One of them is the operational log and the other is the admin log. In the right-hand
side of the screen, under Log Name, it says Microsoft-Windows-DHCPv6 Client Events/Admin. This

Figure 9-3: Windows Event Viewer categories.

Figure 9-4: Windows Event Viewer applications and services.

Using Firewall and Application Logs 227

indicates that underneath the DHCPv6 client, there are two subtypes of logs. The additional log detail
is presented in the UI just as the other logs. You can also see the XML view with the Applications
and Services logs, just as you can with the Windows Logs. Underneath the presentation of the data,
the storage is taken care of by the event subsystem.

The log files themselves are stored in \Windows\System32\WinEvt\Logs but you won’t be able to
just pop them open in a text editor. While they are presented in XML format, they are stored on disk
in a binary format in which the XML resides. Essentially, they are stored in a database. This makes
it much easier to filter and query the information in the log files.

Querying Event Logs
Unlike the raw text files that syslog uses, Microsoft’s log files are stored in such a way that they can
be filtered and queried. You can certainly create scripts to dig through syslog files and some are
available. You can also use tools like LogWatch to help aggregate information to present it in a more
easily digested format. When data is aggregated, problems can jump out more easily. Windows Event
Logs are slightly harder because they are not stored in a plaintext-based format so you can’t just use
common text editing and search tools. There are tools, however, that you can use to search through
Event Logs. The first is built into the Event Viewer and can be used to search through Event Logs
on the system they were generated on. This is the default behavior. When you open Event Viewer,
it will display all of the log files on the system you are running it on. However, you can also use
Event Viewer to connect to another system and open log files there, if you can provide appropriate
credentials. Another option is to open saved files, which would allow you to open files that had been
created on another system.

Once you have your log files open, you can use the Create Custom View feature to essentially query
the database and show only what you believe may be relevant. Figure 9-5 shows the Create Custom
View dialog box. Once you have selected which logs you want to query from the pulldown menu, you
can select keywords from a second pulldown. This is not a freeform set of keywords. Instead,
you are presented with keywords from the logs themselves. For instance, you can select Audit Success
or Audit Failure, which would be log entries if you had auditing enabled on the system. Create Custom
Query view also allows you to limit your search to just the levels you are interested in.

You can narrow your search quite a bit further than that, though. You can choose to select by log
from the categories we discussed earlier, but you can also choose to select by source. If you choose
to view by source, you can select components or applications that would have generated the log
events. As an example, if you were only interested in messages from the SMBClient, you could select
just that source. Further, you could say you were only interested in viewing messages from the last
12 hours, or the last week. You can limit the span of time you are looking through to better limit the
amount of data you would be digging through.

Windows Events all have IDs, and each ID is related to a specific event. For example, when the
Software Protection Service stops, it generates Event ID903. This will be consistent so if you see
Event ID 903, you won’t even need to look at the text because it will say that the Software Protection

Network Forensics228

Service has stopped. This may also help you limit the view that you are creating. If you have already
seen something and you know what the Event ID is, you can create a view based on that Event ID
and see all instances of that Event ID to determine when it had happened before.

Figure 9-5: Event Viewer Create Custom View dialog.

In addition to being able to create a custom view that would allow you to save the view and load it
any time you wanted, you can also perform a filter of the existing logs. This is done on the fly, though
the process is the same. If you create a filter, you are presented with a dialog box that looks the same
as that shown in Figure 9-5. You have all the same options as you would if you were to create a custom
view. The difference is that you are doing a filter on data that you may only look at once. You may
never need to do the same filter again. A custom view would be a specific way of looking at the logs
that you would expect to re-use. You would save a view to be able to re-apply it when you wanted or
needed. A filter is something you do in the moment if you don’t think you would need to use it again.

You don’t have to resort to using the Event Viewer to investigate log files, though. For a start, you
could write a PowerShell script, making use of Get-Eventlog. You can also use a command-line utility,
wevtutil. This program, installed on current versions of Windows, can be used to do a lot of work
with the Windows Event Logs. As one example, you can get information about the log using the get
log information (gli) command, as shown in Listing 9-9. This command will tell you when the log
file was created, last accessed, last written to, and how large it is.

Using Firewall and Application Logs 229

Listing 9-9: wevtutil Get Log Information

C:\Windows\System32\winevt\Logs>wevtutil gli Application
creationTime: 2016-08-15T23:47:28.194Z
lastAccessTime: 2016-08-15T23:47:28.194Z
lastWriteTime: 2017-03-16T02:01:10.086Z
fileSize: 1118208
attributes: 32
numberOfLogRecords: 626
oldestRecordNumber: 1

This is not all you can do with wevtutil, however. You can directly query the Event Logs, though
it takes some getting used to the syntax for the queries, because they are not straightforward. They
are based on XPath. XPath is a way of querying XML documents. Since the Windows Event Logs are
stored in XML, you are querying an XML document, so you need to learn a little XPath in order to
generate queries that will bear fruit. A very simple one that will return all of the instances of EventID
1003 is shown in Listing 9-10 as well as the first result.

Listing 9-10: wevtutil Query for EventID 1003

C:\Windows\System32\winevt\Logs>wevtutil qe Application
/q:"*[System[(EventID=1003)]]" /f:text
Event[0]:
 Log Name: Application
 Source: Microsoft-Windows-Security-SPP
 Date: 2016-08-15T19:47:40.390
 Event ID: 1003
 Task: N/A
 Level: Information
 Opcode: N/A
 Keyword: Classic
 User: N/A
 User Name: N/A
 Computer: RICMESSIERCDCC
 Description:
The Software Protection service has completed licensing status check.
Application Id=55c92734-d682-4d71-983e-d6ec3f16059f
Licensing Status=
1: 040fa323-92b1-4baf-97a2-5b67feaefddb, 1, 0 [(0 [0xC004F014, 0, 0],
[(?)(?)(?)(?)(?)(?)(?)(?)])(1)(2)(3)]

You can see that we use the qe (query event) command to wevtutil. Then we provide the query
string. In this case, we are just saying we want all instances of EventID 1003 from the Application log.
We additionally have to specify that we want the output in a text format. Without that, you get

Network Forensics230

XML-formatted output, which is slightly more difficult to parse. Listing 9-11 shows an example of
the same query shown in Listing 9-10 without the instruction to output in text.

Listing 9-11: wevtutil Query Without Text Format

C:\Windows\System32\winevt\Logs>wevtutil qe Application
/q:"*[System[(EventID=1003)]]"
<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'>
<System><Provider Name='Microsoft-Windows-Security-SPP'
Guid='{E23B33B0-C8C9-472C-A5F9-F2BDFEA0F156}' EventSourceName='Software
Protection Platform Service'/><EventID Qualifiers='16384'>
1003</EventID><Version>0</Version><Level>4</Level>
<Task>0</Task><Opcode>0</Opcode><Keywords>0x80000000000000</Keywords>
<TimeCreated SystemTime='2016-08-15T23:47:40.390190200Z'/>
<EventRecordID>7</EventRecordID><Correlation/><Execution ProcessID='0'
ThreadID='0'/><Channel>Application</Channel><Computer>RICMESSIERCDCC
</Computer><Security/></System><EventData>
<Data>55c92734-d682-4d71-983e-d6ec3f16059f</Data><Data>
1: 040fa323-92b1-4baf-97a2-5b67feaefddb, 1, 0 [(0 [0xC004F014, 0, 0],
[(?)(?)(?)(?)(?)(?)(?)(?)])(1)(2)(3)]
2: 0724cb7d-3437-4cb7-93cb-830375d0079d, 1, 0 [(0 [0xC004F014, 0, 0],
[(?)(?)(?)(?)(?)(?)(?)(?)])(1)(2)(3)]
3: 0cdc4d08-6df6-4eb4-b5b4-a373c3e351e7, 1, 0 [(0 [0xC004F014, 0, 0],
[(?)(?)(?)(?)(?)(?)(?)(?)])(1)(2)(3)]

This is the same query but it lacks the /f:text at the end. The output contains the same data as
that in Listing 9-10 but it’s in XML format. While all of the data is there, it isn’t as easy for the eye
to just gravitate toward the information we may be looking for. You can read it but it’s not as easy to
quickly parse visually for most people as the formatted view in Listing 9-10.

Microsoft also provides APIs for programmatically interacting with the Event Log subsystem.
There are libraries you can get for Python to write scripts to interact with the Windows Event Log
subsystem. If you wanted, you could write scripts to pull data programmatically. Microsoft, at its
core a developer’s company since it started by just offering the BASIC language as its first product,
also has its own ways of getting data. If you were to use the .NET framework, writing in one of the
languages that supports .NET, you could very quickly and easily write a program that could extract
data from the Windows Event Logs. A very simple query is a couple of lines of code in a C# program,
as an example. Microsoft provides all of the functionality to interact with the Event Log subsystem
in a library module. What you do with the data you have retrieved is then up to you in the program
you are writing.

Using Firewall and Application Logs 231

Clearing Event Logs
It is possible to clear event logs; they can easily be deleted using the Event Viewer. In Figure 9-6,
you can see the list of actions you can perform with the Event Viewer. In addition to filtering and
creating a custom view, as discussed in the preceding section, you can also clear the log. This would
wipe all of the entries from the log file, though you would get the option to save the log entries before
clearing them.

In fact, after you have cleared the Application log, there is nothing at all left. Not even an entry
indicating that the log file has been cleared. Other logs don’t allow you to get away scot-free, however.
The Security log will leave behind an audit event indicating that the log had been cleared. The same is
true of the System log. In fact, the System log will also generate an event saying that the Application
log has been cleared, if the Application log were to be cleared. If you clear the System log, you will
be left with a single event, similar to the Security log, saying that it had been cleared. You can see
the single event and its details in Figure 9-7.

Figure 9-6: Event Viewer actions.

Network Forensics232

The Event Viewer is not the only way to clear the log, though. You can also use wevtutil. If you use
wevtutil cl Application, you will clear the Application log. Just as if you had used the Event Viewer,
you won’t leave a trace in the Application log, but you will leave a trace in the other logs. In the
System log, you will have a single entry. Listing 9-12 shows the use of wevtutil and then the query
of the System log showing the single entry that says the log file was cleared.

Listing 9-12: System Log Clearance

C:\Windows\System32\winevt\Logs>wevtutil cl System

C:\Windows\System32\winevt\Logs>wevtutil qe System /f:text
Event[0]:
 Log Name: System
 Source: Microsoft-Windows-Eventlog

Figure 9-7: Cleared system log.

Using Firewall and Application Logs 233

 Date: 2017-03-18T17:12:05.142
 Event ID: 104
 Task: Log clear
 Level: Information
 Opcode: Info
 Keyword: N/A
 User: S-1-5-21-3194329012-3227895253-4200476558-1001
 User Name: RICMESSIERCDCC\kilroy
 Computer: RICMESSIERCDCC
 Description:
The System log file was cleared.

All of this is to say that if an attacker uses tools to clear the event log, there will typically be an
entry indicating the event log had been cleared. Even deleting the files is made challenging because
Microsoft locks the files on a running system. Attempting to delete the files generates an error that
they are in use. This is not to say that clearing log files or manipulating them in some way is impos-
sible, but it does require the skills of someone more experienced and technical than an average user.

Firewall Logs
Firewalls come in a variety of flavors. There are network-based firewalls and host-based firewalls. This
is very different from the case where intrusion detection systems are host-based or network-based,
which serve different purposes. No matter where you place a firewall, whether on a host or in a net-
work, the objective is to block traffic. A host-based firewall will block traffic or activity on the host.
The firewall lives low in the network stack and evaluates network traffic as it comes into the system
from the network interface. You may find a multi-featured endpoint security system that includes a
firewall, but the entire software package is not the firewall. This is especially true for our purposes.

A network firewall would be placed in a network location such that it would become a choke point,
making decisions about what traffic to allow through and what to block. At its core, no matter where
it is positioned, the job of a firewall is to make decisions about what to allow and what not to allow
at the packet or flow level.

Beyond network-based and host-based, there are other ways of thinking about firewalls. One is
a stateless firewall. The stateless firewall is essentially an access control list. It has very simple rules
to determine whether to allow traffic or block it. As an example, you can define a stateless firewall
rule by saying any traffic coming into port 22 should be dropped. That’s just an access control rule.
You could make rules based on whether the source matched an acceptable network location or not.
These are not very complex rules and making decisions based on them is trivial.

A stateful firewall adds another layer of complexity. In addition to the simple port, protocol, and
address rules, you can also determine whether to allow traffic based on its state. This means that if
communication has originated from inside the network, the return traffic should always be allowed
because the communication has already been established. The firewall can pay attention to the state

Network Forensics234

of the communication based on flags in the TCP headers, but with UDP, the firewall would have to
keep track of the state of communication using a state table. As soon as it sees a message going out, it
flags information from that message in the state table in order to match the response traffic when
it is seen.

A deep packet inspection firewall goes even deeper. Where stateless and stateful firewalls look at
headers, a lot of malicious activity happens at the application layer. Looking at the data and not just
the headers is time consuming. There is a chance that looking at the data inside the packet, which
wouldn’t be as structured and easy to investigate as the packet headers, could slow down delivery of
the message. This is less of an issue than it used to be with much faster processors in firewalls today.

No matter what type of firewall, though, looking at firewall logs will be useful. The logs will help
to correlate what you have been seeing and can fill in missing pieces if there are messages that have
been dropped. This is traffic that you wouldn’t have seen hit the application and get logged there, but
you may have seen it come in over the network if you had capture sensors in place. Not all firewalls
will automatically log dropped messages but they can often be directed to log drops. These logs will
provide you with useful information. You can even have rules established to just log all traffic pass-
ing through the device.

NOTE Logging network traffic, even if you are just logging metadata, will increase processor
overhead on the firewall and will definitely consume disk space. Depending on the location of the
firewall and the network the firewall sits on, this may not be a very big deal. Other networks generate
enough log data that it could require significant disk space to store the data. It would be quite a bit
worse if you were trying to store all of the packet data in addition to the metadata from the headers.

To provide a sample of firewall logs, Listing 9-13 shows some logs generated by the firewall on
a Linux system. These were generated by a CentOS 7 system with firewalld, but the older iptables
firewall will generate logs that look a lot like this. Of course, other firewalls will generate log files
that may look different from what you are looking at but it’s easy to see the important elements from
the logs here, and those elements will be included in the log files from most firewalls. Because the
log messages were generated by the kernel on a Linux system, they were sent to syslog so you will
recognize the format here.

Listing 9-13: Linux Firewall Logs

Mar 18 15:13:23 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00
SRC=192.168.86.65 DST=192.168.86.110 LEN=40 TOS=0x00
PREC=0x00 TTL=64 ID=129 PROTO=TCP SPT=65403 DPT=22
WINDOW=4096 RES=0x00 ACK URGP=0
Mar 18 18:27:41 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00

Using Firewall and Application Logs 235

SRC=192.168.86.65 DST=192.168.86.110 LEN=40 TOS=0x00
PREC=0x00 TTL=64 ID=31938 PROTO=TCP SPT=49898 DPT=22
WINDOW=4096 RES=0x00 ACK URGP=0
Mar 18 20:26:25 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00
SRC=192.168.86.65 DST=192.168.86.110 LEN=64 TOS=0x00
PREC=0x00 TTL=64 ID=63522 DF PROTO=TCP SPT=57743 DPT=22
WINDOW=65535 RES=0x00 SYN URGP=0
Mar 18 20:27:52 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00
SRC=192.168.86.65 DST=192.168.86.110 LEN=64 TOS=0x00
PREC=0x00 TTL=64 ID=37753 DF PROTO=TCP SPT=57753 DPT=22
WINDOW=65535 RES=0x00 SYN URGP=0
Mar 18 20:37:25 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00
SRC=192.168.86.65 DST=192.168.86.110 LEN=64 TOS=0x00
PREC=0x00 TTL=64 ID=48005 DF PROTO=TCP SPT=57965 DPT=80
WINDOW=65535 RES=0x00 SYN URGP=0
Mar 18 20:37:25 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00
SRC=192.168.86.65 DST=192.168.86.110 LEN=64 TOS=0x00
PREC=0x00 TTL=64 ID=16288 DF PROTO=TCP SPT=57966 DPT=80
WINDOW=65535 RES=0x00 SYN URGP=0
Mar 18 20:37:25 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00
SRC=192.168.86.65 DST=192.168.86.110 LEN=64 TOS=0x00
PREC=0x00 TTL=64 ID=4327 DF PROTO=TCP SPT=57967 DPT=80
WINDOW=65535 RES=0x00 SYN URGP=0
Mar 18 20:37:27 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00
SRC=192.168.86.65 DST=192.168.86.110 LEN=64 TOS=0x00
PREC=0x00 TTL=64 ID=39602 DF PROTO=TCP SPT=57968 DPT=80
WINDOW=65535 RES=0x00 SYN URGP=0
Mar 18 20:37:27 boingers kernel: IN=ens160 OUT=
MAC=00:0c:29:3f:0f:1e:f4:5c:89:b7:2c:89:08:00
SRC=192.168.86.65 DST=192.168.86.110 LEN=64 TOS=0x00
PREC=0x00 TTL=64 ID=8476 DF PROTO=TCP SPT=57969 DPT=80
WINDOW=65535 RES=0x00 SYN URGP=0

First, as with any syslog entry, you will see the date and time followed by the short name of the
system that generated the log. In this case, the system name is boingers. This is followed by the
application name. As mentioned previously, the kernel generates these logs because the firewall lives
inside the kernel, where the network stack is. Some of the remaining fields are going to be recogniz-
able, while others may require some explanation.

 ■ IN/OUT—These two values indicate the interfaces that are used. The log entries here only indicate
an IN interface because there isn’t a second interface. If the firewall were passing traffic through
it, there would be an OUT interface indicating where the packet was going next.

Network Forensics236

 ■ MAC—This is the Media Access Control address, which is the address used at layer 2 in network
communications.

 ■ SRC/DST—These fields are the source and destination IP addresses.
 ■ LEN—This is the length of the packet in bytes.
 ■ TOS/PREC—TOS is the Type of Service, while PREC is the precedence given to the packet. These

two fields would be used if there was quality of service in use in the network. They would allow
a network device to determine their priority.

 ■ TTL—The TTL is the time to live. This is the number of hops the packet can travel before it is
considered to have lost its way, at which point it will be dropped.

 ■ ID—The ID field is the IP identification value. This value is used to reconstruct fragmented
packets. The ID for the fragments should be the same across all the fragments.

 ■ DF—This indicates whether the Don’t Fragment bit has been set.
 ■ PROTO—This is the protocol set in the IP header, indicating the transport layer protocol in use.
 ■ SPT/DPT—This is the source and destination ports from the TCP headers.
 ■ WINDOW—This is the number of bytes that can be transmitted without an acknowledgment

being transmitted.
 ■ RES—These are the reserved bits, which shouldn’t be used.
 ■ SYN—This indicates that the message has the SYN bit set.
 ■ URGP—This is the urgent pointer. It would be used in case the URG flag were set. If the URG flag

is set, this field would be used to indicate where the urgent data is located.

In essence, these log values just read out the values from the packets that were logged. There is
no indication here of the disposition of the packets themselves, so these particular logs may be of
less value. However, it is possible, within the Linux firewalls, to tag messages providing more of an
indication of the disposition. Again, this is just the basic firewall that comes built into Linux. Other
firewalls, especially commercial ones, would have more useful reporting features in some cases.
These logs could also be sent to a system like a log management system or a security incident and
event management system (SIEM). These types of systems may be able to correlate the data from
these logs and provide a bigger picture that may be more useful.

Proxy Logs
A proxy is another type of firewall, since it is capable of making determinations as to whether traffic
should be allowed to pass through. In most cases, the type of proxy you will run into is a web proxy.
The web proxy takes in requests from the user, then re-originates those requests as though it were
doing the requesting for itself. When the response comes back, the proxy has a mapping for who
requested what so it knows who to pass the response message back to. The proxy is also capable of
determining whether web traffic should be allowed through. If it’s not, it would generate an HTTP
error and send that back to the user.

Using Firewall and Application Logs 237

Proxy servers are often used as a way of conserving bandwidth, since the proxy server will cache
copies of web documents locally. This means the request won’t need to go back out to the Internet
every time a user inside requests the same page or set of pages. As an example, let’s say everyone in
your company decided to go visit Wiley’s website today. The first one would get the copy and the proxy
server would cache it. The next person’s request for the Wiley web page would be much faster because
it was being served out of the cache rather than being requested over the Internet. Additionally, proxy
servers can be used to protect the enterprise, using rules to determine what websites are okay to
visit and what websites are not. If a website has been determined to be unacceptable, for whatever
reason, the request would get rejected.

In Listing 9-14 you can see a fragment from a proxy server log. This is from the open source proxy
server, Squid. You will see that the log files here look much like web application logs. What is hap-
pening is the proxy server is determining whether there is a file cached or not. If it’s not, there is a
miss. This means the proxy server has to reach out to the Internet and request the document from
the server where it is stored.

Listing 9-14: Squid Proxy Logs

1489887470.182 623 172.30.42.12 TCP_MISS/302 1054 GET
http://s1133198723.t.eloqua.com/visitor/v200/svrGP? -
HIER_DIRECT/142.0.160.13 text/html
1489887470.526 701 172.30.42.12 TCP_MISS/200 455 GET
http://s1342121626.t.eloqua.com/visitor/v200/svrGP.aspx? -
HIER_DIRECT/142.0.160.13 image/gif
1489887470.851 667 172.30.42.12 TCP_MISS/200 455 GET
http://s1133198723.t.eloqua.com/visitor/v200/svrGP.aspx? -
HIER_DIRECT/142.0.160.13 image/gif
1489887470.875 18 172.30.42.12 TCP_MISS/200 1769 GET
http://media.wiley.com/spa_assets/R16B094RC8/site/wiley2/pvo/
images/favicon.ico - HIER_DIRECT/23.216.88.157 image/x-icon
1489887470.920 63 172.30.42.12 TCP_MISS/200 691 GET
http://nsg.symantec.com/Web/Seal/Dynamic.aspx? -
HIER_DIRECT/184.85.193.14 text/javascript
1489887471.225 369 172.30.42.12 TCP_MISS/200 621 GET
http://zn3lwsfwmnkphu1zr-wiley.siteintercept.qualtrics.com/
WRSiteInterceptEngine/? - HIER_DIRECT/23.206.197.230
application/javascript
1489887473.362 4199 172.30.42.12 TCP_TUNNEL/200 73998 CONNECT
script.hotjar.com:443 - HIER_DIRECT/23.111.9.32 -
1489887473.388 4218 172.30.42.12 TCP_TUNNEL/200 6278 CONNECT
vars.hotjar.com:443 - HIER_DIRECT/94.31.29.64 -
1489887477.631 8339 172.30.42.12 TCP_TUNNEL/200 3485 CONNECT
gtrk.s3.amazonaws.com:443 - HIER_DIRECT/52.216.18.128 -
1489887477.632 8339 172.30.42.12 TCP_TUNNEL/200 3485 CONNECT

Network Forensics238

gtrk.s3.amazonaws.com:443 - HIER_DIRECT/52.216.18.128 -
1489887481.198 11948 172.30.42.12 TCP_TUNNEL/200 470 CONNECT
logx.optimizely.com:443 - HIER_DIRECT/34.196.177.18 -
1489887481.198 11896 172.30.42.12 TCP_TUNNEL/200 655 CONNECT
www.google.com:443 - HIER_DIRECT/216.58.217.4 -

This sample indicates that there are requests to Wiley’s website, as well as Google’s. Looking at
Web activity logs through the perspective of a proxy server can be interesting since you will see all of
the requests that go into generating a page. Some of these requests are undoubtedly the result
of the pages that were visited having relationships with analytics engines in order to better track
user activity and engagement. Hotjar.com, for instance, allows the site owner using it to get a better
understanding of the users who are visiting the site. It’s important to note here that not all requests
you will see in these logs are originating from the hand of the user. Just because a user requested
one page doesn’t mean that dozens of other requests came because the user manually went to those
pages. Analytics and ad engines, directed by a page from a legitimate site, may generate traffic that
can look strange or unusual.

Proxy servers like Squid’s can be run through analyzer programs to generate statistics, just like
Web logs can be. A number of programs exist that will take in Squid logs. The program Webalizer, for
instance, will analyze Squid proxy logs as well as Web server logs, and a number of other programs
can be used. Having an analyzer tool like Webalizer or one of the others to take your logs in and
aggregate some of the data can be very beneficial and much easier than poring through page after
page of logs like you see in Listing 9-14.

Web Application Firewall Logs
Where the proxy server is used to protect the user, the Web application firewall (WAF) is used to
protect the server. This is another service that can be used to block traffic. Instead of blocking out-
bound traffic like a proxy server would, the Web application firewall would block inbound traffic.
These types of servers are used inline with web application servers because the network firewalls
in front of them are generally inadequate to protect against application attacks, which web applica-
tions can be highly susceptible to and there can be a lot of traffic focused at web servers trying to
exploit web applications. The Web application firewall will inspect all of the traffic coming in at the
application layer. It makes no network decisions. Instead, it looks at behaviors in the HTTP that is
being sent into the server and determines whether an attack is underway.

Much like network firewalls, the WAF runs based on rules. When someone knows what an attack
looks like, they would write a rule to do something based on that. They create a signature that the
attack can be mapped to. The rule also indicates what the disposition of the inbound request should
be if the rule is matched. This particular WAF is modsecurity, which is a module that runs with
the Apache web server. It will also run with IIS and Nginx. While you can design your application
architecture in such a way that modsecurity can be on a standalone box on the edge of the architec-
ture, you can also just run it inside the Apache web server that is perhaps serving up your content

Using Firewall and Application Logs 239

to the user. In either case, when a rule is triggered, modsecurity generates a complex log that can
be seen in Listing 9-15.

