atabase
oncepts

Seventh Edition

DAVID M. KROENKE
DAVID J. AUER

Database Concepts

This page intentionally left blank

David M. Kroenke

David J. Auer

Western Washington University

PEARSON

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editor in Chief: Stephanie Wall Senior Art Director: Janet Slowik

Acquisitions Editor: Nicole Sam Text Designer: Integra Software Services

Program Manager Team Lead: Ashley Santora Cover Designer: Integra

Program Manager: Denise Vaughn Cover Art: shibanuk/Fotolia

Editorial Assistant: Kaylee Rotella Full-Service Project Management: Integra
Executive Marketing Manager: Anne K. Fahlgren Composition: Integra

Project Manager Team Lead: Judy Leale Printer/Binder: Courier/Kendallville

Project Manager: Ilene Kahn Cover Printer: Lehigh-Phoenix Color/Hagerstown
Procurement Specialist: Michelle Klein Text Font: 10/12 Simoncini Garamond Std.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page
within text.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and
related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without
warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and
non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out
of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the
program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

MySQL®, the MySQL GUI Tools® (MySQL Query Browser® and MySQL Administrator®), the MySQL Command Line Client®, the
MySQL Workbench®, and the MySQL Connector/ODBC® are registered trademarks of Sun Microsystems, Inc./Oracle Corporation.
Screenshots and icons reprinted with permission of Oracle Corporation. This book is not sponsored or endorsed by or affiliated with Oracle
Corporation.

Express Edition 11g Release 2 2014 by Oracle Corporation. Reprinted with permission.

PHP is copyright The PHP Group 1999-2012, and is used under the terms of the PHP Public License v3.01 available at http://www.php.net/
license/3_01.txt. This book is not sponsored or endorsed by or affiliated with The PHP Group.

Copyright © 2015, 2013, 2011 by Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030. All rights reserved. Manufactured
in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 221 River Street, Hoboken, New Jersey 07030.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Kroenke, David M., 1948—
Database concepts / David M. Kroenke and David J. Auer.—7e.
pages cm
Includes index.
ISBN 978-0-13-354462-6 (student edition)—ISBN 978-0-13-354478-7 (instructor edition)
1. Database management. 2. Relational databases. 1. Auer, DavidJ. II. Title.
QA76.9.D3K736 2015
005.74—dc23
2014010915

10987654321

PEARSON ISBN 10: 0-13-354462-1
ISBN 13: 978-0-13-354462-6

http://www.php.net/license/3_01.txt
http://www.php.net/license/3_01.txt

PART | DATABASE FUNDAMENTALS 1

1 Getting Started 3
2 The Relational Model 62
3 Structured Query Language 119

PART Il DATABASE DESIGN 243

4 Data Modeling and the Entity-
Relationship Model 245

5 Database Design 287

PART 111 DATABASE MANAGEMENT 333

6 Database Administration 335

7 Database Processing
Applications 392

8 Big Data, Data Warehouses, and
Business Intelligence Systems 445

Glossary 495
Index 503

oo
—.
(q5)
ey
D
Q
|
—r
D
=5
m
? ‘

ONLINE APPENDICES: SEE PAGE 493
FOR INSTRUCTIONS

Appendix A: Getting Started with
Microsoft SQL Server
2014 Express Edition

Getting Started with

Oracle Database Express
Edition 11g Release 2

Appendix C: Getting Started with
MySQL 5.6 Community

Server

Appendix B:

Appendix D: James River Jewelry
Project Questions

SQL Views, SQL/PSM,
and Importing Data

Appendix E:

Appendix F: Getting Started in Systems

Analysis and Design

Appendix G: Getting Started with
Microsoft Visio 2013

Appendix H: The Access Workbench—
Section H—Microsoft
Access 2013 Switchboards

Appendix I: Getting Started with Web
Servers, PHP, and the
NetBeans IDE

Appendix J: Business Intelligence
Systems

Appendix K: Big Data

Vi

PART | DATABASE FUNDAMENTALS 1

1 Getting Started 3

WHY USE A DATABASE? 4

WHAT IS A DATABASE SYSTEM? 14

WHAT IS A NOSQL DATABASE? 24

THE ACCESS WORKBENCH SECTION 1—GETTING
STARTED WITH MICROSOFT ACCESS 25

Summary 54 e KeyTerms 55 e Review

Questions 55 e Exercises 56 e Access

Workbench Key Terms 57 o Access Workbench

Exercises 57 © SanJuan Sailboat Charters

Case Questions 59 e Garden Glory Project

Questions 60 e James River Jewelry Project

Questions (See Online Appendix D) 61 o The

Queen Anne Curiosity Shop Project Questions 61

The Relational Model 62

RELATIONS 63

TYPES OF KEYS 66

THE PROBLEM OF NULL VALUES 74

FUNCTIONAL DEPENDENCIES AND
NORMALIZATION 76

NORMAL FORMS: ONE STEP ATATIME 88

THE ACCESS WORKBENCH SECTION 2—WORKING
WITH MULTIPLE TABLES IN MICROSOFT
ACCESS 89

Summary 105 e HKeyTerms 106 e Review

Questions 106 e Exercises 108 e Access

Workbench Key Terms 110 e Access

Workbench Exercises 110 e Regional Labs

Case Questions 113 e Garden Glory Project

Questions 114 e James River Jewelry Project

Questions (See Online Appendix D) 116 e The

Queen Anne Curiosity Shop Project Questions 116

5 Structured Query Language 119

AN EXAMPLE DATABASE 120

SQL FOR DATA DEFINITION (DDL)—CREATING
TABLES AND RELATIONSHIPS 126

SQL FOR DATA MANIPULATION (DML)—INSERTING
DATA 139

SQL FOR DATA MANIPULATION (DML)—SINGLE
TABLE QUERIES 143

SQL FOR DATA MANIPULATION (DML)— MULTIPLE
TABLE QUERIES 161

SQL FOR DATA MANIPULATION (DML)—DATA
MODIFICATION AND DELETION 176

SQL FOR DATA DEFINITION (DDL)—TABLE
AND CONSTRAINT MODIFICATION AND
DELETION 179

SQL VIEWS 182

THE ACCESS WORKBENCH SECTION 3—WORKING
WITH QUERIES IN MICROSOFT ACCESS 182

Summary 211 o HKeyTerms 212 e Review

Questions 212 o Exercises 216 e Access

Workbench Key Terms 218 o Access Workbench

Exercises 218 o Heather Sweeney Designs

Case Questions 222 o Garden Glory Project

Questions 232 * James River Jewelry Project

Questions (See Online Appendix D) 235 o The

Queen Anne Curiosity Shop Project Questions 236

Contents Vii

PART Il DATABASE DESIGN 243 PART 111" DATABASE MANAGEMENT 333

4 Data Modeling and the Entity- 6 Database Administration 335

Relationship Model 245
REQUIREMENTS ANALYSIS 246
THE ENTITY-RELATIONSHIP DATA MODEL 247
ENTITY-RELATIONSHIP DIAGRAMS 252
DEVELOPING AN EXAMPLE E-R DIAGRAM 262
THE ACCESS WORKBENCH SECTION 4—
PROTOTYPING USING MICROSOFT
ACCESS 270
Summary 2719 e HKeyTerms 280 e Review
Questions 280 e Exercises 281 e Access
Workbench Key Terms 282 o Access Workbench
Exercises 282 e Highline University Mentor
Program Case Questions 282 e Washington
State Patrol Case Questions 284 o Garden
Glory Project Questions 285 e James
River Jewelry Project Questions (See Online
Appendix D) 286 e The Queen Anne Curiosity
Shop Project Questions 286

Database Design 287
THE PURPOSE OF A DATABASE DESIGN 288
TRANSFORMING A DATA MODEL INTO A DATABASE
DESIGN 288
REPRESENTING ENTITIES WITH THE RELATIONAL
MODEL 289
REPRESENTING RELATIONSHIPS 297
DATABASE DESIGN AT HEATHER SWEENEY
DESIGNS 310
THE ACCESS WORKBENCH SECTION 5—
RELATIONSHIPS IN MICROSOFT
ACCESS 318
Summary 324 o KeyTerms 325 e Review
Questions 325 e Exercises 326 e Access
Workbench Key Terms 327 ® Access Workbench
Exercises 327 e SanJuan Sailboat Charters
Case Questions 328 e Washington State Patrol
Case Questions 330 e Garden Glory Project
Questions 330 e James River Jewelry Project
Questions (See Online Appendix D) 330 e The
Queen Anne Curiosity Shop Project Questions 331

THE HEATHER SWEENEY DESIGNS
DATABASE 336

THE NEED FOR CONTROL, SECURITY, AND
RELIABILITY 336

CONCURRENCY CONTROL 338

SQL TRANSACTION CONTROL LANGUAGE AND
DECLARING LOCK CHARACTERISTICS 344

CURSOR TYPES 348

DATABASE SECURITY 350

DATABASE BACKUP AND RECOVERY 357

ADDITIONAL DBA RESPONSIBILITIES 361

THE ACCESS WORKBENCH SECTION 6—
DATABASE ADMINISTRATION IN MICROSOFT
ACCESS 361

Summary 381 e HKeylerms 383 e Review

Questions 383 o Exercises 385 e Access

Workbench Key Terms 386 o Access Workbench

Exercises 386 e Marcia’s Dry Cleaning

Case Questions 387 e Garden Glory Project

Questions 388 e James River Jewelry Project

Questions (See Online Appendix D) 389 e The

Queen Anne Curiosity Shop Project Questions 390

Database Processing
Applications 392
THE DATABASE PROCESSING
ENVIRONMENT 393
WEB APPLICATION DATABASE PROCESSING 396
DATABASE PROCESSING AND XML 424
THE ACCESS WORKBENCH SECTION 7—WEB
DATABASE PROCESSING USING MICROSOFT
ACCESS 426
Summary 435 e KeyTerms 436 e Review
Questions 436 o Exercises 438 o Access
Workbench Exercises 440 e Marcia’s Dry Cleaning
Case Questions 440 o Garden Glory Project
Questions 442 o James River Jewelry Project
Questions (See Online Appendix D) 443 e The
Queen Anne Curiosity Shop Project Questions 444

Viii Contents

8 Big Data, Data Warehouses, and
Business Intelligence Systems 445
BUSINESS INTELLIGENCE SYSTEMS 447
THE RELATIONSHIP BETWEEN OPERATIONAL

ONLINE APPENDICES: SEE PAGE 493
FOR INSTRUCTIONS

AND BI SYSTEMS 447 Appendix A: thting Started with
REPORTING SYSTEMS AND DATA MINING Microsoft SQL Server
APPLICATIONS 448 2014 Express Edition
DATA WAREHOUSES AND DATA MARTS 449 Appendix B: Getting Started with
OLAP 458 :
DISTRIBUTED DATABASE PROCESSING 463 Ofééle Database Express
OBJECT-RELATIONAL DATABASES 466 Edition 11g Release 2
BIGM%/%MAENNDTTHEA'\:S%T ONLY SQL Appendix C: Getting Started with
THE ACCESS WORKBENCH SECTION 8—BUSINESS ISVIYSQL 5.6 Community
INTELLIGENCE SYSTEMS USING MICROSOFT ShEr
ACCESS 471 Appendix D: James River Jewelry

Summary 484 e HKeyTerms 485 e Review

, / Project Questions
Questions 485 e Exercises 487 o Access

Workbench Exercises 488 e Marcia’s Dry Appendix E: SQL Views, SQL/PSM,
Cleaning Case Questions 489 e Garden and Importing Data

Glory Project Questions 490 e James

River Jewelry Project Questions (See Online Appendix F: Getting Started in Systems
Appendix D) 490 e The Queen Anne Curiosity Analysis and Design

Shop Project Questions 491 .)]
Appendix G: Getting Started with

Glossary 495 Microsoft Visio 2013

Appendix H: The Access Workbench—
Section H—Microsoft
Access 2013 Switchboards

Appendix I: Getting Started with Web
Servers, PHP, and the
NetBeans IDE

Appendix J: Business Intelligence
Systems

Appendix K: Big Data

Index 503

- <
LTS Dt N Yy
RIS
- § ..“' 3
N _\’.‘-' .-
'E L
-3 L
o~ A Fa o
s v

Colin Johnson is a production supervisor for a small manufacturer in Seattle. Several years
ago, Colin wanted to build a database to keep track of components in product packages. At
the time, he was using a spreadsheet to perform this task, but he could not get the reports
he needed from the spreadsheet. Colin had heard about Microsoft Access, and he tried
to use it to solve his problem. After several days of frustration, he bought several popular
Microsoft Access books and attempted to learn from them. Ultimately, he gave up and
hired a consultant who built an application that more or less met his needs. Over time,
Colin wanted to change his application, but he did not dare try.

Colin was a successful businessperson who was highly motivated to achieve his goals.
A seasoned Windows user, he had been able to teach himself how to use Microsoft Excel,
Microsoft PowerPoint, and a number of production-oriented application packages. He was
flummoxed at his inability to use Microsoft Access to solve his problem. “I'm sure I could do
it, but I just don’t have any more time to invest,” he thought. This story is especially remarkable
because it has occurred tens of thousands of times over the past decade to many other people.

Microsoft, Oracle, IBM, and other database management system (DBMS) vendors are
aware of such scenarios and have invested millions of dollars in creating better graphical in-
terfaces, hundreds of multipanel wizards, and many sample applications. Unfortunately, such
efforts treat the symptoms and not the root of the problem. In fact, most users have no clear
idea what the wizards are doing on their behalf. As soon as these users require changes to da-
tabase structure or to components such as forms and queries, they drown in a sea of complex-
ity for which they are unprepared. With little understanding of the underlying fundamentals,
these users grab at any straw that appears to lead in the direction they want. The consequence
is poorly designed databases and applications that fail to meet the users’ requirements.

Why can people like Colin learn to use a word processor or a spreadsheet product yet
fail when trying to learn to use a DBMS product? First, the underlying database concepts
are unnatural to most people. Whereas everyone knows what paragraphs and margins are,
no one knows what a relation is. Second, it seems as though using a DBMS product ought
to be easier than it is. “All I want to do is keep track of something. Why is it so hard?”
people ask. Without knowledge of the relational model, breaking a sales invoice into five
separate tables before storing the data is mystifying to business users.

This book is intended to help people like Colin understand, create, and use databases
in a DBMS product, whether they are individuals who found this book in a bookstore or
students using this book as their textbook in a class.

NEW TO THIS EDITION

Students and other readers of this book will benefit from new content and features in this
edition. These include the following:

e Mircosoft Office 2013, and particularly Microsoft Access 2013, is now the basic
software used in the book and is shown running on Microsoft Windows 8.1.

e DBMS software coverage has been updated to include Microsoft SQL Server 2014
Express Edition and Oracle MySQL 5.6 Community Server.

X Preface

¢ New material to illustrate the concepts of SQL joins has been added to Chapter 3
to make this material easier for students to understand.

¢ New material on SQL programming via SQL/Persistent Stored Modules (SQL/
PSM) has been added to Appendix E to provide a better organized discussion and
expanded discussion of this material, which had previously been spread among
other parts of the book. This material also provides a discussion of importing
Microsoft Excel worksheet data in to a database.

¢ Material on Big Data and the evolving NoSQL nzovement is now briefly introduced in
Chapter 1, while the main, expanded discussion of this material is in Chapter 8 and the
new Appendix K, “Big Data” Big Data remains the theme for Chapter 8, which includes
the material on the development of nonrelational data stores (such as Cassandra and
HBase) and the Hadoop Distributed File System (HDFS) first introduced in DBC €06.
Appendix K, “Big Data”—has been added to provide additional, more detailed
material on the NoSQL databases used in Big Data setups for those instructors who
still want to cover this topic in depth.

e The Oracle NetBeans IDE is used in Chapter 7 in place of the Eclipse PDT IDE.
Since an integrated downloadable installation file for both the Java JDK and
NetBeans is available, this results in a much easier software installation of these
products in Appendix I. The NetBeans IDE is also arguably easier to use then the
Eclipse PDT, which will make it easier for students to create the HTML and PHP
Web pages used in Chapter 7.

We kept all the main innovations included in DBC €06, including:

¢ The coverage of Web database applications in Chapter 7 now includes data input
Web form pages. This allows Web database applications to be built with both data-
input and data-reading Web pages.

e The coverage of Microsoft Access 2013 now includes Microsoft Access switchboard
forms (covered in Appendix H, “The Access Workbench—Section H—Microsoft
Access 2013 Switchboards”), which are used to build menus for database applica-
tions. Switchboard forms can be used to build database applications that have a user-
friendly main menu that users can use to display forms, print reports, and run queries.

e Each chapter now features an independent Case Question set. The Case Question
sets are problem sets that generally do not require the student to have completed
work on the same case in a previous chapter (there is one intentional exception
that ties data modeling and database design together). Although in some instances
the same basic named case may be used in different chapters, each instance is still
completely independent of any other instance.

¢ Support for Oracle Database Express Edition 11g Release 2 is maintained. Appendix
B, “Getting Started with Oracle Database Express Edition 11g Release 2,” shows you
how to use the product and the Oracle SQL Developer GUI utility. The appendix
provides the basic knowledge, and Oracle SQL Developer screenshots in the text are
used to illustrate specific concepts.

THE NEED FOR ESSENTIAL CONCEPTS

With today’s technology, it is impossible to utilize a DBMS successfully without first learn-
ing fundamental concepts. After years of developing databases with business users, we
believe that the following database concepts are essential:

¢ Fundamentals of the relational model
e Structured Query Language (SQL)

¢ Data modeling

¢ Database design

¢ Database administration

Preface Xi

And because of the increasing use of the Internet, the World Wide Web, commonly avail-
able analysis tools, and the emergence of the NoSQL movement, four more essential con-
cepts need to be added to the list:

Web database processing

Data warehouse structures

¢ Business intelligence (BI) systems
Nonrelational structured data storage

Users like Colin—and students who will perform jobs similar to his—need not learn
these topics to the same depth as future information systems professionals. Consequently,
this textbook presents only essential concepts—those that are necessary for users like
Colin who want to create and use small databases. Many of the discussions in this book
are rewritten and simplified explanations of topics that you will find fully discussed in
David M. Kroenke and David J. Auer’s Database Processing: Fundamentals, Design, and
Implementation." However, in creating the material for this text, we have endeavored to
ensure that the discussions remain accurate and do not mislead. Nothing here will need to
be unlearned if students take more advanced database courses.

TEACHING CONCEPTS INDEPENDENT OF DBMS PRODUCTS

This book does not assume that students will use any particular DBMS product. The book
does illustrate database concepts with Microsoft Access, SQL Server Express edition,
Oracle Database Express Edition, and MySQL Community Server so that students can use
these products as tools and actually try out the material, but all the concepts are presented
in a DBMS-agnostic manner. When students learn the material this way, they come to un-
derstand that the fundamentals pertain to any database, from the smallest Microsoft Access
database to the largest Microsoft SQL Server or Oracle Database database. Moreover, this
approach avoids a common pitfall. When concepts and products are taught at the same
time, students frequently confound concepts with product features and functions. For ex-
ample, consider referential integrity constraints. When they are taught from a conceptual
standpoint, students learn that there are times when the values of a column in one table
must always be present as values of a column in a second table. Students also learn how this
constraint arises in the context of relationship definition and how either the DBMS or the
application must enforce this constraint. If taught in the context of a DBMS—say in the
context of Microsoft Access—students will only learn that in some cases you check a check
box and in other cases you do not. The danger is that the underlying concept will be lost in
the product feature.

All this is not to say that a DBMS should not be used in this class. On the contrary, stu-
dents can best master these concepts by applying them using a commercial DBMS product.
This edition of the book was written to include enough basic information about Microsoft
Access, SQL Server Express edition, Oracle Database Express Edition, and MySQL so
that you can use these products in your class without the need for a second book or other
materials. Microsoft Access is covered in some depth because of its popularity as a per-
sonal database and its inclusion in the Microsoft Office Professional suite of applications.
However, if you want to cover a particular DBMS in depth or use a DBMS product not dis-
cussed in the book, you need to supplement this book with another text or additional ma-
terials. Pearson provides a number of books for Microsoft Access 2013 and other DBMS
products, and many of them can be packaged with this text.

"David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and Implementation,
13th edition (Upper Saddle River, NJ: Pearson/Prentice Hall, 2014).

Xii

Preface

THE ACCESS WORKBENCH

This new edition of the text continues using “The Access Workbench,” a feature first
introduced in the third edition. Because Microsoft Access is widely used in introductory
database classes, we feel it is important to include specific information on using Microsoft
Access. Each chapter has an accompanying section of “The Access Workbench,” which
illustrates the chapter’s concepts and techniques using Microsoft Access. “The Access
Workbench” topics start with creating a database and a single table in Chapter 1 and move
through various topics, finishing with Web database processing against a Microsoft Access
database in Chapter 7 and using Microsoft Access (together with Microsoft Excel) to
produce PivotTable OLAP reports in Chapter 8. This material is not intended to provide
comprehensive coverage of Microsoft Access, but all the necessary basic Microsoft Access
topics are covered so that your students can learn to effectively build and use Microsoft
Access databases.

KEY TERMS, REVIEW QUESTIONS, EXERCISES, CASES, AND PROJECTS

Because it is important for students to apply the concepts they learn, each chapter con-
cludes with sets of key terms, review questions, exercises (including exercises tied to “The
Access Workbench”), Case Question sets, and three projects that run throughout the book.
Students should know the meaning of each of the key terms and be able to answer the re-
view questions if they have read and understood the chapter material. Each of the exercises
requires students to apply the chapter concepts to a small problem or task.

The first of the projects, Garden Glory, concerns the development and use of a database
for a partnership that provides gardening and yard maintenance services to individuals and
organizations. The second project, James River Jewelry, addresses the need for a database
to support a frequent-buyer program for a retail store. The third project, The Queen Anne
Curiosity Shop, concerns the sales and inventory needs of a retail business. These three
projects appear in all of the book’s chapters (although the actual text of the James River
Jewelry project is found in online Appendix D). In each instance, students are asked to
apply the project concepts from the chapter. Instructors will find more information on the
use of these projects in the instructor’s manual and can obtain databases and data from the
password-protected instructor’s portion of this book’s Web site (www.pearsonhighered

.com/kroenke).

SOFTWARE USED IN THE BOOK

Just as we have treated our discussions in a DBMS-agnostic way, whenever possible, we have
selected software to be as operating system independent as possible. It is amazing how much
excellent software is available online. Many major DBMS vendors provide free versions of their
premier products (for example, Microsoft’s SQL Server Express edition, Oracle Corporation’s
Oracle Database Express Edition, and MySQL Community Server). Web editors and inte-
grated development environments (IDEs) are also available (for example, Eclipse, NetBeans,
and Visual Studio Express edition). PHP, considered the fourth most commonly used program-
ming language, is downloadable for use with many operating systems and Web servers.

So although the examples in this book were created using a Microsoft operating
system, SQL Server 2014 Express edition, Microsoft Access 2013, Microsoft Excel 2013,
and the IIS Web Server, most of them could just as easily be accomplished using Linux,
MySQL Server Community edition, Apache OpenOffice Base, Appache OpenOffice Calc,
and the Apache Web server. Some software products used in the book, such as PHP and
NetBeans, are available for multiple operating systems.

www.pearsonhighered.com/kroenke
www.pearsonhighered.com/kroenke

Preface Xiii

Over the past 30-plus years, we have found the development of databases and database
applications to be an enjoyable and rewarding activity. We believe that the number, size,
and importance of databases will increase in the future and that the field will achieve even
greater prominence. It is our hope that the concepts, knowledge, and techniques presented
in this book will help students to participate successfully in database projects now and for
many years to come.

CHANGES FROM THE SIXTH EDITION

The most significant change in this edition is the coverage of the rapidly evolving use of
Big Data and the associated NoSQL movement. The need to be able to store and process
extremely large datasets is transforming the database world. Although these developments
leave the database fundamentals covered in this book unchanged, they do require us to put
the relational databases that are the core of this text into the context of the overall database
picture and to provide the reader with an understanding of the nonrelational structured
storage used in the Big Data environment. Therefore, Chapter 8 is now organized around
the topic of Big Data, and the topics of data warehouses, clustered database servers, dis-
tributed databases, and an introduction to business intelligence (BI) systems find a natural
home in that chapter. To provide additional coverage of Big Data, Appendix K has been
added to allow a discussion in more depth than the page limitations of the book allow. For
those wanting the same coverage of BI found in the previous edition of Database Concepts,
we have moved BI material that no longer fit in Chapter 8 to Appendix J.

Finally, we have maintained the chapter-independent Case Question sets we added
in the sixth edition. Although the chapter projects tie the topics in each chapter together,
the case questions do not require the student to have completed work on the same case in
a previous chapter or chapters. There is one intentional exception that spans Chapters 4
and 5 that ties data modeling and database design together, but each of these chapters also
includes a standalone case. Although in some instances the same basic named case may be
used in different chapters, each instance is still completely independent of any other in-
stance, and we provide needed Microsoft Access 2013 database and SQL scripts at the text
Web site at www.pearsonhighered.com/kroenke.

We have, of course, also updated information on all the other products in the book.
In particular, we cover the newly released Microsoft SQL Server 2014 and MySQL 5.6
Community Server.

We have kept and improved upon several features introduced in earlier editions of the

book:

¢ The use of “The Access Workbench” sections in each chapter to provide coverage
of Microsoft Access fundamentals now includes Microsoft Access switchboards
(Appendix H, “The Access Workbench—Section H—Microsoft Access 2013
Switchboards,” available online).

¢ Introductions to the use of Microsoft SQL Server 2014 Express Edition
(Appendix A, “Getting Started with Microsoft SQL Server 2014 Express Edition,”
available online), Oracle Database Express Edition 11g Release 2 (Appendix B,
“Getting Started with Oracle Database Express Edition 11g Release 2,” available
online) and Oracle MySQL 5.6 Community Server (Appendix C, “Getting Started
with MySQL 5.6 Community Server,” available online).

® The use of fully developed datasets for the three example databases that run
throughout various portions of the book—Wedgewood Pacific Corporation,
Heather Sweeney Designs, and Wallingford Motors.

® The use of the PHP scripting language, now used in the NetBeans IDE, in the Web
database processing topics now includes code for Web page input forms.

¢ Coverage of the dimensional database model is maintained in the restructured
Chapter 8, together with coverage of OLAP.

www.pearsonhighered.com/kroenke

Xiv Preface

In order to make room for this new material, we have had to move some valuable mate-
rial previously found in the book itself to online appendices. This includes the James
River Jewelry set of project questions, which is now in online Appendix D, “James River
Jewelry Project Questions,” the material on SQL Views is now in online Appendix E,
“SQL Views, SQL/PSM, and Importing Data” with additional material on SQL Persistent
Stored Modules (SQL/PSM) and how to import Microsoft Excel data. The business intel-
ligence systems material on reporting systems and data mining is now in online Appendix J
“Business Intelligence Systems.”

BOOK OVERVIEW

This textbook consists of 8 chapters and 11 appendices (all of which are readily available
online at www.pearsonhighered.com/kroenke). Chapter 1 explains why databases are
used, what their components are, and how they are developed. Students will learn the
purpose of databases and their applications, as well as how databases differ from and im-
prove on lists in spreadsheets. Chapter 2 introduces the relational model and defines basic
relational terminology. It also introduces the fundamental ideas that underlie normalization
and describe the normalization process.

Chapter 3 presents fundamental SQL statements. Basic SQL statements for data defi-
nition are described, as are SQL SELECT and data modification statements. No attempt
is made to present advanced SQL statements; only the essential statements are described.
Online Appendix E adds coverage of SQL views.

The next two chapters consider database design. Chapter 4 addresses data model-
ing, using the entity-relationship (E-R) model. This chapter describes the need for data
modeling, introduces basic E-R terms and concepts, and presents a short case application
(Heather Sweeney Designs) of E-R modeling. Chapter 5 describes database design and ex-
plains the essentials of normalization. The data model from the case example in Chapter 4
is transformed into a relational design in Chapter 5.

In this edition, we continue to use the more effective discussion of normalization
added in an earlier edition. We have presented a prescriptive procedure for normalizing
relations through the use of a four-step process. This approach not only makes the normal-
ization task easier, it also makes normalization principles easier to understand. Therefore,
this approach has been retained in this edition. For instructors who want a bit more detail
on normal forms, short definitions of most normal forms are included in Chapter 5.

The last three chapters consider database management and the uses of databases in
applications. Chapter 6 provides an overview of database administration. The case example
database is built as a functioning database, and it serves as the example for a discussion of
the need for database administration. The chapter surveys concurrency control, security,
and backup and recovery techniques. Database administration is an important topic be-
cause it applies to all databases, even personal, single-user databases. In fact, in some ways
this topic is more important for those smaller databases because no professional database
administrator is present to ensure that critical tasks are performed.

Chapter 7 introduces the use of Web-based database processing, including a discus-
sion of Open Database Connectivity (ODBC) and the use of the PHP scripting language. It
also discusses the emergence and basic concepts of Extensible Markup Language (XML).

Chapter 8 discusses the emerging world of Big Data and the NoSQL movement.
Business intelligence (BI) systems and the data warehouse architectures that support them
are discussed, but many details of BI systems have been moved to online Appendix J.
Chapter 8 also discusses dimensional databases. The chapter also walks through how to
build a dimensional database for Heather Sweeney Designs and then use it to produce a
PivotTable Online Analytical Processing (OLAP) report. Chapter 8 also provides a discus-
sion of distributed databases and object-relational databases.

Appendix A provides a short introduction to Microsoft SQL Server 2014 Express
Edition, Appendix B provides an introduction for Oracle Database Express Edition 11g

www.pearsonhighered.com/kroenke

Preface Xv

Release 2, and Appendix C provides a similar introduction for MySQL 5.6 Community
Server. Microsoft Access is covered in “The Access Workbench” sections included in each
chapter. Appendix D now contains the James River Jewelry project questions, and the mate-
rial on SQL views is located in Appendix E. Appendix F provides an introduction to systems
analysis and design and can be used to provide context for Chapter 4 (data modeling) and
Chapter 5 (database design)—although in this book we focus on databases, databases are
used in applications. Appendix F describes the application development process in more de-
tail. Appendix G is a short introduction to Microsoft Visio 2013, which can be used as a tool
for data modeling (Chapter 4) and database design (Chapter 5). Another useful database
design tool is the MySQL Workbench, and this use of the MySQL Workbench is discussed
in Appendix C. Appendix H extends Chapter 5’s section of “The Access Workbench” by
providing coverage of Microsoft Access 2013 switchboards. Appendix I provides detailed
support for Chapter 7 by giving detailed instructions on getting the Microsoft IIS Web
server, PHP, and the NetBeans IDE up and running. Appendix | provides additional mate-
rial on business intelligence (BI) systems to supplement and support Chapter 8 by giving
details on report systems and data mining. Finally, Appendix K provides additional material
on Big Data and NoSQL databases to supplement and support Chapter 8.

KEEPING CURRENT IN A RAPIDLY CHANGING WORLD

In order to keep Database Concepts up to date between editions, we post updates on the
book’s Web site at www.pearsonhighered.com/kroenke as needed. Instructor resources
and student materials are also available on the site, so be sure to check it from time to time.

ACKNOWLEDGMENTS

We would like to thank the following reviewers for their insightful and helpful comments:

Namjoo Choi, University of Kentucky

David Chou, Eastern Michigan University

Geoffrey Decker, Northern Illinois University

Deena Engel, New York University

Marni Ferner, University of North Carolina, Wilmington
Jean Hendrix, University of Arkansas at Monticello

Malini Krishnamurthi, California State University, Fullerton
Rashmi Malhotra, Saint Joseph’s University

Gabriel M. Petersen, North Carolina Central University
Eliot Rich, University at Albany, State University of New York
Liz Thiry, Pennsylvania State University

Bond Wetherbe, Texas Tech University

Diana Wolfe, Oklahoma State University—Oklahoma City

We would like to thank Nicole Sam, our editor; Denise Vaughn, our program manager;
and Ilene Kahn, our project manager, for their professionalism, insight, support, and assistance
in the development of this project. We would also like to thank Robert Mills, Robert Yoder,
and Scott Vandenberg for their detailed comments on the final manuscript. Finally, David
Kroenke would like to thank his wife, Lynda, and David Auer would like to thank his wife,
Donna, for their love, encouragement, and patience while this project was being completed.

David Kroenke
Seattle, Washington

David Auer
Bellingham, Washington

www.pearsonhighered.com/kroenke

‘About the Authors

€ vy

-ty S *i
¥a ' s ;
P S Vva%‘
PR S v it A
»

David M. Kroenke entered the computing profession as a summer intern at the RAND
Corporation in 1967. Since then, his career has spanned education, industry, consulting,
and publishing.

He has taught at the University of Washington, Colorado State University, and Seattle
University. Over the years, he has led dozens of teaching seminars for college professors. In
1991 the International Association of Information Systems named him Computer Educator
of the Year.

In industry, Kroenke has worked for the U.S. Air Force and Boeing Computer
Services, and he was a principal in the startup of three companies. He was also vice presi-
dent of product marketing and development for the Microrim Corporation and was chief
technologist for the database division of Wall Data, Inc. He is the father of the semantic
object data model. Kroenke’s consulting clients include IBM Corporation, Microsoft,
Computer Sciences Corporation, and numerous other companies and organizations.

His text Database Processing: Fundamentals, Design, and Inplementation, first pub-
lished in 1977, is now in its 13th Edition (coauthored with David Auer for the 11th, 12th,
and 13th editions). He introduced Database Concepts (now in the seventh edition that you
are reading) in 2003. Kroenke has published many other textbooks, including the classic
Business Computer Systems (1981). Recently, he has authored Usinzg MIS (7th Edition),
Experiencing MIS (5th Edition), MIS Essentials (4th Editon), Processes, Systems and
Information: An Introduction to MIS (2nd Edition) (coauthored with Earl McKinney), and
Essentials of Processes, Systens and Information (coauthored with Earl McKinney).

An avid sailor, Kroenke also wrote Know Your Boat: The Guide to Everything That
Makes Your Boat Work. Kroenke lives in Seattle, Washington. He is married and has two
children and three grandchildren.

