

Database Concepts

This page intentionally left blank

Database Concepts
Seventh Edition

David M. Kroenke

David J. Auer
Western Washington University

Boston   Columbus   Indianapolis   New York   San Francisco   Hoboken
Amsterdam  Cape Town   Dubai   London   Madrid   Milan   Munich   Paris   Montréal   Toronto

Delhi  Mexico City   São Paulo   Sydney   Hong Kong   Seoul   Singapore   Taipei   Tokyo

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page
within text.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and
related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without
warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and
non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out
of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the
program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

MySQL®, the MySQL GUI Tools® (MySQL Query Browser® and MySQL Administrator®), the MySQL Command Line Client®, the
MySQL Workbench®, and the MySQL Connector/ODBC® are registered trademarks of Sun Microsystems, Inc./Oracle Corporation.
Screenshots and icons reprinted with permission of Oracle Corporation. This book is not sponsored or endorsed by or affiliated with Oracle
Corporation.

Express Edition 11g Release 2 2014 by Oracle Corporation. Reprinted with permission.

PHP is copyright The PHP Group 1999–2012, and is used under the terms of the PHP Public License v3.01 available at http://www.php.net/
license/3_01.txt. This book is not sponsored or endorsed by or affiliated with The PHP Group.

Copyright © 2015, 2013, 2011 by Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030. All rights reserved. Manufactured
in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 221 River Street, Hoboken, New Jersey 07030.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Kroenke, David M., 1948–
  Database concepts / David M. Kroenke and David J. Auer.—7e.
   pages cm
  Includes index.
  ISBN 978-0-13-354462-6 (student edition)—ISBN 978-0-13-354478-7 (instructor edition)
  1.  Database management.  2.  Relational databases.  I.  Auer, David J.  II.  Title.
QA76.9.D3K736 2015
005.74—dc23

2014010915

10  9  8  7  6  5  4  3  2  1

Editor in Chief: Stephanie Wall
Acquisitions Editor: Nicole Sam
Program Manager Team Lead: Ashley Santora
Program Manager: Denise Vaughn
Editorial Assistant: Kaylee Rotella
Executive Marketing Manager: Anne K. Fahlgren
Project Manager Team Lead: Judy Leale
Project Manager: Ilene Kahn
Procurement Specialist: Michelle Klein

Senior Art Director: Janet Slowik
Text Designer: Integra Software Services
Cover Designer: Integra
Cover Art: shibanuk/Fotolia
Full-Service Project Management: Integra
Composition: Integra
Printer/Binder: Courier/Kendallville
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: 10/12 Simoncini Garamond Std.

ISBN 10:    0-13-354462-1
ISBN 13: 978-0-13-354462-6

http://www.php.net/license/3_01.txt
http://www.php.net/license/3_01.txt

Brief Contents

Part I    Database Fundamentals    1

1	 Getting Started    3
2	 The Relational Model    62
3	 Structured Query Language    119

Part I I    Database Design    243

4	� Data Modeling and the Entity-
Relationship Model    245

5	 Database Design    287

Part I I I    Database Management    333

6	 Database Administration    335
7	� Database Processing

Applications    392
8	 �Big Data, Data Warehouses, and

Business Intelligence Systems    445

Glossary    495

Index    503

Online Appendices : See page 493
for instructions

Appendix A:	 �Getting Started with
Microsoft SQL Server
2014 Express Edition

Appendix B:	 �Getting Started with
Oracle Database Express
Edition 11g Release 2

Appendix C:	 �Getting Started with
MySQL 5.6 Community
Server

Appendix D:	 �James River Jewelry
Project Questions

Appendix E:	 �SQL Views, SQL/PSM,
and Importing Data

Appendix F:	 �Getting Started in Systems
Analysis and Design

Appendix G:	 �Getting Started with
Microsoft Visio 2013

Appendix H:	 �The Access Workbench—
Section H—Microsoft
Access 2013 Switchboards

Appendix I:	 �Getting Started with Web
Servers, PHP, and the
NetBeans IDE

Appendix J:	 �Business Intelligence
Systems

Appendix K:	 Big Data

v

Contents

Part I    �Database Fundamentals    1

1	 Getting Started    3
Why Use a Database?    4
What Is a Database System?    14
What Is a NoSQL Database?    24
The Access Workbench Section 1—Getting

Started with Microsoft Access    25
Summary   54  •  Key Terms   55  •  Review
Questions   55  •  Exercises   56  •  Access
Workbench Key Terms   57  •  Access Workbench
Exercises   57  •  San Juan Sailboat Charters
Case Questions   59  •  Garden Glory Project
Questions   60  •  James River Jewelry Project
Questions (See Online Appendix D)   61  •  The
Queen Anne Curiosity Shop Project Questions   61

2	 The Relational Model    62
Relations    63
Types of Keys    66
The Problem of Null Values    74
Functional Dependencies and

Normalization    76
Normal Forms: One Step at a Time    88
The Access Workbench Section 2—Working

with Multiple Tables in Microsoft
Access    89

Summary   105  •  Key Terms   106  •  Review
Questions   106  •  Exercises   108  •  Access
Workbench Key Terms   110  •  Access
Workbench Exercises   110  •  Regional Labs
Case Questions   113  •  Garden Glory Project
Questions   114  •  James River Jewelry Project
Questions (See Online Appendix D)   116  •  The
Queen Anne Curiosity Shop Project Questions   116

3	 Structured Query Language    119
An Example Database    120
SQL for Data Definition (DDL)—Creating

Tables and Relationships    126
SQL for Data Manipulation (DML)—Inserting

Data    139
SQL for Data Manipulation (DML)—Single

Table Queries    143
SQL for Data Manipulation (DML)— Multiple

Table Queries    161
SQL for Data Manipulation (DML)—Data

Modification and Deletion    176
SQL for Data Definition (DDL)—Table

and Constraint Modification and
Deletion    179

SQL Views    182
The Access Workbench Section 3—Working

with Queries in Microsoft Access    182
Summary   211  •  Key Terms   212  •  Review
Questions   212  •  Exercises   216  •  Access
Workbench Key Terms   218  •  Access Workbench
Exercises   218  •  Heather Sweeney Designs
Case Questions   222  •  Garden Glory Project
Questions   232  •  James River Jewelry Project
Questions (See Online Appendix D)   235  •  The
Queen Anne Curiosity Shop Project Questions   236

vi

Contents   vii

Part I I    Database Design    243

4	 �Data Modeling and the Entity-
Relationship Model    245
Requirements Analysis    246
The Entity-Relationship Data Model    247
Entity-Relationship Diagrams    252
Developing an Example E-R Diagram    262
The Access Workbench Section 4—

Prototyping Using Microsoft
Access    270

Summary   279  •  Key Terms   280  •  Review
Questions   280  •  Exercises   281  •  Access
Workbench Key Terms   282  •  Access Workbench
Exercises   282  •  Highline University Mentor
Program Case Questions   282  •  Washington
State Patrol Case Questions   284  •  Garden
Glory Project Questions   285  •  James
River Jewelry Project Questions (See Online
Appendix D)   286  •  The Queen Anne Curiosity
Shop Project Questions   286

5	 Database Design    287
The Purpose of a Database Design    288
Transforming a Data Model into a Database

Design    288
Representing Entities with the Relational

Model    289
Representing Relationships    297
Database Design at Heather Sweeney

Designs    310
The Access Workbench Section 5—

Relationships in Microsoft
Access    318

Summary   324  •  Key Terms   325  •  Review
Questions   325  •  Exercises   326  •  Access
Workbench Key Terms   327  •  Access Workbench
Exercises   327  •  San Juan Sailboat Charters
Case Questions   328  •  Washington State Patrol
Case Questions   330  •  Garden Glory Project
Questions   330  •  James River Jewelry Project
Questions (See Online Appendix D)   330  •  The
Queen Anne Curiosity Shop Project Questions   331

Part I I I    �Database Management    333

6	 Database Administration    335
The Heather Sweeney Designs

Database    336
The Need for Control, Security, and

Reliability    336
Concurrency Control    338
SQL Transaction Control Language and

Declaring Lock Characteristics    344
Cursor Types    348
Database Security    350
Database Backup and Recovery    357
Additional DBA Responsibilities    361
The Access Workbench Section 6—

Database Administration in Microsoft
Access    361

Summary   381  •  Key Terms   383  •  Review
Questions   383  •  Exercises   385  •  Access
Workbench Key Terms   386  •  Access Workbench
Exercises   386  •  Marcia’s Dry Cleaning
Case Questions   387  •  Garden Glory Project
Questions   388  •  James River Jewelry Project
Questions (See Online Appendix D)   389  •  The
Queen Anne Curiosity Shop Project Questions   390

7	 �Database Processing
Applications    392
The Database Processing

Environment    393
Web Application Database Processing    396
Database Processing and XML    424
The Access Workbench Section 7—Web

Database Processing Using Microsoft
Access    426

Summary   435  •  Key Terms   436  •  Review
Questions   436  •  Exercises   438  •  Access
Workbench Exercises   440  •  Marcia’s Dry Cleaning
Case Questions   440  •  Garden Glory Project
Questions   442  •  James River Jewelry Project
Questions (See Online Appendix D)   443  •  The
Queen Anne Curiosity Shop Project Questions   444

viii   Contents

8	 �Big Data, Data Warehouses, and
Business Intelligence Systems    445
Business Intelligence Systems    447
The Relationship Between Operational

and BI Systems    447
Reporting Systems and Data Mining

Applications    448
Data Warehouses and Data Marts    449
OLAP    458
Distributed Database Processing    463
Object-Relational Databases    466
Big Data and the Not Only SQL

Movement    466
The Access Workbench Section 8—Business

Intelligence Systems Using Microsoft
Access    471

Summary   484  •  Key Terms   485  •  Review
Questions   485  •  Exercises   487  •  Access
Workbench Exercises   488  •  Marcia’s Dry
Cleaning Case Questions   489  •  Garden
Glory Project Questions   490  •  James
River Jewelry Project Questions (See Online
Appendix D)   490  •  The Queen Anne Curiosity
Shop Project Questions   491

Glossary    495

Index    503

Online Appendices : See page 493
for instructions

Appendix A:	 Getting Started with
Microsoft SQL Server
2014 Express Edition

Appendix B:	 Getting Started with
Oracle Database Express
Edition 11g Release 2

Appendix C:	 Getting Started with
MySQL 5.6 Community
Server

Appendix D:	 James River Jewelry
Project Questions

Appendix E:	 SQL Views, SQL/PSM,
and Importing Data

Appendix F:	 Getting Started in Systems
Analysis and Design

Appendix G:	 Getting Started with
Microsoft Visio 2013

Appendix H:	 The Access Workbench—
Section H—Microsoft
Access 2013 Switchboards

Appendix I:	 Getting Started with Web
Servers, PHP, and the
NetBeans IDE

Appendix J:	 Business Intelligence
Systems

Appendix K:	 Big Data

Preface

Colin Johnson is a production supervisor for a small manufacturer in Seattle. Several years
ago, Colin wanted to build a database to keep track of components in product packages. At
the time, he was using a spreadsheet to perform this task, but he could not get the reports
he needed from the spreadsheet. Colin had heard about Microsoft Access, and he tried
to use it to solve his problem. After several days of frustration, he bought several popular
Microsoft Access books and attempted to learn from them. Ultimately, he gave up and
hired a consultant who built an application that more or less met his needs. Over time,
Colin wanted to change his application, but he did not dare try.

Colin was a successful businessperson who was highly motivated to achieve his goals.
A seasoned Windows user, he had been able to teach himself how to use Microsoft Excel,
Microsoft PowerPoint, and a number of production-oriented application packages. He was
flummoxed at his inability to use Microsoft Access to solve his problem. “I’m sure I could do
it, but I just don’t have any more time to invest,” he thought. This story is especially remarkable
because it has occurred tens of thousands of times over the past decade to many other people.

Microsoft, Oracle, IBM, and other database management system (DBMS) vendors are
aware of such scenarios and have invested millions of dollars in creating better graphical in-
terfaces, hundreds of multipanel wizards, and many sample applications. Unfortunately, such
efforts treat the symptoms and not the root of the problem. In fact, most users have no clear
idea what the wizards are doing on their behalf. As soon as these users require changes to da-
tabase structure or to components such as forms and queries, they drown in a sea of complex-
ity for which they are unprepared. With little understanding of the underlying fundamentals,
these users grab at any straw that appears to lead in the direction they want. The consequence
is poorly designed databases and applications that fail to meet the users’ requirements.

Why can people like Colin learn to use a word processor or a spreadsheet product yet
fail when trying to learn to use a DBMS product? First, the underlying database concepts
are unnatural to most people. Whereas everyone knows what paragraphs and margins are,
no one knows what a relation is. Second, it seems as though using a DBMS product ought
to be easier than it is. “All I want to do is keep track of something. Why is it so hard?”
people ask. Without knowledge of the relational model, breaking a sales invoice into five
separate tables before storing the data is mystifying to business users.

This book is intended to help people like Colin understand, create, and use databases
in a DBMS product, whether they are individuals who found this book in a bookstore or
students using this book as their textbook in a class.

Students and other readers of this book will benefit from new content and features in this
edition. These include the following:

•	 Mircosoft Office 2013, and particularly Microsoft Access 2013, is now the basic
software used in the book and is shown running on Microsoft Windows 8.1.

•	 DBMS software coverage has been updated to include Microsoft SQL Server 2014
Express Edition and Oracle MySQL 5.6 Community Server.

New to This Edition

ix

x   Preface

•	 New material to illustrate the concepts of SQL joins has been added to Chapter 3
to make this material easier for students to understand.

•	 New material on SQL programming via SQL/Persistent Stored Modules (SQL/
PSM) has been added to Appendix E to provide a better organized discussion and
expanded discussion of this material, which had previously been spread among
other parts of the book. This material also provides a discussion of importing
Microsoft Excel worksheet data in to a database.

•	 Material on Big Data and the evolving NoSQL movement is now briefly introduced in
Chapter 1, while the main, expanded discussion of this material is in Chapter 8 and the
new Appendix K, “Big Data” Big Data remains the theme for Chapter 8, which includes
the material on the development of nonrelational data stores (such as Cassandra and
HBase) and the Hadoop Distributed File System (HDFS) first introduced in DBC e06.
Appendix K, “Big Data”—has been added to provide additional, more detailed
material on the NoSQL databases used in Big Data setups for those instructors who
still want to cover this topic in depth.

•	 The Oracle NetBeans IDE is used in Chapter 7 in place of the Eclipse PDT IDE.
Since an integrated downloadable installation file for both the Java JDK and
NetBeans is available, this results in a much easier software installation of these
products in Appendix I. The NetBeans IDE is also arguably easier to use then the
Eclipse PDT, which will make it easier for students to create the HTML and PHP
Web pages used in Chapter 7.

We kept all the main innovations included in DBC e06, including:

•	 The coverage of Web database applications in Chapter 7 now includes data input
Web form pages. This allows Web database applications to be built with both data-
input and data-reading Web pages.

•	 The coverage of Microsoft Access 2013 now includes Microsoft Access switchboard
forms (covered in Appendix H, “The Access Workbench—Section H—Microsoft
Access 2013 Switchboards”), which are used to build menus for database applica-
tions. Switchboard forms can be used to build database applications that have a user-
friendly main menu that users can use to display forms, print reports, and run queries.

•	 Each chapter now features an independent Case Question set. The Case Question
sets are problem sets that generally do not require the student to have completed
work on the same case in a previous chapter (there is one intentional exception
that ties data modeling and database design together). Although in some instances
the same basic named case may be used in different chapters, each instance is still
completely independent of any other instance.

•	 Support for Oracle Database Express Edition 11g Release 2 is maintained. Appendix
B, “Getting Started with Oracle Database Express Edition 11g Release 2,” shows you
how to use the product and the Oracle SQL Developer GUI utility. The appendix
provides the basic knowledge, and Oracle SQL Developer screenshots in the text are
used to illustrate specific concepts.

With today’s technology, it is impossible to utilize a DBMS successfully without first learn-
ing fundamental concepts. After years of developing databases with business users, we
believe that the following database concepts are essential:

•	 Fundamentals of the relational model
•	 Structured Query Language (SQL)
•	 Data modeling
•	 Database design
•	 Database administration

The Need for Essential Concepts

Preface   xi

And because of the increasing use of the Internet, the World Wide Web, commonly avail-
able analysis tools, and the emergence of the NoSQL movement, four more essential con-
cepts need to be added to the list:

•	 Web database processing
•	 Data warehouse structures
•	 Business intelligence (BI) systems
•	 Nonrelational structured data storage

Users like Colin—and students who will perform jobs similar to his—need not learn
these topics to the same depth as future information systems professionals. Consequently,
this textbook presents only essential concepts—those that are necessary for users like
Colin who want to create and use small databases. Many of the discussions in this book
are rewritten and simplified explanations of topics that you will find fully discussed in
David M. Kroenke and David J. Auer’s Database Processing: Fundamentals, Design, and
Implementation.1 However, in creating the material for this text, we have endeavored to
ensure that the discussions remain accurate and do not mislead. Nothing here will need to
be unlearned if students take more advanced database courses.

1David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and Implementation,
13th edition (Upper Saddle River, NJ: Pearson/Prentice Hall, 2014).

This book does not assume that students will use any particular DBMS product. The book
does illustrate database concepts with Microsoft Access, SQL Server Express edition,
Oracle Database Express Edition, and MySQL Community Server so that students can use
these products as tools and actually try out the material, but all the concepts are presented
in a DBMS-agnostic manner. When students learn the material this way, they come to un-
derstand that the fundamentals pertain to any database, from the smallest Microsoft Access
database to the largest Microsoft SQL Server or Oracle Database database. Moreover, this
approach avoids a common pitfall. When concepts and products are taught at the same
time, students frequently confound concepts with product features and functions. For ex-
ample, consider referential integrity constraints. When they are taught from a conceptual
standpoint, students learn that there are times when the values of a column in one table
must always be present as values of a column in a second table. Students also learn how this
constraint arises in the context of relationship definition and how either the DBMS or the
application must enforce this constraint. If taught in the context of a DBMS—say in the
context of Microsoft Access—students will only learn that in some cases you check a check
box and in other cases you do not. The danger is that the underlying concept will be lost in
the product feature.

All this is not to say that a DBMS should not be used in this class. On the contrary, stu-
dents can best master these concepts by applying them using a commercial DBMS product.
This edition of the book was written to include enough basic information about Microsoft
Access, SQL Server Express edition, Oracle Database Express Edition, and MySQL so
that you can use these products in your class without the need for a second book or other
materials. Microsoft Access is covered in some depth because of its popularity as a per-
sonal database and its inclusion in the Microsoft Office Professional suite of applications.
However, if you want to cover a particular DBMS in depth or use a DBMS product not dis-
cussed in the book, you need to supplement this book with another text or additional ma-
terials. Pearson provides a number of books for Microsoft Access 2013 and other DBMS
products, and many of them can be packaged with this text.

Teaching Concepts Independent of DBMS Products

xii   Preface

This new edition of the text continues using “The Access Workbench,” a feature first
introduced in the third edition. Because Microsoft Access is widely used in introductory
database classes, we feel it is important to include specific information on using Microsoft
Access. Each chapter has an accompanying section of “The Access Workbench,” which
illustrates the chapter’s concepts and techniques using Microsoft Access. “The Access
Workbench” topics start with creating a database and a single table in Chapter 1 and move
through various topics, finishing with Web database processing against a Microsoft Access
database in Chapter 7 and using Microsoft Access (together with Microsoft Excel) to
produce PivotTable OLAP reports in Chapter 8. This material is not intended to provide
comprehensive coverage of Microsoft Access, but all the necessary basic Microsoft Access
topics are covered so that your students can learn to effectively build and use Microsoft
Access databases.

The Access Workbench

Because it is important for students to apply the concepts they learn, each chapter con-
cludes with sets of key terms, review questions, exercises (including exercises tied to “The
Access Workbench”), Case Question sets, and three projects that run throughout the book.
Students should know the meaning of each of the key terms and be able to answer the re-
view questions if they have read and understood the chapter material. Each of the exercises
requires students to apply the chapter concepts to a small problem or task.

The first of the projects, Garden Glory, concerns the development and use of a database
for a partnership that provides gardening and yard maintenance services to individuals and
organizations. The second project, James River Jewelry, addresses the need for a database
to support a frequent-buyer program for a retail store. The third project, The Queen Anne
Curiosity Shop, concerns the sales and inventory needs of a retail business. These three
projects appear in all of the book’s chapters (although the actual text of the James River
Jewelry project is found in online Appendix D). In each instance, students are asked to
apply the project concepts from the chapter. Instructors will find more information on the
use of these projects in the instructor’s manual and can obtain databases and data from the
password-protected instructor’s portion of this book’s Web site (www.pearsonhighered
.com/kroenke).

Key Terms, Review Questions, Exercises, Cases, and Projects

Just as we have treated our discussions in a DBMS-agnostic way, whenever possible, we have
selected software to be as operating system independent as possible. It is amazing how much
excellent software is available online. Many major DBMS vendors provide free versions of their
premier products (for example, Microsoft’s SQL Server Express edition, Oracle Corporation’s
Oracle Database Express Edition, and MySQL Community Server). Web editors and inte-
grated development environments (IDEs) are also available (for example, Eclipse, NetBeans,
and Visual Studio Express edition). PHP, considered the fourth most commonly used program-
ming language, is downloadable for use with many operating systems and Web servers.

So although the examples in this book were created using a Microsoft operating
system, SQL Server 2014 Express edition, Microsoft Access 2013, Microsoft Excel 2013,
and the IIS Web Server, most of them could just as easily be accomplished using Linux,
MySQL Server Community edition, Apache OpenOffice Base, Appache OpenOffice Calc,
and the Apache Web server. Some software products used in the book, such as PHP and
NetBeans, are available for multiple operating systems.

Software Used in the Book

www.pearsonhighered.com/kroenke
www.pearsonhighered.com/kroenke

Preface   xiii

Over the past 30-plus years, we have found the development of databases and database
applications to be an enjoyable and rewarding activity. We believe that the number, size,
and importance of databases will increase in the future and that the field will achieve even
greater prominence. It is our hope that the concepts, knowledge, and techniques presented
in this book will help students to participate successfully in database projects now and for
many years to come.

The most significant change in this edition is the coverage of the rapidly evolving use of
Big Data and the associated NoSQL movement. The need to be able to store and process
extremely large datasets is transforming the database world. Although these developments
leave the database fundamentals covered in this book unchanged, they do require us to put
the relational databases that are the core of this text into the context of the overall database
picture and to provide the reader with an understanding of the nonrelational structured
storage used in the Big Data environment. Therefore, Chapter 8 is now organized around
the topic of Big Data, and the topics of data warehouses, clustered database servers, dis-
tributed databases, and an introduction to business intelligence (BI) systems find a natural
home in that chapter. To provide additional coverage of Big Data, Appendix K has been
added to allow a discussion in more depth than the page limitations of the book allow. For
those wanting the same coverage of BI found in the previous edition of Database Concepts,
we have moved BI material that no longer fit in Chapter 8 to Appendix J.

Finally, we have maintained the chapter-independent Case Question sets we added
in the sixth edition. Although the chapter projects tie the topics in each chapter together,
the case questions do not require the student to have completed work on the same case in
a previous chapter or chapters. There is one intentional exception that spans Chapters 4
and 5 that ties data modeling and database design together, but each of these chapters also
includes a standalone case. Although in some instances the same basic named case may be
used in different chapters, each instance is still completely independent of any other in-
stance, and we provide needed Microsoft Access 2013 database and SQL scripts at the text
Web site at www.pearsonhighered.com/kroenke.

We have, of course, also updated information on all the other products in the book.
In particular, we cover the newly released Microsoft SQL Server 2014 and MySQL 5.6
Community Server.

We have kept and improved upon several features introduced in earlier editions of the
book:

•	 The use of “The Access Workbench” sections in each chapter to provide coverage
of Microsoft Access fundamentals now includes Microsoft Access switchboards
(Appendix H, “The Access Workbench—Section H—Microsoft Access 2013
Switchboards,” available online).

•	 Introductions to the use of Microsoft SQL Server 2014 Express Edition
(Appendix A, “Getting Started with Microsoft SQL Server 2014 Express Edition,”
available online), Oracle Database Express Edition 11g Release 2 (Appendix B,
“Getting Started with Oracle Database Express Edition 11g Release 2,” available
online) and Oracle MySQL 5.6 Community Server (Appendix C, “Getting Started
with MySQL 5.6 Community Server,” available online).

•	 The use of fully developed datasets for the three example databases that run
throughout various portions of the book—Wedgewood Pacific Corporation,
Heather Sweeney Designs, and Wallingford Motors.

•	 The use of the PHP scripting language, now used in the NetBeans IDE, in the Web
database processing topics now includes code for Web page input forms.

•	 Coverage of the dimensional database model is maintained in the restructured
Chapter 8, together with coverage of OLAP.

Changes from the Sixth Edition

www.pearsonhighered.com/kroenke

xiv   Preface

In order to make room for this new material, we have had to move some valuable mate-
rial previously found in the book itself to online appendices. This includes the James
River Jewelry set of project questions, which is now in online Appendix D, “James River
Jewelry Project Questions,” the material on SQL Views is now in online Appendix E,
“SQL Views, SQL/PSM, and Importing Data” with additional material on SQL Persistent
Stored Modules (SQL/PSM) and how to import Microsoft Excel data. The business intel-
ligence systems material on reporting systems and data mining is now in online Appendix J
“Business Intelligence Systems.”

This textbook consists of 8 chapters and 11 appendices (all of which are readily available
online at www.pearsonhighered.com/kroenke). Chapter 1 explains why databases are
used, what their components are, and how they are developed. Students will learn the
purpose of databases and their applications, as well as how databases differ from and im-
prove on lists in spreadsheets. Chapter 2 introduces the relational model and defines basic
relational terminology. It also introduces the fundamental ideas that underlie normalization
and describe the normalization process.

Chapter 3 presents fundamental SQL statements. Basic SQL statements for data defi-
nition are described, as are SQL SELECT and data modification statements. No attempt
is made to present advanced SQL statements; only the essential statements are described.
Online Appendix E adds coverage of SQL views.

The next two chapters consider database design. Chapter 4 addresses data model-
ing, using the entity-relationship (E-R) model. This chapter describes the need for data
modeling, introduces basic E-R terms and concepts, and presents a short case application
(Heather Sweeney Designs) of E-R modeling. Chapter 5 describes database design and ex-
plains the essentials of normalization. The data model from the case example in Chapter 4
is transformed into a relational design in Chapter 5.

In this edition, we continue to use the more effective discussion of normalization
added in an earlier edition. We have presented a prescriptive procedure for normalizing
relations through the use of a four-step process. This approach not only makes the normal-
ization task easier, it also makes normalization principles easier to understand. Therefore,
this approach has been retained in this edition. For instructors who want a bit more detail
on normal forms, short definitions of most normal forms are included in Chapter 5.

The last three chapters consider database management and the uses of databases in
applications. Chapter 6 provides an overview of database administration. The case example
database is built as a functioning database, and it serves as the example for a discussion of
the need for database administration. The chapter surveys concurrency control, security,
and backup and recovery techniques. Database administration is an important topic be-
cause it applies to all databases, even personal, single-user databases. In fact, in some ways
this topic is more important for those smaller databases because no professional database
administrator is present to ensure that critical tasks are performed.

Chapter 7 introduces the use of Web-based database processing, including a discus-
sion of Open Database Connectivity (ODBC) and the use of the PHP scripting language. It
also discusses the emergence and basic concepts of Extensible Markup Language (XML).

Chapter 8 discusses the emerging world of Big Data and the NoSQL movement.
Business intelligence (BI) systems and the data warehouse architectures that support them
are discussed, but many details of BI systems have been moved to online Appendix J.
Chapter 8 also discusses dimensional databases. The chapter also walks through how to
build a dimensional database for Heather Sweeney Designs and then use it to produce a
PivotTable Online Analytical Processing (OLAP) report. Chapter 8 also provides a discus-
sion of distributed databases and object-relational databases.

Appendix A provides a short introduction to Microsoft SQL Server 2014 Express
Edition, Appendix B provides an introduction for Oracle Database Express Edition 11g

Book Overview

www.pearsonhighered.com/kroenke

Preface   xv

Release 2, and Appendix C provides a similar introduction for MySQL 5.6 Community
Server. Microsoft Access is covered in “The Access Workbench” sections included in each
chapter. Appendix D now contains the James River Jewelry project questions, and the mate-
rial on SQL views is located in Appendix E. Appendix F provides an introduction to systems
analysis and design and can be used to provide context for Chapter 4 (data modeling) and
Chapter 5 (database design)—although in this book we focus on databases, databases are
used in applications. Appendix F describes the application development process in more de-
tail. Appendix G is a short introduction to Microsoft Visio 2013, which can be used as a tool
for data modeling (Chapter 4) and database design (Chapter 5). Another useful database
design tool is the MySQL Workbench, and this use of the MySQL Workbench is discussed
in Appendix C. Appendix H extends Chapter 5’s section of “The Access Workbench” by
providing coverage of Microsoft Access 2013 switchboards. Appendix I provides detailed
support for Chapter 7 by giving detailed instructions on getting the Microsoft IIS Web
server, PHP, and the NetBeans IDE up and running. Appendix J provides additional mate-
rial on business intelligence (BI) systems to supplement and support Chapter 8 by giving
details on report systems and data mining. Finally, Appendix K provides additional material
on Big Data and NoSQL databases to supplement and support Chapter 8.

In order to keep Database Concepts up to date between editions, we post updates on the
book’s Web site at www.pearsonhighered.com/kroenke as needed. Instructor resources
and student materials are also available on the site, so be sure to check it from time to time.

Keeping Current in a Rapidly Changing World

We would like to thank the following reviewers for their insightful and helpful comments:

Namjoo Choi, University of Kentucky
David Chou, Eastern Michigan University
Geoffrey Decker, Northern Illinois University
Deena Engel, New York University
Marni Ferner, University of North Carolina, Wilmington
Jean Hendrix, University of Arkansas at Monticello
Malini Krishnamurthi, California State University, Fullerton
Rashmi Malhotra, Saint Joseph’s University
Gabriel M. Petersen, North Carolina Central University
Eliot Rich, University at Albany, State University of New York
Liz Thiry, Pennsylvania State University
Bond Wetherbe, Texas Tech University
Diana Wolfe, Oklahoma State University–Oklahoma City

We would like to thank Nicole Sam, our editor; Denise Vaughn, our program manager;
and Ilene Kahn, our project manager, for their professionalism, insight, support, and assistance
in the development of this project. We would also like to thank Robert Mills, Robert Yoder,
and Scott Vandenberg for their detailed comments on the final manuscript. Finally, David
Kroenke would like to thank his wife, Lynda, and David Auer would like to thank his wife,
Donna, for their love, encouragement, and patience while this project was being completed.

David Kroenke

David Auer

Acknowledgments

www.pearsonhighered.com/kroenke

David M. Kroenke entered the computing profession as a summer intern at the RAND
Corporation in 1967. Since then, his career has spanned education, industry, consulting,
and publishing.

He has taught at the University of Washington, Colorado State University, and Seattle
University. Over the years, he has led dozens of teaching seminars for college professors. In
1991 the International Association of Information Systems named him Computer Educator
of the Year.

In industry, Kroenke has worked for the U.S. Air Force and Boeing Computer
Services, and he was a principal in the startup of three companies. He was also vice presi-
dent of product marketing and development for the Microrim Corporation and was chief
technologist for the database division of Wall Data, Inc. He is the father of the semantic
object data model. Kroenke’s consulting clients include IBM Corporation, Microsoft,
Computer Sciences Corporation, and numerous other companies and organizations.

His text Database Processing: Fundamentals, Design, and Implementation, first pub-
lished in 1977, is now in its 13th Edition (coauthored with David Auer for the 11th, 12th,
and 13th editions). He introduced Database Concepts (now in the seventh edition that you
are reading) in 2003. Kroenke has published many other textbooks, including the classic
Business Computer Systems (1981). Recently, he has authored Using MIS (7th Edition),
Experiencing MIS (5th Edition), MIS Essentials (4th Editon), Processes, Systems and
Information: An Introduction to MIS (2nd Edition) (coauthored with Earl McKinney), and
Essentials of Processes, Systems and Information (coauthored with Earl McKinney).

An avid sailor, Kroenke also wrote Know Your Boat: The Guide to Everything That
Makes Your Boat Work. Kroenke lives in Seattle, Washington. He is married and has two
children and three grandchildren.

Since 1994, David J. Auer has been the director of Information Systems and Technology
Services at Western Washington University’s College of Business and Economics (CBE)
and a lecturer in CBE’s Department of Decision Sciences. Since 1981, he has taught CBE
courses in quantitative methods, production and operations management, statistics, fi-
nance, and management information systems. Besides managing CBE’s computer, network,
and other technology resources, he also teaches management information systems courses.
He has taught the Principles of Management Information Systems and Business Database
Development courses, and he was responsible for developing CBE’s network infrastructure
courses, including Computer Hardware and Operating Systems, Telecommunications, and
Network Administration. He has coauthored several MIS-related textbooks.

Auer holds a bachelor’s degree in English literature from the University of Washington,
a bachelor’s degree in mathematics and economics from Western Washington University, a
master’s degree in economics from Western Washington University, and a master’s degree
in counseling psychology from Western Washington University. He served as a commis-
sioned officer in the U.S. Air Force, and he has also worked as an organizational develop-
ment specialist and therapist for an employee assistance program (EAP).

Auer and his wife, Donna, live in Bellingham, Washington. He has two children and
four grandchildren.

About the Authors

xvi

1

Part 1 Database Fundamentals

P art I introduces fundamental concepts and
techniques of relational database management.
Chapter 1 explains database technology, discusses

why databases are used, and describes the components of a
database system. Chapter 2 introduces the relational model
and defines key relational database terms. It also presents
basic principles of relational database design. Chapter 3
presents Structured Query Language, an international stan-
dard for creating and processing relational databases.

After you have learned these fundamental database
concepts, we will focus on database modeling, design, and
implementation in Part II. Finally, we will discuss database
management, Web database applications, Big Data, and
business intelligence (BI) systems in Part III.

This page intentionally left blank

3

•	 Identify the purpose and scope
of this book

•	 Know the potential problems with lists

•	 Understand the reasons for using
a database

•	 Understand how using related tables
helps you avoid the problems of using
lists

•	 Know the components of a database
system

•	 Learn the elements of a database

•	 Learn the purpose of a database
management system (DBMS)

•	 Understand the functions of a database
application

•	 Introduce nonrelational databases

Chapter Objectives

Chapter 1

K nowledge of database technology increases in
importance every day. Databases are used every-
where: They are key components of e-commerce

and other Web-based applications. They lay at the heart of
organization-wide operational and decision support applica-
tions. Databases are also used by thousands of work groups
and millions of individuals. It is estimated that there are
more than 10 million active databases in the world today.

The purpose of this book is to teach you the essential
relational database concepts, technology, and techniques
that you need to begin a career as a database developer.
This book does not teach everything of importance in
relational database technology, but it will give you suf-
ficient background to be able to create your own personal
databases and to participate as a member of a team in the
development of larger, more complicated databases. You
will also be able to ask the right questions to learn more on
your own.

In this first chapter, we investigate the reasons for
using a relational database. We begin by describing some
of the problems that can occur when using lists. Using a
series of examples, we illustrate how using sets of related
tables helps you to avoid those problems. Next, we de-
scribe the components of a database system and explain
the elements of a database, the purpose of the database
management system (DBMS), and the functions of a da-
tabase application. Finally, we introduce nonrelational
databases.

Getting Started

4   Part 1   Database Fundamentals

A database is used to help people keep track of things. You might wonder why we need a
special term (and course) for such technology when a simple list could serve the same pur-
pose. Many people do keep track of things by using lists, and sometimes such lists are valu-
able. In other cases, however, simple lists lead to data inconsistencies and other problems.

In this section, we examine several different lists and show some of these problems. As
you will see, we can solve the problems by splitting lists into tables of data. Such tables are
the key components of a database. A majority of this text concerns the design of such tables
and techniques for manipulating the data they contain.

Problems with Lists
Figure 1-1 shows a simple list of student data, named the Student List,1 stored in a spread-
sheet. The Student List is a very simple list, and for such a list a spreadsheet works quite well.
Even if the list is long, you can sort it alphabetically by last name, first name, or email address
to find any entry you want. You can change the data values, add data for a new student, or
delete student data. With a list like the Student List in Figure 1-1, none of these actions is
problematic, and a database is unnecessary. Keeping this list in a spreadsheet is just fine.

Suppose, however, we change the Student List by adding adviser data, as shown in
Figure 1-2. You can still sort the new Student with Adviser List in a number of ways to
find an entry, but making changes to this list causes modification problems. Suppose,
for example, that you want to delete the data for the student Chip Marino. As shown in
Figure 1-3, if you delete the seventh row you not only remove Chip Marino’s data, you
also remove the fact that there is an adviser named Tran and that Professor Tran’s email
address is Ken.Tran@ourcampus.edu.

Similarly, updating a value in this list can have unintended consequences. If, for ex-
ample, you change AdviserEmail in the eighth row, you will have inconsistent data. After
the change, the fifth row indicates one email address for Professor Taing, and the eighth
row indicates a different email address for the same professor. Or is it the same professor?
From this list, we cannot tell if there is one Professor Taing with two inconsistent email ad-
dresses or whether there are two professors named Taing with different email addresses. By
making this update, we add confusion and uncertainty to the list.

Figure 1-1

The Student List in
a Spreadsheet

1In order to easily identify and reference the lists being discussed, we capitalize the first letter of each word
in the list names in this chapter. Similarly, we capitalize the names of the database tables associated with
the lists.

Figure 1-2

The Student with
Adviser List

Why Use a Database?

Chapter 1   Getting Started   5

Finally, what do we do if we want to add data for a professor who has no advisees? For ex-
ample, Professor George Green has no advisees, but we still want to record his email address.
As shown in Figure 1-3, we must insert a row with incomplete values, called null values, in
the database field. In this case, the term null value means a missing value, but there are other
meanings of the term null value that are used when working with databases. We will discuss
the problems of null values in detail in the next chapter, where we will show that null values
are always problematic and that we want to avoid them whenever possible.

Now, what exactly happened in these two examples? We had a simple list with three
columns, added two more columns to it, and thereby created several problems. The
problem is not just that the list has five columns instead of three. Consider a different list
that has five columns: the Student with Residence List shown in Figure 1-4. This list has
five columns, yet it suffers from none of the problems of the Student with Adviser List in
Figure 1-3.

In the Student with Residence List in Figure 1-4, we can delete the data for student Chip
Marino and lose only data for that student. No unintended consequences occur. Similarly, we
can change the value of Residence for student Tzu Lai without introducing any inconsistency.
Finally, we can add data for student Garret Ingram and not have any null values.

An essential difference exists between the Student with Adviser List in Figure 1-3 and
the Student with Residence List in Figure 1-4. Looking at those two figures, can you de-
termine the difference? The essential difference is that the Student with Residence List in
Figure 1-4 is all about a single thing: All the data in that list concern students. In contrast,
the Student with Adviser List in Figure 1-3 is about two things: Some of the data concern
students and some of the data concern advisers. In general, whenever a list has data about
two or more different things modification problems will result.

To reinforce this idea, examine the Student with Adviser and Department List in
Figure 1-5. This list has data about three different things: students, advisers, and depart-
ments. As you can see in the figure, the problems with inserting, updating, and deleting
data just get worse. A change in the value of AdviserLastName, for example, might

Deleted row—too
much data lost

Changed row—
inconsistent data

Inserted row—
data missing

Figure 1-3

Modification Problems in the Student with Adviser List

Inserted row—
data OK

Changed row—no
inconsistent data

Deleted row—no
data loss

Figure 1-4

The Student with Residence List

6   Part 1   Database Fundamentals

necessitate a change in only AdviserEmail, or it might require a change in AdviserEmail,
Department, and AdminLastName. As you can imagine, if this list is long—for example,
if the list thousands of rows—and if several people process it, the list will be a mess in a
very short time.

Using Relational Database Tables
The problems of using lists were first identified in the 1960s, and a number of different tech-
niques were developed to solve them. Over time, a methodology called the relational model
emerged as the leading solution, and today almost every commercial database is based on
the relational model. We will examine the relational model in detail in Chapter 2. Here,
however, we introduce the basic ideas of the relational model by showing how it solves the
modification problems of lists.

Remember your eighth-grade English teacher? He or she said that a paragraph should
have a single theme. If you have a paragraph with more than one theme, you need to break
it up into two or more paragraphs, each with a single theme. That idea is the foundation of
the design of relational databases. A relational database contains a collection of separate
tables. A table holds data about one and only one theme in most circumstances. If a table
has two or more themes, we break it up into two or more tables.

If Adviser Baker is changed to Taing,
we need to change AdviserEmail as
well. If changed to Valdez, we need to
change AdviserEmail, Department, and
AdminLastName.

Deleted row—Student, Adviser, and
Department data lost

Inserted row—both Student and Adviser
data missing

Figure 1-5

The Student with Adviser and Department List

A table and a spreadsheet (also known as a worksheet) are very similar in
that you can think of both as having rows, columns, and cells. The details
that define a table as something different from a spreadsheet are discussed
in Chapter 2. For now, the main differences you see are that tables have
column names instead of identifying letters (for example, Name instead
of A) and that the rows are not necessarily numbered.

BTW

Chapter 1   Getting Started   7

A Relational Design for the Student with Adviser List  The Student with
Adviser List in Figure 1-2 has two themes: students and advisers. If we put this data into a
relational database, we place the student data in one table named STUDENT and the ad-
viser data in a second table named ADVISER.

STUDENT data linked
to ADVISER data via
AdviserLastName

Figure 1-6

The Adviser and Student Tables

In this book, table names appear in all capital, or uppercase, letters
(STUDENT, ADVISER). Column names have initial capitals (Phone,
Address), and where column names consist of more than one word the
initial letter of each word is capitalized (LastName, AdviserEmail).

BTW

We still want to show which students have which advisers, however, so we leave
AdviserLastName in the ADVISER table. As shown in Figure 1-6, the values of
AdviserLastName now let us link rows in the two tables to each other.

Now consider possible modifications to these tables. As you saw in the last section,
three basic modification actions are possible: insert, update, and delete. To evaluate a de-
sign, we need to consider each of these three actions. As shown in Figure 1-7, we can insert,
update, and delete in these tables with no modification problems.

For example, we can insert the data for Professor Bill Yeats by just adding his data
to the ADVISER table. No student references Professor Yeats, but this is not a problem.
Perhaps a student will have Professor Yeats as an adviser in the future. We can also update
data values without unintended consequences. The email address for Professor Susan
Taing can be changed to Sue.Taing@ourcampus.edu, and no inconsistent data will result
because Professor Taing’s email address is stored just once in the ADVISER table. Finally,
we can delete data without unintended consequences. For example, if we delete the data
for student Chip Marino from the STUDENT table, we lose no adviser data.

A Relational Design for the Student with Adviser and Department List  We
can use a similar strategy to develop a relational database for the Student with Adviser and

8   Part 1   Database Fundamentals

Department List shown in Figure 1-5. This list has three themes: students, advisers, and
departments. Accordingly, we create three tables, one for each of these three themes, as
shown in Figure 1-8.

As illustrated in Figure 1-8, we can use AdviserLastName and Department to link
the tables. Also, as shown in this figure, this set of tables does not have any modification
problems. We can insert new data without creating null values, we can modify data without

Changed data—data
remains consistent

Inserted data—no
STUDENT data
required

Deleted data—no
ADVISER data lost

Figure 1-7

Modifying the Adviser and Student Tables

Can change
STUDENT Adviser
name as needed—
new value is linked to
its own data

Can delete
STUDENT data as
needed—no
DEPARTMENT or
ADVISER data lost

Can insert
DEPARTMENT
data as needed—
no ADVISER or
STUDENT data
required

Figure 1-8

The Department, Adviser, and Student Tables

Chapter 1   Getting Started   9

creating inconsistencies, and we can delete data without unintended consequences. Notice
in particular that when we add a new row to DEPARTMENT we can add rows in
ADVISER, if we want, and we can add rows in STUDENT for each of the new rows in
ADVISER, if we want. However, all these actions are independent. None of them leaves
the tables in an inconsistent state.

Similarly, when we modify an AdviserLastName in a row in STUDENT, we automati-
cally pick up the adviser’s correct first name, email address, and department. If we change
AdviserLastName in the first row of STUDENT to Taing, it will be connected to the row in
ADVISER that has the correct AdviserFirstName, AdviserEmail, and Department values.
If we want, we can also use the value of Department in ADVISER to obtain the correct
DEPARTMENT data. Finally, notice that we can delete the row for student Marino with-
out a problem.

As an aside, the design in Figure 1-8 has removed the problems that occur when modify-
ing a list, but it has also introduced a new problem. Specifically, what would happen if we de-
leted the first row in ADVISER? Students Andrews and Fischer would have an invalid value
of AdviserLastName because Professor Baker would no longer exist in the ADVISER table.
To prevent this problem, we can design the database so that a deletion of a row is not allowed
if other rows depend on it, or we can design it so that the dependent rows are deleted as well.
We are skipping way ahead here; however, we will discuss such issues in later chapters.

A Relational Design for Art Course Enrollments  To fix in your mind the ideas
we have been examining, consider the Art Course List in Figure 1-9, which is used by
an art school that offers art courses to the public. This list has modification problems.
For example, suppose we change the value of CourseDate in the first row. This change
might mean that the date for the course is changing, in which case the CourseDate values
should be changed in other rows as well. Alternatively, this change could mean that a new
Advanced Pastels (Adv Pastels) course is being offered. Either is a possibility.

As with the previous examples, we can remove the problems and ambiguities by
creating a separate table for each theme. However, in this case the themes are more dif-
ficult to determine. Clearly, one of the themes is customer and another one is art course.
However, a third theme exists that is more difficult to bring to light. The customer has paid
a certain amount toward a course. The amount paid is not a property of the customer be-
cause it varies depending on which course the customer is taking. For example, customer
Ariel Johnson paid $250 for the Advanced Pastels (Adv Pastels) course and $350 for the
Intermediate Pastels (Int Pastels) course. Similarly, the amount paid is not a property of
the course because it varies with which customer has taken the course. Therefore, the third
theme of this list must concern the enrollment of a particular student in a particular class.
Figure 1-10 shows a design using three tables that correspond to these three themes—we
name this set of three tables the Art Course Database.

Notice that the Art Course Database design assigns an ID column named
CustomerNumber that assigns a unique identifying number to each row of CUSTOMER;

How to enter the fee
for a new course?

Consequences of
changing this date?

Consequences of
deleting this row?

Figure 1-9

The Art Course List with Modification Problems

10   Part 1   Database Fundamentals

this is necessary because some customers might have the same name. Another ID column,
named CourseNumber, has also been added to COURSE. This is necessary because some
courses have the same name. Finally, notice that the rows of the ENROLLMENT table show
the amount paid by a particular customer for a particular course and that the ID columns
CustomerNumber and CourseNumber are used as linking columns to the other tables.

A Relational Design for Parts and Prices  Now let’s consider a more complicated
example. Figure 1-11 shows a spreadsheet that holds the Project Equipment List used by
a housing contractor named Carbon River Construction to keep track of the parts that it
buys for various construction projects.

The first problem with this list concerns modifications to the existing data. Suppose
your job is to maintain the Project Equipment List, and your boss tells you that cus-
tomer Elizabeth Barnaby changed her phone number. How many changes would you
need to make to this spreadsheet? For the data in Figure 1-11, you would need to make
this change 10 times. Now suppose the spreadsheet has 5,000 rows. How many changes
might you need to make? The answer could be dozens, and you need to worry not only
about the time this will take but also about the possibility of errors—you might miss her
name in a row or two and fail to properly update her phone number in these rows.

Consider a second problem with this list. In this business, each supplier agrees to a
particular discount for all parts it supplies. For example, in Figure 1-11 the supplier NW
Electric has agreed to a 25 percent discount. With this list, every time you enter a new
part quotation, you must enter the supplier of that part, along with the correct discount. If

Can change COURSE
CourseDate without
problems

Can insert new
COURSE data as
needed

Can delete
ENROLLMENT
rows as needed—
no adverse
consequences

Figure 1-10

The Art Course Database Tables

Chapter 1   Getting Started   11

dozens or hundreds of suppliers are used, there is a chance that you will sometimes enter
the wrong discount. If you do, the list will have more than one discount for one supplier—a
situation that is incorrect and confusing.

A third problem occurs when you enter data correctly but inconsistently. The first row
has a part named 200 Amp panel, whereas the 15th row has a part named Panel, 200 Amp.
Are these two parts the same item, or are they different? It turns out that they are the same
item, but they were named differently.

A fourth problem concerns partial data. Suppose you know that a supplier offers a 20
percent discount, but Carbon River has not yet ordered from the supplier. Where do you
record the 20 percent discount?

Just as we did for the previous examples, we can fix the Project Equipment List by
breaking it up into separate tables. Because this list is more complicated, we need to
use more tables. When we analyze the Project Equipment List, we find data about four
themes: projects, items, price quotations, and suppliers. Accordingly, we create a database
with four tables and relate those four tables using linking values, as before. Figure 1-12
shows our four tables and their relationships—we will name this set of tables the Project
Equipment Database.

In Figure 1-12, note that the QUOTE table holds a unique quote identifier (QuoteID),
a quantity, a unit price, an extended price (which is equal to [quantity * unit price]), and
three ID columns as linking values: ProjectID for PROJECT, ItemNumber for ITEM, and
SupplierID for SUPPLIER.

Now if Elizabeth Barnaby changes her phone number we need to make that change
only once—in the PROJECT table. Similarly, we need to record a supplier discount only
once—in the SUPPLIER table.

Processing Relational Tables
By now, you may have a burning question: It may be fine to tear the lists up into pieces in
order to eliminate processing problems, but what if the users want to view their data in
the format of the original list? With the data separated into different tables, the users will
have to jump from one table to another to find the information they want, and this jumping
around will become tedious.

Figure 1-11

The Project Equipment
List as a Spreadsheet

12   Part 1   Database Fundamentals

This is an important question and one that many people addressed in the 1970s and
1980s. Several approaches were invented for combining, querying, and processing sets of
tables. Over time, one of those approaches, a language called Structured Query Language
(SQL), emerged as the leading technique for data definition and manipulation. Today,
SQL is an international standard. Using SQL, you can reconstruct lists from their underly-
ing tables; you can query for specific data conditions; you can perform computations on
data in tables; and you can insert, update, and delete data.

Processing Tables by Using SQL  You will learn how to code SQL statements in
Chapter 3. However, to give you an idea of the structure of such statements, let’s look at an
SQL statement that joins the three tables in Figure 1-10 to produce the original Art Course
List. Do not worry about understanding the syntax of this statement, just realize that it
produces the result shown in Figure 1-13, which contains all the Art Course List data
(although in a slightly different row order2).

SELECT	 CUSTOMER.CustomerLastName,
	 CUSTOMER.CustomerFirstName, CUSTOMER.Phone,
	 COURSE.CourseDate, ENROLLMENT.AmountPaid,
	 COURSE.Course, COURSE.Fee

FROM	 CUSTOMER, ENROLLMENT, COURSE

WHERE	 CUSTOMER.CustomerNumber = ENROLLMENT.CustomerNumber

AND	 COURSE.CourseNumber = ENROLLMENT.CourseNumber;

Figure 1-12

The Project Equipment Database Tables

2We will discuss how to sort data to control the row order in Chapter 3.

Chapter 1   Getting Started   13

As you will learn in Chapter 3, it is also possible to select rows, to order them,
and to make calculations on row data values. Figure 1-14 shows the result of the SQL
statement:

SELECT	 CUSTOMER.CustomerLastName,
	 CUSTOMER.CustomerFirstName, CUSTOMER.Phone,
	 COURSE.Course, COURSE.CourseDate, COURSE.Fee,
	 ENROLLMENT.AmountPaid,
	 (COURSE.Fee-ENROLLMENT.AmountPaid) AS AmountDue

FROM	 CUSTOMER, ENROLLMENT, CUSTOMER

WHERE	 CUSTOMER.CustomerNumber = ENROLLMENT.CustomerNumber

 AND	 COURSE.CourseNumber = ENROLLMENT.CourseNumber

 AND	 (COURSE.Fee - ENROLLMENT.AmountPaid) > 0

ORDER BY  CUSTOMER.CustomerLastName;

This SQL statement joins the Art Course Database tables together, computes the dif-
ference between the course Fee and the AmountPaid, and stores this result in a new
column named AmountDue. The SQL statement then selects only rows for which
AmountDue is greater than zero and presents the results sorted by CustomerLastName.
Compare the data in Figure 1-13 with the results in Figure 1-14 to ensure that the re-
sults are correct.

Figure 1-13

Results of the SQL Query to Recreate the Art Course List

Figure 1-14

Results of the SQL Query to Compute Amount Due

14   Part 1   Database Fundamentals

As shown in Figure 1-15, a database system has four components: users, the database ap-
plication, the database management system (DBMS), and the database.

Starting from the right of Figure 1-15, the database is a collection of related tables and
other structures. The database management system (DBMS) is a computer program used
to create, process, and administer the database. The DBMS receives requests encoded in
SQL and translates those requests into actions on the database. The DBMS is a large, com-
plicated program that is licensed from a software vendor; companies almost never write
their own DBMS programs.

A database application is a set of one or more computer programs that serves as an
intermediary between the user and the DBMS. Application programs read or modify da-
tabase data by sending SQL statements to the DBMS. Application programs also present
data to users in the format of forms and reports. Application programs can be acquired
from software vendors, and they are also frequently written in-house. The knowledge you
gain from this text will help you write database applications.

Users, the fourth component of a database system, employ a database application
to keep track of things. They use forms to read, enter, and query data, and they pro-
duce reports.

Of these components, we will consider the database, the DBMS, and database applica-
tions in more detail.

The Database
In the most general case, a database is defined as a self-describing collection of related
records. For all relational databases (the majority of databases today and the primary type
considered in this book), this definition can be modified to indicate that a database is a self-
describing collection of related tables.

The two key terms in this definition are self-describing and related tables. You al-
ready have a good idea of what we mean by related tables. One example of related tables
consists of the ADVISER and STUDENT tables, which are related by the common
column AdviserName. We will build on this idea of relationships further in the next
chapter.

Self-describing means that a description of the structure of the database is contained
within the database itself. Because this is so, the contents of a database can always be deter-
mined just by looking inside the database itself. It is not necessary to look anywhere else.
This situation is akin to that at a library, where you can tell what is in the library by examin-
ing the catalog that resides within the library.

Data about the structure of a database are called metadata. Examples of metadata are
the names of tables, the names of columns and the tables to which they belong, properties
of tables and columns, and so forth.

All DBMS products provide a set of tools for displaying the structure of their da-
tabases. For example, Figure 1-16 shows a diagram produced by Microsoft Access that

Database
application

Database
management

system
(DBMS)

Database

Users

Figure 1-15

Components of a
Database System

What Is a Database System?

Chapter 1   Getting Started   15

displays the relationships between the Art Course database tables shown in Figure 1-10.
Other tools describe the structure of the tables and other components.

The contents of a database are illustrated in Figure 1-17. A database has user data and
metadata, as just described. A database also has indexes and other structures that exist
to improve database performance, and we will discuss such structures in later chapters.
Finally, some databases contain application metadata; these are data that describe applica-
tion elements, such as forms and reports. For example, Microsoft Access carries applica-
tion metadata as part of its databases.

The DBMS
The purpose of a DBMS is to create, process, and administer databases. A DBMS is a large,
complicated product that is almost always licensed from a software vendor. One DBMS
product is Microsoft Access. Other commercial DBMS products are:

•	Microsoft SQL Server
•	Oracle Corporation’s MySQL
•	Oracle Corporation’s Oracle Database
•	IBM’s DB2

Dozens of other DBMS products exist, but these five have the lion’s share of the market.
Figure 1-18 lists the functions of a DBMS. A DBMS is used to create a database and

to create tables and other supporting structures inside that database. As an example of the
latter, suppose that we have an EMPLOYEE table with 10,000 rows and that this table
includes a column, DepartmentName, that records the name of the department in which
an employee works. Furthermore, suppose that we frequently need to access employee
data by DepartmentName. Because this is a large database, searching through the table
to find, for example, all employees in the accounting department would take a long time.

• User data

• Metadata

• Indexes and other
 overhead data

• Application metadata

Figure 1-17

Database Contents

Figure 1-16

Example Metadata: A
Relationship Diagram
for the Art Course
Tables in Figure 1-10

16   Part 1   Database Fundamentals

To improve performance, we can create an index (akin to the index at the back of a book)
for DepartmentName to show which employees are in which departments. Such an index
is an example of a supporting structure that is created and maintained by a DBMS.

The next two functions of a DBMS are to read and modify database data. To do this,
a DBMS receives SQL and other requests and transforms those requests into actions on
the database files. Another DBMS function is to maintain all the database structures. For
example, from time to time it might be necessary to change the format of a table or another
supporting structure. Developers use a DBMS to make such changes.

With most DBMS products, it is possible to declare rules about data values and
have a DBMS enforce them. For example, in the Art Course database tables in Figure
1-10, what would happen if a user mistakenly entered a value of 9 for CustomerID in
the ENROLLMENT table? No such customer exists, so such a value would cause nu-
merous errors. To prevent this situation, it is possible to tell the DBMS that any value
of CustomerID in the ENROLLMENT table must already be a value of CustomerID in
the CUSTOMER table. If no such value exists, the insert or update request should be
disallowed. The DBMS then enforces these rules, which are called referential integrity
constraints.

The last three functions of a DBMS listed in Figure 1-18 have to do with database
administration. A DBMS controls concurrency by ensuring that one user’s work does not
inappropriately interfere with another user’s work. This important (and complicated) func-
tion is discussed in Chapter 6. Also, a DBMS contains a security system that is used to en-
sure that only authorized users perform authorized actions on the database. For example,
users can be prevented from seeing certain data. Similarly, users’ actions can be confined to
making only certain types of data changes on specified data.

Finally, a DBMS provides facilities for backing up database data and recovering it from
backups when necessary. The database, as a centralized repository of data, is a valuable or-
ganizational asset. Consider, for example, the value of a book database to a company such
as Amazon.com. Because the database is so important, steps need to be taken to ensure
that no data will be lost in the event of errors, hardware or software problems, or natural or
human catastrophes.

Application Programs  Figure 1-19 lists the functions of database application pro-
grams. First, an application program creates and processes forms. Figure 1-20 shows a typi-
cal form for entering and processing customer data for the Art Course application.

Notice that this form hides the structure of the underlying tables from the user. By
comparing the tables and data in Figure 1-10 to the form in Figure 1-20, we can see that

• Create database
• Create tables
• Create supporting structures (e.g., indexes)
• Read database data
• Modify (insert, update, or delete) database data
• Maintain database structures
• Enforce rules
• Control concurrency
• Provide security
• Perform backup and recovery

Figure 1-18

Functions of a DBMS

• Create and process forms
• Process user queries
• Create and process reports
• Execute application logic
• Control application

Figure 1-19

Functions of Database
Application Programs

Chapter 1   Getting Started   17

data from the CUSTOMER table appear at the top of the form, whereas data from the
ENROLLMENT and the COURSE tables are combined and presented in a tabular section
labeled Course Enrollment Data.

The goal of this form, like that for all data entry forms, is to present the data in a for-
mat that is useful for the users, regardless of the underlying table structure. Behind the
form, the application processes the database in accordance with the users’ actions. The ap-
plication generates an SQL statement to insert, update, or delete data for any of the three
tables that underlie this form.

The second function of application programs is to process user queries. The applica-
tion program first generates a query request and sends it to the DBMS. Results are then
formatted and returned to the user. Figure 1-21 illustrates this process in a query of the Art
Course database in Figure 1-10.

In Figure 1-21(a), the application obtains the name or part of a name of a course.
Here the user has entered the characters pas. When the user clicks OK, the application
constructs an SQL query statement to search the database for any course containing these
characters. The result of this SQL query is shown in Figure 1-21(b). In this particular case,
the application queried for the relevant course and then joined the ENROLLMENT and
CUSTOMER data to the qualifying COURSE rows. Observe that the only rows shown are
those with a course name that includes the characters pas.

The third function of an application is to create and process reports. This function is
somewhat similar to the second because the application program first queries the DBMS
for data (again using SQL). The application then formats the query results as a report.
Figure 1-22 shows a report that displays all the Art Course database enrollment data in or-
der by course. Notice that the report, like the form in Figure 1-20, is structured according
to the users’ needs and not according to the underlying table structure.

Figure 1-20

Example Data Entry Form

18   Part 1   Database Fundamentals

In addition to generating forms, queries, and reports, the application program takes
other actions to update the database in accordance with application-specific logic. For
example, suppose a user using an order entry application requests 10 units of a particular
item. Suppose further that when the application program queries the database (via the
DBMS) it finds that only eight units are in stock. What should happen? It depends on the
logic of that particular application. Perhaps no units should be removed from inventory
and the user should be notified, or perhaps the eight units should be removed and two
more placed on back order. Perhaps some other action should be taken. Whatever the case,
it is the job of the application program to execute the appropriate logic.

Figure 1-21

Example Query

(a) Query Parameter Form

(b) Query Results

Figure 1-22

Example Report

Chapter 1   Getting Started   19

Finally, the last function of application programs listed in Figure 1-19 is to control
the application. This is done in two ways. First, the application needs to be written so that
only logical options are presented to the user. For example, the application may generate
a menu with user choices. In this case, the application needs to ensure that only appropri-
ate choices are available. Second, the application needs to control data activities with the
DBMS. The application might direct the DBMS, for example, to make a certain set of data
changes as a unit. The application might tell the DBMS to either make all these changes or
none of them. You will learn about such control topics in Chapter 6.

Personal Versus Enterprise-Class Database Systems
Database technology can be used in a wide array of applications. On one end of the
spectrum, a researcher might use database technology to track the results of experiments
performed in a lab. Such a database might include only a few tables, and each table would
have, at most, several hundred rows. The researcher would be the only user of this applica-
tion. This is a typical use of a personal database system.

At the other end of the spectrum, some enormous databases support international
organizations. Such databases have hundreds of tables with millions of rows of data and
support thousands of concurrent users. These databases are in use 24 hours a day, 7 days a
week. Just making a backup of such a database is a difficult task. These databases are typi-
cal uses of enterprise-class database systems.

Figure 1-23 shows the four components of a personal database application. As you can
see from this figure, Microsoft Access (or another personal DBMS product) takes on the
role of both the database application and the DBMS. Microsoft designed Microsoft Access
this way to make it easier for people to build personal database systems. Using Microsoft
Access, you can switch between DBMS functions and application functions and never
know the difference.

By designing Microsoft Access this way, Microsoft has hidden many aspects of database
processing. For example, behind the scenes Microsoft Access uses SQL just as all other rela-
tional DBMS products do. You have to look hard, however, to find it. Figure 1-24 shows the
SQL statement that Microsoft Access used for the query in Figure 1-13. As you examine this
figure, you might be thinking, “I’m just as glad they hid it—it looks complicated and hard.”
In fact, it looks harder than it is, but we will leave that topic for Chapter 3.

Figure 1-25 shows the Microsoft Access query results (the same results shown in
Figure 1-13) in Microsoft Access 2013. Microsoft Access 2013 is a commonly used personal
DBMS and is available as part of the Microsoft Office 2013 suite. We will introduce you
to Microsoft Access 2013 in this book using a section in each chapter called “The Access
Workbench.” By the time you have completed all the sections of “The Access Workbench,”
you will have a solid understanding of how to use Microsoft Access 2013 to create and use
databases.

The problem with database technology being hidden (and with using lots of wizards
to accomplish database design tasks) is that you do not understand what is being done on
your behalf. As soon as you need to perform some function that the Microsoft Access team

Database
application

Database
management

system
(DBMS)

Microsoft Access or
other personal DBMS

Database

User

Figure 1-23

Personal Database
System

20   Part 1   Database Fundamentals

did not anticipate, you are lost. Therefore, to be even an average database developer you
have to learn what is behind the scenes.

Furthermore, such products are useful only for personal database applications. When
you want to develop larger database systems, you need to learn all the hidden technology.
For example, Figure 1-26 shows an enterprise-class database system that has three differ-
ent applications, each of which has many users. The storage of the database itself is spread
over many different disks—perhaps even over different specialized computers known as
database servers.

The database name
Art-Course-Database

The table object
CUSTOMER is
displayed under the All
Access Objects

The query object
Art Course List stores
the query itself

The query results in
table format

Figure 1-25

Microsoft Access 2013

The SQL has
been arranged to
make it easy to read

Figure 1-24

SQL Generated by Microsoft Access Query

Chapter 1   Getting Started   21

Notice that in Figure 1-26 the applications are written in three different languages:
Java, C#, and a blend of HTML and ASP.NET. These applications call on an industrial-
strength DBMS product to manage the database. No wizards or simple design tools are
available to develop a system like this; instead, the developer writes program code using
standard tools, such as those in integrated development environments. To write such code,
you need to know SQL and other data access standards.

Although hidden technology and complexity are good in the beginning, business re-
quirements will soon take you to the brink of your knowledge, and then you will need to
know more. To be a part of a team that creates such a database application, you will need
to know everything in this book. Over time, you will need to learn more. We will close this
chapter with three examples of enterprise-class DBMS products.

Microsoft SQL Server 2014  Figure 1-27 shows the same SQL query used to pro-
duce the query results in Figure 1-13 and the associated query results when the SQL is
executed in the Microsoft SQL Server 2014 DBMS. We are actually running the query in
the Microsoft SQL Server 2014 Management Studio, which is the user client interface to
Microsoft SQL Server 2014.

Further, we are using the freely downloadable Microsoft SQL Server 2014 Express
Edition. This version is a great learning tool, and it can also be used for smaller databases.
For more information, see Appendix A, “Getting Started with Microsoft SQL Server 2014
Express Edition.”

Note that in Figure 1-27 we are using exactly the same SQL statement we used pre-
viously, but now you can see how it is entered into a text editor window in the Microsoft
SQL Server 2014 Management Studio and how the Execute button is used to execute
the SQL statement against the Art-Course-Database tables. You can also see how the
query results, which match those shown in Figure 1-13 but are sorted in a different
order, are displayed in a separate Results window. This illustrates the importance of
SQL—it is essentially the same in all DBMS products, and thus it is vendor and prod-
uct independent (although there are some differences in SQL syntax between various
DBMS products).

Oracle Database Express Edition 11g Release 2  Figure 1-28 shows the same
SQL query used to produce the query results in Figure 1-13 and the associated query
results when the SQL is executed in the Oracle Database Express Edition 11 Release 2

Database
application B

Database
application A

Database
management

system
(DBMS)

Database

Java code

C# code

Database
application C

HTML and ASP.NET

SQL Server (Microsoft)
Oracle Database (Oracle)
MySQL (Oracle)
Others

Figure 1-26

Enterprise-Class
Database System

22   Part 1   Database Fundamentals

DBMS. We are using Oracle SQL Developer as user client interface to Oracle Database
11g Release 2.

Oracle, like Microsoft with SQL Server 2014, makes an express edition of the DBMS
available for free download, and for Oracle this is the Oracle Database Express Edition
11g Release 2. Also like Microsoft SQL Server 2014 Express Edition, the Express Edition
version of Oracle Database is a great learning tool, and it can also be used for smaller da-
tabases. For more information, see Appendix B, “Getting Started with Oracle Database
Express Edition 11g Release 2.”

Note that in Figure 1-28 we are again using exactly the same SQL statement we used
previously, but now you can see how it is entered into a text editor window in Oracle SQL
Developer and how to click a button to run the SQL statement against the Art Course
Database tables (the COURSE, CUSTOMER, and ENROLLMENT table objects). You
can also see how the query results, which match those shown in Figure 1-13 but are sorted
in a different order, are displayed in a separate Query Result window.

Oracle MySQL 5.6 Community Server  Figure 1-29 shows the same SQL query
used to produce the query results in Figure 1-13 and the associated query results when
the SQL is executed in the Oracle MySQL 5.6 Community Server DBMS. We are again
actually running the query in the user client interface to MySQL 5.6, which is the MySQL
Workbench.

The MySQL 5.6 Community Server edition, like the Microsoft SQL Server 2014
Express Edition, can be downloaded for free. There is one significant difference between
these two products because the MySQL 5.6 Community Server edition is a standard,
full-strength edition of MySQL. However, if you want the full product support package,
you have to purchase MySQL 5.6 Enterprise Edition from Oracle. MySQL is a popular

Click this button to run
the SQL query

The database object
Art-Course-Database
is displayed in the
Object Explorer

The table object
CUSTOMER is
displayed under the
Art-Course-Database
object

The SQL query

The query results in
table format

Figure 1-27

Microsoft SQL Server 2014

Chapter 1   Getting Started   23

Click this button to run
the SQL query

The database object
Art-Course-Database
is displayed in the
Connections browser

The table object
CUSTOMER is
displayed in the
Tables objects

The SQL query

The query results in
table format

Figure 1-28

Oracle Database Express Edition 11g Release 2

Click this button to run
the SQL query

The database object
art_course_database
is displayed in the
Object Browser

The table object
CUSTOMER is
displayed under the
art-course-database
object

The SQL query

The query results in
table format

Figure 1-29

MySQL 5.6

24   Part 1   Database Fundamentals

Of these three enterprise-class DBMS products, Oracle Database, while
perhaps the most powerful DBMS product of the three, is the most difficult
to master. If you are studying Oracle Database in a class, your instructor
will know how to introduce Oracle Database topics to you to ease the learn-
ing process, as well as the appropriate order of topics to make sure you
learn the material in an orderly fashion. Oracle Database is widely used in
industry, and your efforts to learn about it will be a good investment.

However, if you are working through this book on your own, we believe
you will find is easier to start with Microsoft SQL Server 2014 (which is
the DBMS we use to illustrate most topics in the text) or Oracle MySQL 5.6
Community Server. Both of these products are relatively easy to download,
install, and start using. Both are also widely used and will be good invest-
ments of your time and energy.

BTW

open-source product and is widely used for Web database applications (see our discus-
sion of Web database applications in Chapter 7). This version is a great learning tool, and
more information can be found in Appendix C, “Getting Started with Oracle MySQL 5.6
Community Server Edition.”

Note that in Figure 1-29 we are again using exactly the same SQL statement we
used previously, but now you can see how it is entered into a text editor window in
the MySQL Workbench and which button to click to run the SQL query against the
art-course-database tables. You can also see how the query results, which match those
shown in Figure 1-13 but are sorted in a different order, are displayed in a separate
Results window.

The term NoSQL is a bit of a misnomer. It means, literally, a database that doesn’t use
SQL. What it really means, however, is a nonrelational database, regardless of what query
language is used.

The need for nonrelational databases arose out of the development of Web 2.03
applications, applications that allowed the user to create and store data that would be
subsequently displayed on a Web page. Facebook, Twitter, and Pinterest are all Web
2.0 applications. These applications required a database with different capabilities
(specifically the ability to quickly create and store massive amounts of data), and non-
relational databases were created to handle this data. For example, both Facebook and
Twitter use the Apache Software Foundation’s Cassandra database.

We will discuss NoSQL databases in Chapter 8 and in Appendix K, “Big Data.”
For now, simply understand that the components of a database system shown in Figure
1-15 apply regardless of whether the DBMS is working with relational or nonrelational
databases.

3See the Wikipedia article on Web 2.0.

What is a NoSQL Database?

Chapter 1   Getting Started   25

The Access Workbench
Section 1
Getting Started with Microsoft Access

“The Access Workbench” is designed to reinforce the concepts you learn in each chapter.
In addition, you will learn many Microsoft Access skills by following along on your com-
puter. In this chapter’s section of “The Access Workbench,” we will review some database
basics from Chapter 1 as we walk through the basic steps necessary to build and use
Microsoft Access database applications.

As discussed in this chapter, Microsoft Access is a personal database that combines
a DBMS with an application generator. The DBMS performs the standard DBMS func-
tions of database creation, processing, and administration, and the application genera-
tor adds the abilities to create and store forms, reports, queries, and other application-
related functions. In this section, we will work with only one table in a database; in
Chapter 2’s section of “The Access Workbench” you will expand this to include two or
more tables.

We will begin by creating a Microsoft Access database to store the database tables and
the application forms, reports, and queries. In this section, we will work with basic forms
and reports. Microsoft Access queries are discussed in Chapter 3’s section of “The Access
Workbench.”

The Wallingford Motors Customer Relations Management System

Our Microsoft Access database will be used by a car dealership named Wallingford Motors,
which is located in the Wallingford district of Seattle, Washington. Wallingford Motors is
the dealer for a new line of hybrid cars named Gaea.4 Instead of using only a gasoline or
diesel engine, hybrid cars are powered by a combination of energy sources, such as gasoline
and electricity. Gaea produces the following four models:

1.	 SUHi	 The sport-utility hybrid (Gaea’s answer to the SUV)
2.	 HiLuxury	 A luxury-class four-door sedan hybrid
3.	 HiStandard	 A basic four-door sedan hybrid
4.	 HiElectra	 A variant of the HiStandard that uses a higher proportion of electrical power

Interest in hybrid cars—and specifically in the Gaea product line—is increasing. The
sales staff at Wallingford Motors needs a way to track its customer contacts. Therefore, our
database application will be a simple example of what is known as a customer relation-
ship management (CRM) system. A CRM is used by sales staff to track current, past, and
potential customers as well as the sales staff’s contacts with these customers (among other
uses). We will start out with a personal CRM used by one salesperson and expand it into a
companywide CRM in later sections.5

Creating a Microsoft Access Database

We will name our Microsoft Access application and its associated database WMCRM. Our
first step is to create a new Microsoft Access database.

4Gaea, or Gaia, was the Greek goddess of the Earth.
5Many CRM applications are available in the marketplace. In fact, Microsoft has one: Microsoft
Dynamics CRM.

(Continued)

26   Part 1   Database Fundamentals

Creating the Microsoft Access Database WMCRM

1.	 Click Access tile on the Windows 8.1 Start screen as shown in Figure AW-1-1.
■■ Note:  The same command works for Windows 8. For Windows 7, select Start | All

Programs | Microsoft Office | Microsoft Access 2013.
■■ Note:  We recommend that you pin a Microsoft Access 2013 button to the Windows

Desktop Taskbar for ease of use. To do this, right-click the Microsoft Access 2013
tile on the Start screen to open a shortcut menu, and then click the Pin to Taskbar
command.

■■ Note:  The menu commands, icon locations, and file locations used in “The
Access Workbench” are those found when using Microsoft Access 2013 in the
Microsoft Windows 8.1 operating system. If you are using the Microsoft
Windows 7 or Microsoft Windows 8 operating systems, the exact operating
system terminology may vary somewhat, but these variations will not change the
required actions.

■■ Note:  Microsoft Access 2013 is used in these sections, and the wording of the
steps and appearance of the screenshots reflect its use. If you have a different ver-
sion of Microsoft Access, there will be some differences in the step details and in
what you see onscreen. However, the basic functionality is the same, and you can
complete “The Access Workbench” operations using any version of Microsoft
Access.

2.	 The Microsoft Access 2013 Splash Screen appears, as shown in Figure AW-1-2. This
screen displays the names of database files that have been recently used, an Open Other
Files command, and template buttons for various types of databases and database
applications.

3.	 Click the Blank desktop database template button to open the Blank desktop database dia-
log box as shown in Figure AW-1-3.

■■ Note:  By default, in Windows 8.1 the database will be created in the Documents
folder on This PC. Note that this is a major difference and is new to Windows 8.1. In
Windows 8 and Windows 7, the database will be created in the My Documents folder
in the Documents library folder. The Documents library folder contains both a My
Documents folder and a Public Documents folder.

Right-click the
Microsoft Access
2013 tile, and then
click Pin to
Taskbar to place
the Microsoft
Access 2013
button on the
Desktop Toolbar

The Microsoft
Access 2013 tile
on the Windows
8.1 Start screen—
click this tile to
start Microsoft
Access 2013

Figure AW-1-1

The Microsoft Access
2013 Tile

Chapter 1   Getting Started   27

The Recent list—
this is empty
because we
haven’t opened
any files

The Open Other
Files button

The Microsoft
Access 2013
button on the
Desktop Taskbar

The Blank
desktop
database
template button—
use this to create
a new database
on the computer
itself

Figure AW-1-2

The Microsoft Access 2013 Splash Screen

(Continued)

The Blank desktop
database dialog box

Type the database file
name WMCRM.accdb
here

The database will be
created in this file
location

The Open button—use
this button to browse
to a different file
location if needed

Click the Create button
after you have typed in
the database file name

Figure AW-1-3

The Blank Desktop Database Dialog Box

28   Part 1   Database Fundamentals

4.	 Type in the database name WMCRM.accdb in the File Name text box, and then click the
Create button.

■■ Note:  If you clicked the Open button to browse to a different file location, use
the File New Database dialog box to create the new database file. Once you have
browsed to the correct folder, type the database name in the File Name text box of
the File New Database dialog box, and then click the OK button to create the new
database.

5.	 The new database appears, as shown in Figure AW-1-4. The Microsoft Access window itself
is now named (in full—only part may be visible) WMCRM : Database – C:\Users\Auer\
Documents\WMCRM.accdb (Access 2007-2013 file format) – Access to include the data-
base name.

■■ Note:  The reference to Microsoft Access 2007-2013 in the window name indi-
cates that the database is stored as an *.accdb file, which is the Microsoft Access
database file format introduced with Microsoft Access 2007. Prior versions of
Microsoft Access used the *.mdb file format. Microsoft Access 2013 does not in-
troduce a new database file format but continues to use the Microsoft Access 2007
*.accdb file format.

6.	 Note that because this is a new database Microsoft Access has assumed that you will want
to immediately create a new table. Therefore, a new table named Table1 is displayed in
Datasheet view in the document window. We do not want this table open at this time, so
click the Close document button shown in Figure AW-1-4.

7.	 The Microsoft Access 2013 window with the new database appears, as shown in Figure
AW-1-5. You can see most of the features of the Microsoft Office Fluent user interface in
this window.

The database name
WMCRM: Database—
C:\Users\Auer\
Documents\WMCRM.
accdb (Access
2007–2013 file
format)–Access

The Document
Window using the
tabbed documents
interface

The object Navigation
Pane—adjust the right
boundary so that the
entire label All Access
Objects is displayed

The Close button

Figure AW-1-4

The New Microsoft Access Database

Chapter 1   Getting Started   29

The Microsoft Office Fluent User Interface

Microsoft Access 2013 uses the Microsoft Office Fluent user interface found in most (but
not all) of the Microsoft Office 2007 and Office 2013 applications. The major features of
the interface can be seen in Figure AW-1-5. To illustrate its use, we will modify some of the
default settings of the Microsoft Access database window.

The Quick Access Toolbar

First, we will modify the Quick Access Toolbar shown in Figure AW-1-5 to include a Quick
Print button and a Print Preview button.

Modifying the Microsoft Access Quick Access Toolbar

1.	 Click the Customize Quick Access Toolbar drop-down arrow button shown in Figure AW-1-5.
The Customize Quick Access Toolbar drop-down list appears, as shown in Figure AW-1-6.

2.	 Click Quick Print. The Quick Print button is added to the Quick Access Toolbar.
3.	 Click the Customize Quick Access Toolbar drop-down button. The Customize Quick

Access Toolbar drop-down list appears.
4.	 Click Print Preview. The Print Preview button is added to the Quick Access Toolbar.
5.	 The added buttons are visible in the figures shown later in this section of “The Access

Workbench,” such as Figure AW-1-7.

Database Objects and the Navigation Pane

Microsoft uses the term object as a general name for the various parts of a Microsoft Access
database. Thus, a table is an object, a report is an object, a form is an object, and so on.
Microsoft Access objects are displayed in the Microsoft Access Navigation Pane, as shown

The Quick Access
Toolbar

The File
command tab

The object
Navigation Pane

The Document
Window

The Close [Exit]
button

The Help button

The status bar

The Ribbon with
command tabs

Figure AW-1-5

The Microsoft Office Fluent User Interface

(Continued)

30   Part 1   Database Fundamentals

The Quick Access
Toolbar

The Customize
Quick Access
Toolbar drop-
down arrow button

The Customize
Quick Access
Toolbar drop-
down list—click
an item to add it to
the toolbar

Figure AW-1-6

The Quick Access Toolbar

The Quick Print
button

The Print Preview
button

The Navigation Pane
drop-down list button

The All Access
Objects drop-down
list

Figure AW-1-7

The Navigation Pane
Drop-Down List

in Figure AW-1-3. However, because you have not created any objects in the WMCRM
database, the Navigation Pane is currently empty.

The Navigation Pane is currently labeled as All Access Objects, which is what we want
to see displayed. We can, however, select exactly which objects will be displayed by using
the Navigation Pane drop-down list. As shown in Figure AW-1-7, the Navigation Pane
drop-down list is controlled by the Navigation Pane drop-down list button. Figure AW-1-6

Chapter 1   Getting Started   31

shows the empty Navigation Pane and the Shutter Bar Open/Close button. We can hide
the Navigation Pane if we want to by clicking the Shutter Bar Open/Close button, which is
displayed as a left-facing double-chevron button on the upper-right corner of the Navigation
Pane in Figure AW-1-8. If we click the button, the Navigation Pane shrinks to a small band
labeled Navigation Pane on the right side of the Microsoft Access 2013 window. The band
will then display the Shutter Bar Open/Close button as a right-facing double-chevron button
that we can click to restore the Navigation Pane when we want to use it again.

Closing a Database and Exiting Microsoft Access

The Close button shown in Figure AW-1-5 is actually a close and exit button. You can click
it to close the active database and then exit Microsoft Access. Note that Microsoft Access
actively saves most changes to a database, and it prompts you with Save command requests
when they are needed. For example, when you close a table with modified column widths
Microsoft Access asks if you want to save the changes in the table layout. Therefore, you do
not need to save Microsoft Access databases the way you save Microsoft Word documents
and Microsoft Excel workbooks. You can simply close a database, knowing that Microsoft
Access has already saved all critical changes since you opened it.

Closing a Database and Exiting Microsoft Access

1.	 Click the Close button. The database closes, and you exit Microsoft Access.

Use the Shutter Bar
Open/Close button to
hide or display the
Navigation Pane

The Navigation Pane
is empty because we
have not created any
objects for this
database

Figure AW-1-8

The Empty Navigation
Pane

Instead of clicking the Close button, you can simultaneously close the da-
tabase and exit Microsoft Access by clicking the File command tab, and
then clicking the Exit command. To close just the database while leaving
Microsoft Access open, select the File command tab, and then click the
Close Database command.

BTW

(Continued)

32   Part 1   Database Fundamentals

Opening an Existing Microsoft Access Database

Earlier in this section of “The Access Workbench” we created a new Microsoft Access data-
base for the Wallingford Motors CRM (WMCRM.accdb), modified some Microsoft Access
settings, and closed the database and exited Microsoft Access. Before we can continue build-
ing this database, we need to start Microsoft Access and open the WMCRM.accdb database.

When we open an existing database, Microsoft Access 2013 (like Microsoft Access
2007 and Microsoft Access 2010 before it) gives us the option of using Microsoft Access
security options to shut down certain Microsoft Access 2013 features in a database to pro-
tect ourselves against harm not only from viruses but also from other possible problems.
Unfortunately, the Microsoft Access 2013 security options also shut down significant and
needed operational features of Microsoft Access. Therefore, we will normally enable the
features that the Microsoft Access 2013 security warning warns us about when we open an
existing database.

Opening a Recently Opened Microsoft Access Database

1.	 Open Microsoft Access 2013 by clicking the Microsoft Access 2013 button on the
Windows Start screen (or on the Windows Taskbar if you pinned it there as suggested).
Microsoft Access 2013 is displayed with the splash screen open, as shown in Figure AW-1-9

2.	 The Recent list is displayed on the splash screen, and the database file WMCRM.accdb is
now listed there.

3.	 Note that if the database has been used very recently it will be available in the Recent file list.
You may make the file a permanent part of the Recent file list, by right-clicking the file name to
display a shortcut menu, and then clicking the Pin to list command. Similarly, you can remove a
file from the Recent list by using the Remove from list command on the shortcut menu.

4.	 Click the WMCRM.accdb file name in the Recent file list to open the database. A Security
Warning bar appears with the database, as shown in Figure AW-1-10.

The WMCRM.accdb
database in the
Recent list—click
the file name to open
the file. Right-clicking
the file name displays
a shortcut menu with
options to (1) remove
this file from the
Recent list and (2) pin
it to the list
permanently.

Figure AW-1-9

The Recent File List

Chapter 1   Getting Started   33

5.	 At this point, we have the option of clicking the Security Warning bar’s Click for more
details link, which will display a detailed version of the warning together with security op-
tions. However, for our purposes in this text, we simply need to enable the active content,
so click the Enable Content button.

■■ Note:  At some point, you should select the Click for more details link and explore
the available security settings.

■■ Note:  In Microsoft Access 2007, the Security Warning bar appeared every time the
database was reopened (although from a nontrusted location—see Chapter 6’s section
of “The Access Workbench” for a discussion of trusted locations). In Microsoft Access
2010 and Microsoft Access 2013, the Security Warning bar is only displayed the first
time you reopen a database, and your choice of options is remembered from that
point on.

Creating a Microsoft Access Database Table

At this point in the development of the WMCRM database application, the data-
base will be used by one salesperson, so we need only two tables in the WMCRM
database—CUSTOMER and CONTACT. We will create the CUSTOMER table first.
The CUSTOMER table will contain the columns and characteristics shown in the table in
Figure AW-1-11. The column characteristics are type, key, required, and remarks.

Type refers to the kind of data the column will store. Some possible Microsoft Access
data types are shown in Figure AW-1-12. For CUSTOMER, most data are stored as short
text data which can store up to 255 characters (also commonly called character data, this
data type was previously called just text—long text now refers to a data type previously
called memo, which can store up to 65,535 characters), which means we can enter strings
of letters, numbers, and symbols (a space is considered a symbol). The number behind
the word Text indicates how many characters can be stored in the column. For example,
customer last names may be up to 25 characters long. The only number, or numeric, data
column in the CUSTOMER table is CustomerID, which is listed as AutoNumber. This
indicates that Microsoft Access will automatically provide a sequential number for this col-
umn for each new customer that is added to the table.

Key refers to table identification functions assigned to a column. These are described
in detail in Chapter 2. At this point, you simply need to know that a primary key is a col-
umn value used to identify each row; therefore, the values in this column must be unique.

The Security
Warning bar

The Click for more
details link

Click the Enable
Content button

Figure AW-1-10

The Security Warning Bar

(Continued)

34   Part 1   Database Fundamentals

Figure AW-1-11

Database Column Characteristics for the CUSTOMER Table

Figure AW-1-12

Microsoft Access 2013 Data Types

Column Name Type Key Required Remarks
CustomerID AutoNumber Primary Key Yes Surrogate Key

LastName Text (25) No Yes

FirstName Text (25) No Yes

Address Text (35) No No

City Text (35) No No

State Text (2) No No

ZIP Text (10) No No

Phone Text (12) No Yes

Fax Text (12) No No

Email Text (100) No No

Name Type of Data Size
Short Text Characters and numbers Maximum 255 characters

Long Text Large text Maximum 65,535 characters

Number Numeric data Varies with Number type

Date/Time Dates and times from the year
100 to the year 9999

Stored as 8-byte double-precision integers

Currency Numbers with decimal places One to four decimal places

AutoNumber A unique sequential number Incremented by one each time

Yes/No Fields that can contain only
two values

Yes/No, On/Off, True/False, etc.

OLE Object An object embedded in or linked
to a Microsoft Access table

Maximum 1 GB

Hyperlink A hyperlink address Maximum 2,048 characters in each of three parts
of the hyperlink address

Attachment Any supported type of file may
be attached to a record

Independent of Microsoft Access

Calculated Results of a calculation based on
data in other cells

Varies depending on values used
in calculation

Lookup
Wizard . . .

A list of possible data values
located in a value list

Varies depending on the values in the
value list

Chapter 1   Getting Started   35

This is the reason for using the AutoNumber data type, which automatically assigns a
unique number to each row in the table as it is created.

Required refers to whether the column must have a data value. If it must, a value must
be present in the column. If not, the column may be blank. Note that because CustomerID
is a primary key used to identify each row it must have a value.

Remarks contains comments about the column or how it is used. For CUSTOMER,
the only comment is that CustomerID is a surrogate key. Surrogate keys are discussed in
Chapter 2. At this point, you simply need to know that surrogate keys are usually com-
puter-generated unique numbers used to identify rows in a table (that is, a primary key).
This is done by using the Microsoft Access AutoNumber data type.

Creating the CUSTOMER Table

1.	 Click the Create command tab to display the Create command groups.
2.	 Click the Table Design button, as shown in Figure AW-1-13.
3.	 The Table1 tabbed document window is displayed in Design view, as shown in

Figure AW-1-14. Note that along with the Table1 window a contextual tab grouping
named Table Tools is displayed and that this tab grouping adds a new command tab
named Design to the set of command tabs displayed.

■■ Note:  It seems like now would be a good time to name the new table CUSTOMER.
With Microsoft Access, however, you do not name a table until you save it the first
time, and you cannot save a table until you have at least one column defined. So, we
will define the columns, and then we will save and name the table. If you want, save
the table after you have defined just one column. This will close the table, so you will
have to reopen it to define the remaining columns.

4.	 In the Field Name column text box of the first line, type the column name CustomerID
and then press the Tab key to move to the Data Type column. (You can also click the Data
Type column to select it.)

■■ Note:  The terms column and field are considered synonyms in database work. The
term attribute is also considered to be equivalent to these two words.

5.	 Select the AutoNumber data type for CustomerID from the Data Type drop-down list, as
shown in Figure AW-1-15.

6.	 If you like, an optional comment may be stored in the Description column. To do so, move
to the Description column by pressing the Tab key or clicking in the Description text box.

The Create tab

The Table Design
button

When the mouse is
held over the Table
Design button, a tool
tip for the button that
shows that a new table
object will be created
will be displayed below
the button.

Figure AW-1-13

The Table Design Button

(Continued)

36   Part 1   Database Fundamentals

The TABLE TOOLS
contextual command
tab is displayed along
with the set of
command tabs that
comprise Table Tools

The DESIGN command
tab and its command
groups are displayed

The Table1 tabbed
document window
in Design view

Figure AW-1-14

The Table1 Tabbed Document Window

The Data Type drop-
down list arrow button

Select AutoNumber

The Data Type drop-
down list

Figure AW-1-15

Selecting the Data Type

Chapter 1   Getting Started   37

The completed
CustomerID column
definition

Figure AW-1-16

The Completed CustomerID Column

(Continued)

Type the text Surrogate key for CUSTOMER and then press the Tab key to move to the
next row. The Table1 tabbed document window now looks as shown in Figure AW-1-16.

■■ Note:  The Remarks column in the set of database column characteristics shown
in Figure AW-1-11 is not the same as the table Description column shown in
Figure AW-1-16. Be careful not to confuse them. The Remarks column is used to
record technical data, such as facts about table keys and data default values that
are necessary for building the table structure. The Description column is used to
describe to the user the data stored in that field so that the user understands the
field’s intended use.

7.	 The other columns of the CUSTOMER table are created using the sequence described in
steps 4 through 6—at this point you should add each of the remaining columns shown in
Figure AW-1-9 to the CUSTOMER table while following those steps.

■■ Note:  See Figure AW-1-19 for the Description entries.
8.	 To set the number of characters in text columns, edit the Data Type Field Size property text

box, as shown in Figure AW-1-17. The default value for Field Size is 255, which is also the
maximum value for a text field.

9.	 To make a column required, click anywhere in the column Data Type Required property
text box to display the Required property drop-down list arrow button, then click the but-
ton to display the Required property drop-down list, as shown in Figure AW-1-18, and then
select Yes from the Required property drop-down list. The default is No (not required), and
Yes must be selected to make the column required.6

6Microsoft Access has an additional Data Type property named Allow Zero Length. This property con-
founds the settings necessary to truly match the SQL constraint NOT NULL discussed in Chapter 3.
However, the discussion of Allow Zero Length is beyond the scope of this book. See the Microsoft Access
Help system for more information.

38   Part 1   Database Fundamentals

Edit this number
to set the number
of characters

Figure AW-1-17

Editing the Text Field Size

Click anywhere in the
Required text box to
display the arrow the
Required property
drop-down list arrow
button

Select Yes from the
Required property
drop-down list

Figure AW-1-18

Setting the Column Required Property Value

Chapter 1   Getting Started   39

Now we need to set a primary key for the CUSTOMER table. According to Figure
AW-1-11, we need to use the CustomerID column as the primary key for this table.

Setting the CUSTOMER Table Primary Key

1.	 Move the mouse pointer to the row selector column of the row containing the CustomerID
properties, as shown in Figure AW-1-19. Click to select the row.

2.	 Click the Primary Key button in the Tools group of the Design tab, as shown in
Figure AW-1-20. CustomerID is selected as the primary key for the CUSTOMER table.

We have finished building the CUSTOMER table. Now we need to name, save, and
close the table.

Naming, Saving, and Closing the CUSTOMER Table

1.	 To name and save the CUSTOMER table, click the Save button in the Quick Access
Toolbar. The Save As dialog box appears, as shown in Figure AW-1-21.

2.	 Type the table name CUSTOMER into the Save As dialog box’s Table Name text box and
then click OK. The table is named and saved. The table name CUSTOMER now appears
on the document tab, and the CUSTOMER table object is displayed in the Navigation
Pane, as shown in Figure AW-1-22.

3.	 To close the CUSTOMER table, click the Close button in the upper-right corner of the
tabbed documents window, as shown in Figure AW-1-22. After the table is closed, the
CUSTOMER table object remains displayed in the Navigation Pane, as shown in
Figure AW-1-23.

The row selector
column—move the
mouse pointer into this
column to select a
specific row

Move the mouse
pointer here and click
to select the
CustomerID row

Figure AW-1-19

Selecting the CustomerID Row

(Continued)

40   Part 1   Database Fundamentals

Click the Primary Key
button in the Tools
group of the Design
tab to set CustomerID
as the primary key

A key symbol here
indicates that
CustomerID is the
primary key of the
table

Figure AW-1-20

Setting the Primary Key

Click the Save button
in the Quick Access
Toolbar to display the
Save As dialog box

Type the table name
CUSTOMER in the
Table Name text box

The OK button

Figure AW-1-21

Naming and Saving the
CUSTOMER table

Inserting Data into Tables: The Datasheet View

There are three commonly used methods for adding data to a table. First, we can use a ta-
ble as a datasheet, which is visually similar to and works like a Microsoft Excel worksheet.
When we do this, the table is in Datasheet view, and we enter the data cell by cell. Second,
we can build a data entry form for the table and then use the form to add data. Third, we
can use SQL to insert data. This section covers the first two of these methods; we will use
the SQL method in Chapter 3’s section of “The Access Workbench.”

In Microsoft Access 2013, we can also use Datasheet view to create and modify table
characteristics. When we open a table in Datasheet view, the Table Tools contextual tab
includes a Datasheet command tab and ribbon with tools to do this. We do not recommend
this; it is better to use Design view, as previously discussed in this section, for creating and
modifying table structures.

Chapter 1   Getting Started   41

However, at this point we do not need to modify the table structure—we simply
need to put some data into the CUSTOMER table. Figure AW-1-24 shows some data for
Wallingford Motors customers.

Adding Data to the CUSTOMER Table in Datasheet View

1.	 In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER
table window appears in a tabbed document window in Datasheet view, as shown in

The table object
CUSTOMER is
displayed in the
Navigation Pane

The table is now
named CUSTOMER,
and the table name
now appears on the
document tab

Click the Close
button to close the
CUSTOMER table

Figure AW-1-22

The Named CUSTOMER Table

The table object
CUSTOMER is
displayed in the
Navigation Pane

Figure AW-1-23

The CUSTOMER Table Object

(Continued)

42   Part 1   Database Fundamentals

Figure AW-1-25. Note that some columns on the right side of the datasheet do not appear
in the window, but you can access them by scrolling or minimizing the Navigation Pane.

■■ Note:  As in a worksheet, the intersection of a row and column in a datasheet is
called a cell.

2.	 Click the Shutter Bar Open/Close button to collapse the Navigation Pane. This makes
more of the CUSTOMER datasheet visible, as shown in Figure AW-1-26.

Figure AW-1-24

CUSTOMER Data

The TABLE TOOLS tab

The Shutter Bar
Open/Close button

If you need to switch
between Datasheet
view and Design view
use the Design View
button

The CUSTOMER
tabbed document
window with the table
in Datasheet view

Figure AW-1-25

The CUSTOMER Table in Datasheet View

LastName FirstName Address City State Zip
Griffey Ben 5678 25th NE Seattle WA 98178

Christman Jessica 3456 36th SW Seattle WA 98189

Christman Rob 4567 47th NW Seattle WA 98167

Hayes Judy 234 Highland Place Edmonds WA 98210

LastName FirstName Phone Fax Email
Griffey Ben 206-456-2345 Ben.Griffey@somewhere.com

Christman Jessica 206-467-3456 Jessica.Christman@somewhere.com

Christman Rob 206-478-4567 206-478-9998 Rob.Christman@somewhere.com

Hayes Judy 425-354-8765 Judy.Hayes@somewhere.com

Chapter 1   Getting Started   43

3.	 Click the CUSTOMER document tab to select the CUSTOMER table in Datasheet view.
4.	 Click the cell in the CustomerID column with the phrase (New) in it to select that cell in

the new row of the CUSTOMER datasheet.
5.	 Press the Tab key to move to the LastName cell in the new row of the CUSTOMER data-

sheet. For customer Ben Griffey, type Griffey in the LastName cell. Note that as soon as
you do this the AutoNumber function puts the number 1 in the CustomerID cell and a new
row is added to the datasheet, as shown in Figure AW-1-27.

The Shutter Bar
Open/Close button

The collapsed
Navigation Pane

The CUSTOMER
tabbed document
window with the table
in Datasheet view

Figure AW-1-26

The Collapsed Navigation Pane

A new, blank row
is added to the
datasheet

This row has been
autonumbered as
CustomerID 1

Figure AW-1-27

Entering Data Values for Ben Griffey

(Continued)

44   Part 1   Database Fundamentals

6.	 Using the Tab key to move from one column to another in the CUSTOMER datasheet,
enter the rest of the data values for Ben Griffey.

7.	 The final result is shown in Figure AW-1-28. Note that the width of the Email column
was expanded using the mouse to move the border of the column—just as you would in a
Microsoft Excel worksheet.

■■ Note:  If you make a mistake and need to return to a cell, click the cell to select it
and Microsoft Access will automatically shift into Edit mode. Alternatively, you can
use Shift-Tab to move to the right in the datasheet and then press F2 to edit the con-
tents of the cell.

■■ Note:  Remember that LastName, FirstName, and Phone require a data value. You
will not be able to move to another row or close the table window until you have a
value in each of these cells.

■■ Note:  Figure AW-1-28 shows a column labeled Click to Add to the right of the
Email column. This is a table tool in Datasheet view that you can use to create or
modify table structures. We do not recommend using these tools—we prefer to use
Design view instead!

8.	 Use the Tab key to move to the next row of the CUSTOMER datasheet and enter the data
for Jessica Christman, as shown in Figure AW-1-29.

Column widths can
be adjusted by using
the mouse to drag the
column border to the
desired width

Figure AW-1-28

The Completed Row of Data Values

Many column widths
had to be adjusted
to get all the data
to show in one
window—use the
mouse to drag the
column borders to the
desired widths

Click the Close
button to close the
CUSTOMER datasheet

Figure AW-1-29

The Completed CUSTOMER Datasheet

Chapter 1   Getting Started   45

  9.	 Adjust the datasheet column widths so that you can see the contents of the datasheet in
one screen. The final result is shown in Figure AW-1-29.

10.	 We are adding only the data for Jessica Christman at this point, and we will add the re-
maining CUSTOMER data later in this section of “The Access Workbench.” Click the
Close button in the upper-right corner of the document window to close the CUSTOMER
datasheet. A dialog box appears that asks if you want to save the changes you made to the
layout (column widths). Click the Yes button.

11.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane. This makes the
objects in the Navigation Pane visible.

Modifying Data in Tables: The Datasheet View

After entering data into a table, you can modify or change the data by editing the data val-
ues in the Datasheet view. To illustrate this, we will temporarily change Jessica Christman’s
phone number to 206-467-9876.

Modifying Data in the CUSTOMER Table in Datasheet View

1.	 In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER
table window appears in a tabbed document window in Datasheet view.

2.	 Click the Shutter Bar Open/Close button to collapse the Navigation Pane.
3.	 Click the cell that contains Jessica Christman’s phone number to select it. Microsoft Access

automatically puts the cell into Edit mode.
■■ Note:  If you instead use the Tab key (or Shift-Tab to move to the left in the data-

sheet) to select the cell, press the F2 key to edit the contents of the cell.
4.	 Change the phone number to 206-467-9876.

■■ Note:  Remember that Phone has a field size of 12 characters. You have to delete
characters before you can enter new ones.

5.	 Press the Enter key or otherwise move to another cell to complete the edit. The
CUSTOMER datasheet appears as shown in Figure AW-1-30.

6.	 Because we really do not want to change Jessica Christman’s phone number, edit the Phone
value back to its original value of 206-467-3456. Complete the edit and click the Save but-
ton on the Quick Access Toolbar to save the changes.

7.	 Click the Close button in the upper-right corner of the document window to close the
CUSTOMER datasheet.

8.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.

The phone number
has been modified

Figure AW-1-30

The Modified CUSTOMER Datasheet

(Continued)

46   Part 1   Database Fundamentals

Deleting Rows in Tables: The Datasheet View

After the data have been entered into a table, you can delete an entire row in Datasheet
view. To illustrate this, we will temporarily delete Jessica Christman’s data.

Deleting a Row in the CUSTOMER Table in Datasheet View

1.	 In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER
table window appears in a tabbed document window in Datasheet view.

2.	 Click the Shutter Bar Open/Close button to collapse the Navigation Pane.
3.	 Right-click the row selector cell on the left side of the CUSTOMER datasheet for the row

that contains Jessica Christman’s data. This selects the entire row and displays a shortcut
menu, as shown in Figure AW-1-31.

■■ Note:  The terms row and record are synonymous in database usage.
4.	 Click the Delete Record command in the shortcut menu. As shown in Figure AW-1-32, a

Microsoft Access dialog box appears, warning you that you are about to permanently delete
the record.

■■ Note:  As also shown in Figure AW-1-32, Microsoft Access 2013 with default set-
tings performs the visual trick of actually removing the row! However, the row is not
permanently deleted until you click the Yes button in the Microsoft Access dialog
box. If you click the No button, the row reappears.

Click a cell in this
column to select an
entire row—a left-click
will simply select the
row, while a right-click
will select the row and
display a shortcut
menu

The Delete Record
command in the
shortcut menu

Figure AW-1-31

Deleting a Row in the CUSTOMER Datasheet

The row with
Jessica Christman’s
data has already
been visually
removed!

Click the Yes button
to actually delete
the row

Figure AW-1-32

The Microsoft Access Deletion Warning Dialog Box

Chapter 1   Getting Started   47

5.	 Click the Yes button to complete the deletion of the row.
■■ Note:  Alternatively, you can delete the row by clicking the row selector cell and

then pressing the Delete key. The same Microsoft Access dialog box shown in Figure
AW-1-32 then appears.

6.	 Because we do not want to really lose Jessica Christman’s data at this point, add a new row
to the CUSTOMER datasheet that contains Jessica’s data. As shown in Figure AW-1-33, the
CustomerID number for Jessica Christman is now 3 instead of 2. In an autonumbered col-
umn, each number is used only once.

7.	 Click the Close button in the upper-right corner of the document window to close the
CUSTOMER datasheet.

8.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Inserting Data into Tables: Using a Form

Now, we will create and use a form to insert data into a table. A form provides a visual ref-
erence for entering data into the various data columns, and Microsoft Access has a form
generator as part of its application generator functions. We could build a form manually
in Form Design view, but instead we can take the easy route and use the Form Wizard,
which will take us through a step-by-step process to create the form we want.

Creating a Data Entry Form for the CUSTOMER Table

1.	 Click the Create command tab to display the Create command tab and its command
groups, as shown in Figure AW-1-34.

2.	 Click the Form Wizard button shown in Figure AW-1-34. The Form Wizard appears, as
shown in Figure AW-1-35.

3.	 The CUSTOMER table is already selected as the basis for the form, so we only have to se-
lect which columns we want to include on the form. We can choose columns one at a time
by highlighting a column name and clicking the right-facing single-chevron button. Or we
can choose all the columns at once by clicking the right-facing double-chevron button. We
want to add all the columns in this case, so click the right-facing double-chevron button to
add all the columns and then click the Next button.

■■ Note:  In a real-world situation, we might not want to display the CustomerID
value. In that case, we would deselect it by highlighting it and clicking the left-facing
single-chevron button.

The row with the
reentered Jessica
Christman data now
has a CustomerID
of 3—AutoNumber
numbers are
sequential and are
used only once!

Figure AW-1-33

The New CustomerID Number

(Continued)

48   Part 1   Database Fundamentals

4.	 When asked, “What layout would you like for your form?” click the Next button to select
the default Columnar layout.

5.	 When asked, “What title do you want for your form?” type the form title WMCRM
Customer Data Form into the text box and then click the Finish button. As shown
in Figure AW-1-36, the completed form appears in a tabbed document window and a
WMCRM Customer Data Form object is added to the Navigation Pane.

■■ Note:  The WMCRM Customer Data Form is properly constructed and sized for
our needs. Sometimes, however, we might need to make adjustments to the form de-
sign. We can make form design changes by switching to form Design view. To switch
to form Design view, click the Design View button in the View gallery.

Now that we have the form we need, we can use the form to add some data to the
CUSTOMER table.

The CREATE
command tab

The Forms
command group

The Form Wizard
button

Figure AW-1-34

The Create Command Tab and Form Wizard Button

The Next button

The right-facing
single chevron
button

Click the right-facing
double chevron
button to select all of
the fields in the table

The Form Wizard

The CUSTOMER
table is already
selected

Figure AW-1-35

The Form Wizard

Chapter 1   Getting Started   49

Inserting Data into the CUSTOMER Table Using a Form

1.	 Click the New Record button. A blank form appears.
2.	 Click the LastName text box to select it. Enter the data for Rob Christman shown in Figure

AW-1-24. You can either use the Tab key to move from text box to text box or you can click
the text box you want to edit.

3.	 When you are done entering the data for Rob Christman, enter the data for Judy Hayes
shown in Figure AW-1-24. After you have entered the data for Judy Hayes, your form will
look as shown in Figure AW-1-37.

4.	 Click the Close button in the upper-right corner of the document window to close the
WMCRM Customer Data Form.

Modifying Data and Deleting Records: Using a Form

Just as we can modify data and delete rows in Datasheet view, we can edit data and delete
records by using a form. Editing data is simple: Move to the record you want to edit by using
the record navigation buttons (First Record, Previous Record, etc.) shown in Figure AW-1-37,
click the appropriate field text box, and then edit the contents. Deleting a record is also simple:
Move to the record you want to edit by using the record navigation buttons and then click the
Delete Record button in the Delete drop-down list of the Records group of the Home command
tab, as shown in Figure AW-1-38. However, you will not use these capabilities at this time.

Creating Single-Table Microsoft Access Reports

One common function of an application is to generate printed reports. Microsoft Access
2013 has a report generator as part of its application generator functions. Just as with forms,
we could build a form manually, or we can take the easy route and use the Report Wizard.

The WMCRM
Customer Data
Form tabbed
document window

The Forms section
of the Navigation
Pane

The WMCRM
Customer Data
Form object

The New Record
button

Figure AW-1-36

The Completed WMCRM Customer Data Form

(Continued)

50   Part 1   Database Fundamentals

The WMCRM
Customer Data Form
with the data for
Judy Hayes

The Last Record
button

The Next Record
button

The Close button

The Previous Record
button

The First Record
button

Figure AW-1-37

The WMCRM Customer Data Form for Customer Judy Hayes

The HOME
command tab

The Delete Record
button

The Delete drop-down
list arrow button

The Records
command group

Figure AW-1-38

The Delete Record Button

Chapter 1   Getting Started   51

Creating a Report for the CUSTOMER Table

1.	 Click the Create command tab to display the Create command groups, as shown in
Figure AW-1-39.

2.	 Click the Report Wizard button shown in Figure AW-1-39. The Report Wizard appears, as
shown in Figure AW-1-40.

3.	 The CUSTOMER table is already selected as the basis for the report, so we only have to
select which columns we want on the form. Just as with the Form Wizard, we can choose
columns one at a time by highlighting the column name and clicking the right-facing
single-chevron button. We can also choose all the columns at once by clicking the right-
facing double-chevron button. In this case, we want to use only the columns LastName,
FirstName, Phone, Fax, and Email. Click each column name in the Available Fields list

The CUSTOMER
table is already
selected

The Next button

The Available
Fields list

Click the right-facing
single chevron
button to select the
highlighted field in the
table

The Report Wizard

Figure AW-1-40

The Report Wizard

(Continued)

The CREATE
command tab

The Reports
command group

The Report
Wizard button

Figure AW-1-39

The Create Command Tab and Report Wizard Button

52   Part 1   Database Fundamentals

to select it and then click the right-facing single-chevron button to move each column to
Selected Fields. The completed selection looks as shown in Figure AW-1-41.

■■ Note:  You can select only one column at a time. The usual technique of selecting
more than one column name at a time by pressing and holding the Ctrl key while
clicking each additional column name does not work in this case.

4.	 Click the Next button.
5.	 Microsoft Access now asks, “Do you want to add any grouping levels?” Grouping can be use-

ful in complex reports, but we do not need any groupings for this simple report that lists cus-
tomers. Instead, we can use the default nongrouped column listing, so click the Next button.

6.	 As shown in Figure AW-1-42, we are now asked, “What sort order do you want for your re-
cords?” The most useful sorting order in this case is by last name, with sorting by first name

The Next button

The Selected
Fields list

Figure AW-1-41

The Completed Column Selection

The Next button

The sort field 1 drop-
down list arrow button

Select LastName
from the drop-down
list

Figure AW-1-42

Choosing the Sort Order

Chapter 1   Getting Started   53

	 for identical last names. For both sorts, we want an ascending sort (from A to Z). Click the
sort field 1 drop-down list arrow and select LastName. Leave the sort order button set to
Ascending.

  7.	 Click the sort field 2 drop-down list arrow and select FirstName, leave the sort order but-
ton set to Ascending, and click the Next button.

  8.	 We are now asked, “How would you like to lay out your report?” We will use the default
setting of Tabular Layout, but click the Landscape Orientation radio button to change the
report orientation to landscape. Click the Next button.

  9.	 Finally, when we are asked, “What title do you want for your report?” we edit the re-
port title to read Wallingford Motors Customer Report. Leave the Preview the report
radio button selected. Click the Finish button. As shown in Figure AW-1-43, the com-
pleted report appears in a tabbed document window, a Reports section has been added
to the Navigation Pane, and the Wallingford Motors Customer Report object appears
in this section.

10.	 Click the Close button in the upper-right corner of the document window.

Closing a Database and Exiting Microsoft Access 2013

We have finished all the work we need to do in this chapter’s “The Access Workbench.”
We have learned how to create a database; how to build database tables, forms, and re-
ports; and how to populate a table with data by using Datasheet view and a form. We finish
by closing the database and Microsoft Access.

Closing the WMCRM Database and Exiting Microsoft Access 2013

1.	 To close WMCRM: Database and exit Microsoft Access 2013, click the Close button in the
upper-right corner of the Microsoft Access 2013 window.

The Wallingford
Motors Customer
Report print preview
window

The Reports section
of the Navigation Pane

The Wallingford
Motors Customer
Report object

The report is sorted
by LastName and then
FirstName

The Close button

Figure AW-1-43

The Finished Report

(Continued)

54   Part 1   Database Fundamentals

The importance of database processing increases every day because databases are used in
information systems everywhere—and increasingly so. The purpose of this book is to teach
you essential database concepts and to help you get started using and learning database
technology.

The purpose of a database is to help people keep track of things. Lists can be used for
this purpose, but if a list involves more than one theme modification problems will occur
when data are inserted, updated, or deleted.

Relational databases store data in the form of tables. Almost always, the tables are
designed so that each table stores data about a single theme. Lists that involve multiple
themes need to be broken up and stored in multiple tables, one for each theme. When this
is done, a column needs to be added to link the tables to each other so that the relationship
from a row in one table to a row in another table can be shown.

Structured Query Language (SQL) is an international language for processing tables in
relational databases. You can use SQL to join together and display data stored in separate
tables, create new tables, and query data from tables in many ways. You can also use SQL
to insert, update, and delete data.

The components of a database system are the database, the database management sys-
tem (DBMS), one or more database applications, and users. A database is a self-describing
collection of related records. A relational database is a self-describing collection of related
tables. A database is self-describing because it contains a description of its contents within
itself, which is known as metadata. Tables are related by storing linking values of a common
column. The contents of a database are user data; metadata; supporting structures, such as
indexes; and sometimes application metadata.

A database management system (DBMS) is a large, complicated program used to cre-
ate, process, and administer a database. DBMS products are almost always licensed from
software vendors. Specific functions of a DBMS are summarized in Figure 1-18.

The functions of database applications are to create and process forms, to process user
queries, and to create and process reports. Application programs also execute specific ap-
plication logic and control the application. Users provide data and data changes and read
data in forms, queries, and reports.

DBMS products for personal database systems provide functionality for appli-
cation development and database management. They hide considerable complex-
ity, but at a cost: Requirements unanticipated by DBMS features cannot be readily
implemented. Enterprise-class database systems include multiple applications that
might be written in multiple languages. These systems may support hundreds or thou-
sands of users.

An example of a personal database system is Microsoft Access 2013, which is dis-
cussed in this book in chapter sections titled “The Access Workbench.” These sections
cover all the basic knowledge that you need to create and use databases in Microsoft
Access 2013.

Examples of enterprise-class DBMS products include Microsoft SQL Server 2014,
Oracle MySQL 5.6, and Oracle Database Express Edition 11g Release 2. Information
about these DBMS products is provided in Appendix A, “Getting Started with Microsoft
SQL Server 2014 Express Edition”; Appendix B, “Getting Started with Oracle Database
Express Edition 11g Release 2”; and Appendix C, “Getting Started with Oracle MySQL
5.6 Community Server.”

NoSQL refers to nonrelational databases used in Web 2.0 applications such as
Facebook and Twitter. NoSQL databases are discussed in Chapter 8 and Appendix K,
“Big Data.”

Summary

Chapter 1   Getting Started   55

Key Terms
concurrency
database
database application
database management system

(DBMS)
delete
enterprise-class database system
ID column
insert
list
metadata
Microsoft SQL Server 2014
Microsoft SQL Server 2014 Express

Edition

Microsoft SQL Server 2014
Management Studio

modification action
modification problem
MySQL Workbench
nonrelational database
NoSQL
null value
Oracle Database Express

Edition 11g Release 2 Express
Edition

Oracle MySQL 5.6
Community Server

Oracle SQL Developer

personal database system
referential integrity

constraint
related tables
relational database
relational model
self-describing
Structured Query Language

(SQL)
table
update
user
Web 2.0

	  1.1	 Why is the study of database technology important?

	  1.2	 What is the purpose of this book?

	  1.3	 Describe the purpose of a database.

	  1.4	 What is a modification problem? What are the three possible types of modification
problems?

	  1.5	 Figure 1-30 shows a list that is used by a veterinary office. Describe three modifica-
tion problems that are likely to occur when using this list.

	  1.6	 Name the two themes in the list in Figure 1-30.

	  1.7	 What is an ID column?

	  1.8	 Break the list in Figure 1-30 into two tables, each with data for a single theme.
Assume that owners have a unique phone number but that pets have no unique col-
umn. Create an ID column for pets like the one created for customers and courses
for the Art Course database tables in Figure 1-10.

	  1.9	 Show how the tables you created for question 1.8 solve the problems you described
in question 1.5.

	1.10	 What does SQL stand for, and what purpose does it serve?

	1.11	 Another version of the list used by the veterinary office is shown in Figure 1-31.
How many themes does this list have? What are they?

Review Questions

Figure 1-30

The Veterinary Office List—Version One

56   Part 1   Database Fundamentals

	1.12	 Break the list in Figure 1-31 into tables, each with a single theme. Create ID col-
umns as you think necessary.

	1.13	 Show how the tables you created for question 1.12 solve the three problems of lists
identified in this chapter.

	1.14	 Describe in your own words and illustrate with tables how relationships are repre-
sented in a relational database.

	1.15	 Name the four components of a database system.

	1.16	 Define the term database.

	1.17	 Why do you think it is important for a database to be self-describing?

	1.18	 List the components of a database.

	1.19	 Define the term metadata, and give some examples of metadata.

	1.20	 Describe the use of an index.

	1.21	 Define the term application metadata, and give some examples of application metadata.

	1.22	 What is the purpose of a DBMS?

	1.23	 List the specific functions of a DBMS.

	1.24	 Define the term referential integrity constraint. Give an example of a referential
integrity constraint for the tables you created for question 1.8.

	1.25	 Explain the difference between a DBMS and a database.

	1.26	 List the functions of a database application.

	1.27	 Explain the differences between a personal database system and an enterprise-class
database system.

	1.28	 What is the advantage of hiding complexity from the user of a DBMS? What is the
disadvantage?

	1.29	 Summarize the differences between the database systems in Figure 1-23 and
Figure 1-26.

	1.30	 What is a NoSQL database? What are Web 2.0 applications, and why can’t these
applications use a relational database?

Exercises
The following spreadsheets form a set of named spreadsheets with the indicated column
headings. Use these spreadsheets to answer exercises 1.31 through 1.33.

A.	 Name of spreadsheet: EQUIPMENT
  Column headings:
  Number, Description, AcquisitionDate, AcquisitionPrice

B.	 Name of spreadsheet: COMPANY
  Column headings:
  Name, IndustryCode, Gross Sales, OfficerName, OfficerTitle

Figure 1-31

The Veterinary Office List—Version Two

Chapter 1   Getting Started   57

C.	 Name of spreadsheet: COMPANY
  Column headings:
  Name, IndustryCode, Gross Sales, NameOfPresident

D.	 Name of spreadsheet: COMPUTER
  Column headings:
  SerialNumber, Make, Model, DiskType, DiskCapacity

E.	 Name of spreadsheet: PERSON
  Column headings:
  Name, DateOfHire, DeptName, DeptManager, ProjectID, NumHours,
  ProjectManager

	1.31	 For each of the spreadsheets provided, indicate the number of themes you think
the spreadsheet includes and give an appropriate name for each theme. For some
of them, the answer may depend on the assumptions you make. In these cases, state
your assumptions.

	1.32	 For any spreadsheet that has more than one theme, show at least one modification
problem that will occur when inserting, updating, or deleting data.

	1.33	 For any spreadsheet that has more than one theme, break up the columns into ta-
bles such that each table has a single theme. Add ID columns if necessary, and add
a linking column (or columns) to maintain the relationship between the themes.

Access Workbench Key Terms
AutoNumber (data type)
character (data type)
customer relationship management

(CRM) system
data entry form
datasheet
Datasheet view
form
Form Wizard
key
long text (data type)
memo (data type)
Microsoft Office Fluent user interface
Navigation Pane
Navigation Pane drop-down list

Navigation Pane drop-down list
button

number (data type)
numeric (data type)
object
primary key
record navigation buttons
remarks
Report Wizard
required
short text (data type)
Shutter Bar Open/Close button
surrogate key
text (data type)
type

Access Workbench Exercises
The Wedgewood Pacific Corporation (WPC), founded in 1957 in Seattle, Washington,
has grown into an internationally recognized organization. The company is located
in two buildings. One building houses the Administration, Accounting, Finance, and
Human Resources departments, and the second houses the Production, Marketing,
and Information Systems departments. The company database contains data about

(Continued)

58   Part 1   Database Fundamentals

EMPLOYEE
Column Name type Key Required Remarks
EmployeeNumber AutoNumber Primary Key Yes Surrogate Key

FirstName Text (25) No Yes

LastName Text (25) No Yes

Department Text (35) No Yes

Phone Text (12) No No

Email Text (100) No Yes

Figure 1-32

Database Column Characteristics for the EMPLOYEE Table

Employee
Number

FirstName

LastName

Department

Phone

Email

[AutoNumber] Mary Jacobs Administration 360-285-8110 Mary.Jacobs@WPC.com

[AutoNumber] Rosalie Jackson Administration 360-285-8120 Rosalie.Jackson@WPC.com

[AutoNumber] Richard Bandalone Legal 360-285-8210 Richard.Bandalone@WPC.com

[AutoNumber] Tom Caruthers Accounting 360-285-8310 Tom.Caruthers@WPC.com

[AutoNumber] Heather Jones Accounting 360-285-8320 Heather.Jones@WPC.com

[AutoNumber] Mary Abernathy Finance 360-285-8410 Mary.Abernathy@WPC.com

[AutoNumber] George Smith Human Resources 360-285-8510 George.Smith@WPC.com

[AutoNumber] Tom Jackson Production 360-287-8610 Tom.Jackson@WPC.com

[AutoNumber] George Jones Production 360-287-8620 George.Jones@WPC.com

[AutoNumber] Ken Numoto Marketing 360-287-8710 Ken.Numoto@WPC.com

[AutoNumber] James Nestor InfoSystems James.Nestor@WPC.com

[AutoNumber] Rick Brown InfoSystems 360-287-8820 Rick.Brown@WPC.com

Figure 1-33

Wedgewood Pacific Corporation EMPLOYEE Data

employees; departments; projects; assets, such as computer equipment; and other as-
pects of company operations.