Listing 9-15: Web Application Firewall Logs

--d480d20a-A--
[19/Feb/2017:22:30:24 --0500] WKpivH8AAQEAAUwA904AAAAH
192.168.86.65 57575 192.168.86.83 80
--d480d20a-B--
OPTIONS /security.php HTTP/1.1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:42.0)
Gecko/20100101 Firefox/42.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Referer: http://192.168.86.83/security.php
Cookie: PHPSESSID=e945t3jli2psaes0klfd7upnl2; security=impossible
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 77
Host: 192.168.86.83

--d480d20a-F--
HTTP/1.1 500 Internal Server Error
Content-Length: 532
Connection: close
Content-Type: text/html; charset=iso-8859-1

--d480d20a-E--
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>500 Internal Server Error</title>
</head><body>
<h1>Internal Server Error</h1>
<p>The server encountered an internal error or
misconfiguration and was unable to complete
your request.</p>
<p>Please contact the server administrator at
 webmaster@localhost to inform them of the time this error occurred,
 and the actions you performed just before this error.</p>
<p>More information about this error may be available
in the server error log.</p>
</body></html>

--d480d20a-H--
Message: Error reading request body: Partial results are valid but
processing is incomplete
Apache-Handler: application/x-httpd-php
Stopwatch: 1487561404207982 20005648 (- - -)

Network Forensics240

Stopwatch2: 1487561404207982 20005648; combined=770, p1=762, p2=0, p3=1,
p4=0, p5=6, sr=203, sw=1, l=0, gc=0
Response-Body-Transformed: Dechunked
Producer: ModSecurity for Apache/2.9.0 (http://www.modsecurity.org/);
OWASP_CRS/2.2.9.
Server: Apache/2.4.18
Engine-Mode: "DETECTION_ONLY"

--d480d20a-Z--

Modsecurity uses a multi-part log format. Each part has a different purpose, though not all parts
will always exist within the log output. The sections we can see in the preceding code are A, B, F,
E, H and Z. The line --d480d20a-A-- indicates at the end that this is section A. You can find the
other sections in the logs because they will have the same header, just with a different letter at
the end, indicating which log output section follows. The A section is the audit log header including
information about the audit log entry, such as a time stamp. Section B is the request headers. This
is the HTTP message that was sent, without any data that may have been transmitted outside of the
headers. F includes the response headers. In this case, it appears that the response was a 500 internal
server error that was sent back. Section E is related to F and includes the intended server response.
This includes more than section F. For example, in addition to the headers, you can see the actual
error message that was sent back.

Section H is the audit log trailer that includes more information related to what happened. As an
example, you can see two stopwatch lines. The two stopwatch lines can be used to help determine
the performance of the web server as well as that of Modsecurity. Section H also tells us about the
server and the version of Modsecurity in use. It also says that we are using the core rules set (CRS)
from OWASP. Finally, we can see that the Engine-Mode is set to detection only. This means that even
if Modsecurity determines that something bad is going on, all it will do is generate a log entry. It will
not block the message. The final section is Z and that just indicates that the entire log message is done.

Common Log Format
One of the early web servers came out of the National Center for Supercomputing Applications (NCSA)
at the University of Illinois, Champaign-Urbana. The NCSA HTTP daemon (httpd) was released in
1993 and a version of it became the source code for the Apache web server, which has been the most
used web server since the mid-1990s. The NCSA server, being one of the first, defined the log format
that would continue to be used on web servers. It is a very basic log format where information is
stored on a single line, and because it has become a standardized way of logging information from
servers, it is called the common log format (CLF). Each entry in a log where CLF is used contains
the following information:

Using Firewall and Application Logs 241

 ■ Host—This is the remote host that originated the request.
 ■ Identification—RFC1413 defines user identity, which can be provided by the identity daemon

on the user’s system.
 ■ Authenticated user—After a user has logged in, they become an authenticated user and this

field contains the username.
 ■ Date—This is the date of the request.
 ■ Request—This is the request that has been made, including the method and universal resource

location (URL).
 ■ Status—The status that the server provided back from the request.
 ■ Bytes—The number of bytes that have been transmitted back to the client.

In cases where there is no data, a dash (–) is used. This may be common in cases where the identity
is not provided by the client. Many systems don’t include the identity daemon, as they would have
commonly at the time the NCSA server was developed and primarily used. Also, not all requests
need to be authenticated.

While the common log format is still in use, web servers may be more likely to use the combined
log format. It contains the same information that is contained in the common log format but it car-
ries additional information as well. The combined log format adds two fields. The two fields can be
configured and can be any request header. As an example, you could include the referrer header to
log what site the request originated from, if there is one. You could also log the user agent, which is
a character string indicating the browser and operating system that was used to generate the request.
You can see samples of the combined log format from a fragment of a log from an Apache web server
in Listing 9-16.

Listing 9-16: Apache Log Entries

192.168.86.65 - - [19/Feb/2017:22:30:26 -0500] "GET
/vulnerabilities/sqli/?Submit=Submit%2526zap%253Dzaproxy HTTP/1.1"
302 333 "http://192.168.86.83/security.php" "Mozilla/5.0
(Macintosh; Intel Mac OS X 10.12; rv:42.0)
Gecko/20100101 Firefox/42.0"
192.168.86.65 - - [19/Feb/2017:22:30:26 -0500] "GET /login.php HTTP/1.1"
200 1841 "http://192.168.86.83/vulnerabilities/sqli/" "Mozilla/5.0
(Macintosh; Intel Mac OS X 10.12; rv:42.0) Gecko/20100101 Firefox/42.0"
192.168.86.65 - - [19/Feb/2017:22:30:26 -0500] "GET /login.php HTTP/1.1"
200 1841 "http://192.168.86.83/security.php" "Mozilla/5.0 (Macintosh;
Intel Mac OS X 10.12; rv:42.0) Gecko/20100101 Firefox/42.0"
192.168.86.65 - - [19/Feb/2017:22:30:26 -0500] "GET
/vulnerabilities/sqli_blind/?Submit=Submit%2526zap%253Dzaproxy HTTP/1.1"
302 333 "http://192.168.86.83/vulnerabilities/sqli/?id=%27+or+%27a%27+
%3D+%27a&Submit=Submit" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12;
rv:42.0) Gecko/20100101 Firefox/42.0"

Network Forensics242

192.168.86.65 - - [19/Feb/2017:22:30:26 -0500] "GET /login.php HTTP/1.1"
200 1841 "http://192.168.86.83/vulnerabilities/sqli/?id=%27+or+%27a%27+
%3D+%27a&Submit=Submit" "Mozilla/5.0 (Macintosh;
Intel Mac OS X 10.12; rv:42.0) Gecko/20100101 Firefox/42.0"

The start of each line in the log file looks exactly like what the common log format would look
like. You can see the host that originated the request. The host is an IP address on my local network.
The hosts would commonly be stored as IP addresses, to save on doing reverse lookups for every
request that comes in. This is followed by two dashes because identd is not running on the client
that generated the request. Additionally, the request did not require a login so there is no authenti-
cated username. This is followed by the request date and time and then the request. The request is
in quotes and includes both the method (GET) as well as the URL that is being requested. In the last
log entry, the URL is /login.php. This is followed by the HTTP version, HTTP/1.1. The response
code is 200, which means success and the response from the server was 1841 bytes.

After the number of bytes is the referrer. This is the URL that led to the request on this log line.
The last entry on this line is the user agent. Based on the user agent string, the request came from
a Mac OS system running Firefox. You can also tell from the user agent string what version of the
operating system is running on the client.

Web servers also have error logs and while they aren’t as standardized, they can be just as useful.
The sample in Listing 9-17 is from the same Apache web server that the access log in Listing 9-16
came from.

Listing 9-17: Apache Error Log

[Sun Feb 19 22:29:57.170543 2017] [:error] [pid 84966] [client
192.168.86.65:57572] script '/var/www/html/vulnerabilities/
view_source_allbackup.php' not found or unable to stat
[Sun Feb 19 22:29:57.172893 2017] [:error] [pid 84966] [client
192.168.86.65:57572] script '/var/www/html/vulnerabilities/
Copy of view_source_all.php' not found or unable to stat
[Sun Feb 19 22:29:57.175141 2017] [:error] [pid 84966] [client
192.168.86.65:57572] script '/var/www/html/vulnerabilities/
Copy (2) of view_source_all.php' not found or unable to stat
[Sun Feb 19 22:29:57.177458 2017] [:error] [pid 84966] [client
192.168.86.65:57572] script '/var/www/html/vulnerabilities/
Copy (3) of view_source_all.php' not found or unable to stat
[Sun Feb 19 22:30:02.345315 2017] [:error] [pid 84969] [client
192.168.86.65:57574] PHP Fatal error: Uncaught Error: Call to
undefined function dvwaMessagePush() in /var/www/html/dvwa/
includes/DBMS/MySQL.php:10\nStack trace:\n#0 {main}\n thrown in
/var/www/html/dvwa/includes/DBMS/MySQL.php on line 10, referer:
http://192.168.86.83/dvwa/includes/DBMS/
[Sun Feb 19 22:30:02.756811 2017] [:error] [pid 85016] [client
192.168.86.65:57571] PHP Warning: define() expects at least

Using Firewall and Application Logs 243

2 parameters, 1 given in /var/www/html/dvwa/includes/
dvwaPhpIds.inc.php on line 4
[Sun Feb 19 22:30:23.801370 2017] [:error] [pid 85016] [client
192.168.86.65] ModSecurity: Error reading request body: Partial
results are valid but processing is incomplete [hostname
"192.168.86.83"] [uri "/login.php"]
[unique_id "WKpiu38AAQEAAUwYU6IAAAAF"]

There are entries that are not shown here that relate to the service itself. You will get those entries
in addition to the messages shown. The messages can indicate that someone is looking on the server
for pages that don’t exist. This may be part of a site crawl using a dictionary attack or it could just be a
mistake. Having log entries like this can help to correlate other evidence from a network investigation.

Summary
Log files can be an important place to obtain supporting information for a network forensic investi-
gation. Unix-like systems use syslog as the common logging platform. Syslog is a text-only logging
format. On a Windows system, the system and applications use the Windows Event Log. Windows
Event Logs are stored as XML in a binary file. They can be queried using the Windows Event Viewer.
They can also be queried using Xpath with the wevtutil command-line utility.

While the network is the primary source of information and has the most accurate data, there
are secondary sources that can be used. One advantage of using secondary sources is that you can’t
always guarantee you will have network captures. Firewall logs will provide information about what
is happening at the network level without necessarily relying on the network itself. Both host and
network firewalls can provide data that can correlate what happens over the network. While the
firewalls may not necessarily provide you the data automatically, they can be configured to provide
more logging that can support what can be acquired from the network.

Firewalls come in many styles. A traditional firewall could be stateless or stateful. It may also be
deep packet inspection. You can get network data out of firewall logs. On top of the network-level
firewalls, you can get application layer gateways and the logs that are associated with them. A proxy,
which is an application layer gateway for web traffic, can provide a lot of data about what users are
doing on an enterprise network. Since proxies are capable of blocking traffic from enterprise users, you
can acquire information about bad sites that have been used as well as sites that have been blocked.

Web application firewalls provide application layer data to go along with any network-based
information. Where a traditional firewall can get TCP/UDP/IP header information, a Web application
firewall can provide details in the HTTP headers and data related to web attacks.

Correlating Attacks10
In this chapter, you will learn about:

 ■ How to synchronize time across multiple systems
 ■ How to aggregate logs
 ■ The importance of timelines and how to create them
 ■ Security information and event management systems

As he looks at the systems he has gathered from this one company, it appears that they are scattered
around the United States with one or two in Ireland. He recognizes how important the events that he is
performing are in creating a trail demonstrating his jumping from one system to another. Unfortunately,
when logs are sent off the system they originated on, it’s hard to for him to protect himself. He can’t just
wipe the logs because they are sent to a waiting system in another part of the network the moment they
are created. Wiping the local log has no benefit there.

He checks time zones and clock settings on each of the systems he has entered. He realizes that not only
do they span different time zones, but in many cases, their times don’t match up. Sometimes even within the
same building. Clocks are sometimes off by several minutes or more. Sometimes, clock settings are entirely
wrong. This is good news for him, since anything these systems are generating can be misleading. This is
in addition to the obfuscation he is creating. The more he can do to create a quicksand to mire down those
who may eventually be tracking him, the better off he will be. More days under his control means more
money in his pocket. This is a good thing.

When you are working within an enterprise, you will be working on multiple systems. You will
have multiple artifacts, including logs, that need to be presented in a coherent way. This can be espe-
cially true when it comes to an enterprise that is diverse geographically. Fortunately, there are ways
to synchronize systems across multiple time zones and there are ways to do this so no matter where
your systems are around the globe, they can be synchronized to standard, reliable time sources. This
will be important when it comes to pulling a timeline together.

The timeline is the end goal of everything we are doing here. A timeline represents the entire
history of an incident in a concise manner that is easy to follow chronologically. Putting events
Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics246

into a timeline helps to determine correlation, as well as what may be related and what may not be
related to the entire incident. It also helps to isolate outliers within the entire timeline of events; the
outliers may prove to be useful or they could be ruled out. Looking at a long list of timestamps can
make it hard to chase down what happened. This is why pulling events out of all of the sources of
information you have and placing them in a timeline can be useful. You can see, visually, how it all
unfolded and what it looked like.

A number of tools are available to assist with the construction of timelines. Because a timeline
is essentially a visual tool, the programs that are used to create timelines are typically graphical
programs because it can be much easier to just drag events around on the timeline if you need to
rearrange or just make room for new events. There is a significant program that is not graphical that
is used to help generate timelines, though. The program log2timeline and other, associated programs,
is important because it can be used to help extract important time information from logs and other
data sources. This can help to extract what is necessary from sources that may be difficult to get time
information from in a consumable manner.

Packet captures don’t include their own per-frame times. Everything is based on offsets from
the beginning of the packet capture. As a result, packet captures can also be used as a source of
timeline information, and this is important because of the value of using packet captures in a net-
work investigation. Packet captures often need to be correlated with logs, and logs can come from
a large number of systems. It can be problematic to extract logs from every system that is related.
Fortunately, there are ways to deal with that by making sure that the logs are pulled together at the
moment they are created.

Ultimately, the most important thing, though, is to have a solid foundation to build your evidence
on. That solid foundation relies on synchronizing time across your systems, no matter what time
zone they are in.

Time Synchronization
Time synchronization means that every system in the network, or at least every system you care about,
is using the same source for its timing information. Local clocks on systems can have a tendency
to drift some, which means they should be regularly checking with a more reliable time source to
ensure all systems are accurate. Even a couple of minutes of drift in the clock can make a big dif-
ference in correlating events. If you have a network intercept that says one thing but a log that says
something else, and it’s not clear there is a clock problem, you can end up with events completely
out of sequence. That may end up having an impact on your attempt to determine a root cause or
attaching actions to a particular actor.

Time Zones
Time zones are geographic distinctions made around the globe because of the way the earth rotates
during the day. Since the way we measure time is based around celestial objects like the sun, we rely

Correlating Attacks 247

on our own orientation to that celestial body. As an example, when the sun is at its apex in the sky,
we consider that noon. The problem is that when it is at its apex for me, it is a good way on the wane
on the east coast of the United States. In Europe, the sun may have gone down altogether. In order
to correct for this, we use time zones. Everyone in the same sliver of the globe, from top to bottom,
is in the same time zone. While it’s not perfect, noon for me in Colorado is going to have the sun at
roughly the same position in the sky for someone in Salt Lake City, also in the Mountain Time zone.

The point of origin for all of the time zones is sometimes called Greenwich Mean Time (GMT).
The same time measurement is also called Coordinated Universal Time (UTC). Every other time
zone around the world is an offset from that measurement. As an example, I am seven hours behind
GMT and UTC. Eastern Europe is ahead. Riga in Latvia, for instance, is three hours ahead, while
Bern in Switzerland is two hours ahead.

NOTE While we call it Coordinated Universal Time or Universal Time Coordinated, the abbrevia-
tion is UTC. The reason is to have a single way of referring to the time standard. English speakers
proposed CUT as the abbreviation, while the French wanted TUC (temps universel coordone). UTC
was the compromise. UTC is not a time zone. GMT is a time zone. UTC is a time standard and the
point of origin for all time zones. In practice, UTC and GMT are the same thing when it comes to
the time.

Another thing to consider is daylight saving time (DST). Many time zones around the world
observe daylight saving, which can vary a local time by an hour from the base time. Neither GMT
nor UTC observe or make adjustments for daylight saving. In the United Kingdom, the time zone
designation becomes British Summer Time (BST). In the United States, it is a letter change. Where
MST is Mountain Standard Time, the time measurement based on the sun being more or less at its
apex at noon, in the summer when the time changes, it becomes Mountain Daylight Time (MDT).
Since computers are capable of making the adjustment automatically when the time changes, the
time zone may be referred to as MST7MDT, indicating that in standard time, the clock is –7 from
UTC. Part of the year, though, is different from that. At the moment, as I write this, I am only six
hours different from UTC.

When systems need to all be on a particular time standard in order to make sure that what hap-
pens can be resolved easily later on, as in a timeline, they may simply set their local clocks to UTC.
The local time can always be calculated easily, but if the system clock is set to UTC, every system,
no matter where it is, has the same time and no resolution needs to happen to ensure every event
captured has the same base time.

Network Time Protocol
The network time protocol (NTP) was created to share time across the network. When systems use
NTP, they are typically clients to a time server. Periodically, the NTP client will check with the NTP
server to synchronize the time. The idea is that the NTP server has a more reliable clock than the

Network Forensics248

client. Regular synchronizations will correct for any drifting of the local clock. The clock on the
client will get reset based on what it receives from the NTP server.

Because speed in these cases is important, NTP transmits and receives over UDP. The idea is that
you want to receive the messages from the NTP server with the shortest delay absolutely possible.
Additionally, in the case of a time synchronization message, it is less important that it get there
guaranteed. Instead, if it doesn’t get to the server or client, the application will retransmit as neces-
sary. This means that there is no verifying that you are talking to the correct server. Speed is the
most important factor.

NTP uses a hierarchy to determine the reliability of the time. A stratum 0 clock would be either an
atomic clock or a global positioning system (GPS) clock where the time is accurate to milliseconds.
Beneath the stratum 0 clocks would be stratum 1 clocks. A stratum 1 clock is a reference clock.
These synchronize to the stratum 0 clocks and their time would be accurate to microseconds rather
than milliseconds. The US Naval Observatory, for instance, operates several stratum 1 servers that
synchronize with their own atomic clock, though they may also synchronize with GPS. Following
down the chain, a stratum 2 server would synchronize its clock with a stratum 1 server, while a
stratum 3 server would synchronize its clock with a stratum 2 server.

NOTE While NTP is a hierarchy, lower stratum clocks will also sometimes peer with each other
to have additional validity, creating a more robust time on each of the clocks.

Each system within a network would be configured to synchronize with a local time source. This
would ensure that all systems within a network had the same time source, maintaining local time to
within fractions of seconds. Operating systems like Windows and Mac OS X are configured by default
to synchronize with a time server maintained by Microsoft and Apple, respectively. In the case of
Linux, systems would commonly use one of the pool servers maintained by ntp.org. The hostname
pool.ntp.org would resolve to a system at the time it was checked since pool.ntp.org doesn’t resolve
to a single IP address. Instead, the resolution would rotate through multiple servers in the pool. Each
time a request was made, the client making the request would get a different address than the one
provided to the last client.

Desktops and servers are not the only systems that need to have their times synchronized. All
network devices and other appliances would need to have their times synchronized as well. Routers,
switches, and firewalls, along with other devices, are going to generate information that will be
important in a network investigation. As a result, all devices you expect to be working with should
be synchronized to the same source since that will make life much easier when it comes to trying
to pull everything together.

Correlating Attacks 249

Packet Capture Times
There is nothing in Ethernet frames or IP packets that provides any sort of timestamp that could be
used to reliably mark packets or frames. You can look through the headers if you like, but there is
nothing there. So, if we are acquiring a packet capture, how do we know anything about the time
that any frame came in? The capturing program knows when it began running, and it knows, based
on that, when captured frames arrived. A program like tcpdump would know exactly what time a
frame arrived. In the output of tcpdump, as shown in Listing 10-1, you can see the time each frame
arrived down to milliseconds.

Listing 10-1: tcpdump Output

17:40:01.212754 IP milobloom.lan.afpovertcp > oliver.lan.56504:
Flags [.], ack 8028, win 4094, options [nop,nop,TS val 324412441
ecr 195692146], length 0
17:40:01.212757 IP milobloom.lan.afpovertcp > oliver.lan.56504:
Flags [P.], seq 69244:69359, ack 8028, win 4096, options
[nop,nop,TS val 324412441 ecr 195692146], length 115
17:40:01.212794 IP oliver.lan.56504 > milobloom.lan.afpovertcp:
Flags [.], ack 69359, win 4092, options [nop,nop,
TS val 195692152 ecr 324412441], length 0
17:40:01.230318 IP testwifi.here.domain > oliver.lan.54130:
44910 1/0/0 PTR jc-in-f125.1e100.net. (80)
17:40:01.233093 IP jc-in-f125.1e100.net.5223 > oliver.lan.56527:
Flags [.], ack 31, win 860, options [nop,nop,
TS val 562035498 ecr 195692137], length 0
17:40:01.404911 IP oliver.lan.56507 > edge-star-shv-01-ord1.
facebook.com.https: Flags [.], ack 4217269812, win 4096, length 0
17:40:01.405822 IP oliver.lan.63399 > testwifi.here.domain: 12655+ PTR?
1.74.13.31.in-addr.arpa. (41)
17:40:01.423314 IP testwifi.here.domain > oliver.lan.63399:
 12655 1/0/0 PTR edge-star-shv-01-ord1.facebook.com. (89)
17:40:01.441983 IP edge-star-shv-01-ord1.facebook.com.https >
oliver.lan.56507: Flags [.], ack 1, win 2043, options [nop,nop,TS val
919358756 ecr 195647271], length 0
17:40:01.774558 IP oliver.lan.56749 > google-home.lan.8009:
Flags [P.], seq 115:230, ack 116, win 4096, options [nop,nop,
TS val 195692712 ecr 5440334], length 115
17:40:01.782858 IP google-home.lan.8009 > oliver.lan.56749:
Flags [P.], seq 116:231, ack 230, win 344, options [nop,nop,
TS val 5440835 ecr 195692712], length 115

Network Forensics250

This output shows the actual time each frame came in because tcpdump knew what time it was.
Wireshark, by contrast, represents time as an offset from the time the packet capture was started.
This is, though, configurable. By default, you would see the first frame show 0.000000. The next
frame would show the number of seconds since the first frame, down to milliseconds. Every suc-
cessive frame would also show as being an offset from the start of the file in seconds. This is a view
setting in Wireshark, though. You can change the view setting to show you the number of seconds
since the start of Epoch time (1970-01-01 00:00:00). You can see Wireshark showing the number of
seconds offset from Epoch time in Figure 10-1.

Figure 10-1: Wireshark showing Epoch time in seconds.

In reality, the file format, pcap or pcapng, stores timestamps for all frames in Epoch time. In addi-
tion to the timestamp on the file, stored in the global header, each frame will have its own header
to store metadata. The frame header stores the timestamp on the frame in Epoch time, which is the
number of seconds since January 1, 1970. Additionally, all times stored in a pcap file are UTC. There
is no time zone information stored in the frame metadata, though the global header for the file will
include the offset from UTC that was configured on the system at the time the packets were cap-
tured. You can see in Figure 10-2 that the time zone from the pcap header is set to 0. The line that
says “int32 thiszone” has a value of 0, which is UTC. You’ll also see under Frame[0] that the time in
seconds (Epoch time) shows the date and time that the frame came in on. The line below that shows
the time in microseconds. In order to get the exact time, you put the two lines together, which is
shown in the line that says Frame[0].

Figure 10-2 is from a hex editor using a pcap template to be able to extract the specific data seg-
ments from the file. Without this, it would be difficult to parse through the raw pcap file. You can, of
course, just let Wireshark show you the time the way you want it by changing your view preferences
under View ➪ Time Display Format.

Correlating Attacks 251

Figure 10-2: Hex editor showing times from PCAP.

Log Aggregation and Management
It is hard to overstate the importance of logging. From a forensic investigation standpoint, of course,
the paper trail that logs provide is very helpful. Additionally, though, system administrators, network
engineers, security engineers, and various other people who have to touch systems can get a lot of
benefit from logging. As a result, turning on system logging is a good thing. The problem is where
to put the logs once you have them. As mentioned previously, the problem with storing logs on the
endpoints (servers, desktops, and so on) is that if they are compromised, the attacker can get access
to those logs to wipe or alter.

The best approach is to offload logs to a central log host. This is not perfect. Just because you create
a central log host doesn’t guarantee that attackers won’t be able to get to it. After all, if it is reachable
enough from the endpoint to be able to get logs to, then the attacker can also reach it, even if it’s only
through the port listening for the log messages. A number of readily available solutions will allow
you to create a centralized log host from open source to commercial offerings. Your needs should
help you to determine which one may be the right way to go for you.

Although logging and different logging mechanisms were covered in Chapter 9, we will talk about
the same kinds of logging from the perspective of collecting and correlating in the next sections.

Windows Event Forwarding
Windows uses the Event Log to store log information. If you want to manage the logs, view them, or
search for information in them, you would use the Event Viewer. The Event Viewer also allows you to

Network Forensics252

set up log forwarding by creating subscriptions. If you look in the left-hand pane of the Event Viewer,
as shown in Figure 10-3, you can see both Forwarded Events and Subscriptions. In the Forwarded
Events log, you will see, probably not surprisingly, events that have been received (forwarded) from
another system. This will allow you to separate the system logs from the system where the log col-
lector is running from all of the other logs that may be sent to it from other systems.

Figure 10-3: Windows Event Viewer.

In order to set up forwarding, you need to set up a system as a collector. The collector can be
configured to either reach out to other systems or it can wait for other systems to contact it to send
logs along. One way of getting logs is to use the collector to create a subscription. The subscription
allows the collector system to subscribe to logs from another system. When you want to start a sub-
scription, you go to the Subscriptions folder that you can see in Figure 10-3. From there, you click
Create Subscription in the right-hand side of the window. This will bring up the dialog box that you
see in Figure 10-4.