Since 1994, David J. Auer has been the director of Information Systems and Technology
Services at Western Washington University’s College of Business and Economics (CBE)
and a lecturer in CBE’s Department of Decision Sciences. Since 1981, he has taught CBE
courses in quantitative methods, production and operations management, statistics, fi-
nance, and management information systems. Besides managing CBE’s computer, network,
and other technology resources, he also teaches management information systems courses.
He has taught the Principles of Management Information Systems and Business Database
Development courses, and he was responsible for developing CBE’s network infrastructure
courses, including Computer Hardware and Operating Systems, Telecommunications, and
Network Administration. He has coauthored several MIS-related textbooks.

Auer holds a bachelor’s degree in English literature from the University of Washington,
a bachelor’s degree in mathematics and economics from Western Washington University, a
master’s degree in economics from Western Washington University, and a master’s degree
in counseling psychology from Western Washington University. He served as a commis-
sioned officer in the U.S. Air Force, and he has also worked as an organizational develop-
ment specialist and therapist for an employee assistance program (EAP).

Auer and his wife, Donna, live in Bellingham, Washington. He has two children and
four grandchildren.

XVi

Database Fundamentals

art | introduces fundamental concepts and

techniques of relational database management.

Chapter 1 explains database technology, discusses
why databases are used, and describes the components of a
database system. Chapter 2 introduces the relational model
and defines key relational database terms. It also presents
basic principles of relational database design. Chapter 3
presents Structured Query Language, an international stan-
dard for creating and processing relational databases.

After you have learned these fundamental database
concepts, we will focus on database modeling, design, and
implementation in Part Il. Finally, we will discuss database
management, Web database applications, Big Data, and
business intelligence (Bl) systems in Part lIl.

This page intentionally left blank

g

 Pie
Know the potential problems with Ii‘sts__,*

Understand the reasons for using
a database

Understand how using related tables
helps you avoid the problems of using
lists

Know the components of a database
system

Learn the elements of a database

Learn the purpose of a database
management system (DBMS)

Understand the functions of a database
application

Introduce nonrelational databases

Fam .

of this book oA
[5 |

L]
A
»

Getting Started

nowledge of database technology increases in

importance every day. Databases are used every-

where: They are key components of e-commerce
and other Web-based applications. They lay at the heart of
organization-wide operational and decision support applica-
tions. Databases are also used by thousands of work groups
and millions of individuals. It is estimated that there are
more than 10 million active databases in the world today.

The purpose of this book is to teach you the essential
relational database concepts, technology, and techniques
that you need to begin a career as a database developer.
This book does not teach everything of importance in
relational database technology, but it will give you suf-
ficient background to be able to create your own personal
databases and to participate as a member of a team in the
development of larger, more complicated databases. You
will also be able to ask the right questions to learn more on
your own.

In this first chapter, we investigate the reasons for
using a relational database. We begin by describing some
of the problems that can occur when using lists. Using a
series of examples, we illustrate how using sets of related
tables helps you to avoid those problems. Next, we de-
scribe the components of a database system and explain
the elements of a database, the purpose of the database
management system (DBMS), and the functions of a da-
tabase application. Finally, we introduce nonrelational
databases.

4 Part1 Database Fundamentals

WHY USE A DATABASE?

FIGURE 1-1

The Student List in
a Spreadsheet

FIGURE 1-2

The Student with
Adviser List

A database is used to help people keep track of things. You might wonder why we need a
special term (and course) for such technology when a simple list could serve the same pur-
pose. Many people do keep track of things by using lists, and sometimes such lists are valu-
able. In other cases, however, simple lists lead to data inconsistencies and other problems.

In this section, we examine several different lists and show some of these problems. As
you will see, we can solve the problems by splitting lists into tables of data. Such tables are
the key components of a database. A majority of this text concerns the design of such tables
and techniques for manipulating the data they contain.

Problems with Lists

Figure 1-1 shows a simple list of student data, named the Student List,! stored in a spread-
sheet. The Student List is a very simple list, and for such a list a spreadsheet works quite well.
Even if the list is long, you can sort it alphabetically by last name, first name, or email address
to find any entry you want. You can change the data values, add data for a new student, or
delete student data. With a list like the Student List in Figure 1-1, none of these actions is
problematic, and a database is unnecessary. Keeping this list in a spreadsheet is just fine.

Suppose, however, we change the Student List by adding adviser data, as shown in
Figure 1-2. You can still sort the new Student with Adviser List in a number of ways to
find an entry, but making changes to this list causes modification problems. Suppose,
for example, that you want to delete the data for the student Chip Marino. As shown in
Figure 1-3, if you delete the seventh row you not only remove Chip Marino’s data, you
also remove the fact that there is an adviser named Tran and that Professor Tran’s email
address is Ken.Tran@ourcampus.edu.

Similarly, updating a value in this list can have unintended consequences. If, for ex-
ample, you change AdviserEmail in the eighth row, you will have inconsistent data. After
the change, the fifth row indicates one email address for Professor Taing, and the eighth
row indicates a different email address for the same professor. Or is it the same professor?
From this list, we cannot tell if there is one Professor Taing with two inconsistent email ad-
dresses or whether there are two professors named Taing with different email addresses. By
making this update, we add confusion and uncertainty to the list.

| A LB L c
1 LastName FirstName Email
2 |Andrews Matthew Matthew Andrews@ourcampus. edu
3 Brisbon Lisa Lisa Brisbon@ourcampus.edu
4 |Fischer Douglas Douglas.Fischer@ourcampus edu
5 |Hwang Terry Terry.Hwang@ourcampus.edu
6 |Lai Tzu Tzu.Lai@ourcampus.edu
7 |Marino Chip Chip.Marino@ourcampus.edu
8 [Thompson James James Thompson@ourcampus. edu
A B (& D E
1 |LastName FirstName Email AdviserLastName AdviserEmail
2 |Andrews Matthew Matthew Andrews@ourcampus.edu Baker Linda. Baker@ourcampus. edu
3 |Brisbon Lisa Lisa Brishon@ourcampus_edu Valdez Richard Valdez @ourcampus_edu
4 |Fischer Douglas Douglas. Fischer@ourcampus edu Baker Linda Baker@ourcampus.edu
5 |Hwang Temy Temy. Hwang@ourcampus.edu Taing Susan.Taing@ourcampus. edu
6 |Lai Tzu Tzu | si@ourcampus edu Valdez Richard Valdez@ourcampus edu
7 |Marino Chip Chip.Marino@ourcampus.edu Tran Ken.Tran@ourcampus_edu
8 Thompson James James. Thompson@ourcampus.edu Taing Susan.Taing@ourcampus.edu

Tn order to easily identify and reference the lists being discussed, we capitalize the first letter of each word
in the list names in this chapter. Similarly, we capitalize the names of the database tables associated with
the lists.

FIGURE 1-3

Chapter 1 Getting Started 5

Modification Problems in the Student with Adviser List

Deleted row—too
much data lost

A B | c D E
|LastName Firsthame Email AdviserLastName AdviserEmail

Andrews Matthew Matthew Andrews@ourcampus.edu Baker Linda. Baker@ourcampus.edu
Brisbon Lisa Lisa Bnsbon@ourcampus. edu Valdez Richard. Valdez@ourcampus.edu

Changed row—
inconsistent data

Fischer Douglas Douglas.Fischer@ourcampus.edu Baker Linda.Baker@ourcampus.edu

LEI Tzu mpus. edu Valdez Richard. Valdez@ourcampus.edu

1
2
3
4
\g Hwang Temy Terry Hwang@ourcampus. edu Taing Susan.Taing@ourcampus.edu
%

James Thompsoni@ourcampus edu Taing Sue Taing@ourcampus edu

Inserted row—
data missing

Thnmpaon James
George. Green@ourcampus._edu

77 m Green

FIGURE 1-4

Finally, what do we do if we want to add data for a professor who has no advisees? For ex-
ample, Professor George Green has no advisees, but we still want to record his email address.
As shown in Figure 1-3, we must insert a row with incomplete values, called null values, in
the database field. In this case, the term 7x// value means a missing value, but there are other
meanings of the term 7u/l value that are used when working with databases. We will discuss
the problems of null values in detail in the next chapter, where we will show that null values
are always problematic and that we want to avoid them whenever possible.

Now, what exactly happened in these two examples? We had a simple list with three
columns, added two more columns to it, and thereby created several problems. The
problem is not just that the list has five columns instead of three. Consider a different list
that has five columns: the Student with Residence List shown in Figure 1-4. This list has
five columns, yet it suffers from none of the problems of the Student with Adviser List in
Figure 1-3.

In the Student with Residence List in Figure 1-4, we can delete the data for student Chip
Marino and lose only data for that student. No unintended consequences occur. Similarly, we
can change the value of Residence for student Tzu Lai without introducing any inconsistency.
Finally, we can add data for student Garret Ingram and not have any null values.

An essential difference exists between the Student with Adviser List in Figure 1-3 and
the Student with Residence List in Figure 1-4. Looking at those two figures, can you de-
termine the difference? The essential difference is that the Student with Residence List in
Figure 1-4 is all about a single thing: All the data in that list concern students. In contrast,
the Student with Adviser List in Figure 1-3 is about zwo things: Some of the data concern
students and some of the data concern advisers. In general, whenever a list has data about
two or more different things modification problems will result.

To reinforce this idea, examine the Student with Adviser and Department List in
Figure 1-5. This list has data about three different things: students, advisers, and depart-
ments. As you can see in the figure, the problems with inserting, updating, and deleting
data just get worse. A change in the value of AdviserLastName, for example, might

The Student with Residence List

nserted row— 1 LastName FirstName Email Phone Residence
data OK 2 |Andrews Matthew Matthew Andrews@ourcampus edu 301-555-2225 123 15th St Apt 21
3 |Brisbon Lisa Lisa Brisbon@ourcampus edu 301-555-2241 Dorsett Room 201
Changed row—no \: \Fischer Douglas Douglas. Fischer@ourcampus edu 301-555-2257 McKinley Room 109
. . 5 |Hwang Terry Temy Hwang@ourcampus. edu 301-555-2229 McKinley Room 208
inconsistent data \Ingram Garrett Garett.Ingrami@ourcampus. edu 301-555-2223 Dorsett Room 218
\Y \Lai Tzu Tzu.Lai@ourcampus.edu 301-555-2231 McKinley Room 115
Deleted row—no | »8 Marao Chip Chip-Marine@ourcampus adu 3015552243 234 46th StApt 32
data loss 9 [Thompson James James Thompson@ourcampus.edu 301-655-2245 345 17th St Apt 43

6 Part1 Database Fundamentals

FIGURE 1-5

The Student with Adviser and Department List

If Adviser Baker is changed to Taing,
we need to change AdviserEmail as
well. If changed to Valdez, we need to
change AdviserEmail, Department, and

AdminLastName.

1 |LastName FirstName Email AdviseclastName AdviserEmail Department AdminLastName
2 |Andrews Matthew Matthew Andrews@ourcampus edu Baker Linda Baker@ourcampus edu Accounting Smith

3 |Brisbon Lisa Lisa Brisbon@ourcampus edu Valdez Richard Valdez@ourcampus_edu Chemistry Chaplin

4 |Fischer Douglas Douglas. Fischer@ourcampus._edu Baker Linda.Baker@ourcampus . edu Accounting Smith

5 |Hwang Terry Terry. Hwang@ourcampus. edu Taing Susan. Taing@ourcampus. edu Accounting Smith

6 |Lai Tzu Tzu.l si@ourcampus.edu Valdez Richard. Valdez@ourcampus.edu Chemistry Chaplin

8 |Thompson James James.Thompson@ourcam us.edV(aing Susan.Taing@ourcampus. edu Accounting Smith

9 e mn Erlis A it Biology Kelly

Deleted row—Student, Adviser, and
Department data lost

Inserted row—both Student and Adviser
data missing

necessitate a change in only AdviserEmail, or it might require a change in AdviserEmail,
Department, and AdminLastName. As you can imagine, if this list is long—for example,
if the list thousands of rows—and if several people process it, the list will be a mess in a
very short time.

Using Relational Database Tables

The problems of using lists were first identified in the 1960s, and a number of different tech-
niques were developed to solve them. Over time, a methodology called the relational model
emerged as the leading solution, and today almost every commercial database is based on
the relational model. We will examine the relational model in detail in Chapter 2. Here,
however, we introduce the basic ideas of the relational model by showing how it solves the
modification problems of lists.

Remember your eighth-grade English teacher? He or she said that a paragraph should
have a single theme. If you have a paragraph with more than one theme, you need to break
it up into two or more paragraphs, each with a single theme. That idea is the foundation of
the design of relational databases. A relational database contains a collection of separate
tables. A table holds data about one and only one theme in most circumstances. If a table
has two or more themes, we break it up into two or more tables.

A table and a spreadsheet (also known as a worksheet) are very similar in
that you can think of both as having rows, columns, and cells. The details
that define a table as something different from a spreadsheet are discussed
in Chapter 2. For now, the main differences you see are that tables have
column names instead of identifying letters (for example, Name instead
of A) and that the rows are not necessarily numbered.

Chapter 1 Getting Started 7

A Relational Design for the Student with Adviser List The Student with
Adpviser List in Figure 1-2 has two themes: students and advisers. If we put this data into a

relational database, we place the student data in one table named STUDENT and the ad-
viser data in a second table named ADVISER.

In this book, table names appear in all capital, or uppercase, letters
(STUDENT, ADVISER). Column names have initial capitals (Phone,
Address), and where column names consist of more than one word the
initial letter of each word is capitalized (LastName, AdviserEmail).

We still want to show which students have which advisers, however, so we leave
AdviserLastName in the ADVISER table. As shown in Figure 1-6, the values of
AdviserLastName now let us link rows in the two tables to each other.

Now consider possible modifications to these tables. As you saw in the last section,
three basic modification actions are possible: insert, update, and delete. To evaluate a de-
sign, we need to consider each of these three actions. As shown in Figure 1-7, we can insert,
update, and delete in these tables with no modification problems.

For example, we can insert the data for Professor Bill Yeats by just adding his data
to the ADVISER table. No student references Professor Yeats, but this is not a problem.
Perhaps a student will have Professor Yeats as an adviser in the future. We can also update
data values without unintended consequences. The email address for Professor Susan
Taing can be changed to Sue.Taing@ourcampus.edu, and no inconsistent data will result
because Professor Taing’s email address is stored just once in the ADVISER table. Finally,
we can delete data without unintended consequences. For example, if we delete the data
for student Chip Marino from the STUDENT table, we lose no adviser data.

A Relational Design for the Student with Adviser and Department List We
can use a similar strategy to develop a relational database for the Student with Adviser and
FIGURE 1-6
The Adviser and Student Tables

STUDENT data linked
to ADVISER data via

T3 ADVISER x
AdviserLastName ~ AdviserFirstName - Adviseremail -
Linda Linda.Baker@ourcampus.edu
George George.Green@ourcampus.edu

| Ken
Richard
: \
Record: M < [10f5 | » M P . F

Susan.Taing@ourcampus.edu
Ken.Tran@ourcampus.edu
Richard.vValdez@ourcampus.edu

AdviserLastName

TH STUDENT,

X

*
Record:

Tof 7

StudentlastName - StudentFirstName -

L

StudentEmail

|Search Kl

- Phone

AR 5 Matthew Matthew.Andrews@ourcampus.edu 301-555-2225

Brisbon Lisa Lis.Brisbon@ourcampus.edu 301-555-2241

Fischer Douglas Douglas.Fisher@ourcampus.edu 301-555-2257

Hwang Terry Terry.Hwang@ourcampus.edu 301-555-2229 McKinley Room 208

Lai Tzu Tzu.Lai@ourcampus.edu 301-555-2231 McKinley Room 115 Val
Marino Chip Chip.Marino@ourcampus.edu 301-555-2243 234 16th St Apt 32 Tran
Thompson James James.Thompson@ourcampus.edu 301-555-2245 34517th St Apt43 Taing

8 Part1

FIGURE 1-7

Database Fundamentals

Modifying the Adviser and Student Tables

FIGURE 1-8

T ADVISER £
Chan_ged data._data AdviserLastName - | AdviserFirstName - AdviserEmail -
remains ConS|Stent \ Baker Linda Linda.Baker@ourcampus.edu
N GeorgE.Green@uurcampus.edu
‘Taing Susan Sue.Taing@ourcampus.eduy
Inserted data—no Tran Ken K.en.Traﬁ@ourca.mpus.edu |
STUDENT data \ .Valdez Richard Richard.Valdez@ourcampus.edu
required Yeats Bill Bill.Yeats@ourcampus.edu
*
Recard: W 4 [30f6 | b M b | T [Search [T 5 [¥]
Deleted data—no i)
ADVISER data lost = stoom, =
StudentLastName - | StudentFirstName - StudentEmail £ Phone - Residence - | AdvisorLastName -
Andrews Matthew Matthew.Andrews@ourcampus.edu 301-555-2225 12315th St Apt21 Baker
Brisbon Lisa Lis.Brisbon@ourcampus.edu 301-555-2241 Dorsett Room 201 Valdez
Fischer Douglas Douglas.Fisher@ourcampus.edu 301-555-2257 McKinley Room 109 Baker
| Hwang Terry Terry.Hwang@ourcampus.edu 301-555-2229 McKinley Room 208 Taing
Lai Tzu Tzu.Lai@ourcampus.edu 301-555-2231 McKinley Room 115 Valdez
|Maﬁno CEP ChiE.Marino@ou rcam Eus.edu 301-555-2243 234 16th St Apt 32 Tran
Thompson James James. Thompson@ourcampus.edu 301-555-2245 34517th St Apt43 Taing
*
Record: 4 4 |6of 7 bbb [Search i 1] 3

Department List shown in Figure 1-5. This list has three themes: students, advisers, and
departments. Accordingly, we create three tables, one for each of these three themes, as
shown in Figure 1-8.

As illustrated in Figure 1-8, we can use AdviserLastName and Department to link
the tables. Also, as shown in this figure, this set of tables does not have any modification
problems. We can insert new data without creating null values, we can modify data without

The Department, Adviser, and Student Tables

= DEPARTMENT

%

Can insert DeartmentName - | DepartmentPhone -| AdminLastName - | AdminFirstName - AdminEmail -
D E PA RTM E NT 301-557-1011 Smith Sha}ﬂna shafuna.SMTth@uurmmpus.edu
Kelly Chris Chris.Kelly@ourcampus.edu
data as needed— Chemistry Chaplin Robin Robin.Chaplin@ourcampus.edu
no ADVISER or = InfoSystems Rogers Aaron Aaron.Rogers@ourcampus.edu
STUDENT data Record: 4 «[Tofd | b MM Search v
required
5 ADVISER " x
AdviserLastName ~ AdviserFirstName - AdviserEmail - Depargent -
Linda Linda.Baker@ourcampus.edu A i :K.
|Green George George.Green@ourcampus.edu Biology
Taing Sue.Taing@ourcampus.edu Accounting
Tran Ken Ken.Tran@ourcampus.edu InfoSystems
Valdez Richard Richard.Valdez@ourcampus.edu Chemistry
Can Change | Yeats Bill Billl @ourcampus.edu InfoSystems
STUDENT Adviser % = e = =
Record: M 1of6 L |Search | (4] »
name as needed—
new value is linked to
its own data =1 STUDENT Y, =
StudentlastMame - | StudentFirstName - StudentEmail - Residence -\A%tName -
Can delete Andrews Matthew Matthew.Andrews@ourcampus.edu 301-555-2225 123 15th St Ap Baker
Brisbon Lisa Lis.Brisbon@ourcampus.edu 301-555-2241 Dorsett Room 201 Valdez
STUDENT data as |Fischer Douglas Douglas.Fisher@ourcampus.edu 301-555-2257 McKinley Room 109 Baker
needed_no Hwang Terry Terry.Hwang@ourcampus.edu 301-555-2229 McKinley Room 208 Taing
Lai Tzu Tzu.lai@ourcampus.edu 301-555-2231 McKinley Room 115 Valdez
DEPARTMENT or A Marino Chip Chip.Marino@ourcampus.edu 301-555-2243 234 16th St Apt 32 Tran
ADV|SER data |OSt Thompsan James James. Thompson@ourcampus.edu 301-555-2245 34517thstApt43 Taing
*
Record: M < |6of7 | b M » |Search [41 Y

FIGURE 1-9

Chapter 1 Getting Started 9

creating inconsistencies, and we can delete data without unintended consequences. Notice
in particular that when we add a new row to DEPARTMENT we can add rows in
ADVISER, if we want, and we can add rows in STUDENT for each of the new rows in
ADVISER, if we want. However, all these actions are independent. None of them leaves
the tables in an inconsistent state.

Similarly, when we modify an AdviserLastName in a row in STUDENT, we automati-
cally pick up the adviser’s correct first name, email address, and department. If we change
AdviserLastName in the first row of STUDENT to Taing, it will be connected to the row in
ADVISER that has the correct AdviserFirstName, AdviserEmail, and Department values.
If we want, we can also use the value of Department in ADVISER to obtain the correct
DEPARTMENT data. Finally, notice that we can delete the row for student Marino with-
out a problem.

As an aside, the design in Figure 1-8 has removed the problems that occur when modify-
ing a list, but it has also introduced a new problem. Specifically, what would happen if we de-
leted the first row in ADVISER? Students Andrews and Fischer would have an invalid value
of AdviserLastName because Professor Baker would no longer exist in the ADVISER table.
To prevent this problem, we can design the database so that a deletion of a row is not allowed
if other rows depend on it, or we can design it so that the dependent rows are deleted as well.
We are skipping way ahead here; however, we will discuss such issues in later chapters.

A Relational Design for Art Course Enrollments To fix in your mind the ideas
we have been examining, consider the Art Course List in Figure 1-9, which is used by
an art school that offers art courses to the public. This list has modification problems.
For example, suppose we change the value of CourseDate in the first row. This change
might mean that the date for the course is changing, in which case the CourseDate values
should be changed in other rows as well. Alternatively, this change could mean that a new
Advanced Pastels (Adv Pastels) course is being offered. Either is a possibility.

As with the previous examples, we can remove the problems and ambiguities by
creating a separate table for each theme. However, in this case the themes are more dif-
ficult to determine. Clearly, one of the themes is customer and another one is art course.
However, a third theme exists that is more difficult to bring to light. The customer has paid
a certain amount toward a course. The amount paid is not a property of the customer be-
cause it varies depending on which course the customer is taking. For example, customer
Ariel Johnson paid $250 for the Advanced Pastels (Adv Pastels) course and $350 for the
Intermediate Pastels (Int Pastels) course. Similarly, the amount paid is not a property of
the course because it varies with which customer has taken the course. Therefore, the third
theme of this list must concern the enrollment of a particular student in a particular class.
Figure 1-10 shows a design using three tables that correspond to these three themes—we
name this set of three tables the Ar¢ Course Database.

Notice that the Art Course Database design assigns an ID column named
CustomerNumber that assigns a unique identifying number to each row of CUSTOMER;

The Art Course List with Modification Problems

How to enter the fee
for a new course?

Consequences of
changing this date?

Consequences of
deleting this row?

— A B C D B _E G
1 |CustomerLastlame CustomerFirstlame Phone CourseDate AmountPaid—Course———> Fee
2 Johnson Ariel 5671234 10/1/2015 5250.00 AdvPastels 5500.00
3 |Green i 425-678-8765 9/15/2015 $350.00 Beg Oils 5350.00
4 Jac Charles 360-789-3456 10/1/2015 $500.00 Adv Pastels 5500.00
- chnson Ariel 206-567-1234 3152015 $350.00 Int Pastels $350.00
6/ Pearson Jeffery 206-567-2345 10/1/2015 $500.00 AdvPastels $500.00
|Sears Miguel 360-789-4567 9/15/2015 $350.00 Beg Oils $350.00
8 Kyle Leah 425-678-7654 11A15/2015 $250.00 AdvPastels $500.00
9 |Myers Lynda 360-789-5678 10/15/2015 50.00 Beg Qils $350.00

10 Part1 Database Fundamentals

FIGURE 1-10

The Art Course Database Tables

T CUSTOMER X
CustomerNumber ~ _CustomerLastName » | CustomerFirstName ~ Phone -
3 Johnson Ariel 206-567-1234
+ 2 Green Robin 425-678-8765
& 3 Jackson Charles 360-789-3456
|® 4 Pearson Jeffery 206-567-2345
H 5 Sears Miguel 360-789-4567
| £3) 6 Kyle Leah 425-678-7654
H 7 Myers Lynda 360-789-5678
* New)
Record: M | 1of7 | » ¥ b | search [«] r
Can change COURSE T course %
CourseDate without |CourseNumber - | Course - CourseDate ~ Fee -
problems B frAdveastels— > 10/1/2015 $500.00
[2 Beg Oils 9/15/2015 $350.00
Gan nsert new e | e onp
COURSE data as 5 Adv Pastels 11/15/2015 $500.00
needed (New) $0.00

Record: 4 < [Tof5 | » M b | Flie |[Searen | |4l | [»

T ENROLLMENT x
Customerilumber - CourseNum/bp/v AmountPaid -

Can delete
ENROLLMENT
rows as needed—
no adverse
consequences

$350.00
$350.00
$500.00
$500.00
$350.00
$250.00

$0.00

$250.00
/ |

O = oA W R

ol e e |

* $0.00
Record: 4 10of8 oMb 4 |Search 1D

this is necessary because some customers might have the same name. Another ID column,
named CourseNumber, has also been added to COURSE. This is necessary because some
courses have the same name. Finally, notice that the rows of the ENROLLMENT table show
the amount paid by a particular customer for a particular course and that the ID columns
CustomerNumber and CourseNumber are used as linking columns to the other tables.

A Relational Design for Parts and Prices Now let’s consider a more complicated
example. Figure 1-11 shows a spreadsheet that holds the Project Equipment List used by
a housing contractor named Carbon River Construction to keep track of the parts that it
buys for various construction projects.

The first problem with this list concerns modifications to the existing data. Suppose
your job is to maintain the Project Equipment List, and your boss tells you that cus-
tomer Elizabeth Barnaby changed her phone number. How many changes would you
need to make to this spreadsheet? For the data in Figure 1-11, you would need to make
this change 10 times. Now suppose the spreadsheet has 5,000 rows. How many changes
might you need to make? The answer could be dozens, and you need to worry not only
about the time this will take but also about the possibility of errors—you might miss her
name in a row or two and fail to properly update her phone number in these rows.

Consider a second problem with this list. In this business, each supplier agrees to a
particular discount for all parts it supplies. For example, in Figure 1-11 the supplier NW
Electric has agreed to a 25 percent discount. With this list, every time you enter a new
part quotation, you must enter the supplier of that part, along with the correct discount. If

FIGURE 1-11

The Project Equipment
List as a Spreadsheet

Chapter 1 Getting Started 11
H o DBE-e07-Project-Equipment-List xisk - Excel 2 H - 0O X
HOME INSERT PAGE LAYOUT FORMULAS. DATA REVIEW VIEW DEVELOPER TEAM DATA MINING Load Test David Auer ~
o Y, = T Tt e s s = 1 : Eolnset -+ 2.+ A
ok Arial 0 <A N == B General - 4 S T H

PDE@-) C dIF o C‘;\ E*Dg\ﬂa' vSZB(F d &

aste Blzu- . Hop. =BH=== - § -9 s %y o Conditional Formatas Cell .., art & Fin

- ¥ & > Fommatting = Table Styles~ ZiFormat= & - Fiere Select~
Clipboard Font [Alignment = Number £} Styles Cells Editing ~
Al g fe ProjectName o
1 Projectame | OwnerContact Phone Category Quantity ItemDescription UnitPrice ExtendedPrice Supplier Discount
2 |Highland House |Elizabeth Barnaby |555-444-8899 Electrical 1200 Amp Panel $170.00 $170.00 NW Electric 25.00% |
3 |Highland House Elizabeth Barnaby |555-444-83899 Electrical 350 Watt Breaker $60.00 $180.00 NW Electric 25.00% |
4 |Highland House |Elizabeth Barnaby |555-444-8899 Electrical 7 20 Watt Breaker $35.00 $24§.00 NW Electric 25.00% |
5 |Highland House Elizabeth Barnaby |555-444-8899 Electrical 15 15 Watt Breaker $35.00 $525.00 NW Electric 25.00% |
6 |Highland House Elizabeth Barnaby 555-444-8899 Electrical 200 12 ga, 3 Wire, per foot ‘_.‘.1.50 $300.00 EB Supplies 15.00% |
7 |Highland House Elizabeth Barnaby |555-444-83899 Electrical 300 12 ga, 3 Wire, per foot $1.25. $375.00 EB Supplies 15.00% |
8 |Baker Remodel John Stanley 1555-787-8392 Exterior 35 Siding, 4x8 feet $22.50 $787.50 Contractor, Inc. 35.00% |
9 |Highland House Elizabeth Barnaby |555-444-8899 Electrical 10 15 Watt Breaker $35.00 $350.00 EB Supplies 15.00% |
10 Baker Remodel |John Stanley |555-787-8392 Exterior 23 1x4- 8 feet $4.75 $133.00 Contractor, Inc. 35.00% |
11 Baker Remodel John Stanley 555-787-8392 Exterior 100 Cedar Shingles, bundle $65.00 $6,500.00 Contractor, Inc. 35.00% |
12 |Highland House Elizabeth Barnaby |555-444-8899 Interior 15 Door $275.00 $4,125.00 Interior, Inc. 15.00% |
13 Highland House | Elizabeth Barnaby 555-444-8899 Interior 15 Door Hinge Set $29.95) $449.25 Interior, Inc. 15.00% |
14 |Highland House Elizabeth Barnaby |555-444-8899 Interior 15 Door Handle Set $52.50 $787.50 Interior, Inc. 15.00% |
15 Hew Remodel Ralph Hew 555-298-4244 Electrical 1 Panel, 200 Amp. $170.00 $170.00 NW Electric 25.00% |
16 Hew Remodel Ralph Hew 1555-298-4244 Electrical 2 50 Watt Breaker $60.00° $120.00 NW Electric 25.00% |
17 |Hew Remodel Ralph Hew 555-298-4244 Electrical 5|20 Watt Breaker $35.00 $175.00 NW Electric 25.00%
18 Hew Remodel Ralph Hew 555-298-4244 Electrical 20 15 Watt Breaker $35.00° 5700.00 NW Electric 25.00% |
19 |Hew Remodel Ralph Hew 555-298-4244 Electrical 150/12 ga, 3 Wire, per foot $1.50 $225.00 NW Electric 25.00% |
20 Hew Remodel Ralph Hew 555-298-4244 Electrical 30014 ga, 3 Wire, per foot $1.25 5375.00 NW Electric 25.00% |
21 -

Project-Equipment-List ® 1 3

dozens or hundreds of suppliers are used, there is a chance that you will sometimes enter
the wrong discount. If you do, the list will have more than one discount for one supplier—a
situation that is incorrect and confusing.

A third problem occurs when you enter data correctly but inconsistently. The first row
has a part named 200 Amp panel, whereas the 15th row has a part named Panel, 200 Amp.
Are these two parts the same item, or are they different? It turns out that they are the same
item, but they were named differently.

A fourth problem concerns partial data. Suppose you know that a supplier offers a 20
percent discount, but Carbon River has not yet ordered from the supplier. Where do you
record the 20 percent discount?

Just as we did for the previous examples, we can fix the Project Equipment List by
breaking it up into separate tables. Because this list is more complicated, we need to
use more tables. When we analyze the Project Equipment List, we find data about four
themes: projects, items, price quotations, and suppliers. Accordingly, we create a database
with four tables and relate those four tables using linking values, as before. Figure 1-12
shows our four tables and their relationships—we will name this set of tables the Project
Eguipment Database.

In Figure 1-12, note that the QUOTE table holds a unique quote identifier (QuotelD),
a quantity, a unit price, an extended price (which is equal to [quantity * unit price]), and
three ID columns as linking values: ProjectID for PROJECT, ItemNumber for ITEM, and
SupplierID for SUPPLIER.

Now if Elizabeth Barnaby changes her phone number we need to make that change
only once—in the PROJECT table. Similarly, we need to record a supplier discount only
once—in the SUPPLIER table.

Processing Relational Tables

By now, you may have a burning question: It may be fine to tear the lists up into pieces in
order to eliminate processing problems, but what if the users want to view their data in
the format of the original list? With the data separated into different tables, the users will
have to jump from one table to another to find the information they want, and this jumping
around will become tedious.

12 Part1i

FIGURE 1-12

Database Fundamentals

The Project Equipment Database Tables

=3 PROJECT % = mem \ *x
ProjectiD - ProjectName < OwnerContact - Phone - ltemNumber ~ ItemDescription - Category -
® 1 Highland House Elizabeth Barnaby 555-444-8899 s BTl 200 Amp Panel Electrical
= 2 Baker Remodel lohn Stanley 555-787-8392 |® 1200 50 Watt Breaker Electrical
® 3 Hew Remodel Ralph Hew 555-298-4244 T 1300 20 Watt Breaker Electrical
£ (Nbw) 23] 1400 15 Watt Breaker Electrical
Record: 4« [1of3\ | b M b [Search | 4]] [¥ H 1500 12 ga, 3 Wire, per foot Electrical
|H 1550 14 ga, 3 Wire, per foot Electrical
o] 1600 Siding, 4x8 feet Exterior
|® 1700 1x4 - 8 feet Exterior
= 1800 Cedar Shingles, bundle Exterior
H 2000 Door Interior
T auor \ : ;; 2100 Door HingdeI Set Inter?ur
*
QuotelD ~ Pmis&l} - ItsmNu.mby/SupplierD +| Quantity =- | UnitPrice - ExtendedPrice ~ 1 22U bannHaneleoes Igtenag
1 1 1100 1 1 $170.00 $170.00 s —— — S — ,
2 1 1200 1 $60.00 $180.00 Record: M 4 [Tof 12 | b b b | B |Search L[] [»
3 1 1300 1 7 - §245.00
4 1 1400 1 15 $35.00 =] SUPPLIER =
5 1 1500 2 200 $1.50 0000 |] SupplieriD ~ Supplier -| Discount -
5 1 300 2 00 =23 sEiel @\> f nw Electric 25.00%
7 2. 1600 3 35 $22.50 $787.50 5 i
8 1 1400 2 10 535,00 $350.00 | 2 EB Supplies 15.00%
3 2 1700 3 28 75 $133.00 _IE 3 Contractor, Inc. 35.00%
10 2 1800 3 100 $65.00 $6,500.00 & 4 Interior, Inc. 15.00%
11 1 2000 4 15 $275.00 $4,125.00 * (New) 0.00%
© : 2100 4 1 s su0.25 Record W ([Tofd |3 07 e bl
13 1 2200 4 15 $52.50 §787.50
14 3 1100 1 1 $170.00 $170.00
15 3 1200 1 2 $60.00 $120.00
16 3 1300 1 5 $35.00 $175.00
17 3 1400 1 20 $35.00 $700.00
18 3 1500 1 150 §1.50 §225.00
19 3 1550 1 200 $1.25 $375.00
* (New) $0.00
Record: 4 < [1of19 | » Moes | & [Search | 4] 1 [

This is an important question and one that many people addressed in the 1970s and
1980s. Several approaches were invented for combining, querying, and processing sets of
tables. Over time, one of those approaches, a language called Structured Query Language
(SQL), emerged as the leading technique for data definition and manipulation. Today,
SQL is an international standard. Using SQL, you can reconstruct lists from their underly-
ing tables; you can query for specific data conditions; you can perform computations on
data in tables; and you can insert, update, and delete data.