	 A.	 Create a Microsoft Access database named WPC in a Microsoft Access file named
WPC.accdb.

	 B.	 Figure 1-32 shows the column characteristics for the WPC EMPLOYEE table.
Using the column characteristics, create the EMPLOYEE table in the WPC
database.

	 C.	 Figure 1-33 shows the data for the WPC EMPLOYEE table. Using Datasheet
view, enter the data for the first three rows of data in the EMPLOYEE table
shown in Figure 1-33 into your EMPLOYEE table.

Chapter 1   Getting Started   59

San Juan Sailboat Charters (SJSBC) is an agency that leases (charters) sailboats. SJSBC
does not own the boats. Instead, SJSBC leases boats on behalf of boat owners who want
to earn income from their boats when they are not using the boats themselves, and SJSBC
charges the owners a fee for this service. SJSBC specializes in boats that can be used for
multiday or weekly charters. The smallest sailboat available is 28 feet in length, and the
largest is 51 feet in length.

Each sailboat is fully equipped at the time it is leased. Most of the equipment is pro-
vided at the time of the charter. The majority of the equipment is provided by the owners,
but some is provided by SJSBC. Some of the owner-provided equipment is attached to the
boat, such as radios, compasses, depth indicators and other instrumentation, stoves, and
refrigerators. Other owner-provided equipment is not physically attached to the boat, such
as sails, lines, anchors, dinghies, life preservers, and equipment in the cabin (dishes, silver-
ware, cooking utensils, bedding, and so on). SJSBC provides consumable supplies such as
charts, navigation books, tide and current tables, soap, dish towels, toilet paper, and similar
items. The consumable supplies are treated as equipment by SJSBC for tracking and ac-
counting purposes.

Keeping track of equipment is an important part of SJSBC’s responsibilities. Much
of the equipment is expensive, and those items not physically attached to the boat can be
easily damaged, lost, or stolen. SJSBC holds the customers responsible for all of the boat’s
equipment during the period of their charter.

SJSBC likes to keep accurate records of its customers and charters, and customers
are required to keep a log during each charter. Some itineraries and weather conditions
are more dangerous than others, and the data from these logs provides information about
the customer experience. This information is useful for marketing purposes, as well as for
evaluating a customer’s ability to handle a particular boat and itinerary.

Sailboats need maintenance (two definitions of boat are: (1) “break out another
thousand” and (2) “a hole in the water into which one pours money”). SJSBC is required
by its contracts with the boat owners to keep accurate records of all maintenance activi-
ties and costs.

A.	 Create a sample list of owners and boats. Your list will be similar in structure to that in
Figure 1-30, but it will concern owners and boats rather than owners and pets. Your
list should include, at a minimum, owner name, phone, and billing address, as well as
boat name, make, model, and length.

B.	 Describe modification problems that are likely to occur if SJSBC attempts to maintain
the list in a spreadsheet.

San Juan Sailboat Charters Case Questions

	 D.	 Create a data input form for the EMPLOYEE table and name it WPC Employee
Data Form. Make any adjustments necessary to the form so that all data display
properly. Use this form to enter the rest of the data in the EMPLOYEE table
shown in Figure 1-33 into your EMPLOYEE table.

	 E.	 Create a report named Wedgewood Pacific Corporation Employee Report that
presents the data contained in your EMPLOYEE table sorted first by employee
last name and second by employee first name. Make any adjustments necessary
to the report so that all headings and data display properly. Print a copy of this
report.

60   Part 1   Database Fundamentals

 Garden Glory Project Questions

Garden Glory is a partnership that provides gardening and yard maintenance services to
individuals and organizations. Garden Glory is owned by two partners. They employ two
office administrators and a number of full- and part-time gardeners. Garden Glory will
provide one-time garden services, but it specializes in ongoing service and maintenance.
Many of its customers have multiple buildings, apartments, and rental houses that require
gardening and lawn maintenance services.

A.	 Create a sample list of owners and properties. Your list will be similar in structure to
that in Figure 1-30, but it will concern owners and properties rather than owners and
pets. Your list should include, at a minimum, owner name, phone, and billing address,
as well as property name, type, and address.

B.	 Describe modification problems that are likely to occur if Garden Glory attempts to
maintain the list in a spreadsheet.

C.	 Split the list into tables such that each has only one theme. Create appropriate ID col-
umns. Use a linking column to represent the relationship between a property and an
owner. Demonstrate that the modification problems you identified in part B have been
eliminated.

D.	 Create a sample list of owners, properties, and services. Your list will be similar to that
in Figure 1-31. Your list should include the data items from part A as well as the date,
description, and amount charged for each service.

E.	 Illustrate modification problems that are likely to occur if Garden Glory attempts to
maintain the list from part D in a spreadsheet.

F.	 Split the list from part D into tables such that each has only one theme. Create appro-
priate ID columns. Use linking columns to represent relationships. Demonstrate that
the modification problems you identified in part E have been eliminated.

C.	 Split the list into tables such that each has only one theme. Create appropriate ID
columns. Use a linking column to represent the relationship between a boat and an
owner. Demonstrate that the modification problems you identified in part B have been
eliminated.

D.	 Create a sample list of owners, boats, and charters. Your list will be similar to that in
Figure 1-31. Your list should include the data items from part A as well as the charter
date, charter customer, and the amount charged for each charter.

E.	 Illustrate modification problems that are likely to occur if SJSBC attempts to maintain
the list from part D in a spreadsheet.

F.	 Split the list from part D into tables such that each has only one theme. Create appro-
priate ID columns. Use linking columns to represent relationships. Demonstrate that
the modification problems you identified in part E have been eliminated.

Chapter 1   Getting Started   61

 James River Jewelry Project Questions

The James River Jewelry project questions are available in online Appendix D, which can
be downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 The Queen Anne Curiosity Shop Project Questions

The Queen Anne Curiosity Shop sells both antiques and current-production household
items that complement or are useful with the antiques. For example, the store sells antique
dining room tables and new tablecloths. The antiques are purchased from both individuals
and wholesalers, and the new items are purchased from distributors. The store’s customers
include individuals, owners of bed-and-breakfast operations, and local interior designers
who work with both individuals and small businesses. The antiques are unique, although
some multiple items, such as dining room chairs, may be available as a set (sets are never
broken). The new items are not unique, and an item may be reordered if it is out of stock.
New items are also available in various sizes and colors (for example, a particular style of
tablecloth may be available in several sizes and in a variety of colors).

A.	 Create a sample list of purchased inventory items and vendors and a second list of
customers and sales. The first list should include inventory data, such as a description,
manufacturer and model (if available), item cost, and vendor identification and contact
data you think should be recorded. The second list should include customer data you
think would be important to The Queen Anne Curiosity Shop, along with typical sales
data.

B.	 Describe problems that are likely to occur when inserting, updating, and deleting data
in these spreadsheets.

C.	 Attempt to combine the two lists you created in part A into a single list. What prob-
lems occur as you try to do this?

D.	 Split the spreadsheets you created in part A into tables such that each has only one
theme. Create appropriate ID columns.

E.	 Explain how the tables in your answer to part D will eliminate the problems you identi-
fied in part B.

F.	 What is the relationship between the tables you created from the first spreadsheet and
the tables you created from the second spreadsheet? If your set of tables does not al-
ready contain this relationship, how will you add it into your set of tables?

www.pearsonhighered.com/kroenke

62

T his chapter explains the relational model, the
single most important standard in database pro-
cessing today. This model, which was developed

and published in 1970 by Edgar Frank Codd, commonly
referred to as E. F. Codd,1 then an employee at IBM, was
founded on the theory of relational algebra. The model has
since found widespread practical application, and today it is
used for the design and implementation of every commer-
cial relational database worldwide. This chapter describes
the conceptual foundation of this model.

1E. F. Codd, “A Relational Model of Data for Large Shared Databanks,”
Communications of the ACM (June 1970): 377–387. A downloadable copy of this
paper in PDF format is available at http://dl.acm.org/citation.cfm?id=362685

•	 Learn the conceptual foundation of
the relational model

•	 Understand how relations differ
from nonrelational tables

•	 Learn basic relational terminology

•	 Learn the meaning and importance
of keys, foreign keys, and related
terminology

•	 Understand how foreign keys represent
relationships

•	 Learn the purpose and use of
surrogate keys

•	 Learn the meaning of functional
dependencies

•	 Learn to apply a process for
normalizing relations

Chapter 2 The Relational Model

Chapter Objectives

http://dl.acm.org/citation.cfm?id=362685

Chapter 2   The Relational Model   63

Chapter 1 states that databases help people keep track of things and that relational DBMS
products store data in the form of tables. Here we need to clarify and refine those state-
ments. First, the formal name for a “thing” that is being tracked is entity, which is defined
as something of importance to the user that needs to be represented in the database.
Further, it is not entirely correct to say that DBMS products store data in tables. DBMS
products store data in the form of relations, which are a special type of table. Specifically, a
relation is a two-dimensional table consisting of rows and columns that has the following
characteristics:

  1.	 Each row of the table holds data that pertain to some entity or a portion of some entity.
  2.	 Each column of the table contains data that represent an attribute of the entity. For

example, in an EMPLOYEE relation each row would contain data about a particular
employee and each column would contain data that represented an attribute of that
employee, such as LastName, Phone, or EmailAddress.

  3.	 The cells of the table must hold a single value, and thus no repeating elements are allowed
in a cell.

  4.	 All the entries in any column must be of the same kind. For example, if the third column
in the first row of a table contains EmployeeNumber, then the third column in all other
rows must contain EmployeeNumber as well.

  5.	 Each column must have a unique name.
  6.	 The order of the columns within the table is unimportant.
  7.	 The order of the rows is unimportant.
  8.	 The set of data values in each row must be unique—no two rows in the table may hold

identical sets of data values.

The characteristics of a relation are summarized in Figure 2-1.

A Sample Relation and Two Nonrelations
Figure 2-2 shows a sample EMPLOYEE table. Consider this table in light of the charac-
teristics discussed earlier. First, each row is about an EMPLOYEE entity, and each column
represents an attribute of employees, so those two conditions are met. Each cell has only
one value, and all entries in a column are of the same kind. Column names are unique, and
we could change the order of either the columns or the rows and not lose any information.

Relations

1. Rows contain data about an entity
2. Columns contain data about attributes of the entity
3. Cells of the table hold a single value
4. All entries in a column are of the same kind
5. Each column has a unique name
6. The order of the columns is unimportant
7. The order of the rows is unimportant
8. No two rows may hold identical sets of data values

Figure 2-1

Characteristics
of a Relation

Figure 2-2

Sample EMPLOYEE
Relation

64   Part 1   Database Fundamentals

Finally, no two rows are identical—each row holds a different set of data values. Because
this table meets all requirements of the definition of relation, we can classify it as a relation.

Now consider the tables shown in Figures 2-3 and 2-4. Neither of these tables is a rela-
tion. The EMPLOYEE table in Figure 2-3 is not a relation because the Phone column has
cells with multiple entries. For example, Tom Caruthers has three values for phone, and
Richard Bandalone has two values. Multiple entries per cell are not permitted in a relation.

The table in Figure 2-4 is not a relation for two reasons. First, the order of the rows
is important. Because the row under Tom Caruthers contains his fax number, we may lose
track of the correspondence between his name and his fax number if we rearrange the
rows. The second reason this table is not a relation is that not all values in the Email col-
umn are of the same kind. Some of the values are email addresses, and others are types of
phone numbers.

Although each cell can have only one value, that value can vary in length. Figure 2-5
shows the table from Figure 2-2 with an additional variable-length Comment attribute.
Even though a comment can be lengthy and varies in length from row to row, there is still
only one comment per cell. Thus, the table in Figure 2-5 is a relation.

Figure 2-3

Nonrelational Table—
Multiple Entries per
Cell

Figure 2-4

Nonrelational Table—
Order of Rows Matters
and Kind of Column
Entries Differs in Email

Figure 2-5

Relation with Variable-
Length Column Values

Chapter 2   The Relational Model   65

A Note on Presenting Relation Structures
Throughout this book, when we write out the relation structure of a relation that we are
discussing, we use the following format:

RELATION_NAME (Column01, Column02, . . . , LastColumn)

The relation name is written first, and it is written in all capital (uppercase) letters (for exam-
ple, EMPLOYEE), and the name is singular, not plural (EMPLOYEE, not EMPLOYEES).
If the relation name is a combination of two or more words, we join the words with an un-
derscore (for example, EMPLOYEE_PROJECT_ASSIGNMENT). Column names are con-
tained in parentheses and are written with an initial capital letter followed by lowercase letters
(for example, Department). If the column name is a combination of two or more words, the
first letter of each word is capitalized (for example, EmployeeNumber and LastName). Thus,
the EMPLOYEE relation shown in Figure 2-2 would be written as:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

Table

File

Relation

Row

Record

Tuple

Column

Field

Attribute

Figure 2-6

Equivalent Sets
of Terms

Relation structures, such as the one shown earlier, are part of a database
schema. A database schema is the design on which a database and its as-
sociated applications are built.

BTW

A Note on Terminology
In the database world, people generally use the terms table and relation interchangeably.
Accordingly, from now on this book does the same. Thus, any time we use the term table
we mean a table that meets the characteristics required for a relation. Keep in mind, how-
ever, that, strictly speaking, some tables are not relations.

Sometimes, especially in traditional data processing, people use the term file instead of
table. When they do so, they use the term record for row and the term field for column. To
further confound the issue, database theoreticians sometimes use yet another set of terms:
Although they do call a table a relation, they call a row a tuple (rhymes with couple) and a
column an attribute. These three sets of terminology are summarized in Figure 2-6.

To make matters even more confusing, people often mix up these sets of terms. It is
not unusual to hear someone refer to a relation that has rows and fields. As long as you
know what is intended, this mixing of terms is not important.

We should discuss one other source of confusion. According to Figure 2-1, a table that
has duplicate rows is not a relation. However, in practice this condition is often ignored.
Particularly when manipulating relations with a DBMS, we may end up with a table that

66   Part 1   Database Fundamentals

has duplicate rows. To make that table a relation, we should eliminate the duplicates. On
a large table, however, checking for duplication can be time-consuming. Therefore, the
default behavior for DBMS products is not to check for duplicate rows. Hence, in practice,
tables might exist with duplicate (nonunique) rows that are still called relations. You will
see examples of this situation in the next chapter.

Composite keys, like one-column keys, can be unique or nonunique.

BTW

Candidate and Primary Keys
Candidate keys are keys that uniquely identify each row in a relation. Candidate keys can
be single-column keys, or they can be composite keys. The primary key is the candidate key
that is chosen as the key that the DBMS will use to uniquely identify each row in a relation.
For example, suppose that we have the following EMPLOYEE relation:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

The users tell us that EmployeeNumber is a unique key, that Email is a unique key, and that
the composite key (FirstName, LastName, DepartmentName) is a unique key. Therefore,
we have three candidate keys. When designing the database, we choose one of the candi-
date keys to be the primary key. In this case, for example, we use EmployeeNumber as the
primary key.

A key is one or more columns of a relation that is used to identify a row. A key can be unique
or nonunique. For example, for the EMPLOYEE relation in Figure 2-2 EmployeeNumber
is a unique key because a value of EmployeeNumber identifies a unique row. Thus, a query
to display all employees having an EmployeeNumber of 200 will produce a single row. In
contrast, Department is a nonunique key. It is a key because it is used to identify a row, but it
is nonunique because a value of Department potentially identifies more than one row. Thus, a
query to display all rows having a Department value of Accounting will produce several rows.

From the data in Figure 2-2, it appears that EmployeeNumber, LastName, and Email
are all unique identifiers. However, to decide whether this is true database developers
must do more than examine sample data. Instead, they must ask the users or other subject-
matter experts whether a certain column is unique. The column LastName is an example
where this is important. It might turn out that the sample data just happen to have unique
values for LastName. The users, however, might say that LastName is not always unique.

Composite Keys
A key that contains two or more attributes is called a composite key. For example, suppose
that we are looking for a unique key for the EMPLOYEE relation, and the users say that
although LastName is not unique, the combination of LastName and Department is unique.
Thus, for some reason the users know that two people with the same last name will never
work in the same department. Two Johnsons, for example, will never work in accounting. If
that is the case, then the combination (LastName, Department) is a unique composite key.

Alternatively, the users may know that the combination (LastName, Department) is
not unique but that the combination (FirstName, LastName, Department) is unique. The
latter combination, then, is a composite key with three attributes.

Types of Keys

Chapter 2   The Relational Model   67

The primary key is important not only because it can be used to identify unique rows,
but also because it can be used to represent rows in relationships. Although we did not indi-
cate it in the Art Course Database tables in Figure 1-10 in Chapter 1, CustomerID was the
primary key of CUSTOMER. As such, we used CustomerID to represent the relationship
between CUSTOMER and ENROLLMENT by placing CustomerID as a column in the
ENROLLMENT table to create the link between the two tables. In addition, many DBMS
products use values of the primary key to organize storage for the relation. They also build
indexes and other special structures for fast retrieval of rows using primary key values.

In this book, we indicate primary keys by underlining them. Because EmployeeNumber
is the primary key of EMPLOYEE, we write the EMPLOYEE relation as:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

Each DBMS program has its own way of creating and indicating a primary key. In Chapter
1’s section of “The Access Workbench,” we briefly discussed primary keys and explained
how to set a primary key in Microsoft Access 2013. Figure 2-7 shows the CUSTOMER table

Primary Key button

The key symbol
indicates which
column or columns
are being used as
the primary key

Figure 2-7

Defining a Primary Key in Microsoft Access 2013

It may help you to understand why the unique keys that could be used as
the main identifier for the relation are referred to as candidate keys if you
think of them as the “candidates” in the running to be elected “primary
key”—but remember that only one candidate will win the election. Any
“losing” candidate keys will still be present in the relation, and each will
be known as an alternate key.

BTW

68   Part 1   Database Fundamentals

from the Art Course database in Figure 1-10 in the Microsoft Access table Design view. In
table Design view, we can spot the primary key of the table by finding the key symbol next
to the names of the columns in the primary key. In this case, a key symbol is located next
to CustomerNumber, which means that the developer has defined CustomerNumber as the
primary key for this table.

Figure 2-8 shows the same CUSTOMER table in Microsoft SQL Server 2014
Express,2 as it appears in the Microsoft SQL Server Management Studio graphical utility
program. This display is more complex, but again we can spot the primary key of the table
by finding the key symbol next to the names of the columns in the primary key. Again,
there is a key symbol next to CustomerNumber, indicating that CustomerNumber is the
primary key for this table.

2Microsoft has released various versions of SQL Server, and the latest version is SQL Server 2014. SQL
Server 2014 Express is the least powerful version, but it is intended for general use and can be downloaded
for free from the Microsoft SQL Server 2014 Express homepage at www.microsoft.com/en-us/server-
cloud/products/sql-server/#fbid=LO4TSseuGs9. For more information, see online Appendix A, “Getting
Started with Microsoft SQL Server 2014 Express Edition.”

Primary Key button

The key symbol
indicates which
column or columns
are being used as
the primary key

The Identity Seed
setting

The Identity
Increment setting

The Is Identity setting

Figure 2-8

Defining a Primary Key in Microsoft SQL Server 2014

In Figure 2-8, the table names are often listed with dbo preceding the table
name, as in dbo.CUSTOMER. The dbo stands for database owner, and it oc-
curs frequently in SQL Server.

BTW

www.microsoft.com/en-us/server-cloud/products/sql-server/#fbid=LO4TSseuGs9
www.microsoft.com/en-us/server-cloud/products/sql-server/#fbid=LO4TSseuGs9

Chapter 2   The Relational Model   69

Figure 2-9 shows the same CUSTOMER table in Oracle’s Oracle Database Express
Edition 11g Release 2,3 as seen in the Oracle SQL Developer graphical utility program.
This display is more complex than Microsoft Access, but we can spot the primary key of
the table by finding the row with the term Primary_Key in the CONSTRAINT_TYPE
column, and then selecting that row. When we do so, the set of primary key columns is
displayed in the tabbed Columns pane.

Figure 2-10 shows the same CUSTOMER table in Oracle’s MySQL 5.6 Community
Server,4 as seen in the MySQL Workbench graphical utility program. This display is more

3Originally just referred to as Oracle, the database product is now known as Oracle Database because
Oracle Corporation has grown far beyond its database product roots and now owns and sells a large
range of products. These can be seen at www.oracle.com. As of this writing, Oracle Database 12c is the
latest production version. The freely downloadable Oracle Database Express Edition 11g Release 2 is
available at www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/
index.html?ssSourceSiteId=ocomen. Oracle Database Express Edition 11g Release 2 is an enterprise-
class DBMS and, as such, is much more complex than Microsoft Access. For more information, see online
Appendix B, “Getting Started with Oracle Database Express Edition 11g Release 2.”
4On February 26, 2008, Sun Microsystems acquired MySQL from MySQL AB. On April 29, 2009, Oracle
Corporation made an offer to buy Sun Microsystems, and on January 27, 2010, Oracle completed its acquisi-
tion of Sun Microsystems. For more details, see www.oracle.com/us/sun/index.htm. This makes Oracle the
owner of both the Oracle Database and the MySQL DBMS. As of this writing, MySQL 5.6 is the latest pro-
duction version of the popular MySQL DBMS. The free MySQL Community Server edition and the MySQL
Workbench can be downloaded from the MySQL Web site at http://dev.mysql.com/downloads/. If you are
running a Microsoft Windows OS, you should download and use the MySQL Installer for Windows available
at http://dev.mysql.com/downloads/windows/installer/. Like SQL Server 2014, MySQL is an enterprise-
class DBMS and, as such, is much more complex than Microsoft Access. Also like SQL Server 2014, MySQL
does not include application development tools, such as form and report generators. For more information,
see online Appendix C, “Getting Started with Oracle MySQL 5.6 Community Server.”

This constraint creates
the primary key for
CUSTOMER

The constraint type
Primary_Key indicates
which constraints are
being used to create
the primary key

The columns used
in the primary key
constraint
CUSTOMER_PK
are shown in the
Columns pane

Sequences used to
define primary key
values are shown here

Figure 2-9

Defining a Primary Key in Oracle Database Express Edition 11g Release 2

www.oracle.com
www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html?ssSourceSiteId=ocomen
www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html?ssSourceSiteId=ocomen
www.oracle.com/us/sun/index.htm
http://dev.mysql.com/downloads
http://dev.mysql.com/downloads/windows/installer

70   Part 1   Database Fundamentals

complex than Microsoft Access, but we can spot the primary key of the table by finding
the key symbol next to the name(s) of the primary key column(s) in the Column Name list.
Again, there is a key symbol next to CustomerNumber, indicating that CustomerNumber is
the primary key for this table.

A common method of specifying primary keys is to use SQL, which we briefly intro-
duced in Chapter 1. We will see how SQL is used to designate primary keys in Chapter 3.

Surrogate Keys
A surrogate key is a column with a unique, DBMS-assigned identifier that has been added
to a table to be the primary key. The unique values of the surrogate key are assigned by the
DBMS each time a row is created, and the values never change.

An ideal primary key is short, numeric, and never changes. Sometimes one column in a
table will meet these requirements or come close to them. For example, EmployeeNumber in
the EMPLOYEE relation should work very well as a primary key. But in other tables, the pri-
mary key does not come close to being ideal. For example, consider the relation PROPERTY:

PROPERTY (Street, City, State, ZIP, OwnerID)

The primary key of PROPERTY is (Street, City, State, ZIP), which is long and nonnumeric
(although it probably will not change). This is not an ideal primary key. In cases like this,
the database designer will add a surrogate key, such as PropertyID:

PROPERTY (PropertyID, Street, City, State, ZIP, OwnerID)

Surrogate keys are short, numeric, and change—they are ideal primary keys. Because the
values of the surrogate primary key will have no inherent meaning to users, they are often
hidden on forms, query results, and reports.

The key symbol
indicates which
column or columns
are being used as the
primary key

The PK check box
selects which column
or columns are being
used as the primary
key

The AI check box
indicates that
AUTO_INCREMENT
is being used to
set primary key
values

Figure 2-10

Defining a Primary Key in Oracle MySQL 5.6 Community Server

Chapter 2   The Relational Model   71

Surrogate keys have been used in the databases we have already discussed. For
example, in the Art Course Database tables shown in Figure 1-10 we added the sur-
rogate keys CustomerNumber to the CUSTOMER table and CourseNumber to the
COURSE table.

Most DBMS products have a facility for automatically generating key values. In Figure
2-7, we can see how surrogate keys are defined with Microsoft Access 2013. In Microsoft
Access, Data Type is set to AutoNumber. With this specification, Microsoft Access as-
signs a value of 1 to CustomerNumber for the first row of CUSTOMER, a value of 2 to
CustomerNumber for the second row, and so forth.

Enterprise-class DBMS products, such as Microsoft SQL Server, Oracle MySQL,
and Oracle Database, offer more capability. For example, with SQL Server, the devel-
oper can specify the starting value of the surrogate key as well as the amount by which
to increment the key for each new row. Figure 2-8 shows how this is done for the defini-
tion of the surrogate key CustomerNumber for the CUSTOMER table. In the Column
Properties window, which is below the dbo.CUSTOMER table column details window,
there is a set of identity specifications that have been set to indicate to SQL Server that a
surrogate key column exists. The is identity value for CustomerNumber is set to Yes to
make CustomerNumber a surrogate key. The starting value of the surrogate key is called
the identity seed. For CustomerNumber, it is set to 1. Furthermore, the amount that is
added to each key value to create the next key value is called the identity increment.
In this example, it is set to 1. These settings mean that when the user creates the first
row of the CUSTOMER table, SQL Server will give the value 1 to CustomerNumber.
When the second row of CUSTOMER is created, SQL Server will give the value 2 to
CustomerNumber, and so forth.

Oracle Database uses a SEQUENCE function to define automatically increas-
ing sequences of numbers that can be used as surrogate key numbers. When using a
SEQUENCE, the starting value can be any value (the default is 1), but the increment will
always be 1. Figure 2-9 shows the existing sequences in the Art Course Database.

MySQL uses the AUTO_INCREMENT function to automatically assign surrogate
key numbers. In AUTO_INCREMENT, the starting value can be any value (the default is
1), but the increment will always be 1. Figure 2-10 shows that CustomerNumber is a sur-
rogate key for CUSTOMER that uses AUTO_INCREMENT (AI) to set the value of the
column.

Foreign Keys and Referential Integrity
As described in Chapter 1, we place values from one relation into a second relation to
represent a relationship. The values we use are the primary key values (including com-
posite primary key values, when necessary) of the first relation. When we do this, the at-
tribute in the second relation that holds these values is referred to as a foreign key. For
example, in the Art Course database shown in Figure 1-10 we represent the relationship
between customers and the art courses they are taking by placing CustomerNumber,
the primary key of CUSTOMER, into the ENROLLMENT relation. In this case,
CustomerID in ENROLLMENT is referred to as a foreign key. This term is used be-
cause CustomerNumber is the primary key of a relation that is foreign to the table in
which it resides.

Consider the following two relations, where besides the EMPLOYEE relation we now
have a DEPARTMENT relation to hold data about departments:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email,
Phone)

and:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber,
DepartmentPhone)

72   Part 1   Database Fundamentals

where EmployeeNumber and DepartmentName are the primary keys of EMPLOYEE and
DEPARTMENT, respectively.

Now suppose that Department in EMPLOYEE contains the names of the depart-
ments in which employees work and that DepartmentName in DEPARTMENT also con-
tains these names. In this case, Department in EMPLOYEE is said to be a foreign key to
DEPARTMENT. In this book, we denote foreign keys by displaying them in italics. Thus,
we would write these two relation descriptions as follows:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

and:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, DepartmentPhone)

Note that it is not necessary for the primary key and the foreign key to have the same col-
umn name. The only requirement is that they have the same set of values.

In most cases, it is important to ensure that every value of a foreign key matches a
value of the primary key. In the previous example, the value of Department in every row of
EMPLOYEE should match a value of DepartmentName in DEPARTMENT. If this is the
case (and it usually is), then we declare the following rule:

Department in EMPLOYEE must exist in DepartmentName in DEPARTMENT

Such a rule is called a referential integrity constraint. Whenever you see a foreign key, you
should always look for an associated referential integrity constraint.

Consider the Art Course database shown in Figure 1-10. The structure of this database is:

CUSTOMER (CustomerNumber, CustomerLastName, CustomerFirstName, Phone)
COURSE (CourseNumber, Course, CourseDate, Fee)
ENROLLMENT (CustomerNumber, CourseNumber, AmountPaid)

The ENROLLMENT table has a composite primary key of (CustomerNumber,
CourseNumber), where CustomerNumber is a foreign key linking to CUSTOMER and
CourseNumber is a foreign key linking to COURSE. Therefore, two referential integrity
constraints are required:

CustomerNumber in ENROLLMENT must exist in CustomerNumber in CUSTOMER

and:

CourseNumber in ENROLLMENT must exist in CourseNumber in COURSE

Just as DBMS products have a means of specifying primary keys, they also have a
way to set up foreign key referential integrity constraints. We discuss the details of setting
up referential integrity constraints in this chapter’s section of “The Access Workbench.”
Figure 2-11 shows the tables from the Art Course database in Figure 1-10 in the Microsoft
Access Relationships window and with the Edit Relationships dialog box showing the
details of the relationship between CUSTOMER and ENROLLMENT. Notice that the
Enforce Referential Integrity check box is checked, so the referential integrity constraint
between CustomerNumber in ENROLLMENT (the foreign key) and CustomerNumber in
CUSTOMER (the primary key) is being enforced.

Figure 2-12 shows the same foreign key relationship between CUSTOMER and
ENROLLMENT in the Microsoft SQL Server Management Studio program. Again,
this display is more complex, but notice that the property Table Designer: Enforce
Foreign Key Constraint is set to Yes. This means that the referential integrity constraint

Chapter 2   The Relational Model   73

The relationship is
between CUSTOMER
and ENROLLMENT—
the foreign key
CustomerNumber in
ENROLLMENT
references the
primary key
CustomerNumber in
CUSTOMER

Use this check box to
enforce referential
integrity in this
relationship

Figure 2-11

Enforcing Referential Integrity in Microsoft Access 2013

The relationship
is between
ENROLLMENT and
CUSTOMER

We are enforcing
the foreign key
constraint—which is
the referential integrity
constraint

Figure 2-12

Enforcing Referential Integrity in Microsoft SQL Server 2014

74   Part 1   Database Fundamentals

Before we leave the discussion of relations and the relationships between them, we need
to discuss a subtle but important topic: null values. A null value is a missing value in a cell
in a relation. Consider the following relation, which is used to track finished goods for an
apparel manufacturer:

ITEM (ItemNumber, ItemName, Color, Quantity)

Figure 2-15 shows sample data for this table. Notice that in the last row of data—the row
with ItemNumber 400 and ItemName Spring Hat—there is no value for Color. The prob-
lem with null values is that they are ambiguous; we do not know how to interpret them be-
cause three possible meanings can be construed. First, it might mean that no value of Color
is appropriate; Spring Hats do not come in different colors. Second, it might mean that the
value is known to be blank; that is, Spring Hats have a color, but the color has not yet been

The Problem of Null Values

This constraint creates
the foreign key
relationship is between
ENROLLMENT and
CUSTOMER

The constraint type
Foreign_Key indicates
which constraints are
being used to create
the foreign keys

The columns used in
the foreign key
constraint
ENROLL_CUST_FK
are shown in the
Columns pane

Figure 2-13

Enforcing Referential Integrity in Oracle Database Express Edition 11g Release 2

between CustomerNumber in ENROLLMENT (the foreign key) and CustomerNumber in
CUSTOMER (the primary key) is being enforced.

Figure 2-13 shows foreign keys in Oracle Database Express Edition 11g Release 2.
Here the Foreign Keys tab in the Oracle SQL Developer utility displays the properties of
each foreign key.

Figure 2-14 shows foreign keys in MySQL 5.6 Community Server. Here the Foreign
Keys tab in the MySQL Workbench utility displays the properties of each foreign key.

Just as SQL can be used to specify primary keys, it can also be used to set referential
integrity constraints. We will look at how to use SQL to do this in the next chapter.

Chapter 2   The Relational Model   75

The foreign key
between
ENROLLMENT and
CUSTOMER

The CustomerNumber
column in
ENROLLMENT
references the
CustomerNumber
column in
CUSTOMER

Figure 2-14

Enforcing Referential Integrity in Oracle MySQL 5.6 Community Server

Figure 2-15

Sample ITEM Relation
and Data

decided. Maybe the color is established by placing ribbons around the hats, but this is not
done until an order arrives. Finally, the null value might mean that the hats’ color is simply
unknown; the hats have a color, but no one has checked yet to see what it is.

You can eliminate null values by requiring an attribute value. DBMS products allow
you to specify whether a null value can occur in a column. We discussed how to do this
for Microsoft Access in Chapter 1’s “The Access Workbench.” For Microsoft SQL Server
2014, notice the column in the dbo.CUSTOMER table column details window labeled
Allow Nulls in Figure 2-8. A check box without a checkmark means that null values are
not allowed in this column. Note that, in Figure 2-9, the Oracle SQL Developer utility for
Oracle Database Express Edition 11g R2 is showing the data on the Constraints tab, and
this tab does not indicate null values. If, however, we looked at the Columns tab, we would
see whether null values are allowed in each column. For MySQL 5.6 Community Server,
note that in Figure 2-10 the Column Details tab in the MySQL Table Editor shows an NN
(NOT NULL) check box that indicates whether null values are allowed in the column.
Regardless of the DBMS being used, if nulls are not allowed then some value must be en-
tered for each row in the table. If the attribute is a text value, users can be allowed to enter
values such as “not appropriate,” “undecided,” or “unknown,” when necessary. If the at-
tribute is not text, then some other coding system can be developed.

76   Part 1   Database Fundamentals

For now, be aware that null values can occur and that they always carry some ambigu-
ity. The next chapter will show another, possibly more serious, problem of null values.

This section introduces some of the concepts used for relational database design; these
concepts are used in the next several chapters and expanded upon in Chapter 5. This book
presents only the essentials. To learn more, you should consult other, more comprehensive
references.5

Functional Dependencies
To get started, let us take a short excursion into the world of algebra. Suppose you are buy-
ing boxes of cookies, and someone tells you that each box costs $5. Knowing this fact, you
can compute the cost of several boxes with the formula:

CookieCost  NumberOfBoxes  $5

A more general way to express the relationship between CookieCost and NumberOfBoxes
is to say that CookieCost depends upon NumberOfBoxes. Such a statement tells the char-
acter of the relationship between CookieCost and NumberOfBoxes, even though it doesn’t
give the formula. More formally, we can say that CookieCost is functionally dependent on
NumberOfBoxes. Such a statement, which is called a functional dependency, can be writ-
ten as follows:

NumberOfBoxes → CookieCost

This expression says that NumberOfBoxes determines CookieCost. The term on the left,
NumberOfBoxes, is called the determinant.

Using another example, we can compute the extended price of a part order by multi-
plying the quantity of the item by its unit price:

ExtendedPrice  Quantity  UnitPrice

In this case, we would say that ExtendedPrice is functionally dependent on Quantity and
UnitPrice, or:

(Quantity, UnitPrice) → ExtendedPrice

The composite (Quantity, UnitPrice) is the determinant of ExtendedPrice.
Now, let us expand these ideas. Suppose you know that a sack contains either red,

blue, or yellow objects. Further suppose you know that the red objects weigh 5 pounds
each, the blue objects weigh 5 pounds each, and the yellow objects weigh 7 pounds
each. If a friend looks into the sack, sees an object, and tells you the color of the object,
you can tell the weight of the object. We can formalize this in the same way as in the
previous example:

ObjectColor → Weight

5See David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and Implementation,
13th edition (Upper Saddle River, NJ: Prentice Hall, 2014); and C. J. Date, An Introduction to Database
Systems, 8th edition (Boston: Addison-Wesley, 2004).

Functional Dependencies and Normalization

Chapter 2   The Relational Model   77

Thus, we can say that Weight is functionally dependent on ObjectColor and that
ObjectColor determines Weight. The relationship here does not involve an equation, but
this functional dependency is still true. Given a value for ObjectColor, you can determine
the object’s weight.

In addition, if we know that the red objects are balls, the blue objects are cubes, and
the yellow objects are cubes, then:

ObjectColor → Shape

Thus, ObjectColor also determines Shape. We can put these two together and state:

ObjectColor → (Weight, Shape)

Thus, ObjectColor determines Weight and Shape.
Another way to represent these facts is to put them into a table, as shown in

Figure 2-16. Note that this table meets all the conditions in our definition of a relation,
as listed in Figure 2-1, so we can refer to it as a relation. If we call it the OBJECT rela-
tion and use ObjectColor as the primary key, we can write this relation as:

OBJECT (ObjectColor, Weight, Shape)

Now, you may be thinking that we have just performed some trick or sleight of hand to ar-
rive at a relation, but one can make the argument that the only reason for having relations is
to store instances of functional dependencies. Consider a relation such as the CUSTOMER
relation from the Art Course database in Figure 1-10:

CUSTOMER (CustomerNumber, CustomerLastName, CustomerFirstName, Phone)

Here we are simply storing facts that express the following functional dependency:

CustomerNumber → (CustomerLastName, CustomerFirstName, Phone)

Primary and Candidate Keys Revisited
Now that we have discussed the concept of functional dependency, we can define primary
and candidate keys more formally. Specifically, a primary key of a relation can be defined as
“one or more attributes that functionally determine all the other attributes of the relation.”
The same definition holds for candidate keys as well.

Recall the EMPLOYEE relation from Figure 2-2 (shown without primary or foreign
keys indicated):

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

As previously discussed, based on information from users, this relation has three candidate
keys: EmployeeNumber, Email, and the composite (FirstName, LastName, Department).
Because this is so, we can state the following:

EmployeeNumber → (FirstName, LastName, Department, Email, Phone)

Figure 2-16

Sample OBJECT
Relation and Data

78   Part 1   Database Fundamentals

Equivalently, if we are given a value for EmployeeNumber, we can determine FirstName,
LastName, Department, Email, and Phone. Similarly, we can state that:

Email → (EmployeeNumber, FirstName, LastName, Department, Phone)

That is, if we are given a value for Email, we can determine EmployeeNumber, FirstName,
LastName, Department, and Phone. Finally, we also can state that:

(FirstName, LastName, Department) → (EmployeeNumber, Email, Phone)

This means that if we are given values of FirstName, LastName, and Department, we can
determine EmployeeNumber, Email, and Phone.

These three functional dependencies express the reason the three candidate keys are can-
didate keys. When we choose a primary key from the candidate keys, we are choosing which
functional dependency we want to define as the one that is most meaningful or important to us.

Normalization
The concepts of functional dependencies and determinants can be used to help in the design
of relations. Recalling the concept from Chapter 1 that a table or relation should have only
one theme, we can define normalization as the process of (or set of steps for) breaking a
table or relation with more than one theme into a set of tables such that each has only one
theme. Normalization is a complex topic, and it consumes one or more chapters of more
theoretically oriented database books. Here we reduce this topic to a few ideas that capture
the essence of the process. After this discussion, if you are interested in the topic, you should
consult the references mentioned earlier for more information.

The problem that normalization addresses is as follows: A table can meet all the char-
acteristics listed in Figure 2-1 and still have the modification problems we identified for
lists in Chapter 1. Specifically, consider the following ADVISER_LIST relation:

ADVISER_LIST (AdviserID, AdviserName, Department, Phone, Office,
StudentNumber, StudentName)

What is the primary key of this relation? Given the definitions of candidate key and pri-
mary key, it has to be an attribute that determines all the other attributes. The only attri-
bute that has this characteristic is StudentNumber. Given a value of StudentNumber, we
can determine the values of all the other attributes:

StudentNumber → (AdviserID, AdviserName, Department, Phone, Office,
StudentName)

We can then write this relation as follows:

ADVISER_LIST (AdviserID, AdviserName, Department, Phone, Office,
StudentNumber, StudentName)

However, this table has modification problems. Specifically, an adviser’s data are repeated
many times in the table, once for each advisee. This means that updates to adviser data
might need to be made multiple times. If, for example, an adviser changes offices, that
change will need to be completed in all the rows for the person’s advisees. If an adviser has
20 advisees, that change will need to be entered 20 times.

Another modification problem can occur when we delete a student from this list. If we
delete a student who is the only advisee for an adviser, we will delete not only the student’s
data but also the adviser’s data. Thus, we will unintentionally lose facts about two entities
while attempting to delete one.

Chapter 2   The Relational Model   79

If you look closely at this relation, you will see a functional dependency that involves
the adviser’s data. Specifically:

AdviserID → (AdviserName, Department, Phone, Office)

Now, we can state the problem with this relation more accurately—in terms of functional
dependencies. Specifically, this relation is poorly formed because it has a functional depen-
dency that does not involve the primary key. Stated differently, AdviserID is a determinant
of a functional dependency, but it is not a candidate key and thus cannot be the primary
key under any circumstances.

Relational Design Principles
From the discussion so far, we can formulate the following design principles for what we
can call a well-formed relation:

  1.	 For a relation to be considered well formed, every determinant must be a candidate key.
  2.	 Any relation that is not well formed should be broken into two or more relations that are

well formed.

These two principles are the heart of normalization—the process of examining rela-
tions and modifying them to make them well formed. This process is called normalization
because you can categorize the problems to which relations are susceptible into different
types called normal forms.

There are many defined normal forms. Technically, our well-formed relations are those
that are said to be in Boyce-Codd Normal Form (BCNF). For example, any relation that
has the characteristics listed in Figure 2-1 is called a relation in first normal form (1NF).
Besides first normal form and Boyce-Codd normal form, other normal forms exist, such
as second, third, fourth, fifth, and domain/key normal form. We further describe normal
forms later in this chapter.

However, if we simply follow the aforementioned design principles we will avoid
almost all the problems associated with non-normalized tables. In some rare instances,
these principles do not address the problems that arise (see questions 2.40 and 2.41 in the
Exercises section), but if you follow these principles, you will be safe most of the time.

The Normalization Process
We can apply the principles just described to formulate the following normalization
process for normalizing relations:

  1.	 Identify all the candidate keys of the relation.
  2.	 Identify all the functional dependencies in the relation.
  3.	 Examine the determinants of the functional dependencies. If any determinant is not a can-

didate key, the relation is not well formed. In this case:
	a.	 Place the columns of the functional dependency in a new relation of their own.
	b.	 Make the determinant of the functional dependency the primary key of the new relation.
	c.	 Leave a copy of the determinant as a foreign key in the original relation.
	d.	 Create a referential integrity constraint between the original relation and the new relation.

  4.	 Repeat step 3 as many times as necessary until every determinant of every relation is a can-
didate key.

To understand this process, consider the following relation:

PRESCRIPTION (PrescriptionNumber, Date, Drug, Dosage, CustomerName,
CustomerPhone, CustomerEmail)

Sample data for the PRESCRIPTION relation are shown in Figure 2-17.

80   Part 1   Database Fundamentals

Step 1 of the Normalization Process  According to the normalization process, we
first identify all candidate keys. PrescriptionNumber clearly determines Date, Drug, and
Dosage. If we assume that a prescription is for only one person, then it also determines
CustomerName, CustomerPhone, and CustomerEmail. By law, prescriptions must be for
only one person, so PrescriptionNumber is a candidate key.

Does this relation have other candidate keys? Date, Drug, and Dosage do not deter-
mine PrescriptionNumber because many prescriptions can be written on a given date,
many prescriptions can be written for a given drug, and many prescriptions can be written
for a given dosage.

What about customer columns? If a customer had only one prescription, then we
could say that some identifying customer column—for example, CustomerEmail—would
determine the prescription data. However, people can have more than one prescription, so
this assumption is invalid.

Given this analysis, the only candidate key of PRESCRIPTION is PrescriptionNumber.

Step 2 of the Normalization Process  In step 2 of the normalization process, we
now identify all functional dependencies. PrescriptionNumber determines all the other at-
tributes, as just described. If a drug had only one dosage, then we could state that:

Drug → Dosage

But this is not true because some drugs have several dosages. Therefore, Drug is not a
determinant. Furthermore, Dosage is not a determinant because the same dosage can be
given for many different drugs.

However, examining the customer columns, we do find a functional dependency:

CustomerEmail → (CustomerName, CustomerPhone)

To know whether functional dependency is true for a particular application, we need to
look beyond the sample data in Figure 2-17 and ask the users. For example, it is possible
that some customers share the same email address, and it is also possible that some custom-
ers do not have email. For now, we can assume that the users say that CustomerEmail is a
determinant of the customer attributes.

Step 3 of the Normalization Process  In step 3 of the normalization process, we ask
whether there is a determinant that is not a candidate key. In this example, CustomerEmail
is a determinant and not a candidate key. Therefore, PRESCRIPTION has normalization
problems and is not well formed. According to step 3, we split the functional dependency
into a relation of its own:

CUSTOMER (CustomerName, CustomerPhone, CustomerEmail)

We make the determinant of the functional dependency, CustomerEmail, the primary key
of the new relation.

Figure 2-17

Sample PERSCIPTION Relation and Data

Chapter 2   The Relational Model   81

We leave a copy of CustomerEmail in the original relation as a foreign key. Thus,
PRESCRIPTION is now:

PRESCRIPTION (PrescriptionNumber, Date, Drug, Dosage, CustomerEmail)

Finally, we create the referential integrity constraint:

CustomerEmail in PRESCRIPTION must exist in CustomerEmail in CUSTOMER

At this point, if we move through the three steps, we find that neither of these relations
has a determinant that is not a candidate key, and we can say that the two relations are now
normalized. Figure 2-18 shows the result for the sample data.

Normalization Examples
We now illustrate the use of the normalization process with four examples.

Normalization Example 1  The relation in Figure 2-19 shows a table of student resi-
dence data named STU_DORM. The first step in normalizing it is to identify all candidate
keys. Because StudentNumber determines each of the other columns, it is a candidate key.
LastName cannot be a candidate key because two students have the last name Smith. None of
the other columns can be a candidate key, either, so StudentNumber is the only candidate key.

Next, in step 2, we look for the functional dependencies in the relation. Besides those
for StudentNumber, a functional dependency appears to exist between DormName and
DormCost. Again, we would need to check this out with the users. In this case, assume that
the functional dependency:

DormName → DormCost

is true and assume that our interview with the users indicates that no other functional de-
pendencies exist.

Figure 2-18

Normalized
Prescription Customer
Relations and Data

Figure 2-19

Sample STU_DORM
Relation and Data

82   Part 1   Database Fundamentals

In step 3, we now ask if any determinants exist that are not candidate keys. In this ex-
ample, DormName is a determinant, but it is not a candidate key. Therefore, this relation is
not well formed and has normalization problems.

To fix those problems, we place the columns of the functional dependency
(DormName, DormCost) into a relation of their own and call that relation DORM. We
make the determinant of the functional dependency the primary key. Thus, DormName
is the primary key of DORM. We leave the determinant DormName as a foreign key in
STU_DORM. Finally, we find the appropriate referential integrity constraint. The result is:

STU_DORM (StudentNumber, LastName, FirstName, DormName)
DORM (DormName, DormCost)

with the constraint:

DormName in STU_DORM must exist in DormName in DORM

The data for these relations appear as shown in Figure 2-20.

Normalization Example 2  Now consider the EMPLOYEE table in Figure 2-21.
First, we identify the candidate keys in EMPLOYEE. From the data, it appears that
EmployeeNumber and Email each identify all the other attributes. Hence, they are candi-
date keys (again, with the proviso that we cannot depend on sample data to show all cases;
we must verify this assumption with the users).

In step 2, we identify other functional dependencies. From the data, it appears that the
only other functional dependency is:

Department → DeptPhone

Assuming that this is true, then according to step 3 we have a determinant,
Department, that is not a candidate key. Thus, EMPLOYEE has normalization
problems.

To fix those problems, we place the columns in the functional dependency in a table of
their own and make the determinant the primary key of the new table. We leave the deter-
minant as a foreign key in the original table. The result is the two tables:

EMPLOYEE (EmployeeNumber, LastName, Email, Department)
DEPARTMENT (Department, DeptPhone)

Figure 2-20

Normalized STU_DORM
and DORM Relations
and Data

Figure 2-21

Sample EMPLOYEE
Relation and Data

Chapter 2   The Relational Model   83

with the referential integrity constraint:

Department in EMPLOYEE must exist in Department in DEPARTMENT

The result for the sample data is shown in Figure 2-22.

Normalization Example 3  Now consider the MEETING table in Figure 2-23. We
begin by looking for candidate keys. No column by itself can be a candidate key. Attorney
determines different sets of data, so it cannot be a determinant. The same is true for
ClientNumber, ClientName, and MeetingDate. In the sample data, the only column that
does not determine different sets of data is Duration, but this uniqueness is accidental. It is
easy to imagine that two or more meetings would have the same duration.

The next step is to look for combinations of columns that can be candidate keys.
(Attorney, ClientNumber) is one combination, but the values (Boxer, 1000) determine
two different sets of data. They cannot be a candidate key. The combination (Attorney,
ClientName) fails for the same reason. The only combinations that can be candidate keys
of this relation are (Attorney, ClientNumber, MeetingDate) and (Attorney, ClientName,
MeetingDate).

Let us consider those possibilities further. The name of the relation is MEETING, and
we are asking whether (Attorney, ClientNumber, MeetingDate) or (Attorney, ClientName,
MeetingDate) can be a candidate key. Do these combinations make sense as identifiers of
a meeting? They do unless more than one meeting of the same attorney and client occurs
on the same day. In that case, we need to add a new column, MeetingTime, to the relation
and make this new column part of the candidate key. In this example, we assume that this is
not the case and that (Attorney, ClientNumber, MeetingDate) and (Attorney, ClientName,
MeetingDate) are the candidate keys.

The second step is to identify other functional dependencies. Here two exist:

ClientNumber → ClientName

and:

ClientName → ClientNumber

Each of these determinants is part of one of the candidate keys. For example, ClientNumber
is part of (Attorney, ClientNumber, MeetingDate). However, being part of a candidate key
is not enough. The determinant must be the same as the entire candidate key. Thus, the
MEETING table is not well formed and has normalization problems.

Figure 2-23

Sample MEETING
Relation and Data

Figure 2-22

Normalized EMPLOYEE
and DEPARTMENT
Relations and Data

84   Part 1   Database Fundamentals

When you are not certain whether normalization problems exist, consider the three
modification operations discussed in Chapter 1: insert, update, and delete. Do problems
exist with any of them? For example, in Figure 2-23 if you change ClientName in the
first row to ABC, Limited, do inconsistencies arise in the data? The answer is yes because
ClientNumber 1000 would have two different names in the table. This and any of the other
problems that were identified in Chapter 1 when inserting, updating, or deleting data are
sure signs that the table has normalization problems.

To fix the normalization problems, we create a new table, CLIENT, with columns
ClientNumber and ClientName. Both of these columns are determinants; thus, either can
be the primary key of the new table. However, whichever one is selected as the primary key
also should be made the foreign key in MEETING. Thus, two correct designs are possible.
First, we can use:

MEETING (Attorney, ClientNumber, MeetingDate, Duration)
CLIENT (ClientNumber, ClientName)

with the referential integrity constraint:

ClientNumber in MEETING must exist in ClientNumber in CLIENT

Second, we can use:

MEETING (Attorney, ClientName, MeetingDate, Duration)
CLIENT (ClientNumber, ClientName)

with the referential integrity constraint:

ClientName in MEETING must exist in ClientName in CLIENT

Data for the first design are shown in Figure 2-24.
Notice in these two designs that either the attribute ClientNumber or ClientName is

both a foreign key and also part of the primary key of MEETING. This illustrates that for-
eign keys can be part of a composite primary key.

Note that when two attributes, such as ClientNumber and ClientName, each determine
one another they are synonyms. They both must appear in a relation to establish their equiv-
alent values. Given that equivalency, the two columns are interchangeable; one can take the
place of the other in any other relation. All things being equal, however, the administration
of the database will be simpler if one of the two is used consistently as a foreign key. This
policy is just a convenience, however, and not a logical requirement for the design.

Normalization Example 4  For our last example, let us consider a relation that in-
volves student data. Specifically:

GRADE (ClassName, Section, Term, Grade, StudentNumber, StudentName,
Professor, Department, ProfessorEmail)

Given the confused set of columns in this table, it does not seem well formed, and it ap-
pears that the table will have normalization problems. We can use the normalization pro-
cess to find what they are and to remove them.

Figure 2-24

Normalized MEETING
and CLIENT Relations
and Data

Chapter 2   The Relational Model   85

First, what are the candidate keys of this relation? No column by itself is a candidate
key. One way to approach this is to realize that a grade is a combination of a class and a
student. In this table, which columns identify classes and students? A particular class is
identified by (ClassName, Section, Term), and a student is identified by StudentNumber.
Possibly, then, a candidate key for this relation is:

(ClassName, Section, Term, StudentNumber)

This statement is equivalent to saying:

(ClassName, Section, Term, StudentNumber) → (Grade, StudentName, Professor,
Department, ProfessorEmail)

This is a true statement as long as only one professor teaches a class section. For now, we will
make that assumption and consider the alternate case later. If only one professor teaches a
section, then (ClassName, Section, Term, StudentNumber) is the one and only candidate key.

Second, what are the additional functional dependencies? One involves student data,
and another involves professor data, specifically:

StudentNumber → StudentName

and:

Professor → ProfessorEmail

We also need to ask if Professor determines Department. It will if a professor teaches in
only one department. In that case, we have:

Professor → (Department, ProfessorEmail)

Otherwise, Department must remain in the GRADE relation.
We will assume that professors teach in just one department, so we can confirm the

following functional dependencies from our discussion above:

StudentNumber → StudentName

and:

Professor → (Department, ProfessorEmail)

If we examine the GRADE relation a bit further, however, we can find one other functional
dependency. If only one professor teaches a class section, then:

(ClassName, Section, Term) → Professor

Thus, according to step 3 of the normalization process, GRADE has normalization prob-
lems because the determinants StudentNumber, Professor, and (ClassName, Section,
Term) are not candidate keys. Therefore, we form a table for each of these functional de-
pendencies. As a result, we have a STUDENT table, a PROFESSOR table, and a CLASS_
PROFESSOR table. After forming these tables, we then take the appropriate columns out
of GRADE and put them into a new version of the GRADE table, which we will name
GRADE_1. We now have the following design:

STUDENT (StudentNumber, StudentName)
PROFESSOR (Professor, Department, ProfessorEmail)
CLASS_PROFESSOR (ClassName, Section, Term, Professor)
GRADE_1 (ClassName, Section, Term, Grade, StudentNumber)

86   Part 1   Database Fundamentals

with the referential integrity constraints:

StudentNumber in GRADE_1 must exist in StudentNumber in STUDENT
Professor in CLASS_PROFESSOR must exist in Professor in PROFESSOR
(ClassName, Section, Term) in GRADE_1 must exist in (ClassName, Section, Term)

in CLASS_PROFESSOR

Next, consider what happens if more than one professor teaches a section of a class.
In that case, the only change is to make Professor part of the primary key of CLASS_
PROFESSOR. Thus, the new relation is:

CLASS_PROFESSOR_1 (ClassName, Section, Term, Professor)

Class sections that have more than one professor will have multiple rows in this table—one
row for each of the professors.

This example shows how normalization problems can become more complicated than
simple examples might indicate. For large commercial applications that potentially involve
hundreds of tables, such problems can sometimes consume days or weeks of design time.

Eliminating Anomalies from Multivalued Dependencies
In the interest of full disclosure, if professors can teach more than one class in the previous
example, then GRADE has what is called a multivalued dependency. When modification
problems are due to functional dependencies, and we then normalize relations to BCNF,
we eliminate these anomalies. However, anomalies can also arise from another kind of
dependency—the multivalued dependency. A multivalued dependency occurs when a de-
terminant is matched with a particular set of values.

Examples of multivalued dependencies are:

EmployeeName → → EmployeeDegree
EmployeeName → → EmployeeSibling
PartKitName → → Part

In each case, the determinant is associated with a set of values, and example data for each
of these multivalued dependencies are shown in Figure 2-25. Such expressions are read as
“EmployeeName multidetermines EmployeeDegree” and “EmployeeName multideter-
mines EmployeeSibling” and “PartKitName multidetermines Part.” Note that multideter-
minants are shown with a double arrow rather than a single arrow.

Employee Jones, for example, has degrees AA and BS. Employee Greene has degrees
BS, MS, and PhD. Employee Chau has just one degree, BS. Similarly, employee Jones has
siblings (brothers and sisters) Fred, Sally, and Frank. Employee Greene has sibling Nikki,
and employee Chau has siblings Jonathan and Eileen. Finally, PartKitName Bike Repair has
parts Wrench, Screwdriver, and Tube Fix. Other kits have parts as shown in Figure 2-25.

Unlike functional dependencies, the determinant of a multivalued dependency can
never be the primary key. In all three of the tables in Figure 2-25, the primary key consists
of the composite of the two columns in each table. For example, the primary key of the
EMPLOYEE_DEGREE table is the composite key (EmployeeName, EmployeeDegree).

Multivalued dependencies pose no problem as long as they exist in tables of their own.
None of the tables in Figure 2-25 has modification anomalies. However, if A → → B, then
any relation that contains A, B, and one or more additional columns will have modification
anomalies. Notice that when you put multivalued dependencies into a table of their own,
they disappear. The result is just a table with two columns, and the primary key (and sole
candidate key) is the composite of those two columns. When multivalued dependencies
have been isolated in this way, the table is said to be in fourth normal form (4NF).

Chapter 2   The Relational Model   87

The hardest part of multivalued dependencies is finding them. Once you know they
exist in a table, just move them into a table of their own. Whenever you encounter tables
with odd anomalies, especially anomalies that require you to insert, modify, or delete differ-
ent numbers of rows to maintain integrity, check for multivalued dependencies.

EMPLOYEE_DEGREE

EMPLOYEE_SIBLING

PARTKIT_PART

Figure 2-25

Three Examples
of Multivalued
Dependencies

You will get a chance to work with multivalued dependencies and 4NF in
exercises 2.40 and 2.41. If you want to learn about them, see one of the
more advanced texts mentioned in the footnote on page 76. In general, you
should normalize your relationships so that they are either in BCNF or 4NF.

BTW

88   Part 1   Database Fundamentals

Normal Forms: One Step at a Time
A table and a spreadsheet are very similar to one another in that we can think of both as having rows, col-
umns, and cells. Edgar Frank (E. F.) Codd, the originator of the relational model, defined three normal forms
in an early paper on the relational model. He defined any table that meets the definition of a relation (see
Figure 2-1 on page 63) as being in first normal form (1NF).

For 1NF, ask yourself: Does the table meet the definition in Figure 2-1? If the answer is yes, then the
table is in 1NF.

Codd pointed out that such tables can have anomalies (which are referred to elsewhere in the text as nor-
malization problems), and he defined a second normal form (2NF) that eliminated some of those anomalies. A
relation is in 2NF if and only if (1) it is in 1NF and (2) all nonkey attributes are determined by the entire primary
key. This means that if the primary key is a composite primary key, no nonkey attribute can be determined by
an attribute or attributes that make up only part of the key. Thus, if you have a relation (A, B, N, O, P) with the
composite key (A, B), then none of the nonkey attributes—N, O, or P—can be determined by just A or just B.

For 2NF, ask yourself: (1) Is the table in 1NF, and (2) are all nonkey attributes determined by only the
entire primary key rather than part of the primary key? If the answers are yes and yes, then the table is in 2NF.
Note that the problem solved by 2NF can only occur in a table with a composite primary key—if the table has
a single column primary key, then this problem cannot occur and if the table is in 1NF it will also be in 2NF.

However, the conditions of 2NF did not eliminate all the anomalies, so Codd defined third normal form
(3NF). A relation is in 3NF if and only if (1) it is in 2NF and (2) there are no nonkey attributes determined by
another nonkey attribute. Technically, the situation described by the preceding condition is called a transitive
dependency. Thus, in our relation (A, B, N, O, P) none of the nonkey attributes—N, O, or P—can be deter-
mined by N, O, or P or any combination of them.

For 3NF, ask yourself: (1) Is the table in 2NF, and (2) are there any nonkey attributes determined by an-
other nonkey attribute or attributes? If the answers are yes and no, then the table is in 3NF.

Not long after Codd published his paper on normal forms, it was pointed out to him that even relations in
3NF could have anomalies. As a result, he and R. Boyce defined the Boyce-Codd Normal Form (BCNF), which
eliminated the anomalies that had been found with 3NF. As stated earlier, a relation is in BCNF if and only if every
determinant is a candidate key.

For BCNF, ask yourself: (1) Is the table in 3NF, and (2) are all determinants also candidate keys? If the
answers are yes and yes, then the table is in BCNF.

1NF through BCNF are summed up in a widely known phrase:

I swear to construct my tables so that all nonkey columns are dependent on the key, the whole key, and
nothing but the key, so help me Codd!

This phrase actually is a very good way to remember the order of the normal forms:

I swear to construct my tables so that all nonkey columns are dependent on

•	 the key,	 [This is 1NF]
•	 the whole key,	 [This is 2NF]
•	 and nothing but the key,	 [This is 3NF and BCNF]

so help me Codd!

Also note that all these definitions were made in such a way that a relation in a higher normal form is
defined to be in all lower normal forms. Thus, a relation in BCNF is automatically in 3NF, a relation in 3NF is
automatically in 2NF, and a relation in 2NF is automatically in 1NF.

There the matter rested until others discovered another kind of dependency, called a multivalued dependency,
which is discussed earlier in this chapter and is illustrated in exercises 2-40 and 2-41. To eliminate multivalued
dependencies, fourth normal form (4NF) was defined. To put tables into 4NF, the initial table must be split into
tables such that the multiple values of any multivalued attribute are moved into the new tables. These are then ac-
cessed via 1:N relationships between the original table and the tables holding the multiple values.

For 4NF, ask yourself: (1) Have the multiple values determined by any multivalued dependency been
moved into a separate table? If the answer is yes, then the tables are in 4NF.

Chapter 2   The Relational Model   89

A little later, another kind of anomaly involving tables that can be split apart but not correctly joined
back together was identified, and fifth normal form (5NF) was defined to eliminate that type of anomaly.
A discussion of 5NF is beyond the scope of this book.

You can see how the knowledge evolved: None of these normal forms were perfect—each one eliminated
certain anomalies, and none asserted that it was vulnerable to no anomaly at all. At this stage, in 1981, R.
Fagin took a different approach and asked why, rather than just chipping away at anomalies, we do not look
for conditions that would have to exist in order for a relation to have no anomalies at all. He did just that and,
in the process, defined domain/key normal form (DK/NF), and, no, that is not a typo—the name has the
slash between “domain” and “key,” while the acronym places it between “DK” and “NF”! Fagin proved that
a relation in DK/NF can have no anomalies, and he further proved that a relation that has no anomalies is also
in DK/NF.

For some reason, DK/NF never caught the fancy of the general database population, but it should have. As
you can tell, no one should brag that their relations are in BCNF—instead we should all brag that our relations
are in DK/NF. But for some reason (perhaps because there is fashion in database theory, just as there is fashion
in clothes), it just is not done.

You are probably wondering what the conditions of DK/NF are. Basically, DK/NF requires that all the
constraints on data values be logical implications of the definition of domains and keys. To the level of de-
tail of this text, and to the level of detail experienced by 99 percent of all database practitioners, this can be
restated as follows: Every determinant of a functional dependency must be a candidate key. This is exactly
where we started and what we have defined as BCNF.

You can broaden this statement a bit to include multivalued dependencies and say that every determinant
of a functional or multivalued dependency must be a candidate key. The trouble with this is that as soon as we
constrain a multivalued dependency in this way, it is transformed into a functional dependency. Our original
statement is fine. It is like saying that good health comes to overweight people who lose weight until they are
of an appropriate weight. As soon as they lose their excess weight, they are no longer overweight. Hence,
good health comes to people who have appropriate weight.

For DK/NF, ask yourself: Is the table in BCNF? For our purposes in this book, the two terms are syn-
onymous, so if the answer is yes, we will consider that the table is also in DK/NF.

So, as Paul Harvey used to say, “Now you know the rest of the story.” Just ensure that every determinant
of a functional dependency is a candidate key (BCNF), and you can claim that your relations are fully nor-
malized. You do not want to say they are in DK/NF until you learn more about it, though, because someone
might ask you what that means. However, for most practical purposes your relations are in DK/NF as well.

Note:  For more information on normal forms, see David M. Kroenke and David J. Auer, Database
Processing: Fundamentals, Design, and Implementation, 13th edition (Upper Saddle River, NJ: Prentice Hall,
2014): 118–151.

The Access Workbench
Section 2
Working with Multiple Tables in Microsoft Access

In Chapter 1’s “The Access Workbench,” we learned how to create Microsoft Access 2013
databases, tables, forms, and reports. However, we were limited to working with only one
table. In this section, we will:

•	 See examples of the modification problems discussed in Chapters 1 and 2.
•	 Work with multiple tables.

(Continued)

90   Part 1   Database Fundamentals

We will continue to use the WMCRM database we created in Chapter 1’s section of
“The Access Workbench.” At this point, you have created and populated (which means you
have inserted the data into) the CONTACT table. Figure AW-2-1 shows the contacts that
have been made with each customer. Note that there is no customer with CustomerID 2—
this is because we deleted and reentered the data for Jessica Christman.

Possible Modification Problems in the WMCRM Database

We know from the topics covered in this chapter that we really need a separate table to
store the CONTACT data, but in order to illustrate the modification problems discussed
in Chapter 1 let us combine it into one table with the data already in CUSTOMER. This
table is available in the file WMCRM-Combined-Data.accdb, which is available at the Web
site for this book (www.pearsonhighered.com/kroenke). We will use this database to see
modification problems in non-normalized tables and then build the correctly normalized
tables in the actual WMCRM database.

We will need to start Microsoft Access 2013, open the WMCRM-Combined-Data.
accdb file, and take a look at the WMCRM-Combined-Data database.

Opening an Existing Microsoft Access Database

1.	 Select the Microsoft Access 2013 icon on the Start screen, or click the Microsoft Access
2013 button on the Taskbar if you pinned it there. The Microsoft Access 2013 splash screen
window appears, as shown in Figure AW-2-2.

■■ Note:  The menu command or icon location used to start Microsoft Access 2013
may vary, depending on the operating system and how Microsoft Office is installed on
the computer you are using.

2.	 Click the Open Other Files button on the Microsoft Access 2013 splash screen to open the
File | Open page, as shown in Figure AW-2-3.

3.	 Click the Computer button to open the Open | Computer pane, as shown in Figure AW-2-4.
4.	 Click the Browse button to open the Open dialog box, as shown in Figure AW-2-5.

CustomerID Date Type Remarks
1 7/7/2014 Phone General interest in a Gaea.

1 7/7/2014 Email Sent general information.

1 7/12/2014 Phone Set up an appointment.

1 7/14/2014 Meeting Bought a HiStandard.

3 7/19/2014 Phone Interested in a SUHi, set up an appointment.

1 7/21/2014 Email Sent a standard follow-up message.

4 7/27/2014 Phone Interested in a HiStandard, set up an appointment.

3 7/27/2014 Meeting Bought a SUHi.

4 8/2/2014 Meeting Talked up to a HiLuxury. Customer bought one.

3 8/3/2014 Email Sent a standard follow-up message.

4 8/10/2014 Email Sent a standard follow-up message.

5 8/15/2014 Phone General interest in a Gaea.

Figure AW-2-1

CONTACT Data

www.pearsonhighered.com/kroenke

Chapter 2   The Relational Model   91

The WMCRM.aacdb
file name in the
Recent list

Click the Open
Other Files button
to display the file
menu Open page

Figure AW-2-2

The Microsoft Access 2013 Splash Screen

The Open | Recent
pane is displayed with
WMCRM.aacdb
file name in the Recent
list—you can click a file
name to open the file

Click the Computer
button to display the
Open | Computer
pane

The File | Open
page

Figure AW-2-3

The Microsoft Access 2013 File | Open Page

(Continued)

92   Part 1   Database Fundamentals

The Open | Computer
pane is displayed with
the Browse button—
you can click this
button to search
for files

Click the Browse
button to display the
Open dialog box

The File | Open
page

Figure AW-2-4

The Open | Computer Page

Click the Open button

Click the file name to
select the file

Figure AW-2-5

The Open Dialog Box

Chapter 2   The Relational Model   93

  5.	 Browse to the WMCRM-Combined-Data.accdb file, click the file name to highlight it, and
then click the Open button.

  6.	 The Security Warning bar appears with the database. Click the Security Warning bar’s
Enable Content button to select this option.

  7.	 In the Navigation Pane, double-click the CUSTOMER_CONTACT table object to open it.
  8.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
  9.	 The CUSTOMER_CONTACT table appears in Datasheet view, as shown in Figure AW-2-6.

Note that there is one line for each contact, which has resulted in the duplication of basic
customer data. For example, there are five sets of basic data for Ben Griffey.

10.	 Close the CUSTOMER_CONTACT table by clicking the document window’s Close button.
11.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.
12.	 In the Navigation Pane, double-click the Customer Contact Data Input Form object to open

it. The Customer Contact Data Input Form appears, as shown in Figure AW-2-7. Note that
the form displays all the data for one record in the CUSTOMER_CONTACT table.

Figure AW-2-6

The CUSTOMER_CONTACT Table

All fields from the
CUSTOMER_
CONTACT table
appear on the form

Form browsing
buttons

Figure AW-2-7

The Customer Contact Data Input Form

(Continued)

94   Part 1   Database Fundamentals

13.	 Close the Customer Contact Data Input Form by clicking the document window’s Close
button.

14.	 In the Navigation Pane, double-click the Wallingford Motors Customer Contact Report
to open it.

15.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
16.	 The Wallingford Motors Customer Contact Report appears, as shown in Figure AW-2-8.

Note that the form displays the data for all contacts in the CUSTOMER_CONTACT table,
sorted by CustomerNumber and Date. For example, all the contact data for Ben Griffey
(who has a CustomerID of 1) is grouped at the beginning of the report.

17.	 Close the Wallingford Motors Customer Contact Report by clicking the document win-
dow’s Close button.

18.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Now, assume that Ben Griffey has changed his email address from Ben
.Griffey@somewhere.com to Ben.Griffey@elsewhere.com. In a well-formed relation, we
would have to make this change only once, but a quick examination of Figures AW-2-6
through AW-2-8 shows that Ben Griffey’s email address appears in multiple records. We
therefore have to change it in every record to avoid update problems. Unfortunately, it is
easy to miss one or more records, especially in large tables.

Updating Ben Griffey’s Email Address

1.	 In the Navigation Pane, double-click the Customer Contact Data Input Form object to
open it. Because Ben Griffey is the customer in the first record, his data is already in the
form.

2.	 Edit the Email address to read Ben.Griffey@elsewhere.com, as shown in Figure AW-2-9.
3.	 Click the Next Record button to move to the next record in the table. Again, the record

shows Ben Griffey’s data, so again edit the Email address to read Ben.Griffey@elsewhere.com.
4.	 Click the Next Record button to move to the next record in the table. For the third

time, the record shows Ben Griffey’s data, so again edit the Email address to read
Ben.Griffey@elsewhere.com.

5.	 Click the Next Record button to move to the next record in the table. For the fourth
time, the record shows Ben Griffey’s data, so again edit the Email address to read
Ben.Griffey@elsewhere.com.

Contact data for each
customer are grouped
together and sorted
by date

Figure AW-2-8

The Wallingford Motors Customer Contact Report

Chapter 2   The Relational Model   95

  6.	 Click the Next Record button to move to the next record in the table. Finally, another cus-
tomer’s data (the data for Jessica Christman’s contact on 7/19/2014) appears in the form,
so we assume that we have made all the necessary updates to the database records.

  7.	 Close the Customer Contact Data Input form by clicking the document window’s Close button.
  8.	 In the Navigation Pane, double-click the report Wallingford Motors Customer Contact

Report to open it.
  9.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
10.	 The Wallingford Motors Customer Contact Report now looks as shown in Figure AW-2-10.

Note that the email addresses shown for Ben Griffey are inconsistent—we missed one record
when we updated the table, and now we have inconsistent data. A modification error—in
this case an update error—has occurred.

11.	 Close the Wallingford Motors Customer Contact Report by clicking the document win-
dow’s Close button.

12.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.

This simple example shows how easily modification problems can occur in tables that
are not normalized. With a set of well-formed, normalized tables, this problem would not
have occurred.

Closing the WMCRM-Combined-Data Database

1.	 Click the Close button to close the database and exit Microsoft Access.

The email address
has been updated

The Next Record
button

Figure AW-2-9

The Customer Contact Data Input Form with the Updated Email Address

(Continued)

96   Part 1   Database Fundamentals

Working with Multiple Tables

The table structure for the CUSTOMER_CONTACT table in the WMCRM-Combined-
Data database is:

CUSTOMER_CONTACT (CustomerID, LastName, FirstName, Address, City, State,
ZIP, Phone, Fax, Email, Date, Type, Remarks)

Applying the normalization process discussed in this chapter, we will have the following set
of tables:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
Fax, Email)

CONTACT (ContactID, CustomerID, ContactDate, ContactType, Remarks)

with the referential integrity constraint:

CustomerID in CONTACT must exist in CustomerID in CUSTOMER

Note that we have modified a couple of column names in the CONTACT table—we are
using ContactDate instead of Date and ContactType instead of Type. We will discuss the
reason for this later in this section. Our task now is to build and populate the CONTACT
table and then to establish the relationship and referential integrity constraint between the
two tables.

First, we need to create and populate (insert data into) the CONTACT table,
which will contain the columns and column characteristics shown in the table in Figure
AW-2-11.6 The CustomerID column appears again in CONTACT, this time designated as a

6Although we are using it for simplicity in this example, a column such as Remarks (also often called
Comments or Notes) can cause problems in a database. For a complete discussion, see David M. Kroenke
and David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 13th edition (Upper
Saddle River, NJ: Prentice Hall, 2014).

A modification
problem has occurred.
Not all records were
updated with the new
email address, and
the database records
are now inconsistent

Figure AW-2-10

The Updated Wallingford Motors Customer Contact Report

Chapter 2   The Relational Model   97

foreign key. As discussed in this chapter, the term foreign key designates this column as the
link to the CUSTOMER table. The value in the CustomerID column of CONTACT tells
which customer was contacted. All we have to do is look up the value of CustomerID in the
CUSTOMER table.

Note that when we build the CONTACT table there is no “foreign key” setting. We
will set up the database relationship between CUSTOMER and CONTACT after we have
finished building the CONTACT table.

Note the following:

•	 Some new data types are being used: Number, Date/Time, and Memo.
•	 CustomerID must be set as a Number data type and specifically as a Long

Integer data type to match the data type Microsoft Access creates for the
AutoNumber data type in the CUSTOMER table.

•	 The Type column has only four allowed values: Phone, Fax, Email, and
Meeting. For now, we can simply input only these data values. You will learn
how to enforce the data restriction for this column in Chapter 3.

Creating the CONTACT Table

1.	 Open Microsoft Access 2013.
2.	 In the Recent list of database files, click WMCRM.accdb. The database file opens in

Microsoft Access.
3.	 Click the Create command tab.
4.	 Click the Table Design button.
5.	 The Table1 tabbed document window is displayed in Design view. Note that along

with the Table1 window a contextual tab named Table Tools is displayed and that this
tab adds a new command tab and ribbon, named Design, to the set of command tabs
displayed.

6.	 Using the steps we followed to create the CUSTOMER table in Chapter 1’s section of “The
Access Workbench,” begin to create the CONTACT table. The following steps detail only
new information that you need to know to complete the CONTACT table.

■■ Note:  When creating the CONTACT table, be sure to enter appropriate comments
in the Description column.

7.	 When creating the CustomerID column, set the data type to Number. Note that the default
Field Size setting for Number is Long Integer, so no change is necessary. Be sure to set the
Required property to Yes.

8.	 After creating the ContactID column, set it as the primary key of the table.

Figure AW-2-11

Database Column Characteristics for the CONTACT Table	

Column Name Type Key Required Remarks
ContactID AutoNumber Primary Key Yes Surrogate Key

CustomerlD Number Foreign Key Yes Long Integer

ContactDate Date/Time No Yes Short Date

ContactType Text (10) No Yes Allowed values are Phone, Fax,
Email, and Meeting

Remarks Memo No No

(Continued)

98   Part 1   Database Fundamentals

  9.	 When creating the ContactDate column, start by using the column name Date. As soon as
you enter the column name and try to move to the Data Type column, Microsoft Access dis-
plays a dialog box, warning you that Date is a reserved word, as shown in Figure AW-2-12.
Click the Cancel button, and change the column name to ContactDate.

■■ Note:  Normally, you should avoid reserved words such as Date and Time.
Generally, column names such as ContactDate are preferred, both to avoid reserved
words and to clarify exactly which date you are referring to, and that is why we
changed the column names in the CONTACT table.

10.	 When creating the ContactDate column, set the data type to Date/Time and set the
format to Short Date, as shown in Figure AW-2-13. Be sure to set the Required prop-
erty to Yes.

11.	 To name and save the CONTACT table, click the Save button in the Quick Access
Toolbar.

12.	 Type the table name CONTACT into the Save As dialog box text box, and then click the OK
button. The table is named and saved, and it now appears with the table name CONTACT.

13.	 To close the CONTACT table, click the Close button in the upper-right corner of the
tabbed document window. The CONTACT table now appears as a table object in the
Navigation Pane.

Creating Relationships Between Tables

In Microsoft Access, you build relationships between tables by using the Relationships
window, which you access by using the Database Tools | Relationships command. After a
relationship is created in the Relationships window, referential integrity constraints are set
in the Edit Relationships dialog box within that window by using the Enforce Referential
Integrity check box.

The column name
Date is a reserved
word—do not use
reserved words as
column names

Click the Cancel
button and revise the
column name

Figure AW-2-12

The Reserved Word Warning

Chapter 2   The Relational Model   99

Creating the Relationship Between the CUSTOMER and CONTACT Tables

1.	 Click the Database Tools command tab to display the Database Tools command groups, as
shown in Figure AW-2-14.

2.	 Click the Relationships button in the Show/Hide group. As shown in Figure AW-2-15, the
Relationships tabbed document window appears, together with the Show Table dialog box.
Note that along with the Relationships window, a contextual tab named Relationship Tools
is displayed and that this tab adds a new command tab named Design to the set of com-
mand tabs displayed.

3.	 In the Show Table dialog box, the CONTACT table is already selected. Click the Add
button to add CONTACT to the Relationships window.

4.	 In the Show Table dialog box, click the CUSTOMER table to select it. Click the Add
button to add CUSTOMER to the Relationships window.

5.	 In the Show Table dialog box, click the Close button to close the dialog box.
6.	 Rearrange and resize the table objects in the Relationships window using standard Windows

drag-and-drop techniques. Rearrange the CUSTOMER and CONTACT table objects until
they appear as shown in Figure AW-2-16. Now we are ready to create the relationship be-
tween the tables.

■■ Note:  A formal description of how to create a relationship between two tables is
“In the Relationships window, drag a primary key column and drop it on top of the
corresponding foreign key column.” It is easier to understand this after you have actu-
ally done it.

7.	 Click and hold the column name CustomerID in the CUSTOMER table and then
drag it over the column name CustomerID in the CONTACT table. Release the mouse
button, and the Edit Relationships dialog box appears, as shown in Figure AW-2-17.

■■ Note:  In CUSTOMER, CustomerID is the primary key, and in CONTACT,
CustomerID is the foreign key.

Select the Short Date
date format from the
drop-down list

Figure AW-2-13

Setting the Date Format

(Continued)

100   Part 1   Database Fundamentals

  8.	 Click the Enforce Referential Integrity check box.
  9.	 Click the Create button to create the relationship between CUSTOMER and CONTACT.

The relationship between the tables now appears in the Relationships window, as shown in
Figure AW-2-18.

10.	 To close the Relationships window, click the Close button in the upper-right corner of
the document window. A Microsoft Access warning dialog box appears, asking whether
you want to save changes to the layout of relationships. Click the Yes button to save the
changes and close the window.

At this point, we need to add data on customer contacts to the CONTACT table.
Using the CONTACT table in Datasheet view, as discussed earlier, we enter the data
shown in Figure AW-2-1 into the CONTACT table. Again, note that there is no customer

The DATABASE
TOOLS command tab

The Relationships
button

The Relationships
command group

Figure AW-2-14

The Database Tools Command Tab

The RELATIONSHIP
TOOLS contextual
command tab

The DESIGN
command tab

The Relationships
tabbed document
window

The Show Table
dialog box

Select a table name,
then click the Add
button to add the table
to the Relationships
window

Figure AW-2-15

The Relationships Window

Chapter 2   The Relational Model   101

with CustomerID of 2—this is because we deleted and reentered the data for Jessica
Christman in Chapter 1’s section of “The Access Workbench.” Also note that because
referential integrity is enabled, we cannot enter a CustomerID that does not already exist
in the CUSTOMER table. The CONTACT table with the data inserted looks as shown in
Figure AW-2-19. Be sure to close the table after the data have been entered.

The table objects
have been enlarged
and rearranged into
the arrangement
shown here

Click, drag, and drop
the CUSTOMER
CustomerID field
onto the CONTACT
CustomerID field

Figure AW-2-16

The Table Objects in the Relationships Window

The Edit
Relationships dialog
box

Click the Enforce
Referential Integrity
check box and then
click the Create button
to create the
relationship

Figure AW-2-17

The Edit Relationships Dialog Box

(Continued)

102   Part 1   Database Fundamentals

Using a Form That Includes Two Tables

In Chapter 1’s section of “The Access Workbench,” we created a data entry form for the
CUSTOMER table. Now we will create a Microsoft Access form that will let us work with
the combined data from both tables.

Creating a Form for Both the CUSTOMER and CONTACT Tables

1.	 Click the Create command tab.
2.	 Click the Form Wizard button in the Forms command group. The Form Wizard appears.
3.	 Select the CUSTOMER table in the Tables/Queries drop-down list. To add all the columns,

click the right-facing double-chevron button. Do not click the Next button yet.

Figure AW-2-19

Data in the CONTACT Table

The new relationship
now appears in the
Relationships window
diagram—note that
the line connects the
related fields

Figure AW-2-18

The Completed Relationship

Chapter 2   The Relational Model   103

  4.	 Select the CONTACT table in the Tables/Queries drop-down list. Individually select and
add the ContactDate, ContactType, and Remarks columns to the Selected Fields list by
using the right-facing single-chevron button. Now click the Next button.

■■ Note:  You have just created a set of columns from two tables that you want to ap-
pear on one form.

  5.	 When asked “How do you want to view your data?” use the default by CUSTOMER se-
lection because we want to see all contacts for each customer. Also use the selected Forms
with subforms option to treat the CONTACT data as a subform within the CUSTOMER
form. Click the Next button.

  6.	 When asked “What layout would you like for your subform?” click the Next button to use
the default Datasheet layout.

  7.	 When asked “What titles do you want for your form?” type the form title WMCRM
Customer Contacts Form into the Form: text box and the form title Contact Data into the
Subform: text box. Click the Finish button. The completed form appears.

  8.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane. The com-
pleted form is displayed as shown in Figure AW-2-20.

  9.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.
10.	 Close the form window.

Creating a Report That Includes Data from Two Tables

In this section, we will create a report that includes data from two or more tables. This
Microsoft Access report will let us use the combined data from both the CUSTOMER and
CONTACT tables.

Buttons for scrolling
through the CONTACT
records for this
customer

Buttons for scrolling
through the
CUSTOMER records

Figure AW-2-20

The Completed Form for CUSTOMER and CONTACT Data

(Continued)

104   Part 1   Database Fundamentals

Creating a Report for Both the CUSTOMER and CONTACT Tables

  1.	 Click the Create tab.
  2.	 Click the Report Wizard button to display the Report Wizard.
  3.	 Select the CUSTOMER table in the Tables/Queries drop-down list. One by one, click

LastName, FirstName, Phone, Fax, and Email to select each one, and then click the right-
facing single-chevron button to add each column to the Selected Fields list. Do not click
the Next button yet.

  4.	 Select the CONTACT table in the Tables/Queries drop-down list. Individually select
and add the ContactDate, ContactType, and Remarks columns to the Selected Fields
list by clicking the right-facing single-chevron button. Now click the Next button.

  5.	 When asked “How do you want to view your data?” click the Next button to use the de-
fault by CUSTOMER selection (in order to see all contacts for each customer).

  6.	 When asked “Do you want to add any grouping levels?” click the Next button to use the
default nongrouped column listing.

  7.	 We are now asked “What sort order do you want for detail records?” This is the sort order
for the CONTACT information. The most useful sorting order is by date, in ascending
order. Click the sort field 1 drop-down list arrow and select ContactDate. Leave the sort
order button set to Ascending. Click the Next button.

  8.	 We are now asked “How would you like to lay out your report?” We will use the default
setting of stepped layout, but click the Landscape orientation radio button to change the
report orientation to landscape. Then click the Next button.

  9.	 When asked “What title do you want for your report?” edit the report title to read
Wallingford Motors Customer Contacts Report. Leave the Preview the report radio button
selected. Click the Finish button. The completed report is displayed in Print Preview mode.

10.	 Click the Close Print Preview button to close Print Preview.
11.	 Click the Home command tab.
12.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane. The com-

pleted report is displayed as shown in Figure AW-2-21.

View gallery arrow
button—use this
button to access
Design view if needed

Figure AW-2-21

The Wallingford Motors Customer Contact Report

Chapter 2   The Relational Model   105

13.	 Although this may not be the best layout for the report, the Microsoft Access Form
Wizard has created a usable report with all columns correctly sized to display the infor-
mation (if there are any columns that are not correctly displayed use the Layout view
in the view gallery to make minor adjustments—this tool can be used to make basic
adjustments by simply clicking the report section you want to change). We will discuss
how to use report Design view to modify reports in Chapter 5’s section of “The Access
Workbench.”

14.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.
15.	 Click the document window’s Close button to close the report window.

Closing the Database and Exiting Microsoft Access

We have finished the work we need to do in this chapter’s “The Access Workbench.” As
usual, we finish by closing the database and Microsoft Access.

Closing the WMCRM Database and Exiting Microsoft Access

1.	 To close the WMCRM database and exit Microsoft Access 2013, click the Close button in
the upper-right corner of the Microsoft Access 2013 window.

The relational model is the most important standard in database processing today. It was
first published by E. F. Codd in 1970. Today, it is used for the design and implementation
of almost every commercial database.

An entity is something of importance to a user that needs to be represented in a data-
base. A relation is a two-dimensional table that has the characteristics listed in Figure 2-1.
In this book, and in the database world in general, the term table is used synonymously
with the term relation. Three sets of terminology are used for relational structures. The
terms table, row, and column are used most commonly, but file, record, and field are some-
times used in traditional data processing. Theorists also use the terms relation, tuple, and
attribute for the same three constructs. Sometimes these terms are mixed and matched.
Strictly speaking, a relation may not have duplicate rows; however, sometimes this condi-
tion is relaxed because eliminating duplicates can be a time-consuming process.

A key is one or more columns of a relation that is used to identify a row. A unique key
identifies a single row; a nonunique key identifies several rows. A composite key is a key that
has two or more attributes. A relation has one primary key, which must be a unique key. A
relation may also have additional unique keys, called candidate keys. A primary key is used to
represent the table in relationships, and many DBMS products use values of the primary key
to organize table storage. In addition, an index normally is constructed to provide fast access
via primary key values. An ideal primary key is short, numeric, and never changes.

A surrogate key is a unique numeric value that is appended to a relation to serve as the
primary key. Surrogate key values have no meaning to the user and are normally hidden on
forms, query results, and reports.

A foreign key is an attribute that is placed in a relation to represent a relationship. A
foreign key is the primary key of a table that is different from (foreign to) the table in which
it is placed. Primary and foreign keys may have different names, but they must use the same
data types and sets of values. A referential integrity constraint specifies that the values of a
foreign key be present in the primary key.

A null value occurs when no value has been given to an attribute. The problem with a
null value is that its meaning is ambiguous. It can mean that no value is appropriate, that

Summary

106   Part 1   Database Fundamentals

a value is appropriate but has not yet been chosen, or that a value is appropriate and has
been chosen but is unknown to the user. It is possible to eliminate null values by requiring
attribute values. (Another problem with null values will be discussed in the next chapter.)

A functional dependency occurs when the value of one attribute (or set of attributes)
determines the value of a second attribute (or set of attributes). The attribute on the left
side of a functional dependency is called the determinant. One way to view the purpose
of a relation is to say that the relation exists to store instances of functional dependencies.
Another way to define a primary (and candidate) key is to say that such a key is an attribute
that functionally determines all the other attributes in a relation.

Normalization is the process of evaluating a relation and, when necessary, breaking
the relation into two or more relations that are better designed and said to be well formed.
According to normalization theory, a relation is poorly structured if it has a functional
dependency that does not involve the primary key. Specifically, in a well-formed relation,
every determinant is a candidate key.

A process for normalizing relations into BNCF is shown on page 79, and a discussion
of multivalued dependencies and 4NF is found on pages 86–87. According to this process,
relations that have normalization problems are divided into two or more relations that do
not have such problems. Foreign keys are established between the old and new relations,
and referential integrity constraints are created. For reference, a brief discussion of all nor-
mal forms is presented on pages 88–89.

Key Terms
alternate key
attribute
AUTO_INCREMENT
Boyce-Codd Normal Form (BCNF)
candidate key
column
composite key
database schema
determinant
domain key/normal form (DK/NF)
entity
field
file
fifth normal form (5NF)
first normal form (1NF)

fourth normal form (4NF)
foreign key
functional dependency
functionally dependent
identity
identity increment
identity seed
is identity
key
multivalued dependency
nonunique key
normalization
normalization process
null value
primary key

record
referential integrity constraint
relation
row
second normal form (2NF)
SEQUENCE
surrogate key
synonyms
table
third normal form (3NF)
transitive dependency
tuple
unique key
well-formed relation

Review Questions
	  2.1	 Why is the relational model important?

	  2.2	 Define the term entity and give an example of an entity (other than the one from
this chapter).

	  2.3	 List the characteristics a table must have to be considered a relation.

	  2.4	 Give an example of a relation (other than one from this chapter).

	  2.5	 Give an example of a table that is not a relation (other than one from this chapter).

	  2.6	 Under what circumstances can an attribute of a relation be of variable length?

	  2.7	 Explain the use of the terms file, record, and field.

	  2.8	 Explain the use of the terms relation, tuple, and attribute.

Chapter 2   The Relational Model   107

	  2.9	 Under what circumstances can a relation have duplicate rows?

	2.10	 Define the term unique key and give an example.

	2.11	 Define the term nonunique key and give an example.

	2.12	 Give an example of a relation with a unique composite key.

	2.13	 Explain the difference between a primary key and a candidate key.

	2.14	 Describe four uses of a primary key.

	2.15	 What is a surrogate key, and under what circumstances would you use one?

	2.16	 How do surrogate keys obtain their values?

	2.17	 Why are the values of surrogate keys normally hidden from users on forms, queries,
and reports?

	2.18	 Explain the term foreign key and give an example.

	2.19	 Explain how primary keys and foreign keys are denoted in this book.

	2.20	 Define the term referential integrity constraint and give an example of one.

	2.21	 Explain three possible interpretations of a null value.

	2.22	 Give an example of a null value (other than one from this chapter) and explain
each of the three possible interpretations for that value.

	2.23	 Define the terms functional dependency and determinant, using an example not
from this book.

	2.24	 In the following equation, name the functional dependency and identify the
determinant(s):

Area = Length  Width
	2.25	 Explain the meaning of the following expression:

A → (B, C)
		 Given this expression, tell if it is also true that:

A → B
and:

A → C
	2.26	 Explain the meaning of the following expression:

(D, E) → F
		 Given this expression, tell if it is also true that:

D → F
and:

E → F
	2.27	 Explain the differences in your answers to questions 2.25 and 2.26.

	2.28	 Define the term primary key in terms of functional dependencies.

	2.29	 If you assume that a relation has no duplicate data, how do you know there is al-
ways at least one primary key?

	2.30	 How does your answer to question 2.29 change if you allow a relation to have du-
plicate data?

	2.31	 In your own words, describe the nature and purpose of the normalization process.

	2.32	 Examine the data in the Veterinary Office List—Version One in Figure 1-30 (see
page 55) and state assumptions about functional dependencies in that table. What
is the danger of making such conclusions on the basis of sample data?

	2.33	 Using the assumptions you stated in your answer to question 2.32, what are the
determinants of this relation? What attribute(s) can be the primary key of this
relation?

108   Part 1   Database Fundamentals

	2.34	 Describe a modification problem that occurs when changing data in the relation in
question 2.32 and a second modification problem that occurs when deleting data in
this relation.

	2.35	 Examine the data in the Veterinary Office List—Version Two in Figure 1-31 (see
page 56) and state assumptions about functional dependencies in that table.

	2.36	 Using the assumptions you stated in your answer to question 2.35, what are the deter-
minants of this relation? What attribute(s) can be the primary key of this relation?

	2.37	 Explain a modification problem that occurs when changing data in the relation in
question 2.35 and a second modification problem that occurs when deleting data in
this relation.

Exercises
	2.38	 Apply the normalization process to the Veterinary Office List—Version One rela-

tion shown in Figure 1-30 (see page 55) to develop a set of normalized relations.
Show the results of each of the steps in the normalization process.

	2.39	 Apply the normalization process to the Veterinary Office List—Version Two rela-
tion shown in Figure 1-31 (see page 56) to develop a set of normalized relations.
Show the results of each of the steps in the normalization process.

	2.40	 What is a multivalued dependency, and how is it resolved by 4NF? To answer these
questions, consider the following relation:

STUDENT(StudentNumber, StudentName, SiblingName, Major)

Assume that the values of SiblingName are the names of all of a given student’s
brothers and sisters; also assume that students have at most one major.

A.	 Show an example of this relation for two students, one of whom has three sib-
lings and the other of whom has only two siblings.

B.	 List the candidate keys in this relation.

C.	 State the functional dependencies in this relation.

D.	 Explain why this relation does not meet the relational design criteria set out in
this chapter (that is, why this is not a well-formed relation).

E.	 Define and discuss 4NF, and how 4NF can be used to allow a set of well-
formed relations.

F.	 Divide this relation into a set of relations that meet the relational design criteria
(that is, that are well formed). Specify the type of final normal form for each
the final relations.

	2.41	 What is a multivalued dependency, and how is it resolved by 4NF? To answer these
questions, alter question 2.40 to allow students to have multiple majors. In this
case, the relational structure is:

STUDENT (StudentNumber, StudentName, SiblingName, Major)

A.	 Show an example of this relation for two students, one of whom has three sib-
lings and the other of whom has one sibling. Assume that each student has a
single major.

B.	 Show the data changes necessary to add a second major for only the first
student.

Chapter 2   The Relational Model   109

C.	 Based on your answer to part B, show the data changes necessary to add a sec-
ond major for the second student.

D.	 Explain the differences in your answers to parts B and C. Comment on the
desirability of this situation.

E.	 Define and discuss 4NF, and how 4NF can be used to allow a set of well-
formed relations.

F.	 Divide this relation into a set of well-formed relations. Specify the type of nor-
mal form for each of the final relations.

	2.42	 The text states that you can argue that “the only reason for having relations is to
store instances of functional dependencies.” Explain, in your own words, what this
means.

	2.43	 Consider a table named ORDER_ITEM, with data as shown in Figure 2-26. The
schema for ORDER_ITEM is:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price)

where SKU is a “Stocking Keeping Unit” number, which is similar to a part num-
ber. Here it indicates which product was sold on each line of the table. Note that
one OrderNumber must have at least one SKU associated with it, and may have
several. Use this table and the detailed discussion of normal forms on pages 88–89
to answer the following questions.

A.	 Define 1NF. Is ORDER_ITEM in 1NF? If not, why not, and what would have
to be done to put it into 1NF? Make any changes necessary to put ORDER_
ITEM into 1NF. If this step requires you to create an additional table, make
sure that the new table is also in 1NF.

B.	 Define 2NF. Now that ORDER_ITEM is in 1NF, is it also in 2NF? If not, why
not, and what would have to be done to put it into 2NF? Make any changes
necessary to put ORDER_ITEM into 2NF. If this step requires you to create
an additional table, make sure that the new table is also in 2NF.

C.	 Define 3NF. Now that ORDER_ITEM is in 2NF, is it also in 3NF? If not, why
not, and what would have to be done to put it into 3NF? Make any changes
necessary to put ORDER_ITEM into 3NF. If this step requires you to create
an additional table, make sure that the new table and any other tables created
in previous steps are also in 3NF.

D.	 Define BCNF. Now that ORDER_ITEM is in 3NF, is it also in BCNF? If not,
why not, and what would have to be done to put it into BCNF? Make any
changes necessary to put ORDER_ITEM into BCNF. If this step requires you
to create an additional table, make sure that the new table and any other tables
created in previous steps are also in BCNF.

Figure 2-26

The ORDER_ITEM Table

110   Part 1   Database Fundamentals

Access Workbench Key Terms
Edit Relationships dialog box
Enforce Referential Integrity check box

Relationships window

Access Workbench Exercises
In the “Access Workbench Exercises” in Chapter 1, we created a database for the
Wedgewood Pacific Corporation (WPC) of Seattle, Washington, and created and popu-
lated the EMPLOYEE table. In this exercise, we will build the rest of the tables needed for
the database, create the referential integrity constraints between them, and populate them.

The full set of normalized tables for the WPC database is as follows:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)
PROJECT (ProjectID, ProjectName, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The primary key of DEPARTMENT is DepartmentName, the primary key of EMPLOYEE
is EmployeeNumber, and the primary key of PROJECT is ProjectID. Note that the
EMPLOYEE table is the same as the table we have created, except that Department is
now a foreign key. In EMPLOYEE and PROJECT, Department is a foreign key that refer-
ences DepartmentName in DEPARTMENT. Note that a foreign key does not need to have
the same name as the primary key to which it refers. The primary key of ASSIGNMENT
is the composite (ProjectID, EmployeeNumber). ProjectID is also a foreign key that ref-
erences ProjectID in PROJECT, and EmployeeNumber is a foreign key that references
EmployeeNumber in EMPLOYEE.

The referential integrity constraints are:

Department in EMPLOYEE must exist in DepartmentName in DEPARTMENT

Department in PROJECT must exist in DepartmentName in DEPARTMENT
ProjectID in ASSIGNMENT must exist in ProjectID in PROJECT
EmployeeNumber in ASSIGNMENT must exist in EmployeeNumber in EMPLOYEE

	 A.	 Figure 2-27 shows the column characteristics for the WPC DEPARTMENT
table. Using the column characteristics, create the DEPARTMENT table in the
WPC.accdb database.

Figure 2-27

Column Characteristics for the DEPARTMENT Table

Column Name Type Key Required Remarks
DepartmentName Text (35) Primary Key Yes

BudgetCode Text (30) No Yes

OfficeNumber Text (15) No Yes

Phone Text (12) No Yes

WPC.accdb

Chapter 2   The Relational Model   111

	 B.	 For the DEPARTMENT table, create a data input form named WPC Department
Data Form. Make any necessary adjustments to the form so that all data display
properly. Use this form to enter into your DEPARTMENT table the data in the
DEPARTMENT table shown in Figure 2-28.

	 C.	 Create the relationship and referential integrity constraint between
DEPARTMENT and EMPLOYEE. Enable enforcing of referential integrity and
enable cascading of data updates, but do not enable cascading of deletions.

	 D.	 Figure 2-29 shows the column characteristics for the WPC PROJECT table. Using
the column characteristics, create the PROJECT table in the WPC.accdb database.

	 E.	 Create the relationship and referential integrity constraint between
DEPARTMENT and PROJECT. Enable enforcing of referential integrity and en-
able cascading of data updates, but do not enable cascading of deletions.

	 F.	 For the PROJECT table, create a data input form named WPC Project Data
Form. Make any necessary adjustments to the form so that all data display prop-
erly. Use this form to enter into your PROJECT table the data in the PROJECT
table shown in Figure 2-30.

Figure 2-28

WPC DEPARTMENT Data

DepartmentName BudgetCode OfficeNumber Phone
Administration BC-100-10 BLDG01-300 360-285-8100

Legal BC-200-10 BLDG01-200 360-285-8200

Accounting BC-300-10 BLDG01-100 360-285-8300

Finance BC-400-10 BLDG01-140 360-285-8400

Human Resources BC-500-10 BLDG01-180 360-285-8500

Production BC-600-10 BLDG02-100 360-287-8600

Marketing BC-700-10 BLDG02-200 360-287-8700

InfoSystems BC-800-10 BLDG02-270 360-287-8800

(Continued)

Figure 2-29

Column Characteristics for the PROJECT Table

Column Name Type Key Required Remarks
ProjectID Number Primary Key Yes Long Integer

ProjectName Text (50) No Yes

Department Text (35) Foreign Key Yes

MaxHours Number No Yes Double, fixed, 2 decimal places

StartDate Date/Time No No Medium date

EndDate Date/Time No No Medium date

112   Part 1   Database Fundamentals

	 G.	 When creating and populating the DEPARTMENT table, the data were entered
into the table before the referential integrity constraint with EMPLOYEE was
created, but when creating and populating the PROJECT table the referential
integrity constraint was created before the data were entered. Why did the order
of the steps differ? Which order is normally the correct order to use?

	 H.	 Figure 2-31 shows the column characteristics for the WPC ASSIGNMENT
table. Using the column characteristics, create the ASSIGNMENT table in the
WPC.accdb database.

	 I.	 Create the relationship and referential integrity constraint between
ASSIGNMENT and PROJECT and between ASSIGNMENT and EMPLOYEE.
When creating both relations, enable enforcing of referential integrity, but do not
enable cascading of data updates or cascading of data from deleted records.

	 J.	 For the ASSIGNMENT table, create a data input form named WPC Assignment
Data Form. Make any necessary adjustments to the form so that all data display
properly. Use this form to enter into your ASSIGNMENT table the data in the
ASSIGNMENT table shown in Figure 2-32.

	 K.	 When creating the relationships between the database tables, we allowed the cas-
cading of data changes between some tables but not between others. (Cascading
means that changes to data in one table are also made to the other table in the
relationship.) The value of a primary key changes in this case, and that change

Figure 2-31

Column Characteristics for the ASSIGNMENT Table

Column Name Type Key Required Remarks
ProjectID Number Primary Key,

Foreign Key
Yes Long Integer

EmployeeNumber Number Primary Key,
Foreign Key

Yes Long Integer

HoursWorked Number No No Double, fixed,
1 decimal places

Figure 2-30

WPC PROJECT Data

ProjectID ProjectName Department MaxHours StartDate EndDate
1000 2014 Q3 Product Plan Marketing 135.00 10-MAY-14 15-JUN-14

1100 2014 Q3 Portfolio Analysis Finance 120.00 05-JUL-14 25-JUL-14

1200 2014 Q3 Tax Preparation Accounting 145.00 10-AUG-14 15-OCT-14

1300 2014 Q4 Product Plan Marketing 150.00 10-AUG-14 15-SEP-14

1400 2014 Q4 Portfolio Analysis Finance 140.00 05-OCT-14 NULL

Chapter 2   The Relational Model   113

Figure 2-32

WPC ASSIGNMENT Data

ProjectID EmployeeNumber HoursWorked
1000 1 30.0

1000 8 75.0

1000 10 55.0

1100 4 40.0

1100 6 45.0

1200 1 25.0

1200 2 20.0

1200 4 45.0

1200 5 40.0

1300 1 35.0

1300 8 80.0

1300 10 50.0

1400 4 15.0

1400 5 10.0

1400 6 27.5

is then made in the values of the matching foreign key. Why did we enable cas-
cading of related field values between (1) DEPARTMENT and EMPLOYEE
and (2) DEPARTMENT and PROJECT but not for (3) EMPLOYEE and
ASSIGNMENT and (4) PROJECT and ASSIGNMENT?

	 L.	 For both the DEPARTMENT and EMPLOYEE tables, create a data input form
named WPC Department Employee Data Form. This form should show all the
employees in each department.

	 M.	 Create a report named Wedgewood Pacific Corporation Department Employee
Report that presents the data contained in your DEPARTMENT and
EMPLOYEE tables. The report should group employees by department. Print
out a copy of this report.

Regional Labs Case Questions
Regional Labs is a company that conducts research and development work on a contract
basis for other companies and organizations. Figure 2-33 shows data that Regional Labs
collects about projects and the employees assigned to them.

This data is stored in a relation (table) named PROJECT:

PROJECT (ProjectID, EmployeeName, EmployeeSalary)

114   Part 1   Database Fundamentals

A.	 Assuming that all functional dependencies are apparent in this data, which of the fol-
lowing are true?

1.	 ProjectID → EmployeeName
2.	 ProjectID → EmployeeSalary
3.	 (ProjectID, EmployeeName) → EmployeeSalary
4.	 EmployeeName → EmployeeSalary
5.	 EmployeeSalary → ProjectID
6.	 EmployeeSalary → (ProjectID, EmployeeName)

B.	 What is the primary key of PROJECT?

C.	 Are all the nonkey attributes (if any) dependent on the primary key?

D.	 In what normal form is PROJECT?

E.	 Describe two modification anomalies that affect PROJECT.

F.	 Is ProjectID a determinant? If so, based on which functional dependencies in part A?

G.	 Is EmployeeName a determinant? If so, based on which functional dependencies in
part A?

H.	 Is (ProjectID, EmployeeName) a determinant? If so, based on which functional depen-
dencies in part A?

  I.	 Is EmployeeSalary a determinant? If so, based on which functional dependencies in
part A?

J.	 Does this relation contain a transitive dependency? If so, what is it?

K.	 Redesign the relation to eliminate modification anomalies.

Figure 2-33

Sample Data for
Regional Labs

 Garden Glory Project Questions

Figure 2-34 shows data that Garden Glory collects about properties and services.

A.	 Using these data, state assumptions about functional dependencies among the columns
of data. Justify your assumptions on the basis of these sample data and also on the basis
of what you know about service businesses.

B.	 Given your assumptions in part A, comment on the appropriateness of the following
designs:

1.	 PROPERTY (PropertyName, PropertyType, Street, City, Zip, ServiceDate,
  Description, Amount)

Chapter 2   The Relational Model   115

Figure 2-34

Sample Data for Garden Glory

2.	 PROPERTY (PropertyName, PropertyType, Street, City, Zip, ServiceDate,
  Description, Amount)

3.	 PROPERTY (PropertyName, PropertyType, Street, City, Zip, ServiceDate,
  Description, Amount)

4.	 PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, Zip,
  ServiceDate, Description, Amount)

5.	 PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, Zip,
  ServiceDate, Description, Amount)

6.	 PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, Zip,
  ServiceDate)

and:

	 SERVICE (ServiceDate, Description, Amount)

7.	 PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, Zip,
  ServiceDate)

and:

	 SERVICE (ServiceID, ServiceDate, Description, Amount)

8.	 PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, Zip,
  ServiceDate)

and:

	 SERVICE (ServiceID, ServiceDate, Description, Amount, PropertyID)

9.	 PROPERTY (PropertyID, PropertyName, PropertyType, Street,
  City, Zip)

and:

	 SERVICE (ServiceID, ServiceDate, Description, Amount, PropertyID)

C.	 Suppose Garden Glory decides to add the following table:

	 SERVICE_FEE (PropertyID, ServiceID, Description, Amount)

Add this table to what you consider to be the best design in your answer to part B.
Modify the tables from part B as necessary to minimize the amount of data duplication.
Will this design work for the data in Figure 2-34? If not, modify the design so that this
data will work. State the assumptions implied by this design.

116   Part 1   Database Fundamentals

 The Queen Anne Curiosity Shop Project Questions

Figure 2-35 shows typical sales data for The Queen Anne Curiosity Shop, and Figure 2-36
shows typical purchase data.

A.	 Using these data, state assumptions about functional dependencies among the columns
of data. Justify your assumptions on the basis of these sample data and also on the basis
of what you know about retail sales.

B.	 Given your assumptions in part A, comment on the appropriateness of the following
designs:

1.	 CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
  InvoiceItem, Price, Tax, Total)

2.	 CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
  InvoiceItem, Price, Tax, Total)

3.	 CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
  InvoiceItem, Price, Tax, Total)

4.	 CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
  InvoiceItem, Price, Tax, Total)

Figure 2-35

Sample Sales Data for The Queen Anne Curiosity Shop

LastName FirstName Phone InvoiceDate InvoiceItem Price Tax Total
Shire Robert 206-524-2433 14-Dec-14 Antique Desk 3,000.00 249.00 3,249.00

Shire Robert 206-524-2433 14-Dec-14 Antique Desk
Chair

500.00 41.50 541.50

Goodyear Katherine 206-524-3544 15-Dec-14 Dining Table
Linens

1,000.00 83.00 1,083.00

Bancroft Chris 425-635-9788 15-Dec-14 Candles 50.00 4.15 54.15

Griffith John 206-524-4655 23-Dec-14 Candles 45.00 3.74 48.74

Shire Robert 206-524-2433 5-Jan-15 Desk Lamp 250.00 20.75 270.75

Tierney Doris 425-635-8677 10-Jan-15 Dining Table
Linens

750.00 62.25 812.25

Anderson Donna 360-538-7566 12-Jan-15 Book Shelf 250.00 20.75 270.75

Goodyear Katherine 206-524-3544 15-Jan-15 Antique Chair 1,250.00 103.75 1,353.75

Goodyear Katherine 206-524-3544 15-Jan-15 Antique Chair 1,750.00 145.25 1,895.25

Tierney Doris 425-635-8677 25-Jan-15 Antique Candle
Holders

350.00 29.05 379.05

 James River Jewelry Project Questions

The James River Jewelry project questions are available in online Appendix D, which can
be downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

www.pearsonhighered.com/kroenke

Chapter 2   The Relational Model   117

5.	 CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
  InvoiceItem, Price, Tax, Total)

6.	 CUSTOMER (LastName, FirstName, Phone, Email)

and:

	 SALE (InvoiceDate, InvoiceItem, Price, Tax, Total)

7.	 CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate)

and:

	 SALE (InvoiceDate, InvoiceItem, Price, Tax, Total)

8.	 CUSTOMER (LastName, FirstName, Phone, Email)

and:

SALE (InvoiceDate, InvoiceItem, Price, Tax, Total, LastName, FirstName)

C.	 Modify what you consider to be the best design in part B to include surrogate ID col-
umns called CustomerID and SaleID. How does this improve the design?

D.	 Modify the design in part C by breaking SALE into two relations named SALE and
SALE_ITEM. Modify columns and add additional columns as you think necessary.
How does this improve the design?

E.	 Given your assumptions, comment on the appropriateness of the following designs:

1.	 PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor, Phone)

2.	 PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor, Phone)

3.	 PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor, Phone)

Figure 2-36

Sample Purchase Data for The Queen Anne Curiosity Shop

PurchaseItem PurchasePrice PurchaseDate Vendor Phone
Antique Desk 1,800.00 7-Nov-14 European Specialties 206-325-7866

Antique Desk 1,750.00 7-Nov-14 European Specialties 206-325-7866

Antique Candle Holders 210.00 7-Nov-14 European Specialties 206-325-7866

Antique Candle Holders 200.00 7-Nov-14 European Specialties 206-325-7866

Dining Table Linens 600.00 14-Nov-14 Linens and Things 206-325-6755

Candles 30.00 14-Nov-14 Linens and Things 206-325-6755

Desk Lamp 150.00 14-Nov-14 Lamps and Lighting 206-325-8977

Floor Lamp 300.00 14-Nov-14 Lamps and Lighting 206-325-8977

Dining Table Linens 450.00 21-Nov-14 Linens and Things 206-325-6755

Candles 27.00 21-Nov-14 Linens and Things 206-325-6755

Book Shelf 150.00 21-Nov-14 Harrison, Denise 425-746-4322

Antique Desk 1,000.00 28-Nov-14 Lee, Andrew 425-746-5433

Antique Desk Chair 300.00 28-Nov-14 Lee, Andrew 425-746-5433

Antique Chair 750.00 28-Nov-14 New York Brokerage 206-325-9088

Antique Chair 1,050.00 28-Nov-14 New York Brokerage 206-325-9088

118   Part 1   Database Fundamentals

4.	 PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor, Phone)

5.	 PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate)

and:

	 VENDOR (Vendor, Phone)

6.	 PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate,Vendor)

and:

	 VENDOR (Vendor, Phone)

7.	 PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor)

and:

	 VENDOR (Vendor, Phone)

F.	 Modify what you consider to be the best design in part E to include surrogate ID col-
umns called PurchaseID and VendorID. How does this improve the design?

G.	 The relations in your design from part D and part F are not connected. Modify the
database design so that sales data and purchase data are related.

119119

Chapter 3

T his chapter describes and discusses Structured
Query Language (SQL). SQL is not a complete pro-
gramming language; rather, it is a data sublanguage.

SQL consists only of constructs for defining and processing
a database. To obtain a full programming language, SQL
statements must be embedded in scripting languages, such
as VBScript, or in programming languages, such as Java or
C#. SQL statements also can be submitted interactively, us-
ing a DBMS-supplied command prompt.

SQL was developed by the IBM Corporation in the late
1970s, and successive versions were endorsed as na-
tional standards by the American National Standards Institute
(ANSI) in 1986, 1989, and 1992. The 1992 version is
sometimes referred to as SQL-92 or sometimes ANSI-
92 SQL. In 1999, SQL:1999 (also referred to as SQL3),
which incorporated some object-oriented concepts, was
released. This was followed by the release of SQL:2003
in 2003, SQL:2006 in 2006, SQL:2008 in 2008, and,
most recently, SQL:2011 in 2011. Each of these added
new features or extended existing SQL features, includ-
ing SQL support for Extensible Markup Language (XML),
which is discussed in Chapter 7, and, in SQL:2008, the
SQL TRUNCATE TABLE and SQL MERGE statements. SQL
has also been endorsed as a standard by the International
Organization for Standardization (ISO) (and, no, that’s not a
typo—the acronym is ISO, not IOS!). Our discussion here
focuses on common language features that have been in
SQL since SQL-92 but does include some features from
SQL:2003 and SQL:2008.1

1For more information about the history and development of SQL, see the
Standardization section of the Wikipedia article on SQL. Wikipedia also has
articles of some of the named versions of SQL. For example, see the article on
SQL:2008 for a discussion of the features added to SQL:2008.

Structured Query
Language

•	 Learn basic SQL statements
for creating database structures

•	 Learn basic SQL statements for
adding data to a database

•	 Learn basic SQL SELECT statements
and options for processing a single
table

•	 Learn basic SQL SELECT statements
for processing multiple tables with
subqueries

•	 Learn basic SQL SELECT statements for
processing multiple tables with joins

•	 Learn basic SQL statements for modify-
ing and deleting data from a database

•	 Learn basic SQL statements for
modifying and deleting database
tables and constraints

Chapter Objectives

120   Part 1   Database Fundamentals

SQL is text oriented. It was developed long before the graphical user inter-
face (GUI) became common, and requires only a text processor. Today, Microsoft
Access, Microsoft SQL Server, Oracle Database, MySQL, and other DBMS
products provide GUI tools for performing many of the tasks that are performed
using SQL. However, the key phrase in that last sentence is many of. You can-
not do everything with graphic tools that you can do with SQL. Furthermore, to
generate SQL statements dynamically in program code, you must use SQL.

You will learn how to use SQL with Microsoft Access in this chapter’s
“The Access Workbench.” Access uses SQL but hides it behind the scenes,
presenting a variant of the Query by Example (QBE) GUI for general use.
Although knowledge of SQL is not a requirement for using Access, you will
be a stronger and more effective Access developer if you know SQL.

SQL statements are commonly divided into categories, five of which are
of interest to us here:

•	Data definition language (DDL) statements, which are used for creating tables,
relationships, and other structures

•	Data manipulation language (DML) statements, which are used for querying,
inserting, modifying, and deleting data. One component of SQL DML is SQL
view, which are discussed in Appendix E. Views are used to create predefined
queries.2

•	SQL/Persistent stored modules (SQL/PSM) statements, which extend SQL by add-
ing procedural programming capabilities, such as variables and flow-of-control
statements, that provide some programmability within the SQL framework.

•	Transaction control language (TCL) statements, which are used to mark transac-
tion boundaries and control transaction behavior.

•	Data control language (DCL) statements, which are used to grant database
permissions (or to revoke those permissions) to users and groups, so that the
users or groups can perform various operations on the data in the database.

In this chapter, we discuss SQL DDL and DML. Additional SQL DML
(SQL views) and SQL/PSM are discussed in Appendix E, and SQL TCL and
DCL are discussed in Chapter 6.

2Queries by themselves are sometimes considered to be another major category of SQL commands, but we
do not make that distinction in this book. For more details, see the Wikipedia article on SQL.

The Wedgewood Pacific Corporation (WPC), founded in 1957 in Seattle, Washington,
has grown into an internationally recognized organization. The company is located
in two buildings. One building houses the Administration, Accounting, Finance, and
Human Resources departments, and the second houses the Production, Marketing, and
Information Systems departments. The company database contains data about employees,
departments, projects, assets (such as computer equipment), and other aspects of company
operations.

An Example Database

Chapter 3   Structured Query Language   121

In this chapter, we use an example database for WPC that has the following four relations:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)
PROJECT (ProjectID, ProjectName, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The primary key of DEPARTMENT is DepartmentName, the primary key of EMPLOYEE
is EmployeeNumber, and the primary key of PROJECT is ProjectID. In EMPLOYEE and
PROJECT, Department is a foreign key that references DepartmentName in DEPARTMENT.
Remember that a foreign key does not need to have the same name as the primary key to which
it refers. The primary key of ASSIGNMENT is the composite (ProjectID, EmployeeNumber).
ProjectID is also a foreign key that references ProjectID in PROJECT, and EmployeeNumber
is a foreign key that references EmployeeNumber in EMPLOYEE.

The referential integrity constraints are:

Department in EMPLOYEE must exist in Department in DEPARTMENT
Department in PROJECT must exist in Department in DEPARTMENT
ProjectID in ASSIGNMENT must exist in ProjectID in PROJECT
EmployeeNumber in ASSIGNMENT must exist in EmployeeNumber in EMPLOYEE

An illustration of these tables in Microsoft Access 2013 and the database column characteristics
for these tables are shown in Figure 3-1. Sample data for these relations are shown in Figure 3-2.