The dialog allows you to specify where you want the received logs to go. By default, they would go
into the Forwarded Events log, though you can change the log you would like them to go into. You
can select Collector Initiated or Source Initiated. If you wanted to have the collector poll for logs, you
would select Collector Initiated. If you would rather the source computer send them along, you would
select Source Initiated. Once you have determined how you want the subscription to work, you can
create a filter to determine exactly what logs you want forwarded. If you enable a lot of logging and
auditing, Windows can generate a lot of log entries, and perhaps you don’t want all of them going to
the collector. If this were the case, you would create a filter to specify exactly what you wanted for-
warded on. It’s important to note that the filter will let you indicate what you want forwarded, which
means there are messages you are leaving on the endpoint and not forwarding them off somewhere.

Syslog
Another free offering that just comes with the operating system is syslog. This is available, typically,
for Linux and Unix-like systems. Configuring a syslog server to listen for syslog messages is easy. Any
implementation of syslog should have the ability to listen for syslog messages from other systems.

Correlating Attacks 253

As an example, the following configuration fragment shows how to configure a syslog-ng server to
listen for syslog messages over TCP. By default, syslog uses UDP, but TCP guarantees that the mes-
sages get to the server or will return an error indicating why so it’s preferable to use TCP rather than
UDP. This is especially true on critical systems. You’ll also notice that in the configuration shown
in Listing 10-2, I have specified which IP address to pay attention to, which effectively determines
the interface I’m listening for messages on. While interfaces can have multiple IP addresses, any IP
address can only be configured on a single interface on a system, so by indicating the IP address, we
know which interface the message will be arriving on.

Figure 10-4: Creating a subscription in Windows Event Viewer.

Listing 10-2: syslog-ng Server Configuration

source network { syslog(ip("172.16.144.176") transport("tcp")); };
destination d_local { file("/var/log/messages_${HOST}"); };
log { source(src); source(network); destination(d_local); };

On the client side, you would essentially reverse the two lines at the top. Your destination becomes
a network destination, configured just as you did in the source. You might label your destination
d_network to make it clear it’s a network destination. Your source would then be your local logging.
You can see what that may look like in Listing 10-3.

Network Forensics254

Listing 10-3: syslog-ng Client Configuration

source src {
 system();
 internal();
};
destination d_network { syslog(ip("172.16.144.176") transport("tcp")); }
log { source(src); destination(d_network); };

Once you have these two configurations in place, you will be forwarding your syslog messages
from one system to a central log host, also running syslog. You are not restricted to just Unix-like
hosts when you are taking in syslog messages, though. A number of software packages are available
that will install a syslog agent onto a Windows system. This will allow you to take log messages
from a Windows system and send them off to a syslog server. As an example, rsyslog is a common
implementation of syslog and rsyslog provides an agent that will monitor the Windows Event Log to
forward events off to a syslog server.

Log Management Offerings
Windows Event Viewer and syslog are both essentially free offerings that you can take advantage of
with your existing operating systems. You may, though, want something that gives you some addi-
tional power. There are a number of products around, both commercial and community-supported.
With a log management solution, you are expanding on the capability of just taking logs in, though
certainly Windows Event Viewer Subscriptions and even some implementations of syslog provide
you with some of the advanced features of the log management solutions we’re going to be talking
about here.

One solution you can make use of is nxlog. Currently, IBM offers nxlog as a commercial offering,
though there is a community edition as well. One advantage to nxlog is that it can be configured to
accept logs in a variety of formats, generating a single, coherent log file that you can use. An example
of an nxlog configuration is shown in Listing 10-4. What you can see in the listing is that nxlog has
been configured to be a listener for syslog messages.

Listing 10-4: nxlog.conf Sample

<Extension _syslog>
 Module xm_syslog
</Extension>

<Input in1>
 Module im_udp
 Port 514
 Exec parse_syslog_bsd();
</Input>

Correlating Attacks 255

<Input in2>
 Module im_tcp
 Port 514
</Input>

<Output fileout1>
 Module om_file
 File "/var/log/nxlog/logmsg.txt"
 Exec if $Message =~ /error/ $SeverityValue =
syslog_severity_value("error");
 Exec to_syslog_bsd();
</Output>

<Output fileout2>
 Module om_file
 File "/var/log/nxlog/logmsg2.txt"
</Output>

##
Routes
##
<Route 1>
 Path in1 => fileout1
</Route>

<Route tcproute>
 Path in2 => fileout2
</Route>

This example has nxlog listening on both UDP and TCP, as indicated by the Input sections. The
two Output sections write messages coming in to files. One advantage to nxlog is its ability to execute
functions that can allow you to manipulate and massage data. You’ll see in the first Output section that
it not only sets the severity value based on whether it sees error in the message, but it also outputs to
a syslog format rather than the nxlog format. A number of variables are defined by nxlog that allow
you to make determinations based on what you see coming in. Finally, we have to join the input and
the output. That is done in the Route sections. In each route, you have a path that indicates inputs
and outputs. You can have multiple inputs going to a single output. If you need multiple outputs, you
need multiple route sections. The two routes here say that UDP messages should be written out in
syslog format, using Output1 since the assumption is that they are coming in using syslog format.
Output2, on the other hand, just dumps the messages coming in to /var/log/nxlog/logmsg2.txt.

There are a number of other offerings when it comes to log management. Searching has become a
very popular and important option when it comes to log management. One option, formerly called
ELK, includes the search feature as the first part of its name. ELK is an acronym for Elasticsearch,
Logstash, and Kibana. The three components together offer log management, search capabilities, and
a web interface for management and queries. The trio of software is currently named Elastic Stack.

Network Forensics256

Another product that is popular is Splunk. Splunk has a commercial offering but there is also a
lite version that you can use for small installations that you can download and install for free. If you
have larger data needs, there are other offerings of Splunk. Like Elastic Stack, Splunk offers a web
interface for management. Figure 10-5 shows the web interface where you can add a TCP or UDP
listener to take in syslog messages or messages from other sources. Similar to nxlog, Splunk has the
capability to parse different sources of data and will auto-detect some data sources. Splunk will also
take in local sources. If you point Splunk at a directory where your logs are, /var/log for instance,
Splunk will add the data source and start consuming and indexing the logs.

Figure 10-5: Creating listener in Splunk.

Once you have the logs in, you can use the Splunk interface to start reading all of the logs. Splunk
also offers a number of ways to query the logs and drill into the data. On the left-hand side of Figure
10-6, there is a list of fields that you can search by. Clicking any of those will display data related
to the link you clicked. Additionally, even within the log message, there are clickable links to look at the
data in a different way. For instance, each entry has a host field that is clickable. If I were to click
that field, Splunk would show me logs from that host. The same is true with the source and sourcetype
fields. I can present information only from /var/log/auth.log in my output by clicking that source.
Likewise with syslog—if I had multiple sources, I might want to just show my syslog messages.

Using a log management solution has a number of benefits. You have one-stop shopping when
it comes to looking at your information and if the log management solution is good, you will have
a number of ways to look at your logs, using queries and filters. If your log management server is
well-protected, you can also keep all of your logs intact and away from attackers. It also helps to
maintain your logs in a useful order because sources are providing the data as it happens to the log
management solution.

Correlating Attacks 257

Figure 10-6: Displaying logs in Splunk.

Timelines
If you aren’t using timelines in your work today, you probably remember them from school. One
text book or another would have presented a timeline, whether it was a geological timeline showing
the different periods the earth has been through or whether it was a historical timeline showing
important events in the history of the country or the world. The idea of a timeline is to put events
into a coherent, chronological order. When events are out of order, it’s hard to follow what happened.
As an example, Figure 10-7 shows a timeline but the order of events doesn’t make any sense at all.

Figure 10-7: Illogical timeline.

Network Forensics258

According to the timeline in this figure, I drove to work, showered, and then got out of bed.
I could drive to work then shower but I wouldn’t be able to do either of the first two without doing
the third. Without some additional contextual information, this timeline is illogical. When you get
logs from disparate sources, you can end up with what appears to be an illogical sequence of events
unless you can get everything into order by the actual date and time that they happened. The finer
the grain you can get on the time the more precisely you can order the timeline. Computers are very
fast and multiple events can happen within the same second. Having that fine granularity will give
you the ability to put everything you believe has happened into a precisely accurate order.

A number of software products are available to help with timelines. There are also products you
can use to generate your own timeline from what you have observed without necessarily having to
extract events from your artifacts. As an example, the timeline shown in Figure 10-7 was created
using Aeon Timeline. Using a simple tool like that, you can create a visual timeline and attach notes
to each event. However, there are tools that you can use to automatically extract information from
packet captures, logs, and other artifacts you may have acquired.

Plaso
Plaso is a collection of software that provides the ability to ingest a number of data types. A sample
of the types of data that can be handled is shown in Figure 10-8. This list was produced by run-
ning log2timeline.py --info. One of the important components of Plaso is log2timeline, which
does the work of taking the input, performing any parsing, and filtering then outputting a storage
file that other tools like psort can use to generate output that you can use in your reports or in any
other timeline you may want to create. Plaso is a collection of Python scripts and all of them are run
from the command line. While you can output to different file types, including Excel spreadsheets,
comma-separated values, and different database types, none of the outputs will cleanly create the
sort of visual timeline shown earlier.

The output shown in Figure 10-8 was created on a Kali Linux system using the Plaso package.
If you were to install it on your own or on a different system, you may get a different collection of
input and output formats, depending on the dependencies that may be installed. Plaso relies on a
number of libraries and other software packages to handle some of the work, so if those libraries are
not installed some of the functionality Plaso is capable of won’t be available.

Correlating Attacks 259

Figure 10-8: Plaso filetypes.

PacketTotal
Just like the website VirusTotal is capable of doing analysis on potential malware samples, PacketTotal
can perform analysis on packet captures, presenting the information in a variety of forms. Figure 10-9
shows PacketTotal showing the list of all of the frames that have been captured. This is in chronologi-
cal order, though it’s probably not significantly more helpful than Wireshark is at just showing all of
the communication that took place over the time period of the packet capture. However, in addition
to just the list of all packets, PacketTotal has also extracted some other information, which can be

Network Forensics260

seen in the tabs along the top. In addition to just the connections, which you are seeing here, you can
also view SSL Certificates, Transferred Files, and Strange Activity. There was strange activity in this
particular capture but it was two messages that were not responded to, which isn’t all that unusual,
considering the capture may have been stopped before the response came back.

Figure 10-9: PacketTotal console view.

You haven’t seen it all, though. PacketTotal is actually capable of generating the timeline for you
if you didn’t want to deal with the tedium. The timeline in Figure 10-10 shows all of the communi-
cation sessions that were found in the packet capture file that was provided. You are able to zoom
in and out using your trackpad or scroll wheel on your mouse. If you zoom in, you can then scroll
back and forward in time using the buttons on the page.

PacketTotal will also help perform some analysis. The Analytics page provides a number of charts
and graphs that represent the different communication streams in different ways. For example,
PacketTotal breaks out the communications by service and protocol as well as source and destina-
tion address and port. This is perhaps a better way of visualizing the packet capture since you can
see clearly where your most active participants were during the time period of the packet capture.

Correlating Attacks 261

Figure 10-10: PacketTotal timeline view.

Wireshark
Wireshark has its own capabilities when it comes to generating time-based data that can help you
present information within a timeline. Wireshark can’t create a timeline for you other than the
main Wireshark window that displays every frame captured in chronological order. However, it can
represent information in different ways. One way is just using standard filters within Wireshark.
A filter provides you a way to isolate just the specific packets you want to look at, which can limit
extraneous noise. If you isolate down to a single conversation stream, you can see the order that the
messages happened in. Wireshark will also decode the messages for you so you don’t have to flip
from one packet to another trying to read the payloads. If you Follow Stream, whether UDP or TCP,
you will see the messages without all of the headers. That can help provide a better understanding
of what happened within the course of the conversation. You would still need to refer back to the
individual frames to get timestamps, however.

In addition to filters, the Statistics menu provides a number of functions that can be useful. The
Conversations statistics, shown in Figure 10-11, provides a list of all of the conversations that took
place. From the Conversations window, you can generate graphs, though the graphs are more oriented
toward network analysts who are looking at specific protocol information. It is less oriented toward
providing a timeline of the conversation. However, the graphs that are generated do show the timeline
on the X-axis. The Y-axis is less likely to be interesting to you as a forensic investigator, however.

Network Forensics262

Figure 10-11: Wireshark conversation.

Wireshark’s Analyze menu also provides some sources of information, including the Expert
Information, which provides warnings of packets that were potentially problematic on the network.
In cases of low-level packet attacks, this information may be useful. For example, excessively frag-
mented packets will show up here as will packets where the headers appear to be incorrect, which
may be evidence that they were tampered with.

Security Information and Event Management
We have talked about log management solutions. Similar to log management solutions is the Security
Information and Event Management (SIEM) system. There is a lot of intersection between the log
management solutions we talked about earlier and a SIEM solution. This is especially true when
you are talking about one of the more full-featured solutions like Splunk. While there is overlap, to
some degree, there are solutions that are specifically SIEMs. As an example, IBM has a SIEM named
QRadar. McAfee has one called the Enterprise Security Manager.

Ultimately, what’s the difference between a SIEM and a log management solution? A log man-
agement solution is more generic. It takes a lot of data in and provides you with a way to search
for information with your log storage. There can be a lot of value there but when it comes to security
information, especially when it comes to incidents, security analysts will want to do more than just
search for information. They want the system to be able to perform a lot of correlation of events to
filter out a lot of the noise. Additionally, they want a workflow tool that can help track the incident
from origination to resolution. This is primarily where a SIEM would differ from a log management
solution.

Correlating Attacks 263

This is not to say that the heavyweights in the log management space don’t have capabilities around
incident work flows, like generating alerts and handling them, but the object of a SIEM is to focus
specifically on security-related information. This may include logs, it may include alerts from other
systems like antivirus, and it may include integration with other security software products in order to
assist in the troubleshooting and resolution of the security incident.

A SIEM can also serve as a central log storage system and provide capabilities to query the infor-
mation that it stores. It should also be able to generate reports based on the information that it has
acquired from the endpoints, servers, and various software solutions that have been integrated with
it. These reports may also provide you with data that you can use to create a timeline.

Most importantly, the SIEM will do a lot of correlation for you so you don’t have to pull a lot of
data together yourself. This typically requires writing rules to tell the SIEM what data should be put
together to trigger an action. As an example, IBM’s QRadar considers two types of data that you can
create rules from. One is event data, which would be log sources, and the other is flow data. Flow
data would be generated from network devices. If you pass flow data to your SIEM, it can be used
along with your log data to trigger a result to the rule you have created.

Each SIEM will generate rules in different ways, of course, and some may include some default
rules, while others may provide tools that allow you to create complex, fine-grained rules to do much
of the work of sifting through a lot of data for you. That is one of the major advantages to making
use of a SIEM—letting it do a lot of the grunt work for you and leaving you free to just follow up on
something that looks like it may be an incident.

Summary
As you are working on your analysis, you will find that you have a large amount of data to sift through.
This may come from logs, packet captures, network flow information, or perhaps even alerts from
other systems. To make sense of all of this data, you need to be able to correlate it in some way. One
way of doing that is to just simply put everything into a chronological order and see what lines up.
You may find data from entirely different sources suddenly makes sense if you can see it all in a
coherent way with times lined up correctly.

This can be harder if your systems are in different time zones and their clocks are all set to those
time zones. While it can be done, it may be simply easier to set all of your important systems like
network devices and servers to UTC time so that no matter where your data comes from, it will all be
stamped the same and there is no additional effort required to pull it together into a single timeline.
While you are working from a single time zone, you may still have clocks that have drifted. Using
NTP to make sure your system clocks are all synched to a time standard, like one of the ntp.org pool
clocks, will help ensure that you don’t have one system 10 minutes off from the others, which will
skew the results of your investigation.

Creating timelines can be challenging work, but you can get some tools that can help you. Plaso,
for instance, is an open source program that includes a number of scripts that will ingest data from

Network Forensics264

different sources and create a coherent timeline of events in different output types. Plaso does require
that you are comfortable with the command line and, ideally, Linux, just because of the way it was
written and is available. This doesn’t mean you can’t run it under Windows, but because it is written
in the scripting language Python and makes use of a number of libraries that are more commonly
found on Linux, it may be a more natural fit there. However, lots of things are possible and many do
use it under Windows.

PacketTotal is a website that is capable of generating timelines from a packet capture. You can cre-
ate a timeline chart using the web interface and that chart can be helpful in visualizing the network
communication. Wireshark can also help you visualize the network capture in different ways. The
statistics and analysis capabilities of Wireshark are deep.

Finally, get yourself some help. Log management solutions and SIEM solutions can take a lot of
the work out of extracting useful information from the number of sources you are going to have.
A tool like a SIEM can also be used to create rules that can help you correlate events from different
sources, including logs and network devices. Once you have written the rule, you can have the SIEM
do the dirty work of digging through the pile of information that you have available. Some of this
may also be possible using a log management solution, depending on the solution you have. A lot of
feature-rich log management solutions are available.

Network Scanning11
In this chapter you will learn about:

 ■ How to identify open ports and protocols on remote systems
 ■ How to remotely identify system vulnerabilities
 ■ Passively gathering information about remote systems
 ■ Port knocking and protocol tunneling

He’s put his backdoor into place and installed some additional software to make it harder for anyone
to find the port that’s listening for him to come in. Had he needed to, he could have left a permanent con-
nection to another system he controlled. This would have allowed him to tunnel back into this system,
though the firewall. That connection would have been, perhaps, more obvious, but hiding his connections
is always necessary. Fortunately, he has tools that can do that for him. Anyone who is also on the system
won’t see his network connections.

He also worried about someone else coming into the system he now possesses. Fixing some of the broken
software packages by patching them would keep others from making use of any vulnerabilities that existed.
While he was able to get into this system by way of an e-mail, he has had to use vulnerabilities to get into
other systems. There is no need for a turf war here. Just fix the vulnerable software so he would have this
system all to himself.

The challenge with host-based analysis is that you can’t trust the host operating system if the sys-
tem has been compromised. We’ve talked about this in earlier chapters of this book, but it’s worth
repeating. The best place to gather information is from the network. This is true about information on
the host, sometimes, as well. You may commonly check for open ports on a system by using tools like
netstat or maybe one of the Windows SysInternals tools and using those tools, you can get a list of
all of the open ports. If the attacker has installed malware that either replaced the tools or hijacked
system calls, he can obscure the details about the network connection. This means you can’t trust
the tools on the operating system to tell you that something is happening over the network that you
should know about.

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics266

Fortunately, there are remote ways to see what is happening for at least some of what we are talk-
ing about. For example, if there is an existing network connection, the only way to see that is by
grabbing packets. But if there are listening backdoors on a system, they should usually be easy to
see. However, there are ways to prevent even port scanners from seeing where there may be a back-
door. You can also use a similar technique to port scanning called ping sweeping, which is a way of
quickly determining whether there are systems responding at the IP addresses within a given range.
This can be used to see if you have the right systems on the network responding. Not every system
on the network should necessarily be there.

A common way for attackers to get into systems is through vulnerabilities. While we are talking
about probing systems to see what is going on with them, we may as well talk about vulnerability
scanners. This may be a way of seeing whether there are vulnerabilities that an attacker has either
already taken advantage of, which can help you to identify a way in, or identify an avenue of potential
attack. This may be especially useful across entire enterprise networks where a single vulnerability
may be common across multiple systems. If you find a vulnerability and it exists across multiple
systems, you can be assured that an attacker will find it as well and gain access to those systems.

Attackers can obscure their access attempts in some ways so they don’t look like attacks. One way
to do this is through tunneling. Tunneled traffic can be a way to bypass firewalls, as well, since you
may be able to tunnel your attack traffic inside protocols/ports that are allowed through the firewall.

NOTE Scanning can be considered a hostile act in some cases. When you are doing any sort of
scanning, whether it’s port scanning or vulnerability scanning, make sure you are either working
on your own systems or you have permission to scan the systems that you are targeting. There is a
possibility of finding yourself in trouble otherwise.

Port Scanning
Port scanning is a way of identifying ports that are listening on the target system. This can be one
way of identifying whether ports are open. If you wanted to see what ports were open on a system,
you might use the netstat command. On newer versions of Linux, you would use the ss command.
As an example, you can see the output from ss -l on a CentOS Linux system in Listing 11-1. It shows
all of the instances where there are programs listening for connections.

Listing 11-1: ss -l Output from CentOS Linux System

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
nl UNCONN 0 0 rtnl:systemd-network/6929 *
nl UNCONN 0 0 rtnl:kernel *
nl UNCONN 0 0 rtnl:systemd-network/6929 *
u_dgr UNCONN 0 0 * 109699 * 15627

Network Scanning 267

u_dgr UNCONN 0 0 * 26584 * 15627
u_dgr UNCONN 0 0 * 101548 * 101549
u_dgr UNCONN 0 0 * 22591 * 15627
u_dgr UNCONN 0 0 * 16231 * 15612
u_dgr UNCONN 0 0 * 21842 * 15981
u_dgr UNCONN 0 0 * 380882 * 15981
u_dgr UNCONN 0 0 * 417168 * 15981
u_dgr UNCONN 0 0 * 111079 * 15981
u_dgr UNCONN 0 0 * 101551 * 101550
u_dgr UNCONN 0 0 * 101544 * 15627
u_dgr UNCONN 0 0 * 22480 * 15981
u_dgr UNCONN 0 0 * 101549 * 101548
u_dgr UNCONN 0 0 * 394801 * 15627
u_dgr UNCONN 0 0 * 26431 * 15981
u_dgr UNCONN 0 0 * 109703 * 109704
u_dgr UNCONN 0 0 * 26569 * 15981
u_dgr UNCONN 0 0 * 109704 * 109703
u_dgr UNCONN 0 0 * 412426 * 15627
u_dgr UNCONN 0 0 * 111107 * 15981
u_dgr UNCONN 0 0 * 412545 * 15981
u_dgr UNCONN 0 0 * 101550 * 101551
udp UNCONN 0 0 *:bootpc *:*
udp UNCONN 0 0 127.0.0.1:syslog *:*
tcp LISTEN 0 80 127.0.0.1:mysql *:*
tcp LISTEN 0 128 *:ssh *:*
tcp LISTEN 0 128 127.0.0.1:shell *:*
tcp LISTEN 0 128 :::http :::*
tcp LISTEN 0 128 :::ssh :::*

This output shows both TCP and UDP as well as interprocess communications (IPC) where pro-
grams on the same system can communicate with one another. You can see the listening services for
both TCP and UDP from this list. However, just because there are listening services on the system
doesn’t mean that someone remotely is going to get the same results if they were to check for open
ports. First, if the system were compromised, the output you get from ss or netstat may be cor-
rupted by what the attacker did. Second, there may be a host-based firewall or even a network firewall
blocking connection requests, depending on where you were doing the probing from.

While there are a few different port scanning programs, the one that most use is nmap (Network
Mapper). If you watch TV shows or movies, you may have seen nmap in action. Famously, nmap
was used in The Matrix Reloaded. Nmap is capable of detecting open ports in both TCP and UDP but
it also has a number of other powerful capabilities as well. If you are not familiar with nmap, you
should become familiar.We’re going to go through some of nmap’s capabilities here, but we’ll just
scratch the surface of what nmap can do.

First, if you want to just get the open TCP ports, one easy way is through a technique called a
SYN scan. The SYN scan takes advantage of the three-way handshake mechanism of TCP in order to
determine whether ports are open. In a normal three-way handshake, the client sends a SYN mes-
sage, which is followed by the server responding with a SYN/ACK, to which the client replies with

Network Forensics268

an ACK. Because of the way TCP is designed, a system that has an open port will respond with the
SYN/ACK, otherwise it will respond with a RST message, indicating that there is nothing there. As a
result, a SYN scan is very economical. You can determine whether a port is open with the minimum
number of packets sent and received. Of course, if you were to just leave a number of half-open ports
on the system, it would be seen as suspicious so nmap politely responds with a RST after the SYN/
ACK, which effectively says “never mind” to the server, which then releases the connection it has
held half-open.

A SYN scan is done in nmap by using -sS on the command line. The results of a SYN scan are
shown in Listing 11-2.

Listing 11-2: nmap SYN Scan Results

kilroy@oliver:~$ sudo nmap -sS 192.168.86.106

Starting Nmap 7.00 (https://nmap.org) at 2017-03-21 16:37 MDT
Nmap scan report for 192.168.86.106
Host is up (0.014s latency).
Not shown: 990 filtered ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
427/tcp open svrloc
443/tcp open https
902/tcp open iss-realsecure
5988/tcp closed wbem-http
5989/tcp closed wbem-https
8000/tcp open http-alt
8300/tcp open tmi
9080/tcp open glrpc
MAC Address: 68:05:CA:46:70:88 (Intel Corporate)

Nmap done: 1 IP address (1 host up) scanned in 4.33 seconds

You may notice that in order to run nmap here, I used sudo, which grants me temporary admin-
istrative privileges. This is necessary when running a SYN scan. The reason is that nmap isn’t just
using typical connection mechanisms to do this because stopping after just the SYN isn’t considered
normal. As a result, it uses something called raw sockets, where the program defines what the packet
looks like from top to bottom and then the operating system just sends the result out onto the wire
without bothering to do anything else about it. Raw sockets require administrative privileges, though.
As a result, I need to run this with elevated privileges and sudo gives that to me. We could achieve
the same result with a connect scan, which completes the three-way handshake before tearing the
connection down. It requires slightly more packets to accomplish, but the results will be the same.
A connect scan from nmap is shown in Listing 11-3.