Processing Tables by Using SQL You will learn how to code SQL statements in
Chapter 3. However, to give you an idea of the structure of such statements, let’s look at an
SQL statement that joins the three tables in Figure 1-10 to produce the original Art Course
List. Do not worry about understanding the syntax of this statement, just realize that it
produces the result shown in Figure 1-13, which contains all the Art Course List data
(although in a slightly different row order?).

SELECT CUSTOMER.CustomerLastName,
CUSTOMER.CustomerFirstName, CUSTOMER.Phone,
COURSE. CourseDate, ENROLLMENT.AmountPaid,
COURSE.Course, COURSE.Fee

FROM CUSTOMER, ENROLLMENT, COURSE
WHERE CUSTOMER . CustomerNumber ENROLLMENT . CustomerNumber
AND COURSE.CourseNumber ENROLLMENT . CourseNumber;

2We will discuss how to sort data to control the row order in Chapter 3.

FIGURE 1-13

Results of the SQL Query to Recreate the Art Course List

Chapter 1 Getting Started 13

=3 Art Course List ', b4
_CustomerLastName =| CustomerFirstName - Phone - CourseDate - AmountPaid - Course - Fee -
| ; _Ariel 206-567-1234 10/1/2015 5250.00 Adv Pastels 5500.00
{Johnson Ariel 206-567-1234 3/15/2015 $350.00 Int Pastels $350.00
Green Robin A425-678-8765 9/15/2015 $350.00 Beg Oils 5350.00
|Jackson Charles 360-789-3456 10/1/2015 S500.00 Adv Pastels 5500.00
| Pearson Jeffery 206-567-2345 10/1/2015 S500.00 |Adv Pastels 5500.00
'sears Miguel 360-789-4567 9/15/2015 $350.00 Beg Qils $350.00
Kyle Leah 425-678-7654 11/15/2015 $250.00 Ady Pastels $500.00
| Myers I__\;nlda - 360-789-5678 10_{15[2015 $0.00 Beg Oils $350.00
Record: 4 <[1of8 b ¥+ | Searen |
As you will learn in Chapter 3, it is also possible to select rows, to order them,
and to make calculations on row data values. Figure 1-14 shows the result of the SQL
statement:
SELECT CUSTOMER . CustomerLastName,
CUSTOMER.CustomerFirstName, CUSTOMER.Phone,
COURSE.Course, COURSE.CourseDate, COURSE.Fee,
ENROLLMENT . AmountPaid,
(COURSE.Fee-ENROLLMENT .AmountPaid) AS AmountDue
FROM CUSTOMER, ENROLLMENT, CUSTOMER
WHERE CUSTOMER . CustomerNumber = ENROLLMENT.CustomerNumber
AND COURSE. CourseNumber = ENROLLMENT.CourseNumber
AND (COURSE.Fee - ENROLLMENT.AmountPaid) > 0
ORDER BY CUSTOMER.CustomerLastName;
This SQL statement joins the Art Course Database tables together, computes the dif-
ference between the course Fee and the AmountPaid, and stores this result in a new
column named AmountDue. The SQL statement then selects only rows for which
AmountDue is greater than zero and presents the results sorted by CustomerLastName.
Compare the data in Figure 1-13 with the results in Figure 1-14 to ensure that the re-
sults are correct.
FIGURE 1-14

Results of the SQL Query to Compute Amount Due

= Amount Due Query x
CustomerLastName - | CustomerFirstName - Phone - Course ~ | CourseDate - Fee - | AmountPaid - AmountDue -
liohnson] | Ariel 206-567-1234 Adv Pastels 10/1/2015 4500.00 $250.00 425000
| Kyle Leah 425-678-7654 Adv Pastels 11/15/2015 $500.00 $250.00 $250.00
| Myers Lynda 360-789-5678 Beg Qils 10/15/2015 $350.00 $0.00 $350.00

*

Re-co rod:

[{of3 | » MK

w

search |

14 Part1 Database Fundamentals

WHAT IS A DATABASE SYSTEM?

FIGURE 1-15

Components of a
Database System

As shown in Figure 1-15, a database system has four components: users, the database ap-
plication, the database management system (DBMS), and the database.

Starting from the right of Figure 1-15, the database is a collection of related tables and
other structures. The database management system (DBMS) is a computer program used
to create, process, and administer the database. The DBMS receives requests encoded in
SQL and translates those requests into actions on the database. The DBMS is a large, com-
plicated program that is licensed from a software vendor; companies almost never write
their own DBMS programs.

A database application is a set of one or more computer programs that serves as an
intermediary between the user and the DBMS. Application programs read or modify da-
tabase data by sending SQL statements to the DBMS. Application programs also present
data to users in the format of forms and reports. Application programs can be acquired
from software vendors, and they are also frequently written in-house. The knowledge you
gain from this text will help you write database applications.

Users, the fourth component of a database system, employ a database application
to keep track of things. They use forms to read, enter, and query data, and they pro-
duce reports.

Of these components, we will consider the database, the DBMS, and database applica-
tions in more detail.

The Databhase

In the most general case, a database is defined as a self-describing collection of related
records. For all relational databases (the majority of databases today and the primary type
considered in this book), this definition can be modified to indicate that a database is a self-
describing collection of related tables.

The two key terms in this definition are self-describing and related tables. You al-
ready have a good idea of what we mean by related tables. One example of related tables
consists of the ADVISER and STUDENT tables, which are related by the common
column AdviserName. We will build on this idea of relationships further in the next
chapter.

Self-describing means that a description of the structure of the database is contained
within the database itself. Because this is so, the contents of a database can always be deter-
mined just by looking inside the database itself. It is not necessary to look anywhere else.
This situation is akin to that at a library, where you can tell what is in the library by examin-
ing the catalog that resides within the library.

Data about the structure of a database are called metadata. Examples of metadata are
the names of tables, the names of columns and the tables to which they belong, properties
of tables and columns, and so forth.

All DBMS products provide a set of tools for displaying the structure of their da-
tabases. For example, Figure 1-16 shows a diagram produced by Microsoft Access that

Database
Datgbage < »| management Databz
application system
(DBMS)

Users

FIGURE 1-16

Example Metadata: A
Relationship Diagram
for the Art Course

Tables in Figure 1-10

FIGURE 1-17

Database Contents

Chapter 1 Getting Started 15
=3 Relationships \ X
CUSTOMER ENROLLMENT COURSE
% CustomerNumber = = % Customerumber _/; % CourseMumber
T (==

CustomerLastMame # CourseNumber Course

CustomerFirstMName AmountPaid CourseDate

Phone Fee
4 3

User data
* Metadata

¢ |ndexes and
overhead dat

Application m

displays the relationships between the Art Course database tables shown in Figure 1-10.
Other tools describe the structure of the tables and other components.

The contents of a database are illustrated in Figure 1-17. A database has user data and
metadata, as just described. A database also has indexes and other structures that exist
to improve database performance, and we will discuss such structures in later chapters.
Finally, some databases contain application metadata; these are data that describe applica-
tion elements, such as forms and reports. For example, Microsoft Access carries applica-
tion metadata as part of its databases.

The DBMS

The purpose of a DBMS is to create, process, and administer databases. A DBMS is a large,
complicated product that is almost always licensed from a software vendor. One DBMS
product is Microsoft Access. Other commercial DBMS products are:

® Microsoft SQL Server

® Oracle Corporation’s MySQL

® Oracle Corporation’s Oracle Database
e [BM’s DB2

Dozens of other DBMS products exist, but these five have the lion’s share of the market.
Figure 1-18 lists the functions of a DBMS. A DBMS is used to create a database and
to create tables and other supporting structures inside that database. As an example of the
latter, suppose that we have an EMPLOYEE table with 10,000 rows and that this table
includes a column, DepartmentName, that records the name of the department in which
an employee works. Furthermore, suppose that we frequently need to access employee
data by DepartmentName. Because this is a large database, searching through the table
to find, for example, all employees in the accounting department would take a long time.

16 Part1 Database Fundamentals

FIGURE 1-18
Functions of a DBMS

FIGURE 1-19

Functions of Database
Application Programs

e Create database

* Create tables

* Create supporting structures (e.g., indexes)

* Read database data

* Modify (insert, update, or delete) database data
* Maintain database structures

» Enforce rules

e Control concurrency

* Provide security

» Perform backup and recovery

To improve performance, we can create an index (akin to the index at the back of a book)
for DepartmentName to show which employees are in which departments. Such an index
is an example of a supporting structure that is created and maintained by a DBMS.

The next two functions of a DBMS are to read and modify database data. To do this,
a DBMS receives SQL and other requests and transforms those requests into actions on
the database files. Another DBMS function is to maintain all the database structures. For
example, from time to time it might be necessary to change the format of a table or another
supporting structure. Developers use a DBMS to make such changes.

With most DBMS products, it is possible to declare rules about data values and
have a DBMS enforce them. For example, in the Art Course database tables in Figure
1-10, what would happen if a user mistakenly entered a value of 9 for CustomerID in
the ENROLLMENT table? No such customer exists, so such a value would cause nu-
merous errors. To prevent this situation, it is possible to tell the DBMS that any value
of CustomerID in the ENROLLMENT table must already be a value of CustomerID in
the CUSTOMER table. If no such value exists, the insert or update request should be
disallowed. The DBMS then enforces these rules, which are called referential integrity
constraints.

The last three functions of a DBMS listed in Figure 1-18 have to do with database
administration. A DBMS controls concurrency by ensuring that one user’s work does not
inappropriately interfere with another user’s work. This important (and complicated) func-
tion is discussed in Chapter 6. Also, a DBMS contains a security system that is used to en-
sure that only authorized users perform authorized actions on the database. For example,
users can be prevented from seeing certain data. Similarly, users’ actions can be confined to
making only certain types of data changes on specified data.

Finally, a DBMS provides facilities for backing up database data and recovering it from
backups when necessary. The database, as a centralized repository of data, is a valuable or-
ganizational asset. Consider, for example, the value of a book database to a company such
as Amazon.com. Because the database is so important, steps need to be taken to ensure
that no data will be lost in the event of errors, hardware or software problems, or natural or
human catastrophes.

Application Programs Figure 1-19 lists the functions of database application pro-
grams. First, an application program creates and processes forms. Figure 1-20 shows a typi-
cal form for entering and processing customer data for the Art Course application.

Notice that this form hides the structure of the underlying tables from the user. By
comparing the tables and data in Figure 1-10 to the form in Figure 1-20, we can see that

¢ Create and process forms
* Process user queries

» Create and process reports
* Execute application logic
 Control application

FIGURE 1-20

Example Data Entry Form

Chapter 1

Getting Started 17

=8| Customer Data Entry Form

Customer Data Entry Form

CustomerMumber
CustomerLastiMame
CustomerFirstName:

Phone

Course Enroliment Data

Record: M 1of7 LI

liohnson
|Ariel

206-567-1234

Course - | CourseDate - Fee

Int Pastels 3/15/2015 5350.00
| |Adv Pastels 10/1/2015 5500.00
*_
:_Record: 14 _1 of 2 ! L | B __'_5earch

|Search

- | AmountPaid - | AmountDue -

5350.00
$250.00

50.00
$250.00

data from the CUSTOMER table appear at the top of the form, whereas data from the
ENROLLMENT and the COURSE tables are combined and presented in a tabular section
labeled Course Enrollment Data.

The goal of this form, like that for all data entry forms, is to present the data in a for-

mat that is useful for the users, regardless of the underlying table structure. Behind the
form, the application processes the database in accordance with the users’ actions. The ap-
plication generates an SQL statement to insert, update, or delete data for any of the three
tables that underlie this form.

The second function of application programs is to process user queries. The applica-

tion program first generates a query request and sends it to the DBMS. Results are then
formatted and returned to the user. Figure 1-21 illustrates this process in a query of the Art

Course database in Figure 1-10.

In Figure 1-21(a), the application obtains the name or part of a name of a course.

Here the user has entered the characters pas. When the user clicks OK, the application
constructs an SQL query statement to search the database for any course containing these
characters. The result of this SQL query is shown in Figure 1-21(b). In this particular case,
the application queried for the relevant course and then joined the ENROLLMENT and
CUSTOMER data to the qualifying COURSE rows. Observe that the only rows shown are

those with a course name that includes the characters pas.

The third function of an application is to create and process reports. This function is

somewhat similar to the second because the application program first queries the DBMS
for data (again using SQL). The application then formats the query results as a report.
Figure 1-22 shows a report that displays all the Art Course database enrollment data in or-
der by course. Notice that the report, like the form in Figure 1-20, is structured according
to the users’ needs and not according to the underlying table structure.

18 Part1 Duatabase Fundamentals

FIGURE 1-21

Example Query

Enter part of course name:

=

(@) Query Parameter Form

ﬁ-—‘ Course Parameter Query"'_

x

*

Charles
| Ariel
|Jehnson Ariel
|Kyle Leah
|Pearson leffery

B

CustomerLastMame -~ | CustomerFirstName -

|Search

Course + CourseDate -

Ady Pastels
Int Pastels

Adv Pastels
Adv Pastels
Adv Pastels

10/1/2015
3/15/2015
10/1/2015
11/15/2015
10/1/2015

Fee -
5500.00
$350.00
$500.00
$500.00
$500.00

AmountPaid ~ | AmountDue -~

$500.00
$350.00
$250.00
$250.00
$500.00

$0.00
50.00
$250.00
$250.00
50.00

FIGURE 1-22

Example Report

(b) Query Results

In addition to generating forms, queries, and reports, the application program takes
other actions to update the database in accordance with application-specific logic. For
example, suppose a user using an order entry application requests 10 units of a particular
item. Suppose further that when the application program queries the database (via the
DBMS) it finds that only eight units are in stock. What should happen? It depends on the
logic of that particular application. Perhaps no units should be removed from inventory
and the user should be notified, or perhaps the eight units should be removed and two
more placed on back order. Perhaps some other action should be taken. Whatever the case,
it is the job of the application program to execute the appropriate logic.

Course Enrollment Report

Adv Pastels

Beg Oils

Int Pastels

10/1/2015

11/15/2015

9/15/2015

10/15/2015

3/15/2015

lackson

lohnson

Fearson

Kyle

Green

Sears

Myers

Johnson

Charles

Ariel

leffery

Leah

Robin

Miguel

Lynda

Ariel

360-789-3456

206-567-1234

206-567-2345

425-678-7654

425-678-8765

360-789-4567

360-789-5678

206-567-1234

5500.00

5500.00

5500.00

$500.00

5$350.00

$350.00

5350.00

$350.00

5500.00

5250.00

5500.00

$250.00

$350.00
5350.00

$350.00

5350.00

FIGURE 1-23

Personal Database
System

Chapter 1 Getting Started 19

Finally, the last function of application programs listed in Figure 1-19 is to control
the application. This is done in two ways. First, the application needs to be written so that
only logical options are presented to the user. For example, the application may generate
a menu with user choices. In this case, the application needs to ensure that only appropri-
ate choices are available. Second, the application needs to control data activities with the
DBMS. The application might direct the DBMS, for example, to make a certain set of data
changes as a unit. The application might tell the DBMS to either make all these changes or
none of them. You will learn about such control topics in Chapter 6.

Personal Versus Enterprise-Class Database Systems

Database technology can be used in a wide array of applications. On one end of the
spectrum, a researcher might use database technology to track the results of experiments
performed in a lab. Such a database might include only a few tables, and each table would
have, at most, several hundred rows. The researcher would be the only user of this applica-
tion. This is a typical use of a personal database system.

At the other end of the spectrum, some enormous databases support international
organizations. Such databases have hundreds of tables with millions of rows of data and
support thousands of concurrent users. These databases are in use 24 hours a day, 7 days a
week. Just making a backup of such a database is a difficult task. These databases are typi-
cal uses of enterprise-class database systems.

Figure 1-23 shows the four components of a personal database application. As you can
see from this figure, Microsoft Access (or another personal DBMS product) takes on the
role of both the database application and the DBMS. Microsoft designed Microsoft Access
this way to make it easier for people to build personal database systems. Using Microsoft
Access, you can switch between DBMS functions and application functions and never
know the difference.

By designing Microsoft Access this way, Microsoft has hidden many aspects of database
processing. For example, behind the scenes Microsoft Access uses SQL just as all other rela-
tional DBMS products do. You have to look hard, however, to find it. Figure 1-24 shows the
SQL statement that Microsoft Access used for the query in Figure 1-13. As you examine this
figure, you might be thinking, “I'm just as glad they hid it—it looks complicated and hard.”
In fact, it looks harder than it is, but we will leave that topic for Chapter 3.

Figure 1-25 shows the Microsoft Access query results (the same results shown in
Figure 1-13) in Microsoft Access 2013. Microsoft Access 2013 is a commonly used personal
DBMS and is available as part of the Microsoft Office 2013 suite. We will introduce you
to Microsoft Access 2013 in this book using a section in each chapter called “The Access
Workbench.” By the time you have completed all the sections of “The Access Workbench,”
you will have a solid understanding of how to use Microsoft Access 2013 to create and use
databases.

The problem with database technology being hidden (and with using lots of wzzards
to accomplish database design tasks) is that you do not understand what is being done on
your behalf. As soon as you need to perform some function that the Microsoft Access team

. 5 Database
- Database |_ _ | management N
= N application |~ > system > Databa
(DBMS)
User Microsoft Access or
other personal DBMS

20 Part1 Database Fundamentals

FIGURE 1-24

SQL Generated by Microsoft Access Query

The SQL has
been arranged to
make it easy to read

=3 Art Course List

ELECT CUSTOMER.CustomerLastMame,

FIGURE 1-25

Microsoft Access 2013

CUSTOMER. CustomerFirstMame,
CUSTOMER.Phone,
COURSE.CourseDate,
EMROLLMENT.AmountPaid,
COURSE.Course,
COURSE.Fee

FROM CUSTOMER, ENROLLMENT, COURSE

AMND [[COURSE. CourseMumberj=[EMROLLMEMT].[CourseMumber]]);

WHERE [[[CUSTOMER. CustomerMumber)=[ENROLLMENT].[CustomerNumber])

did not anticipate, you are lost. Therefore, to be even an average database developer you

have to learn what is behind the scenes.

Furthermore, such products are useful only for personal database applications. When
you want to develop larger database systems, you need to learn all the hidden technology.
For example, Figure 1-26 shows an enterprise-class database system that has three differ-
ent applications, each of which has many users. The storage of the database itself is spread
over many different disks—perhaps even over different specialized computers known as

database servers.

Bl h] Art-Course-Database : Database- C:\Users\Auer\Documents\Art-Course-Datahase.acedb (Access 2007 - 2013 file format) - Ac...

CUSTOMER Last Name

T = iE N
The database name
HOME = CREATE EXTERNALDATA DATABASETOOLS Signin
= H 3 3) Cut 4| Ascending Selection = New Totals 2l Replsce |[Cafibri J0 -
Art-Course-Database 5 - 5
o a G :
“/E z B Copy b %l Descending Yol Advanced - Refrecy B Sve + Spelling e 3 GoTo- B I U v - |H.
iew daste ilter res| in 5 .
The table object = ® Format Painter RemoveSort W ToggleFilter | aj» 2% Delete - EMore~ [5 Select~ A -3 - &~ -
CUSTOMER . Views Clipboard 5 Sort & Filter Records Find Text Formatting L] ~
IS & ~ = Art Cc List x
. All Access Objects @ « # AtcuisL : :
dlsplayed under the All —tri & CustomerlastName - CustomerfirstName -| Phone - |CourseDate - | AmountPaid - Course -~ Fee -
. johnson| Ariel 206-567-1224 10/1/2015 $250.00 Adv Pastels $500.00
Access Objects —
] = Johnson Ariel 206-567-1234 3/15/2015 $350.00 Int Pastels $350.00
B EUSTOMER Green Robin 425-678-8765 9/15/2015 $350.00 Beg Oils $350.00
. B3 ENROLLMENT Jackson Charles 360-789-3456 10/1/2015 $500.00 Adv Pastels $500.00
The query Ob]eCt Queries ES Pearson leffery 206-567-2345 10/1/2015 $500.00 Adv Pastels $500.00
q = Amount Dp€ Query Sears Miguel 360-789-4567 9/15/2015 $350.00 Beg Oils $350.00
Art Course List stores B A Kyle Leah 425-678-7654 11/15/2015 $250.00 Adv Pastels $500.00
. = o i
the query itself - P Myers Lynda 360-789-5678 10/15/2015 50.00 Beg Oils $350.00
Course Enroliment Data
. £ Course Parameter Query
The query results in 5 .
orms y
tab|e format B8 Course Enroliment Data Entry Su...
= customer Data Entry Form
Reports 2
@ course Enroliment Report
Record: W < [1of@ | » W1 | Fiier | [search

FIGURE 1-26

Enterprise-Class
Database System

Chapter 1 Getting Started 21

Database

@ | application A
Java code

= Database
B ! Database B _| management
@ | application B |~ g system
(DBMS)
C# code
SQL Server (Microsoft)
Oracle Database (Oracle)
MySQL (Oracle)
Database Others

: N
@ - application C
HTML and ASP.NET

Notice that in Figure 1-26 the applications are written in three different languages:
Java, C#, and a blend of HTML and ASP.NET. These applications call on an industrial-
strength DBMS product to manage the database. No wizards or simple design tools are
available to develop a system like this; instead, the developer writes program code using
standard tools, such as those in integrated development environments. To write such code,
you need to know SQL and other data access standards.

Although hidden technology and complexity are good in the beginning, business re-
quirements will soon take you to the brink of your knowledge, and then you will need to
know more. To be a part of a team that creates such a database application, you will need
to know everything in this book. Over time, you will need to learn more. We will close this
chapter with three examples of enterprise-class DBMS products.

Microsoft SQL Server 2014 Figure 1-27 shows the same SQL query used to pro-
duce the query results in Figure 1-13 and the associated query results when the SQL is
executed in the Microsoft SQL Server 2014 DBMS. We are actually running the query in
the Microsoft SQL Server 2014 Management Studio, which is the user client interface to
Microsoft SQL Server 2014.

Further, we are using the freely downloadable Microsoft SQL Server 2014 Express
Edition. This version is a great learning tool, and it can also be used for smaller databases.
For more information, see Appendix A, “Getting Started with Microsoft SQL Server 2014
Express Edition.”

Note that in Figure 1-27 we are using exactly the same SQL statement we used pre-
viously, but now you can see how it is entered into a text editor window in the Microsoft
SQL Server 2014 Management Studio and how the Execute button is used to execute
the SQL statement against the Art-Course-Database tables. You can also see how the
query results, which match those shown in Figure 1-13 but are sorted in a different
order, are displayed in a separate Results window. This illustrates the importance of
SQL—it is essentially the same in all DBMS products, and thus it is vendor and prod-
uct independent (although there are some differences in SQL syntax between various
DBMS products).

Oracle Database Express Edition 11g Release 2 Figure 1-28 shows the same
SQL query used to produce the query results in Figure 1-13 and the associated query
results when the SQL is executed in the Oracle Database Express Edition 11g Release 2

22 Part1i

FIGURE 1-27

Database Fundamentals

Microsoft SQL Server 2014

Click this button to run
the SQL query

$§~ - SQLQuery1.sgl - WIN81-00T\SQLEXPRESS.Art_Course_Database (WIN81-00T\Auer (54))* - Microsoft SQL Server Management Studio
|__|File Edit View OQuery Project Debug Tools Window Help

S NowQuey (5 (5| 4 |9 - o - - [b

=1 - |

(2

i 4 43| [Art_Course Database P Execute b Debug = o 05 gl | 17| 8y

The database object
Art-Course-Database
is displayed in the
Object Explorer

x EreNEEEEETeET. |

SELECT CUSTOMER.CustomerLastName,

CUSTOMER . CustomerFirstiame, [USTOMER.Phone,
COURSE.CourseDate, ENROLLMENT.AmountPaid,

COURSE. Course, COURSE.Fee

CUSTOMER, ENROLLMENT, COURSE

CUSTOMER. CustomerNumber - ENROLLMENT.CustomerNumber
AND COURSE.CourseNumber = ENROLLMENT.CourseNumber;

=
=

© [WINS1-D0T\SQLEXPRESS (SOL Server 12,
[Databases
[System Databases
= | Art_Course Database
[[Database Diagrams

The table object
CUSTOMER is
displayed under the
Art-Course-Database
object

= A Tables
@ [System Tables
@ [FileTables

@ = dbo.COURSE

¢ 4 Programmability

[[Service Broker 100% -

The SQL query

;
| 3 Resuts | 3 Messages
CustomerLastName

@ [Storage
@ A Security

CustomerFirstame: Phone CourseDate AmourtPaid Course Fee

The query results in
table format

1§ Johnion | el 65671234 20151001 250.00 Ady Pastels 50000
2 lohnson Ael 2065671234 20150315 350.00 It Pastels 350.00

C 3 Green Fiobin 4256788765 20150915 350.00 BegOls 350.00
P Serier Objecs 4 Jackson Charles 067893456 20161001 500.00 Adv Fastels 50000
Replication 5 Pearson Jeffery 2065672345 20151001 500,00 Adv Pastels 500.00

i [l Menagement 5 Sems Miguel 3607894567 20150815 350.00 Beg Ois 350.00
7 ke Lesh 4256707654 2015115 250.00 Adv Pastels 50000

5 Myes Lynds FOTELEETE 20151015 000 BegOls 35000

(& Query executed successfully.

WIN81-001\SQLEXPRESS (12.0 ... | WIN81-001\Auer (34) | Art_Course Database 00:00:00 | 8 rows

DBMS. We are using Oracle SQL Developer as user client interface to Oracle Database
11g Release 2.

Oracle, like Microsoft with SQL Server 2014, makes an express edition of the DBMS
available for free download, and for Oracle this is the Oracle Database Express Edition
11g Release 2. Also like Microsoft SQL Server 2014 Express Edition, the Express Edition
version of Oracle Database is a great learning tool, and it can also be used for smaller da-
tabases. For more information, see Appendix B, “Getting Started with Oracle Database
Express Edition 11g Release 2.”

Note that in Figure 1-28 we are again using exactly the same SQL statement we used
previously, but now you can see how it is entered into a text editor window in Oracle SQL
Developer and how to click a button to run the SQL statement against the Art Course
Database tables (the COURSE, CUSTOMER, and ENROLLMENT table objects). You
can also see how the query results, which match those shown in Figure 1-13 but are sorted
in a different order, are displayed in a separate Query Result window.

Oracle MySQL 5.6 Community Server Figure 1-29 shows the same SQL query
used to produce the query results in Figure 1-13 and the associated query results when
the SQL is executed in the Oracle MySQL 5.6 Community Server DBMS. We are again
actually running the query in the user client interface to MySQL 5.6, which is the MySQL
Workbench.

The MySQL 5.6 Community Server edition, like the Microsoft SQL Server 2014
Express Edition, can be downloaded for free. There is one significant difference between
these two products because the MySQL 5.6 Community Server edition is a standard,
full-strength edition of MySQL. However, if you want the full product support package,
you have to purchase MySQL 5.6 Enterprise Edition from Oracle. MySQL is a popular

FIGURE 1-28

Chapter 1

Getting Started 23

Oracle Database Express Edition 11g Release 2

The database object
Art-Course-Database
is displayed in the
Connections browser

Click this button to run
the SQL query

| —

The table object
CUSTOMER is

displayed in the
Tables objects

The SQL query

The query results in
table format

n

Connections

+- AT IE

PEW-BA B3 Broaa

= || Worksheet

| Query Builder

FIGURE 1-29

(- (2 OLAP Reports
(- TimesTen Reports
{2 User Defined Reports

& _Datzbase [© SELECT CUSTOMER.CustomerLasthame,
L— o i T Gt CUSTOMER. CustorerFirstName, CUSTOMER.Fhone,
& {5 corsE COURSE.CourseDate, ENROLIMENT.RAmountPaid,
-] CUsTOMER i COURSE.Course, COURSE.Fee
- FROM CUSTOMER, ENROLIMENT, COURSE
g ene \WEERE CUSTOMER.Custo = ENROLIMENT.Cust
ﬁ =g e | AND COURSE.CourseNumber = ENROLLMENT.Courselumber:
(- [0 Indexes. r
E LT
5 1
w6
E:
*
E
/‘: A
; s
E La A B) B sa | AlRows Fetched: 8in 0,094 seconds
- [Materialized View Logs |3 {} CUSTOMERLASTNAME |} CUSTOMERFIRSTNAME | {} PHONE [{ coursEDATE [} AMOUNTPAID [{; COURSE =
a3 s 1 Johnsen ... Aricl .. 206-567-1234 15-MAR-15 350 Int Pastels osx | CASH®
& [Public Synonyms 2 Johnson ohriel .. 206-567-1234 01-0CT-15 250Adv Pastels 500
E %?mm s 3 Green .. Robin .. 425-678-B765 15-SEF-15 350Beg Oils 350
i8-8 Decores . 4 Jackson .. Charles .. 306-789-3456 01-0CT-15 500Adv Pastels 500
T o 5 Pearson .. Jeffery .. 2D6-567-2345 D1-0CT-15 500Adv Pastels s00
6 Seazs .. Miguel .. 360-789-4567 15-SEE-15 350Beg Oils 350
?;R;ngmw Repiais 7 Kyle +» Leah +» 425-878-7654 15-NOV-15 250 Adv Pastels 500
4B Data Modeler Reports 8 Myers .. Lynda .. 360-789-5678 15-0CT-15 0Beg 0Oils 350

| Line 1 Calumn 1

| Insert

MySQL 5.6

Click this button to run
the SQL query

The SQL query

The database object
art_course_database
is displayed in the
Object Browser

The table object
CUSTOMER is
displayed under the
art-course-database
object

Navigator

aQ |F\|ter ohjects

¥ [art_course_database

v [Tables

» E course

» = customer
b E enrollment

B Stored Procedures
B Functions

| information_schema

' performance_schema
| test

The query results in
table format

Schemas

Information s

Ho object selected

Object Info

Session

FEAOCBE OOR valE

WHERE

%

SELECT

3
1
s FROM
6
7
8

CUSTOMER . CustomerLastName,

CUSTOMER. CustomerFirstName, CUSTOMER.Phone,

COURSE.CourseDate, ENROLLMENT.AmountPaid,

COURSE.Course, COURSE.Fee
CUSTOMER, ENROLLMENT, COURSE

CUSTOMER.CustomerNumber = ENROLLMENT.CustomerNumber

AND COURSE.CourseNumber = ENROLLMENT.CourseNumberj

| ResukGrid | HH 4% Fiber Rows: | Export: By | virep Coll Contents T8

CustomerLasthName CustomerFirsthlame Phane CourseDate AmountPaid Course Fee

208-567-1234 2015-10-01 250.00 Adv Pastels 500.00

306-789-3455 2015-10-01 500.00 Adv Pastels 500,00
Pearson Jeffery 206-567-2345 2015-10-01 500.00 Adv Pastels 500.00
Green Robin 4256788765 2015-09-15 350,00 Beq Oils 350,00
Sears Miguel 350-789-4567 2015-09-15 350.00 BegOls 350.00
Johnson Ariel 206-567-1234 201503-15 350.00 IntPastels 350.00
Myers Lynda 380-789-5578 2015-10-15 0.00 BegOls 350.00
Kyle Leah 425-678-7654 2015-11-15 250,00 Adv Pastels 500.00

Result1 x

Read Ory ©

24 Part1 Database Fundamentals

open-source product and is widely used for Web database applications (see our discus-
sion of Web database applications in Chapter 7). This version is a great learning tool, and
more information can be found in Appendix C, “Getting Started with Oracle MySQL 5.6
Community Server Edition.”

Note that in Figure 1-29 we are again using exactly the same SQL statement we
used previously, but now you can see how it is entered into a text editor window in
the MySQL Workbench and which button to click to run the SQL query against the
art-course-database tables. You can also see how the query results, which match those
shown in Figure 1-13 but are sorted in a different order, are displayed in a separate
Results window.

Of these three enterprise-class DBMS products, Oracle Database, while
perhaps the most powerful DBMS product of the three, is the most difficult
to master. If you are studying Oracle Database in a class, your instructor
will know how to introduce Oracle Database topics to you to ease the learn-
ing process, as well as the appropriate order of topics to make sure you
learn the material in an orderly fashion. Oracle Database is widely used in
industry, and your efforts to learn about it will be a good investment.

However, if you are working through this book on your own, we believe
you will find is easier to start with Microsoft SQL Server 2014 (which is
the DBMS we use to illustrate most topics in the text) or Oracle MySQL 5.6
Community Server. Both of these products are relatively easy to download,
install, and start using. Both are also widely used and will be good invest-
ments of your time and energy.

WHAT IS A NOSQL DATABASE?

The term NoSQL is a bit of a misnomer. It means, literally, a database that doesn’t use
SQL. What it really means, however, is a nonrelational database, regardless of what query
language is used.

The need for nonrelational databases arose out of the development of Web 2.0°
applications, applications that allowed the user to create and store data that would be
subsequently displayed on a Web page. Facebook, Twitter, and Pinterest are all Web
2.0 applications. These applications required a database with different capabilities
(specifically the ability to quickly create and store massive amounts of data), and non-
relational databases were created to handle this data. For example, both Facebook and
Twitter use the Apache Software Foundation’s Cassandra database.