(a) The WPC Tables in Microsoft Access 2013

Figure 3-1

Database Column Characteristics for the WPC Database

(continued)

122   Part 1   Database Fundamentals

Column Name Type Key Required Remarks
DepartmentName Text (35) Primary Key Yes

BudgetCode Text (30) No Yes

OfficeNumber Text (15) No Yes

Phone Text (12) No Yes

(b) DEPARTMENT Table

Column Name Type Key Required Remarks
EmployeeNumber AutoNumber Primary Key Yes Surrogate Key

FirstName Text (25) No Yes

LastName Text (25) No Yes

Department Text (35) Foreign Key Yes Links to DepartmentName in
DEPARTMENT

Phone Text (12) No No

Email Text (100) No Yes

(c) EMPLOYEE Table

Column Name Type Key Required Remarks
ProjectID Number Primary Key Yes Long Integer

ProjectName Text (50) No Yes

Department Text (35) Foreign Key Yes Links to DepartmentName in
DEPARTMENT

MaxHours Number No Yes Double

StartDate Date No No

EndDate Date No No

(d) PROJECT Table

(e) ASSIGNMENT Table

Column Name Type Key Required Remarks
ProjectID Number Primary Key,

Foreign Key
Yes Long Integer

Links to ProjectID in PROJECT

EmployeeNumber Number Primary Key,
Foreign Key

Yes Long Integer
Links to EmployeeNumber in EMPLOYEE

HoursWorked Number No No Double

Figure 3-1  Continued

Chapter 3   Structured Query Language   123

Figure 3-2

Sample Data for the WPC Database

DepartmentName BudgetCode OfficeNumber Phone
Administration BC-100-10 BLDG01-300 360-285-8100

Legal BC-200-10 BLDG01-200 360-285-8200

Accounting BC-300-10 BLDG01-100 360-285-8300

Finance BC-400-10 BLDG01-140 360-285-8400

Human Resources BC-500-10 BLDG01-180 360-285-8500

Production BC-600-10 BLDG02-100 360-287-8600

Marketing BC-700-10 BLDG02-200 360-287-8700

InfoSystems BC-800-10 BLDG02-270 360-287-8800

(a) DEPARTMENT Table

Employee
Number

FirstName

LastName

Department

Phone

Email

1 Mary Jacobs Administration 360-285-8110 Mary.Jacobs@WPC.com

2 Rosalie Jackson Administration 360-285-8120 Rosalie.Jackson@WPC.com

3 Richard Bandalone Legal 360-285-8210 Richard.Bandalone@WPC.com

4 Tom Caruthers Accounting 360-285-8310 Tom.Caruthers@WPC.com

5 Heather Jones Accounting 360-285-8320 Heather.Jones@WPC.com

6 Mary Abernathy Finance 360-285-8410 Mary.Abernathy@WPC.com

7 George Smith Human Resources 360-285-8510 George.Smith@WPC.com

8 Tom Jackson Production 360-287-8610 Tom.Jackson@WPC.com

9 George Jones Production 360-287-8620 George.Jones@WPC.com

10 Ken Numoto Marketing 360-287-8710 Ken.Numoto@WPC.com

11 James Nestor InfoSystems James.Nestor@WPC.com

12 Rick Brown InfoSystems 360-287-8820 Rick.Brown@WPC.com

(b) EMPLOYEE Table

ProjectID ProjectName Department MaxHours StartDate EndDate
1000 2014 Q3 Product Plan Marketing 135.00 10-MAY-14 15-JUN-14

1100 2014 Q3 Portfolio Analysis Finance 120.00 05-JUL-14 25-JUL-14

1200 2014 Q3 Tax Preparation Accounting 145.00 10-AUG-14 15-OCT-14

1300 2014 Q4 Product Plan Marketing 150.00 10-AUG-14 15-SEP-14

1400 2014 Q4 Portfolio Analysis Finance 140.00 05-OCT-14

(c) PROJECT Table
(continued)

124   Part 1   Database Fundamentals

ProjectID EmployeeNumber HoursWorked
1000 1 30.0

1000 8 75.0

1000 10 55.0

1100 4 40.0

1100 6 45.0

1200 1 25.0

1200 2 20.0

1200 4 45.0

1200 5 40.0

1300 1 35.0

1300 8 80.0

1300 10 50.0

1400 4 15.0

1400 5 10.0

1400 6 27.5

(d) ASSIGNMENT Table

Figure 3-2  Continued

In this database, each row of DEPARTMENT is potentially related to many rows of
EMPLOYEE and PROJECT. Similarly, each row of PROJECT is potentially related to
many rows of ASSIGNMENT, and each row of EMPLOYEE is potentially related to many
rows of ASSIGNMENT.

Finally, assume the following rules, which are called business rules:

•	If an EMPLOYEE row is to be deleted and that row is connected to any
ASSIGNMENT, the EMPLOYEE row deletion will be disallowed.

•	If a PROJECT row is deleted, then all the ASSIGNMENT rows that are connected
to the deleted PROJECT row will also be deleted.

The business sense of these rules is as follows:

•	If an EMPLOYEE row is deleted (for example, if the employee is transferred),
then someone must take over that employee’s assignments. Thus, the application
needs someone to reassign assignments before deleting the employee row.

•	If a PROJECT row is deleted, then the project has been canceled, and it is unnec-
essary to maintain records of assignments to that project.

These rules are typical business rules. You will learn more about such rules in
Chapter 5.

“Does Not Work with Microsoft Access ANSI-89 SQL”
If you have completed the end-of-chapter “Access Workbench Exercises” for
Chapters 1 and 2, you will recognize the database we’re using in this chapter as the
Wedgewood Pacific Corporation database from those exercises. You can use that

Chapter 3   Structured Query Language   125

database to try out the SQL commands in this chapter. However, be warned that not all
standard SQL syntax works in Access.

As mentioned previously, our discussion of SQL is based on SQL features present in
SQL standards since the ANSI SQL-92 standard (which Microsoft refers to as ANSI-92
SQL). Unfortunately, Microsoft Access defaults to the earlier SQL-89 version—Microsoft
calls it ANSI-89 SQL or Microsoft Jet SQL (after the Microsoft Jet DBMS used by Access).
ANSI-89 SQL differs significantly from SQL-92, and therefore some features of the
SQL-92 language will not work in Access.

Microsoft Access 2013 (and the earlier Microsoft Access 2003, 2007, and 2010 ver-
sions) does contain a setting that allows you to use SQL-92 instead of the default ANSI-89
SQL. Microsoft included this option to allow Access tools such as forms and reports to be
used in application development for Microsoft SQL Server, which supports newer SQL
standards. To set the option, after you have opened Microsoft Access 2013, click the File
command tab and then click the Options command to open the Access Options dialog
box. In the Access Options dialog box, click the Object Designers button to display the
Access Options Object Designers page, as shown in Figure 3-3.

As shown in Figure 3-3, the SQL Server Compatible Syntax (ANSI 92) options con-
trol which version of SQL is used in an Access 2013 database. If you check the This data-
base check box, you will use SQL-92 syntax in the current database (if you open Microsoft
Access without opening a database, this option is grayed out and not available). Or you can
check the Default for new databases check box to make SQL-92 syntax the default for all
new databases you create.

The Object
Designers button

The SQL Server
Compatible Syntax
(ANSI 92) option
controls the use of
SQL-89 versus
SQL-92 syntax in
Access queries

Use this check box
to use SQL-92
syntax in just the
open database

Use this check box
to use SQL-92
syntax when new
databases are
created

Figure 3-3

The Microsoft Access 2013 Options Object Designers Page

126   Part 1   Database Fundamentals

Unfortunately, very few Access users or organizations using Access are likely to set the
Access SQL version to the SQL-92 option, and in this chapter, we assume that Access is
running in the default ANSI-89 SQL mode. One advantage of doing so is that it will help
you understand the limitations of Access ANSI-89 SQL and how to cope with them.

In the discussion that follows, we use “Does Not Work with Microsoft Access ANSI-
89 SQL” boxes to identify SQL commands and clauses that do not work in Access ANSI-
89 SQL. We also identify any workarounds that are available. Remember that the one
permanent workaround is to choose to use the SQL-92 syntax option in the databases you
create!

Different DBMS products implement SQL in slightly different ways. The
SQL statements in this chapter run on Microsoft SQL Server (SQL Server
2014 Express was used to obtain the output shown in this chapter) and
also run on Microsoft Access with exceptions as noted. If you are run-
ning the SQL statements on a different DBMS, you may need to make
adjustments—consult the documentation for the DBMS you are using.

BTW

The SQL DDL is used to create and alter database structures, such as tables, and to insert,
modify, and delete data in the tables.

Before creating tables, you must create a database. Although there is an SQL state-
ment for creating a database, most developers use GUI tools to create databases. The tools
are DBMS specific. Creating a database in Microsoft Access is demonstrated in Chapter
1’s section of “The Access Workbench.” For instructions on how to create a database in
Microsoft SQL Server Express Edition, see Appendix A. For instructions on how to create
a database in Oracle Database Express Edition 11g Release 2, see Appendix B. For instruc-
tions on how to create a database in MySQL 5.6 Community Server, see Appendix C. For
all other DBMS products, consult the documentation.3

The SQL CREATE TABLE statement is used to create table structures. The essential
format of this statement is:

CREATE TABLE NewTableName (

    three-part column definition,

    three-part column definition,

    three-part column definition,

    optional table constraints

    . . .

   );

3Also see David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and
Implementation, 13th edition (Upper Saddle River, NJ: Prentice Hall, 2014), Chapter 10A for information
on creating databases in SQL Server 2012 (which is also applicable to SQL Server 2014), online Chapter
10B for information on creating databases in Oracle Database 11g Release 2, and online Chapter 10C for
information on creating databases in MySQL Community Server 5.6.

SQL for Data Definition (DDL)—Creating Tables and
Relationships

Chapter 3   Structured Query Language   127

The parts of the three-part column definition are the column name, the column data type, and,
optionally, a constraint on column values. Thus, we can restate the CREATE TABLE format as:

CREATE TABLE NewTableName (

    ColumnName DataType OptionalConstraint,

    ColumnName DataType OptionalConstraint,

    ColumnName DataType OptionalConstraint,

    optional table constraints

    . . .

   );

The column constraints we consider in this text are PRIMARY KEY, FOREIGN KEY,
NOT NULL, NULL, and UNIQUE. In addition to these, there is also a CHECK column
constraint, which is discussed with the ALTER statement at the end of this chapter. Finally,
the DEFAULT keyword (DEFAULT is not considered a column constraint) can be used to
set initial values.

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access ANSI-89 SQL does not support the UNIQUE and CHECK
column constraints, nor the DEFAULT keyword.

Solution:  Equivalent constraints and initial values can be set in the table Design
view. See the discussion in this chapter’s section of “The Access Workbench.”

Consider the SQL CREATE TABLE statements for the DEPARTMENT
and EMPLOYEE tables shown in Figure 3-4 (which includes the DEPARTMENT,
EMPLOYEE and PROJECT tables, but intentionally omits the ASSIGNMENT table at
this point in the discussion).

The EMPLOYEE column EmployeeNumber has an Integer (abbreviated Int) data
type and a PRIMARY KEY column constraint. The next column, FirstName, uses a
Character (signified by Char) data type and is 25 characters in length. The column con-
straint NOT NULL indicates that a value must be supplied when a new row is created. The
fifth column, Phone, uses a Char(12) data type (to store separators between the area code,
prefix, and number) with a column constraint of NULL. NULL indicates that null values
are allowed, which means that a row can be created without a value for this column.

The fourth column, Department, uses the Char(35) data type, a NOT NULL column
constraint, and the DEFAULT keyword to set the department value to the human re-
sources department if no department value is entered when a new row is created.

The sixth and final column, Email, uses the VarChar(100) data type and the NOT
NULL and UNIQUE column constraints. VarChar means a variable-length character data
type. Thus, Email contains character data values that vary in length from row to row, and
the maximum length of an Email address value is 100 characters. However, if an Email ad-
dress value has only 14 characters, then only 14 characters will be stored.

As implied by the existence of VarChar, Char values are of fixed length. The Char(25)
definition for FirstName means that 25 characters will be stored for every value of
FirstName, regardless of the length of the value entered. FirstNames will be padded with
blanks to fill the 25 spaces when necessary.

You might wonder, given the apparent advantage of VarChar, why it isn’t used all the
time. The reason is that extra processing is required for VarChar columns. A few extra
bytes are required to store the length of the value, and the DBMS must go to some trouble
to arrange variable-length values in memory and on disk. Vendors of DBMS products usu-
ally provide guidelines for when to use which type, and you should check the documenta-
tion for your specific DBMS product for more information.

128   Part 1   Database Fundamentals

The UNIQUE column constraint for Email means that there cannot be any duplicated
values in the Email column. This ensures that each person has a different email address.

In the PROJECT table, the MaxHours column uses the Numeric(8,2) data type. This
means that MaxHours values consist of up to eight decimal numbers, with two numbers as-
sumed to the right of the decimal point. The decimal point is not stored and does not count as
one of the eight numbers. Thus, the DBMS would display the stored value 12345 as 123.45,
and the stored value of 12345678 (which uses all eight of the allowed digits) as 123456.78.

The DEFAULT keyword is used. DEFAULT 100 means that when a new row is created,
if no value is provided for MaxHours, the DBMS is to provide the value 100.00. Note that the
input value does not assume that the last two numbers are to the right of the decimal place.

CREATE TABLE DEPARTMENT(
DepartmentName Char(35) PRIMARY KEY,
BudgetCode Char(30) NOT NULL,
OfficeNumber Char(15) NOT NULL,
Phone Char(12) NOT NULL,
);

CREATE TABLE EMPLOYEE(
EmployeeNumber Int PRIMARY KEY,
FirstName Char(25) NOT NULL,
LastName Char(25) NOT NULL,
Department Char(35) NOT NULL DEFAULT 'Human Resources',
Phone Char(12) NULL,
Email VarChar(100) NOT NULL UNIQUE,
);

CREATE TABLE PROJECT (
ProjectID Int PRIMARY KEY,
ProjectName Char(50) NOT NULL,
Department Char(35) NOT NULL,
MaxHours Numeric(8,2) NOT NULL DEFAULT 100,
StartDate Date NULL,
EndDate Date NULL,
);

Figure 3-4

SQL Create Table Statements

Does Not Work with Microsoft Access ANSI-89 SQL

Although Microsoft Access supports a Number data type, it does not support
the (m,n) extension to specify the number of digits and the number of digits to
the right of the decimal place.

Solution:  You can set these values in the table Design view after the col-
umn is created. See the discussion in this chapter’s section of “The Access
Workbench.”

Also in the PROJECT table, the StartDate column uses the Date data type. This means
that StartDate values will consist of dates (there is a Time data type for use with times).
Various DBMS products handle date and time values in different ways, and, again, you
should consult the documentation for your specific DBMS product. According to the SQL
standard and as shown in Figure 3-4, every SQL statement should end with a semicolon.

Chapter 3   Structured Query Language   129

Although some DBMS products do not require the semicolon, it is good practice to learn
to provide it. Also, as a matter of style, we place the ending parenthesis and the semicolon
on a line of its own. This style blocks out the table definitions for easy reading.

The four data types shown in Figure 3-4 are the basic SQL data types, but DBMS ven-
dors have added others to their products. Figures 3-5(a), 3-5(b), and 3-5(c) show some of
the data types allowed by SQL Server 2014, Oracle Database Express Edition 11g Release 2,
and MySQL 5.6, respectively.

(continued)

Figure 3-5

Data Types for Widely Used DBMS Products

(a) Common SQL Server 2014 Data Types

Bit

Numeric Data Types

Tinyint

Smallint

Int

Bigint

Decimal (p[,s])

Numeric (p[,s])

Smallmoney

Money

Float (n)

Real

Date and Time
Data Types

Date

Time

Smalldatetime

1-bit integer. Values of only 0, 1 or NULL.

Description

1-byte integer. Range is from 0 to 255.

2-byte integer. Range is from −2(15) (−32,768) to +2(15) −1 (+32,767).

4-byte integer. Range is from −2(31) (−2,147,483,468) to +2(31) −1
(+2,147,483,467).

8-byte integer. Range is from −2(63) (−9,223,372,036,854,775,808) to +2(63) −1
(+9,223,372,036,854,775,807).

Fixed precision (p) and scale (s) numbers. Range is from −1038 +1 to 1038 –1
with maximum precision (p) of 38. Precision ranges from 1 through
38, and default precision is 18. Scale (s) indicates the number of digits
to the right of the decimal place. Default scale value is 0, and scale
values range from 0 to p, where 0 <= s <= p.

Numeric works identically to Decimal.

4-byte money. Range is from −214,748.3646 to +214,748.3647 with
accuracy of one ten-thousandth of a monetary unit. Use decimal
point to separate digits.

9-byte money. Range is from −922,337,203,685,477.5808 to
+922,337,203,685,477.5807 with accuracy of one ten-thousandth of
a monetary unit. Use decimal point to separate digits.

n-bit storage of the mantissa in scientific floating point notation. The
value of n ranges from 1 to 53, and the default is 53.

Equivalent to Float (24).

Description

3-bytes fixed. Default format YYYY-MM-DD. Range is from January 1, 1
(0001-01-01) through December 31, 9999 (9999-12-31).

5-bytes fixed is default with 100 nanosecond precision (.0000000).
Default format is HH:MM:SS.NNNNNNN. Range is from 00:00:00.0000000
through 23:59:59.9999999.

4-bytes fixed. Restricted date range, and rounds time to nearest
second. Range is from January 1, 1900 00:00:00 AM (1900-01-01
00:00:00) through June 6, 2079 23:59.59 PM (2079-06-06 23:59.59).

130   Part 1   Database Fundamentals

Figure 3-5  Continued

10-byte fixed-length default with 100 nanosecond precision (.0000000).
Uses 24 hour clock, based on Coordinated Universal Time (UTC).
UTC is a refinement of Greenwich Mean Time (GMT), based on the prime
meridian at Greenwich, England, which defines when midnight
(00:00:00.0000000) occurs. Offset is the time zone difference from the
Greenwich time zone. Default format is YYYY-MM-DD
HH:MM:SS.NNNNNNN (+|−)HH:MM. Range is from January 1,
1 00:00:00.0000000 AM (0001-01-01 00:00:00.0000000) through
December 31, 9999 23:59.59.9999999 PM (9999-12-31 23:59.59.9999999)
with an offset of −14:59 to +14:59. Use for 24 hour time.

Description

Datetimeoffset

String Data Types

Timestamp

Other Data Types

Varbinary (n | max)

See documentation.

Char (n)

Varchar (n | max)

Text

n-byte fixed-length string data (non-Unicode). Range of n is from 1 through 8000.

n-byte variable-length string data (non-Unicode). Range of n is from 1
through 8000. Max creates a maximum +2(31) −1 bytes (2 GBytes).

Nchar (n)

Nvarchar (n | max)

Ntext

(n x 2)-byte fixed-length Unicode string data. Range of n is from 1 through 4000.

(n x 2)-byte variable-length Unicode string data. Range of n is from 1
through 4000. Max creates a maximum +2(31) −1 bytes (2 GBytes).

Description

Variable-length binary data. Range of n is from 1 through 8000. Max
creates a maximum +2(31) −1 bytes (2 GBytes).

Use VARCHAR(max). See documentation.

Use NVARCHAR(max). See documentation.

Binary (n) n-byte fixed-length binary data. Range of n is from 1 through 8000.

Uniqueidentifier 16-byte Globally Unique Identifier (GUID). See documentation.

Image

Cursor

hierarchyid

XML

Table

Sql_variant

Use VARBINARY(max). See documentation.

See documentation.

See documentation.

See documentation.

Use for storing XML data. See documentation.

See documentation.

(a) continued - Common SQL Server 2014 Data Types

Date and Time
Data Types

Description

Datetime

Datetime2

8-bytes fixed. Basically combines Date and Time, but spans less dates
and has less time precision (rounds to .000, .003 or .007 seconds).
Use DATETIME2 for more precision. Date range is from January 1,
1753 (1753-01-01) through December 31, 9999 (9999-12-31).

8-bytes fixed. Combines Date and Time with full precision. Use
instead of DATETIME. Range is from January 1, 1 00:00:00.0000000 AM
(0001-01-01 00:00:00.0000000) through December 31, 9999
23:59.59.9999999 PM (9999-12-31 23:59.59.9999999).

Chapter 3   Structured Query Language   131

(b) Common Oracle Database Express Edition 11g Release 2 Data Types

Figure 3-5  Continued

Synonym for INTEGER, implemented as NUMBER(38,0).

Description

Synonym for INTEGER, implemented as NUMBER(38,0).

When specified as a data type, it is implemented as NUMBER(38,0).

SMALLINT

Numeric Data Types

INT

INTEGER

NUMBER (p[,s])

FLOAT (p)

BINARY_FLOAT

BINARY_LONG

RAW (n)

LONG RAW

BLOB

BFILE

Date and Time
Data Types

DATE

TIMESTAMP (p)

TIMESTAMP (p)
WITH TIME ZONE

TIMESTAMP (p)
WITH LOCAL TIME
ZONE

1 to 22 bytes. Fixed precision (p) and scale (s) numbers. Range is from –1038

+1 to 1038 – 1 with maximum precision (p) of 38. Precision ranges
from 1 through 38, and default precision is 18. Scale (s) indicates the
number of digits to the right of the decimal place. Default scale value
is 0, and scale values range from –84 to 127, where s can be greater than p.

1 to 22 bytes. Implemented as NUMBER(p). The value of p ranges
from 1 to 126 bits.

4-byte 32-bit floating point number.

8-byte 64-bit floating point number.

n-byte fixed-length raw binary data. Range of n is from 1 through
2000.

Raw variable-length binary data. Maximum is 2 GBytes.

Maximum [(4-GByte – 1)x(database block size)] binary large object.

See documentation.

Description

7-bytes fixed. Default format is set explicitly with the
NLS_DATE_FORMAT parameter. Range is from January 1, 4712 BC
through December 31, 9999 AD. It contains the fields YEAR, MONTH,
DAY, HOUR, MINUTE and SECOND (no fractional seconds). It does not
include a time zone.

Includes fractional seconds base on a precision of p. Default of p is 6,
and the range is 0 to 9. 7 to 11-bytes fixed, based on precision. Default
format is set explicitly with the NLS_TIMESTAMP_FORMAT parameter.
Range is from January 1, 4712 BC through December 31, 9999 AD.
It contains the fields YEAR, MONTH, DAY, HOUR, MINUTE and
SECOND. It contains fractional seconds. It does not include a
time zone.

Includes fractional seconds base on a precision of p. Default of p is 6,
and the range is 0 to 9. 13-bytes fixed. Default format is set explicitly
with the NLS_TIMESTAMP_FORMAT parameter. Range is from January 1,
4712 BC through December 31, 9999 AD. It contains the fields YEAR,
MONTH, DAY, TIMEZONE_HOUR, TIMEZONE_MINUTE and
TIMEZONE_SECOND. It contains fractional seconds. It includes a
time zone.

Basically the same as TIMESTAMP WITH TIME ZONE, with the
following modifications: (1) Data is stored with times based on the
database time zone, and (2) Users view data in session time zone.

(continued)

132   Part 1   Database Fundamentals

Figure 3-5  Continued

See documentation.

Description

INTERVAL YEAR
[p(year)] TO MONTH

String Data Types

INTERVAL DAY
[p(day)] TO SECOND
[p(seconds)]

Other Data Types

ROWID

See documentation.

CHAR
(n[BYTE | CHAR])

VARCHAR2
(n[BYTE | CHAR])

NCHAR (n)

n-byte fixed-length string data (non-Unicode). Range of n is from 1 through
2000. BYTE and CHAR refer to the semantic usage. See documentation.

n-byte variable-length string data (non-Unicode). Range of n is from 1
through 4000 BYTEs or CHARACTERs. BYTE and CHAR refer to the
semantic usage. See documentation.

NVARCHAR2 (n)

LONG

CLOB

Variable-length Unicode string data. Up to (n x 3)-bytes for UTF8 encoding.
Maximum size is from 4000 bytes.

Variable-length string data (non-Unicode) with maximum a maximum
2(31–1) bytes (2 GBytes). See documentation.

Description

See documentation.

(n x 2)-byte fixed-length Unicode string data. Up to (n x 3)-bytes for UTF8
encoding. Maximum size is from 2000 bytes.

Maximum [(4-GByte – 1)x(database block size)] character large object
(non-Unicode). Supports fixed-length and variable length character sets.

NCLOB Maximum [(4-GByte – 1)x(database block size)] Unicode character
large object. Supports fixed-length and variable length character sets.

HTTPURIType See documentation.

UROWID

SDO_GEOMETRY

XMLType

See documentation.

Use for storing XML data. See documentation.

See documentation.

(b) continued - Common Oracle Database Express Edition 11g Release 2 Data Types

NumericData Type Description
BIT (M)
TINYINT
TINYINT UNSIGNED
BOOLEAN
SMALLINT

SMALLINT
UNSIGNED

MEDIUMINT

MEDIUMINT
UNSIGNED

INT or INTEGER

M = 1 to 64.
Range is from –128 to 127.
Range is from 0 to 255.
0 = FALSE; 1 = TRUE.
Range is from –32,768 to 32,767.
Range is from 0 to 65,535.

Range is from –8,388,608 to 8,388,607.

Range is from 0 to 16,777,215.

Range is from –2,147,483,648 to 2,147,483,647.

(c) Common MySQL 5.6 Data Types

Chapter 3   Structured Query Language   133

Figure 3-5  Continued

Even when Microsoft Access reads standard SQL, the results of running an
SQL statement may be a bit different in Access. For example, Microsoft
Access reads SQL statements containing both Char and VarChar data types,
but converts both these data types to a fixed Text data type in the Access
database.

BTW

(c) continued - Common MySQL 5.6 Data Types

FIXED (M[,D]) D = Number of decimals.

Date and Time
Data Types

Description

DATE
DATETIME

TIMESTAMP
TIME
YEAR (M)

YYYY-MM-DD : Range is from 1000-01-01 to 9999-12-31.
YYYY-MM-DD HH:MM:SS.
Range is from 1000-01-01 00:00:00 to 9999-12-31 23:59:59.
See documentation.
HH:MM:SS : Range is from 00:00:00 to 23:59:59.
M = 2 or 4 (default).
IF M = 2, then range is from 1970 to 2069 (70 to 69).
IF M = 4, then range is from 1901 to 2155.

INT UNSIGNED or
INTEGER UNSIGNED

BIGINT
BIGINT UNSIGNED
FLOAT (P)
FLOAT (M, D)

DOUBLE (M, P)

DEC (M[,D]) or
DECIMAL (M[,D]) or

Range is from 0 to 4,294,967,295.

Range is from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
Range is from 0 to 1,844,674,073,709,551,615.
P = Precision; Range is from 0 to 24.
Small (single-precision) floating-point number:
M = Display width D = Number of significant digits
Normal (double-precision) floating-point number:
M = Display width P = Precision; Range is from 25 to 53.
Fixed-point number:
M = Total number of digits

String Data Types Description

CHAR (M)
VARCHAR (M)
BLOB (M)

TEXT (M)
TINYBLOB
MEDIUMBLOB
LONGBLOB
TINYTEXT
MEDIUMTEXT
LONGTEXT
ENUM (‘value1’,
‘value2’, . . .)
SET (‘value1’,
‘value2’, . . .)

M = 0 to 255.
M = 1 to 255.
BLOB = Binary Large Object: maximum 65,535 characters.

Maximum 65,535 characters.
See documentation.

An enumeration. Only one value, but chosen from list. See documentation.

A set. Zero or more values, all chosen from list. See documentation.

NumericData Type Description

134   Part 1   Database Fundamentals

Defining Primary Keys with Table Constraints
Although primary keys can be defined as shown in Figure 3-4, we prefer to define pri-
mary keys using a table constraint. Table constraints are identified by the CONSTRAINT
keyword and can be used to implement various constraints. Consider the CREATE
TABLE statements shown in Figure 3-6, with the ASSIGNMENT table now included,
which shows how to define the primary key of a table by using a table constraint.

First, the columns of the table are defined as usual, except that the column that will
be the primary key must be given the column constraint NOT NULL. After the table
columns are defined, a table constraint, identified by the word CONSTRAINT, is used
to create the primary key. Every table constraint has a name followed by the definition of
the constraint. Note that in the DEPARTMENT table the DepartmentName column is
now labeled as NOT NULL and a CONSTRAINT clause has been added at the end of
the table definition. The constraint is named DEPARTMENT_PK, and it is defined by
the keywords PRIMARY KEY(DepartmentName). The constraint name is selected by the
developer, and the only naming restriction is that the constraint name must be unique in
the database. Usually a standard naming convention is used. In this text, we name primary
key constraints using the name of the table followed by an underscore and the letters:

CONSTRAINT  TABLENAME_PK   PRIMARY KEY({PrimaryKeyColumns})

CREATE TABLE DEPARTMENT(
DepartmentName Char(35) NOT NULL,
BudgetCode Char(30) NOT NULL,
OfficeNumber Char(15) NOT NULL,
Phone Char(12) NOT NULL,
CONSTRAINT DEPARTMENT_PK PRIMARY KEY(DepartmentName)
);

CREATE TABLE EMPLOYEE(
EmployeeNumber Int NOT NULL IDENTITY (1, 1),
FirstName Char(25) NOT NULL,
LastName Char(25) NOT NULL,
Department Char(35) NOT NULL DEFAULT 'Human Resources',
Phone Char(12) NULL,
Email VarChar(100) NOT NULL UNIQUE,
CONSTRAINT EMPLOYEE_PK PRIMARY KEY(EmployeeNumber),
);

CREATE TABLE PROJECT (
ProjectID Int NOT NULL IDENTITY (1000, 100),
ProjectName Char(50) NOT NULL,
Department Char(35) NOT NULL,
MaxHours Numeric(8,2) NOT NULL DEFAULT 100,
StartDate Date NULL,
EndDate Date NULL,
CONSTRAINT PROJECT_PK PRIMARY KEY (ProjectID),
);

CREATE TABLE ASSIGNMENT (
ProjectID Int NOT NULL,
EmployeeNumber Int NOT NULL,
HoursWorked Numeric(6,2) NULL,
CONSTRAINT ASSIGNMENT_PK PRIMARY KEY (ProjectID, EmployeeNumber),
);

Figure 3-6

Creating Primary Keys with Table Constraints

Chapter 3   Structured Query Language   135

Defining primary keys using table constraints offers three advantages. First, it is re-
quired for defining composite keys because the PRIMARY KEY column constraint cannot
be used on more than one column. We previously excluded the ASSIGNMENT table from
Figure 3-4 because it is not possible to declare the primary key of the ASSIGNMENT
table using the technique in Figure 3-4, but Figure 3-6 now includes the ASSIGNMENT
table and illustrates the declaration of the primary key ASSIGNMENT_PK as a composite
key using the SQL phrase PRIMARY KEY(ProjectID, EmployeeNumber). The second
advantage is that by using table constraints you can choose the name of the constraint that
defines the primary key. Controlling the name of the constraint has advantages for adminis-
tering the database, as you will see later when we discuss the SQL DROP statement.

Finally, using a table constraint to define the primary key allows us to easily define surro-
gate keys in some DBMS products. Notice that in Figure 3-6 the EmployeeNumber column
definition in EMPLOYEE and the ProjectID column definition in PROJECT now include
the IDENTITY (M,N) property. This illustrates how surrogate keys are defined in Microsoft
SQL Server. The keyword IDENTITY indicates that this is a surrogate key that will start a
value M for the first row created and increase by increment N as each additional row is cre-
ated. Thus, EmployeeNumber will start with the number 1 and increase by an increment of 1
(that is, 1, 2, 3, 4, 5, . . .). ProjectID will start with the number 1000 and increase by 100 (that
is, 1000, 1100, 1200, . . .). The exact techniques used to define surrogate key sequences vary
extensively from DBMS to DBMS, so consult the documentation for your specific product.

Does Not Work with Microsoft Access ANSI-89 SQL

Although Microsoft Access does support an AutoNumber data type, it always
starts at 1 and increments by 1. Further, AutoNumber cannot be used as an
SQL data type.

Solution:  Set the AutoNumber data type manually after the table is created. Any
other numbering system must be supported manually or by application code.

Defining Foreign Keys with the Table Constraints
You may have noticed that none of the tables in Figure 3-4 or Figure 3-6 include any
foreign key columns. You can also use table constraints to define foreign keys and their
associated referential integrity constraints. Figure 3-7 shows the final SQL code for our
tables, complete with the foreign key constraints.

EMPLOYEE has a table constraint named EMP_DEPART_FK that defines the
foreign key relationship between the Department column in EMPLOYEE and the
DepartmentName column in DEPARTMENT.

Notice the phrase ON UPDATE CASCADE. The ON UPDATE phrase shows what
action should be taken if a value of the primary key DepartmentName in DEPARTMENT
changes. The CASCADE keyword means that the same change should be made to the
related Department column in EMPLOYEE. This means that if a department name
Marketing is changed to Sales and Marketing, then the foreign key values should be up-
dated to reflect this change. Because DepartmentName is not a surrogate key, the values
could be changed, and setting ON UPDATE CASCADE is reasonable.

The PROJECT table has a similar foreign key relationship with DEPARTMENT, and the
same logic applies, except that here there will be two types of project: completed and in-process.
The business rules dealing with this situation are explored in the end-of-chapter exercises.

For the ASSIGNMENT table, there are two foreign key constraints: one to
EMPLOYEE and one to PROJECT. The first one defines the constraint ASSIGN_PROJ_
FK (the name is up to the developer, as long as it is unique) that specifies that ProjectID in
ASSIGNMENT references the ProjectID column in PROJECT. Here the ON UPDATE
phrase is set to NO ACTION. Recall that ProjectID is a surrogate key and thus will never
change. In this situation, there is no need to cascade updates to the referenced primary key.

136   Part 1   Database Fundamentals

CREATE TABLE DEPARTMENT(
DepartmentName Char(35) NOT NULL,
BudgetCode Char(30) NOT NULL,
OfficeNumber Char(15) NOT NULL,
Phone Char(12) NOT NULL,
CONSTRAINT DEPARTMENT_PK PRIMARY KEY(DepartmentName)
);

CREATE TABLE EMPLOYEE(
EmployeeNumber Int NOT NULL IDENTITY (1, 1),
FirstName Char(25) NOT NULL,
LastName Char(25) NOT NULL,
Department Char(35) NOT NULL DEFAULT 'Human Resources',
Phone Char(12) NULL,
Email VarChar(100) NOT NULL UNIQUE,
CONSTRAINT EMPLOYEE_PK PRIMARY KEY(EmployeeNumber),
CONSTRAINT EMP_DEPART_FK FOREIGN KEY(Department)

REFERENCES DEPARTMENT(DepartmentName)
ON UPDATE CASCADE

);

CREATE TABLE PROJECT (
ProjectID Int NOT NULL IDENTITY (1000, 100),
ProjectName Char(50) NOT NULL,
Department Char(35) NOT NULL,
MaxHours Numeric(8,2) NOT NULL DEFAULT 100,
StartDate Date NULL,
EndDate Date NULL,
CONSTRAINT PROJECT_PK PRIMARY KEY (ProjectID),
CONSTRAINT PROJ_DEPART_FK FOREIGN KEY(Department)

REFERENCES DEPARTMENT(DepartmentName)
ON UPDATE CASCADE

);

CREATE TABLE ASSIGNMENT (
ProjectID Int NOT NULL,
EmployeeNumber Int NOT NULL,
HoursWorked Numeric(6,2) NULL,
CONSTRAINT ASSIGNMENT_PK PRIMARY KEY (ProjectID, EmployeeNumber),
CONSTRAINT ASSIGN_PROJ_FK FOREIGN KEY (ProjectID)

REFERENCES PROJECT (ProjectID)
ON UPDATE NO ACTION
ON DELETE CASCADE,

CONSTRAINT ASSIGN_EMP_FK FOREIGN KEY (EmployeeNumber)
REFERENCES EMPLOYEE (EmployeeNumber)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

Figure 3-7

Creating Foreign Keys with Table Constraints

Notice that there is also an ON DELETE phrase, which shows what action should be
taken if a row in PROJECT is deleted. Here the phrase ON DELETE CASCADE means
that when a PROJECT row is deleted all rows in ASSIGNMENT that are connected to the
deleted row in PROJECT also should be deleted. Thus, when a PROJECT row is deleted,
all ASSIGNMENT rows for that PROJECT row will be deleted as well. This action imple-
ments the second business rule on page 124.

Chapter 3   Structured Query Language   137

The second foreign key table constraint defines the foreign key constraint ASSIGN_
EMP_FK. This constraint indicates that the EmployeeNumber column references the
EmployeeNumber column of EMPLOYEE. Again, the referenced primary key is a surro-
gate key, so ON UPDATE NO ACTION is appropriate for this constraint. The phrase ON
DELETE NO ACTION indicates to the DBMS that no EMPLOYEE row deletion should
be allowed if that row is connected to an ASSIGNMENT row. This declaration imple-
ments the first business rule on page 124.

Because ON DELETE NO ACTION is the default, you can omit the ON DELETE
expression, and the declaration will default to no action. However, specifying it makes bet-
ter documentation.4

Table constraints can be used for purposes other than creating primary and foreign
keys. One of the most important purposes is to define constraints on data values, and we
will explore defining CHECK constraints in the end-of-chapter exercises. As always, see
the documentation for your DBMS for more information on this topic.

4You may be wondering why we don’t use the ON DELETE phrase with the foreign key constraints be-
tween DEPARTMENT and EMPLOYEE and between DEPARTMENT and PROJECT. After all, there
will probably be business rules defining what should be done with employees and projects if a department
is deleted. However, enforcing those rules will be more complex than simply using an ON DELETE state-
ment, and this topic is beyond the scope of this book. For a full discussion, see David M. Kroenke and
David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 13th edition (Upper Saddle
River, NJ: Prentice Hall, 2014), Chapter 6.

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access does not completely support foreign key CONSTRAINT
phrases. Although the basic referential integrity constraint can be created us-
ing SQL, the ON UPDATE and ON DELETE clauses are not supported.

Solution:  ON UPDATE and ON DELETE actions can be set manually after the
relationship is created. See the discussion in this chapter’s section of “The
Access Workbench.”

Submitting SQL to the DBMS
After you have developed a text file with SQL statements like those in Figures 3-4, 3-6, and
3-7, you can submit them to the DBMS. The means by which you do this varies from DBMS
to DBMS. With SQL Server 2014, you can type them into a query window in the Microsoft
SQL Server Management Studio, or you can enter them via Visual Studio.NET. Oracle
Database Express Edition 11g Release 2 and MySQL 5.6 use similar techniques. How to do
this in Microsoft Access is discussed in this chapter’s section of “The Access Workbench.”

Figure 3-8 shows the Microsoft SQL Server Management Studio window after the
SQL statements in Figure 3-7 have been entered and processed in SQL Server Express
Edition. The SQL code itself appears in a query window on the upper right, and the mes-
sage “Command(s) completed successfully” in the Messages window on the lower right
indicates that the SQL statements were processed correctly. The object icons representing
the tables can be seen in the Object Explorer window on the left, where the name of each
table is prefixed with dbo, which SQL Server uses for database owner.

Figure 3-9 shows the Oracle SQL Devleoper window after the SQL statements in
Figure 3-7 (slightly modified to conform to Oracle Database syntax—see Appendix B)
have been processed in Oracle Database 11g Release 2. The SQL code appears in a tabbed
script window on the left, and object icons representing the newly created table can be seen
in the tabbed Connections window on the right.

Figure 3-10 shows the MySQL Workbench window after the SQL statements in
Figure 3-7 (slightly modified to conform to MySQL syntax—see Appendix C and note the

138   Part 1   Database Fundamentals

The SQL script in
the tabbed script
window

The objects
representing the
tables created by
the script are shown
in the expanded
Tables folder—dbo
stands for database
owner

Messages are
shown here—either
that the commands
were successful or
appropriate error
messages

Figure 3-8

Processing the CREATE TABLE Statements Using Microsoft SQL Server 2014

The SQL script in
the tabbed SQL
Worksheet window

The objects
representing the
tables created by
the script are shown
in the expanded
Tables folder

Messages are
shown here—either
that the commands
were successful or
appropriate error
messages

Figure 3-9

Processing the CREATE TABLE Statements Using Oracle Database Express Edition 11g Release 2

Chapter 3   Structured Query Language   139

Some DBMS products can create database diagrams that show the tables and relation-
ships in a database. We’ve already used the Microsoft Access Relationships window (in
Chapter 2’s section of “The Access Workbench”). For SQL Server 2014, Figure 3-11 shows
the WPC database structure in Microsoft SQL Server Management Studio.

SQL for Data Manipulation (DML)—Inserting Data
The SQL DML is used to query databases and to modify data in the tables. In this section,
we discuss how to use SQL to insert data into a database, how to query the data, and how
to change and delete the data.

There are three possible data modification operations: insert, update, and delete.
Because we need to populate our database tables, we discuss how to insert data at this time.

The SQL script in
the tabbed Script
window

The objects
representing the
tables created by
the script are shown
in the expanded
wpc schema

Figure 3-10

Processing the CREATE TABLE Statements Using MySQL 5.6

Does Not Work with Microsoft Access ANSI-89 SQL

Unlike SQL Server 2014, Oracle Database Express Edition 11g Release 2, and
MySQL 5.6, Microsoft Access does not support SQL scripts.

Solution:  You can still create tables by using the SQL CREATE command and
inserting data by using the SQL INSERT command (discussed later in this chap-
ter), but you must do so one command at a time. See the discussion in this
chapter’s section of “The Access Workbench.”

AUTO_INCREMENT keyword instead of IDENTITY (1, 1)] have been processed in MySQL.
The SQL code appears in a tabbed script window on the left, and the object icons representing
the newly created tables can be seen in the Object Browser window on the left.

140   Part 1   Database Fundamentals

We will wait until later in the chapter, after we’ve discussed some other useful SQL syntax,
to consider updating and deleting data.

Inserting Data
Data can be added to a relation by using the SQL INSERT statement. This statement has
two forms, depending on whether data are supplied for all of the columns.

We’ll put the data shown in Figure 3-2(a) into the DEPARTMENT table. If the data
for all columns are supplied, such as for the administration department, then the following
INSERT can be used:

INSERT INTO DEPARTMENT VALUES('Administration',

    'BC-100-10', 'BLDG01-300', '360-285-8100');

If the DBMS is providing a surrogate key, then the primary key value does not need to be
specified.

SQL statements can also include an SQL comment, which is a block of text that is used to
document the SQL statement but not executed as part of the SQL statement. SQL comments
are enclosed in the symbols /* and */, and any text between these symbols is ignored when the
SQL statement is executed. For example, here is the previous SQL INSERT statement with an
SQL comment added to document the statement by including a statement label:

/* *** SQL-INSERT-CH03-01 *** */

INSERT INTO DEPARTMENT VALUES('Administration',

    'BC-100-10', 'BLDG01-300', '360-285-8100');

Because the SQL comment is ignored when the SQL statement is executed, the result
of running this statement will be identical to the result of running the statement without

The database tables
and the links between
them are shown in
the tabbed Diagram
window

The object
representing the
database diagram is
shown in the expanded
Database Diagrams
folder—dbo stands for
database owner

Figure 3-11

Database Diagram in the Microsoft SQL Server Management Studio

Chapter 3   Structured Query Language   141

the comment. We will use similar comments to label the SQL statements in this chapter as
an easy way to reference a specific SQL statement in the text.

The data shown in Figure 3-2(c) will be put in the PROJECT table. Because ProjectID
is a surrogate key—specified as IDENTITY (1000, 100) in SQL Server—the same type of
INSERT statement can be used when data are supplied for all other columns. For example,
to insert the data for the 2014 Q3 Product Plan, the following INSERT can be used:

/* *** SQL-INSERT-CH03-02 *** */

INSERT INTO PROJECT VALUES('2014 Q3 Product Plan',

    'Marketing', 135.00, '10-MAY-14', '15-JUN-14');

Note that numbers such as Integer and Numeric values are not enclosed in single quotes,
but Char, VarChar, and DateTime values are.

SQL is very fussy about single quotes. It wants the plain, nondirectional
quotes found in basic text editors. The fancy directional quotes produced
by many word processors will produce errors. For example, the data value
'2014 Q3 Product Plan' is correctly stated, but ‘2014 Q3 Product Plan’ is
not. Do you see the difference?

BTW

If data for some columns are missing, then the names of the columns for which data
are provided must be listed. For example, consider the 2014 Q4 Portfolio Analysis project,
which does not have an EndDate value. The correct INSERT statement for this data is:

/* *** SQL-INSERT-CH03-03 *** */

INSERT INTO PROJECT
    (ProjectName, Department, MaxHours, StartDate)

    VALUES('2014 Q4 Portfolio Analysis', 'Finance',

    140.00, '05-OCT-14');

A NULL value will be inserted for EndDate.
Let’s consider three points regarding the second version of the INSERT command.

First, the order of the column names must match the order of the values. In the preceding
example, the order of the column names is Name, Department, MaxHours, StartDate, so
the order of the values must also be Name, Department, MaxHours, StartDate.

Second, although the order of the data must match the order of the column names, the
order of the column names does not have to match the order of the columns in the table.
For example, the following INSERT, where Department is placed at the beginning of the
column list, would also work:

/* *** SQL-INSERT-CH03-04 *** */

INSERT INTO PROJECT
    (Department, ProjectName, MaxHours, StartDate)

    VALUES('Finance', '2014 Q4 Portfolio Analysis',

    140.00, '05-OCT-14');

Finally, for the INSERT to work, values for all NOT NULL columns must be provided.
You can omit EndDate only because this column is defined as NULL.

142   Part 1   Database Fundamentals

Figure 3-12 shows the SQL INSERT statements needed to populate the WPC data-
base tables created by the SQL CREATE TABLE statements in Figure 3-7. Note that the
order in which the tables are populated does matter because of the foreign key referential
integrity constraints.

Figure 3-12

SQL INSERT Statements

Chapter 3   Structured Query Language   143

Oracle Database and MySQL handle surrogate keys in their own unique
ways. Oracle Database uses sequences (see Appendix B and the Oracle
Database Express Edition 11g Release 2 documentation), and MySQL
treats the AUTO_INCREMENT value as a missing value so that you have
to list all the other column names (see Appendix C and the MySQL 5.6
Community Server documentation).

BTW

Figure 3-12  Continued

After the tables have been defined and populated, you can use SQL DML to query data
in many ways. You can also use it to change and delete data, but the SQL statements for
these activities will be easier to learn if we begin with the query statements. In the follow-
ing discussion, assume that the sample data shown in Figure 3-2 have been entered into the
database.

SQL for Data Manipulation (DML)—Single Table Queries

144   Part 1   Database Fundamentals

The SQL SELECT/FROM/WHERE Framework
This section introduces the fundamental statement framework for SQL query statements.
After we discuss this basic structure, you will learn how to submit SQL statements to
Microsoft Access, SQL Server, Oracle Database, and MySQL. If you choose, you can then
follow along with the text and process additional SQL statements as they are explained in
the rest of this chapter. The basic form of SQL queries uses the SQL SELECT/FROM/
WHERE framework. In this framework:

•	The SQL SELECT clause specifies which columns are to be listed in the query
results.

•	The SQL FROM clause specifies which tables are to be used in the query.
•	The SQL WHERE clause specifies which rows are to be listed in the query results.

We will use and expand this framework as we work through examples in the following
sections. All the examples use the data in Figure 3-2 as the basis for the results of the queries.

Reading Specified Columns from a Single Table
The following SQL statement queries (reads) three of the six columns of the PROJECT
table:

/* *** SQL-QUERY-CH03-01 *** */

SELECT	 ProjectName, Department, MaxHours

FROM	 PROJECT;

Notice that the names of the columns to be queried follow the keyword SELECT, and the
name of the relation to use follows the keyword FROM. The result of this statement is:

To show you how the results look in actual DBMS management tools, Figure 3-13
shows the query as executed in Microsoft SQL Server 2014 using Microsoft SQL Server
Management Studio, Figure 3-14 shows the query as executed in Oracle Database Express
Edition 11g Release 2 using Oracle SQL Developer, and Figure 3-15 shows the query as
executed in the MySQL 5.6 using MySQL Workbench.

The result of an SQL SELECT statement is a relation. This is always true for SELECT
statements. They start with one or more relations, manipulate them in some way, and then
produce a relation. Even if the result of the manipulation is a single number, that number is
considered to be a relation with one row and one column.

The order of the column names after the keyword SELECT determines the order of
the columns in the resulting table. Thus, if you change the order of columns in the previous
SELECT statement to:

/* *** SQL-QUERY-CH03-02 *** */

SELECT	 ProjectName, MaxHours, Department

FROM	 PROJECT;

Chapter 3   Structured Query Language   145

The New Query
button

The Execute button

The SQL statement
in the tabbed query
window

The query results

Figure 3-13

SQL Query Results in the Microsoft SQL Server Management Studio

The WPC tabbed SQL
Worksheet window

The Run Statement
button

The SQL statement
in the tabbed SQL
Worksheet window

The query results in
the tabbed Query
Result window

Figure 3-14

SQL Query Results in the Oracle SQL Developer

146   Part 1   Database Fundamentals

The result will be:

The Execute button

 The SQL statement in

the MySQL Workbench
SQL File window

The query results
in the results tabbed
window named
PROJECT 1

Figure 3-15

SQL Query Results in the MySQL Workbench

The next SQL statement obtains only the Department column from the PROJECT table:

/* *** SQL-QUERY-CH03-03 *** */

SELECT	 Department

FROM	 PROJECT;

The result is:

Chapter 3   Structured Query Language   147

Notice that the first and fourth rows of this table are duplicates, as are the second and
last rows. According to the definition of relation given in Chapter 2, such duplicate rows
are prohibited. However, as also mentioned in Chapter 2, the process of checking for and
eliminating duplicate rows is time-consuming. Therefore, by default, DBMS products do
not check for duplication. Thus, in practice, duplicate rows can occur.

If you want the DBMS to check for and eliminate duplicate rows, you must use the
DISTINCT keyword, as follows:

/* *** SQL-QUERY-CH03-04 *** */

SELECT	 DISTINCT Department

FROM	 PROJECT;

The result of this statement is:

The duplicate rows have been eliminated, as desired.

Reading Specified Rows from a Single Table
In the previous SQL statements, we selected certain columns for all rows of a table. SQL
statements can also be used for the reverse; that is, they can be used to select all the col-
umns for certain rows. The rows to be selected are specified by using the SQL WHERE
clause. For example, the following SQL statement will obtain all the columns of the
PROJECT table for projects sponsored by the finance department:

/* *** SQL-QUERY-CH03-05 *** */

SELECT	 ProjectID, ProjectName, Department, MaxHours,

	 StartDate, EndDate

FROM	 PROJECT

WHERE	 Department = 'Finance';

The result is:

The specific treatment of date and time values varies widely among DBMS
products. Note that we input the StartDate for ProjectID 1100 as 05-JUL-14
(DD-MMM-YY), but the output above shows it as 2014-07-05 (YYYY-MM-DD).
As always, see the documentation for your DBMS product.

BTW

148   Part 1   Database Fundamentals

A second way to specify all the columns of a table is to use the SQL asterisk (*) wild-
card operator after the keyword SELECT. The following SQL statement is equivalent to
the previous one:

/* *** SQL-QUERY-CH03-06 *** */

SELECT	 *

FROM	 PROJECT

WHERE	 Department = 'Finance';

The result is a table of all the columns of PROJECT for rows that have a Department value
of Finance:

As previously stated, the pattern SELECT/FROM/WHERE is the fundamental pat-
tern of SQL SELECT statements. Many different conditions can be placed in a WHERE
clause. For example, the query:

/* *** SQL-QUERY-CH03-07 *** */

SELECT	 *

FROM	 PROJECT

WHERE	 MaxHours > 135;

selects all columns from PROJECT where the value of the MaxHours column is greater
than 135. The result is:

Notice that when the column data type is Char or VarChar, comparison values must be
placed in single quotes. If the column is Integer or Numeric, no quotes are necessary. Thus,
you use the notation Department = 'Finance' for a WHERE condition of the VarChar column
Department, but you use the notation MaxHours = 100 for the Numeric column MaxHours.

Values placed in quotation marks may be case sensitive. For example, WHERE
Department = 'Finance' and WHERE Department = 'FINANCE' may not be considered the
same—check your DBMS documentation (or experiment with some data).

You can place more than one condition in a WHERE clause by using the AND key-
word. If the AND keyword is used, only rows meeting all the conditions will be selected.
For example, the following query determines which projects are sponsored by the finance
department and are allocated a maximum number of hours greater than 135:

/* *** SQL-QUERY-CH03-08 *** */

SELECT	 *

FROM	 PROJECT

WHERE	 Department = 'Finance'

   AND	 MaxHours > 135;

Chapter 3   Structured Query Language   149

Reading Specified Columns and Specified Rows
from a Single Table
You can combine the techniques just shown to select some columns and some rows from
a table. For example, to obtain only the FirstName, LastName, Phone, and Department
values of employees in the accounting department, you use:

/* *** SQL-QUERY-CH03-09 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	 Department = 'Accounting';

The result is:

The result of this query is:

You can combine two or more conditions in the WHERE clause by using the AND
keyword and the OR keyword. As stated previously, if the AND keyword is used, only rows
meeting all the conditions will be selected. However, if the OR keyword is used, then rows
that meet any of the conditions will be selected.

For example, the following query uses the AND keyword to ask for employees that
work in accounting and have the phone number 360-285-8310:

/* *** SQL-QUERY-CH03-10 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	 Department = 'Accounting'

   AND	 Phone = '360-285-8310';

The result is:

However, the following query uses the OR keyword to ask for employees that work in
accounting or have the phone number 360-285-8410:

/* *** SQL-QUERY-CH03-11 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	 Department = 'Accounting'

   OR	 Phone = '360-285-8410';

150   Part 1   Database Fundamentals

The result is:

Another use of the WHERE clause is to specify that a column should have one of a set
of values by using the IN keyword, as follows:

/* *** SQL-QUERY-CH03-12 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	� Department IN ('Accounting', 'Finance',
'Marketing');

In this query, a row will be displayed if it has a Department value equal to Accounting,
Finance, or Marketing. The result is:

To select rows that do not have any of these Department values, you would use the
NOT keyword in the NOT IN phrase, as follows:

/* *** SQL-QUERY-CH03-13 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	 Department NOT IN ('Accounting', 'Finance',

	 'Marketing');

The result of this query is:

Chapter 3   Structured Query Language   151

Notice the essential difference between IN and NOT IN. When using IN, the column
may equal any of the values in the list. When using NOT IN, the column must not be equal
to all the values in the list.

Ranges, Wildcards, and Nulls in WHERE Clauses
WHERE clauses can refer to ranges of values and partial values. The BETWEEN keyword
is used for ranges of values. For example, the statement:

/* *** SQL-QUERY-CH03-14 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	 EmployeeNumber BETWEEN 2 AND 5;

will produce the following result:

Note that the SQL keyword BETWEEN includes the end points, and thus
SQL-QUERY-CH03-14 is equivalent to the following query, which uses the SQL compari-
son operators >= (greater than or equal to) and <= (less than or equal to):

/* *** SQL-QUERY-CH03-15 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	 EmployeeNumber >= 2

   AND	 EmployeeNumber <= 5;

Thus, the end values of BETWEEN (here 2 and 5) are included in the selected range. The
set of SQL comparison operators is shown in Figure 3-16. You can use any of them when
creating WHERE clauses.

The LIKE keyword is used in SQL expressions to select partial values. It is used with
wildcard characters, which represent unknown characters in a pattern. The SQL wildcard
characters are the underscore symbol (_), which represents a single, unspecified character,
and the percent sign (%), which is used to represent a series of one or more unspecified
characters.

In the following query, LIKE is used with the underscore symbol to find values that fit
a pattern:

/* *** SQL-QUERY-CH03-16 *** */

SELECT	 *

FROM	 PROJECT

WHERE	 ProjectName LIKE '2014 Q_ Portfolio Analysis';

152   Part 1   Database Fundamentals

Figure 3-16

SQL Comparison Operators

Operator Indicates
= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

One underscore is used for each unknown character. To find all employees who have a
Phone value that begins with 360-287-, you can use four underscores to represent any last
four digits, as follows:

/* *** SQL-QUERY-CH03-17 *** */

SELECT	 *

FROM	 EMPLOYEE

WHERE	 Phone LIKE '360-287-____';

The result is:

Because the percent sign represents one or more unknown characters, another way to write
the query for employees who have a phone number that starts with 360-287- is:

/* *** SQL-QUERY-CH03-18 *** */

SELECT	 *

FROM	 EMPLOYEE

WHERE	 Phone LIKE '360-287-%';

The underscore means that any character can occur in the spot occupied by the under-
score. The result of this statement is:

Chapter 3   Structured Query Language   153

If you want to find all the employees who work in departments that end in ing, you can
use the % character as follows:

/* *** SQL-QUERY-CH03-19 *** */

SELECT	 *

FROM	 EMPLOYEE

WHERE	 Department LIKE '%ing';

The result is:

The result is the same as in the previous example:

The NOT keyword, which we used previously as part of the NOT IN phrase,
can also be used with LIKE to form the NOT LIKE phrase. For example, if you
want to find all the employees who work in departments that do not end in
ing, you can use the following SQL query:

/* *** SQL-QUERY-CH03-20 *** */

SELECT	 *

FROM	 EMPLOYEE

WHERE	 Department NOT LIKE '%ing';

BTW

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access ANSI-89 SQL uses wildcards but not the SQL-92 standard
wildcards. Microsoft Access uses a question mark (?) instead of an underscore
to represent single characters and an asterisk (*) instead of a percent sign to
represent multiple characters. These symbols have their roots in the SQL-89
standard, where they are the correct standard.

(continued)

154   Part 1   Database Fundamentals

Another useful SQL keyword is the IS NULL keyword, which can be used in a
WHERE clause to search for null values. The following SQL will find the names and de-
partments of all employees who have a null value for Phone:

/* *** SQL-QUERY-CH03-21 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	 Phone IS NULL;

The result of this query is:

Furthermore, Microsoft Access can sometimes be fussy about stored
trailing spaces in a text field. You may have problems with a WHERE clause like
this:

WHERE   ProjectName LIKE '2014 Q? Portfolio Analysis';

But the clause will work if you use a trailing asterisk (*), which allows for the trail-
ing spaces:

WHERE   ProjectName LIKE '2014 Q? Portfolio Analysis*';

Solution:  Use the appropriate Microsoft Access wildcard characters, and in-
clude a trailing asterisk (*), if needed.

Sorting the Results of a Query
The order of rows in the result of a SELECT statement is somewhat arbitrary. If this is
undesirable, we can use the ORDER BY clause to sort the rows. For example, the follow-
ing will display the names, phone numbers, and departments of all employees, sorted by
Department:

The NOT keyword can also be used with IS NULL to form the IS NOT NULL
phrase. For example, if you want to find all the employees who do have
phone numbers, you can use the following SQL query:

/* *** SQL-QUERY-CH03-22 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

WHERE	 Phone IS NOT NULL;

BTW

Chapter 3   Structured Query Language   155

/* *** SQL-QUERY-CH03-23 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

ORDER BY	 Department;

The result is:

By default, SQL sorts in ascending order. The ASC keyword and DESC keyword can
be used to specify ascending and descending order when necessary. Thus, to sort employ-
ees in descending order by Department, use:

/* *** SQL-QUERY-CH03-24 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

ORDER BY	 Department DESC;

The result is:

156   Part 1   Database Fundamentals

Two or more columns can be used for sorting purposes. To sort the employee names
and departments first in descending value of Department and then within Department by
ascending value of LastName, you specify:

/* *** SQL-QUERY-CH03-25 *** */

SELECT	 FirstName, LastName, Phone, Department

FROM	 EMPLOYEE

ORDER BY	 Department DESC, LastName ASC;

The result is:

SQL Built-in Functions and Calculations
SQL allows you to calculate values based on the data in the tables. You can use arith-
metic formulas, and you can also use SQL built-in functions. SQL includes five built-in
functions: COUNT, SUM, AVG, MAX, and MIN. These functions operate on the re-
sults of a SELECT statement. COUNT works regardless of column data type, but SUM,
AVG, MAX, and MIN operate only on integer, numeric, and other number-oriented
columns.

COUNT and SUM sound similar but are different. COUNT counts the number of
rows in the result, whereas SUM totals the set of values of a numeric column. Thus, the fol-
lowing SQL statement counts the number of rows in the PROJECT table:

/* *** SQL-QUERY-CH03-26 *** */

SELECT	 COUNT(*)

FROM	 PROJECT;

The result of this statement is the following relation:

Chapter 3   Structured Query Language   157

As stated earlier, the result of an SQL SELECT statement is always a relation. If, as is
the case here, the result is a single number, that number is considered to be a relation that
has only a single row and a single column.

Note that the result shown above has no column name. You can assign a column name
to the result by using the AS keyword:

/* *** SQL-QUERY-CH03-27 *** */

SELECT	 COUNT(*) AS NumberOfProjects

FROM	 PROJECT;

Now the resulting number is identified by the column title:

Consider the following two SELECT statements:

/* *** SQL-QUERY-CH03-28 *** */

SELECT	 COUNT(Department) AS NumberOfDepartments

FROM	 PROJECT;

and:

/* *** SQL-QUERY-CH03-29 *** */

SELECT	 COUNT(DISTINCT Department) AS NumberOfDepartments

FROM	 PROJECT;

The result of SQL-QUERY-CH03-28 is the relation:

and the result of SQL-QUERY-CH03-29 is:

The difference in answers occurs because duplicate rows were eliminated in the count of
the departments in the second SELECT.

158   Part 1   Database Fundamentals

The following is another example of built-in functions:

/* *** SQL-QUERY-CH03-30 *** */

SELECT	 MIN(MaxHours) AS MinimumMaxHours,

	 MAX(MaxHours) AS MaximumMaxHours,

	 SUM(MaxHours) AS TotalMaxHours

FROM	 PROJECT

WHERE	 ProjectID <= 1200;

The result is:

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access does not support the DISTINCT keyword as part of the
COUNT expression, so while the SQL command with COUNT (Department) will
work, the SQL command with COUNT (DISTINCT Department) will fail.

Solution:  Use an SQL subquery structure (discussed later in this chapter)
with the DISTINCT keyword in the subquery itself. The following SQL query
works:

/* *** SQL-QUERY-CH03-29-Access *** */

SELECT	 COUNT(*) AS NumberOfDepartments

FROM	 (SELECT	 DISTINCT Department

	 FROM	 PROJECT) AS DEPT;

Note that this query is a bit different from the other queries using subqueries
we show in this text because the subquery above is in the FROM clause instead
of (as you’ll see) the WHERE clause. Basically, this subquery builds a new tem-
porary table named DEPT containing only distinct Department values, and the
query counts the number of those values.

Standard mathematical calculations can also be done in SQL. For example, suppose
that all employees at Wedgewood Pacific Corporation are paid $18.50 per hour. Given that
each project has a MaxHours value, you might want to calculate a maximum project cost
value for each project that is equal to MaxHours multiplied by the hour wage rate. You can
calculate the needed numbers by using the following query:

/* *** SQL-QUERY-CH03-31 *** */

SELECT	 ProjectID, ProjectName, MaxHours,

	 (18.50 * MaxHours) AS MaxProjectCost

FROM	 PROJECT;

Chapter 3   Structured Query Language   159

Note that the SQL standard does not allow column names to be mixed with built-in
functions, except in certain uses of the SQL GROUP BY clause, as discussed in the next
section. Thus, the following is not allowed:

/* *** SQL-QUERY-CH03-32 *** */

SELECT	 MaxHours, SUM(MaxHours)

FROM	 PROJECT

WHERE	 ProjectID <= 1200;

SQL Server returns the following error message if you attempt to run this query:

The result of the query, which now shows the maximum project cost for each project, is:

Also, DBMS products vary in the ways in which built-in functions can be used.
Generally, built-in functions cannot be used in WHERE clauses. Thus, a WHERE clause
such as the following is not normally allowed:

/* *** SQL-QUERY-CH03-33 *** */

SELECT	 ProjectID, MaxHours

FROM	 PROJECT

WHERE	 MaxHours < AVG(MaxHours);

SQL Server returns the following error message if you attempt to run this query:

Built-in Functions and Grouping
In SQL, you can use the GROUP BY clause to group rows by common values. This in-
creases the utility of built-in functions because you can apply them to groups of rows. For
example, the following statement counts the number of employees in each department:

/* *** SQL-QUERY-CH03-34 *** */

SELECT	 Department, Count(*) AS NumberOfEmployees

FROM	 EMPLOYEE

GROUP BY	 Department;

160   Part 1   Database Fundamentals

The GROUP BY keyword tells the DBMS to sort the table by the named column
and then to apply the built-in function to groups of rows that have the same value for the
named column. When GROUP BY is used, the name of the grouping column and built-in
functions may appear in the SELECT clause. This is the only time that a column name and
a built-in function can appear together.

We can further restrict the results by using the HAVING clause to apply conditions
to the groups that are formed. For example, if you want to consider only groups with more
than two members, you could specify:

/* *** SQL-QUERY-CH03-35 *** */

SELECT	 Department, Count(*) AS NumberOfEmployees

FROM	 EMPLOYEE

GROUP BY	 Department

HAVING	 COUNT(*) > 1;

The result of this SQL statement is:

The result is:

It is possible to add WHERE clauses when using GROUP BY. However, an ambigu-
ity results when this is done. If the WHERE condition is applied before the groups are
formed, we obtain one result. If, however, the WHERE condition is applied after the
groups are formed, we get a different result. To resolve this ambiguity, the SQL standard
specifies that when WHERE and GROUP BY occur together, the WHERE condition will
be applied first. For example, consider the following query:

/* *** SQL-QUERY-CH03-36 *** */

SELECT	 Department, Count(*) AS NumberOfEmployees

FROM	 EMPLOYEE

WHERE	 EmployeeNumber <= 6

GROUP BY	 Department

HAVING	 COUNT(*) > 1;

Chapter 3   Structured Query Language   161

In this expression, first the WHERE clause is applied to select employees with an
EmployeeNumber less than or equal to 6. Then the groups are formed. Finally, the
HAVING condition is applied. The result is:

The queries considered so far have involved data from a single table. However, at times,
more than one table must be processed to obtain the desired information.

Querying Multiple Tables with Subqueries
For example, suppose we want to know the names of all employees who have worked
more than 50 hours on any single assignment. The names of employees are stored in the
EMPLOYEE table, but the hours they have worked are stored in the ASSIGNMENT
table.

If we knew that employees with EmployeeNumber 8 and 10 have worked more than
50 hours on an assignment (which is true), we could obtain their names with the following
expression:

/* *** SQL-QUERY-CH03-37 *** */

SELECT	 FirstName, LastName

FROM	 EMPLOYEE

WHERE	 EmployeeNumber IN (8, 10);

The result is:

SQL for Data Manipulation (DML)—Multiple Table Queries

But, according to the problem description, we are not given the employee numbers. We
can, however, obtain the appropriate employee numbers with the following query:

/* *** SQL-QUERY-CH03-38 *** */

SELECT	 DISTINCT EmployeeNumber

FROM	 ASSIGNMENT

WHERE	 HoursWorked > 50;

The result is:

162   Part 1   Database Fundamentals

Now, we can combine these two SQL statements by using a subquery, as follows:

/* *** SQL-QUERY-CH03-39 *** */

SELECT	 FirstName, LastName

FROM	 EMPLOYEE

WHERE	 EmployeeNumber IN

	 (SELECT   DISTINCT EmployeeNumber

	 FROM	 ASSIGNMENT

	 WHERE	 HoursWorked > 50);

The result of this expression is:

These are indeed the names of the employees who have worked more than 50 hours on any
single assignment.

Subqueries can be extended to include three, four, or even more levels. Suppose, for
example, that you need to know the names of employees who have worked more than 40
hours on an assignment sponsored by the accounting department. You can obtain the proj-
ect IDs of projects sponsored by accounting with:

/* *** SQL-QUERY-CH03-40 *** */

SELECT	 ProjectID

FROM	 PROJECT

WHERE	 Department = 'Accounting';

The result is:

You can obtain the employee numbers of employees working more than 40 hours on
those projects with:

/* *** SQL-QUERY-CH03-41 *** */

SELECT	 DISTINCT EmployeeNumber

FROM	 ASSIGNMENT

WHERE	 HoursWorked > 40

	 AND	 ProjectID IN

	 (SELECT	 ProjectID

	 FROM	 PROJECT

	 WHERE	 Department = 'Accounting');

Chapter 3   Structured Query Language   163

The result is:

Finally, you can obtain the names of the employees in the preceding SQL statement
with:

/* *** SQL-QUERY-CH03-42 *** */

SELECT	 FirstName, LastName

FROM	 EMPLOYEE

WHERE	 EmployeeNumber IN

	 (SELECT	 DISTINCT EmployeeNumber

	 FROM	 ASSIGNMENT

	 WHERE	 HoursWorked > 40

	 AND	 ProjectID IN

		 (SELECT	 ProjectID

		 FROM	 PROJECT

		 WHERE	 Department = 'Accounting'));

The final result is:

Querying Multiple Tables with Joins
Subqueries are effective for processing multiple tables, as long as the results come from a
single table. If, however, we need to display data from two or more tables, subqueries do
not work. We need to use an SQL join operation instead.

The basic idea of a join is to form a new relation by connecting the contents of two or
more other relations. Consider the following example:

/* *** SQL-QUERY-CH03-43 *** */

SELECT	 FirstName, LastName, HoursWorked

FROM	 EMPLOYEE, ASSIGNMENT

WHERE	� EMPLOYEE.EmployeeNumber =
  ASSIGNMENT.EmployeeNumber;

The function of this statement is to create a new table having the three columns LastName,
FirstName, and HoursWorked. Those columns are to be taken from the EMPLOYEE and
ASSIGNMENT tables, under the condition that EmployeeNumber in EMPLOYEE (writ-
ten in the format TABLENAME.ColumnName as EMPLOYEE.EmployeeNumber) equals
EmployeeNumber in ASSIGNMENT (written as ASSIGNMENT.EmployeeNumber).
Whenever there is ambiguity about which table the column data are coming from, the

164   Part 1   Database Fundamentals

column name is always preceded with the table name in the format TABLENAME
.ColumnName.

This ambiguity about which table the column data are coming from often
happens (as in this case) because the primary key and foreign key column
names are the same, but it can happen in other situations. For example,
both EMPLOYEE and DEPARTMENT have a Phone column, but Phone is
not a primary key or foreign key in either table. If we wanted to list em-
ployees with both their own phone number and their department phone
number, we would have to qualify the field names as EMPLOYEE.Phone
and DEPARTMENT.Phone.

BTW

You can think of the join operation working as follows. Start with the first row
in EMPLOYEE. Using the value of EmployeeNumber in this first row (1 for the
data in Figure 3-2(b)), examine the rows in ASSIGNMENT. When you find a row in
ASSIGNMENT where EmployeeNumber is also equal to 1, join FirstName and LastName
of the first row of EMPLOYEE with HoursWorked from the row you just found in
ASSIGNMENT.

For the data in Figure 3-2(c), the first row of ASSIGNMENT has EmployeeNumber
equal to 1, so you join FirstName and LastName from the first row of EMPLOYEE with
HoursWorked from the first row in ASSIGNMENT to form the first row of the join. The
result is:

Now, still using the EmployeeNumber value of 1, look for a second row in
ASSIGNMENT that has EmployeeNumber equal to 1. For our data, the sixth row of
ASSIGNMENT has such a value. So, join FirstName and LastName from the first row of
EMPLOYEE to HoursWorked in the sixth row of ASSIGNMENT to obtain the second
row of the join, as follows:

Continue in this way, looking for matches for the EmployeeNumber value of 1. There
is one more in the 10th row, and you would add the data for that match to obtain the result:

Chapter 3   Structured Query Language   165

At this point, no more EmployeeNumber values of 1 appear in the sample data, so now
you move to the second row of EMPLOYEE, obtain the new value of EmployeeNumber
(2), and begin searching for matches for it in the rows of ASSIGNMENT. In this case, the
seventh row has such a match, so you add FirstName, LastName, and HoursWorked to the
result to obtain:

You continue until all rows of EMPLOYEE have been examined. The final result is:

Actually, that is the theoretical result. But remember that row order in an SQL query
can be arbitrary. To ensure that you get the above result, you need to add an ORDER BY
clause to the query:

/* *** SQL-QUERY-CH03-44 *** */

SELECT	 FirstName, LastName, HoursWorked

FROM	 EMPLOYEE, ASSIGNMENT

WHERE	� EMPLOYEE.EmployeeNumber =
  ASSIGNMENT.EmployeeNumber

ORDER BY	 EMPLOYEE.EmployeeNumber, ProjectID;

166   Part 1   Database Fundamentals

The data results are the same, but the row order is definitely different!
A join is just another table, so all the earlier SQL SELECT commands are available

for use. We could, for example, group the rows of the join by employee and sum the hours
they worked. The following is the SQL for such a query:

/* *** SQL-QUERY-CH03-45 *** */

SELECT	 FirstName, LastName,

	 SUM(HoursWorked) AS TotalHoursWorked

FROM	 EMPLOYEE AS E, ASSIGNMENT AS A

WHERE	 E.EmployeeNumber = A.EmployeeNumber

GROUP BY	 LastName, FirstName;

Note another use for the AS keyword, which is now used to assign aliases to table
names so that we can use these aliases in the WHERE clause. This makes it much easier to
write queries with long table names. The result of this query is:

The actual result when the original query is run in SQL Server is:

Chapter 3   Structured Query Language   167

Or we could apply a WHERE clause during the process of creating the join as follows:

/* *** SQL-QUERY-CH03-46 *** */

SELECT	 FirstName, LastName, HoursWorked

FROM	 EMPLOYEE AS E, ASSIGNMENT AS A

WHERE	 E.EmployeeNumber = A.EmployeeNumber

   AND	 HoursWorked > 50;

The result of this join is:

Now, suppose we want to join PROJECT to EMPLOYEE and ASSIGNMENT to
show the names of the projects that the employees worked on. We can use the same SQL
statement structure as before, except for one complication—now you have to use two
WHERE phrases combined by an AND to join the three tables:

/* *** SQL-QUERY-CH03-47 *** */

SELECT	 ProjectName, FirstName, LastName, HoursWorked

FROM	 EMPLOYEE AS E, PROJECT AS P, ASSIGNMENT AS A

WHERE	 E.EmployeeNumber = A.EmployeeNumber

   AND	 P.ProjectID = A.ProjectID

ORDER BY	 P.ProjectID, A.EmployeeNumber;

The result of this query is:

168   Part 1   Database Fundamentals

The SQL JOIN ON Syntax
Our SQL join examples so far have used the original, but older, form of the SQL join
syntax. While it can still be used, today most SQL users prefer to use the SQL JOIN
ON syntax. Consider our query example SQL-QUERY-CH03-43 as modified with an
ORDER BY clause to become SQL-QUERY-CH03-44. This query uses a join in the
WHERE clause:

/* *** SQL-QUERY-CH03-44 *** */

SELECT	 FirstName, LastName, HoursWorked

FROM	 EMPLOYEE, ASSIGNMENT

WHERE	� EMPLOYEE.EmployeeNumber =
  ASSIGNMENT.EmployeeNumber

ORDER BY	 EMPLOYEE.EmployeeNumber, ProjectID;

Using the JOIN ON syntax, SQL-QUERY-CH-44 would be modified as follows to become
SQL-QUERY-CH03-48:

/* *** SQL-QUERY-CH03-48 *** */

SELECT	 FirstName, LastName, HoursWorked

FROM	 EMPLOYEE JOIN ASSIGNMENT

	� ON	� EMPLOYEE.EmployeeNumber =
    ASSIGNMENT.EmployeeNumber

ORDER BY	 EMPLOYEE.EmployeeNumber, ProjectID;

The result of the query, as you would expect, is:

Chapter 3   Structured Query Language   169

Note that the SQL JOIN ON syntax links tables in the FROM clause with the SQL
JOIN keyword instead of a comma, and then moves the join condition that was previous
in the WHERE clause into the FROM clause by use of the SQL ON keyword. This creates
easy to read lines of code that make semantic sense to the reader.

Our first example used only two tables, but we can also use the JOIN ON syntax for
joins of more than two tables. Here is the previous query to combine data for EMPLOYEE,
PROJECT, and ASSIGNMENT rewritten using the JOIN ON style:

/* *** SQL-QUERY-CH03-49 *** */

SELECT	 ProjectName, FirstName, LastName, HoursWorked

FROM	 EMPLOYEE AS E JOIN ASSIGNMENT AS A

	 ON	 E.EmployeeNumber = A.EmployeeNumber

			 JOIN PROJECT AS P

	 ON	 A.ProjectID = P.ProjectID

ORDER BY	 P.ProjectID, A.EmployeeNumber;

Note how the additional table is added into the query by the additional JOIN ON con-
struction. For each new table added to the query, we simply add another JOIN ON phrase.
For our earlier three-table example, the result, as you would expect, is the same as we ob-
tained with the previous query:

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access supports the JOIN ON syntax only with a keyword specifying a
standard (INNER) or nonstandard (OUTER) JOIN. OUTER joins are discussed
next in the text.

(continued)

170   Part 1   Database Fundamentals

Inner Joins and Outer Joins
Let’s add a new project, the 2014 Q4 Tax Preparation project run by the accounting de-
partment, to the PROJECT table as follows:

/* *** SQL-INSERT-CH03-05 *** */

INSERT INTO PROJECT

	 (ProjectName, Department, MaxHours, StartDate)

	 VALUES('2014 Q4 Tax Preparation', 'Accounting',

	 175.00, '10-DEC-14');

To see the updated PROJECT table, we use the query:

/* *** SQL-QUERY-CH03-50 *** */

SELECT * FROM PROJECT;

The results are:

Solution:  The Microsoft Access JOIN ON queries run when written with the
INNER keyword as:

/* *** SQL-QUERY-CH03-48-Access *** */

SELECT	 FirstName, LastName, HoursWorked

FROM	 EMPLOYEE INNER JOIN ASSIGNMENT

	 ON	� EMPLOYEE.EmployeeNumber =
    ASSIGNMENT.EmployeeNumber

ORDER BY	 EMPLOYEE.EmployeeNumber, ProjectID;

Further, Microsoft Access requires that the joins be grouped using parentheses
when three or more tables are joined:

/* *** SQL-QUERY-CH03-40-Access *** */

SELECT	 ProjectName, FirstName, LastName, HoursWorked

FROM	 (EMPLOYEE AS E INNER JOIN ASSIGNMENT AS A

	 ON	 E.EmployeeNumber = A.EmployeeNumber) 

		 INNER JOIN PROJECT AS P

	 ON	 A.ProjectID = P.ProjectID

ORDER BY	 P.ProjectID, A.EmployeeNumber;

Chapter 3   Structured Query Language   171

Now, with the new project added to PROJECT, we’ll rerun the previous query on
EMPLOYEE, ASSIGNMENT, and PROJECT:

/* *** SQL-QUERY-CH03-51 *** */

SELECT	 ProjectName, FirstName, LastName, HoursWorked

FROM	 EMPLOYEE AS E JOIN ASSIGNMENT AS A

	 ON	 E.EmployeeNumber = A.EmployeeNumber

		 JOIN PROJECT AS P

		 ON	 A.ProjectID = P.ProjectID

ORDER BY	 P.ProjectID, A.EmployeeNumber;

The results are:

The results shown here are correct, but a surprising result occurs. What happened
to the new 2014 Q4 Tax Preparation project? The answer is that it does not appear in the
join results because its ProjectID value of 1500 had no match in the ASSIGNMENT table.
Nothing is wrong with this result; you just need to be aware that unmatched rows do not
appear in the result of a join.The join operation discussed in the previous sections is some-
times referred to as an SQL equijoin or SQL inner join. An inner join only displays data
from the rows that match based on join conditions, and as you saw in the last query in the
previous section, data can be lost (or at least appear to be lost) when you perform an inner
join. In particular, if a row has a value that does not match the WHERE clause condition,
that row will not be included in the join result. The 2014 Q4 Tax Preparation project did
not appear in the previous join because no row in ASSIGNMENT matched its ProjectID
value. This kind of loss is not always desirable, so a special type of join, called an SQL
outer join, was created to avoid it.

Consider the STUDENT and LOCKER tables in Figure 3-17(A), where we have drawn
two tables to highlight the relationships between the rows in each table. The STUDENT
table shows the StudentPK (student number) and StudentName of students at a university.
The LOCKER table shows the LockerPK (locker number) and LockerType (full size or half

172   Part 1   Database Fundamentals

Figure 3-17

Types of JOINS

(a) The STUDENT and LOCKER Tables Aligned to Show Row Relationships

Only the rows where
LockerFK=LockerPK
are shown—Note that
some StudentPK and
some LockerPK
values are not in the
results

(b) INNER JOIN of the STUDENT and LOCKER Tables

All rows from STUDENT
are shown, even where
there is no matching
LockerFK=LockerPK
value

(c) LEFT OUTER JOIN of the STUDENT and LOCKER Tables

All rows from
LOCKER are shown,
even where there is no
matching
LockerFK=LockerPK
value

(d) RIGHT OUTER JOIN of the STUDENT and LOCKER Tables

Chapter 3   Structured Query Language   173

size) of lockers at the recreation center on campus. If we run a join between these two tables
as shown in SQL-QUERY-CH03-52, we get a table of students who have lockers assigned to
them together with their assigned locker. This result is shown in Figure 3-17(B).

* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH03-52 *** */

SELECT	� StudentPK, StudentName, LockerFK,
LockerPK, LockerType

FROM	 STUDENT INNER JOIN LOCKER

	 ON	 STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY	 StudentPK;

The type of SQL join shown in SQL QUERY-CH03-52 is an SQL inner join using an
SQL JOIN ON syntax that uses the SQL INNER JOIN syntax.

Now, suppose we want to show all the rows already in the join, but also want to show
any rows (students) in the STUDENT table that are not included in the inner join. This
means that we want to see all students, including those who have not been assigned a locker.
To do this, we use the SQL outer join, which is designed for this very purpose. And because
the table we want is listed first in the query and is thus on the left side of the table listing,
we specifically use an SQL left outer join, which uses the SQL LEFT JOIN syntax. This is
shown in SQL QUERY-CH03-53, which produces the results shown in Figure 3-17(C).

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH03-53 *** */

SELECT	� StudentPK, StudentName, LockerFK,
LockerPK, LockerType

FROM	 STUDENT LEFT OUTER JOIN LOCKER

	 ON	 STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY	 StudentPK;

In the results shown in Figure 3-17(C), note that all the rows from the STUDENT table
are now included and that rows that have no match in the LOCKER table are shown with
NULL values. Looking at the output, we can see that the students Adams and Buchanan
have no linked rows in the LOCKER table. This means that Adams and Buchanan have not
been assigned a locker in the recreation center.

If we want to show all the rows already in the join, but now also any rows in the
LOCKER table that are not included in the inner join, we specifically use an SQL right
outer join, which uses the SQL RIGHT JOIN syntax because the table we want is listed
second in the query and is thus on the right side of the table listing. This means that we
want to see all lockers, including those that have not been assigned to a student. This is
shown in SQL QUERY-CH03-54, which produces the results shown in Figure 3-17(D).

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH03-54 *** */

SELECT	� StudentPK, StudentName, LockerFK,
LockerPK, LockerType

FROM	 STUDENT RIGHT OUTER JOIN LOCKER

	 ON	 STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY	 LockerPK;

In the results shown in Figure 3-17(D), note that all the rows from the LOCKER
table are now included and that rows that have no match in the STUDENT table are

174   Part 1   Database Fundamentals

shown with NULL values. Looking at the output, we can see that the lockers numbered
70, 80, and 90 have no linked rows in the STUDENT table. This means that these lock-
ers are currently unassigned to a student and are available for use. DBMS products today
support outer joins, but the specific SQL syntax for the outer join varies by DBMS prod-
uct. Be sure to consult the documentation for the DBMS product you are using.

Returning to our WPC database example, consider the following SQL statement and no-
tice the use of the JOIN ON syntax—the LEFT keyword is simply added to the SQL query:

/* *** SQL-QUERY-CH03-55 *** */

SELECT	 ProjectName, EmployeeNumber, HoursWorked

FROM	 PROJECT LEFT JOIN ASSIGNMENT

	 ON PROJECT.ProjectID = ASSIGNMENT.ProjectID;

The purpose of this join is to append rows of PROJECT to those of ASSIGNMENT, as de-
scribed previously, except that if any row in the table on the left side of the FROM clause (in this
case, PROJECT) has no match, it is included in the results anyway. The result of this query is:

Notice that the last row of this table appends a null value to the 2014 Q4 Tax Preparation
project.

Right outer joins operate similarly, except that the RIGHT keyword is used, and rows
in the table on the right-hand side of the FROM clause are included. For example, you
could join all three tables together with the following right outer join:

/* *** SQL-QUERY-CH03-56 *** */

SELECT	 ProjectName, HoursWorked, FirstName, LastName

FROM	 (PROJECT AS P JOIN ASSIGNMENT AS A

	 ON P.ProjectID = A.ProjectID)

		 RIGHT JOIN EMPLOYEE AS E

	 ON A.EmployeeNumber = E.EmployeeNumber

ORDER BY	 P.ProjectID, A.EmployeeNumber;

Chapter 3   Structured Query Language   175

The result of this join, which now shows not only the employees assigned to projects but
also those employees who are not assigned to any projects, is:

Does Not Work with Microsoft Access ANSI-89 SQL

Even with the following syntax, which is what worked before in Microsoft Access,
the error message Join expression not supported is returned when the query is
run.

/* *** SQL-QUERY-CH03-56-Access *** */

SELECT	� ProjectName, HoursWorked, FirstName, LastName

FROM	 (PROJECT AS P INNER JOIN ASSIGNMENT AS A

	 ON P.ProjectID = A.ProjectID)

		 RIGHT JOIN EMPLOYEE AS E

		 ON �A.EmployeeNumber =
   E.EmployeeNumber

ORDER BY	 P.ProjectID, A.EmployeeNumber;

Solution:  Build an equivalent query or set of queries using the Microsoft Access
Query by Example (QBE). Query by Example (QBE) is discussed in this chapter’s
section of “The Access Workbench.”

176   Part 1   Database Fundamentals

The SQL DML contains commands for the three possible data modification operations:
insert, modify, and delete. We have already discussed inserting data, and now we consider
modifying and deleting data.

Modifying Data
You can modify the values of existing data by using the SQL UPDATE . . . SET statement.
However, this is a powerful command that needs to be used with care. Consider the
EMPLOYEE table. We can see the current data in the table by using the command:

/* *** SQL-QUERY-CH03-57 *** */

SELECT * FROM EMPLOYEE;

The current data in the EMPLOYEE table look like this:

SQL for Data Manipulation (DML)—Data Modification
and Deletion

Note that James Nestor (EmployeeNumber = 11) has a NULL value for his phone
number. Suppose that he has just gotten a phone with phone number 360-287-8810.
We can change the value of the Phone column for his data row by using the SQL
UPDATE . . . SET statement, as shown in the following SQL command:

/* *** SQL-UPDATE-CH03-01 *** */

UPDATE	 EMPLOYEE

SET	 Phone = '360-287-8810'

WHERE	 EmployeeNumber = 11;

To see the result, we repeat the command:

/* *** SQL-QUERY-CH03-58 *** */

SELECT * FROM EMPLOYEE;

Chapter 3   Structured Query Language   177

The revised data in the EMPLOYEE table with the new phone number now look like this:

Now consider why this command is dangerous. Suppose that while intending to make
this update, we make an error and forget to include the WHERE clause. Thus, we submit
the following to the DBMS:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH03-02 *** */

UPDATE	 EMPLOYEE

SET	 Phone = '360-287-8810';

After this command has executed, we would again use a SELECT command to display the
contents of the EMPLOYEE relation:

/* *** SQL-QUERY-CH03-59 *** */

SELECT * FROM EMPLOYEE;

The EMPLOYEE relation will appear as follows:

178   Part 1   Database Fundamentals

This is clearly not what we intended to do. If you did this at a new job where there are
10,000 rows in the EMPLOYEE table, you would experience a sinking feeling in the pit of your
stomach and make plans to update your résumé. The message here: The SQL UPDATE . . . SET
statement is powerful and easy to use, but it is also capable of causing disasters.

The SQL UPDATE . . . SET statement can modify more than one column value at a time,
as shown in the following statement. For example, if Heather Jones (EmployeeNumber = 5)
is transferred to the finance department from accounting and given a new finance phone
number, you can use the following command to update her data:

/* *** SQL-UPDATE-CH03-03 *** */

UPDATE	 EMPLOYEE

SET	 Department = 'Finance', Phone = '360-285-8420'

WHERE	 EmployeeNumber = 5;

This command changes the values of Phone and Department for the indicated employee.
You can use a SELECT command to see the results:

/* *** SQL-QUERY-CH03-60 *** */

SELECT	 *

FROM	 EMPLOYEE

WHERE	 EmployeeNumber = 5;

The results are as follows:

Deleting Data
You can eliminate rows with the SQL DELETE statement. However, the same warnings
pertain to DELETE as to UPDATE. DELETE is deceptively simple to use and easy to ap-
ply in unintended ways. The following, for example, deletes all projects sponsored by the
marketing department:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DELETE-CH03-01 *** */

DELETE

FROM	 PROJECT

WHERE	 Department = 'Marketing';

SQL:2003 introduced the SQL MERGE statement, which essentially combines
the INSERT and UPDATE statements into one statement that can either insert
or update data depending upon whether some condition is met. Thus, the
MERGE statement requires some rather complex SQL code, and you should
concentrate on thoroughly understanding both the INSERT and UPDATE state-
ments at this point. Later, when you are ready, consult the documentation for
your specific DBMS product to see how it implements the MERGE statement.

BTW

Chapter 3   Structured Query Language   179

Given that we created an ON DELETE CASCADE referential integrity constraint,
this DELETE operation not only removes PROJECT rows, it also removes any related
ASSIGNMENT rows. For the WPC data in Figure 3-2, this DELETE operation removes
the projects with ProjectID 1000 (2014 Q3 Product Plan) and 1300 (2014 Q3 Product
Plan) and six rows (rows 1, 2, and 3 for ProjectID 1000 and rows 10, 11, and 12 for
ProjectID 1300) of the ASSIGNMENT table.

As with the SQL UPDATE . . . SET statement, if you forget to include the WHERE
clause, disaster ensues. For example, the SQL code:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DELETE-CH03-02 *** */

DELETE

FROM	 PROJECT;

deletes all the rows in PROJECT (and because of the ON DELETE CASCADE constraint,
all the ASSIGNMENT rows as well). This truly would be a disaster!

Observe how the referential integrity constraint differs with the EMPLOYEE table.
Here, if we try to process the command:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DELETE-CH03-03 *** */

DELETE

FROM	 EMPLOYEE

WHERE	 EmployeeNumber = 1;

the DELETE operation fails because rows in ASSIGNMENT depend on the
EmployeeNumber value of 1 in EMPLOYEE. If you want to delete the row for this em-
ployee, you must first reassign or delete his or her rows in ASSIGNMENT.

There are many data definition SQL statements that we have not yet described. Two of the
most useful are the SQL DROP TABLE and SQL ALTER TABLE statements.

The SQL DROP TABLE Statement
The SQL DROP TABLE statement is also one of the most dangerous SQL statements
because it drops the table’s structure along with all of the table’s data. For example, to drop
the ASSIGNMENT table and all its data, you use the following SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DROP-TABLE-CH03-01 *** */

DROP TABLE ASSIGNMENT;

The SQL DROP TABLE statement does not work if the table contains or could contain
values needed to fulfill referential integrity constraints. EMPLOYEE, for example, con-
tains values of EmployeeNumber needed by the foreign key constraint ASSIGN_EMP_
FK. In this case, an attempt to issue the statement DROP TABLE EMPLOYEE fails, and
an error message is generated.

SQL for Data Definition (DDL)—Table and Constraint
Modification and Deletion

180   Part 1   Database Fundamentals

The SQL ALTER TABLE Statement
To drop the EMPLOYEE table, you must first drop the ASSIGNMENT table or at least
delete the foreign key constraint ASSIGN_EMP_FK. This is one place where the ALTER
TABLE command is useful. You use the SQL ALTER TABLE statement to add, modify,
and drop columns and constraints. For example, you can use it to drop the ASSIGN_
EMP_FK constraint with the statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH03-01 *** */

ALTER TABLE ASSIGNMENT DROP CONSTRAINT ASSIGN_EMP_FK;

After either dropping the ASSIGNMENT table or the ASSIGN_EMP_FK foreign key
constraint, you can then successfully drop the EMPLOYEE table.

Now you know why it is an advantage to control constraint names by using
the CONSTRAINT syntax. Because we created the foreign key constraint
name ASSIGN_EMP_FK ourselves, we know what it is. This makes it easy
to use when we need it.

BTW

The SQL TRUNCATE TABLE Statement
The SQL TRUNCATE TABLE statement was added in the SQL:2008 standard, so it is
one of the latest additions to SQL. Like the SQL DELETE statement, it is used to remove
all data from a table while leaving the table structure itself in the database. However, unlike
the SQL DELETE statement, the SQL TRUNCATE TABLE statement also resets any sur-
rogate primary key values back to the starting point. The SQL TRUNCATE TABLE state-
ment does not use an SQL WHERE clause to specify conditions for the data deletion—all
the data in the table are always removed when the TRUNCATE TABLE statement is used.

The following statement could be used to remove all the data in the PROJECT table:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH03-01 *** */

TRUNCATE TABLE PROJECT;

The TRUNCATE TABLE statement cannot be used with a table that is referenced by a for-
eign key constraint because this could create foreign key values that have no corresponding
primary key value. Thus, while we can use TRUNCATE TABLE with the PROJECT table,
we cannot use it with the DEPARTMENT table.

The CHECK Constraint
We can also use the SQL ALTER TABLE statement to add a constraint. For example,
consider the PROJECT table, which has the columns StartDate and EndDate. Obviously,
the StartDate must be earlier than the EndDate, but there is currently nothing in the table
definition to enforce this. This is a perfect place to use a CHECK constraint. CHECK con-
straints are similar to WHERE clauses in SQL queries. They can contain the keywords IN,
NOT IN, and LIKE (for the specification of decimal places), and they can use less than (<)
and greater than (>) signs for range checks.

Chapter 3   Structured Query Language   181

To modify the PROJECT table with the needed constraint, we use the following SQL
statement:

/* *** SQL-ALTER-TABLE-CH03-21 *** */

ALTER TABLE PROJECT

    ADD CONSTRAINT PROJECT_Check_Dates

       CHECK (StartDate < EndDate);

The ALTER TABLE statement is handy when you need to add or drop columns. For
example, suppose that you want to add a column to PROJECT to track how many hours
have actually been worked on a project. If the name of this column is CurrentTotalHours,
you can add it to the table with the SQL statement (note that the keyword COLUMN is
not used in this command):

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH03-03 *** */

ALTER TABLE PROJECT

    ADD CurrentTotalHours Numeric(8,2) NULL;

Note that because you are adding a column to an existing table that contains data,
you cannot add a NOT NULL column; the constraint would immediately be violated be-
cause there would be missing data in each row. If you want a column to be NOT NULL,
you must create it as NULL, insert the needed data, and then modify the column to NOT
NULL. For example, after putting the necessary data into CurrentTotalHours for the exist-
ing rows, you could convert it to NOT NULL (and supply a DEFAULT value at the same
time) by using the SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH03-04 *** */

ALTER TABLE PROJECT

    ALTER COLUMN CurrentTotalHours Numeric(8,2) NOT NULL

       DEFAULT 1;

If you decided that this column was not needed, you could drop it from the PROJECT
table by using the SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH03-04 *** */

ALTER TABLE PROJECT

    DROP COLUMN CurrentTotalHours;

Does Not Work with Microsoft Access ANSI-89 SQL

As discussed earlier, Microsoft Access does not support the CHECK column
constraints.

Solution:  An equivalent constraint can be set in the table Design view. See the
discussion in this chapter’s section of “The Access Workbench.”

182   Part 1   Database Fundamentals

We can also use the SQL ALTER TABLE statement to modify data types, but you have
to be careful because this can result in a loss of data. Check your DBMS documentation
carefully before attempting to modify data types.5

5Also see David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and
Implementation, 13th edition (Upper Saddle River, NJ: Prentice Hall, 2014), Chapter 8.

SQL contains a powerful tool known as an SQL view. An SQL view is a virtual table cre-
ated by a DBMS-stored SELECT statement and thus can combine access to data in mul-
tiple tables and even in other views. SQL views are discussed in online Appendix E, “SQL
Views,” where we show how to create and use SQL views and discuss several specific appli-
cations of SQL views in database applications. This is important material that you will find
very useful when building databases and database applications, and we will use SQL views
in our discussion of Online Analytical Processing (OLAP) reporting systems in Chapter 8.

SQL Views

The Access Workbench
Section 3
Working with Queries in Microsoft Access

In the previous sections of “The Access Workbench,” you learned to create Microsoft
Access databases, tables, forms, and reports in multiple-table databases. In this section,
you’ll:

•	 Learn how to use Access SQL.
•	 Learn how to run queries in single and multiple tables, using both SQL and Query

by Example (QBE).
•	 Learn how to manually set table and relationship properties that Access SQL does

not support.

In this section, we will continue to use the WMCRM database you’ve been using. At this
point, we’ve created and populated (that is, inserted the data into) the CUSTOMER and
CONTACT tables and set the referential integrity constraint between them.

Working with Microsoft Access SQL

You work with Microsoft Access SQL in the SQL view of a query window. The following
simple query shows how this works:

/* *** SQL-QUERY-AW03-01 *** */

SELECT	 *

FROM	 CUSTOMER;

Opening an Access Query Window in Design View

1.	 Start Microsoft Access 2013.
2.	 Click the File command tab to display the File menu and then click the WMCRM.accdb

database filename in the quick access list to open the database.

Chapter 3   Structured Query Language   183

3.	 Click the Create command tab to display the Create command groups, as shown in
Figure AW-3-1.

4.	 Click the Query Design button.
5.	 The Query1 tabbed document window is displayed in Design view, along with the Show

Table dialog box, as shown in Figure AW-3-2.
6.	 Click the Close button on the Show Table dialog box. The Query1 document window now

looks as shown in Figure AW-3-3. This window is used for creating and editing Access que-
ries in Design view and is used with Access QBE, as discussed later in this section.

Note that in Figure AW-3-3 the Select button is selected in the Query Type group on
the Design tab. You can tell this is so because active or selected buttons are always shown
in color on the Ribbon. This indicates that we are creating a query that is the equivalent of
an SQL SELECT statement.

Also note that in Figure AW-3-3 the View gallery is available in the Results group of
the Design tab. We can use this gallery to switch between Design view and SQL view.
However, we can also just use the displayed SQL View button to switch to SQL view,
which is being displayed because Access considers that to be the view you would most
likely choose in the gallery if you used it. Access always presents a “most likely needed”
view choice as a button above the View gallery.

Opening an Access SQL Query Window and Running an Access SQL Query

1.	 Click the SQL View button in the Results group on the Design tab. The Query1 window
switches to the SQL view, as shown in Figure AW-3-4. Note the basic SQL command
SELECT; that’s shown in the window. This is an incomplete command, and running it will
not produce any results.

The CREATE
command tab

The Query Design
button

Figure AW-3-1

The CREATE Command Tab

(Continued)

184   Part 1   Database Fundamentals

The Query1 tabbed
document window

The Show Table
dialog box

Click the Close
button

Figure AW-3-2

The Show Table Dialog Box

n

The QUERY TOOLS

The SQL View button

The View gallery
drop-down arrow
button

The Select Query
Type button

The Query Type
command group

command tab

The Query1 tabbed
document window
in Design view

The DESIGN
command tab

Figure AW-3-3

The Query Tools Contextual Command Tab

Chapter 3   Structured Query Language   185

2.	 Edit the SQL SELECT command to read

SELECT  *

FROM   CUSTOMER;

as shown in Figure AW-3-5.

3.	 Click the Run button on the Design tab.
4.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane and then click

the Query1 document tab to select the Query1 window. The query results appear, as shown
in Figure AW-3-6.

Just as we can save Access objects such as tables, forms, and reports, we can save
Access queries for future use.

The Query1 window
in SQL view

The SQL SELECT;
statement—this is an
incomplete statement
and will not run as
written—it is intended
as the start of an SQL
query

Figure AW-3-4

The Query1 Window in SQL View

The Run button

The complete SQL
query statement—
SELECT * FROM
CUSTOMER;

Figure AW-3-5

The SQL Query

(Continued)

186   Part 1   Database Fundamentals

Saving an Access SQL Query

1.	 To save the query, click the Save button on the Quick Access Toolbar. The Save As dialog
box appears, as shown in Figure AW-3-7.

2.	 Type in the query name SQL-Query-AW03-01 and then click the OK button. The query is
saved, and the window is renamed with the query name, as shown in Figure AW-3-8.

3.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane. As shown in
Figure AW-3-8, the query document window is now named SQL-Query-AW03-01, and
a newly created SQL-Query-AW03-01 query object appears in a Queries section of the
Navigation Pane.

4.	 Close the Query-AW-03-01 window by clicking the document window’s Close button.
5.	 If Access displays a dialog box asking whether you want to save changes to the design of the

query SQL-Query-AW03-01, click the Yes button.

The query results

Figure AW-3-6

The SQL Query Results

The Save button

The Save As dialog
box

The OK button

Figure AW-3-7

The Save As Dialog Box

Chapter 3   Structured Query Language   187

Working with Microsoft Access QBE

By default, Microsoft Access does not use the SQL interface. Instead, it uses a version of
Query by Example (QBE), which uses the Access GUI to build queries. To understand
how this works, we’ll use QBE to recreate the SQL query we just created using QBE.

Creating and Running an Access QBE Query

1.	 Click the Create command tab to display the Create command groups.
2.	 Click the Query Design button.
3.	 The Query1 tabbed document window is displayed in Design view, along with the Show

Table dialog box, as shown in Figure AW-3-2.
4.	 Click CUSTOMER to select the CUSTOMER table. Click the Add button to add the

CUSTOMER table to the query.
5.	 Click the Close button to close the Show Table dialog box.
6.	 Rearrange and resize the query window objects in the Query1 query document window,

using standard Windows drag-and-drop techniques. Rearrange the window elements until
they look as shown in Figure AW-3-9.

7.	 Note the elements of the Query1 window shown in FigureAW-3-9: Tables and their associ-
ated set of columns—called a field list—that are included in the query are shown in the
upper pane, and the columns (fields) actually included in the query are shown in the lower
pane. For each included column (field), you can set whether this column’s data appear in
the results, how the data are sorted, and the criteria for selecting which rows of data will be
shown. Note that the first entry in the table’s field list is the asterisk (*), which has its stan-
dard SQL meaning of “all columns in the table.”

8.	 Include columns in the query by dragging them from the table’s field list to a field column
in the lower pane. Click and drag the * in CUSTOMER to the first field column, as shown
in Figure AW-3-10. Note that the column is entered as CUSTOMER.* from the table
CUSTOMER.

9.	 To save the QBE query, click the Save button on the Quick Access Toolbar to display the Save
As dialog box. Type in the query name QBE-Query-AW03-02, and then click the OK but-
ton. The query is saved, the window is renamed QBEQuery-AW-03-02, and a newly created
QBEQuery-AW-03-02 query object appears in a Queries section of the Navigation Pane.

The query window
is now named
SQL-Query-AW03-01

The Queries section
of the Navigation Pane

The SQL-Query-
AW03-01 query object

Figure AW-3-8

The Named and Saved Query

(Continued)

188   Part 1   Database Fundamentals

Tables in the query
appear in the top pane,
together with a list of
their columns (the field
list) and an asterisk (*),
meaning “all columns”

This query is a Select
query

Columns in the query
are called fields and
appear in the bottom
pane, together with
related property values

Figure AW-3-9

The QBE Query1 Query Window

The asterisk (*) symbol
was dragged and
dropped here to add
the CUSTOMER.* field
to the query

To add a column to the
query, click the column
name and drag it to a
cell in the Field: row in
the lower pane

The table name is
automatically added to
the query to specify the
source of the column—
this is important if there
is more than one table
in the query with the
same column name

Figure AW-3-10

Adding Columns to the QBE Query

Chapter 3   Structured Query Language   189

10.	 Click the Run button on the Query Design toolbar.
11.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane. You may need

to resize column widths to see all the data. The query results appear, as shown in Figure
AW-3-11. Note that these results are identical to the results shown in Figure AW-3-6.

12.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane and then click
the query document tab to select it.

13.	 Close the QBE-Query-AW03-02 query.
14.	 If Access displays a dialog box asking whether you want to save changes to the layout of

the query QBE-Query-AW03-02, click the Yes button.

This query is about as simple as they get, but we can use QBE for more complicated
queries. For example, consider a query that uses only some of the columns in the table,
includes the SQL WHERE clause, and also sorts data using the SQL ORDER BY clause:

/* *** SQL-Version of QBE-QUERY-AW03-03 *** */

SELECT	 CustomerID, LastName, FirstName

FROM	 CUSTOMER

WHERE	 CustomerID > 2

ORDER BY	 LastName DESC;

This QBE query, named QBE-Query-AW03-03, is shown in Figure AW-3-12. Note that
now we’ve included the specific columns that we want used in the query instead of the
asterisk, we’ve used the Sort property for CustomerID, and we’ve included row selection
conditions in the Criteria property for LastName.

As expected, the query
results are identical to
those shown in Figure
AW-3-6

The results are sorted
by CustomerID

Figure AW-3-11

The QBE Query Results

(Continued)

190   Part 1   Database Fundamentals

Creating and Running QBEQuery-AW03-03

1.	 Using the previous instructions for QBEQuery-AW-03-02, create, run, and save
QBEQuery-AW-03-03. The query results are shown in Figure AW-3-13.

Of course, we can use more than one table in a QBE query. Next, we’ll create the QBE
version of this SQL query:

/* *** SQL-Version-of-QBE-QUERY-AW-CH03-04 *** */

SELECT	 LastName, FirstName,

	 ContactDate, ContactType, Remarks

FROM	 CUSTOMER, CONTACT

WHERE	 CUSTOMER.CustomerID = CONTACT.CustomerID

	 AND CustomerID = 3

ORDER BY	 Date;

The CustomerID,
LastName, and
FirstName fields are
in the query

The results will be
sorted by LastName
in descending order
(Z–A)

The results will show
only customers with a
CustomerID greater
than 2

Figure AW-3-12

The QBEQuery-AW03-03 Query Window

The results show
only customers with
a CustomerID
greater than 2, sorted
by LastName in
descending order
(Z–A)

Figure AW-3-13

The QBEQuery-AW03-03 Query Results

Chapter 3   Structured Query Language   191

Creating and Running an Access QBE Query with Multiple Tables

  1.	 Click the Create command tab.
  2.	 Click the Query Design button.
  3.	 The Query1 tabbed document window is displayed in Design view, along with the Show

Table dialog box.
  4.	 Click CUSTOMER to select the CUSTOMER table. Click the Add button to add the

CUSTOMER table to the query.
  5.	 Click CONTACT to select the CONTACT table. Click the Add button to add the

CUSTOMER table to the query.
  6.	 Click the Close button to close the Show Table dialog box.
  7.	 Rearrange and resize the query window objects in the Query1 query document window by

using standard Windows drag-and-drop techniques. Rearrange the window elements until
they look as shown in Figure AW-3-14. Note that the relationship between the two tables
is already included in the diagram. This implements the SQL clause:

WHERE CUSTOMER.CustomerID = CONTACT.CustomerID

  8.	 From the CUSTOMER table, click and drag the CustomerID, LastName, and FirstName
column names to the first three field columns in the lower pane.

  9.	 From the CONTACT table, click and drag the Date, Type, and Remarks column names
to the next three field columns in the lower pane.

10.	 In the field column for CustomerID, uncheck the Show check box so that the data from
this column is not included in the results display.

11.	 In the field column for CustomerID, type the number 3 in the Criteria row.
12.	 In the field column for Date, set the Sort setting to Ascending. The completed QBE query

appears, as shown in Figure AW-3-15.

Both the
CUSTOMER table
and the
CONTACT table
are in the query

The relationship and referential integrity constraint between
the two tables are automatically included in the query—this
means that the SQL clause

is automatically part of the query

Figure AW-3-14

The Query Window with Two Tables

(Continued)

192   Part 1   Database Fundamentals

13.	 Click the Run button. The query results appear, as shown in Figure AW-3-16.
14.	 To save the query, click the Save button on the Quick Access Toolbar to display the Save

As dialog box. Type in the query name QBE-Query-AW03-04, and then click the OK but-
ton. The query is saved, the document window is renamed with the new query name, and
the QBE-Query-AW03-04 object is added to the Queries section of the Navigation Pane.

15.	 Close the QBE-Query-AW03-04 window.

Working with Microsoft Access Parameter Queries

Access allows us to construct queries that prompt the user for values to be used in the
WHERE clause of the query. These are known as parameterized queries, where the word
parameter refers to the column for which a value is needed. And because we can create
reports that are based on queries, parameterized queries can be used as the basis of param-
eterized reports.

For an example of a parameterized query, we’ll modify QBEQuery-AW-03-04 so that
CustomerID is the parameter and the user is prompted for the CustomerID value when the
query is run.

Creating and Running an Access Parameterized Query

1.	 In the Navigation Pane, right-click the QBE-Query-AW03-04 query object to select it and
open the shortcut menu and then click the Design View button in the shortcut menu to
open the query in Design view. Note that the CustomerID column, which was the first col-
umn, now appears as the last column in Design view. This occurs because we specified that
the column would not be displayed.

2.	 Click the File command tab, and then click the Save Object As command to display the
Save As dialog box, as shown in Figure AW-3-17.

From CONTACT, the
Date, Type, and
Remarks columns
are in the query

From CUSTOMER,
the CustomerID,
LastName, and
FirstName columns
are in the query

The results will show
only for the customer
with the CustomerID
of 3

The results will be
sorted by Date in
ascending order
(A–Z)

Figure AW-3-15

The Completed Two-Table Query

Chapter 3   Structured Query Language   193

3.	 In the Save ‘QBE-Query-AW03-04’ to: text box of the Save As dialog box, edit the query
name to read QBE-Query-AW03-05.

4.	 Click the OK button to save the query.
5.	 Click the Design command tab to return to Design view of query, which is now renamed

QBE-Query-AW03-05.
6.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
7.	 In the Criteria row of the CustomerID column, delete the number value (which is 3), and

enter the text [Enter the CustomerID Number:] in its place. You will need to expand
the CustomerID column width for all the text to be visible at the same time. The QBE-
Query-AW03-05 window now looks as shown in Figure AW-3-18.

The results are sorted
by Date in ascending
order (earliest date to
latest date)

The results are shown
for the customer with
the CustomerID of 3,
which is Jessica
Christman

Figure AW-3-16

The Two-Table Query Results

The FILE
command tab

Right-click the
query object QBE-
Query-AW03-04
to display a shortcut
menu, and then click
the Copy command

Type the new query
name QBE-Query-
AW03-05 in this
text box

The Paste As
dialog box

The OK button

Figure AW-3-17

The Paste As Dialog Box

(Continued)

194   Part 1   Database Fundamentals

  8.	 Click the Save button on the Quick Access Toolbar to save the changes to the query
design.

  9.	 Click the Run button. The Enter Parameter Value dialog box appears, as shown in
Figure AW-3-19. Note that the text we entered in the Criteria row now appears as a
prompt in the dialog box.

10.	 Enter the CustomerID number 3 as a parameter value and then click the OK button. The
query results appear. They are identical to those shown in Figure AW-3-16.

11.	 Click the Save button to save the changes to the design of the query and then close the query.
12.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.

This completes our discussion of SQL and QBE queries in Microsoft Access 2013.
With the query tools we’ve described, you should be able to run any needed query in an
Access database.

Creating Tables with Microsoft Access SQL

In previous sections of “The Access Workbench,” we created and populated Microsoft
Access tables using table Design view. Now we’ll create and populate a table by us-
ing Microsoft Access SQL, as done in the SQL view of a query window. So far, the

This is the text that
was entered into
the criteria field for
CustomerID

The Enter Parameter
Value dialog box

Click the OK button
to run the query

Enter the CustomerID
number here

Figure AW-3-19

The Enter Parameter Value Dialog Box

Criteria for the
CustomerID column
now contains the text
for a prompt to be
displayed in the Enter
Parameter Value
dialog box that will be
displayed to get a
parameter value from
the user

The CustomerID
column has been
repositioned as the
last column because it
is not displayed in the
query results

Figure AW-3-18

The Completed Parameterized Query

Chapter 3   Structured Query Language   195

Wallingford Motors CRM has been for use by only a single salesperson. Now we’ll add
a SALESPERSON table. Each salesperson at Wallingford Motors is identified by a nick-
name. The nickname may be the person’s actual first name or a true nickname, but it must
be unique. We can assume that one salesperson is assigned to each customer and that only
that salesperson makes contact with the customer.

The full set of tables in the WMCRM database will now look like this:

SALESPERSON (NickName, LastName, FirstName, HireDate, WageRate,
CommissionRate, Phone, Email)

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
Fax, Email, NickName)
CONTACT (ContactID, CustomerID, Date, Type, Remarks)

The referential integrity constraints are:

NickName in CUSTOMER must exist in NickName in SALESPERSON
CustomerID in CONTACT must exist in CustomerID in CUSTOMER

The database column characteristics for SALESPERSON are shown in Figure AW-3-20, and
SALESPERSON data are shown in Figure AW-3-21.

Figure AW-3-20

Database Column Characteristics for the SALESPERSON Table

Column Name Type Key Required Remarks
NickName Text (35) Primary Key Yes

LastName Text (25) No Yes

FirstName Text (25) No Yes

HireDate Date/Time No Yes Medium Date

WageRate Number No Yes Double, Currency, Default value = $12.50

CommissionRate Number No Yes Double, Percent, 3 Decimal places

Phone Text (12) No Yes

Email Text (100) No Yes Unique

Figure AW-3-21

Data for the SALESPERSON Table

Nick Last First Hire Wage Commission
Name Name Name Date Rate Rate Phone Email
Tina Smith Tina 10-AUG-08 $ 15.50 12.500% 206-287-7010 Tina@WM.com

Big Bill Jones William 25-SEP-08 $ 15.50 12.500% 206-287-7020 BigBill@WM.com

Billy Jones Bill 17-MAY-09 $ 12.50 12.000% 206-287-7030 Billy@WM.com

(Continued)

196   Part 1   Database Fundamentals

Note that adding the SALESPERSON table will require alterations to the existing
CUSTOMER table. We need a new column for the foreign key NickName, a referential in-
tegrity constraint between CUSTOMER and SALESPERSON, and new data for the column.

First, we’ll build the SALESPERSON table. The correct SQL statement is:

/* *** SQL-CREATE-TABLE-AW03-01 *** */

CREATE TABLE SALESPERSON(

	 NickName	 Char(35)	 NOT NULL,

	 LastName	 Char(25)	 NOT NULL,

	 FirstName	 Char(25)	 NOT NULL,

	 HireDate	 DateTime	 NOT NULL,

	 WageRate	 Numeric(5,2)	� NOT NULL
  DEFAULT(12.50),

	 CommissionRate	 Numeric(5,3)	 NOT NULL,

	 Phone	 Char(12)	 NOT NULL,

	 Email	 Varchar(100)	 NOT NULL UNIQUE,

	 CONSTRAINT	 SALESPERSON_PK	� PRIMARY KEY
  (NickName)

);

This statement uses standard SQL data types (specifically SQL Server data types), but this is
not a problem because Access will correctly read them and translate them into Access data
types. However, from the SQL discussion in this chapter, we know that Access does not sup-
port the numeric data type with the (m,n) syntax (where m = total number of digits and n =
number of digits to the right of the decimal). Further, Access does not support the UNIQUE
constraint or the DEFAULT keyword. Therefore, we have to create an SQL statement with-
out these items and then use the Access GUI to fine-tune the table after it is created.

The SQL that will run in Access is:

/* *** SQL-CREATE-TABLE-AW03-02 *** */

CREATE TABLE SALESPERSON(

	 NickName	 Char(35)	 NOT NULL,

	 LastName	 Char(25)	 NOT NULL,

	 FirstName	 Char(25)	 NOT NULL,

	 HireDate	 DateTime	 NOT NULL,

	 WageRate	 Numeric	 NOT NULL,

	 CommissionRate	 Numeric	 NOT NULL,

	 Phone	 Char(12)	 NOT NULL,

	 Email	 Varchar(100)	 NOT NULL,

	 CONSTRAINT	 SALESPERSON_PK	� PRIMARY KEY
  (NickName)

);

Creating the SALESPERSON Table by Using Access SQL

1.	 As described earlier in this chapter’s section of “The Access Workbench,” open an Access
query window in SQL view.

2.	 Type the SQL code into the query window. The query window now looks as shown in
Figure AW-3-22.

Chapter 3   Structured Query Language   197

3.	 Click the Run button. The statement runs, but because this statement creates a table the
only immediately visible results are that the SALESPERSON table object is added to the
Tables section of the Navigation Pane.

4.	 Save the query as Create-Table-SALESPERSON.
5.	 Close the query window. The Create-Table-SALESPERSON query object now appears in

the Queries section of the Navigation Pane, as shown in Figure AW-3-23.

Modifying Access Tables to Add Data Requirements Not Supported
by Access SQL

To modify the SALESPERSON table to add the table requirements not supported by
Access SQL, we use the Access table Design view.6

6Although we do not fully discuss the matter in this book, it’s important to mention that Access SQL con-
founds the treatment of the SQL NOT NULL column constraint. When you use NOT NULL in defining
a column, Access properly sets the column’s Required field property to Yes. (We discussed how to do this
manually in Chapter 1’s section of “The Access Workbench” when we created the CUSTOMER table.)
However, Access adds a second field property, the Allow Zero Length field property, which it sets to Yes.
To truly match NOT NULL, this value should be set to No. For a full discussion of setting the Allow Zero
Length field property, see the Microsoft Access help system.

The complete SQL
CREATE TABLE
SALESPERSON
statement

Figure AW-3-22

The SQL CREATE TABLE SALESPERSON Statement

(Continued)

The SALESPERSON
table

The Create-Table-
SALESPERSON
query—note the
Design icon that
identifies this as a
data definition query

Figure AW-3-23

The SALESPERSON Objects in the Navigation Pane

198   Part 1   Database Fundamentals

First, recall that Access SQL does not support the numeric (m,n) syntax, where m is
the number of digits stored and n is the number of digits to the right of the decimal place.
We can set the number of digits to some extent by setting the Field Size field property
(which is as close as Access gets to setting the value of m). By default, Access sets a numeric
value Field Size property to double. We could change this, but a full discussion of this field
property is beyond the scope of this book—see the Microsoft Access help system discus-
sion of the Field Size property for more information.

We can, however, easily set the number of decimal places (which is the value of n)
using the Decimal Places field property. In addition, Microsoft Access does have the ad-
vantage of having a Format field property that allows us to apply formatting to a numeric
value so that the data appear as currency, a percentage, or in other formats. We will leave
the default Field Size setting and change the Format and Decimal Places property values.

Recall that Access SQL does not support the SQL DEFAULT keyword, so we will have
to add any needed default values. We can do this using the Default Value field property.

Setting Number and Default Value Field Properties

1.	 To open the SALESPERSON table in Design view, right-click the SALESPERSON table
object to select it and open the shortcut menu and then click the Design View button in
the shortcut menu. The SALESPERSON table appears in Design view, as shown in Figure
AW-3-24.

2.	 Select the WageRate field. The WageRate field properties are displayed in the General tab,
as shown in Figure AW-3-25.

3.	 Click the Format text field. A drop-down list arrow appears on the right end of the text
field, as shown in Figure AW-3-26. Click the drop-down list arrow to display the list and
select Currency.

Move the mouse
cursor here, and then
click to select the
WageRate column
(field)

The General tab in
the Field Properties
section

Figure AW-3-24

The SALESPERSON Table in Design View

Chapter 3   Structured Query Language   199

■■ Note:  When you do this, a small icon appears to the left of the text field. This is
the Property Update Options drop-down list. Simply ignore it, and it will disappear
when you take the next action. Then it will reappear for that action! In general, ig-
nore it and keep working.

  4.	 Click the Decimal Places text field (which is currently set to Auto). Again, a drop-down
list arrow appears. Use the drop-down list to select 2 decimal places.

  5.	 Click the Default Value text box. The Expression Builder icon appears, as shown in
Figure AW-3-27. We do not need to use the Expression Builder at this point. Type 12.50
into the Default Value text box. We have finished setting the field property values for
WageRate. The final values are shown in Figure AW-3-28.

■■ Note:  Access actually stores this number as 12.5, which is the same value without
the trailing zero. Don’t be alarmed if you look at these property values again and no-
tice the missing zero!

  6.	 Click the Save button to save the completed changes to the SALESPERSON table.
  7.	 Select the CommissionRate field. The CommissionRate field properties are displayed in

the General tab.
  8.	 Set the Format value to Percentage.
  9.	 Set the Decimal Places value to 3.
10.	 Select the HireDate field. The HireDate field properties are displayed in the General tab.
11.	 Set the Format value to Medium Date.
12.	 Click the Save button to save the completed changes to the SALESPERSON table.
13.	 Leave the SALESPERSON table open in Design view for the next set of steps.

The UNIQUE constraint is another SQL constraint that Access SQL does not sup-
port. To set a UNIQUE constraint in Access, we set the value of the Indexed field property.

The WageRate
column is selected

The Format text box

The Decimal Places
text box

The Default Value
text box

Figure AW-3-25

The WageRate Field Properties

(Continued)

200   Part 1   Database Fundamentals

Click the Format text
box drop-down arrow
to display the drop-
down list

Select Currency

Click in the Format
text box to select it

Figure AW-3-26

The Format Text Box

The Property Update
Options icon—you
can simply ignore it

Click in the Default
Value text box to
select it

The Expression
Builder button, which
we will not use at this
time

Figure AW-3-27

The Default Value Text Box

Chapter 3   Structured Query Language   201

Access initially sets this value to No, which means that no index (a tool for making queries
more efficient) is built for this column. The two other possible values of this property are
Yes (Duplicates OK) and Yes (No Duplicates). We enforce the UNIQUE constraint by
setting the property value to Yes (No Duplicates).