Network Scanning 269

Listing 11-3: nmap Connect Scan Results

kilroy@oliver:~$ nmap -sT 192.168.86.106

Starting Nmap 7.00 (https://nmap.org) at 2017-03-21 16:41 MDT
Nmap scan report for 192.168.86.106
Host is up (0.020s latency).
Not shown: 990 filtered ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
427/tcp open svrloc
443/tcp open https
902/tcp open iss-realsecure
5988/tcp closed wbem-http
5989/tcp closed wbem-https
8000/tcp open http-alt
8300/tcp open tmi
9080/tcp open glrpc

Nmap done: 1 IP address (1 host up) scanned in 4.30 seconds

This time, I didn’t need sudo and I got the same list of open ports. In order to do the connect scan,
I used -sT instead of -sS. You can see the list of open ports on the left-hand side of the results and
the name of the service on the right. This is not necessarily the application that is listening, though.
This is just the service that is defined by the port number. These are well-known ports, and services
have been attached to each one of them. Nmap is just doing a lookup from a services file to get the
name of the service, without doing anything beyond that. In order to get the name of the service, we
need to do something else with nmap, and we will get to that later on.

You will see that nmap indicates whether the port is open or closed. In most cases, you will only
see the open ports listed. In this case, you can see two ports that were identified as being closed. Nmap
found two ports that responded to the requests it sent but there is no application listening. Nmap uses
closed ports to help with other detections it is capable of. You can also see in the output that nmap
only scanned 1000 ports. This is by default. In order to keep scan times down, nmap has defined
1000 well-known ports that it will scan rather than scanning all 65,536 ports that exist in a system.

You can select the ports you want to scan by telling nmap. As an example, if I just wanted to scan
web ports, I would say -p 80,443. I could also scan ports related to Windows file sharing by using
-p 137-139. Nmap will take both lists, separated by commas, or ranges, separated by a hyphen.
I can also say that I want to scan all ports by either specifying the range like -p 0-65535 or by just
saying -p-. The second hyphen just tells nmap to scan everything. In most cases, you are going to
be okay scanning the well-known ports that nmap scans by default. However, if you are looking for
backdoors, you may want to scan the entire range of ports because they may be hidden on an odd
port somewhere.

Network Forensics270

Nmap can also do some additional scan types that target TCP. In addition to the SYN and ACK flags,
other flags are defined by TCP. Nmap can set different flags and scan using those. Depending on how
the system responds, nmap will determine whether the port is open or closed. For instance, nmap
can do a FIN scan, where it only sets the FIN flag. This should only be used on an open connection,
and if we are running a port scan we have no open connections. With a FIN scan, a RST message
in response means the port is closed. If there is no response, the assumption is that either the port
is open or there is a firewall of some sort just dropping the request and not responding to it. As a
result, nmap flags these ports as either open or filtered because it can’t tell definitively which may
be the case.

A null scan looks for the same behaviors as the FIN scan. Instead of setting the FIN flag, however,
it doesn’t set any flags. The target system will send a RST on closed ports and ignore the message
on open ports. Another scan type that uses TCP flags is the Xmas scan. It is referred to as an Xmas
scan because it lights up the FIN, PSH, and URG flags just like a Christmas tree in the TCP header.
The scan types that set specific TCP flags also require administrative privileges because, again, the
behavior is different from what would normally be expected. You can see the results of an Xmas
scan in Listing 11-4 and in most cases, you will see the same results as you did with a SYN scan or
a connect scan. In this case, the target operating system appears to ignore our Xmas scan. The only
results we get back are the two ports previously identified as closed.

Listing 11-4: Xmas Scan Results

kilroy@oliver:~$ sudo nmap -sX 192.168.86.106

Starting Nmap 7.00 (https://nmap.org) at 2017-03-21 16:58 MDT
Nmap scan report for 192.168.86.106
Host is up (0.044s latency).
Not shown: 998 open|filtered ports
PORT STATE SERVICE
5988/tcp closed wbem-http
5989/tcp closed wbem-https
MAC Address: 68:05:CA:46:70:88 (Intel Corporate)

Nmap done: 1 IP address (1 host up) scanned in 12.16 seconds

You will also notice that the scan took longer. If you look more closely, you will see that nmap
found 998 open or filtered ports. This means it didn’t get any response on those ports, which may
mean that the request packet got lost. To protect against that, nmap will retransmit the request. These
retransmits slow the scan down. Any time you have a scan where you are not getting responses, your
scan will be slower.

Along those lines, we can do UDP scans just as well as TCP scans. A UDP scan is a UDP scan.
There are no variations because UDP is a very simple protocol. It has no flags to manipulate or any
other headers that can be manipulated in any way. In order to perform a UDP scan, you just run

Network Scanning 271

nmap with -sU as the flag. UDP scans will also take longer than a typical TCP scan because with
UDP, there is no handshake and no way to determine for sure whether the packet was received. If a
message is sent to a UDP port, it could just be that the message was ignored by the application. Since
UDP datagrams are often considered less valuable than TCP, they can just get lost or dropped. This
means that nmap can’t guarantee that a UDP message has really gotten through. As a result, it has to
retransmit to make sure that the application really has received it and the port is closed. The results
of a UDP scan are shown in Listing 11-5.

Listing 11-5: nmap UDP Scan

kilroy@oliver:~$ sudo nmap -sU 192.168.86.106

Starting Nmap 7.00 (https://nmap.org) at 2017-03-21 17:08 MDT
Nmap scan report for 192.168.86.106
Host is up (0.0075s latency).
Not shown: 997 open|filtered ports
PORT STATE SERVICE
53/udp closed domain
161/udp closed snmp
427/udp open svrloc
MAC Address: 68:05:CA:46:70:88 (Intel Corporate)

Nmap done: 1 IP address (1 host up) scanned in 10.15 seconds

If you were to scan all UDP ports, you could end up waiting hours, if not days, for the results.
There are a number of variables that can get in the way of a UDP scan and certainly network latency
is one of those. In my case, I am scanning systems on my own network. This means I have very low
latency and fast responses. If you are scanning systems that are not directly on your local network,
it will take longer to complete the scan.

Operating System Analysis
In addition to just determining open ports on target systems, you can determine what operating
system may be in use. Nmap includes a database of fingerprints for different operating systems. It
runs dozens of tests against responses from the target, comparing how the initial sequence number
behaves, how packets are ordered, and initial window size selection, among other checks. Once it has
all of the information from the target, it can check the results against its database to find a match.
Sometimes, nmap can be very specific about the operating system name and version. Other times,
it can only make a best guess. While the nmap team has made a deliberate attempt to increase the
size of their database, there may still be times when they can’t guess the operating system in use.

In order to do an operating system scan, nmap needs to find both open and closed ports in both
TCP and UDP. If you have a system you are scanning that has no open TCP ports, nmap will not
be able to determine the operating system. This is because it will not be able to determine how the

Network Forensics272

sequence number behaves. Two scans showing the operating system detection against different
operating systems are shown in Listing 11-6.

Listing 11-6: nmap Operating System Scan Results

kilroy@oliver:~$ sudo nmap -O 192.168.86.106

Starting Nmap 7.00 (https://nmap.org) at 2017-03-21 17:17 MDT
Nmap scan report for 192.168.86.106
Host is up (0.0068s latency).
Not shown: 990 filtered ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
427/tcp open svrloc
443/tcp open https
902/tcp open iss-realsecure
5988/tcp closed wbem-http
5989/tcp closed wbem-https
8000/tcp open http-alt
8300/tcp open tmi
9080/tcp open glrpc
MAC Address: 68:05:CA:46:70:88 (Intel Corporate)
Aggressive OS guesses: VMware ESXi 5.0 - 5.5 (97%), VMware ESXi 6.0.0
(95%), VMware ESXi 4.1 (92%), Crestron XPanel control system (92%),
 FreeBSD 7.0-RELEASE-p1 - 10.0-CURRENT (92%), VMware ESXi 5.5 (92%),
FreeBSD 5.3 - 5.5 (91%), VMware ESX Server 4.0.1 (91%),
FreeBSD 5.2.1-RELEASE (90%), FreeNAS 0.686 (FreeBSD 6.2-RELEASE) or
VMware ESXi Server 3.0 - 4.0 (90%)
No exact OS matches for host (test conditions non-ideal).
Network Distance: 1 hop

OS detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 14.55 seconds
kilroy@oliver:~$ sudo nmap -O 192.168.86.1

Starting Nmap 7.00 (https://nmap.org) at 2017-03-21 17:17 MDT
Nmap scan report for testwifi.here (192.168.86.1)
Host is up (0.0084s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
53/tcp open domain
80/tcp open http
5000/tcp open upnp
MAC Address: 18:D6:C7:7D:F4:8A (Unknown)
Device type: general purpose
Running: Linux 3.X|4.X

Network Scanning 273

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4
OS details: Linux 3.2 - 4.0
Network Distance: 1 hop

OS detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 3.55 seconds

In the first case, nmap couldn’t determine the OS for certain so it made several guesses. It wasn’t
exactly correct in any of them, though it was closest in the first two. The system was running VMWare
ESXi version 6.5. It could be that the database in use is out of date since 6.5 is a newer version of
VMWare ESXi. The second system scanned is the router on my network. We did find some open
ports and then nmap made some guesses. All it was able to determine was that the kernel was a
version of Linux but it doesn’t know anything beyond that. This isn’t particularly surprising since
this would be an embedded device that would only be using the Linux kernel and it wouldn’t have
any particular distribution.

Since all Linux distributions use the same kernel source, you may find that Linux distributions
are harder to determine. In order to get differences, the kernel would need to be modified in some
way by the distribution maintainers. Otherwise, there would need to be some other signature that is
unique to a particular distribution. Remember that the networking stack on any system lives inside
the kernel (operating system) and not in any program that sits on top of that software. If all the ker-
nels are the same, there is no way to differentiate from one distribution to another.

Scripts
Nmap includes a scripting engine, based on the Lua programming language. The Nmap scripting
engine (NSE) can be used to probe the target system more deeply. Nmap provides functions that can
be used to quickly develop your own scripts. You tell nmap which ports you care about so when one of
those ports is identified as being open, your script gets called so you can do additional investigation.

In addition to being able to write your own scripts, nmap comes with a library of scripts that can
be used against your targets. When you run nmap, you would typically specify which script to use,
but you can also run a number of scripts. Because each script defines categories that it belongs to, you
could select all of the scripts in a particular category. You can also select by patterns. As an example,
Listing 11-7 shows nmap running all of the scripts matching the pattern smtp*. This means that all
of the script filenames that start with smtp will be executed.

Listing 11-7: nmap SMTP Scripts

kilroy@zulu:~$ sudo nmap --script "smtp*" 192.168.86.111

Starting Nmap 7.01 (https://nmap.org) at 2017-03-21 22:08 EDT
Nmap scan report for proxy.lan (192.168.86.111)

Network Forensics274

Host is up (0.0073s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
|_smtp-commands: proxy.washere.com, PIPELINING, SIZE 10240000, VRFY,
ETRN, ENHANCEDSTATUSCODES, 8BITMIME, DSN,
| smtp-enum-users:
| root
| admin
| administrator
| webadmin
| sysadmin
| netadmin
| guest
| user
| web
|_ test
|_smtp-open-relay: Server is an open relay (16/16 tests)
| smtp-vuln-cve2010-4344:
|_ The SMTP server is not Exim: NOT VULNERABLE
8080/tcp open http-proxy
MAC Address: 00:0C:29:02:2B:82 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 40.04 seconds

The scripts that were run here were smtp-enumusers, smtp-strangeport, smtp-commands, smtp-
vuln-cve2011-1720, smtp-vuln-cve2011-1764, smtp-brute, smtp-vuln-cve2010-4344, and smtp-
open-relay. They enumerate any users that may be available, look for an SMTP server running on
a non-standard port, look for specific vulnerabilities, and determine if the server is an open relay.
An SMTP open relay would allow unauthorized users to send mail through it. The current version
of nmap includes more than 500 scripts. Listing 11-8 shows a script run against an SSH server, as
another example.

Listing 11-8: nmap Script Output

kilroy@zulu:~$ sudo nmap --script=ssh-hostkey.nse 192.168.86.111

Starting Nmap 7.01 (https://nmap.org) at 2017-03-21 22:00 EDT
Nmap scan report for proxy.lan (192.168.86.111)
Host is up (0.0086s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
| ssh-hostkey:
| 2048 44:45:f9:0b:bd:37:5c:be:8e:89:38:ea:e1:e8:bc:16 (RSA)

Network Scanning 275

|_ 256 51:b1:cb:43:34:8c:03:cd:e8:0d:f1:d2:f8:93:98:5c (ECDSA)
25/tcp open smtp
8080/tcp open http-proxy
MAC Address: 00:0C:29:02:2B:82 (VMware)

Since the SSH server uses public key encryption, we can extract the public key. This is the key
anyone can have because it requires the private key to decrypt anything encrypted with the public
key. The public key does provide a fingerprint that can be used to identify this server since encryp-
tion keys are not supposed to be used across multiple systems. This doesn’t mean that people always
follow that guideline. Sometimes keys can be shared across multiple systems since they are just files
that sit on the disk and the server gets configured to know where they are. Using nmap, you can
obtain the fingerprint from any server that is using SSH.

If there isn’t an existing NSE script for your purposes, all of the scripts are available on any system
where nmap is installed and any of those scripts could be used as a template to create a new one.
With a little programming experience, it shouldn’t be too complicated to make adjustments to one of
the scripts to get a new one that does what you want it to do. However, with over 500 scripts cur-
rently available, you may well be able to find a script that will gather a lot of information from the
remote host.

Banner Grabbing
Banner grabbing is the process of connecting to a service and probing it to get the service banner.
Different protocols support different ways of conveying information about themselves. Listing 11-9
shows the banner that is provided from an SSH server. Even though SSH is an encrypted protocol,
the initial banner on connection is in plaintext, ahead of the encryption negotiation. This banner
provides us with the protocol version (2.0) as well as the name of the software and the version in
use. Additionally, we can see that the operating system this software is running on is Ubuntu. This
information is one of the very reasons that we use banner grabbing—services can be overly com-
municative about themselves.

Listing 11-9: SSH Banner

kilroy@oliver:~$ nc 192.168.86.83 22
SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.1

The way we obtained this banner was through the use of a program named netcat (sometimes
referred to as nc and also ncat in the nmap distribution), which provides us with a raw TCP connection
to the service port. Once the connection has been negotiated, netcat gets out of the way and the port
is just there to send messages to. In some cases, you need to be able to communicate with the under-
lying protocol in order to get a response. Other services, like SSH, require no initial message to get
a response. As an example of a service that requires a message from the client side before getting

Network Forensics276

a response, you can see a connection to a web server. There is no indication that you are even
 connected using netcat. Instead, the web server waits patiently for the client to initiate a request. The
request shown in Listing 11-10 is for the primary index page at the root of the web server. If a web
server has an index page, commonly index.html or index.htm, and the server is configured to offer
up that index page, which most servers are configured to do by default, you don’t have to specify the
index page, just the directory.

Listing 11-10: HTTP Message for Web Server Banner

kilroy@oliver:~$ nc 192.168.86.83 80
GET / HTTP/1.1
Host: foo

HTTP/1.1 302 Found
Date: Sat, 25 Mar 2017 20:41:57 GMT
Server: Apache/2.4.18
Set-Cookie: PHPSESSID=t5goj0t77d4smjj30537t7t513; path=/
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
Set-Cookie: PHPSESSID=t5goj0t77d4smjj30537t7t513; path=/; HttpOnly
Set-Cookie: security=impossible; HttpOnly
Location: login.php
Content-Length: 0
Content-Type: text/html; charset=UTF-8

The request is to GET the page located at / using HTTP protocol version 1.1. Version 1.1 supports
virtual servers so in order to get the right root page back, we have to indicate the hostname we are
looking for. Since I know that this particular server has no virtual hosts configured, I know it doesn’t
matter what I specify in the host field because there is only one host. The server here provides us with
the server identification details, telling us the type of web server (Apache) and the version number
(2.4.18). Additionally, we know that this server supports PHP, which is a programming language
often used in web application development. In fact, not only do we know that the server supports
PHP, we know that the default page for this directory is actually login.php. We can tell that because
302 is a redirect message and the Location: field tells us where the correct page can be located. This
is something your browser would take care of automatically and you won’t even see it happening.

I did both of these by hand but that is a two-step process, because you first need to identify an
open port and then you need to connect to the port and try to get it to respond. This is another area
where we can get nmap to help us. Using a version scan, nmap will not only identify open ports, but
it will retrieve the banners and provide just the relevant information about the version of software
being used. Listing 11-11 shows a version scan using nmap. Again, nmap only scans about 1000 ports
by default so if you want to check for anything on a non-default port, you need to specify a wider

Network Scanning 277

range of ports. Backdoors or other services that have been installed by attackers may show up on
oddball ports because of the tendency of port scanners like nmap to just look on well-known ports.
If all you are doing is scanning the default set of ports, you may well be missing a service that was
installed by someone else, and the attackers are aware of these behaviors.

Listing 11-11: nmap Version Scan

kilroy@oliver:~$ sudo nmap -sV 192.168.86.111

Starting Nmap 7.00 (https://nmap.org) at 2017-03-25 14:52 MDT
Nmap scan report for proxy.lan (192.168.86.111)
Host is up (0.0082s latency).
Not shown: 995 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 3.0.2
22/tcp open ssh OpenSSH 6.6.1 (protocol 2.0)
25/tcp open smtp Postfix smtpd
80/tcp open http Apache httpd 2.4.6 ((CentOS))
8080/tcp open http-proxy Squid http proxy 3.5.20
MAC Address: 00:0C:29:02:2B:82 (VMware)
Service Info: Host: proxy.washere.com; OS: Unix

Service detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 7.80 seconds

Using the version scan, nmap was able to identify some information we had already identified, like
the fact that the target was running Apache version 2.4.6. In addition to that information, nmap was
able to determine that Apache is running on CentOS. Even if you are able to determine that ports
are open, there is no guarantee that the service you connect to will respond to anything. What we
have identified here are a number of ports that have well-behaved service applications listening. The
protocols they are using to communicate may even specify that they need to provide some amount of
information in their banners and communications with their clients. The reason for this is because
clients and servers may determine they need to communicate differently depending on capabilities
that are in use by the server. One example is shown in Listing 11-12. The mail server responds to an
initial message with a list of capabilities that it supports. This lets the client know how it should go
about engaging with the server.

Listing 11-12: SMTP Capabilities

kilroy@oliver:~$ telnet 192.168.86.111 25
Trying 192.168.86.111...
Connected to proxy.lan.

Network Forensics278

Escape character is '^]'.
220 proxy.washere.com ESMTP Postfix
EHLO blah.com
250-proxy.washere.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-ENHANCEDSTATUSCODES
250-8BITMIME
250 DSN

You’ll notice that I used the telnet client in place of netcat. The telnet client can also offer a raw
TCP connection and I have a habit of using telnet. I was using it before netcat was available, and
because the telnet client is more likely to be installed on a Linux system than netcat, I usually don’t
have to worry about installing another package before opening the connection.

A service that has been installed to provide an attacker access that the attacker doesn’t want
anyone to know about will likely be less forthcoming when it comes to providing information to
anyone connecting.

Ping Sweeps
A ping sweep is a way of identifying all of the hosts that are discoverable on a network. There are a
number of ways to do this. One way is using what nmap calls host discovery. You can see an example
of host discovery using nmap in Listing 11-13. For this, I have told nmap that I don’t want any infor-
mation other than just the list of hosts that show as being up and available. I do that by using -sn,
telling nmap not to scan anything.

Listing 11-13: Host Discovery Using nmap

kilroy@oliver:~$ nmap -sn 192.168.86.0/24

Starting Nmap 7.00 (https://nmap.org) at 2017-03-25 15:13 MDT
Nmap scan report for testwifi.here (192.168.86.1)
Host is up (0.0086s latency).
Nmap scan report for milobloom.lan (192.168.86.23)
Host is up (0.0082s latency).
Nmap scan report for billthecat.lan (192.168.86.24)
Host is up (0.0082s latency).
Nmap scan report for NPI110654.lan (192.168.86.28)
Host is up (0.0064s latency).
Nmap scan report for Google-Home.lan (192.168.86.31)
Host is up (0.015s latency).
Nmap scan report for SonosZP.lan (192.168.86.45)
Host is up (0.035s latency).

Network Scanning 279

Nmap scan report for 192.168.86.51
Host is up (0.0070s latency).
Nmap scan report for oliver.lan (192.168.86.65)
Host is up (0.00033s latency).
Nmap scan report for zulu.lan (192.168.86.83)
Host is up (0.0013s latency).
Nmap scan report for 192.168.86.106
Host is up (0.015s latency).
Nmap scan report for boingers.lan (192.168.86.110)
Host is up (0.014s latency).
Nmap scan report for proxy.lan (192.168.86.111)
Host is up (0.0050s latency).
Nmap scan report for overbeek.lan (192.168.86.112)
Host is up (0.0061s latency).
Nmap done: 256 IP addresses (13 hosts up) scanned in 2.41 seconds

You can also do a ping scan using nmap, which just requires that you use -sP for your scan type.
You will get the same results back, because nmap is doing the same thing. We are just being more
explicit in the case of -sP.

Other tools like fping could be used to do a ping sweep. Using fping, you would need to either
create a list of IP addresses you want to scan or you would have fping generate the list for you. An
example of having fping generate the list from a CIDR notation can be seen in Listing 11-14. The output
here is very straightforward. It just tells you which hosts respond as up. Where nmap has provided
additional information like the network latency from the response, fping is very straightforward
and matter-of-fact, indicating hosts that are alive. You will also get a list of all of the IP addresses
that were scanned that did not respond. This shows up after the list of those that were deemed to
be alive. You can see a partial list of those in the listing. Since we were scanning 254 addresses, the
entire list is quite a bit longer.

Listing 11-14: fping Output

kilroy@oliver:~$ fping -g 192.168.86.0/24
192.168.86.1 is alive
192.168.86.23 is alive
192.168.86.24 is alive
192.168.86.28 is alive
192.168.86.31 is alive
192.168.86.45 is alive
192.168.86.38 is alive
192.168.86.49 is alive
192.168.86.51 is alive
192.168.86.65 is alive
192.168.86.83 is alive
192.168.86.85 is alive
192.168.86.60 is alive

Network Forensics280

192.168.86.106 is alive
192.168.86.110 is alive
192.168.86.111 is alive
192.168.86.112 is alive
192.168.86.2 is unreachable
192.168.86.3 is unreachable
192.168.86.4 is unreachable
192.168.86.5 is unreachable
192.168.86.6 is unreachable
192.168.86.7 is unreachable
192.168.86.8 is unreachable
192.168.86.9 is unreachable
192.168.86.10 is unreachable
192.168.86.11 is unreachable
192.168.86.12 is unreachable
192.168.86.13 is unreachable
192.168.86.14 is unreachable

Ping sweeps or ping scans are very simple techniques of identifying systems that are on your
network that respond to ICMP requests. If a host has somehow blocked messages or just ignores
ICMP requests, they won’t show up using these techniques. If that’s the case, you may need to do
a full-blown nmap scan of the network to see whether there are some hosts that respond on ports
without responding to ICMP messages. Even then, though, nmap prefers to use ICMP to determine
aliveness before bothering to do any port scanning. If you are using nmap to do a scan to see if there
are hosts that are not responding to ICMP messages, then you would need to specify -Pn on the
command line to tell nmap not to ping first.

Vulnerability Scanning
While there are a number of ways for an attacker to gain access to systems, one of those ways is
through vulnerabilities. As a result, it can be beneficial to have an idea of what your systems look
like from a vulnerability perspective from the outside. Since vulnerabilities are constantly changing
as new ones are discovered and old ones get fixed with updates from the software vendors, it’s useful
to check on the vulnerabilities on a regular basis. There are scanners that are capable of doing this.
In fact, there is a good market for scanners that can identify vulnerabilities within your systems.

A vulnerability scanner works with a database of signatures, and this database needs to be updated
regularly. Without a signature, the scanner won’t be able to detect a vulnerability. Vulnerability scan-
ners do not attempt exploits in order to verify that there is a vulnerability. They also do not do any
brute force or fuzzing attacks in order to identify unknown vulnerabilities. That is the function of
other tools. Vulnerability scanners should be safe to run against most systems, since the intention
is not to cause any damage but instead to just identify vulnerabilities.

Network Scanning 281

NOTE Although vulnerability scanners are not designed to cause damage to systems and their
availability, sometimes fragile systems or services may crash or otherwise become unavailable.
When you are running vulnerability scanners, be careful, and ensure you have notified system
owners that you are running scans.

Vulnerability scanners run across the network and as such, they will generally identify network-
based vulnerabilities. This is most useful on servers that are going to be more likely to have applica-
tions that are designed to listen on the network. Desktops will also have externally exposed services,
though, so don’t think that vulnerability scanners are not going to be valuable against desktops. Also,
vulnerability scanners can be configured to connect to systems remotely using known credentials.
This means that a vulnerability scanner can check for local vulnerabilities like those on programs
that only exist on the local system and never have network connections. Adobe Flash and various
PDF viewers have histories of local vulnerabilities, as does Java and a large number of other programs
users make use of on a regular basis. A vulnerability scanner can connect to a system remotely and
run the local checks against those. These local vulnerabilities can sometimes provide an attacker
extra privileges than they might otherwise have, which is one reason they are valuable.

While a number of commercial scanners are available, there are also some that are free. If you hap-
pen to have a copy of Kali Linux, which is useful for a wide variety of network security and forensics
tasks, you already have a vulnerability scanner. If it isn’t installed by default, it is easy to add using the
apt package manager. Once you install OpenVAS and get it configured using openvas-setup, you can
connect to the web interface to start scans. One advantage to using OpenVAS, in addition to the fact
that it is open source and free to obtain and use, is that there is a quick start capability. All you need
are targets and OpenVAS will do some quick scanning of them without you having to do any additional
configuration of your scan. You can see the starting page for OpenVAS in Figure 11-1. OpenVAS uses
the Greenbone Security Assistant as its client interface and this is the Web implementation of that.