We will discuss NoSQL databases in Chapter 8 and in Appendix K, “Big Data.”
For now, simply understand that the components of a database system shown in Figure
1-15 apply regardless of whether the DBMS is working with relational or nonrelational
databases.

?See the Wikipedia article on Web 2.0.

Chapter 1 Getting Started 25

THE ACCESS WORKBENCH

Section 1
Getting Started with Microsoft Access

“The Access Workbench” is designed to reinforce the concepts you learn in each chapter.
In addition, you will learn many Microsoft Access skills by following along on your com-
puter. In this chapter’s section of “The Access Workbench,” we will review some database
basics from Chapter 1 as we walk through the basic steps necessary to build and use
Microsoft Access database applications.

As discussed in this chapter, Microsoft Access is a personal database that combines
a DBMS with an application generator. The DBMS performs the standard DBMS func-
tions of database creation, processing, and administration, and the application genera-
tor adds the abilities to create and store forms, reports, queries, and other application-
related functions. In this section, we will work with only one table in a database; in
Chapter 2’s section of “The Access Workbench” you will expand this to include two or
more tables.

We will begin by creating a Microsoft Access database to store the database tables and
the application forms, reports, and queries. In this section, we will work with basic forms
and reports. Microsoft Access queries are discussed in Chapter 3’s section of “The Access

Workbench.”

The Wallingford Motors Customer Relations Management System

Our Microsoft Access database will be used by a car dealership named Wallingford Motors,
which is located in the Wallingford district of Seattle, Washington. Wallingford Motors is
the dealer for a new line of hybrid cars named Gaea.* Instead of using only a gasoline or
diesel engine, hybrid cars are powered by a combination of energy sources, such as gasoline
and electricity. Gaea produces the following four models:

1. SUHi The sport-utility hybrid (Gaea’s answer to the SUV)

2. HiLuxury A luxury-class four-door sedan hybrid

3. HiStandard A basic four-door sedan hybrid

4. HiElectra A variant of the HiStandard that uses a higher proportion of electrical power

Interest in hybrid cars—and specifically in the Gaea product line—is increasing. The
sales staff at Wallingford Motors needs a way to track its customer contacts. Therefore, our
database application will be a simple example of what is known as a customer relation-
ship management (CRM) system. A CRM is used by sales staff to track current, past, and
potential customers as well as the sales staff’s contacts with these customers (among other
uses). We will start out with a personal CRM used by one salesperson and expand it into a
companywide CRM in later sections.’

Creating a Microsoft Access Database

We will name our Microsoft Access application and its associated database WMCRM. Our
first step is to create a new Microsoft Access database.

4Gaea, or Gaia, was the Greek goddess of the Earth.

*Many CRM applications are available in the marketplace. In fact, Microsoft has one: Microsoft
Dynamics CRM.

(Continued)

26 Part1 Database Fundamentals

FIGURE AW-1-1

The Microsoft (0] LD
Access 2013 tile
on the Windows
8.1 Start screen—
click this tile to
start Microsoft A X E
Access 2013

The Microsoft Access
2013 Tile

Outlook 2013 Lync 2013

Access 2013 Excel 2013

Right-click the

Microsoft Access
2013 tile, and then UE P3
click Pin to
Taskbar to place Word 2013 PowerPoint 2013
the Microsoft
Access 2013

button on the N a’: v
Desktop Toolbar

OneNote 2013 Visio 2013

Creating the Microsoft Access Database WMCRM

1. Click Access tile on the Windows 8.1 Start screen as shown in Figure AW-1-1.

m NOTE: The same command works for Windows 8. For Windows 7, select Start | All
Programs | Microsoft Office | Microsoft Access 2013.

m NOTE: We recommend that you pin a Microsoft Access 2013 button to the Windows
Desktop Taskbar for ease of use. To do this, right-click the Microsoft Access 2013
tile on the Start screen to open a shortcut menu, and then click the Pin to Taskbar
command.

m NOTE: The menu commands, icon locations, and file locations used in “The
Access Workbench” are those found when using Microsoft Access 2013 in the
Microsoft Windows 8.1 operating system. If you are using the Microsoft
Windows 7 or Microsoft Windows 8 operating systems, the exact operating
system terminology may vary somewhat, but these variations will not change the
required actions.

m NOTE: Microsoft Access 2013 is used in these sections, and the wording of the
steps and appearance of the screenshots reflect its use. If you have a different ver-
sion of Microsoft Access, there will be some differences in the step details and in
what you see onscreen. However, the basic functionality is the same, and you can
complete “The Access Workbench” operations using any version of Microsoft
Access.

2. The Microsoft Access 2013 Splash Screen appears, as shown in Figure AW-1-2. This
screen displays the names of database files that have been recently used, an Open Other
Files command, and template buttons for various types of databases and database
applications.

3. Click the Blank desktop database template button to open the Blank desktop database dia-
log box as shown in Figure AW-1-3.

m NOTE: By default, in Windows 8.1 the database will be created in the Documents
folder on This PC. Note that this is a major difference and is new to Windows 8.1. In
Windows 8 and Windows 7, the database will be created in the My Documents folder
in the Documents library folder. The Documents library folder contains both a My
Documents folder and a Public Documents folder.

FIGURE AW-1-2

The Microsoft Access 2013 Splash Screen

The Recent list—
this is empty
because we
haven’t opened
any files

The Open Other
Files button

The Blank
desktop
database
template button—
use this to create
a new database
on the computer
itself

The Microsoft
Access 2013
button on the
Desktop Taskbar

FIGURE AW-1-3

Access

Recent

You haven't opened any files recently. To browse for
a file, start by clicking on Open Other Files.

@ Open Other Files

The Blank Desktop Database Dialog Box

The Blank desktop
database dialog box

Type the database file
name WMCRM.accdb
here

The database will be
created in this file
location

The Open button—use
this button to browse
to a different file
location if needed

Click the Create button
after you have typed in
the database file name

Chapter 1 Getting Started 27

search for online templates QO

? - 8 X

Sign in to get the most out of Office

Suggested searches: Assets Business
Contacts Employee Inventory Project

Sales

Iv]

Learn more
>

Custom web app

Blank deskiop database

o g 1201PM
o e
g

Blank desktop database

A 84

(Continued)

28 Part1 Database Fundamentals

4. Type in the database name WMCRM.accdb in the File Name text box, and then click the
Create button.

m NOTE: If you clicked the Open button to browse to a different file location, use
the File New Database dialog box to create the new database file. Once you have
browsed to the correct folder, type the database name in the File Name text box of
the File New Database dialog box, and then click the OK button to create the new
database.

5. The new database appears, as shown in Figure AW-1-4. The Microsoft Access window itself
is now named (in full—only part may be visible) WMCRM : Database — C:\Users\Auer\
Documents\WMCRM.accdb (Access 2007-2013 file format) — Access to include the data-
base name.

m NOTE: The reference to Microsoft Access 2007-2013 in the window name indi-
cates that the database is stored as an *accdb file, which is the Microsoft Access
database file format introduced with Microsoft Access 2007. Prior versions of
Microsoft Access used the *72db file format. Microsoft Access 2013 does not in-
troduce a new database file format but continues to use the Microsoft Access 2007
*accdb file format.

6. Note that because this is a new database Microsoft Access has assumed that you will want
to immediately create a new table. Therefore, a new table named Tablel is displayed in
Datasheet view in the document window. We do 7o¢ want this table open at this time, so
click the Close document button shown in Figure AW-1-4.

7. The Microsoft Access 2013 window with the new database appears, as shown in Figure
AW-1-5. You can see most of the features of the Microsoft Office Fluent user interface in
this window.

FIGURE AW-1-4

The New Microsoft Access Database

Th d t b BEd L R TABLETOOLS WMCRM : Database- C:\Users\Auer\Documents\WMCR... ? - X
€ database name HOME ~ CREATE EXTERNALDATA DATABAS TABLE Signin
WMCRM: Database— N as = . Data Type Reured (55,

. e orma Formattini Unique =
C:\Users\Auer\ |_——&w Short Number Currency [vesrmo Delete Mo Vema | e [Fe it ition
Documents\WMCRM. v | T BN R Lookups Expressian Settings ndexed o

Views Add & Delete Properties Formatting Field Validation »~
accdb (Access All Access Obje... ® « || Z Tabiet e
2007-2013 file = N P (
*
format)-Access Tables s / —
B Tablet

The object Navigation
Pane—adjust the right
boundary so that the
entire label All Access
Objects is displayed

The Document
Window using the
tabbed documents
interface

The Close button —

Record: M 4 [10f 1 » Search
Datasheet View B2

FIGURE AW-1-5

Chapter 1 Getting Started 29

The Microsoft Office Fluent User Interface

The Quick Access
Toolbar

WMCRM : Database- C:\Users\Auer\Documents\WIMCRM.accdb (Access 2007 - 2013 file format) - Access ?
EXTERMAL DATA DATABASE TOOLS

E &=
HOME CREATE
Cut

The File
command tab

Paste
Farmat Painter

Sort & Filter

Views Clipboard 1) Records

#All Access Objects @ «

Text Formatting

The Ribbon with
command tabs

Search.. Vel

The object
Navigation Pane

/

The Document
Window

The Help button

The Close [Exit]
button

A

The status bar

The Microsoft Office Fluent User Interface

Microsoft Access 2013 uses the Microsoft Office Fluent user interface found in most (but
not all) of the Microsoft Office 2007 and Office 2013 applications. The major features of
the interface can be seen in Figure AW-1-5. To illustrate its use, we will modify some of the
default settings of the Microsoft Access database window.

The Quick Access Toolbar

First, we will modify the Quick Access Toolbar shown in Figure AW-1-5 to include a Quick
Print button and a Print Preview button.

Modifying the Microsoft Access Quick Access Toolbar

1. Click the Customize Quick Access Toolbar drop-down arrow button shown in Figure AW-1-5.
The Customize Quick Access Toolbar drop-down list appears, as shown in Figure AW-1-6.

2. Click Quick Print. The Quick Print button is added to the Quick Access Toolbar.

3. Click the Customize Quick Access Toolbar drop-down button. The Customize Quick
Access Toolbar drop-down list appears.

4. Click Print Preview. The Print Preview button is added to the Quick Access Toolbar.

5. The added buttons are visible in the figures shown later in this section of “The Access
Workbench,” such as Figure AW-1-7.

Database Objects and the Navigation Pane

Microsoft uses the term object as a general name for the various parts of a Microsoft Access
database. Thus, a #able is an object, a report is an object, a form is an object, and so on.
Microsoft Access objects are displayed in the Microsoft Access Navigation Pane, as shown

(Continued)

30 Parti

FIGURE AW-1-6

The Quick Access Toolbar

Database Fundamentals

The Quick Access
Toolbar

The Customize
Quick Access
Toolbar drop-
down arrow button

The Customize
Quick Access
Toolbar drop-
down list—click
an item to add it to
the toolbar

2 WMCRM : Database- C:\Users\Auer\Documents\WIMCRM.accdb (Access 2007 - 2013 file format) - Access ? = x
HOME CREAT| Customize Quick Access Toolbar TOOLS Sign in
Cut New ction New 3 Totals ab
Copy Open anced : Save " Spelling B I U
Refresh Find s
Format Pai| v Save gleFilter | A Delete Mare g
fews Clipboard Email Records Find Text Formatting -
All Access Object <P
e Print Preview
| Speliing
v Undo
v Redo
Mode
Refresh All
Sync All
v Touch/Mouse Mode
Mre Commands...
Show Below the Ribbon

FIGURE AW-1-7

The Navigation Pane
Drop-Down List

in Figure AW-1-3. However, because you have not created any objects in the WMCRM
database, the Navigation Pane is currently empty.

The Navigation Pane is currently labeled as A/ Access Objects, which is what we want
to see displayed. We can, however, select exactly which objects will be displayed by using
the Navigation Pane drop-down list. As shown in Figure AW-1-7, the Navigation Pane
drop-down list is controlled by the Navigation Pane drop-down list button. Figure AW-1-6

The Quick Print

button

The Print Preview |

button

The Navigation Pane -
\

drop-down list button

The All Access

-

HO REATE

Cut

Comy

Format Painter

T Clipboard Fa
A -

Il Access Objects

Objects drop-down

. e
list

N

Mavigate To Category
Custom
|Z| Object Type
Tables and Related Views
Created Date

Modified Date
Filter By Group
Tables

Queries

Forms

Beports

All Access Objects

-

EXTERMAL D

&« |

FIGURE AW-1-8

The Empty Navigation
Pane

Chapter 1 Getting Started 31

Use the Shutter Bar E -7 =
Open/Close button to h

HOME CREATE EXTERMAL D
hide or display the S

Navigation Pane Cut

The Navigation Pane View et Filter
is empty because we grmat Painter

have not created any iR Clipboard I
objects for this . ~ 1
database All Access Objects @«

\gih p

shows the empty Navigation Pane and the Shutter Bar Open/Close button. We can hide
the Navigation Pane if we want to by clicking the Shutter Bar Open/Close button, which is
displayed as a left-facing double-chevron button on the upper-right corner of the Navigation
Pane in Figure AW-1-8. If we click the button, the Navigation Pane shrinks to a small band
labeled Navigation Pane on the right side of the Microsoft Access 2013 window. The band
will then display the Shutter Bar Open/Close button as a right-facing double-chevron button
that we can click to restore the Navigation Pane when we want to use it again.

Closing a Database and Exiting Microsoft Access

The Close button shown in Figure AW-1-5 is actually a close and exit button. You can click
it to close the active database and then exit Microsoft Access. Note that Microsoft Access
actively saves most changes to a database, and it prompts you with Save command requests
when they are needed. For example, when you close a table with modified column widths
Microsoft Access asks if you want to save the changes in the table layout. Therefore, you do
not need to save Microsoft Access databases the way you save Microsoft Word documents
and Microsoft Excel workbooks. You can simply close a database, knowing that Microsoft
Access has already saved all critical changes since you opened it.

Closing a Database and Exiting Microsoft Access

1. Click the Close button. The database closes, and you exit Microsoft Access.

Instead of clicking the Close button, you can simultaneously close the da-
tabase and exit Microsoft Access by clicking the File command tab, and
then clicking the Exit command. To close just the database while leaving
Microsoft Access open, select the File command tab, and then click the
Close Database command.

(Continued)

32 Parti

FIGURE AW-1-9

The Recent File List

The WMCRM.accdb
database in the
Recent list—click

the file name to open
the file. Right-clicking
the file name displays
a shortcut menu with
options to (1) remove
this file from the
Recent list and (2) pin
it to the list
permanently.

Database Fundamentals

Opening an Existing Microsoft Access Database

Earlier in this section of “The Access Workbench” we created a new Microsoft Access data-
base for the Wallingford Motors CRM (WMCRM.accdb), modified some Microsoft Access
settings, and closed the database and exited Microsoft Access. Before we can continue build-
ing this database, we need to start Microsoft Access and open the WMCRM.accdb database.

When we open an existing database, Microsoft Access 2013 (like Microsoft Access
2007 and Microsoft Access 2010 before it) gives us the option of using Microsoft Access
security options to shut down certain Microsoft Access 2013 features in a database to pro-
tect ourselves against harm not only from viruses but also from other possible problems.
Unfortunately, the Microsoft Access 2013 security options also shut down significant and
needed operational features of Microsoft Access. Therefore, we will normally enable the
features that the Microsoft Access 2013 security warning warns us about when we open an
existing database.

Opening a Recently Opened Microsoft Access Database

1. Open Microsoft Access 2013 by clicking the Microsoft Access 2013 button on the
Windows Start screen (or on the Windows Taskbar if you pinned it there as suggested).
Microsoft Access 2013 is displayed with the splash screen open, as shown in Figure AW-1-9

2. The Recent list is displayed on the splash screen, and the database file WMCRM.accdb is
now listed there.

3. Note that if the database has been used very recently it will be available in the Recent file list.
You may make the file a permanent part of the Recent file list, by right-clicking the file name to
display a shortcut menu, and then clicking the Pi# to list command. Similarly, you can remove a
file from the Recent list by using the Renzove from: list command on the shortcut menu.

4. Click the WMCRM.accedb file name in the Recent file list to open the database. A Security
Warning bar appears with the database, as shown in Figure AW-1-10.

?7 - 8 X

Search for online templates O

Sign in to get the most out of Office

Learn more

Contacts Employee Inventory Project

Recent Sales

Suggested searches: Asscts Business

WMCRM.accdb =

Documents ; ‘%

Custom web app

@2 Open Other Files

Blank desktop database

5

Asset tracking

FIGURE AW-1-10

Chapter 1

Getting Started 33

The Security Warning Bar
Th S ,t @ - WMCRM : Database- C:\Users\Auer\Documents\WMCRM.accdb (Access 2007 - 2013 file format) - Access ? - x
e ecurl y HOME CREATE EXTERNAL DATA DATABASE TOOLS Signin
Warning bar
e Paste .‘\‘I: Filter - fresh 1
Format Painte Rem 0 jgle Filte | elete
Views Clipboard 1K) Sort & Filter Records Find Text Formatting ~

Enable Content x

The Click for more
details link

I SECURITY WARNING Some active content has been disabled. Click for more details,

/
Search.. ¥l

Click the Enable
Content button

—

5. At this point, we have the option of clicking the Security Warning bar’s Click for more
details link, which will display a detailed version of the warning together with security op-
tions. However, for our purposes in this text, we simply need to enable the active content,
so click the Enable Content button.

m NOTE: At some point, you should select the Click for more details link and explore
the available security settings.

m NOTE: In Microsoft Access 2007, the Security Warning bar appeared every time the
database was reopened (although from a nontrusted location—see Chapter 6’s section
of “The Access Workbench” for a discussion of trusted locations). In Microsoft Access
2010 and Microsoft Access 2013, the Security Warning bar is only displayed the first
time you reopen a database, and your choice of options is remembered from that
point on.

Creating a Microsoft Access Database Table

At this point in the development of the WMCRM database application, the data-
base will be used by one salesperson, so we need only two tables in the WMCRM
database—CUSTOMER and CONTACT. We will create the CUSTOMER table first.
The CUSTOMER table will contain the columns and characteristics shown in the table in
Figure AW-1-11. The column characteristics are type, key, required, and remarks.

Type refers to the kind of data the column will store. Some possible Microsoft Access
data types are shown in Figure AW-1-12. For CUSTOMER, most data are stored as short
text data which can store up to 255 characters (also commonly called character data, this
data type was previously called just text—long text now refers to a data type previously
called memo, which can store up to 65,535 characters), which means we can enter strings
of letters, numbers, and symbols (a space is considered a symbol). The number behind
the word Text indicates how many characters can be stored in the column. For example,
customer last names may be up to 25 characters long. The only number, or numeric, data
column in the CUSTOMER table is CustomerID, which is listed as AutoNumber. This
indicates that Microsoft Access will automatically provide a sequential number for this col-
umn for each new customer that is added to the table.

Key refers to table identification functions assigned to a column. These are described
in detail in Chapter 2. At this point, you simply need to know that a primary key is a col-
umn value used to identify each row; therefore, the values in this column must be unique.

(Continued)

34 Part1 Database Fundamentals

FIGURE AW-1-11

Database Column Characteristics for the CUSTOMER Table

Column Name Type Key Required Remarks
CustomerID AutoNumber Primary Key Yes Surrogate Key
LastName Text (25) No Yes

FirstName Text (25) No Yes

Address Text (35) No No

City Text (35) No No

State Text (2) No No

ZIP Text (10) No No

Phone Text (12) No Yes

Fax Text (12) No No

Email Text (100) No No

FIGURE AW-1-12

Microsoft Access 2013 Data Types

Name Type of Data Size
Short Text Characters and numbers Maximum 255 characters
Long Text Large text Maximum 65,535 characters
Number Numeric data Varies with Number type
Date/Time Dates and times from the year Stored as 8-byte double-precision integers
100 to the year 9999
Currency Numbers with decimal places One to four decimal places
AutoNumber A unique sequential number Incremented by one each time
Yes/No Fields that can contain only Yes/No, On/Off, True/False, etc.
two values
OLE Object An object embedded in or linked Maximum 1 GB
to a Microsoft Access table
Hyperlink A hyperlink address Maximum 2,048 characters in each of three parts
of the hyperlink address
Attachment Any supported type of file may Independent of Microsoft Access
be attached to a record
Calculated Results of a calculation based on Varies depending on values used
data in other cells in calculation
Lookup A list of possible data values Varies depending on the values in the

Wizard. ..

located in a value list

value list

FIGURE AW-1-13
The Table Design Button

Chapter 1 Getting Started 35

This is the reason for using the AutoNumber data type, which automatically assigns a
unique number to each row in the table as it is created.

Required refers to whether the column must have a data value. If it must, a value must

be present in the column. If not, the column may be blank. Note that because CustomerID
is a primary key used to identify each row it #zust have a value.

Remarks contains comments about the column or how it is used. For CUSTOMER,

the only comment is that CustomerID is a surrogate key. Surrogate keys are discussed in
Chapter 2. At this point, you simply need to know that surrogate keys are usually com-
puter-generated unique numbers used to identify rows in a table (that is, a primary key).
This is done by using the Microsoft Access AutoNumber data type.

Creating the CUSTOMER Table

1.
2.
3.

Click the Create command tab to display the Create command groups.

Click the Table Design button, as shown in Figure AW-1-13.

The Tablel tabbed document window is displayed in Design view, as shown in

Figure AW-1-14. Note that along with the Tablel window a contextual tab grouping

named Table Tools is displayed and that this tab grouping adds a new command tab

named Design to the set of command tabs displayed.

NOTE: It seems like now would be a good time to name the new table CUSTOMER.
With Microsoft Access, however, you do not name a table until you save it the first

time, and you cannot save a table until you have at least one column defined. So, we
will define the columns, and then we will save and name the table. If you want, save
the table after you have defined just one column. This will close the table, so you will
have to reopen it to define the remaining columns.
In the Field Name column text box of the first line, type the column name CustomerID
and then press the Tab key to move to the Data Type column. (You can also click the Data
Type column to select it.)
NOTE: The terms column and field are considered synonyms in database work. The
term attribute is also considered to be equivalent to these two words.
Select the AutoNumber data type for CustomerID from the Data Type drop-down list, as
shown in Figure AW-1-15.
If you like, an optional comment may be stored in the Description column. To do so, move
to the Description column by pressing the Tab key or clicking in the Description text box.

The Create tab

The Table Design
button

When the mouse is
held over the Table
Design button, a tool
tip for the button that
shows that a new table
object will be created
will be displayed below
the button.

] - = WMCRM : Database- C:\Users\Auer\Documents\WMCRM.accdb (Access 2007 - 2013 file format) - Access T - 8 X
CREATE ~ EXTERNALDATA DATABASE TOOLS Signin
L Form Wizar] Report Wizar [£ Module
=R RE EED] [R | [7 9
Mavigation = Label 57! Class Module
Application Tablge Table SharcPoint Query Query Form Form Blank Report Report Blank Macro) A
Design Lists~ Wizard Design Design Form = Mere Forms - Design Repart 5] Visual Basic

Templates Tables Forms Wacros & Code ~

All Accesg’Objects @ «
yel

Queries Reports

Search..

(Continued)

36 Part1i

FIGURE AW-1-14

Database Fundamentals

The Table1 Tabbed Document Window

The TABLE TOOLS
contextual command
tab is displayed along
with the set of
command tabs that
comprise Table Tools

The DESIGN command
tab and its command
groups are displayed

The Table1 tabbed
document window
in Design view

FIGURE AW-1-15

Selecting the Data Type

= R s TABLETOOLS ~ WMCRM : Database- C:\Users\Auer\ Documents WMCRM.acedb (.. 7 — x
HOME CREATE EXTERNAL DATA ASE TOOLS DESIGN Sign in

D #= Trsert Rows F = == ,*r‘

: N 3X Delete Rows L/ =L B &

View Tary Builder Test Validation "oy PfGperty Indexes CreateData Rename/ Relationships Object

| —T" Ke Rules EQ Modify Lookup Sheet Macros~ Delete Macro Dependencies

V\E!/vs Turlﬂs Show/Hide Field, Record & Table Events Relationships -~
. {1 =3 Tablet x
All Access Objects = Tabe
Field Name Data Type Description (Optional) -

=

Field Properties

General Lookup

Afield name can be up to 64 characters [ong,
including spaces, Press F1 or help on field
names.

Design view, F6 = Switch panes. F1 = Help.

The Data Type drop-
down list arrow button

The Data Type drop-
down list

Select AutoNumber }\

Field Name \Da%
mm\smrnext [v
| Short Text

Long Text

Number
Date/Time

\ currency

| Yes/No

OLE Object

Hyperlink

Attachment

Calculated

Lookup Wizard...

\

Field Properties

General |Laokup|

Field Size 255
Format

Input Mask

Caption

Default Value

Validation Rule

Validation Text

Required No

Allow Zero Length Yes

Indexed Yes (Duplicates OK]
Unicode Compression | Ves

IME Mode No Control

IME Sentence Mods None

Text Align General

Design view, F6 = Switch panes, F1 = Help,

BHS @-§- & = TABLETOOLS WMCRM : Database- C:\Users\Auer\Documents\WMCRM.acedb (.. 2 — & X
HOME ~ CREATE EXTERNALDATA DATABASETOOLS DESIGN Sign in
D €= Insert Rows = D = == I_F
3 Delete Rows = =l =T = S

View | Primary Builder Testdlglidation oy Property Indexes Create Data Rename/ Relationships Object

I = Key Q Modify Lackups gheet Macros= Delete Macro Dependencies
Toals Show/Hide Field, Record & Table Events Relationships ~
All Access Obj ® || Tabet . £
i B escription (Optional) B

The dats type determines the kind of values
that users can store in the field, Press F1 for
help on data types

FIGURE AW-1-16

Chapter 1 Getting Started 37

The Completed CustomerID Column

The completed
CustomerlID column
definition

— Field Name Data Type Description (Optional) -~

T Tablet X

™ customerlD AutoNumber Surrogate key for CUSTOMER

Field Properties

General :Lookup

A field name can be up to 64 characters long,
including spaces. Press F1 for help on field
names.

Type the text Surrogate key for CUSTOMER and then press the Tab key to move to the
next row. The Tablel tabbed document window now looks as shown in Figure AW-1-16.

m NOTE: The Remarks column in the set of database column characteristics shown
in Figure AW-1-11 is not the same as the table Description column shown in
Figure AW-1-16. Be careful not to confuse them. The Remarks column is used to
record technical data, such as facts about table keys and data default values that
are necessary for building the table structure. The Description column is used to
describe to the user the data stored in that field so that the user understands the
field’s intended use.

. The other columns of the CUSTOMER table are created using the sequence described in

steps 4 through 6—at this point you should add each of the remaining columns shown in
Figure AW-1-9 to the CUSTOMER table while following those steps.
m NOTE: See Figure AW-1-19 for the Description entries.

. To set the number of characters in text columns, edit the Data Type Field Size property text

box, as shown in Figure AW-1-17. The default value for Field Size is 255, which is also the
maximum value for a text field.

. To make a column required, click anywhere in the column Data Type Required property

text box to display the Required property drop-down list arrow button, then click the but-
ton to display the Required property drop-down list, as shown in Figure AW-1-18, and then
select Yes from the Required property drop-down list. The default is No (not required), and
Yes must be selected to make the column required.®

®Microsoft Access has an additional Data Type property named Allow Zero Length. This property con-
founds the settings necessary to truly match the SQL constraint NOT NULL discussed in Chapter 3.
However, the discussion of Allow Zero Length is beyond the scope of this book. See the Microsoft Access
Help system for more information.

(Continued)

38 Part1 Database Fundamentals

FIGURE AW-1-17
Editing the Text Field Size

Edit this number = e B — e
ield Name ata Type escription (Optiona

to set the number CustomerlD AutoNumber Surrogate key for CUSTOMER

of characters LastName Short Text vl

Field Properties

General ;Lookup:

Field Size 25

Format

Input Mask

Caption

Default Value

Validation Rule The maximum number of characters you can
Validation Text enter in the field. The largest maximum you
Required Mo can set is 255. Press F1 for help on field size.
Allow Zero Length Yes

Indexed Ma

Unicode Compression Yes

IME Mode Mo Control

IME Sentence Mode MNone

Text Align General

FIGURE AW-1-18

Setting the Column Required Property Value

Click anywhere in the = Taviet\ — _

q Field Name Data Type Description (Optional)
BeqUIred text box to CustomerlD AutoNumber surrogate key for CUSTOMER
display the arrow the LastName Short Text v

Required property
drop-down list arrow
button

Select Yes from the
Required property
drop-down list

Field Properties

eneral Lookup|
25

Default Value
Validation Rule
Walidation Text
Required Mo [&]
Allaw Zero Length _
Indexed No |
Unicode Compression Yes

IME Mode Mo Contral

IME Sentence Mode MNone

Text Align General

Require data entry in this field?

FIGURE AW-1-19

Chapter 1 Getting Started 39

Now we need to set a primary key for the CUSTOMER table. According to Figure

AW-1-11, we need to use the CustomerID column as the primary key for this table.

Setting the CUSTOMER Table Primary Key

1.

Move the mouse pointer to the row selector column of the row containing the CustomerID
properties, as shown in Figure AW-1-19. Click to select the row.

Click the Primary Key button in the Tools group of the Design tab, as shown in

Figure AW-1-20. CustomerID is selected as the primary key for the CUSTOMER table.

We have finished building the CUSTOMER table. Now we need to name, save, and

close the table.

Naming, Saving, and Closing the CUSTOMER Table

1.

2.

To name and save the CUSTOMER table, click the Save button in the Quick Access
Toolbar. The Save As dialog box appears, as shown in Figure AW-1-21.

Type the table name CUSTOMER into the Save As dialog box’s Table Name text box and
then click OK. The table is named and saved. The table name CUSTOMER now appears
on the document tab, and the CUSTOMER table object is displayed in the Navigation
Pane, as shown in Figure AW-1-22.

To close the CUSTOMER table, click the Close button in the upper-right corner of the
tabbed documents window, as shown in Figure AW-1-22. After the table is closed, the
CUSTOMER table object remains displayed in the Navigation Pane, as shown in

Figure AW-1-23.

Selecting the CustomerID Row

The row selector
column—move the
mouse pointer into this
column to select a
specific row

Move the mouse
pointer here and click
to select the
CustomerID row

I Table %
— Field Name Data Type Description (Optional)
r CustomerlD AutoNumber Surrogate key for CUSTOMER
/ LastName Short Text Customer's last name
FirstName Short Text Customer's first name
Address Short Text Customer's street address, including apartment or unit number
City Short Text Customer's city
State Short Text Customer's state using standard two-letter abbreviations
ZIp Short Text Customer's ZIP code using ZIP+1.
Phone Short Text Customer's phone number including area code
Fax Short Text Customer's fax numberincluding area code
Email Short Text Customer's email address

Field Properties

General :Lookup'

Field Size Long Integer

Mew Values Increment

Format

Caption

Indexed Yes [Duplicates OK)

Text Align General Afield name can be up to 64 characters long,

including spaces. Press F1 for help on field
names.

(Continued)

40 Part1

FIGURE AW-1-20

Setting the Primary Key

Database Fundamentals

Click the Primary Key
button in the Tools
group of the Design
tab to set CustomerID
as the primary key

BdS &-§-
HOME CREATE
[View | By Builder Te
- Key
Tools

Views

All Access Objects &

Search..

A key symbol here
indicates that
CustomerlD is the
primary key of the
table

FIGURE AW-1-21

Naming and Saving the
CUSTOMER table

= TABLETOOLS ~ WMCRM: Database- C:\Users\Auer\Documents\WMCRM.accdb (... 7?7 - 8 X
EXTERNAL DATA DATABASETOOLS DESIGN Sign in
€= Insert Rows . E D _:ﬂj W] ’ﬁ
3% Delete Rows =l £ = ':’-;ﬂ' i Bg o
S Property Indexes CreateData Rename/ Relationships Object
£ Modify Lookups gpeet Macros~ Delete Macra Dependencies
Show/Hide Field, Record & Table Events Relationships ~
P = Tablet b
Field Name Data Type Description (Optional) -
2 ¥ customeriD AutoNumber Surrogate key for CUSTOMER
LastName Short Text Customer's last name
FirstName Short Text Customer's first name
Address Short Text Customer's street address, including apartment or unit number
City Short Text Customer's city
State Short Text Customer's state using standard two-letter abbreviations
zip Short Text Customer's ZIP code using ZIP+4
Phone Short Text Customer's phone number including area code
Fax Short Text Customer's fax number including area code
Email Short Text Customer's email address
Field Properties

General |Lookup
Field Size Long Integer
New Values Increment
Format
Caption
Indexed
Text Align

Yes (Mo Dupli
General

Design view. F6 = Switch panes. F1 = Help,

cates)

Afield name can be up to 64 characters lang,
including spaces, Press F1 for help on field
names.

Click the Save button
in the Quick Access
Toolbar to display the
Save As dialog box

Table Mame:

Type the table name
CUSTOMER in the
Table Name text box

> CUSTOMER]

The OK button

Ok Cancel

=
—

Inserting Data into Tables: The Datasheet View

There are three commonly used methods for adding data to a table. First, we can use a ta-
ble as a datasheet, which is visually similar to and works like a Microsoft Excel worksheet.
When we do this, the table is in Datasheet view, and we enter the data cell by cell. Second,
we can build a data entry form for the table and then use the form to add data. Third, we
can use SQL to insert data. This section covers the first two of these methods; we will use
the SQL method in Chapter 3’s section of “The Access Workbench.”

In Microsoft Access 2013, we can also use Datasheet view to create and modify table
characteristics. When we open a table in Datasheet view, the Table Tools contextual tab
includes a Datasheet command tab and ribbon with tools to do this. We do 70t recommend
this; it is better to use Design view, as previously discussed in this section, for creating and
modifying table structures.