Setting Indexed Field Properties

1.	 The SALESPERSON table should already be open in Design view. If it isn’t, open the table
in Design view.

2.	 Select the Email field.
3.	 Click the Indexed text field. A drop-down list arrow button appears on the right end of the

text field, as shown in Figure AW-3-29. Click the Indexed drop-down list arrow button to
display the list and select Yes (No Duplicates).

4.	 Click the Save button to save the completed changes to the SALESPERSON table.
5.	 Close the SALESPERSON table.

Finally, we’ll implement the SQL CHECK constraint. When we created the CONTACT
table, the only allowed data types for the Type column were Phone, Fax, Email, and Meeting.
The correct SQL statement to add this constraint to the CONTACT table would be:

/* *** SQL-ALTER-TABLE-AW03-01 *** */

ALTER TABLE CONTACT

   ADD CONSTRAINT CONTACT_Check_ContactType

     CHECK

	� (ContactType IN ('Phone', 'Fax', 'Email',
'Meeting'));

Data format is set to
Currency

Number of decimal
places is set to 2

The default value is
set to 12.50

Figure AW-3-28

The Completed WageRate Field Properties

(Continued)

202   Part 1   Database Fundamentals

To implement the CHECK constraint in Access, we set the value of the Validation Rule
field property for the Type column.

Creating the CHECK Constraint for the CONTACT Table

1.	 Open the CONTACT table in Design view.
2.	 Select the ContactType column.
3.	 Click the Validation Rule text box and then type in the text Phone or Fax or Email or

Meeting, as shown in Figure AW-3-30.
■■ Note:  Do not enclose the allowed terms in quotation marks. Access will add quo-

tation marks to each term when it saves the changes to the table design. If you add
your own set of quotation marks, you’ll end up with each word enclosed in two sets
of quotes, and Access will not consider this a match to the existing data in the table
when it runs the data integrity check discussed in step 4.

4.	 Click the Save button on the Quick Access Toolbar to save the CONTACT table. As shown
in Figure AW-3-31, Access displays a dialog box warning that existing data may not match
the data integrity rule we have just established by setting a validation rule.

5.	 Click the Yes button on the dialog box
6.	 Close the CONTACT table.

Inserting Data with Microsoft Access SQL

We can use Access SQL to enter the data shown in Figure AW-3-20 into the
SALESPERSON table. The only problem here is that Access will not handle multiple
SQL commands in one query, so each row of data must be input individually. The SQL
commands to enter the data are:

The Email column is
selected

The Indexed text box

Select Yes (No
Duplicates)

Figure AW-3-29

The Email Field Properties

Chapter 3   Structured Query Language   203

/* *** SQL-INSERT-AW03-01 *** */

INSERT INTO SALESPERSON

	 VALUES('Tina', 'Smith', 'Tina', '10-AUG-08',

	 '15.50', '.125', '206-287-7010', 'Tina@WM.com');

/* *** SQL-INSERT-AW03-02 *** */

INSERT INTO SALESPERSON

	 VALUES('Big Bill', 'Jones', 'William', '25-SEP-08',

	 '15.50', '.125', '206-287-7020', 'BigBill@WM.com');

/* *** SQL-INSERT-AW03-03 *** */

INSERT INTO SALESPERSON

	 VALUES('Billy', 'Jones', 'Bill', '17-MAY-09',

	 '12.50', '.120', '206-287-7030', 'Billy@WM.com');

The ContactType row
is selected

Enter the possible
values for the column
in the Validation Rule
text box separated by
the word or

Figure AW-3-30

Specifying a Validation Rule

(Continued)

The Data Integrity
warning dialog box

Click the Yes button

Figure AW-3-31

The Data Integrity Warning Dialog Box

204   Part 1   Database Fundamentals

Inserting Data into the SALESPERSON Table by Using Access SQL

  1.	 As described previously, open an Access query window in SQL view.
  2.	 Type the SQL code for the first SQL INSERT statement into the query window.
  3.	 Click the Run button. As shown in Figure AW-3-32, the query changes to Append Query,

and a dialog box appears, asking you to confirm that you want to insert the data.
  4.	 Click the Yes button in the dialog box. The data are inserted into the table.
  5.	 Repeat steps 2, 3, and 4 for the rest of the SQL INSERT statements for the

SALESPERSON data.
  6.	 Close the Query1 window. A dialog box appears, asking if you want to save the query.

Click the No button—there is no need to save this SQL statement.
  7.	 Open the SALESPERSON table in Datasheet view.
  8.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane and then ar-

range the columns so that all column names and data are displayed correctly.
  9.	 The table looks as shown in Figure AW-3-33. Note that the rows are sorted alphabetically,

in ascending order, on the primary key (NickName) value—they do not appear in the or-
der in which they were input.

■■ Note:  This is not typical of an SQL DBMS. Normally, if you run a SELECT *
FROM SALESPERSON query on the table, the data appear in the order in which
they were input, unless you added an ORDER BY clause.

10.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.
11.	 Click the Save button on the Quick Access Toolbar to save the change to the table layout.
12.	 Close the SALESPERSON table.

At this point, the SALESPERSON table has been created and populated. At
Wallingford Motors each customer is assigned to one and only one salesperson, so

The SQL INSERT
command

The dialog box
confirming the
INSERT

Click the Yes
button to complete
the INSERT

Figure AW-3-32

Inserting Data into the SALESPERSON Table

The data is stored
by NickName (the
primary key value), in
ascending order

Figure AW-3-33

The Data in the SALESPERSON Table

Chapter 3   Structured Query Language   205

now we need to create the relationship between SALESPERSON and CUSTOMER.
This will require a foreign key in CUSTOMER to provide the needed link to
SALESPERSON.

The problem is that the column needed for the foreign key—NickName—does not
exist in CUSTOMER. Therefore, before creating the foreign key constraint, we must
modify the CUSTOMER table by adding the NickName column and the appropriate
data values.

Figure AW-3-34 shows the column characteristics for the NickName column in the
CUSTOMER table, and Figure AW-3-35 shows the data for the column.

As shown in Figure AW-3-34, NickName is constrained as NOT NULL. As discussed
in this chapter, however, adding a populated NOT NULL column requires multiple steps.
First, the column must be added as a NULL column. Next, the column values must be
added. Finally, the column must be altered to NOT NULL. We could do this by using
Access’s GUI interface, but because we are working with Access SQL in this section, we
will do these steps in SQL. The needed SQL statements are:

/* *** SQL-ALTER-TABLE-AW03-02 *** */

ALTER TABLE CUSTOMER

    ADD NickName Char(35) NULL;

/* *** SQL-UPDATE-AW03-01 *** */

UPDATE CUSTOMER

SET	 NickName = 'Big Bill'

WHERE	 CustomerID = 1;

/* *** SQL-UPDATE-AW03-02 *** */

UPDATE CUSTOMER

SET	 NickName = 'Billy'

WHERE	 CustomerID = 3;

Figure AW-3-34

Database Column Characteristics for the NickName Column

Column Name Type Key Required Remarks
NickName Text (35) Foreign Key Yes

Figure AW-3-35

CUSTOMER NickName Data

CustomerID LastName FirstName . . . NickName
1 Griffey Ben . . . Big Bill

3 Christman Jessica . . . Billy

4 Christman Rob . . . Tina

5 Hayes Judy . . . Tina

(Continued)

206   Part 1   Database Fundamentals

/* *** SQL-UPDATE-TAW-CH03-03 *** */

UPDATE CUSTOMER

SET	 NickName = 'Tina'

WHERE	 CustomerID = 4;

/* *** SQL-UPDATE-AW03-04 *** */

UPDATE CUSTOMER

SET	 NickName = 'Tina'

WHERE	 CustomerID = 5;

/* *** SQL-ALTER-TABLE-AW03-03 *** */

ALTER TABLE CUSTOMER

    ALTER COLUMN NickName Char(35) NOT NULL;

Creating and Populating the NickName Column in the CUSTOMER Table by
Using Access SQL

  1.	 As described previously, open an Access query window in SQL view.
  2.	 Type the SQL code for the first SQL ALTER TABLE statement into the query window.
  3.	 Click the Run button.

■■ Note:  The only indication that the command has run successfully is the fact that no
error message is displayed.

  4.	 Type the SQL code for the first SQL UPDATE statement into the query window.
  5.	 Click the Run button. When the dialog box appears, asking you to confirm that you want

to insert the data, click the Yes button in the dialog box. The data are inserted into the
table.

  6.	 Repeat steps 4 and 5 for the rest of the SQL UPDATE statements for the CUSTOMER
data.

  7.	 Type the SQL code for the second SQL ALTER TABLE statement into the query window.
  8.	 Click the Run button.

■■ Note:  Again, the only indication that the command has run successfully is the fact
that no error message is displayed.

  9.	 Close the Query1 window. A dialog box appears, asking if you want to save the query.
Click the No button—there is no need to save this SQL statement.

10.	 Open the CUSTOMER table.
11.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane and then scroll

to the right so that the added NickName column and the data in it are displayed. The
table looks as shown in Figure AW-3-36.

The Design View
button

The added
NickName
column and data

Figure AW-3-36

The CUSTOMER Table with NickName Data

Chapter 3   Structured Query Language   207

12.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane and then click
the Design View button to switch the CUSTOMER table into Design view.

13.	 Click the NickName field name to select it.
14.	 The table with the added NickName column looks as shown in Figure AW-3-37. Note that

the data are required in the column—this is Access equivalent of NOT NULL.
15.	 Close the CUSTOMER table.

Adding Referential Integrity Constraints by Using Access SQL

Now that the NickName column has been added and populated in the CUSTOMER table,
we can create the needed referential integrity constraint by adding a foreign key constraint
between SALESPERSON and CUSTOMER. Because NickName is not a surrogate key,
we will want any changed values of NickName in SALESPERSON to be updated in
CUSTOMER. However, if a row is deleted from SALESPERSON, we do not want that de-
letion to cause the deletion of CUSTOMER data. Therefore, the needed constraint, written
as an SQL ALTER TABLE statement, is:

/* *** SQL-ALTER-TABLE-AW03-04 *** */

ALTER TABLE CUSTOMER

     ADD CONSTRAINT CUSTOMER_SP_FK FOREIGN KEY(NickName)

        REFERENCES SALESPERSON(NickName)

           ON UPDATE CASCADE;

The added NickName
column

Data in the column
are required, which is
the Access equivalent
of NOT NULL

Figure AW-3-37

The Altered CUSTOMER Table

(Continued)

208   Part 1   Database Fundamentals

Unfortunately, as discussed in this chapter, Access SQL does not support ON UPDATE
and ON DELETE clauses. Therefore, we have to set ON UPDATE CASCADE manually
after creating the basic constraint with the SQL statement:

/* *** SQL-ALTER-TABLE-AW03-05 *** */

ALTER TABLE CUSTOMER

     ADD CONSTRAINT CUSTOMER_SP_FK FOREIGN KEY(NickName)

        REFERENCES SALESPERSON(NickName);

Creating the Referential Integrity Constraint Between CUSTOMER and
SALESPERSON by Using Access SQL

1.	 As described previously, open an Access query window in SQL view.
2.	 Type the SQL code for the SQL ALTER TABLE statement into the query window.
3.	 Click the Run button.

■■ Note:  As before, the only indication that the command has run successfully is the
fact that no error message is displayed.

4.	 Close the Query1 window. A dialog box appears, asking if you want to save the query. Click
the No button; there is no need to save this SQL statement.

Modifying Access Databases to Add Constraints Not Supported
by Access SQL

We’ll set the ON UPDATE CASCADE constraint by using the Relationships window
and the Edit Relationships dialog box, as discussed in Chapter 2’s section of “The Access
Workbench.”

Creating a Referential Integrity Constraint Between CUSTOMER and
SALESPERSON by Using Access SQL

1.	 Click the Database Tools command tab and then click the Relationships button in the
Show/Hide group. The Relationships window appears, as shown in Figure AW-3-38.

2.	 Click the Show Table button in the Relationships group of the Design ribbon. The Show
Table dialog box appears, as shown in Figure AW-3-39.

3.	 In the Show Table dialog box, click SALESPERSON to select it and then click the Add
button to add SALESPERSON to the Relationships window.

The Show Table
button

This is the relationship
diagram as we
created it in Chapter 2’s
section of “The
Access Workbench”—
note that the
NickName column
has been added to
CUSTOMER

Figure AW-3-38

The Relationships Window with the Current Relationship Diagram

Chapter 3   Structured Query Language   209

4.	 Click the Close button to close the Show Table dialog box.
5.	 Rearrange and resize the table objects in the Relationships window by using standard

Windows drag-and-drop techniques. Rearrange the SALESPERSON, CUSTOMER, and
CONTACT table objects until they look as shown in Figure AW-3-40. Note that the rela-
tionship between SALESPERSON and CUSTOMER that we created using SQL is already
shown in the diagram.

6.	 Right-click the relationship line between SALESPERSON and CUSTOMER, and then click
Edit Relationship in the shortcut menu that appears. The Edit Relationships dialog box ap-
pears. Note that the Enforce Referential Integrity check box is already checked—this was set
by the SQL ALTER TABLE statement that created the relationship between the two tables.

7.	 Set ON UPDATE CASCADE by clicking the Cascade Update Related Fields check box.
The Edit Relationships dialog box now looks as shown in Figure AW-3-41.

8.	 Click the OK button. An Access dialog box appears, asking whether you want to save changes
to the layout of “Relationships.” Click the Yes button to save the changes and close the window.

Closing the Database and Exiting Access

Now we’re done adding the SALESPERSON table to the database. We created the
SALESPERSON table, added data, altered the CUSTOMER data with a new column and
foreign key values, and created the referential integrity constraint between the two tables.
In the process, we saw where Access SQL does not support the standard SQL language and
learned how to use the Access GUI to compensate for the lacking SQL language features.

That completes the work we’ll do in this chapter’s section of “The Access Workbench.”
If you have taken a class in Microsoft Access, you probably did many of the tasks we cov-
ered in a different way. In Microsoft Access, SQL DDL is usually quite hidden, but in this

The Show Table
dialog box—click
a table name to
select it, and then
click the Add
button to add the
table to the
relationship
diagram

The Add button

When you have
added all the tables
needed, click the
Close button

Figure AW-3-39

Adding the SALESPERSON Table to the Relationship Diagram

(Continued)

210   Part 1   Database Fundamentals

section of “The Access Workbench,” we’ve shown you how to complete the tasks using
SQL. As usual, we finish by closing the database and Access.

Closing the WMCRM Database and Exiting Access

1.	 Close the WMCRM database and exit Access by clicking the Close button in the upper-
right corner of the Microsoft Access window.

The relationship
between
SALESPERSON and
CUSTOMER already
exists—it was created
using SQL—so right-
click the relationship
line and then click
Edit Relationship in
the shortcut menu
that appears to
display the Edit
Relationships dialog
box

Figure AW-3-40

The Updated Relationship Diagram

The Enforce
Referential
Integrity check box
is already selected
because of the SQL
CONSTRAINT
FOREIGN KEY
statement

Check the Cascade Update Related
Fields check box to set the equivalent
of the SQL ON UPDATE CASCADE
statement

Leave the Cascade Delete Related
Records check box unchecked—this
is equivalent to the SQL ON DELETE
NO ACTION statement

Figure AW-3-41

The Completed Edit Relationships Dialog Box

Chapter 3   Structured Query Language   211

Summary
Structured Query Language (SQL) is a data sublanguage that has constructs for defining
and processing a database. SQL has several components, two of which are discussed in this
chapter: a data definition language (DDL), which is used for creating database tables and
other structures, and a data manipulation language (DML), which is used to query and
modify database data. SQL can be embedded into scripting languages, such as VBScript,
or programming languages, such as Java and C#. In addition, SQL statements can be
processed from a command window. SQL was developed by IBM and has been endorsed
as a national standard by the American National Standards Institute (ANSI). There have
been several versions of SQL. Our discussion is based on SQL-92, but later versions exist
that have added, in particular, support for Extensible Markup Language (XML). Modern
DBMS products provide graphic facilities for accomplishing many of the tasks that SQL
does. Use of SQL is mandatory for programmatically creating SQL statements.

Microsoft Access 2013 uses a variant of SQL known as ANSI-89 SQL, or Microsoft Jet
SQL, which differs significantly from SQL-92. Not all SQL statements written in SQL-92
and later versions run in Access ANSI-89 SQL.

The SQL CREATE TABLE statement is used to create relations. Each column is de-
scribed in three parts: the column name, the data type, and optional column constraints.
Column constraints considered in this chapter are PRIMARY KEY, FOREIGN KEY,
NULL, NOT NULL, and UNIQUE. The DEFAULT keyword (not considered a con-
straint) is also considered. If no column constraint is specified, the column is set to NULL.

Standard data types are Char, VarChar, Integer, Numeric, and DateTime. These types
have been supplemented by DBMS vendors. Figure 3-4 shows some of the additional data
types for SQL Server, Oracle Database, and MySQL.

If a primary key has only one column, you can define it by using the primary key con-
straint. Another way to define a primary key is to use the table constraint. You can use such
constraints to define single-column and multicolumn primary keys, and you can also imple-
ment referential integrity constraints by defining foreign keys. Foreign key definitions can
specify that updates and deletions should cascade.

After the tables and constraints are created, you can add data by using The SQL
INSERT statement and you can query data by using The SQL SELECT statement. The ba-
sic format of the SQL SELECT statement is SELECT (column names or the asterisk symbol
[*]), FROM (table names, separated by commas if there is more than one), WHERE (condi-
tions). You can use SELECT to obtain specific columns, specific rows, or both.

Conditions after WHERE require single quotes around values for Char and VarChar
columns. However, single quotes are not used for Integer and Numeric columns. You
can specify compound conditions with AND and OR. You can use sets of values with IN
(match any in the set) and NOT IN (not match any in the set). You can use the wildcard
symbols _ and % (? and * in Microsoft Access) with LIKE to specify a single unknown
character or multiple unknown characters, respectively. You can use IS NULL to test for
null values.

You can sort results by using the ORDER BY command. The five SQL built-in func-
tions are COUNT, SUM, MAX, MIN, and AVG. SQL can also perform mathematical
calculations. You can create groups by using GROUP BY, and you can limit groups by
using HAVING. If the keywords WHERE and HAVING both occur in an SQL statement,
WHERE is applied before HAVING.

You can query multiple tables by using either subqueries or joins. If all the result data
come from a single table, then subqueries can be used. If results come from two or more
tables, then joins must be used. The JOIN . . . ON syntax can be used for joins. Rows that
do not match the join conditions do not appear in the results. Outer joins can be used to
ensure that all rows from a table appear in the results.

You can modify data by using The SQL UPDATE . . . SET statement and delete data by
using The SQL DELETE statement. The SQL UPDATE and SQL DELETE statements
can easily cause disasters, so the commands must be used with great care.

212   Part 1   Database Fundamentals

You can remove tables (and their data) from a database by using the SQL DROP
TABLE statement. You can remove constraints by using the SQL ALTER TABLE DROP
CONSTRAINT command. You can modify tables and constraints by using The SQL ALTER
TABLE statement. Finally, you can use the CHECK constraint to validate data values.

Key Terms
/* and */ (SQL comment symbols)
American National Standards

Institute (ANSI)
AND keyword
AS keyword
ASC keyword
asterisk (*)
AVG
business rule
CASCADE keyword
CHECK constraint
comparison operators
CONSTRAINT keyword
COUNT
data control language (DCL)
data definition language (DDL)
data manipulation language (DML)
data sublanguage
DEFAULT keyword
DESC keyword
DISTINCT keyword
Extensible Markup Language (XML)
FOREIGN KEY constraint
graphical user interface (GUI)
GROUP BY clause
HAVING clause
IDENTITY (M,N) property
IN keyword
International Organization for

Standardization (ISO)

IS NOT NULL phrase
IS NULL keyword
LEFT keyword
LIKE keyword
MAX
MIN
NO ACTION keyword
NOT IN phrase
NOT keyword
NOT LIKE phrase
NOT NULL constraint
NULL constraint
ON DELETE phrase
ON UPDATE phrase
OR keyword
ORDER BY clause
percent sign (%)
PRIMARY KEY constraint
Query by Example (QBE)
question mark (?)
RIGHT keyword
SQL ALTER TABLE statement
SQL asterisk (*) wildcard operator
SQL built-in functions
SQL comment
SQL CREATE TABLE statement
SQL DELETE statement
SQL DROP TABLE statement
SQL equijoin
SQL FROM clause

SQL inner join
SQL INNER JOIN syntax
SQL INSERT statement
SQL JOIN keyword
SQL join operation
SQL JOIN ON syntax
SQL left outer join
SQL LEFT JOIN syntax
SQL MERGE statement
SQL ON keyword
SQL outer join
SQL right outer join
SQL RIGHT JOIN syntax
SQL SELECT clause
SQL SELECT/FROM/WHERE

framework
SQL TRUNCATE TABLE

statement
SQL UPDATE . . . SET statement
SQL view
SQL WHERE clause
SQL/Persistent stored modules

(SQL/PSM)
Structured Query Language (SQL)
subquery
SUM
transaction control language (TCL)
underscore symbol (_)
UNIQUE constraint
wildcard characters

Review Questions
	3.1	 What does SQL stand for?

	3.2	 What is a data sublanguage?

	3.3	 Explain the importance of SQL-92.

	3.4	 Why is it important to learn SQL?

	3.5	 Describe in your own words the purpose of the two business rules listed on page 124.

	3.6	 Why do some standard SQL-92 statements fail to run successfully in Microsoft Access?

Use the following tables for your answers to questions 3.7 through 3.51:

PET_OWNER (OwnerID, OwnerLastName, OwnerFirstName,
     OwnerPhone, OwnerEmail)
PET (PetID, PetName, PetType, PetBreed, PetDOB, OwnerID)

Sample data for these tables are shown in Figures 3-18 and 3-19. For each SQL statement
you write, show the results based on these data.

Chapter 3   Structured Query Language   213

If possible, run the statements you write for the questions that follow in an actual DBMS,
as appropriate, to obtain results. Use data types that are consistent with the DBMS you
are using. If you are not using an actual DBMS, consistently represent data types by using
either the SQL Server, Oracle Database, or MySQL data types shown in Figure 3-5.

	3.7	 Write an SQL CREATE TABLE statement to create the PET_OWNER table, with
OwnerID as a surrogate key. Justify your choices of column properties.

	3.8	 Write an SQL CREATE TABLE statement to create the PET table without a ref-
erential integrity constraint on OwnerID in PET. Justify your choices of column
properties. Why not make every column NOT NULL?

	3.9	 Create a referential integrity constraint on OwnerID in PET. Assume that deletions
should not cascade.

	3.10	 Create a referential integrity constraint on OwnerID in PET. Assume that deletions
should cascade.

The following table schema for the PET_2 table is an alternate version of the PET table—
use it to answer review questions 3.11 and 3.12:

PET_2 (PetName, PetType, PetBreed, PetDOB, OwnerID)

	3.11	 Write the required SQL statements to create the PET_2 table.

	3.12	 Is PET or PET_2 a better design? Explain your rationale.

	3.13	 Write the SQL statements necessary to remove the PET_OWNER table from the
database. Assume that the referential integrity constraint is to be removed. Do not
run these commands in an actual database!

Figure 3-18

PET_OWNER Data

OwnerID OwnerLastName OwnerFirstName OwnerPhone OwnerEmail
1 Downs Marsha 555-537-8765 Marsha.Downs@somewhere.com

2 James Richard 555-537-7654 Richard.James@somewhere.com

3 Frier Liz 555-537-6543 Liz.Frier@somewhere.com

4 Trent Miles Miles.Trent@somewhere.com

Figure 3-19

PET Data

PetID PetName PetType PetBreed PetDOB OwnerID
1 King Dog Std. Poodle 27-Feb-11 1

2 Teddy Cat Cashmere 01-Feb-12 2

3 Fido Dog Std. Poodle 17-Jul-10 1

4 AJ Dog Collie Mix 05-May-11 3

5 Cedro Cat Unknown 06-Jun-09 2

6 Wooley Cat Unknown 2

7 Buster Dog Border Collie 11-Dec-08 4

214   Part 1   Database Fundamentals

	3.14	 Write the SQL statements necessary to remove the PET_OWNER table from the
database. Assume that the PET table is to be removed. Do not run these commands
in an actual database!

	3.15	 Write an SQL statement to display all columns of all rows of PET. Do not use the
asterisk (*) notation.

	3.16	 Write an SQL statement to display all columns of all rows of PET. Use the asterisk
(*) notation.

	3.17	 Write an SQL statement to display the breed and type of all pets.

	3.18	 Write an SQL statement to display the breed, type, and DOB of all pets having the
type Dog.

	3.19	 Write an SQL statement to display the PetBreed column of PET.

	3.20	 Write an SQL statement to display the PetBreed column of PET. Do not show
duplicates.

	3.21	 Write an SQL statement to display the breed, type, and DOB for all pets having the
type Dog and the breed Std. Poodle.

	3.22	 Write an SQL statement to display the name, breed, and type for all pets that are
not of type Cat, Dog, or Fish.

	3.23	 Write an SQL statement to display the pet ID, breed, and type for all pets having a
four-character name starting with K.

	3.24	 Write an SQL statement to display the last name, first name, and email of all own-
ers who have an email address ending with somewhere.com. Assume that email ac-
count names can be any number of characters.

	3.25	 Write an SQL statement to display the last name, first name, and email of any
owner who has a NULL value for OwnerPhone.

	3.26	 Write an SQL statement to display the name and breed of all pets, sorted by
PetName.

	3.27	 Write an SQL statement to display the name and breed of all pets, sorted by
PetBreed in ascending order and by PetName in descending order within PetBreed.

	3.28	 Write an SQL statement to count the number of pets.

	3.29	 Write an SQL statement to count the number of distinct breeds.

The following table schema for the PET_3 table is another alternate version of the PET
table:

PET_3 (PetID, PetName, PetType, PetBreed, PetDOB, PetWeight, OwnerID)

Data for PET_3 are shown in Figure 3-20. Except as specifically noted in the question itself, use
the PET_3 table for your answers to all the remaining review questions.

	3.30	 Write the required SQL statements to create the PET_3 table. Assume that
PetWeight is Numeric(4,1).

	3.31	 Write an SQL statement to display the minimum, maximum, and average weight of
dogs.

	3.32	 Write an SQL statement to group the data by PetBreed and display the average
weight per breed.

	3.33	 Answer question 3.32 but consider only breeds for which two or more pets are in-
cluded in the database.

	3.34	 Answer question 3.33 but do not consider any pet having the breed of Unknown.

	3.35	 Write an SQL statement to display the last name, first name, and email of any own-
ers of cats. Use a subquery.

	3.36	 Write an SQL statement to display the last name, first name, and email of any own-
ers of cats with the name Teddy. Use a subquery.

Chapter 3   Structured Query Language   215

The following table schema for the BREED table shows a new table to be added to the pet
database:

		 BREED (BreedName, MinWeight, MaxWeight, AverageLifeExpectancy)

Assume that Breed in PET_3 is a foreign key that matches the primary key BreedName in
BREED and that BreedName in BREED is now a foreign key linking the two tables with
the referential integrity constraint:

		 BreedName in PET_3 must exist in BreedName in BREED

If needed, you may also assume that a similar referential integrity constraint exists between
PET and BREED and between PET_2 and BREED. The BREED table data are shown in
Figure 3-21.

	3.37	 Write SQL statements to (1) create the BREED table, (2) insert the data in Figure
3-21 into the BREED table, (3) alter the PET_3 table so that PetBreed is a foreign
key referencing BreedName in BREED, and (4) with the BREED table added to
the pet database, write an SQL statement to display the last name, first name, and
email of any owner of a pet that has an AverageLifeExpectancy value greater than
15. Use a subquery.

	3.38	 Answer question 3.35 but use a join using JOIN ON syntax.

	3.39	 Answer question 3.36 but use a join using JOIN ON syntax.

	3.40	 Answer part (4) of question 3.37 but use joins using JOIN ON syntax.

	3.41	 Write an SQL statement to display the OwnerLastName, OwnerFirstName,
PetName, PetType, PetBreed, and AverageLifeExpectancy for pets with a known
PetBreed.

Figure 3-20

PET_3 Data

PetID PetName PetType PetBreed PetDOB PetWeight OwnerID
1 King Dog Std. Poodle 27-Feb-11 25.5 1

2 Teddy Cat Cashmere 01-Feb-12 10.5 2

3 Fido Dog Std. Poodle 17-Jul-10 28.5 1

4 AJ Dog Collie Mix 05-May-11 20.0 3

5 Cedro Cat Unknown 06-Jun-09 9.5 2

6 Wooley Cat Unknown 9.5 2

7 Buster Dog Border Collie 11-Dec-08 25.0 4

Figure 3-21

BREED Data

BreedName MinWeight MaxWeight AverageLifeExpectancy
Border Collie 15.0 22.5 20

Cashmere 10.0 15.0 12

Collie Mix 17.5 25.0 18

Std. Poodle 22.5 30.0 18

Unknown

216   Part 1   Database Fundamentals

	3.42	 Write an SQL statement to add three new rows to the PET_OWNER table.
Assume that OwnerID is a surrogate key and that the DBMS will provide a value
for it. Use the first three lines of data provided in Figure 3-22.

	3.43	 Write an SQL statement to add three new rows to the PET_OWNER table.
Assume that OwnerID is a surrogate key and that the DBMS will provide a value
for it. Assume, however, that you have only OwnerLastName, OwnerFirstName,
and OwnerPhone and that therefore OwnerEmail is NULL. Use the last three lines
of data provided in Figure 3-22.

	3.44	 Write an SQL statement to change the value of Std. Poodle in BreedName of
PET_3 to Poodle, Std.

	3.45	 Explain what will happen if you leave the WHERE clause off your answer to ques-
tion 3.44.

	3.46	 Write an SQL statement to delete all rows of pets of type Anteater. What will hap-
pen if you forget to code the WHERE clause in this statement?

	3.47	 Write an SQL statement to add a PetWeight column like the one in PET_3 to
the PET table, given that this column is NULL. Again, assume that PetWeight is
Numeric(4,1).

	3.48	 Write SQL statements to insert data into the PetWeight column you created in ques-
tion 3.47. Use the PetWeight data from the PET_3 table as shown in Figure 3-20.

	3.49	 Write SQL statements to add a PetWeight column like the one in PET_3 to the
PET table, given that this column is NOT NULL. Again, assume that PetWeight is
Numeric(4,1). Use the PetWeight data from the PET_3 table as shown in Figure 3-20.

	3.50	 Write an SQL statement to add a CHECK constraint to the PET table so that the
weight data recorded in the PetWeight column you added to the table in either
question 3.47 or 3.49 is less than 250.

	3.51	 Write an SQL statement to drop the PetWeight column you added to the PET
table in either question 3.47 or 3.49.

Figure 3-22

Additional PET_OWNER Data

OwnerID OwnerLastName OwnerFirstName OwnerPhone OwnerEmail
5 Rogers Jim 555-232-3456 Jim.Rogers@somewhere.com

6 Keenan Mary 555-232-4567 Mary.Keenan@somewhere.com

7 Melnik Nigel 555-232-5678 Nigel.Melnik@somewhere.com

8 Mayberry Jenny 555-454-1243

9 Roberts Ken 555-454-2354

10 Taylor Sam 555-454-3465

Exercises
The following is a set of tables for the Art Course database shown in Figure 1-10. For the
data for these tables, use the data shown in Figure 1-10.

CUSTOMER (CustomerNumber, CustomerLastName, CustomerFirstName, Phone)
COURSE (CourseNumber, Course, CourseDate, Fee)
ENROLLMENT (CustomerNumber, CourseNumber, AmountPaid)

Chapter 3   Structured Query Language   217

where:

CustomerNumber in ENROLLMENT must exist in CustomerNumber in
CUSTOMER

CourseNumber in ENROLLMENT must exist in CourseNumber in COURSE

CustomerNumber and CourseNumber are surrogate keys. Therefore, these numbers will
never be modified, and there is no need for cascading updates. No customer data are ever
deleted, so there is no need to cascade deletions. Courses can be deleted. If there are en-
rollment entries for a deleted class, they should also be deleted.

These tables, referential integrity constraints, and data are used as the basis for the
SQL statements you will create in the exercises that follow. If possible, run these statements
in an actual DBMS, as appropriate, to obtain results. Name your database ART_COURSE_
DATABASE. For each SQL statement you write, show the results based on these data. Use
data types consistent with the DBMS you are using. If you are not using an actual DBMS,
consistently represent data types using either the SQL Server, Oracle Database, or MySQL
data types shown in Figure 3-5.

	3.52	 Write and run the SQL statements necessary to create the tables and their referen-
tial integrity constraints.

	3.53	 Populate the tables with data.

	3.54	 Write and run an SQL query to list all occurrences of Adv. Pastels. Include all as-
sociated data for each occurrence of the class.

	3.55	 Write and run an SQL query to list all students and courses they are reg-
istered for. Include, in this order, CustomerNumber, CustomerLastName,
CustomerFirstName, Phone, CourseNumber, and AmountPaid.

	3.56	 Write and run an SQL query to list all students registered in Adv. Pastels
starting on October 1, 2015. Include, in this order, Course, CourseDate, Fee,
CustomerLastName, CustomerFirstName, and Phone.

	3.57	 Write and run an SQL query to list all students registered in Adv. Pastels starting on
October 1, 2015. Include in this order, Course, CourseDate, CustomerLastName,
CustomerFirstName, Phone, Fee, and AmountPaid. Use a join.

	3.58	 Modify your query to include all students, regardless of whether they registered in the
Adv. Pastels, starting October 1, 2015. Include, in this order, CustomerLastName,
CustomerFirstName, Phone, Course, CourseDate, Fee, and AmountPaid.

	3.59	 Write a set of SQL statements (hint: Use the SQL ALTER TABLE command) to add a
FullFeePaid column to ENROLLMENT and populate the column, assuming that the
column is NULL. The only possible values for this column are Yes and No. (Compare
COURSE.Fee to ENROLLMENT.AmountPaid to determine data values.)

	3.60	 Write a set of SQL statements (hint: Use the SQL ALTER TABLE command) to
add a FullFeePaid column to ENROLLMENT and populate the column, assuming
that the column is NOT NULL. The only possible values for this column are Yes
and No. (Compare COURSE.Fee to ENROLLMENT.AmountPaid to determine
data values.) What is the difference between your answer to this question and your
answer to question 3.59?

	3.61	 Write an ALTER TABLE statement to add a CHECK constraint to
the ENROLLMENT table to ensure that the value of FullFeePaid is either Yes or No.

The following exercises are intended for use with a DBMS other than Microsoft Access.
If you are using Microsoft Access, see the equivalent questions in the “Access Workbench
Exercises” that follow.

	3.62	 If you haven’t done so, create the WPC database, tables, and relationships de-
scribed in this chapter, using the SQL DBMS of your choice. Be sure to populate
the tables with the data shown in Figure 3-2.

218   Part 1   Database Fundamentals

	3.63	 Using the SQL DBMS of your choice, create and run queries to answer the ques-
tions in exercise AW.3.1.

	3.64	 Using the SQL DBMS of your choice, complete steps A through E in exercise
AW.3.3, but exclude step F.

Access Workbench Key Terms
Allow Zero Length field property
Decimal Places field property
Default Value field property
Field Size field property
Format field property
Indexed field property

parameterized query
Validation Rule field property
Yes (Duplicates OK)
Yes (No Duplicates)

Access Workbench Exercises
In the “Access Workbench Exercises” in Chapters 1 and 2, you created a database for the
Wedgewood Pacific Corporation (WPC) of Seattle, Washington. In this set of exercises,
you’ll:

•	Create and run queries against the database by using Access SQL.
•	Create and run queries against the database by using Access QBE.
•	Create tables and relationships by using Access SQL.
•	Populate tables by using Access SQL.

AW.3.1	 Using Access SQL, create and run queries to answer the questions that follow.
Save each query using the query name format SQLQuery-AWE-3-1-## where the ## sign is
replaced by the letter designator of the question. For example, the first query will be saved
as SQLQuery-AWE-3-1-A.

	 A.	 What projects are in the PROJECT table? Show all information for each project.

	 B.	 What are the ProjectID, ProjectName, StartDate, and EndDate values of projects
in the PROJECT table?

	 C.	 What projects in the PROJECT table started before August 1, 2014? Show all the
information for each project.

	 D.	 What projects in the PROJECT table have not been completed? Show all the infor-
mation for each project.

	 E.	 Who are the employees assigned to each project? Show ProjectID,
EmployeeNumber, LastName, FirstName, and Phone.

	 F.	 Who are the employees assigned to each project? Show ProjectID, ProjectName,
and Department. Show EmployeeNumber, LastName, FirstName, and Phone.

	 G.	 Who are the employees assigned to each project? Show ProjectID, ProjectName,
Department, and Department Phone. Show EmployeeNumber, LastName,
FirstName, and Employee Phone. Sort by ProjectID, in ascending order.

	 H.	 Who are the employees assigned to projects run by the marketing depart-
ment? Show ProjectID, ProjectName, Department, and Department Phone. Show

Chapter 3   Structured Query Language   219

EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID,
in ascending order.

	 I.	 How many projects are being run by the marketing department? Be sure to assign
an appropriate column name to the computed results.

	 J.	 What is the total MaxHours of projects being run by the marketing department? Be
sure to assign an appropriate column name to the computed results.

	 K.	 What is the average MaxHours of projects being run by the marketing department?
Be sure to assign an appropriate column name to the computed results.

	 L.	 How many projects are being run by each department? Be sure to display each
DepartmentName and to assign an appropriate column name to the computed
results.

AW.3.2	 Using Access QBE, create and run new queries to answer the questions in exer-
cise AW.3.1. Save each query using the query name format QBEQuery-AWE-3-1-## where
the ## sign is replaced by the letter designator of the question. For example, the first query
will be saved as QBEQuery-AWE-3-1-A.

AW.3.3	 WPC has decided to keep track of computers used by the employees. In order
to do this, two new tables will be added to the database. The schema for these tables, as
related to the existing EMPLOYEE table, is:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
  Phone, Email)
COMPUTER (SerialNumber, Make, Model, ProcessorType,
  ProcessorSpeed, MainMemory, DiskSize)
COMPUTER_ASSIGNMENT (SerialNumber, EmployeeNumber,
  DateAssigned, DateReassigned)

The referential integrity constraints are:

Serial Number in COMPUTER_ASSIGNMENT must exist in
  SerialNumber in COMPUTER
EmployeeNumber in COMPUTER_ASSIGNMENT must exist in
  EmployeeNumber in EMPLOYEE

EmployeeNumber is a surrogate key and never changes. Employee records are never
deleted from the database. SerialNumber is not a surrogate key because it is not gener-
ated by the database. However, a computer’s SerialNumber never changes, and, there-
fore, there is no need to cascade updates. When a computer is at its end of life, the
record in COMPUTER for that computer and all associated records in COMPUTER_
ASSIGNMENT are deleted from the database.

	 A.	 Figure 3-23 shows the column characteristics for the WPC COMPUTER table.
Using the column characteristics, use Access SQL to create the COMPUTER table
and its associated constraints in the WPC.accdb database. Are there any table char-
acteristics that cannot be created in SQL? If so, what are they? Use the Access GUI
to finish setting table characteristics, if necessary.

	 B.	 The data for the COMPUTER table are in Figure 3-24. Use Access SQL to enter
these data into your COMPUTER table.

(Continued)

220   Part 1   Database Fundamentals

	 C.	 Figure 3-25 shows the column characteristics for the WPC COMPUTER_
ASSIGNMENT table. Using the column characteristics, use Access SQL to cre-
ate the COMPUTER_ASSIGNMENT table and the associated constraints in the
WPC.accdb database. Are there any table or relationship settings or characteristics
that cannot be created in SQL? If so, what are they? Use the Access GUI to finish
setting table characteristics and relationship settings, if necessary.

	 D.	 The data for the COMPUTER_ASSIGNMENT table are in Figure 3-26. Use
Access SQL to enter these data into your COMPUTER_ASSIGNMENT table.

Figure 3-24

WPC COMPUTER Data

Serial
Number

Make

Model

Processor
Type

Processor
Speed

Main
Memory

Disk Size

9871234 HP Pavilion 500-210qe Intel i5-4530 3.00 6.0 Gbytes 1.0 Tbytes

9871245 HP Pavilion 500-210qe Intel i5-4530 3.00 6.0 Gbytes 1.0 Tbytes

9871256 HP Pavilion 500-210qe Intel i5-4530 3.00 6.0 Gbytes 1.0 Tbytes

9871267 HP Pavilion 500-210qe Intel i5-4530 3.00 6.0 Gbytes 1.0 Tbytes

9871278 HP Pavilion 500-210qe Intel i5-4530 3.00 6.0 Gbytes 1.0 Tbytes

9871289 HP Pavilion 500-210qe Intel i5-4530 3.00 6.0 Gbytes 1.0 Tbytes

6541001 Dell OptiPlex 9020 Intel i7-4770 3.40 8.0 GBytes 1.0 Tbytes

6541002 Dell OptiPlex 9020 Intel i7-4770 3.40 8.0 GBytes 1.0 Tbytes

6541003 Dell OptiPlex 9020 Intel i7-4770 3.40 8.0 GBytes 1.0 Tbytes

6541004 Dell OptiPlex 9020 Intel i7-4770 3.40 8.0 GBytes 1.0 Tbytes

6541005 Dell OptiPlex 9020 Intel i7-4770 3.40 8.0 GBytes 1.0 Tbytes

6541006 Dell OptiPlex 9020 Intel i7-4770 3.40 8.0 GBytes 1.0 Tbytes

Figure 3-23

Database Column Characteristics for the COMPUTER Table

Column Name Type Key Required Remarks
SerialNumber Number Primary Key Yes Long Integer

Make Text (12) No Yes Must be “Dell” or “Gateway” or “HP”
or “Other”

Model Text (24) No Yes

ProcessorType Text (24) No No

ProcessorSpeed Number No Yes Double [3,2], Between 1.0 and 4.0

MainMemory Text (15) No Yes

DiskSize Text (15) No Yes

Chapter 3   Structured Query Language   221

	 E.	 Who is currently using which computer at WPC? Create an appropriate SQL
query to answer this question. Show SerialNumber, Make, and Model. Show
EmployeeID, LastName, FirstName, Department, and Employee Phone. Sort first
by Department and then by employee LastName. Save this query using the query
naming rules in exercise AW.3.1.

	 F.	 Who is currently using which computer at WPC? Create an appropriate QBE
query to answer this question. Show SerialNumber, Make, Model, ProcessorType,
and ProcessorSpeed. Show the EmployeeID, LastName, FirstName, Department,
and Employee Phone. Sort first by Department and then by employee LastName.
Save this query using the query naming rules in exercise AW.3.2.

Figure 3-25

Database Column Characteristics for the COMPUTER_ASSIGNMENT Table

Column Name Type Key Required Remarks
SerialNumber Number Primary Key,

Foreign Key
Yes Long Integer

EmployeeNumber Number Primary Key,
Foreign Key

Yes Long Integer

DateAssigned Date/Time Primary Key Yes Medium Date

DateReassigned Date/Time No No Medium Date

Figure 3-26

WPC COMPUTER_ASSIGNMENT Data

SerialNumber EmployeeNumber DateAssigned DateReassigned
9871234 11 15-Sep-2014 21-Oct-2014

9871245 12 15-Sep-2014 21-Oct-2014

9871256 4 15-Sep-2014

9871267 5 15-Sep-2014

9871278 8 15-Sep-2014

9871289 9 15-Sep-2014

6541001 11 21-Oct-2014

6541002 12 21-Oct-2014

6541003 1 21-Oct-2014

6541004 2 21-Oct-2014

6541005 3 21-Oct-2014

6541006 6 21-Oct-2014

9871234 7 21-Oct-2014

9871245 10 21-Oct-2014

222   Part 1   Database Fundamentals

Heather Sweeney Designs Case Questions
Heather Sweeney is an interior designer who specializes in home kitchen design. She offers
a variety of seminars at home shows, kitchen and appliance stores, and other public loca-
tions. The seminars are free; she offers them as a way of building her customer base. She
earns revenue by selling books and videos that instruct people on kitchen design. She also
offers custom-design consulting services.

After someone attends a seminar, Heather wants to leave no stone unturned in at-
tempting to sell that person one of her products or services. She would therefore like to de-
velop a database to keep track of customers, the seminars they have attended, the contacts
she has made with them, and the purchases they have made. She wants to use this database
to continue to contact her customers and offer them products and services, including via
a Web application that allows customers to create an account and purchase items online.

We use the task of designing a database for Heather Sweeney Designs (HSD) as an exam-
ple for our discussion of developing first the HSD data model in Chapter 4 (pages 262–270)
and then the HSD database design in Chapter 5 (pages 310–317). Although you will study the
HSD database development in detail in these chapters, you do not need to know that material
to answer the following questions. Here we will take that final database design and actually
implement it in a database using the SQL techniques that you learned in this chapter.

Some instructors and professors will follow the chapter order as we present
it in this book, whereas others prefer to cover Chapters 4 and 5 before
teaching the SQL techniques in this chapter. It is really a matter of per-
sonal preference (although you may hear some strong arguments in favor
of one approach or the other), and these case questions are designed to
be independent of the order in which you learn SQL, data modeling, and
database design.

BTW

For reference, the SQL statements shown here are built from the HSD database design
in Figure 5-27, the column specifications in Figure 5-26, and the referential integrity con-
straint specifications detailed in Figure 5-28.

Figure 3-27 shows the tables in the Heather Sweeney Designs database as they appear
in the Microsoft Access 2013 Relationships view. This is similar to the view of the WPC
database tables shown in Figure 3-1, and illustrates the tables in the HSD database and the
relationships between them.

The SQL statements to create the Heather Sweeney Designs (HSD) database are
shown in Figure 3-28 in SQL Server syntax. The SQL statements to populate the HSD
database are shown in Figure 3-29, again in SQL Server syntax.

Write SQL statements and answer questions for this database as follows:

A.	 Create a database named HSD in your DBMS.

B.	 Write an SQL script based on Figure 3-28 to create the tables and relationships for the
HSD database. Save this script, and then execute the script to create the HSD tables.

C.	 Write an SQL script based on Figure 3-29 to insert the data for the HSD database.
Save this script, and then execute the script to populate the HSD tables.

■■ Note:  For your answers to parts D through O, you should create an SQL script to
save and store your SQL statements. You can use one script to contain all the neces-
sary statements. You can also include your answer to part P, but be sure to put it in

Chapter 3   Structured Query Language   223

Figure 3-27

The Heather Sweeney Designs Database Tables in Microsoft Access 2013

comment marks so that it is interpreted as a comment by the DBMS and cannot actu-
ally be run!

D.	 Write SQL statements to list all columns for all tables.

E.	 Write an SQL statement to list LastName, FirstName, and Phone for all customers that
live in Dallas.

F.	 Write an SQL statement to list LastName, FirstName, and Phone for all customers that
live in Dallas and have a LastName that begins with the letter T.

G.	 Write an SQL statement to list the INVOICE.InvoiceNumber for sales that include
the Heather Sweeney Seminar Live in Dallas on 25-OCT-13 video. Use a subquery.

	 (Hint: The correct solution uses three tables in the query because the question asks for
INVOICE.InvoiceNumber. Otherwise, there is a possible solution with only two tables
in the query.)

H.	 Answer part G but use a join in JOIN ON syntax.
	 (Hint: The correct solution uses three tables in the query because the question asks for

INVOICE.InvoiceNumber. Otherwise, there is a possible solution with only two tables
in the query.)

  I.	 Write an SQL statement to list the FirstName, LastName and Phone of customers (list
each name only once) who have attended the Kitchen on a Big D Budget seminar.

 J.	 Write an SQL statement to list the FirstName, LastName, Phone, ProductNumber,
and Description names for customers (list each combination of name and product only

224   Part 1   Database Fundamentals

Figure 3-28

SQL Statements to Create the HSD Database

CREATE TABLE CONTACT(
CustomerID Int NOT NULL,
ContactNumber Int NOT NULL,
ContactDate Date NOT NULL,
ContactType VarChar(30) NOT NULL,
SeminarID Int NULL,
CONSTRAINT CONTACT_PK PRIMARY KEY(CustomerID, ContactNumber),
CONSTRAINT CONTACT_ContactType

CHECK (ContactType IN ('Seminar',
'WebAccountCreation', 'WebPurchase',
'EmailAccountMessage', 'EmailSeminarMessage',
'EmailPurchaseMessage',
'EmailMessageExchange' 'FormLetterSeminar',,
'PhoneConversation')),

CONSTRAINT CONTACT_SEMINAR_FK FOREIGN KEY(SeminarID)
REFERENCES SEMINAR(SeminarID)

ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT CONTACT_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

Chapter 3   Structured Query Language   225

Figure 3-28  Continued

CREATE TABLE LINE_ITEM(
InvoiceNumber Int NOT NULL,
LineNumber Int NOT NULL,
ProductNumber Char(35) NOT NULL,
Quantity Int NOT NULL,
UnitPrice Numeric(9,2) NULL,
Total Numeric(9,2) NULL,
CONSTRAINT LINE_ITEM_PK PRIMARY KEY (InvoiceNumber, LineNumber),
CONSTRAINT L_I_INVOICE_FK FOREIGN KEY(InvoiceNumber)

REFERENCES INVOICE(InvoiceNumber)
ON UPDATE NO ACTION
ON DELETE CASCADE,

CONSTRAINT L_I_PRODUCT_FK FOREIGN KEY(ProductNumber)
REFERENCES PRODUCT (ProductNumber)

ON UPDATE CASCADE
ON DELETE NO ACTION

);

CONSTRAINT CONTACT_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

CREATE TABLE PRODUCT(
ProductNumber Char(35) NOT NULL,
ProductType Char(24) NOT NULL,
ProductDescription VarChar(100) NOT NULL,
UnitPrice Numeric(9,2) NOT NULL,
QuantityOnHand Int NOT,
CONSTRAINT PRODUCT_PK PRIMARY KEY(ProductNumber),
CONSTRAINT PRODUCT_ProductType

CHECK (ProductType IN ('Video',
'Video Companion', 'Book'))

);

CREATE TABLE INVOICE(
InvoiceNumber Int NOT NULL IDENTITY (35000, 1),

InvoiceDate Date NOT NULL,
CustomerID Int NOT NULL,
PaymentType Char(25) NOT NULL DEFAULT 'Cash',
SubTotal Numeric(9,2) NULL,
Shipping Numeric(9,2) NULL,
Tax Numeric(9,2) NULL,
Total Numeric(9,2) NULL,
CONSTRAINT INVOICE_PK PRIMARY KEY (InvoiceNumber),
CONSTRAINT INVOICE_PaymentType

CHECK (PaymentType IN ('VISA',
'MasterCard', 'American Express',
'PayPal', 'Check', 'Cash')),

CONSTRAINT INVOICE_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

226   Part 1   Database Fundamentals

Figure 3-29

SQL Statements to Populate the HSD Database

/***** SEMINAR **/

INSERT INTO SEMINAR VALUES(
'12-OCT-2013', '11:00 AM', 'San Antonio Convention Center',
'Kitchen on a Budget');

INSERT INTO SEMINAR VALUES(
'26-OCT-2013', '04:00 PM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'02-NOV-2013', '08:30 AM', 'Austin Convention Center',
'Kitchen on a Budget');

INSERT INTO SEMINAR VALUES(
'22-MAR-2014', '11:00 AM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'23-MAR-2014', '11:00 AM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'05-APR-2014', '08:30 AM', 'Austin Convention Center',
'Kitchen on a Budget');

Chapter 3   Structured Query Language   227

/***** SEMINAR_CUSTOMER DATA **/

INSERT INTO SEMINAR_CUSTOMER VALUES(1, 1);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 2);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 3);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 4);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 5);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 6);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 7);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 8);
INSERT INTO SEMINAR_CUSTOMER VALUES(3, 9);
INSERT INTO SEMINAR_CUSTOMER VALUES(3, 10);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 6);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 7);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 11);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 12);

/***** CONTACT DATA ***/

INSERT INTO CONTACT VALUES(1, 1, '12-OCT-2013', 'Seminar', 1);
INSERT INTO CONTACT VALUES(2, 1, '12-OCT-2013', 'Seminar', 1);
INSERT INTO CONTACT VALUES(3, 1, '12-OCT-2013', 'Seminar', 1);
INSERT INTO CONTACT VALUES(4, 1, '12-OCT-2013', 'Seminar', 1);
INSERT INTO CONTACT VALUES(5, 1, '12-OCT-2013', 'Seminar', 1);

Figure 3-29  Continued

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(1, 2, '15-OCT-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(2, 2, '15-OCT-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 2, '15-OCT-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(4, 2, '15-OCT-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(5, 2, '15-OCT-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(1, 3, '15-OCT-2013', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(2, 3, '15-OCT-2013', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 3, '15-OCT-2013', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(4, 3, '15-OCT-2013', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(5, 3, '15-OCT-2013', 'FormLetterSeminar');

INSERT INTO CONTACT VALUES(6, 1, '26-OCT-2013', 'Seminar', 2);
INSERT INTO CONTACT VALUES(7, 1, '26-OCT-2013', 'Seminar', 2);
INSERT INTO CONTACT VALUES(8, 1, '26-OCT-2013', 'Seminar', 2);

(continued)

228   Part 1   Database Fundamentals

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 2, '30-OCT-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 2, '30-OCT-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 2, '30-OCT-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 3, '30-OCT-2013', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 3, '30-OCT-2013', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 3, '30-OCT-2013', 'FormLetterSeminar');

INSERT INTO CONTACT VALUES(9, 1, '02-NOV-2013', 'Seminar', 3);
INSERT INTO CONTACT VALUES(10, 1, '02-NOV-2013', 'Seminar', 3);

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(9, 2, '06-NOV-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(10, 2, '06-NOV-2013', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(9, 3, '06-NOV-2013', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(10, 3, '06-NOV-2013', 'FormLetterSeminar');

Figure 3-29  Continued

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 4, '20-FEB-2014', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 5, '20-FEB-2014', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 4, '22-FEB-2014', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 5, '22-FEB-2014', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 4, '25-FEB-2014', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 5, '25-FEB-2014', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 4, '07-MAR-2014', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 5, '07-MAR-2014', 'EmailAccountMessage');

INSERT INTO CONTACT VALUES(6, 6, '22-MAR-2014', 'Seminar', 4);
INSERT INTO CONTACT VALUES(7, 6, '22-MAR-2014', 'Seminar', 4);
INSERT INTO CONTACT VALUES(11, 1, '22-MAR-2014', 'Seminar', 4);
INSERT INTO CONTACT VALUES(12, 1, '22-MAR-2014', 'Seminar', 4);

/***** PRODUCT DATA ***/

INSERT INTO PRODUCT VALUES(
'VK001', 'Video', 'Kitchen Remodeling Basics',14.95, 50);

INSERT INTO PRODUCT VALUES(
'VK002', 'Video', 'Advanced Kitchen Remodeling', 14.95, 35);

INSERT INTO PRODUCT VALUES(
'VK003', 'Video', 'Kitchen Remodeling Dallas Style', 19.95, 25);

Chapter 3   Structured Query Language   229

Figure 3-29  Continued

INSERT INTO PRODUCT VALUES(
'VK004', 'Video', 'Heather Sweeney Seminar Live in Dallas on 25-OCT-13',
24.95, 20);

INSERT INTO PRODUCT VALUES(
'VB001', 'Video Companion', 'Kitchen Remodeling Basics', 7.99, 50);

INSERT INTO PRODUCT VALUES(
'VB002', 'Video Companion', 'Advanced Kitchen Remodeling I',7.99, 35);

INSERT INTO PRODUCT VALUES(
'VB003', 'Video Companion', 'Kitchen Remodeling Dallas Style', 9.99, 25);

INSERT INTO PRODUCT VALUES(
'BK001', 'Book', 'Kitchen Remodeling Basics For Everyone', 24.95, 75);

INSERT INTO PRODUCT VALUES(
'BK002', 'Book', 'Advanced Kitchen Remodeling For Everyone', 24.95, 75);

INSERT INTO PRODUCT VALUES(
'BK003', 'Book', 'Kitchen Remodeling Dallas Style For Everyone',
24.95, 75);

/***** INVOICE DATA **/

/***** Invoice 35000 **/
INSERT INTO INVOICE VALUES(

'15-Oct-13', 3, 'VISA', 22.94, 5.95, 1.31, 30.20);
INSERT INTO LINE_ITEM VALUES(35000, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35000, 2, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35001 **/
INSERT INTO INVOICE VALUES(

'25-Oct-13', 4, 'MasterCard', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35001, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35001, 2, 'VB001', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35001, 3, 'BK001', 1, 24.95, 24.95);

/***** Invoice 35002 **/
INSERT INTO INVOICE VALUES(

'20-Dec-13', 7, 'VISA', 24.95, 5.95, 1.42, 32.32);
INSERT INTO LINE_ITEM VALUES(35002, 1, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35003 **/
INSERT INTO INVOICE VALUES(

'25-Mar-14', 4, 'MasterCard', 64.85, 5.95, 3.70, 74.50);
INSERT INTO LINE_ITEM VALUES(35003, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35003, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35003, 3, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35004 ***/
INSERT INTO INVOICE VALUES(

'27-Mar-14', 6, 'MasterCard', 94.79, 5.95, 5.40, 106.14);
INSERT INTO LINE_ITEM VALUES(35004, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35004, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35004, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35004, 4, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35004, 5, 'VK004', 1, 24.95, 24.95);

(continued)

230   Part 1   Database Fundamentals

/***** Invoice 35005 ***/
INSERT INTO INVOICE VALUES(

'27-Mar-14', 7, 'MasterCard', 94.80, 5.95, 5.40, 106.15);
INSERT INTO LINE_ITEM VALUES(35005, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35005, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35005, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35005, 4, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35006 ***/
INSERT INTO INVOICE VALUES(

'31-Mar-14', 9, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35006, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35006, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35006, 3, 'VB001', 1, 7.99, 7.99);

Figure 3-29  Continued

/***** Invoice 35007 ***/
INSERT INTO INVOICE VALUES(

'03-Apr-14', 11, 'MasterCard', 109.78, 5.95, 6.26, 121.99);
INSERT INTO LINE_ITEM VALUES(35007, 1, 'VK003', 2, 19.95, 39.90);
INSERT INTO LINE_ITEM VALUES(35007, 2, 'VB003', 2, 9.99, 19.98);
INSERT INTO LINE_ITEM VALUES(35007, 3, 'VK004', 2, 24.95, 49.90);

/***** Invoice 35008 ***/
INSERT INTO INVOICE VALUES(

'08-Apr-14', 5, 'MasterCard', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35008, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35008, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35008, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35009 ***/
INSERT INTO INVOICE VALUES(

'08-Apr-14', 1, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35009, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35009, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35009, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35010 ***/
INSERT INTO INVOICE VALUES(

'23-Apr-14', 3, 'VISA', 24.95, 5.95, 1.42, 32.32);
INSERT INTO LINE_ITEM VALUES(35010, 1, 'BK001', 1, 24.95, 24.95);

/***** Invoice 35011 ***/
INSERT INTO INVOICE VALUES(

'07-May-14', 9, 'VISA', 22.94, 5.95, 1.31, 30.20);
INSERT INTO LINE_ITEM VALUES(35011, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35011, 2, 'VB002', 1, 7.99, 7.99);

/***** Invoice 35012 ***/
INSERT INTO INVOICE VALUES(

'21-May-14', 8, 'MasterCard', 54.89, 5.95, 3.13, 63.97);
INSERT INTO LINE_ITEM VALUES(35012, 1, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35012, 2, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35012, 3, 'VK004', 1, 24.95, 24.95);

Chapter 3   Structured Query Language   231

Figure 3-29  Continued

/***** Invoice 35013 ***/
INSERT INTO INVOICE VALUES(

'05-Jun-14', 3, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35013, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35013, 2, 'VB002', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35013, 3, 'BK002', 1, 24.95, 24.95);

/***** Invoice 35014 ***/
INSERT INTO INVOICE VALUES(

'05-Jun-14', 11, 'MasterCard', 45.88, 5.95, 2.62, 54.45);
INSERT INTO LINE_ITEM VALUES(35014, 1, 'VK002', 2, 14.95, 29.90);
INSERT INTO LINE_ITEM VALUES(35014, 2, 'VB002', 2, 7.99, 15.98);

/***** Invoice 35015 ***/
INSERT INTO INVOICE VALUES(

'05-Jun-14', 12, 'MasterCard', 94.79, 5.95, 5.40, 106.14);
INSERT INTO LINE_ITEM VALUES(35015, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35015, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35015, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35015, 4, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35015, 5, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35016 ***/
INSERT INTO INVOICE VALUES(

'05-Jun-14', 3, 'VISA', 45.88, 5.95, 2.62, 54.45);
INSERT INTO LINE_ITEM VALUES(35016, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35016, 2, 'VB001', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35016, 3, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35016, 4, 'VB002', 1, 7.99, 7.99);

/***/

once) who have purchased a video product. Sort the results by LastName in descend-
ing order, then by FirstName in descending order, and then by ProductNumber in
descending order. (Hint: Video products have a ProductNumber that starts with VK.)

K.	 Write an SQL statement to show all Heather Sweeney Designs seminars and the
customers that attended them. The output from this statement should include any
seminars that do not have any customers shown as attending them. The SQL statement
output should list SeminarID, SeminarDate, Location, SeminarTitle, CustomerID,
LastName, and FirstName. (Hint: Use JOIN ON syntax.)

L.	 Write an SQL statement to show all customers and the products that they have pur-
chased. The output from this statement should include any products that have not
been purchased by any customer. The SQL statement output should list CustomerID,
LastName, FirstName, InvoiceNumber, ProductNumber, ProductType, and
ProductDescription. (Hint: Use JOIN ON syntax.)

M.	 Write an SQL statement to show the sum of Subtotal (this is the money earned
by HSD on products sold exclusive of shipping costs and taxes) for INVOICE as
SumOfSubTotal.

N.	 Write an SQL statement to show the average of Subtotal (this is the money earned
by HSD on products sold exclusive of shipping costs and taxes) for INVOICE as
AverageOfSubTotal.

232   Part 1   Database Fundamentals

O.	 Write an SQL statement to show both the sum and the average of Subtotal (this is the
money earned by HSD on products sold exclusive of shipping costs and taxes) for
INVOICE as SumOfSubTotal and AverageOfSubTotal respectively.

P.	 Write an SQL statement to modify PRODUCT UnitPrice for ProductNumber VK004
to $34.95 instead of the current UnitPrice of $24.95.

Q.	 Write an SQL statement to undo the UnitPrice modification in part P.

R.	 Do not run your answer to the following question in your actual database! Write the few-
est number of DELETE statements possible to remove all the data in your database
but leave the table structures intact.

 Garden Glory Project Questions

Assume that Garden Glory designs a database with the following tables:

OWNER (OwnerID, OwnerName, OwnerEmail, OwnerType)
OWNED_PROPERTY (PropertyID, PropertyName, PropertyType, Street, City,
  State, Zip, OwnerID)
GG_SERVICE (ServiceID, ServiceDescription, CostPerHour);
EMPLOYEE (EmployeeID, LastName, FirstName, CellPhone, ExperienceLevel)
PROPERTY_SERVICE (PropertyServiceID, PropertyID, ServiceID, ServiceDate,

EmployeeID, HoursWorked)

The referential integrity constraints are:

OwnerID in OWNED_PROPERTY must exist in OwnerID in OWNER
PropertyID in PROPERTY_SERVICE must exist in PropertyID in
  OWNED_PROPERTY
ServiceID in PROPERTY_SERVICE must exist in ServiceID in GG_SERVICE
EmployeeID in PROPERTY_SERVICE must exist in EmployeeID in EMPLOYEE

Assume that OwnerID in OWNER, PropertyID in PROPERTY, and EmployeeID in
EMPLOYEE are surrogate keys with values as follows:

OwnerID	 Start at 1	 Increment by 1
PropertyID	 Start at 1	 Increment by 1
ServiceID	 Start at 1	 Increment by 1
EmployeeID	 Start at 1	 Increment by 1
PropertyServiceID	 Start at 1	 Increment by 1

Sample data are shown in Figures 3-30, 3-31, 3-32, 3-33, and 3-34. OwnerType is either
Individual or Corporation, PropertyType is Office, Apartments, or Private Residence,
and ExperienceLevel is one of Junior, Senior, or Master. These tables, referential integrity
constraints, and data are used as the basis for the SQL statements you will create in the
exercises that follow. If possible, run these statements in an actual DBMS, as appropriate,
to obtain your results. Name your database GARDEN_GLORY.

Use data types consistent with the DBMS you are using. If you are not using an actual
DBMS, consistently represent data types using either the SQL Server, Oracle Database,

Chapter 3   Structured Query Language   233

or MySQL data types shown in Figure 3-5. For each SQL statement you write, show the
results based on your data.

Write SQL statements and answer questions for this database as follows:

A.	 Write CREATE TABLE statements for each of these tables.

B.	 Write foreign key constraints for the relationships in each of these tables. Make your
own assumptions regarding cascading updates and deletions and justify those assump-
tions. (Hint: You can combine the SQL for your answers to questions A and B.)

OwnerID OwnerName OwnerEmail OwnerType
1 Mary Jones Mary.Jones@somewhere.com Individual

2 DT Enterprises DTE@dte.com Corporation

3 Sam Douglas Sam.Douglas@somewhere.com Individual

4 UNY Enterprises UNYE@unye.com Corporation

5 Doug Samuels Doug.Samuels@somewhere.com Individual

Figure 3-30

Sample Data for the Garden Glory OWNER Table

PropertyID PropertyName PropertyType Street City State ZIP OwnerID
1 Eastlake Building Office 123 Eastlake Seattle WA 98119 2

2 Elm St Apts Apartments 4 East Elm Lynwood WA 98223 1

3 Jefferson Hill Office 42 West 7th St Bellevue WA 98007 2

4 Lake View Apts Apartments 1265 32nd Avenue Redmond WA 98052 3

5 Kodak Heights Apts Apartments 65 32nd Avenue Redmond WA 98052 4

6 Jones House Private Residence 1456 48th St Bellevue WA 98007 1

7 Douglas House Private Residence 1567 51st St Bellevue WA 98007 3

8 Samuels House Private Residence 567 151st St Redmond WA 98052 5

Figure 3-31

Sample Data for the Garden Glory OWNED_PROPERTY Table

EmployeeID LastName FirstName CellPhone ExperienceLevel
1 Smith Sam 206-254-1234 Master

2 Evanston John 206-254-2345 Senior

3 Murray Dale 206-254-3456 Junior

4 Murphy Jerry 585-545-8765 Master

5 Fontaine Joan 206-254-4567 Senior

Figure 3-32

Sample Data for the Garden Glory EMPLOYEE Table

234   Part 1   Database Fundamentals

C.	 Write SQL statements to insert the data into each of the five Garden Glory database
tables. Assume that any surrogate key value will be supplied by the DBMS. Use the
data in Figures 3-30, 3-31, 3-32, 3-33, and 3-34.

D.	 Write SQL statements to list all columns for all tables.

E.	 Write an SQL statement to list LastName, FirstName, and CellPhone for all employees
having an experience level of Master.

PropertyServiceID PropertyID ServiceID ServiceDate EmployeeID HoursWorked
1 1 2 2014-05-05 1 4.50

2 3 2 2014-05-08 3 4.50

3 2 1 2014-05-08 2 2.75

4 6 1 2014-05-10 5 2.50

5 5 4 2014-05-12 4 7.50

6 8 1 2014-05-15 4 2.75

7 4 4 2014-05-19 1 1.00

8 7 1 2014-05-21 2 2.50

9 6 3 2014-06-03 5 2.50

10 5 7 2014-06-08 4 10.50

11 8 3 2014-06-12 4 2.75

12 4 5 2014-06-15 1 5.00

13 7 3 2014-06-19 2 4.00

Figure 3-34

Sample Data for the Garden Glory PROPERTY_SERVICE Table

ServiceID ServiceDescription CostPerHour
1 Mow Lawn 25.00

2 Plant Annuals 25.00

3 Weed Garden 30.00

4 Trim Hedge 45.00

5 Prune Small Tree 60.00

6 Trim Medium Tree 100.00

7 Trim Large Tree 125.00

Figure 3-33

Sample Data for the Garden Glory GG_SERVICE Table

Chapter 3   Structured Query Language   235

F.	 Write an SQL statement to list Name and CellPhone for all employees having an expe-
rience level of Master and Name that begins with the letter J.

G.	 Write an SQL statement to list the names of employees who have worked on a prop-
erty in Seattle. Use a subquery.

H.	 Answer question G but use a join using JOIN ON syntax.

  I.	 Write an SQL statement to list the names of employees who have worked on a prop-
erty owned by a corporation. Use a subquery.

J.	 Answer question I but use a join using JOIN ON syntax.

K.	 Write an SQL statement to show the name and sum of hours worked for each
employee.

L.	 Write an SQL statement to show the sum of hours worked for each ExperienceLevel of
EMPLOYEE. Sort the results by ExperienceLevel, in descending order.

M.	 Write an SQL statement to show the sum of HoursWorked for each type of OWNER
but exclude services of employees who have ExperienceLevel of Junior.

N.	 Write an SQL statement to show all properties and the services performed at those
properties. The output from this statement should include any properties that have not
had any service performed at them. The SQL statement output should list PropertyID,
PropertyName, PropertyType, PropertyServiceID, ServiceID, ServiceDate, and
ServiceDescription. (Hint: Use JOIN ON syntax.)

O.	 Write an SQL statement to show all properties and the services performed at those
properties. The output from this statement should include any Garden Glory ser-
vices that have not been performed at any property. The SQL statement output
should list PropertyID, PropertyName, PropertyType, PropertyServiceID, ServiceID,
ServiceDate, and ServiceDescription. (Hint: Use JOIN ON syntax.)

P.	 Write an SQL statement to modify all EMPLOYEE rows with ExperienceLevel of
Master to SuperMaster.

Q.	 Write an SQL statement to switch the values of ExperienceLevel so that all rows cur-
rently having the value Junior will have the value Senior and all rows currently having
the value Senior will have the value Junior.

R.	 Given your assumptions about cascading deletions in your answer to question B, write
the fewest number of DELETE statements possible to remove all the data in your data-
base but leave the table structures intact. Do not run these statements if you are using
an actual database!

 James River Jewelry Project Questions

The James River Jewelry project questions are available in online Appendix D, which can
be download from the textbook’s Web site: www.pearsonhighered.com/kroenke.

www.pearsonhighered.com/kroenke

236   Part 1   Database Fundamentals

 The Queen Anne Curiosity Shop Project Questions

Assume that The Queen Anne Curiosity Shop designs a database with the following tables:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
Email)

EMPLOYEE (EmployeeID, LastName, FirstName, Phone, Email)
VENDOR (VendorID, CompanyName, ContactLastName, ContactFirstName,
  Address, City, State, ZIP, Phone, Fax, Email)
ITEM (ItemID, ItemDescription, PurchaseDate, ItemCost, ItemPrice, VendorID)
SALE (SaleID, CustomerID, EmployeeID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

VendorID in ITEM must exist in VendorID in VENDOR
CustomerID in SALE must exist in CustomerID in CUSTOMER
EmployeeID in SALE must exist in EmployeeID in EMPLOYEE
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM

Assume that CustomerID of CUSTOMER, EmployeeID of EMPLOYEE, ItemID of
ITEM, SaleID of SALE, and SaleItemID of SALE_ITEM are all surrogate keys with values
as follows:

CustomerID	 Start at 1	 Increment by 1
EmployeeID	 Start at 1	 Increment by 1
VendorID	 Start at 1	 Increment by 1
ItemID	 Start at 1	 Increment by 1
SaleID	 Start at 1	 Increment by 1

A vendor may be an individual or a company. If the vendor is an individual, the
CompanyName field is left blank, while the ContactLastName and ContactFirstName
fields must have data values. If the vendor is a company, the company name is recorded in
the CompanyName field, and the name of the primary contact at the company is recorded
in the ContactLastName and ContactFirstName fields.

Sample data are shown in Figures 3-35, 3-36, 3-37, 3-38, 3-39, and 3-40. These tables,
referential integrity constraints, and data are used as the basis for the SQL statements you
will create in the exercises that follow. If possible, run these statements in an actual DBMS,
as appropriate, to obtain your results. Name your database QACS.

Use data types consistent with the DBMS you are using. If you are not using an actual
DBMS, consistently represent data types using either the SQL Server, Oracle Database,
or MySQL data types shown in Figure 3-5. For each SQL statement you write, show the
results based on your data.

Write SQL statements and answer questions for this database as follows:

	A.	 Write SQL CREATE TABLE statements for each of these tables.

	B.	 Write foreign key constraints for the relationships in each of these tables. Make your
own assumptions regarding cascading deletions and justify those assumptions. (Hint:
You can combine the SQL for your answers to parts A and B.)

CustomerID LastName FirstName Address City State ZIP Phone Email
1 Shire Robert 6225 Evanston Ave N Seattle WA 98103 206-524-2433 Robert.Shire@somewhere.com

2 Goodyear Katherine 7335 11th Ave NE Seattle WA 98105 206-524-3544 Katherine.Goodyear@somewhere.com

3 Bancroft Chris 12605 NE 6th Street Bellevue WA 98005 425-635-9788 Chris.Bancroft@somewhere.com

4 Griffith John 335 Aloha Street Seattle WA 98109 206-524-4655 John.Griffith@somewhere.com

5 Tiemey Doris 14510 NE 4th Street Bellevue WA 98005 425-635-8677 Doris.Tiemey@somewhere.com

6 Anderson Donna 1410 Hillcrest Parkway Mt. Vemon WA 98273 360-538-7566 Donna.Anderson@elsewhere.com

7 Svane Jack 3211 42nd Street Seattle WA 98115 206-524-5766 Jack.Svane@somewhere.com

8 Walsh Denesha 6712 24th Avenue NE Redmond WA 98053 425-635-7566 Denesha.Walsh@somewhere.com

9 Enquist Craig 534 15th Street Bellingham WA 98225 360-538-6455 Craig.Enquist@elsewhere.com

10 Anderson Rose 6823 17th Ave NE Seattle WA 98105 206-524-6877 Rose.Anderson@elsewhere.com

Figure 3-35

Sample Data for the QACS CUSTOMER Table

237

238   Part 1   Database Fundamentals

	C.	 Write SQL statements to insert the data into each of these tables. Assume that all sur-
rogate key column values will be supplied by the DBMS. Use the data in Figures 3-35,
3-36, 3-37, 3-38, 3-39, and 3-40.

	D.	 Write SQL statements to list all columns for all tables.

	E.	 Write an SQL statement to list ItemID and ItemDescription for all items that cost
$1000 or more.

	F.	 Write an SQL statement to list ItemNumber and Description for all items that cost
$1000 or more and were purchased from a vendor whose CompanyName starts with
the letters New.

	G.	 Write an SQL statement to list LastName, FirstName, and Phone of the customer
who made the purchase with SaleID 1. Use a subquery.

	H.	 Answer part G but use a join using JOIN ON syntax.

	 I.	 Write an SQL statement to list LastName, FirstName, and Phone of the customers
who made the purchase with SaleIDs 1, 2, and 3. Use a subquery.

	J.	 Answer part I but use a join using JOIN ON syntax.

	K.	 Write an SQL statement to list LastName, FirstName, and Phone of customers who
have made at least one purchase with SubTotal greater than $500. Use a subquery.

	L.	 Answer part K but use a join using JOIN ON syntax.

	M.	 Write an SQL statement to list LastName, FirstName, and Phone of customers who
have purchased an item that has an ItemPrice of $500 or more. Use a subquery.

	N.	 Answer part M but use a join using JOIN ON syntax.

	O.	 Write an SQL statement to list LastName, FirstName, and Phone of customers who
have purchased an item that was supplied by a vendor with a CompanyName that be-
gins with the letter L. Use a subquery.

	P.	 Write an SQL statement to show all customers and the items these customers
have purchased. The output from this statement should include any items (if any)
that have not been purchased by a customer. The SQL statement output should
list CustomerID, LastName, FirstName, SaleID, SaleItemID, and ItemDescription.
(Hint: Use JOIN ON syntax.)

EmployeeID LastName FirstName Phone Email
1 Stuart Anne 206-527-0010 Anne.Stuart@QACS.com

2 Stuart George 206-527-0011 George.Stuart@QACS.com

3 Stuart Mary 206-527-0012 Mary.Stuart@QACS.com

4 Orange William 206-527-0013 William.Orange@QACS.com

5 Griffith John 206-527-0014 John.Griffith@QACS.com

Figure 3-36

Sample Data for the QACS EMPLOYEE Table

VendorID CompanyName ContactLastName ContactFirstName Address City State ZIP Phone Fax Email

1 Linens and
Things

Huntington Anne 1515 NW Market
Street

Seattle WA 98107 206-325-6755 206-329-9675 LAT@business.com

2 European
Specialties

Tadema Ken 6123 15th
Avenue NW

Seattle WA 98107 206-325-7866 206-329-9786 ES@business.com

3 Lamps and
Lighting

Swanson Sally 506 Prospect
Street

Seattle WA 98109 206-325-8977 206-329-9897 LAL@business.com

4 NULL Lee Andrew 1102 3rd Street Kirkland WA 98033 425-746-5433 NULL Andrew.Lee@somewhere.com

5 NULL Hamison Denise 533 10th Avenue Kirkland WA 98033 425-746-4322 NULL Denise.Hamison@somewhere.com

6 New York
Brokerage

Smith Mark 621 Roy Street Seattle WA 98109 206-325-9088 206-329-9908 NYB@business.com

7 NULL Walsh Denesha 6712 24th
Avenue NE

Redmond WA 98053 425-635-7566 NULL Denesha.Walsh@somewhere.com

8 NULL Bancroft Chris 12605 NE 6th
Street

Bellevue WA 98005 425-635-9788 425-639-9978 Chris.Bancroft@somewhere.com

9 Specialty Antiques Nelson Fred 2512 Lucky
Street

San
Francisco

CA 94110 415-422-2121 415-423-5212 SA@business.com

10 General Antiques Gamer Patty 2515 Lucky
Street

San
Francisco

CA 94110 415-422-3232 415-429-9323 GA@business.com

Figure 3-37

Sample Data for the QACS VENDOR Table

239

240   Part 1   Database Fundamentals

	Q.	 Write an SQL statement to show all customers and the items these customers have
purchased. The output from this statement should include any customers (if any) that
have not purchased any item. The SQL statement output should list CustomerID,
LastName, FirstName, SaleID, SaleItemID, and ItemDescription. (Hint: Use JOIN
ON syntax.)

	R.	 Answer part O but use a join using JOIN ON syntax.

	S.	 Write an SQL statement to show the sum of SubTotal for each customer. List
CustomerID, LastName, FirstName, Phone, and the calculated result. Name the sum
of SubTotal as SumOfSubTotal and sort the results by CustomerID, in descending
order.

ItemID ItemDescription PurchaseDate ItemCost ItemPrice VendorID
1 Antique Desk 2013-11-07 $1,800.00 $3,000.00 2

2 Antique Desk Chair 2013-11-10 $300.00 $500.00 4

3 Dining Table Linens 2013-11-14 $600.00 $1,000.00 1

4 Candles 2013-11-14 $30.00 $50.00 1

5 Candles 2013-11-14 $27.00 $45.00 1

6 Desk Lamp 2013-11-14 $150.00 $250.00 3

7 Dining Table Linens 2013-11-14 $450.00 $750.00 1

8 Book Shelf 2013-11-21 $150.00 $250.00 5

9 Antique Chair 2013-11-21 $750.00 $1,250.00 6

10 Antique Chair 2013-11-21 $1,050.00 $1,750.00 6

11 Antique Candle Holders 2013-11-28 $210.00 $350.00 2

12 Antique Desk 2014-01-05 $1,920.00 $3,200.00 2

13 Antique Desk 2014-01-05 $2,100.00 $3,500.00 2

14 Antique Desk Chair 2014-01-06 $285.00 $475.00 9

15 Antique Desk Chair 2014-01-06 $339.00 $565.00 9

16 Desk Lamp 2014-01-06 $150.00 $250.00 10

17 Desk Lamp 2014-01-06 $150.00 $250.00 10

18 Desk Lamp 2014-01-06 $144.00 $240.00 3

19 Antique Dining Table 2014-01-10 $3,000.00 $5,000.00 7

20 Antique Sideboard 2014-01-11 $2,700.00 $4,500.00 8

21 Dining Table Chairs 2014-01-11 $5,100.00 $8,500.00 9

22 Dining Table Linens 2014-01-12 $450.00 $750.00 1

23 Dining Table Linens 2014-01-12 $480.00 $800.00 1

24 Candles 2014-01-17 $30.00 $50.00 1

25 Candles 2014-01-17 $36.00 $60.00 1

Figure 3-38

Sample Data for the QACS ITEM Table

Chapter 3   Structured Query Language   241

SaleID CustomerID EmployeeID SaleDate SubTotal Tax Total
1 1 1 1 2013-12-14 $3,500.00 $290.50 $3,790.50

2 2 2 1 2013-12-15 $1,000.00 $83.00 $1,083.00

3 3 3 1 2013-12-15 $50.00 $4.15 $54.15

4 4 4 3 2013-12-23 $45.00 $3.74 $48.74

5 5 1 5 2014-01-05 $250.00 $20.75 $270.75

6 6 5 5 2014-01-10 $750.00 $62.25 $812.25

7 7 6 4 2014-01-12 $250.00 $20.75 $270.75

8 8 2 1 2014-01-15 $3,000.00 $249.00 $3,249.00

9 9 5 5 2014-01-25 $350.00 $29.05 $379.05

10 10 7 1 2014-02-04 $14,250.00 $1,182.75 $15,432.75

11 11 8 5 2014-02-04 $250.00 $20.75 $270.75

12 12 5 4 2014-02-07 $50.00 $4.15 $54.15

13 13 9 2 2014-02-07 $4,500.00 $373.50 $4,873.50

14 14 10 3 2014-02-11 $3,675.00 $305.03 $3,980.03

15 15 2 2 2014-02-11 $800.00 $66.40 $866.40

Figure 3-39

Sample Data for the QACS SALE Table

	T.	 Write an SQL statement to modify the vendor with CompanyName of Linens and
Things to Linens and Other Stuff.

	U.	 Write SQL statements to switch the values of vendor CompanyName so that all rows
currently having the value Linens and Things will have the value Lamps and Lighting
and all rows currently having the value Lamps and Lighting will have the value Linens
and Things.

	V.	 Given your assumptions about cascading deletions in your answer to part B, write the
fewest number of DELETE statements possible to remove all the data in your data-
base but leave the table structures intact. Do not run these statements if you are using
an actual database!

242   Part 1   Database Fundamentals

SaleID SaleItemID ItemID ItemPrice
1 1 1 $3,000.00

1 2 2 $500.00

2 1 3 $1,000.00

3 1 4 $50.00

4 1 5 $45.00

5 1 6 $250.00

6 1 7 $750.00

7 1 8 $250.00

8 1 9 $1,250.00

8 2 10 $1,750.00

9 1 11 $350.00

10 1 19 $5,000.00

10 2 21 $8,500.00

10 3 22 $750.00

11 1 17 $250.00

12 1 24 $50.00

13 1 20 $4,500.00

14 1 12 $3,200.00

14 2 14 $475.00

15 1 23 $800.00

Figure 3-40

Sample Data for the QACS SALE_ITEM Table

243

I n Part I, you were introduced to the fundamental con-
cepts and techniques of relational database manage-
ment. In Chapter 1, you learned that databases consist

of related tables, and you learned the major components of a
database system. Chapter 2 introduced you to the relational
model, and you learned the basic ideas of functional depen-
dencies and normalization. In Chapter 3, you learned how to
use SQL statements to create and process a database.

All the material you have learned so far gives you
a background for understanding the nature of database
management and the required basic tools and techniques.
However, you do not yet know how to apply all this technol-
ogy to solve a business problem. Imagine, for example, that
you walk into a small business—for example, a bookshop—
and are asked to build a database to support a frequent
buyer program. How would you proceed? So far, we have
assumed that the database design already exists. How
would you go about creating the design of the database?

The next two chapters address this important topic. We
begin Chapter 4 with an overview of the database design
process and then we describe data modeling: a technique
for representing database requirements. In Chapter 5, you
will learn how to transform a data model into a relational
database design. After that database design is complete, it
will be implemented in a DBMS using the SQL statements
we previously discussed in Chapter 3. You will learn about
managing and using the implemented database in Part III.

Note the dual use of the term database design. We
speak of database design as a process—the database
design process—that results in a final product—the database
design—that is the plan for actually building the database in
a DBMS. The overall topic of Part 2 is database design as a
process, and the topic of Chapter 5 is the database design
as the final plan for the database.

Database DesignPart 2

This page intentionally left blank

245

T he database development process, as we describe
it here, is a subset of the systems development life
cycle (SDLC) process. The SDLC is described in

detail in online Appendix D, “Getting Started in Systems
Analysis and Design,” and if you want more information
about how the database development process fits into the
creation of the information systems used in businesses
today, you should refer to Appendix D. It is important to un-
derstand and remember that database development is usu-
ally done as a part of an information system or application
development process and that the database itself is only one
component of the information system or application. Users
use the entire information system or application—they do
not just use the database by itself!

For our purposes, the database development process
consists of three major stages: requirements analysis, com-
ponent design, and implementation. During the require-
ments analysis stage (also referred to as the requirements
stage), system users are interviewed and sample forms,
reports, queries, and descriptions of update activities are
obtained. These system requirements are used to create
a data model as part of the requirements analysis stage.
A data model is a representation of the content, rela-
tionships, and constraints of the data needed to support
the system requirements. Often, prototypes, or working
demonstrations of selected portions of the future system,
are created during the requirements phase. Such proto-
types are used to obtain feedback from the system users.

During the component design stage (also referred to
as the system design stage and the design stage), the data
model is transformed into a database design. Such a de-
sign consists of tables, relationships, and constraints. The

•	 Learn the basic stages of database
development

•	 Understand the purpose and role
of a data model

•	 Know the principal components
of the E-R data model

•	 Understand how to interpret traditional
E-R diagrams

•	 Understand how to interpret the
Information Engineering (IE) model’s
Crow’s Foot E-R diagrams

•	 Learn to construct E-R diagrams

•	 Know how to represent 1:1, 1:N, N:M,
and binary relationships with the E-R
model

•	 Understand two types of weak entities
and know how to use them

•	 Understand nonidentifying and iden-
tifying relationships and know how to
use them

•	 Know how to represent subtype entities
with the E-R model

•	 Know how to represent recursive rela-
tionships with the E-R model

•	 Learn how to create an E-R diagram
from source documents

Chapter Objectives

Data Modeling and
the Entity-Relationship
Model

Chapter 4

246   Part 2   Database Design

design includes the table names and the names of all table columns. The
design also includes the data types and properties of the columns, as well
as a description of primary and foreign keys. Data constraints consist of lim-
its on data values (for example, part numbers are seven-digit numbers start-
ing with the number 3), referential integrity constraints, and business rules.
An example of a business rule for a manufacturing company is that every
purchased part will have a quotation from at least two suppliers.

The last stage of database development is the implementation stage.
During this stage, the database is constructed in the DBMS and populated
with data; queries, forms, and reports are created; application programs are
written; and all these are tested. Finally, during this stage users are trained,
documentation is written, and the new system is put into use.

In this chapter, we will briefly discuss the requirements analysis stage
and then focus on the data modeling component of requirements analysis.
In Chapter 5, we will see how a data model is converted to a database de-
sign in the component design stage. The database itself would be built and
populated with data in a DBMS during the implementation step of the SDLC,
and this would be done using SQL as we previously described in Chapter 3.

The first step in the database development process is user requirements analysis. Sources of
user requirements are listed in Figure 4-1. As described in online Appendix D, and as you
will learn in your systems development class, the general practice is to identify the users
of the new information system and to interview them. During the interviews, examples of
existing forms, reports, and queries are obtained. In addition, the users are asked about the
need for changes to existing forms, reports, and queries and also about the need for new
forms, reports, and queries.

Use cases are descriptions of the ways users will employ the features and functions
of the new information system. A use case consists of a description of the roles users will
play when utilizing the new system, together with descriptions of activities’ scenarios.
Inputs provided to the system and outputs generated by the system are defined. Sometimes
dozens of such use cases are necessary. Use cases provide sources of requirements and
also can be used to validate the data model, the database design, and the actual database
implementation.

In addition to these requirements, you need to document characteristics of data items.
For each data item in a form, report, or query, the team needs to determine its data type,
properties, and limits on values.

Finally, during the process of establishing requirements system developers need to
document business rules that constrain actions on database activity. Generally, such rules

Requirements Analysis

User interviews
Forms
Reports
Queries
Use cases
Business rules

Figure 4-1

Sources of
Requirements for a
Database Application

Chapter 4   Data Modeling and the Entity-Relationship Model   247

The system requirements described in the preceding section, although necessary and im-
portant as a first step, are not sufficient for designing a database. In order to be useful as
the basis for a database design, these requirements must be transformed into a data model.
When you write application programs, program logic must first be documented in flow-
charts or object diagrams—when you create a database, data requirements must first be
documented in a data model.

The Entity-Relationship Data Model

Books on systems analysis and design often identify three design stages:

• Conceptual design (conceptual schema)
•  Logical design (logical schema)
• Physical design (physical schema)

The data model we are discussing is equivalent to the conceptual design as
defined in these books.

BTW

A number of different techniques can be used to create data models. By far the most
popular is the entity-relationship model, first published by Peter Chen1 in 1976. Chen’s
basic model has since been extended to create the extended entity-relationship (E-R)
model. Today, when we say E-R model, we mean the extended E-R model, and we use it in
this text.

Several versions of the E-R model are in use today. We begin with the traditional E-R
model. Later in the chapter, after the basic principles of E-R models have been examined,
we will look at and use another version of the E-R model.

The most important elements of the E-R model are entities, attributes, identifiers, and
relationships. We now consider each of these in turn.

Entities
An entity is something that users want to track. Examples of entities are CUSTOMER John
Doe, PURCHASE 12345, PRODUCT A4200, SALES_ORDER 1000, SALESPERSON
John Smith, and SHIPMENT 123400. Entities of a given type are grouped into an entity
class. Thus, the EMPLOYEE entity class is the collection of all EMPLOYEE entities. In
this text, entity classes are shown in capital letters.

1Peter P. Chen, “The Entity-Relationship Model—Towards a Unified View of Data,” ACM Transactions on
Database Systems (January 1976): 9–36. For information on Peter Chen, see http://en.wikipedia.org/wiki/
Peter_Chen, and for a copy of the article, see http://csc.lsu.edu/news/erd.pdf.

arise from business policy and practice. For example, the following business rules could
pertain to an academic database:

•	Students must declare a major before enrolling in any class.
•	Graduate classes can be taken by juniors or seniors with a grade point average of

3.70 or greater.
•	No adviser may have more than 25 advisees.
•	Students may declare one or two majors but no more.

http://en.wikipedia.org/wiki/Peter_Chen
http://en.wikipedia.org/wiki/Peter_Chen
http://csc.lsu.edu/news/erd.pdf

248   Part 2   Database Design

An entity instance of an entity class is the occurrence of a particular entity, such as
CUSTOMER 12345. It is important to understand the differences between an entity class
and an entity instance. An entity class is a collection of entities and is described by the struc-
ture of the entities in that class. There are usually many instances of an entity in an entity class.
For example, the class CUSTOMER has many instances—one for each customer represented
in the database. The ITEM entity class and two of its instances are shown in Figure 4-2.

When developing a data model, the developers analyze the forms, reports, queries, and
other system requirements. Entities are usually the subject of one or more forms or reports,
or they are a major section in one or more forms or reports. For example, a form named
Product Data Entry Form indicates the likelihood of an entity class called PRODUCT.
Similarly, a report named Customer Purchase Summary indicates that most likely the
business has CUSTOMER and PURCHASE entities.

Attributes
Entities have attributes, which describe the entity’s characteristics. Examples of attri-
butes include EmployeeName, DateOfHire, and JobSkillCode. In this text, attributes
are printed in a combination of uppercase and lowercase letters. The E-R model assumes
that all instances of a given entity class have the same attributes. For example, in Figure
4-2 the ITEM entity has the attributes ItemNumber, Description, Cost, ListPrice, and
QuantityOnHand.

An attribute has a data type (character, numeric, date, currency, and the like) and
properties that are determined from the requirements. Properties specify whether the attri-
bute is required, whether it has a default value, whether its value has limits, and any other
constraint.

Identifiers
Entity instances have identifiers, which are attributes that name, or identify, entity
instances. For example, the ITEM entity in Figure 4-2 uses ItemNumber as an identi-
fier. Similarly, EMPLOYEE instances could be identified by SocialSecurityNumber, by
EmployeeNumber, or by EmployeeName. EMPLOYEE instances are not likely to be iden-
tified by attributes such as Salary or DateOfHire because these attributes normally are not
used in a naming role. CUSTOMER instances could be identified by CustomerNumber
or CustomerName, and SALES_ORDER instances could be identified by OrderNumber.

ITEM

ItemNumber
Description
Cost
ListPrice
QuantityOnHand

Entity Class

1100
100 amp panel
$127.50
$170.00
14

2000
Door handle set
$52.50
$39.38
0

Two Entity Instances

Figure 4-2

The ITEM Entity and
Two Entity Instances

Chapter 4   Data Modeling and the Entity-Relationship Model   249

The identifier of an entity instance consists of one or more of the entity’s attributes.
Identifiers that consist of two or more attributes are called composite identifiers. Examples
are (AreaCode, LocalNumber), (ProjectName, TaskName), and (FirstName, LastName,
PhoneExtension).

An identifier may be either unique or nonunique. The value of a unique identifier
identifies one, and only one, entity instance. In contrast, the value of a nonunique identi-
fier identifies a set of instances. EmployeeNumber is normally a unique identifier, but
EmployeeName is most likely a nonunique identifier (for example, more than one John
Smith might be employed by the company).

As you can tell from these definitions, identifiers are similar to keys in the
relational model, but with two important differences. First, an identifier is a
logical concept: It is one or more attributes that users think of as indicating
an occurrence (instance) of the entity. Such identifiers might or might not be
represented as keys in the database design. Second, primary and candidate
keys must be unique, whereas identifiers might or might not be unique.

BTW

As shown in Figure 4-3, entities are portrayed in three levels of detail in a data model.
Sometimes an entity and all its attributes are displayed. In such cases, the identifier of the
attribute is shown at the top of the entity and a horizontal line is drawn after the identifier,
as shown in Figure 4-3(a). In a large data model, so much detail can make the data model
diagrams unwieldy. In those cases, the entity diagram is abbreviated by showing just the
identifier, as in Figure 4-3(b), or by showing just the name of the entity in a rectangle, as
shown in Figure 4-3(c).

Relationships
Entities can be associated with one another in relationships. The E-R model contains re-
lationship classes and relationship instances. Relationship classes are associations among
entity classes, and relationship instances are associations among entity instances. In the
original specification of the E-R model, relationships could have attributes. In modern
practice, that feature is not used, and only entities have attributes.

A relationship class can involve many entity classes. The number of entity classes
in the relationship is known as the degree of the relationship. In Figure 4-4(a), the
SUPPLIER-QUOTATION relationship is of degree two because it involves two entity
classes: SUPPLIER and QUOTATION. The PARENT relationship in Figure 4-4(b) is of
degree three because it involves three entity classes: MOTHER, FATHER, and CHILD.

Description
Cost
ListPrice
QuantityOnHand

ItemNumber

ITEM ITEM

ItemNumber ITEM

(a) Entity with All
Attributes

(b) Entity with
Identifier
Attribute
Only

(c) Entity with No
Attributes

Figure 4-3

Levels of Entity
Attribute Display

250   Part 2   Database Design

Relationships of degree two, which are the most common, are called binary relationships.
Similarly, relationships of degree three are called ternary relationships.

QUOTATION

SUPPLIER MOTHER FATHER

CHILD

SUPPLIER-
QUOTATION PARENT

(a) Binary Relationship (b) Ternary Relationship

Figure 4-4

Example Relationships

You may be wondering what the difference is between an entity and a table.
They may seem like different terms for the same thing. The principal dif-
ference between an entity and a table is that you can express a relation-
ship between entities without using foreign keys. In the E-R model, you
can specify a relationship just by drawing a line connecting two entities.
Because you are doing logical data modeling and not physical database
design, you need not worry about primary and foreign keys, referential in-
tegrity constraints, and the like.

This characteristic makes entities easier to work with than tables, es-
pecially early in a project when entities and relationships are fluid and un-
certain. You can show relationships between entities before you even know
what the identifiers are. For example, you can say that a DEPARTMENT
relates to many EMPLOYEEs before you know any of the attributes of either
EMPLOYEE or DEPARTMENT. This characteristic allows you to work from
the general to the specific. When you are creating a data model, you first
identify the entities, then you think about the relationships, and finally you
determine the attributes.

BTW

Three Types of Binary Relationships  Figure 4-5 shows the three types of binary
relationships:

•	The one-to-one (1:1) relationship
•	The one-to-many (1:N) relationship
•	The many-to-many (N:M) relationship

In a 1:1 relationship, a single entity instance of one type is related to a single entity in-
stance of another type. In Figure 4-5(a), the LOCKER-ASSIGNMENT relationship associ-
ates a single EMPLOYEE with a single LOCKER. According to this diagram, no employee
has more than one locker assigned, and no locker is assigned to more than one employee.

Figure 4-5(b) shows a 1:N binary relationship. In this relationship, which is called
the ITEM-QUOTE relationship, a single instance of ITEM relates to many instances of
QUOTATION. According to this sketch, an item has many quotations, but a quotation has
only one item.

Chapter 4   Data Modeling and the Entity-Relationship Model   251

Think of the diamond as representing the relationship. The position of the 1 indicates
that the relationship has one ITEM; the position of the N indicates that it also has many
QUOTATION entities. Thus, each instance of the relationship consists of one ITEM and
many QUOTATIONS. Notice that if the 1 and the N were reversed and the relationship
were written N:1, each instance of the relationship would have many ITEMs and one
QUOTATION.

When discussing 1:N relationships, the terms parent and child are sometimes used.
The parent entity is the entity on the one side of the relationship and the child entity is the
entity on the many side of the relationship. Thus, in the 1:N relationship between ITEM
and QUOTATION, ITEM is the parent and QUOTATION is the child.

Figure 4-5(c) shows an N:M binary relationship. This relationship is named ITEM-
SOURCE, and it relates instances of ITEM to instances of SUPPLIER. In this case, an item
can be supplied by many suppliers, and a supplier can supply many items.

Maximum Cardinality  The three types of binary relationships are named and classi-
fied by their cardinality, which is a word that means count. In each of the relationships in
Figure 4-5, the numbers inside the relationship diamond show the maximum number of
entity instances that can occur on each side of the relationship. These numbers are called
the relationship’s maximum cardinality, which is the maximum number of entity instances
that can participate in a relationship instance.

The ITEM-QUOTATION relationship in Figure 4-5(b), for example, is said to have
a maximum cardinality of 1:N. However, the cardinalities are not restricted to the values
shown here. It is possible, for example, for the maximum cardinality to be other than 1 and
N. The relationship between BASKETBALL-TEAM and PLAYER, for example, could be
1:5, indicating that a basketball team has at most five players.

Minimum Cardinality  Relationships also have a minimum cardinality, which is the
minimum number of entity instances that must participate in a relationship instance.
Minimum cardinality can be shown in several different ways. One way, illustrated in Figure
4-6, is to place a hash mark across the relationship line to indicate that an entity must exist
in the relationship and to place an oval across the relationship line to indicate that an entity
might or might not be in the relationship.

Accordingly, Figure 4-6 shows that an ITEM must have a relationship with at least one
SUPPLIER but that a SUPPLIER is not required to have a relationship with an ITEM. The
complete relationship restrictions are that an ITEM has a minimum cardinality of zero and

N:MITEM SUPPLIER

ITEM-SOURCE

1:NITEM QUOTATION

ITEM-QUOTE

1:1EMPLOYEE LOCKER

LOCKER-ASSIGNMENT

(a) One-to-One Relationship

(b) One-to-Many Relationship

(c) Many-to-Many Relationship

Figure 4-5

Three Types of Binary
Relationships

252   Part 2   Database Design

a maximum cardinality of many—a SUPPLIER can supply many items, but does not have
to supply any. A SUPPLIER has a minimum cardinality of one and a maximum cardinality
of many—an ITEM may be available from many suppliers, and must be associated with at
least one supplier.

If the minimum cardinality is zero, the entity’s participation in the relationship is
optional. If the minimum cardinality is one, the entity’s participation in the relationship is
mandatory.

N:MITEM SUPPLIER

ITEM-SOURCEFigure 4-6

A Relationship with
Minimum Cardinalities

Interpreting minimum cardinalities in diagrams such as Figure 4-6 is often one of
the most difficult parts of E-R models. It is very easy to become confused about
which entity is optional and which is required (mandatory). An easy way to clarify
this situation is to imagine that you are standing in the diamond, on the relation-
ship line, and looking toward one of the entities. If you see an oval in that direc-
tion, then that entity is optional (has a minimum cardinality of zero). If you see a
hash mark, then that entity is required (has a minimum cardinality of one). Thus,
in Figure 4-6, if you stand on the diamond and look toward SUPPLIER, you see a
hash mark. This means that SUPPLIER is required in the relationship.

BTW

Relationships like those in Figures 4-5 and 4-6 are sometimes called HAS-A
relationships. This term is used because each entity instance has a relation-
ship to a second entity instance. An employee has a badge, and a badge
has an employee. If the maximum cardinality is greater than one, then each
entity has a set of other entities. An employee has a set of skills, for ex-
ample, and a skill has a set of employees who have that skill.

BTW

Variations of the E-R Model
This original notation is seldom used today. Instead, a number of different versions of the
E-R model are in use, and they use different symbols.

Entity-Relationship Diagrams
The sketches in Figures 4-5 and 4-6 are called entity-relationship (E-R) diagrams. Such
diagrams are standardized, but only loosely. According to this standard, entity classes are
shown using rectangles, relationships are shown using diamonds, the maximum cardinality
of the relationship is shown inside the diamond, and the minimum cardinality is shown by
the oval or hash mark next to the entity. The name of the entity is shown inside the rect-
angle, and the name of the relationship is shown near the diamond. You will see examples
of such E-R diagrams, and it is important for you to be able to interpret them.

Chapter 4   Data Modeling and the Entity-Relationship Model   253

At least three different versions of the E-R model are currently in use. One of them,
called Information Engineering (IE), was developed by James Martin in 1990. This model
uses “crow’s feet” to show the many side of a relationship, and it is sometimes called the IE
Crow’s Foot model. It is easy to understand, and we will use it in this text.

Other significant variations include the IDEF1X version and the Unified Modeling
Language (UML) version of the E-R model.2 In 1993, the National Institute of Standards
and Technology announced that the Integrated Definition 1, Extended (IDEF1X)3 ver-
sion of the E-R model would be a national standard. This standard incorporates the basic
ideas of the E-R model but uses different graphical symbols that, unfortunately, make it
difficult to understand and use. Still, it is a national standard used in government work,
and therefore it may be important to you. To add further complication, an object-oriented
development methodology called the Unified Modeling Language (UML) adopted the
E-R model but introduced its own symbols while putting an object-oriented programming
spin on it. UML has begun to be widely used among object-oriented programming (OOP)
practitioners, and you may encounter UML notation in systems development courses.

In addition to differences due to different versions of the E-R model, differences also
arise due to software products. For example, two products that both implement the IE
Crow’s Foot model may do so in different ways. Thus, when creating a data model diagram,
you need to know not just the version of the E-R model you are using, but also the idiosyn-
crasies of the data modeling product you use.

The IE Crow’s Foot E-R Model
Figure 4-7 shows the same N:M optional-to-mandatory relationship in two different
models. Figure 4-7(a) shows the original E-R model version. Figure 4-7(b) shows the
IE Crow’s Foot model using common IE Crow’s Foot symbols. Notice that the line
representing the relationship is drawn as a dashed line. (The reason for this is explained
later in this chapter.) Notice the crow’s foot symbol used to show the many side of the
relationship. The IE Crow’s Foot model uses the notation shown in Figure 4-8 to indicate
relationship cardinality.

In the IE Crow’s Foot model, the symbol closest to the entity shows the maximum car-
dinality, and the other symbol shows the minimum cardinality. A hash mark indicates one
(and therefore also mandatory), a circle indicates zero (and thus optional), and the crow’s
foot indicates many. Thus, the diagram in Figure 4-7(b) shows that a DEPARTMENT has

2For more information on these models, see David M. Kroenke and David J. Auer, Database Processing:
Fundamentals, Design, and Implementation, 13th edition (Upper Saddle River, NJ: Prentice Hall, 2014),
Appendix B (IDEF1X) and Appendix C (UML).
3National Institute of Standards and Technology, Integrated Definition for Information Modeling (DEF1X).
Federal Information Processing Standards Publication 184, 1993.

DEPARTMENT 1:N EMPLOYEE

(a) Original E-R Model Version

DEPARTMENT EMPLOYEE

(b) Crow’s Foot Version

Figure 4-7

Two Versions of a 1:N
Relationship

254   Part 2   Database Design

one or more EMPLOYEEs (the symbol shows many and mandatory), and an EMPLOYEE
belongs to zero or one DEPARTMENT (the symbol shows one and optional).

A 1:1 relationship would be drawn in a similar manner, but the line connecting to each
entity would be similar to the connection shown for the one side of the 1:N relationship in
Figure 4-7(b).

Figure 4-9 shows the same N:M optional-to-mandatory relationship in two differ-
ent models. According to the original E-R model diagram shown in Figure 4-9(a), an
EMPLOYEE must have a SKILL and may have several. At the same time, although a
particular SKILL may or may not be held by any EMPLOYEE, a SKILL may also be held
by several EMPLOYEES. The IE Crow’s Foot version in Figure 4-9(b) shows the N:M car-
dinalities using the notation in Figure 4-8. The IE Crow’s Foot symbols again indicate the
minimum cardinalities for the relationship.

Throughout the rest of this text, we use the IE Crow’s Foot model for E-R diagrams.
There is no completely standard set of symbols for the IE Crow’s Foot notation, but we use

EMPLOYEE N:M SKILL

(a) Original E-R Model Version

EMPLOYEE SKILL

(b) Crow’s Foot Version

Figure 4-9

Two Versions of an N:M
Relationship

Symbol Meaning

Mandatory—One

Mandatory—Many

Optional—One

Optional—Many

Numeric Meaning

Exactly one

One or more

Zero or one

Zero or more

Figure 4-8

Crow’s Foot Notation

Chapter 4   Data Modeling and the Entity-Relationship Model   255

the symbols and notation described in this chapter. You can obtain various modeling prod-
ucts that will produce IE Crow’s Foot models, and they are easily understood and related
to the original E-R model. However, those products may use the oval, hash mark, crow’s
foot, and other symbols in slightly differently ways.

You can try a number of modeling products, each with its own idiosyn-
crasies. First, Computer Associates produces CA ERwin Data Modeler,
a commercial data modeling product (available in several editions) that
handles both data modeling and database design tasks. You can down-
load the CA ERwin Data Modeler Community Edition, a free, basic version
from the Computer Associates Web site. You can use ERwin to produce
either IE Crow’s Foot or IDEF1X diagrams. Second, Microsoft Visio
Professional 2013 is also a possibility. A trial version is available from the
Microsoft Web site (http://www.microsoftstore.com/store/msusa/en_US/list/Visio/
categoryID.62687700). For more information on working with Microsoft Visio
2013, see online Appendix E, “Getting Started with Microsoft Visio 2013.”
Finally, Oracle is continuing development of the MySQL Workbench, which
is both the GUI utility for the MySQL database and a database design
tool. The MySQL Workbench is downloadable at the MySQL Web site
(http://dev.mysql.com/downloads/tools/workbench/). (Note: If you are using a
Windows operating system, you should install the MySQL Workbench using
the MySQL Installer for Windows available at http://dev.mysql.com/downloads/
windows/installer/). Although MySQL Workbench is better for database
designs than data models, it is a very useful tool, and the database designs
it produces can be used with any DBMS, not just MySQL. For more infor-
mation on working with the MySQL Workbench, see online Appendix C,
“Getting Started with MySQL 5.6 Community Server Edition.” These are
just a few of the many data modeling products available.

BTW

Weak Entities
The E-R model defines a special type of entity called a weak entity. A weak entity is an en-
tity that cannot exist in a database unless another type of entity also exists in that database.
An entity that is not weak is called a strong entity.

ID-Dependent Entities
The E-R model includes a special type of weak entity called an ID-dependent entity.
With this type of entity, the identifier of the entity includes the identifier of another entity.
Consider the entities BUILDING and APARTMENT, shown in Figure 4-10(a).

As you would expect, the identifier of BUILDING is a single attribute, in
this case BuildingName. The identifier of APARTMENT, however, is not the sin-
gle attribute ApartmentNumber, but rather the composite identifier (BuildingName,
ApartmentNumber). This happens because logically and physically an APARTMENT
simply cannot exist unless a BUILDING exists for that APARTMENT to be part of.
Whenever this type of situation occurs, an ID-dependent entity exists. In this case,

http://www.microsoftstore.com/store/msusa/en_US/list/Visio/categoryiD.62687700
http://www.microsoftstore.com/store/msusa/en_US/list/Visio/categoryiD.62687700
http://dev.mysql.com/downloads/tools/workbench/
http://dev.mysql.com/downloads/windows/installer/
http://dev.mysql.com/downloads/windows/installer/

256   Part 2   Database Design

APARTMENT is ID-dependent on BUILDING. The identifier of an ID-dependent entity
is always a composite that includes the identifier of the entity that the ID-dependent entity
depends on for its existence.

As shown in Figure 4-10, in our E-R models we use an entity with rounded corners to
represent the ID-dependent entity. We also use a solid line to represent the relationship
between the ID-dependent entity and its parent. This type of a relationship is called an
identifying relationship. A relationship drawn with a dashed line (refer to Figure 4-7) is
used between strong entities and is called a nonidentifying relationship because there are
no ID-dependent entities in the relationship.

ID-dependent entities are common. Another example is shown in Figure 4-10(b),
where the entity VERSION is ID-dependent on the entity PRODUCT. Here PRODUCT
is a software product, and VERSION is a release of that software product. The identi-
fier of PRODUCT is ProductName, and the identifier of VERSION is (ProductName,
VersionNumber). A third example is shown in Figure 4-10(c), where EDITION is ID-
dependent on TEXTBOOK. The identifier of TEXTBOOK is Title, and the identifier of
EDITION is (Title, EditionNumber). In each of these cases, the ID-dependent entity can-
not exist unless the parent (the entity on which it depends) also exists. Thus, the minimum
cardinality from the ID-dependent entity to the parent is always one.

However, whether the parent is required to have an ID-dependent entity depends on
business requirements. In Figure 4-10(a), the database can contain a BUILDING, such as
a store or warehouse, so APARTMENT is optional. In Figure 4-10(b), every PRODUCT
made by this company has versions (including version 1.0), so VERSION is mandatory.
Similarly, in Figure 4-10(c), every TEXTBOOK has an EDITION number (including the

(a) APARTMENT is
ID-Dependent on
BUILDING

(b) VERSION is
ID-Dependent on
PRODUCT

(c) EDITION is
ID-Dependent on
TEXTBOOK

Figure 4-10

Example ID-Dependent Entities

Chapter 4   Data Modeling and the Entity-Relationship Model   257

first edition), which makes EDITION mandatory. Those restrictions arise from the nature
of each business and its applications and not from any logical requirement.

Finally, notice that you cannot add an ID-dependent entity instance until the parent
entity instance is created, and when you delete the parent entity instance you must delete
all the ID-dependent entity instances as well.

Non–ID-Dependent Weak Entities
All ID-dependent entities are weak entities. However, there are other entities that are weak
but not ID-dependent. To understand weak entities, consider the relationship between the
AUTO_MODEL and VEHICLE entity classes in the database of a car manufacturer, such
as Ford or Honda, as shown in Figure 4-11.

In Figure 4-11(a), each VEHICLE is assigned a sequential number as it is manufac-
tured. So, for the “Super SUV” AUTO_MODEL, the first VEHICLE manufactured gets a
ManufacturingSeqNumber of 1, the next gets a ManufacturingSeqNumber of 2, and so on.
This is clearly an ID-dependent relationship because ManufacturingSeqNumber is based
on the Manufacturer and Model.

Now let us assign VEHICLE an identifier that is independent of the Manufacturer
and Model. We will use a VIN (vehicle identification number), as shown in Figure 4-11(b).
Now the VEHICLE has a unique identifier of its own and does not need to be identified by
its relation to AUTO_MODEL.

This is an interesting situation. VEHICLE has an identity of its own and therefore
is not ID-dependent, yet the VEHICLE is an AUTO_MODEL, and if that particular
AUTO_MODEL did not exist the VEHICLE itself would never have existed. Therefore,
VEHICLE is now a weak but non–ID-dependent entity.

Consider your car—let us say it is a Ford Mustang just for the sake of this discus-
sion. Your individual Mustang is a VEHICLE, and it exists as a physical object and is

AUTO_MODEL
Manufacturer
Model

Description
NumberOfPassengers
EngineType
RatedMPG

VEHICLE
Manufacturer
Model
ManufacturingSeqNumber

DateManufactured
Color
DealerName
DealerCost
SalesDate
SalesPrice

(a) ID-Dependent Entity

VEHICLE
VIN

DateManufactured
Color
DealerName
DealerCost
SalesDate
SalesPrice

AUTO_MODEL
Manufacturer
Model

Description
NumberOfPassengers
EngineType
RatedMPG

(b) Non–ID-Dependent
Weak Entity

Figure 4-11

Weak Entity Examples

258   Part 2   Database Design

identified by the VIN that is required for each licensed automobile. It is not ID-dependent
on AUTO_MODEL, which in this case is Ford Mustang, for its identity. However, if the
Ford Mustang had never been created as an AUTO_MODEL—a logical concept that was
first designed on paper—your car would never have been built because no Ford Mustangs
would ever have been built! Therefore, your physical individual VEHICLE would not ex-
ist without a logical AUTO_MODEL of Ford Mustang, and in a data model (which is what
we’re talking about) a VEHICLE cannot exist without a related AUTO_MODEL. This
makes VEHICLE a weak but non–ID-dependent entity.

Unfortunately, an ambiguity is hidden in the definition of weak entity, and this ambi-
guity is interpreted differently by different database designers (as well as different textbook
authors). The ambiguity is that, in a strict sense, if a weak entity is defined as any entity
whose presence in the database depends on another entity, then any entity that participates
in a relationship having a minimum cardinality of one to a second entity is a weak entity.
Thus, in an academic database, if a STUDENT must have an ADVISER, then STUDENT
is a weak entity because a STUDENT entity cannot be stored without an ADVISER.

This interpretation seems too broad to some people. A STUDENT is not physically de-
pendent on an ADVISER (unlike an APARTMENT to a BUILDING), and a STUDENT is
not logically dependent on an ADVISER (despite how it might appear to either the student
or the adviser). Therefore, STUDENT should be considered a strong entity.

To avoid such situations, some people interpret the definition of weak entity more
narrowly. They say that to be a weak entity an entity must logically depend on another
entity. According to this definition, APARTMENT is a weak entity, but STUDENT is not.
An APARTMENT cannot exist without a BUILDING in which it is located. However, a
STUDENT can logically exist without an ADVISER, even if a business rule requires it.

To illustrate this interpretation, consider the examples shown in Figure 4-12.
Suppose that a data model includes the relationship between an ORDER and a
SALESPERSON shown in Figure 4-12(a). Although you might state that an ORDER
must have a SALESPERSON, it does not necessarily require one for its existence. (The
ORDER could be a cash sale in which the salesperson is not recorded.) Hence, the
minimum cardinality of one arises from a business rule, not from logical necessity. Thus,

SALESPERSON
SalespersonID

SalespersonName
Phone
EmailAddress

ORDER
OrderID

CustomerName
OrderDate
OrderSubtotal
OrderTax
OrderTotal

(a) ORDER is a Strong
Entity

PROJECT
ProjectID

ProjectName
BudgetCode
Description

ASSIGNMENT
ProjectID
AssignmentID

StartDate
EndDate
BudgetAmount
ActualAmount

(b) ASSIGNMENT is an
ID-Dependent Entity

PRESCRIPTION
PrescriptionID

PrescriptionDate
PrescriptionText
isGenericDrugAllowed

PATIENT
PatientID

PatientName
Address
City
State
ZIP

(c) PRESCRIPTION is a
Non–ID-Dependent
Weak Entity

Figure 4-12

Examples of Required
Entities

Chapter 4   Data Modeling and the Entity-Relationship Model   259

ORDER requires a SALESPERSON but is not existence-dependent on it. Therefore,
ORDER is a strong entity.

Now, consider ASSIGNMENT in Figure 4-12(b), which is ID-dependent on
PROJECT, and the identifier of ASSIGNMENT contains the identifier of PROJECT.
Here, not only does ASSIGNMENT have a minimum cardinality of one and not only
is ASSIGNMENT existence-dependent on PROJECT, but ASSIGNMENT is also ID-
dependent on PROJECT because its identifier requires the key of the parent entity. Thus,
ASSIGNMENT is a weak entity that is ID-dependent.

Finally, consider the relationship of PATIENT and PRESCRIPTION in Figure 4-12(c).
Here a PRESCRIPTION cannot logically exist without a PATIENT. Hence, not only is
the minimum cardinality one, but the PRESCRIPTION is also existence-dependent on
PATIENT. Thus, PRESCRIPTION is a weak entity.

In this text, we define a weak entity as an entity that logically depends on another
entity. Hence, not all entities that have a minimum cardinality of one in relation to another
entity are weak. Only those that are logically dependent are weak. This definition implies
that all ID-dependent entities are weak. In addition, every weak entity has a minimum
cardinality of one on the entity on which it depends, but every entity that has a minimum
cardinality of one is not necessarily weak.

As illustrated in Figures 4-11 and 4-12, in our E-R models we again use an entity
with rounded corners to represent the non–ID-dependent entity, but we also use a
dashed line to represent the nonidentifying relationship between the non–ID-dependent
entity and its parent.

Associative Entities
Let’s take another look that the Wedgewood Pacific Corporation (WPC) database that we
used in our discussion of SQL in Chapter 3. At WPC, employees are assigned to projects.
If all we are interested in knowing is (1) which employees are assigned a single project and
(2) which projects a single employee has been assigned to, we have a simple N:M relation-
ship between EMPLOYEE and PROJECT. This is illustrated in Figure 4-13(a).

Figure 4-13

The Associative Entity

EMPLOYEE
EmployeeNumber

FirstName
LastName
Department
Phone
Email

PROJECT
ProjectID

ProjectName
Department
MaxHours
StartDate
EndDate

(a) N:M Relationship Between EMPLOYEE and PROJECT

(b) EMPLOYEE and PROJECT 1:N Relationships with the Associative Entity ASSIGNMENT

260   Part 2   Database Design

However, WPC also wants to record the number of hours each employee works on
each project in an attribute named HoursWorked. Where should we put this attribute? If
we add it to EMPLOYEE, it will total the number of hours that employee has worked on
all assigned projects, not the number of hours worked per project. Similarly, if we add it to
PROJECT, it will record the total number of hours worked on that project by all assigned
employees. Neither of these solutions will record the data that WPC needs.

One way of thinking about this situation is that HoursWorked is an attribute of the as-
signment relationship between EMPLOYEE and PROJECT. But we can’t put an attribute
in a relationship, so what can we do?

The answer is to create a new entity between EMPLOYEE and PROJECT named
ASSIGNMENT to record both (1) the actual assignments of employees to projects and
(2) the hours each employee works on each project in the HoursWorked attribute. This
type of entity is called an associative entity (or association entity) and is used whenever
a pure N:M relationship cannot properly hold attributes that are describing aspects of the
relationship between two entities. This is illustrated in Figure 4-13(b), and if you look back
at Figure 3-1, you will see that the WPC has always had such a structure.

Subtype Entities
The extended E-R model introduced the concept of subtypes. A subtype entity is a special
case of another entity called the supertype entity. Students, for example, may be classi-
fied as undergraduate or graduate students. In this case, STUDENT is the supertype, and
UNDERGRADUATE and GRADUATE are subtypes. Figure 4-14 shows these subtypes for a
student database. Note that the identifier of the supertype is also the identifier of the subtypes.

Alternatively, a student could be classified as a freshman, sophomore, junior, or senior.
In that case, STUDENT would be the supertype, and FRESHMAN, SOPHOMORE,
JUNIOR, and SENIOR would be the subtypes.

As illustrated in Figure 4-14, in our E-R models we use a circle with a line under it as a
subtype symbol to indicate a supertype/subtype relationship. Think of this as a symbol for an
optional (the circle) 1:1 (the line) relationship. In addition, we use a solid line to represent an
ID-dependent subtype entity because each subtype is ID-dependent on the supertype. Also
note that none of the line end symbols shown in Figure 4-8 are used on the connecting lines.