As mentioned, OpenVAS is open source. This means that anyone who is interested can contribute
to it. This includes contributing to the codebase for OpenVAS itself but also signatures to go into
the database for vulnerability checks. OpenVAS maintains a database of Network Vulnerability Tests
(NVTs), which are written in a scripting language called the Nessus Attack Scripting Language
(NASL). Nessus is another vulnerability scanner that also has a product that you can use at home to
play around with. Nessus is developed by Tenable Security and they also have commercial offerings.

NOTE OpenVAS is a fork of a much earlier version of Nessus. Nessus was once open source but
went closed source. The developers of Nessus were seeing others take what they had done, repack-
age it, and sell it at a profit. The open source community had also not been contributing to Nessus,
while reaping the benefits of Nessus being open source. As a result, the Nessus developers decided
to close their source code, pursuing a more commercial path.

Network Forensics282

Figure 11-1: OpenVAS start page.

Using the OpenVAS quick start, you can get results back almost immediately. Scanning the entire
network where I am resulted in a list within a very short period of time, which can be seen in Figure 11-2.

Figure 11-2: OpenVAS results.

Network Scanning 283

Rapid 7, which develops the popular exploitation framework Metasploit, also has a vulnerability
scanner called Nexpose. Nexpose is oriented toward an end-to-end vulnerability management. As
a result, in order to start off a scan in Nexpose, you create an organization, a site, and a collection of
assets. Once you have all of this in place, you can start a scan. You can see part of the creation of a
site in Figure 11-3. Once you have the site created, you can start the scan. Nexpose, like OpenVAS,
doesn’t wait for the entire scan to be complete before starting to show results. As soon as there is
anything to show, including identified assets, Nexpose will begin presenting results through the
web interface.

Figure 11-3: Nexpose site creation.

Once the scan has completed, you can see a list of vulnerabilities across the site. Additionally,
Nexpose will calculate a risk score, based on the number and severity of vulnerabilities that have
been identified. An Ubuntu Linux system on my network was found to have the vulnerabilities
identified in Figure 11-4, and these vulnerabilities resulted in a total risk score of 2685 according
to Nexpose. The number of the risk score will vary based on the severity of the vulnerabilities, and
the number of them, so just looking at the risk score by itself isn’t that valuable. You should look at
each of the vulnerabilities found.

According to the output from Nexpose, two of the vulnerabilities identified had exploits that
were available in the Exploit DB, which is a website used to store exploits and proof of concept code
to determine whether vulnerabilities are real or not. You can determine whether there are exploits
available in either Exploit DB or Metasploit by the little icons in each line. The existence of exploit
code would increase the potential risk to the system because it would mean the hard work had been
done already for an attacker. They would be able to use that exploit at least as a starting point for an
attack on the system.

Network Forensics284

Figure 11-4: Nexpose site creation.

While Rapid 7 offers a community edition that can be used for free, it does have some limitations.
One of those limitations is that you can only store a small number of IP addresses in the scanner.
They do this to encourage people who are doing real scanning to purchase one of the commercial
offerings. Someone who is scanning entire networks, particularly on a regular basis, would benefit
from being able to store information about a larger number of hosts than those allowed in the com-
munity edition. You could certainly do your scanning in smaller-sized blocks, but that becomes dif-
ficult to manage because you have to keep deleting the results in the database before starting up the
next block of addresses. Additionally, you don’t get the historical information in Nexpose, though
you can certainly export reports and store them for reference. That’s a lot of work, though.

A significant advantage to using Nexpose is integration with Metasploit. If you are looking to
determine whether a vulnerability is real and not just a false positive, Metasploit can be used to do
the testing necessary to determine that. This is where you would actually exploit the vulnerability.
If you were successful, you know for sure the vulnerability exists. You also know that if you can
exploit the vulnerability using a readily available tool, attackers can also exploit the vulnerability. If
you have identified easily exploitable vulnerabilities, it may be worth investigating to see if anyone
else has similarly identified and made use of the vulnerability.

NOTE Like antivirus and other security-related products, vulnerability scanners are prone to
false positives. A false positive is anything that is identified as legitimate when, in fact, it is not. In
the case of a vulnerability scanner, a false positive would be an identified vulnerability when the

Network Scanning 285

vulnerability doesn’t exist on that system. More damaging than false positives are false negatives.
A false negative is a vulnerability that exists but that has not been identified. False negatives can
lead to a false sense of protection.

Along the same lines, if you have identified a system that doesn’t have a vulnerability in a net-
work full of essentially identical systems that do have the vulnerability, it may be worth exploring.
Attackers will sometimes close holes they came in through in order to keep others out. It could be
they have found one system and closed the hole without yet identifying and exploiting other systems
on the network. In that case, it would just be a matter of time.

Port Knocking
Port knocking is a method of hiding ports from view. In order to gain access to the service you want,
you need to go through what amounts to a network authentication. You would need to “knock” on
some number of ports in the correct order before the real port would reveal itself to you. Harry
Potter fans can think of Hagrid tapping bricks to get into Diagon Alley, as a physical example. For
an actual example, you can look at the configuration file for knockd, which is a program designed
to provide port knocking capabilities. The default configuration that comes with knockd on Kali
Linux is shown in Listing 11-15.

Listing 11-15: knockd.conf Contents

[options]
 UseSyslog

[openSSH]
 sequence = 7000,8000,9000
 seq_timeout = 5
 command = /sbin/iptables -A INPUT -s %IP% -p tcp --dport 22
-j ACCEPT
 tcpflags = syn

[closeSSH]
 sequence = 9000,8000,7000
 seq_timeout = 5
 command = /sbin/iptables -D INPUT -s %IP% -p tcp --dport 22
-j ACCEPT
 tcpflags = syn

This particular configuration setting makes use of the firewall in Linux to only open a hole after
a particular set of ports has received connection attempts. Once the appropriate “code” has been
used, the firewall will be configured to grant access only to your IP address. Once you are done, you
would knock in a different sequence to close the hole in the firewall so no one else would be able to

Network Forensics286

get through. In Listing 11-15, the sequence is ports 7000, 8000, and 9000, then in reverse to close
the hole—9000, 8000, and 7000.

By default, you would initialize a connection attempt, which could be done using the telnet client
or netcat. Should you wish to use something more complicated, a tool like hping3 can be used to
send specially crafted messages to a target. You could change the tcpflags setting to something like
FIN. This would require that instead of the SYN message that is used by default here, you would be
expected to send a message with just the FIN flag set in the TCP header.

In the case of the configuration in Listing 11-5, knockd requires the use of a firewall to open and
close ports for access and only grants access to the IP address that initiated the knocking. While we
have covered port scanning in enough detail for you to be able to scan systems for open ports, be
aware that you are still at the mercy of whatever is happening on the local system. This is especially
true if there is a firewall running on the target. Similarly, a port scanner won’t be able to determine if
the target has a port knock daemon in place, listening for the right connection sequence. One of the
points of a port knock daemon and hiding services behind it is to defeat port scanners. The daemon
will hide the existence of the service you are looking to discover.

Tunneling
There are different ways to obscure data being sent over the wire. I have said that there is no way to
hide what happens on the network. This is true from a network perspective and you will always be
able to see what is going on at the network and transport layers. The same is not true higher up the
stack than that, though. While you will always be able to see the communication happen if you are
looking in the right place, you will not always be able to see inside that communication. We’ll get into
encryption later but for now, we are going to talk about another way of hiding information. This is
through a technique called tunneling. In tunneling you send one type of data inside another protocol.

There are different tunneling protocols that are designed to carry data from one location to another.
The Point to Point Tunneling Protocol (PPTP) is one of these. This used to be used regularly when the
Internet was accessed by most people over dial-up connections. There are still locations that will use
PPTP to get data from one location to another because it’s necessary in cases where the endpoints
may not otherwise be reachable to one another. It may also be the case that you don’t want the pack-
ets being routed over the open Internet but instead carried to another location and have the routing
done there. Another protocol that can be used for the same sort of purpose is the General Routing
Protocol (GRE). Both of these protocols are designed to encapsulate data with a set of headers that
are specific to the protocol doing the encapsulation, and those headers are used to transport the data
to the endpoint specified in the encapsulation headers.

While protocols like PPTP and GRE were designed to encapsulate and transport data, other pro-
tocols can be used to carry data. When you see PPTP or GRE in a packet capture, you know you are
seeing encapsulated data. The same isn’t always true with other protocols. One protocol that can
be used to carry data from one location to another and often be entirely unseen is the Hypertext

Network Scanning 287

Transfer Protocol (HTTP). HTTP is a protocol used to transfer web pages and other related content
like images. Where GRE and PPTP can be easily blocked by a firewall and readily identified as car-
rying tunneled traffic, HTTP is a different story altogether. The default ports used for HTTP and its
associated protocol HTTP Secure are commonly allowed right through firewalls.

A number of programs can be used to tunnel any type of traffic over HTTP. One way to do it is
to use the CONNECT method specified in HTTP. This method tells an HTTP proxy server to initiate
a connection to a remote system using a specified protocol and port. The proxy server takes care of
the connection and the client can then send data through the proxy server to the endpoint specified
in the CONNECT request. This does not mean that all HTTP proxies can be used to perform this tun-
neling, though. Not all proxies support the CONNECT method and even if they do, they may limit the
types of protocols and ports that they will connect to in order to prevent misuse.

There are ways to do HTTP tunneling without using CONNECT or an HTTP proxy. In these cases,
though, you would need a special server as well as a special client. The two would be paired to trans-
mit your information between them. The client gets the information off your system, and the server that
the client connects to would then get your real network traffic out into the rest of the world. This is
something you can obtain as a service. There are businesses that offer access to their farms of servers
and the client that connects to them.

Other protocols can be used for tunneling. Secure Shell (SSH) will open connections to remote
systems that would normally be used for remote, terminal logins but once the encrypted session is
open, users can send data down the tunnel. This effectively turns an SSH session into a tunnel for
any type of traffic. In fact, you can specifically turn an SSH session into a type of proxy for Secure
Sockets (SOCKS).

In addition to using SSH and the clients that are available for it, there is another program, called
stunnel, that will do encrypted transmission of data. Once you have the encryption in place, the
entire stream looks like a tunnel because from the outside, you can’t see what’s on the inside. stunnel
doesn’t care what type of data it carries so you can send anything you want down one of these tunnels.

Passive Data Gathering
While you may want to actively gather data using techniques like port scans, it is also possible to
passively gather data about hosts. You won’t find the same type of information since you can’t pas-
sively identify all ports that are open on a system, but you can gather a fair amount of information
regarding remote systems by just sitting and listening to traffic that is going by. Because you are
passively gathering data, it is only about systems that are communicating with you—whether you
have initiated the communication or they have. The program p0f will listen to packets coming across
the wire and extract relevant information from them. You could also do this using tcpdump and/or
Wireshark. However, pulling the data out of the packet and putting it into a coherent form can be
very time consuming. Having a tool to do it for you automatically can be very convenient. You can
see some sample output from p0f in Listing 11-16.

Network Forensics288

Listing 11-16: p0f Output

.-[192.168.86.65/52542 -> 64.233.169.100/443 (syn)]-
|
| client = 192.168.86.65/52542
| os = Mac OS X
| dist = 0
| params = generic
| raw_sig = 4:64+0:0:1460:65535,5:mss,nop,ws,nop,nop,ts,sok,eol+1:df,
id+:0
|
`----

.-[192.168.86.65/52542 -> 64.233.169.100/443 (mtu)]-
|
| client = 192.168.86.65/52542
| link = Ethernet or modem
| raw_mtu = 1500
|
`----

.-[192.168.86.65/52542 -> 64.233.169.100/443 (uptime)]-
|
| client = 192.168.86.65/52542
| uptime = 15 days 18 hrs 44 min (modulo 49 days)
| raw_freq = 994.08 Hz
|
`----

.-[192.168.86.65/52542 -> 64.233.169.100/443 (syn+ack)]-
|
| server = 64.233.169.100/443
| os = ???
| dist = 20
| params = tos:0x08
| raw_sig = 4:44+20:0:1380:mss*31,7:mss,sok,ts,nop,ws::0
|
`----

.-[192.168.86.65/52542 -> 64.233.169.100/443 (mtu)]-
|
| server = 64.233.169.100/443
| link = generic tunnel or VPN
| raw_mtu = 1420
|
`----

This may look like a packet capture in some regards because in essence, that’s what it is. P0f has
captured the packets and extracted relevant information. It also puts it into context. As an example,

Network Scanning 289

the very first block in the listing indicates which end of the communication stream is the client.
P0f was also able to identify the operating system of the client end. It was able to do this by paying
attention to the messages that were going back and forth. This is just a sample of what p0f can do,
however. In order to get a full taste of what sorts of information you can extract from network com-
munications using passive data gathering, you should get a copy of the software yourself and run
it for a while. Using p0f, you will get a new appreciation for the types of information that can be
available to you by just listening to what is going on around you.

Summary
You can learn a lot about what is going on by looking at the host and gathering information there. You
can also watch network traffic. However, sometimes, you need that outside perspective. Just watching
traffic pass across the wire doesn’t tell you much about what the host may be doing from a network
perspective if all it is doing is sitting there listening. There may be connections coming in but they
may be very sporadic, which may mean you miss them. It’s best to get an idea from the outside
whether there are ports that are listening. This includes knowing what is listening, and not just
knowing whether there is anything listening. There are different ways of accomplishing that goal.

While there are a number of port scanners around, the de facto scanner is nmap. Even other scan-
ners, like masscan take the command-line parameters that nmap has been using for the last two
decades. Since people are so familiar with nmap, it makes sense to function more or less like nmap
does. At a minimum, even if the back-end works differently, getting the interface to behave similarly
means that people who have been using nmap have no learning curve coming to a new tool.

Nmap will do scans of UDP and TCP, looking for open ports. In the case of TCP, it can use dif-
ferent scanning techniques because TCP has flags that guide the behavior of the systems that are
communicating. This means nmap will set different TCP flags in order to determine the behavior of
the target host, which will help it determine whether the port is open. In the case of UDP, it’s much
easier, though UDP scans can take longer because there is nothing that guarantees the behavior of
a UDP system. This means that retransmissions may be required to ensure the message gets to the
target. A lack of response isn’t a guarantee of anything when it comes to UDP systems.

Nmap also supports scripting so you can engage with services in a way that you choose. You
get several hundred scripts when you install nmap, and using these scripts, you can gather a lot of
information about your target and the services that are running on that target. If you are looking
for more details than what you get from the scripts nmap provides, you can write your own scripts
since they are written in a well-defined programming language, Lua.

One thing you may want to do is get details from the service banners from the applications lis-
tening on the open ports. While nmap can do this, you can also use tools like netcat and the telnet
client to engage directly with the port. Netcat supports both TCP and UDP connections but telnet is
limited to just TCP. It does require that you know something about the protocol being used by the
application you are engaging with.

Network Forensics290

Attackers can sometimes get into systems by exploiting vulnerabilities. Vulnerability scanners
are available that can probe systems to determine known vulnerabilities. Vulnerability scanners can
only get information about known vulnerabilities. They do not attempt to exploit systems, nor do
they attempt to identify vulnerabilities that are not previously known. They don’t programmatically
probe applications to identify previously unknown vulnerabilities. This means that the scanner uses
a database of signatures that need to be updated on a regular basis.

While port scanning is valuable, there are other techniques that attackers may use that are useful
to know about. One of them is tunneling. Using tunneling, an attacker can hide attack traffic inside
something that may appear to be innocuous. This can be done using protocols like GRE or PPTP
or more common protocols like HTTP, which means it can be harder to identify when what you are
looking for is buried inside something that is very commonplace.

Final Considerations12
In this chapter, you will learn about:

 ■ Encryption and its ramifications
 ■ Cloud computing implications
 ■ What The Onion Router (TOR) and the so-called “dark web” is

While looking through the Internet history on the latest system he was able to compromise, he discovered
accounts with Dropbox, Google, and Amazon. The accounts led him to a fair amount of data stored with
these providers. Additionally, he was able to retrieve the cached passwords for the accounts, which meant
he was able to directly access the accounts from other systems. The Amazon account led to a system that
was running, presumably for business purposes, and that was another account that he might be able to
use. Amazing that he was able to turn up so many accounts from this one system with data stored off-site.
These were just the sorts of finds that kept him going. The best part about using these sites is that they
were all encrypted, which meant it wasn’t easy to determine what was being sent without direct access to
the endpoint.

One area that I have deliberately steered away from until now, though it has tremendous impact
on network traffic capture and analysis, is encryption. One reason to I’ve stayed away from discuss-
ing it is that if you run across encrypted network traffic, it can be difficult, if not impossible, to get
at what is inside the messages. At best, you may be left with the metadata that you get out of the
conversation from the headers. You can get the IP information and the TCP information but none of
the application information, which may be the most important data you are looking for. Because
of the challenge associated with encryption, it’s important to understand it, its capabilities, and its
limitations. Encryption has become a fact of life, not only from the standpoint of host analysis with
whole disk encryption, but also because as more and more sensitive data is stored with service pro-
viders, network encryption is far more prevalent.

Cloud computing, despite its ambiguous name, has become another fact of life. More businesses
are moving to service providers to not only take care of data storage but also handle applications.

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Network Forensics292

The workforce is increasingly mobile and geographically dispersed, which means workers need to
be able to access business data from wherever they are. Service providers can make this possible, by
allowing businesses to outsource a lot of the hard and expensive stuff while empowering their work-
ers. This creates issues when it comes to forensic investigations because it requires working with the
service provider to acquire data rather than acquiring it directly. Unlike a local business where you
can go in, seize the computer, and then get an image of a drive, or where you could install a network
sensor to capture packets, service providers have a far more complex setup and also won’t provide
you with permission to just monitor their network.

If you watch TV or movies, especially the so-called police procedurals, you will likely have heard
of the dark net or the dark web. These terms are commonly and colloquially used to refer to sites that
are not reachable by way just firing up a web browser like Chrome, Edge, Internet Explorer, Safari,
or Firefox and heading out to the Internet in the way you are used to. Instead, you would use a TOR
browser to gain access to these hidden sites or reconfigure your current browser to use the TOR
network. You can also browse regular websites without being identified because of the way traffic is
passed around to get to its destination. This is another way that life of a forensic investigator can be
challenged over the course of a network investigation. Understanding how this works will help you
to know where you may be able to look next.

Encryption
Almost as long as there has been sensitive data in need of protection, people have been finding ways
to hide that information. They do this by taking information and altering it such that someone would
need to understand how it was altered in order to read the original message. The process of alter-
ing a message using a piece of information that should only be known by the sender and recipient,
rendering the original information unreadable is called encryption. Restoring encrypted information
to the original message, commonly called plaintext, is called decryption. Once a message is encrypted,
it is called ciphertext. We normally think of encryption as something that requires a computer, but
in fact, we were taking plaintext and creating ciphertext out of it centuries before we had computers.

One method of encryption that doesn’t require a computer is sometimes referred to as the Caesar
cipher, and sometimes it’s just called a rotation cipher. The way it works is you write out the alphabet
and then write it out a second time but shifted some number of letters. You can see this in the fol-
lowing example. To encrypt a message, you find the letter in the plaintext in the top alphabet, then
locate the letter directly below it and that becomes your ciphertext. You repeat the process for all
letters in your message until you have a completely encoded message.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
DEFGHIJKLMNOPQRSTUVWXYZABC

The word “hello,” for example, becomes “lipps.” To restore the original word, find the letters in the
cyphertext in the lower alphabet and replace them with the letters directly above them in the upper

Final Considerations 293

alphabet. Of course, you don’t have to write your alphabet out in order to perform this encryption
and decryption, but it does help to be able to see what is going on and makes wrapping around the
end of the alphabet a little easier. All we are doing is rotating the letters by 3. If you see an A, you
skip ahead three letters to get D and that’s your ciphertext letter. You reverse the process by skipping
back 3 letters.

NOTE One way of protecting sensitive readers, avoiding spoilers, or sometimes just being humor-
ous on the Internet and its precursor networks was using a weak form of encryption called rot13.
This is a form of a Caesar cipher where you rotate the alphabet by 13 letters. Since it’s easy to reverse,
nothing is really well-protected but it required a step to be able to read it.

Encryption is a complicated business, and not least of all because of the mathematics involved in
doing modern encryption. Protecting information is not as simple as converting it to a ciphertext;
if that were the case, we’d still be using a rotation cipher. The problem is that as fast as people can
come up with schemes to encrypt information, other people are working just as fast to figure out how
to decrypt that information. As a result, a lot goes into encryption and we’re going to talk about the
different ways encryption happens and how the information gets to be protected.

Keys
When it comes to encryption, the key has always been the key. Even if we are talking about a simple
rotation cipher, you still need to know how many characters to rotate before you can start to do the
decryption. Using a simple rotation cipher, you should be able to do something like a frequency
analysis if you have enough text to look at. A frequency analysis will let you determine the most
used characters in the message. This will let you map what you have found to a normal frequency
distribution of letters. Once you have the frequency of letter occurrences, you can start the process
of reversing the encryption. The most frequently used letter in the English language is e. After that,
it depends on whose analysis you want to believe. It could be t or a. According to Robert Lewand,
who did a frequency analysis for his book Cryptological Mathematics (The Mathematical Association
of America, 2000), the letter e is used more than 12% of the time. This is followed by the letter a,
which is used slightly more than 8% of the time.

Once you have determined the letter mapping, you can get to what is referred to as the key. The
key is the piece of information that is needed to decipher a piece of encrypted text. In the case of
the rotation cipher, the key could be thought of as 3. This means that the alphabet is rotated three
positions. In modern encryption, the key is quite a bit more complex and larger, because modern
encryption makes use of complex math and the key is used to feed the equations that do the encryp-
tion and decryption.

Based on this simple example, though, you can see how important it is to protect the key. Once
the key is known, no matter how complex or how simple it is, the encrypted data can be decrypted.
Protecting the key is one of the biggest challenges in modern cryptography. If you and I were to try

Network Forensics294

to communicate sensitive information, we would need a key. How do we come up with a key that
both of us know so we can encrypt and decrypt the information? Do I call you and tell you what the
key is? No, because someone could overhear it—all they need is the ciphertext and they can convert
it to plaintext.

The phone mechanism for transmission is entirely simplistic, especially considering keys are very
long and often not even readable, which means they need to be converted to something that is read-
able. This is typically hexadecimal, which can make the key more manageable, but if there is any
mistake at all in telling you what the key is, you are not going to be able to decrypt what I send you.

Fortunately, a number of researchers and cryptographers came up, roughly at the same time, with
a way of sharing keys that protects the key. The method that is most well-known—in part because
some of the other teams were working under government intelligence secrecy and weren’t allowed to
publish like Whitfield Diffie and Martin Hellman—is the Diffie-Hellman key exchange protocol. Diffie
and Hellman came up with a way of allowing both sides to independently derive the key that would
be used. They do this by starting at a common point and sharing a piece of information that is fed
into an algorithm with another piece of information they create themselves.

Let’s say, by way of an entirely unrealistic example, that we wanted to create an animal that could
carry our information. We both agree to start with a tiger. You choose to cross your tiger with a
wolf, creating a wolf-tiger. I choose to cross my tiger with an elephant, creating an elephant-tiger.
I send you my elephant-tiger and you send me your wolf-tiger. As soon as I add in my elephant to
your wolf-tiger, I get a wolf-tiger-elephant. You take my elephant-tiger and add in your wolf and you
also get a wolf-tiger-elephant.

Imagine a mathematical process that equates to this really bad genetic process and you have a
sense of how Diffie-Hellman works at creating a key that we can both use, and that has not been
transmitted. The assumption is that taking the wolf-tiger and determining that both a wolf and a tiger
went into it is a very expensive process. If someone could extract the wolf-tiger into its component
pieces and the elephant-tiger into its component pieces, that someone would know what went into
creating the key, and since the mathematical process to create the key is well-known, that person
could create the key that you and I are using to encrypt information. Because you have the key, you
can decrypt the data.

Now, hold onto the idea of keys and the knowledge that keys are used to encrypt and decrypt data.
We are going to talk about different ways that those keys can be used.

Symmetric
The process where you and I are using the same key to encrypt and decrypt information is called
symmetric encryption. The same key is used on both ends of the communication. If you have done any
exchanges on the Internet that have been encrypted, you are using symmetric encryption, whether
you realize it or not. You may even be familiar with the names of the encryption ciphers. DES, 3DES,
and AES are all encryption ciphers that use symmetric encryption.

Final Considerations 295

NOTE You will see DES and AES referred to but in fact, those are not the names of the encryption
algorithms. Those are the names of the standards. DES is the Data Encryption Standard and AES is
the Advanced Encryption Standard. The actual name of the algorithm DES is based on is LUCIFER,
an encryption cipher developed by IBM in the early 1970s. AES is the result of a contest that was
designed to find a strong successor to DES. The algorithm that was chosen was named Rijndael,
developed by a team of researchers.

Symmetric key encryption tends to be faster than asymmetric and takes less computing power.
Additionally, key sizes tend to be smaller. Don’t be fooled by this, though. You can’t compare key
lengths and assume that a cipher with a larger key is necessarily stronger. The strength of an encryp-
tion process is related to the algorithm and the algorithm determines the size of the key based on how
it works. As an example, AES is a block cipher. This means that it takes in chunks of data in 128-bit
blocks. That’s 16 ASCII characters, to give you a sense. Your data is chunked into blocks of 128 bits
and sent into the algorithm. If what you send isn’t a multiple of 128 bits, your data will be padded
out to make sure that it’s a multiple so the block size doesn’t have to be compromised or adjusted.

Using symmetric key encryption, one algorithm is used to encrypt while another is used to decrypt
and both sides use the same key, which means that protection of the key is important, as indicated
previously. Because both sides need to use the same key, there needs to be a way of either uniquely
deriving the same key on both sides, or a way to get the key from one side to the other. One of the
challenges of symmetric key algorithms is that after prolonged use, the key may be prone to attack
because an attacker can acquire a large amount of ciphertext that he can analyze to attempt to derive the
key that can be used for decryption. The solution to this is to rekey periodically, meaning replace
the key you were using with a different key. However, that does bring up the issue of how do both
sides know when to rekey and how do they both get the new key?