FIGURE AW-1-22
The Named CUSTOMER Table

The table object
CUSTOMER is
displayed in the
Navigation Pane

The table is now
named CUSTOMER,
and the table name
now appears on the
document tab

Click the Close
button to close the
CUSTOMER table

FIGURE AW-1-23
The CUSTOMER Table Object

The table object
CUSTOMER is

displayed in the
Navigation Pane

Chapter 1 Getting Started 41

Format
Caption
Indexed
Text Align

Design view. F6 = Switch panes. F1 = Help,

Increment

Long Integer

@ H ¢ - = TABLETOOLS WMCRM : Database- C:\Users\Auer\Documents\WMCRM.accdb (... 7 - x
HOME CREATE EXTERNAL DATA DATABASETOOLS DESIGN Sign in
&= =
D v s Insert Rows : = D’ ﬂ DE ,:J-,
X Delete Rows - -
View Primary| Builder Test Va Swd Property Indeses CreateData Rename/ Relationships Object
- Key got Modify Lookups gheet Macros - Delete Macro Dependencies
Views Tools Show/Hide Field, Record & Table Events Relationships -~
All Access Objects © « || = customer *
e ¥ { Field Name Data Type Description {Optional) -
CustomeriD AutoNumber Surrogate key for CUSTOMER
Taie 2 LastName Short Text Customer's last name
& customer FirstName Short Text Customer's first name
Address Short Text Customer's street address, il ing apartment or unit number
City Short Text Customer's city
State Short Text Customer's sta Sing standard two-letter abbreviations
zip Short Text Custom 1P code using ZIP+4
Phone Short Text Gy mer's phone number including area code
Fax Short Text Customer's fax number including area code
Email Short Text Customer's email address

Yes (Mo Duplicates)

General

Field Properties

A field name can be up to 64 characters long,
including spaces, Press F1 for help on field
names.

2] e
HOME CREATE
& Cut
Egc
iew Paste 1= Capy
Farmat Painter
Views Clipboard 17

All Access Objects ©

Search..
Tables
T CusTOMER

& = WMCRM : Database- C:\Users\Auer\Documents\WMCRM.acedb (Access 2007 - 2013 file format) - Access ? - 8 X
EXTERNALDATA DATABASE TOOLS Sign in
Selection Ne 2 Totals 25
=y Advanced S S % Spelling s B I . u
Remo gle Filter All- 2 Delete ~ [More
Sort & Filter Records Find Text Formatting ~

&«

o

However, at this point we do not need to modify the table structure—we simply

need to put some data into the CUSTOMER table. Figure AW-1-24 shows some data for
Wallingford Motors customers.

Adding Data to the CUSTOMER Table in Datasheet View

1. In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER

table window appears in a tabbed document window in Datasheet view, as shown in

(Continued)

42 Part1 Database Fundamentals

FIGURE AW-1-24

CUSTOMER Data
LastName FirstName Address City State Zip
Griffey Ben 5678 25th NE Seattle WA 98178
Christman Jessica 3456 36th SW Seattle WA 98189
Christman Rob 4567 47th NW Seattle WA 98167
Hayes Judy 234 Highland Place Edmonds WA 98210
LastName FirstName Phone Fax Email
Griffey Ben 206-456-2345 Ben.Griffey@somewhere.com
Christman Jessica 206-467-3456 Jessica.Christman@somewhere.com
Christman Rob 206-478-4567 206-478-9998 Rob.Christman@somewhere.com
Hayes Judy 425-354-8765 Judy.Hayes@somewhere.com

FIGURE AW-1-25

Figure AW-1-25. Note that some columns on the right side of the datasheet do not appear
in the window, but you can access them by scrolling or minimizing the Navigation Pane.
m NOTE: Asin a worksheet, the intersection of a row and column in a datasheet is

called a cell.

2. Click the Shutter Bar Open/Close button to collapse the Navigation Pane. This makes
more of the CUSTOMER datasheet visible, as shown in Figure AW-1-26.

The CUSTOMER Table in Datasheet View

B d $- ¥ g - TABLE TOOLS WMCRM : Database- C\Users\Auer\Documents\WMCR.. 7 — x
The TABLE TOOLS tab }__ﬁmw CREATE EXTERNALDATA DATABASETOOLS FIELDS TABLE Signin
b/‘ Cut Y 2] Ascending T Selection ~ @ Ne > Totals Calibri (Detail) -1
If yOU need to switch \‘?1” |~ E= Copy ilo g T=)Advanced Hsave F Speliing %~ B IU =l

ew | Paste ot Fiter = hite | R Eu Find] oo,

- ormat Painter emove Sor oggleFilter delete ~ ore - - - M=t -
between DataSheet Views Clipboard F] Sort & Filter Records Find Text Formatting ~
view and Design view All Access Objects © « || = cusiomer\ B

LastName -~ FirstName - Address - City State - brd]] Phone

use the Design View
button

ustomeriD -

Search..
Tables
= cusTomer

The Shutter Bar
Open/Close button

The CUSTOMER
tabbed document
window with the table
in Datasheet view

Record: W 1of1

Surrogate key for CUSTOMER

H Search 4 b

FIGURE AW-1-26

Chapter 1 Getting Started 43

The Collapsed Navigation Pane

EH - € Q- TABLE TOOLS WMCRM : Database- C:\Users\Auer\Documents\WMCR... 7 - x
The Shutter Bar h HOME ~ CREATE EXTERNALDATA DATABASETOOLS FIELDS TABLE Sign in
OpenICIose button v X cut Y 8] Ascending Y Selection - @ Nev 3 Totals 2L | Calibri (Detail -
o ER Copy % Descending] Advanced - H save 7 speliing 2- B I U I =
View. | Paste Format Painter Fifter Remove Sort Taggle Filter Rif{‘EthDE\EtE - EMore~ find - A-¥ - O- === 4
The CO”apsed Y Views Clipboard 5 Sort & Filter Records Find Text Formatting 5l A
Navigation Pane » [[= custome™ =
CustomerlD - | LastName -~ FirstName ~-| Address -« City - State - ZIP - Phone ~ Fax - Email - q
* (New)
2
£
]
H
3
The CUSTOMER L
tabbed document L
window with the table
in Datasheet view
Record: M [1of 1 [Search [« v

FIGURE AW-1-27

3.
4.

5.

Surrogate key for CUSTOMER

Click the CUSTOMER document tab to select the CUSTOMER table in Datasheet view.
Click the cell in the CustomerID column with the phrase (New) in it to select that cell in
the new row of the CUSTOMER datasheet.

Press the Tab key to move to the LastName cell in the new row of the CUSTOMER data-
sheet. For customer Ben Griffey, type Griffey in the LastName cell. Note that as soon as
you do this the AutoNumber function puts the number 1 in the CustomerID cell and a new
row is added to the datasheet, as shown in Figure AW-1-27.

Entering Data Values for Ben Griffey

This row has been
autonumbered as
CustomerID 1

BEH®- @-4-& 4 = TABLE TOOLS WMCRM : Database- C:\Users\Auer\ Documents\WMCR. ? = x
HOME = CREATE EXTERNALDATA DATABASETOOLS FIELDS TABLE Sign in
h{‘ Cut Y 2| Ascending Y Selection - i New > Tatals H 25 |calibri (Detail) - |5
‘ﬁ pae B CoBY il %l Descending ToAdvanced - R MHsave U Spelling (5 B I"g =l El -
- ¥ Format Painter Remove Sart ToggleFilter |y~ 2% Delete ~ EMore~ k~ A+ -D- === 4

Views Clipboard r.. Sart & Filter Records Find Text Formatting oA

» | = CUSTOMER X
CustomeriD - LastName - FirstName - Address - City - State - ZIp - Phone - Fax - Email -

A new, blank row
is added to the
datasheet

. —> 1 Griffey|
#* (New)

e

(Continued)

44 Part1 Database Fundamentals

FIGURE AW-1-28

The Completed Row of Data Values

C | d h BEH® @-4-& 4 = TABLE TOOLS WMCRM : Database- Gi\Users\Auer\Documentsi\WMCR. , 7 = x
olumn widths can HOME ~ CREATE EXTERNALDATA DATABASETOOLS FIELDS TABLE Signin
be adjusted by using X cut Y 8] Ascending Y Selection ~ F" & New 3 Totals 2% |calibri (Detail A
= z . s " L% (= o ang . :
the mouse to drag the s Ez Copy ik %l Descending o] Advanced s, B Save % Spelling P 2> B I ‘g |y | B
| b d t th - i Remove Sart ToggleFilier - 2% Delete ~ E] More~ ls- A~ - === 4-

Co umn or er o e we\:\rs Clipboard] Sort & Fifter Records Find Text Formatting] »~
desired width » [| = customen x

FirstName - | Address - Cily »| State - zIp ~| Phone - Fax - Email P Clickto Add

Ben 5678 25thNE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com|

*

6. Using the Tab key to move from one column to another in the CUSTOMER datasheet,
enter the rest of the data values for Ben Griffey.

7. The final result is shown in Figure AW-1-28. Note that the width of the Email column
was expanded using the mouse to move the border of the column—just as you would in a
Microsoft Excel worksheet.

m NOTE: If you make a mistake and need to return to a cell, click the cell to select it
and Microsoft Access will automatically shift into Edit mode. Alternatively, you can
use Shift-Tab to move to the right in the datasheet and then press F2 to edit the con-
tents of the cell.

m NOTE: Remember that LastName, FirstName, and Phone require a data value. You
will not be able to move to another row or close the table window until you have a
value in each of these cells.

m NOTE: Figure AW-1-28 shows a column labeled Click to Add to the right of the
Email column. This is a table tool in Datasheet view that you can use to create or
modify table structures. We do not recommend using these tools—we prefer to use
Design view instead!

8. Use the Tab key to move to the next row of the CUSTOMER datasheet and enter the data
for Jessica Christman, as shown in Figure AW-1-29.

FIGURE AW-1-29
The Completed CUSTOMER Datasheet

M | dth Ed* -8 Q- TABLE TOOLS WMCRM : Database- C:\Users\Auer\Documents\WMCR... ? - x
any column wi S HOME = CREATE EXTERNALDATA DATABASETOOLS FIELDS TABLE Signin
had to be adjusted [V it Y 8| Ascending Y Selection - F" = New 3 Totals H 2% |calibri (Detail A B

vt z Tlhdarceds | M Bl % ; = [o .
to get a” the data S = B p %1 Descending @Ad\an(e? L ?a\s Eli:eumg P -L: 2. I ‘g o bl e

a - Remave Sart Toggle Filter | ajj~ Delete ~ ore = % - - D === F-
to show in one views Clipboard T Records Find Text Formatting Eoa
window—use the » || 2 customer =
CustomeriD ~ | LastName - |FirstName -| Address =~ | City - | State -| ZIP - Phone -] Fax> - -

mouse to drag the 1 Griffey Ben S67825thNE Seattle WA 98178 206-456-2345 &N Griffey@somewhere.com
column borders to the 2 Christman Jessica 345636th SW Seattle WA 98189 206- Jessica.Christman@somewhere.com|

(New)

desired widths

Click the Close
button to close the —
CUSTOMER datasheet

9.

10.

11.

Chapter 1 Getting Started 45

Adjust the datasheet column widths so that you can see the contents of the datasheet in
one screen. The final result is shown in Figure AW-1-29.

We are adding only the data for Jessica Christman at this point, and we will add the re-
maining CUSTOMER data later in this section of “The Access Workbench.” Click the
Close button in the upper-right corner of the document window to close the CUSTOMER
datasheet. A dialog box appears that asks if you want to save the changes you made to the
layout (column widths). Click the Yes button.

Click the Shutter Bar Open/Close button to expand the Navigation Pane. This makes the
objects in the Navigation Pane visible.

Modifying Data in Tables: The Datasheet View

After entering data into a table, you can modify or change the data by editing the data val-
ues in the Datasheet view. To illustrate this, we will temporarily change Jessica Christman’s
phone number to 206-467-9876.

Modifying Data in the CUSTOMER Table in Datasheet View

1.

FIGURE AW-1-30

In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER
table window appears in a tabbed document window in Datasheet view.
Click the Shutter Bar Open/Close button to collapse the Navigation Pane.
Click the cell that contains Jessica Christman’s phone number to select it. Microsoft Access
automatically puts the cell into Edit mode.
m NOTE: If you instead use the Tab key (or Shift-Tab to move to the left in the data-
sheet) to select the cell, press the F2 key to edit the contents of the cell.

. Change the phone number to 206-467-9876.

m NOTE: Remember that Phone has a field size of 12 characters. You have to delete
characters before you can enter new ones.

Press the Enter key or otherwise move to another cell to complete the edit. The
CUSTOMER datasheet appears as shown in Figure AW-1-30.
Because we really do not want to change Jessica Christman’s phone number, edit the Phone
value back to its original value of 206-467-3456. Complete the edit and click the Save but-
ton on the Quick Access Toolbar to save the changes.
Click the Close button in the upper-right corner of the document window to close the
CUSTOMER datasheet.
Click the Shutter Bar Open/Close button to expand the Navigation Pane.

The Modified CUSTOMER Datasheet

The phone number
has been modified

EHS- -8 a- TABLE TOOLS WMCRM: Database- CAUsers\AueADocumentAWMCR.. 2 — x
HOME | (CREATE EXTERNALDATA DATABASETOOLS FIELDS TABLE Sign in
t‘/ it 'Y 7| Ascending T Selectiol D i New 3 Totals Calibri [Detail) -1 -
£ lDescendmg |:|Ad\anced BSE\.E Mspelng ., »- B I U [
View Filter Find Iy
- - 24 < - ElMore- b+ | Ar-8% === d
Views Clipboard Sart & Filter Records Find Text Formatting noA
» || = cusToMER %
CustomeriD - | LastName - |FirstName r| Address - | City -|State | ZIP -| Phone - Fax Email
1 Griffey Ben 5678 25th NE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com
5 2 Christman Jessica 3456 36th SW Seattle WA 98 206-467-9876 Jessica.Christman@somewhere.com

(New)

(Continued)

46 Part1 Database Fundamentals

FIGURE AW-1-31

Deleting a Row in the CUSTOMER Datasheet

f . . EH - -2 4 - TABLE TOOLS WMCRM : Database- C:\Users\Auer\Documents\WMCR, 7 = x
Click a cell in this HOME = CREATE EXTERNALDATA DATABASETOOLS FIELDS TABLE Sign in
column to select an [V X, cut %] ascending Silection ”ﬂ New 3 Totals H . |[calibri (Detail -
entire rowm—a |eft-c|ick ‘fi‘ o EmCapy o %l Descending o Advanced~ R;"h Hsave ¥ Speliing i & B I U -

ill si | | h T e | sriesan WTosglerie | . OKDase ERMens e | av e B me
WI Slmp y Se ect t e V\EV_\/S (Ilplluard L] Sort & Filter Records Find Text Formatting] ”~
row, while a right-click » || 2 customm x

il | h d CustomeriD + | LastName « |FirstName »| Address = | City - | State -| ZIP -| Phone = Fax - Email -
will se eCtt € row an \ 1 Griffey Ben 5678 25th NE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com
displayashortcut ; ' L;Christman Jessica 3456 36th SW Seattle WA 98189 206-467-3456 Jessica.Chri com

New,
menu

= MNew Record
/F‘x Delete Record

The Delete Record 7l E" e

. B3 Copy

command in the] i
shortcut menu ol |IC Rowhdghe:

£

Deleting Rows in Tables: The Datasheet View

After the data have been entered into a table, you can delete an entire row in Datasheet
view. To illustrate this, we will temporarily delete Jessica Christman’s data.

Deleting a Row in the CUSTOMER Table in Datasheet View
1. In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER

table window appears in a tabbed document window in Datasheet view.

2. Click the Shutter Bar Open/Close button to collapse the Navigation Pane.

3. Right-click the row selector cell on the left side of the CUSTOMER datasheet for the row
that contains Jessica Christman’s data. This selects the entire row and displays a shortcut
menu, as shown in Figure AW-1-31.

m NOTE: The terms row and record are synonymous in database usage.

4. Click the Delete Record command in the shortcut menu. As shown in Figure AW-1-32, a
Microsoft Access dialog box appears, warning you that you are about to permanently delete
the record.

m NOTE: As also shown in Figure AW-1-32, Microsoft Access 2013 with default set-
tings performs the visual trick of actually removing the row! However, the row is not
permanently deleted until you click the Yes button in the Microsoft Access dialog
box. If you click the No button, the row reappears.

FIGURE AW-1-32

The Microsoft Access Deletion Warning Dialog Box

Th ith BHS- §-& Q- TABLE TOOLS
€ row wi HOME ~ CREATE EXTERMALDATA DATABASETOOLS FIELDS TABLE Signin
g q g
Jessica Christman’s l\/‘ X cut £ Ascending Hr e |—ﬂ i New 3 Totals H 35 |Calibri (Detail) N [T
e g H Yo Advariced = & Higsn o - [==p
data has already s B Copy L %l Descending o] Advanced R S SV VSpeling | 3 B I Ig = |
be n q ” . ¥ Format Painter Remave Sort Toggle Filter All- X Delete = [E]More~ s~ A~ Dvl=== |4
en visually Views Clipboard & Sort & Filter Records Find Text Formatting Eooa
removed! \ CUSTOMER x
CustomeriD « LastName r|FirstName »| Address ~| City - State - ZIP - Phone A = Email =
\ 1 Griffey Ben 5678 25th NE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com
* (New)
Click the Yes button TR
to actually delete
1 | You are about to delete 1 record(s).
the row “BL iryou dickves, you wort be sble to unda this Delete speration.
Are you sure you want to delete these records?
No
o
2
£

FIGURE AW-1-33

The New CustomeriD Number

5.

6.

8.

Chapter 1 Getting Started 47

Click the Yes button to complete the deletion of the row.

m NOTE: Alternatively, you can delete the row by clicking the row selector cell and
then pressing the Delete key. The same Microsoft Access dialog box shown in Figure
AW-1-32 then appears.

Because we do not want to really lose Jessica Christman’s data at this point, add a new row
to the CUSTOMER datasheet that contains Jessica’s data. As shown in Figure AW-1-33, the
CustomerID number for Jessica Christman is now 3 instead of 2. In an autonumbered col-
umn, each number is used only once.

Click the Close button in the upper-right corner of the document window to close the
CUSTOMER datasheet.

Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Inserting Data into Tables: Using a Form

Now, we will create and use a form to insert data into a table. A form provides a visual ref-
erence for entering data into the various data columns, and Microsoft Access has a form
generator as part of its application generator functions. We could build a form manually
in Form Design view, but instead we can take the easy route and use the Form Wizard,
which will take us through a step-by-step process to create the form we want.

Creating a Data Entry Form for the CUSTOMER Table

1.

2.

Click the Create command tab to display the Create command tab and its command

groups, as shown in Figure AW-1-34.

Click the Form Wizard button shown in Figure AW-1-34. The Form Wizard appears, as

shown in Figure AW-1-35.

The CUSTOMER table is already selected as the basis for the form, so we only have to se-

lect which columns we want to include on the form. We can choose columns one at a time

by highlighting a column name and clicking the right-facing single-chevron button. Or we

can choose all the columns at once by clicking the right-facing double-chevron button. We

want to add all the columns in this case, so click the right-facing double-chevron button to

add all the columns and then click the Next button.

m NOTE: In a real-world situation, we might not want to display the CustomerID

value. In that case, we would deselect it by highlighting it and clicking the left-facing
single-chevron button.

numbers are
sequential and are
used only oncel!

. B d S & Q- TABLE TOOLS WMCRM : Database- CAUsers\Auer\Documents\WMCR.., 2 — & X
The row with the HOME = CREATE EXTERNALDATA DATABASETOOLS FIELDS TABLE Signin
reentered Jessica [V ¢ Y 4| Ascending Y- Selection - Ij) N 3 Totals 3 [Calibri (Detail o B

P 22 L] By copy Z| Descending Yo Advanced - = Hswe % Spelling >+ B I U =R
hrIStman data noW View Paste Filter Refresh Find
has a CustomerID) i igleFiter | qe X Delete ~ FElMore Yo as-bols==E-
\/\E-A_fs Clu?_l?luﬂr(\ e Sort & Filter Records Find Text Formatting i) "~

of 3—AutoNumber \ » || 3 customer x

™~ CustormeriD - | LastName - | FirstName -
\1 Griffey Ben
3 Christman Jessica

*

Address ~| City ~-|State - | ZIP - Phone - Fax - Email -
5678 25th NE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com
3456 36th SW Seattle WA 98189 206-467-3456 Jessica.Christman@somewhere.com

(Continued)

Database Fundamentals

48 Part1

FIGURE AW-1-34

The Create Command Tab and Form Wizard Button

The CREATE 23] ¢ &- 8 R - WMCRM: Database- C:AUsers\AueADacuments\WIMCRM.accdb (Access 2007 - 2013 file format) - Access LI T
e CREATE EXTERNALDATA DATABASETOOLS Signin
command tab El 2zl l:l ’_D m e [Farm Wizard «, 7| @ | (3 Report Wizard J‘ £ Module
=3 N e | L oNE Bl Navigation = “—' 5] Labels P! Class Module
Application Table Table SharePoint Query Q orm Form Blank Report Report Blank Macro
Parts - Design Lists~ izard Design Design Form [More Forms - Design Report (] Visual Basic
Templates 5 Forms Reports Macros & Code ~

® «

Queries
5 /

Tables =
= cusToMER

Search.

The Form Wizard
button

/
The Forms | —
command group

4. When asked, “What layout would you like for your form?” click the Next button to select
the default Columnar layout.

5. When asked, “What title do you want for your form?” type the form title WMCRM
Customer Data Form into the text box and then click the Finish button. As shown
in Figure AW-1-36, the completed form appears in a tabbed document window and a
WMCRM Customer Data Form object is added to the Navigation Pane.

m NOTE: The WMCRM Customer Data Form is properly constructed and sized for
our needs. Sometimes, however, we might need to make adjustments to the form de-
sign. We can make form design changes by switching to form Design view. To switch
to form Design view, click the Design View button in the View gallery.

Now that we have the form we need, we can use the form to add some data to the

FIGURE AW-1-35
The Form Wizard

CUSTOMER table.

The Form Wizard

Form Wizard

The CUSTOMER
table is already
selected

Which fields do you want on your form?

You can choose from more than one table or guery.

The right-facing
single chevron
button

\\Eableszueries

able: CUSTOMER -

Available Fields: Selected Fields:

Click the right-facing
double chevron
button to select all of
the fields in the table

Lastiame
Firsthlame

The Next button

Cancel Einish

Chapter 1 Getting Started 49
FIGURE AW-1-36
The Completed WMCRM Customer Data Form
@ H - é’.‘i @ s WMCRM : Database- C:\Users\Auer\Documents\WMCRM.accdb (Access 2007 - 2013 file format) - Access ?2 - 8 X
The WMCRM h HOME CREATE EXTERNAL DATA DATABASE TOOLS Sign in

Customer Data
Form tabbed
document window

Y 4| Ascending V- Selection -

%l Descending V=) Advanced -

= New 3 Totals %
- i
v o i
[

o save Spellin
Rk -
o« Sart ToggleFilter | Aji= Delete ~ More

E ut
— Paste [E rcapy Filter in

The Forms section
of the Navigation
Pane

The WMCRM
Customer Data
Form object

The New Record
button

Views Clipboan Sort & Filter Records Find Text Formatting ~
All Access Objects & «] =2 WMCRM Customer Data Form 4
search. £ WMCRM Customer Data Form
Tables E

— I cusToMER
™ Forms 2 || ¥
B8l WMCRM Customer Data Form !

[Griffey
ame |Ben
Address [5678 25th NE
City |Seattle
State WA
|os178
\ Phone |206-456-2345
Emai |Ben.Griffey@somewhere.com
~

Record: 4 «[Tofz | b M Search
Surragate key far CUSTOMER BE B &

Inserting Data into the CUSTOMER Table Using a Form

1. Click the New Record button. A blank form appears.

2. Click the LastName text box to select it. Enter the data for Rob Christman shown in Figure
AW-1-24. You can either use the Tab key to move from text box to text box or you can click
the text box you want to edit.

3. When you are done entering the data for Rob Christman, enter the data for Judy Hayes
shown in Figure AW-1-24. After you have entered the data for Judy Hayes, your form will
look as shown in Figure AW-1-37.

4. Click the Close button in the upper-right corner of the document window to close the
WMCRM Customer Data Form.

Modifying Data and Deleting Records: Using a Form

Just as we can modify data and delete rows in Datasheet view, we can edit data and delete
records by using a form. Editing data is simple: Move to the record you want to edit by using
the record navigation buttons (First Record, Previous Record, etc.) shown in Figure AW-1-37,
click the appropriate field text box, and then edit the contents. Deleting a record is also simple:
Move to the record you want to edit by using the record navigation buttons and then click the
Delete Record button in the Delete drop-down list of the Records group of the Home command
tab, as shown in Figure AW-1-38. However, you will not use these capabilities at this time.

Creating Single-Table Microsoft Access Reports

One common function of an application is to generate printed reports. Microsoft Access
2013 has a report generator as part of its application generator functions. Just as with forms,
we could build a form manually, or we can take the easy route and use the Report Wizard.

(Continued)

50 Parti

Database Fundamentals

FIGURE AW-1-37

The WMCRM Customer Data Form for Customer Judy Hayes

The WMCRM =8| WMCRM Customer Data Forrn"‘._. /X
Customer Data Form | 1, WMCRM Customer Data Form
with the data for
Judy Hayes ¥
- tastomerlD | 5i
The Close button —| : !
LastName |Hayes
Eirsti. [
The Last Record frsame gudy !
button Address |234 Highland Place |
City |Edmonds |
The Next Record State iWA |
button 7P Be20 |
. lazs-354.8755 |
The Previous Record |7|
button :
|Judy.Hayes@somewhere.com
The First Record
button
Record: 4 4[4of4 | b M b [[Search |
FIGURE AW-1-38
The Delete Record Button
22 c-&- 2 [= WMCRM : Database- C:\Users\AueA\Documents\WIMCRM.accdb (Access 2007 - 2013 file format) - Access ? = b3
The HOME —_h HOME CREATE EXTERNAL DATA DATABASETOOLS Sign in F 1
command tab | Xoe Y Hhasendng T sekcion- B New 3 Totals % = i
: ER Copy %] Descending =] Advanced - =l Hsave % spelling »- B I U = ¥
bl e e il s R = viore Ne A-¥
The Records /‘,EWE S 7(\}?!}97517{1 N i Sort & Filter X D Find Text Formatting ~
command group All Access Objects ® «||= = Dot gcord %
| search. 2 WMCRM mer D¢ >
The Delete drop-down | — = o N
list arrow button | Forms = || ¥ ,
= wMcRM G TData Form CustomeriD [E\
LastName }Havss—
The Delete Record | _— FirstName liugy \
button Address [23a Highland Place |
city [Edmands |
State MA
zp jog210]
Phons i'_ayj—zsctsms]
Fax [|
Email Judy.Hayes@somewhere.com
\
[Record: 4 4aota | » W | K ter [[Searcn |
Surrogate key for CUSTOMER g Bl [é

etting Starte
Chapter 1 Getting Started 51
FIGURE AW-1-39
The Create Command Tab and Report Wizard Button
2 g] 3-8 3 = WMCRM : Database- C:\Users\Auer\Documents\WMCRM accdb (Access 2007 - 2073 file format) - Access 7 - x
The CREATE ’h—m CREATE EXTERNAL DATA DATAE:\SETOOLS ' ' Sign in
command tab l:l Q D ,ﬁ\ @ '@- Q l:l @mew‘md f : 5] Report Wizegd k ;’:Mndule
Application Table Table SharePoint Query Query Form Form Blank B8 Navigation - port Report Blank [Eltabe Macro ™ Semlecle
Parts ~ Design Lists= Wizard Design arms Design Report 5] Visual Basic
Templates Tables Queries Reports Macros & Code fad
All Access Objects 5
The Report ey o
- | _—[Tables 2
Wizard button B

Forms E3

The Reports
command group

CRM Customer Data Farm

FIGURE AW-1-40
The Report Wizard

Creating a Report for the CUSTOMER Table

1. Click the Create command tab to display the Create command groups, as shown in

Figure AW-1-39.

2. Click the Report Wizard button shown in Figure AW-1-39. The Report Wizard appears, as
shown in Figure AW-1-40.

3. The CUSTOMER table is already selected as the basis for the report, so we only have to
select which columns we want on the form. Just as with the Form Wizard, we can choose
columns one at a time by highlighting the column name and clicking the right-facing
single-chevron button. We can also choose all the columns at once by clicking the right-
facing double-chevron button. In this case, we want to use only the columns LastName,
FirstName, Phone, Fax, and Email. Click each column name in the Available Fields list

The Report Wizard

The CUSTOMER
table is already
selected

Report Wizard

Which fields do you want on your report?

You can choose from more than one table or query.

The Available
Fields list

Tables/Queries
Table: CUSTOMER

Available Figlds:

Click the right-facing
single chevron
button to select the
highlighted field in the
table

The Next button

hd

Selected Fields:

Cancel Einish

(Continued)

52 Part1 Database Fundamentals

FIGURE AW-1-41

The Completed Column Selection

The Selected
Fields list

The Next button

Report Wizard
Which fields do you want on your report?
N
You can choose from more than one table or query.
Tables/Queries
Table: CUSTOMER v
Available Fields: Selected Fields:
CustomerID LastMame
Address Firsthame
City Fhone
State Fax

=<

1

FIGURE AW-1-42

Choosing the Sort Order

Cancel 5 P Mext = Einish

to select it and then click the right-facing single-chevron button to move each column to
Selected Fields. The completed selection looks as shown in Figure AW-1-41.

m NOTE: You can select only one column at a time. The usual technique of selecting
more than one column name at a time by pressing and holding the Ctrl key while
clicking each additional column name does 70 work in this case.

Click the Next button.

Microsoft Access now asks, “Do you want to add any grouping levels?” Grouping can be use-
ful in complex reports, but we do not need any groupings for this simple report that lists cus-
tomers. Instead, we can use the default nongrouped column listing, so click the Next button.
As shown in Figure AW-1-42, we are now asked, “What sort order do you want for your re-
cords?” The most useful sorting order in this case is by last name, with sorting by first name

The sort field 1 drop-
down list arrow button

Select LastName
from the drop-down
list

The Next button

ending or descending order.
— \
N 1 w Ascending

Report Wizard

t sort order do you want for your records?

You can sort records by up to four fields, in either

\

FirstMame
Phone
Fax

Email

Cancet Bark: t Mext = Einish

FIGURE AW-1-43
The Finished Report

Chapter 1 Getting Started 53

The Wallingford
Motors Customer

window

Report print preview

'WMCRM : Database- C:\Users\Auer\Documents\WMCRM.accdb (Access 2007 - 2013 file format) - Access 7 - 8 X

®d - ?
PRINT PREVIEW Sign in

The Reports section
of the Navigation Pane

The Wallingford
Motors Customer
Report object

FirstName

The report is sorted
by LastName and then

The Close button

8 [0 - BIEYNE G QEEHE N =)=
@ 5 e N Bg REER O
Size Margins [| pyint Data Only Portrait Landscape Columns Page Zoom | One Twa More Refresh Ecel Tet PDF Email More Close Print
- Setup - | Page Pages Pages- File orXps - Preview
Print Fag Page Layout Zoom Data Close Preview A
All Access Objects ® 4 8 watiingford Motors Customer Report %
Search.. Vel
Tables 2
E customEr 5
Forms A Wallingford Motors Customer Report
T WMCRM Customer Data Form
Report =
eports ; tastName FirstName Phane Fax Email
’_’,'EE Wallingford Motars Customer Re... | >
1 Christman 206-467-345 Jessica.Christmal
Christman Raob 206-478-456 206-478-999 Rob.Christman@
Ben 206-456-234 Ben.Griffey@sor|
/// Hayes Judy 425-354-876 Judy.Hayes@sor|
Page: 1 [« [| L
Ready] m H ¥ -—F—+ 100%

for identical last names. For both sorts, we want an ascending sort (from A to Z). Click the
sort field 1 drop-down list arrow and select LastName. Leave the sort order button set to
Ascending.

7. Click the sort field 2 drop-down list arrow and select FirstName, leave the sort order but-
ton set to Ascending, and click the Next button.

8. We are now asked, “How would you like to lay out your report?” We will use the default
setting of Tabular Layout, but click the Landscape Orientation radio button to change the
report orientation to landscape. Click the Next button.

9. Finally, when we are asked, “What title do you want for your report?” we edit the re-
port title to read Wallingford Motors Customer Report. Leave the Preview the report
radio button selected. Click the Finish button. As shown in Figure AW-1-43, the com-
pleted report appears in a tabbed document window, a Reports section has been added
to the Navigation Pane, and the Wallingford Motors Customer Report object appears
in this section.

10. Click the Close button in the upper-right corner of the document window.

Closing a Database and Exiting Microsoft Access 2013

We have finished all the work we need to do in this chapter’s “The Access Workbench.”
We have learned how to create a database; how to build database tables, forms, and re-
ports; and how to populate a table with data by using Datasheet view and a form. We finish
by closing the database and Microsoft Access.

Closing the WMCRM Database and Exiting Microsoft Access 2013

1. To close WMCRM: Database and exit Microsoft Access 2013, click the Close button in the
upper-right corner of the Microsoft Access 2013 window.

(Continued)

54 Part1

SUMMARY

Database Fundamentals

The importance of database processing increases every day because databases are used in
information systems everywhere—and increasingly so. The purpose of this book is to teach
you essential database concepts and to help you get started using and learning database
technology.

The purpose of a database is to help people keep track of things. Lists can be used for
this purpose, but if a list involves more than one theme modification problems will occur
when data are inserted, updated, or deleted.

Relational databases store data in the form of tables. Almost always, the tables are
designed so that each table stores data about a single theme. Lists that involve multiple
themes need to be broken up and stored in multiple tables, one for each theme. When this
is done, a column needs to be added to link the tables to each other so that the relationship
from a row in one table to a row in another table can be shown.

Structured Query Language (SQL) is an international language for processing tables in
relational databases. You can use SQL to join together and display data stored in separate
tables, create new tables, and query data from tables in many ways. You can also use SQL
to insert, update, and delete data.

The components of a database system are the database, the database management sys-
tem (DBMS), one or more database applications, and users. A database is a self-describing
collection of related records. A relational database is a self-describing collection of related
tables. A database is self-describing because it contains a description of its contents within
itself, which is known as metadata. Tables are related by storing linking values of a common
column. The contents of a database are user data; metadata; supporting structures, such as
indexes; and sometimes application metadata.

A database management system (DBMS) is a large, complicated program used to cre-
ate, process, and administer a database. DBMS products are almost always licensed from
software vendors. Specific functions of a DBMS are summarized in Figure 1-18.