In some cases, an attribute of the supertype indicates which of the subtypes is appro-
priate for a given instance. An attribute that determines which subtype is appropriate is
called a discriminator. In Figure 4-14, the attribute isGradStudent (which has only the val-
ues Yes and No) is the discriminator. In our E-R diagrams, the discriminator is shown next
to the subtype symbol, as illustrated in Figure 4-14(a). Not all supertypes have a discrimi-
nator. Where a supertype does not have a discriminator, application code must be written
to create the appropriate subtype.

isGradStudent

GRADUATE
StudentID

UndergraduateGPA
ScoreOnGMAT

STUDENT
StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE
StudentID

HighSchoolGPA
ScoreOnSAT

(a) Exclusive Subtypes with Discriminator

HIKING_CLUB
StudentID

DateDuesPaid
AmountPaid

STUDENT
StudentID

LastName
FirstName

SAILING_CLUB
StudentID

DateDuesPaid
AmountPaid

(b) Inclusive Subtypes

Figure 4-14

Example Subtype
Entities

Chapter 4   Data Modeling and the Entity-Relationship Model   261

Subtypes can be exclusive or inclusive. With exclusive subtypes, a supertype in-
stance is related to at most one subtype. With inclusive subtypes, a supertype instance
can relate to one or more subtypes. In Figure 4-14(a), the X in the circle means that the
UNDERGRADUATE and GRADUATE subtypes are exclusive. Thus, a STUDENT can
be either an UNDERGRADUATE or a GRADUATE, but not both.

Figure 4-14(b) shows that a STUDENT can join either the HIKING_CLUB or the
SAILING_CLUB or both or neither. These subtypes are inclusive (note that there is no X
in the circle). Because a supertype may relate to more than one subtype, inclusive subtypes
do not have a discriminator.

Subtypes are used in a data model to avoid inappropriate NULL values. Undergraduate
students take the SAT exam and report that score, whereas graduate students take the
GMAT and report their score on that exam. Thus, the SAT score would be NULL in all
STUDENT entities for graduates, whereas the GMAT score would be NULL for all under-
graduates. Such NULL values can be avoided by creating subtypes.

The relationships that connect supertypes and subtypes are called IS-A
relationships because a subtype is the same entity as the supertype. Because
this is so, the identifier of a supertype and all its subtypes must be the
same; they all represent different aspects of the same entity. Contrast this
with HAS-A relationships, in which an entity has a relationship to another
entity but the identifiers of the two entities are different.

BTW

Recursive Relationships
It is possible for an entity to have a relationship to itself. Figure 4-15 shows a
CUSTOMER entity in which one customer can refer to many other customers. This is
called a recursive relationship (and because it has only one entity, it is also known as
a unary relationship). As with binary relationships, recursive relationships can be 1:1,
1:N (shown in Figure 4-15), and N:M. We discuss each of these three types further in
Chapter 5.

CUSTOMER

CustomerID

LastName
FirstName
Address
City
State
ZIP
Phone
Email

REFERRED-BY

Figure 4-15

Example Recursive
Relationship

262   Part 2   Database Design

Developing an Example E-R Diagram

Heather Sweeney Designs
Seminar Customer List

Date: October 11, 2014 Location: San Antonio Convention Center

Time: 11 AM Title: Kitchen on a Budget

Name Phone Email Address

Nancy Jacobs 817–871–8123 NJ@somewhere.com

Chantel Jacobs 817–871–8234 CJ@somewhere.com

Ralph Able

Etc.

27 names in all

210–281–7687 RA@somewhere.com

Figure 4-16

Example Seminar
Customer List

The best way to gain proficiency with data modeling is to do it. In this section, we examine
a set of documents used by a small business and create a data model from those documents.
After you have read this section, you should practice creating data models with one or
more of the projects at the end of the chapter.

Heather Sweeney Designs
Heather Sweeney is an interior designer who specializes in home kitchen design. She offers
a variety of seminars at home shows, kitchen and appliance stores, and other public loca-
tions. The seminars are free; she offers them as a way of building her customer base. She
earns revenue by selling books and videos that instruct people on kitchen design. She also
offers custom-design consulting services.

After someone attends a seminar, Heather wants to leave no stone unturned in at-
tempting to sell that person one of her products or services. She would therefore like to de-
velop a database to keep track of customers, the seminars they have attended, the contacts
she has made with them, and the purchases they have made. She wants to use this database
to continue to contact her customers and offer them products and services.

The Seminar Customer List
Figure 4-16 shows the seminar customer list form that Heather or her assistant fills out at
seminars. This form includes basic data about the seminar as well as the name, phone, and
email address of each seminar attendee. If we examine this list in terms of a data model,
you see two potential entities: SEMINAR and CUSTOMER. From the form in Figure 4-16,
we can conclude that a SEMINAR relates to many CUSTOMERs, and we can make the
initial E-R diagram shown in Figure 4-17(a).

However, from this single document we cannot determine a number of other facts. For
example, we are not sure about cardinalities. Currently, we show a 1:N relationship, with
both entities required in the relationship, but we are not certain about this. Neither do we
know what to use for the identifier of each entity.

Chapter 4   Data Modeling and the Entity-Relationship Model   263

Having missing facts is typical during the data modeling process. We examine docu-
ments and conduct user interviews, and then we create a data model with the data we have.
We also note where data are missing and supply those data later as we learn more. Thus,
there is no need to stop data modeling when something is unknown; we just note that it
is unknown and keep going, with the goal of supplying missing information at some later
point.

Suppose we talk with Heather and determine that customers can attend as many semi-
nars as they would like, but she would like to be able to record customers even if they have
not been to a seminar. (“Frankly, I’ll take a customer wherever I can find one!” was her
actual response.) Also, she never offers a seminar to fewer than 10 attendees. Given this
information, you can fill out more of the E-R diagram, as shown in Figure 4-17(b).

Before continuing, consider the minimum cardinality of the relationship from
SEMINAR to CUSTOMER in Figure 4-17(b). The notation says that a seminar must have
at least 10 customers, which is what we were told. However, this means that we cannot
add a new SEMINAR to the database unless it already has 10 customers. This is incorrect.
When Heather first schedules a seminar, it probably has no customers at all, but she would
still like to record it in the database. Therefore, even though she has a business policy of
requiring at least 10 customers at a seminar, we cannot place this limit as a constraint in the
data model.

In Figure 4-17(b), neither of the entities has an identifier. For SEMINAR, the
composites (SeminarDate, SeminarTime, Location) and (SeminarDate, SeminarTime,
SeminarTitle) are probably unique, and either could be the identifier. However, identifiers

Is this correct ?

Is this correct ?

CUSTOMER
??? is CUSTOMER identifier
LastName
FirstName
EmailAddress
Phone

SEMINAR
??? is SEMINAR identifier

SeminarDate
SeminarTime
Location
SeminarTitle

(a) First Version of the SEMINAR and CUSTOMER E-R Diagram

10

CUSTOMER

??? is CUSTOMER identifier

LastName
FirstName
EmailAddress
Phone

SEMINAR

??? is SEMINAR identifier

SeminarDate
SeminarTime
Location
SeminarTitle

(b) Second Version of the SEMINAR and CUSTOMER E-R Diagram

CUSTOMER

CustomerID

LastName
FirstName
EmailAddress
Phone

SEMINAR

SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

(c) Third Version of the SEMINAR and CUSTOMER E-R Diagram

Figure 4-17

Initial E-R Diagram for Heather Sweeney Designs

264   Part 2   Database Design

will become table keys during database design, and these will be large character keys. A
surrogate key is probably a better idea here, so we should create an equivalent unique
identifier (SeminarID) for this entity. For CUSTOMER, looking at the data and thinking
about the nature of email addresses, we can reasonably suppose that EmailAddress can be
the identifier of CUSTOMER. However, some couples share an email address, and it may
not be completely unique. Therefore, we will use CustomerID as our unique identifier. All
these decisions are shown for the E-R diagram in Figure 4-17(c).

The Customer Form Letter
Heather records every customer contact she makes. She considers customer attendance at a
seminar as one type of customer contact, and Figure 4-18 shows a form letter that Sweeney
Designs uses as another type of customer contact and as a follow-up to seminar attendance.

Heather also sends messages like this via email. In fact, she sends both a written let-
ter and an email message as a follow-up with every seminar attendee. We should therefore
represent this form letter with an entity called CONTACT, which could be a letter, an
email, or some other form of customer contact. Heather uses several different form let-
ters and emails, and she refers to each one by a specific name (form letter seminar, email
seminar message, email purchase message, etc.). For now, we will represent the attributes

Heather Sweeney Designs
122450 Rockaway Road

Dallas, Texas 75227
972-233-6165

Ms. Nancy Jacobs
1400 West Palm Drive
Fort Worth, Texas 76110

Dear Ms. Jacobs:

Thank you for attending my seminar “Kitchen on a Budget” at the San Antonio Convention
Center. I hope that you found the seminar topic interesting and helpful for your design
projects.

As a seminar attendee, you are entitled to a 15 percent discount on all of my video and
book products. I am enclosing a product catalog and I would also like to invite you to visit
our Web site at www.Sweeney.com.

Also, as I mentioned at the seminar, I do provide customized design services to help you
create that just-perfect kitchen. In fact, I have a number of clients in the Fort Worth area.
Just give me a call at my personal phone number of 555-122-4873 if you’d like to schedule
an appointment.

Thanks again and I look forward to hearing from you!

Best regards,

Heather Sweeney

Figure 4-18

Heather Sweeney
Designs Customer
Form Letter

www.Sweeney.com

Chapter 4   Data Modeling and the Entity-Relationship Model   265

of CONTACT as ContactNumber, ContactDate and ContactType, where ContactType can
be Seminar, FormLetterSeminar, EmailSeminarMessage, EmailPurchaseMessage, or some
other type.

Reading the form letter, we see that it refers to both a seminar and a customer.
Therefore, we can add it to the E-R diagram with relationships to both of those entities, as
shown in Figure 4-19.

As shown in the design in Figure 4-19(a), a seminar can result in many contacts and a
customer may receive many contacts, so the maximum cardinality of these relationships is
N. However, neither a customer nor a seminar need generate a contact, so the minimum
cardinality of these relationships is zero.

Working from CONTACT back to SEMINAR and CUSTOMER, we can determine
that the contact is for a single CUSTOMER and refers to a single SEMINAR, so the
maximum cardinality in that direction is one. Also, some of the messages to customers
refer to seminars and some do not, so the minimum cardinality back to SEMINAR is zero.
However, a contact must have a customer, so the minimum cardinality of that relationship
is one. These cardinalities are shown in Figure 4-19(a).

Now, however, consider the identifier of CONTACT, which is shown as unknown in
Figure 4-19(a). What could be the identifier? None of the attributes by themselves suffice
because many contacts will have the same values for ContactNumber, ContactDate, or
ContactType. Reflect on this for a minute, and you will begin to realize that some attribute
of CUSTOMER has to be part of CONTACT. That realization is a signal that something
is wrong. In a data model, the same attribute should not logically need to be part of two
different entities.

Could it be that CONTACT is a weak entity? Can a CONTACT logically exist without
a SEMINAR? Yes, because not all CONTACTs refer to a SEMINAR. Can a CONTACT
logically exist without a CUSTOMER? The answer to that question has to be no. Who
would we be contacting without a CUSTOMER? Aha! That is it: CONTACT is a weak en-
tity, depending on CUSTOMER. In fact, it is an ID-dependent entity because the identifier
of CONTACT includes the identifier of CUSTOMER.

Figure 4-19(b) shows the data model with CONTACT as an ID-dependent entity on
CUSTOMER. After further interviews with Heather, we determine that she often contacts
a customer more than once on the same day (both the form letter and email message thank-
ing the customer for seminar attendance are always sent on the same day), so (CustomerID,
Date) cannot be the identifier of CONTACT. We will choose to use the ContactNumber
attribute, which is a simple sequence number, as the second part of the composite identifier
(CustomerID, ContactNumber) for CONTACT.

This E-R diagram has a couple of other problems, because Heather has some other
data requirements. First, the contact letter has the customer’s address, but the CUSTOMER
entity has no address attributes. Consequently, they need to be added. Second, Heather al-
lows customers to create a login account on her Web site so that they can purchase items
online securely. She uses the customer EmailAddress as their login name, and has them cre-
ate a password. For security, we need to allow for encryption of this password and storage
of it in the CUSTOMER entity. The additional attributes for these requirements are added
to the CUSTOMER entity, as shown in Figure 4-19(c). This adjustment is typical; as more
forms and reports are obtained new attributes and other changes will need to be made to
the data model.

The Sales Invoice
The sales invoice that Heather uses to sell books and videos is shown in Figure 4-20. The
sales invoice itself needs to be an entity, and because the sales invoice has customer data it
has a relationship back to CUSTOMER. (Note that we do not duplicate the customer data
because we can obtain data items via the relationship; if data items are missing, we add them
to CUSTOMER.) Because Heather runs her computer with minimal security, she decided
that she did not want to record credit card numbers in her computer database. Instead, she

(a) First Version with CONTACT

(b) Second Version with CONTACT as a Weak Entity

(c) Third Version with Modified CUSTOMER

Figure 4-19

Heather Sweeney Designs Data Model with CONTACT

266

Chapter 4   Data Modeling and the Entity-Relationship Model   267

records only the PaymentType value in the database and files the credit card receipts in a
(locked) physical file with a notation that relates them back to an invoice number.

Figure 4-21 shows the completion of the Heather Sweeney Designs data model.
Figure 4-21(a) shows a first attempt at the data model with INVOICE. This diagram is
missing data about the line items on the order. Because there are multiple line items, the
line item data cannot be stored in INVOICE. Instead, an ID-dependent entity, LINE_
ITEM, must be defined. The need for an ID-dependent entity is typical for documents
that contain a group of repeating data. If the repeating group is not logically indepen-
dent, then it must be made into an ID-dependent weak entity. Figure 4-21(b) shows the
adjusted design.

Because LINE_ITEM belongs to an identifying relationship from INVOICE, it needs
an attribute that can be used to identify a particular LINE_ITEM within an INVOICE.
The identifier we will use for LINE_ITEM will be the composite (InvoiceNumber,

3500035000

78214

1410

210-281-7987

13

Figure 4-20

Heather Sweeney Designs Sales Invoice

(a) Version with INVOICE

(b) Version with LINE_ITEM

(c) The Finished Data Model

Figure 4-21

The Final Data Model
for Heather Sweeney
Designs

268

Chapter 4   Data Modeling and the Entity-Relationship Model   269

LineNumber), where InvoiceNumber is the identifier of INVOICE and the LineNumber
attribute identifies the line within the INVOICE on which an item appears.

We need to make one more correction to this data model. Heather sells standard
products—that is, her books and videos have standardized names and prices. She does
not want the person who fills out an order to be able to use nonstandard names or prices.
We therefore need to add a PRODUCT entity and relate it to LINE_ITEM, as shown in
Figure 4-21(c).

Observe that UnitPrice is an attribute of both PRODUCT and LINE_ITEM. This was
done so that Heather can update UnitPrice without affecting the recorded orders. At the
time a sale is made, UnitPrice in LINE_ITEM is set equal to UnitPrice in PRODUCT. The
LINE_ITEM UnitPrice never changes. However, as time passes and Heather changes prices
for her products she can update UnitPrice in PRODUCT. If UnitPrice were not copied into
LINE_ITEM, when the PRODUCT price changes, the price in already stored LINE_ITEMs
would change as well, and Heather does not want this to occur. Therefore, although two at-
tributes are named UnitPrice, they are different attributes used for different purposes.

Note in Figure 4-21(c) that based on interviews with Heather we have added
ProductNumber and QuantityOnHand to PRODUCT. These attributes do not appear in
any of the documents, but they are known by Heather and are important to her.

Attribute Specifications
The data model in Figure 4-21(c) shows entities, attributes, and entity relationships, but
it does not document details about attributes. These details are normally dealt with as
column specifications during the creation of the database design from the data model as
described in Chapter 5. However, during the requirements analysis, you may learn of some
desired or required attribute specifications (such as default values). These should be docu-
mented for use in creating the database design column specifications.

Business Rules
When creating a data model, we need to be on the lookout for business rules that constrain
data values and the processing of the database. We encountered such a business rule with
regard to CONTACT, when Heather Sweeney stated that no more than one form letter or
email per day is to be sent to a customer.

In more complicated data models, many such business rules would exist. These rules are
generally too specific or too complicated to be enforced by the DBMS. Rather, application
programs or other forms of procedural logic need to be developed to enforce such rules.

Validating the Data Model
After a data model has been completed, it needs to be validated. The most common way to do
this is to show it to the users and obtain their feedback. However, a large, complicated data
model is off-putting to many users, so often the data model needs to be broken into sections
and validated piece by piece or expressed in some other terms that are more understandable.

As mentioned earlier in this chapter, prototypes are sometimes constructed for users
to review. Prototypes are easier for users to understand and evaluate than data models. We
can develop prototypes that show the consequences of data model design decisions with-
out requiring the users to learn E-R modeling. For example, showing a form with room for
only one customer is a way of indicating that the maximum cardinality of a relationship is
one. If the users respond to such a form with the question “But where do I put the second
customer?” you know that the maximum cardinality is greater than one.

It is relatively easy to create mock-ups of forms and reports by using Microsoft Access
wizards. We can even develop such mock-ups in situations where Microsoft Access is not
going to be used as the operational DBMS because they are still useful for demonstrating
the consequences of data modeling decisions.

270   Part 2   Database Design

Finally, a data model needs to be evaluated against all use cases. For each use case, we
need to verify that all the data and relationships necessary to support the use case are pres-
ent and accurately represented in the data model.

Data model validation is exceedingly important. It is far easier and less expensive to
correct errors at this stage than it is to correct them after the database has been designed
and implemented. Changing the cardinality in a data model is a simple adjustment to a
document, but changing the cardinality later might require the construction of new tables,
new relationships, new queries, new forms, new reports, and so forth. So every minute
spent validating a data model will pay great dividends down the line.

The Access Workbench
Section 4
Prototyping Using Microsoft Access

In this chapter, when discussing data modeling concepts and techniques we talked
about building a prototype database for users to review as a model-validation technique.
Prototypes are easier for users to understand and evaluate than data models. In addition,
they can be used to show the consequences of data-model design decisions.

Because it is relatively easy to create mock-ups of forms and reports by using Microsoft
Access wizards, mock-ups are often developed even in situations in which Microsoft Access
is not going to be used as the operational DBMS. The mock-ups can be used as a proto-
typing tool to demonstrate the consequences of data modeling decisions. In this section,
you will use Microsoft Access as a prototyping tool. We will continue to use the WMCRM
database. At this point, we have created and populated the CONTACT, CUSTOMER, and
SALESPERSON tables. In the preceding sections of “The Access Workbench,” you also
learned how to create forms, reports, and queries. And if you studied Appendix E’s section
of “The Access Workbench” together with Chapter 3, you have learned how to create and
use view-equivalent queries.

Let us start by considering what the WMCRM database looks like from a data modeling
point of view. Figure AW-4-1 shows the WMCRM database as an IE Crow’s Foot E-R model.

This model is based on the business rule that each CUSTOMER works with
one and only one SALESPERSON. Therefore, we have a 1:N relationship between
SALESPERSON and CUSTOMER, which shows that each SALESPERSON can
work with many CUSTOMERs but each CUSTOMER is attended to by only one
SALESPERSON. Further, because there is no doubt about which SALESPERSON is

Figure AW-4-1

The WMCRM Database as a Data Model

Chapter 4   Data Modeling and the Entity-Relationship Model   271

involved in each CONTACT with a CUSTOMER, the connection to CONTACT is a 1:N
relationship to CUSTOMER.

But all this would change if the business rule were that any CUSTOMER could work
with more than one SALESPERSON. This would allow any SALESPERSON to contact
the CUSTOMER as needed rather than relying on just one SALESPERSON to be avail-
able whenever needed for work with a particular CUSTOMER. Each CONTACT would
now need to be linked to the CUSTOMER contacted and the SALEPERSON making the
CONTACT. This results in a data model like the one shown in Figure AW-4-2.

Here we have a 1:N relationship between SALESPERSON and CONTACT instead
of between SALESPERSON and CUSTOMER, while the 1:N relationship between
CUSTOMER and CONTACT remains the same. CONTACTs for one CUSTOMER can
now be linked to various SALESPERSONs.

Imagine that you have been hired as a consultant to create the WMCRM database. You
now have two alternative data models that you need to show to managers at Wallingford
Motors so that they can make a decision about which model to use. But they do not under-
stand E-R data modeling.

How can you illustrate the differences between the two data models? One way is to
generate some mock-up prototype forms and reports in Microsoft Access. Users can more
easily understand forms and reports than they can understand your abstract E-R model.

Creating a Prototype Form for the Original Data Model

We will start by creating a sample form in the current version of the WMCRM database,
which we are treating here as a prototype we created to illustrate the first data model. (This
includes populating the database with sample data.) The database structure for this data-
base is shown in the Relationships window in Figure AW-4-3.

Figure AW-4-2

The Modified WMCRM Data Model

(Continued)

272   Part 2   Database Design

You already know how to create forms that use more than one table, and the only
difference in this form will be that it uses three tables instead of two. The basic table is
SALESPERSON, with CUSTOMER as the second table added to the form, followed by
the CONTACT table. When you use the Form Wizard, various choices of design options
will lead to different appearances of the final form. One possible design of the WMCRM
Salesperson Contacts Form is shown in Figure AW-4-4.

This form has three distinct sections: The top section shows SALESPERSON data,
the middle section shows selectable CUSTOMER data, and the bottom section shows the
CONTACT data for the current CUSTOMER. It should be fairly easy to explain this form
to the Wallingford Motors management and users.

1:N relationship
between
SALESPERSON and
CUSTOMER

NickName is a foreign
key linking to
SALESPERSON

Figure AW-4-3

The Original WMCRM Database

SALESPERSON data

CUSTOMER data—
use the record buttons
to move between
CUSTOMERs
associated with the
current
SALESPERSON

CONTACT data—
only the data for the
current CUSTOMER
are shown

Figure AW-4-4

The WMCRM Salesperson Contacts Form

Chapter 4   Data Modeling and the Entity-Relationship Model   273

Creating a Prototype Form for the Modified Data Model

Before we can create the equivalent WMCRM Salesperson Contacts Form for the second
data model, we must prototype the resulting database in Microsoft Access. Fortunately, we
do not need to create a new database from scratch—we can simply make a copy of the ex-
isting Microsoft Access database. One of the nice features of Microsoft Access is that each
database is stored in one *.accdb file. For example, recall from Chapter 1’s section of “The
Access Workbench” that the original database was named WMCRM.accdb and stored in
the Documents library. We can make renamed copies of this file as the basis for prototyp-
ing other data models.

Copying the WMCRM.accdb Database

1.	 Select Start | Documents to open the My Documents library.
2.	 Right-click the WMCRM.accdb file object to display the shortcut menu, and then click

Copy.
3.	 Right-click anywhere in the empty area of the Documents library window to display the

shortcut menu and then click Paste. A file object named WMCRM - Copy.accdb appears in
the Documents library window.

4.	 Right-click the WMCRM - Copy.accdb file object to display the shortcut menu, and then
click Rename.

5.	 Edit the file name to read WMCRM-AW04-v02.accdb, and then press the Enter key.

Now we need to modify this database file. The goal is the set of database relationships
shown in Figure AW-4-5.

1:N relationship
between
SALESPERSON and
CONTACT

NickName is a foreign
key linking to
SALESPERSON

Referential Integrity is
being enforced, and
updates to NickName
will cascade from
SALESPERSON to
CONTACT

Figure AW-4-5

The Modified WMCRM Database

(Continued)

274   Part 2   Database Design

The modifications are straightforward, and we have done most of the steps in previous
sections. We need to:

•	Remove the relationship between SALESPERSON and CUSTOMER (this is new).
•	Delete the NickName field in CUSTOMER (this is new).
•	Add the NickName field to CONTACT as NULL.
•	Populate the NickName field in CONTACT.
•	Modify the NickName field in CONTACT to NOT NULL.
•	Create the relationship between SALESPERSON and CONTACT.

The only new steps are deleting a relationship and deleting a field from a table.

Deleting the SALESPERSON-to-CUSTOMER Relationship

1.	 Start Microsoft Access 2014.
2.	 If the File command tab is not selected, click the File command tab to display the Backstage

view, and then click the Open button. The Open dialog box appears. Browse to the
WMCRM-AW04-v02.accdb file, click the file name to highlight it, and then click the Open
button.

3.	 The Security Warning bar appears with the database. Click the Security Warning bar’s
Enable Content button.

4.	 Click the Database Tools command tab.
5.	 Click the Relationships button in the Relationships command group. The Relationships

tabbed document window appears. Note that along with the Relationships window a con-
textual tab named Relationship Tools is displayed and that this tab adds a new command
tab named Design to the set of command tabs displayed.

6.	 Right-click the relationship line between SALESPERSON and CUSTOMER to display the
shortcut menu, and then click Delete.

7.	 A dialog box appears with the message “Are you sure you want to permanently delete the
selected relationship from your database?” Click the Yes button.

8.	 Click the Relationships window’s Close button to close the window.
9.	 If a dialog box appears with the message “Do you want to save the changes to the layout of

‘Relationships’?” click the Yes button.

With the SALESPERSON-to-CUSTOMER relationship now deleted, we can proceed to
delete the NickName field from the CUSTOMER table.

Deleting a Column (Field) in a Microsoft Access Table

1.	 Open the CUSTOMER table in Design view.
2.	 Select the NickName column (field).
3.	 Right-click anywhere in the selected row to display the shortcut menu. Click Delete Rows.

■■ Note:  A Delete Rows button is also included in the Tools group on the Design com-
mand tab of the Table Tools contextual command tab. You can use this button instead
of the shortcut menu if you want to.

4.	 A dialog box appears with the message “Do you want to permanently delete the selected
field(s) and all the data in the field(s)?” To permanently delete the column, click the Yes
button.

5.	 Click the Save button on the Quick Access Toolbar to save the changes to the table design.
6.	 Close the CUSTOMER table.

The other steps needed to modify the database are the same ones we used when we added
the SALESPERSON table to the database in Chapter 3’s section of “The Access Workbench.”
Following the instructions in that section, we can add the NickName column to CONTACT,

Chapter 4   Data Modeling and the Entity-Relationship Model   275

populate it, and create the relationship between SALESPERSON and CONTACT. In
Chapter 3’s section of “The Access Workbench,” we used Microsoft Access SQL to accomplish
these tasks. In this section, we will walk through similar steps with Microsoft Access QBE. Note
that Figure AW-4-5 shows NickName inserted as the third column (field) in the table—it could
just as easily be added as the last column in the table. In a relational table, the column order
does not matter: We use the one that makes it easier for database developers to read!

Figure AW-4-6 shows the NickName column as it is initially added to the CONTACT
table. Note that the data type is Short Text(35), but currently the column is not required.
This is the Microsoft Access equivalent of the SQL NULL constraint.

Figure AW-4-7 shows the NickName column data added to the CONTACT table.
Now each CONTACT record contains the name of the salesperson making the contact.

The NickName
column

The SALESPERSON
NickName is entered
for every CONTACT
record

Figure AW-4-7

The NickName Data in CONTACT

The NickName
column

The data type is
Short Text(35)

The column is not
required at this time

Figure AW-4-6

The NickName Column in CONTACT

(Continued)

276   Part 2   Database Design

After the NickName column data have been added to the CONTACT table, we need
to set the NickName column’s Required field property to Yes, as shown in Figure AW-4-8.
This is the equivalent of the SQL NOT NULL constraint, and because NickName is a for-
eign key linking to SALESPERSON the NickName column in CONTACT must be NOT
NULL.

With the CONTACT table modifications done, we need to build the new relationship
between the SALESPERSON and CONTACT tables. This relationship is shown in Figure
AW-4-5, with the Edit Relationships dialog box showing that referential integrity is being
enforced for the relationship, and Cascade Update Related Fields is also checked. Close the
Relationships window.

With these modifications done, we now create another version of the WMCRM
Salesperson Contacts Form. This version is shown in Figure AW-4-9.

This form has two distinct sections: The top section shows SALESPERSON data,
and the bottom section shows that the data for each CUSTOMER are combined with the
CONTACT data for each customer contact. This form is distinctively different from the
form based on the first data model, but, again, it should be fairly easy to explain this form
to Wallingford Motors’ management and users. Based on the two forms, management and
users will be able to decide how they want the data presented, and this decision will then
determine which data model should be used.

The Microsoft Access Banded Form and Report Editors

The form in Figure AW-4-9 has extensively rearranged labels and data text boxes in the
Customer Contact section of the form. Microsoft Access uses banded form editors and
banded report editors, where each element of the form or report is displayed in its own
band (for example, Header, Detail, or Footer), which makes such rearranging very easy to
do. The form shown in Figure AW-4-9 is shown in Design view in Figure AW-4-10.

The column is now
required—this is the
equivalent of the SQL
NOT NULL constraint

The NickName
column

Figure AW-4-8

The Required NickName Column in CONTACT

Chapter 4   Data Modeling and the Entity-Relationship Model   277

Note that the form and the CONTACT subform each have their own Form Header,
Detail, and Form Footer sections. You can resize these as necessary, and you can resize the
entire form itself and change the size and position of the subform area within the form.
You can move or resize the labels and text boxes that display the data by using standard
Windows drag-and-drop actions. You can edit label text, and you can add additional labels

SALESPERSON data

The Customer
Contact data area
now includes
CUSTOMER data as
well as the CONTACT
data—each contact
record shows which
customer was
contacted

Figure AW-4-9

The WMCRM Salesperson Contacts Form for the Modified Database

SALESPERSON
portion of the
form—note the Form
Header and Detail
bands

Customer Contact
subform—again note
the Form Header and
Detail bands

Labels and data text
boxes can be moved
and resized as
necessary

The size of the form
and the subform
within the form can be
adjusted as needed

Figure AW-4-10

The Microsoft Access 2014 Banded Form Editor

(Continued)

278   Part 2   Database Design

or other text. Although Figure AW-4-10 shows a form, report formats can be edited exactly
the same way.

Working with Microsoft Access Switchboards

Most users would find working with Microsoft Access 2014 database applications at the
level of detail that we have been using to be intimidating. Users want a simple way to
access forms (so that they can input data) and reports (so that they can view and print
them). They really don’t want all the complexity of tables, views, and relationships. This
is particularly true when prototyping applications—users want to see what the applica-
tion can do, not how it does it! In Microsoft Access 2014, we can build a switchboard
that will provide this functionality. A switchboard is simply a specialized Microsoft
Access form that provides a way for the user to easily navigate the application with a
button-based menu system. An example for our WMCRM database is shown in Figure
AW-4-11. A full discussion of Microsoft Access switchboards and how to create them
can be found in online Appendix H, “The Access Workbench,” Section H, “Microsoft
Access Switchboards.”

Closing the Database and Exiting Microsoft Access

This completes the work we will do in this chapter’s “The Access Workbench.” As usual,
we finish by closing the database and Microsoft Access.

Closing the WMCRM-AW04-v02 Database

1.	 To close the WMCRM-AW04-v02 database and exit Microsoft Access, click the Close but-
ton in the upper-right corner of the Microsoft Access window.

Figure AW-4-11

A Microsoft Access
2013 Switchboard

Chapter 4   Data Modeling and the Entity-Relationship Model   279

Summary
The process of developing a database system consists of three stages: requirements analy-
sis, component design, and implementation. During the requirements analysis stage, you
interview users, document systems requirements, and construct a data model. Oftentimes,
you will create prototypes of selected portions of the future system. During the compo-
nent design stage, you transform the data model into a relational database design. During
the implementation stage, you construct the database, fill it with data, and create queries,
forms, reports, and application programs.

In addition to creating a data model, you must also determine data-item data types,
properties, and limits on data values. You also need to document business rules that con-
strain database activity.

The entity-relationship (E-R) model is the most popular tool used to develop a data
model. With the E-R model, entities, which are identifiable things of importance to the
users, are defined. All the entities of a given type form an entity class. A particular entity is
called an instance. Attributes describe the characteristics of entities, and one or more at-
tributes identify an entity. Identifiers can be unique or nonunique.

Relationships are associations among entities. The E-R model explicitly defines relation-
ships. Each relationship has a name, and there are relationship classes as well as relationship
instances. According to the original specification of the E-R model, relationships may have
attributes; however, this is not common in contemporary data models.

The degree of a relationship is the number of entities participating in the relationship.
Most relationships are binary. The three types of binary relationships are 1:1, 1:N, and
N:M. A recursive relationship occurs when an entity has a relationship to itself.

In traditional E-R diagrams, such as the traditional E-R model, entities are shown in rect-
angles and relationships are shown in diamonds. The maximum cardinality of a relationship is
shown inside the diamond. The minimum cardinality is indicated by a hash mark or an oval.

A weak entity is one whose existence depends on another entity; an entity that is not
weak is called a strong entity. In this text, we further define a weak entity as an entity that
logically depends on another entity. An entity can have a minimum cardinality of one in a
relationship with another entity and not necessarily be a weak entity. ID-dependent entities
must include the identifier of the entity on which the ID-dependent entity depends as part
of the identifier of the ID-dependent entity.

When a data model has one or more attributes that seem to be associated with a rela-
tionship between two entities rather than with either of the entities themselves, an associa-
tive entity (also called an association entity) must be added to the data model. Each of the
original entities will have a 1:N relationship with the associative entity, which will have a
composite primary key consisting of the two primary keys of the original entities. The as-
sociative entity will be ID-dependent on both of the original entities.

The extended E-R model introduced the concept of subtypes. A subtype entity is a
special case of another entity known as its supertype. In some cases, an attribute of the
supertype, called a discriminator, indicates which of the subtypes is appropriate for a given
instance. Subtypes can be exclusive (the supertype relates to at most one subtype) or inclu-
sive (the supertype can relate to one or more subtypes). The identifier of the subtype is the
identifier of the supertype.

This text’s E-R diagrams use the Information Engineering Crow’s Foot E-R model.
You should be familiar with diagrams of that style, but you should also realize that when
creating a database design no fundamental difference exists between the traditional style
and this style. When creating a data model, it is important to document business rules that
constrain database activity.

After E-R models are completed, they must be evaluated. You can show the data
model, or portions of the data model, directly to the users for evaluation. This requires the
users to learn how to interpret an E-R diagram. Sometimes, instead of showing users a data
model you may create prototypes that demonstrate the consequences of the data model.
Such prototypes are easier for users to understand.

280   Part 2   Database Design

Key Terms
association entity
associative entity
attribute
binary relationship
cardinality
child entity
component design stage
composite identifier
crow’s foot symbol
data model
database design
database development process
degree
design stage
discriminator
entity
entity class
entity instance
entity-relationship (E-R) diagram
entity-relationship model

exclusive subtype
extended entity-relationship (E-R)

model
HAS-A relationship
ID-dependent entity
identifier
identifying relationship
IE Crow’s Foot model
implementation stage
inclusive subtype
Information Engineering (IE)

model
Integrated Definition 1, Extended

(IDEF1X)
IS-A relationship
mandatory
maximum cardinality
minimum cardinality
nonidentifying relationship
nonunique identifier

optional
parent entity
recursive relationship
relationship
relationship class
relationship instance
requirements analysis stage
strong entity
subtype entity
supertype entity
system design stage
systems development life cycle

(SDLC)
ternary relationship
unary relationship
Unified Modeling Language

(UML)
unique identifier
use case
weak entity

Review Questions
	  4.1	 Name the three stages in the process of developing database systems. Summarize

the tasks in each.

	  4.2	 What is a data model, and what is its purpose?

	  4.3	 What is a prototype, and what is its purpose?

	  4.4	 What is a use case, and what is its purpose?

	  4.5	 Give an example of a data constraint.

	  4.6	 Give an example of a business rule that would need to be documented in a data-
base development project.

	  4.7	 Define the term entity and give an example other than those used in this book.

	  4.8	 Explain the difference between an entity class and an entity instance.

	  4.9	 Define the term attribute and give examples for the entity you described in ques-
tion 4.7.

	4.10	 Define the term identifier and indicate which attribute defined in your answer to
question 4.9 identifies the entity.

	4.11	 Define the term composite identifier and give an example other than those used in
this book.

	4.12	 Define the term relationship and give an example other than those used in this
book.

	4.13	 Explain the difference between a relationship class and a relationship instance.

	4.14	 Define the term degree of relationship. Give an example, other than one used in this
text, of a relationship greater than degree two.

	4.15	 List and give an example of the three types of binary relationships other than the
ones used in this book. Draw both a traditional E-R diagram and an IE Crow’s
Foot E-R diagram for each.

	4.16	 Define the terms maximum cardinality and minimum cardinality.

Chapter 4   Data Modeling and the Entity-Relationship Model   281

	4.17	 Draw an IE Crow’s Foot E-R diagram for the entities DEPARTMENT and
EMPLOYEE and the 1:N relationship between them. Assume that
a DEPARTMENT does not need to have an EMPLOYEE but that every
EMPLOYEE is assigned to a DEPARTMENT. Include appropriate identifiers and
attributes for each entity.

	4.18	 Define the term ID-dependent entity and give an example other than one used in
this text. Draw an IE Crow’s Foot E-R diagram for your example.

	4.19	 Define the term weak entity and give an example other than one used in this text.
Draw an IE Crow’s Foot E-R diagram for your example.

	4.20	 Explain the ambiguity in the definition of the term weak entity. Explain how this
book interprets this term.

	4.21	 Define the term associative entity, and give an example other than one used in this
text. Your example should start with a N:M relationship between two strong enti-
ties and then be modified by an additional data requirement. Draw IE Crow’s Foot
E-R diagrams for both your N:M relationship and for the relationships among the
three entities that include the associative entity.

	4.22	 Define the terms supertype, subtype, and discriminator.

	4.23	 What is an exclusive subtype relationship? Give an example other than one shown
in this book. Draw an IE Crow’s Foot E-R diagram for your example.

	4.24	 What is an inclusive subtype relationship? Give an example other than one shown
in this chapter. Draw an IE Crow’s Foot E-R diagram for your example.

	4.25	 Give an example of a recursive relationship other than the one shown in this chap-
ter. Draw an IE Crow’s Foot E-R diagram for your example.

	4.26	 Give an example of a business rule for your work for question 4.17.

	4.27	 Describe why it is important to evaluate a data model.

	4.28	 Summarize one technique for evaluating a data model and explain how that tech-
nique could be used to evaluate the data model in Figure 4-21(c).

Exercises
	4.29	 Suppose that Heather Sweeney wants to include records of her consulting services in

her database. Extend the data model in Figure 4-21(c) to include CONSULTING_
PROJECT and DAILY_PROJECT_HOURS entities. CONSULTING_PROJECT
contains data about a particular project for one of Heather’s customers, and
DAILY_PROJECT_HOURS contains data about the hours spent and a descrip-
tion of the work accomplished on a particular day for a particular project. Use
strong and/or weak entities, as appropriate. Specify minimum and maximum cardi-
nalities. Use the IE Crow’s Foot E-R model for your E-R diagrams.

	4.30	 Extend your work for question 4.29 to include supplies that Heather uses on a
project. Assume that she wants to track the description, price, and amount used
of each supply. Supplies are used on multiple days of a project. Use the IE Crow’s
Foot E-R model for your E-R diagrams.

	4.31	 Using recursive relationships, as appropriate, develop a data model of the boxcars
on a railway train. Use the IE Crow’s Foot E-R model for your E-R diagrams.

	4.32	 Develop a data model of a genealogical diagram. Model only biological parents;
do not model stepparents. Use the IE Crow’s Foot E-R model for your E-R
diagrams.

	4.33	 Develop a data model of a genealogical diagram. Model all parents, including step-
parents. Use the IE Crow’s Foot E-R model for your E-R diagrams.

282   Part 2   Database Design

Access Workbench Key Terms
banded form editor
banded report editor

prototype database
switchboard

Access Workbench Exercises
“The Access Workbench” section in this chapter describes how to create two prototype da-
tabases and sample forms. That section details some steps that are new, but you have done
most of the needed steps before. In the following set of exercises, you will:

•	Create prototype forms.
•	Create prototype reports.

	AW.4.1	 You have built an extensive database for the Wedgewood Pacific Corporation
(WPC.accdb). You will now use it to build some prototype forms and reports so that the
users at WPC can evaluate the proposed database. In this case, there is no need to restruc-
ture the database.

	 A.	 Create a form that allows users to view and edit employee data. The form should
show information about the employee, the department that he or she works for,
and which projects the employee is assigned to.

	 B.	 Create a report that displays the employee information shown on the form you
created in part A. The report should show this information for all users, sorted
alphabetically in ascending order by LastName.

	 C.	 Create a form that allows users to view and edit project data. The form should show
information about the project and the department that is responsible for the project,
and it should list all employees who are assigned to work on that project.

	 D.	 Create a report that displays the project information shown on the form you cre-
ated in part C. The report should show this information for all projects, sorted in
ascending order by ProjectID.

Highline University is a 4-year undergraduate school located in the Puget Sound region of
Washington State.4 Highline University, like many colleges and universities in the Pacific
Northwest, is accredited by the Northwest Commission on Colleges and Universities
(NWCCU—see www.nwccu.org). Like all the colleges and universities accredited by the
NWCCU, Highline University must be reaccredited at approximately 5-year intervals.
Additionally, the NWCCU requires annual status-update reports. Highline University
is made up of five colleges: the College of Business, the College of Social Sciences and
Humanities, the College of Performing Arts, the College of Sciences and Technology,
and the College of Environmental Sciences. Jan Smathers is the president of Highline

4Highline University is a fictional university and should not be confused with Highline Community
College located in Des Moines, Washington. Any resemblance between Highline University and Highline
Community College is unintentional and purely coincidental.

Highline University Mentor Program Case Questions

www.nwccu.org

Chapter 4   Data Modeling and the Entity-Relationship Model   283

University, and Dennis Endersby is the provost (a provost is a vice president of academics;
the deans of the colleges report to the provost).

A discussion of the design of a college information system for Highline University is
used in Appendix D, “Getting Started with Systems and Analysis and Design,” as an ex-
ample of creating data models (discussed in this chapter) and database designs (discussed
in Chapter 5). In this set of case questions, we will consider a different information system
for Highline University, one that will be used by Highline University’s Mentor Program.
The Highline University Mentor Program recruits business professionals as mentors for
Highline University students. The mentors are unpaid volunteers who work together with
the students’ advisers to ensure that the students in the mentoring program learn needed
and relevant management skills. In this case study, you will develop a data model for the
Mentor Program Information System.

A.	 Draw an E-R data model for the Highline University Mentor Program Information
System (MPIS). Use the IE Crow’s Foot E-R model for your E-R diagrams. Justify the
decisions you make regarding minimum and maximum cardinality.

Your model should track students, advisers, and mentors. Additionally, Highline
University needs to track alumni because the program administrators view alumni as
potential mentors.

	 1.	 Create separate entities for students, alumni, faculty advisers, and mentors.

•	At Highline University, all students are required to live on campus and are
assigned Highline University ID numbers and email accounts in the format
FirstName.LastName@students.hu.edu. The student entity should track student
last name, student first name, student University ID number, student email
address, dorm name, dorm room number, and dorm phone number.

•	At Highline University, all faculty advisers have on-campus offices and are
assigned Highline University ID numbers and email accounts in the format
FirstName.LastName@.hu.edu. The faculty entity should track faculty last
name, faculty first name, faculty University ID number, faculty email address,
department, office building name, office building room number, and office
phone number.

•	Highline University alumni live off campus and were previously assigned Highline
University ID numbers. Alumni have private email accounts in the format
FirstName.LastName@somewhere.com. The alumni entity should track alumnus
last name, alumnus first name, alumnus former-student number, email address,
home address, home city, home state, home ZIP code, and phone number.

•	Highline University mentors work for companies and use their company
address, phone, and email address for contact information. They do not
have Highline University ID numbers as mentors. Email addresses are in the
format FirstName.LastName@companyname.com. The mentor entity should
track mentor last name, mentor first name, mentor email address, company
name, company address, company city, company state, company ZIP code, and
company phone number.

	 2.	 Create relationships between entities based on the following facts:

•	Each student is assigned one and only one faculty adviser and must have an
adviser. One faculty member may advise several students, but faculty members
are not required to advise students. Only the fact of this assignment is to be
recorded in the data model—not possible related data (such as the date the
adviser was assigned to the student).

•	Each student may be assigned one and only one mentor, but students are not
required to have a mentor. One mentor may mentor several students, and a
person may be listed as a mentor before he or she is actually assigned students to

284   Part 2   Database Design

mentor. Only the fact of this assignment is to be recorded in the data model—not
possible related data (such as the date the mentor was assigned to the student).

•	Each mentor is assigned to work and coordinate with one and only one fac-
ulty member, and each mentor must work with a faculty member. One faculty
member may work with several mentors, but faculty members are not required
to work with mentors. Only the fact of this assignment is to be recorded in the
data model—not possible related data (such as the date the faculty member was
assigned to the mentor).

•	Each mentor may be an alumnus, but mentors are not required to be alumni.
Alumni cannot, of course, be required to become mentors.

B.	 Revise the E-R data model you created in part A to create a new E-R data model based
on the fact that students, faculty, alumni, and mentors are all a PERSON. Use the IE
Crow’s Foot E-R model for your E-R diagrams. Justify the decisions you make regard-
ing minimum and maximum cardinality. Note that:

•	 A person may be a current student, an alumnus, or both because Highline
University does have alumni return for further study.

•	 A person may be a faculty member or a mentor, but not both.

•	 A person may be a faculty member and an alumnus.

•	 A person may be a mentor and an alumnus.

•	 A current student cannot be a mentor.

•	 Each mentor may be an alumnus, but mentors are not required to be alumni.
Alumni cannot, of course, be required to become mentors.

C.	 Extend and modify the E-R data model you created in part B to allow more data to
be recorded in the MPIS system. Use the IE Crow’s Foot E-R model for your E-R dia-
grams. Justify the decisions you make regarding minimum and maximum cardinality.
The MPIS needs to record:

•	 The date a student enrolled at Highline University, the date the student graduated,
and the degree the student received

•	 The date an adviser was assigned to a student and the date the assignment ended

•	 The date an adviser was assigned to work with a mentor and the date the assignment
ended

•	 The date a mentor was assigned to a student and the date the assignment ended

D.	 Write a short discussion of the difference between the three data models you have cre-
ated. How does data model B differ from data model A, and how does data model C
differ from data model B? What additional features of the E-R data model were intro-
duced when you created data models B and C?

Washington State Patrol Case Questions
Consider the Washington State Patrol traffic citation shown in Figure 4-22. The rounded
corners on this form provide visual hints about the boundaries of the entities represented.

A.	 Draw an E-R data model based on the traffic citation form. Use five entities, create
identifiers (watch out for any composite identifiers that may be needed, and you can
use surrogate identifiers if appropriate) and use the data items on the form to specify
attributes for the entities. Use the IE Crow’s Foot E-R model for your E-R diagram.

B.	 Specify relationships among the entities. Name the relationships, and specify the re-
lationship types and cardinalities. Justify the decisions you make regarding minimum
and maximum cardinalities, indicating which cardinalities can be inferred from the
data on the form and which need to be checked out with the system users.

Chapter 4   Data Modeling and the Entity-Relationship Model   285

X

WASHINGTON STATE PATROL CORRECTION NOTICE

Kroenke
5053 88 Ave SE

Mercer Island Wa 98040
00000
AAA000 Wa

11 7 2014 935 2 17
17 E Enumckum SR410

Writing text while driving

S Scott 850

90 900Saab
Wa 2/2746 6 165Bl

David M
Figure 4-22

WSP Traffic Citation

 Garden Glory Project Questions

Garden Glory wants to expand its database applications beyond the recording of property ser-
vices. The company still wants to maintain data on owners, properties, employees, services and
the service work done at the properties, but it wants to include other data as well. Specifically,
Garden Glory wants to track equipment, how it is used during services, and equipment re-
pairs. In addition, employees need to be trained before they use certain equipment, and man-
agement wants to be able to determine who has obtained training on which equipment.

With regard to properties, Garden Glory has determined that most of the properties it
services are too large and complex to be described in one record. The company wants the
database to allow for many subproperty descriptions of a property. Thus, a particular prop-
erty might have subproperty descriptions such as Front Garden, Back Garden, Second-
Level Courtyard, and so on. For better accounting to the customers, services are to be
related to the subproperties rather than to the overall property.

A.	 Draw an E-R data model for the Garden Glory database schema shown in Chapter
3’s “Garden Glory Project Questions.” Use the IE Crow’s Foot E-R model for your
E-R diagrams. Justify the decisions you make regarding minimum and maximum
cardinality.

B.	 Extend and modify the E-R data model to meet Garden Glory’s new requirements. Use
the IE Crow’s Foot E-R model for your E-R diagrams. Create appropriate identifiers
and attributes for each entity. Justify the decisions you make regarding minimum and
maximum cardinality.

C.	 Describe how you would go about validating the model in part B.

286   Part 2   Database Design

 James River Jewelry Project Questions

The James River Jewelry project questions are available in online Appendix D, which can
be downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 The Queen Anne Curiosity Shop Project Questions

The Queen Anne Curiosity Shop wants to expand its database applications beyond the
current recording of sales. The company still wants to maintain data on customers, employ-
ees, vendors, sales, and items, but it wants to (a) modify the way it handles inventory and
(b) simplify the storage of customer and employee data.

Currently, each item is considered unique, which means the item must be sold as a
whole, and multiple units of the item in stock must be treated as separate items in the
ITEM table. The Queen Anne Curiosity Shop management wants the database modified to
include an inventory system that will allow multiple units of an item to be stored under one
ItemID. The system should allow for a quantity on hand, a quantity on order, and an order
due date. If the identical item is stocked by multiple vendors, the item should be order-
able from any of these vendors. The SALE_ITEM table should then include Quantity and
ExtendedPrice columns to allow for sales of multiple units of an item.

The Queen Anne Curiosity Shop management has noticed that some of the fields
in CUSTOMER and EMPLOYEE store similar data. Under the current system, when
an employee buys something at the store, his or her data has to be reentered into the
CUSTOMER table. The managers would like to have the CUSTOMER and EMPLOYEE
tables redesigned using subtypes.

	A.	 Draw an E-R data model for The Queen Anne Curiosity Shop database schema shown
in Chapter 3’s “The Queen Anne Curiosity Shop Project Questions.” Use the IE
Crow’s Foot E-R model for your E-R diagrams. Justify the decisions you make regard-
ing minimum and maximum cardinality.

	B.	 Extend and modify the E-R data model by adding only The Queen Anne Curiosity
Shop’s inventory system requirements. Use the IE Crow’s Foot E-R model for your
E-R diagrams. Create appropriate identifiers and attributes for each entity. Justify the
decisions you make regarding minimum and maximum cardinality.

	C.	 Extend and modify the E-R data model by adding only The Queen Anne Curiosity
Shop’s need for more efficient storage of CUSTOMER and EMPLOYEE data. Use
the IE Crow’s Foot E-R model for your E-R diagrams. Create appropriate identifiers
and attributes for each entity. Justify the decisions you make regarding minimum and
maximum cardinality.

	D.	 Combine the E-R data models from parts B and C to meet all of The Queen Anne
Curiosity Shop’s new requirements, making additional modifications, as needed. Use
the IE Crow’s Foot E-R model for your E-R diagrams.

	E.	 Describe how you would go about validating your data model in part D.

www.pearsonhighered.com/kroenke

287

I n Chapter 4, we defined the database development
process as consisting of three major stages: require-
ments analysis, component design, and implementa-

tion and then discussed the requirements analysis stage
and how to create a data model in entity-relationship (E-R)
notation. This chapter describes a process for converting
an E-R data model into a relational database design. We
begin by explaining how data model entities are expressed
as relations (or tables) in a relational database design. We
then apply the normalization process that you learned in
Chapter 2. Next, we show how to represent relationships
using foreign keys, including how to use these techniques
for representing recursive relationships. Finally, we apply all
these techniques to design a database for the data model of
Heather Sweeney Designs that we developed in Chapter 4.

Database design occurs in the component design step of
the systems development life cycle (SDLC). For an introduc-
tion to systems analysis and design, and to the SDLC, see
Appendix D.

Chapter 5 Database Design

•	 Learn how to transform E-R data
models into relational designs

•	 Practice applying the normalization
process

•	 Understand the need for
denormalization

•	 Learn how to represent weak entities
with the relational model

•	 Know how to represent 1:1, 1:N, and
N:M binary relationships

•	 Know how to represent 1:1, 1:N, and
N:M recursive relationships

•	 Learn SQL statements for creating joins
over binary and recursive relationships

Chapter Objectives

288   Part 2   Database Design

Books on systems analysis and design often identify three design stages:

• Conceptual design (conceptual schema)
•  Logical design (logical schema)
• Physical design (physical schema)

The database design we are discussing is basically equivalent to the
logical design, which is defined in these books as the conceptual design
as modified to be implemented in a specific DBMS product. The physical
design deals with aspects of the database encountered when it is actually
implemented in the DBMS, such as physical record and file structure and
organization, indexing, and query optimization. However, our discussion of
database design will include data type specifications, which is often con-
sidered a physical design issue in systems analysis and design.

BTW

The steps for transforming a data model into a database design are shown in Figure 5-1.
First, we create a table for each entity in the data model, including creating a primary key
and specifying column properties. Then we make sure that each of the tables is properly
normalized. Finally, we create the relationships between the tables.1

1The transformation is actually a bit more complex than this when you consider the need to enforce
minimum cardinalities. Although the referential integrity constraints (with ON UPDATE and ON
DELETE) handle some parts of this, application logic is required to handle other parts, and that is beyond
the scope of this book. See David M. Kroenke and David J. Auer, Database Processing: Fundamentals,
Design, and Implementation, 13th edition (Upper Saddle River, NJ: Prentice Hall, 2014), Chapter 6.

Transforming a Data Model into a Database Design

As you learned in Chapter 2, the technically correct term for the represen-
tation of an entity in a relational model is relation. However, the use of the
synonym table is common, and we use it in this chapter. Just remember
that the two terms mean the same thing when used to discuss databases.

BTW

A database design is a set of database specifications that can actually be implemented as a
database in a DBMS. The data model we discussed in Chapter 4 is a generalized, non-DBMS
specific design. A database design, on the other hand, is a DBMS specific design intended
to be implemented in a DBMS product such as Microsoft SQL Server 2014 or MySQL
5.6. Since each DBMS product has its own way of doing things, even if based on the same
relational database model and the same SQL standards, each database design must be cre-
ated for a particular DBMS product. The same data model will result in slightly different
database designs depending upon the intended DBMS product.

The Purpose of a Database Design

Chapter 5   Database Design   289

 1. Create a table for each entity:

 – Specify primary key (consider surrogate keys as appropriate)

 – Specify properties for each column:

 • Data type

 • Null status

 • Default value (if any)

 • Specify data constraints (if any)

 – Verify normalization

 2. Create relationships by placing foreign keys:

 – Strong entity relationships (1:1, 1:N, N:M)

 – ID-dependent and non–ID-dependent weak entity relationships

 – Subtypes

 – Recursive (1:1, 1:N, N:M)

Figure 5-1

The Steps for
Transforming a Data
Model into a Database
Design

The representation of entities using the relational model is direct and straightforward.
First, you define a table for each entity and give that table the same name as the entity. You
make the primary key of the relation the identifier of the entity. Then you create a column
in the relation for each attribute in the entity. Finally, you apply the normalization process
described in Chapter 2 to remove any normalization problems. To understand this process,
we will consider three examples.

Representing the ITEM Entity
Consider the ITEM entity shown in Figure 5-2(a), which contains the attributes
ItemNumber, Description, Cost, ListPrice, and QuantityOnHand. To represent this entity
with a table, we define a table named ITEM and place the attributes in it as columns in the
relation. ItemNumber is the identifier of the entity and becomes the primary key of the
table. The result is shown in Figure 5-2(b), where a key symbol identifies the primary key.
The ITEM table can also be written as:

ITEM (ItemNumber, Description, Cost, ListPrice, QuantityOnHand)

Note that in this notation the primary key of the table is underlined.

Representing Entities with the Relational Model

ITEM

ItemNumber

Description
Cost
ListPrice
QuantityOnHand

ITEM

ItemNumber

Description
Cost
ListPrice
QuantityOnHand

(a) The ITEM Entity (b) The ITEM Table

Figure 5-2

The ITEM Entity
and Table

290   Part 2   Database Design

Surrogate Keys  The ideal primary key is short, numeric, and nonchanging.
ItemNumber meets these criteria. However, if the primary key does not meet these criteria,
a DBMS-generated surrogate key should be used. Surrogate key values are numeric, are
unique within a table, and never change. These keys are assigned when a row is created and
removed when the row is deleted—the numbers are never reused. Surrogate keys would be
ideal primary keys except for a couple of considerations.

First, the numbers generated have no intrinsic meaning. For example, if surrogate key
values are used as the values of ItemNumber in the ITEM table, you cannot interpret them
in a meaningful way. Second, although the surrogate key values may not be duplicated
within a table, they may not be unique between two databases. Consider two databases,
each of which has an ITEM table with the surrogate ID of ItemNumber. If the data from
these databases are ever shared, this may present a problem. Nonetheless, surrogate keys
are very useful and are commonly used as ID numbers in tables.

Column Properties  Note that each attribute in the ITEM entity has become a column
in the ITEM table. You need to specify certain column properties for each column, as men-
tioned in the discussion of attributes at the end of Chapter 4. These include data types, null
status, default values, and any constraints on the values.

Data Types  Each DBMS supports certain data types. (Data types for SQL Server 2014,
MySQL 5.6, and Oracle Database Express Edition 11g Release 2 were discussed in Chapter 3,
and data types for Microsoft Access 2013 were discussed in Chapter 1.) For each column, you
indicate exactly what type of data will be stored in that column. Data types are usually set when
the table is actually created in the database, as discussed in Chapter 3.

NULL Status  Next, you need to decide which column must have data values entered
when a new row is created in the table. If a column must have a data value entered, then
this column will be designated NOT NULL. If the value can be left empty, then the column
will be designated NULL. The NULL status—NULL or NOT NULL—of the column is
usually set when the table is actually created in the database, as discussed in Chapter 3.

You have to be careful here: If you specify columns as NOT NULL when you do not
know the data value at the time the row is being created, you will not be able to create the
row. For this reason, some columns that may appear to you as needing to be NOT NULL
must actually be specified as NULL. This data will be entered, but not at the exact moment
the row is created in the table.

For the ITEM table, you set only ListPrice as NULL. This is a number that may not have
been determined by management at the time data on an ITEM are entered into the database.
All other columns should have known values at the time a row is created and are NOT NULL.

Default Values  A default value is a value that the DBMS automatically supplies when a
new row is created. The default value may be a static value (one that remains the same) or
one calculated by application logic. In this book, we deal with only static values. Default
values are usually set when the table is actually created in the database, as discussed in
Chapter 3. In the ITEM table, you should specify a default of 0 for QuantityOnHand. This
will indicate that the ITEM is out of stock until this value is updated.

Data Constraints  The data values in some columns may be subject to restrictions on
the values that can exist in those columns. Such limitations are called data constraints.
An example we have already seen is the referential integrity constraint, which states that
the only values allowed in a foreign key column are values already existing in the corre-
sponding primary key column in the related table. Data constraints are usually set when the
table is actually created in the database, as discussed in Chapter 3. In the ITEM table, one
needed data constraint is (ListPrice > Cost), which ensures that you do not inadvertently
sell an ITEM for less than you paid for it.

Verifying Normalization  Finally, you need to verify that the ITEM table is prop-
erly normalized because the table results from converting an entity sometimes have

Chapter 5   Database Design   291

normalization problems. Therefore, the next step is to apply the normalization process
from Chapter 2 and we strongly suggest that at this point you review the normalization
definitions and processes discussed in that chapter so that you are familiar with them be-
fore proceeding with our discussion of normalization.

In the case of ITEM, the only candidate key is the primary key, which is ItemNumber,
and no other functional dependencies exist. Therefore, the ITEM table is normalized to
Boyce-Codd Normal Form (BCNF). The final ITEM table, with column types, surrogate
key indicator, and NULL/NOT NULL constraints indicated, is shown in Figure 5-3.
Generally, we do not show this much detail in the illustrations of the tables in this chapter,
but note that these types of details are available in commercial database design programs
and can usually be displayed as needed.

Representing the CUSTOMER Entity
To understand an entity that gives rise to normalization problems, consider the
CUSTOMER entity in Figure 5-4(a). If you transform the entity as just described, you ob-
tain the table shown in Figure 5-4(b):

CUSTOMER (CustomerNumber, CustomerName, StreetAddress, City, State, ZIP,
ContactName, Phone)

CustomerNumber is the key of the relation, and you can assume that you have done all the
necessary work on column definition.

According to the normalization process (see page 79), you need to check for functional
dependencies besides those involving the primary key. At least one exists:2

ZIP → (City, State)

2While the example of ZIP determining City and State is a commonly used and very understandable
example, a five-digit ZIP code (as commonly used instead of a nine-digit number) does not, in fact,
determine City and State! There are cases of one ZIP code determining more than one city and state. For
example, both Sparta, IL, and Eden, IL, have the ZIP code 62286.

ITEM

ItemNumber: int IDENTITY(10000,1)

Description: varchar(100) NOT NULL
Cost: numeric(9,2) NOT NULL
ListPrice: numeric(9,2) NULL
QuantityOnHand: int NOT NULL

Figure 5-3

The Final ITEM Table

CUSTOMER

CustomerNumber

CustomerName
StreetAddress
City
State
ZIP
ContactName
Phone

(a) The CUSTOMER Entity

CUSTOMER

CustomerNumber

CustomerName
StreetAddress
City
State
ZIP
ContactName
Phone

(b) The CUSTOMER Table

Figure 5-4

The CUSTOMER Entity
and Table

292   Part 2   Database Design

The only candidate key in CUSTOMER is CustomerNumber. ZIP is not a candidate key
for this relation; therefore, this relation is not normalized. Furthermore, another possible
functional dependency involves Phone. Is Phone the phone number of the CUSTOMER,
or is it the phone number of the contact? If PhoneNumber is the phone number of the
CUSTOMER, then:

CustomerNumber → Phone

and no additional normalization problem exists. However, if the PhoneNumber is that of
the contact, then:

ContactName → Phone

and because ContactName is not a candidate key, there are normalization problems here
as well.

You can determine whose phone number it is by asking the users. Assume that you do
that, and the users say that it is indeed the phone number of the contact. Thus:

ContactName → Phone

Given these facts, you can proceed to normalize the CUSTOMER table. According to the
normalization process, you pull the attributes of the functional dependencies out of the
tables while leaving a copy of their determinants in the original relation as foreign keys. The
result is the three relations shown in Figure 5-5:

CUSTOMER (CustomerNumber, CustomerName, StreetAddress, ZIP, ContactName)
ZIP (ZIP, City, State)
CONTACT (ContactName, Phone)

with the referential integrity constraints:

ZIP in CUSTOMER must exist in ZIP in ZIP
ContactName in CUSTOMER must exist in ContactName in CONTACT

CONTACT

ContactName

Phone

ZIP

ZIP

City

State

CUSTOMER

CustomerNumber

CustomerName

StreetAddress

ZIP

ContactName

ZIP
is a foreign key referencing
ZIP in ZIP

ContactName
is a foreign key referencing
ContactName in CONTACT

Figure 5-5

The Normalized CUSTOMER and Associated Tables

Chapter 5   Database Design   293

These three relations are now normalized, and you can continue with the design process.
However, let us first consider another perspective on normalization.

Denormalization
It is possible to take normalization too far. Most practitioners would consider the construc-
tion of a separate ZIP table to be going too far. People are accustomed to writing their city,
state, and ZIP as a group, and breaking City and State away from ZIP will make the design
difficult to use. It will also mean that the DBMS has to read two separate tables just to get
the customer’s address. Therefore, even though it results in normalization problems, a bet-
ter overall design would result by leaving ZIP, City, and State in the CUSTOMER relation.
This is an example of denormalization.

What are the consequences of this decision to denormalize? Consider the three basic
operations: insert, update, and delete. If you leave ZIP, City, and State in CUSTOMER,
then you will not be able to insert data for a new ZIP code until a customer has that ZIP
code. However, you will never want to do that. You only care about ZIP code data when
one of the customers has that ZIP code. Therefore, leaving the ZIP data in CUSTOMER
does not pose problems when inserting.

What about modifications? If a city changes its ZIP code, then you might have to
change multiple rows in CUSTOMER. How frequently do cities change their ZIP codes,
though? Because the answer is almost never, updates in the denormalized relation are not
a problem. Finally, what about deletes? If only one customer has the ZIP data (80210,
Denver, Colorado), then if you delete that customer you will lose the fact that 80210 is in
Denver. This does not really matter because when another customer with this ZIP code is
inserted that customer also will provide the city and state.

Therefore, denormalizing CUSTOMER by leaving the attributes ZIP, City, and State
in the relation will make the design easier to use and not cause modification problems. The
denormalized design is better, and it is shown in Figure 5-6:

CUSTOMER (CustomerNumber, CustomerName, StreetAddress, City, State, ZIP,
ContactName)

CONTACT (ContactName, Phone)

with the referential integrity constraints:

ContactName in CUSTOMER must exist in ContactName in CONTACT

CONTACT

ContactName

Phone

CUSTOMER

CustomerNumber

CustomerName

StreetAddress

City

State

ContactName
is a foreign key referencing
ContactName in CONTACT

ZIP

ContactName

Figure 5-6

The Denormalized
CUSTOMER and
Associated CONTACT
Tables

294   Part 2   Database Design

The need for denormalization can also arise for reasons such as security and perfor-
mance. If the cost of modification problems is low (as for ZIP codes) and if other factors
cause denormalized relations to be preferred, then denormalizing is a good idea.

A Relational Design for the SALES_COMMISSION Entity
To summarize the discussion so far, when representing an entity with the relational model
the first step is to construct a table that has all the entity’s attributes as columns. The
identifier of the entity becomes the primary key of the table, and we define the column
constraints. Then the table is normalized. A reason might exist for leaving parts of a table
denormalized.

By proceeding in this way, we always consider the normalized design. If we make
a decision to denormalize, we then do so from a position of knowledge and not from
ignorance.

To reinforce these ideas, let us consider a third example: the SALES_COMMISSION
entity in Figure 5-7(a). First, you create a relation that has all the attributes as columns, as
shown in Figure 5-7(b):

SALES_COMMISSION (SalespersonNumber, SalespersonLastName,
SalespersonFirstName, Phone, CheckNumber, CheckDate, CommissionPeriod,
TotalCommissionSales, CommissionAmount, BudgetCategory)

As shown, the primary key of the table is CheckNumber, the identifier of the entity. The
attributes of the relation have three additional functional dependencies:

SalespersonNumber →
  (SalespersonLastName, SalespersonFirstName, Phone, BudgetCategory)

CheckNumber → CheckDate

(SalespersonNumber, CommissionPeriod) →
  (TotalCommissionSales, CommissionAmount, CheckNumber, CheckDate)

According to the normalization process, you extract the attributes of these func-
tional dependencies from the original table and make the determinants the primary
keys of the new tables. You also leave a copy of the determinants in the original table
as foreign keys. The only complication in this case is that the name of the original table

SALES_COMMISSION

CheckNumber

SalespersonNumber
SalespersonLastName
SalespersonFirstName
Phone
CheckDate
CommissionPeriod
TotalCommissionSales
CommissionAmount
BudgetCategory

(a) The SALES_COMMISSION Entity

SALES_COMMISSION

CheckNumber

SalespersonNumber
SalespersonLastName
SalespersonFirstName
Phone
CheckDate
CommissionPeriod
TotalCommissionSales
CommissionAmount
BudgetCategory

(b) The SALES_COMMISSION Table

Figure 5-7

The SALES_
COMMISSION Entity
and Table

Chapter 5   Database Design   295

actually makes more sense when used for one of the new tables that has been created!
The original table, given the primary key CheckNumber, should actually be called
COMMISSION_CHECK, and it has been renamed as such in the normalization results
shown in Figure 5-8:

SALESPERSON (SalespersonNumber, SalespersonLastName,
SalespersonFirstName, Phone, BudgetCategory)

SALES_COMMISSION (SalespersonNumber, CommissionPeriod,
TotalCommissionSales, CommissionAmount, CheckNumber)
COMMISSION_CHECK (CheckNumber, CheckDate)

with the referential integrity constraints:

SalespersonNumber in SALES_COMMISSION must exist in
SalespersonNumber in SALESPERSON

CheckNumber in SALES_COMMISSION must exist in CheckNumber
in COMMISSION_CHECK

Now consider denormalization. Is there any reason not to create these new rela-
tions? Is the design better if you leave them in the COMMISSION_CHECK relation (the
renamed SALES_COMMISSION relation)? In this case, there is no reason to denormal-
ize, so you leave the normalized relations alone.

Representing Weak Entities
The process described so far works for all entity types, but weak entities sometimes re-
quire special treatment. Recall that a weak entity logically depends on another entity. In
Figure 5-8, SALES_COMMISSION is an ID-dependent weak entity that depends on
SALESPERSON for its existence. In this model, there cannot be a SALES_COMMISSION
without a SALESPERSON. Also note that in Figure 5-8 we consider COMMISSION_
CHECK to be a strong entity because once the check is written it has a separate, physical
existence of its own, just like a SALESPERSON (an alternate conceptualization would re-
quire an additional CHECKING_ACCOUNT entity as the strong entity with CHECK as
an ID-dependent weak entity, in which case the composite primary key of CHECK would
be used as the foreign key in SALES_COMMISSION).

SALESPERSON

SalespersonNumber

SalespersonLastName

SalespersonFirstName

Phone

BudgetCategory

SALES_COMMISSION

SalespersonNumber

CommissionPeriod

TotalCommissionSales

SalespersonNumber is a foreign key referencing
SalespersonNumber in SALESPERSON

SALES_COMMISSION is ID-dependent on SALESPERSON

CheckNumber is a foreign key referencing CheckNumber
in COMMISSION_CHECK

CommissionAmount

CheckNumber

COMMISSION_CHECK

CheckNumber

CheckDate

Figure 5-8

The Normalized SALES_COMMISSION and Associated Tables

296   Part 2   Database Design

If a weak entity is not ID-dependent, it can be represented as a table, using the tech-
niques just described. The dependency needs to be recorded in the relational design so that
no application will create a weak entity without its proper parent (the entity on which the
weak entity depends). Finally, a business rule will need to be implemented so that when the
parent is deleted the weak entity is also deleted. These rules are part of the relational design
and, in this case, take the form of an ON DELETE CASCADE constraint on the weak,
non–ID-dependent table.

The situation is slightly different if a weak entity is also ID-dependent. This is the
case in the dependence of SALES_COMMISSION on SALESPERSON because each
SALES_COMMISSION is identified by the SALESPERSON who made the sale. When
creating a table for an ID-dependent entity, we must ensure that the identifier of the parent
and the identifier of the ID-dependent weak entity itself appear in the table. For example,
consider what would happen if you established the table for SALES_COMMISSION with-
out including the key of SALESPERSON. What would be the key of this table? It would
be just CommissionPeriod, but because SALES_COMMISSION is ID-dependent this is
not a complete key. In fact, without the needed reference to SALESPERSON included,
CommissionPeriod by itself cannot be the primary key because this table would likely have
duplicate rows. (This would happen if two occurrences of a specific CommissionPeriod had
the same TotalCommissionSales in the same BudgetCategory, which could happen because
this table records data for more than one SALESPERSON.) Thus, for an ID-dependent
weak entity it is necessary to add the primary key of the parent entity to the weak entity’s
table, and this added attribute becomes part of that table’s key. In Figure 5-8, note that
SALES_COMMISSION has the correct composite primary key (SalespersonNumber,
CommissionPeriod).

As another example, consider Figure 5-9(a), where LINE_ITEM is an
ID-dependent weak entity. It is weak because its logical existence depends on
INVOICE, and it is ID-dependent because its identifier contains the identifier of
INVOICE. Again, consider what would happen if you established a relation for LINE_
ITEM without including the key of INVOICE. What would be the key of this relation?
It would be just LineNumber, but because LINE_ITEM is ID-dependent that cannot
be a complete key. Without the needed reference to ITEM included, LINE_ITEM, like
SALESPERSON_SALES in the previous example, would likely have duplicate rows.
(This would happen if two invoices had the same quantity of the same item on the
same line.) Figure 5-9(b) shows LINE_ITEM with the correct composite primary key
(InvoiceNumber, LineNumber). Note that the tables in Figure 5-9(b) are intentionally
shown without a relationship—we will discuss adding relationships in the next section.

INVOICE
InvoiceNumber

InvoiceDate
PaymentType
Subtotal
Tax
Total

LINE_ITEM
InvoiceNumber
LineNumber
Quantity
UnitPrice
Total

(a) Example Weak Entity

INVOICE
InvoiceNumber

InvoiceDate
PaymentType
Subtotal
Tax
Total

LINE_ITEM
InvoiceNumber

LineNumber

Quantity

InvoiceNumber
is a foreign key referencing
InvoiceNumber in INVOICE

LINE_ITEM
is ID-dependent on INVOICE

UnitPrice
Total

(b) The LINE_ITEM Table with the Correct Primary Key

Figure 5-9

Relational Representation of a Weak Entity

Chapter 5   Database Design   297

EMPLOYEE
EmployeeNumber

LastName
FirstName
OfficeNumber
OfficePhone

LOCKER
LockerNumber

LockerRoom
LockerSize
EmployeeNumber (FK)

(c) Placing the Primary Key of EMPLOYEE into LOCKER

EMPLOYEE
EmployeeNumber

LastName
FirstName
OfficeNumber
OfficePhone

LOCKER
LockerNumber

(a) 1:1 Strong Entity Relationship Example

LockerRoom
LockerSize

EMPLOYEE
EmployeeNumber

LastName
FirstName
OfficeNumber
OfficePhone
LockerNumber (FK)

LOCKER
LockerNumber

LockerRoom
LockerSize

(b) Placing the Primary Key of LOCKER into EMPLOYEE

Figure 5-10

1:1 Strong Entity
Relationships

So far, you have learned how to create a relational design for the entities in an E-R model.
However, to convert a data model to a relational design we must also represent the
relationships.

The techniques used to represent E-R relationships depend on the maximum
cardinality of the relationships. As you saw in Chapter 4, three relationship possibilities
exist: one-to-one (1:1), one-to-many (1:N), and many-to-many (M:N). A fourth possibility,
many-to-one (N:1), is represented in the same way as 1:N, so we need not consider it as a
separate case. In general, we create relationships by placing foreign keys in tables. The fol-
lowing sections consider various types of relationships.

Relationships Between Strong Entities
The easiest relationships to work with are relationships between strong entities. We will
start with these and then consider other types of relationships.

Representing 1:1 Strong Entity Relationships  The simplest form of binary rela-
tionship is a 1:1 relationship, in which an entity of one type is related to at most one entity
of another type. In Figure 5-10(a), the same 1:1 relationship that was used in Figure 4-5(a)
between EMPLOYEE and LOCKER is shown in IE Crow’s Foot notation. According to
this diagram, an employee is assigned at most one locker, and a locker is assigned to at most
one employee.

Representing a 1:1 relationship with the relational model is straightforward. First, each
entity is represented with a table as just described, and then the key of one of the tables
is placed in the other as a foreign key. In Figure 5-10(b), the key of LOCKER is stored in
EMPLOYEE as a foreign key, and you create the referential integrity constraint:

LockerNumber in EMPLOYEE must exist in LockerNumber in LOCKER

Representing Relationships

298   Part 2   Database Design

In Figure 5-10(c), the key of EMPLOYEE is stored in LOCKER as a foreign key, and
you create the referential integrity constraint:

EmployeeNumber in LOCKER must exist in EmployeeNumber in EMPLOYEE

In general, for a 1:1 relationship the key of either table can be placed as a foreign key in
the other table. To verify that this is so, consider both cases in Figure 5-10. Suppose that
for the design in Figure 5-10(b) you have an employee and want the locker assigned to that
employee. To get the employee data, you use EmployeeNumber to obtain the employee’s
row in EMPLOYEE. From this row, you obtain the LockerNumber of the locker assigned
to that employee. You then use that number to look up the locker data in LOCKER.

Now consider the other direction. Assume that you have a locker and want to know
which employee is assigned to that locker. Using the design in Figure 5-10(b), you access
the EMPLOYEE table and look up the row that has the given LockerNumber. The data of
the employee who has been assigned that locker appears in that row.

You take similar actions to travel in either direction for the alternative design in
which the foreign key of EmployeeNumber is placed in LOCKER, as shown in Figure
5-10(c). Using this design, to go from EMPLOYEE to LOCKER you go directly to the
LOCKER table and look up the row in LOCKER that has the given employee’s number
as its value of EmployeeNumber. To travel from LOCKER to EMPLOYEE, you look
up the row in LOCKER that has a given LockerNumber. From this row, you extract the
EmployeeNumber and use it to access the employee data in EMPLOYEE.

In this situation, we are using the term look up to mean “to find a row given a value
of one of its columns.” Another way to view this is in terms of joins. For the relations in
Figure 5-10(b), you can form the following join:

/* *** EXAMPLE CODE-DO NOT RUN *** */

/* *** SQL-QUERY-CH05-01 *** */

SELECT	 *

FROM	 EMPLOYEE, LOCKER

WHERE	 EMPLOYEE.LockerNumber=LOCKER.LockerNumber;

Because the relationship is 1:1, the result of this join will have a single row for a given com-
bination of employee and locker. The row will have all columns from both tables.

For the relations in Figure 5-10(c), you can join the two tables on EmployeeNumber
as follows:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH05-02 *** */

SELECT	 *

FROM	 EMPLOYEE, LOCKER

WHERE	 EMPLOYEE.EmployeeNumber=LOCKER.EmployeeNumber;

Again, one row will be found for each combination of employee and locker. In both of
these joins, neither unassigned employees nor unassigned lockers will appear.

Although the two designs in Figures 5-10(b) and 5-10(c) are equivalent in concept,
they may differ in performance. For instance, if a query in one direction is more common
than a query in the other, we might prefer one design to the other. Also, depending on
underlying structures, if an index (a metadata structure that makes searches for specific
data faster) for EmployeeNumber is in both tables but no index on LockerNumber is in
either table, then the first design is better. In addition, considering the join operation, if
one table is much larger than the other, then one of these joins might be faster to perform
than the other.

Chapter 5   Database Design   299

Another example of a 1:1 strong entity relationship is the relationship between the
CUSTOMER and CONTACT tables shown in Figure 5-6. For each CUSTOMER, there
is one and only one CONTACT, and based on the normalization we did we have used the
primary key of CONTACT as the foreign key in CUSTOMER. The resulting relationship
is shown in Figure 5-11.

To actually implement a 1:1 relationship in a database, we must constrain the values of
the designated foreign key as UNIQUE. This can be done in the SQL CREATE TABLE
statement that is used to build the table containing the foreign key, or it can be done by
altering the table structure after the table is created using the SQL ALTER TABLE state-
ment. Consider the EMPLOYEE-to-LOCKER relationships. If, for example, we decide
that to place the foreign key EmployeeNumber in the LOCKER table to create the rela-
tionship, we will need to constrain EmployeeNumber in LOCKER as UNIQUE. To do this
we will use the SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-CONSTRAINT-CH05-01 *** */

CONSTRAINT  UniqueEmployeeNumber  UNIQUE(EmployeeNumber)

as a line of SQL code either in the original CREATE TABLE LOCKER command or in the
following ALTER TABLE LOCKER command (which assumes that any data already in
LOCKER will not violate the UNIQUE constraint),

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH05-01 *** */

ALTER TABLE LOCKER

   ADD CONSTRAINT UniqueEmployeeNumber

        UNIQUE (EmployeeNumber);

Representing 1:N Strong Entity Relationships  The second type of binary re-
lationship, known as 1:N, is a relationship in which an entity of one type can be related
to many entities of another type. In Figure 5-12(a), the 1:N relationship that was used in
Figure 4-5(b) between ITEM and QUOTATION is shown in IE Crow’s Foot notation.
According to this diagram, we have received from zero to several quotations for each item
in the database.

The terms parent and child are sometimes applied to relations in 1:N relationships.
The parent relation is on the one side of the relationship, and the child relation is on
the many side. In Figure 5-12(a), ITEM is the parent entity and QUOTATION is the
child entity.

Representing 1:N relationships is simple and straightforward. First, each entity is
represented by a table, as described, and then the key of the table representing the par-
ent entity is placed in the table representing the child entity as a foreign key. Thus, to

CONTACT

ContactName

Phone

CUSTOMER

CustomerNumber

CustomerName
StreetAddress
City
State
ZIP
ContactName (FK)

Figure 5-11

1:1 Strong Entity
Relationship Between
CUSTOMER and
CONTACT

300   Part 2   Database Design

represent the relationship in Figure 5-12(a) you place the primary key of ITEM, which is
ItemNumber, into the QUOTATION table, as shown in Figure 5-12(b), and you create the
referential integrity constraint:

ItemNumber in QUOTATION must exist in ItemNumber in ITEM

Notice that with ItemNumber stored as a foreign key in QUOTATION you can process
the relationship in both directions. Given a QuoteNumber, you can look up the appro-
priate row in QUOTATION and get the ItemNumber of the item from the row data. To
obtain the rest of the ITEM data, you use the ItemNumber obtained from QUOTATION
to look up the appropriate row in ITEM. To determine all the quotes associated with a par-
ticular item, you look up all rows in QUOTATION that have the item’s ItemNumber as a
value for ItemNumber. Quotation data are then taken from those rows.

In terms of joins, you can obtain the item and quote data in one table with the
following:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH05-03 *** */

SELECT	 *

FROM	 ITEM, QUOTATION

WHERE	 ITEM.ItemNumber = QUOTATION.ItemNumber;

Contrast this 1:N relationship design strategy with that for 1:1 relationships. In both cases,
we store the key of one relation as a foreign key in the second relation. In a 1:1 relationship,
we can place the key of either relation in the other. In a 1:N relationship, however, the key
of the parent relation must be placed in the child relation.

To understand this better, notice what would happen if you tried to put the key of
the child into the parent relation (that is, put QuoteNumber in ITEM). Because attri-
butes in a relation can have only a single value, each ITEM record has room for only one
QuoteNumber. Consequently, such a structure cannot be used to represent the many side
of the 1:N relationship. Hence, to represent a 1:N relationship we must always place the
key of the parent relation in the child relation.

To actually implement a 1:N relationship in a database, we only need to add the foreign
key column to the table holding the foreign key. Because this column will normally be un-
constrained in terms of how many times a value can occur, a 1:N relationship is established

ITEM
ItemNumber

Description
Cost
ListPrice
QuantityOnHand

QUOTATION
QuoteNumber

VendorName
Quantity
CostEach

(a) 1:N Strong Entity Relationship Example

ITEM
ItemNumber

Description
Cost
ListPrice
QuantityOnHand

QUOTATION
QuoteNumber

VendorName
Quantity
CostEach
ItemNumber (FK)

(b) Placing the Primary Key of ITEM into QUOTATION

Figure 5-12

1:N Strong Entity
Relationships

Chapter 5   Database Design   301

by default. In fact, this is the reason that we must use a column constraint to create a 1:1
relationship, as discussed early in this chapter. We will illustrate this point in this chapter’s
section of “The Access Workbench.”

Representing N:M Strong Entity Relationships  The third and final type of
binary relationship is N:M, in which an entity of one type corresponds to many entities
of the second type and an entity of the second type corresponds to many entities of the
first type.

Figure 5-13(a) shows an E-R diagram of the N:M relationship between students and
classes. A STUDENT entity can correspond to many CLASS entities, and a CLASS entity
can correspond to many STUDENT entities. Notice that both participants in the relation-
ship are optional: A student does not need to be enrolled in a class, and a class is not re-
quired to have any students. Figure 5-13(b) gives sample data.

N:M relationships cannot be represented directly by relations in the same way that
1:1 and 1:N relationships are represented. To understand why this is so, try using the same
strategy as for 1:1 and 1:N relationships—placing the key of one relation as a foreign key
into the other relation. First, define a relation for each of the entities; call them STUDENT
and CLASS. Then try to put the primary key of STUDENT, which is SID, into CLASS.
Because multiple values are not allowed in the cells of a relation, you have room for only
one StudentNumber, so you have no place to record the StudentNumber of the second and
subsequent students.

A similar problem occurs if you try to put the primary key of CLASS, which is
ClassNumber, into STUDENT. You can readily store the identifier of the first class in
which a student is enrolled, but you have no place to store the identifier of additional
classes.

Figure 5-14 shows another (but incorrect) strategy. In this case, a row is stored in the
CLASS relation for each STUDENT enrolled in one class, so you have two records for
Class 10 and two for Class 30. The problem with this scheme is that it duplicates the class
data and creates modification anomalies. Many rows will need to be changed if, for exam-
ple, the schedule for Class 10 is modified. Also, consider the insertion and deletion anoma-
lies: How can you schedule a new class until a student has enrolled? In addition, what will
happen if Student 300 drops out of Class 40? This strategy is unworkable.

The solution to this problem is to create a third table, called an intersection table, that
represents the relationship itself. The intersection table is a child table that is connected to

CLASS

ClassNumber

ClassTime
ClassName
Description

STUDENT

SID

StudentName
Phone
EmailAddress

(a) Example N:M Strong Entity Relationship

Student 100

Student 300

Student 200

Class 10

Class 30

Class 40

Class 20

(b) Sample Data for the STUDENT-to-CLASS Relationship

Figure 5-13

N:M Strong Entity
Relationships

302   Part 2   Database Design

two parent tables by two 1:N relationships which replace the single N:M relationship in the
data model. Thus, we define a table named STUDENT_CLASS, as shown in Figure 5-15(a):

STUDENT (SID, StudentName, Phone, EmailAddress)
CLASS (ClassNumber, ClassTime, ClassName, Description)
STUDENT_CLASS (SID, ClassNumber)

with the referential integrity constraints:

SID in STUDENT_CLASS must exist in SID in STUDENT
ClassNumber in STUDENT_CLASS must exist in ClassNumber in CLASS

Some instances of this relation are shown in Figure 5-15(b). Such relations are called inter-
section tables because each row documents the intersection of a particular student with a
particular class. Notice in Figure 5-15(b) that the intersection relation has one row for each
line between STUDENT and CLASS, as in Figure 5-13(b).

In Figure 5-15(a), notice that the relationship from STUDENT to STUDENT_CLASS
is 1:N and the relationship from CLASS to STUDENT_CLASS is also 1:N. In essence,
we have decomposed the M:N relationship into two 1:N relationships. The key of
STUDENT_CLASS is (SID, ClassNumber), which is the combination of the primary keys
of both of its parents. The key for an intersection table is always the combination of parent
keys. Note that the parent relations are both required because a parent must now exist for
each key value in the intersection relation.

Finally, notice that STUDENT_CLASS is an ID-dependent weak entity, which is ID-
dependent on both STUDENT and CLASS. In order to create a database design for an
N:M strong entity relationship we have had to introduce an ID-dependent weak entity!
(We will have more to say about relationships with weak entities in the next section.)

To summarize the above discussion, to actually implement an N:M relationship in a
database we must create a new intersection table, to which we add foreign key columns
linking to the two tables in the N:M relationship. These foreign key columns will be the
corresponding primary keys of the two tables, and together they will form a composite
primary key in the intersection table. The relationship between each table and the inter-
section table will be a 1:N relationship, and thus we implement an N:M relation by creat-
ing two 1:N relationships. And because each primary key in the original tables appears
as in the primary key of the intersection table, the intersection table is ID-dependent on
both original tables.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

100
200
300

Other STUDENT DataSID

STUDENT

10:00 MWF
10:00 MWF
 3:00 TH
 3:00 TH
 8:00 MWF

10
10
30
30
40

100
200
200
300
300

ClassTime Other CLASS Data SIDClassNumber

CLASS

Figure 5-14

Incorrect
Representation of an
N:M Relationship

Chapter 5   Database Design   303

You can obtain data about students and classes by using the following SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-04 *** */

SELECT	 *

FROM	 STUDENT, CLASS, STUDENT_CLASS

WHERE	 STUDENT.SID = STUDENT_CLASS.SID

   AND	 STUDENT_CLASS.ClassNumber = CLASS.ClassNumber;

The result of this SQL statement is a table with all columns for a student and the classes
the student takes. The student data will be repeated in the table for as many classes as the
student takes, and the class data will be repeated in the relation for as many students as are
taking the class.

CLASS

ClassNumber

ClassTime
ClassName
Description

STUDENT

SID

StudentName
Phone
EmailAddress

STUDENT_CLASS

SID (FK)
ClassNumber (FK)

(a) The STUDENT_CLASS Intersection Table

Jones, Mary
Parker, Fred
Wu, Jason

100
200
300

10
10
30
30
40

100
200
200
300
300

Accounting
Finance
Marketing
Database

10
20
30
40

(b) Sample Data for the STUDENT-to-CLASS Relationship

Figure 5-15

Representing an N:M Strong Entity Relationship

Now that you know that an N:M relationship in a data model is transformed
into two 1:N relationships in a database design let us revisit the topic of data
modeling and database design software products discussed in Chapter 4.
Some products, such as Computer Associates’ ERwin Data Modeler, can cre-
ate true data models with correctly drawn N:M relationships. These products

BTW

(continued)

304   Part 2   Database Design

are also capable of correctly transforming the data models into database
designs with intersection tables. Oracle’s MySQL Workbench (even though it
displays an N:M relationship as an option) cannot correctly draw a data model
N:M relationship. Instead, it immediately creates a database design with an
intersection table and two 1:N relationships. Nonetheless, creating database
designs in MySQL Workbench can be helpful in modeling, designing, and
building a database. For example, Figure 5-16 shows database design for
the Wedgewood Pacific Corporation database used in Chapter 3 in MySQL
Workbench, and Figure 5-17 shows just the resulting database design. Note
that MySQL Workbench uses the same symbols for line ends and line types
(solid or dashed) as are used in Chapters 4 and 5. See online Appendix C for
more information on using MySQL Workbench.

The E-R diagram
using Crow’s Foot
notation

The table editor—
column characteristics
are specified here

Figure 5-16

The Database Design Tools in MySQL Workbench

Relationships Using Weak Entities
Because weak entities exist, they are bound to end up as tables in relationships! We have
just seen one place where this occurs: In the case of the STUDENT and CLASS entities in
Figure 5-15, a new ID-dependent entity is created and becomes the table that represents
an N:M relationship. Note that the intersection table that is formed in this case has only the
columns that make up its composite primary key. In the STUDENT_CLASS table, this key
is (SID, ClassNumber).

Chapter 5   Database Design   305

Another ID-dependent weak entity occurs when we take an intersection table and add
entity attributes (table columns) beyond those in the composite primary key. For example,
Figure 5-18 shows the table and relationship structure of Figure 5-15(a) but with one new
attribute (column)—Grade—added to STUDENT_CLASS.

STUDENT_CLASS is an example of the associative entity that we discussed in
Chapter 4, and this entity has been converted into the new STUDENT_CLASS table.
Note that although STUDENT_CLASS still connects STUDENT and CLASS (and is still
ID-dependent on both of these tables), it now has data that are uniquely its own. This pat-
tern is called an association relationship.

Finally, let us take another look at the tables shown in Figure 5-8, where you normal-
ized SALES_COMMISSION into three related tables. Figure 5-19 shows these tables with
their correct relationships.

Note the 1:N identifying relationship between SALESPERSON and the ID-dependent
table SALES_COMMISSION, which correctly uses the primary key of SALESPERSON
as part of the composite primary key of SALES_COMMISSION. Also note the 1:1
relationship between SALES_COMMISSION and COMMISSION_CHECK. Because

The E-R diagram
using Crow’s Foot
notation

Figure 5-17

The WPC Database Design in MySQL Workbench

CLASS

ClassNumber

ClassTime
ClassName
Description

STUDENT

SID

StudentName
Phone
EmailAddress

STUDENT_CLASS

SID (FK)
ClassNumber (FK)

Grade

Figure 5-18

The Association Relationship

306   Part 2   Database Design

COMMISSION_CHECK is a strong entity and has its own unique primary key, this is a non-
identifying relationship. This set of tables and relationships illustrates a mixed entity pattern.3

Relationships with Subtypes
Because the identifier of a subtype entity is the identifier of the associated supertype entity,
creating relationships between the SALES_COMMISSION and COMMISSION_CHECK
tables is simple. The identifier of the subtype becomes the primary key of the subtype and
the foreign key linking the subtype to the supertype. Figure 5-20(a) shows the E-R model in
Figure 4-13(a), and Figure 5-20(b) shows the equivalent database design.

Representing Recursive Relationships
A recursive relationship is a relationship among entities of the same class. Recursive
relationships are not fundamentally different from other relationships and can be rep-
resented using the same techniques. As with nonrecursive relationships, three types of
recursive relationships are possible: 1:1, 1:N, and N:M. Figure 5-21 shows an example of
each of these three types.

Let us start by considering the 1:1 recursive SPONSORED_BY relationship in Figure
5-21(a). As with a regular 1:1 relationship, one person can sponsor another person, and
each person is sponsored by no more than one person. Figure 5-22(a) shows sample data
for this relationship.

To represent 1:1 recursive relationships, we take an approach nearly identical to that
for regular 1:1 relationships; that is, we can place the key of the person being sponsored
in the row of the sponsor, or we can place the key of the sponsor in the row of the person
being sponsored. Figure 5-22(b) shows the first alternative, and Figure 5-22(c) shows the
second. Both work.

This technique is identical to that for nonrecursive 1:1 relationships except that the
child and parent rows reside in the same table. You can think of the process as follows:
Pretend that the relationship is between two different tables. Determine where the key
goes and then combine the two tables into a single one.

3For more information on mixed entity patterns, see David Kroenke and David J. Auer, Database
Processing: Fundamentals, Design, and Implementation, 13th edition (Upper Saddle River, NJ: Prentice
Hall, 2014): 179–182, 217–219.

SALESPERSON

SalespersonNumber

SalespersonLastName
SalespersonFirstName
Phone

SALES_COMMISSION

SalespersonNumber (FK)
CommissionPeriod
TotalCommissionSales
CommissionAmount
CheckNumber(FK)

BudgetCategory

COMMISSION_CHECK

CheckNumber

CheckDate

Figure 5-19

Mixed Entity
Relationship Example

Chapter 5   Database Design   307

isGradStudent

GRADUATE

StudentID

UndergraduateGPA
ScoreOnGMAT

STUDENT

StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE

StudentID

HighSchoolGPA
ScoreOnSAT

(a) Example Subtype-Supertype Relationship

GRADUATE
StudentID (FK)

UndergraduateGPA
ScoreOnGMAT

STUDENT

StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE

StudentID (FK)

HighSchoolGPA
ScoreOnSAT

(b) The Primary Key of the Supertype as the Primary Key
and Foreign Key of the Subtype

Figure 5-20

Representing Subtypes

REFERRED-BY

CUSTOMER
CustomerNumber

LastName
FirstName
Address
City
State
ZIP
Phone

(b) 1:N Recursive Relationship

SPONSORED-BY

PERSON

Person

Phone
Email

(a) 1:1 Recursive Relationship

TREATED-BY

DOCTOR
Doctor

OfficeAddress
City
State
ZIP
Phone

(c) N:M Recursive Relationship

Figure 5-21

Example Recursive Relationships

We also can use SQL joins to process recursive relationships; to do so, however, we
need to introduce additional SQL syntax. In the FROM clause, it is possible to assign a
synonym for a table name. For example, the expression FROM CUSTOMER A assigns the
synonym A to the table CUSTOMER. Using this syntax, you can create a join on a recur-
sive relationship for the design in Figure 5-22(b) as follows:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-05 *** */

SELECT	 *

FROM	 PERSON1 A, PERSON1 B

WHERE	 A.Person = B.PersonSponsored;

308   Part 2   Database Design

The result is a table with one row for each person that has all the columns of the person
and also of the person that he or she sponsors.

Similarly, to create a join of the recursive relationship shown in Figure 5-22(c), you
would use:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-06 *** */

SELECT	 *

FROM	 PERSON2 A, PERSON2 B

WHERE	 A.Person = B.PersonSponsoredBy;

The result is a table with a row for each person that has all the columns of the person and
also of the sponsoring person.

Now consider the 1:N recursive relationship REFERRED-BY in Figure 5-21(b). This
is a 1:N relationship, as shown in the sample data in Figure 5-23(a).

(a) Sample Data for a 1:N Recursive Relationship

Customer Number

100
300
400

Referred These Customers

 200, 400
 500
 600, 700

. . .

. . .

. . .

. . .

. . .

. . .

. . .

100
200
300
400
500
600
700

null
100
null
100
300
400
400

CustomerData
CUSTOMER Relation

ReferredByCustomerNumber

Referential integrity constraint:
ReferredBy in CUSTOMER must exist in
CustomerNumber in CUSTOMER

(b) Representing a 1:N Recursive Relationship
Within a Table

Figure 5-23

Example 1:N Recursive Relationship

Smith
Parks
null
Pines
null

Jones
Smith
Parks
Myrtle
Pines

PersonSponsoredPerson
PERSON1 Relation

Referential integrity constraint:
PersonSponsored in PERSON1
must exist in Person in PERSON1

(b) First Alternative for Representing a
1:1 Recursive Relationship

null
Jones
Smith
null
Myrtle

Jones
Smith
Parks
Myrtle
Pines

PersonSponsoredBy
PERSON2 Relation

Person

Referential integrity constraint:
PersonSponsoredBy in PERSON2
must exist in Person in PERSON2

(c) Second Alternative for Representing a
1:1 Recursive Relationship

Person

Jones
Smith
Parks
Myrtle
Pines

(a) Sample Data for a 1:1
Recursive Relationship

Figure 5-22

Example 1:1 Recursive Relationships

Chapter 5   Database Design   309

When these data are placed in a table, one row represents the referrer, and the other
rows represent those who have been referred. The referrer row takes the role of the parent,
and the referred rows take the role of the child. As with all 1:N relationships, you place the
key of the parent in the child. In Figure 5-21(b), you place the CustomerNumber of the
referrer in all the rows for people who have been referred.

You can join the 1:N recursive relationship with:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-07 *** */

SELECT	 *

FROM	 CUSTOMER A, CUSTOMER B

WHERE	 A.CustomerNumber = B.ReferredBy;

The result is a row for each customer that is joined to the data for the customer who re-
ferred the person.

Finally, let us consider N:M recursive relationships. The TREATED-BY relationship
in Figure 5-21(c) represents a situation in which doctors give treatments to each other.
Sample data are shown in Figure 5-24(a).

As with other N:M relationships, you must create an intersection table that shows
pairs of related rows. The name of the doctor in the first column is the one who pro-
vided the treatment, and the name of the doctor in the second column is the one who

Provider

Jones
Parks
Smith
Abernathy
Franklin

Receiver

Smith

Abernathy
Jones
Franklin

(a) Sample Data for an N:M Recursive
Relationship

. . .

. . .

. . .

. . .

. . .

. . .

Jones
Parks
Smith
Abernathy
O'Leary
Franklin

Other Attributes
DOCTOR Relation

Name

Smith
Smith
Abernathy
Jones
Franklin
Abernathy
Abernathy

Jones
Parks
Smith
Abernathy
Parks
Franklin
Jones

Patient
TREATMENT-INTERSECTION Relation

Physician

Referential integrity constraints:
Physician in TREATMENT-INTERSECTION
must exist in Name in DOCTOR

Patient in TREATMENT-INTERSECTION
must exist in Name in DOCTOR

(b) Representing an N:M Recursive
Relationship Using Tables

Figure 5-24

Example of an N:M Recursive Relationship

310   Part 2   Database Design

received the treatment. This structure is shown in Figure 5-24(b). You can join the N:M
relationship with:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-08 *** */

SELECT	 *

FROM	 DOCTOR A, TREATMENT-INTERSECTION, DOCTOR B

WHERE	 A.Name = TREATMENT-INTERSECTION.Physician

   AND	 TREATMENT-INTERSECTION.Patient = B.Name;

The result of this is a table that has rows of doctor (as treatment provider) joined to
doctor (as patient). The doctor data will be repeated once for every patient treated and
once for every time the doctor was treated.

Recursive relationships are thus represented in the same way as are other relationships;
however, the rows of the tables can take two different roles. Some are parent rows, and others
are child rows. If a key is supposed to be a parent key and the row has no parent, its value is
NULL. If a key is supposed to be a child key and the row has no child, its value is NULL.

Figure 5-25 shows the final E-R diagram for Heather Sweeney Designs, the database
example discussed in Chapter 4. To transform this E-R diagram into a relational design, we
follow the process described in the preceding sections. First, represent each entity with a
relation of its own, and specify a primary key for each relation:

SEMINAR (SeminarID, SeminarDate, SeminarTime, Location, SeminarTitle)
CUSTOMER (CustomerID, LastName, FirstName, EmailAddress,

EncryptedPassword, Phone, StreetAddress, City, State, ZIP)
CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
PRODUCT (ProductNumber, ProductType, ProductDescription, UnitPrice,

QuantityOnHand)
INVOICE (InvoiceNumber, InvoiceDate, PaymentType, SubTotal, Shipping, Tax, Total)
LINE_ITEM (InvoiceNumber, LineNumber, Quantity, UnitPrice, Total)

Weak Entities
This model has two weak entities, and they are both ID-dependent. CONTACT is a weak
entity, and its identifier depends, in part, on the identifier of CUSTOMER. Thus, we
have placed the key of CUSTOMER, which is CustomerID, into CONTACT. Similarly,
LINE_ITEM is a weak entity, and its identifier depends on the identifier of INVOICE.
Consequently, we have placed the key of INVOICE in LINE_ITEM. Note that in the
preceding schema text both CONTACT.CustomerID and LINE_ITEM.InvoiceNumber
are underlined and italicized because they are part of a primary key and also a foreign key.

Verifying Normalization
Next, apply the normalization process to each of these tables. Do any of them have a func-
tional dependency that does not involve the primary key? From what we know so far, the
only such functional dependency to consider moving to a separate table is:

ZIP → (City, State)

Database Design at Heather Sweeney Designs

Chapter 5   Database Design   311

However, for the reasons explained earlier, we choose not to place ZIP in its own table.
One possible functional dependency concerns locations, dates, times, or titles. If, for

example, Heather offers seminars only at certain times in some locations or if she only gives
certain seminar titles in some locations, then a functional dependency would exist with
Location as its determinant. It would be important for the design team to check this out,
but for now assume that no such dependency exists.

Specifying Column Properties
The data model in Figure 5-25 shows entities, attributes, and entity relationships, but
it does not document details about attributes. We do this as part of creating the data-
base design columns. Figure 5-26 documents the data type, null status, default values,
data constraints, and other properties of the columns in each table before the addi-
tion of foreign keys other than those already in the data model because of ID-dependent
entities.

Relationships
Now, considering the relationships in this diagram, 1:N relationships exist between
SEMINAR and CONTACT, between CUSTOMER and INVOICE, and between
PRODUCT and LINE_ITEM. For each of these, we place the key of the parent in the
child as a foreign key. Thus, we place the key of SEMINAR in CONTACT, the key of

CUSTOMER

CustomerID

LastName

EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
CustomerID
ContactNumber

ContactDate
ContactType

INVOICE
InvoiceNumber

InvoiceDate
PaymentType
Subtotal
Shipping
Tax
Total

LINE_ITEM
InvoiceNumber
LineNumber

Quantity
UnitPrice
Total

PRODUCT
ProductNumber

ProductType
ProductDescription
UnitPrice
QuantityOnHand

FirstName

Figure 5-25

The Final Data Model for Heather Sweeney Designs

312   Part 2   Database Design

Figure 5-26

Heather Sweeney Designs Column Specifications

(a) SEMINAR

Column Name
Data Type
(Length) Key Required Default Value Remarks

SeminarID Integer Primary Key Yes DBMS supplied Surrogate Key:
Initial value=1
Increment=1

SeminarDate Date No Yes None Format: yyyy-mm-dd

SeminarTime Time No Yes None Format: 00:00:00.000

Location VarChar (100) No Yes None

SeminarTitle VarChar (100) No Yes None

(b) CUSTOMER

Column Name
Data Type
(Length) Key Required Default Value Remarks

CustomerID Integer Primary Key Yes DBMS Supplied
Surrogate Key:
Initial Value=1
Increment=1

LastName Char (25) No Yes None

FirstName Char (25) No Yes None

EmailAddress VarChar (100) Primary Key Yes None

Phone Char (12) No Yes None Format: ###-###-####

EncryptedPassword VarChar(50) No No None

City Char (35) No No Dallas

State Char (2) No No TX Format: AA

ZIP Char (10) No No 75201 Format: #####-####

(c) CONTACT

Column Name
Data Type
(Length) Key Required Default Value Remarks

ContactNumber Integer No Yes None Format: yyyy-mm-dd

ContactDate Date Primary Key Yes None

CustomerID Integer Primary Key,
Foreign Key

Yes None REF: CUSTOMER

ContactType Char (15) No Yes None

Chapter 5   Database Design   313

(d) INVOICE

Column Name
Data Type
(Length) Key Required Default Value Remarks

InvoiceNumber Integer Primary Key Yes DBMS supplied Surrogate Key:
Initial value=35000
Increment=1

InvoiceDate Date No Yes None Format: yyyy-mm-dd
PaymentType Char (25) No Yes Cash
Subtotal Numeric (9,2) No No None
Shipping Numeric (9,2) No No None
Tax Numeric (9,2) No No None
Total Numeric (9,2) No No None

Column Name
Data Type
(Length) Key Required Default Value Remarks

InvoiceNumber Integer Primary Key,
Foreign Key

Yes None REF: INVOICE

LineNumber Integer Primary Key Yes None This is not quite a
Surrogate Key—for
each InvoiceNumber:
Increment=1
Application logic will
be needed to supply
the correct value

Quantity Integer No No None
UnitPrice Numeric (9,2) No No None

Total Numeric (9,2) No No None

(e) LINE_ITEM

Column Name
Data Type
(Length) Key Required Default Value Remarks

ProductNumber Integer Primary Key Yes DBMS supplied Surrogate Key:
Initial value=100
Increment=1

ProductType Char(24) No Yes None
ProductDescription VarChar (100) No Yes None
UnitPrice Numeric (9, 2) No Yes None
QuantityOnHand Integer No Yes 0

(f) PRODUCT

Figure 5-26  Continued

314   Part 2   Database Design

CUSTOMER in INVOICE, and the key of PRODUCT in LINE_ITEM. The relations
are now as follows:

SEMINAR (SeminarID, SeminarDate, SeminarTime, Location, SeminarTitle)
CUSTOMER (CustomerID, LastName, FirstName, EmailAddress,

EncryptedPassword, Phone, StreetAddress, City, State, ZIP)
CONTACT (CustomerID, ContactNumber, ContactDate, ContactType,

SeminarID)
PRODUCT (ProductNumber, ProductType, ProductDescription, UnitPrice,

QuantityOnHand)
INVOICE (InvoiceNumber, InvoiceDate, CustomerID, PaymentType, SubTotal, Tax,

Total)
LINE_ITEM (InvoiceNumber, LineNumber, ProductNumber, Quantity, UnitPrice,

Total)

Finally, one N:M relationship exists between SEMINAR and CUSTOMER. To represent
it, we create an intersection table, which we name SEMINAR_CUSTOMER. As with all
intersection tables, its columns are the keys of the two tables involved in the N:M relation-
ship. The final set of tables is:

SEMINAR (SeminarID, SeminarDate, SeminarTime, Location, SeminarTitle)
CUSTOMER (CustomerID, LastName, FirstName, EmailAddress,

EncryptedPassword, Phone, StreetAddress, City, State, ZIP)
SEMINAR_CUSTOMER (SeminarID, CustomerID)
CONTACT (CustomerID, ContactDate, ContactDate, ContactType, SeminarID)
PRODUCT (ProductNumber, ProductType, ProductDescription, UnitPrice,

QuantityOnHand)
INVOICE (InvoiceNumber, InvoiceDate, CustomerID, PaymentType, SubTotal, Tax,

Total)
LINE_ITEM (InvoiceNumber, LineNumber, ProductNumber, Quantity, UnitPrice,

Total)

The set of referential integrity constraints will be discussed in the next section.
Now, to express the minimum cardinalities of children back to their parents, we need

to decide whether foreign keys are required. In Figure 5-25, we see that an INVOICE is
required to have a CUSTOMER and that LINE_ITEM is required to have a PRODUCT.
Thus, we will make INVOICE.EmailAddress and LINE_ITEM.ProductNumber required.
CONTACT.SeminarID will not be required because a contact is not required to refer to
a seminar. The final design is shown in the data structure diagram in Figure 5-27 and the
revised table column specification for those tables affected by the addition of foreign keys
is shown in Figure 5-28.

Enforcing Referential Integrity
Figure 5-29 summarizes the relationship enforcement for Heather Sweeney Designs.
SeminarID is a surrogate key, so no cascading update behavior will be necessary for any of
the relationships that it carries. Similarly, CustomerID in CUSTOMER and InvoiceNumber
in INVOICE are unchanging values, so these relationships do not need cascading updates.
However, updates of ProductNumber do need to cascade through their relationships.

With regard to cascading deletions, rows in the intersection table require a SEMINAR
and a CUSTOMER parent. Therefore, when a user attempts to cancel a seminar or to

Chapter 5   Database Design   315

CUSTOMER
CustomerID

LastName
FirstName
EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
CustomerID (FK)
ContactNumber

ContactDate
ContactType
SeminarID (FK)

INVOICE
InvoiceNumber

InvoiceDate
CustomerID (FK)
Subtotal
Shipping
Tax
Total

LINE_ITEM
InvoiceNumber
LineNumber

ProductNumber (FK)
Quantity
UnitPrice
Total

PRODUCT
ProductNumber

ProductType
ProductDescription
UnitPrice
QuantityOnHand

SEMINAR_CUSTOMER
SeminarID (FK)
CustomerID (FK)

Figure 5-27

Database Design for Heather Sweeney Designs

Figure 5-28

Modified Column Specifications for HSD Tables with Added Foreign Keys

Column Name

Data Type
(Length)

Key

Required

Default Value

Remarks

SeminarID Integer Primary Key,
Foreign Key

Yes None

CustomerID Integer Primary Key,
Foreign Key

Yes None

(a) SEMINAR_CUSTOMER

(continued)

remove a customer record the deletion must either cascade or be prohibited. We must
discuss this issue with Heather and her employees and determine whether users should be
able to remove seminars that have customers enrolled or to remove customers who have
enrolled in a seminar. We decide that neither seminars nor customers are ever deleted from
the database (Heather never cancels a seminar, even if no customers show up, and once

Column Name

Data Type
(Length)

Key

Required

Default Value

Remarks

CustomerID Integer Primary Key,
Foreign Key

Yes None REF: CUSTOMER

ContactNumber Integer Primary Key Yes None This is not quite a
Surrogate Key—for each
ContactNumber:
Start=1
Increment=1
Application logic will
be needed to supply the
correct value

ContactDate Date No Yes None Format: yyyy-mm-dd

ContactType Char (15) No Yes None

SeminarID Integer Foreign Key No None REF: SEMINAR

(b) CONTACT

Column Name

Data Type
(Length)

Key

Required

Default Value

Remarks

InvoiceNumber Integer Primary Key Yes DBMS
supplied

Surrogate Key:
Initial value=35000
Increment=1

InvoiceDate Date No Yes None Format: yyyy-mm-dd

CustomerID Integer Foreign Key Yes None REF: CUSTOMER
PaymentType Char (25) No Yes Cash

Subtotal Numeric (9,2) No No None

Shipping Numeric (9,2) No No None

Tax Numeric (9,2) No No None

Total Numeric (9,2) No No None

(c) INVOICE

Column Name

Data Type
(Length)

Key

Required

Default Value

Remarks

InvoiceNumber Integer Primary Key,
Foreign Key

Yes None REF: INVOICE

LineNumber Integer Primary Key Yes None This is not quite a
Surrogate Key—for
each InvoiceNumber:
Start=1
Increment=1
Application logic will be
needed to supply
the correct value

ProductNumber Integer Foreign Key Yes None REF: PRODUCT
Quantity Integer No No None

UnitPrice Numeric (9,2) No No None

Total Numeric (9,2) No No None

(d) LINE_ITEM

Figure 5-28  Continued

316

Chapter 5   Database Design   317

Figure 5-29

Referential Integrity Constraint Enforcement for Heather Sweeney Designs

Relationship

Referential
Integrity Constraint

Cascading
Behavior

Parent Child On Update On Delete
SEMINAR SEMINAR_CUSTOMER SeminarID in SEMINAR_

CUSTOMER must exist in
SeminarID in SEMINAR

No No

CUSTOMER SEMINAR_CUSTOMER CustomerID in SEMINAR_
CUSTOMER must exist in
CustomerID in CUSTOMER

No No

SEMINAR CONTACT SeminarID in CONTACT must
exist in SeminarID in SEMINAR

No No

CUSTOMER CONTACT CustomerID in CONTACT
must exist in CustomerID in
CUSTOMER

No No

CUSTOMER INVOICE CustomerID in INVOICE
must exist in CustomerID in
CUSTOMER

No No

INVOICE LINE_ITEM InvoiceNumber in LINE_ITEM
must exist inInvoiceNumber in
INVOICE

No Yes

PRODUCT LINE_ITEM ProductNumber in LINE_ITEM
must exist in ProductNumber in
PRODUCT

Yes No

Heather has a customer record she never lets go of it!). Hence, as shown in Figure 5-29,
neither of these relationships has cascading deletions.

Figure 5-29 shows other decisions reached in the example. Because of the need to keep
historic information about seminar attendance and contacts, we cannot delete a customer
record. Doing so would distort seminar attendance data and data about contacts such as
email messages and regular mail letters, which need to be accounted for. Foreign key con-
straints thus prohibit deleting the primary key record in CUSTOMER.

As shown in Figure 5-29, the deletion of an INVOICE will cause the deletion of re-
lated LINE_ITEMs. Finally, an attempt to delete a PRODUCT that is related to one or
more LINE_ITEMs will fail; cascading the deletion here would cause LINE_ITEMs to
disappear out of ORDERs, a situation that cannot be allowed.

The database design for the Heather Sweeney Designs database is now complete
enough to create tables, columns, relationships, and referential integrity constraints using
a DBMS. Before going on, we would need to document any additional business rules to
be enforced by application programs or other DBMS techniques. After this, the database
can be created, using the SQL statements discussed in Chapter 3. The full set of the SQL
statements needed to create and populate the database in SQL Server 2014 are located in
the Chapter 3 Heather Sweeney Designs Case Questions on pages 222–232. These SQL
statements will need to be slightly modified for use with Oracle Database Express Edition
11g Release 2 or MySQL 5.6.

318   Part 2   Database Design

The Access Workbench
Section 5
Relationships in Microsoft Access

At this point, we have created and populated the CONTACT, CUSTOMER, and
SALESPERSON tables in the Wallingford Motors CRM database. You learned how to cre-
ate forms, reports, and queries in the preceding sections of “The Access Workbench.” If
you have worked through Chapter 3’s section of “The Access Workbench,” you know how
to create and use view equivalent queries.

All the tables you have used so far have had 1:N relationships. But how are 1:1 and
N:M relationships managed in Microsoft Access? In this section, you will:

•	Understand 1:1 relationships in Microsoft Access.
•	Understand N:M relationships in Microsoft Access.

N:M Relationships in Microsoft Access

We will start by discussing N:M relationships. This is actually a nonissue because pure
N:M relationships only occur in data modeling. Remember that when a data model is trans-
formed into a database design an N:M relationship is broken down into two 1:N relation-
ships. Each 1:N relationship is between a table resulting from one of the original entities
in the N:M relationship and a new intersection table. If this does not make sense to you,
then review the chapter section “Representing N:M Strong Entity Relationships” and see
Figures 5-13 and 5-15 for an illustration of how N:M relationships are converted to two
1:N relationships.

Because databases are built in DBMSs, such as Microsoft Access, from the database
design, Microsoft Access only deals with the resulting 1:N relationships. As far as Microsoft
Access is concerned, there are no N:M relationships!

1:1 Relationships in Microsoft Access

Unlike N:M relationships, 1:1 relationships definitely exist in Microsoft Access. At this point
the WMCRM database does not contain a 1:1 relationship, and here we will add one. We will
let each SALESPERSON use one and only one car from the Wallingford Motors inventory as
a demo vehicle. The database design with this addition is shown in Figure AW-5-1.

Note that both SALESPERSON and VEHICLE are optional in this relationship.
First, a VEHICLE does not have to be assigned to a SALESPERSON, which makes sense
because there will be a lot of cars in inventory and only a few SALESPERSONs. Second,
a SALESPERSON does not have to take a demo car and may choose not to (yeah, right!).
Also note that we have chosen to put the foreign key in SALESPERSON. In this case, there
is an advantage to putting the foreign key in one table or the other because if we put it in
VEHICLE the foreign key column (which would have been NickName) would be NULL for
every car except the few used as demo vehicles. Finally, note that we are using this table just
to illustrate a 1:1 relationship—a functional VEHICLE table would have a lot more columns.

The column characteristics for the VEHICLE table are shown in Figure AW-5-2, and
the data for the table are shown in Figure AW-5-3.

Let us open the WMCRM.accdb database and add the VEHICLE table to it.

Opening the WMCRM.accdb Database

1.	 Start Microsoft Access.
2.	 If necessary, click the File command tab, and then click the WMCRM.accdb file name in

the quick access list of recently opened databases to open the database.

Chapter 5   Database Design   319

CUSTOMER
CustomerID
LastName
FirstName
Address
City
State
ZIP
Phone
Fax
Email
NickName (FK)

CONTACT
ContactID
ContactDate
ContactType
Remarks
CustomerID (FK)

SALESPERSON
NickName
LastName
FirstName
HireDate
WageRate
CommissionRate
Phone
Email
InventoryID (FK)

VEHICLE
InventoryID
Model
VIN

Figure AW-5-1

The WMCRM Database Design with VEHICLE

Figure AW-5-2

Database Column Characteristics for the VEHICLE Table

Column Name Type Key Required Remarks
InventoryID AutoNumber Primary Key Yes Surrogate Key

Model Text(25) No Yes

VIN Text(35) No Yes

Figure AW-5-3

Wallingford Motors VEHICLE Data

InventoryID Model VIN
[AutoNumber] HiStandard G15HS123400001

[AutoNumber] HiStandard G15HS123400002

[AutoNumber] HiStandard G15HS123400003

[AutoNumber] HiLuxury G15HL234500001

[AutoNumber] HiLuxury G15HL234500002

[AutoNumber] HiLuxury G15HL234500003

[AutoNumber] SUHi G15HU345600001

[AutoNumber] SUHi G15HU345600002

[AutoNumber] SUHi G15HU345600003

[AutoNumber] HiElectra G15HE456700001

(Continued)

320   Part 2   Database Design

We already know how to create a table and populate it with data, so we will go ahead
and add the VEHICLE table and its data to the WMCRM.accdb database. Next, we need
to modify SALESPERSON by adding the InventoryID column and populating it with data.
The column characteristics for the new InventoryID column in the SALESPERSON table
are shown in Figure AW-5-4, and the data for the column are shown in Figure AW-5-5. (Tina
and Big Bill are driving the HiLuxury model, while Billy opted for a SUHi.)

There is nothing here that you do not know how to do—you altered the CUSTOMER
table in a similar way in Chapter 3’s section of “The Access Workbench”—so you can go
ahead and add the InventoryID column and its data to the SALESPERSON table. This
is an easier table alteration to make than the one we made to CUSTOMER because the
InventoryID column in SALESPERSON is NOT NULL, so you do not have to set it to
NULL after entering the data.

Now, we are ready to establish the relationship between the two tables.

Creating the Relationship Between SALESPERSON and VEHICLE

1.	 If you have any tables open, close them, and the click the Database Tools command tab.
2.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
3.	 Click the Relationships button in the Relationships group. The Relationships tabbed docu-

ment window appears.
■■ Note:  Warning! The next steps lead to a peculiarity of Microsoft Access, not the

final outcome that we want. Remember that we want a 1:1 relationship. See if you can
figure out what is happening as we go along.

4.	 Click the Show Table button in the Relationships group of the Design ribbon.
5.	 In the Show Table dialog box, click VEHICLE to select it, and then click the Add button

to add VEHICLE to the Relationships window.
6.	 In the Show Table dialog box, click the Close button to close the dialog box.
7.	 Rearrange and resize the table objects in the Relationships window by using standard

Windows drag-and-drop techniques. Rearrange the SALESPERSON, CUSTOMER,
CONTACT, and VEHICLE table objects until they look as shown in Figure AW-5-6.

■■ Note:  Remember that we create a relationship between two tables in the
Relationships window by dragging a primary key column and dropping it on top of the
corresponding foreign key column.