Asymmetric
Unlike symmetric encryption, asymmetric uses two separate keys. One of the keys is used to encrypt
while the other is used to decrypt. A common implementation of asymmetric encryption is sometimes
called public key encryption, because the two keys are referred to as the public key and the private
key. Not surprisingly, the public key is available for public use while the private key is the one you
keep protected. This is by design. The more people who have your public key, the more people who
can send encrypted messages to you. If I don’t have your public key, I can’t encrypt a message. On
the other side of that coin, even if I have your public key, I can’t decrypt any message that has been
encrypted with your public key. The public key is only good for encrypting messages because the
private key is required to decrypt them.

In the case of asymmetric keys, the two keys, which are just numbers after all, are related math-
ematically. You can think of them as two halves of a whole because they are linked. The way asymmet-
ric algorithms work is to take advantage of the mathematical relationship between the two numbers.

Network Forensics296

Without getting too deep into the math, unless you feel like doing some research, it’s sufficient for
our purposes here to know that the two keys are related and the algorithms make use of the two
keys to encrypt and decrypt messages.

The whole system works because you have a public key or you have the ability to obtain a public
key. There are two primary systems for key management. One is centralized and the other is decen-
tralized. The centralized approach uses a certificate authority to generate the keys and validate that
the owner of the keys is who that entity (it could be a system or a person) claims to be. The keys
are stored in a data object called a certificate and use of the keys is typically protected by password
because, unlike symmetric keys, these keys will stick around for a long time. While you do want your
public key getting out, you do not want your private key to be accessed or used by anyone but you.
As a result, since the key is just a chunk of data that is stored in a file, you password protect access
to the key so that anyone wanting to use your private key needs to know the password.

The second approach is decentralized. Pretty Good Privacy (PGP) and Gnu Privacy Guard (GPG)
both use this approach. Unlike the certificate authority, PGP and GPG rely on the users to validate
one another’s identities. Public keys are stored on key servers and a key server can be anywhere and
available to anyone since the idea is to make public keys accessible. Until you are able to get my public
key, you are unable to encrypt a message to me.

NOTE Enterprises may choose to store keys or certificates on behalf of their employees. As an
example, Microsoft’s Exchange Server can store a certificate in its Global Address Book (GAL). If
you have a certificate associated with your e-mail address in the GAL, anyone can encrypt messages
to you.

This all sounds awesome, right? Asymmetric keys tend to be considerably longer than symmetric
keys, though that’s not always the case. However, they are also processor-intensive and the algorithms
used to encrypt and decrypt tend to be slow. As a result, they are not great for real-time communica-
tion or even near-real-time communication. Asymmetric encryption is good for e-mail where it doesn’t
much matter how fast or slow it is, because we aren’t as worried about additional milliseconds for
encryption and decryption as we would be for data that was constantly flowing.

We now have two different algorithms. One is slow and not great for real-time communication,
while the other is fast but suffers from the need to rekey to protect itself. What if we were able to
use them together?

Hybrid
What you will commonly see in communication systems that require encryption is a hybrid approach.
Using a hybrid approach, we use symmetric encryption for the actual communication but we use
asymmetric encryption to send the symmetric key. This allows us to use the faster communication of
a symmetric cipher while also providing the protection that the asymmetric encryption offers. It also

Final Considerations 297

solves the problem of key sharing because with asymmetric encryption, I am entirely okay with you
getting access to my public key. You and everyone else can have it. We don’t need to protect it at all like
we do with the symmetric key. As a result, we can use that encryption to send symmetric keys back
and forth and they should be well-protected, assuming the private keys of both parties are protected.

When it comes to real-time communications, or even near-real-time, both parties will generate a
symmetric key and then send that key to the other side. This symmetric key is called the session key
because it is used to encrypt and decrypt messages during the course of the communication session
between the two parties. Since the messages using the symmetric key are still flowing over open
networks, which is why we’re encrypting to begin with, we still have the issue of rekeying. When the
session is established, a rekeying timer may be set. At some point, when the timer triggers, the session
keys will be regenerated and shared using the asymmetric encryption. This maintains the integrity
of the communication stream.

Web-based communications, such as those with Amazon or any other website that uses encryp-
tion to protect your data, will use a hybrid cryptosystem. This means that servers you communicate
with will have certificates associated with them.

SSL/TLS
To support the increasing desire for businesses to engage with consumers over the World Wide Web
in the mid-1990s, Netscape, the company, developed the Secure Sockets Layer (SSL). The initial
version wasn’t considered ready to release so the first version that was available was version 2.0,
released in 1995. By 1996, version 3.0 was out because of the security issues with version 2.0. Both
versions of SSL have since become deprecated or even prohibited because of issues with the security
they provide to the connection. As a result, the current standard for offering encryption between
a client and a web server is Transport Layer Security (TLS). TLS was developed in 1999 and while
it doesn’t vary greatly from SSL 3.0, the changes were significant enough that the two mechanisms
were not considered compatible.

SSL/TLS provides a way for the two ends of the conversation to first agree on encryption mecha-
nisms, then decide on keys, and finally send encrypted communication back and forth. Since the
different versions of SSL are considered unusable due to issues in the way they work, we’ll talk about
TLS and how it functions.

To determine how the two ends are going to communicate, they need to agree on several things,
not least of which are the keys they will use. To do this, they need to perform a handshake. This is
separate from the three-way handshake that happens with TCP. Since TLS runs over TCP, the three-way
handshake has to happen first. The first stage of the TLS handshake happens as soon as the three-
way TCP handshake has completed. It starts with a ClientHello, which includes the TLS versions
supported as well as the cipher suites that it can support. You can see a list of cipher suites supported
by www.microsoft.com in Listing 12-1, which shows the variety that are available, as determined by
the program SSLScan.

Network Forensics298

NOTE A cipher suite is a combination of encryption protocols along with hashing algorithms to
verify the integrity of the communication. It also provides the key exchange mechanism that will
be used.

Listing 12-1: SSLScan Output Showing Ciphersuites

 Supported Server Cipher(s):
Preferred TLSv1.2 256 bits ECDHE-RSA-AES256-GCM-SHA384 Curve P-256
DHE 256
Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-GCM-SHA256 Curve P-256
DHE 256
Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA384 Curve P-256
DHE 256
Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-SHA256 Curve P-256
DHE 256
Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA Curve P-256
DHE 256
Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-SHA Curve P-256
DHE 256
Accepted TLSv1.2 256 bits AES256-GCM-SHA384
Accepted TLSv1.2 128 bits AES128-GCM-SHA256
Accepted TLSv1.2 256 bits AES256-SHA256
Accepted TLSv1.2 128 bits AES128-SHA256
Accepted TLSv1.2 256 bits AES256-SHA
Accepted TLSv1.2 128 bits AES128-SHA
Preferred TLSv1.1 256 bits ECDHE-RSA-AES256-SHA Curve P-256
DHE 256
Accepted TLSv1.1 128 bits ECDHE-RSA-AES128-SHA Curve P-256
DHE 256
Accepted TLSv1.1 256 bits AES256-SHA
Accepted TLSv1.1 128 bits AES128-SHA
Preferred TLSv1.0 256 bits ECDHE-RSA-AES256-SHA Curve P-256
DHE 256
Accepted TLSv1.0 128 bits ECDHE-RSA-AES128-SHA Curve P-256
DHE 256
Accepted TLSv1.0 256 bits AES256-SHA
Accepted TLSv1.0 128 bits AES128-SHA

 SSL Certificate:
Signature Algorithm: sha256WithRSAEncryption
RSA Key Strength: 2048

Subject: www.microsoft.com
Altnames: DNS:privacy.microsoft.com, DNS:c.s-microsoft.com,

Final Considerations 299

DNS:microsoft.com, DNS:i.s-microsoft.com, DNS:www.microsoft.com,
DNS:wwwqa.microsoft.com
Issuer: Symantec Class 3 Secure Server CA - G4

Not valid before: Oct 26 00:00:00 2016 GMT
Not valid after: Oct 27 23:59:59 2018 GMT

The very first line, which is one of the preferred cipher suites, indicates that the key exchange
would happen with the elliptic curve Diffie-Hellman key exchange, using RSA as the asymmetric
key algorithm. They are also specifying AES for the symmetric key algorithm with a 256-bit key.
With AES, the server is offering to use Galois/Counter Mode (GCM) as the form of block cipher.
Finally, the server is offering Secure Hash Algorithm for data integrity checks using a 384-bit hash
result. When the client sends its ClientHello to the server, it would send a list of cipher suites similar
to what you see in Listing 12-1. The list may not be nearly as long as that one but it would present
choices to the server.

The server would follow up by selecting the cipher suite it preferred from the list provided by the
client. It would send its selection back to the client in a ServerHello message. In addition to the selec-
tion of the cipher suite, the server would send its certificate. The certificate would include its public
key that could be used to encrypt messages to send back to the server. The server would have to have
a certificate. Without a certificate, it couldn’t be configured to use TLS. The same would have been
true with SSL. The challenge at this point is that the client can encrypt messages to the server but
the server can’t encrypt messages to the client. The server could ask the client if it had a certificate,
in which case, the server could use the public key from the certificate to encrypt the message back
to the client. Barring the certificate, they would have to use Diffie-Hellman to derive the symmetric
key that will be used going forward.

Once the client has received the preferred cipher suite from the server, it either chooses to agree
with it or it suggests another cipher suite. This would not be typical. Instead, it would normally
begin the key exchange process, sending a message to the server indicating that. Both sides would go
through the Diffie-Hellman exchange, ending up with a key at the end that could be used during the
communication session. In Figure 12-1, you can see a packet capture in Wireshark demonstrating
the handshake taking place between the browser on my system and a web server on the other end.

Partway down the packet capture is a message (frame number 9603) that is labeled
ChangeCipherSpec. This is a message used to indicate to the other side that the negotiated cipher suite
and keys will be used going forward. In short, it says this is the last message you will receive before
receiving nothing but encrypted messages. You will notice that both sides send the ChangeCipherSpec
message in frames 9603 and 9610. These messages indicate that all subsequent messages will be
encrypted. After that, everything you see captured will be Application Data or just fragments of
packets. You’ll get nothing in the Info column from Wireshark other than TCP-related data because
that’s the last thing it can see in the packet. Everything beyond the TCP header is encrypted.

Network Forensics300

Figure 12-1: TLS handshake in Wireshark.

Certificates
We’ve been talking about certificates without providing a lot of information about them. The certificate
is a data structure that has been defined by the X.509 standard. X.509 falls underneath the X.500
directory protocol suite. X.500 is a way of structuring information about organizations and individuals
within the organization. A simplified implementation of X.500 is the Lightweight Directory Access
Protocol (LDAP), which is how Microsoft accesses information stored for its domains including
resources like users, printers and even encryption keys. Other companies also use LDAP. As part of
the directory, each entry could have encryption information. The certificate is organized with fields
providing information about the owner of the certificate; a certificate could have the Organizational
Unit or Common Name fields, for example.

Additionally, the certificate will include information about its issuance: the organization that
issued the certificate, the date it was issued and the date it expires, the algorithm that was used to
sign the certificate, and a number of other fields that not only describe the certificate but also provide
important information to judge its validity.

If you are using a web browser, you can look at certificates that have been provided by the web
server you have connected to over HTTPS. Figure 12-2 is an example of a certificate, as shown in
Google Chrome. Different browsers will present the information in different ways, but ultimately,
what you see is all included in the certificate.

Final Considerations 301

Figure 12-2: Amazon’s web server certificate.

In Figure 12-2, you can see not only the name of the website, www.amazon.com, but also the
organization that provided the certificate to Amazon, Symantec. Toward the bottom, you can see
the algorithm that was used to sign the certificate. Signing the certificate involves a known and
trusted entity, in this case Symantec, indicating that the certificate is valid and the entity that has the
certificate, Amazon’s web server, is known to Symantec. If you trust Symantec to do its job correctly
and well, and Symantec trusts Amazon and that the web server named www.amazon.com is the correct
website, then by the transitive property, you trust Amazon’s website.

Certificates work by not only providing a means for encryption to happen but also by providing a
way for users to trust the sites they are going to. If a known and trusted authority like the Symantec
certificate authority has issued a certificate, it must be to the right place, as indicated in the certificate.
If all that is true, you can trust the site and not worry that data sent to it will get into the wrong hands.

Network Forensics302

One of the ways that you indicate that you trust a certificate authority is by having the certificate
for that authority installed on your system. When certificates are issued, they come with a chain. At
the very top is the certificate authority. This is called the root certificate. The root certificate is the
only certificate in the chain of certificates you will see that is self-signed because there is nothing
above it. The way you prove that the certificate you are looking at is trustworthy is to check it against
the certificate you have installed for the certificate authority. If the certificate authority has signed the
certificate and it’s a valid signature, meaning it was definitely signed by the certificate you have
installed for the certificate authority, then the certificate is considered valid, meaning it’s trustwor-
thy. It does mean that you have to have the certificate for the certificate authority installed. Most
of the well-known root certificates for certificate authorities like Verisign, Symantec, Google, and
others are installed for you by the operating system or browser vendor. If there are other certificate
authorities you know about and can verify that they are legitimate, you can install their certificate
for yourself. Once you have done this, all certificates issued by that authority would be, again by the
transitive property, trusted by you.

A chain of certificates, which may be several deep depending on how many intermediate systems
were also involved in generating your certificate, is called a chain of trust. The trust anchor—the
entity that all trust is tied to—is the root certificate, which belongs to the certificate authority. If you
trust the certificate authority, all of the cascading certificates would also be considered trustworthy.
In the case of PGP, which is not used in web communications but which also uses certificates, it
would not be a certificate authority but instead would be a number of users that sign the certificate,
providing its validity. If you know Milo Bloom and you trust him to sign certificates for others,
and you see that Milo has signed the certificate of Michael Binkley, you, by extension, trust that the
certificate of Michael Binkley is legitimate and really belongs to Michael Binkley.

Cipher Suites
We talked briefly about cipher suites earlier in this section. It is worth going into a little more detail
rather than just passing quickly over a single example. The cipher suite is a defined collection of the
following components of the entire encryption process. These components are used through TLS 1.2.

 ■ Authentication
 ■ Encryption
 ■ Message authentication code (MAC)
 ■ Key exchange

All of these components represent different algorithms. The authentication piece could use either
RSA or DSA, which are both examples of asymmetric encryption algorithms. RSA is a proprietary
algorithm developed by the men it is named for—Ron Rivest, Adi Shamir, and Leonard Adleman.
DSA, on the other hand, is the Digital Signature Algorithm and is an open standard endorsed by the
National Institute of Standards and Technology (NIST). Both of these are used to verify identities in

Final Considerations 303

certificates. If you are presented a certificate, you can use that certificate to verify an identity because
of the trust relationship discussed earlier. If a certificate authority you trust says a certificate belongs
to www.amazon.com, it belongs to www.amazon.com.

Over the course of a communication stream between a client and server the encryption would
use a symmetric algorithm like AES, IDEA, DES, or another symmetric algorithm. Taking an entire
communication stream and encrypting it is sometimes called bulk encryption. When negotiating
the bulk encryption to be used, one of the elements would be the key length. Some algorithms, like
AES, include the ability to support multiple key lengths, so it’s important that both ends understand
the length of the key to use. It’s no good having one side generate a 128-bit key and encrypting
with that when the other side is using a 256-bit key. If the keys don’t match exactly, the process of
communication won’t work.

The message authentication code (MAC) is typically a message digest or hashing algorithm. As an
example, the Secure Hash Algorithm (SHA) can be used to take variable length input and generate
a fixed-length value from that. This value can then be used to compare against as a way of ensuring
messages were not tampered with. If I send an encrypted message to you and a hash value, no one
would be able to intercept that and send you a different message or even a modified version of the
original message because the hash values would not match. Since a cryptographic hash like SHA
cannot be reversed (they are considered one-way functions), meaning you can’t take a hash value
and derive the original message from it, an attacker would have no way of generating a message
that matched the hash value without a lot of time and effort. If he did generate a second value that
matched the hash, it would be considered a collision, which is something these hashing algorithms
are designed to avoid. Longer hashing algorithms like the 384-bit SHA384 would be considerably
harder to get a collision in than the much smaller MD5, which only uses 128-bits, or even SHA-1,
which uses 160-bits.

Finally, the key exchange algorithm that would be used has to be selected. Diffie-Hellman would
be a common approach to exchange keys in the open, meaning without encryption to protect them.
Diffie-Hellman doesn’t exchange keys directly. Instead, it allows both sides of a communication stream
to generate the key to be used independently. Both sides end up with exactly the same key without
ever actually exchanging the key itself.

All of these individual components are essential to the successful encryption of messages. TLS is
the primary protocol in use for transmitting encrypted messages over network communications. Other
protocols, including SMTP, POP3, and FTP might make use of TLS to transmit encrypted messages.
The more people who use the Internet and the more malicious users there are, the more formerly
cleartext protocols need encryption over the top in order to protect the users of those protocols.

SSLScan, SSLStrip, and Encryption Attacks
There are two open source programs that you should be aware of. You saw the first earlier in this
section in a very limited capacity. SSLScan can be used to obtain information about the cipher suites
that are in use by any server that supports SSL or TLS. In addition, SSLScan can determine whether

Network Forensics304

a server is vulnerable to the HeartBleed bug that had the potential to take an encrypted communica-
tion stream and offer a way to decrypt it, exposing the information in the clear. Listing 12-1 shows
partial output from SSLScan, run from a Kali Linux system, checking the Microsoft website, www
.microsoft.com. You can see from the output that the underlying library, OpenSSL, isn’t a version
that supports SSLv2, which was deprecated and prohibited in 2011. As a result, there were no checks
done against SSLv2. You’ll also note that SSLScan did run checks to see if the server was vulnerable
to the HeartBleed bug.

Listing 12-2: SSLScan Output

kilroy@oliver:~$ sslscan www.microsoft.com:443
Version: 1.11.8
OpenSSL 1.0.2k 26 Jan 2017

OpenSSL version does not support SSLv2
SSLv2 ciphers will not be detected

Testing SSL server www.microsoft.com on port 443

 TLS Fallback SCSV:
Server supports TLS Fallback SCSV

 TLS renegotiation:
Secure session renegotiation supported

 TLS Compression:
Compression disabled

 Heartbleed:
TLS 1.2 not vulnerable to heartbleed
TLS 1.1 not vulnerable to heartbleed
TLS 1.0 not vulnerable to heartbleed

You can use SSLScan to determine the capabilities that are supported by a server. This doesn’t get
you to the point where you can see any data, however. For that, you need a tool like sslstrip. This is
a program that takes advantage of weaknesses in some of the versions of SSL to decrypt messages.
It does, however, require that the program can get all of the messages from a communication stream
in order to be able to do what it does. This requires some understanding of manipulating networks
using Linux. The following steps are required to get sslstrip to work and have the potential to see
decrypted information:

 1. Install sslstrip, which may be available in the package repository for your Linux distribution
 2. Enable forwarding of packets on your Linux system (sudo sysctl -w net.ipv4.ip_forward=1).

Final Considerations 305

 3. Use an ARP spoofing attack (Ettercap, arpspoof) to get all of the messages on your network
to come to your machine. If you don’t enable forwarding, the communication stream between
the endpoints will break because you will be getting messages destined for someone else and
they will never reply.

 4. Configure a port forwarding rule using iptables to make sure messages to port 443 are sent to
a port you want sslstrip to listen on (e.g., iptables -t nat -A PREROUTING -p tcp --dport
443 -j REDIRECT --to-ports 5000

 5. Start sslstrip, telling it which port to listen on. This may look something like sslstrip -l
5000 or sslstrip --listen=5000, which is the same command expressed a different way.
This needs to be the port you redirected traffic to in your iptables rule.

 6. Sit and wait for sslstrip to do what it does.

This is referred to as a man in the middle (MiTM) attack and it’s a common approach to going after
encrypted messages. If you are unable to sit in the middle of the communication stream, you will be
unable to gather enough information to determine how the encryption is happening. Without any
of that information, you are going to be utterly blind. Once you are sitting in the middle gathering
information, though, you may be able to make some changes.

One way of implementing a man in the middle attack, though it will generate authentication errors
because you can’t pretend to be someone you are not without being caught, is to terminate one end
of the communication stream and re-originate it on the other side. This means that when a client
attempts to communicate, you pretend to be the server and respond as such. On the other side, you
pretend to be the client, originating messages to the server. This is not nearly as easy as it sounds
and it is prone to error, especially because any certificate you send to the client pretending to be
Amazon simply won’t pass the sniff test. Of course, certificate errors have gotten to be so common
that users may simply click through any error they receive.

Another attack is called a bid down attack. If you can, again, get in the middle, you may be able to
get the server and client to agree to a lower strength cipher suite. The lower strength may allow you
to go after the ciphertext and decrypt it. Weaker encryption may be susceptible to different attacks
that can lead to decryption. This is because either the encryption algorithm has already been chosen
or because the key strength is so low that it may be susceptible to something like a brute force attack.
Smaller key sizes mean far fewer possible keys that can be used. A 40-bit key, for instance, only has
the potential for 2^40 possible keys. This is considerably fewer, by several orders of magnitude, than
a 128-bit key, which has 2 1̂28 possible values.

Encryption protocols, algorithms, and ciphers are constantly under attack. The longer they’re
around, the more time people have to really look at them to identify potential weaknesses. Additionally,
the longer they are in use, the more computing power comes into play. Computers today are vastly
more powerful than the ones 20 years ago when the AES algorithm was being selected from the many
prospective algorithms under consideration. This means that attacks that require faster processors
are feasible now when they would have been unthinkable then. This is why key sizes keep increasing,

Network Forensics306

as do the sizes of the hash value used for message authentication. Bigger keys and hash values make
for many more possibilities, which increases the computation needed to go after them.

NOTE Earlier there was a reference to obtaining network traffic, which can be done on a local
network using a technique called ARP spoofing. While you can do this using tools like arpspoof and
Ettercap, it does manipulate the flow of traffic, causing it to pass through a system it wasn’t meant
to pass through.

Cloud Computing
Cloud computing is an ambiguous term. It covers, as they say, all manner of sins. The term originates
from the fact that large, open networks like the Internet are commonly depicted as clouds on network
diagrams. Clouds are used because they are amorphous, insubstantial, and almost entirely opaque.
You can’t see inside a cloud from the outside, and you also may not to be able to see inside the cloud
if you are in it. Objects that pass into the cloud can pass out the other side entirely unaltered, and
we just don’t know what happens inside.

When you take the idea of a cloud as a stand in for the Internet and you add in service providers
and accessibility through the Internet, you get cloud computing. However, even with that bit of clarity,
the term cloud computing is still vague and not especially transparent. The reason for this is there
are multiple types of cloud computing. Ultimately, what cloud computing means is that a computing
service is being provided somewhere in a network, often using web-based technologies, rather than
locally on individual systems. Because these are the ones that are most important for our purposes,
we’re going to talk about Infrastructure as a Service (IaaS), Storage as a Service (StaaS), and Software
as a Service (SaaS).

Infrastructure as a Service
Imagine that you have a way to make a computer very, very small. So small that you can then stuff a
lot of them into a single piece of hardware that you would normally think of as a computer system.
Imagine that you can install Windows or Linux on every single one of those computers and then you
can get access to every one of those operating systems individually. You have a way to dump a lot of
systems into a single container, such that every one of your “tiny” systems believes it is running on
a regular piece of computer hardware.

All of these smaller systems are crammed into one piece of hardware by virtual machines. A virtual
machine looks to an operating system like actual, physical hardware. In fact, the OS is interacting with
software and a set of extensions within the central processing unit (CPU) of the computer system.
This makes it possible to run a number of virtual computers within a single computer system. One
reason this is possible is because current CPUs are so powerful that they are often idle. Even running

Final Considerations 307

multiple operating systems with all of their associated programs and services, modern CPUs are not
highly stressed. Virtual machines make efficient use of modern, fast, powerful hardware by allowing
much more to run on a single computer system and CPU.

Why do we bother doing this? Well, computer hardware is comparatively expensive. If you can run
half a dozen systems on every piece of computer hardware and save the extra hardware expenditure,
lots of companies can save a lot of money. Why would a company want to buy separate machines for
a web server, a mail server, a database server, and a file server when they can buy a single machine?
Additionally, every computer system purchased costs power, floor space, cooling, and maintenance.
The fewer computer systems needed, the more money the company saves. You can see why virtual-
ization would be popular for companies that can make use of it. Managing virtual systems isn’t free,
however. It does require systems powerful enough to run all of the services the company needs and
the software, called hypervisors, needed to run the virtual machines. That software needs manage-
ment and maintenance, which means paying someone who knows how to run it.

What does all of this have to do with Infrastructure as a Service (IaaS)? There are companies that
can offer up access to virtual machines at a moment’s notice. Some of this started with companies like
Amazon that had an excess of capacity and the infrastructure in place to manage these services on
behalf of customers. However, this is just an extension of the outsourcing that has long been going on.
Companies have been buying outsourced computing power for decades. Even virtual machines have
been around for decades. Finally, the cheaper computing power and easier delivery came together to
allow companies like Amazon, Google, and many others to offer virtual infrastructure to companies.

One significant advantage to going with one of these providers is that they have all of the deploy-
ment, configuration, and management automated. You can very quickly set up an entire infrastructure
for anything you need, including complex web applications, in a very short period of time without
all of the hardware expenditures that would otherwise be necessary. You can see how this would be
appealing to a lot of companies. This would be especially true of smaller companies that get quick
and easy access to a lot of computational power without having to put up a lot of money up front.

Where there have been companies that would put up hardware for you and allow you access to
it or even allow you to put up your own hardware at their facilities, management could be done
physically unless you had remote management configured. In the case of IaaS providers, everything
is done through a web interface. As an example, Figure 12-3 shows that you can quickly set up a
number of virtual machines that can support web applications, mobile application back ends, or
other requirements you may have.