The functions of database applications are to create and process forms, to process user
queries, and to create and process reports. Application programs also execute specific ap-
plication logic and control the application. Users provide data and data changes and read
data in forms, queries, and reports.

DBMS products for personal database systems provide functionality for appli-
cation development and database management. They hide considerable complex-
ity, but at a cost: Requirements unanticipated by DBMS features cannot be readily
implemented. Enterprise-class database systems include multiple applications that
might be written in multiple languages. These systems may support hundreds or thou-
sands of users.

An example of a personal database system is Microsoft Access 2013, which is dis-
cussed in this book in chapter sections titled “The Access Workbench.” These sections
cover all the basic knowledge that you need to create and use databases in Microsoft
Access 2013.

Examples of enterprise-class DBMS products include Microsoft SQL Server 2014,
Oracle MySQL 5.6, and Oracle Database Express Edition 11g Release 2. Information
about these DBMS products is provided in Appendix A, “Getting Started with Microsoft
SQL Server 2014 Express Edition”; Appendix B, “Getting Started with Oracle Database
Express Edition 11g Release 2”; and Appendix C, “Getting Started with Oracle MySQL
5.6 Community Server.”

NoSQL refers to nonrelational databases used in Web 2.0 applications such as
Facebook and Twitter. NoSQL databases are discussed in Chapter 8 and Appendix K,
“Big Data.”

KEY TERMS

concurrency

database

database application

database management system
(DBMS)

delete

enterprise-class database system

ID column

insert

list

metadata

Microsoft SQL Server 2014

Microsoft SQL Server 2014 Express

Edition

REVIEW QUESTIONS

1.1
1.2
1.3
1.4

1.5

1.6
1.7
1.8

1.9

1.10
1.1

FIGURE 1-30

Microsoft SQL Server 2014
Management Studio

modification action

modification problem

Chapter 1

personal database system

referential integrity
constraint

related tables

Getting Started 55

MySQL Workbench relational database
nonrelational database relational model
NoSQL self-describing
null value Structured Query Language
Oracle Database Express (SQL)
Edition 11g Release 2 Express table
Edition update
Oracle MySQL 5.6 user
Community Server Web 2.0
Oracle SQL Developer

Why is the study of database technology important?
What is the purpose of this book?
Describe the purpose of a database.

What is a modification problem? What are the three possible types of modification
problems?

Figure 1-30 shows a list that is used by a veterinary office. Describe three modifica-
tion problems that are likely to occur when using this list.

Name the two themes in the list in Figure 1-30.

What is an ID column?

Break the list in Figure 1-30 into two tables, each with data for a single theme.
Assume that owners have a unique phone number but that pets have no unique col-

umn. Create an ID column for pets like the one created for customers and courses
for the Art Course database tables in Figure 1-10.

Show how the tables you created for question 1.8 solve the problems you described
in question 1.5.

What does SQL stand for, and what purpose does it serve?

Another version of the list used by the veterinary office is shown in Figure 1-31.
How many themes does this list have? What are they?

The Veterinary Office List—Version One

A B c D E E G H
(il PetName Bl PetTypeBd PetBreed B2 M__OvnerlasiName B OwnerfirsiName Bl OwnerPhone B Ownerfmail |2
2 King Dog Std. Poodle 27-Feb-12 Downs Marsha 201-823-5467 Marsha Downs@somewhere com
3 [Teddy Cat Cashmier 1-Feb-11 James Richard 201-735-9812 Richard.James{@somewhere.com
4 Fido Dog Sid. Poodle 17-Jul-13 Downs Marsha 201-823-5467 Marsha Downs@somewhere com
5 AJ Dog Collie Mix 5-May-13 Frier Liz 201-823-6578 Liz Frier@somewhere.com
6 Cedro Cat Unknown 6-Jun-10 James Richard 201-735-9812 Richard.James{@somewhere.com
7 [Woolley Cat Unknown 77 James Richard 201-735-9812 Richard James@somewhere.com
& Buster Dog Border Collie 11-Dec-09 Trent Miles 201-634-7865 Miles Trent@somewhere com
9 |Jedah Cat Abyssinian 1-Jul-06 Evans Hilary 210-634-2345 Hilary Fvans@somewhere com

56 Part1 Database Fundamentals

FIGURE 1-31

The Veterinary Office List—Version Two

EXERCISES

1 Pme a .ﬁm - Peeed - OwnerLiName - ownerFsmame - ()wnehnne s Owrlemail - Sei—ce - - _v
STy cm Caet Zeb 11 Jamaa Richard irisiety e mesguomhecom NClp | 5oepdd 8 2750
g s Colie it Shaay13 P i T T T T T T
7 Wooley Ca rree s Richar WirHw? AcharJames@eomeherecom Stnmectin 3OM14 S 300
Sl Cu Abyssiin IR0 e Hiay P0Guos Himy Fansfaomesberscom Docst Shots £Nowls § 11100
1.12 Break the list in Figure 1-31 into tables, each with a single theme. Create ID col-
umns as you think necessary.
1.13 Show how the tables you created for question 1.12 solve the three problems of lists
identified in this chapter.
1.14 Describe in your own words and illustrate with tables how relationships are repre-
sented in a relational database.
1.15 Name the four components of a database system.
1.16 Define the term database.
1.17 Why do you think it is important for a database to be self-describing?
1.18 List the components of a database.
1.19 Define the term metadata, and give some examples of metadata.
1.20 Describe the use of an index.
1.21 Define the term application metadata, and give some examples of application metadata.
1.22 What is the purpose of a DBMS?
1.23 List the specific functions of a DBMS.
1.24 Define the term referential integrity constraint. Give an example of a referential
integrity constraint for the tables you created for question 1.8.
1.25 Explain the difference between a DBMS and a database.
1.26 List the functions of a database application.
1.27 Explain the differences between a personal database system and an enterprise-class
database system.
1.28 What is the advantage of hiding complexity from the user of a DBMS? What is the
disadvantage?
1.29 Summarize the differences between the database systems in Figure 1-23 and
Figure 1-26.
1.30 What is a NoSQL database? What are Web 2.0 applications, and why can’t these

applications use a relational database?

The following spreadsheets form a set of named spreadsheets with the indicated column
headings. Use these spreadsheets to answer exercises 1.31 through 1.33.

A. Name of spreadsheet: EQUIPMENT

Column headings:
Number, Description, AcquisitionDate, AcquisitionPrice

B. Name of spreadsheet: COMPANY

Column headings:
Name, IndustryCode, Gross Sales, OfficerName, OfficerTitle

C. Name of spreadsheet: COMPANY

Column headings:

Chapter 1 Getting Started 57

Name, IndustryCode, Gross Sales, NameOfPresident

D. Name of spreadsheet: COMPUTER

Column headings:

SerialNumber, Make, Model, DiskType, DiskCapacity

E. Name of spreadsheet: PERSON
Column headings:

Name, DateOfHire, DeptName, DeptManager, ProjectID, NumHours,

ProjectManager

1.31 For each of the spreadsheets provided, indicate the number of themes you think
the spreadsheet includes and give an appropriate name for each theme. For some
of them, the answer may depend on the assumptions you make. In these cases, state

your assumptions.

1.32 For any spreadsheet that has more than one theme, show at least one modification
problem that will occur when inserting, updating, or deleting data.

1.33 For any spreadsheet that has more than one theme, break up the columns into ta-
bles such that each table has a single theme. Add ID columns if necessary, and add
a linking column (or columns) to maintain the relationship between the themes.

ACCESS WORKBENCH KEY TERMS

AutoNumber (data type)

character (data type)

customer relationship management
(CRM) system

data entry form

datasheet

Datasheet view

form

Form Wizard

key

long text (data type)

memo (data type)

Microsoft Office Fluent user interface

Navigation Pane

Navigation Pane drop-down list

Navigation Pane drop-down list
button

number (data type)

numeric (data type)

object

primary key

record navigation buttons

remarks

Report Wizard

required

short text (data type)

Shutter Bar Open/Close button

surrogate key

text (data type)

type

ACCESS WORKBENCH EXERCISES

The Wedgewood Pacific Corporation (WPC), founded in 1957 in Seattle, Washington,
has grown into an internationally recognized organization. The company is located
in two buildings. One building houses the Administration, Accounting, Finance, and
Human Resources departments, and the second houses the Production, Marketing,
and Information Systems departments. The company database contains data about

(Continued)

58 Part1 Database Fundamentals

FIGURE 1-32
Database Column Characteristics for the EMPLOYEE Table

EMPLOYEE
Column Name type Key Required Remarks
EmployeeNumber AutoNumber Primary Key Yes Surrogate Key
FirstName Text (25) No Yes
LastName Text (25) No Yes
Department Text (35) No Yes
Phone Text (12) No No
Email Text (100) No Yes
employees; departments; projects; assets, such as computer equipment; and other as-
pects of company operations.

A. Create a Microsoft Access database named WPC in a Microsoft Access file named
WPC.accedb.

B. Figure 1-32 shows the column characteristics for the WPC EMPLOYEE table.
Using the column characteristics, create the EMPLOYEE table in the WPC
database.

C. Figure 1-33 shows the data for the WPC EMPLOYEE table. Using Datasheet
view, enter the data for the first three rows of data in the EMPLOYEE table
shown in Figure 1-33 into your EMPLOYEE table.

FIGURE 1-33

Wedgewood Pacific Corporation EMPLOYEE Data

Employee

Number FirstName LastName Department Phone Email

[AutoNumber] Mary Jacobs Administration 360-285-8110 Mary.Jacobs@WPC.com
[AutoNumber] Rosalie Jackson Administration 360-285-8120 Rosalie.Jackson@WPC.com
[AutoNumber] Richard Bandalone Legal 360-285-8210 Richard.Bandalone@WPC.com
[AutoNumber] Tom Caruthers Accounting 360-285-8310 Tom.Caruthers@WPC.com
[AutoNumber] Heather Jones Accounting 360-285-8320 Heather.Jones@WPC.com
[AutoNumber] Mary Abernathy Finance 360-285-8410 Mary.Abernathy@WPC.com
[AutoNumber] George Smith Human Resources 360-285-8510 George.Smith@WPC.com
[AutoNumber] Tom Jackson Production 360-287-8610 Tom.Jackson@WPC.com
[AutoNumber] George Jones Production 360-287-8620 George.Jones@WPC.com
[AutoNumber] Ken Numoto Marketing 360-287-8710 Ken.Numoto@WPC.com
[AutoNumber] James Nestor InfoSystems James.Nestor@WPC.com
[AutoNumber] Rick Brown InfoSystems 360-287-8820 Rick.Brown@WPC.com

Chapter 1 Getting Started 59

D. Create a data input form for the EMPLOYEE table and name it WPC Employee
Data Form. Make any adjustments necessary to the form so that all data display
properly. Use this form to enter the rest of the data in the EMPLOYEE table
shown in Figure 1-33 into your EMPLOYEE table.

E. Create a report named Wedgewood Pacific Corporation Employee Report that
presents the data contained in your EMPLOYEE table sorted first by employee
last name and second by employee first name. Make any adjustments necessary
to the report so that all headings and data display properly. Print a copy of this
report.

SAN JUAN SAILBOAT CHARTERS CASE QUESTIONS

San Juan Sailboat Charters (SJSBC) is an agency that leases (charters) sailboats. SJSBC
does not own the boats. Instead, SJSBC leases boats on behalf of boat owners who want
to earn income from their boats when they are not using the boats themselves, and SJSBC
charges the owners a fee for this service. SJSBC specializes in boats that can be used for
multiday or weekly charters. The smallest sailboat available is 28 feet in length, and the
largest is 51 feet in length.

Each sailboat is fully equipped at the time it is leased. Most of the equipment is pro-
vided at the time of the charter. The majority of the equipment is provided by the owners,
but some is provided by SJSBC. Some of the owner-provided equipment is attached to the
boat, such as radios, compasses, depth indicators and other instrumentation, stoves, and
refrigerators. Other owner-provided equipment is not physically attached to the boat, such
as sails, lines, anchors, dinghies, life preservers, and equipment in the cabin (dishes, silver-
ware, cooking utensils, bedding, and so on). SJSBC provides consumable supplies such as
charts, navigation books, tide and current tables, soap, dish towels, toilet paper, and similar
items. The consumable supplies are treated as equipment by SJSBC for tracking and ac-
counting purposes.

Keeping track of equipment is an important part of SJSBC’s responsibilities. Much
of the equipment is expensive, and those items not physically attached to the boat can be
easily damaged, lost, or stolen. SJSBC holds the customers responsible for all of the boat’s
equipment during the period of their charter.

SJSBC likes to keep accurate records of its customers and charters, and customers
are required to keep a log during each charter. Some itineraries and weather conditions
are more dangerous than others, and the data from these logs provides information about
the customer experience. This information is useful for marketing purposes, as well as for
evaluating a customer’s ability to handle a particular boat and itinerary.

Sailboats need maintenance (two definitions of boat are: (1) “break out another
thousand” and (2) “a hole in the water into which one pours money”). SJSBC is required
by its contracts with the boat owners to keep accurate records of all maintenance activi-
ties and costs.

A. Create a sample list of owners and boats. Your list will be similar in structure to that in
Figure 1-30, but it will concern owners and boats rather than owners and pets. Your
list should include, at a minimum, owner name, phone, and billing address, as well as
boat name, make, model, and length.

B. Describe modification problems that are likely to occur if SJSBC attempts to maintain
the list in a spreadsheet.

60 Part1 Database Fundamentals

C.

Split the list into tables such that each has only one theme. Create appropriate ID
columns. Use a linking column to represent the relationship between a boat and an
owner. Demonstrate that the modification problems you identified in part B have been
eliminated.

Create a sample list of owners, boats, and charters. Your list will be similar to that in
Figure 1-31. Your list should include the data items from part A as well as the charter
date, charter customer, and the amount charged for each charter.

Tllustrate modification problems that are likely to occur if SJSBC attempts to maintain
the list from part D in a spreadsheet.

Split the list from part D into tables such that each has only one theme. Create appro-
priate ID columns. Use linking columns to represent relationships. Demonstrate that
the modification problems you identified in part E have been eliminated.

¥ GARDEN GLORY PROJECT QUESTIONS

Garden Glory is a partnership that provides gardening and yard maintenance services to
individuals and organizations. Garden Glory is owned by two partners. They employ two
office administrators and a number of full- and part-time gardeners. Garden Glory will
provide one-time garden services, but it specializes in ongoing service and maintenance.
Many of its customers have multiple buildings, apartments, and rental houses that require
gardening and lawn maintenance services.

A.

Create a sample list of owners and properties. Your list will be similar in structure to
that in Figure 1-30, but it will concern owners and properties rather than owners and
pets. Your list should include, at a minimum, owner name, phone, and billing address,
as well as property name, type, and address.

Describe modification problems that are likely to occur if Garden Glory attempts to
maintain the list in a spreadsheet.

Split the list into tables such that each has only one theme. Create appropriate ID col-
umns. Use a linking column to represent the relationship between a property and an
owner. Demonstrate that the modification problems you identified in part B have been
eliminated.

Create a sample list of owners, properties, and services. Your list will be similar to that
in Figure 1-31. Your list should include the data items from part A as well as the date,
description, and amount charged for each service.

Tllustrate modification problems that are likely to occur if Garden Glory attempts to
maintain the list from part D in a spreadsheet.

Split the list from part D into tables such that each has only one theme. Create appro-
priate ID columns. Use linking columns to represent relationships. Demonstrate that
the modification problems you identified in part E have been eliminated.

Chapter 1 Getting Started 61

3 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in online Appendix D, which can
be downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

@ THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS

The Queen Anne Curiosity Shop sells both antiques and current-production household
items that complement or are useful with the antiques. For example, the store sells antique
dining room tables and new tablecloths. The antiques are purchased from both individuals
and wholesalers, and the new items are purchased from distributors. The store’s customers
include individuals, owners of bed-and-breakfast operations, and local interior designers
who work with both individuals and small businesses. The antiques are unique, although
some multiple items, such as dining room chairs, may be available as a set (sets are never
broken). The new items are not unique, and an item may be reordered if it is out of stock.
New items are also available in various sizes and colors (for example, a particular style of
tablecloth may be available in several sizes and in a variety of colors).

A

Create a sample list of purchased inventory items and vendors and a second list of
customers and sales. The first list should include inventory data, such as a description,
manufacturer and model (if available), item cost, and vendor identification and contact
data you think should be recorded. The second list should include customer data you
think would be important to The Queen Anne Curiosity Shop, along with typical sales
data.

Describe problems that are likely to occur when inserting, updating, and deleting data
in these spreadsheets.

Attempt to combine the two lists you created in part A into a single list. What prob-
lems occur as you try to do this?

Split the spreadsheets you created in part A into tables such that each has only one
theme. Create appropriate ID columns.

Explain how the tables in your answer to part D will eliminate the problems you identi-
fied in part B.

What is the relationship between the tables you created from the first spreadsheet and
the tables you created from the second spreadsheet? If your set of tables does not al-
ready contain this relationship, how will you add it into your set of tables?

www.pearsonhighered.com/kroenke

62

CHAPTER OBJECTIVES '.

Learn the conceptual foundat“or{br

the relational model q.-]

1
Understand how relations differ “f_;x.,«. N

from nonrelational tables o
Learn basic relational terminology

Learn the meaning and importance
of keys, foreign keys, and related
terminology

Understand how foreign keys represent
relationships

Learn the purpose and use of
surrogate keys

Learn the meaning of functional
dependencies

Learn to apply a process for
normalizing relations

-

i
|

The Relational Model

his chapter explains the relational model, the

single most important standard in database pro-

cessing today. This model, which was developed
and published in 1970 by Edgar Frank Codd, commonly
referred to as E. F. Codd,! then an employee at IBM, was
founded on the theory of relational algebra. The model has
since found widespread practical application, and today it is
used for the design and implementation of every commer-
cial relational database worldwide. This chapter describes
the conceptual foundation of this model.

'E. E Codd, “A Relational Model of Data for Large Shared Databanks,”
Communications of the ACM (June 1970): 377-387. A downloadable copy of this
paper in PDF format is available at http://dl.acm.org/citation.cfm?id=362685

http://dl.acm.org/citation.cfm?id=362685

RELATIONS

FIGURE 2-1

Characteristics
of a Relation

FIGURE 2-2

Sample EMPLOYEE
Relation

Chapter 2 The Relational Model 63

Chapter 1 states that databases help people keep track of things and that relational DBMS
products store data in the form of tables. Here we need to clarify and refine those state-
ments. First, the formal name for a “thing” that is being tracked is entity, which is defined
as something of importance to the user that needs to be represented in the database.
Further, it is not entirely correct to say that DBMS products store data in tables. DBMS
products store data in the form of relations, which are a special type of table. Specifically, a
relation is a two-dimensional table consisting of rows and columns that has the following
characteristics:

1. Each row of the table holds data that pertain to some entity or a portion of some entity.

2. Each column of the table contains data that represent an attribute of the entity. For
example, in an EMPLOYEE relation each row would contain data about a particular
employee and each column would contain data that represented an attribute of that
employee, such as LastName, Phone, or EmailAddress.

3. The cells of the table must hold a single value, and thus no repeating elements are allowed
in a cell.

4. All the entries in any column must be of the same kind. For example, if the third column

in the first row of a table contains EmployeeNumber, then the third column in all other

rows must contain EmployeeNumber as well.

Each column must have a unique name.

The order of the columns within the table is unimportant.

The order of the rows is unimportant.

The set of data values in each row must be unique—no two rows in the table may hold

identical sets of data values.

® N oW

The characteristics of a relation are summarized in Figure 2-1.

A Sample Relation and Two Nonrelations

Figure 2-2 shows a sample EMPLOYEE table. Consider this table in light of the charac-
teristics discussed earlier. First, each row is about an EMPLOYEE entity, and each column
represents an attribute of employees, so those two conditions are met. Each cell has only
one value, and all entries in a column are of the same kind. Column names are unique, and
we could change the order of either the columns or the rows and not lose any information.

1. Rows contain data about an entity

2. Columns contain data about attributes of the entity
3. Cells of the table hold a single value

4. All entries in a column are of the same kind

5. Each column has a unique name

6. The order of the columns is unimportant

7. The order of the rows is unimportant

8. No two rows may hold identical sets of data values

EmployeeNumber |FirstName [LastName |Department |Email |Phone
100 [Jerry Johnson _ |Accounting _[JJ@somewhere.com |834-1101
200 Mary Abernathy |Finance MA@somewhere.com [834-2101
300 Liz Smathers _ [Finance LS@somewhere.com [834-2102
400 Tom Caruthers __|Accounting _ |[TC@somewhere.com |834-1102
500 Tom Jackson Production [TJ@somewhere.com [834-4101
600 Eleanore Caldera Legal EC@somewhere.com |834-3101
700 Richard Bandalone |Legal RB@somewhere.com [834-3102

64 Part1i

FIGURE 2-3

Nonrelational Table—
Multiple Entries per
Cell

FIGURE 2-4

Nonrelational Table—
Order of Rows Matters
and Kind of Column
Entries Differs in Email

FIGURE 2-5

Relation with Variable-
Length Column Values

Database Fundamentals

EmployeeNumber |FirstName [LastName |Department |Email |Phone
100 Jerry Johnson _ |Accounting _[JJ@somewhere.com [834-1101
200 Mary Abernathy |Finance |MA@somewhere.com [834-2101
300 Liz Smathers _ |Finance LS@somewhere.com [834-2102
400 Tom Caruthers |Accounting |(TC@somewhere.com |834-1102,

834-1191,
834-1192
500 Tom Jackson Production _[TJ@somewhere.com [834-4101
600 Eleanore Caldera Legal EC@somewhere.com [834-3101
700 Richard Bandalone |[Legal RB@somewhere.com |834-3102,
834-3191

EmployeeNumber |FirstName |LastName |Department |Email Phone
100 Jerry Johnson Accounting _[JJ@somewhere.com [834-1101
200 Mary Abernathy |Finance MA@somewhere.com |834-2101
300 Liz Smathers |Finance LS@somewhere.com |834-2102
400 Tom Caruthers _ [Accounting |[TC@somewhere.com |834-1102

Fax:|834-9911

Home:|723-8765

500 Tom Jackson Production |[TJ@somewhere.com |834-4101
600 Eleanore [Caldera Legal EC@somewhere.com |834-3101
Fax:|834-9912

Home:|723-7654

700 Richard Bandalone |Legal RB@somewhere.com [834-3102

Finally, no two rows are identical—each row holds a different set of data values. Because
this table meets all requirements of the definition of relation, we can classify it as a relation.

Now consider the tables shown in Figures 2-3 and 2-4. Neither of these tables is a rela-
tion. The EMPLOYEE table in Figure 2-3 is not a relation because the Phone column has
cells with multiple entries. For example, Tom Caruthers has three values for phone, and
Richard Bandalone has two values. Multiple entries per cell are not permitted in a relation.

The table in Figure 2-4 is not a relation for two reasons. First, the order of the rows
is important. Because the row under Tom Caruthers contains his fax number, we may lose
track of the correspondence between his name and his fax number if we rearrange the
rows. The second reason this table is not a relation is that not all values in the Email col-
umn are of the same kind. Some of the values are email addresses, and others are types of
phone numbers.

Although each cell can have only one value, that value can vary in length. Figure 2-5
shows the table from Figure 2-2 with an additional variable-length Comment attribute.
Even though a comment can be lengthy and varies in length from row to row, there is still
only one comment per cell. Thus, the table in Figure 2-5 is a relation.

EmployeeNumber |FirstName |LastName |Department |Email |Phone |Comment

100 Jerry Johnson Accounting |JJ@somewhere.com |834-1101 |Joined the Accounting
Department March
after completing his
MBA. Will take the
CPA exam this fall.

200 Mary Abernathy [Finance MA@somewhere.com [834-2101

300 Liz Smathers _ |Finance LS@somewhere.com [834-2102

400 Tom Caruthers _ [Accounting |TC@somewhere.com [834-1102

500 Tom Jackson _|Production |[TJ@somewhere.com [834-4101

800 Eleanore |Caldera Legal EC@somewhere.com |834-3101

700 Richard Bandalone |Legal RB@somewhere.com (834-3102 |Is a fulltime
|consultanl to legal on
a retainer basis.

FIGURE 2-6

Equivalent Sets
of Terms

Chapter 2 The Relational Model 65

A Note on Presenting Relation Structures

Throughout this book, when we write out the relation structure of a relation that we are
discussing, we use the following format:

RELATION_NAME (Column01, Column02, ..., LastColumn)

The relation name is written first, and it is written in all capital (uppercase) letters (for exam-
ple, EMPLOYEE), and the name is singular, not plural (EMPLOYEE, not EMPLOYEES).
If the relation name is a combination of two or more words, we join the words with an un-
derscore (for example, EMPLOYEE_PROJECT_ASSIGNMENT). Column names are con-
tained in parentheses and are written with an initial capital letter followed by lowercase letters
(for example, Department). If the column name is a combination of two or more words, the
first letter of each word is capitalized (for example, EmployeeNumber and LastName). Thus,
the EMPLOYEE relation shown in Figure 2-2 would be written as:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

Relation structures, such as the one shown earlier, are part of a database
schema. A database schema is the design on which a database and its as-
sociated applications are built.

A Note on Terminology

In the database world, people generally use the terms table and relation interchangeably.
Accordingly, from now on this book does the same. Thus, any time we use the term zable
we mean a table that meets the characteristics required for a relation. Keep in mind, how-
ever, that, strictly speaking, some tables are not relations.

Sometimes, especially in traditional data processing, people use the term file instead of
table. When they do so, they use the term record for row and the term field for colunn. To
further confound the issue, database theoreticians sometimes use yet another set of terms:
Although they do call a table a relation, they call a row a tuple (thymes with couple) and a
column an attribute. These three sets of terminology are summarized in Figure 2-6.

To make matters even more confusing, people often mix up these sets of terms. It is
not unusual to hear someone refer to a relation that has rows and fields. As long as you
know what is intended, this mixing of terms is not important.

We should discuss one other source of confusion. According to Figure 2-1, a table that
has duplicate rows is not a relation. However, in practice this condition is often ignored.
Particularly when manipulating relations with a DBMS, we may end up with a table that

Table Row Column

File Record Field

Relation Tuple Attribute

66 Part1i

Database Fundamentals

has duplicate rows. To make that table a relation, we should eliminate the duplicates. On
a large table, however, checking for duplication can be time-consuming. Therefore, the
default behavior for DBMS products is not to check for duplicate rows. Hence, in practice,
tables might exist with duplicate (nonunique) rows that are still called relations. You will
see examples of this situation in the next chapter.

TYPES OF KEYS

A key is one or more columns of a relation that is used to identify a row. A key can be unique
or nonunique. For example, for the EMPLOYEE relation in Figure 2-2 EmployeeNumber
is a unique key because a value of EmployeeNumber identifies a unique row. Thus, a query
to display all employees having an EmployeeNumber of 200 will produce a single row. In
contrast, Department is a nonunique key. It is a key because it is used to identify a row, but it
is nonunique because a value of Department potentially identifies more than one row. Thus, a
query to display all rows having a Department value of Accounting will produce several rows.
From the data in Figure 2-2, it appears that EmployeeNumber, LastName, and Email
are all unique identifiers. However, to decide whether this is true database developers
must do more than examine sample data. Instead, they must ask the users or other subject-
matter experts whether a certain column is unique. The column LastName is an example
where this is important. It might turn out that the sample data just happen to have unique
values for LastName. The users, however, might say that LastName is not always unique.

Composite Keys

A key that contains two or more attributes is called a composite key. For example, suppose
that we are looking for a unique key for the EMPLOYEE relation, and the users say that
although LastName is not unique, the combination of LastName and Department is unique.
Thus, for some reason the users know that two people with the same last name will never
work in the same department. Two Johnsons, for example, will never work in accounting. If
that is the case, then the combination (LastName, Department) is a unique composite key.

Alternatively, the users may know that the combination (LastName, Department) is
not unique but that the combination (FirstName, LastName, Department) is unique. The
latter combination, then, is a composite key with three attributes.

Composite keys, like one-column keys, can be unique or nonunique.

Candidate and Primary Keys

Candidate keys are keys that uniquely identify each row in a relation. Candidate keys can
be single-column keys, or they can be composite keys. The primary key is the candidate key
that is chosen as the key that the DBMS will use to uniquely identify each row in a relation.
For example, suppose that we have the following EMPLOYEE relation:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

The users tell us that EmployeeNumber is a unique key, that Email is a unique key, and that
the composite key (FirstName, LastName, DepartmentName) is a unique key. Therefore,
we have three candidate keys. When designing the database, we choose one of the candi-
date keys to be the primary key. In this case, for example, we use EmployeeNumber as the
primary key.

FIGURE 2-7

Chapter 2 The Relational Model 67

It may help you to understand why the unique keys that could be used as
the main identifier for the relation are referred to as candidate keys if you
think of them as the “candidates” in the running to be elected “primary
key”—but remember that only one candidate will win the election. Any
“losing” candidate keys will still be present in the relation, and each will
be known as an alternate key.

The primary key is important not only because it can be used to identify unique rows,
but also because it can be used to represent rows in relationships. Although we did not indi-
cate it in the Art Course Database tables in Figure 1-10 in Chapter 1, CustomerID was the
primary key of CUSTOMER. As such, we used CustomerID to represent the relationship
between CUSTOMER and ENROLLMENT by placing CustomerID as a column in the
ENROLLMENT table to create the link between the two tables. In addition, many DBMS
products use values of the primary key to organize storage for the relation. They also build
indexes and other special structures for fast retrieval of rows using primary key values.

In this book, we indicate primary keys by underlining them. Because EmployeeNumber
is the primary key of EMPLOYEE, we write the EMPLOYEE relation as:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

Each DBMS program has its own way of creating and indicating a primary key. In Chapter
1’s section of “The Access Workbench,” we briefly discussed primary keys and explained
how to set a primary key in Microsoft Access 2013. Figure 2-7 shows the CUSTOMER table

Defining a Primary Key in Microsoft Access 2013

Primary Key button

HEE -4 [= TABLETOOLS ~Art-Course-Database: Datsbase- C\Ussr\Ausi\DocumenteAt-C., 2 — 8 X
HOME ~ CREATE EXTERNALDATA DATABASETOOLS DESIGN Signin

The key symbol
indicates which
column or columns
are being used as
the primary key

3X Delete Rows

View. Primary Buider Test Validation "y Property Indexes Create Dats: Rename/ Relationships Object
- Key Rules EQ Modify Lookups gheet Macros = Delete Macro Dependencies
Views Tools Show/Hide Field, Record & Table Events Relationships ~
» || = customER 2
\ ield Name DataType Description (Optional) [«]
yilcu ber AutoNumber A surrogate key for the CUSTOMER table
Short Text CUSTOMER Last Name
CustomerFirstName Short Text CUSTOMER First Name
Phone Short Text The ten-digit North American phone number in the format: nnn-nnn-nnnn

o
c
£
c
2 4
T Field Properties
2
=
||| General Lookup|

Field Size |Long Integer

Mew Values |Increment

Format

Caption

Indexed Yes (No Duplicates)

| Text Align General Afield name can be up to 64 characters long,
including spaces. Press F1 for help on field
names.

Design view. F§ = Switch panes. F1 = Help.

68 Part1

FIGURE 2-8

Database Fundamentals

Defining a Primary Key in Microsoft SQL Server 2014

Primary Key button

The key symbol
indicates which
column or columns
are being used as
the primary key

rH WINB1-001\SQLEXPRESS Art.Course Database - dbo.CUSTOMER - Microsoft SQL Server Management Studio

- oEN

s el =
Object Explorer

Connect~ 34 3} = T 7] .5

File Edit View Project Debug Table Designer Tools Window Help
NSl - 5 il] NewOuery o0 5| 4 o 8] 9 - o - LI+ [

Column Name

= (& WINS1-00T\SCL

(= 4 Databases
& [System Databases
= |1 Art_Course_Database
® [Datzbase Diagrams

¥7] Customerhlumber
Customerl asthame
CustomerFirstiame

Phone

Data Type

int

char(25)

char(25)
char(12)

*EEEEEeeTEEET, |

Allow Nulls

iE

oooono

= [Tables

® [System Tables

[[FileTables

& =1 dbo.COURSE

= = dbo.CUSTOMER

= £ Columns

? CustomerNum
[E] Customerlasth,
[E] CustomerFirsth
[l Phone (char(12

The Is Identity setting

The Identity
Increment setting

The Identity Seed
setting

® 03 Keys
@ [3 Constraints —— =
[[Triggers Column Properties
@ [Indexes
[[Statistics
—f——— = O dvornroument || BESEEESIIIE Yes -
& 3 Views > (s Identity) ez
i [Synonyms || > Identity Increment J
= 3 Pro: ! Identity Seed 5
- T [Service Broker e e 1
@ [Starage Is Colurmnset No .
& [Securi = —
T ServersSQl EXPRESS MACKLTY, Spesitcation
0 ReportServerSSOLEXPRESSTer
B g R

from the Art Course database in Figure 1-10 in the Microsoft Access table Design view. In
table Design view, we can spot the primary key of the table by finding the key symbol next
to the names of the columns in the primary key. In this case, a key symbol is located next
to CustomerNumber, which means that the developer has defined CustomerNumber as the
primary key for this table.

Figure 2-8 shows the same CUSTOMER table in Microsoft SQL Server 2014
Express,? as it appears in the Microsoft SQL Server Management Studio graphical utility
program. This display is more complex, but again we can spot the primary key of the table
by finding the key symbol next to the names of the columns in the primary key. Again,
there is a key symbol next to CustomerNumber, indicating that CustomerNumber is the
primary key for this table.

In Figure 2-8, the table names are often listed with dbo preceding the table
name, as in dbo.CUSTOMER. The dbo stands for database owner, and it oc-
curs frequently in SQL Server.