Figure AW-5-4

Database Column Characteristics for the InventoryID Column in the SALESPERSON Table

Column Name Type Key Required Remarks
InventoryID Long Integer Foreign Key No

Figure AW-5-5

SALESPERSON InventoryID Data

NickName LastName FirstName . . . InventoryID
Tina Smith Tina . . . 4

Big Bill Jones William . . . 5

Billy Jones Bill . . . 7

Chapter 5   Database Design   321

  8.	 Click and hold the column name InventoryID in the VEHICLE table object, then drag
it over the column name InventoryID in the SALESPERSON table, and then release the
mouse button. The Edit Relationships dialog box appears.

  9.	 Click the Enforce Referential Integrity check box.
10.	 Click the Create button to create the relationship between VEHICLE and SALESPERSON.
11.	 Right-click the relationship line between VEHICLE and SALESPERSON, and then click Edit

Relationship in the shortcut menu that appears. The Edit Relationships dialog box appears.
12.	 The relationship between the tables now appears in the Relationships window, as shown in

Figure AW-5-7.

But now we have a serious problem: The relationship that was created is a 1:N rela-
tionship, not the 1:1 relationship that we wanted. It seems like there should be a way to fix
the relationship somewhere on the Edit Relationships dialog box. Unfortunately, there is
not. Go ahead and try everything you can think of, but it will not work. This is the peculiar-
ity of Microsoft Access that was mentioned earlier.

The new VEHICLE
table

Figure AW-5-6

The Relationships Window with the Current Relationship Diagram

(Continued)

The VEHICLE-to-
SALEPERSON
relationship

The relationship is
1:N—this is not the
1:1 relationship we
wanted

Figure AW-5-7

The Completed VEHICLE-to-SALESPERSON Relationship

322   Part 2   Database Design

So what is the trick to creating a 1:1 relationship in Microsoft Access? As discussed
in this chapter, the trick is to create a UNIQUE constraint on the foreign key column. To
do this in Microsoft Access, we set the Indexed field property of the foreign key column
(InventoryID in SALESPERSON in this case) to Yes (No Duplicates), as shown in Figure
AW-5-8. As long as the same value can occur more than once in the foreign key column
Microsoft Access will create a 1:N relationship instead of the desired 1:1 relationship.

To create the 1:1 relationship, we need to delete the existing relationship, modify the
InventoryID property in SALESPERSON, and create a new relationship between the
tables. First, we will delete the existing 1:N relationship.

Deleting the Incorrect Relationship Between SALESPERSON and VEHICLE

1.	 Click the OK button on the Edit Relationships dialog box.
2.	 Right-click the relationship line between VEHICLE and SALESPERSON to display the

shortcut menu, and then click Delete.
3.	 A dialog box appears asking whether you are sure you want to permanently delete the se-

lected relationship from your database. Click the Yes button.
4.	 Close the Relationships window.
5.	 A dialog box appears asking whether you want to save the changes to the layout of

Relationships. Click the Yes button.
6.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Next, we will modify the SALESPSERSON table.

Setting the Indexed Property of the InventoryID Column in SALESPERSON

1.	 Open the SALESPERSON table in Design view.
2.	 Select the InventoryID field. The InventoryID field properties are displayed in the

General tab.

Select the
InventoryID column

Set the Indexed
property to Yes
(No Duplicates)

Figure AW-5-8

Setting the Indexed Property Value in the SALESPERSON Table

Chapter 5   Database Design   323

3.	 Click the Indexed text field. A drop-down list arrow appears on the right end of the text
field. Click the drop-down list arrow to display the list and select Yes (No Duplicates). The
result appears as shown in Figure AW-5-8.

4.	 Click the Save button to save the completed changes to the SALESPERSON table.
5.	 Close the SALESPERSON table.

Finally, we create the 1:1 relationship that we want between the SALESPERSON and
VEHICLE tables.

Creating the Correct 1:1 Relationship Between SALESPERSON
and VEHICLE

  1.	 Click the Database Tools command tab.
  2.	 Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
  3.	 Click the Relationships button in the Relationships group. The Relationships tabbed

document window appears.
  4.	 Click and hold the column name InventoryID in the VEHICLE table object, then drag

it over the column name InventoryID in the SALESPERSON table, and then release the
mouse button. The Edit Relationships dialog box appears.

  5.	 Click the Enforce Referential Integrity check box.
  6.	 Click the Create button to create the relationship between VEHICLE and

SALESPERSON.
  7.	 To verify that you now have the correct 1:1 relationship, right-click the relationship line

between SALESPERSON and VEHICLE, and then click Edit Relationship in the short-
cut menu that appears. The Edit Relationships dialog box appears.

  8.	 Note that the correct one-to-one relationship between the tables now appears in the
Relationships window, as shown in Figure AW-5-9.

  9.	 Click the Cancel button on the Edit Relationships dialog box.
10.	 Close the Relationships window.

The VEHICLE-to-
SALEPERSON
relationship

The relationship is
now the correct
1:1 relationship

Figure AW-5-9

The Correct 1:1 VEHICLE-to-SALESPERSON Relationship

(Continued)

324   Part 2   Database Design

11.	 If a dialog box appears asking whether you want to save the changes to the layout of
Relationships window, click the Yes button.

12.	 Click the Shutter Bar Open/Close button to expand the Navigation Pane.

We have successfully created the 1:1 relationship that we wanted. We just had to learn
the Microsoft Access way of doing it.

Closing the Database and Exiting Microsoft Access

That completes the work we will do in this chapter’s section of “The Access Workbench.”
As usual, we finish by closing the database and Microsoft Access.

Closing the WMCRM Database and Exiting Microsoft Access

1.	 To close the WMCRM database and exit Microsoft Access, click the Microsoft Access
Close button in the upper-right corner of the Microsoft Access window.

Summary
To transform an E-R data model into a relational database design, you create a table for
each entity. The attributes of the entity become the columns of the table, and the identifier
of the entity becomes the primary key of the table. For each column, you must define data
types, null status, any default values, and any data constraints. You then apply the normal-
ization process to each table and create additional tables, if necessary. In some cases, you
need to denormalize a table. When you do, the table will have insertion, update, and dele-
tion problems.

Denormalization makes sense if the benefit of not normalizing outweighs the possible
problems that could be caused by such modifications.

Weak entities are represented by a table. ID-dependent entities must include the key
columns of the tables on which they depend, as well as of the identifiers of the entities
themselves. Non–ID-dependent entities must have their existence dependence recorded as
business rules.

Supertypes and subtypes are each represented by separate tables. The identifier of the
supertype entity becomes the primary key of the supertype table, and the identifiers of the
subtype entities become the primary keys of the subtype tables. The primary key of each
subtype is also the same primary key that is used for the supertype, and the primary key of
each subtype serves as a foreign key that links the subtype back to the supertype.

The E-R model has three types of binary relationships: 1:1, 1:N, and N:M. To repre-
sent a 1:1 relationship, you place the key of one table into the other table. To implement the
1:1 relationship, the specified foreign key must be constrained as UNIQUE. To represent
a 1:N relationship, you place the key of the parent table in the child table. Finally, to rep-
resent an M:N relationship, you create an intersection table that contains the keys of the
other two tables.

Recursive relationships are relationships in which the participants in the relationship
arise from the same entity class. The three types of recursive relationships are 1:1, 1:N, and
N:M. These types of relationships are represented in the same way as are their equivalent
nonrecursive relationships. For 1:1 and 1:N relationships, you add a foreign key to the rela-
tion that represents the entity. For an N:M recursion, you create an intersection table that
represents the M:N relationship.

Chapter 5   Database Design   325

Key Terms
association entity
associative entity
association relationship
Boyce-Codd Normal Form

(BCNF)
child
column property
component design

data constraint
data model
data type
database design
default value
denormalization
intersection table
mixed entity pattern

multivalued dependency
NULL status
parent
relation
surrogate key
systems development life cycle

(SDLC)
table

Review Questions
	  5.1	 Explain how entities are transformed into tables.

	  5.2	 Explain how attributes are transformed into columns. What column properties do
you take into account when making the transformations?

	  5.3	 Why is it necessary to apply the normalization process to the tables created accord-
ing to your answer to question 5.1?

	  5.4	 What is denormalization?

	  5.5	 When is denormalization justified?

	  5.6	 Explain the problems that unnormalized tables have for insert, update, and delete
actions.

	  5.7	 Explain how the representation of weak entities differs from the representation of
strong entities.

	  5.8	 Explain how supertype and subtype entities are transformed into tables.

	  5.9	 List the three types of binary relationships and give an example of each. Do not use
the examples given in this text.

	5.10	 Define the term foreign key and give an example.

	5.11	 Show two different ways to represent the 1:1 relationship in your answer to ques-
tion 5.9. Use IE Crow’s Foot E-R diagrams.

	5.12	 For your answers to question 5.11, describe a method for obtaining data about one
of the entities, given the key of the other. Describe a method for obtaining data
about the second entity, given the key of the first. Describe methods for both of
your alternatives in question 5.11.

	5.13	 Code SQL statements to create a join that has all data about both tables from your
work for question 5.11.

	5.14	 Define the terms parent and child as they apply to tables in a database design and
give an example of each.

	5.15	 Show how to represent the 1:N relationship in your answer to question 5.9. Use an
IE Crow’s Foot E-R diagram.

	5.16	 For your answer to question 5.15, describe a method for obtaining data for all the
children, given the key of the parent. Describe a method for obtaining data for the
parent, given a key of the child.

	5.17	 For your answer to question 5.15, code an SQL statement that creates a table that
has all data from both tables.

	5.18	 For a 1:N relationship, explain why you must place the key of the parent table in
the child table rather than place the key of the child table in the parent table.

326   Part 2   Database Design

	5.19	 Give examples of binary 1:N relationships, other than those in this text, for (a) an
optional-to-optional relationship, (b) an optional-to-mandatory relationship, (c) a
mandatory-to-optional relationship, and (d) a mandatory-to-mandatory relation-
ship. Illustrate your answer by using IE Crow’s Foot E-R diagrams.

	5.20	 Show how to represent the N:M relationship in your answer to question 5.9. Use an
IE Crow’s Foot E-R diagram.

	5.21	 Explain the meaning of the term intersection table.

	5.22	 Explain how the terms parent table and child table relate to the tables in your an-
swer to question 5.20.

	5.23	 For your answers to questions 5.20, 5.21, and 5.22, describe a method for obtaining
the children for one of the entities in the original data model, given the primary key
of the table based on the second entity. Also, describe a method for obtaining the
children for the second entity, given the primary key of the table based on the first
entity.

	5.24	 For your answer to question 5.20, code an SQL statement that creates a relation
that has all data from all tables.

	5.25	 Why is it not possible to represent N:M relationships with the same strategy used
to represent 1:N relationships?

	5.26	 What is an associative entity (also called an association entity)? What is an associa-
tion relationship? Give an example of an association relationship other than one
shown in this text. Illustrate your answer using an IE Crow’s Foot E-R diagram.

	5.27	 Give an example of a 1:N relationship with an ID-dependent weak entity, other
than one shown in this text. Illustrate your answer using an IE Crow’s Foot E-R
diagram.

	5.28	 Give an example of a supertype–subtype relationship, other than one shown in this
text. Illustrate your answer using an IE Crow’s Foot E-R diagram.

	5.29	 Define the three types of recursive binary relationships and give an example of
each, other than the ones shown in this text.

	5.30	 Show how to represent the 1:1 recursive relationship in your answer to question
5.29. How does this differ from the representation of 1:1 nonrecursive relationships?

	5.31	 Code an SQL statement that creates a table with all columns from the parent and
child tables in your answer to question 5.30.

	5.32	 Show how to represent a 1:N recursive relationship in your answer to question 5.29.
How does this differ from the representation of 1:N nonrecursive relationships?

	5.33	 Code an SQL statement that creates a table with all columns from the parent and
child tables in your answer to question 5.32.

	5.34	 Show how to represent the M:N recursive relationship in your answer to question
5.29. How does this differ from the representation of M:N nonrecursive relationships?

	5.35	 Code an SQL statement that creates a table with all columns from the parent and
child tables in your answer to question 5.34. Code an SQL statement using a left
outer join that creates a table with all columns from the parent and child tables.
Explain the difference between these two SQL statements.

Exercises
	5.36	 Consider the following table, which holds data about employee project

assignments:

ASSIGNMENT (EmployeeNumber, ProjectNumber, ProjectName,
HoursWorked)

Chapter 5   Database Design   327

Assume that ProjectNumber determines ProjectName and explain why this rela-
tion is not normalized. Demonstrate an insertion anomaly, a modification anomaly,
and a deletion anomaly. Apply the normalization process to this relation. State the
referential integrity constraint.

	5.37	 Consider the following relation that holds data about employee assignments:

ASSIGNMENT (EmployeeNumber, ProjectNumber, ProjectName,
HoursWorked)

Assume that ProjectNumber determines ProjectName and explain why this rela-
tion is not normalized. Demonstrate an insertion anomaly, a modification anomaly,
and a deletion anomaly. Apply the normalization process to this relation. State the
referential integrity constraint.

	5.38	 Explain the difference between the two ASSIGNMENT tables in questions 5.36
and 5.37. Under what circumstances is the table in question 5.36 more correct?
Under what circumstances is the table in question 5.37 more correct?

	5.39	 Create a relational database design for the data model you developed for
question 4.30.

	5.40	 Create a relational database design for the data model you developed for
question 4.31.

	5.41	 Create a relational database design for the data model you developed for
question 4.32.

	5.42	 Create a relational database design for the data model you developed for
question 4.33.

Access Workbench Key Term
Indexed field property

Access Workbench Exercises
	AW.5.1	 Using an IE Crow’s Foot E-R diagram, draw a database design for the
Wedgewood Pacific Corporation (WPC) database completed at the end of Chapter 3’s
section of “The Access Workbench.”

	AW.5.2	 This chapter’s section of “The Access Workbench” describes how to create 1:1
relationships in Microsoft Access. In particular, we added the business rule that each sales-
person at Wallingford Motors can have one and only one vehicle as a demo car. Suppose
that the rule has been changed so that each salesperson can have one or more cars as demo
vehicles.

	 A.	 Using an IE Crow’s Foot E-R diagram, redraw the database design in Figure
AW-5-1 to show the new relationship between VEHICLE and SALESPERSON.
Which table(s) is (are) the parent(s) in the relationship? Which table(s) is (are) the
child(ren)? In which table(s) do you place a foreign key?

(Continued)

328   Part 2   Database Design

	 B.	 Start with the Wallingford Motors database that you have created so far
(WMCRM.accdb) as it exists after working through all the steps in this chapter’s
section of “The Access Workbench.” (If you have not completed those actions,
do so now.) Copy the WMCRM.accdb database and rename the copy WMCRM-
AW05-v02.accdb. Modify the WMCRM-AW05-v02.accdb database to implement
the new relationship between VEHICLE and SALESPERSON. (Note: Copying
a Microsoft Access database is discussed in Chapter 4’s section of “The Access
Workbench.”)

	AW.5.3	 This chapter’s section of “The Access Workbench” describes how to create
1:1 relationships in Microsoft Access. In particular, we added the business rule that
each salesperson at Wallingford Motors can have one and only one vehicle as a demo
car. Suppose that the rule has been changed so that (1) each salesperson can have one
or more cars as demo vehicles and (2) each demo vehicle can be shared by two or more
salespersons.

	 A.	 Using an IE Crow’s Foot E-R diagram, redraw the database design in Figure
AW-5-1 to show the new relationship between VEHICLE and SALESPERSON.
Which table(s) is (are) the parent(s) in the relationship? Which table(s) is (are) the
child(ren)? In which table(s) do you place a foreign key?

	 B.	 Start with the Wallingford Motors database that you have created so far
(WMCRM.accdb) as it exists after working through all the steps in this chapter’s
section of “The Access Workbench.” (If you have not completed those actions,
do so now.) Copy the WMCRM.accdb database and rename the copy WMCRM-
AW05-v03.accdb. Modify the WMCRM-AW05-v03.accdb database to implement
the new relationship between VEHICLE and SALESPERSON. (Note: Copying
a Microsoft Access database is discussed in Chapter 4’s section of “The Access
Workbench.”)

San Juan Sailboat Charters Case Questions
San Juan Sailboat Charters (SJSBC) is an agency that leases (charters) sailboats. SJSBC does
not own the boats. Instead, SJSBC leases boats on behalf of boat owners who want to earn
income from their boats when they are not using them, and SJSBC charges the owners a fee
for this service. SJSBC specializes in boats that can be used for multiday or weekly charters.
The smallest sailboat available is 28 feet in length and the largest is 51 feet in length.

Each sailboat is fully equipped at the time it is leased. Most of the equipment is pro-
vided at the time of the charter. Most of the equipment is provided by the owners, but
some is provided by SJSBC. The owner-provided equipment includes equipment that is at-
tached to the boat, such as radios, compasses, depth indicators and other instrumentation,
stoves, and refrigerators. Other owner-provided equipment, such as sails, lines, anchors,
dinghies, life preservers, and equipment in the cabin (dishes, silverware, cooking utensils,
bedding, and so on), is not physically attached to the boat. SJSBC provides consumable
supplies, such as charts, navigation books, tide and current tables, soap, dish towels, toilet
paper, and similar items. The consumable supplies are treated as equipment by SJSBC for
tracking and accounting purposes.

Keeping track of equipment is an important part of SJSBC’s responsibilities. Much
of the equipment is expensive, and those items not physically attached to the boat can be
easily damaged, lost, or stolen. SJSBC holds the customer responsible for all of the boat’s
equipment during the period of the charter.

Chapter 5   Database Design   329

SJSBC likes to keep accurate records of its customers and charters, and customers
are required to keep a log during each charter. Some itineraries and weather conditions
are more dangerous than others, and the data from these logs provide information about
the customer experience. This information is useful for marketing purposes, as well as for
evaluating a customer’s ability to handle a particular boat and itinerary.

Sailboats need maintenance. Note that two definitions of boat are (1) “break out
another thousand” and (2) “a hole in the water into which one pours money.” SJSBC is
required by its contracts with the boat owners to keep accurate records of all maintenance
activities and costs.

A data model of a proposed database to support an information system for SJSBC is
shown in Figure 5-30. Note that because the OWNER entity allows for owners to be com-
panies as well as individuals SJSBC can be included as an equipment owner (note that the
cardinalities in the diagram allow SJSBC to own equipment while not owning any boats).
Also note that this model relates EQUIPMENT to CHARTER rather than BOAT even
when the equipment is physically attached to the boat. This is only one possible way to
handle EQUIPMENT, but it is satisfactory to the managers of SJSBC.

A.	 Convert this data model to a database design. Specify tables, primary keys, and foreign
keys. Using Figures 5-26 and 5-28 as guides, specify column properties.

Figure 5-30

Data Model for San Juan Sailboat Charters

330   Part 2   Database Design

B.	 Describe how you have represented weak entities, if any exist.

C.	 Describe how you have represented supertype and subtype entities, if any exist.

D.	 Create a visual representation of your database design as an IE Crow’s Foot E-R
diagram similar to the one in Figure 5-27.

E.	 Document referential integrity constraint enforcement, using Figure 5-29 as a guide.

Washington State Patrol Case Questions
Answer the Washington State Patrol Case Questions in Chapter 4 if you have note
already done so. Design a database for your data model from Chapter 4. Your design
should include a specification of tables and (using Figures 2-26 and 5-28 as guides)
column properties, as well as primary, candidate, and foreign keys. Create visual rep-
resentation of your database design as an IE Crow’s Foot E-R diagram similar to the
one in Figure 5-27. Document your referential integrity constraint enforcement in the
format shown in Figure 5-29.

 Garden Glory Project Questions

Convert the data model you constructed for Garden Glory in part B at the end of Chapter
4 (or an equivalent data model that your instructor provides for you to use) into a relational
database design for Garden Glory. Document your database design as follows.

A.	 Specify tables, primary keys, and foreign keys. Using Figures 5-26 and 5-28 as guides,
specify column properties.

B.	 Describe how you have represented weak entities, if any exist.

C.	 Describe how you have represented supertype and subtype entities, if any exist.

D.	 Create a visual representation of your database design as an IE Crow’s Foot E-R
diagram similar to the one in Figure 5-27.

E.	 Document referential integrity constraint enforcement, using Figure 5-29 as a guide.

F.	 Document any business rules that you think might be important.

G.	 Describe how you would validate that your design is a good representation of the data
model on which it is based.

 James River Jewelry Project Questions

The James River Jewelry project questions are available in online Appendix D, which can
be downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

www.pearsonhighered.com/kroenke

Chapter 5   Database Design   331

 The Queen Anne Curiosity Shop Project Questions

Convert the data model you constructed for The Queen Anne Curiosity Shop in part D at
the end of Chapter 4 (or an equivalent data model that your instructor provides for you to
use) into a relational database design for The Queen Anne Curiosity Shop. Document your
database design as follows.

	A.	 Specify tables, primary keys, and foreign keys. Using Figures 5-26 and 5-28 as guides,
specify column properties.

	B.	 Describe how you have represented weak entities, if any exist.

	C.	 Describe how you have represented supertype and subtype entities, if any exist.

	D.	 Create a visual representation of your database design as an IE Crow’s Foot E-R dia-
gram similar to the one in Figure 5-27.

	E.	 Document referential integrity constraint enforcement, using Figure 5-29 as a guide.

	F.	 Document any business rules that you think might be important.

	G.	 Describe how you would validate that your design is a good representation of the data
model on which it is based.

This page intentionally left blank

333

S o far, you have been introduced to the fundamental
concepts and techniques of relational database
management and database design. In Chapter 1,

you learned about databases and the major components of
a database system. Chapter 2 introduced you to the rela-
tional model, functional dependencies, and normalization. In
Chapter 3, you learned how to use SQL statements to create
and process a database. Chapter 4 gave you an overview of
the database design process and a detailed introduction to
data modeling. In Chapter 5, you learned how to transform
a data model into a relational database design. Now that you
know how to design, create, and query databases, it is time
to learn how to manage databases and use them to solve
business problems.

In Chapter 6, you will learn about database management
and some of the problems that occur when a database is pro-
cessed concurrently by more than one user. In Chapter 7, you
will learn how to create Web database applications, which use
databases to support Web sites. Finally, in Chapter 8 you will
learn how databases support data warehouses and modern
business intelligence (BI) systems and about Big Data, the
NoSQL movement, and cloud computing. After complet-
ing these chapters, you will have surveyed all the basics of
database technology.

Database ManagementPart 3

This page intentionally left blank

335

T his chapter describes the major tasks of an
important business function called database
administration. This function involves managing a

database in order to maximize its value to an organization.
Usually, database administration involves balancing the
conflicting goals of protecting the database and maximizing
its availability and benefit to users. Both the terms data
administration and database administration are used in
the industry. In some cases, the terms are considered to
be synonymous; in other cases, they have different mean-
ings. Most commonly, the term data administration refers
to a function that applies to an entire organization; it is
a management-oriented function that concerns corporate
data privacy and security issues. The term database admin-
istration refers to a more technical function that is specific
to a particular database, including the applications that
process that database. This chapter addresses database
administration.

Databases vary considerably in size and scope, from
single-user personal databases to large interorganizational
databases, such as airline reservation systems. All data-
bases have a need for database administration, although
the tasks to be accomplished vary in complexity. When
using a personal database, for example, individuals follow
simple procedures for backing up their data, and they
keep minimal records for documentation. In this case, the
person who uses the database also performs the DBA func-
tions, even though he or she is probably unaware of it.

For multiuser database applications, database admin-
istration becomes both more important and more difficult.
Consequently, it generally has formal recognition. For some
applications, one or two people are given this function
on a part-time basis. For large Internet or intranet data-
bases, database administration responsibilities are often

Chapter 6 Database Administration

•	 Understand the need for and
importance of database
administration

•	 Learn different ways of processing a
database

•	 Understand the need for concurrency
control, security, and backup and
recovery

•	 Learn about typical problems that can
occur when multiple users process a
database concurrently

•	 Understand the use of locking and the
problem of deadlock

•	 Learn the difference between optimistic
and pessimistic locking

•	 Know the meaning of ACID transaction

•	 Learn the four 1992 ANSI standard iso-
lation levels

•	 Understand the need for security and
specific tasks for improving database
security

•	 Know the difference between recovery
via reprocessing and recovery via
rollback/rollforward

•	 Understand the nature of the tasks
required for recovery using rollback/
rollforward

•	 Know basic administrative and mana-
gerial DBA functions

Chapter Objectives

336   Part 3   Database Management

too time-consuming and too varied to be handled even by a single full-time
person. Supporting a database with dozens or hundreds of users requires
considerable time as well as both technical knowledge and diplomatic skill,
and it is usually handled by an office of database administration. The man-
ager of the office is often known as the database administrator. In this case,
DBA refers to either the office or the manager.

The overall responsibility of a DBA is to facilitate the development and
use of a database. Usually, this means balancing the conflicting goals of
protecting the database and maximizing its availability and benefit to users.
The DBA is responsible for the development, operation, and maintenance of
the database and its applications.

In this chapter, we examine three important database administration
functions: concurrency control, security, and backup and recovery. Then
we discuss the need for configuration change management. But before you
learn about any of this, we will create the Heather Sweeney Designs data-
base discussed in the previous chapters; you’ll use it as an example data-
base for the discussion in this chapter and in Chapters 7 and 8.

The SQL statements to create the Heather Sweeney Designs (HSD) database are shown
in Figure 3-28. These SQL statements are in Microsoft SQL Server 2014 syntax and will
need to be appropriately modified to implement the HSD database in Oracle Database or
MySQL. The SQL statements are built from the HSD database design in Figure 5-27, and
the column constraints follow the attribute specifications in Figures 5-26 and 5-28, and the
referential integrity constraint specifications outlined in Figure 5-29.

The SQL statements to populate the HSD database are shown in Figure 3-29. Again,
these SQL statements are shown in SQL Server syntax and will need to be appropriately
modified for use in Oracle Database or MySQL. The completed HSD database is shown in
the Microsoft SQL Server Management Studio in Figure 6-1.

The Heather Sweeney Designs Database

Databases come in a variety of sizes and scopes, from single-user databases to huge, inter-
organizational databases, such as inventory management systems. As shown in Figure 6-2,
databases also vary in the way they are processed.

We will define and discuss the various pieces of the environment shown in Figure 6-2
in detail in Chapter 7 when we discuss database processing applications. For now, just real-
ize that it is possible for every one of the application elements in Figure 6-2 to be operating
at the same time. Queries, forms, and reports can be generated while Web pages [using
Active Server Pages (ASP) and Java Server Pages (JSP)] access the database, possibly in-
voking stored procedures. Traditional application programs running in Visual Basic, C#,
Java, and other programming languages can be processing transactions on the database. All
this activity can cause pieces of programming code stored in the DBMS—which are known
as SQL/Persistent Stored Modules (SQL/PSM), which include user-defined functions,

The Need for Control, Security, and Reliability

Chapter 6   Database Administration   337

triggers and stored procedures, and which are discussed in Appendix E—to be invoked.
While all this is occurring, constraints, such as those on referential integrity, must be en-
forced. Finally, hundreds, or even thousands, of people might be using the system, and they
might want to process the database 24 hours a day, 7 days a week.

Three database administration functions are necessary to bring order to this potential
chaos. First, the actions of concurrent users must be controlled to ensure that results are

The HSD database
object

The HSD table
objects—dbo stands
for database owner

The data in the
CUSTOMER table

Figure 6-1

The HSD Database in Microsoft SQL Server 2014

Java Server
Pages (JSP)

Application Programs in
Visual Basic,
C#, Java, etc.

DBMS
Active Server
Pages .NET
(ASP.NET)

Forms

Queries

Database

Triggers

Stored
Procedures

Reports
Figure 6-2

The Database
Processing
Environment

338   Part 3   Database Management

consistent with what is expected. Second, security measures must be in place and enforced
so that only authorized users can take authorized actions at appropriate times. Finally,
backup and recovery techniques and procedures must be operating to protect the database
in case of failure and to recover it as quickly and accurately as possible when necessary. We
will consider each of these, in turn, and we will see some of them in use in Chapter 7 when
we use Web applications to access databases.

The purpose of concurrency control is to ensure that one user’s work does not inappropri-
ately influence another user’s work. In some cases, these measures ensure that a user gets
the same result when processing with other users as that person would have received if
processing alone. In other cases, it means that the user’s work is influenced by other users
but in an anticipated way.

For example, in an order-entry system, a user should be able to enter an order
and get the same result, whether there are no other users or hundreds of other users.
However, a user who is printing a report of the most current inventory status might
want to obtain in-process data changes from other users, even if those changes might
later be canceled.

Unfortunately, no concurrency control technique or mechanism is ideal for all circum-
stances; they all involve trade-offs. For example, a user can obtain strict concurrency con-
trol by locking the entire database, but while that person is processing no other user will be
able to do anything. This is robust protection, but it comes at a high cost. As you will see,
other measures are available that are more difficult to program and enforce but that allow
more throughput. Still other measures are available that maximize throughput but for a
low level of concurrency control. When designing multiuser database applications, devel-
opers need to choose among these trade-offs.

The Need for Atomic Transactions
In most database applications, users submit work in the form of transactions, also known
as logical units of work (LUWs). A transaction (or LUW) is a series of actions to be taken
on a database such that all of them are performed successfully or none of them are per-
formed at all, in which case the database remains unchanged. Such a transaction is some-
times called atomic because it is performed as a unit. Consider the following sequence of
database actions that could occur when recording a new order:

  1.	 Change the customer record, increasing the value of Amount Owed.
  2.	 Change the salesperson record, increasing the value of Commission Due.
  3.	 Insert the new-order record into the database.

Suppose the last step fails, perhaps because of insufficient file space. Imagine the confu-
sion that would ensue if the first two changes were made but the third one was not. The
customer would be billed for an order that was never received, and a salesperson would
receive a commission on an order that was never sent to the customer. Clearly, these three
actions need to be taken as a unit: Either all of them should be done or none of them
should be done.

Figure 6-3 compares the results of performing these activities as a series of indepen-
dent steps [Figure 6-3(a)] and as an atomic transaction [Figure 6-3(b)].

Notice that when the steps are carried out atomically and one fails no changes are
made in the database. Also note that the application program must issue the commands
equivalent to Start Transaction, Commit Transaction, and Rollback Transaction to mark
the boundaries of the transaction logic. The particular form of these commands varies from
one DBMS product to another.

Concurrency Control

Chapter 6   Database Administration   339

Concurrent Transaction Processing
When two transactions are being processed against a database at the same time, they are
termed concurrent transactions. Although it might appear to the users that concurrent
transactions are being processed simultaneously, this cannot be true because the central pro-
cessing unit (CPU) of the machine processing the database can execute only one instruction
at a time. Usually transactions are interleaved, which means the operating system switches
CPU services among tasks so that some portion of each of them is carried out in a given in-
terval. This switching among tasks is done so quickly that two people seated at browsers side
by side, processing against the same database, might believe that their two transactions are
completed simultaneously. However, in reality, the two transactions are interleaved.

CUSTOMER

C-no Order # Description Cost
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

ORDERS

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Order #

FULL

Before

CUSTOMER

C-no Order # Description Cost
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $9700

SALESPERSON

ORDERS

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Order #

FULL

After

START

1. Add new-order
 data to
 CUSTOMER.

2. Add new-order
 data to
 SALESPERSON.

3. Insert new
 ORDER.

STOP

123 8000 250 Basketballs $6500

Action

(a) Two of Three Activities Successfully Completed, Resulting in Database Anomalies

CUSTOMER

C-no Order # Description Cost
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

ORDERS

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Order #

FULL

Before

CUSTOMER

C-no Order # Description Cost
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

ORDERS

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Order #

FULL

After

Start Transaction
 Change
 CUSTOMER data
 Change SALESPERSON
 data
 Insert ORDER data
If no errors then
 Commit Transactions
Else
 Rollback Transaction
End If

Transaction

.

(b) No Change Made Because Entire Transaction Not Successful

Figure 6-3

Comparison of the
Results of Applying
Serial Actions Versus
a Multiple-Step
Transaction

340   Part 3   Database Management

Figure 6-4 shows two concurrent transactions. User A’s transaction reads Item 100,
changes it, and rewrites it in the database. User B’s transaction takes the same actions but
on Item 200. The CPU processes User A’s transaction until the CPU must wait for a read
or write operation to complete or for some other action to finish. The operating system
then shifts control to User B. The CPU processes User B’s transaction until a similar inter-
ruption in the transaction processing occurs, at which point the operating system passes
control back to User A. Again, to the users, the processing appears to be simultaneous, but
in reality it is interleaved, or concurrent.

The Lost Update Problem
The concurrent processing illustrated in Figure 6-4 poses no problems because the us-
ers are processing different data. Now suppose both users want to process Item 100. For
example, User A wants to order 5 units of Item 100, and User B wants to order 3 units of
Item 100. Figure 6-5 illustrates this problem.

User A reads Item 100’s record, which is transferred into a user work area. According
to the record, 10 items are in inventory. Then User B reads Item 100’s record, and it goes

1. Read Item 100 for A.
2. Read Item 200 for B.
3. Change Item 100 for A.
4. Write Item 100 for A.
5. Change Item 200 for B.
6. Write Item 200 for B.

1. Read Item 100.
2. Change Item 100.
3. Write Item 100.

Order of processing at database server

User A

1. Read Item 200.
2. Change Item 200.
3. Write Item 200.

User BFigure 6-4

Example of Concurrent
Processing of Two
Users’ Tasks

1. Read Item 100 (for A).
2. Read Item 100 (for B).
3. Set item count to 5 (for A).
4. Write Item 100 for A.
5. Set item count to 7 (for B).
6. Write Item 100 for B.

1. Read Item 100
 (assume item count is 10).
2. Reduce count of items by 5.
3. Write Item 100.

Order of processing at database server

Note: The change and write in steps 3 and 4 are lost.

User A User B

1. Read Item 100
 (assume item count is 10).
2. Reduce count of items by 3.
3. Write Item 100.

Figure 6-5

Example of the Lost
Update Problem

Chapter 6   Database Administration   341

into another user work area. Again, according to the record, 10 items are in inventory.
Now, User A takes 5 of them, decrements the count of items in its user work area to 5,
and rewrites the record for Item 100. Then User B takes 3, decrements the count in its
user work area to 7, and rewrites the record for Item 100. The database now shows, incor-
rectly, that 7 units of Item 100 remain in inventory. To review, the inventory started at 10,
then User A took 5, User B took 3, and the database wound up showing that 7 were left in
inventory. Clearly, this is a problem.

Both users obtained data that were correct at the time they obtained the data.
However, when User B read the record, User A already had a copy that it was about to
update. This situation is called the lost update problem, or the concurrent update problem.
Another similar problem is called the inconsistent read problem. In this situation, User A
reads data that have been processed by only a portion of a transaction from User B. As a
result, User A reads incorrect data.

Resource Locking
One remedy for the inconsistencies caused by concurrent processing is to prevent multiple
applications from obtaining copies of the same rows or tables when those rows or tables are
about to be changed. This remedy, called resource locking, prevents concurrent processing
problems by disallowing sharing by locking data that are retrieved for update. Figure 6-6
shows the order of processing using a lock command.

Because of the lock, User B’s transaction must wait until User A is finished with the
Item 100 data. Using this strategy, User B can read Item 100’s record only after User A has
completed the modification. In this case, the final item count stored in the database is 2,
which is what it should be. (It started with 10, then A took 5 and B took 3, leaving 2.)

Locks can be placed automatically by the DBMS or by a command issued to the
DBMS from the application program or query user. Locks placed by the DBMS are called
implicit locks; those placed by command are called explicit locks.

In the preceding example, the locks were applied to rows of data; however, not all
locks are applied at this level. Some DBMS products lock at the page level, some at the

 1. Lock Item 100 for A.
 2. Read Item 100 for A.
 3. Lock Item 100 for B; cannot,
 so place B in wait state.
 4. Set item count to 5 for A.
 5. Write Item 100 for A.
 6. Release A's lock on Item 100.
 7. Place lock on Item 100 for B.
 8. Read Item 100 for B.
 9. Set item count to 2 for B.
10. Write Item 100 for B.
11. Release B's lock on Item 100.

1. Lock Item 100.
2. Read Item 100.
3. Reduce count by 5.
4. Write Item 100.

Order of processing at database server

User A User B

1. Lock Item 100.
2. Read Item 100.
3. Reduce count by 3.
4. Write Item 100.

B's transaction

A’s transaction

Figure 6-6

Example of Concurrent
Processing with
Explicit Locks

342   Part 3   Database Management

table level, and some at the database level. The size of a lock is referred to as the lock gran-
ularity. Locks with large granularity are easy for the DBMS to administer but frequently
cause conflicts. Locks with small granularity are difficult to administer (the DBMS has
many more details to keep track of and check), but conflicts are less common.

Locks also vary by type. An exclusive lock locks an item from access of any type. No
other transaction can read or change the data. A shared lock locks an item from being
changed but not from being read; that is, other transactions can read the item as long as
they do not attempt to alter it.

Serializable Transactions
When two or more transactions are processed concurrently, the results in the database
should be logically consistent with the results that would have been achieved had the trans-
actions been processed in an arbitrary serial fashion. A scheme for processing concurrent
transactions in this way is said to be serializable.

Serializability can be achieved through a number of different means. One way is to
process the transaction by using two-phase locking. With this strategy, transactions are al-
lowed to obtain locks as necessary, but when the first lock is released, no other lock can be
obtained. Transactions have a growing phase in which the locks are obtained and a shrink-
ing phase in which the locks are released.

A special case of two-phase locking is used with a number of DBMS products. With it,
locks are obtained throughout the transaction, but no lock is released until the COMMIT
or ROLLBACK command is issued. This strategy is more restrictive than two-phase lock-
ing requires, but it is easier to implement.

Consider an order-entry transaction that involves processing data in the CUSTOMER,
SALESPERSON, and ORDER tables. To make sure the database will suffer no anom-
alies due to concurrency, the order-entry transaction issues locks on CUSTOMER,
SALESPERSON, and ORDER, as needed; makes all the database changes; and then re-
leases all its locks.

Deadlock
Although locking solves one problem, it causes another. Consider what might happen when
two users want to order two items from inventory. Suppose User A wants to order some pa-
per, and, if she can get the paper, she also wants to order some pencils. In addition, suppose
that User B wants to order some pencils, and, if he can get the pencils, he also wants to order
some paper. An example of the possible order of processing is shown in Figure 6-7.

In this figure, Users A and B are locked in a condition known as deadlock, sometimes
called the deadly embrace. Each is waiting for a resource that the other person has locked.
Two common ways of solving this problem are preventing the deadlock from occurring and
allowing the deadlock to occur and then breaking it.

Deadlock can be prevented in several ways. One way is to allow users to issue only one
lock request at a time; in essence, users must lock all the resources they want at once. For
example, if User A in Figure 6-7 had locked both the paper and the pencil records at the
beginning, the deadlock would not have occurred. A second way to prevent deadlock is to
require all application programs to lock resources in the same order.

Almost every DBMS has algorithms for detecting deadlock. When deadlock occurs, the
normal solution is to roll back one of the transactions to remove its changes from the database.

Optimistic Versus Pessimistic Locking
Locks can be invoked in two basic styles. With optimistic locking, the assumption is made
that no conflict will occur. Data are read, the transaction is processed, updates are issued,
and then a check is made to see if conflict occurred. If there was no conflict, the transaction

Chapter 6   Database Administration   343

finishes. If there was conflict, the transaction is repeated until it processes with no conflict.
With pessimistic locking, the assumption is made that conflict will occur. Locks are issued,
the transaction is processed, and then the locks are freed.

Figures 6-8 and 6-9 show examples of both styles of locking for a transaction that is re-
ducing the quantity of the pencil row in the PRODUCT table by 5. Figure 6-8 shows opti-
mistic locking. First, the data are read and the current value of Quantity of pencils is saved
in the variable OldQuantity. The transaction is then processed, and, if everything is okay, a
lock is obtained on PRODUCT. The lock might be only for the pencil row, or it might be
at a larger level of granularity. In any case, an SQL statement is issued to update the pencil
row with a WHERE condition that the current value of Quantity equals OldQuantity. If no

1. Lock paper for User A.
2. Lock pencils for User B.
3. Process A's requests; write paper record.
4. Process B's requests; write pencil record.
5. Put A in wait state for pencils.
6. Put B in wait state for paper.

1. Lock paper.
2. Take paper.
3. Lock pencils.

Order of processing at database server

** Locked **

User A User B

1. Lock pencils.
2. Take pencils.
3. Lock paper.

Figure 6-7

Example of Deadlock

OldQuantity = PRODUCT.Quantity

Set NewQuantity = PRODUCT.Quantity – 5

{process transaction – take exception action if NewQuantity < 0, etc.

Assuming all is OK: }

LOCK PRODUCT {at some level of granularity}

SELECT
FROM
WHERE

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = ‘Pencil’

UPDATE
SET
WHERE
 AND

UNLOCK PRODUCT

{check to see if update was successful;
if not, repeat transaction}

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = 'Pencil'
PRODUCT.Quantity = OldQuantity

Figure 6-8

Example of Optimistic
Locking

344   Part 3   Database Management

other transaction has changed the Quantity of the pencil row, then this UPDATE will be
successful. If another transaction has changed the Quantity of the pencil row, the UPDATE
will fail, and the transaction will need to be repeated.

Figure 6-9 shows the logic for the same transaction using pessimistic locking. In this
case, a lock is obtained on PRODUCT (at some level of granularity) before any work
is begun. Then values are read, the transaction is processed, the UPDATE occurs, and
PRODUCT is unlocked.

The advantage of optimistic locking is that the lock is obtained only after the transac-
tion has been processed. Thus, the lock is held for less time than with pessimistic locking.
If the transaction is complicated or if the client is slow (due to transmission delays or to
the user doing other work, getting a cup of coffee, or shutting down without exiting the
application), the lock will be held for considerably less time. This advantage is especially
important if the lock granularity is large (for example, the entire PRODUCT table).

The disadvantage of optimistic locking is that if a lot of activity occurs on the pencil
row the transaction might have to be repeated many times. Thus, transactions that involve
a lot of activity on a given row (purchasing a popular stock, for example) are poorly suited
for optimistic locking.

LOCK

SELECT
FROM
WHERE

Set NewQuantity = PRODUCT.Quantity – 5

{process transaction – take exception action if NewQuantity < 0, etc.

Assuming all is OK: }

UPDATE
SET
WHERE

UNLOCK

{no need to check if update was successful}

PRODUCT {at some level of granularity}

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = 'Pencil'

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = 'Pencil'

PRODUCT

Figure 6-9

Example of Pessimistic
Locking

Concurrency control is a complicated subject; some of the decisions about lock types and
strategy have to be made on the basis of trial and error. For this and other reasons, database
application programs generally do not explicitly issue locks, as shown in Figures 6-8 and 6-9.
Instead, the programs mark transaction boundaries using SQL Transaction Control Language
(TCL) and then declare the type of locking behavior they want the DBMS to use. In this way,
the DBMS can place and remove locks and even change the level and type of locks dynamically.

Figure 6-10 shows the pencil transaction with transaction boundaries marked with the
SQL standard commands for controlling transactions:

•	The SQL BEGIN TRANSACTION statement,
•	The SQL COMMIT TRANSACTION statement, and
•	The SQL ROLLBACK TRANSACTION statement.

SQL Transaction Control Language and
Declaring Lock Characteristics

Chapter 6   Database Administration   345

The SQL BEGIN TRANSACTION statement explicitly marks the start of a new
transaction, while the SQL COMMIT TRANSACTION statement makes any database
changes made by the transaction permanent and marks the end of the transaction. If there
is a need to undo the changes made during the transaction due to an error in the process,
the SQL ROLLBACK TRANSACTION statement is used to undo all transaction changes
and return the database to the state it was in before the transaction was attempted. Thus,
the SQL ROLLBACK TRANSACTION statement also marks the end of the transaction,
but with a very different outcome.

These boundaries are the essential information that the DBMS needs to enforce the dif-
ferent locking strategies. If the developer now declares via a system parameter that he or she
wants optimistic locking, the DBMS will implicitly set locks for that locking style. If, however,
the developer declares pessimistic locking, the DBMS will set the locks differently.

BEGIN TRANSACTION:

SELECT
FROM
WHERE

Old Quantity = PRODUCT.Quantity

Set NewQuantity = PRODUCT.Quantity – 5

{process part of transaction – take exception action if NewQuantity < 0, etc.}

UPDATE
SET
WHERE

{continue processing transaction} . . .

IF transaction has completed normally THEN

 COMMIT TRANSACTION

ELSE

 ROLLBACK TRANSACTION

END IF

Continue processing other actions not part of this transaction . . .

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = 'Pencil'

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = 'Pencil'

Figure 6-10

Example of Marking
Transaction Boundaries

As usual, each DBMS product implements these SQL statements in a
slightly different way. SQL Server does not require the SQL keyword
TRANSACTION, allows the abbreviation TRANS, and also allows the use
of the SQL WORK keyword with COMMIT and ROLLBACK. Oracle Database
uses SET TRANSACTION with COMMIT and ROLLBACK. MySQL does not
use the SQL keyword TRANSACTION, while it allows (but does not require)
use of the SQL WORK keyword in its place.

BTW

346   Part 3   Database Management

Consistent Transactions
Sometimes the acronym ACID is applied to transactions. An ACID transaction is one that
is atomic, consistent, isolated, and durable. Atomic and durable are easy to define. As men-
tioned earlier in this chapter, an atomic transaction is one in which all the database actions
occur or none of them do. A durable transaction is one in which all committed changes
are permanent. The DBMS will not remove such changes, even in the case of failure. If the
transaction is durable, the DBMS will provide facilities to recover the changes of all com-
mitted actions when necessary.

The terms consistent and isolated are not as definitive as the terms atomic and durable.
Consider the following SQL UPDATE command:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH06-01 *** */

UPDATE	 CUSTOMER

	 SET	 AreaCode = '425'

	 WHERE	 ZIPCode = '98050';

Suppose the CUSTOMER table has 500,000 rows, and 500 of them have a ZIPCode
value equal to 98050. It will take some time for the DBMS to find all 500 rows. During
that time, will other transactions be allowed to update the AreaCode or ZIPCode fields of
CUSTOMER? If the SQL statement is consistent, such updates will be disallowed. The
update will apply to the set of rows as they existed at the time the SQL statement started.
Such consistency is called statement-level consistency.

Now consider a transaction that contains two SQL UPDATE statements:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-TRANSACTION-CH06-01 *** */

BEGIN TRANSACTION

/* *** SQL-UPDATE-CH06-01 *** */

UPDATE	 CUSTOMER

	 SET	 AreaCode = '425'

	 WHERE	 ZIPCode = '98050';

. . .

{other transaction work}

. . .

/* *** SQL-UPDATE-CH06-02 *** */

UPDATE	 CUSTOMER

	 SET	 Discount = 0.05

	 WHERE	 AreaCode = '425';

. . .

{other transaction work}

. . .

COMMIT TRANSACTION

In this context, what does consistent mean? Statement-level consistency means that each
statement independently processes consistent rows, but changes from other users to those
rows might be allowed during the interval between the two SQL statements. Transaction-
level consistency means that all rows affected by either of the SQL statements are protected
from changes during the entire transaction.

Chapter 6   Database Administration   347

However, for some implementations of transaction-level consistency, a transaction will
not see its own changes. In this example, the second SQL statement might not see rows
changed by the first SQL statement.

Thus, when you hear the term consistent look further to determine which type of con-
sistency is intended. Be aware as well of the potential trap of transaction-level consistency.
The situation is even more complicated for the term isolated, which we consider next.

Transaction Isolation Level
The term isolated has several different meanings. To understand those meanings, we need
first to define several terms that describe various problems that can occur when we read
data from a database, and which are summarized in Figure 6-11.

•	A dirty read occurs when one transaction reads a changed record that has not been
committed to the database. This can occur, for example, if one transaction reads a
row changed by a second transaction and the second transaction later cancels its
changes.

•	A nonrepeatable read occurs when a transaction rereads data it has previously read
and finds modifications or deletions caused by another transaction.

•	A phantom read occurs when a transaction rereads data and finds new rows that
were inserted by a different transaction after the prior read.

In order to deal with these potential data read problems, the SQL standard defines four
transaction isolation levels or isolation levels that specify which of the concurrency control
problems are allowed to occur. These isolation levels are summarized in Figure 6-12.

Dirty Read The transaction reads a row that has been
changed, but the change has not been committed.
If the change is rolled back, the transaction has
incorrect data.

Nonrepeatable Read The transaction rereads data that has been
changed, and finds changes due to committed
transactions.

Phantom Read The transaction rereads data and finds new rows
inserted by a committed transaction.

Data Read Problem Type DefinitionFigure 6-11

Summary of Data Read
Problems

Dirty Read
Nonrepeatable
Read
Phantom Read

Problem
Type

Possible
Possible

Possible

Isolation Level

Read
Uncommitted

Not possible
Possible

Possible

Read
Committed

Not possible
Not possible

Possible

Repeatable
Read

Not possible
Not possible

Not possible

Serializable

Figure 6-12

Summary of Isolation Levels

348   Part 3   Database Management

The goal of having four isolation levels is to allow the application programmer to declare
the type of isolation level desired and then to have the DBMS manage locks to achieve that
level of isolation. The transaction isolation levels shown in Figure 6-12 can be defined as:

•	The read uncommitted isolation level allows dirty reads, nonrepeatable reads, and
phantom reads to occur.

•	The read committed isolation level allows nonrepeatable reads and phantom
reads, but disallows dirty reads.

•	The repeatable reads isolation level allows phantom reads, but disallows both dirty
reads and nonrepeatable reads.

•	The serializable isolation level does not allow any of these three data read
problems to occur.

Generally, the more restrictive the isolation level, the less throughput, although much
depends on the workload and how the application programs were written. Moreover, not
all DBMS products support all these levels. Products also vary in the manner in which they
are supported and in the burden they place on the application programmer.

A cursor is a pointer into a set of rows that are the result set from an SQL SELECT state-
ment, and cursors are usually defined using SELECT statements. For example, the fol-
lowing statement defines a cursor named TransCursor that operates over the set of rows
indicated by this SELECT statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DECLARE-CURSOR-CH06-01 *** */

DECLARE CURSOR TransCursor AS

SELECT	 *

FROM	 [TRANSACTION]

WHERE	 PurchasePrice > '10000';

After an application program opens a cursor, it can place the cursor somewhere in the
result set. Most commonly, the cursor is placed on the first or last row, but other possibili-
ties exist.

A transaction can open several cursors—either sequentially or simultaneously. In
addition, two or more cursors may be open on the same table, either directly on the
table or through an SQL view on that table. Because cursors require considerable
memory, having many cursors open at the same time (for example, for a thousand
concurrent transactions) consumes considerable memory. One way to reduce cursor
burden is to define reduced-capability cursors and use them when a full-capability cur-
sor is not needed.

Figure 6-13 lists three cursor types supported by SQL Server 2014. In SQL Server
2014, cursors may be either forward-only cursors or scrollable cursors. With a forward-
only cursor, the application can only move forward through the records, and changes made
by other cursors in this transaction and other transactions will be visible only if they occur
to the rows ahead of the cursor. With a scrollable cursor, the application can scroll forward
and backward through the records.

There are three types of cursors, each of which can be implemented as either a
forward-only or scrollable cursor. A static cursor takes a snapshot of a relation and pro-
cesses that snapshot. Changes made using this cursor are visible; changes from other
sources are not visible.

Cursor Types

Chapter 6   Database Administration   349

A dynamic cursor is a fully featured cursor. All inserts, updates, deletions, and changes
in row order are visible to a dynamic cursor. Unless the isolation level of the transaction is a
dirty read, only committed changes are visible.

Keyset cursors combine some features of static cursors with some features of dynamic
cursors. When the cursor is opened, a primary key value is saved for each row. When the
application positions the cursor on a row, the DBMS uses the key value to read the current
value of the row. Inserts of new rows by other cursors (in this transaction or in other trans-
actions) are not visible. If the application issues an update on a row that has been deleted
by a different cursor, the DBMS creates a new row with the old key value and places the
updated values in the new row (assuming that all required fields are present). As with dy-
namic cursors, unless the isolation level of the transaction is a dirty read, only committed
updates and deletions are visible to the cursor.

Cursor types for DBMSs besides SQL Server 2014 are similar, except that the forward-
only cursor is sometimes implemented as a fourth cursor type. In this case, the static, key-
set, and dynamic cursors will be strictly scrollable cursors.

The amount of overhead and processing required to support a cursor is different for each
type. In general, the cost goes up as you move down the cursor types shown in Figure 6-13. In
order to improve DBMS performance, therefore, an application developer should create cur-
sors that are just powerful enough to do the job. It is also very important to understand how a
particular DBMS implements cursors and whether cursors are located on the server or on the
client. In some cases, it might be better to place a dynamic cursor on the client than to have a
static cursor on the server. No general rule can be stated because performance depends on the
implementation used by the DBMS product and the application requirements.

Cursor Type Description Comments

Static

Keyset

Dynamic Changes of any type and from
any source are visible.

Application sees the data as
they were at the time the
cursor was opened.

When the cursor is opened, a
primary key value is saved
for each row in the recordset.
When the application
accesses a row, the key is
used to fetch the current
values for the row.

Changes made by this cursor
are visible. Changes from
other sources are not visible.
Backward and forward
scrolling are allowed.

All inserts, updates, deletions,
and changes in recordset order
are visible. If the isolation level
is dirty read, then uncommitted
changes are visible. Otherwise,
only committed changes are
visible.

Updates from any source are
visible. Inserts from sources
outside this cursor are not visible
(there is no key for them in the
keyset). Inserts from this cursor
appear at the bottom of the
recordset. Deletions from any
source are visible. Changes in
row order are not visible. If the
isolation level is dirty read, then
committed updates and deletions
are visible; otherwise, only
committed updates and deletions
are visible.

Figure 6-13

Summary of Cursor
Types

350   Part 3   Database Management

A word of caution: If you do not specify the isolation level of a transaction
or do not specify the type of cursors you open, the DBMS will use a default
level and types. These defaults may be perfect for your application, but they
also may be terrible. Thus, even though you can ignore these issues, you
cannot avoid their consequences. You must learn the capabilities of your
DBMS product.

BTW

Database
Authorization

Users

Permissions

Authentication

Login Name

Password

Figure 6-14

Database Security
Authentication and
Authorization

The goal of database security is to ensure that only authorized users can perform authorized
activities at authorized times. This goal is usually broken into two parts: authentication,
which makes sure the user has the basic right to use the system in the first place, and autho-
rization, which assigns the authenticated user specific rights or permissions to do specific
activities on the system. As shown in Figure 6-14, user authentication is achieved by requir-
ing the user to log in to the system with a password (or other means of positive identifica-
tion, such as a biometric scan of a fingerprint), whereas user authorization is achieved by
granting DBMS-specific permissions.

Note that authentication (when the user logs in to the system) by itself is not sufficient
for use of the database—unless the user has been granted permissions, he or she cannot ac-
cess the database or take any actions that use it.

Permissions can be managed using SQL Data Control Language (DCL) statements:

•	The SQL GRANT statement is used to assign permissions to users and groups,
so that the users or groups can perform various operations on the data in the
database.

•	The SQL REVOKE statement is used to take existing permissions away from
users and groups.

While these statements can be used in SQL scripts and with SQL command line utili-
ties, we will find it much easier to use the GUI DBMS administration utilities provided for
use with each of the major DBMS products to manage user permissions.

The goal of database security is difficult to achieve, and to make any progress at all
the database development team must determine (1) which users should be able to use
the database (authentication) and (2) the processing rights and responsibilities of each
user. These security requirements can then be enforced using the security features of
the DBMS, as well as additions to those features that are written into the application
programs.

Database Security

Chapter 6   Database Administration   351

User Accounts
Consider, for example, the database security needs of Heather Sweeney Designs. There
must be some means of controlling which employees can have access to the database.
There is: You can create a user account for each employee. Figure 6-15 shows the creation
of the user login HSD-User at the DBMS security level in SQL Server.

This step creates the initial user account in the DBMS—not a specific database. The
password being assigned is HSD-User+password, which we will also need for the HSD
Web pages in Chapter 7. Note that in the Windows environment there are two choices for
controlling authentication: We can use the Windows operating system to control authen-
tication, or we can create an SQL Server internal user account with its own login name
and password. For other DBMS products that are not as operating system specific as SQL
Server, only the second option of internal user accounts can be used.

User accounts and passwords need to be managed carefully. The exact terminology,
features, and functions of DBMS account and password security depend on the DBMS
product used.

User Processing Rights and Responsibilities
All major DBMS products provide security tools that limit certain actions on certain ob-
jects to certain users. A general model of DBMS security is shown in Figure 6-16.

According to Figure 6-16, a user can be assigned to one or more roles (groups), and
a role can have one or more users. Users, roles, and objects (used in a generic sense) have
many permissions. Each permission is assigned to one user or role and one object. Once
a user is authenticated by the DBMS, the DBMS limits the person’s actions to the defined
permissions for that user and to the permissions for roles to which that user has been
assigned.

The user’s DMBS login
name

The user’s DBMS
password

The HSD database

Figure 6-15

Creating the Database Server Login

352   Part 3   Database Management

Now, let’s consider user authorization at Heather Sweeney Designs. The company has
three types of users: administrative assistants, management (Heather and others), and a
system administrator (Heather’s consultant). Figure 6-17 summarizes the processing rights
that Heather determined were appropriate for her business.

Administrative assistants can read, insert, and change data in all tables. However, they
can delete data only from SEMINAR_CUSTOMER and LINE_ITEM. This means that
administrative assistants can disenroll customers from seminars and can remove items from
an order. Management can take all actions on all tables except delete CUSTOMER data.
Heather believes that for as hard as she works to get a customer, she does not want to ever
run the risk of accidentally deleting one.

Finally, the system administrator can modify the database structure and grant rights
(assign permissions) to other users but can take no action on data. The system admin-
istrator is not a user and so should not be allowed access to user data. This limitation

USER

OBJECT

ROLE

Accounting
Tellers
Shop Managers
Unknown Public

Eleanore Wu
James Johnson
Richard Ent

Eleanore Wu can execute MonthEnd stored procedure.
James Johnson can alter all tables.

Accounting can update CUSTOMER table.

PERMISSION

Figure 6-16

A Model of DBMS
Security

Figure 6-17

Processing Rights at Heather Sweeney Designs

Database Rights Granted
Table Administrative Assistants Management System Administrator
SEMINAR Read, Insert, Change Read, Insert, Change, Delete Grant Rights, Modify

Structure

CUSTOMER Read, Insert, Change Read, Insert, Change Grant Rights, Modify
Structure

SEMINAR_
CUSTOMER

Read, Insert, Change, Delete Read, Insert, Change, Delete Grant Rights, Modify
Structure

CONTACT Read, Insert, Change Read, Insert, Change, Delete Grant Rights, Modify
Structure

INVOICE Read, Insert, Change Read, Insert, Change, Delete Grant Rights, Modify
Structure

LINE_ITEM Read, Insert, Change, Delete Read, Insert, Change, Delete Grant Rights, Modify
Structure

PRODUCT Read, Insert, Change Read, Insert, Change, Delete Grant Rights, Modify
Structure

Chapter 6   Database Administration   353

might seem weak. After all, if the system administrator can assign permissions, he or she
can get around the security system by changing the permissions to take whatever action
is desired, make the data changes, and then change the permissions back. This is true,
but it would leave an audit trail in the DBMS logs. That, coupled with the need to make
the security system changes, will dissuade the administrator from unauthorized activity.
It is certainly better than allowing the administrator to have user data access permis-
sions with no effort.

A very important principle of database security administration (and of network ad-
ministration) is that the types of permissions shown in Figure 6-17 are given to user groups
(also known as user roles) and not to individual users unless absolutely necessary. There
may be some cases in which specific users need to be assigned permissions within the da-
tabase, but we want to avoid this whenever possible. Note that because groups or roles are
used, it is necessary to have a means for assigning users to groups or roles. When Heather
Sweeney signs onto the computer, some means must be available to determine which group
or groups she belongs to.

Now, we need to make role and permission assignments in the HSD database. HSD-
User is one of Heather’s administrative assistants and, therefore, needs the ability to read,
insert, and change data in all tables. First, we need to grant HSD-User permission to use
the HSD database within the DBMS. Figure 6-18 shows the creation of the database-level
user named HSD-Database-User at the HSD database security level in SQL Server. Note
that this user is being created specifically for the HSD database but is based on the already
created DBMS login name. Also note that in SQL Server no password is assigned at the
database security level, only at the DBMS security level.

Figure 6-19 shows the fixed database roles in SQL Server and their associated
permissions. Because HSD-Database-User needs to be able to read, insert, and change
data in all tables in the HSD database, we should assign HSD-Database-User to the roles
db_datareader and db_datawriter. Figure 6-20 shows HSD Database User being added to
the db_datareader role. (We cover this further in the next section.)

The user name for the
HSD database

The user’s DBMS login
name

Figure 6-18

Creating the Database User Name

354   Part 3   Database Management

In this discussion, we have used the phrase processing rights and responsibilities. As
this phrase implies, responsibilities go with processing rights. If, for example, the sys-
tem administrator deletes CUSTOMER data, it is that person’s responsibility to ensure
that those deletions do not adversely affect the company’s operation, accounting, and
so forth.

Processing responsibilities cannot be enforced by the DBMS or the database applica-
tions. Responsibilities are, instead, encoded in manual procedures and explained to users
during systems training. These are topics for a systems development book, and we do not
consider them further here except to reiterate that responsibilities go with rights. Such re-
sponsibilities must be documented and enforced.

The DBA has the task of managing processing rights and responsibilities, which
change over time. As the database is used and as changes are made to the applications
and to the DBMS’s structure, the need for new or different rights and responsibilities
will arise. The DBA is a focal point for the discussion of such changes and for their
implementation.

After processing rights have been defined, they can be implemented at many levels:
operating system, network directory service, Web server, DBMS, and application. The next
two sections consider the DBMS and application aspects. The other aspects are beyond the
scope of this book.

Figure 6-19

SQL Server Fixed Database Roles

Fixed Database Role Database-Specific Permissions DBMS Server Permissions
db_accessadmin Permissions granted:

ALTER ANY USER, CREATE SCHEMA
Permissions granted with GRANT option:
CONNECT

Permissions granted:
VIEW ANY DATABASE

db_backupoperator Permissions granted:
BACKUP DATABASE, BACKUP LOG,
CHECKPOINT

Permissions granted:
VIEW ANY DATABASE

db_datareader Permissions granted:
SELECT

Permissions granted:
VIEW ANY DATABASE

db_datawriter Permissions granted:
DELETE, INSERT, UPDATE

Permissions granted:
VIEW ANY DATABASE

db_ddladmin Permissions granted:
See SQL Server documentation

Permissions granted:
VIEW ANY DATABASE

db_denydatareader Permissions denied:
SELECT

Permissions granted:
VIEW ANY DATABASE

db_denydatawriter Permissions denied:
DELETE, INSERT, UPDATE

Permissions granted:
VIEW ANY DATABASE

db_owner Permissions granted with GRANT option:
CONTROL

Permissions granted:
VIEW ANY DATABASE

db_securityadmin Permissions granted:
ALTER ANY APPLICATION ROLE, ALTER
ANY ROLE, CREATE SCHEMA, VIEW
DEFINITION

Permissions granted:
VIEW ANY DATABASE

Note: For the definitions of each of the SQL Server permissions shown in the table, consult the SQL Server
documentation.

Chapter 6   Database Administration   355

DBMS-Level Security
Security guidelines for a DBMS are shown in Figure 6-21. First, the DBMS should be
run behind a firewall. In most cases, no communication with the DBMS or database ap-
plications should be allowed to be initiated from outside the organization’s network. For
example, the company’s Web site should be hosted on a separate, dedicated Web server.
The Web server will have to communicate through the firewall, and the DBMS server
should be protected behind it.

Second, service packs and fixes for the operating system and the DBMS must be ap-
plied as soon as possible. In spring 2003, the slammer worm exploited a security hole in
SQL Server, bringing major organizational database applications to their knees. Microsoft
had published a patch that eliminated the hole prior to the release of the slammer worm, so
any organization that had applied that patch was not affected by the worm.

A third protection is to limit the capabilities of the DBMS to only those features and func-
tions that the applications need. For example, Oracle Database can support many different
communications protocols. To improve security, any Oracle-supported protocol that is not used
should be removed or disabled. Similarly, every DBMS ships with hundreds of system-stored
procedures. Any procedure that is not used should be removed from operational databases.

The Database Role
Properties −
db_datareader
dialog box

The HSD database
user name HSD-
Database-User

The Database Role
db_datawriter

Figure 6-20

Assigning HSD-Database-User to the db_datareader Role

• Run the DBMS behind a firewall
• Apply the latest operating system and DBMS
 service packs and fixes
• Limit DBMS functionality to needed features
• Protect the computer that runs the DBMS
• Manage accounts and passwords
• Encryption of sensitive data transmitted
 across the network
• Encryption of sensitive data stored
 in databases

Figure 6-21

DBMS Security
Guidelines

356   Part 3   Database Management

Another important security measure is to protect the computer that runs the DBMS.
No users should be allowed to work on the DBMS computer, and that computer should
reside in a separate facility, behind locked doors. Visits to the room housing the DBMS
should be logged with date and time. Further, because people can login to DBMS serv-
ers via remote-control software (such as Microsoft Remote Desktop Connection in the
Windows environment), who has (and who can grant) remote access must be controlled.

A user can enter a name and password; in some applications, the name and password
are entered on behalf of the user. For example, as we saw in Figure 6-15, the Windows
operating system user name and password can be passed directly to SQL Server. In other
cases, an application program provides the user name and password.

The security systems used by SQL Server 2014, Oracle Database Express Edition 11g
Release 2, and MySQL 5.6 are variations of the model shown in Figure 6-13. The terminol-
ogy used might vary, but the essence of their security systems is the same.

Application-Level Security
Although DBMS products, such as SQL Server 2014, Oracle Database Express Edition
11g Release 2, and MySQL 5.6, provide substantial database security capabilities, they are
generic by their very nature. If an application requires specific security measures—such as
disallowing users to view a row of a table or a join of a table that has an employee name
other than the user’s own—the DBMS facilities will not be adequate. In these cases, the
security system must be augmented by features in the associated application programming.

For example, application security in Internet applications is often provided on the
Web server computer. When application security is executed on this server, sensitive secu-
rity data do not need to be transmitted over the network. To understand this better, sup-
pose an application is written such that when users click a particular button on a browser
page the following query is sent to the Web server and then to the DBMS:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH06-01 *** */

SELECT	 *

FROM	 EMPLOYEE;

This statement returns all EMPLOYEE rows. If the application security allows employees
to access only their own data, then a Web server could add the following WHERE clause
to this query:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH06-02 *** */

SELECT	 *

FROM	 EMPLOYEE

WHERE	 EMPLOYEE.Name = '<%SESSION("EmployeeName")%>';

An expression like this causes the Web server to fill in the employee’s name for the
WHERE clause. For a user signed on under the name Benjamin Franklin, the following
statement results from this expression:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH06-03 *** */

SELECT	 *

FROM	 EMPLOYEE

WHERE	 EMPLOYEE.Name = 'Benjamin Franklin';

Chapter 6   Database Administration   357

Because the name is inserted by a program on the Web server, the browser user does not
know it is occurring and cannot interfere with it. Such security processing can be done
as shown here on a Web server, and it can also be done within the application programs
themselves or written as code stored within the DBMS to be executed by the DBMS at the
appropriate times.

You can also store additional data in a security database that is accessed by the Web
server as well as by stored DBMS code. That security database could contain, for example,
the identities of users paired with additional values of WHERE clauses. For example, sup-
pose the users in the personnel department can access more than just their own data. The
predicates for appropriate WHERE clauses could be stored in the security database, read
by the application program, and appended to SQL SELECT statements, as necessary.

Many other possibilities exist for extending DBMS security with application process-
ing. In general, you should use the DBMS security features first. Only if they are inad-
equate for the requirements should you add to them with application code. The closer the
security enforcement is to the data, the lower the chance for infiltration. Also, using the
DBMS security features is faster, less expensive, and likely to produce higher-quality results
than if you develop your own.

Computer systems fail. Hardware breaks. Programs have bugs. Procedures written by hu-
mans contain errors. People make mistakes. All these failures can and do occur in database
applications. Because a database is shared by many people and because it often is a key ele-
ment of an organization’s operations, it is important to recover it as soon as possible.

Several problems must be addressed. First, from a business standpoint, business func-
tions must continue. For example, customer orders, financial transactions, and packing lists
must be completed manually. Later, when the database application is operational again, the
new data can be entered. Second, computer operations personnel must restore the system
to a usable state as quickly as possible and as close as possible to what it was when the sys-
tem crashed. Third, users must know what to do when the system becomes available again.
Some work might need to be reentered, and users must know how far back they need to go.

When failures occur, it is impossible simply to fix the problem and resume processing.
Even if no data are lost during a failure (which assumes that all types of memory are non-
volatile—an unrealistic assumption), the timing and scheduling of computer processing are
too complex to be accurately recreated. Enormous amounts of overhead data and process-
ing would be required for the operating system to be able to restart processing precisely
where it was interrupted. It is simply not possible to roll back the clock and put all the elec-
trons in the same configuration they were in at the time of the failure. However, two other
approaches are possible: recovery via reprocessing and recovery via rollback/rollforward.

Recovery via Reprocessing
Because processing cannot be resumed at a precise point, the next-best alternative is to go
back to a known point and reprocess the workload from there. The simplest form of this type
of recovery involves periodically making a copy of the database (called a database save) and
keeping a record of all transactions processed since the save. Then, when failure occurs, the
operations staff can restore the database from the save and reprocess all the transactions.

Unfortunately, this simple strategy normally is not feasible. First, reprocessing transac-
tions takes the same amount of time as processing them in the first place. If the computer
is heavily scheduled, the system might never catch up. Second, when transactions are pro-
cessed concurrently, events are asynchronous. Slight variations in human activity, such as a
user reading an email message before responding to an application prompt, could change
the order of the execution of concurrent transactions. Therefore, whereas Customer A got
the last seat on a flight during the original processing, Customer B might get the last seat

Database Backup and Recovery

358   Part 3   Database Management

during reprocessing. For these reasons, reprocessing is normally not a viable form of recov-
ery from failure in multiuser systems.

Recovery via Rollback and Rollforward
A second approach to database recovery involves periodically making a copy of the da-
tabase (the database save) and keeping a log of the changes made by transactions against
the database since the save. Then, when a failure occurs, one of two methods can be used.
With the first method, called rollforward, the database is restored using the saved data and
all valid transactions since the save are reapplied. Note that we are not reprocessing the
transactions because the application programs are not involved in the rollforward. Instead,
the processed changes, as recorded in the log, are reapplied.

With the second method, rollback, we correct mistakes caused by erroneous or par-
tially processed transactions by undoing the changes they made in the database. Then the
valid transactions that were in process at the time of the failure are restarted.

As stated, both of these methods require that a log of the transaction results be kept.
This log contains records of the data changes in chronological order. Note that transactions
must be written to the log before they are applied to the database. That way, if the system
crashes between the time a transaction is logged and the time it is applied, at worst, there
is a record of an unapplied transaction. If transactions were applied before being logged, it
would be possible (and undesirable) to change the database without having a record of the
change. If this happens, an unwary user might reenter an already completed transaction.

In the event of a failure, we use the log to undo and redo transactions, as shown in
Figure 6-22. To undo a transaction as shown in Figure 6-22(a), the log must contain a copy
of every database record before it was changed. Such records are called before-images.
A transaction is undone by applying before-images of all its changes to the database.

To redo a transaction as shown in Figure 6-22(b), the log must contain a copy of ev-
ery database record (or page) after it was changed. These records are called after-images.
A transaction is redone by applying after-images of all its changes to the database. Possible
data items of a transaction log are shown in Figure 6-23.

For this example transaction log, each transaction has a unique name for identification
purposes. Furthermore, all images for a given transaction are linked together with pointers.
One pointer points to the previous change made by this transaction (the reverse pointer),

Database
with Changes

Before-Images

Database
Without Changes

Undo

(a) Rollback

Database
Without Changes
(Save)

After-Images

Database
with Changes

Redo

(b) Rollforward

Figure 6-22

Undo and Redo
Transactions

Chapter 6   Database Administration   359

and the other points to the next change made by this transaction (the forward pointer). A
zero in the pointer field means that this is the end of the list. The DBMS recovery subsys-
tem uses these pointers to locate all records for a particular transaction. Figure 6-23 shows
an example of the linking of log records.

Other data items in the log are:

•	The time of the action
•	The type of operation (START marks the beginning of a transaction, and

COMMIT terminates a transaction, releasing all locks that were in place)
•	The object acted upon, such as record type and identifier
•	The before-images and after-images.

Given a log with before-images and after-images, the undo and redo actions are straightfor-
ward. Figure 6-24 shows how recovery for a system crash is accomplished.

To undo the transaction in Figure 6-24(a), the recovery processor simply replaces each
changed record with its before-image, as shown in Figure 6-24(b). When all before-images have
been restored, the transaction is undone. To redo a transaction, the recovery processor starts
with the version of the database at the time the transaction started and applies all after-images.
This action assumes that an earlier version of the database is available from a database save.

Restoring a database to its most recent save and reapplying all transactions might require
considerable processing. To reduce the delay, DBMS products sometimes use checkpoints.
A checkpoint is a point of synchronization between the database and the transaction log.
To perform a checkpoint, the DBMS refuses new requests, finishes processing outstanding
requests, and writes its buffers to disk. The DBMS then waits until the operating system noti-
fies it that all outstanding write requests to the database and to the log have been completed
successfully. At this point, the log and the database are synchronized. A checkpoint record is
then written to the log. Later, the database can be recovered from the checkpoint, and only
after-images for transactions that started after the checkpoint need to be applied.

Checkpoints are inexpensive operations, and it is feasible to make three or four (or more)
per hour. This way, no more than 15 or 20 minutes of processing needs to be recovered. Most
DBMS products perform automatic checkpoints, making human intervention unnecessary.

You will need to learn more about backup and recovery if you work in database ad-
ministration using products such as SQL Server 2014, Oracle Database Express Edition
11g Release 2, or MySQL 5.6. For now, you just need to understand the basic ideas and to

OT1
OT1
OT2
OT1
OT1
CT1
OT1
OT2
CT1
CT1

0
1
0
2
4
0
5
3
6
9

2
4
8
5
7
9
0
0

10
0

11:42
11:43
11:46
11:47
11:47
11:48
11:49
11:50
11:51
11:51

START
MODIFY
START
MODIFY
INSERT
START
COMMIT
COMMIT
MODIFY
COMMIT

CUST 100

SP AA
ORDER 11

SP BB

(old value)

(old value)

(old value)

(new value)

(new value)
(value)

(new value)

1
2
3
4
5
6
7
8
9

10

Tr
an

sa
ct

io
n

 ID

R
ev

er
se

 P
o

in
te

r

F
o

rw
ar

d
 P

o
in

te
r

T
im

e

Ty
p

e
o

f
O

p
er

at
io

n

O
b

je
ct

B
ef

o
re

-I
m

ag
e

A
ft

er
-I

m
ag

e

R
el

at
iv

e
R

ec
o

rd
 N

u
m

b
erFigure 6-23

Transaction Log
Example

360   Part 3   Database Management

realize that it is the responsibility of the DBA to ensure that adequate backup and recovery
plans have been developed and that database saves and logs are generated as required. You
should also understand that many DBMS GUI utilities allow the DBA to easily make da-
tabase backups as needed, even without a backup plan and backup schedule. Figure 6-25
shows the Microsoft SQL Server Management Studio being used to make a simple recov-
ery model full database backup of the HSD database.

Accept order data from browser.
Read CUSTOMER and SALESPERSON records.
Change CUSTOMER and SALESPERSON records.
Rewrite CUSTOMER record.
Rewrite SALESPERSON record.
Insert new ORDER record.

****CRASH****

(Log records written here)

(a) Processing with a Problem

Before-images of
CUSTOMER and
SALESPERSON
records

Database with
ORDER
transaction
removed

Database with
new CUSTOMER,
SALESPERSON,
and ORDER
records

Recovery Processor
(Applies before-images of
CUSTOMER and SALESPERSON
and removes new ORDER record)

(b) Recovery Processing

Figure 6-24

Recovery Example

The Back Up
Database − HSD
dialog box

The HSD database

The SIMPLE recovery
model

The Full backup type

The database itself is
being backed up

Figure 6-25

Backing Up the HSD Database

Chapter 6   Database Administration   361

Concurrency control, security, and reliability are the three major concerns of database admin-
istration. However, other administrative and managerial DBA functions are also important.

For one, a DBA needs to ensure that a system exists to gather and record user-reported
errors and other problems. A means needs to be devised to prioritize those errors and
problems and to ensure that they are corrected accordingly. In this regard, the DBA works
with the development team not only to resolve these problems but also to evaluate features
and functions of new releases of the DBMS.

As the database is used and as new requirements develop and are implemented, re-
quests for changes to the structure of the database will occur. Changes to an operational
database need to be made with great care and thoughtful planning. Because databases are
shared resources, a change to the structure of a database to implement features desired by
one user or group can be detrimental to the needs of other users or groups.

Therefore, a DBA needs to create and manage a process for controlling the database
configuration. Such a process includes procedures for recording change requests, con-
ducting user and developer reviews of such requests, and creating projects and tasks for
implementing changes that are approved. All these activities need to be conducted with a
community-wide view.

Finally, a DBA is responsible for ensuring that appropriate documentation is maintained
about database structure, concurrency control, security, backup and recovery, applications
use, and a myriad of other details that concern the management and use of the database. Some
vendors provide tools for recording such documentation. At a minimum, a DBMS will have its
own metadata that it uses to process the database. Some products augment these metadata with
facilities for storing and reporting application metadata, as well as operational procedures.

A DBA has significant responsibilities in the management and administration of a
database. These responsibilities vary with the database type and size, the number of users,
and the complexity of the applications. However, the responsibilities are important for all
databases. You should know about the need for DBA services and consider the material in
this chapter even for small, personal databases.

Additional DBA Responsibilities

The Access Workbench
Section 6
Database Administration in Microsoft Access

At this point, we have created and populated the CONTACT, CUSTOMER,
SALESPERSON, and VEHICLE tables in the Wallingford Motors’ CRM database. We have
learned how to create forms, reports, and queries in the preceding sections of “The Access
Workbench” and how to create and use view-equivalent queries in Appendix E. We have also
studied how 1:1. 1:N, and N:M relationships are created and managed in Microsoft Access.

This chapter deals with database administration topics, and in this section of “The Access
Workbench” we will look at database security in Microsoft Access. In this section, you will:

•	Understand database security in Microsoft Access 2013.

Database Security in Microsoft Access

Until Microsoft Access 2007, Microsoft Access had a user-level security system that allowed a
DBA to grant specific database permissions to individual users or groups of users on a basis
similar to that discussed in this chapter. Starting with Microsoft Access 2007, however, a very

(Continued)

362   Part 3   Database Management

different security model has been implemented. This model is based on whether the entire
database itself is trustworthy, and it seems like Microsoft is saying that Microsoft Access re-
ally is for personal (or small workgroup) databases and that if you need user-level security you
should be using SQL Server 2014 (especially because the SQL Server 2014 Express edition is
a free download). At the same time, Microsoft Access 2013 (and the earlier Microsoft Access
2007 and 2010) will still work with the earlier user-level security system for Microsoft Access
databases in the Microsoft Access 2003 (and earlier) *.mdb file format. In this section of “The
Access Workbench,” we will focus on the current Microsoft Access 2013 security system.

First, however, we need to make a copy of our WMCRM.accdb database file. This is
necessary because we have already enabled all features of that database. In earlier sections
of “The Access Workbench,” we learned how to make copies of Microsoft Access 2013
databases—we simply make a copy the WMCRM.accdb database file in the My Documents
folder in the Documents library and rename this new file WMCRM-AW06-01.accdb.

Database Security in Microsoft Access 2013

You can secure Microsoft Access 2013 files in three basic ways:

•	By creating trusted locations for Microsoft Access database storage
•	By password encrypting and decrypting Microsoft Access databases
•	By deploying databases packaged with digital signatures

Let us look at each of these, in turn.

Trusted Locations

Up until now, whenever we have opened a Microsoft Access database for the first time
during our work in “The Access Workbench” the Security Warning message bar has been
displayed, as shown in Figure AW-6-1 where we have just opened the WMCRM-AW06-01
.accdb database for the first time.

Thus far, we have always clicked the Enable Content button to enable the disabled
content. Note that we only need to do this once for each database—the first time we open
the database after it has been created. We have done this so we could use Microsoft Access
features that are otherwise disabled and unavailable to us, including:

•	Microsoft Access database queries (either SQL or QBE) that add, update, or delete data
•	Data definition language (DDL) (either SQL or QBE) actions that create or alter

database objects, such as tables

Click this link to see
more options

The Enable Content
button

The Security Warning
message Bar

Figure AW-6-1

The Security Warning Message Bar

Chapter 6   Database Administration   363

•	SQL commands being sent from a Microsoft Access application to a database
server, such as Microsoft SQL Server 2014, that support the Open Database
Connectivity (ODBC) standard

•	ActiveX controls

We obviously need the first of these features if we are going to build Microsoft Access 2013
databases. The third feature is important if we are using a Microsoft Access 2013 database
as an application front end (containing the application forms, queries, and reports) for
data stored in an SQL Server 2014 database. (This use of Microsoft Access and the ODBC
standard is discussed in Chapter 7.) Finally, ActiveX controls are software code written to
Microsoft’s ActiveX specification, and they are often used as Web browser plug-ins. The
problem here is that Microsoft Access 2013 databases can be targeted by code written
in ActiveX-compliant programming languages that can manipulate the databases just as
Microsoft Access itself would.

Although we can simply click the Enable Content button to activate these features,
note that Microsoft Access 2013 also provides other options for dealing with this security
problem. If we click the link labeled Some active content has been disabled. Click for more
details shown in Figure AW-6-1, we are switched to the Info page in the Backstage view and
specifically to the Security Warning section of that page, as shown in Figure AW-6-2.

Clicking the Enable Content button displays two options, as shown in Figure
AW-6-3—Enable All Content and Advanced Options. Clicking the Enable All Content
button produces the same results as clicking the Enable Content button on the
Security Warning toolbar, and all features of the database will always be available to us.
Clicking the Advanced Options button displays the Microsoft Office Security Options
dialog box, as shown in Figure AW-6-4.

The Info button

Click the Enable
Content button to see
more options

The File menu on
the Backstage View

Figure AW-6-2

The Security Warning Section of the File | Info Page

(Continued)

364   Part 3   Database Management

The Microsoft Office Security Options dialog box provides the final two op-
tions. The first option is to allow Microsoft Access to continue to disable the possible
security risks. Thus the Help protect me from unknown content (recommended) radio
button is selected as the default. This option is the same as simply closing the Security
Warning toolbar when it is first displayed. The second option is to enable the content
in the database for only this use (“session”) of the database by checking the Enable
content for this session radio button. This is the first new choice we have really been
given, and we will open the database using this option. Note that this means that the

Click Advanced
Options to display the
Microsoft Office
Security Options
dialog box

Clicking Enable
All Content is the
same as clicking the
Enable Content button
on the Security
Warning toolbar

Figure AW-6-3

The Enable Content Options

The Enable content
for this session
radio button

The Microsoft
Office Security
Options dialog box

The OK button

Figure AW-6-4

The Microsoft Office Security Options Dialog Box

Chapter 6   Database Administration   365

Security Warning message bar will be displayed again the next time this database file
is opened!

However, we (nearly) always need these Microsoft Access features enabled. Is there a
way to permanently enable them so that we do not have to deal with the Security Warning
bar every time we open a new Microsoft Access database? Yes, there is.

The word Microsoft uses to describe our situation is trust: Do we trust the content
of our database? If so, we can create a trusted location in which to store our trusted da-
tabases. And databases we use from the trusted location are opened without the security
warning but with all features enabled.

Creating a Trusted Location

1.	 Start Microsoft Access.
2.	 If necessary, click the File command tab to display the Backstage view.
3.	 Click the Options command on the Backstage view. The Microsoft Access Options dialog

box appears.
4.	 Click the Trust Center button to display the Trust Center page, as shown in

Figure AW-6-5.
5.	 Click the Trust Center Settings button to display the Trust Center dialog box, as shown

in Figure AW-6-6. Note that the Message Bar Settings for all Office Applications page is
currently displayed and that the setting that enables the display of the Security Options
message bar is currently selected.

The Access Options
dialog box

The Trust Center
button

The Trust Center
page

The Trust Center
Settings button

The OK button

Figure AW-6-5

The Access Options Trust Center Page

(Continued)

366   Part 3   Database Management

The Trust Center
dialog box

The Trusted
Locations button

The Message Bar
page

The Message Bar
Settings for all
Office
Applications
page

The OK button

Figure AW-6-6

The Trust Center Dialog Box

  6.	 Click the Trusted Locations button to display the Trusted Locations page, as shown in
Figure AW-6-7. Note that the only currently trusted location is the folder that stores the
Microsoft Access wizard databases. Also note that we have the ability to disable all trusted
locations if we choose to do so.

  7.	 Click the Add new location button to display the Microsoft Office Trusted Location dia-
log box, as shown in Figure AW-6-8.

  8.	 Click the Browse button. The Browse dialog box appears, as shown in Figure AW-6-9.
  9.	 Expand the Documents library to display the My Documents folder, and then click the My

Documents folder to select it.
10.	 Click the New Folder button to create a new folder named New Folder in edit mode.
11.	 Rename the new folder as My-Trusted-Location. When you have finished typing in the

folder name My-Trusted-Location, press the Enter key. The My-Trusted-Location folder
now appears, as shown in Figure AW-6-10.

12.	 Click the OK button on the Browse dialog box. The Microsoft Office Trusted Location
dialog box appears, with the new trusted location in the Path text box.

13.	 Click the OK button on the Microsoft Office Trusted Location dialog box. The Trust
Center dialog box appears, with the new path added to the User Locations section of the
Trusted Locations list.

14.	 Click the OK button on the Trust Center dialog box to return to the Trust Center page of
the Access Options dialog box.

15.	 Click the OK button on the Trust Center page of the Access Options dialog box to
close it.

16.	 Close Microsoft Access.

Chapter 6   Database Administration   367

Earlier in this section of “The Access Workbench” we created a copy of the WMCRM
.accdb database file as the new file WMCRM-AW06-01.accdb. We used this file in our
discussion of the Security Warning message bar and its associated options. At this point,
we will still see the Security Warning message bar whenever we open WMCRM-AW06-01
.accdb database file in its current location in the Documents library.

Now we make a copy of the WMCRM-AW06-01.accdb file in the Document
library and rename it as WMCRM-AW06-02.accdb. After making the WMCRM-AW06-02
.accdb file, we move it to the My-Trusted-Documents folder. Now we can try opening the
WMCRM-AW06-02.accdb file from a Microsoft Access 2013 trusted location.

The Trusted
Locations button

The Trusted
Locations page

The Add new
location button

Currently the only
trusted location is
where Access wizards
are stored

We can disable all
trusted locations if
necessary

The OK button

Figure AW-6-7

The Trusted Locations Page

We can enable trust of
all subfolders of the
trusted location

The Browse button

The Microsoft Office
Trusted Location
dialog box

The OK button

Figure AW-6-8

The Microsoft Office
Trusted Location
Dialog Box

(Continued)

368   Part 3   Database Management

The Documents
 icon

The New Folder
button

The Browse dialog
box

The OK button

Figure AW-6-9

The Browse Dialog Box

The My-Trusted-
Location folder—
there are currently no
files in this folder

The Browse dialog
box

The OK button

Figure AW-6-10

The My-Trusted-Location Folder

Chapter 6   Database Administration   369

Opening a Microsoft Access Database from a Trusted Location

1.	 Start Microsoft Access.
2.	 If necessary, click the File command tab to display the Backstage view.
3.	 Click the Open button. The Microsoft Access Open dialog box is displayed.
4.	 Browse to the WMCRM-AW06-02.accdb file in the My-Trusted-Location folder, as shown

in Figure AW-6-11.
5.	 Click the file name to highlight it and then click the Open button.
6.	 The Microsoft Access 2013 application window appears, with the WMCRM-AW06-02 da-

tabase open in it. Note that the Security Warning bar does not appear when the database is
opened.

7.	 Close Microsoft Access 2013 and the WMCRM-AW06-02 database.

Database Encryption with Passwords

Next, let us look at database encryption. In this case, Microsoft Access will encrypt the
database, which will convert it into a secure, unreadable file format. To be able to use the
encrypted database, a Microsoft Access user must enter a password to prove that he or
she has the right to use the database. After the password is entered, Microsoft Access will
decrypt the database and allow the user to work with it.

Each password should be a strong password—a password that includes lowercase
letters, uppercase letters, numbers, and special characters (symbols) and that is at least 15
characters in length. Be sure to remember or record your password in a safe place—lost or
forgotten passwords cannot be recovered!

For this example, we want to use a new copy of the WMCRM.accdb database
file so that our encryption actions apply only to that file. Specifically, make a copy of
WMCRM-AW06-02.accdb in the My-Trusted-Documents folder and name this new file
WMCRM-AW06-03.accdb.

The WMCRM-
AW06-02.accdb file

The My-Trusted-
Location folder

The Open dialog box

The OK button

Figure AW-6-11

The WMCRM-AW06-02 File in the Open Dialog Box

(Continued)

370   Part 3   Database Management

In order to encrypt a Microsoft Access database file, the file must be opened in
Exclusive mode. This gives us exclusive use of the database and prevents any other us-
ers who have rights to use the database from opening it or using it. We start by opening
WMCRM-AW06-03.accdb for our exclusive use.

Opening a Microsoft Access Database in Exclusive Mode

1.	 Start Microsoft Access.
2.	 If necessary, click the File command tab to display the Backstage view.
3.	 Click the Open button. The Microsoft Access Open dialog box appears.
4.	 Browse to the WMCRM-AW06-03.accdb file in the My-Trusted-Location folder. Click the

file object once to select it, but not twice, which would open the file in Microsoft Access.
5.	 Click the Open button drop-down list arrow, as shown in Figure AW-6-12. The Open but-

ton drop-down list appears.
6.	 Click the Open Exclusive button in the Open button drop-down list to open the

WMCRM-AW06-03 database in Microsoft Access 2013.
■■ Note:  The Security Warning bar does not appear when the database is opened be-

cause you are opening it from a trusted location.
■■ Note:  The Open button mode options shown in Figure AW-6-12 are always avail-

able when you open a Microsoft Access database. Normally, you use just Open mode
because you want complete read and write permission in the database. Open Read-
Only mode prevents the user from making changes to the database. Exclusive mode,
as you have seen, stops other users from using the database while you are using it.
Exclusive Read-Only mode, as the name implies, combines Exclusive and Read-Only
modes.

Now that the database is open in Exclusive mode, we can encrypt the database and set
the database password.

The Open button
drop-down list

The Open button
drop-down list arrow
button

The Open dialog box

The Open Exclusive
command

The My-Trusted-
Location folder

The WMCRM-
AW06-03.accdb file

Figure AW-6-12

The Open Exclusive Button

Chapter 6   Database Administration   371

Encrypting a Microsoft Access Database

1.	 Click the File command tab to display the Backstage view.
2.	 The Info page should be displayed. If it is not, click the Info button to display the Info

page, as shown in Figure AW-6-13.
3.	 In the Encrypt with Password section of the Info page, click the Encrypt with Password

button. The Set Database Password dialog box appears, as shown in Figure AW-6-14.
4.	 In the Password text box of the Set Database Password dialog box, type in the password

AW06+password.
5.	 In the Verify text box of the Set Database Password dialog box, again type in the password

AW06+password.
6.	 Click the OK button of the Set Database Password dialog box to set the database password

and encrypt the database file.
7.	 Microsoft Access displays the warning dialog box shown in Figure AW-6-15 regarding the

effect of encrypting on row level locking. Click the OK button to clear the warning.

The Encrypt with
Password button

The File Backstage
view

The Info button

Figure AW-6-13

The File | Info Page

(Continued)

The Set Database
Password dialog box

The Password text
box

The Verify text box

The OK button

Figure AW-6-14

The Set Database Password Dialog Box

372   Part 3   Database Management

8.	 You can check that the encryption action has been accomplished by clicking the File com-
mand tab and the Info button. After the database is encrypted, the Encrypt with Password
button changes to a Decrypt Database button, as shown in Figure AW-6-16.

■■ Note:  As the Decrypt Database button name implies, if we wanted to change the
database file back to its original unencrypted form we can do so using that button.

9.	 Click the File command tab and then click the Close Database button to close the
WMCRM-AW06-03 database while leaving Microsoft Access 2013 open.

Now we can open the now-encrypted WMCRM-AW06-03.accdb database file.

The Row Level
Locking Warning
dialog box

The OK button

Figure AW-6-15

The Row Level Locking Warning Dialog Box

The Decrypt
Database button

The File
backstage view

The Info button

Figure AW-6-16

The Decrypt Database Button

Chapter 6   Database Administration   373

Opening an Encrypted Microsoft Access Database

1.	 Microsoft Access should still be open. If it is not, start Microsoft Access.
2.	 If necessary, click the File command tab to display the Backstage view.
3.	 Click the WMCRM-AW06-03.accdb file name in the quick access list of recent databases.

As shown in Figure AW-6-17, the Password Required dialog box appears.
4.	 In the Enter database password text box, type in the password AW06+password, and then

click the OK button. The Microsoft Access 2013 application window appears, with the
WMCRM-AW06-03 database open in it.

■■ Note:  The Security Warning bar does not appear when the database is opened be-
cause you are opening it from a trusted location.

5.	 Close the WMCRM-AW06-03 database and exit Microsoft Access 2013.

Packaging and Signing a Microsoft Access Database

Microsoft has included some tools in Microsoft Access 2013 to help us distribute secured
copies of Microsoft Access databases to users. Let us look at how to use them.

Compiling Microsoft Visual Basic for Applications (VBA) Code

Microsoft Visual Basic for Applications (VBA) is included in Microsoft Access. VBA is a
version of the Microsoft Visual Basic programming language that is intended to help users
add specific programmed actions to Microsoft Access applications. How to use VBA is
beyond the scope of this section of “The Access Workbench,” but we need to know how to
secure VBA code if it is included in a Microsoft Access database.

Microsoft Access 2013 includes a Make ACCDE command to compile and hide VBA
code so that although the VBA programming still functions correctly, the user can no lon-
ger see or modify the VBA code. When we use this tool, Microsoft Access creates a version
of the database file with an *.accde file extension.

In the next set of steps, we well use another copy of the WMCRM.accdb database file
so that our actions apply only to that file. Specifically, make a copy of WMCRM-AW06-02
.accdb in the My-Trusted-Documents folder and name this new file WMCRM-AW06-04
.accdb. We start by opening the WMCRM-AW06-04.accdb database file.

Creating a Microsoft Access *.accde Database

1.	 Open Microsoft Access.
2.	 If necessary, click the File command tab to display the Backstage view.
3.	 Click the Open button. The Microsoft Access Open dialog box appears.
4.	 Browse to the WMCRM-AW06-04.accdb file in the My-Trusted-Location folder. Double-

click the file object to open it.
■■ Note:  The Security Warning bar does not appear when the database is opened be-

cause you are opening it from a trusted location.

The Unset Database
Password dialog box

The Enter database
password text box

The OK button

Figure AW-6-17

The Unset Database Password Dialog Box

(Continued)

374   Part 3   Database Management

The Make ACCDE
command

The Save Database
As button

The File Backstage
view

The Save As
button

The Save As button

Figure AW-6-18

The File | Save As Page—Make ACCDE Command

5.	 Click the File command tab to display the Backstage view.
6.	 Click the Save As button to display the Save As page, as shown in Figure AW-6-18.
7.	 Click the Make ACCDE button in the Advanced group in the Save Database As

section, and then click the Save As button. The Save As dialog box appears, as shown in
Figure AW-6-19.

8.	 Click the Save button in the Save As dialog box. The WMCRM-AW06-04.accde file is
created.

■■ Note:  The displayed database name does not change. The only sign that this ac-
tion has been completed is that the WMCRM-AW06-04.accde object will now be
displayed in the list of Microsoft Access files in the Open dialog box (and other file
system tools, such as Windows Explorer).

9.	 Close the WMCRM-AW06-04 database and exit Microsoft Access.

To see the new database, we open it as we would any other Microsoft Access database.

Opening a Microsoft Access *.accde Database

1.	 Start Microsoft Access.
2.	 If necessary, click the File command tab to display the Backstage view.
3.	 Click the Open button. The Microsoft Access Open dialog box appears.
4.	 Browse to the WMCRM-AW06-04.accde file in the My-Trusted-Location folder, as shown

in Figure AW-6-20.
5.	 Click the Open button. The Microsoft Access 2013 application window appears, with the

WMCRM-AW06-04.accde database open in it.
■■ Note:  The Security Warning bar does not appear when the database is opened be-

cause you are opening it from a trusted location.

Chapter 6   Database Administration   375

The file extension is
accde

The Save button

The My-Trusted-
Location folder

The Save As
dialog box

Figure AW-6-19

The Save As Dialog Box

(Continued)

The WMCRM-
AW06-04.accde file

The Open button

The WMCRM-
AW06-04.accdb file

Figure AW-6-20

The WMCRM-AW06-04.accde File

376   Part 3   Database Management

■■ Note:  Although any previously existing VBA modules have been compiled and all
editable source code for them has been removed, the functionality of this code is still
in the database. Further note that VBA itself is still functional in the database—it has
not been disabled.

6.	 Close the WMCRM-AW06-04 database and exit Microsoft Access.

Creating a Signed Package in Microsoft Access

A digital signature scheme is a type of public-key cryptography (also known as asym-
metric cryptography), which uses two encryption keys (a private key and a public key) to
encode documents and files to protect them. Although fascinating and important topics
in their own right, cryptography in general and public-key cryptography in particular are
beyond the scope of this section of “The Access Workbench.”1 For our purposes, a digital
signature is a means of guaranteeing another user of a database that the database is, indeed,
from us and that it is safe to use.

To use a digital signature, of course, we have to have one, so the first thing we have
to do is to create one. This is not done in Microsoft Access, but rather with the Digital
Certificate for VBA Projects utility provided with Microsoft Office 2013.

Creating a Digital Signature

1.	 Switch to the Windows Start screen, and search for Digital Certificate for VBA Projects.
When the app appears in the Apps search results, click on the app icon to open the Create
Digital Certificate dialog box, as shown in Figure AW-6-21.

2.	 In the Your certificate’s name text box, type the text Digital-Certificate-AW06-001 and
then click the OK button. The certificate is created, and the SelfCert Success dialog box
appears, as shown in Figure AW-6-22.

3.	 Click the OK button in the SelfCert Success dialog box.

Now that we have a digital certificate, we can use it to package and sign our database.

Creating a Microsoft Access Signed Package

1.	 Start Microsoft Access.
2.	 Open the WMCRM-AW06-04.accde database file.

■■ Note:  The Security Warning bar does not appear when the database is opened be-
cause you are opening it from a trusted location.

1For more information, see the following Wikipedia articles: Public-Key Cryptography, Digital Signature,
and Public Key Certificate.

The Create Digital
Certificate dialog box

The Your certificate’s
name text box

The OK button

Figure AW-6-21

The Create Digital
Certificate Dialog
Box

Chapter 6   Database Administration   377

3.	 Click the File command tab to display the Backstage view.
4.	 Click the Save As button to display the Save As page, as shown in Figure AW-6-23.
5.	 Click the Package and Sign button to select the Package and Sign option, and then click the

Save As button. The Windows Security Confirm Certificate dialog box appears, as shown in
Figure AW-6-24.

6.	 Only one certificate is shown, and although the full name is not visible, it is the one we
created and want to use. However, to verify this, click the Click here to view certificate
properties link. The Certificate Details dialog box appears, as shown in Figure AW-6-25,
and our certificate name is clearly visible in the dialog box.

7.	 Click the OK button in the Certificate Details dialog box to close the dialog box.

The SelfCert Success
dialog box

The OK button

The digital certificate
name we provided

Figure AW-6-22

The SelfCert Success
Dialog Box

The Package and
Sign command

The File backstage
view

The Save As button

The Save As button

Figure AW-6-23

The File | Save As—Package and Sign Command

(Continued)

378   Part 3   Database Management

  8.	 Click the OK button in the Microsoft Security Confirm Certificate dialog box to close the
dialog box. The Create Microsoft Office Access Signed Package dialog box appears, as
shown in Figure AW-6-26.

  9.	 Click the Create button to create the signed package.
10.	 Close the WMCRM-AW06-04 database and Microsoft Access 2013.

We now have a signed package, which uses the *.accdc file extension, ready
to distribute to other users. To simulate this, in the My Documents folder of the
Documents library create a new folder named My-Distributed-Databases and then copy
the WMCRM-AW06-04.accdc file into it. Now we can open the signed package from this
location.

Opening a Microsoft Access *.accdc Database

1.	 Start Microsoft Access.
2.	 If necessary, click the File command tab to display the Backstage view.

The Windows
Security dialog box

The Digital-
Certificate-AW06-001
digital certificate

The Click here to
view certificate
properties link

The OK button

Figure AW-6-24

The Windows
Security Dialog Box

The Certificate
Details dialog box

The Digital-
Certificate-AW06-001
digital certificate name
is displayed here

The OK button

Figure AW-6-25

The Certificate
Details Dialog Box

Chapter 6   Database Administration   379

3.	 Click the Open button. The Open dialog box appears.
4.	 Browse to the WMCRM-AW06-04.accdc file in the My-Distributed-Databases folder, as

shown in Figure AW-6-27. Note that you must change file type in order to see any of the
*.accdc files.

5.	 Click the WMCRM-AW06-04.accdc file to select it and then click the Open button. The
Microsoft Access Security Notice dialog box appears, as shown in Figure AW-6-28.

The WMCRM-AW06-
04.accdc file name

The Create Microsoft
Office Access Signed
Package dialog box

The Create button

Figure AW-6-26

The Create Microsoft Office Access Signed Package Dialog Box

You must select the
*.accdc file type in
order to see the file

The Open dialog box

The My-Distributed-
Access-Databases
folder

Figure AW-6-27

The WMCRM-AW06-04.accdc File

(Continued)

380   Part 3   Database Management

6.	 Click the Trust all from publisher button. The Extract Database To dialog box appears.
This dialog box is essentially the same as a Save To dialog box, so browse to the My-
Distributed-Databases folder and then click the OK button.

7.	 Another Microsoft Access Security Notice dialog box similar to the one shown in Figure
AW-6-28 appears. Click the Open button.

8.	 The WMCRM-AW06-04.accde database is opened in Microsoft Access.
■■ Note:  The Security Warning bar does not appear when the database is opened be-

cause you have chosen to trust the source of the database as documented in the digital
certificate rather than open it from a trusted location.

9.	 Close the WMCRM-AW06-04 database and Microsoft Access 2013.

Using Windows Explorer, look at the contents of the Libraries\Documents\My
Documents\My-Distributed-Databases folder. Notice that the WMCRM-AW06-04.accde
file has been extracted from the WMCRM-AW06-04.accdc package and is now available
for use. This is the database file that the user will open when he or she uses the database.
Also note that when users open the database they will see the Microsoft Access Security
Notice dialog box just discussed. But we chose Trust all from publisher in step 6, so why
is this happening? The reason has to do with the location where the digital certificate has
been stored on the workstation. This is a technical matter beyond the scope of this discus-
sion, but we can at least see exactly what the problem is by following the next set of steps.

Viewing the Certification Path in the Certificate Dialog Box

  1.	 Start Microsoft Access 2013.
  2.	 Open the WMCRM-AW06-04.accde file in the My-Distributed-Databases folder.
  3.	 When the Microsoft Access Security Notice dialog box appears, click the Open button.
  4.	 Click the File command tab.
  5.	 Click the Options command. The Access Options dialog box appears.
  6.	 Click the Trust Center button to display the Trust Center page.
  7.	 Click the Trust Center Settings button to display the Trust Center dialog box.
  8.	 Click the Trusted Publishers button to display the Trusted Publishers page.
  9.	 Click the trusted publisher name Digital-Certificate-AW06-001 to select it and then click

the View button. The Certificate dialog box appears.
10.	 Click the Certification Path tab in the Certificate dialog box. The Certification Path page

appears, as shown in Figure AW-6-29.
11.	 Note the Certificate status area, which reads “This CA Root certificate is not trusted be-

cause it is not in the Trusted Root Certification Authorities store.” This is the problem that
needs to be resolved before the database will open without the Microsoft Access Security
Notice dialog box being displayed every time the database is opened.

12.	 Click the OK button to close the Certificate dialog box.

The Microsoft
Access Security
Notice dialog box

The Open button

Figure AW-6-28

The Microsoft Access
Security Notice
Dialog Box

Chapter 6   Database Administration   381

13.	 Click the OK button to close the Trust Center dialog box.
14.	 Click the OK button to close the Access Options dialog box.
15.	 Close the WMCRM-AW06-04 database and exit Microsoft Access.

This completes our discussion of how Microsoft Access 2013 handles database security
for Microsoft Access 2013 *.accdb files. Note that Microsoft Access 2013 can also open
and work with older Microsoft Access 2003 *.mdb database files, which have a built-in
user-level database security system that is very different from the Microsoft Access 2013
database security we have discussed. If you need to work with one of these older *.mdb
files, consult the Microsoft Access documentation.

The Certificate dialog
box

The Certificate
Path page

The Certificate status
message

The OK button

Figure AW-6-29

The Certification
Path Page

Summary
Database administration is a business function that involves managing a database in order
to maximize its value to an organization. The conflicting goals of protecting the data-
base and maximizing its availability and benefit to users must be balanced using good
administration.

All databases need database administration. The database administration for small,
personal databases is informal; database administration for large, multiuser databases can
involve an office and many people. DBA can stand for database administration or database
administrator. Three basic database administration functions are necessary: concurrency
control, security, and backup and recovery.

The goal of concurrency control is to ensure that one user’s work does not inappro-
priately influence another user’s work. No single concurrency control technique is ideal
for all circumstances. Trade-offs need to be made between the level of protection and data
throughput.

382   Part 3   Database Management

A transaction, or logical unit of work, is a series of actions taken against a database
that occur as an atomic unit; either all of them occur or none of them do. The activity of
concurrent transactions is interleaved on the database server. In some cases, updates can be
lost if concurrent transactions are not controlled. Another concurrency problem concerns
inconsistent reads.

A dirty read occurs when one transaction reads a changed record that has not been
committed to the database. A nonrepeatable read occurs when one transaction rereads
data it has previously read and finds modifications or deletions caused by another transac-
tion. A phantom read occurs when a transaction rereads data and finds new rows that were
inserted by a different transaction.

To avoid concurrency problems, database elements are locked. Implicit locks are
placed by the DBMS; explicit locks are issued by the application program. The size of a
locked resource is called lock granularity. An exclusive lock prohibits other users from
reading the locked resource; a shared lock allows other users to read the locked resource
but not to update it.

Two transactions that run concurrently and generate results that are consistent with
the results that would have occurred if the transactions had run separately are referred to
as serializable transactions. Two-phase locking, in which locks are acquired in a growing
phase and released in a shrinking phase, is one scheme for serializability. A special case of
two-phase locking is to acquire locks throughout the transaction but not to free any lock
until the transaction is finished.

Deadlock, or the deadly embrace, occurs when two transactions are each waiting on a
resource that the other transaction holds. Deadlock can be prevented by requiring transac-
tions to acquire all locks at the same time. When deadlock occurs, the only way to cure it is
to abort one of the transactions and back out of partially completed work.

Optimistic locking assumes that no transaction conflict will occur and then deals with
the consequences if it does. Pessimistic locking assumes that conflict will occur and so pre-
vents it ahead of time with locks. In general, optimistic locking is preferred for the Internet
and for many intranet applications.

Most application programs do not explicitly declare locks. Instead, they mark
transaction boundaries with SQL transaction control statements—such as BEGIN,
COMMIT, and ROLLBACK statements—and declare the concurrent behavior they
want. The DBMS then places locks for the application that will result in the desired
behavior. An ACID transaction is one that is atomic, consistent, isolated, and durable.
Durable means that database changes are permanent. Consistency can refer to either
statement-level or transaction-level consistency. With transaction-level consistency, a
transaction may not see its own changes.

The three types of data read problems that can occur are dirty read, nonrepeatable
read, and phantom read. These problems are summarized in Figure 6-11. The 1992
SQL standard defines four transaction isolation levels: read uncommitted, read com-
mitted, repeatable read, and serializable. The characteristics of each are summarized in
Figure 6-12.

A cursor is a pointer into a set of records. Four cursor types are prevalent: forward
only, static, keyset, and dynamic. Developers should select isolation levels and cursor types
that are appropriate for their application workload and for the DBMS product in use.

The goal of database security is to ensure that only authorized users can perform au-
thorized activities at authorized times. To develop effective database security, the process-
ing rights and responsibilities of all users must be determined.

DBMS products provide security facilities. Most involve the declaration of users,
groups, objects to be protected, and permissions or privileges on those objects. Almost all
DBMS products use some form of user name and password security. DBMS security can be
augmented by application security.

In the event of system failure, the database must be restored to a usable state as
soon as possible. Transactions in process at the time of the failure must be reapplied or

Chapter 6   Database Administration   383

restarted. Although in some cases recovery can be done by reprocessing, the use of logs and
before-images and after-images with rollback and rollforward is almost always preferred.
Checkpoints can be made to reduce the amount of work that needs to be done after a
failure.

In addition to concurrency control, security, and backup and recovery, a DBA needs to
ensure that a system exists to gather and record errors and problems. The DBA works with
the development team to resolve such problems on a prioritized basis and also to evaluate
features and functions of new releases of the DBMS. In addition, the DBA needs to cre-
ate and manage a process for controlling the database configuration so that changes to the
database structure are made with a community-wide view. Finally, the DBA is responsible
for ensuring that appropriate documentation is maintained about database structure, con-
currency control, security, backup and recovery, and other details that concern the manage-
ment and use of the database.

Key Terms
ACID transaction
after-image
atomic
authentication
authorization
before-image
checkpoint
concurrent transaction
concurrent update problem
consistent
data administration
database administration
database administrator
DBA
deadlock
deadly embrace
dirty read
durable
dynamic cursor
exclusive lock
explicit lock
forward-only cursor
implicit lock
inconsistent read problem

isolation level
keyset cursor
lock granularity
log
logical unit of work (LUW)
lost update problem
nonrepeatable read
optimistic locking
permissions
pessimistic locking
phantom read
read committed isolation level
read uncommitted isolation level
recovery via reprocessing
recovery via rollback/

rollforward
repeatable read isolation level
resource locking
rollback
rollforward
scrollable cursor
serializable
serializable isolation level
shared lock

SQL BEGIN TRANSACTION
statement

SQL COMMITT TRANSACTION
statement

SQL Data Control Language
(DCL)

SQL GRANT statement
SQL/Persistent Stored Modules

(SQL/PSM)
SQL REVOKE statement
SQL ROLLBACK

TRANSACTION statement
SQL Transaction Control Language

(TCL)
statement-level consistency
static cursor
stored procedure
transaction
transaction isolation level
transaction-level consistency
trigger
two-phase locking
user account
user-defined function

Review Questions
	6.1	 What is the purpose of database administration?

	6.2	 Explain how database administration tasks vary with the size and complexity of the
database.

	6.3	 What are two interpretations of the abbreviation DBA?

	6.4	 What is the purpose of concurrency control?

	6.5	 What is the goal of a database security system?

384   Part 3   Database Management

	6.6	 Explain the meaning of the word inappropriately in the phrase “one user’s work
does not inappropriately influence another user’s work.”

	6.7	 Explain the trade-off that exists in concurrency control.

	6.8	 Describe what an atomic transaction is and explain why atomicity is important.

	6.9	 Explain the difference between concurrent transactions and simultaneous transac-
tions. How many CPUs are required for simultaneous transactions?

	6.10	 Give an example, other than the one in this text, of the lost update problem.

	6.11	 Define the terms dirty read, nonrepeatable read, and phantom read.

	6.12	 Explain the difference between an explicit lock and an implicit lock.

	6.13	 What is lock granularity?

	6.14	 Explain the difference between an exclusive lock and a shared lock.

	6.15	 Explain two-phase locking.

	6.16	 How does releasing all locks at the end of a transaction relate to two-phase locking?

	6.17	 What is deadlock? How can it be avoided? How can it be resolved when it occurs?

	6.18	 Explain the difference between optimistic and pessimistic locking.

	6.19	 Explain the benefits of marking transaction boundaries, declaring lock characteris-
tics, and letting a DBMS place locks.

	6.20	 Explain the use of the SQL transaction control language (TCL) statements
BEGIN TRANSACTION, COMMIT TRANSACTION, and ROLLBACK
TRANSACTION.

	6.21	 Explain the meaning of the expression ACID transaction.

	6.22	 Describe statement-level consistency.

	6.23	 Describe transaction-level consistency. What disadvantage can exist with it?

	6.24	 What is the purpose of transaction isolation levels?

	6.25	 Explain what read uncommitted isolation level is. Give an example of its use.

	6.26	 Explain what read committed isolation level is. Give an example of its use.

	6.27	 Explain what repeatable read isolation level is. Give an example of its use.

	6.28	 Explain what serializable isolation level is. Give an example of its use.

	6.29	 Explain the term cursor.

	6.30	 Explain why a transaction may have many cursors. Also, how is it possible that a
transaction may have more than one cursor on a given table?

	6.31	 What is the advantage of using different types of cursors?

	6.32	 Explain forward-only cursors. Give an example of their use.

	6.33	 Explain static cursors. Give an example of their use.

	6.34	 Explain keyset cursors. Give an example of their use.

	6.35	 Explain dynamic cursors. Give an example of their use.

	6.36	 What happens if you do not declare transaction isolation level and cursor type to a
DBMS? Is not declaring the isolation level and cursor type good or bad?

	6.37	 Explain the necessity of defining processing rights and responsibilities. How are
such responsibilities enforced? What is SQL data control language (DCL), and
what SQL statements are used in DCL?

	6.38	 Explain the relationships of users, groups, permission, and objects for a generic
database security system.

Chapter 6   Database Administration   385

	6.39	 Describe the advantages and disadvantages of DBMS-provided security.

	6.40	 Describe the advantages and disadvantages of application-provided security.

	6.41	 Explain how a database could be recovered via reprocessing. Why is this generally
not feasible?

	6.42	 Define the terms rollback and rollforward.

	6.43	 Why is it important to write to a log before changing the database values?

	6.44	 Describe the rollback process. Under what conditions should rollback be used?

	6.45	 Describe the rollforward process. Under what conditions should rollforward be
used?

	6.46	 What is the advantage of making frequent checkpoints of a database?

	6.47	 Summarize a DBA’s responsibilities for managing database user problems.

	6.48	 Summarize a DBA’s responsibilities for configuration control.

	6.49	 Summarize a DBA’s responsibilities for documentation.

Exercises
	6.50	 If you have access to SQL Server, search its help system to answer the following

questions.

	A.	 Does SQL Server support both optimistic and pessimistic locking?

	B.	 What levels of transaction isolation are available?

	C.	 What types of cursors, if any, does SQL Server use?

	D.	 �How does the security model for SQL Server differ from that shown in
Figure 6-16?

	E.	 Summarize the types of SQL Server backup.

	F.	 Summarize the SQL Server recovery models.

	6.51	 If you have access to Oracle Database Express Edition 11g Release 2 search its help
system to answer the following questions.

	A.	 �How does Oracle Database Express Edition 11g Release 2 use read locks and
write locks?

	B.	 �What, if any, levels of transaction isolation are available in Oracle Database
Express Edition 11g Release 2?

	C.	 �How does the security model for Oracle Database Express Edition 11g
Release 2 differ from that shown in Figure 6-16?

	D.	 �Summarize the backup capabilities of Oracle Database Express Edition 11g
Release 2.

	E.	 �Summarize the recovery capabilities of Oracle Database Express Edition 11g
Release 2.

386   Part 3   Database Management

	6.52	 If you have access to MySQL 5.6, search its help system to answer the following
questions.

	A.	 How does MySQL 5.6 use read locks and write locks?

	B.	 What, if any, levels of transaction isolation are available in MySQL 5.6?

	C.	 What types of cursors, if any, does MySQL 5.6 use?

	D.	 �How does the security model for MySQL 5.6 differ from that shown in
Figure 6-16?

	E.	 Summarize the backup capabilities of MySQL 5.6.

	F.	 Summarize the recovery capabilities of MySQL 5.6.

Access Workbench Key Terms
*.accdc file extension
*.accde file extension
ActiveX control
ActiveX specification
asymmetric cryptography
digital signature
digital signature scheme
Exclusive mode

Make ACCDE command
private key
public key
public-key cryptography
Security Warning message bar
strong password
trusted location
Visual Basic for Applications (VBA)

Access Workbench Exercises
AW.6.1	 Use the Wedgewood Pacific Corporation (WPC) database developed in previ-
ous sections of “The Access Workbench” to answer the following questions.

	 A.	 Analyze the data in the WPC database tables (particularly DEPARTMENT
and EMPLOYEE) and create a database security plan, using Figure 6-16 as an
example.

	 B.	 If you have not already created a My-Trusted-Location folder, follow the steps in
this chapter’s section of “The Access Workbench” to do so now.

	 C.	 Make a copy of the WPC.accdb file in the My-Trusted-Location folder and name
it WPC-AW06-01.accdb. Open the WPC-AW06-01.accdb database to confirm
that it opens without displaying the Security Warning bar, and then close the
database.

	 D.	 Make a copy of the WPC.accdb file in the My-Trusted-Location folder and name
it WPC-AW06-02.accdb. Encrypt the WPC-AW06-02.accdb database with the
password AW06EX+password. Close the WPC-AW06-02.accdb database and
then reopen it to confirm that it opens properly using the password. Close the
WPC-AW06-02.accdb database.

Chapter 6   Database Administration   387

	 E.	 If you have not already created the Digital-Certificate-AW06-001 digital certifi-
cate, follow the steps in this chapter’s section of “The Access Workbench” to do
so now.

	 F.	 Make a copy of the WPC.accdb file in the My-Trusted-Location folder and name
it WPC-AW06-03.accdb. Create an AACDE version of the WPC-AW06-03.accdb
database. Create a signed package using the WPC-AW06-03.accde database and
the Digital-Certificate-AW06-001 digital certificate.

	 G.	 If you have not already created a My-Distributed-Databases folder, follow the
steps in this chapter’s section of “The Access Workbench” to do so now.

	 H.	 Make a copy of the WPC-AW06-03.accdc file in the My-Distributed-Databases
folder. Extract the WPC-AW06-03.accde file into the folder and then open it to
confirm that the database opens properly. Close the database.

Marcia’s Dry Cleaning Case Questions
Ms. Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner in
a well-to-do suburban neighborhood. Marcia makes her business stand out from the competi-
tion by providing superior customer service. She wants to keep track of each of her customers
and their orders. Ultimately, she wants to notify them that their clothes are ready via email.

Assume that Marcia has hired you as a database consultant to develop an operational
database having the following four tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax, TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,

ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

A.	 Assume that Marcia’s has the following personnel: two owners, a shift manager, a part-
time seamstress, and two salesclerks. Prepare a two-to-three-page memo that addresses
the following points:

	 1.	 The need for database administration.

	 2.	 Your recommendation as to who should serve as database administrator. Assume that
Marcia’s is not sufficiently large to need or afford a full-time database administrator.

	 3.	 Using the main topics in this chapter as a guide, describe the nature of database
administration activities at Marcia’s. As an aggressive consultant, keep in mind
that you can recommend yourself for performing some of the DBA functions.

B.	 For the employees described in part A, define users, groups, and permissions on data
in these four tables. Use the security scheme shown in Figure 6-16 as an example.
Create a table like that in Figure 6-17. Don’t forget to include yourself.

388   Part 3   Database Management

 Garden Glory Project Questions

The following Garden Glory database design is used in Chapter 3:

OWNER (OwnerID, OwnerName, OwnerEmail, OwnerType)
OWNED_PROPERTY (PropertyID, PropertyName, Street, City, State, ZIP,

OwnerID)
GG_SERVICE (ServiceID, ServiceDescription, CostPerHour)
EMPLOYEE (EmployeeID, LastName, FirstName, CellPhone, ExperienceLevel)
PROPERTY_SERVICE (PropertyID, ServiceID, ServiceDate, EmployeeID,

HoursWorked)

The referential integrity constraints are:

OwnerID in OWNED_PROPERTY must exist in OwnerID in OWNER
PropertyID in PROPERTY_SERVICE must exist in PropertyID in

OWNED_PROPERTY
ServiceID in PROPERTY_SERVICE must exist in ServiceID in GG_SERVICE
EmployeeID in PROPERTY_SERVICE must exist in EmployeeID in EMPLOYEE

Garden Glory has modified the EMPLOYEE table by adding a TotalHoursWorked
column:

EMPLOYEE (EmployeeID, LastName, FirstName, CellPhone, ExperienceLevel,
TotalHoursWorked)

The office personnel at Garden Glory use a database application to record services
and related data changes in this database. For a new service, the service-recording appli-
cation reads a row from the OWNED_PROPERTY table to get the PropertyID. It then
creates a new row in GG_SERVICE and updates TotalHoursWorked in EMPLOYEE by
adding the HoursWorked value in the new GG_SERVICE record to TotalHoursWorked.
This operation is referred to as a Service Update Transaction.