Even if all you want to do is just set up a single virtual machine, that process is very simple and you
can have a choice of a number of operating systems that will already be installed on the system you
get access to. You aren’t being given just a hunk of bare metal that you need to do a lot with to make
it useful. You are being presented with a working, completely configured operating system in a matter
of minutes. In Figure 12-4, you can see a small sample of the number of operating systems that are
available. The figure shows the Ubuntu Server, but other flavors of Linux server are available as well.

Network Forensics308

Figure 12-3: Amazon EC2 workflows.

Figure 12-4: Amazon EC2 virtual machine choices.

Of course, Amazon is not the only company in this business. Google, Microsoft, and several
others offer this. What this means, though, is that when a company stands up a set of systems using
any of the service providers, any data that is being managed by those servers is stored not on the
company’s systems but instead on storage owned and managed by the service provider. What it also
means is that every interaction with this infrastructure happens over the network. This is no longer
just the local network. Management and application traffic all happens over the same set of wires,
where normally they are separated when companies use their own networks.

Final Considerations 309

Storage as a Service
Not everyone needs entire computing systems. Sometimes all you need is a place to store some things
for a while, or even permanently. When a service provider puts together what is needed to service
customers’ infrastructure needs, one thing it has to do is make sure it has a lot of storage capacity.
Virtual machine capacity and storage capacity are not directly related since different virtual machines
have different storage needs. It’s not as simple as 10 virtual machines will need 10 terabytes of stor-
age. One of the virtual machines may need only 10 gigabytes of storage while another may want
20 terabytes. This is why service providers that offer up infrastructure services will also have stor-
age capacity as well.

Where formerly we made use of File Transfer Protocol (FTP) servers to share information across
the network, these days we are more likely to use storage devices that are accessible through a web
interface. You are probably even familiar with many of the storage services that individuals and
companies are likely to use. Google’s is Drive, Microsoft has OneDrive, Apple has iCloud, and there
are also companies that do nothing but offer storage like Dropbox, Box.Com, and others. Access to
all of these is through a web interface or maybe a mobile application that uses the same web-based
protocols that your browser uses to access the web interface. You may also be able to get a service
that presents the cloud storage as just another folder on your computer. This is true of services from
Dropbox, Box, Microsoft, Google, and Apple and perhaps others as well.

In most cases, you will find that the web interface looks more or less like any other file browser
that you would see, whether it’s the Windows File Explorer or the Mac Finder or any of the different
file managers that are available for Linux. You can see an example in Figure 12-5 from Microsoft
OneDrive. There is a list of files and folders, just as you would see in any other file browser.

Figure 12-5: Microsoft OneDrive interface.

Network Forensics310

One thing you don’t see from the image in Figure 12-5, though, is the address bar and the fact
that the communication is secured. You can’t see that the communication is encrypted using AES
with 256-bit keys. The certificate in use has a 2048-bit public key that is used, as noted earlier, to
protect the 256-bit session key. This is Microsoft and it has the infrastructure to be able to support
strong encryption on communications with its services. Not all providers will have that capability,
but since it’s really easy to do even basic encryption, especially over a web interface, it would be rare
to find a storage service provider that didn’t encrypt its network transmissions.

Software as a Service
Over the course of decades, the information technology industry has gone from centralized with
mainframes to decentralized with personal computers, back to centralized with so-called thin
clients, then back to decentralized as computing power and storage got to be cheap. We are now back
to centralized again. As infrastructure became easy to do with service providers, along with even
more powerful processors and much cheaper storage, it was cost efficient to start providing access
to common software and services through a web interface.

There is a significant advantage to providing software through a service provider. As companies
become geographically more dispersed, picking up talent where the talent lives, they need to be able to
provide their employees access to business data and applications. This is where Software as a Service
(SaaS) becomes so beneficial. Previously, remote employees required virtual private networks (VPNs)
to get access to corporate facilities. The VPN provided an encrypted tunnel to protect business data.
If you access data by way of HTTP and encrypt it with TLS, the effect is the same. The web interface
becomes the presentation layer and all protocol interactions happen either over HTTP to the user or
over whatever protocol is necessary on the back end.

You may be familiar with a lot of these SaaS solutions. Some companies have developed their
business around them. If a company needs a contact management or customer relationship manage-
ment solution, it may well be using Salesforce.com. This is an application that stores contacts and
all information related to engagement with those contacts. Storing information with an application
service provider helps any employee gain access to that information remotely. It also relieves the
problems of syncing data for anyone who may be making changes offline. Since the access is always
online, there are no issues with syncing. All changes are made live and you can have multiple people
working within the data set at any point. Previous solutions relied on a central database that everyone
synchronized their data with. They may have worked online or they may not have.

Other solutions are tied directly to the storage solutions just mentioned. With the ability to store
and share documents online, companies like Microsoft and Google offer office productivity suites
entirely online. You no longer need Word and Excel installed locally. You can just open them up in
a web browser. Word looks and behaves very similarly to the one you would have installed locally.
Figure 12-6 shows the page where you can select from different templates in Word to create a new
document. This is the same as current versions of native Word (the application designed to run
locally). An advantage to online versions of these applications is the ability to share the document.

Final Considerations 311

Rather than having to e-mail it out every time it changes or editing from a file share or any other way
of handling this task previously, every change is made in real time. If you are editing a document and
someone opens it up, they can see the changes you have just made. They can also edit simultaneously.

Figure 12-6: Microsoft Word new document.

With a solution like this, layered on top of a storage solution, you are gaining access to the docu-
ments stored in the storage solution. You are able to make edits and changes to those documents,
leaving the documents local to the storage provider. Everything is done over the network, rather than
leaving any artifact on the local system. Solutions like this have a number of benefits. One of them is
that people can work wherever they are, on whatever system they have access to. Since there are no
local artifacts other than Internet history and potential memory artifacts, most of the artifacts will
be either network-based or they will reside with the service provider.

Other Factors
Data in cloud-based solutions, regardless of what the solution is, resides with the service provider.
Even in the case of IaaS, where the only thing the service provider is providing is remote access to
virtual machines and the underlying storage, gaining access to the artifacts quite likely requires

Network Forensics312

going to the service provider. As an investigator, you could, of course, gain the same remote access
to the service that the customer has but you would be probing live systems and, in the process,
potentially altering that data. In order to get raw data (files, logs, etc), you would need to go to
the service provider, with appropriate legal documentation, and ask for the information. This is a
very common approach. To get a sense of how common, you can review the transparency reports
from service providers like Google or Microsoft. Google’s transparency history graph is shown in
Figure 12-7. In the first half of 2016, which is the last set of data available at the time of this writing,
Google received nearly 45,000 requests.

Figure 12-7: Google transparency report.

Final Considerations 313

The bottom chart shows that Google is able to provide data in roughly 75% of the cases. What
is not clear from any of this is why exactly Google was not able to provide data in the other 25% of
cases. Microsoft sees similar numbers in terms of legal requests. In Microsoft’s case, it provides more
specific graphs. You can see in Figure 12-8 what it disclosed from the more than 35,000 requests it
received in the first half of 2016. The number of requests received is based on everything they get
from around the world. Just over 5,000 of those requests came from the United States, and nearly
5,000 requests came from the United Kingdom. What you can see clearly from the pie chart is that
the majority of cases only provide subscriber information. What isn’t clear from the graph is whether
that was all that was asked for.

Figure 12-8: Microsoft transparency report.

This brings up the importance of network investigations. We need to be able to perform investi-
gations on the network events as they happen, even if the events represent interaction with service
providers, rather than relying on the ability to have quick and easy access to all data files and relevant
information. Being able to at least observe interactions with these service providers, even if we may
not be able to see what is being transacted, at least gives us information about when users were gain-
ing access and what services they were gaining access to. In most cases, unless you have something
sitting in between the user and the outside of the network, you are going to have a hard time seeing
the actual content of the data because it will be encrypted. Larger service providers will have their
encryption house well in order, but there are constantly attacks on encryption, resulting in regular
changes to what is allowed and what isn’t.

Even when you can see how users are engaging with service providers, they may be using
Asynchronous JavaScript and XML (AJAX). What AJAX provides is the ability for the server to reach
out to the client without the client requesting a page. The way HTTP was initially developed, it
assumed clients would make requests of servers that would respond. As applications delivered over
HTTP have become far more complex, a reverse route was needed, which meant the server could

Network Forensics314

autonomously send data to the client, which would be displayed to the user. When AJAX is used to
communicate to the client or even for the client to send data to the server without the user’s involve-
ment, it may be done in small chunks rather than entire documents at a time. You may get a single
packet containing a handful of characters that are sent to the server. This may then require a lot of
work to piece everything together.

There is a slim possibility of getting data from a proxy server in this case, but it’s not common.
SSL/TLS are supposed to guarantee end-to-end encryption, which means that the browser should
send a CONNECT message to the proxy server. This essentially turns the connection into a raw TCP
connection rather than an HTTP connection. However, it is possible for the proxy to see the message
by allowing it to sit in the middle of the request, providing encryption to the proxy and then again
from the proxy to the end server. Some proxies will allow this behavior, but there is the potential
for it to cause problems with the browser. The browser will want to verify the certificate, but the
certificate can’t match if the browser is trying to compare names in the certificate with the name of
the server being requested.

As more and more services go to the web, one of the drivers continues to be the use of smartphones.
People are transacting business less on traditional computers like desktops and laptops and more on
mobile devices like smartphones or tablets. Either way, the use of these small form-factor devices is
driving more uptake of web-based communications. As mobile applications are developed, it’s far
easier to just use web protocols since the access to those are built into the programming libraries
used to develop them. Because it’s easy, available, and well-understood, it makes sense to use it.
Also, no additional infrastructure is required to support these mobile applications. A company can
just make use of its existing web infrastructure to support these applications. In the end, they are
exposing functionality that is already available in the primary web application.

The Onion Router (TOR)
There’s one last topic to cover: dark nets. They are overlays to other networks, like the Internet.
While you gain access to them over the Internet, meaning you can get to it from your cable modem,
DSL connection or mobile device, the services require that you access them using services that lie
over the top of those you would normally access through the Internet. One common dark net is The
Onion Router (TOR). TOR was developed by United States Naval Research Laboratory employees
in the mid-’90s and was conceived as an anonymity project. Tor (no longer an acronym) sits on top
of the Internet but provides services to users in a way that the user sees no difference from normal
Internet access. What is different is what happens on the other end of the connection.

In normal Internet use, if you want to gain access to a service, you would send a request to
figure out the address of that service. You probably know a hostname and your application knows a
port to connect to, whether it’s a mail client or a web browser, but what you need is an IP address.
Your computer sends out a request to a DNS server to get the IP address from the hostname you
provide. Your computer then sends out a request to the server. All along the way, you are leaving

Final Considerations 315

bread crumbs—your IP address is leaving a trail that can be followed, because you left it with the
DNS server you are trying to talk to in order to get to a website. Additionally, your IP address has
traveled through multiple routers to get to the DNS server and then to the web server. Those routers
have dutifully sent your request along and then the response back to you, based on the IP addresses
in the IP headers.

In the case of Tor, your requests are sent through a peer-to-peer network. The network itself is Tor.
Your request is routed through the Tor network and eventually exits looking as though it came from
someone else entirely. This is how you obtain anonymity. No request to an end server ever appears
to originate from you. Instead, it comes from the network and some departure node. You also
need to have an entry node to match the departure node. This means that when you connect to the
Tor network, you aren’t just throwing messages out to the Internet. You are communicating directly
with what is, in essence, an application-layer router. You can see the initial connection to the
entry node (rv1131.blu.de) to the Tor network in Figure 12-9. (This is a TLS connection.)

Figure 12-9: Wireshark capture of Tor communication.

The application I used to get access is the Tor Browser. The Tor Browser is just a browser, like
Google Chrome or Microsoft Edge. However, underneath the browser interface is the ability to gain
access to the Tor network. The browser takes care of all of the exchanges with the network and all of
the encryption necessary to make it work. The Tor Browser is available from the Tor Project directly
for Windows, Mac OS X, Linux, and Android. This allows you to connect to the network and then
configure your own applications to make use of that network.

While you can use Tor as your browser and it will work with websites just as other browsers do,
Tor also provides more than just anonymity to clients. Additionally, there are servers that are only

Network Forensics316

accessible within the Tor network and it’s really these servers and services that comprise the “dark
web.” Over the years, there have been a number of sites selling products and services through the Tor
network. One of the most notorious was Silk Road, which was a site dealing drugs through the
Tor network. It was shut down in 2013. Many other sites that have previously been available are now
defunct.

A disadvantage to Tor is that while it provides anonymity for people who have legitimate need
for it, it can also be a hiding place for criminals and criminal activity. Although there are projects
focused on rooting out the criminal activity, it does become a bit like whack-a-mole, much like other
attempts to deter criminal activity. Tor makes it hard to identify where people are because of the
way the network operates. It is intentionally that way. Since anonymity is the point, you can see why
criminals would be drawn to a service like Tor. This is not at all to say that Tor is is the only place
where criminals operate, because there are plenty of criminal activities on the open Internet. It’s
also not to say that only criminals utilize the Tor network. There are often attempts to self-police the
service. You can see in Figure 12-10 that the search engine Ahmia searches for hidden services on
the Tor network but also that it doesn’t tolerate abuse. It keeps a blacklist of services and encourages
users to report abuse so that abusive services can be blocked.

Figure 12-10: Ahmia search site.

It is important to recognize that Tor uses common web ports. You can see this when you look
closely at a packet capture. This means that Tor traffic can’t easily be blocked. It looks and behaves

Final Considerations 317

just like regular web traffic. If you were to see a packet capture of someone using Tor, it may be very
difficult to distinguish between the Tor traffic and another capture of web traffic.

One piece of data you can use to determine if you’re seeing Tor traffic is the name of the host
on the other end of the connection, though this is not always the case. rv113.1blu.de doesn’t look
much like a common Internet address to be communicating with. Looking a little further, as shown
in Listing 12-3, it appears that the domain name 1blu.de belongs to an individual rather than
a business or an organization.

Listing 12-3: Whois Request

[Tech-C]
Type: PERSON
Name: Johann Dasch
Organisation: 1blu AG
Address: Stromstr. 1-5
PostalCode: 10555
City: Berlin
CountryCode: DE
Phone: +49 30 20181000
Fax: +49 30 20181001
Email: info@1blu.de
Changed: 2006-02-27T14:24:03+01:00

This also is not necessarily suspicious, since anyone can get a domain name and set up a website.
This sort of digging may be needed in order to determine whether someone is using a Tor browser
or just a regular browser to connect to websites over the Internet. One thing you would note from
a Tor connection is the duration of the connection and the amount of traffic transmitted. Over the
course of a few minutes, I visited a few websites and the Wireshark capture showed that the host
I was exchanging information with never changed. This doesn’t mean that it never changes, but it
certainly doesn’t based on individual transactions over a period of a few minutes.

Summary
One of the biggest challenges associated with network investigations is encryption. Over the course
of the book, I’ve mostly skirted the issue, demonstrating a lot of network traffic that takes place in the
clear. It would be disingenuous to pretend that encrypted traffic doesn’t happen. This has a profound
effect on forensics because it is difficult, if not impossible, to obtain decrypts of the ciphertext that has
been transmitted. Even if you are able to obtain a complete packet capture, encryption mechanisms
are designed to not be reverse engineered. You can see the key exchange happening but you can’t get
the key. It is never transmitted. You might have the public key used to transmit the data, but that’s

Network Forensics318

insufficient for decryption. Without the private key, the public key is meaningless. Encryption will
make your life very difficult. However, what you will always get, even when the data is encrypted,
is the metadata, which is the source and destination of the traffic as well as the timing of the con-
nection. While the time isn’t transmitted as part of the packets, you do know when packets arrived
relative to the start of the capture. This means you know when the network communication took
place, assuming the timestamp on the file is accurate, which is a reason to ensure all of your systems
are synchronized to a reliable time server.

Cloud-based services are available over the Internet, typically offered by a service provider, and you
will encounter them very commonly in investigations. Whether the individual or organization is using
a service provider for virtual machine access (IaaS) or just to host files (StaaS) or maybe even entire
applications (SaaS), you will be able to see users gaining access to these services. Unfortunately, this
is another area where you are likely to be foiled by encryption. Most service providers will offer their
services using TLS, because these cloud-based services are offered using web-based technologies for
the most part. Doing encryption through a website is simple and well-known. It’s also cheap. Even
strong encryption is no problem, so finding a service provider that is still offering services without
encryption is going to be a challenge.

Savvy users, concerned with their privacy, may be using Tor as a way of communication. The Tor
network provides services just as the open Internet does. Users can get e-mail over the Tor network
and they can do peer-to-peer communication just as they could with Google Hangouts, Skype,
Yammer, Slack, and other messaging applications. The communication happens, completely encrypted
and anonymous, across the Tor network. Using the Tor network, you are anonymous because your
address is hidden by the network. It’s important to remember that Tor is just an overlay on top of the
Internet—it is a logical construct rather than a physical one. All of the systems that are on the Tor
network exist, by definition, on the Internet. Tor is just the way they have all connected themselves
using the Tor program.

Index

Symbols and Numerals
(pound sign)

for decimal encoding, 136
for Snort comments, 196

$ (dollar sign), in Snort configuration, 194
% (percent sign), in URL-encoding strings, 135
& (ampersand), for decimal encoding, 136
802.11 (WiFi), 20

A
Abstract Syntax Notation One (ASN.1), 121, 123
abuse contact, 24
abusive services, 316
access control lists (ACLs), 177
ACK flag, in TCP header, 35
ACK message, 37
acknowledgment number, in TCP header, 34
Acon Timeline, 258
Address Resolution Protocol (ARP), 48–49, 77–78, 94
address space, IPv6 and, 32
Adleman, Leonard, 302
Admin log (Windows), 226
administrative privileges, sudo for temporary, 268
Advanced Research Projects Agency (ARPA), 14, 20
AES (Advanced Encryption Standard), 295, 299
African Network Information Center (AfriNIC), 23
Ahmia search engine, 316
alerts, 196

from IDS, 207–208
SYN scan, 208

AlienVault, 184
Amazon, 291

EC2 virtual machine choices, 308
EC2 workflows, 308

American Registry for Internet Numbers (ARIN), 23
ampersand (&), for decimal encoding, 136
analyzer programs, 238
anomaly-based detection, 189–190
anonymity, Tor and, 315–316
antivirus programs, 180–181
Apache web server, 240–243

log storage, 170
Apple, iCloud, 309
application attacks, 113–114, 136–140
application layer (OSI), 18
Application layer (TCP/IP), 19
Application log (Windows), 224, 225

clearing, 231
ARP poisoning, 95
ARP request, in tcpdump, 87
ARP spoofing, 49, 94–96, 305, 306
Arpanet, 16

hosts file, 42
artifacts, 3. See also host-side artifacts
ASCII-printable string, in packet search, 201
Asia-Pacific Network Information Center (APNIC), 23
asymmetric encryption, 295–296
Asynchronous JavaScript and XML (AJAX), 313–314
Asynchronous Transfer Mode (ATM), 20
attack. See also correlating attacks
attack preparation, 159–185

logging, 165–180
NetFlow, 160–165
syslog, 166–171

attack types, 113–141
application attacks, 113–114, 136–140
denial of service (DDoS) attack, 114–130

amplification attacks, 124–126
backscatter, 128–130
distributed attacks, 126–128

Network Forensics, Ric Messier
© 2017 by John Wiley & Sons, Inc., Published by John Wiley & Sons, Inc.

Index 320

malformed packets, 118–122
SYN floods, 115–118
UDP floods, 122–124

evasion, 114, 134–136
insider threats, 132–134
vulnerability exploits, 130–132

authentication, in cipher suite, 302
authenticity, cryptographic hashes as test of, 5
authoritative server, 43
authorization messages, logging, 220–221

B
backdoor, 54, 265, 266, 277
background, program running in, 54
backscatter, 128–130
bandwidth

proxy servers and, 237
UDP flood to consume, 122–124

Base64 encoding, 135, 137
baseline, in anomaly-based system, 190
Basis Service Set Identifier (BSSID), 157
Berkeley Packet Filters, 89
Best Current Practice, in RFC, 21
best-effort delivery model, 31
bid down attack, 305
binary operation codes, 131
binary protocol, 121, 122
birthday paradox, 5
black hole, 128
Bolt, Beraneck, and Newman (BBN), 20
bootstrap protocol (Bootp), 48
bot, 127
botnet, 126–127
Box.Com, 309
British Broadcasting Corporation (BBC),

attack against, 127
British Summer Time (BST), 247
Bro, 187, 191, 203–205

event script, 203–204
bro_init event, 204
broadcast address, 30, 46

pinging, 125
broadcast domain, 134
broadcast MAC address, 94
broadcast traffic, 129
BSD Packet Filter (BPF), 191
buffer overflow, 131–132
bulk encryption, 303

burst rate, 104
byte, 36

count in Wireshark, 103

C
C programming language, 132
cache, for proxy server, 237
caching DNS, 43–44
Caesar cipher, 292
Calce, Michael (Mafiaboy), 8, 127
Carbon Black, 182
centralized logging, 216–219, 251

servers for, 165, 169
certificate authority, trust in, 302
certificates, 296, 300–302

Amazon web server, 301
from server, 299

chain of custody, 8
chain of trust, 302
ChangeCipherSpec message, 299
checksums, 7, 28

in TCP header, 35
from Wireshark, 100

cipher suite, 298, 302–303
ciphertext, 292
civil law system, in Louisiana, 4
Class A/B/C/D addresses, 29
Classless Internet Domain Routing (CIDR) notation, 30
classtype keyword, in Snort, 199
clearing Event logs, 231–233
client, 40–41, 200

configuring with syslog-ng, 254
vulnerabilities, 136

closed ports, nmap use of, 269–270
CLOSED TCP connection state, 61, 62
CLOSE-WAIT TCP connection state, 61
CLOSING TCP connection state, 61
cloud computing, 306–314

Infrastructure as a Service (IaaS), 306–308
Software as a Service (SaaS), 310–311

cloud storage, 291
Cogswell, Bryce, 69
collector, configuring for logs, 252
collision, 5, 303

MD5 algorithm vulnerability to, 7
collision domain, 134
combined log format, for web servers, 241
Combs, Gerald, 89

Index 321

command injection, 139
comma-separated value (CSV) format,

for NetFlow data, 162
comments, in Snort, 196
common law legal system, 4
common log format (CLF), 240–243
CONNECT method, for tunneling over HTTP, 287
connect scan, 268–269
connectionless protocol, 38, 39–40
connection-oriented transport, 36–38
connections, 60–62

programs listening for, 266
tearing down, 60–61

content addressable memory (CAM), 89
Conversations statistics (Wireshark), 261–262
Coordinated Universal Time (UTC), 247, 250
correlating attacks, 245–264

log aggregation and management, 251–257
Network Time Protocol (NTP), 247–248
packet capture times, 249–250
PacketTotal, 259–261
Plaso software, 258–259
Security Information and Event Management (SIEM)

system, 262–263
syslog and, 252–254
time synchronization, 246–248
timelines, 257–262

CPU, dynamic graphs on performance, 75
Create Custom View dialog box (Event Viewer),

227, 228
criminals, Tor and, 316
Crocker, Steve, 20
cron, 220
cross-site scripting attack (XSS), 138
CrowdStrike, 183
cryptographic hashes, 5–7

table of, 205
Cryptological Mathematics (Lewand), 293
cybersecurity, 10
cyclic redundancy check (CRC), 7

D
daemon, 55
dark net, 292, 314
dark web, 292
data, 19
Data Acquisition (DAQ) layer, in Snort, 191
data link layer (OSI), 16–17

data loss prevention (DLP) software, 133
data offset, in TCP header, 34
data theft, 133
database programs, exporting NetFlow data to, 162
datagram, 19
Daubert vs. Merrell Dow Pharmaceuticals, Inc., 4
daylight saving time (DST), 247
decimal encoding, 136
decryption, 292
default gateway, 29
deleting log files, 233
denial of service (DDoS) attack, 8, 114–130

from inside network, 133
Department of Defense (DoD) model, 18
dependencies, for configuration file, 59
depth keyword, 200
DES (Data Encryption Standard), 295
destination interface, for NetFlow data, 163–164
destination IP address, 28
destination port, in TCP header, 41
Device Association Framework Provider Host, 70
DF field, in firewall log entries, 236
DHCP ACK message, 47
DHCP Discovery message, 46
Diffie-Hellman key exchange protocol, 294, 299, 303
dig tool, 45
digital forensics, 3
disk, dynamic graphs on performance, 75
dissectors, in Wireshark, 89
distance keyword, 200
distcc attack, 130–131, 134–135
distributed attacks, 126–128
DNS hostname, vs. NetBIOS name, 66
DNS lookup, 43–44
documentation

of chain of custody, 8
RFCs for, 20

Domain Name System (DNS), 42–45, 125
query trace, 45
UDP transport for requests, 40

domains, 23
dotted quads, 28
dp-ip.com lookup, 155
Dropbox, 291, 309
dropped messages, firewall log of, 175
DSA (Digital Signature Algorithm), 302
Dynamic Host Configuration Protocol (DHCP),

32, 46–48
message, 87–88

Index 322

E
Elastic Stack (ELK), 219, 255
ELK (Elastic search, Logstash, and Kibana), 255
e-mail

assymmetric encryption for, 296
logs, 223
with malicious attachments, 3

encapsulation, 15–16
PPTP or GRE and, 286

encryption, 6, 108, 190, 291, 292–306
asymmetric, 295–296
hybrid, 296–297
keys, 293–294
symmetric, 294–295

enhanced 911 (E-911) services, location information,
153–156

Enterprise Security Manager (McAfee), 262
ephermeral ports, 41
Epoch time, in Wireshark, 250
error messages