’Microsoft has released various versions of SQL Server, and the latest version is SQL Server 2014. SQL
Server 2014 Express is the least powerful version, but it is intended for general use and can be downloaded
for free from the Microsoft SQL Server 2014 Express homepage at www.microsoft.com/en-us/server-
cloud/products/sql-server/#fbid=LO4TSseuGs9. For more information, see online Appendix A, “Getting
Started with Microsoft SQL Server 2014 Express Edition.”

www.microsoft.com/en-us/server-cloud/products/sql-server/#fbid=LO4TSseuGs9
www.microsoft.com/en-us/server-cloud/products/sql-server/#fbid=LO4TSseuGs9

FIGURE 2-9

Chapter 2 The Relational Model 69

Defining a Primary Key in Oracle Database Express Edition 11g Release 2

Primary_Key indicates
which constraints are
being used to create
the primary key

i GaneEE e E Oracle SQL Developer : Table ACD_USER.CUSTOMER@Art Course: Database T n]
CONSITAINt CTEAIES | - s fur view tigwe fun Team Took Window tep
the primary key for GoBEa 9@ 0 O~ @
g s
CUSTOMER Tammegtions (D Stertpage (At Course Dotabese | EH cusTOMER : 4
4 - @ Columns | Data | Constraints | Grants | Statistics | Triggers |Flashback | Dependendes | Detals | Partitions | Indexes |SQL |
The constraint type &, Comectons gl ¥ A st , - - .
S-[@ Art Course Database {} R_OWNER |{} R_TABLE_NAME |{} R_CONSTRAINT NAME |4}

{} CONSTRAINT_NAME |{ CONSTRAINT_TYPE |SEARCH_CONDITION
\1 (CUSTOMER_PK {mull)
"COSTOMERNUMBER™ IS NOT NULL (mull)
"CUSTOMERLASTHAME" IS NOT NULL (null)
"COSTOMERFIRSTNAME” IS NOT NULL {mull)
"PHONE™ IS NOT NULL (null)

-] Tables (Filtered)
[course

Primary Key
Check
Check
Check
Check

(aull)
(null)
(aull)
(null)

(null)
(null)
(mull)
(null)

3 5YS_CO007089
4 5¥5_C007090
5 5Y5_C007091

{
{
{
{
{

i —{H PHONE
-8 ENROLLMENT

The columns used
in the primary key
constraint
CUSTOMER_PK
are shown in the
Columns pane

& (B8 Views

(B4} Editioning Views
t-(g Indexes

-1l Packages
(3] Procedures

AW

Columns
G |Refreshio =

{ COLUMN_NAME |{} COLUMN_POSITION
=1 CUSTOMERNUMBER 1

+-[F8 Queues Tables
-8 Triggers
G- Types

-4 Sequences (Filtered)

i13 SEQCOURSEID

Sequences used to
define primary key
values are shown here

wid SEQCUSTOMERID

Reporis

&l Reparts

- (2 Data Dictionary Reports

{E> Data Modeler Reports
{E OLAP Reports

(> TimesTen Reports
{2 User Defined Reports

Figure 2-9 shows the same CUSTOMER table in Oracle’s Oracle Database Express
Edition 11g Release 2,> as seen in the Oracle SQL Developer graphical utility program.
This display is more complex than Microsoft Access, but we can spot the primary key of
the table by finding the row with the term Primary_Key in the CONSTRAINT_TYPE
column, and then selecting that row. When we do so, the set of primary key columns is
displayed in the tabbed Columns pane.

Figure 2-10 shows the same CUSTOMER table in Oracle’s MySQL 5.6 Community
Server,* as seen in the MySQL Workbench graphical utility program. This display is more

?Originally just referred to as Oracle, the database product is now known as Oracle Database because
Oracle Corporation has grown far beyond its database product roots and now owns and sells a large
range of products. These can be seen at www.oracle.com. As of this writing, Oracle Database 12c is the
latest production version. The freely downloadable Oracle Database Express Edition 11g Release 2 is
available at www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/
index.html?ssSourceSiteld=ocomen. Oracle Database Express Edition 11g Release 2 is an enterprise-
class DBMS and, as such, is much more complex than Microsoft Access. For more information, see online
Appendix B, “Getting Started with Oracle Database Express Edition 11g Release 2.”

4On February 26, 2008, Sun Microsystems acquired MySQL from MySQL AB. On April 29, 2009, Oracle
Corporation made an offer to buy Sun Microsystems, and on January 27, 2010, Oracle completed its acquisi-
tion of Sun Microsystems. For more details, see www.oracle.com/us/sun/index.htm. This makes Oracle the
owner of both the Oracle Database and the MySQL DBMS. As of this writing, MySQL 5.6 is the latest pro-
duction version of the popular MySQL DBMS. The free MySQL Community Server edition and the MySQL
Workbench can be downloaded from the MySQL Web site at http://dev.mysql.com/downloads/. If you are
running a Microsoft Windows OS, you should download and use the MySQL Installer for Windows available
at http://dev.mysql.com/downloads/windows/installer/. Like SQL Server 2014, MySQL is an enterprise-
class DBMS and, as such, is much more complex than Microsoft Access. Also like SQL Server 2014, MySQL
does not include application development tools, such as form and report generators. For more information,
see online Appendix C, “Getting Started with Oracle MySQL 5.6 Community Server.”

www.oracle.com
www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html?ssSourceSiteId=ocomen
www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html?ssSourceSiteId=ocomen
www.oracle.com/us/sun/index.htm
http://dev.mysql.com/downloads
http://dev.mysql.com/downloads/windows/installer

70 Parti

FIGURE 2-10

Database Fundamentals

Defining a Primary Key in Oracle MySQL 5.6 Community Server

] MySQL Workbench =

@& | Localinstsncs MySQLS6E %
File Edit View Query Dstsbase Server Tools Seripting Help

e dEEELD -
Teble Name: [T

@ D=1

Navigator

SCHEMAS LR
e | Schema: art_course_database

The key symbol
indicates which
column or columns
are being used as the
primary key

Q |Filter objects i
¥ [art_course_database L# Collation: | utf8 - default collation v| Engine: |InnoDB w

¥ B Tables
=]

Comments:

(%] Columns
W Calumn Name
» @ Customerla ™ ¢ CustomerNumber INT(11)

Datatype PK NN UQ BIN UN ZF Default

» ¢ CustomerFirstNe
» ¢ Phone
» B Indexes

O000= &

» B ForeignKeys

The PK check box
selects which column
or columns are being
used as the primary
key

» CustomerLastName CHAR
» CustomerFirstName TER(25)
» phone CHAR(12)

» [Triggers
» = enroliment
» B view
ored Pracedures

T » B Functions
» information_schema
» performance_schema
B test

The Al check box
indicates that
AUTO_INCREMENT
is being used to

set primary key
values

Column Name: Data Type:

Collation: Default:

sgement Schemas o ey Primary Key Not Null Unique

Information Binary Unsigned Zero Fill

Table: customer 1) Auto Increment

Col

T o Columns Tndexes ForsianKeys Triagers Parttioning Options
Customertiumber [0

Object Info ~ Session Apply Revert

complex than Microsoft Access, but we can spot the primary key of the table by finding
the key symbol next to the name(s) of the primary key column(s) in the Column Name list.
Again, there is a key symbol next to CustomerNumber, indicating that CustomerNumber is
the primary key for this table.

A common method of specifying primary keys is to use SQL, which we briefly intro-
duced in Chapter 1. We will see how SQL is used to designate primary keys in Chapter 3.

Surrogate Keys

A surrogate key is a column with a unique, DBMS-assigned identifier that has been added
to a table to be the primary key. The unique values of the surrogate key are assigned by the
DBMS each time a row is created, and the values never change.

An ideal primary key is short, numeric, and never changes. Sometimes one column in a
table will meet these requirements or come close to them. For example, EmployeeNumber in
the EMPLOYEE relation should work very well as a primary key. But in other tables, the pri-
mary key does not come close to being ideal. For example, consider the relation PROPERTY:

PROPERTY (Street, City, State, ZIP, OwnerID)

The primary key of PROPERTY is (Street, City, State, ZIP), which is long and nonnumeric
(although it probably will not change). This is not an ideal primary key. In cases like this,
the database designer will add a surrogate key, such as PropertylD:

PROPERTY (PropertyID, Street, City, State, ZIP, OwnerID)

Surrogate keys are short, numeric, and change—they are ideal primary keys. Because the
values of the surrogate primary key will have no inherent meaning to users, they are often
hidden on forms, query results, and reports.

Chapter 2 The Relational Model 71

Surrogate keys have been used in the databases we have already discussed. For
example, in the Art Course Database tables shown in Figure 1-10 we added the sur-
rogate keys CustomerNumber to the CUSTOMER table and CourseNumber to the
COURSE table.

Most DBMS products have a facility for automatically generating key values. In Figure
2-7, we can see how surrogate keys are defined with Microsoft Access 2013. In Microsoft
Access, Data Type is set to AutoNumber. With this specification, Microsoft Access as-
signs a value of 1 to CustomerNumber for the first row of CUSTOMER, a value of 2 to
CustomerNumber for the second row, and so forth.

Enterprise-class DBMS products, such as Microsoft SQL Server, Oracle MySQL,
and Oracle Database, offer more capability. For example, with SQL Server, the devel-
oper can specify the starting value of the surrogate key as well as the amount by which
to increment the key for each new row. Figure 2-8 shows how this is done for the defini-
tion of the surrogate key CustomerNumber for the CUSTOMER table. In the Column
Properties window, which is below the dbo. CUSTOMER table column details window,
there is a set of identity specifications that have been set to indicate to SQL Server that a
surrogate key column exists. The is identity value for CustomerNumber is set to Yes to
make CustomerNumber a surrogate key. The starting value of the surrogate key is called
the identity seed. For CustomerNumber, it is set to 1. Furthermore, the amount that is
added to each key value to create the next key value is called the identity increment.
In this example, it is set to 1. These settings mean that when the user creates the first
row of the CUSTOMER table, SQL Server will give the value 1 to CustomerNumber.
When the second row of CUSTOMER is created, SQL Server will give the value 2 to
CustomerNumber, and so forth.

Oracle Database uses a SEQUENCE function to define automatically increas-
ing sequences of numbers that can be used as surrogate key numbers. When using a
SEQUENCE, the starting value can be any value (the default is 1), but the increment will
always be 1. Figure 2-9 shows the existing sequences in the Art Course Database.

MySQL uses the AUTO_INCREMENT function to automatically assign surrogate
key numbers. In AUTO_INCREMENT, the starting value can be any value (the default is
1), but the increment will always be 1. Figure 2-10 shows that CustomerNumber is a sut-
rogate key for CUSTOMER that uses AUTO_INCREMENT (AI) to set the value of the

column.

Foreign Keys and Referential Integrity

As described in Chapter 1, we place values from one relation into a second relation to
represent a relationship. The values we use are the primary key values (including com-
posite primary key values, when necessary) of the first relation. When we do this, the at-
tribute in the second relation that holds these values is referred to as a foreign key. For
example, in the Art Course database shown in Figure 1-10 we represent the relationship
between customers and the art courses they are taking by placing CustomerNumber,
the primary key of CUSTOMER, into the ENROLLMENT relation. In this case,
CustomerID in ENROLLMENT is referred to as a foreign key. This term is used be-
cause CustomerNumber is the primary key of a relation that is foreign to the table in
which it resides.

Consider the following two relations, where besides the EMPLOYEE relation we now
have a DEPARTMENT relation to hold data about departments:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email,
Phone)

and:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber,
DepartmentPhone)

72 Part1i

Database Fundamentals

where EmployeeNumber and DepartmentName are the primary keys of EMPLOYEE and
DEPARTMENT, respectively.

Now suppose that Department in EMPLOYEE contains the names of the depart-
ments in which employees work and that DepartmentName in DEPARTMENT also con-
tains these names. In this case, Department in EMPLOYEE is said to be a foreign key to
DEPARTMENT. In this book, we denote foreign keys by displaying them in italics. Thus,
we would write these two relation descriptions as follows:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)

and:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, DepartmentPhone)

Note that it is not necessary for the primary key and the foreign key to have the same col-
umn name. The only requirement is that they have the same set of values.
In most cases, it is important to ensure that every value of a foreign key matches a

value of the primary key. In the previous example, the value of Department in every row of
EMPLOYEE should match a value of DepartmentName in DEPARTMENT. If this is the

case (and it usually is), then we declare the following rule:
Department in EMPLOYEE must exist in DepartmentName in DEPARTMENT

Such a rule is called a referential integrity constraint. Whenever you see a foreign key, you
should always look for an associated referential integrity constraint.
Consider the Art Course database shown in Figure 1-10. The structure of this database is:

CUSTOMER (CustomerNumber, CustomerLastName, CustomerFirstName, Phone)
COURSE (CourseNumber, Course, CourseDate, Fee)
ENROLLMENT (CustomerNumber, CourseNumber, AmountPaid)

The ENROLLMENT table has a composite primary key of (CustomerNumber,
CourseNumber), where CustomerNumber is a foreign key linking to CUSTOMER and
CourseNumber is a foreign key linking to COURSE. Therefore, two referential integrity
constraints are required:

CustomerNumber in ENROLLMENT must exist in CustomerNumber in CUSTOMER
and:

CourseNumber in ENROLLMENT must exist in CourseNumber in COURSE

Just as DBMS products have a means of specifying primary keys, they also have a
way to set up foreign key referential integrity constraints. We discuss the details of setting
up referential integrity constraints in this chapter’s section of “The Access Workbench.”
Figure 2-11 shows the tables from the Art Course database in Figure 1-10 in the Microsoft
Access Relationships window and with the Edit Relationships dialog box showing the
details of the relationship between CUSTOMER and ENROLLMENT. Notice that the
Enforce Referential Integrity check box is checked, so the referential integrity constraint
between CustomerNumber in ENROLLMENT (the foreign key) and CustomerNumber in
CUSTOMER (the primary key) is being enforced.

Figure 2-12 shows the same foreign key relationship between CUSTOMER and
ENROLLMENT in the Microsoft SQL Server Management Studio program. Again,
this display is more complex, but notice that the property Table Designer: Enforce
Foreign Key Constraint is set to Yes. This means that the referential integrity constraint

FIGURE 2-11

Enforcing Referential Integrity in Microsoft Access 2013

The relationship is
between CUSTOMER
and ENROLLMENT—
the foreign key
CustomerNumber in
ENROLLMENT
references the
primary key
CustomerNumber in
CUSTOMER

Use this check box to
enforce referential
integrity in this
relationship

FIGURE 2-12

Chapter 2 The Relational Model T3

Enforcing Referential Integrity in Microsoft SQL Server 2014

E A - (27 & [RELATIONSHIP TOOLS
HOME CREATE EXTERNAL DATA DATABASE TOOLS DESIGN Sign in
+ H
D; X Clear Layotit !
E;i . 7 Di 1ships -
® FDRelationship Report 1OW : ose
Relationships i Table BB} All Relationships
Tools Relationships -~
| » =, Relationships X
CUSTOMER ENMROLLMENT COURSE
% cu umber L = [¥ customerbiumber _/1— ¥ CourseNumber
CustomerLastiame # CourseNumber = Course
CustomerFirstName AmountPaid CourseDate
ane Fee
5 AN Edit Relationships 2
£
=
- s .
= :Tablelgqer)d. RelabedTab\ejQ\.!e[y.
2 | CUSTOMER | ENROLLMENT v
- - Cancel
= CustomerNum v | CustomerNumbe | ~
2 Join Type..
ol 5
[ViEnforce Referental Tntearity i
=
/ [cascade Updat= Related Fislds
[[]cascade Delete Related Records
L—T]
/ Relationship Type: One-To-Many
-
4 »

The relationship

is between
ENROLLMENT and
CUSTOMER

We are enforcing

the foreign key
constraint—which is
the referential integrity
constraint

File Edit View Project Debug Tools

SRl R

Object Explorer

Window Help

= [wins1-007y
1= L4 Databases
[[System Databas:
= | Art_Course_Database
) [Database Diagrams
) [Tables
@l [System Tables
[FileTables
i = dbo.COURSE

PRESS (SQL Server

=] AmountPaid

= [Keys
? ENROLLMENT_
§ ENROLL_COUR
§ EMROLL_CUST.

[[Constraints

@ @ Triggers

[Indexes

[[Statistics

[Views

@ [Synonyms

[[Programmability

fl [Service Broker

(3 Storage

@ [Security

o 1 BamarCaner 2Nl FYDRESS

<

Pl i S | NewQuery (3R | A a9 - - -G]

Xore o sweroe - T

] WIN81-001\SQLEXPRESS.Art_Course_Database - dbo.ENROLLMENT - Microsoft SQL Server Management Studio - g

IEE

Column Name Data Type Allow Nulls
~ 2| CustomerNumber | int |
¥ CourseNumber it O
AmountPaid numeric(8, 2)
O
Foreign Key Relationships

"IN

lected Relationship:

—~8
Colun

| Editing properties for existing relationship.

4 (General)
Check Existing Data On Creation Or Re-Enabling

N
P Tables And Columns Specification

Foreign Key Base Table
Foreign Key Columns
Primary/Unique Key Base Table
Primary/Unique Key Columns

& Identity

4 Table Designer

Enforce For Replication

Enforce Foreign Key Constraint

Yes

ENROLLMENT
CustomerNumber
CUSTOMER
CustomerhNumber

Delete

>

v

74 Part1i

FIGURE 2-13

Database Fundamentals

Enforcing Referential Integrity in Oracle Database Express Edition 11g Release 2

ENROLLMENT and
CUSTOMER

The constraint type
Foreign_Key indicates
which constraints are

- cu
_— COURSENUMBER

. .) Oracle 5QL Developer : Table ACD_USER ENROLLMENT@Art_Course_Database - o EN
This copstralnt creates He B e N fin Team Tok Yindow ey
the foreign key FoHD 9® 0 O~ & @
relationship is between i - O

D startrage i 4 e | Bl EvRouMENT S : : =
| cotinms |Data | Constraints | Grants | Statistics | Triagers |Flashback | Dependendies | Details | Partitions | Indexes \.EQL |
7~ Ao

{} CONSTRAINT_NAME |{} CONSTRAINT_TYPE |SEARCH_CONDITION
1 ENROLLMENT_PK (null)

L=
[, Connections

& (@ Art_Course_Dal
-7 Tables (Fittered)
[E8 course
-fE cusToMER
= { EVROLLMENT

[m_owner. [{; r_taBLE_pamE [{} m_consTRAINT_namME [§; DE]
(null) (null) (null) (ol
N 2 EVRCLL COURSE K Foreign Fey {nu11) ACD USER COURSE COURSE_PK casql
3 Aca_l,lau: COSTOMER CUSTOMER PR
5_coomo9s Check "CUSTOMERWIMBER™ IS NOT NULL (null) (aull) (null) {nu2|

Check "COURSENTMBER™ IS NOT NULL (mull) (null) (nul1) (1

Erimary Key

5 5¥5_C0070499

-] AMOUNTPAID
£33 Views
(39 Editioning Views
Indexes
- () Packages
{3 Procedures
-8 Functions

being used to create
the foreign keys

The columns used in £) Queses | P

-{ER Queues Tables Columns
(LA Triggers

the foreign key

W) (Refreshin =
Triggers

constraint _‘EJ .) { cotumm_nave [{} coLumn_posITION
ENROLL_CUST_FK %\ —> 1 CUSTOMERNUMBER 1

. & SEQCOURSEID

are shown in the o
+--{[i] Materialized Views

Columns pane Pl Waak g

Reports

[AllReports

i {2 Data Dictionary Reports
{2 Data Modeler Reports
(& OLAP Reports

B+ (2 TimesTen Reports

(B> User Defined Reports

between CustomerNumber in ENROLLMENT (the foreign key) and CustomerNumber in

CUSTOMER (the primary key) is being enforced.

Figure 2-13 shows foreign keys in Oracle Database Express Edition 11g Release 2.
Here the Foreign Keys tab in the Oracle SQL Developer utility displays the properties of

each foreign key.

Figure 2-14 shows foreign keys in MySQL 5.6 Community Server. Here the Foreign

Keys tab in the MySQL Workbench utility displays the properties of each foreign key.

Just as SQL can be used to specify primary keys, it can also be used to set referential
integrity constraints. We will look at how to use SQL to do this in the next chapter.

THE PROBLEM OF NULL VALUES

Before we leave the discussion of relations and the relationships between them, we need
to discuss a subtle but important topic: null values. A null value is a missing value in a cell
in a relation. Consider the following relation, which is used to track finished goods for an

apparel manufacturer:

ITEM (ItemNumber, ItemName, Color, Quantity)

Figure 2-15 shows sample data for this table. Notice that in the last row of data—the row
with ItemNumber 400 and ItemName Spring Hat—there is no value for Color. The prob-
lem with null values is that they are ambiguous; we do not know how to interpret them be-
cause three possible meanings can be construed. First, it might mean that no value of Color
is appropriate; Spring Hats do not come in different colors. Second, it might mean that the
value is known to be blank; that is, Spring Hats have a color, but the color has not yet been

FIGURE 2-14

Chapter 2 The Relational Model 75

Enforcing Referential Integrity in Oracle MySQL 5.6 Community Server

] MySQl Workbench Y x
ﬁ Local instance MySQLS6 x
File Edit View Query Datsbase Server Tools Scripng Help
S8 e SEEELE & @ L1
SCHEMAS L
o = Table Name; [enveliment Schema: art_course_database
v B i e e g Collation: | utf8 - default collation v| Engne: |Tnode v
v Ehles
R Comments:
¥ 5 enoliment
v [Columns o [Forein ey tiame Referenced Table Column T hrericed Gl Fareign ey Optiors
:: ;;iﬁ::ﬁ:ﬂre ENROLL_COURSE_FK “art_course_database’." course L [¥] CustomerNumber CustomerNumber On Update: | NO ACTION v
b miaiad BENROLL CUST P ["art course_database’.’ cuszo Ei;\;r::;l;r‘r;her s T o
The foreign key [] skipin 5QL generation
betWeen | » B Functions
ENROLLMENT and S B
CUSTOM E R > test - - Foreign Key Comment —
The CustomerNumber
column in
ENROLLMENT (anagamant Schemas
references the e
CustomerNumber TS ot &l sl ,
column in s 5 i o S o N
< >
CUSTOMER Object Info Session Apply Revert
FIGURE 2-15 ItemNumber ItemName Color Quantity
110 Small T-Shirt Red 15
Sample ITEM Relation 120 Small T-Shirt Blue 5
and Data 150 Small T-Shirt Green il
210 Med T-Shirt Red 8
400 |Spring Hat 5

decided. Maybe the color is established by placing ribbons around the hats, but this is not
done until an order arrives. Finally, the null value might mean that the hats’ color is simply
unknown; the hats have a color, but no one has checked yet to see what it is.

You can eliminate null values by requiring an attribute value. DBMS products allow
you to specify whether a null value can occur in a column. We discussed how to do this
for Microsoft Access in Chapter 1’s “The Access Workbench.” For Microsoft SQL Server
2014, notice the column in the dbo.CUSTOMER table column details window labeled
Allow Nulls in Figure 2-8. A check box without a checkmark means that null values are
not allowed in this column. Note that, in Figure 2-9, the Oracle SQL Developer utility for
Oracle Database Express Edition 11g R2 is showing the data on the Constraints tab, and
this tab does not indicate null values. If, however, we looked at the Columns tab, we would
see whether null values are allowed in each column. For MySQL 5.6 Community Server,
note that in Figure 2-10 the Column Details tab in the MySQL Table Editor shows an NN
(NOT NULL) check box that indicates whether null values are allowed in the column.
Regardless of the DBMS being used, if nulls are not allowed then some value must be en-
tered for each row in the table. If the attribute is a text value, users can be allowed to enter
values such as “not appropriate,” “undecided,” or “unknown,” when necessary. If the at-
tribute is not text, then some other coding system can be developed.

76 Part1 Database Fundamentals

For now, be aware that null values can occur and that they always carry some ambigu-
ity. The next chapter will show another, possibly more serious, problem of null values.

FUNCTIONAL DEPENDENCIES AND NORMALIZATION

This section introduces some of the concepts used for relational database design; these
concepts are used in the next several chapters and expanded upon in Chapter 5. This book
presents only the essentials. To learn more, you should consult other, more comprehensive
references.’

Functional Dependencies

To get started, let us take a short excursion into the world of algebra. Suppose you are buy-
ing boxes of cookies, and someone tells you that each box costs $5. Knowing this fact, you
can compute the cost of several boxes with the formula:

CookieCost = NumberOfBoxes X $5

A more general way to express the relationship between CookieCost and NumberOfBoxes
is to say that CookieCost depends upon NumberOfBoxes. Such a statement tells the char-
acter of the relationship between CookieCost and NumberOfBoxes, even though it doesn’t
give the formula. More formally, we can say that CookieCost is functionally dependent on
NumberOfBoxes. Such a statement, which is called a functional dependency, can be writ-
ten as follows:

NumberOfBoxes — CookieCost

This expression says that NumberOfBoxes determines CookieCost. The term on the left,
NumberOfBoxes, is called the determinant.

Using another example, we can compute the extended price of a part order by multi-
plying the quantity of the item by its unit price:

ExtendedPrice = Quantity X UnitPrice

In this case, we would say that ExtendedPrice is functionally dependent on Quantity and
UnitPrice, or:

(Quantity, UnitPrice) — ExtendedPrice

The composite (Quantity, UnitPrice) is the determinant of ExtendedPrice.

Now, let us expand these ideas. Suppose you know that a sack contains either red,
blue, or yellow objects. Further suppose you know that the red objects weigh 5 pounds
each, the blue objects weigh 5 pounds each, and the yellow objects weigh 7 pounds
each. If a friend looks into the sack, sees an object, and tells you the color of the object,
you can tell the weight of the object. We can formalize this in the same way as in the
previous example:

ObjectColor — Weight

3See David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and Implementation,
13th edition (Upper Saddle River, NJ: Prentice Hall, 2014); and C. J. Date, An Introduction to Database
Systems, 8th edition (Boston: Addison-Wesley, 2004).

FIGURE 2-16

Sample OBJECT
Relation and Data

Chapter 2 The Relational Model 17

ObjectColor _|Weight Shape
Red 5 Ball
Blue 5 Cube
Yellow 7 Cube

Thus, we can say that Weight is functionally dependent on ObjectColor and that
ObjectColor determines Weight. The relationship here does not involve an equation, but
this functional dependency is still true. Given a value for ObjectColor, you can determine
the object’s weight.

In addition, if we know that the red objects are balls, the blue objects are cubes, and
the yellow objects are cubes, then:

ObjectColor — Shape

Thus, ObjectColor also determines Shape. We can put these two together and state:
ObjectColor — (Weight, Shape)

Thus, ObjectColor determines Weight and Shape.

Another way to represent these facts is to put them into a table, as shown in
Figure 2-16. Note that this table meets all the conditions in our definition of a relation,
as listed in Figure 2-1, so we can refer to it as a relation. If we call it the OBJECT rela-
tion and use ObjectColor as the primary key, we can write this relation as:

OBJECT (ObjectColor, Weight, Shape)

Now, you may be thinking that we have just performed some trick or sleight of hand to ar-
rive at a relation, but one can make the argument that the only reason for having relations is
to store instances of functional dependencies. Consider a relation such as the CUSTOMER
relation from the Art Course database in Figure 1-10:

CUSTOMER (CustomerNumber, CustomerLastName, CustomerFirstName, Phone)

Here we are simply storing facts that express the following functional dependency:

CustomerNumber — (CustomerLastName, CustomerFirstName, Phone)

Primary and Candidate Keys Revisited

Now that we have discussed the concept of functional dependency, we can define primary
and candidate keys more formally. Specifically, a primary key of a relation can be defined as
“one or more attributes that functionally determine all the other attributes of the relation.”
The same definition holds for candidate keys as well.

Recall the EMPLOYEE relation from Figure 2-2 (shown without primary or foreign
keys indicated):

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Email, Phone)
As previously discussed, based on information from users, this relation has three candidate
keys: EmployeeNumber, Email, and the composite (FirstName, LastName, Department).

Because this is so, we can state the following:

EmployeeNumber — (FirstName, LastName, Department, Email, Phone)

78 Part1i

Database Fundamentals

Equivalently, if we are given a value for EmployeeNumber, we can determine FirstName,
LastName, Department, Email, and Phone. Similarly, we can state that:

Email — (EmployeeNumber, FirstName, LastName, Department, Phone)

That is, if we are given a value for Email, we can determine EmployeeNumber, FirstName,
LastName, Department, and Phone. Finally, we also can state that:

(FirstName, LastName, Department) — (EmployeeNumber, Email, Phone)

This means that if we are given values of FirstName, LastName, and Department, we can
determine EmployeeNumber, Email, and Phone.

These three functional dependencies express the reason the three candidate keys are can-
didate keys. When we choose a primary key from the candidate keys, we are choosing which
functional dependency we want to define as the one that is most meaningful or important to us.

Normalization

The concepts of functional dependencies and determinants can be used to help in the design
of relations. Recalling the concept from Chapter 1 that a table or relation should have only
one theme, we can define normalization as the process of (or set of steps for) breaking a
table or relation with more than one theme into a set of tables such that each has only one
theme. Normalization is a complex topic, and it consumes one or more chapters of more
theoretically oriented database books. Here we reduce this topic to a few ideas that capture
the essence of the process. After this discussion, if you are interested in the topic, you should
consult the references mentioned earlier for more information.

The problem that normalization addresses is as follows: A table can meet all the char-
acteristics listed in Figure 2-1 and still have the modification problems we identified for
lists in Chapter 1. Specifically, consider the following ADVISER_LIST relation:

ADVISER_LIST (AdviserID, AdviserName, Department, Phone, Office,
StudentNumber, StudentName)

What is the primary key of this relation? Given the definitions of candidate key and pri-
mary key, it has to be an attribute that determines all the other attributes. The only attri-
bute that has this characteristic is StudentNumber. Given a value of StudentNumber, we
can determine the values of all the other attributes:

StudentNumber — (AdviserID, AdviserName, Department, Phone, Office,
StudentName)

We can then write this relation as follows:

ADVISER_LIST (AdviserID, AdviserName, Department, Phone, Office,
StudentNumber, StudentName)

However, this table has modification problems. Specifically, an adviser’s data are repeated
many times in the table, once for each advisee. This means that updates to adviser data
might need to be made multiple times. If, for example, an adviser changes offices, that
change will need to be completed in all the rows for the person’s advisees. If an adviser has
20 advisees, that change will need to be entered 20 times.

Another modification problem can occur when we delete a student from this list. If we
delete a student who is the only advisee for an adviser, we will delete not only the student’s
data but also the adviser’s data. Thus, we will unintentionally lose facts about two entities
while attempting to delete one.

Chapter 2 The Relational Model 79

If you look closely at this relation, you will see a functional dependency that involves
the adviser’s data. Specifically:

AdviserID — (AdviserName, Department, Phone, Office)

Now, we can state the problem with this relation more accurately—in terms of functional
dependencies. Specifically, this relation is poorly formed because it has a functional depen-
dency that does not involve the primary key. Stated differently, AdviserID is a determinant
of a functional dependency, but it is not a candidate key and thus cannot be the primary
key under any circumstances.

Relational Design Principles

From the discussion so far, we can formulate the following design principles for what we
can call a well-formed relation:

1. For a relation to be considered well formed, every determinant must be a candidate key.
2. Any relation that is not well formed should be broken into two or more relations that are
well formed.

These two principles are the heart of normalization—the process of examining rela-
tions and modifying them to make them well formed. This process is called normalization
because you can categorize the problems to which relations are susceptible into different
types called normal forms.

There are many defined normal forms. Technically, our well-formed relations are those
that are said to be in Boyce-Codd Normal Form (BCNF). For example, any relation that
has the characteristics listed in Figure 2-1 is called a relation in first normal form (1NF).
Besides first normal form and Boyce-Codd normal form, other normal forms exist, such
as second, third, fourth, fifth, and domain/key normal form. We further describe normal
forms later in this chapter.

However, if we simply follow the aforementioned design principles we will avoid
almost all the problems associated with non-normalized tables. In some rare instances,
these principles do not address the problems that arise (see questions 2.40 and 2.41 in the
Exercises section), but if you follow these principles, you will be safe most of the time.

The Normalization Process

We can apply the principles just described to formulate the following normalization
process for normalizing relations:

1. Identify all the candidate keys of the relation.
2. Identify all the functional dependencies in the relation.
3. Examine the determinants of the functional dependencies. If any determinant is not a can-
didate key, the relation is not well formed. In this case:
a. Place the columns of the functional dependency in a new relation of their own.
b. Make the determinant of the functional dependency the primary key of the new relation.
c. Leave a copy of the determinant as a foreign key in the original relation.
d. Create a referential integrity constraint between the original relation and the new relation.
4. Repeat step 3 as many times as necessary until every determinant of every relation is a can-

didate key.

To understand this process, consider the following relation:

PRESCRIPTION (PrescriptionNumber, Date, Drug, Dosage, CustomerName,
CustomerPhone, CustomerEmail)

Sample data for the PRESCRIPTION relation are shown in Figure 2-17.

80 Part1 Database Fundamentals

FIGURE 2-17
Sample PERSCIPTION Relation and Data

PrescriptionNumber [Date Drug Dosage CustomerName |CustomerPhone |CustomerEmail
P10001 10/17/2015 |DrugA 10mg Smith, Alvin 575-523-2233 ASmith@somewhere.com
P10003 10/17/2015 |DrugB 35mg Rhodes, Jeff 575-645-3455 JRhodes@somewhere.com
P10004 10/17/2015 [DrugA 20mg Smith, Sarah 575-523-2233 SSmith@somewhere.com
P10007 10/18/2015 |DrugC 20mg Frye, Michael 575-645-4566 MFrye@somewhere com
P10010 10/18/2015 |DrugB 30mg Rhodes, Jeff 575-645-3455 JRhodes@somewhere.com

Step 1 of the Normalization Process According to the normalization process, we
first identify all candidate keys. PrescriptionNumber clearly determines Date, Drug, and
Dosage. If we assume that a prescription is for only one person, then it also determines
CustomerName, CustomerPhone, and CustomerEmail. By law, prescriptions must be for
only one person, so PrescriptionNumber is a candidate key.

Does this relation have other candidate keys? Date, Drug, and Dosage do not deter-
mine PrescriptionNumber because many prescriptions can be written on a given date,
many prescriptions can be written for a given drug, and many prescriptions can be written
for a given dosage.

What about customer columns? If a customer had only one prescription, then we
could say that some identifying customer column—for example, CustomerEmail—would
determine the prescription data. However, people can have more than one prescription, so
this assumption is invalid.