C.	 Suppose that you are writing a part of an application to create new records in SERVICE
for new services that Marcia’s will perform. Suppose that you know that while your
procedure is running another part of the same application that records new or modifies
existing customer orders and order line items can also be running. Additionally, suppose
that a third part of the application that records new customer data also can be running.

	 1.	 Give an example of a dirty read, a nonrepeatable read, and a phantom read
among this group of stored procedures.

	 2.	 What concurrency control measures are appropriate for the part of the applica-
tion that you are creating?

	 3.	 What concurrency control measures are appropriate for the two other parts of the
application?

Chapter 6   Database Administration   389

 James River Jewelry Project Questions

The James River Jewelry project questions are in online Appendix D, which can be down-
loaded for the textbook’s Web site: www.pearsonhighereducation.com/kroenke.

In some cases, the employee record does not exist before the service is recorded. In
such a case, a new EMPLOYEE row is created, and then the service is recorded. This is
called a Service Update for New Employee Transaction.

A.	 Explain why it is important for the changes made by the Service Update Transaction to
be atomic.

B.	 Describe a scenario in which an update of TotalHoursWorked could be lost during a
Service Update Transaction.

C.	 Assume that many Service Update Transactions and many Service Update for New
Employee Transactions are processed concurrently. Describe a scenario for a nonre-
peatable read and a scenario for a phantom read.

D.	 Explain how locking could be used to prevent the lost update in your answer to part B.

E.	 Is it possible for deadlock to occur between two Service Update Transactions? Why
or why not? Is it possible for deadlock to occur between a Service Update Transaction
and a Service Update for New Employee Transaction? Why or why not?

F.	 Do you think optimistic or pessimistic locking would be better for the Service Update
Transactions?

G.	 Suppose Garden Glory identifies three groups of users: managers, administrative per-
sonnel, and system administrators. Suppose further that the only job of administrative
personnel is to make Service Update Transactions. Managers can make Service Update
Transactions and Service Updates for New Employee Transactions. System administra-
tors have unrestricted access to the tables. Describe processing rights that you think
would be appropriate for this situation. Use Figure 6-17 as an example. What prob-
lems might this security system have?

H.	 Garden Glory has developed the following procedure for backup and recovery. The
company backs up the database from the server to a second computer on its network
each night. Once a month, it copies the database to a CD and stores it at a manager’s
house. It keeps paper records of all services provided for an entire year. If it ever loses
its database, it plans to restore it from a backup and reprocess all service requests. Do
you think this backup and recovery program is sufficient for Garden Glory? What
problems might occur? What alternatives exist? Describe any changes you think the
company should make to this system.

www.pearsonhighereducation.com/kroenke

390   Part 3   Database Management

 The Queen Anne Curiosity Shop Project Questions

The Queen Anne Curiosity Shop database design used in Chapter 3 was:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP,
Phone, Email)

EMPLOYEE (EmployeeID, LastName, FirstName, Phone, Email)
VENDOR (VendorID, CompanyName, ContactLastName, ContactFirstName,

Address, City, State, ZIP, Phone, Fax, Email)
ITEM (ItemID, ItemDescription, PurchaseDate, ItemCost, ItemPrice, VendorID)
SALE (SaleID, CustomerID, EmployeeID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

VendorID in ITEM must exist in VendorID in VENDOR
CustomerID in SALE must exist in CustomerID in CUSTOMER
EmployeeID in SALE must exist in EmployeeID in EMPLOYEE
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM

The Queen Anne Curiosity Shop has modified the ITEM and SALE_ITEM tables as
follows:

ITEM (ItemID, ItemDescription, UnitCost, UnitPrice, QuantityOnHand, VendorID)
SALE_ITEM (SaleID, SaleItemID, ItemID, Quantity, ItemPrice, Extended Price)

These changes allow the sales system to handle nonunique items that can be bought and
sold in quantity. When new items from vendors arrive at The Queen Anne Curiosity
Shop, the office personnel unpack the items, put them in the stockroom, and run an Item
Quantity Received Transaction that adds the quantity received to QuantityOnHand. At
the same time, another transaction, called an Item Price Adjustment Transaction is run, if
necessary, to adjust UnitCost and UnitPrice. Sales may occur at any time, and when a sale
occurs the Sale Transaction is run. Every time a SALE_ITEM line is entered, the input
Quantity is subtracted from QuantityOnHand in ITEM, and the ItemPrice is set to the
UnitPrice.

	A.	 Explain why it is important for the changes made by each of these transactions to be
atomic.

	B.	 Describe a scenario in which an update of QuantityOnHand could be lost.

	C.	 Describe a scenario for a nonrepeatable read and a scenario for a phantom read.

	D.	 Explain how locking could be used to prevent the lost update in your answer to part B.

	E.	 Is it possible for deadlock to occur between two Sale Transactions? Why or why not?
Is it possible for deadlock to occur between a Sale Transaction and an Item Quantity
Received Transaction? Why or why not?

Chapter 6   Database Administration   391

	 F.	 For each of the three types of transaction, describe whether you think optimistic or
pessimistic locking would be better. Explain the reasons for your answer.

	G.	 Suppose that The Queen Anne Curiosity Shop identifies four groups of users: sales
personnel, managers, administrative personnel, and system administrators. Suppose
further that managers and administrative personnel can perform Item Quantity
Received Transactions, but only managers can perform Item Price Adjustment
Transactions. Describe processing rights that you think would be appropriate for this
situation. Use Figure 6-17 as an example.

	H.	 The Queen Anne Curiosity Shop has developed the following procedure for backup
and recovery. The company backs up the entire database from the server to tape every
Saturday night. The tapes are taken to a safety deposit box at a local bank on the fol-
lowing Thursday. Printed paper records of all sales are kept for 5 years. If the database
is ever lost, the plan is to restore the database from the last full backup and reprocess
all the sales records. Do you think this backup and recovery program is sufficient for
the Queen Anne Curiosity Shop? What problems might occur? What alternatives ex-
ist? Describe any changes you think the company should make to this system.

392

T his chapter introduces topics that build on the
fundamentals you have learned in the first six
chapters of this book. Now that you have designed

and built a database, you are ready to put it to work. In this
chapter, we will look at some of the various applications
that use database processing, with a primary focus on Web-
based database processing. We will also look at Extensible
Markup Language (XML), which is rapidly expanding what
can be done with Web-based applications.

In this chapter, we will continue to use the Heather
Sweeney Designs (HSD) database that we modeled in
Chapter 4, designed in Chapter 5, and created in Chapter 6.
The name of the database is HSD, and an SQL Server data-
base diagram for the HSD database is shown in Figure 7-1.

•	 Understand and be able to set up
Web database processing

•	 Learn the basic concepts of
Extensible Markup Language (XML)

Chapter Objectives

Database Processing
Applications

Chapter 7

Chapter 7   Database Processing Applications   393

Databases exist to be used in applications for users—they do not exist in isolation. As
shown in Figure 7-2, which repeats Figure 1-15, databases are created in and controlled by
DBMS programs for the purpose of managing data for applications needed by users.

Databases vary considerably in size and scope, from single-user databases to large,
interorganizational databases, such as airline reservation systems. As shown in Figure 7-3,
which repeats Figure 6-2, they also vary in the way they are processed.

Some databases are used with only a few forms and reports. Others are processed
by World Wide Web (WWW) (commonly just called Web1 applications using Internet
technology such as Active Server Pages .NET (ASP.NET) and Java Server Pages (JSP). Still
others are processed by application programs coded in Visual Basic .NET, Java, C#, or
another language. Each of these applications may use SQL/Persistent Stored Modules
(SQL/PSM) user-defined functions, stored procedures, and triggers that are stored in the
database itself to facilitate data processing.

We will consider each of these types of database processing in this chapter. Because
of the overwhelming importance of Web database applications, we will discuss those at
length—in fact, that discussion will be the main topic of this chapter.

Queries, Forms, and Reports
This book has focused on the use of a DBMS to build and process databases. For example, it
has covered the need to specify rules, such as cascading updates or deletions. Applications,
however, are built to use the databases managed by a DBMS. Queries, forms, and reports

1In 2014, the World Wide Web celebrated its twenty-fifth anniversary. It was created in 1989 by Tim
Berners-Lee while he was working at CERN (the European Organization for Nuclear Research, which
celebrated its sixtieth anniversary in 2014). For more information, see the Web 25th Anniversary Web site.

The Database Processing Environment

Figure 7-1

The HSD Database
Diagram

Database
application

Database
management

system
(DBMS)

Database

Users

Figure 7-2

Components of a
Database System

394   Part 3   Database Management

are the basis of applications. Query, form, and report generators can be built into a database
product, such as Microsoft Access, or they can be run as separate products.2

Now, let us think about some of the tasks that the DBMS—for example, Microsoft
Access—needs to do in the background to implement the database processing commands.
Suppose, for example, that you create a delete query on a table that has a 1:N relationship
to a second table that has On Delete Cascade. Suppose further that the second table has a
1:N relationship to a third table, which has Enforce Referential Integrity but not On Delete
Cascade. When running your delete query, Microsoft Access needs to delete rows from the
first and second tables consistent with these relationship properties.

The situation is even more complicated if a second user is creating a report on these
three tables as your delete query is operating. What should Microsoft Access do? Should
it show the report with whatever data remain as your query runs? Or should Microsoft
Access protect the report from your deletions and not make any of them until the report is
finished? Should it deny your query or do something else completely?

As a simpler example, suppose you create a form that has data from one table in
the main section and data from a second table in a subform. Now, suppose a user makes
changes in five rows in the subform, makes changes to some of the data in the first form,
and then presses the Escape key. Which of these changes will actually be made to the data-
base? None? Changes to the subform data only? Or some other option?

Even in the case of simple queries, forms, and reports, management of the background
functions is complex. You can change properties in your database to govern some of
Microsoft Access’ behavior in these cases, but you need to know the implications of such
changes. Enterprise-class DBMS products, such as SQL Server, Oracle Database, and
MySQL, provide many more features and functions that let the developer change DBMS
behavior for such cases. (Many of these are discussed in Chapter 6.)

Client/Server and Traditional Application Processing
Organizational application processing using databases began in the early 1970s. Since
then, thousands, if not millions, of databases have been processed by application programs

2Until Microsoft Access 2013, it was possible to easily use Microsoft Access for its query, form, and
report features while connecting to a database in another DBMS, such as SQL Server. In this way, the
Microsoft Access “database” actually ran as an application that used an attached, but distinct, database.
Unfortunately, this capability was removed from Microsoft Access 2013.

Java Server
Pages (JSP)

Application Programs in
Visual Basic,
C#, Java, etc.

DBMS
Active Server
Pages .NET
(ASP.NET)

Forms

Queries

Database

Triggers

Stored
Procedures

User-defined
Functions

Reports
Figure 7-3

The Database
Processing
Environment

Chapter 7   Database Processing Applications   395

written in such programming languages as Visual Basic, C, C++, C#, and Java. All these
languages embed SQL statements or their equivalent into programs written in these stan-
dard languages.

For example, to process an online order for Heather Sweeney Designs, an application
needs to perform the following functions:

  1.	 Communicate with a user to obtain the customer identifier.
  2.	 Read CUSTOMER data.
  3.	 Present an order-entry form to a user.
  4.	 Obtain PRODUCT and quantity data from the customer.
  5.	 Verify stock levels for PRODUCTs.
  6.	 Remove PRODUCTs from inventory.
  7.	 Schedule back orders as necessary.
  8.	 Schedule inventory picking and shipping.
  9.	 Update CUSTOMER, INVOICE, and LINE_ITEM data (and if a sale is considered a

type of customer contact, then update CONTACT).

The application will be written to respond to exceptions, such as data not present, data in
error, communication failure, and dozens of other potential problems.

In addition, an order-processing application program will be written so that it can be
used by many users concurrently—it is possible that 50 to 100 users might be trying to run
such an application at the same time.

SQL/PSM: User-Defined Functions, Stored Procedures,
and Triggers
Enterprise-class DBMS products such as SQL Server, Oracle Database, MySQL, and DB2
include features that enable developers to create modules of logic and database actions.
These features are know as SQL/Persistent Stored Modules (SQL/PSM) and include
user-defined functions, stored procedures, and triggers. SQL/PSM, user-defined functions,
stored procedures, and triggers are discussed in detail in Appendix E, “SQL Views,” and
here we will provide only a brief description of this functionality.

User-defined functions, stored procedures, and triggers are typically3 written in lan-
guages provided by the DBMS.4 For example, SQL Server has a language called Transact-
SQL (T-SQL), and Oracle has developed a language called PL/SQL. Programmers can
embed SQL statements into these programming languages.

A user-defined function is similar to a computer program function and provides a re-
usable, single-purpose shortcut to completing some task. Stored in the database that uses it,
the function receives input values, and it returns a calculated or otherwise processed result.
A mathematical example is a function to compute the square root of a number. An example
for the HSD database would be a function similar to the one described in Appendix E to
concatenate a customer name in a last-name-first order (e.g., John and Smith would become
Smith, John). User-defined functions can be used in SQL queries, SQL views, and stored
procedures.

A stored procedure is similar to a computer program subroutine, but it is stored within
the database that performs database activity. An example for the HSD database would be
a stored procedure to update the columns of INVOICE for a particular InvoiceNumber as
LINE_ITEMs are added to the INVOICE. Application programs, Web applications, and
interactive query users can invoke the stored procedure, pass parameters to it, and receive
results.

3Some recent versions of DBMS systems allow SQL/PSM components to be written in standard program-
ming language. For example, Microsoft SQL Server 2014 allows them to be written in C++.
4For more information on triggers, stored procedures, and their uses, see David M. Kroenke and David J.
Auer, Database Processing: Fundamentals, Design, and Implementation, 13th edition (Upper Saddle River,
NJ: Prentice Hall, 2014): Chapters 7, 10A, 10B, and 10C.

396   Part 3   Database Management

A trigger is a program attached to a specific table or view within a database and executed
(“fired”) by the DBMS when specific events occur using that table or view. The events are
typically SQL commands that use the INSERT, UPDATE, or DELETE statements. These
events are then handled with BEFORE, AFTER, or INSTEAD OF trigger logic. Thus,
you find such trigger combinations as BEFORE DELETE, INSTEAD OF UPDATE, and
AFTER INSERT. (Note that these are only some examples—see Appendix E for a full dis-
cussion of the nine possible combinations of trigger logic and SQL statements.)

Different DBMS products support different sets of triggers. For example, Oracle
Database Express Edition 11g Release 2 supports BEFORE, AFTER, and INSTEAD OF
triggers. MySQL 5.6 supports only BEFORE and AFTER triggers, while SQL Server 2014
supports AFTER and INSTEAD OF triggers.

Web
Server

Relational Databases:
Oracle Database,
Microsoft SQL Server,
Oracle MySQL, Microsoft Access,
IBM DBM . . .

Nonrelational
Databases

VSAM, ISAM, Other
File Processors

Email, Other
Document Types

Pictures, Audio, Other????

Browser

Browser

Browser

Figure 7-4

The Web Application Database Processing Environment

Today, Web applications based on database processing are the rule, not the exception. For
example, Amazon.com, Facebook, and Twitter (and thousands of other Web applications)
could not function without a well organized and efficient database processing environment
to support them. Therefore, it is important that you thoroughly understand the Web ap-
plication database processing environment.

The environment in which today’s Internet technology database applications reside is
rich and complicated. As shown in Figure 7-4, a typical Web server needs to publish appli-
cations that involve data of many different data types. In this text, we have considered only
relational databases, but there are many other data types as well.

Several standard interfaces have been developed for accessing database servers. Every
DBMS product has an Application Programming Interface (API). An API is a collection
of objects, methods, and properties for executing DBMS functions from program code.
Unfortunately, each DBMS has its own API, and APIs vary from one DBMS product

Web Application Database Processing

Chapter 7   Database Processing Applications   397

to another. To save programmers from having to learn to use many different interfaces, the
computer industry has developed standards for database access.

The Open Database Connectivity (ODBC) standard was developed in the early 1990s
to provide a DBMS-independent means for processing relational database data. It is a well-
established standard and is seeing new prominence as the preferred tool to connect appli-
cations and relational databases to the “NoSQL” nonrelational data structures introduced
in Chapter 8 and discussed in detail in Appendix K, “Big Data.” Because it is a widely
known and implemented standard, we will use it in this chapter.

In the mid-1990s, Microsoft announced OLE DB, which is an object-oriented in-
terface that encapsulates data-server functionality. OLE DB was designed not just for
access to relational databases, but also for accessing many other types of data. OLE DB
is readily accessible to programmers, using such programming languages as C, C#, and
Java. However, OLE DB is not as accessible to users of Visual Basic (VB) and scripting
languages. Therefore, Microsoft developed Active Data Objects (ADO), which is a set
of objects for utilizing OLE DB that is designed for use by any language, including Visual
Basic (VB), VBScript, and JScript. ADO has now been followed by ADO.NET (pro-
nounced “A-D-O-dot-NET”), which is an improved version of ADO developed as part of
Microsoft’s .NET (pronounced “dot-NET”) initiative.

ASP.NET, the follow up to Microsoft Active Server Pages is used in Web pages to cre-
ate Web-based database applications. Shown in Figure 7-3 as part of the database processing
environment, ASP.NET uses Hypertext Markup Language (HTML) and the Microsoft .NET
languages to create Web pages that can read and write database data and transmit it over
public and private networks, using Internet protocols. ASP.NET runs on Microsoft’s Web
server product, Internet Information Services (IIS). ASP.NET is part of the Microsoft .NET
Framework and relies upon ADO.NET. The use of ADO.NET is illustrated in Figure 7-5.5

Also shown in Figure 7-3 is Java Server Pages (JSP) technology. JSP is a combination
of HTML and Java that accomplishes the same function as ASP by compiling pages into
Java servlets. JSPs are often used on the open-source Apache Web server. Another favorite
combination of Web developers is the Apache Web server with the MySQL database and
either the Pearl or PHP language. This combination is called AMP (Apache–MySQL–
PHP/Pearl). When running on the Linux operating system, it is referred to as LAMP;
when running on the Windows operating system, it is referred to as WAMP.6

In a Web-based database processing environment, if the Web server and the DBMS can
run on the same computer, the system has two-tier architecture. (One tier is for the brows-
ers, and one is for the Web server/DBMS computer.) Alternatively, the Web server and
DBMS can run on different computers, in which case the system has three-tier architecture.

5For more information on the Microsoft .NET framework and ADO.NET, see David M. Kroenke and
David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 13th edition (Upper Saddle
River, NJ: Prentice Hall, 2014): Chapter 11.
6For information on JSP, JDBC, and related technology and tools, see David M. Kroenke and David J.
Auer, Database Processing: Fundamentals, Design, and Implementation, 13th edition (Upper Saddle River,
NJ: Prentice Hall, 2014): Chapter 11.

DBMSADO.NET

Web
Applications

Windows
Applications

XML Web
Services

DB

Figure 7-5

The Role of ADO.NET

398   Part 3   Database Management

High-performance applications might use many Web server computers, and in some sys-
tems several computers can run the DBMS as well. In the latter case, if the DBMS comput-
ers are processing the same databases, the system is referred to as a distributed database.
(Distributed databases are discussed in Chapter 8.)

ODBC
Now that we have discussed various Web application database processing connectivity, we
will examine it in depth and learn how to use it to create a Web application for Heather
Sweeney Designs that connects to and uses the HSD database.

The ODBC standard allows programmers to code instructions to various DBMS products
using ODBC standard statements. These instructions are passed to an ODBC driver, which
translates them into the API of the particular DBMS in use. The driver receives results back
from the DBMS and translates those results into a form that is part of the ODBC standard.

ODBC Architecture  The basic ODBC architecture in a three-tier Web server
environment—in a configuration without OLE DB and ADO—is shown in Figure 7-6. The
application program, the ODBC driver manager, and the ODBC DBMS driver (a multi-
ple-tier driver in this case) all reside on the Web server. The DBMS driver sends requests to
data sources, which reside on the database server. According to the ODBC standard, a data
source is the database and its associated DBMS, operating system, and network platform.

The application issues requests to create a connection with a data source; to issue
SQL statements and receive results; to process errors; and to start, commit, and roll back
transactions. ODBC provides a standard means for each of these requests, and it defines a
standard set of error codes and messages.

The driver manager serves as an intermediary between the application and the DBMS
drivers. When the application requests a connection, the driver determines the type of
DBMS that processes a given ODBC data source and loads that driver in memory (if it is
not already loaded).

A driver processes ODBC requests and submits specific SQL statements to a given type
of data source. There is a different driver for each data source type. It is the responsibility
of the driver to ensure that standard ODBC commands execute correctly. The driver also
converts data source error codes and messages into the ODBC standard codes and messages.

ODBC identifies two types of drivers: single tier and multiple tier. A single-tier driver
processes both ODBC calls and SQL statements. A multiple-tier driver processes ODBC calls
but passes the SQL requests directly to the database server. Although it may reformat an SQL
request to conform to the dialect of a particular data source, it does not process the SQL.

Establishing an ODBC Data Source Name  A data source is an ODBC data
structure that identifies a database and the DBMS that processes it. The three types of
data sources are file, system, and user. A file data source is a file that can be shared among
database users. The only requirement is that the users have the same DBMS driver and
privilege to access the database. A system data source is local to a single computer. The

SQL Commands

Web ServerUser Client

ApplicationWeb Browser Driver Manager DBMS Driver

Database Server

DBMS Database

Tier 1 Tier 2 Tier 3

Figure 7-6

ODBC Three-Tier Web Server Architecture

Chapter 7   Database Processing Applications   399

operating system and any user on that system (with proper permissions) can use a system
data source. A user data source is available only to the user who created it. Each created
data source is given a data source name (DSN) that is used to reference the data source.

In general, the best choice for Internet applications is to create a system data source
on the Web server. Browser users then access the Web server, which, in turn, uses a system
data source to set up a connection with the DBMS and the database.

We need a system data source for the Heather Sweeney Designs HSD database so that
we can use it in a Web database processing application. We created the HSD database in
SQL Server 2014, and the system data source will have to provide a connection to the SQL
Server 2014 DBMS. To create a system data source in the Windows operating system, you
use the ODBC Data Source Administrator.

In Windows 7, you open the ODBC Data Source Administrator7 as follows:

  1.	 Open the Windows Control Panel by clicking the Start button and then clicking Control
Panel.

  2.	 In the Control Panel window, click System and Security.
  3.	 In the System and Security window, click Administrative Tools.
  4.	 In the Administrative Tools window, double-click the Data Sources (ODBC) shortcut icon.

Here is how you create a system data source named HSD for use with the Heather
Sweeney Designs HSD database on a Microsoft SQL Server 2014 DBMS:

  1.	 In the ODBC Data Source Administrator, click the System DSN tab and then click the
Add button.

  2.	 In the Create New Data Source dialog box, we need to connect to SQL Server 2014, so we
select the ODBC Driver 11 for SQL Server, as shown in Windows 7 in Figure 7-7.

  3.	 Click the Finish button. The Create New Data Source to SQL Server dialog box appears,
as shown in Figure 7-8(a)

  4.	 In the Create New Data Source to SQL Server dialog box, enter the information for the
HSD database shown in Figure 7-8(a) (note that the database server is selected from the
Server drop-down list), and then click the Next button.

■■ Note:  If the SQL server does not appear in the Server drop-down list, enter it
manually as ComputerName\SQLServerInstanceName.

7Warning: There are actually multiple versions of the ODBC Data Source Administrator in the 64-bit ver-
sions of Windows 8.1, Windows 8, and Windows 7. You must use the correct version depending on whether
the DBMS you are using is a 32-bit or 64-bit version. To make matters worse, all the versions use the same
file name of odbcad32.exe! The instructions on this page open the 32-bit version, which works with 32-bit
programs. If you are using ODBC to connect to a 64-bit version of Microsoft Access 2013, Microsoft SQL
Server 2014, Oracle Database Express Edition 11g Release 2, or MySQL 5.6, then you must use the version
of the ODBC Data Source Administrator located at C:\Windows\SysWOW64\odbcad32.exe.

Select ODBC
Driver 11 for SQL
Server

Click the Finish button

Select System DSN
and click the Add
button

Figure 7-7

The Create New Data
Source Dialog Box

400   Part 3   Database Management

Figure 7-8

The Create New Data Source to SQL Server Dialog Box

Type in the User Login
ID here

Type in the associated
user password here

The Next button

Click this check box
for SQL Server
authentication

(b) Selecting the User Login ID Authentication Method

If necessary, select the
correct database from
the drop-down list
displayed by clicking
this drop-down list
arrow button

The Next button

Click this check box
to manually select the
default database

(c) Selecting the Default Database

Type in a description

The drop-down list
arrow button-Select
the server from the
drop-down list—if the
list is empty, type
in ComputerName\
SQLServerInstanceName

The Next button

Type in a name for this
system DSN

(a) Naming the ODBC Data Source

Chapter 7   Database Processing Applications   401

The Finish button

(d) Additional Setting Options

The Test Data
Source button

(e) Testing the Data Source

The OK button

(f) The Successfully Tested Data Source

Figure 7-8  Continued

402   Part 3   Database Management

  5.	 The next step, as shown in Figure 7-8(b), is to click the radio button that selects SQL
Server authentication and then enter the Login ID of HSD-User and the Password of
HSD-User + password that we created in Chapter 6. After this data has been entered,
click then Next button.

■■ Note:  If the Login ID and Password are not correct, an error message is displayed
at this point. Make sure you have correctly created the SQL Server login, as discussed
in Chapter 6, and that you have entered the correct data here.

  6.	 As shown in Figure 7-8(c), click the check box to change the default database, set the de-
fault database to HSD, and then click the Next button.

  7.	 As shown in Figure 7-8(d), we do not need to set any options on the next page, so click the
Finish button. The ODBC Microsoft SQL Server Setup dialog box is displayed, as shown
in Figure 7-8(e).

  8.	 In the Microsoft SQL Server Setup dialog box, click the Test Data Source button to test
the connection.

  9.	 If all the settings are correct, the SQL Server ODBC Data Source Test dialog box ap-
pears, as shown in Figure 7-8(f), showing that the tests were successfully completed. Click
the OK button.

10.	 Click the OK button in the ODBC Microsoft SQL Server Setup dialog box.
11.	 The completed HSD system data source is shown in Figure 7-9. Click the OK button to

close the ODBC Data Source Administrator.

Web Processing with the Microsoft IIS
Now that we have created our ODBC data source, let us take a look at Web database process-
ing. To do this, we will need a Web server to store the Web pages that we will build and use.
We could use the Apache HTTP Server (available from the Apache Software Foundation).
This is the most widely used Web server, and there is a version that will run on just about every
operating system in existence. However, because we have been using the Windows operating
system and Microsoft Access 2013 in “The Access Workbench” sections, we will build a Web
site using the Microsoft Internet Information Services (IIS) Web server. One advantage of us-
ing this Web server for users of the Windows XP Professional, Windows Vista, and Windows
7 operating systems is that IIS is included with the operating system: IIS version 5.1 is included
with Windows XP, IIS version 7.0 is included with Windows Vista, and IIS version 7.5 is
included with Windows 7. IIS is not installed by default, but it can be easily installed at any
time. This means that any user can practice creating and using Web pages on his or her own
Windows workstation.

Complete instructions for setting up IIS 7.5 on Windows 7, including installing and
setting up both PHP and the NetBeans IDE (which are discussed later in this chapter),
are presented in Appendix E, “Getting Started with Web Servers, PHP, and the NetBeans
IDE,” which you can access online. We strongly recommend that you read that appendix at
this point and make sure that your computer is correctly set up before continuing with the
material in this chapter.

The HSD system
data source

Figure 7-9

The Completed HSD
System Data Source

Chapter 7   Database Processing Applications   403

When IIS is installed, it creates an inetpub folder on the C: drive as C:\inetpub.
Within the inetpub folder is the wwwroot folder, which is where IIS stores the most basic
Web pages used by the Web server. Figure 7-10 shows this directory structure after IIS has
been installed, with the files in the wwwroot folder displayed in the file pane. Note that
the wwwroot folder security properties need to be set correctly to allow users access to this
folder. As discussed in detail in the online Appendix I, we need to give the Windows Users
group Modify and Write permissions to the wwwroot folder.

IIS is managed using a program called Internet Information Services Manager in
Windows 8.1, Window 8, and Windows 7. To open either program, open Control Panel
and then select Administrative Tools. The shortcut icon for Internet Information Services/
Internet Information Services Manager is located in Administrative Tools. Figure 7-11
shows the Internet Information Services Manager window.

Note that the files shown in the Default Web Site folder in Figure 7-11 are the same
files that are in the wwwroot folder in Figure 7-10—they are the default files created by IIS
when it is installed. The file iisstart.htm generates the Web page that Internet Explorer (or
any other Web browser contacting this Web server over the Internet) will see displayed.

This discussion of Web database processing has been written to be as
widely applicable as possible. With minor adjustments to the following
steps, you should be able to use the Apache Web server if you have it avail-
able. Whenever possible, we have chosen to use products and technologies
that are available for many operating systems.

BTW

The inetpub folder

The wwwroot folder

The iisstart.htm file

New folder button

The C: drive

Figure 7-10

The IIS wwwroot Folder

404   Part 3   Database Management

The Default Web Site
location maps to the
wwwroot folder

The iisstart.htm file

The Content View
pane is selected

Figure 7-11

Managing IIS

To test the Web server installation, open your Web browser, type in the URL
http://localhost, and press the Enter key. For Windows 8.1, the Web page shown
in Figure 7-12 appears. If the appropriate Web page is not displayed in your Web
browser, your Web server is not installed properly.

Now, let us set up a small Web site that can be used for Web database processing of
the HSD database. First, we will create a new folder named DBC (database concepts) un-
der the wwwroot folder. This new folder will be used to hold all the Web pages developed
in discussions and exercises in this book. Second, we will create a subfolder of DBC named
HSD. This folder will hold the HSD Web site. You create these folders using Windows
Explorer, which is shown in Figure 7-10.

Getting Started with HTML Web Pages
The most basic Web pages are created using Hypertext Markup Language (HTML).
The term hypertext refers to the fact that you can include links to other objects, such as
Web pages, maps, pictures, and even audio and video files in a Web page, and when you
click the link you are immediately taken to that other object and it is displayed in your
Web browser. HTML itself is a standard set of HTML syntax rules and HTML docu-
ment tags that can be interpreted by Web browsers to create specific onscreen displays.

Tags are usually paired, with a specific beginning tag and a matching ending
tag that includes the backslash character (/). Thus, a paragraph of text is tagged as
<p>{paragraph text here}</p>, and a main heading is tagged as <h1>{heading text
here}</h1>. Some tags do not need a separate end tag because they are essentially self-
contained. For example, to insert a horizontal line on a Web page, you use the horizon-
tal rule tag, <hr />. Note that such single, self-contained tags must include the backslash
character as part of the tag.

Chapter 7   Database Processing Applications   405

The rules of HTML are defined as standards by the World Wide Web Consortium
(W3C), and the details of current and proposed standards can be found on their Web site
(this site also has several excellent tutorials on HTML8). The W3C Web site has current
standards for HTML; Extensible Markup Language (XML), which we will discuss later in
this chapter; and a mixture of the two called XHTML. A full discussion of these standards
is beyond the scope of this text—this chapter uses the new HTML5 standard.

In this chapter, we will create a simple HTML home page for the Heather Sweeney
Designs Web site and place it in the HSD folder. We will discuss some of the numerous
available Web page editors shortly, but all you really need to create Web pages is a sim-
ple text editor. For this first Web page, we will use the Microsoft Notepad ASCII text
editor, which has the advantage of being supplied with every version of the Windows
operating system.

The index.html Web Page
The name for the file we are going to create is index.html. We need to use the name index
.html because it is a special name as far as Web servers are concerned. The file name index
.html is one of only a few file names that most Web servers automatically display when
a URL request is made without a specific file reference, and thus it will become the new
default display page for our Web database application. However, note the phrase “most

8To learn more about HTML, go to the W3C Web site. For good HTML tutorials, see the following tutori-
als by David Raggett: “Getting Started with HTML” “More Advanced Features” and “Adding a Touch of
Style”.

This Web page is
generated by the
iisstart.htm file

Figure 7-12

The Default IIS Web Page

406   Part 3   Database Management

Web servers” in the last sentence. Apache, IIS 7.0, IIS 7.5, IIS 8.0 and IIS 8.5 (as shown in
Figure 7-13) are configured to recognize index.html; however, IIS 5.1 is not.9

Creating the index.html Web Page
Now we can create the index.html Web page, which consists of the basic HTML state-
ments shown in Figure 7-14. Figure 7-15 shows the HTML code in Notepad.

9If you are using Windows XP and IIS 5.1, you need to add index.html to the list of recognized files. You
do this by using Internet Information Services. In the Internet Information Services window, you right-
click the Web Sites object to display the shortcut menu and then click Properties to display the Web Sites
Properties dialog box. You then click the Documents tab and the Add button to display the Add Default
Document dialog box. Then enter the document name (file name) index.html and click the OK button.
Finally, we close the Web Sites Properties dialog box.

The Features View
pane is selected

The Features View
Default Document
settings page

The index.html
filename is already
listed

Ignore this alert

Figure 7-13

The index.html file in Windows 7 IIS Manager

In the HTML code for index.html, the HTML code segment:

<!DOCTYPE html>

is an HTML/XML document type declaration (DTD), which is used to check and
validate the contents of the code that you write. DTDs are discussed later
in this chapter. For right now, just include the code as it is written.

BTW

Chapter 7   Database Processing Applications   407

<!DOCTYPE html>
<html>

<head>
<title>Heather Sweeney Designs Demonstration Pages Home Page</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>
<body>

<h1 style="text-align: center; color: blue">
Database Concepts (7th Edition)

</h1>
<p style="text-align: center; font-weight: bold">

David M. Kroenke
</p>
<p style="text-align: center; font-weight: bold">

David J. Auer
</p>
<hr />
<h2 style="text-align: center; color: blue">

Welcome to the Heather Sweeney Designs Home Page
</h2>
<hr />
<p>Chapter 7 Demonstration Pages From Figures in the Text:</p>
<p>Example 1:

Display the SEMINAR Table (No surrogate key)

</p>
<hr />

</body>
</html>

Figure 7-14

The HTML Code for the index.html File in the HSD Folder

If we now use the URL http://localhost/DBC/HSD, we get the Web page shown in
Figure 7-16.

Web Database Processing Using PHP
Now that we have our basic Web site set up, we will expand its capabilities with a Web
development environment that allows us to connect Web pages to our database. Several
technologies allow us to do this. Developers using Microsoft products usually work with
the .NET framework and use ASP.NET technology. Developers who use the Apache Web
server may prefer creating JSP files in the JavaScript scripting language or using the Java
programming language in the Java Enterprise Edition (Java EE) environment.

The PHP Scripting Language  In this chapter, we will use the scripting language
PHP. PHP, which is an abbreviation for PHP: Hypertext Processor (and which was
previously known as the Personal Hypertext Processor), is a scripting language that can
be embedded in Web pages. PHP is extremely popular. In the January of 2013, more
than 2 million Internet domains had servers running PHP,10 and the May 2014 TIOBE

10See the PHP Web site.

408   Part 3   Database Management

The index.html
HTML code—note
how indentation is
used to keep the
code organized
and readable

Figure 7-15

The HTML Code for the index.html File in Notepad

Figure 7-16

The index.html Web Page in HSD

Chapter 7   Database Processing Applications   409

Programming Community Index ranked PHP as the seventh most popular programming
language (following, in order, C, Java, Objective-C, C++, Visual Basic, and C#).11 In May
of 2013, PHP had ranked sixth (leading Visual Basic), while in 2010 PHP held down third
place for a while. PHP appears to be maintaining popularity among programmers and
Web page designers. PHP is easy to learn and can be used in most Web server environ-
ments and with most databases. It is also an open-source product that is freely download-
able from the PHP Web site.

The NetBeans Integrated Development Environment (IDE)  Although a
simple text editor such as Notepad is fine for simple Web pages, as we start creating
more complex pages we will move to an Integrated Development Environment (IDE).
An IDE gives you the most robust and user-friendly means of creating and maintain-
ing your Web pages. If you are working with Microsoft products, you will likely use
Visual Studio (or the freely downloadable Visual Studio 2013 Express Edition, available
at www.microsoft.com/express/), or the WebMatrix3 (downloadable from www
.microsoft.com/web/webmatrix/). If you are working with JavaScript or Java, you
might prefer the Eclipse IDE.

For this chapter, we will again turn to the open-source development community and
use the NetBeans IDE. NetBeans provides a framework that can be modified by add-in
plugin modules for many purposes. For PHP, we can use Netbeans as modified for the
PHP plugin, which is specifically intended to provide a PHP development environment
in NetBeans.

For more information on installing and using PHP and NetBeans, see Appendix I,
“Getting Started with Web Servers, PHP and the NetBeans IDE.” Figure 7-17 shows the

11See the Tiobe Software Web site.

The index.html HTML
code—note how color
coding has been
added to indentation
to keep the code
organized and
readable

Figure 7-17

The HTML Code for the index.html File in the NetBeans IDE

www.microsoft.com/express/
www.microsoft.com/web/webmatrix/
www.microsoft.com/web/webmatrix/

410   Part 3   Database Management

index.html file as created in a NetBeans project named DBC-e07-HSD in the NetBeans
IDE. Compare this version with the Notepad version in Figure 7-16.

Now that we have our basic Web site set up, we will start to integrate PHP into the
Web pages. First, we will create a page to read data from a database table and display the
results in a Web page. Specifically, we will create a Web page in the HSD folder named
ReadSeminar.php to run the SQL query:

/* *** SQL-UPDATE-CH07-01 *** */

SELECT * FROM SEMINAR;

This page displays the result of the query, without the table’s surrogate key of SeminarID,
in a Web page. The HTML and PHP code for ReadSeminar.php is shown in Figure 7-18,
and the same code is shown in the NetBeans IDE in Figure 7-19.

If you use the URL http://localhost/DBC/HSD in your Web browser and then click
the Example 1: Display the SEMINAR Table (No surrogate key) link on that page, the
Web page shown in Figure 7-20 is displayed.

The ReadSeminar.php code blends HTML (executed on the user’s workstation) and
PHP statements (executed on the Web server). In Figure 7-18, the statements included
between <?php and ?> is program code that is to be executed on the Web server computer.
All the rest of the code is HTML that is generated and sent to the browser client. In Figure
7-18, the statements:

<!DOCTYPE html>

<html>

    <head>

       <meta charset=UTF-8">

       <title>ReadSeminar PHP Page</title>

       <style type="text/css">

          h1 {text-align: center; color: blue}

          h2 {font-family: Ariel, sans-serif;
              text-align: left; color: blue}

          p.footer {text-align: center}

          table.output {font-family: Ariel, sans-serif}

        </style>

    </head>

    <body>

are normal HTML code. When sent to the browser, these statements set the title of the
browser window to ReadSeminar PHP Page; define styles to be used by the headings,12
the results table, and the footer; and cause other HTML-related actions. The next group
of statements are included between <?php and ?> and thus are PHP code that will be ex-
ecuted on the Web server. Also note that all PHP statements, like SQL statements, must
end with a semicolon (;).

12Styles are used to control the visual presentation of the Web page and are defined in the HTML section
between the <style> and </style> tags. For more information about styles, see David Raggett’s tutorial
“Adding a Touch of Style”.

Chapter 7   Database Processing Applications   411

<!DOCTYPE html>
<html>

<head>
<meta charset=UTF-8">
<title>ReadSeminar PHP Page</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$Conn = odbc_connect('HSD', 'HSD-User','HSD-User+password');

// Test connection
if (!Conn)

{
exit ("ODBC Connection Failed: " . $Conn);
}

// Create SQL statement
$SQL = "SELECT * FROM SEMINAR";

// Execute SQL statement
$RecordSet = odbc_exec($Conn,$SQL);

// Test existence of recordset
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);
}

?>
<!-- Page Headers -->
<h1>

The Heather Sweeney Designs SEMINAR Table
</h1>
<hr />
<h2>

SEMINAR
</h2>

<?php

// Table headers
echo "<table class='output' border='1'>

<tr>
<th>SeminarDate</th>
<th>SeminarTime</th>
<th>Location</th>
<th>SeminarTitle</th>

</tr>";

Figure 7-18

The HTML and PHP Code for ReadSeminar.php

(continued)

412   Part 3   Database Management

The ReadSeminar.php
code—PHP code is
enclosed in the
<?php and ?>
symbols, which are
displayed in red in
Eclipse

Figure 7-19

The HTML and PHP Code for ReadSeminar.php in the NetBeans IDE

Figure 7-18  Continued

Chapter 7   Database Processing Applications   413

Creating a Connection to the Database  In the HTML and PHP code in Figure
7-18, the following PHP code is embedded in the HTML code to create and test a connec-
tion to the database:

<?php

    // Get connection

    $Conn = odbc_connect('HSD', 'HSD-User', 'HSD-User+password');

    // Test connection

    if (!$Conn)

    {

       exit ("ODBC Connection Failed: " . $Conn);

    }

After it runs, the variable $Conn can be used to connect to the ODBC data source HSD.
Note that all PHP variables start with the dollar sign symbol ($).

Figure 7-20

The Results of ReadSeminar.php

Be sure to use comments to document your Web pages. PHP code seg-
ments with two forward slashes (//) in front of them are comments. This
symbol is used to define single-line comments. In PHP, comments can
also be inserted in blocks between the symbols /* and */, whereas in HTML
comments must be inserted between the symbols <!-- and -->.

BTW

414   Part 3   Database Management

The connection is used to open the HSD ODBC data source. Here the user ID of
HSD-User and the password of HSD-User+password that we created in Chapter 6 are be-
ing used to authenticate the DBMS.

The test of the connection is contained in the code segment:

    // Test connection

    if (!$Conn)

    {

       exit ("ODBC Connection Failed: " . $Conn);

    }

In English, this statement says, “IF the connection Conn does not exist, THEN print the
error message 'ODBC Connection Failed' followed by the contents of the variable $Conn.”
Note that the code (!Conn) means NOT Conn—in PHP the exclamation point symbol (!)
means NOT.

At this point, a connection has been established to the DBMS via the ODBC data
source, and the database is open. The $Conn variable can be used whenever a connection
to the database is needed.

Creating a Recordset  Given the connection with an open database, the following
code segment from Figure 7-18 will store an SQL statement in the variable $SQL and then
use the PHP odbc_exec command to run that SQL statement against the database to re-
trieve the query results and store them in the variable $RecordSet:

    // Create SQL statement

    $SQL = "SELECT * FROM SEMINAR";

    // Execute SQL statement

    $RecordSet = odbc_exec($Conn, $SQL);

    // Test existence of recordset

    if (!$objRecordSet)

    {

       exit ("SQL Statement Error: " . $SQL);

    }

    ?>

Note that again you need to test the results to be sure the PHP command executed
correctly.

Displaying the Results  Now that the recordset has been created and populated, we
can process the recordset collection with the following code:

<!-- Page Headers -->

<h1>

The Heather Sweeney Designs SEMINAR Table

</h1>

<hr />

<h2>

SEMINAR

</h2>

<?php

Chapter 7   Database Processing Applications   415

// Table headers

echo "<table class='output' border='1'>

<tr>

<th>SeminarDate</th>

<th>SeminarTime</th>

<th>Location</th>

<th>SeminarTitle</th>

</tr>";

// Table data

while($RecordSetRow = odbc_fetch_array($RecordSet))

{

echo "<tr>";

echo "<td>" . $RecordSetRow['SeminarDate'] . "</td>";

echo "<td>" . $RecordSetRow['SeminarTime'] . "</td>";

echo "<td>" . $RecordSetRow['Location'] . "</td>";

echo "<td>" . $RecordSetRow['SeminarTitle'] . "</td>";

echo "</tr>";

}

echo "</table>";

The HTML section defines the page headers, and the PHP section defines how to display
the SQL results in a table format. Note the use of the PHP command echo to allow PHP to
use HTML syntax within the PHP code section. Also note that a loop is executed to iterate
through the rows of the recordset using the PHP variable $RecordSetRow.

Disconnecting from the Database  Now that we have finished running the SQL
statement and displaying the results, we can end our ODBC connection to the database
with the code:

// Close connection

odbc_close($Conn);

?>

The basic page we have created here illustrates the basic concepts of using ODBC and
PHP to connect to a database and process data from that database in a Web database pro-
cessing application. You can build on this foundation by studying PHP command syntax
and incorporating additional PHP features into your Web pages. For more information on
PHP, see the PHP documentation.

Updating a Table with PHP
The previous example of a PHP Web page just read data. The next example shows how to
update table data by adding a row to a table with PHP. Figure 7-21 shows a modification
we need to make to the HSD index.html file in order to link to the new pages we are going
to create—modify your index.html file before creating the new pages. Figure 7-22 shows
the modified HSD home page in the Web browser.

Figure 7-23 shows a Web page data entry form that will capture new seminar data
and create a new row in the HSD SEMINAR table. This form has four data entry fields:
the Seminar Date and Seminar Time fields are text boxes where the user types in the
date and time of the new seminar, whereas the Location and Seminar Title have been

416   Part 3   Database Management

implemented as drop-down lists to control the possible values and to make sure they are
spelled correctly. Figure 7-24 shows data entered in the form and illustrates the use of the
Select Seminar Location drop-down box to select the Location value from a list (Houston
Convention Center in this case).

When the user clicks the Add New Seminar button, the seminar is added to the da-
tabase. If the results are successful, the acknowledgment Web page in Figure 7-25, which
also displays the SEMINAR table with the new row added, will be displayed. We have
tested these pages by adding a session of Heather’s Kitchen on a Budget seminar to be held
on June 23, 2014, starting at 2:00 pm at the Houston Convention Center.

<p>Example 1:

Display the SEMINAR Table (No surrogate key)

</p>
<!-- New Code Added Here -->
<p>Example 2:

Add a New Seminar to the SEMINAR Table

</p>
<!-- New Code Added to Here -->
<hr />

</body>
</html>

Figure 7-21

The HTML Code to Modify index.html File in the HSD Folder

The Example 2
Web link has been
added

Figure 7-22

The Modified HSD Web Home Page

Chapter 7   Database Processing Applications   417

Drop-down list arrow
button to select data
from set values

Text box to enter data

Figure 7-23

The NewSeminarForm Web Page

Data entered in the
text box

Selecting a data value
from the drop-down
list

Figure 7-24

Entering Data Values in the NewSeminarForm Web Page

418   Part 3   Database Management

This processing necessitates two PHP pages. The first, shown in Figure 7-26, is the
data entry form.

It also contains the form tag:

   <form action="InsertNewSeminar.php" method="POST">

This tag defines a form section on the page, and the section will be set up to obtain data
entry values. This form has only one data entry value: the table name. The POST method
refers to a process that causes the data in the form (here the seminar date, the seminar time,
the location, and the seminar title) to be delivered to the PHP server so it can be used in an
array variable named $_POST. Note that $_POST is an array and thus can have multiple
values. An alternative method is GET, but POST can carry more data, and this distinction
is not too important to us here. The second parameter of the form tag is action, which is set
to InsertNewSeminar.php. This parameter tells the Web server that when it receives the re-
sponse from this form it should store the data values in the $_POST array and pass control
to the InsertNewSeminar.php page.

The rest of the page is standard HTML, with the addition of the <select><option> . . . 
</option></select> structure for creating a drop-down list in the form. Note that the name
of the first select is Location and that of the second select is SeminarTitle.

When the user clicks the Add New Seminar button, these data are to be processed
by the InsertNewSeminar.php page. Figure 7-27 shows the HTML/PHP code for

Figure 7-25

The New Seminar Data in the SEMINAR Table

Chapter 7   Database Processing Applications   419

!DOCTYPE html>
<html>

<head>
<title>NewSeminarForm HTML Page</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>

<form action="InsertNewSeminar.php" method="POST">
<!-- Page Headers -->
<h1>

Heather Sweeney Designs New Seminar Form
</h1>
<hr />

<p>

Enter Seminar Date and Time:
</p>
<table>

<tr>
<td> Seminar Date [Format as DD-MMM-YYYY]: </td>
<td>

<input type="text" name="SeminarDate" size="16" />
</td>

</tr>
<tr>

<td> Seminar Time [Format as HH:MM AM/PM]: </td>
<td>

<input type="text" name="SeminarTime" size="16" />
</td>

</tr>
</table>
<p>

Select Seminar Location:
</p>
<select name="Location">

<option value="Austin Convention Center">Austin Convention Center</option>
<option value="Dallas Convention Center">Dallas Convention Center</option>
<option value="Fort Worth Convention Center">Fort Worth Convention

Center</option>
<option value="Houston Convention Center">Houston Convention Center</option>
<option value="San Antonio Convention Center">San Antonio Convention

Center</option>
</select>

<p>

Select Seminar Title:
</p>

Figure 7-26

The HTML Code for NewSeminarForm.html File

(continued)

420   Part 3   Database Management

InsertNewSeminar.php, the page that will be invoked when the response is received from
the form. Note that the variable values for the INSERT statement are obtained from
the $_POST[] array. First, we create short variable names for the $_POST version of the
name, and then we use these short variable names to create the SQL INSERT statement.
Thus:

// Create short variable names

$SeminarDate = $_POST["SeminarDate"];

$SeminarTime = $_POST["SeminarTime"];

$Location = $_POST["Location"];

$SeminarTitle = $_POST["SeminarTitle"];

// Create SQL statement to INSERT new data

$SQLINSERT = "INSERT INTO SEMINAR ";

$SQLINSERT .= "VALUES('$SeminarDate', '$SeminarTime',
   '$Location', '$SeminarTitle')";

Note the use of the PHP concatenation operator (.=) (a combination of a period and
an equals sign) to combine the two sections of the SQL INSERT statement. As another ex-
ample, to create a variable named $AllOfUs with the value me, myself, and I we would use:

$AllOfUs = "me, ";

$AllOfUs .= "myself, ";

$AllOfUs .= "and I";

Most of the code is self-explanatory, but make sure you understand how it works.

Challenges for Web Database Processing
Web database application processing is complicated by an important characteristic
of HTTP. Specifically, HTTP is stateless; it has no provision for maintaining sessions
between requests. Using HTTP, a client at a browser makes a request of a Web server.

<select name="SeminarTitle">
<option value="Kitchen on a Budget">Kitchen on a Budget</option>
<option value="Kitchen on a Big D Budget">Kitchen on a Big D Budget</option>

</select>

<p>

<input type="submit" value="Add New Seminar" />
<input type="reset" value="Reset Values" />

</p>
</form>

<hr />
<p class="footer">

Return to Heather Sweeney Designs Home Page

</p>
<hr />

</body>
</html>

Figure 7-26  Continued

Chapter 7   Database Processing Applications   421

<!DOCTYPE html>
<html>

<head>
<meta charset=UTF-8">
<title>InsertNewSeminar PHP Page</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$DSN = "HSD";
$User = "HSD-User";
$Password = "HSD-User+password";

$Conn = odbc_connect($DSN, $User, $Password);

// Test connection
if (!$Conn)

{
exit ("ODBC Connection Failed: " . $Conn);

}
// Create short variable names
$SeminarDate = $_POST["SeminarDate"];
$SeminarTime = $_POST["SeminarTime"];
$Location = $_POST["Location"];
$SeminarTitle = $_POST["SeminarTitle"];

// Create SQL statement to INSERT new data
$SQLINSERT = "INSERT INTO SEMINAR ";
$SQLINSERT .= "VALUES('$SeminarDate', '$SeminarTime', '$Location',

'$SeminarTitle')";

// Execute SQL statement
$Result = odbc_exec($Conn, $SQLINSERT);

// Test existence of result
echo "<h1>

The Heather Sweeney Designs SEMINAR Table
</h1>
<hr />";

if ($Result){
echo "<h2>

New Seminar Added:
</h2>
<table>

<tr>";
echo "<td>Seminar Date:</td>";
echo "<td>" . $SeminarDate . "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>Seminar Time:</td>";
echo "<td>" . $SeminarTime . "</td>";

Figure 7-27

The HTML/PHP Code to for the InsertNewSeminar.php File

(continued)

422   Part 3   Database Management

echo "<td>Location:</td>";
echo "<td>" . $Location . "</td>";
echo "</tr>";
echo "<td>Seminar Title:</td>";
echo "<td>" . $SeminarTitle . "</td>";
echo "</tr>";

echo "</table>
<hr />";
}
else {

exit ("SQL Statement Error: " . $SQL);
}

// Create SQL statement to read SEMINAR table data
$SQL = "SELECT * FROM SEMINAR";

// Execute SQL statement
$RecordSet = odbc_exec($Conn,$SQL);

// Test existence of recordset
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);

}
// Table headers
echo "<table class='output' border='1'>

<tr>
<th>SeminarDate</th>
<th>SeminarTime</th>
<th>Location</th>
<th>SeminarTitle</th>

</tr>";

// Table data
while($RecordSetRow = odbc_fetch_array($RecordSet))

{
echo "<tr>";
echo "<td>" . $RecordSetRow['SeminarDate'] . "</td>";
echo "<td>" . $RecordSetRow['SeminarTime'] . "</td>";
echo "<td>" . $RecordSetRow['Location'] . "</td>";
echo "<td>" . $RecordSetRow['SeminarTitle'] . "</td>";
echo "</tr>";
}

echo "</table>";

// Close connection
odbc_close($Conn);

?>

<hr />

Return to Heather Sweeney Designs Home Page

</p>
<hr />

</body>
</html>

<p class="footer">

echo "</tr>";
echo "<tr>";

Figure 7-27  Continued

Chapter 7   Database Processing Applications   423

The server services the client request, sends results back to the browser, and forgets
about the interaction with that client. A second request from that same client is treated
as a new request from a new client. No data are kept to maintain a session or connection
with the client.

This characteristic poses no problem for serving content, either static Web pages
or responses to queries of a database. However, it is not acceptable for applications that
require multiple database actions in an atomic transaction. Recall from Chapter 6 that in
some cases a group of database actions needs to be grouped into a transaction, with all of
them committed to the database or none of them committed to the database. In this case,
the Web server or other program must augment the base capabilities of HTTP.

For example, IIS provides features and functions for maintaining data about ses-
sions between multiple HTTP requests and responses. Using these features and func-
tions, the application program on the Web server can save data to and from the browser.
A particular session will be associated with a particular set of data. In this way, the ap-
plication program can start a transaction, conduct multiple interactions with the user
at the browser, make intermediate changes to the database, and commit or roll back all
changes when ending the transaction. Other means are used to provide for sessions and
session data with Apache.

In some cases, the application programs must create their own methods for tracking
session data. PHP does include support for sessions—see the PHP documentation for
more information.

The particulars of session management are beyond the scope of this chapter. However,
you should be aware that HTTP is stateless, and, regardless of the Web server, additional
code must be added to database applications to enable transaction processing.

SQL Injection Attacks
Our example of a Web page for a Web database application was a read-only example. To
make a Web database application truly useful, we would have to have Web pages that allow
us to input data as well as read it.

When we do this, however, we must use care in creating input Web pages, or we may
create a vulnerability that allows an SQL injection attack. An SQL injection attack is
similar to the application-level security example we discussed in Chapter 6 and attempts
to issue SQL commands to the DBMS. For example, suppose that a Web page is used to
update a user’s phone number and thus requires the user to input the new phone num-
ber. The Web application would then use PHP code to create and run an SQL statement
such as:

// Create SQL statement

$varSQL = "UPDATE CUSTOMER SET PHONE = '$NewPhone' ";

$varSQL .= "WHERE CustomerID = '$CustomerID'";

// Execute SQL statement

   $RecordSet = odbc_exec($Conn, $varSQL);

If the input value of NewPhone is not carefully checked, it may be possible for an at-
tacker to use an input value such as:

678-345-1234; DELETE FROM CUSTOMER;

If this input value is accepted and the SQL statement is run, we may lose all data
in the CUSTOMER table if the Web application has DELETE permissions on the
CUSTOMER table. Therefore, Web database applications must be very carefully con-
structed to provide for data checking and to ensure that only necessary database permis-
sions are granted.

424   Part 3   Database Management

XML is a standard means for defining the structure of documents and for transmitting
documents from one computer to another. XML is important for database processing be-
cause it provides a standardized means of submitting data to a database and for receiving
results back from the database. XML is a large, complicated subject that requires several
books to explain fully. Here we touch on the fundamentals and further explain why XML
is important for database processing.

The Importance of XML
Database processing and document processing need each other. Database processing
needs document processing for transmitting database views, and document processing
needs database processing for storing and manipulating data. In the early 1990s, the
Web development and database communities began to meet, and the result of their work
became XML.

XML provides a standardized yet customizable way to describe the content of docu-
ments. It can therefore be used to describe any database view but in a standardized way.
Database data can automatically be extracted from XML documents. And there are stan-
dardized ways of defining how document components are mapped to database schema
components and vice versa. Today, XML is used for many purposes. One of the most
important is its use as a standardized means to define and communicate documents for
processing over the Internet.

XML as a Markup Language
As a markup language, XML is significantly better than HTML in several ways. First,
XML provides a clean separation between document structure, content, and materializa-
tion. XML has facilities for dealing with each, and they cannot be confounded, as they can
with HTML.

Second, XML is standardized, but, as its name implies, the standards allow for exten-
sion by developers. With XML, you are not limited to a fixed set of elements with tags such
as <h1> . . . </h1> and <p> . . . </p>. Instead, you can create your own tags.

Third, XML forces consistent tag use. HTML tags can be used for different purposes.
For example, consider the following HTML:

<h2>HSD Seminar Data</h2>

Although the <h2> tag can be used to structurally mark a level-two heading in a Web
page, it can be used for other purposes, too, such as causing “HSD Seminar Data” to
be displayed in a particular font size, weight, and color. Because an HTML tag has po-
tentially many purposes, you cannot rely on HTML tags to describe the structure of an
HTML page.

In contrast, the structure of an XML document is formally defined. Tags are defined in
relationship to one another. If you find the XML tag <city> . . . </city>, you know exactly what
data you have, where that data belong in the document, and how that tag relates to other tags.

XML and Database Processing
What does XML have to do with database processing? How are the XML documents to
be generated in the first place? In addition, after a company has received and validated an
XML document, how does it place the data from that document into its database?

The answer is to use database applications. Such applications can be written to accept
XML documents and extract the data for storage in the database. One way is to extend
SQL to cause the results from an SQL statement to be produced in XML format. For

Database Processing and XML

Chapter 7   Database Processing Applications   425

example, Figure 7-32 shows the following SQL statement, which uses the SQL FOR XML
clause, run on SQL Server:

/* *** SQL-QUERY-CH07-01 * ***/

SELECT	 *

FROM	 SEMINAR

	 FOR XML AUTO, ELEMENTS;

Note that in Figure 7-28, the output (which is all in one cell in this format) in the
Messages window is a hyperlink. Clicking the hyperlink produces the XML output
shown in Figure 7-29.

XML Web Services
The use of XML for the transmission of database data is especially important because of
the development of a new standard called XML Web Services. XML Web Services (or just
Web Services) involves several standards, including XML. XML is used for its ability to
create data tags, and XML Web Services is a means for sharing elements of program func-
tionality over the Web.

For example, suppose you have created a database application that converts curren-
cies. Your program will receive the amount of money stated in one currency and convert it
to a second currency. You can convert U.S. dollars into Mexican pesos, Japanese yen into
euros, and so on. Using XML Web Services, you can publish your database application
over the Web in such a way that other programs can consume your program as if it were on
their own machine. It will appear to them as if they are using a local program, even though
your program might be on the other side of the world.

SQL query with FOR
XML clause

The query results are
one cell containing
the entire XML
output—click on the
results to display them
in full

Figure 7-28

An SQL FOR XML Query

426   Part 3   Database Management

Perhaps you have heard the statement “The Internet is the computer.” That statement
becomes a reality when different computers, connected via Internet plumbing, can share
programs as if they were all on the same machine. When database applications are written
as XML Web Services, any computer in the world can access the database applications us-
ing standard interfaces, and it appears as if the applications are local to the machine that
uses those applications. The particulars are beyond the scope of this discussion, but Web
Services are now pervasive in the Web environment.13

13For more information about XML, see David M. Kroenke and David J. Auer, Database Processing:
Fundamentals, Design and Implementation, 13th Edition (Upper Saddle River, NJ: Prentice Hall 2014):
Chapter 11.

The query results are
now displayed in
full—note the XML
tags and data content

Figure 7-29

Results of the SQL FOR XML Query

The Access Workbench
Section 7
Web Database Processing Using Microsoft Access

Now that we have built the Wallingford Motors CRM database, it is time to develop a Web
application to allow Wallingford Motors’ sales staff to access it over the Web. In this sec-
tion, you will:

•	Build a Web home page for Wallingford Motors.
•	Create an ODBC data source to access the WMCRM database.
•	Build a Web page to display data about customer contacts.

Chapter 7   Database Processing Applications   427

Sorted by ContactID in
ascending order

Figure AW-7-1

The viewCustomerContacts Query

(Continued)

Creating the Customer Contacts View

We want to display a list of customer contacts in a Web page. The list will contain a
combination of data from the CONTACT and CUSTOMER tables. To simplify the
process, we will define a view named viewCustomerContacts. SQL views are discussed
in Appendix E; if you have not studied that material, take a few minutes to read it and
work through the Appendix’s section of “The Access Workbench.” As discussed there, in
Microsoft Access a view is simply a saved query. Figure AW-7-1 shows the details of the
viewCustomerContacts query.

There is nothing new here. You know how to create Microsoft Access QBE queries, so
go ahead and create and save the viewCustomerContacts query. When you are done, close
both the WMCRM database and Microsoft Access.

A Web Home Page for Wallingford Motors

The actions we need to take to create a Web page for Wallingford Motors (WM) are the
same actions discussed for Heather Sweeney Designs in this chapter. We will create a folder
to hold the Web site files and build a home page named index.html in that folder. The
HTML code for the WM index.html page is shown in Figure AW-7-2.14

The code in Figure AW-7-2 can be used in any text editor or Web page editor, but
the simplest editor to use for our purposes is the Microsoft Notepad ASCII text editor.
Notepad is not fancy, but it does the job, produces clean HTML (what you type in and only
what you type in), and comes with Windows. The following steps describe how to create
the file using Notepad, but if you have learned how to use the NetBeans IDE described in
the chapter, you can use it instead.

14If you are using IIS 5.1 on Windows XP and you haven’t already added index.html to the list of default
documents for the Web server, follow the steps in footnote 7 on page 399 to do so now.

428   Part 3   Database Management

Creating the Wallingford Motors Web Site

  1.	 Select Start | All Programs | Accessories | Windows Explorer to open Windows Explorer.
Expand the C: drive in My Computer so that the wwwroot folder is displayed. See
Figure 7-10 for this display.

  2.	 Expand the wwwroot folder to display the DBC folder.
  3.	 Click the DBC folder object to display the folder and files in the DBC folder.
  4.	 Right-click anywhere in the file pane to display the shortcut menu. Click New, and then

click Folder.
  5.	 Name the new folder WM.
  6.	 Expand the DBC folder in the folder tree pane (the left-hand pane), and then click the

new WM folder object to display the folder and files in the WM folder (which is empty).
  7.	 Right-click anywhere in the file pane (the right-hand pane) to display the shortcut menu.

Click New, and then click Text Document.
  8.	 Name the new text document index.html. When you complete renaming the file, a

Rename dialog box will appear warning you that you are changing the file name extension.
Click the Yes button in the Rename dialog box.

  9.	 Right-click the index.html file to display the shortcut menu. Click Open With, and then
click Notepad.

10.	 In Notepad, enter the text shown in Figure AW-7-2 into the open index.html file.
Figure AW-7-3 shows the HTML code in Notepad.

Figure AW-7-2

The HTML Code for the index.html File in the WM Folder

Chapter 7   Database Processing Applications   429

Note the indentation
scheme used to
identify and match
HTML elements

Figure AW-7-3

The index.html File in Notepad

(Continued)

11.	 Use the Notepad File | Save menu command to save the index.html file.
12.	 Close Notepad.

Notepad is a good, basic text editor that is available on every workstation running the
Windows operating system. Dedicated Web page editors, however, do a superior job of
working with HTML and PHP text. Figure AW-7-4 shows the index.html file being edited
in a NetBeans project named DBC-e07-WM in the NetBeans IDE.

Viewing the Wallingford Motors Web Site

1.	 Open Windows Internet Explorer or whatever Web browser you use.
2.	 Type the URL http://localhost/DBC/WM into the Address text box and press the Enter

key. The WM home page appears in the Web browser, as shown in Figure AW-7-5.
3.	 Close the Web browser.

Selecting the Database File

You will be working with the Wallingford Motors CRM database, so put a copy of the
WMCRM.accdb file from your My Documents folder—which already contains the view-
CustomerContacts query—in the WM Web site folder.

Creating an ODBC Data Source

We now have the basic Wallingford Motors Web site set up. Now, we need to create an
ODBC data source. Again, we follow steps similar to those outlined in the chapter.

430   Part 3   Database Management

Creating the WM System Data Source

  1.	 Open the Windows Control Panel by clicking the Start button, and then clicking Control
Panel [if you have added the Data Sources (ODBC) icon to the Windows Start menu as
described in Appendix E, then click the Data sources (ODBC) icon and go directly to
step 4].

  2.	 In the Control Panel window, click System and Security to display the System and Security
window, and then click Administrative Tools to display the Administrative Tools window.

Type the URL text
here and then press
the Enter key

Figure AW-7-5

The Wallingford Motors Home Page

The index.html
HTML code—note
how color coding has
been added to
indentation to keep
the code organized
and readable

Figure AW-7-4

The index.html File in the NetBeans IDE

Chapter 7   Database Processing Applications   431

  3.	 In the Administrative Tools window, click the Data Sources (ODBC) shortcut icon.
  4.	 In the ODBC Data Source Administrator, click the System DSN tab, and then click the

Add button.
  5.	 In the Create New Data Source dialog box, select Microsoft Access Driver, as shown in

Figure AW-7-6, and then click the Finish button.
  6.	 The ODBC Microsoft Access Setup dialog box appears. In the Data Source Name text

box, type WM. In the Description text box, type Wallingford Motors CRM on Microsoft
Access 2013.

  7.	 Click the Database: Select button, and then browse to the WMCRM.accdb database in
the Select Database dialog box, as shown in Figure AW-7-7.

  8.	 Click the OK button to close the Select Database dialog box.
  9.	 Click the OK button to close the ODBC Microsoft Access Setup dialog box.
10.	 Click the OK button to close the ODBC Data Source Administrator.

Creating the PHP Page

Now we need to create a PHP that we will name ReadViewCustomerContacts.php. This is
the Web page that will query the database and display the returned data. The code for the
ReadViewCustomerContacts.php is shown in Figure AW-7-8.

Select this Microsoft
Access *.aacdb driver

Click the Finish button

Figure AW-7-6

Selecting the Microsoft
Access Driver

Browse to the
c:\Inetpub\wwwroot\
DBC\WM folder
(directory)

Select the
WMCRM.accdb
database

Figure AW-7-7

Selecting the
WMCRM.accdb
Database

(Continued)

432   Part 3   Database Management

Figure AW-7-8

The PHP Code for ReadViewCustomerContacts.php

Chapter 7   Database Processing Applications   433

Figure AW-7-8  Continued

We will create the ReadViewCustomerContact.php file in the NetBeans IDE, but you
could instead do this using another IDE or a text editor such as Microsoft Notepad. We’ll
store the file in the WM folder. Figure AW-7-9 shows the ReadViewCustomerContacts.php
file being edited in the NetBeans IDE.

Running the PHP Page

Now you can try out the CustomerContacts.php file.

Using the ReadViewCustomerContacts.php File

1.	 Open Internet Explorer or another Web browser.
2.	 Type the URL http://localhost/DBC/WM into the Address text box and press the Enter

key. The WM home page appears in the Web browser.
3.	 Click the Display the Customer Contacts List (viewCustomerContacts) hyperlink. The

Web page appears, as shown in Figure Figure AW-7-10.
4.	 Close the Web browser.

In Closing

Neither the WMCRM database nor Microsoft Access 2013 is open, so you do not have to
close them. You now know how to connect to a Microsoft Access database from a Web
page.

(Continued)

434   Part 3   Database Management

The ReadView
CustomerContacts.php
code—PHP code
is enclosed in the
<?php and ?> tags,
which are displayed
in red in Eclipse

Figure AW-7-9

The ReadViewCustomerContacts.php File in the NetBeans IDE

Sorted by ContactID
in ascending order

Figure AW-7-10

Results for ReadViewCustomerContacts.php

Chapter 7   Database Processing Applications   435

Summary
This chapter introduced Web database processing and Extensible Markup Language
(XML).

Databases vary not only in size, scope, and the number of users, but also in the way
they are processed. Some databases are processed just by queries, forms, and reports; some
are processed by ASP and JSP, which use Internet technology to publish database applica-
tions; some are processed by traditional application programs; and some are processed by
stored procedures and triggers. Other databases are processed by all these types of applica-
tions, with hundreds or thousands of concurrent users.

Web database processing systems consist of users who use browsers that connect via
HTTP to a Web server that processes communications and database applications. The
database applications process the database via the DBMS. In a two-tiered system, the Web
server and the DBMS reside on the same computer, but this is not a good configuration for
performance and security reasons. Better is a three-tiered system, where the Web server
and DBMS reside on different computers. Higher-capacity systems use more than one Web
server and may use multiple database servers in clusters.

If the Web server host runs Windows, the Web server software is usually IIS. IIS pro-
cesses HTTP and ASP. ASP is a blend of HTML and scripting code. Database application
logic is often processed using such scripts. If the Web server host runs Linux or Unix, the
Web server software is normally Apache.

Every DBMS has its own API. The Open Database Connectivity (ODBC) standard
provides an interface by which database applications can access and process relational
data sources in a DBMS-independent manner. ODBC involves an applications program, a
driver manager, a DBMS driver, and data source components. Single-tier and multiple-tier
drivers are defined. The three types of data source names are file, system, and user. System
data sources are recommended for Web servers. The process of defining a system data
source name involves specifying the type of driver and the identity of the database to be
processed.

Microsoft’s latest Web server offering is ASP.NET. With it, object-oriented program-
ming languages such as Visual Basic .NET, C#, and C++ can be used. ASP.NET pages are
compiled but not interpreted.

Web database processing is complicated by the fact that HTTP is stateless. When pro-
cessing atomic transactions, application programs must include logic to provide for session
state. The means by which this is done depends on the Web server and language in use.

PHP (PHP: Hypertext Processor) is a scripting language that can be embedded in
Web pages. PHP is extremely popular and easy to learn, and it can be used in most Web
server environments and with most databases.

For creating complex pages, you need an Integrated Development Environment
(IDE). An IDE gives you the most robust and user-friendly means of creating and main-
taining Web pages. Microsoft Visual Studio, NetBeans for Java users, and the open-source
Eclipse IDE are all good IDEs. Microsoft Visual Studio, NetBeans, and Eclipse all provide
a framework that can be modified by add-in modules.

Using XML is becoming the standard means for defining documents and transmitting
them from one computer to another. Increasingly, it is being used to transmit data to and
from database applications. XML tags are not fixed but can be extended by document
designers.

Although XML can be used to materialize Web pages, more important is its use for
describing, representing, and materializing database views. XML is a better markup lan-
guage than HTML primarily because XML provides a clear separation between document
structure, content, and materialization. Also, XML tags are not ambiguous.

SQL Server, Oracle Database, and MySQL can produce XML documents from data-
base data. SQL Server supports an add-on expression to the SQL SELECT statement, the
FOR XML expression. XML is important because it facilitates the sharing of XML docu-
ments (and hence database data) among organizations.

436   Part 3   Database Management

Key Terms
.NET
?>
<?php
Active Data Objects (ADO)
Active Server Pages
ASP.NET
ADO.NET
AMP
Apache
Application Programming

Interface (API)
data source
data source name (DSN)
Default Web Site folder
document type definitions (DTD)
driver
Extensible Markup Language (XML)
file data source
HTML document tags
HTML syntax rules
HTML5
http://localhost
Hypertext Markup Language

(HTML)

iisstart.htm
index.html
inetpub folder
Integrated Development

Environment (IDE)
Internet Information

Services (IIS)
Internet Information Services

Manager
Java Server Pages (JSP)
LAMP
multiple-tier driver
NetBeans IDE
ODBC architecture
ODBC Data Source

Administrator
ODBC DBMS driver
ODBC driver manager
OLE DB
Open Database Connectivity

(ODBC)
PHP
PHP: Hypertext Processor
POST method

PHP concatenation operator (.=)
PHP plugin
single-tier driver
SQL FOR XML clause
SQL injection attack
SQL/Persistent stored modules

(SQL/PSM)
stored procedure
system data source
three-tier architecture
trigger
two-tier architecture
user data source
user defined function
WAMP
Web Services
Web
World Wide Web
World Wide Web Consortium

(W3C)
wwwroot folder
XHTML
XML Web Services

Review Questions
	  7.1	 Describe five different ways databases can be processed (use Figure 7-3).

	  7.2	 Summarize the issues involved in processing a form, as described in this chapter.

	  7.3	 Describe, in your own words, the nature of traditional database processing
applications.

	  7.4	 What is a trigger, and how is it used?

	  7.5	 Name three types of triggers.

	  7.6	 What is a stored procedure, and how is it used?

	  7.7	 Describe why the data environment is complicated.

	  7.8	 Name the three major components of a Web database application.

	  7.9	 As explained in this chapter, what are the two major functions of a Web server?

	7.10	 Explain the difference between two-tier and three-tier architecture.

	7.11	 What is IIS, and what functions does it serve?

	7.12	 What do the abbreviations ASP and JSP stand for?

	7.13	 What is ASP.NET?

	7.14	 What is Apache, and what function does it serve?

	7.15	 What are AMP, LAMP, and WAMP?

Chapter 7   Database Processing Applications   437

	7.16	 Explain the relationship among ODBC, OLE DB, and ADO.

	7.17	 Name the components of the ODBC standard.

	7.18	 What role does the driver manager serve?

	7.19	 What role does the DBMS driver serve?

	7.20	 What is a single-tier driver?

	7.21	 What is a multiple-tier driver?

	7.22	 Explain the differences between the three types of ODBC data sources.

	7.23	 Which ODBC data source type is recommended for Web servers?

	7.24	 What is an API, and what function does it serve?

	7.25	 What is Hypertext Markup Language (HTML), and what function does it serve?

	7.26	 What are HTML document tags, and how are they used?

	7.27	 What is the World Wide Web Consortium (W3C)?

	7.28	 Why is index.html a significant file name?

	7.29	 What is PHP, and what function does it serve?

	7.30	 How is PHP code designated in a Web page?

	7.31	 How are comments designated in PHP code?

	7.32	 How are comments designated in HTML code?

	7.33	 What is an Integrated Development Environment (IDE), and how is it used?

	7.34	 What Microsoft IDE is generally used in a Windows environment?

	7.35	 What is the NetBeans IDE?

	7.36	 Show a snippet of PHP code for creating a connection to a database. Explain the
meaning of the code.

	7.37	 Show a snippet of PHP code for creating a recordset. Explain the meaning of the
code.

	7.38	 Show a snippet of PHP code for displaying the contents of a recordset. Explain the
meaning of the code.

	7.39	 Show a snippet of PHP code for disconnecting from the database. Explain the
meaning of the code.

	7.40	 With respect to HTTP, what does stateless mean?

	7.41	 Under what circumstances does statelessness pose a problem for database
processing?

	7.42	 In general terms, how are sessions managed by database applications when using
HTTP?

	7.43	 What are the problems in interpreting tags such as <h1> . . . </h1> in HTML?

	7.44	 What does XML stand for?

	7.45	 How does XML differ from HTML?

	7.46	 Explain why XML is extensible.

	7.47	 In general terms, explain why XML is important for database processing.

	7.48	 What is the purpose of the FOR XML expression in an SQL statement?

	7.49	 What is the purpose of XML Web Services?

438   Part 3   Database Management

<!DOCTYPE html>
<html>

<head>
<title>DBC-e07 Home Page</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>
<body>

<h1 style="text-align: center; color: blue">
Database Concepts (7th Edition) Home Page

</h1>
<hr />
<h3 style="text-align: center">

Use this page to access Web-based materials from Chapter 7 of:
</h3>
<h2 style="text-align: center; color: blue">

Database Concepts (7th Edition)
</h2>
<p style="text-align: center; font-weight: bold">

David M. Kroenke
</p>
<p style="text-align: center; font-weight: bold">

David J. Auer
</p>
<hr />
<h3>Chapter 7 Demonstration Pages From Figures in the Text:</h3>
<p>

Heather Sweeney Designs Demonstration Pages

</p>
<p>

Wallingford Motors CRM Demonstration Pages

</p>
<hr />

</body>
</html>

Figure 7-30

The HTML Code for the index.html File in the DBC Folder

Exercises
	7.50	 In this exercise, you will create a Web page in the DBC folder and link it to the

HSD Web page in the HSD folder.

A.	 �Figure 7-30 shows the HTML code for a Web page for the DBC folder. Note
that the page is called index.html, the same name as the Web page in the HSD
folder. This is not a problem because the files are in different folders. Create
the index.html Web page in the DBC folder.

Chapter 7   Database Processing Applications   439

B.	 �Figure 7-31 shows some additional HTML to be added near the end of the
code for the HSD Web page in the file index.html in the HSD folder. Update
the HSD index.html file with the code.

C.	 �Try out the pages. Type http://localhost/DBC into your Web browser to
display the DBC home page. From there, you should be able to move back
and forth between the two pages by using the hyperlinks on each page.
Note: You may need to click the Refresh button on your Web browser when
using the HSD home page to get the hyperlink back to the DBC home page
to work properly.

	7.51	 Create a Web page for Heather Sweeney Designs to display all the data in the
CUSTOMER table. Add a hyperlink to the HSD home page to access the page.

	7.52	 Create a Web page for Heather Sweeney Designs to display the EmailAddress,
LastName, FirstName, and Phone of customers in the CUSTOMER table. Add a
hyperlink to the HSD home page to access the page.

	7.53	 Create a Web page for Heather Sweeney Designs to display the data in the SEMINAR_
CUSTOMER table. Add a hyperlink to the HSD home page to access the page.

	7.54	 Create a Web page for Heather Sweeney Designs to display the data in the
SEMINAR_CUSTOMER table for the SEMINAR with SeminarID = 3. Add a hy-
perlink to the HSD home page to access the page.

	7.55	 Create a Web page for Heather Sweeney Designs to display data in the SEMINAR,
SEMINAR_CUSTOMER, and CUSTOMER tables to list the SEMINAR data and
the EmailAddress, LastName, FirstName, and Phone of any CUSTOMER who
attended the SEMINAR with SeminarID = 3. Add a hyperlink to the HSD home
page to access the page.

	7.56	 Code two HTML/PHP pages to add a new CUSTOMER to the HSD database.
Create data for two new CUSTOMERs and add them to the database to demon-
strate that your pages work.

<p>Chapter 7 Demonstration Pages From Figures in the Text:</p>
<p>Example 1:

Display the SEMINAR Table (No surrogate key)

</p>
<hr />

<!-- NEW CODE STARTS HERE -->
<p style="text-align: center">

Return to the Database Concepts Home Page

</p>
<hr />

<!-- NEW CODE ENDS HERE -->
</body>

</html>

Figure 7-31

The HTML Modifications for the index.html File in the DBC Folder

440   Part 3   Database Management

Access Workbench Exercises
AW.7.1	 If you haven’t completed exercise 7.50, do it now.

AW.7.2	 Link the WM Web page to the DBC Web page.

AW.7.3	 Using the WMCRM database, code a PHP Web page to display the data in
SALESPERSON. Add a hyperlink on the WM Web page to access the page. Using your
database, demonstrate that your page works.

AW.7.4	 Using the WMCRM database, code a PHP Web page to display the data in
VEHICLE. Add a hyperlink on the WM Web page to access the page. Using your data-
base, demonstrate that your page works.

AW.7.5	 Using the WMCRM database, create a view named viewSalespersonVehicle and
include in it all the columns in both the SALESPERSON and VEHICLE tables. Code a
PHP Web page to display viewSalespersonVehicle. Add a hyperlink on the WM Web page
to access the page. Using your database, demonstrate that your page works.

AW.7.6	 Using the WMCRM database, code two HTML/PHP pages to add a new
CUSTOMER to the WMCRM database. Create data for two new CUSTOMERs and add
them to the database to demonstrate that your pages work.

Marcia’s Dry Cleaning Case Questions
Ms. Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner in
a well-to-do suburban neighborhood. Marcia makes her business stand out from the competi-
tion by providing superior customer service. She wants to keep track of each of her customers
and their orders. Ultimately, she wants to notify them that their clothes are ready via email.

Assume that Marcia has hired you as a database consultant to develop an operational
database named MDC that has the following four tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax,

TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,

ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

A Microsoft Access 2013 version of the MDC database and SQL scripts to create and
populate the MDC database are available for Microsoft SQL Server 2013, Oracle
Database Express Edition 11g Release 2, and MySQL 5.6 Community Server at the
Database Concepts Web site at www.pearsonhighered.com/kroenke. Sample data for the
CUSTOMER table are shown in Figure 7-32, for the SERVICE table in Figure 7-33, for the
INVOICE table in Figure 7-34, and for the INVOICE_ITEM table in Figure 7-35.

A.	 Create a database in your DBMS named MDC, and use the MDC SQL scripts for your
DBMS to create and populate the database tables. Create a user named MDC-User
with the password MDC-User+password. Assign this user to database roles so that the
user can read, insert, delete, and modify data.

B.	 If you haven’t completed exercise 7.50, do it now.

C.	 Add a new folder to the DBC Web site named MDC. Create a Web page for Marcia’s
Dry Cleaning in this folder—using the file name index.html. Link this page.

D.	 Create an appropriate ODBC data source for your database.

www.pearsonhighered.com/kroenke

Chapter 7   Database Processing Applications   441

E.	 Add a new column, Status, to INVOICE. Assume that Status can have the values
['Waiting', 'In-process', 'Finished', 'Pending'].

F.	 Create a view called CustomerInvoiceView that has the columns LastName, FirstName,
Phone, InvoiceNumber, DateIn, DateOut, Total, and Status.

G.	 Code a PHP page to display CustomerInvoiceView. Using your sample database, dem-
onstrate that your page works.

H.	 Code two HTML/PHP pages to receive a date value AsOfDate and to display rows
of CustomerInvoiceView for orders having DateIn greater than or equal to AsOfDate.
Using your sample database, demonstrate that your pages work.

  I.	 Code two HTML/PHP pages to receive customer Phone, LastName, and FirstName
and to display rows for customers having that Phone, LastName, and FirstName.
Using your sample database, demonstrate that your pages work.

ServiceDescription UnitPriceServiceID

Men’s Shirt

Dress Shirt

Women’s Shirt

Blouse

Slacks— Men’s

Slacks—Women’s

Skirt

Dress Skirt

Suit – Men’s

Suit – Women’s

Tuxedo

Formal Gown

$1.50

$2.50

$1.50

$3.50

$5.00

$6.00

$5.00

$6.00

$9.00

$8.50

$10.00

$10.00

10

11

15

16

20

25

30

31

40

45

50

60

Figure 7-33

Sample Data for the
MDC SERVICE Table

FirstName LastNameCustomerID Phone Email

Nikki.Kaccaton@somewhere.com

Brenda.Catnazaro@somewhere.com

Bruce.LeCat@somewhere.com

Betsy.Miller@somewhere.com

George.Miller@somewhere.com

Kathy.Miller@somewhere.com

Betsy.Miller@elsewhere.com

Nikki

Brenda

Bruce

Betsy

George

Kathy

Betsy

Kaccaton

Catnazaro

LeCat

Miller

Miller

Miller

Miller

100

105

110

115

120

125

130

723-543-1233

723-543-2344

723-543-3455

723-654-3211

723-654-4322

723-514-9877

723-514-8766

Figure 7-32

Sample Data for the MDC CUSTOMER Table

442   Part 3   Database Management

 Garden Glory Project Questions

If you have not already implemented the Garden Glory database shown in Chapter 3 in a
DBMS product, create and populate the Garden Glory database now in the DBMS of your
choice (or as assigned by your instructor).

A.	 Create a user named GG-User with the password GG-User+password. Assign this
user to database roles so that the user can read, insert, delete, and modify data.

B.	 If you haven’t completed exercise 7.50, do it now.

C.	 Add a new folder to the DBC Web site named GG. Create a Web page for Garden
Glory in this folder—using the file name index.html. Link this page to the DBC
Web page.

D.	 Create an appropriate ODBC data source for your database.

E.	 Code a Web page using PHP to display the data in OWNED_PROPERTY. Add a
hyperlink on the GG Web page to access the page. Using your database, demonstrate
that your page works.

F.	 Code a Web page using PHP to display the data in PROPERTY_SERVICE. Add a
hyperlink on the GG Web page to access the page. Using your database, demonstrate
that your page works.

G.	 Create a view named Property_Service_View that displays OWNED_PROPERTY
.PropertyID, PropertyName, PROPERY_SERVICE.EmployeeID, ServiceDate, and
HoursWorked. Code a Web page using PHP to display the data in Property Service_
View. Add a hyperlink to the GG Web page to access the page. Using your database,
demonstrate that your page works.

CustomerID DateInInvoiceNumber DateOut SubTotal Tax TotalAmount

$158.50

$25.00

$49.00

$17.50

$12.00

$152.50

$7.00

$140.50

$27.00

100

105

100

115

125

110

110

130

120

04-Oct-14

04-Oct-14

06-Oct-14

06-Oct-14

07-Oct-14

11-Oct-14

11-Oct-14

12-Oct-14

12-Oct-14

2014001

2014002

2014003

2014004

2014005

2014006

2014007

2014008

2014009

06-Oct-14

06-Oct-14

08-Oct-14

08-Oct-14

11-Oct-14

13-Oct-14

13-Oct-14

14-Oct-14

14-Oct-14

$12.52

$1.98

$3.87

$1.38

$0.95

$12.05

$0.55

$11.10

$2.13

$171.02

$26.98

$52.87

$18.88

$12.95

$164.55

$7.55

$151.60

$29.13

Figure 7-34

Sample Data for the MDC INVOICE Table

Chapter 7   Database Processing Applications   443

ItemNumber ServiceIDInvoiceNumber Quantity UnitPrice ExtendedPrice

$3.50

$2.50

$10.00

$5.00

$6.00

$9.00

$2.50

$5.00

$6.00

$2.50

$3.50

$2.50

$3.50

$2.50

$5.00

$6.00

$3.50

$3.50

$2.50

$5.00

$6.00

$9.00

1

2

3

4

5

6

1

1

2

1

1

2

1

2

3

4

1

1

2

3

4

1

16

11

50

20

25

40

11

20

25

11

16

11

16

11

20

25

16

16

11

20

25

40

2014001

2014001

2014001

2014001

2014001

2014001

2014002

2014003

2014003

2014004

2014005

2014005

2014006

2014006

2014006

2014006

2014007

2014008

2014008

2014008

2014008

2014009

2

5

2

10

10

1

10

5

4

7

2

2

5

10

10

10

2

3

12

8

10

3

$7.00

$12.50

$20.00

$50.00

$60.00

$9.00

$25.00

$25.00

$24.00

$17.50

$7.00

$5.00

$17.50

$25.00

$50.00

$60.00

$7.00

$10.50

$30.00

$40.00

$60.00

$27.00

Figure 7-35

Sample Data for the MDC INVOICE_ITEM Table

 James River Jewelry Project Questions

The James River Jewelry project questions are available in online Appendix D, which can
be downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

H.	 Code two HTML/PHP pages to add a new OWNER to the GG database. Create data
for two new OWNERs and add them to the database to demonstrate that your pages
work.

www.pearsonhighered.com/kroenke

444   Part 3   Database Management

 The Queen Anne Curiosity Shop Project Questions

If you have not already implemented The Queen Anne Curiosity Shop database shown in
Chapter 3 in a DBMS product, create and populate the QACS database now in the DBMS
of your choice (or as assigned by your instructor).

	A.	 Create a user named QACS-User with the password QACS-User+password. Assign
this user to database roles so that the user can read, insert, delete, and modify data.

	B.	 If you haven’t completed exercise 7.50, do it now.

	C.	 Add a new folder to the DBC Web site named QACS. Create a Web page for The
Queen Anne Curiosity Shop in this folder—use the file name index.html. Link this
page to the DBC Web page.

	D.	 Create an appropriate ODBC data source for your database.

	E.	 Code a Web page using PHP to display the data in SALE. Add a hyperlink on the
QACS Web page to access the page. Using your database, demonstrate that your
page works.

	 F.	 Code a Web page using PHP to display the data in ITEM. Add a hyperlink on the
QACS Web page to access the page. Using your database, demonstrate that your
page works.

	G.	 Create a view named Sale_Item_Item_View that displays SALE.SaleID, SALE_ITEM
.SaleItemID, SALE.SaleDate, ITEM.ItemDescription, and SALE_ITEM.ItemPrice.
Code a Web page using PHP to display the data in Sale_Item_Item_View. Add a hy-
perlink to the QACS Web page to access the page. Using your database, demonstrate
that your page works.

	H.	 Code two HTML/PHP pages to add a new CUSTOMER to the QACS database.
Create data for two new CUSTOMERs and add them to the database to demonstrate
that your pages work.

445

T his chapter introduces topics that build on the
fundamentals you have learned in the first seven
chapters of this book. Now that we have designed

and built a database, we are ready to put it to work. In
Chapter 7, we built a Web database application. This chapter
looks at the problems associated with the rapidly expanding
amount of data that is being stored and used in enterprise
information systems and some of the technology that is being
used to address those problems. These problems are gener-
ally included in the need to deal with Big Data, which is the
current term for the enormous datasets generated by Web
applications such as search tools (for example, Google and
Bing) and Web 2.0 social networks (for example, Facebook,
LinkedIn, and Twitter). Although these new and very visible
Web applications are highlighting the problems of dealing
with large datasets, these problems were already present
in other areas, such as scientific research and business
operations.1

Just how big is Big Data? Figure 8-1 defines some com-
monly used terms for data storage capacity. Note that com-
puter storage is calculated based on binary numbers (base 2),
not the usual decimal (base 10) numbers we are more familiar
with. Therefore, a kilobyte is 1,024 bytes instead of the 1,000
bytes we would otherwise expect.

If we consider the desktop and notebook computers
generally in use as this book is being written (early 2014), a
quick check online of available computers shows notebooks

1For more information, see the Wikipedia article on Big Data.

Chapter 8 Big Data, Data
Warehouses, and
Business Intelligence
Systems

•	 Learn the basic concepts of Big Data,
structured storage, and the MapReduce
process

•	 Learn the basic concepts of data
warehouses and data marts

•	 Learn the basic concepts of
dimensional databases

•	 Learn the basic concepts of business
intelligence (BI) systems

•	 Learn the basic concepts of Online
Analytical Processing (OLAP)

Chapter Objectives

446   Part 3   Database Management

being sold with hard drives up to 1 TB in capacity, whereas some desktops
are available with 2 TB. That is just for one computer. Facebook is reported to
handle more than 40 billion photos in its database.2 If a typical digital photo
is about 2 MB in size, that would require about 9.3 PB of storage!

As another measure of Big Data, Amazon.com reported that on November
29, 2010, orders for 13.7 million products were placed. This is an average
of 158 product orders per second.3 Amazon.com also reported that on the
peak day of the 2010 holiday season its worldwide fulfillment network
shipped more than 9 million items to 178 countries. This volume of both
primary business transactions (item sales) and supporting transactions
(shipping, tracking, and financial transactions) truly requires Amazon.com
to handle Big Data.

The need to deal with larger and larger datasets has grown over time.
We will look at some of the components of this growth. We will start with
the need for business analysts to have large datasets available for analysis
by business intelligence (BI) applications and briefly look at BI systems,
particularly Online Analytical Processing (OLAP), and the data warehouse
structures that were designed for their use. We will then look at distributed
databases, clustered servers, and finally the evolving NoSQL systems.

In this chapter, we will continue to use the Heather Sweeney Designs
database that we modeled in Chapter 4, designed in Chapter 5, created in
Chapter 6, and built a Web database application for in Chapter 7. The name
of the database is HSD, and a SQL Server database diagram for the HSD
database is shown in Figure 8-2.

2Wikipedia article on Big Data (accessed April 2014).

3Amazon.com, “Third-Generation Kindle Now the Bestselling Product of All Time on Amazon
Worldwide,” News release, December 27, 2010 (accessed Janaury 2012).

Symbol
Approximate Value

for Reference
Name Actual Value

KB

MB

GB

TB

PB

EB

ZB

YB

About 103

About 106

About 109

About 1012

About 1015

About 1018

About 1021

About 1024

Byte

Kilobyte

Megabyte

Gigabyte

Terabyte

Petabyte

Exabyte

Zettabyte

Yottabyte

8 bits [Store one character]

210 = 1,024 bytes

220 = 1,024 KB

230 = 1,024 MB

240 = 1,024 GB

250 = 1,024 TB

260 = 1,024 PB

270 = 1,024 EB

280 = 1,024 ZB

Figure 8-1

Storage Capacity
Terms

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   447

Figure 8-2

The HSD Database Diagram

Business intelligence (BI) systems are information systems that assist managers and
other professionals in the analysis of current and past activities and in the prediction of
future events. Unlike transaction processing systems, they do not support operational
activities, such as the recording and processing of orders. Instead, BI systems are used
to support management assessment, analysis, planning, control, and, ultimately, decision
making.

Business Intelligence Systems

Figure 8-3 summarizes the relationship between operational and business intelligence
systems. Operational systems, such as sales, purchasing, and inventory-control systems,
support primary business activities. They use a DBMS to both read data from and store
data in the operational database. They are also known as transactional systems or online
transaction processing (OLTP) systems because they record the ongoing stream of busi-
ness transactions.

Instead of supporting the primary business activities, BI systems support manage-
ment’s analysis and decision-making activities. BI systems obtain data from three possible
sources. First, they read and process data existing in the operational database—they use
the operational DBMS to obtain such data, but they do not insert, modify, or delete opera-
tional data. Second, BI systems process data that are extracted from operational databases.
In this situation, they manage the extracted database using a BI DBMS, which may be the
same as or different from the operational DBMS. Finally, BI systems read data purchased
from data vendors.

We will look at BI systems in detail in online Appendix G, but for now we will sum-
marize the basic elements of a BI system.

The Relationship Between Operational and BI Systems

448   Part 3   Database Management

Operational
Applications

(Order Entry,
Manufacturing,

Purchasing,
Inventory,

etc.)

Business Intelligence Applications

Operational
DBMS

BI
DBMS

Functional
Users

Operational
Database

Extract of
Operational
Database

Purchased
Data

Management
and Management

Support Users

Reporting Data Mining

Figure 8-3

The Relationship Between Operational and BI Applications

• Reporting
 – Filter, sort, group, and make simple calculations
 – Summarize current status
 – Compare current status to past or predicted status
 – Classify entities (customers, products, employees, etc.)
 – Report delivery crucial
• Data Mining
 – Often employ sophisticated statistical and mathematical
 techniques
 – Used for:
 • What-if analyses
 • Predictions
 • Decisions
 – Results often incorporated into some other report
 or system

Figure 8-4

Characteristics of
Business Intelligence
Applications

BI systems fall into two broad categories: reporting systems and data mining applications.
Reporting systems sort, filter, group, and make elementary calculations on operational
data. Data mining applications, in contrast, perform sophisticated analyses on data, analy-
ses that usually involve complex statistical and mathematical processing. The characteris-
tics of BI applications are summarized in Figure 8-4.

Reporting Systems
Reporting systems filter, sort, group, and make simple calculations. All reporting analyses can
be performed using standard SQL, although extensions to SQL, such as those used for Online
Analytical Processing (OLAP), are sometimes used to ease the task of report production.

Reporting Systems and Data Mining Applications

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   449

Reporting systems summarize the current status of business activities and compare
that status with past or predicted future activities. Report delivery is crucial. Reports must
be delivered to the proper users on a timely basis, in the appropriate format. For example,
reports may be delivered on paper, via a Web browser, or in some other format.

Data Mining Applications
Data mining applications use sophisticated statistical and mathematical techniques to per-
form what-if analyses, to make predictions, and to facilitate decision making. For example,
data mining techniques can analyze past cell phone usage and predict which customers are
likely to switch to a competing phone company. Or data mining can be used to analyze past
loan behavior to determine which customers are most (or least) likely to default on a loan.

Report delivery is not as important for data mining systems as it is for reporting sys-
tems. First, most data mining applications have only a few users, and those users have
sophisticated computer skills. Second, the results of a data mining analysis are usually
incorporated into some other report, analysis, or information system. In the case of cell
phone usage, the characteristics of customers who are in danger of switching to another
company may be given to the sales department for action. Or the parameters of an equa-
tion for determining the likelihood of a loan default may be incorporated into a loan ap-
proval application.

As shown in Figure 8-3, some BI applications read and process operational data directly
from the operational database. Although this is possible for simple reporting systems and
small databases, such direct reading of operational data is not feasible for more complex
applications or larger databases. Operational data are difficult to use for several reasons:

•	Querying data for BI applications can place a substantial burden on the DBMS and
unacceptably slow the performance of operational applications.

•	The creation and maintenance of BI systems require application programs, facili-
ties, and expertise that are not normally available from operations.

•	Operational data have problems that limit their use for BI applications.

Therefore, larger organizations usually process a separate database constructed from an
extract of the operational database.

The Components of a Data Warehouse
A data warehouse is a database system that has data, programs, and personnel that special-
ize in the preparation of data for BI processing. Figure 8-5 shows the components of the
basic data warehouse architecture. Data are read from operational databases by the extract,
transform, and load (ETL) system. The ETL system then cleans and prepares the data for
BI processing. This can be a complex process.

First, operational data often cannot be directly loaded into BI applications. Some of
the problems of using operational data for BI processing include:

•	“Dirty data” (for example, problematic data such as value of “G” for customer
gender, a value of “213” for customer age, a value of “999-999-9999” for a U.S.
phone number, or a part color of “gren”)

•	Missing values
•	Inconsistent data (for example, data that have changed, such as a customer’s phone

number or address)

Data Warehouses and Data Marts

450   Part 3   Database Management

•	Nonintegrated data (for example, data from two or more sources that need to be
combined for BI use)

•	Incorrect format (for example, data that are gathered such that there are either too
many digits or not enough digits, such as time measures in either seconds or hours
when they are needed in minutes for BI use)

•	Too much data (for example, an excess of columns [attributes], rows [records],
or both)

Second, data may need to be changed or transformed for use in a data warehouse. For
example, the operational systems may store data about countries using standard two-letter
country codes, such as US (United States) and CA (Canada). However, applications using
the data warehouse may need to use the country names in full. Thus, the data transforma-
tion {CountryCode → CountryName} will be needed before the data can be loaded into
the data warehouse.

When the data are prepared for use, the ETL system loads the data into the data ware-
house database. The extracted data are stored in a data warehouse database, using a data
warehouse DBMS, which may be from a different vendor than the organization’s opera-
tional DBMS. For example, an organization might use Oracle Database for its operational
processing but use SQL Server for its data warehouse.

Data Warehouse
DBMS

Business
Intelligence

Tools

Other
Internal

Data

Data
Warehouse
Metadata

Data
Warehouse
Database

BI Users

Operational
Databases

External
Data

ETL System

Data Extraction/
Cleaning/

Preparation
Programs

Figure 8-5

Components of a Data Warehouse

Problematic operational data that have been cleaned in the ETL system
can also be used to update the operational system to fix the original data
problems.

BTW

Metadata concerning the data’s source, format, assumptions and constraints, and other
facts is kept in a data warehouse metadata database. The data warehouse DBMS provides
extracts of its data to BI tools, such as data mining programs.

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   451

Data Warehouses Versus Data Marts
You can think of a data warehouse as a distributor in a supply chain. The data warehouse
takes data from the data manufacturers (operational systems and purchased data), cleans
and processes them, and locates the data on the shelves, so to speak, of the data warehouse.
The people who work in a data warehouse are experts at data management, data cleaning,
data transformation, and the like. However, they are not usually experts in a given business
function.

A data mart is a collection of data that is smaller than that in the data warehouse and
that addresses a particular component or functional area of the business. A data mart is like
a retail store in a supply chain. Users in the data mart obtain data from the data warehouse
that pertain to a particular business function. Such users do not have the data management
expertise that data warehouse employees have, but they are knowledgeable analysts for a
given business function.

Figure 8-6 illustrates these relationships. The data warehouse takes data from the data
producers and distributes the data to three data marts. One data mart analyzes click-stream
data for the purpose of designing Web pages. A second data mart analyzes store sales data
and determines which products tend to be purchased together for the purpose of training
sales staff. A third data mart analyzes customer order data for the purpose of reducing la-
bor when picking up items at the warehouse. (Companies such as Amazon.com go to great
lengths to organize their warehouses to reduce picking expenses.)

When the data mart structure shown in Figure 8-6 is combined with the data ware-
house architecture shown in Figure 8-6, the combined system is known as an enterprise
data warehouse (EDW) architecture. In this configuration, the data warehouse maintains
all enterprise BI data and acts as the authoritative source for data extracts provided to the
data marts. The data marts receive all their data from the data warehouse—they do not add
or maintain any additional data.

Of course, it is expensive to create, staff, and operate data warehouses and data marts,
and only large organizations with deep pockets can afford to operate a system such as an
EDW. Smaller organizations operate subsets of such systems. For example, they may have
just a single data mart for analyzing marketing and promotion data.

Web Sales Data Mart

BI Tools
for Web-Click-Stream

Analysis

Data
Warehouse

DBMS

Data
Producers

Data
Warehouse
Metadata

Data
Warehouse
Database

Web
Log
Data

Store Sales Data Mart

BI Tools
for Store

Management

Store
Sales
Data

Inventory Data Mart

BI Tools
for Inventory
Management

Inventory
History
Data

Web Page
Design Features

Market Basket
Analysis for Sales
Training

Inventory Layout
for Optimal Item
Picking

Figure 8-6

Data Warehouses and Data Marts

452   Part 3   Database Management

Dimensional Databases
The databases in a data warehouse or data mart are built to a different type of database
design than the normalized relational databases used for operational systems. The data
warehouse databases are built in a design called a dimensional database that is designed
for efficient data queries and analysis. A dimensional database is used to store historical
data rather than just the current data stored in an operational database. Figure 8-7 com-
pares operational databases and dimensional databases.

Because dimensional databases are used for the analysis of historical data, they must be
designed to handle data that change over time. For example, a customer may have moved
from one residence to another in the same city or may have moved to a completely different
city and state. This type of data arrangement is called a slowly changing dimension, and in
order to track such changes a dimensional database must have a date dimension or time
dimension as well.

The Star Schema  Rather than using the normalized database designs used in op-
erational databases, a dimensional database uses a star schema. A star schema, so named
because, as shown in Figure 8-8, it visually resembles a star, with a fact table at the center
of the star and dimension tables radiating out from the center. The fact table is always fully
normalized, but dimension tables may be non-normalized.

Figure 8-7

Characteristics of Operational and Dimensional Databases

Operational Database Dimensional Database
Used for structured transaction data processing Used for unstructured analytical data processing

Current data are used Current and historical data are used

Data are inserted, updated, and deleted by users Data are loaded and updated systematically, not by users

There is a more complex version of the star schema call the snowflake
schema. In the snowflake schema, each dimension table is normalized,
which may create additional tables attached to the dimension tables.

BTW

PRODUCT
[Dimension Table]

PRODUCT_SALES
[Fact Table]

TIME
[Dimension Table]

CUSTOMER
[Dimension Table]

Figure 8-8

The Star Schema

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   453

A star schema for a dimensional database named HSD-DW for BI use by Heather
Sweeney Designs is shown in Figure 8-9. The SQL statements needed to create the tables
in the HSD-DW database are shown in Figure 8-10, and the data in the HSD-DW data-
base are shown in Figure 8-11. Compare this model to the HSD database diagram shown
in Figure 8-2 and note how data in the HSD database have been used in the HSD-DW
schema.

PRODUCT dimension
table

PRODUCT_SALES
fact table

TIMELINE dimension
table

CUSTOMER
dimension table

Figure 8-9

The HSD-DW Star Schema

Note that in the HSD-DW database the CUSTOMER table uses the same
surrogate primary key CustomerID, which has an integer value. Also
note that we have concatenated LastName and FirstName into a single
CustomerName column, and are using only the customer’s area code prefix,
not the entire phone number. Finally, note that we do not use individual
EmailAddress values in the HSD-DW database, only values of EmailDomain,
which is not unique.

BTW

A fact table is used to store measures of business activity, which are quantitative or
factual data about the entity represented by the fact table. For example, in the HSD-DW
database, the fact table is PRODUCT_SALES:

PRODUCT_SALES (TimeID, CustomerID, ProductNumber, Quantity,
UnitPrice, Total)

454   Part 3   Database Management

Figure 8-10

The HSD-DW SQL Statements

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   455

Figure 8-11

The HSD-DW Table
Data

(a) TIMELINE Dimension Table

(b) CUSTOMER Dimension Table

(c) PRODUCT Dimension Table (d) PRODUCT_SALES Fact Table

In this table:

•	Quantity is quantitative data that record how many of the item were sold.
•	UnitPrice is quantitative data that record the dollar price of each item sold.
•	Total (= Quantity * UnitPrice) is quantitative data that record the total dollar value

of the sale of this item.

The measures in the PRODUCT_SALES table are for units of product per day. We do
not use individual sale data (which would be based on InvoiceNumber), but rather data
summed for each customer for each day. For example, if you compare the HSD database
INVOICE data in Figure 3-29 for Ralph Able for 6/5/14, you will see that Ralph made
two purchases on that date (InvoiceNumber 35013 and InvoiceNumber 35016). In the
HSD-DW database, however, these two purchases are summed into the PRODUCT_
SALES data for Ralph (CustomerID = 3) for 6/5/14 (TimeID = 42160).

The TimeID values are the sequential serial values used in Microsoft Excel to
represent dates. Starting with 01-JAN-1900 as date value 1, the date value
is increased by 1 for each calendar day. Thus, 05-JUN-2014 = 42160. For
more information, search “Date formats” in the Microsoft Excel help system.

BTW

456   Part 3   Database Management

A dimension table is used to record values of attributes that describe the fact measures
in the fact table, and these attributes are used in queries to select and group the measures
in the fact table. Thus, CUSTOMER records data about the customers referenced by
CustomerID in the SALES table, TIMELINE provides data that can be used to interpret
the SALES event in time (which month? which quarter?), and so on. A query to summarize
product units sold by Customer (CustomerName) and Product (ProductName) would be:

/* *** SQL-QUERY-CH08-01 *** */

SELECT	 C.CustomerID, C.CustomerName,

	 P.ProductNumber, P.ProductName,

	 SUM(PS.Quantity) AS TotalQuantity

FROM	 CUSTOMER C, PRODUCT_SALES PS, PRODUCT P

WHERE	 C.CustomerID = PS.CustomerID

   AND	 P.ProductNumber = PS.ProductNumber

GROUP BY	 C.CustomerID, C.CustomerName,

	 P.ProductNumber, P.ProductName

ORDER BY	 C.CustomerID, P.ProductNumber;

The results of this query are shown in Figure 8-12.
In Chapter 5, we discussed how an N:M relationship is created in a database as two

1:N relationships by use of an intersection table. We also discussed how additional attri-
butes can be added to the intersection table in an association relationship. Similarly, the
fact table is an intersection table for the relationships between the dimension tables with
additional measures also stored in it. And, as with all other intersection tables, the key of
the fact table is a composite key made up of all the foreign keys to the dimension tables.

Illustrating the Dimensional Model  When you think of the word dimension, you
might think of “two dimensional” or “three dimensional.” The dimensional models can be il-
lustrated by using a two-dimensional matrix and a three-dimensional cube. Figure 8-13 shows
the SQL query results from Figure 8-12 displayed as a two-dimensional matrix of Product
(using ProductNumber) and Customer (using CustomerID), with each cell showing the num-
ber of units of each product purchased by each customer. Note how ProductNumber and
CustomerID define the two dimensions of the matrix CustomerID labels what would be the
x-axis and ProductNumber labels the y-axis of the chart.

Figure 8-14 shows a three-dimensional cube with the same ProductNumber and
CustomerID dimensions, but now with the added Time dimension on the z-axis. Now,
instead of occupying a two-dimensional box, the total quantity of products purchased by
each customer on each day occupies a small three-dimensional cube, and all these small
cubes are combined to form a large cube.

As human beings, we can visualize two-dimensional matrices and three-dimensional
cubes. Although we cannot picture models with four, five, and more dimensions, BI sys-
tems and dimensional databases can handle such models.

Multiple Fact Tables and Conformed Dimensions  Data warehouse systems
build dimensional models, as needed, to analyze BI questions, and the HSD-DW star
schema in Figure 8-9 would be just one schema in a set of schemas. Figure 8-15 shows an
extended HSD-DW schema.

In Figure 8-14, a second fact table named SALES_FOR_RFM has been added:

SALES_FOR_RFM (TimeID, CustomerID, InvoiceNumber, PreTaxTotalSale)

This table shows that fact table primary keys do not need to be composed solely of for-
eign keys that link to dimension tables. In SALES_FOR_RFM, the primary key includes the

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   457

Figure 8-12

The HSD-DW Query Results

458   Part 3   Database Management

InvoiceNumber attribute. This attribute is necessary because the composite key (TimeID,
CustomerID) will not be unique and cannot be the primary key. Note that SALES_FOR_
RFM links to the same CUSTOMER and TIMELINE dimension tables as PRODUCT_
SALES. This is done to maintain consistency within the data warehouse. When a dimension
table links to two or more fact tables, it is called a conformed dimension.

Why would we add a fact table named SALES_FOR_RFM? This table would be used
to collect and process data for an RFM analysis, which analyzes and ranks customers ac-
cording to their purchasing patterns. It is a simple customer classification technique that
considers how recently (R) a customer orders, how frequently (F) a customer orders, and
how much money (M) the customer spends per order. RFM analysis is a commonly used BI
report, and it is discussed in detail in online Appendix J.

Each cell shows the
total quantity of each
product that has been
purchased by each
customer

Figure 8-13

The Two-Dimensional ProductNumber–CustomerID Matrix

BK001

BK002

VB001

VB002

VB003

VK001

VK002

VK003

VK004

P
ro

d
u

ct
N

u
m

b
er

1 32 4 65 7 98 10 1211

CustomerID

Time

1

1

Each cell will show the
total quantity of each
product that has been
purchased by each
customer on a specific
date

Figure 8-14

The Three-Dimensional Time–ProductNumber–CustomerID Cube

For an example of a BI report, we will look at OLAP, which provides the ability to sum,
count, average, and perform other simple arithmetic operations on groups of data. OLAP
systems produce OLAP reports. An OLAP report is also called an OLAP cube. This is a
reference to the dimensional data model, and some OLAP products show OLAP displays
using three axes, like a geometric cube. The remarkable characteristic of an OLAP report
is that it is dynamic: The format of an OLAP report can be changed by the viewer, hence
the term online in the name Online Analytical Processing.

OLAP

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   459

OLAP uses the dimensional database model discussed earlier in this chapter, so it is
not surprising to learn that an OLAP report has measures and dimensions. A measure is a
dimensional model fact—the data item of interest that is to be summed or averaged or oth-
erwise processed in the OLAP report. For example, sales data may be summed to produce
Total Sales or averaged to produce Average Sales. The term measure is used because you
are dealing with quantities that have been or can be measured and recorded. A dimension,
as you have already learned, is an attribute or a characteristic of a measure. Purchase date
(TimeID), customer location (City), and sales region (ZIP or State) are all examples of
dimensions, and in the HSD-DW database you saw how the time dimension is important.

In this section, we will generate an OLAP report by using an SQL query from the
HSD-DW database and a Microsoft Excel PivotTable.

TIMELINE Dimension
Table

CUSTOMER
Dimension Table

SALES_FOR_RFM
Fact Table

Figure 8-15

The Extended HSD-DW Star Schema

We use Microsoft SQL Server and Microsoft Excel to illustrate this discus-
sion of OLAP reports and PivotTables. For other DBMS products, such as
MySQL, you can use the DataPilot feature of the Calc spreadsheet applica-
tion in the LibreOffice or Apache OpenOffice product suites.

BTW

460   Part 3   Database Management

Now we:

•	Create a Microsoft Excel formatted table in a Microsoft Excel worksheet:
➤	Copy the SQL query results into a Microsoft Excel worksheet.
➤	Add column names to the results.
➤	Format the query results as a Microsoft Excel table (optional).
➤	Select the Microsoft Excel range containing the results with column names.

•	Connect to a DBMS data source.

•	Click the PivotTable button in the Tables group of the Insert ribbon.
•	Specify that the PivotTable should be in a new worksheet.
•	Select the column variables (Column Labels), row variables (Row Labels), and

the measure to be displayed (Values).

We can use an SQL query if we copy the data into a Microsoft Excel worksheet. The
SQL query, as used in SQL Server, is:

/* *** SQL-QUERY-CH08-02 *** */

SELECT	 C.CustomerID, CustomerName, C.City,

	 P.ProductNumber, P.ProductName,

	 T.[Year], T.QuarterText,

	 SUM(PS.Quantity) AS TotalQuantity

FROM	� CUSTOMER C, PRODUCT_SALES PS, PRODUCT P,
TIMELINE T

WHERE	 C.CustomerID = PS.CustomerID

   AND	 P.ProductNumber = PS.ProductNumber

   AND	 T.TimeID = PS.TimeID

GROUP BY	 C.CustomerID, C.CustomerName, C.City,

	 P.ProductNumber, P.ProductName,

	 T.QuarterText, T.[Year]

ORDER BY	 C.CustomerName, T.[Year], T.QuarterText;

However, because SQL Server (and other SQL-based DBMS products, such as Oracle
Database and MySQL) can store views but not queries, we need to create and use an SQL
view if we are going to use a Microsoft Excel data connection. The SQL query to create the
HSDDWProductSalesView, as used in SQL Server, is:

/* *** SQL-CREATE-VIEW-CH08-01 *** */

CREATE VIEW HSDDWProductSalesView AS

	 SELECT	 C.CustomerID, C.CustomerName, C.City,

	 P.ProductNumber, P.ProductName,

	 T.[Year], T.QuarterText,

	 SUM(PS.Quantity) AS TotalQuantity

	 FROM	� CUSTOMER C, PRODUCT_SALES PS, PRODUCT P,
TIMELINE T

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   461

	 WHERE	 C.CustomerID = PS.CustomerID

	   AND	 P.ProductNumber = PS.ProductNumber

	   AND	 T.TimeID = PS.TimeID

	 GROUP BY	 C.CustomerID, C.CustomerName, C.City,

	 P.ProductNumber, P.ProductName,

	 T.QuarterText, T.[Year];

Figure 8-16 shows the results of SQL-QUERY-CH08-02 (which can also be obtained
by using the HSDDWProductSalesView).

Figure 8-16

The HSD-DW-Query for OLAP Results

462   Part 3   Database Management

Figure 8-17 shows the OLAP report as a Microsoft Excel PivotTable. Here the measure
is quantity sold, and the dimensions are ProductNumber and City. This report shows how
quantity varies by product and city. For example, four copies of VB003 (Kitchen Remodeling
Dallas Style Video Companion) were sold in Dallas, but none were sold in Austin.

We have generated the OLAP report in Figure 8-17 by using a simple SQL query and
Microsoft Excel, but many DBMS and BI products include more powerful and sophisti-
cated tools. For example, SQL Server includes SQL Server Analysis Services.4 It is pos-
sible to display OLAP cubes in many ways besides with Microsoft Excel. Some third-party
vendors provide more sophisticated graphical displays, and OLAP reports can be delivered
just like any of the other reports described for report management systems.

The distinguishing characteristic of an OLAP report is that the user can alter the for-
mat of the report. Figure 8-18 shows an alteration in which the user added two additional
dimensions, customer and year, to the horizontal display. Quantity sold is now broken
out by customer and, in one case, by year. With an OLAP report, it is possible to drill
down into the data; that is, to further divide the data into more detail. In Figure 8-18, for
example, the user has drilled down into the San Antonio data to display all customer data
for that city and to display year sales data for Ralph Able.

In an OLAP report, it is also possible to change the order of the dimensions. Figure 8-19
shows city quantities as vertical data and ProductID quantities as horizontal data. This OLAP
report shows quantity sold by city, by product, by customer, and by year.

Both displays are valid and useful, depending on the user’s perspective. A product
manager might like to see product families first (ProductID) and then location data (city).
A sales manager might like to see location data first and then product data. OLAP reports
provide both perspectives, and the user can switch between them while viewing a report.

4Up to this point in this book, we have been using SQL Server 2014 Express, and we have been able to do
all the tasks discussed on that version of SQL Server. Unfortunately, SQL Server 2014 Express does not
include SQL Server Analysis Services, so you will have to use the SQL Server Standard Edition or better
if you want to use the SQL Server Analysis Services. Although OLAP reports can be done without SQL
Server Analysis Services, Analysis Services adds a lot of functionality, and the Microsoft SQL Server Data
Mining Add-ins for Microsoft Office Excel 2013 (used in this text) will not function without it. Search the
Microsoft Web site (www.microsoft.com) for more information.

The PivotTable button

The PivotTable is in
the HSD-DW-Pivot-
Table worksheett

The data table is in the
HSD-DW-Query
Results worksheet

The PivotTable Fields
pane—select the
report elements to be
displayed here

The PivotTable
report

Figure 8-17

OLAP ProductNumber by City Report

www.microsoft.com

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   463

The City = San
Antonio data are also
showing customer
data

The Customer =
Able, Ralph data are
also showing year
data

Figure 8-18

OLAP ProductNumber by City, Customer, and Year Report

The city variable is
on the column
designator

The ProductID
variable is on the
primary row designator

The ProductID =
VB001 data are also
showing Customer
data

The Customer =
Able, Ralph data are
also showing year
data

Figure 8-19

OLAP City by ProductNumber, Customer, and Year Report

One of the first solutions to increase the amount of data that could be stored by a DBMS
system was to simply spread the data among several database servers instead of just one.
A group of associated servers are known as a server cluster,5 and the database shared
between them is called a distributed database. A distributed database is a database that is
stored and processed on more than one computer. Depending on the type of database and

5For more information on computer clusters, see the Wikipedia article Computer Cluster.

Distributed Database Processing

464   Part 3   Database Management

the processing that is allowed, distributed databases can present significant problems. Let
us consider the types of distributed databases.

Types of Distributed Databases
A database can be distributed by partitioning, which means breaking the database into
pieces and storing the pieces on multiple computers; by replication, which means storing
the copies of the database on multiple computers; or by a combination of replication and
partitioning. Figure 8-20 illustrates these alternatives.

Figure 8-20(a) shows a nondistributed database with four pieces labeled W, X, Y, and
Z. In Figure 8-20(b), the database has been partitioned but not replicated. Portions W and
X are stored and processed on Computer 1, and portions Y and Z are stored and processed
on Computer 2. Figure 8-20(c) shows a database that has been replicated but not parti-
tioned. The entire database is stored and processed on Computers 1 and 2. Finally, Figure
8-20(d) shows a database that is partitioned and replicated. Portion Y of the database is
stored and processed on Computers 1 and 2.

The portions to be partitioned or replicated can be defined in many different
ways. A database that has five tables (for example, CUSTOMER, SALESPERSON,
INVOICE, LINE_ITEM, and PART) could be partitioned by assigning CUSTOMER
to portion W, SALESPERSON to portion X, INVOICE and LINE_ITEM to portion Y,
and PART to portion Z. Alternatively, different rows of each of these five tables could

Single Processing Computer

DBMS/OS

WAP1

AP2
X
Y
Z

(a) Nonpartitioned, Nonreplicated
Alternative

Communication
Line

DB

DBMS/OS

Computer 1

AP1 W
X

DB1

DBMS/OS

Computer 2

AP2 Y
Z

DB2

(b) Partitioned, Nonreplicated Alternative

Communication
Line

DBMS/OS

Computer 1

WAP1

AP2
X
Y
Z

DBMS/OS

Computer 2

WAP1

AP2
X
Y
Z

DB (Copy 1)

DB (Copy 2)

(c) Nonpartitioned, Replicated Alternative

Communication
Line

DBMS/OS

Computer 1

WAP1
X
Y

DBMS/OS

Computer 2

AP2 Y
Z

DB1

DB2

DB

(d) Partitioned, Replicated Alternative

Figure 8-20

Types of Distributed Databases

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   465

be assigned to different computers, or different columns of each of these tables could be
assigned to different computers.