ICMP to transmit, 31
in mail system, logging, 215

established connection, 175, 200
ESTABLISHED TCP connection state, 61, 62
/etc/init.d/ directory, 58
/etc/localtime file, 145–146
Ethernet, 20
Ethernet frames, 83
Ettercap, 95
evasion, 114, 134–136
events

and Bro, 203
vs. incident, 9
querying logs, 227–230

evidence, 3
handling, 4–5

Expert Information in Wireshark, 262
Exploit DB website, 283
extortion, 3

F
false negatives, from vulnerability scanners, 285
false positives, from vulnerability scanners, 284–285
Federal Rules of Evidence (FRE), 4
Fiber Distributed Data Interface (FDDI), 203
File Checksum Identity Verifier (FCIV), for generating

hash values, 7
File Transfer Protocol (FTP), 17

attack against password input to server, 131–132
Bro support for, 205

files, gathering for packet capture, 107–108
Filesystem Hierarchy Standard (FHS), 215
filters

for log forwarding, 252
for logs, 228
for tcpdump, 88
for Wireshark, 101–102, 261

FIN flag
nmap use of, 270
in TCP header, 35, 38

fingerprints database, for operating system analysis,
271–273

FIN-WAIT TCP connection state, 61
Firefox web browser, 136–137
Firepower, 191
firewalls, 60, 127, 189, 212

logs, 173–177, 233–240
state table for, 62

flags
in IP header, 27
nmap use of, 270
in TCP header, 34–35

Flash applet, 136
flooding, 115
flow designation rule, 200
foreground program, 54
forensic practitioners, 9
forensics, 3

basics, 3–8
format string attack, 132
Forwarded Events log, 252
four-tuple, 62
fping, 279–280
fragmentation, of packets, 118
fragmentation of packets, 134–135
frames, 20, 82–83
frameworks, in Bro, 204
FRE (Federal Rules of Evidence), 4
Frye vs. United States (1923), 4
fully-qualified domain name (FQDN), 42
fuzzing, 120, 139

G
Galois/Counter Mode (GCM), 299
General Routing Protocol (GRE), 286
geolocation, 153–156

Index 323

Geolocation API, 156
Get-Eventlog cmdlet, 228
Get-WinEvent cmdlet, 173
gli (get log information) command, 228
Global Address Book (GAL), 296
global positioning systems (GPS), 143–144
Gnu Privacy Guard (GPG), 296
Google, 291

as certificate authority, 302
Drive, 309
productivity suites, 310–311
transparency report, 312

Google Rapid Response (GRR), 182, 183
gratuitous ARP, 94
Greenbone Security Assistant, 281
Greenwich Mean Time (GMT), 145, 247
Greenwich Observatory, 144
guestbook, vulnerability, 139
Guidance Software, 183

H
hackers, 3, 159

cloud storage, 291
examples, 1–2, 13, 53, 81

backdoor, 265
misdirection, 113
time difference, 143
time settings, 245

logs and, 211
handshake. See also three-way handshake

packet capture for, 299–300
for TLS, 297

hashes, cryptographic, 5–7
hashing algorithms, 6
header

for TCP, 33–35
for UDP, 39

hearsay, 5
HeartBleed bug, 304
heuristic detection system, 188, 189–190
hex editor, with times from PCAP, 251
hexadecimal dump, 90
hexadecimal format

for NetFlow data, 163
in packet search, 201

hop distance, 110
host address, in IP address, 28
host discovery, 278

host-based firewalls, 233
host-based IDS, vs. network-based, 190–206
hostname, resolution to IP address, 43–44
hosts, passively gathering data about, 287
hosts file, 42
host-side artifacts, 53–79

connections, 60–62
services, 54–59
tools, 62–79

/proc filesystem, 78–79
address resolution protocol (ARP), 77–78
ifconfig/ipconfig, 68–69
nbstat utility, 66–68
netstat utility, 63–66
ntop utility, 73–75
sysinternals, 69–73
Windows Task Manager, 75–77

HTML encoding, 135
hubs, 89
hybrid encryption, 296–297
Hypertext Transport Protocol (HTTP), 17, 287

applications delivered over, 313–314
attacks, 119–120
Bro support for, 205
timestamp in headers, 145
Web application firewall and, 238–240

hypervisors, 307

I
IBM

nxlog, 254–255
QRadar, 262

ICMP protocol, Snort rule for, 198–199
ID field, in firewall log entries, 236
identification field, in IP header, 26
ifconfig/ipconfig, 68–69
incident, defined, 9
incident detection systems (IDS), 159–160
incident response, 8–10
incident response preparation, 181–183
incident response software, commercial offerings,

182–183
incident response specialist, 3
incident response team (IRT), 9, 181
Infrastructure as a Service (IaaS), 306–308
init program, 56, 57–58
initial sequence number (ISN), 36
IN/OUT field, in firewall log entries, 235

Index 324

Interface Message Processor (IMP), 20
International Organization for Standardization

(ISO), 16
International Telephone and Telegraph Consultative

Committee, 16
Internet, cloud computing, 306–314
Internet Assigned Numbers Authority (IANA), 41
Internet Control Message Protocol (ICMP), 27, 31

Snort rule on, 199–200
Internet Corporation for Assigned Names and Numbers

(ICANN), 23
Internet Engineering Task Force (IETF), 14, 21, 166
Internet layer (TCP/IP), 18
Internet Packet Exchange (IPX) protocol, 17
Internet Protocol (IP), 14, 17, 18, 25–33
Internet Protocol (IP) version 6 (IPv6), 31–33, 155

header, 26
Internet registries, 23–25

location-related information on IP addresses, 147
Internet Relay Chat (IRC) server, 126
interprocess communications (IPC), 267
intrusion detection systems (IDS), 187–209

alerts, 207–208
architecture, 206–207
Bro, 203–205
host-based vs. network-based, 190–206
log monitoring, 165
OSSEC, 206
rules, 187
styles, 188–190
Suricata and Sagan, 201–203
Tripwire, 205

IP address, 28–31
hostname resolution to, 43–44
location, 147–148
lookups to MAC address, 77

IP headers, 20, 25–26
Wireshark display, 99–100

IP statistics view (Wireshark), 104–105
IPSec (IP Security), 32
iptables

firewall, 175
log entries, 174
port forwarding rule with, 305

J
Java, 136
JavaScript, for GeoIP information, 156

K
Kali Linux system, 64

Plaso package on, 258–259
SSLScan output, 304
vulnerability scanner, 281

key management, centralized vs. decentralized, 296
keys, for encryption, 293–294
key/value pairs, 57
knockd program, configuration, 285
Krebs Brian, 127

L
laser source, 92
latency, 76
Latin American and Caribbean Network Information

Center (LACNIC), 23
latitude, 145
launchd macOS startup program, 56
law enforcement, 3
layers, 15
LEN field, in firewall log entries, 236
length field, in UDP header, 39
Lewand, Robert, Cryptological Mathematics, 293
libpcap library, 191
light emitting diode (LED) source, 92
Lightweight Directory Access Protocol (LDAP),

300
Link layer (TCP/IP), 18
link-local addresses, 32
Linux systems

command-line utilities, 7
firewall logs, 234–235
flow-tools package for, 161–162
service scripts, 58
services management, 57–58
syslog, 212–223

listening mode
ports in, 65, 76
rsyslog configuration for, 169

LISTENING TCP connection state, 61, 62
local area network denial (LAND) attack, 119
local DNS, 43–44
localhost address, 30
location awareness, 143–158

geolocation, 153–156
location-based services, 156
time zones, 144–147

Index 325

Traceroute, 150–153
WiFi positioning, 157–158

log files
deleting, 233
generating hash value for, 7
PowerShell for investigating, 228
querying, 227–230
storage in Windows, 227
tampering with, 216

log management package, 178
vs. SIEM, 262

log messages
reading, 220–222
routing for, 219

log2timeline program, 246, 258
Log::create-stream function, 204
logging, 165–180

aggregation and management, 251–257
antivirus programs, 180–181
authorization messages, 220–221
centralized, 216–219
common log format (CLF), 240–243
firewall logs, 173–177, 233–240
Google Rapid Response (GRR), 182, 183
incident response preparation, 181–183
log servers and monitors, 178–180
mail system error messages, 215
management offerings, 254–257
monitoring for, 206
network traffic, and firewall overhead, 234
proxy logs, 236–238
router and switch, 177–178
Suricata and, 202
web application firewall (WAF), 238–240
Windows Event logs, 171–173

LogWatch, 222–223
longitude, 145
loopback address, 30
Louisiana, civil law system in, 4
lpvar configuration keyword (Snort), 194
Lua programming language, 273
LUCIFER encryption cipher, 295

M
MAC address

broadcast, 94
lookups from IP address to, 77
in NetworkMiner, 110

MAC field, in firewall log entries, 236
macOS, 55–57

command-line utilities, 7
launch daemons, 57

Mafiaboy (Calce, Michael), 8, 127
mail system, logging error messages, 215
malformed packets, 118–122
malicious attachments, e-mail with, 3
malware, 180

and information access, 133
man in the middle (MTM) attack, 305
max_active_responses setting (Snort), 193
maximum transmission unit (MTU), 26, 67
MaxMind, 155
Maxwell, James Clerk, 56
Maxwell’s Demon, 56
“may,” in RFC, 21
McAfee, Enterprise Security Manager, 262
Media Access Control (MAC) address, 17, 18
memory, dynamic graphs on performance, 75
memory capture, 62
message authentication code (MAC), 303
Message Digest 5 (MD5), 6–7
Metasploit, 135

Nexpose integration with, 284
Microsoft

OneDrive, 309
productivity suites, 310
transparency report, 313

Microsoft Excel, NetFlow output in, 163
Microsoft Exchange Server, certificate storage,

296
Microsoft Windows. See Windows
Mirai botnet, 127
Mixter, 127
Modsecurity, 238–240
monitor mode, 83
multicasting, 129

Class D addresses for, 29
multiplexing, 19

ports for, 40
Multipurpose Internet Mail Extensions

(MIME) type, 108
MySQL, 162

N
Nagios, 178, 179
National Center for Supercomputing Applications

(NCSA), 240
National Institute of Standards and Technology (NIST),

302
nbstat utility, 66–68

Index 326

NCSA HTTP daemon (httpd), 240
Neighbor Discovery Protocol, 77
Nessus Attack Scripting Language (NASL), 281
NetBIOS name, vs. DNS hostname, 66
NetBT (NBT), 66
netcat program, 275
NetControl framework, in Bro, 205
NetFlow protocol (Cisco), 130, 160–165

Collector, 160–161
Netscape, 297
netstat utility, 63–66, 266

output, 64
network address, 18, 28
network address translation (NAT), 29, 31
Network Basic Input Output System (NetBIOS),

66
network communications, 212
network devices, time synchronization with, 248
network forensic practitioners, need for, 10–11
network forensics, 3
network intrusion detection systems (NIDS), 190.

See also intrusion detection systems (IDS)
network layer (OSI), 17
network operations center (NOC), 24
network stack, attacks on, 114
network statistics, netstat for displaying, 64, 65
network telescope, 128
Network Time Protocol (NTP), 247–248
Network Vulnerability Tests (NVTs), 281
network-based firewalls, 233
network-based IDS, vs. host-based, 190–206
NetworkMiner, 82, 109–110

Hosts tab, 110
networks

basics, 13–51
compromised, 2–3
connections, 60–62
dynamic graphs on performance, 75
forensic analysis, information loss and, 211
memory for information, 62
scanning, 265–290. See also port scanning

passive data gathering, 287–289
port knocking, 285–286
tunneling, 286–287
for vulnerabilities, 280–285

Nexpose scanner (Rapid 7), 283–284
nibble, 26
“nice to have” feature, in RFC, 21
nmap (network Mapper), 267–268

for host discovery, 278–279
operating system analysis, 271–273

scripts, 273–275
UDP scan, 270–271

nslookup utility, 45
ntinternals, 69
ntop utility, 73–75
null scan, 270
NXLog, 218–219
nxlog (IBM), 254–255

O
octet, 28, 36
offset keyword, 200
oinkcode, 198
one-way functions, 6
The Onion Router (TOR), 314–317
open ports, viewing, 266
Open Systems Interconnect (OSI) model, 14, 16–17
OpenVAS, 281–282
operating system, nmap for analysis, 271–273
Operational log (Windows), 226
organizationally unique identifier (OUI), 17, 99
OSSEC, 206
OSSIM, 184–185
outliers, in timeline, 246
outside attacks, 3
outsourcing, 307
oversubscription, 93, 207

P
p0f scanner, 96–97, 287–289
packet, 20

analysis with Wireshark, 98–108
total length, 26

packet capture, 3, 81–112
analysis, 259–261
ARP spoofing, 94–96
gathering files, 107–108
generating hash value for, 7
malformed packets, 118–122
NetworkMiner, 82, 109–110
passive scanning, 96–97
port spanning, 93
and saving, 88
taps, 91–93
tcpdump, 84–89
timeline information and, 246
times, 249–250
Wireshark, 89–91

Index 327

packet counts, in Wireshark, 103
packet switching, 27
PacketTotal, 259–261

Analytics page, 260
PAM (pluggable authentication modules), 221
passive data gathering, 287–289
passive scanning, 96–97
passive tap, 92–93
pathping utility, 151
pattern matching, 201
pcap file format, 191

timestamps in Epoch time, 250–251
Peach, 120
percent sign (%), in URL-encoding strings, 135
persistent XSS attack, 138
PFSense firewall, 174–175

state table, 176
PHP, 276
physical layer (OSI), 16
ping sweeping, 266, 278–280
ping utility, 31, 124
plaintext, 292
plists, 57
Point to Point Protocol (PPP), 20
Point to Point Tunneling Protocol (PPTP), 286
pointer (PTR) record, 151
polygraph test, 4
port forwarding rule, with iptables, 305
port knocking, 285–286
port mirror, 206
port scanning, 266–280

banner grabbing, 275–278
operating system analysis, 271–273
ping sweeping, 278–280
scripts, 273–275

port spanning, 93, 206
Portable Document Format (PDF) reader, 136
ports, 19, 40–42

listeners binding to, 60
in listening mode, 65
number display, 64
in rsyslog configuration, 218
setting Snort variable for, 195
for syslog, 169
for TCP, 33

portvar configuration keyword, 195
Post Office Protocol version 3 (POP3) server,

121–122
Postel, Jon, 22, 23
pound sign (#), for decimal encoding, 136

PowerShell
for investigating log files, 228
to view Event Logs on Windows, 172–173

Prelude, 185
preparation stages, in incident response, 9
preprocessors, in Snort, 192–198
presentation layer (SSH), 17
Pretty Good Privacy (PGP), 296
Prewikka, 185
printf function, attacks using, 132
private addresses, 29–30, 152
private key, 295
privileged ports, 33
/proc filesystem, 78–79
Process Explorer, 72
process identification number (PID),

70
netstat for displaying, 65

processes, monitoring for, 206
promiscuous mode, 83, 90
property list, 57
PROTO field, in firewall log entries, 236
protocol analyzer, 89
protocol data units, 19–20
protocol field, in IP header, 27–28
Protocol Hierarchy view, 104
protocols, 14–20
proxy ARP, 94
proxy logs, 236–238
proxy servers, 314
PsFile, 70–72
PSH flag, in TCP header, 35
PsPing, 73
public key encryption, 275, 295
pulledpork, 198
Python, 230

scripts in Plaso, 258

Q
QRadar (IBM), 262
queries, 137

of Event logs, 229–230

R
ransom, 3
Rapid 7, Nexpose scanner, 283–284
raw packet data, from Wireshark, 100–101

Index 328

raw sockets, 268
reference keyword, in Snort, 199
referrer header, in web server log, 241, 242
reflected attack, 138
Regional Internet Registries (RIRs), 23
regular expressions, 201
Rekall (memory analysis), 182
related connection, 175
reliability of NTP time, 248
remote access trojan (RAT), 133
Remote Administration Tool (RAT), 133
request for comments (RFCs), 14, 20–22

1918 on private addresses, 30, 129
3164, on syslog, 212
5424, on syslog, 167–168, 212, 214

requirements, in RFC, 21
RES field, in firewall log entries, 236
Reséaux IP Européens Network Coordination Centre

(RIPE), 23
Resource Monitor (Windows), 76
reverse address, 151
reverse path verification, 129
risk, system deployments commonality and, 10
Rivest, Ron, 302
Roesch, Martin, 191
root certificate, 302
root name servers, 44
rootkit, 54

monitoring for, 206
rot13 encryption, 293
rotation cipher, 292
router, functionality of, 20
routers

Bro interface with, 205
logs, 177–178

routing, in NXLog, 219
routing table, 29

netstat for displaying, 64
RPaxson, Vern, 203
RSA encryption algorithm, 302
RST flag, 37

in TCP header, 35
RST messsage, 268
rsyslog, 254

configuration, 215
for receiving log messages, 216
for remote logging on clients, 218
for remote systems, 217

properties, 217
for Ubuntu Linux installation, 168–169

rules
for IDS, 187, 189
for SIEM, 263
for Web application firewall, 238

Russinovich, Mark, 69

S
Sagan, 202–203
Salesforce.com, 310
Samhain, 205
scanning. See also networks, scanning

passive, 96–97
scientific evidence, 4
scripts, in nmap, 273–275
searches, in log management, 255
second-level domains, 42
Secure Hash Algorithm (SHA), 7, 299, 303
Secure Hash Algorithm 1 (SHA-1) hash, 7
Secure Shell (SSH), 17

tunneling with, 287
Secure Sockets Layer (SSL), 108, 297, 298–299
Secure Sockets (SOCKS), 287
Security Information and Event Management (SIEM)

system, 183–185, 262–263
Security log (Windows), 224

clearing, 231
segment, 19
Sendmail, 212
sensors, in intrusion detection systems, 206
sequence number, in TCP header, 34
Sequenced Packet Exchange Protocol (SPX), 17
servers, 40–41

centralized log, 165, 169
configuring with syslog-ng, 253
for logs, 178–180, 212

Service Control Manager (Windows), 55
service providers, 292
services, 54–59, 114
Services logs (Windows), 224, 225
Session Initiation Protocol (SIP), 22
session key, 297
session layer (OSI), 17
Session preprocessor (Snort), 192–193
severity levels, in syslog, 167, 214
Shamir, Adi, 302
“should,” in RFC, 21
signature framework, in Bro, 204–205
signature-based detection, 188–189
signature-based IDs, processing needs, 190

Index 329

signatures database, for vulnerability scanner, 280
smartphone applications, global positioning systems

(GPS), 143–144
SMTP, capabilities, 277–278
Smurf attack, 124
snoop (Solaris), 84
Snort, 187, 191–201

for comments, 196
configuration, 194–198
preprocessors, 192–198
rules, 198–201

Snort conf file, output section, 197
Snort ID, 199
Software as a Service (SaaS), 310–311
source interface, for NetFlow data, 163–164
source IP address, 28
source port, in TCP header, 41
Sourcefire, 191
spam, 25
span port, 206
special characters, and URL, 138
Splunk, 178, 179, 219, 256

creating listener, 256
displaying logs, 257
patterns, 180

spoofing
addresses, 118
protecting against, 37

SPT/DPT fields, in firewall log entries, 236
SQL (Structured Query Language), 137
SQL injection attack, 137–138
Squid (proxy server), logs, 237–238
SRC/DST fields, in firewall log entries, 236
ss command, 266
SSH server, banner from, 275
sshd (secure shell daemon), 221
SSLScan, 303–306
sslstrip, 304–305
Stacheldraht, 127
stacks, 15
standards, vs. RFCs, 22
Start of Authority (SOA) record, 44
state machine, 60
stateful communication, 60
stateful firewall, 233

SYN message in, 175
stateless firewall, 233
Statistics menu (Wireshark), 261
storage space

for log data, 234
for NetFlow data, 164

stream index, 106
stream5_global preprocessor, 193–194
streams, in Wireshark, 105–106
subdomains, 43
subnet mask, 28–29
subscriptions for log forwarding, 252, 253
sudo, 170, 221

for running nmap, 268
superprocesses, 58
Suricata, 187, 201–203

configuration fragment, 202
Switch Port Analyzer (SPAN) port, 93
switches, 89

Bro interface with, 205
and IDS, 206
logs, 177–178

Symantec, 301, 302
symmetric encryption, 294–295
SYN field, in firewall log entries, 236
SYN flag, in TCP header, 35
SYN flood attack, 37, 115–118
SYN message, 36, 60

in stateful firewall, 175
SYN scan, 268
SYN scan alert, 208
SYN/ACK message, 37, 268
synchronization

across time zones, 245
of time, 246–248

SYN-RCVD TCP connection state, 61
SYN-SENT TCP connection state, 61
sysinternals, 69–73
syslog, 166–171, 212–223

for centralized log system, 216
configuration file, 214–215
correlating attacks and, 252–254
facilities, 166–167
forwarding entries, 169
message, 220
severity levels, 167

syslog-ng
client configuration, 254
server configuration, 253

system compromise, 114, 130
system deployments, commonality,

and risk, 10
System log (Windows), 224

clearing, 231–233
System Network Architecture (SNA), 16
systemd process, 59
Sytek, 66

Index 330

T
taps, 91–93

Bro configured as, 207
TCP header, Wireshark display, 100
TCP stream, reconstructing, 192
tcpdump, 82, 84–89, 191

ARP request in, 87
ARP spoofing output, 94–95
capture with verbose setting, 85–86
filters, 88
output with time, 249–250
protocol decode with, 86–87
of SYN flood, 117

tcpflags setting, 286
TCP/IP protocol suite, 18–19
TCPView, 70–71

Console program (TCPVCon), 70
Teardrop attack, 118–119
technical contact, 24
technical intrusion, 3
Telnet, 17

clients, 278
test access point (tap), 92
The Onion Router (TOR), 314–317
three-way handshake, 35, 36–38, 60

SYN flood and, 115
SYN scan and, 268–269

time, synchronization, 246–248
time server, synchronization with, 248
time to live (TTL), 27

in firewall log entries, 236
IP header field for, 150

time zones, 144–147, 245, 246–247
Windows configuration, 146–147

timelines, 245–246, 257–262
PacketTotal for generating, 260–261
in Wireshark, 261–262

timestamp
and e-mail logs, 223
in syslog messages, 220

TIME-WAIT TCP connection state, 61
top utility, 73
top-level domains (TLDs), 42
TOR (The Onion Router), 314–317
TOR browser, 292
TOS/PREC fields, in firewall log entries,

236
Traceroute, 150–153
tracert utility, 151
Transmission Control Protocol (TCP), 18, 33–38

connections for, 60–62
nxlog listening on, 255
open port detection, 267–268
ports, nmap and, 271
Snort rule on, 199

Transmission Control Protocol/Internet Protocol
(TCP/IP), 14, 17

transport headers, 19
transport layer (OSI), 17
Transport Layer Security (TLS), 108, 297
Transport layer (TCP/IP), 19
Tribe Flood Network (TFN), 127
trier of facts, role of, 5
Trin00, 127
Tripwire, 205
Trivial File Transfer Protocol (TFTP), 192
trunk ports, spanning, 207
trust, in certificate authority, 302
tshark, 82
TTL. See time to live (TTL)
tunneling, 66, 266, 286–287
Type of Service (ToS) byte, in IP header, 26

U
Ubuntu Linux

installation with rsyslog, 168–169
vulnerabilities, 283

Unicast messages, 129
United Kingdom, common law legal system, 4
United States Naval Research Laboratory, 314
Unix-like operating system, 55–57

syslog for, 166–171
unsolicited commercial e-mail (UCE) messages, 25
URG flag, in TCP header, 34–35
urgent pointer, in TCP header, 35
URGP field, in firewall log entries, 236
URL encoding, 135
user agent

logging, 241
string for, 242

User Datagram Protocol (UDP), 17, 38–40, 192
firewall and, 234
floods, 122–124
for NTP, 248
nxlog listening on, 255
open port detection, 267–268
scans, 270–271
source port and, 42

UTC (Coordinated Universal Time), 247, 250

Index 331

V
variables, in Snort, 195
Verisign, 302
version number, in IP header, 26
version scan, with nmap, 276–277
virtual machine, 306–307
virtual private networks (VPNs), 310
Voice Over IP (VOIP), 22

location awareness for, 153–156
vulnerabilities, 266

in client, 136
exploits using, 130–132
guestbook as, 139
MD5 algorithm vulnerability to collision, 7
scanning, 280–285

W
web application firewall (WAF), 212

logs, 238–240
web applications, 137
web browsers, 136
web interface, for IaaS providers, 307
web proxy, 236
web servers

combined log format for, 241
default port for, 136
HTTP message for banner, 276
primary index page, 276

Webalizer, 238
well-known ports, scanning, 269
wevtutil program, 228–229

clearing log, 232
who-has request, 94
whois utility, 23–24, 43, 147–150
WiFi (802.11), 20

positioning, 157–158
WiGLE (wireless hotspot database), 157
WINDOW field, in firewall log entries, 236
window field in TCP header, 35, 38
Windows, 7

Event logs, 171–173
APIs for interacting with, 230
clearing, 231–233

log file storage, 227
NetBT (NBT), 66
services start-up options, 54–55
sysinternals, 69–73
time zone configuration, 146–147

Windows Event Viewer, 212, 224–233, 251–252

actions, 231
applications and services, 226
categories, 226
creating subscription, 253

Windows events
forwarding, 251–252
IDs, 227–228

Windows logs, 224
Windows registry, for configuration

settings, 57
Windows Task Manager, 75–77
Winternals, 69
Wireshark, 82, 89–91

Conversations statistics, 261–262
Conversations view, 102–103
for data capture, 191
decode options, 106
Endpoints view, 102
Expert Information in, 262
exporting files, 107
filters using protocols, 101–102
GeoIP lookup with, 156
Name Resolution view, 99
packet analysis, 98–108

packet decoding, 98–101
packet capture, for handshake, 299–300
statistics from, 102–105
Statistics menu, 261
streams in, 105–106
time as offset, 250
Tor communication capture, 315

X
X.509 standard, 300
Xmas scan, 270
XML

for log information storage, 171
for Windows logs, 224–225

XML attacks, 139
XPath, 229

Y
YAML (Yet Another Markup Language), 201–202

Z
zeroconfig addresses, 32
zones, for domain records, 44

	fmatter
	ch1
	ch2
	ch3
	ch4
	ch5
	ch6
	ch7
	ch8
	ch9
	ch10
	ch11
	ch12
	index