Databases are distributed for two major reasons: performance and control. Having a
database on multiple computers can improve throughput, either because multiple comput-
ers are sharing the workload or because communications delays can be reduced by placing
the computers closer to their users. Distributing the database can improve control by seg-
regating different portions of the database to different computers, each of which can have
its own set of authorized users and permissions.

Challenges of Distributed Databases
Significant challenges must be overcome when distributing a database, and those chal-
lenges depend on the type of distributed database and the activity that is allowed. In the
case of a fully replicated database, if only one computer is allowed to make updates on one
of the copies, then the challenges are not too great. All update activity occurs on that single
computer, and copies of that database are periodically sent to the replication sites. The
challenge is to ensure that only a logically consistent copy of the database is distributed (no
partial or uncommitted transactions, for example) and to ensure that the sites understand
that they are processing data that might not be current because changes could have been
made to the updated database after the local copy was made.

If multiple computers can make updates to a replicated database, then difficult prob-
lems arise. Specifically, if two computers are allowed to process the same row at the same
time, they can cause three types of error: They can make inconsistent changes, one com-
puter can delete a row that another computer is updating, or the two computers can make
changes that violate uniqueness constraints.

To prevent these problems, some type of record locking is required. Because mul-
tiple computers are involved, standard record locking does not work. Instead, a far
more complicated locking scheme, called distributed two-phase locking, must be used.
The specifics of the scheme are beyond the scope of this discussion; for now, just know
that implementing this algorithm is difficult and expensive. If multiple computers can
process multiple replications of a distributed database, then significant problems must
be solved.

If the database is partitioned but not replicated [Figure 8-20(b)], then problems will
occur if any transaction updates data that span two or more distributed partitions. For
example, suppose the CUSTOMER and SALESPERSON tables are placed on a partition
on one computer and that INVOICE, LINE_ITEM, and PART tables are placed on a
second computer. Further suppose that when recording a sale all five tables are updated in
an atomic transaction. In this case, a transaction must be started on both computers, and
it can be allowed to commit on one computer only if it can be allowed to commit on both
computers. In this case, distributed two-phase locking also must be used.

If the data are partitioned in such a way that no transaction requires data from both
partitions, then regular locking will work. However, in this case the databases are actually
two separate databases, and some would argue that they should not be considered a dis-
tributed database.

If the data are partitioned in such a way that no transaction updates data from both
partitions but that one or more transactions read data from one partition and update data
on a second partition, then problems might or might not result with regular locking. If
dirty reads are possible, then some form of distributed locking is required; otherwise, regu-
lar locking should work.

If a database is partitioned and at least one of those partitions is replicated, then lock-
ing requirements are a combination of those just described. If the replicated portion is
updated, if transactions span the partitions, or if dirty reads are possible, then distributed
two-phase locking is required; otherwise, regular locking might suffice.

Distributed processing is complicated and can create substantial problems. Except
in the case of replicated, read-only databases, only experienced teams with a substantial

466   Part 3   Database Management

budget and significant time to invest should attempt distributed databases. Such data-
bases also require data communications expertise. Distributed databases are not for the
faint of heart.

Object-oriented programming (OOP) is a technique for designing and writing computer
programs. Today, most new program development is done using OOP techniques. Java,
C++, C#, and Visual Basic.NET are object-oriented programming languages.

Objects are data structures that have both methods, which are computer programs
that perform some task, and properties, which are data items particular to an object. All
objects of a given class have the same methods, but each has its own set of data items.
When using an OOP, the properties of the object are created and stored in main memory.
Storing the values of properties of an object is called object persistence. Many different
techniques have been used for object persistence. One of them is to use some variation of
database technology.

Although relational databases can be used for object persistence, using this method
requires substantial work on the part of the programmer. The problem is that, in general,
object data structures are more complicated than the row of a table. Typically, several, or
even many, rows of several different tables are required to store object data. This means
the OOP programmer must design a mini-database just to store objects. Usually, many
objects are involved in an information system, so many different mini-databases need to be
designed and processed. This method is so undesirable that it is seldom used.

In the early 1990s, several vendors developed special-purpose DBMS products
for storing object data. These products, which were called object-oriented DBMSs
(OODBMSs), never achieved commercial success. The problem was that by the time they
were introduced, billions of bytes of data were already stored in relational DBMS format,
and no organization wanted to convert its data to OODBMS format to be able to use an
OODBMS. Consequently, such products failed in the marketplace.

However, the need for object persistence did not disappear. Some vendors, most no-
tably Oracle, added features and functions to their relational database DBMS products to
create object-relational databases. These features and functions are basically add-ons to a
relational DBMS that facilitate object persistence. With these features, object data can be
stored more readily than with a purely relational database. However, an object-relational
database can still process relational data at the same time.6

Although OODBMSs have not achieved commercial success, OOP is here to stay, and
modern programming languages are object-based. This is important because these are the
programming languages that are being used to create the latest technologies that are deal-
ing with Big Data.

6To learn more about object-relational databases, see the Wikipedia article Object Database.

Object-Relational Databases

We have used the relational database model and SQL throughout this book. However, there
is another school of thought that has led to what was originally known as the NoSQL move-
ment but now is usually referred as the Not only SQL movement.7 It has been noted that
most, but not all, DBMSs associated with the NoSQL movement are nonrelational DBMSs.

A NoSQL DBMS is often a distributed, replicated database, as described earlier in this
chapter, and used where this type of a DBMS is needed to support large datasets. There have

7For a good overview, see the Wikipedia article NoSQL.

Big Data and the Not Only SQL Movement

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   467

been several classification systems proposed for grouping and classifying NoSQL databases.8
For our purposes, we will adopt and use a set of four categories of NoSQL databases:9

•	Key-Value— Examples are Dynamo and MemcacheDB
•	Document—Examples are Couchbase and MongoDB
•	Column Family—Examples are Appache Cassandra and HBase
•	Graph—Examples are Neo4J and AllegroGraph

NoSQL databases are used by widely recognized Web applications—both Facebook
and Twitter use the Apache Software Foundation’s Cassandra database. In this
chapter we discuss column family databases, and we discuss the other three types in
Appendix K—“Big Data”.

Column Family Databases
The basis for much of the development of column family databases was a structured
storage mechanism developed by Google named Bigtable, and column family databases
are now widely available, with a good example being the Apache Software Foundation’s
Cassandra project. Facebook did the original development work on Cassandra and then
turned it over to the open-source development community in 2008.

A generalized column family database storage system is shown in Figure 8-21. The
column family database storage equivalent of a relational DBMS (RDBMS) table has a very
different construction. Although similar terms are used, they do not mean the same thing
that they mean in a relational DBMS.

The smallest unit of storage is called a column, but is really the equivalent of an
RDBMS table cell (the intersection of an RDMBS row and column). A column consists of
three elements: the column name, the column value or datum, and a timestamp to record
when the value was stored in the column. This is shown in Figure 8-21(a) by the LastName
column, which stores the LastName value Able.

8Wikipedia article NoSQL (accessed April 16, 2014).
9This set of categories corresponds to the four categories used in the Wikipedia article NoSQL as
Wikipedia’s taxonomy of NoSQL databases, and is also used in Ian Robinson, Jim Webber, and Emil
Eifrem, Graph Databases (Sebastopol, CA: O’Reilly Media, 2013).

Figure 8-21

A Generalized Column
Family Database
Storage System

Name: LastName

Value: Able

Timestamp: 40324081235

(a) A Column

Name: LastName

Value: Able

Timestamp: 40324081235

Name: FirstName

Value: Ralph

Timestamp: 40324081235

CustomerNameSuper Column Name:

Super Column Values:

(b) A Super Column

(continued)

468   Part 3   Database Management

Columns can be grouped into sets referred to as super columns. This is shown in
Figure 8-21(a) by the CustomerName super column, which consists of a FirstName column
and a LastName column and which stores the CustomerName value Ralph Able.

Columns and super columns are grouped to create column families, which are the
column family database storage equivalent of RDBMS tables. In a column family we have
rows of grouped columns, and each row has RowKey, which is similar to the primary key
used in an RDBMS table. However, unlike an RDBMS table, a row in a column family does
not have to have the same number of columns as another row in the same column family.
This is illustrated in Figure 8-21(c) by the Customer column family, which consists of three
rows of data on customers.

Name: LastName

Value: Able

Timestamp: 40324081235

Name: FirstName

Value: Ralph

Timestamp: 40324081235

Customer
Column
Family
Name:

RowKey001

Name: LastName

Value: Jacobs

Timestamp: 40335091055

Name: Phone

Value: 817-871-8123

Timestamp: 40335091055

Name: City

Value: Fort Worth

Timestamp: 40335091055

Name: FirstName

Value: Nancy

Timestamp: 40335091055

RowKey002

Name: EmailAddress

Value: Susan.Baker@elswhere.com

Timestamp: 40340103518

Name: LastName

Value: Baker

Timestamp: 40340103518

RowKey003

(c) A Column Family

Name: FirstName

Name: FirstName

Customer

CustomerPhone

CustomerPhone

CustomerPhone

Customer Name

Customer Name

Name: FirstName

Customer Name

Super Column Family Name:

Rowkey001

Rowkey002

Rowkey003

Value: Ralph

Value: Nancy

Value: Susan

Timestamp: 40324081235

Timestamp: 40335091055

Timestamp: 40340103518

Name: LastName Name: AreaCode

Name: AreaCode

Name: AreaCode Name: PhoneNumber

Name: PhoneNumber

Name: PhoneNumber

Timestamp: 40324081235 Timestamp: 40335091055 Timestamp: 40335091055

Timestamp: 40335091055 Timestamp: 40335091055

Value: Able Value: 210

Value: 817

Value: 210 Value: 281–7876

Value: 871–8123

Value: 281–7987

Timestamp: 40335091055

Timestamp: 40340103518 Timestamp: 40340103518 Timestamp: 40340103518

Name: LastName

Name: LastName

Value: Jacobs

Value: Baker

(d) A Super Column Family

Figure 8-21  Continued

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   469

Figure 8-21(c) clearly illustrates the difference between structured storage column
families and RDBMS tables: Column families can have variable columns and data stored in
each row in a way that is impossible in an RDBMS table. This storage column structure is
definitely not in 1NF as defined in Chapter 2, let alone BCNF! For example, note that the
first row has no Phone or City columns, while the third row not only has no FirstName,
Phone, or City columns, but also contains an EmailAddress column that does not exist in
the other rows.

All the column families are contained in a keyspace, which provides the set of RowKey
values that can be used in the data store. RowKey values from the keyspace are shown be-
ing used in Figure 8-21(c) to identify each row in a column family. While this structure may
seem odd at first, in practice it allows for great flexibility because columns to contain new
data may be introduced at any time without modifying an existing table structure.

As shown in Figure 8-21(d), a super column family is similar to a column family,
but uses super columns (or a combination of columns and super columns) instead of
columns. Of course, there is more to column family database storage than discussed
here, but now you should have an understanding of the basic principles of column fam-
ily databases.

MapReduce
While column family and other storage provides the means to store data in a Big Data
system, the data themselves are analyzed using the MapReduce process. Because Big Data
involves extremely large data sets, it is difficult for one computer to process data by itself.
Therefore, a set of clustered computers is used using a distributed processing system simi-
lar to the distributed database system discussed previously in this chapter.

The MapReduce process is used to break a large analytical task into smaller tasks, as-
sign each smaller task to a separate computer in the cluster, gather the results of each of
those tasks, and combine them in the final product of the original tasks. The term Map
refers to the work done on each individual computer, and the term Reduce refers to the
combining of the individual results into the final result.

A commonly used example of the MapReduce process is counting how many times
each word is used in a document. This is illustrated in Figure 8-22, where we can see how
the original document is broken into sections and then each section is passed to a separate
computer in the cluster for processing by the Map process. The output from each of the
Map processes is then passed to one computer, which uses the Reduce process to combine
the results from each Map process into the final output, which is the list of the words in the
document and how many times each word appears in the document.

Hadoop
Another Apache Software Foundation project that is becoming a fundamental Big Data
development platform is the Hadoop Distributed File System (HDFS), which provides
standard file services to clustered servers so that their file systems can function as one
distributed file system. Hadoop originated as part of Cassandra, but the Hadoop project
has spun off a nonrelational data store of its own called HBase and a query language
named Pig.

Further, all the major DBMS players are supporting Hadoop. Microsoft is planning
a Microsoft Hadoop distribution (see http://social.technet.microsoft.com/wiki/contents/
articles/microsoft-hadoop-distribution-documentation-plan.aspx) and has teamed up with
HP and Dell to offer the SQL Server Parallel Data Warehouse (see http://www.microsoft
.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx. Oracle has
developed the Oracle Big Data Appliance that uses Hadoop (see www.oracle.com/us/
corporate/press/512001). A search of the Web on the term “MySQL Hadoop” quickly
reveals that a lot is being done by the MySQL team as well.

http://social.technet.microsoft.com/wiki/contents/articles/microsoft-hadoop-distribution-documentation-plan.aspx
http://social.technet.microsoft.com/wiki/contents/articles/microsoft-hadoop-distribution-documentation-plan.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
www.oracle.com/us/corporate/press/512001
www.oracle.com/us/corporate/press/512001

470   Part 3   Database Management

Computer 01:
List individual words and count

how many times each word appears

MAP

Computer 02:
List individual words and count

how many times each word appears

Computer 03:
List individual words and count

how many times each word appears

Computer N:
List individual words and count

how many times each word appears

INPUT: DOCUMENT

Document
Section 01

Document
Section 02

Document
Section 03

Document
Section N

Computer:
Combine lists of individual words and

total counts of how many times
each word appears

REDUCE

OUTPUT: WORD COUNT

A
And
Boy
Dog
.
.
.
The
Shown
Sun
Way

56
85
15
27

.

.

.
67
12
12

7

Figure 8-22

MapReduce

For more information on Big Data, and particularly on the various types of NoSQL
databases, see Appendix K, “Big Data.” The usefulness and importance of these Big Data
products to organizations such as Facebook demonstrate that we can look forward to the
development of not only improvements to the relational DBMSs, but also to a very differ-
ent approach to data storage and information processing. Big Data and products associated
with Big Data are rapidly changing and evolving, and you should expect many develop-
ments in this area in the near future.

The Not only SQL world is an exciting one, but you should be aware that if
you want to participate in it you will need to sharpen your OOP program-
ming skills. Whereas we can develop and manage databases in Microsoft
Access, Microsoft SQL Server, Oracle Database, and Oracle MySQL using
management and application development tools that are very user-friendly
(Microsoft Access itself, Microsoft SQL Server Management Studio, Oracle
SQL Developer, and MySQL Workbench), application development in the
NoSQL world is currently done in programming languages.

This, of course, may change, and we look forward to seeing the future
developments in the Not only SQL realm. For now, you’ll need to sign up for
that programming course!

BTW

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   471

The Access Workbench
Section 8
Business Intelligence Systems Using Microsoft Access

In Chapter 7’s section of “The Access Workbench,” we built a Web site and a Web data-
base application for the Wallingford Motors CRM. This Web site is part of a reporting sys-
tem for Wallingford Motors, and updating Web pages directly from Web-based database
queries is one way to deliver such reports.

In this section, we will explore how to produce an OLAP report by using the Microsoft
Excel 2013 PivotTable feature. We will build an OLAP report in Microsoft Excel 2013
based on data in a Microsoft Access 2013 database. We will start by creating an OLAP
report for the WMCRM database. We will continue to use the copy of the WMCRM.accdb
database file that we placed in the C:\Inetpub\wwwroot\DBC\WM folder in Chapter 7’s
section of “The Access Workbench.” This will make anything we add to the database easily
available for possible use on the Wallingford Motors Web site.

Creating a View Query for an OLAP Report

To create an OLAP report, we need to create a new view, one that is a slight variant of
the view named viewCustomerContacts that we created earlier in Appendix E’s section of
“The Access Workbench.” In the new view, we need to concatenate the customer’s first
and last names into a single customer name, and we need to add a quantitative measure so
that we can easily analyze the number of contacts made by the Wallingford Motors sales
staff. We will call the new view viewCustomerContactCount.

Creating the viewCustomerContactCount Query

  1.	 Start Microsoft Access 2013 and open the copy of the WMCRM.accdb database file in the
C:\Inetpub\wwwroot\DBC\WM folder.

  2.	 Right-click the viewCustomerContacts query. A shortcut menu is displayed.
  3.	 In the shortcut menu, click the Copy button. The Paste As dialog box appears.
  4.	 As shown in Figure AW-8-1, in the Paste As dialog box change the new object name to

viewCustomerContactsCount.
  5.	 Click the OK button in the Save As dialog box. As shown in Figure AW-8-2, the new

object is created and displayed in Datasheet view.
  6.	 Click the Design View button in the Views group of the Home ribbon to switch the query

to Design view.
  7.	 Click the Totals button in the Show/Hide group of the Query Tools Design ribbon to

display the Total row in the fields pane.
  8.	 Right-click the LastName field name in the LastName column to display the shortcut

menu, as shown in Figure AW-8-3.
  9.	 Click the Build button in the shortcut menu to display the Expression Builder.
10.	 Create an expression that concatenates LastName and FirstName data into a combined

attribute named CustomerName as:

CustomerName:[CUSTOMER]![LastName]&", "&[CUSTOMER]![FirstName].

Figure AW-8-4 shows the completed expression.

11.	 Create the expression in Expression Builder as shown in Figure AW-8-4, and then click
the OK button in the Expression Builder.

12.	 Delete the FirstName column from the query design.
(Continued)

472   Part 3   Database Management

The Paste As
dialog box

The OK button

The new object
name has been
typed into this text
box

Figure AW-8-1

The Paste As Dialog Box

The Design View
button

The new query name

The new query object

Figure AW-8-2

The Unmodified viewCustomerContactsCount Query

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   473

(Continued)

The Expression
Builder

The completed
expression to create
CustomerName

Select tables from this
pane

Select column names
from this pane

Figure AW-8-4

The Completed Expression in the Expression Builder

The Totals button

The shortcut menu

The Build button

The Total row

Figure AW-8-3

The Shortcut Menu

474   Part 3   Database Management

13.	 Delete the Remarks column from the query design.
14.	 Add a column named ContactCount to the query, as shown in Figure AW-8-5.
15.	 Save the changes to the query and then run it. The query results are shown in Figure AW-8-6.
16.	 Close the viewCustomerContactCount query.
17.	 Close the WMCRM database and Microsoft Access.

Creating a Microsoft Excel Worksheet for an OLAP Report

Because the OLAP report will be in a Microsoft Excel 2013 workbook, we need to create a
new workbook to hold the OLAP report. We will continue to use the Wallingford Motors
C:\Inetpub\wwwroot\DBC\WM Web site folder as the storage location, and now we need
to create a Microsoft Excel 2013 workbook named WM-DW-BI.xlsx in that folder.

Creating the Microsoft Excel 2013 WM-DW-BI.xlsx Workbook

1.	 Start Windows Explorer.
2.	 Browse to the C:\Inetpub\wwwroot\DBC\WM folder.
3.	 Right-click anywhere in the right-hand folder and file pane to open the shortcut menu.
4.	 In the shortcut menu, click the New command.
5.	 In the list of new objects, click the Microsoft Excel Worksheet command.
6.	 A new Microsoft Excel 2013 workbook object is created, with the file name highlighted in

Edit mode.
7.	 Edit the file name to read WM-DW-BI.xlsx, and then press the Enter key.

Now you can open the WM-DW-BI.xlsx workbook.

The ContactCount
expression

Set the Total setting to
Count

Figure AW-8-5

The ContactCount Column

The CustomerName
data

The ContactCount
data

Figure AW-8-6

viewCustomerContactCount Query Results

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   475

Opening the Microsoft Excel 2013 WM-DW-BI.xlsx Workbook

1.	 Start Microsoft Excel 2013.
2.	 Click the File command tab, and then click the Open button.
3.	 In the Open dialog box, browse to the C:\inetpub\wwwroot\DBC\WM folder and open

the WM-DW-BI.xlsx file. The WM-DW-BI.xlsx workbook is displayed, as shown in
Figure AW-8-7.

Creating a Basic OLAP Report

We can now create an OLAP report in the Microsoft Excel 2013 WM-DW-BI.xlsx
workbook. Fortunately, Microsoft has made it possible to link directly to Microsoft
Access 2013 to obtain the data needed for the report. We will connect the Microsoft
Excel workbook to the Microsoft Access database and create the basic, blank OLAP
report PivotTable.

(Continued)

The DATA command
tab

The WM-DW-BI.xlsx
workbook file

Figure AW-8-7

The WM-DW-BI.xlsx Workbook

Microsoft Excel 2013 uses the same Microsoft Office fluent user interface
that you have learned to use in Microsoft Access 2013. Because you should
already be familiar with the Microsoft Office fluent user interface, we do
not discuss the Microsoft Excel variant of this interface.

BTW

476   Part 3   Database Management

Creating the Basic OLAP Report PivotTable

  1.	 In the WM-DW-BI.xlsx workbook, click the Data command tab to display the Data com-
mand groups, as shown in Figure AW-8-8.

  2.	 Click the From Access button in the Get External Data group of the Data ribbon. The
Select Data Source dialog box appears.

  3.	 In the Select Data Source dialog box, which functions just like an Open dialog box,
browse to the C:\inetpub\wwwroot\DBC\WM folder. Select the Microsoft Access
WMCRM.accdb database file, and then click the Open button.

  4.	 At this point, the Data Link Properties dialog box may appear. If it does, you do not need
to change anything in the dialog box, so just click the OK button.

  5.	 At this point, the Please Enter Microsoft Access Database Engine OLE DB Initialization
Information dialog box may appear. If it does, you do not need to change anything in the
dialog box, so just click the OK button.

  6.	 As shown in Figure AW-8-9, the Select Table dialog box appears.
  7.	 In the Select Table dialog box, select the new viewCustomerContactCount query and then

click the OK button.
  8.	 As shown in Figure AW-8-10, the Import Data dialog box appears.
  9.	 In the Import Data dialog box, select the PivotTable Report, and then click the OK button.
10.	 As shown in Figure AW-8-11, the basic PivotTable report structure is displayed in the

Microsoft Excel worksheet.

The DATA
command tab

The Get External
Data drop-down
list arrow button

The From Access
button

Figure AW-8-8

The Excel Data Command Tab

Select the
viewCustomerContact-
Count object

The OK button

Figure AW-8-9

The Select Table
Dialog Box

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   477

(Continued)

11.	 Click the Save button on Microsoft Excel Quick Access Toolbar to save your work to this
point.

■■ Note:  From now on, when you open the WM-DW-BI.xlsx workbook a Security
Warning bar will appear, warning that data connections have been disabled. This is
similar to the Microsoft Access 2013 Security Warning bar you have already learned
to use, and essentially the same action is necessary: Click the Enable Options button.

Structuring an OLAP Report

We can now create the structure of the OLAP report. We do this by using the Microsoft
Excel PivotTable Field List pane, shown in Figures AW-8-11 and AW-8-12. To build the
structure of the PivotTable, we drag and drop the field objects from the field object list. We
drag the measures we want displayed to the Values box. We drag the dimension attributes
we want as column structure to the Column Labels box, and we drag the dimension attri-
butes we want as row structure to the Row Labels box.

For the Wallingford Motors Customer Contact PivotTable, we will use ContactCount
as the measure, so it needs to go in the Values box. The column structure will have customer

Select the PivotTable
Report radio button

The OK button

Figure AW-8-10

The Import Data
Dialog Box

The Save button

The PivotTable Tools
tab

The initial PivotTable
area

The PivotTable Field
List pane—the
structure of the
PivotTable is built
using these controls

Figure AW-8-11

The Basic PivotTable Report Structure

478   Part 3   Database Management

attributes, in this case only CustomerName. Finally, the row structure will have contact
attributes—NickName (for SalesPerson) first, followed by ContactType and then Contact Date.

Creating the OLAP Report’s PivotTable Structure

1.	 Click-and-hold the CustomerName field object, drag it to the Column Labels box, and
drop it there. As shown in Figure AW-8-13, the CustomerName labels and a GrandTotal la-
bel are added to the worksheet columns, the CustomerName field object in the field objects
list is checked and displayed in bold, and the field object CustomerName is listed in the
Column Labels box.

2.	 Click-and-hold the ContactCount field object, drag it to the Values box, and drop it there.
As shown in Figure AW-8-14, the sum of the CustomerCount values is added to the work-
sheet, the CustomerCount field object in the field objects list is checked and displayed in
bold, and the field object Sum of CustomerCount is listed in the Column Labels box.

3.	 Click-and-hold the NickName field object, drag it to the Row Labels box, and drop it
there. As shown in Figure AW-8-15, the sum of the NickName row labels is added to the
worksheet, the NickName field object in the field objects list is checked and displayed in
bold, and the field object NickName is listed in the Row Labels box. In addition, the values
in the report are starting to show up.

4.	 Click-and-hold the ContactType field object, drag it to the Row Labels box, and drop it
there, below NickName. As shown in Figure AW-8-16, the sum of the NickName row labels
is divided into contact type, the ContactType field object in the field objects list is checked
and displayed in bold, and the field object ContactType is listed in the Row Labels box. In
addition, the values in the report are now distributed according to salesperson (NickName)
and type of contact (ContactType).

5.	 Click-and-hold the ContactDate field object, drag it to the Row Labels box, and drop it
there, below ContactType. As shown in Figure AW-8-17, the sum of the NickName row
labels is divided into contact type and date, the ContactDate field object in the field objects
list is checked and displayed in bold, and the field object ContactDate is listed in the Row
Labels box. In addition, the values in the report are now distributed according to salesper-
son (NickName), type of contact (ContactType), and date of contact (ContactDate).

6.	 Click the Save button on the Microsoft Excel Quick Access Toolbar to save your work to
this point.

The field object
list—drag-and-drop
these field objects as
needed to one of the
four boxes to the right

Field objects in this
box appear as the
PivotTable column
structure

Field objects in this
box appear in the
PivotTable cell
structure

Field objects in this
box appear as the
PivotTable row
structure

Figure AW-8-12

The PivotTable Field
List Pane

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   479

(Continued)

The PivotTable
Column Labels

The CustomerName
field object is checked
and displayed in bold

The CustomerName
field object is
displayed in the
Column Labels box

Figure AW-8-13

The CustomerName Column Labels

The PivotTable cell
values are now
displayed—at this
point only the sum for
each column is shown

The ContactCount
object is checked and
displayed in bold

The Sum of
ContactCount object
is displayed in the
Values box

Figure AW-8-14

The CustomerCount Values

480   Part 3   Database Management

The NickName row
labels are displayed,
and now the
PivotTable cell values
are displayed

The NickName field
object is checked and
displayed in bold

The NickName field
object is displayed in
the Row Labels box

Figure AW-8-15

The NickName Row Labels

The NickName row
labels are divided by
ContactType

The ContactType
field object is checked
and displayed in bold

The ContactType
field object is
displayed in the Row
Labels box

Figure AW-8-16

The ContactType Row Labels

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   481

(Continued)

The NickName row
labels are divided by
ContactType, and
ContactType is divided
by ContactDate

The ContactDate
field object is checked
and displayed in bold

The ContactDate
field object is
displayed in the Row
Labels box

Figure AW-8-17

The ContactDate Row Labels

Modifying an OLAP Report

We have finished building our OLAP report. We can modify it as needed by moving the
field objects in the PivotTable Field List pane. We can also format the OLAP report to
make it look the way we want it.

Modifying the OLAP Report PivotTable Structure

1.	 Click-and-hold the ContactDate field object in the Row Labels box, drag it within the box
to between the NickName and Type field objects’ Column Labels box, and drop it there. As
shown in Figure AW-8-18, the order of the row labels in the OLAP report changes, and the
data move, too.

2.	 As shown in Figure AW-8-18, you can contract and expand various portions of the OLAP report.
In that figure, the data for Big Bill are shown fully expanded, while Billy’s data are completely
contracted. The data for Tina are shown at the Date level of detail, but without Type detail.

Formatting the OLAP Report

1.	 Click the PivotTable Tools Design command tab to display the Design command groups, as
shown in Figure AW-8-19.

2.	 Click the Banded Columns check box in the PivotTable Style Options command group.
3.	 Click the PivotTable Styles Gallery drop-down arrow button to display the PivotTable

Styles Gallery, as shown in Figure AW-8-20.
4.	 Select the PivotTable style shown in Figure AW-8-20 to format the OLAP report.

482   Part 3   Database Management

5.	 Adjust the column widths of columns B, C, D, E, and F so that they are uniform and the
entire table is visible on the worksheet when the PivotTable Field List pane is visible.

6.	 The final, formatted PivotTable OLAP report is shown in Figure AW-8-21.
7.	 Click the Save button on the Microsoft Excel Quick Access Toolbar.
8.	 Close the WM-DW-BI.xlsx workbook.
9.	 Close Microsoft Excel.

In Closing

Our work is done. In “The Access Workbench,” you have learned the essentials of working
with Microsoft Access (and just a bit about working with Microsoft Excel). You have not
learned everything there is to know, but now you know how to create and populate Microsoft

The NickName row
labels are divided by
ContactDate, and
ContactDate is divided
by ContactType

Big Bill’s data fully
expanded, Billy’s data
fully contracted, and
Tina’s data displayed
at the ContactDate
level of detail

The ContactDate
field object is now
displayed between the
NickName and Type
field objects

Figure AW-8-18

The Rearranged Row Labels

The Banded
Columns checkbox

The PivotTable Styles
gallery drop-down
arrow button

Figure AW-8-19

The Excel PivotTable Tools Design Command Tab

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   483

The columns in the
OLAP report now have
borders

The PivotTable Styles
gallery

Click this style to
format the OLAP
report

Figure AW-8-20

The Excel PivotTable Styles Gallery

Big Bill’s data fully
expanded, Billy’s data
fully contracted, and
Tina’s data displayed
at the Date level of
detail

Figure AW-8-21

The Final PivotTable OLAP Report

Access databases; build and use Microsoft Access queries (including view-equivalent queries),
forms, and reports; secure a Microsoft Access database; connect to a Microsoft Access data-
base from a Web page; and create a PivotTable OLAP report. You now have a solid founda-
tion to build on, which was, after all, the overall goal of “The Access Workbench.”

484   Part 3   Database Management

Summary
Business intelligence (BI) systems assist managers and other professionals in the analysis of
current and past activities and in the prediction of future events. BI applications are of two
major types: reporting applications and data mining applications. Reporting applications
make elementary calculations on data; data mining applications use sophisticated math-
ematical and statistical techniques.

BI applications obtain data from three sources: operational databases, extracts of op-
erational databases, and purchased data. A BI system sometimes has its own DBMS, which
may or not be the operational DBMS. Characteristics of reporting and data mining applica-
tions are listed in Figure 8-4.

Direct reading of operational databases is not feasible for any but the smallest and sim-
plest BI applications and databases—for several reasons. Querying operational data can un-
acceptably slow the performance of operational systems, operational data have problems that
limit their usefulness for BI applications, and BI system creation and maintenance require
programs, facilities, and expertise that are normally not available for an operational database.

Operational data may have problems. Because of the problems with operational
data, many organizations have chosen to create and staff data warehouses and data marts.
Extract, transform, and load (ETL) systems are used to extract data from operational sys-
tems; transform the data and load them into data warehouses; and maintain metadata that
describes the source, format, assumptions, and constraints about the data. A data mart is
a collection of data that is smaller than that held in a data warehouse and that addresses a
particular component or functional area of the business. In Figure 8-6, the enterprise data
warehouse distributes data to three smaller data marts, each of which services the needs of
a different aspect of the business.

Operational databases and dimensional databases have different characteristics, as
shown in Figure 8-7. Dimensional databases use a star schema with a fully normalized fact
table that connects to dimension tables that may be non-normalized. Dimensional data-
bases must deal with slowly changing dimensions, and therefore a time dimension is impor-
tant in a dimensional database. Fact tables hold measures of interest, and dimension tables
hold attribute values used in queries. The star schema can be extended with additional fact
tables, dimension tables, and conformed dimensions.

The purpose of a reporting system is to create meaningful information from disparate
data sources and to deliver that information to the proper users on a timely basis. Reports
are produced by sorting, filtering, grouping, and making simple calculations on the data.
RFM analysis is a typical reporting application. Customers are grouped and classified ac-
cording to how recently they have placed an order (R), how frequently they order (F), and
how much money (M) they spend on orders. An RFM report can be produced using SQL
statements.

Online Analytical Processing (OLAP) reporting applications enable users to dy-
namically restructure reports. A measure is a data item of interest. A dimension is a
characteristic of a measure. An OLAP report, or OLAP cube, is an arrangement of
measures and dimensions. With OLAP, users can drill down and exchange the order of
dimensions.

A distributed database is a database that is stored and processed on more than one
computer. A replicated database is one in which multiple copies of some or all of the da-
tabase are stored on different computers. A partitioned database is one in which different
pieces of the database are stored on different computers. A distributed database can be
replicated and distributed.

Distributed databases pose processing challenges. If a database is updated on a
single computer, then the challenge is simply to ensure that the copies of the database are
logically consistent when they are distributed. However, if updates are to be made on more
than one computer, the challenges become significant. If the database is partitioned and
not replicated, then challenges occur if transactions span data on more than one computer.
If the database is replicated and if updates occur to the replicated portions, then a special

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   485

locking algorithm called distributed two-phase locking is required. Implementing this algo-
rithm can be difficult and expensive.

Objects consist of methods and properties or data values. All objects of a given class
have the same methods, but they have different property values. Object persistence is the
process of storing object property values. Relational databases are difficult to use for object
persistence. Some specialized products called object-oriented DBMSs were developed in
the 1990s but never received commercial acceptance. Oracle and others have extended the
capabilities of their relational DBMS products to provide support for object persistence.
Such databases are referred to as object-relational databases.

The NoSQL movement (now often read as “not only SQL”) is built upon the need
to meet the Big Data storage needs of companies such as Amazon.com, Google, and
Facebook. The tools used to do this are nonrelational DBMSs know as structured stor-
age. An early example was Bigtable, and a more recent popular example is Cassandra.
These products use a non-normalized table structure built on columns, super columns,
column families, and super column families tied together by rowkey values from a
keyspace. Data processing of the very large data sets found in Big Data is done by the
MapReduce process, which breaks a data processing task in many parallel tasks done
by many computers in the cluster and then combines these results to produce a final
result. An emerging product that is supported by Microsoft and Oracle Corporation is
the Hadoop Distributed File System (HDFS), with its spinoffs HBase, a nonrelational
storage component, and Pig, a query language.

Key Terms
Big Data
Bigtable
business intelligence (BI) system
Cassandra
click-stream data
column
column family
conformed dimension
data mart
data mining application
data warehouse
data warehouse metadata

database
date dimension
dimension table
dimensional database
distributed database
distributed two-phase locking
document
drill down
enterprise data warehouse (EDW)

architecture

extract, transform, and load (ETL)
system

fact table
Graph
Hadoop Distributed File System

(HDFS)
HBase
keyspace
Key-Value
measure
method
MapReduce
NoSQL
Not only SQL
object
object-oriented DBMS (OODBMS)
object-oriented programming

(OOP)
object persistence
object-relational database
OLAP cube
OLAP report

Online Analytical Processing
(OLAP)

online transaction processing
(OLTP) system

operational system
Oracle Big Data Appliance
partitioning
Pig
PivotTable
property
replication
reporting system
RFM analysis
server cluster
slowly changing dimension
SQL Server Parallel Data

Warehouse
star schema
super column
super column family
time dimension
transactional system

Review Questions
	  8.1	 What are BI systems?

	  8.2	 How do BI systems differ from transaction processing systems?

	  8.3	 Name and describe the two main categories of BI systems.

	  8.4	 What are the three sources of data for BI systems?

486   Part 3   Database Management

	  8.5	 Summarize the problems with operational databases that limit their usefulness for
BI applications.

	  8.6	 What is an ETL system, and what functions does it perform?

	  8.7	 What problems in operational data create the need to clean data before loading the
data into a data warehouse?

	  8.8	 What does it mean to transform data? Give an example other than the ones used in
this book.

	  8.9	 Why are data warehouses necessary?

	8.10	 Give examples of data warehouse metadata.

	8.11	 Explain the difference between a data warehouse and a data mart. Give an example
other than the ones used in this book.

	8.12	 What is the enterprise data warehouse (EDW) architecture?

	8.13	 Describe the differences between operational databases and dimensional databases.

	8.14	 What is a star schema?

	8.15	 What is a fact table? What types of data are stored in fact tables?

	8.16	 What is a measure?

	8.17	 What is a dimension table? What types of data are stored in dimension tables?

	8.18	 What is a slowly changing dimension?

	8.19	 Why is the time dimension important in a dimensional model?

	8.20	 What is a conformed dimension?

	8.21	 What does OLAP stand for?

	8.22	 What is the distinguishing characteristic of OLAP reports?

	8.23	 Define measure, dimension, and cube.

	8.24	 Give an example, other than ones in this text, of a measure, two dimensions related
to your measure, and a cube.

	8.25	 What is drill down?

	8.26	 Explain two ways that the OLAP report in Figure 8-19 differs from that in
Figure 8-18.

	8.27	 Define distributed database.

	8.28	 Explain one way to partition a database that has three tables: T1, T2, and T3.

	8.29	 Explain one way to replicate a database that has three tables: T1, T2, and T3.

	8.30	 Explain what must be done when fully replicating a database but allowing only one
computer to process updates.

	8.31	 If more than one computer can update a replicated database, what three problems
can occur?

	8.32	 What solution is used to prevent the problems in question 8.31?

	8.33	 Explain what problems can occur in a distributed database that is partitioned but
not replicated.

	8.34	 What organizations should consider using a distributed database?

	8.35	 Explain the meaning of the term object persistence.

	8.36	 In general terms, explain why relational databases are difficult to use for object
persistence.

	8.37	 What does OODBMS stand for, and what is its purpose?

	8.38	 According to this chapter, why were OODBMSs not successful?

	8.39	 What is an object-relational database?

	8.40	 What is Big Data?

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   487

	8.41	 What is the relationship between 1 MB of storage and 1 EB of storage?

	8.42	 What is the NoSQL movement?

	8.43	 What was the first nonrelational data store to be developed, and who developed it?

	8.44	 What is Cassandra, and what is the history of the development of Cassandra to its
current state?

	8.45	 As illustrated in Figure 8-21, what is column family database storage and how are
such systems organized? How do column family database storage systems compare
to RDBMS systems?

	8.46	 Explain MapReduce processing.

	8.47	 What is Hadoop, and what is the history of the development of Hadoop to its cur-
rent state? What are HBase and Pig?

Exercises
	8.48	 Based on the discussion of the Heather Sweeney Designs operational database

(HSD) and dimensional database (HSD-DW) in the text, answer the following
questions.

A.	 Using the SQL statements shown in Figure 8-10, create the HSD-DW database
in a DBMS.

B.	 What transformations of data were made before HSD-DW was loaded with
data? List all the transformations, showing the original format of the HSD data
and how they appear in the HSD-DW database.

C.	 Write the complete set of SQL statements necessary to load the transformed
data into the HSD-DW database.

D.	 Populate the HSD-DW database, using the SQL statements you wrote to an-
swer part C.

E.	 Figure 8-23 shows the SQL code to create the SALES_FOR_RFM fact table
shown in Figure 8-15. Using those statements, add the SALES_FOR_RFM
table to your HSD-DW database.

Figure 8-23

The HSD-DW SALES_FOR_RFM SQL Statements

488   Part 3   Database Management

F.	 What transformations of data are necessary to load the SALES_FOR_RFM
table? List any needed transformations, showing the original format of the
HSD data and how they appear in the HSD-DW database.

G.	 What data will be used to load the SALES_FOR_RFM fact table? Write the
complete set of SQL statements necessary to load this data.

H.	 Populate the SALES_FOR_RFM fact table, using the SQL statements you
wrote to answer part G.

  I.	 Write an SQL query similar to the one shown on page 456 that uses the total
dollar amount of each day’s product sales as the measure (instead of the num-
ber of products sold each day).

J.	 Write the SQL view equivalent of the SQL query you wrote to answer part I.

K.	 Create the SQL view you wrote to answer part J in your HSD-DW database.

L.	 Create a Microsoft Excel 2013 workbook named HSD-DW-BI-Exercises
.xlsx.

M.	 Using either the results of your SQL query from part K (copy the results of
the query into a worksheet in the HSD-DW-BI.xlsx workbook and then for-
mat this range as a worksheet table) or your SQL view from part L (create a
Microsoft Excel data connection to the view), create an OLAP report similar
to the OLAP report shown in Figure 8-17. (Hint: If you need help with the
needed Microsoft Excel actions, search in the Microsoft Excel help system for
more information.)

N.	 Heather Sweeney is interested in the effects of payment type on sales in dollars.

	 1.	 Modify the design of the HSD-DW dimensional database to include a
PAYMENT_TYPE dimension table.

	 2.	 Modify the HSD-DW database to include the PAYMENT_TYPE dimen-
sion table.

	 3.	 What data will be used to load the PAYMENT_TYPE dimension table?
What data will be used to load foreign key data into the PRODUCT_
SALES fact table? Write the complete set of SQL statements necessary to
load these data.

	 4.	 Populate the PAYMENT_TYPE and PRODUCT_SALES tables, using
the SQL statements you wrote to answer part 3.

	 5.	 Create the SQL queries or SQL views needed to incorporate the
PaymentType attribute.

	 6.	 Create a Microsoft Excel 2013 OLAP report to show the effect of payment
type on product sales in dollars.

Access Workbench Exercises
AW.8.1	 Using the discussion of dimensional models and OLAP reports in the text and
the specific discussion of OLAP reports based on a Microsoft Access 2013 database in
this chapter’s section of “The Access Workbench” as your reference, complete exercise
8.48 (excluding part N) for Heather Sweeney Designs. Create your HSD-DW database in
Microsoft Access 2013 and your OLAP report in Microsoft Excel 2013.

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   489

Marcia’s Dry Cleaning Case Questions
Ms. Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry
cleaner in a well-to-do suburban neighborhood. Marcia makes her business stand out from
the competition by providing superior customer service. She wants to keep track of each of
her customers and their orders. Ultimately, she wants to notify them that their clothes are
ready via email.

Assume that Marcia has hired you as a database consultant to develop an operational
database named MDC that has the following four tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax,

TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,

ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

A Microsoft Access 2013 version of the MDC database and SQL scripts to create and
populate the MDC database are available for Microsoft SQL Server 2014, Oracle
Database Express Edition 11g Release 2, and MySQL 5.6 Community Server at the
Database Concepts Web site at www.pearsonhighered.com/kroenke. Sample data for
the CUSTOMER table are shown in Figure 7-37, for the SERVICE table in Figure 7-38,
for the INVOICE table in Figure 7-39, and for the INVOICE_ITEM table in Figure 7-40.

	A.	 Create a database in your DBMS named MDC, and use the MDC SQL scripts for
your DBMS to create and populate the database tables. Create a user named MDC-
User with the password MDC-User+password. Assign this user to database roles so
that the user can read, insert, delete, and modify data.

	B.	 Create an appropriate ODBC data source for your database.

	C.	 You need about 20 INVOICE transactions with supporting INVOICE_ITEMs in
the database. Write the needed SQL statements for any needed additional INVOICE
transactions and insert the data into your database.

	D.	 Design a data warehouse star schema for a dimensional database named MDC-DW.
The fact table measure will be ExtendedPrice.

	E.	 Create the MDC-DW database in your DBMS product.

	 F.	 What transformations of data will need to be made before the MDC-DW database
can be loaded with data? List all the transformations, showing the original format of
the MDC data and how it appears in the MDC-DW database.

	G.	 Write the complete set of SQL statements necessary to load the transformed data into
the MDC-DW database.

	H.	 Populate the MDC-DW database, using the SQL statements you wrote to answer
part G.

	 I.	 Write an SQL query similar to the one shown in the text on page 456 that uses the
ExtendedPrice as the measure.

	J.	 Write the SQL view equivalent of the SQL query you wrote to answer part I.

	K.	 Create the SQL view you wrote to answer part J in your MDC-DW database.

	L.	 Create the Microsoft Excel 2013 workbook named MDC-DW-BI-Exercises.xlsx.

www.pearsonhighered.com/kroenke

490   Part 3   Database Management

	M.	 Using either the results of your SQL query from part I (copy the results of the query
into a worksheet in the MDC-DW-BI.xlsx workbook and then format this range as a
worksheet table) or your SQL view from part I (create a Microsoft Excel data connec-
tion to the view), create an OLAP report similar to the OLAP report shown in Figure
8-17. (Hint: If you need help with the needed Microsoft Excel actions, search in the
Microsoft Excel help system for more information.)

 Garden Glory Project Questions

If you have not already implemented the Garden Glory database shown in Chapter 3 in a
DBMS product, create and populate the Garden Glory database now in the DBMS of your
choice (or as assigned by your instructor).

	A.	 You need about 20 SERVICE transactions in the database. Write the needed SQL
statements for any needed additional SERVICE transactions and insert the data into
your database.

	B.	 Design a data warehouse star schema for a dimensional database named GG-DW. The
fact table measure will be HoursWorked.

	C.	 Create the GG-DW database in a DBMS product.

	D.	 What transformations of data will need to be made before the GG-DW database can
be loaded with data? List all the transformations, showing the original format of the
GARDEN_GLORY data and how it appears in the GG-DW database.

	E.	 Write the complete set of SQL statements necessary to load the transformed data into
the GG-DW database.

	F.	 Populate the GG-DW database, using the SQL statements you wrote to answer part A.

	G.	 Write an SQL query similar to the one shown in the text on page 000 that uses the
hours worked per day as the measure.

	H.	 Write the SQL view equivalent of the SQL query you wrote to answer part G.

	 I.	 Create the SQL view you wrote to answer part H in your GG-DW database.

	J.	 Create the Microsoft Excel 2013 workbook named GG-DW-BI-Exercises.xlsx.

	K.	 Using either the results of your SQL query from part G (copy the results of the query
into a worksheet in the GG-DW-BI.xlsx workbook and then format this range as a
worksheet table) or your SQL view from part I (create a Microsoft Excel data connec-
tion to the view), create an OLAP report similar to the OLAP report shown in Figure
8-17. (Hint: If you need help with the needed Microsoft Excel actions, search in the
Microsoft Excel help system for more information.)

 James River Jewelry Project Questions

The James River Jewelry project questions are available in online Appendix D, which can
be downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

www.pearsonhighered.com/kroenke

Chapter 8   Big Data, Data Warehouses, and Business Intelligence Systems   491

 The Queen Anne Curiosity Shop Project Questions

If you have not already implemented The Queen Anne Curiosity Shop database shown in
Chapter 3 in a DBMS product, create and populate the QACS database now in the DBMS
of your choice (or as assigned by your instructor).

	A.	 You need about 30 PURCHASE transactions in the database. Write the needed SQL
statements for any needed additional PURCHASE transactions and insert the data
into your database.

	B.	 Design a data warehouse star schema for a dimensional database named QACS-DW.
The fact table measure will be ItemPrice.

	C.	 Create the QACS-DW database in a DBMS product.

	D.	 What transformations of data will need to be made before the QACS-DW database
can be loaded with data? List all the transformations, showing the original format of
the QACS and how it appears in the QACS-DW database.

	E.	 Write the complete set of SQL statements necessary to load the transformed data into
the QACS-DW database.

	F.	 Populate the QACS-DW database, using the SQL statements you wrote to answer
part A.

	G.	 Write an SQL query similar to the one shown in the text on page 456 that uses retail
price as the measure.

	H.	 Write the SQL view equivalent of the SQL query you wrote to answer part G.

	 I.	 Create the SQL view you wrote to answer part H in your QACS-DW database.

	J.	 Create a Microsoft Excel 2013 workbook named QACS-DW-BI-Exercises.xlsx.

	K.	 Using either the results of your SQL query from part G (copy the results of the query
into a worksheet in the QACS-DW-BI.xlsx workbook and then format this range as a
worksheet table) or your SQL view from part I (create a Microsoft Excel data connec-
tion to the view), create an OLAP report similar to the OLAP report shown in Figure
8-17. (Hint: If you need help with the needed Microsoft Excel actions, search in the
Microsoft Excel help system for more information.)

This page intentionally left blank

Online Appendices
Complete versions of these appendices are available on the textbook’s Web site:

www.pearsonhighered.com/kroenke

Appendix A
Getting Started with Microsoft SQL Server 2014 Express Edition

Appendix B
Getting Started with Oracle Database Express Edition 11g Release 2

Appendix C
Getting Started with MySQL 5.6 Community Server

Appendix D
James River Jewelry Project Questions

Appendix E
SQL Views, SQL/PSM, and Importing Data

Appendix F
Getting Started in Systems Analysis and Design

Appendix G
Getting Started with Microsoft Visio 2013

Appendix H
The Access Workbench—Section H—Microsoft Access 2013 Switchboards

Appendix I
Getting Started with Web Servers, PHP, and the NetBeans IDE

Appendix J
Business Intelligence Systems

Appendix K
Big Data

www.pearsonhighered.com/kroenke

This page intentionally left blank

Asterisk (*): A wildcard character used in Microsoft Access queries
to represent one or more unspecified characters. See SQL percent
sign (%) wildcard character.

Atomic transaction: A group of logically related database op-
erations that are performed as a unit. Either all the operations are
performed or none of them are.

Attribute: (1) A value that represents a characteristic of an entity.
(2) A column of a relation.

Before-image: A record of a database entity (normally a row or a
page) before a change. Used in recovery to perform rollback.

Big data: The current term for the enormous datasets created by
Web applications, such as search tools (e.g., Google and Bing),
and by Web 2.0 social networks, such as Facebook, LinkedIn, and
Twitter.

Bigtable: A nonrelational unstructured data store developed by
Google.

Binary relationship: A relationship between exactly two entities or
tables.

Boyce-Codd Normal Form (BCNF): A relation in third normal
form in which every determinant is a candidate key.

Business intelligence (BI) systems: Information systems that assist
managers and other professionals in analyzing current and past ac-
tivities and in predicting future events. Two major categories of BI
systems are reporting systems and data mining systems.

Business rule: A statement of a policy in a business that restricts
the ways in which data can be inserted, updated, or deleted in the
database.

Candidate key: An attribute or a group of attributes that identifies
a unique row in a relation. One of the candidate keys is chosen to
be the primary key.

Cardinality: In a binary relationship, the maximum or minimum
number of elements allowed on each side of the relationship. The
maximum cardinality can be 1:1, 1:N, N:1, or N:M. The minimum
cardinality can be optional/optional, optional/mandatory, manda-
tory/optional, or mandatory/mandatory.

Cascading deletion: A property of a relationship that indicates that
when one row is deleted, related rows should be deleted as well.

Cascading update: A referential integrity action specifying that
when the key of a parent row is updated, the foreign keys of match-
ing child rows should be updated as well.

Cassandra: A nonrelational unstructured data store from the
Apache Software Foundation.

Checkpoint: The point of synchronization between a database and
a transaction log. At the checkpoint, all buffers are written to ex-
ternal storage. (This is the standard definition of checkpoint, but
DBMS vendors sometimes use this term in other ways.)

Child: A row, record, or node on the many side of a one-to-many
relationship. See also parent.

.NET Framework (.NET): Microsoft’s comprehensive application
development platform. It includes such components as ADO.NET
and ASP.NET.

<?php and?>: The symbols used to indicate blocks of PHP code in
Web pages.

ACID transaction: A transaction that is atomic, consistent, isolated,
and durable. An atomic transaction is one in which a set of database
changes are committed as a unit; either all of them are completed
or none of them are. A consistent transaction is one in which all
actions are taken against rows in the same logical state. An isolated
transaction is one that is protected from changes by other users.
A durable transaction is one that, once committed to a database,
is permanent regardless of subsequent failure. There are different
levels of consistency and isolation. See transaction-level consistency
and statement-level consistency. See also transaction isolation level.

Active Server Pages (ASP): A combination of HTML and scripting
language statements. Any statement included in <%. . .%> is pro-
cessed on the server. Used with Internet Information Server (IIS).

Active Data Objects (ADO): An implementation of OLE DB that
is accessible via object- and non-object-oriented languages. It is
used primarily as a scripting-language (JScript, VBScript) interface
to OLE DB.

ADO.NET: A data access technology that is part of Microsoft’s
.NET initiative. ADO.NET provides the capabilities of ADO, but
with a different object structure. ADO.NET also includes new
capabilities for the processing of datasets.

After-image: A record of a database entity (normally a row or a
page) after a change. Used in recovery to perform rollforward.

American National Standards Institute (ANSI): The American stan-
dards organization that creates and publishes the SQL standards.

AMP: An abbreviation for Apache, MySQL, and PHP/Pearl/
Python. See Apache Web Server and PHP.

Anomaly: In normalization, an undesirable consequence of a data
modification. With an insertion anomaly, facts about two or more
different themes must be added to a single row of a relation. With
a deletion anomaly, facts about two or more themes are lost when a
single row is deleted.

Apache Web Server: A popular Web server that runs on most oper-
ating systems, particularly Windows and Linux.

Application program interface (API): The set of objects, methods,
and properties that is used to access the functionality of a program
such as a DBMS.

Association relationship: In database design, a table pattern where
an intersection table contains additional attributes beyond the at-
tributes that make up the composite primary key.

Associative entity: Also called an association entity, this is an entity
that represents the combination of at least two other objects and
that contains data about that combination. It is often used in con-
tracting and assignment applications.

Glossary

Although this section defines many of the key terms in the book, it is not meant to be exhaustive. Terms related to a specific DBMS product, for
example, should be referenced in the chapter or appendix dedicated to that product. These references can be found in the index. Similarly, SQL
concepts are included, but details of SQL commands and syntax should be referenced in the chapter that discusses those details, and Microsoft
Access 2013 terms should be referenced in the sections of “The Access Workbench.”

495

496 Glossary

language—in most cases, a procedural language such as COBOL,
C#, or Visual Basic. A data sublanguage is an incomplete pro-
gramming language because it contains only constructs for data
definition and processing.

Data warehouse: A store of enterprise data that is designed to facili-
tate management decision making. A data warehouse includes not
only data, but also metadata, tools, procedures, training, person-
nel information, and other resources that make access to the data
easier and more relevant to decision makers.

Data warehouse metadata database: The database used to store the
data warehouse metadata.

Database: A self-describing collection of related records or, for rela-
tional databases, of related tables.

Database administration (DBA): A function that concerns the
effective use and control of a particular database and its related
applications.

Database administrator (DBA): A person or group responsible for
establishing policies and procedures to control and protect a da-
tabase. They work within guidelines set by data administration to
control the database structure, manage data changes, and maintain
DBMS programs.

Database backup: A copy of database files that can be used to re-
store a database to some previous, consistent state.

Database design: A graphical display of tables (files) and their rela-
tionships. The tables are shown in rectangles, and the relationships
are shown using lines. A many relationship is shown with a crow’s
foot on the end of the line, an optional relationship is depicted by
an oval, and a mandatory relationship is shown with hash marks.

Database management system (DBMS): A set of programs used
to define, administer, and process a database and its applications.

Database schema: A complete logical view of a database.

Deadlock: A condition that can occur during concurrent processing in
which each of two (or more) transactions is waiting to access data that
the other transaction has locked. It also is called the deadly embrace.

Deadly embrace: See deadlock.

Decision support system (DSS): One or more applications de-
signed to help managers make decisions.

Degree: In the entity-relationship model, the number of entities
participating in a relationship.

Deletion anomaly: In a relation, the situation in which the removal
of one row of a table deletes facts about two or more themes.

Denormalization: The process of intentionally designing a relation
that is not normalized. Denormalization is done to improve perfor-
mance or security.

Determinant: One or more attributes that functionally determine
another attribute or attributes. In the functional dependency
(A, B) → D, C, the attributes (A, B) are the determinant.

Dimension table: In a star schema dimensional database, the tables
that connect to the central fact table. Dimension tables hold at-
tributes used in the organizing queries in analyses such as those of
OLAP cubes.

Dimensional database: A database design that is used for data ware-
houses and is designed for efficient queries and analysis. It contains a
central fact table connected to one or more dimension tables.

Dirty read: A read of data that have been changed but not yet com-
mitted to a database. Such changes may later be rolled back and
removed from the database.

Discriminator: In the entity-relationship model, an attribute of a
supertype entity that determines which subtype pertains to the
supertype.

Click-stream data: Data about a customer’s clicking behavior on a
Web page; such data are often analyzed by e-commerce companies.

Column: A logical group of bytes in a row of a relation or a table.
The meaning of a column is the same for every row of the relation.

Commit: A command issued to a DBMS to make database modi-
fications permanent. After the command has been processed, the
changes are written to the database and to a log in such a way that
they will survive system crashes and other failures. A commit is
usually used at the end of an atomic transaction. Contrast this with
rollback.

Composite identifier: An identifier of an entity that consists of two
or more attributes.

Composite key: A key of a relation that consists of two or more
columns.

Computed value: A column of a table that is computed from other
column values. Values are not stored but are computed when they
are to be displayed.

Concurrent transactions: A condition in which two or more trans-
actions are processed against a database at the same time. In a
single-CPU system, the changes are interleaved; in a multi-CPU
system, the transactions can be processed simultaneously, and the
changes on the database server are interleaved.

Concurrent update problem: An error condition in which one user’s
data changes are overwritten by another user’s data changes. Also
called lost update problem.

Confidence: In market basket analysis, the probability of a cus-
tomer’s buying one product, given that the customer has purchased
another product.

Conformed dimension: In a dimensional database design, a dimen-
sion table that has relationships to two or more fact tables.

Consistency: Two or more concurrent transactions are consistent if
the result of their being processed is the same as it would have been
had they been processed in some sequential order.

Consistent: In an ACID transaction, either statement-level or
transaction-level consistency. See ACID transaction, consistency,
statement-level consistency, and transaction-level consistency.

COUNT: In SQL, a function that counts the number of rows in a
query result. See SQL built-in functions.

Cube: See OLAP cube.

Data administration: An enterprisewide function that concerns the
effective use and control of an organization’s data assets. A person
can perform it, but more often it is performed by a group. Specific
functions include setting data standards and policies and providing
a forum for conflict resolution. See also database administration
and DBA.

Data definition language (DDL): A language used to describe the
structure of a database.

Data manipulation language (DML): A language used to describe
the processing of a database.

Data mart: A facility similar to a data warehouse, but with a re-
stricted domain. Often, the data are restricted to particular types,
business functions, or business units.

Data mining application: The use of statistical and mathematical
techniques to find patterns in database data.

Data model: (1) A model of users’ data requirements, usually
expressed in terms of the entity-relationship model. It is sometimes
called a users’ data model. (2) A language for describing the struc-
ture and processing of a database.

Data sublanguage: A language for defining and processing a
database intended to be embedded in programs written in another

Glossary 497

Extract, transform, and load (ETL) system: The portion of a
data warehouse that converts operation data to data warehouse
data.

Fact table: The central table in a dimensional database. Its attri-
butes are called measures. See also measure.

Field: (1) A logical group of bytes in a record used with file pro-
cessing. (2) In the context of the relational model, a synonym for
attribute.

Fifth normal form (5NF): A normal form necessary to eliminate
an anomaly where a table can be split apart but not correctly
joined back together. Also known as Project-Join Normal Form
(PJ/NF).

File data source: An ODBC data source stored in a file that can be
emailed or otherwise distributed among users.

First normal form (1NF): Any table that fits the definition of a
relation.

Foreign key: An attribute that is a key of one or more relations
other than the one in which it appears.

Form: A structured on-screen presentation of selected data from a
database. Forms are used for both data input and data reading. A
form is part of a database application. Compare this with a report.

Fourth normal form (4NF): A relation in BCNF in which every
multivalued dependency is a functional dependency.

Functional dependency: A relationship between attributes in which
one attribute or group of attributes determines the value of
another. The expressions X → Y, “X determines Y,” and “Y is
functionally dependent on X” mean that given a value of X, we can
determine the value of Y.

HAS-A relationship: A relationship between two entities or objects
that are of different logical types; for example, EMPLOYEE HAS-
A(n) AUTO. Contrast this with an IS-A relationship.

Hadoop: See Hadoop Distributed File System (HDFS).

Hadoop Distributed File System (HDFS): An open-source file
distribution system that provides standard file services to clustered
servers so that their file systems can function as one distributed file
system.

HBase: A nonrelational unstructured data store developed as part
of the Apache Software Foundation’s Hadoop project. See Hadoop
Distributed File System (HDFS).

HTML document tags: The tags in HTML documents that indicate
the structure of the document.

HTML syntax rules: The standards that are used to create HTML
documents.

Http://localhost: For a Web server, a reference to the user’s
computer.

Hypertext Markup Language (HTML): A standardized set of text
tags for formatting text, locating images and other nontext files,
and placing links or references to other documents.

Hypertext Transfer Protocol (HTTP): A standardized means for
using TCP/IP to communicate over the Internet.

ID-dependent entity: An entity that cannot logically exist without
the existence of another entity. APPOINTMENT, for example,
cannot exist without CLIENT to make the appointment. To be
an ID-dependent entity, the identifier of the entity must contain
the identifier of the entity on which it depends. Such entities are a
subset of a weak entity. See also existence-dependent entity, strong
entity, and weak entity.

Identifier: In an entity, a group of one or more attributes that de-
termine entity instances. See also nonunique identifier and unique
identifier.

Distributed database: A database that is stored and processed on
two or more computers.

Distributed two-phase locking: A sophisticated form of record
locking that must be used when database transactions are pro-
cessed on two or more machines.

Document type declaration (DTD): A set of markup elements that
defines the structure of an XML document.

Domain: (1) The set of all possible values an attribute can have. (2)
A description of the format (data type, length) and the semantics
(meaning) of an attribute.

Domain key/normal form (DK/NF): A relation in which all con-
straints are logical consequences of domains and keys. In this text,
this definition has been simplified to a relation in which the deter-
minants of all functional dependencies are candidate keys.

Drill down: User-directed disaggregation of data used to break
higher-level totals into components.

Durable: In an ACID transaction, the database changes are perma-
nent. See ACID transaction.

Dynamo: A nonrelational unstructured data store developed by
Amazon.com.

Dynamic cursor: A fully featured cursor. All inserts, updates, dele-
tions, and changes in row order are visible to a dynamic cursor.

Enterprise-class database system: A DBMS product capable of
supporting the operating requirement of large organizations.

Enterprise data warehouse (EDW) architecture: A data warehouse
architecture that links specialized data marts to a central data ware-
house for data consistency and efficient operations.

Entity: Something of importance to a user that needs to be repre-
sented in a database. In the entity-relationship model, entities are
restricted to things that can be represented by a single table. See
also strong entity and weak entity.

Entity class: A set of entities of the same type; two examples are
EMPLOYEE and DEPARTMENT.

Entity instance: A particular occurrence of an entity; for example,
Employee 100 (an EMPLOYEE) and Accounting Department
(a DEPARTMENT).

Entity-relationship diagram (E-R diagram): A graphic used to
represent entities and their relationships. Entities are normally
shown in squares or rectangles, and relationships are shown in
diamonds. The cardinality of the relationship is shown inside the
diamond.

Entity-relationship model (E-R model): The constructs and con-
ventions used to create a model of users’ data. The things in the
users’ world are represented by entities, and the associations
among those things are represented by relationships. The results
are usually documented in an entity-relationship diagram. See also
data model.

Exclusive lock: A lock on a data resource that no other transaction
can read or update.

Explicit lock: A lock requested by a command from an application
program.

Export: A function of a DBMS that writes a file of data in bulk. The
file is intended to be read by another DBMS or program.

Extended entity-relationship (E-R) model: A set of constructs and
conventions used to create data models. The things in the users’
world are represented by entities, and the associations among those
things are represented by relationships. The results are usually
documented in an entity-relationship (E-R) diagram.

Extensible Markup Language (XML): A markup language whose
tags can be extended by document designers.

498 Glossary

Key: (1) A group of one or more attributes that identify a unique
row in a relation. Because relations cannot have duplicate rows,
every relation must have at least one key that is the composite of
all the attributes in the relation. A key is sometimes called a logical
key. (2) With some relational DBMS products, an index on a col-
umn used to improve access and sorting speed. It is sometimes
called a physical key. See also nonunique key, unique key, and
physical key.

LAMP: A version of AMP that runs on Linux. See AMP.

Lock: To allocate a database resource to a particular transaction in
a concurrent-processing system. The size at which the resource can
be locked is known as the lock granularity. See also exclusive lock
and shared lock.

Lock granularity: The detail possible with a lock.

Log: A file that contains a record of database changes. The log con-
tains before-images and after-images.

Logical unit of work (LUW): An equivalent term for transaction.
See Transaction.

Logistic regression: A form of supervised data mining that esti-
mates the parameters of an equation to calculate the odds that a
given event will occur.

Lost update problem: Same as concurrent update problem.

MapReduce: A big data processing technique that breaks a data
analysis into many parallel processes (the Map function) and then
combines the results of these processes into one final result (the
Reduce function).

MAX: In SQL, a function that determines the largest value in a set
of numbers. See SQL built-in functions.

Maximum cardinality: (1) The maximum number of values that an
attribute can have within a semantic object. (2) In a relationship
between tables, the maximum number of rows to which a row of
one table can relate in the other table.

Measure: In OLAP, a data value that is summed, averaged, or pro-
cessed in some simple arithmetic manner.

Metadata: Data concerning the structure of data in a database
stored in the data dictionary. Metadata are used to describe tables,
columns, constraints, indexes, and so forth. See also application
metadata.

MIN: In SQL, a function that determines the smallest value in a set
of numbers. See SQL built-in functions.

Minimum cardinality: In a relationship between tables, the mini-
mum number of rows to which a row of one table can relate in the
other table.

Modification anomaly: A situation that exists when the storing of
one row in a table records facts about two themes or the deletion of
a row removes facts about two themes, or when a data change must
be made in multiple rows for consistency.

Multiple-tier driver: In ODBC, a two-part driver, usually for a
client-server database system. One part of the driver resides on the
client and interfaces with the application; the second part resides
on the server and interfaces with the DBMS.

Multivalued dependency: A condition in a relation with three or
more attributes in which independent attributes appear to have
relationships they do not have. Formally, in a relation R (A, B, C),
having key (A, B, C) where A is matched with multiple values of B
(or of C or of both), B does not determine C, and C does not de-
termine B. An example is the relation EMPLOYEE (EmpNumber,
EmpSkill, DependentName), where an employee can have mul-
tiple values of EmpSkill and DependentName. EmpSkill and
DependentName do not have any relationship, but they do appear
to in the relation.

Identifying relationship: A relationship that is used when the child
entity is ID-dependent upon the parent entity.

IE Crow’s Foot model: Formally known as the Information
Engineering (IE) Crow’s Foot model, it is a system of symbology
used to construct E-R diagrams in data modeling and database
design.

Implicit lock: A lock that is placed automatically by a DBMS.

Inconsistent backup: A backup file that contains uncommitted
changes.

Inconsistent read problem: An anomaly that occurs in concurrent
processing in which transactions execute a series of reads that are
inconsistent with one another. This problem can be prevented by
using two-phase locking and other strategies.

Index.html: A default Web page name provided by most Web
servers.

Inetpub folder: In Windows operating systems, the root folder for
the IIS Web server.

Information: (1) Knowledge derived from data, (2) data presented
in a meaningful context, or (3) data processed by summing, order-
ing, averaging, grouping, comparing, or other similar operations.

Information Engineering (IE) model: An E-R model developed by
James Martin.

Inner join: See join.

Integrated Definition 1, Extended (IDEF1X): A version of the
entity-relationship model, adopted as a national standard, but dif-
ficult to understand and use. Most organizations use a simpler E-R
version like the crow’s foot model.

Integrated Development Environment (IDE): An application that
provides a programmer or application developer with a complete
set of development tools in one package.

Insertion anomaly: In a relation, a condition that exists when, to
add a complete row to a table, one must add facts about two or
more logically different themes.

Internet Information Server (IIS): A Windows Web server product
that processes Active Server Pages (ASP).

Intersection table: A table (also called a relation) used to represent
a many-to-many relationship. It contains the keys of the relations
in the relationship. When used to represent entities having a many-
to-many relationship, it may have nonkey data if the relationship
contains data.

IS-A relationship: A relationship between a supertype and a sub-
type. For example, EMPLOYEE and ENGINEER have an IS-A
relationship.

Isolation level: See transaction isolation level.
Java Database Connectivity (JDBC): A standard means for access-

ing DBMS products from Java. With JDBC, the unique API of a
DBMS is hidden, and the programmer writes to the standard JDBC
interface.

Java Server Pages (JSP): A combination of HTML and Java that is
compiled into a servlet.

Join operation: A relational algebra operation on two relations, A
and B, that produces a third relation, C. A row of A is concatenated
with a row of B to form a new row in C if the rows in A and B meet
restrictions concerning their values. For example, A1 is an attribute
in A, and B1 is an attribute in B. The join of A with B in which (A1
= B1) will result in a relation, C, having the concatenation of rows
in A and B in which the value of A1 is equal to the value of B1. In
theory, restrictions other than equality are allowed—a join could
be made in which A1 < B1. However, such non-equal joins are not
used in practice. Also known as inner join. See also natural join.

Glossary 499

1:1: An abbreviation for a one-to-one relationship between the rows
of two tables.

1:N: An abbreviation for a one-to-many relationship between the
rows of two tables.

Online Analytical Processing (OLAP): A technique for analyzing
data values, called measures, against characteristics associated with
those data values, called dimensions.

Online Transaction processing (OLTP) system: An operational
database system available for, and dedicated to, transaction
processing.

Open Database Connectivity (ODBC): A standard means for ac-
cessing DBMS products. Using ODBC, the unique API of a DBMS
is hidden, and the programmer writes to the standard ODBC
interface.

Operational system: A database system in use for the operations of
the enterprise, typically an OLTP system. See Online Transaction
processing (OLTP) system.

Optimistic locking: A locking strategy that assumes no conflict
will occur, processes a transaction, and then checks to determine
whether conflict did occur. If so, the transaction is aborted. See also
deadlock and pessimistic locking.

Outer join: A join in which all the rows of a table appear in the result-
ing relation, regardless of whether they have a match in the join con-
dition. In a left outer join, all the rows in the left-hand relation appear;
in a right outer join, all the rows in the right-hand relation appear.

Parent: A row, record, or node on the one side of a one-to-many
relationship. See also child.

Parent mandatory and child mandatory (M-M): A relationship
where the minimum cardinality of the parent is 1 and the minimum
cardinality of the child is 1.

Parent mandatory and child optional (M-O): A relationship where
the minimum cardinality of the parent is 1 and the minimum cardi-
nality of the child is 0.

Parent optional and child mandatory (O-M): A relationship where
the minimum cardinality of the parent is 0 and the minimum cardi-
nality of the child is 1.

Parent optional and child optional (O-O): A relationship where the
minimum cardinality of the parent is 0 and the minimum cardinal-
ity of the child is 0.

Partitioned database: A database in which portions of the database
are distributed to two or more computers.

Personal database system: A DBMS product intended for use
by an individual or small workgroup. Such products typically
include application development tools such as form and report
generators in addition to the DBMS. For example, Microsoft
Access 2013.

Pessimistic locking: A locking strategy that prevents conflict by
placing locks before processing database read and write requests.
See also deadlock and optimistic locking.

Phantom read: A situation that occurs when a transaction reads
data it has previously read and then finds new rows that were in-
serted by a committed transaction.

PHP: See PHP: Hypertext Processor.
PHP: Hypertext Processor: A Web page scripting language used

to create dynamic Web pages. It now includes an object-oriented
programming component and PHP Data Objects (PDO).

Pig: A query language for nonrelational unstructured data stores
developed as part of the Apache Software Foundation’s Hadoop
project. See Hadoop Distributed File System (HDFS).

Primary key: A candidate key selected to be the key of a relation.

N:M: An abbreviation for a many-to-many relationship between the
rows of two tables.

Natural join: A join of a relation A having attribute A1 with relation
B having attribute B1, where A1 = B1. The joined relation, C, con-
tains either column A1 or B1 but not both.

NetBeans: A popular open-source integrated development
environment (IDE).

Nonidentifying relationship: In data modeling, a relationship be-
tween two entities such that one is not ID-dependent on the other.
See Identifying relationship.

Nonrepeatable reads: A situation that occurs when a transaction
reads data it has previously read and finds modifications or dele-
tions caused by a committed transaction.

Nonunique identifier: An identifier that determines a group of en-
tity instances. See also unique identifier.

Nonunique key: A key that potentially identifies more than one row.

Normal form: A rule or set of rules governing the allowed structure of
relations. The rules apply to attributes, functional dependencies, mul-
tivalued dependencies, domains, and constraints. The most important
normal forms are 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, and DK/NF.

Normalization process: The process of evaluating a relation to de-
termine whether it is in a specified normal form and, if necessary, of
converting it to relations in that specified normal form.

Null value: An attribute value that has never been supplied. Such
values are ambiguous and can mean the value is unknown, the
value is not appropriate, or the value is known to be blank.

Object persistence: The storage of object data values.

Object-oriented DBMS (OODBMS): A type of DBMS that pro-
vides object persistence. OODBMSs have not received commercial
acceptance.

Object-oriented programming (OOP): A programming methodol-
ogy that defines objects and the interactions between them to cre-
ate application programs.

Object-relational database: A database created by a DBMS that
provides a relational model interface as well as structures for object
persistence. Oracle Database is the leading object-relational DBMS.

ODBC conformance level: In ODBC, definitions of the features
and functions that are made available through the driver’s applica-
tion program interface (API). A driver API is a set of functions that
the application can call to receive services. There are three confor-
mance levels: Core API, Level 1 API, and Level 2 API.

ODBC data source: In the ODBC standard, a database and its as-
sociated DBMS, operating system, and network platform.

ODBC Data Source Administrator: The application used to create
ODBC data sources.

ODBC Driver: In ODBC, a program that serves as an interface be-
tween the ODBC driver manager and a particular DBMS product.
Runs on the client machines in a client-server architecture.

ODBC Driver Manager: In ODBC, a program that serves as an
interface between an application program and an ODBC driver. It
determines the required driver, loads it into memory, and coordi-
nates activity between the application and the driver. On Windows
systems, it is provided by Microsoft.

OLAP cube: In OLAP, a set of measures and dimensions arranged,
normally, in the format of a table.

OLAP report: The output of an OLAP analysis in tabular format. For
example, this can be a Microsoft Excel PivotTable. See OLAP Cube.

OLE DB: The COM-based foundation of data access in the
Microsoft world. OLE DB objects support the OLE object stan-
dard. ADO is based on OLE DB.

500 Glossary

Resource locking: See lock.

RFM analysis: A type of reporting system in which customers are
classified according to how recently (R), how frequently (F), and
how much money (M) they spend on their orders.

Rollback: A process that involves recovering a database in which
before-images are applied to the database to return to an ear-
lier checkpoint or other point at which the database is logically
consistent.

Rollforward: A process that involves recovering a database by apply-
ing after-images to a saved copy of the database to bring it to a check-
point or other point at which the database is logically consistent.

Row: A group of columns in a table. All the columns in a row per-
tain to the same entity. Also known as tuple or record.

Schema-valid document: An XML document that conforms to
XML Schema.

Scrollable cursor: A cursor type that enables forward and backward
movement through a recordset. Three scrollable cursor types dis-
cussed in this text are snapshot, keyset, and dynamic.

Second normal form (2NF): A relation in first normal form in
which all non-key attributes are dependent on all the keys.

Serializable isolation level: A level of transaction isolation that dis-
allows dirty reads, nonrepeatable reads, and phantom reads.

Shared lock: A lock against a data resource in which only one trans-
action can update the data but many transactions can concurrently
read those data.

SQL: See Structured Query Language (SQL).

SQL AND operator: The SQL operator used to combine condi-
tions in an SQL WHERE clause.

SQL built-in function: In SQL, any of the functions COUNT,
SUM, AVG, MAX, or MIN.

SQL CREATE TABLE statement: The SQL command used to
create a database table.

SQL CREATE VIEW statement: The SQL command used to cre-
ate a database view.

SQL FROM clause: The part of an SQL SELECT statement that spec-
ifies conditions used to determine which tables are used in a query.

SQL GROUP BY clause: The part of an SQL SELECT statement
that specifies conditions for grouping rows when determining the
query results.

SQL HAVING clause: The part of an SQL SELECT statement
that specifies conditions used to determine which rows are in the
groupings in GROUP BY clause.

SQL OR operator: The SQL operator used to specify alternate
conditions in an SQL WHERE clause.

SQL ORDER BY clause: The part of an SQL SELECT statement
that specifies how the query results should be sorted when they are
displayed.

SQL percent sign (%) wildcard character: The standard SQL wild-
card character used to specify multiple characters. Microsoft Access
uses an asterisk (*) character instead of the underscore character.

SQL SELECT clause: The part of an SQL SELECT statement that
specifies which columns are in the query results.

SQL SELECT/FROM/WHERE framework: The basic structure of
an SQL query. See SQL SELECT clause, SQL FROM clause, SQL
WHERE clause, SQL ORDER BY clause, SQL GROUP BY clause,
SQL HAVING clause, SQL AND operator, and SQL OR operator.

SQL SELECT * statement: A variant of an SQL SELECT query
that returns all columns for all tables in the query.

SQL SELECT. . .FOR XML statement: A variant of an SQL
SELECT query that returns the query results in XML format.

Processing rights and responsibilities: Organizational policies re-
garding which groups can take which actions on specified data
items or other collections of data.

Properties: Same as attributes.

Query by Example (QBE): A style of query interface, first devel-
oped by IBM but now used by other vendors, that enables users
to express queries by providing examples of the results they seek.

Question mark (?) wildcard character: A character used in
Microsoft Access 2013 queries to represent a single unspecified
character. See SQL underscore (_) wildcard character.

Read committed isolation: A level of transaction isolation that pro-
hibits dirty reads but allows nonrepeatable reads and phantom reads.

Read uncommitted isolation: A level of transaction isolation that al-
lows dirty reads, nonrepeatable reads, and phantom reads to occur.

Record: (1) A group of fields pertaining to the same entity; used in
file-processing systems. (2) In the relational model, a synonym for
row and tuple. See also row.

Recovery via reprocessing: Recovering a database by restoring the last
full backup, and then recreating each transaction since the backup.

Recovery via rollback/rollforward: Recovering a database by restoring
the last full backup, and then using data stored in a transaction log
to modify the database as needed by either adding transactions (roll
forward) or removing erroneous transactions (rollback).

Recursive relationship: A relationship among entities, objects, or
rows of the same type. For example, if CUSTOMERs refer other
CUSTOMERs, the relationship is recursive.

Referential integrity constraint: A relationship constraint on for-
eign key values. A referential integrity constraint specifies that the
values of a foreign key must be a proper subset of the values of the
primary key to which it refers.

Relation: A two-dimensional array that contains single-value entries
and no duplicate rows. The meaning of the columns is the same in
every row. The order of the rows and columns is immaterial.

Relational model: A data model in which data are stored in relations
and relationships between rows are represented by data values.

Relational database: A database that consists of relations. In practice,
relational databases contain relations with duplicate rows. Most
DBMS products include a feature that removes duplicate rows when
necessary and appropriate. Such removal is not done as a matter of
course because it can be time-consuming and expensive.

Relational schema: A set of relations with referential integrity
constraints.

Relationship: An association between two entities, objects, or rows
of relations.

Relationship cardinality constraint: A constraint on the number of
rows that can participate in a relationship. Minimum cardinality
constraints determine the number of rows that must participate;
maximum cardinality constraints specify the largest number of
rows that can participate.

Relationship class: An association between entity classes.

Relationship instance: (1) An association between entity instances,
(2) a specific relationship between two tables in a database.

Repeatable reads isolation: A level of transaction isolation that disal-
lows dirty reads and nonrepeatable reads. Phantom reads can occur.

Replicated database: A database in which portions of the database
are copied to two or more computers.

Report: A formatted set of information created to meet a user’s need.

Reporting systems: Business intelligence (BI) systems that process
data by filtering, sorting, and making simple calculations. OLAP is
a type of reporting system.

Glossary 501

none of them are. (2) In the business world, the record of an event.
See also ACID transaction and atomic transaction.

Transaction isolation level: The degree to which a database trans-
action is protected from actions by other transactions. The 1992
SQL standard specifies four isolation levels: read uncommitted,
read committed, repeatable read, and serializable.

Transaction-level consistency: A situation in which all rows af-
fected by any of the SQL statements in a transaction are protected
from changes during the entire transaction. This level of consis-
tency is expensive to enforce and is likely to reduce throughput. It
might also prevent a transaction from seeing its own changes. See
also statement-level consistency.

Transactional system: A database dedicated to processing transac-
tions such as product sales and orders. It is designed to make sure
that only complete transactions are recorded in the database.

Transitive dependency: In a relation having at least three attributes,
such as R (A, B, C), the situation in which A determines B and B
determines C, but B does not determine A.

Trigger: A special type of stored procedure that is invoked by the
DBMS when a specified condition occurs. BEFORE triggers are
executed before a specified database action, AFTER triggers are ex-
ecuted after a specified database action, and INSTEAD OF triggers
are executed in place of a specified database action. INSTEAD OF
triggers are normally used to update data in SQL views.

Tuple: See row.

Two-phase locking: A procedure in which locks are obtained and
released in two phases. During the growing phase, the locks are
obtained; during the shrinking phase, the locks are released. After
a lock is released, no other lock will be granted that transaction.
Such a procedure ensures consistency in database updates in a
concurrent-processing environment.

Two-tier architecture: A Web database processing architecture in
which the DBMS and the Web server reside on the same computer.

UML: See Unified Modeling Language (UML).

Unified Modeling Language (UML): A set of structures and tech-
niques for modeling and designing object-oriented programs and
applications. UML is a methodology and a set of tools for such
development. UML incorporates the entity-relationship model for
data modeling.

Unique identifier: An identifier that determines exactly one entity
instance. See also nonunique identifier.

Unique key: A key that identifies a unique row.

User: A person using an application.

User data source: An ODBC data source that is available only to
the user who created it.

User group: A group of users. See user.
WAMP: AMP running on a Windows operating system. See

AMP.

Weak entity: In the entity-relationship model, an entity whose
logical existence in a database depends on the existence of another
entity. See also ID-dependent entity and strong entity.

Web Services: A set of XML standards that enable applications to
consume each other’s services using Internet technology.

World Wide Web Consortium (W3C): The group that creates,
maintains, revises, and publishes standards for the World Wide
Web including HTML, XML, and XHMTL.

wwwroot folder: The root folder or directory of a Web site on a
Microsoft IIS Web server.

XHTML: The Extensible Hypertext Markup Language. A
reformulation of HTML to XML standards of well-formed
documents.

SQL underscore (_) wildcard character: The standard SQL wildcard
character used to specify a single character. Microsoft Access uses a
question mark (?) character instead of the underscore character.

SQL view: A relation that is constructed from a single SQL SELECT
statement. SQL views have at most one multivalued path. The term
view in most DBMS products, including Microsoft Access, SQL
Server, Oracle Database, and MySQL, means SQL view.

SQL WHERE clause: The part of an SQL SELECT statement that
specifies conditions used to determine which rows are in the query
results.

Star schema: In a dimensional database and as used in an OLAP da-
tabase, the structure of a central fact table linked to dimension tables.

Statement-level consistency: A situation in which all rows affected
by a single SQL statement are protected from changes made
by other users during the execution of the statement. See also
transaction-level consistency.

Static cursor: A cursor that takes a snapshot of a relation and pro-
cesses that snapshot.

Stored procedure: A collection of SQL statements stored as a file
that can be invoked by a single command. Usually, DBMS products
provide a language for creating stored procedures that augments
SQL with programming language constructs. Oracle provides PL/
SQL for this purpose, and SQL Server provides Transact-SQL
(T-SQL). With some products, stored procedures can be written
in a standard language such as Java. Stored procedures are often
stored within the database.

Strong entity: In the entity-relationship model, any entity whose
existence in the database does not depend on the existence of any
other entity. See also ID-dependent entity and weak entity.

Structured Query Language (SQL): A language for defining the
structure and processing of a relational database. It can be used as
a stand-alone query language, or it can be embedded in applica-
tion programs. SQL was developed by IBM and is accepted as a
national standard by the American National Standards Institute.

Subquery: A SELECT statement that appears in the WHERE clause
of an SQL statement. Subqueries can be nested within each other.

Subtype entity: In generalization hierarchies, an entity or object that
is a subspecies or subcategory of a higher-level type, called a su-
pertype. For example, ENGINEER is a subtype of EMPLOYEE.

Surrogate key: A unique, system-supplied identifier used as the
primary key of a relation. The values of a surrogate key have no
meaning to the users and usually are hidden on forms and reports.

SUM: In SQL, a function that adds up a set of numbers. See SQL
built-in functions.

Supertype entity: In generalization hierarchies, an entity or object
that logically contains subtypes. For example, EMPLOYEE is a
supertype of ENGINEER, ACCOUNTANT, and MANAGER.

Table: A database structure of rows and columns to create cells that
hold data values. Also known as a relation in a relational database,
although strictly only tables that meet specific conditions can be
called relations. See relation.

Ternary relationship: A relationship between three entities.

Third normal form (3NF): A relation in second normal form that
has no transitive dependencies.

Three-tier architecture: A Web database processing architecture
in which the DBMS and the Web server reside on separate
computers.

Time dimension: A required dimension table in a dimensional data-
base. The time dimension allows the data to be analyzed over time.

Transaction: (1) A group of actions that is performed on the data-
base atomically; either all actions are committed to the database or

This page intentionally left blank

ID, 9–10
properties of, 290, 311–313
reading from single tables, 144–151
row selector, 39
tab key to move from one column to

another, 44
Comparison operators, 151, 152
Component design stage, 245, 287
Composite identifiers, 249
Composite key, 66
Concurrency, 16
Concurrency control

atomic transactions and, 338, 339
deadlock and, 342
function of, 338
lost updates and, 340–341
optimistic vs. pessimistic locking and,

342–344
resource locking and, 341–342
serializable transactions and, 342
transaction processing and, 339–340

Concurrent transactions, 339–340
Concurrent update problem, 341
Conformed dimension, 458
Consistent, 346, 347
Consistent transactions, 346–347
CONSTRAINT keyword, 134
COUNT, 156
Create command tab, 47, 48, 183
CREATE TABLE statement, 138
Crow’s foot symbol, 253, 254
Cursors, 348–349
CUSTOMER entity, 291–293
Customer relationship management (CRM)

system
example of, 25–53
explanation of, 25

D
Data

deleting, 178–179
inserted into tables, 40–45, 47, 203–206
Microsoft Access SQL to insert, 202–206
modified in tables, 45, 176–182
problems when reading from database,

347–348
Data administration, 335
Database administration

administrative responsibilities for, 361
concurrency control in, 338–344
control, security and reliability in, 336–338
cursor types and, 348–350
database backup and recovery in,

357–360
database security and, 350–357

B
Backup. See Database backup and recovery
Banded form editors, 276, 277
Banded report editors, 277
Before-images, 358
BETWEEN keyword, 151
Big Data

explanation of, 445–446
Not only SQL movement and, 466–467
storage capacity terms and, 446

Bigtable (Google), 467
Binary relationships

cardinality and, 251–252
explanation of, 250
types of, 250–251

Boyce-Codd Normal Form (BCNF), 79, 88,
291

Built-in-functions. See SQL built-in functions
Business intelligence (BI) systems

explanation of, 447
operational systems vs., 447, 448
using Microsoft Access, 471–483

Business rule, 124, 125, 136, 137

C
CA ERwin Data Modeler, 255
Calculations, SQL built-in functions and,

156–159
Candidate key

explanation of, 66
functional dependency and, 77–78

Cardinality
binary relationships and, 251–252
explanation of, 251
maximum, 251, 252
minimum, 251–252

CASCADE keyword, 135
Cassandra (Apache Software Foundation),

467
Certificate, digital, 376, 380–381
Character (data type), 33
CHECK constraint, 180–182, 202
Checkpoints, 359
Child, 299
Child entity, 251, 299
Click-stream data, 451
Client/server application processing, 394–395
Close button, 31
Codd, Edgar Frank, 62, 88
Column families, 468
Column family databases, 467–469
Columns

adjusting width of, 44
column family database and, 467–469
explanation of, 63

Symbols
.NET, 397
<?php, 410
?>, 410

A
Access Workbench. See also Microsoft

Access 2013
business intelligence systems using,

471–483
database administration in, 361–381
explanation of, 19, 25
Microsoft Access QBE, 187–191
multiple tables and, 89–105
queries in, 182–210
relationships in, 318–324
steps to get started, 25–53
Web database processing using, 426–434

ACID transaction, 346
Active Data Objects (ADO), 397
Active Server Pages, 397
ActiveX controls, 363
ADO.NET, 397
After-images, 358
Allow Zero Length, 37n
Alternate key, 67
ALTER TABLE statement, 181
Amazon.com, 446
American National Standards Institute

(ANSI), SQL standards, 119
AMP, 397
AND keyword, 148
Apache, 397
Apache Software Foundation, 467
Application Programming Interface (API),

396–397
ASC keyword, 155
AS keyword, 157
ASP.NET, 397
Association entities

example of, 305
explanation of, 259–260

Association relationship, 305
Associative entities

example of, 305
explanation of, 259–260

Asterisk (*), 148, 153, 154
Asymmetric cryptography, 376
Atomic transaction, 346
Attributes, 65, 248
Authentication, 350
Authorization, 350
AUTO_INCREMENT, 70, 71, 143
AutoNumber (data type), 33, 35
AVG, 156

Index

503

504 Index

Database schema, 65
Database security

application-level, 356–357
DBMS, 350, 352, 355–356
function of, 350
in Microsoft Access, 361–381
overview of, 336–338
user accounts and, 351
user processing rights and responsibilities

and, 351–354
Database servers, 20
Database tables. See Relational database

tables
Database tools command tab, 99, 100
Data constraints, 290
Data control language (DCL), 120
Data definition language (DDL)

explanation of, 120
foreign keys with table constraints and,

135–137
primary keys with table constraints and,

134–135
SQL for, 126–139
submitting SQL to DBMS and, 137–139
table constraint modification and deletion

and, 179–182
Data dimension, 452
Data entry form, 17, 40
Data Integrity warning dialog box, 203
Data manipulation language (DML)

data modification and deletion and,
176–179

explanation of, 120
inserting data and, 139–143
multiple table queries and, 161–176
single table queries and, 143–161

Data marts, 451
Data mining applications, 448, 449
Data models

entities and, 248
explanation of, 245, 247, 288
N:M relationship in, 303–304
prototyping and, 270–278
transformed into database design,

288–289, 303–304
Datasheet

explanation of, 40
rows in, 46–47

Datasheet view
deleting rows in tables in, 46–47
explanation of, 40
inserting data into tables in,

40–45
modifying data in tables in, 45

Data source, 398
Data source name (DSN), 399
Data sublanguage, SQL as, 119
Data Type Field Size property, 37, 38
Data types

for DBMS products, 129–133
explanation of, 290
in Microsoft Access, 33, 34

Data warehouse metadata database, 450

Data warehouses
components of, 449–450
data marts vs., 451
explanation of, 449

DBA, 336, 361. See also Database
administrator

DBMS. See Database management system
(DBMS)

Deadlock, 342
Deadly embrace, 342
DEFAULT keyword, 127, 128
Default value, 290
Default Web Site folder, 403
Degree, 250
Deletion Warning Dialog Box, 46
Denormalization, 293–294
DESC keyword, 155
Design stage, 245
Design view

explanation of, 40, 42, 48
opening Access query window in, 182–183

Determinant, 76
Digital certificate, 376, 380–381
Digital signature, 376
Digital signature scheme, 376
Dimensional databases

explanation of, 452
fact tables and conformed dimensions and,

456, 458
OLAP and, 459
star schema and, 452–456

Dimension tables, 452, 456
Dirty read, 347–349, 382
Discriminator, 260
DISTINCT keyword, 147
Distributed databases

challenges of, 465–466
explanation of, 463–464
types of, 464–465

Distributed two-phase locking, 465
Document type definitions (DTD), 406
Domain/key normal form (DK/NF), 89
Drill down, 462
Driver, 398
Durable transaction, 346
Dynamic cursor, 349

E
Edit relationships dialog box, 99, 101
Enable content button, 362, 363
Encryption

in Microsoft Access database, 371–373
passwords and, 369–370

Enforce Referential Integrity check box, 98,
100, 321

Enterprise-class database systems
explanation of, 19
personal vs., 19–24

Enterprise data warehouse (EDW) architec-
ture, 451

Entities
associative, 259–260, 305
explanation of, 63, 247–248

explanation of, 335
functions of, 337–338
in Microsoft Access, 361–381
overview of, 335–336
SQL transaction control language and de-

claring lock characteristics for,
344–348

Database administrator, 336
Database application programs

explanation of, 14
functions of, 16–19

Database backup and recovery
function of, 357
recovery via rollback and rollforward and,

358–360
recovery vs. reprocessing and, 357–358

Database design
data models transformed into, 288–289,

303
enforcing referential integrity, 72, 73
entities in relational model and, 289–296
example of, 310–317
explanation of, 245–246, 288
purpose of, 288
relationships in, 297–310
stages of, 288

Database development process
explanation of, 245
requirements analysis stage of, 246–247
stages in, 245–246

Database management system (DBMS)
database in, 14–15
data types and, 129–133
explanation of, 14, 25
No SQL, 466–467
personal vs. enterprise-class, 19–24
purpose of, 15–16
security and, 350, 352, 355–356 (See also

Database security)
SQL and, 126, 137–139

Database owner (dbo), 68
Database processing applications. See also

Web application database processing
client/server and traditional, 394–395
in Microsoft Access, 426–434
overview of, 393
queries, forms and reports and, 393–394
SQL/PSM, 395–396
Web, 396–423
XML and, 424–426

Databases
column family, 467–469
components of, 14, 24
dimensional, 452–458
distributed, 463–466
explanation of, 14–15
nonrelational, 24
NoSQL, 24, 466–467
object-relational, 466
prototype, 270
SQL and inserting data into, 139–143
use of, 3, 4, 16

Database administration (Continued)

Index 505

inetpub folder, 403
Information Engineering (IE), 253
IN keyword, 150, 151
Inner joins, 170–175
Insert, 7
Integrated Definition1, Extended (IDEFIX),

253
Integrated Development Environment (IDE),

409
International Organization for

Standardization (ISO), 119
Internet Information Services (IIS),

402–404
Internet Information Services Manager,

403
Intersection table, 301–302
IS-A relationships, 261
Is identity setting, 68, 71
IS NOT NULL phrase, 154
IS NULL keyword, 154
Isolation levels, 347–348, 350, 382
ITEM entity, 289–291

J
Java Server Pages (JSP), 397
JOIN ON syntax, 168–170
Join operation, 163
Joins

inner and outer, 170–175
querying multiple tables with, 163–167
SQL join syntax and, 168–169

K
Keys

candidate, 66, 77–78
composite, 66
explanation of, 33, 66
foreign, 71–74
identifiers vs, 249
nonunique, 66, 67
primary, 33, 39, 40, 66–70, 77–78
surrogate, 35, 70–71
unique, 66

Keyset cursor, 349
Keyspace, 469
Key symbol, 40, 67
Key-Value, 467

L
LAMP, 397
LEFT keyword, 174
LIKE keyword, 151–153
Lists

function of, 4
problems with, 4–6

Lock granularity, 342
Locking/locks

exclusive, 342
explicit, 341
implicit, 341
optimistic vs. pessimistic, 342–344

Form Wizard, 47, 48
Forward-only cursor, 348
Fourth normal form (4NF), 86–88
Functional dependencies

explanation of, 76–77
multivalued dependencies and, 86–87
normalization and, 78–79
normalization examples and, 81–86
normalization process and, 79–81
primary and candidate keys and, 77–78
relational design and, 79

Functionally dependent, 76, 77

G
Graphical user interface (GUI), 120
Graphs, 467
GROUP BY clause, 159–160
Grouping, SQL built-in functions and,

159–161

H
Hadoop Distributed File System (HDFS),

469–470
HAS-A relationship, 252
HAVING clause, 160
HBase, 469
HTML. See Hypertext Markup Language

(HTML)
HTML5, 119, 405
http://localhost, 404
Hypertext Markup Language (HTML)

document tags, 404
explanation of, 404
index.html and, 405–408
syntax rules, 404
Web pages and, 404–405
XML vs., 424

I
IBM Corporation, 119
ID column, 9–10
ID-dependent entities, 255–257
Identifiers

composite, 249
explanation of, 248–249
keys vs., 249
nonunique, 249

Identifying relationship, 256
Identity, 68, 71
Identity increment, 68, 71
IDENTITY (M,N) property, 135
Identity seed, 68, 71
IE Crow’s Foot model, 253–255
iisstart.hml, 403
Implementation stage, 246
Implicit locks, 341
Inclusive subtypes, 261
Inconsistent read problem, 341
Indexed field property, 199, 201–202,

322
index.html, 119, 405–407

ID-dependent, 255–257
represented with relational model,

288–296
strong, 255, 297–303
subtype, 260–261
weak, 255, 257–259, 295–296, 310

Entity class, 247
Entity instance, 248
Entity-relationship (E-R) diagrams

example of, 262–270
explanation of, 252

Entity-relationship (E-R) model
associative entities and, 259–260
attributes in, 248
entities in, 247–248
explanation of, 246, 247, 252
extended, 246
ID-dependent entities and, 255–257
identifiers in, 248–249
IE Crow’s foot E-R model and, 253–255
non-ID-dependent entities in, 257–259
recursive relationships and, 261
relationships in, 249–252
subtype entities and, 260–261
variations of, 252–253
variations of E-R model and, 252–253
weak entities and, 255

E-R diagrams. See Entity-relationship (E-R)
diagrams

E-R model. See Entity-relationship (E-R)
model

Exclusive lock, 342
Exclusive subtypes, 261
Explicit locks, 341
Extended entity-relationship (E-R) model,

246
Extensible Markup Language (XML)

database processing and, 424–425
explanation of, 119, 405, 424
HTML vs., 424
importance of, 424
as markup language, 424
Web Services, 425–426

Extract, transform, and load (ETL) system,
449

F
Facebook, 467
Fact tables, 452, 456, 458
Field, 65
Fifth normal form (5NF), 89
File data source, 398
Files, 65
First normal form (1NF), 79, 88
FOREIGN KEY constraint, 127
Foreign keys

explanation of, 71–72
referential integrity and, 72–74
table constraints and, 135–137

Forms
in database processing, 393–394
explanation of, 47

506 Index

working with multiple tables in, 96–98
working with queries in, 182–210

Microsoft Access ANSI-89, 124–128, 137,
139, 153–154, 158, 169–170, 175

Microsoft Access ANSI SQL-92, 126
Microsoft Access database tables, method to

create, 33, 35
Microsoft Access QBE query, 187
Microsoft Access SQL. See also SQL

(Structured Query Language)
data inserted with, 202–206
referential integrity constraints and,

195–197, 207–209
tables created with, 194–197

Microsoft Excel
OLAP reports and, 474–480
PivotTable, 459, 474–480
SQL query and, 459–463

Microsoft Office Fluent user interface
explanation of, 29
use of, 29–31

Microsoft SQL Server 2014
example of, 336, 337
explanation of, 21, 126
Express Edition, 21
primary key in, 68
table creation and, 138

Microsoft SQL Server Management Studio,
21, 140

MIN, 156
Minimum cardinality, 251–252
Mixed entity pattern, 306
Modification actions, 7
Modification problems

examples of, 5–6, 90–95
explanation of, 4
relational model used to solve, 6–11

Multiple-tier driver, 398
Multivalued dependency

examples of, 86, 87
explanation of, 86, 88

MySQL 5.6, 139
MySQL Workbench

explanation of, 22, 255
query results in, 144, 146
working with, 137, 138

N
Navigation Pane

collapsed, 42, 43
explanation of, 29–31

Navigation Pane drop-down list, 30
Navigation Pane drop-down list button, 30
NetBeans IDE, 409
N:M relationships

in data model, 303–304
explanation of, 301–303
in Microsoft Access, 318
recursive relationships and, 306–310

NO ACTION keyword, 135, 137
Non-ID-dependent weak entities,

257–259
Nonidentifying relationship, 256
Nonrelational database, 24

Nonrelational tables, 63–64
Nonrepeatable read, 347–348, 382
Nontrusted locations, 33. See also Trusted

locations
Nonunique identifiers, 249
Nonunique keys, 66
Normal forms, 88–89
Normalization

examples to illustrate, 81–86
explanation of, 78–81
verification of, 290–291, 310–311

Normalization problems, 88, 291
NoSQL, 466–467, 470
NoSQL database, 24
NOT IN phrase, 150, 151
NOT keyword, 150, 153
NOT LIKE phrase, 153
NOT NULL constraint, 127
Not only SQL, 466–467, 470
NULL constraint, 127
NULL status, 290
Null values

explanation of, 5, 74
problems related to, 74–76
SQL and, 141

Number (data type), 33
Numeric (data type), 33

O
Object, 29
Object-oriented DBMS (OODBMS), 466
Object-oriented programming (OOP), 466
Object persistence, 466
Object-relational databases, 466
Objects, 466
ODBC. See Open Database Connectivity

(ODBC)
ODBC architecture, 398
ODBC Data Source Administrator, 399
ODBC DBMS driver manager, 398
ODBC driver manager, 398
OLAP, 458–459
OLAP cube. See OLAP reports
OLAP reports

creating basic, 475–477
creating Microsoft Excel Workbook for,

474–475
creating view query for, 471–474
explanation of, 458
method to generate, 459–462
method to modify, 481–482
method to structure, 477–480
order of dimensions in, 462, 463

OLE DB, 397
ON DELETE phrase, 136, 137
1:N relationships

explanation of, 299–301, 305
recursive relationships and, 306–309

1:1 relationships
explanation of, 297–299, 305
in Microsoft Access, 299–301, 318
recursive relationships and, 306–309

Online Analytical Processing (OLAP), 446,
448–449, 458. See also OLAP reports

resource, 341–342
shared, 342
two-phase, 342

Log, 358
Logical unit of work (LUW), 338
Long text (data type), 33
Lost update problem, 340–341

M
Mandatory relationship, 252
MapReduce, 469
Markup language. See Extensible Markup

Language (XML); Hypertext Markup
Language (HTML)

Martin, James, 253
MAX, 156
Maximum cardinality, 251, 252
Measures, 453
Memo (data type), 33
Metadata, 14
Methods, 466
Microsoft Access 2013. See also Access

Workbench
Allow Zero Length, 37n
banded form editors and banded report

editors, 276–278
business intelligence (BI) system using,

471–483 (See also OLAP reports)
closing database and exiting, 31, 53, 93–94,

105, 209–210, 278
creating database table, 33–40
creating relationships between tables,

98–101
creating report to include data from two

tables, 103–105
database administration in, 361–381
database creation, 25–29
Datasheet view in, 40–47
data types, 33, 34
deleting rows in tables, 46–47
Deletion Warning, 46
encryption in, 371–373
Enforce Referential Integrity check box,

98, 100
in Exclusive Mode, 370
function of, 19, 25
inserting data into tables, 40–45, 47–49
Microsoft Office Fluent user interface,

29–31
modification problems, 90–96
modifying data and deleting records, 49–53
modifying data in tables, 45
opening database, 32–33, 90–93, 374, 376
options object designers page, 125
primary key in, 67
prototyping using, 270–278
referential integrity constraints and, 72, 73
relationships in, 318–324
signed package, 376–379
SQL and, 19, 133
switchboards, 278
use of form to include two tables, 102–103
Visual Basic for Applications (VBA), 373

Locking/locks (Continued)

Index 507

primary and candidate keys and, 77–78
principles of, 79

Relational database tables
SQL to process, 12–13
use of, 6

Relational design
for art course enrollments, 9–10
for parts and prices, 10–11
for SALES_COMMISSION entity,

294–295
for student with adviser and department

list, 7–9
for student with adviser list, 7
well-formed relations and, 79

Relational model
background of, 62
denormalization and, 293–294
representing entities with, 288–296
table construction and, 294–295
weak entities and, 295–296

Relations. See also Tables
characteristics of, 63
explanation of, 63, 65, 288
in first normal form, 79, 88
keys and, 66–74
normal forms and, 88–89
null values and, 74–76
relation structure of, 65
structure of, 65
terminology for, 65–66
two nonrelations and sample, 63–64
with variable-length column values, 64
well-formed, 79

Relationship class, 249
Relationship classes, 249
Relationship instances, 249
Relationships

binary, 250–252
example of, 311, 314
explanation of, 249–250
identifying, 256
IS-A, 261
mandatory, 252
N:M, 301–304, 306–310, 318
nonidentifying, 256
1:1, 297–299, 305–309, 318
1:N, 299–301, 305, 306–309
optional, 252
recursive, 261, 306–310
between strong entities, 297–303
with subtypes, 306
between tables, 98–102
ternary, 250
unary, 261
using weak entities, 304–306

Relationships window, 100–102
Remarks, 35
Repeatable reads isolation level, 348
Replication, 464
Reporting systems, 448–449
Reports

creation of, 51–53
in database processing, 393–394

Report Wizard, 49, 51
Reprocessing, recovery vs., 357–358

POST method, 418
PRIMARY KEY constraint, 127
Primary keys

explanation of, 33, 39, 66
functional dependency and, 77–78
in Microsoft Access 2013, 67
in Microsoft SQL Server 2014, 68
in Oracle Database Express Edition 11g

Release 2, 69
in Oracle MySQL 5.6, 69–70
setting, 39, 40
table constraints and, 134–135

Properties, 466
Prototype database

explanation of, 270–271
modified data model and, 273–276
original data model and, 271–272

Prototyping, in Microsoft Access 2013,
270–278

Public key, 376
Public-key cryptography, 376

Q
Queries. See also Structured Query Language

(SQL)
explanation of, 393–394
in Microsoft Access 2013, 182–210
multiple table, 161–176, 192
in mySQL Workbench, 144, 146
parameterized, 192–194
single table, 143–161
sorting results of, 154–156

Query by Example (QBE), 120, 187–191
Query Tools command, 184
Question mark (?), 153

R
RDBMS table, 467–469
Read committed isolation level, 348
Read uncommitted isolation level, 348
Recent file list, 32
Recent list, 32
Record navigation buttons, 49
Records, 65
Recovery

via reprocessing, 357–358
via rollback/rollforward, 357–360

Recursive relationships, 261, 306–310
Referential integrity

Access SQL to add, 207–209
enforcement of, 72, 73, 314–317
explanation of, 16, 72–74
foreign keys and, 72
tables and, 195–197

Related tables, 14
Relational algebra, 62
Relational database, 6
Relational database design

eliminating anomalies from multivaried
dependencies and, 86–87

functional dependencies and, 76–77
normalization and, 78–79
normalization examples and, 81–86
normalization process and, 79–81

Online transaction processing (OLTP)
systems, 447

ON UPDATE phrase, 135, 137
Open Database Connectivity (ODBC)

architecture, 398
creating data source and, 429–431
data source name, 398–402
explanation of, 397

Operational systems
business intelligence systems vs., 447, 448
explanation of, 447

Optimistic locking, 342–344
Optional relationship, 252
Oracle Big Data Appliance, 469
Oracle Database Express Edition 11g

Release 2
explanation of, 21–24
primary key in, 69
sequences in, 71
surrogate keys and, 143
table creation and, 138

Oracle MySQL 5.6, 69–70
Oracle MySQL 5.6 Community Server,

22–24
Oracle MySQL Workbench, 22
Oracle SQL Developer, 22
ORDER BY clause, 154
OR keyword, 149
Outer joins, 166–167

P
Parameterized queries, 192–194
Parent, 299
Parent entity, 251
Partitioning, 464
Passwords, strong, 369–370
Paste As dialog box, 193, 472
Percent sign (%), 151
Permissions, 350
Personal database system

enterprise-class vs., 19–24
explanation of, 19

Personal Hypertext Processor. See PHP:
Hypertext Processor

Pessimistic locking, 343–344
Phantom read, 347–348, 382
PHP, 407
PHP: Hypertext Processor

creating page and, 431–433
database connection and, 413–414
displaying results and, 414–415
explanation of, 407
Integrated Development Environment and,

409–412
recordset and, 414
running page in, 433
scripting language, 407, 409
symbols and, 413
table updates with, 415–420

PHP concatenation operator (.=), 420
PHP plugin, 409
Pig, 469
PivotTable

explanation of, 459
OLAP report and, 478–483

508 Index

SQL JOIN ON syntax, 168–169
SQL join operation, 163
SQL LEFT JOIN syntax, 173
SQL left outer join, 173
SQL MERGE statement, 178
SQL ON keyword, 169
SQL outer join, 171
SQL/Persistent stored modules (SQL/PSM),

120, 336–337, 395–396
SQL query

explanation of, 185, 186
OLAP reports and, 459–463

SQL REVOKE statement, 350
SQL RIGHT JOIN syntax, 173
SQL right outer join, 173
SQL ROLLBACK TRANSACTION state-

ment, 344, 345
SQL SELECT clause, 144
SQL SELECT/FROM/WHERE framework,

144
SQL Server Parallel Data Warehouse, 469
SQL (Structured Query Language). See also

Microsoft Access SQL
categories of, 120
database example of, 120–124
data definition and, 126–133
data modification and deletion and,

176–179
development of, 119
explanation of, 12, 21, 119–230
foreign keys with table constraints and,

135–137
inserting data and, 139–143
Microsoft Access and, 19
Microsoft Access ANSI-89 SQL and,

124–128, 137, 139, 153–154, 158,
169–170, 175

multiple table queries and, 161–175
primary keys with table constraints and,

134–135
for processing relational database tables,

12–13
single quotes and, 141
single table queries and, 143–161
submitted to DBMS, 137–140
table constraint modification and deletion

and, 179–181
table creation and, 126–139

SQL Transaction Control Language (TCL)
consistent transactions and, 346–347
lock characteristics and, 344–345
transaction isolation level and, 347–348

SQL TRUNCATE TABLE statement, 180
SQL UPDATA. . . SET statement, 176–178
SQL view, 182, 183, 185
SQL WHERE clause, 144
Star schema, 452–453
Statement-level consistency, 346
Static cursor, 348, 349
Stored procedures, 337, 395
Strong entities, 255, 297–303
Strong passwords, 369
Structured Query Language (SQL). See all

listings under SQL (Structured Query
Language)

Subqueries
explanation of, 162
querying multiple tables with, 161–163

Subtype entities, 260–261
SUM, 156
Super column family, 469
Super columns, 468
Supertype entity, 260
Surrogate key, 35, 70–71, 290
Switchboards, 278
Synonyms, 84
System data source, 398–399
System design stage, 245
Systems development life cycle (SDLC), 245,

287

T
Tab key, 44
Table Design button, 35
Tables. See also Relations

with anomalies, 88–89
creating database, 33, 35–39
creating relationships between, 98–102
deleting rows in, 46–47
dimension, 452, 456
explanation of, 6, 63, 65, 288
fact, 452, 456, 458
inserting data into, 40–45, 47
intersection, 301–302
Microsoft Access SQL to create, 194–197
modifying data in, 45
nonrelational, 63–64
processing relational, 11–13
reading specified columns and specified

rows from single, 149–151
reading specified columns from single,

144–147
reading specified rows from single,

147–149
related, 14
self-describing, 14
spreadsheets vs., 6
SQL and foreign keys with table con-

straints and, 135–137
SQL and multiple table queries and,

161–175
SQL and primary keys with table con-

straints and, 134–135
SQL and single table queries and, 143–161
SQL and table constraint modification and

deletion and, 179–181
SQL to create, 126–139
updates with PHP, 415–420
working with multiple, 96–98

Table Tools, 35, 36
Ternary relationships, 250
Text (data type), 33
Third normal form (3NF), 88
Three-tier architecture, 397
Tile, 26
Time dimension, 452
Transactional systems, 447
Transaction control language (TCL), 120
Transaction isolation level, 347–348

Required, 35
Required property, 37, 38
Requirements analysis

in database development process, 246–247
explanation of, 245

Resource locking, 341–342
RFM analysis, 458
RIGHT keyword, 174
Rollback, 358–360
Rollforward, 358–360
Rows

deleted in tables, 46–47
explanation of, 63
in Microsoft Access 2013, 39
specified in single table, 147–151

Row selector cell, 47
Row selector column, 39

S
Scrollable cursor, 348
Second normal form (2NF), 88
Security. See Database security
Security Warning bar, 32, 33, 362
Self-describing table, 14
SEQUENCE, 71
Serializable transactions, 342
Serialized isolation level, 348
Server cluster, 463
Shared lock, 342
Short text (data type), 33
Show Table dialog box, 184
Shutter Bar Open/Close button, 31, 42, 43,

45, 47, 186
Signed package, 376–379
Single-tier driver, 398
Slowly changing dimension, 452
Sort order, 52–53
Splash Screen, 26, 27
Spreadsheets, tables vs., 6
SQL ALTER TABLE statement, 180, 182
SQL asterisk (*) wild card operator, 148
SQL BEGIN TRANSACTION statement,

344, 345
SQL built-in functions

calculations and, 156–159
explanation of, 156
grouping and, 159–161

SQL comment, 140–141
SQL COMMITT TRANSACTION state-

ment, 344, 345
SQL comparison operators, 151, 152
SQL CREATE TABLE statement, 126–128
SQL Data Control Language (DCL), 350
SQL DELETE statement, 178
SQL DROP TABLE statement, 179
SQL equijoin, 171
SQL FOR XML clause, 425
SQL FROM clause, 144
SQL GRANT statement, 350
SQL injection attack, 423
SQL inner join, 171
SQL INNER JOIN syntax, 173
SQL INSERT statement, 140, 142–143
SQL JOIN keyword, 169

Index 509

Microsoft IIS and, 402–404
OBDC and, 398–402
PHP and, 407, 409–422
SQL injection attacks and, 423

Web home page, 427–429
Web Services, 425–426
Well-formed relation, 79
WHERE clause

data deletion and, 179
explanation of, 151
grouping and, 160–161
join and, 166–167
ranges, wildcards, and nulls in, 151–154

Wildcard characters, 151
World Wide Web Consortium (W3C), 405
World Wide Web (WWW), 393. See also

Web
wwwroot folder, 403

X
XHTML, 119, 405
XML. See Extensible Markup Language

(XML)
XML Web Services, 425–426

User account, 351
User data source, 399
User-defined functions, 336–337, 395
Users, 14

V
Validation Rule, 203
Values, null, 74–76
Visual Basic for Applications (VBA), 373

W
WAMP, 397
Weak entities

explanation of, 255
non-ID-dependent, 257–259
relationships using, 304–306
representing with relational model,

295–296, 310
Web, 393
Web 2.0, 24
Web application database processing

challenges for, 420, 423
function of, 393, 396–398
HTML Web pages and, 404–405

Transaction-level consistency, 346
Transactions

atomic, 338, 339, 346
concurrent, 339–340
consistent, 346–347
durable, 346
explanation of, 338
isolated, 346–348

Transitive dependency, 88
Triggers, 337, 395–396
Trusted locations, 365–369
Tuple, 65
Two-phase locking, 342
Two-tier architecture, 397
Type, 33

U
Unary relationships, 261
Underscore symbol (_), 151
Unified Modeling Language (UML), 253
UNIQUE constraint, 127, 128, 201
Unique identifiers, 249
Unique keys, 66, 67
Use cases, 246

	Cover
	Title Page
	Copyright Page
	Preface
	ACKNOWLEDGMENTS
	About the Authors
	Contents
	PART I: DATABASE FUNDAMENTALS
	1 Getting Started
	WHY USE A DATABASE?
	WHAT IS A DATABASE SYSTEM?
	WHAT IS A NOSQL DATABASE?
	THE ACCESS WORKBENCH: SECTION 1—GETTING STARTED WITH MICROSOFT ACCESS
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench Key Terms
	Access Workbench Exercises
	San Juan Sailboat Charters Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions (See Online Appendix D)
	The Queen Anne Curiosity Shop Project Questions

	2 The Relational Model
	RELATIONS
	TYPES OF KEYS
	THE PROBLEM OF NULL VALUES
	FUNCTIONAL DEPENDENCIES AND NORMALIZATION
	NORMAL FORMS: ONE STEP AT A TIME
	THE ACCESS WORKBENCH: SECTION 2—WORKING WITH MULTIPLE TABLES IN MICROSOFT ACCESS
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench Key Terms
	Access Workbench Exercises
	Regional Labs Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions (See Online Appendix D)
	The Queen Anne Curiosity Shop Project Questions

	3 Structured Query Language
	AN EXAMPLE DATABASE
	SQL FOR DATA DEFINITION (DDL)—CREATING TABLES AND RELATIONSHIPS
	SQL FOR DATA MANIPULATION (DML)—INSERTING DATA
	SQL FOR DATA MANIPULATION (DML)—SINGLE TABLE QUERIES
	SQL FOR DATA MANIPULATION (DML)— MULTIPLE TABLE QUERIES
	SQL FOR DATA MANIPULATION (DML)—DATA MODIFICATION AND DELETION
	SQL FOR DATA DEFINITION (DDL)—TABLE AND CONSTRAINT MODIFICATION AND DELETION
	SQL VIEWS
	THE ACCESS WORKBENCH: SECTION 3—WORKING WITH QUERIES IN MICROSOFT ACCESS
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench Key Terms
	Access Workbench Exercises
	Heather Sweeney Designs Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions (See Online Appendix D)
	The Queen Anne Curiosity Shop Project Questions

	PART II: DATABASE DESIGN
	4 Data Modeling and the Entity- Relationship Model
	REQUIREMENTS ANALYSIS
	THE ENTITY-RELATIONSHIP DATA MODEL
	ENTITY-RELATIONSHIP DIAGRAMS
	DEVELOPING AN EXAMPLE E-R DIAGRAM
	THE ACCESS WORKBENCH: SECTION 4— PROTOTYPING USING MICROSOFT ACCESS
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench Key Terms
	Access Workbench Exercises
	Highline University Mentor Program Case Questions
	Washington State Patrol Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions (See Online Appendix D)
	The Queen Anne Curiosity Shop Project Questions

	5 Database Design
	THE PURPOSE OF A DATABASE DESIGN
	TRANSFORMING A DATA MODEL INTO A DATABASE DESIGN
	REPRESENTING ENTITIES WITH THE RELATIONAL MODEL
	REPRESENTING RELATIONSHIPS
	DATABASE DESIGN AT HEATHER SWEENEY DESIGNS
	THE ACCESS WORKBENCH: SECTION 5— RELATIONSHIPS IN MICROSOFT ACCESS
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench Key Terms
	Access Workbench Exercises
	San Juan Sailboat Charters Case Questions
	Washington State Patrol Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions (See Online Appendix D)
	The Queen Anne Curiosity Shop Project Questions

	PART III: DATABASE MANAGEMENT
	6 Database Administration
	THE HEATHER SWEENEY DESIGNS DATABASE
	THE NEED FOR CONTROL, SECURITY, AND RELIABILITY
	CONCURRENCY CONTROL
	SQL TRANSACTION CONTROL LANGUAGE AND DECLARING LOCK CHARACTERISTICS
	CURSOR TYPES
	DATABASE SECURITY
	DATABASE BACKUP AND RECOVERY
	ADDITIONAL DBA RESPONSIBILITIES
	THE ACCESS WORKBENCH: SECTION 6— DATABASE ADMINISTRATION IN MICROSOFT ACCESS
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench Key Terms
	Access Workbench Exercises
	Marcia’s Dry Cleaning Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions (See Online Appendix D)
	The Queen Anne Curiosity Shop Project Questions

	7 Database Processing Applications
	THE DATABASE PROCESSING ENVIRONMENT
	WEB APPLICATION DATABASE PROCESSING
	DATABASE PROCESSING AND XML
	THE ACCESS WORKBENCH: SECTION 7—WEB DATABASE PROCESSING USING MICROSOFT ACCESS
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench Exercises
	Marcia’s Dry Cleaning Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions (See Online Appendix D)
	The Queen Anne Curiosity Shop Project Questions

	8 Big Data, Data Warehouses, and Business Intelligence Systems
	BUSINESS INTELLIGENCE SYSTEMS
	THE RELATIONSHIP BETWEEN OPERATIONAL AND BI SYSTEMS
	REPORTING SYSTEMS AND DATA MINING APPLICATIONS
	DATA WAREHOUSES AND DATA MARTS
	OLAP
	DISTRIBUTED DATABASE PROCESSING
	OBJECT-RELATIONAL DATABASES
	BIG DATA AND THE NOT ONLY SQL MOVEMENT
	THE ACCESS WORKBENCH: SECTION 8—BUSINESS INTELLIGENCE SYSTEMS USING MICROSOFT ACCESS
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench Exercises
	Marcia’s Dry Cleaning Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions (See Online Appendix D)
	The Queen Anne Curiosity Shop Project Questions

	ONLINE APPENDICES: SEE PAGE
	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

		2015-01-30T23:37:06+0000
	Preflight Ticket Signature