Given this analysis, the only candidate key of PRESCRIPTION is PrescriptionNumber.

Step 2 of the Normalization Process 1In step 2 of the normalization process, we
now identify all functional dependencies. PrescriptionNumber determines all the other at-
tributes, as just described. If a drug had only one dosage, then we could state that:

Drug — Dosage

But this is not true because some drugs have several dosages. Therefore, Drug is not a
determinant. Furthermore, Dosage is not a determinant because the same dosage can be
given for many different drugs.

However, examining the customer columns, we do find a functional dependency:

CustomerEmail — (CustomerName, CustomerPhone)

To know whether functional dependency is true for a particular application, we need to
look beyond the sample data in Figure 2-17 and ask the users. For example, it is possible
that some customers share the same email address, and it is also possible that some custom-
ers do not have email. For now, we can assume that the users say that CustomerEmail is a
determinant of the customer attributes.

Step 3 of the Normalization Process In step 3 of the normalization process, we ask
whether there is a determinant that is #o# a candidate key. In this example, CustomerEmail
is a determinant and not a candidate key. Therefore, PRESCRIPTION has normalization
problems and is not well formed. According to step 3, we split the functional dependency
into a relation of its own:

CUSTOMER (CustomerName, CustomerPhone, CustomerEmail)

We make the determinant of the functional dependency, CustomerEmail, the primary key
of the new relation.

FIGURE 2-18

Normalized

Prescription Customer
Relations and Data

FIGURE 2-19

Sample STU_DORM
Relation and Data

Chapter 2 The Relational Model 81

CustomerName |CustomerPhone |CustomerEmail

Smith, Alvin 575-523-2233 ASmith@somewhere.com

Rhodes, Jeff 575-645-3455 JRhodes@somewhere.com

Frye, Michael 575-645-4566 |MFrye@somewhere.com

Smith, Sarah 575-523-2233 [SSmith@somewhere.com

PrescriptionNumber |Date |Drug |Dosage CustomerEmail
P10001 10/17/2015 _[DrugA 10mg ASmith@somewhere.com
P10003 10/17/2015 _ [DrugB 35mg JRhodes@somewhere.com
P10004 10/17/2015 _|DrugA 20mg SSmith@somewhere.com
P10007 10/18/2015 _[DrugC 20mg MFrye@somewhere.com
P10010 10/18/2015 |DrugB 30mg JRhodes@somewhere.com

We leave a copy of CustomerEmail in the original relation as a foreign key. Thus,
PRESCRIPTION is now:

PRESCRIPTION (PrescriptionNumber, Date, Drug, Dosage, CustomerEmail)

Finally, we create the referential integrity constraint:
CustomerEmail in PRESCRIPTION must exist in CustomerEmail in CUSTOMER

At this point, if we move through the three steps, we find that neither of these relations
has a determinant that is not a candidate key, and we can say that the two relations are now
normalized. Figure 2-18 shows the result for the sample data.

Normalization Examples

We now illustrate the use of the normalization process with four examples.

Normalization Example 1 The relation in Figure 2-19 shows a table of student resi-
dence data named STU_DORM. The first step in normalizing it is to identify all candidate
keys. Because StudentNumber determines each of the other columns, it is a candidate key.
LastName cannot be a candidate key because two students have the last name Smith. None of
the other columns can be a candidate key, either, so StudentNumber is the only candidate key.

Next, in step 2, we look for the functional dependencies in the relation. Besides those
for StudentNumber, a functional dependency appears to exist between DormName and
DormCost. Again, we would need to check this out with the users. In this case, assume that
the functional dependency:

DormName — DormCost

is true and assume that our interview with the users indicates that no other functional de-
pendencies exist.

StudentNumber |LastName FirstName DormName DormCost
100 Smith Terry Stephens 3,500.00
200 Johnson Jeff Alexander 3,800.00
300 Abernathy Susan Horan 4,000.00
400 Smith Susan Alexander 3.800.00
500 Wilcox John Stephens 3,500.00
600 Webber Carl Horan 4,000.00
700 Simon Carol Stephens 3,500.00

82 Part1 Database Fundamentals

FIGURE 2-20

Normalized STU_DORM
and DORM Relations
and Data

FIGURE 2-21

Sample EMPLOYEE
Relation and Data

In step 3, we now ask if any determinants exist that are not candidate keys. In this ex-
ample, DormName is a determinant, but it is not a candidate key. Therefore, this relation is
not well formed and has normalization problems.

To fix those problems, we place the columns of the functional dependency
(DormName, DormCost) into a relation of their own and call that relation DORM. We
make the determinant of the functional dependency the primary key. Thus, DormName
is the primary key of DORM. We leave the determinant DormName as a foreign key in
STU_DORM. Finally, we find the appropriate referential integrity constraint. The result is:

STU_DORM (StudentNumber, LastName, FirstName, Dor#zNanze)
DORM (DormName, DormCost)

with the constraint:
DormName in STU_DORM must exist in DormName in DORM
The data for these relations appear as shown in Figure 2-20.

Normalization Example 2 Now consider the EMPLOYEE table in Figure 2-21.
First, we identify the candidate keys in EMPLOYEE. From the data, it appears that
EmployeeNumber and Email each identify all the other attributes. Hence, they are candi-
date keys (again, with the proviso that we cannot depend on sample data to show all cases;
we must verify this assumption with the users).

In step 2, we identify other functional dependencies. From the data, it appears that the
only other functional dependency is:

Department — DeptPhone

Assuming that this is true, then according to step 3 we have a determinant,
Department, that is not a candidate key. Thus, EMPLOYEE has normalization
problems.

To fix those problems, we place the columns in the functional dependency in a table of
their own and make the determinant the primary key of the new table. We leave the deter-
minant as a foreign key in the original table. The result is the two tables:

EMPLOYEE (EmployeeNumber, LastName, Email, Department)
DEPARTMENT (Department, DeptPhone)

StudentNumber |LastName FirstName DormName DormName DermCost
100 Smith Terry Stephens Alexander 3,800.00
200 Johnson Jeff Alexander Horan 4,000.00
300 Abernathy Susan Horan Stephens 3,500.00
400 Smith Susan Alexander
500 Wilcox John Stephens
600 Webber Carl Horan
700 Simon Carol Stephens

EmployeeNumber |LastName |Department |Email |DeptPhone
100 Johnson __|Accounting _|JJ@somewhere.com _[834-1100
200 Abernathy |Finance MA@somewhere.com [834-2100
300 Smathers _ |Finance LS@somewhere.com |[834-2100
400 Caruthers _ |Accounting |TC@somewhere.com |834-1100
500 Jackson Production _ |TJ@somewhere.com |834-4100
600 Caldera Legal EC@somewhere.com |834-3100
700 Bandalone |Legal RB@somewhere.com |834-3100

FIGURE 2-22

Normalized EMPLOYEE
and DEPARTMENT
Relations and Data

FIGURE 2-23

Sample MEETING
Relation and Data

Chapter 2 The Relational Model 83

EmployeeNumber |LastName |Department |[Email Department |DeptPhone

100 Johnson Accounting |JJ@somewhere.com Accounting 834-1100
200 Abernathy _ |Finance MA@somewhere.com Finance 834-2100
300 Smathers _ [Finance LS@somewhere.com Legal 834-3100
400 Caruthers |Accounting |[TC@somewhere.com Production 834-4100
500 Jackson Production |TJ@somewhere.com

600 Caldera Legal EC@somewhere.com

700 Bandalone |Legal RB@somewhere.com

Attorney ClientNumber [ClientName |[MeetingDate |Duration

Boxer 1000 ABC, Inc 11/5/2015 2.00

Boxer 2000 XYZ Partners 11/5/2015 5.50

James 1000 ABC, Inc 11/7/2015 3.00

Boxer 1000 ABC, Inc 11/9/2015 4.00

Wu 3000 Malcomb Zoe 11/11/2015 7.00

with the referential integrity constraint:
Department in EMPLOYEE must exist in Department in DEPARTMENT

The result for the sample data is shown in Figure 2-22.

Normalization Example 3 Now consider the MEETING table in Figure 2-23. We
begin by looking for candidate keys. No column by itself can be a candidate key. Attorney
determines different sets of data, so it cannot be a determinant. The same is true for
ClientNumber, ClientName, and MeetingDate. In the sample data, the only column that
does not determine different sets of data is Duration, but this uniqueness is accidental. It is
easy to imagine that two or more meetings would have the same duration.

The next step is to look for combinations of columns that can be candidate keys.
(Attorney, ClientNumber) is one combination, but the values (Boxer, 1000) determine
two different sets of data. They cannot be a candidate key. The combination (Attorney,
ClientName) fails for the same reason. The only combinations that can be candidate keys
of this relation are (Attorney, ClientNumber, MeetingDate) and (Attorney, ClientName,
MeetingDate).

Let us consider those possibilities further. The name of the relation is MEETING, and
we are asking whether (Attorney, ClientNumber, MeetingDate) or (Attorney, ClientName,
MeetingDate) can be a candidate key. Do these combinations make sense as identifiers of
a meeting? They do unless more than one meeting of the same attorney and client occurs
on the same day. In that case, we need to add a new column, MeetingTime, to the relation
and make this new column part of the candidate key. In this example, we assume that this is
not the case and that (Attorney, ClientNumber, MeetingDate) and (Attorney, ClientName,
MeetingDate) are the candidate keys.

The second step is to identify other functional dependencies. Here two exist:

ClientNumber — ClientName

and:

ClientName — ClientNumber

Each of these determinants is part of one of the candidate keys. For example, ClientNumber
is part of (Attorney, ClientNumber, MeetingDate). However, being part of a candidate key

is not enough. The determinant must be the same as the entire candidate key. Thus, the
MEETING table is not well formed and has normalization problems.

84 Part1i

FIGURE 2-24

Database Fundamentals

When you are not certain whether normalization problems exist, consider the three
modification operations discussed in Chapter 1: insert, update, and delete. Do problems
exist with any of them? For example, in Figure 2-23 if you change ClientName in the
first row to ABC, Limited, do inconsistencies arise in the data? The answer is yes because
ClientNumber 1000 would have two different names in the table. This and any of the other
problems that were identified in Chapter 1 when inserting, updating, or deleting data are
sure signs that the table has normalization problems.

To fix the normalization problems, we create a new table, CLIENT, with columns
ClientNumber and ClientName. Both of these columns are determinants; thus, either can
be the primary key of the new table. However, whichever one is selected as the primary key
also should be made the foreign key in MEETING. Thus, two correct designs are possible.
First, we can use:

MEETING (Attorney, ClientNumber, MeetingDate, Duration)
CLIENT (ClientNumber, ClientName)

with the referential integrity constraint:
ClientNumber in MEETING must exist in ClientNumber in CLIENT

Second, we can use:

MEETING (Attorney, ClientName, MeetingDate, Duration)
CLIENT (ClientNumber, ClientName)

with the referential integrity constraint:
ClientName in MEETING must exist in ClientName in CLIENT

Data for the first design are shown in Figure 2-24.

Notice in these two designs that either the attribute ClientNumber or ClientName is
both a foreign key and also part of the primary key of MEETING. This illustrates that for-
eign keys can be part of a composite primary key.

Note that when two attributes, such as ClientNumber and ClientName, each determine
one another they are synonyms. They both must appear in a relation to establish their equiv-
alent values. Given that equivalency, the two columns are interchangeable; one can take the
place of the other in any other relation. All things being equal, however, the administration
of the database will be simpler if one of the two is used consistently as a foreign key. This
policy is just a convenience, however, and not a logical requirement for the design.

Normalization Example 4 For our last example, let us consider a relation that in-
volves student data. Specifically:

GRADE (ClassName, Section, Term, Grade, StudentNumber, StudentName,

Professor, Department, ProfessorEmail)

Given the confused set of columns in this table, it does not seem well formed, and it ap-
pears that the table will have normalization problems. We can use the normalization pro-
cess to find what they are and to remove them.

Normalized MEETING Boxer
and CLIENT Relations James

and Data

Attorney ClientNumber [MeetingDate |Duration ClientNumber [ClientName

Boxer 1000 11/5/2014 200 1000 ABC, Inc
2000 11/5/2014 5.50 2000 XYZ Partners
1000 11/7/2014 3.00 3000 |Malcomb Zoe

Boxer 1000 11/9/2014 4.00

Wu 3000 11/11/2014 7.00

Chapter 2 The Relational Model 85

First, what are the candidate keys of this relation? No column by itself is a candidate
key. One way to approach this is to realize that a grade is a combination of a class and a
student. In this table, which columns identify classes and students? A particular class is
identified by (ClassName, Section, Term), and a student is identified by StudentNumber.
Possibly, then, a candidate key for this relation is:

(ClassName, Section, Term, StudentNumber)
This statement is equivalent to saying:

(ClassName, Section, Term, StudentNumber) — (Grade, StudentName, Professor,
Department, ProfessorEmail)

This is a true statement as long as only one professor teaches a class section. For now, we will
make that assumption and consider the alternate case later. If only one professor teaches a
section, then (ClassName, Section, Term, StudentNumber) is the one and only candidate key.

Second, what are the additional functional dependencies? One involves student data,
and another involves professor data, specifically:

StudentNumber — StudentName
and:
Professor — ProfessorEmail

We also need to ask if Professor determines Department. It will if a professor teaches in
only one department. In that case, we have:

Professor — (Department, ProfessorEmail)

Otherwise, Department must remain in the GRADE relation.
We will assume that professors teach in just one department, so we can confirm the
following functional dependencies from our discussion above:

StudentNumber — StudentName
and:
Professor — (Department, ProfessorEmail)

If we examine the GRADE relation a bit further, however, we can find one other functional
dependency. If only one professor teaches a class section, then:

(ClassName, Section, Term) — Professor

Thus, according to step 3 of the normalization process, GRADE has normalization prob-
lems because the determinants StudentNumber, Professor, and (ClassName, Section,
Term) are not candidate keys. Therefore, we form a table for each of these functional de-
pendencies. As a result, we have a STUDENT table, a PROFESSOR table, and a CLASS_
PROFESSOR table. After forming these tables, we then take the appropriate columns out
of GRADE and put them into a new version of the GRADE table, which we will name
GRADE_1. We now have the following design:

STUDENT (StudentNumber, StudentName)

PROFESSOR (Professor, Department, ProfessorEmail)
CLASS_PROFESSOR (ClassName, Section, Term, Professor)
GRADE _1 (ClassName, Section, Term:, Grade, StudentNumber)

86 Part1i

Database Fundamentals

with the referential integrity constraints:

StudentNumber in GRADE_1 must exist in StudentNumber in STUDENT
Professor in CLASS_ PROFESSOR must exist in Professor in PROFESSOR

(ClassName, Section, Term) in GRADE_1 must exist in (ClassName, Section, Term)
in CLASS_ PROFESSOR

Next, consider what happens if more than one professor teaches a section of a class.
In that case, the only change is to make Professor part of the primary key of CLASS_
PROFESSOR. Thus, the new relation is:

CLASS_PROFESSOR_1 (ClassName, Section, Term, Professor)

Class sections that have more than one professor will have multiple rows in this table—one
row for each of the professors.

This example shows how normalization problems can become more complicated than
simple examples might indicate. For large commercial applications that potentially involve
hundreds of tables, such problems can sometimes consume days or weeks of design time.

Eliminating Anomalies from Multivalued Dependencies

In the interest of full disclosure, if professors can teach more than one class in the previous
example, then GRADE has what is called a multivalued dependency. When modification
problems are due to functional dependencies, and we then normalize relations to BCNF,
we eliminate these anomalies. However, anomalies can also arise from another kind of
dependency—the multivalued dependency. A wzultivalued dependency occurs when a de-
terminant is matched with a particular sez of values.

Examples of multivalued dependencies are:

EmployeeName — — EmployeeDegree
EmployeeName — — EmployeeSibling
PartKitName — — Part

In each case, the determinant is associated with a set of values, and example data for each
of these multivalued dependencies are shown in Figure 2-25. Such expressions are read as
“EmployeeName multidetermines EmployeeDegree” and “EmployeeName multideter-
mines EmployeeSibling” and “PartKitName multidetermines Part.” Note that multideter-
minants are shown with a double arrow rather than a single arrow.

Employee Jones, for example, has degrees AA and BS. Employee Greene has degrees
BS, MS, and PhD. Employee Chau has just one degree, BS. Similarly, employee Jones has
siblings (brothers and sisters) Fred, Sally, and Frank. Employee Greene has sibling Nikki,
and employee Chau has siblings Jonathan and Eileen. Finally, PartKitName Bike Repair has
parts Wrench, Screwdriver, and Tube Fix. Other kits have parts as shown in Figure 2-25.

Unlike functional dependencies, the determinant of a multivalued dependency can
never be the primary key. In all three of the tables in Figure 2-25, the primary key consists
of the composite of the two columns in each table. For example, the primary key of the
EMPLOYEE_DEGREE table is the composite key (EmployeeName, EmployeeDegree).

Multivalued dependencies pose no problem as long as they exist in tables of their own.
None of the tables in Figure 2-25 has modification anomalies. However, if A — — B, then
any relation that contains A, B, and one or more additional columns will have modification
anomalies. Notice that when you put multivalued dependencies into a table of their own,
they disappear. The result is just a table with two columns, and the primary key (and sole
candidate key) is the composite of those two columns. When multivalued dependencies
have been isolated in this way, the table is said to be in fourth normal form (4NF).

FIGURE 2-25

Three Examples
of Multivalued
Dependencies

Chapter 2 The Relational Model 87

EMPLOYEE_DEGREE

EmployesMame EmployeeDegree
1 I:hau ac
5 Ereen e
3 Green MS
4 Green PhD
5 Jones AR
& Jones BA

EMPLOYEE_SIBLING

EmployeeMName EmployeeSibling
1 " Eleen
2 h.i:hau Jonathan
3 Green Milckei
4 Jones Frank
b Jones Fred
6 Jones Salhy

PARTKIT_PART

PartKitMam Fart
1 Screwdriver
2 " Tube Fix
3 Bike Repair Wrench
4 First Aid Aspirin
5 First Aid Bandaids
& First Aid Blastic Band
Fi First Aid Ibuprofin
8 Toolbox Dirill
b) Toolbox Drrill bits
10 Toolbox Hammer
11 Toolbox Saw
12 Toolbox Screwdriver

The hardest part of multivalued dependencies is finding them. Once you know they
exist in a table, just move them into a table of their own. Whenever you encounter tables
with odd anomalies, especially anomalies that require you to insert, modify, or delete differ-
ent numbers of rows to maintain integrity, check for multivalued dependencies.

You will get a chance to work with multivalued dependencies and 4NF in
exercises 2.40 and 2.41. If you want to learn about them, see one of the
more advanced texts mentioned in the footnote on page 76. In general, you
should normalize your relationships so that they are either in BCNF or 4NF.

88 Part1 Database Fundamentals

NORMAL FORMS: ONE STEP AT A TIME

A table and a spreadsheet are very similar to one another in that we can think of both as having rows, col-
umns, and cells. Edgar Frank (E. F) Codd, the originator of the relational model, defined three normal forms
in an early paper on the relational model. He defined any table that meets the definition of a relation (see
Figure 2-1 on page 63) as being in first normal form (1NF).

For INE, ask yourself: Does the table meet the definition in Figure 2-1? If the answer is yes, then the
table is in 1INF.

Codd pointed out that such tables can have anomalies (which are referred to elsewhere in the text as 7or-
malization problems), and he defined a second normal form (2NF) that eliminated some of those anomalies. A
relation is in 2NF if and only if (1) it is in 1NF and (2) all nonkey attributes are determined by the entire primary
key. This means that if the primary key is a composite primary key, no nonkey attribute can be determined by
an attribute or attributes that make up only part of the key. Thus, if you have a relation (A, B, N, O, P) with the
composite key (A, B), then none of the nonkey attributes—N, O, or P—can be determined by just A or just B.

For 2NF, ask yourself: (1) Is the table in 1NF, and (2) are all nonkey attributes determined by on/y the
entire primary key rather than part of the primary key? If the answers are yes and yes, then the table is in 2NFE
Note that the problem solved by 2NF can o7ly occur in a table with a composite primary key—if the table has
a single column primary key, then this problem cannot occur and if the table is in 1NF it will also be in 2NF.

However, the conditions of 2NF did not eliminate all the anomalies, so Codd defined third normal form
(BNF). A relation is in 3NF if and only if (1) it is in 2NF and (2) there are no nonkey attributes determined by
another nonkey attribute. Technically, the situation described by the preceding condition is called a transitive
dependency. Thus, in our relation (A, B, N, O, P) zone of the nonkey attributes—N, O, or P—can be deter-
mined by N, O, or P or any combination of them.

For 3NF, ask yourself: (1) Is the table in 2NF, and (2) are there any nonkey attributes determined by az-
other nonkey attribute or attributes? If the answers are yes and 7o, then the table is in 3NF.

Not long after Codd published his paper on normal forms, it was pointed out to him that even relations in
3NF could have anomalies. As a result, he and R. Boyce defined the Boyce-Codd Normal Form (BCNF), which
eliminated the anomalies that had been found with 3NFE As stated earlier, a relation is in BCNF if and only if every
determinant is a candidate key.

For BCNE ask yourself: (1) Is the table in 3NF, and (2) are all determinants also candidate keys? If the
answers are yes and yes, then the table is in BCNF,

INF through BCNF are summed up in a widely known phrase:

I swear to construct my tables so that all nonkey columns are dependent on the key, the whole key, and
nothing but the key, so help me Codd!

This phrase actually is a very good way to remember the order of the normal forms:

I swear to construct ney tables so that all nonkey columns are dependent on

o the key, [This is INF]

o the whole key, [This is 2NF]

® and nothing but the key, [This is 3NF and BCNF]
so help me Codd!

Also note that all these definitions were made in such a way that a relation in a higher normal form is
defined to be in all lower normal forms. Thus, a relation in BCNF is automatically in 3NF, a relation in 3NF is
automatically in 2NF, and a relation in 2NF is automatically in INFE

There the matter rested until others discovered another kind of dependency, called a multivalued dependency,
which is discussed earlier in this chapter and is illustrated in exercises 2-40 and 2-41. To eliminate multivalued
dependencies, fourth normal form (4NF) was defined. To put tables into 4NF, the initial table must be split into
tables such that the multiple values of any multivalued attribute are moved into the new tables. These are then ac-
cessed via 1:N relationships between the original table and the tables holding the multiple values.

For 4NF, ask yourself: (1) Have the multiple values determined by any multivalued dependency been
moved into a separate table? If the answer is yes, then the tables are in 4NF.

Chapter 2 The Relational Model 89

A little later, another kind of anomaly involving tables that can be split apart but not correctly joined
back together was identified, and fifth normal form (5NF) was defined to eliminate that type of anomaly.
A discussion of 5NF is beyond the scope of this book.

You can see how the knowledge evolved: None of these normal forms were perfect—each one eliminated
certain anomalies, and none asserted that it was vulnerable to no anomaly at all. At this stage, in 1981, R.
Fagin took a different approach and asked why, rather than just chipping away at anomalies, we do not look
for conditions that would have to exist in order for a relation to have no anomalies at all. He did just that and,
in the process, defined domain/key normal form (DK/NF), and, no, that is not a typo—the name has the
slash between “domain” and “key,” while the acronym places it between “DK” and “NF”! Fagin proved that
a relation in DK/NF can have no anomalies, and he further proved that a relation that has no anomalies is also
in DK/NF.

For some reason, DK/NF never caught the fancy of the general database population, but it should have. As
you can tell, no one should brag that their relations are in BCNF—instead we should all brag that our relations
are in DK/NE But for some reason (perhaps because there is fashion in database theory, just as there is fashion
in clothes), it just is not done.

You are probably wondering what the conditions of DK/NF are. Basically, DK/NF requires that all the
constraints on data values be logical implications of the definition of domains and keys. To the level of de-
tail of this text, and to the level of detail experienced by 99 percent of all database practitioners, this can be
restated as follows: Every determinant of a functional dependency must be a candidate key. This is exactly
where we started and what we have defined as BCNF.

You can broaden this statement a bit to include multivalued dependencies and say that every determinant
of a functional or multivalued dependency must be a candidate key. The trouble with this is that as soon as we
constrain a multivalued dependency in this way, it is transformed into a functional dependency. Our original
statement is fine. It is like saying that good health comes to overweight people who lose weight until they are
of an appropriate weight. As soon as they lose their excess weight, they are no longer overweight. Hence,
good health comes to people who have appropriate weight.

For DK/NF, ask yourself: Is the table in BCNF? For our purposes in this book, the two terms are syn-
onymous, so if the answer is yes, we will consider that the table is also in DK/NF.

So, as Paul Harvey used to say, “Now you know the rest of the story.” Just ensure that every determinant
of a functional dependency is a candidate key (BCNF), and you can claim that your relations are fully nor-
malized. You do not want to say they are in DK/NF until you learn more about it, though, because someone
might ask you what that means. However, for most practical purposes your relations are in DK/NF as well.

Note: For more information on normal forms, see David M. Kroenke and David J. Auer, Database
Processing: Fundamentals, Design, and Implementation, 13th edition (Upper Saddle River, NJ: Prentice Hall,
2014): 118-151.

THE ACCESS WORKBENCH

Section 2
Working with Multiple Tables in Microsoft Access

In Chapter 1’s “The Access Workbench,” we learned how to create Microsoft Access 2013
databases, tables, forms, and reports. However, we were limited to working with only one
table. In this section, we will:

e See examples of the modification problems discussed in Chapters 1 and 2.
e Work with multiple tables.

(Continued)

90 Parti

Database Fundamentals

FIGURE AW-2-1
CONTACT Data
CustomerID Date Type Remarks
1 7/7/2014 Phone General interest in a Gaea.
1 7/7/2014 Email Sent general information.
1 7/12/2014 Phone Set up an appointment.
1 7/14/2014 Meeting Bought a HiStandard.
3 7/19/2014 Phone Interested in a SUHI, set up an appointment.
1 7/21/2014 Email Sent a standard follow-up message.
4 7/27/2014 Phone Interested in a HiStandard, set up an appointment.
3 7/27/2014 Meeting Bought a SUHi.
4 8/2/2014 Meeting Talked up to a HiLuxury. Customer bought one.
3 8/3/2014 Email Sent a standard follow-up message.
4 8/10/2014 Email Sent a standard follow-up message.
5 8/15/2014 Phone General interest in a Gaea.

We will continue to use the WMCRM database we created in Chapter 1’s section of
“The Access Workbench.” At this point, you have created and populated (which means you
have inserted the data into) the CONTACT table. Figure AW-2-1 shows the contacts that
have been made with each customer. Note that there is no customer with CustomerID 2—
this is because we deleted and reentered the data for Jessica Christman.

Possible Modification Problems in the WMCRM Database

We know from the topics covered in this chapter that we really need a separate table to
store the CONTACT data, but in order to illustrate the modification problems discussed
in Chapter 1 let us combine it into one table with the data already in CUSTOMER. This
table is available in the file WMCRM-Combined-Data.accdb, which is available at the Web
site for this book (www.pearsonhighered.com/kroenke). We will use this database to see
modification problems in non-normalized tables and then build the correctly normalized
tables in the actual WMCRM database.

We will need to start Microsoft Access 2013, open the WMCRM-Combined-Data.
accdb file, and take a look at the WMCRM-Combined-Data database.

Opening an Existing Microsoft Access Database

1. Select the Microsoft Access 2013 icon on the Start screen, or click the Microsoft Access
2013 button on the Taskbar if you pinned it there. The Microsoft Access 2013 splash screen
window appears, as shown in Figure AW-2-2.

m NOTE: The menu command or icon location used to start Microsoft Access 2013
may vary, depending on the operating system and how Microsoft Office is installed on
the computer you are using.

2. Click the Open Other Files button on the Microsoft Access 2013 splash screen to open the
File | Open page, as shown in Figure AW-2-3.

3. Click the Computer button to open the Open | Computer pane, as shown in Figure AW-2-4.

4. Click the Browse button to open the Open dialog box, as shown in Figure AW-2-5.

www.pearsonhighered.com/kroenke

FIGURE AW-2-2

The Microsoft Access 2013 Splash Screen

The WMCRM.aacdb
file name in the
Recent list

Click the Open
Other Files button el
to display the file
menu Open page

FIGURE AW-2-3

The Microsoft Access 2013 File | Open Page

The File | Open
page

The Open | Recent
pane is displayed with
WMCRM.aacdb

file name in the Recent
list—you can click a file
name to open the file

Click the Computer
button to display the
Open | Computer
pane

Access

Recent

WMCRM.accdb

(@ Open Other Files

Chapter 2 The Relational Model 91

Search for online templates O

Suggested scarches: Assefs Business
Contacts Employee Inventory Project

Sales

Sign in to get the most out of Office

‘%

Blank desktop database

=

7T - 8 X

Learn more

Open

@ R Recent

| WMCRM.acedb
5| pocuments

& SkyDrive
i:l Computer
=

o= Addaplace

signin

(Continued)

92 Part1 Database Fundamentals

FIGURE AW-2-4

The Open | Computer Page

The File | Open
page

The Open | Computer
pane is displayed with
the Browse button—
you can click this
button to search

for files

Click the Browse
button to display the
Open dialog box

FIGURE AW-2-5

The Open Dialog Box

Click the file name to
select the file

Click the Open button

Account

Options

Accaunt

Options

Access ? - X
Sign in
@ i E;I Computer
Recent Folders
& SkyDrive Documents
Desktop
i:l Computer
=
s AddaPlace Branse
Signin [

Open

42 Open E

 Fl <« Auer + Documents » vl Search Dacuments F
‘ Organize v New folder =~ [@
B Desktop A Name Date modified Ty
1 Downloads 7
L MySOL Workbench 1/16/2014 1:33 PM Fil

&l Recent places
| SQL Server Management Studio

|| Visual Studie 2010
B WMCRM.accdb
B4 WMCRM-Combined-Data.acedb

18 This PC
hu Desktop
£l Documents

1§ Downloads
W Music

%, Local Disk (C)

File name: || v| |Microsoft Access (*.accdb;.me v
Tools = Cancel

FIGURE AW-2-6

Chapter 2 The Relational Model 93

The CUSTOMER_CONTACT Table

*
Record: W

ZH CUSTOMER CONTACT

1 Griffey

1 Griffey

1 Griffey

1 Griffey

1 Griffey

3 Christman
3 Christman
3 Christman
4 Christman
4 Christman
4 Christman
5 Hayes

0

1ofi2 | b M b

Ben
Ben
Ben
Ben
Ben
Jessica
Jessica
Jessica
Rob
Rob
Rob
Judy

CustomerlD - LastName - FirstName -~

x
Address - | City -|St:- |ZIP -| Phone - |Fa - Email -| Date - Type - Remarks e
5678 25th NE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com 7/7/2014 Email Sent general information.
5678 25th NE Seattle WA 98178 206-456-2345 Ben Griffey@somewhere.com 7/7/2014 Phone General interest in a Gaea.
5678 25th NE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com 7/12/2014 Phone Set up an appointment.
5678 25th NE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com 7/14/2014 Meeting Bought a HiStandard.
5678 25th NE Seattle WA 98178 206-456-2345 Ben.Griffey@somewhere.com 7/21/2014 Email Sent a standard follow-up message.
3456 36th sW Seattle WA 98189 206-467-3456 Jessica.Christman @somewhere.com 7/19/2014 Phone Interested in a SUHI, set up an appointment.
3456 36th SW Seattle WA 98189 206-467-3456 Jessica.Christman @somewhere.com 7/27/2014 Meeting Bought a SUHi.
3456 36th SW Seattle WA 98189 206-467-3456 Jessica.Christman@somewhere.com 8/3/2014 Email Sent a standard follow-up message.
4567 47th NW Seattle WA 98167 206-478-4567 206-4 Rob.Christman@somewhere.com 7/27/2014 Phone Interested in a HiStandard, set up an appointment.
4567 47th NW Seattle WA 98167 206-478-4567 206-4 Rob.Christman@somewhere.com 8/2/2014 Meeting Talked up to a Hiluxury. Customer bought one.
4567 47th NW Seattle WA 98167 206-478-4567 206-4 Rob.Christman@somewhere.com 8/10/2014 Email Sent a standard follow-up message.
234 Highland Place Edmonds WA 98210 425-354-8765 Judy.Hayes@somewhere.com 8/15/2014 Phone General interest in a Gaea.
Search

FIGURE AW-2-7

g2

10.
11.
12.

Browse to the WMCRM-Combined-Data.accdb file, click the file name to highlight it, and
then click the Open button.

The Security Warning bar appears with the database. Click the Security Warning bar’s
Enable Content button to select this option.

In the Navigation Pane, double-click the CUSTOMER_CONTACT table object to open it.
Click the Shutter Bar Open/Close button to minimize the Navigation Pane.

The CUSTOMER_CONTACT table appears in Datasheet view, as shown in Figure AW-2-6.
Note that there is one line for each contact, which has resulted in the duplication of basic
customer data. For example, there are five sets of basic data for Ben Griffey.

Close the CUSTOMER_CONTACT table by clicking the document window’s Close button.
Click the Shutter Bar Open/Close button to expand the Navigation Pane.

In the Navigation Pane, double-click the Customer Contact Data Input Form object to open
it. The Customer Contact Data Input Form appears, as shown in Figure AW-2-7. Note that
the form displays all the data for one record in the CUSTOMER_CONTACT table.

The Customer Contact Data Input Form

All fields from the
CUSTOMER_
CONTACT table
appear on the form

buttons

Form browsing

N

==] Customer Contact Data Input Form %

Customer Contact Data Input Form

]
* CustomeriD !
LastName |Griffey
FirstName Ben
Address 5678 25th NE
[Seattle
[wa
ZIp |98178
Phone |206-456-2345

|Ben.@riffey@somewhere.com

7/7/2014
Email

|sent general information.

4 [ofiz » M} [Search

Record:

(Continued)

94 Part1 Database Fundamentals

FIGURE AW-2-8

The Wallingford Motors Customer Contact Report

Contact data for each
customer are grouped
together and sorted
by date

14.

15.
16.

17.

18.

Wallingford Motors Customer Contact Report
CustomerlD Date LastName FirstName Email Type Remarks
T
7/7/2014 Griffey Ben Ben.Griffey@somewhere.com Phone General interestin a Gaea.
7/7/2014 Griffey Ben Ben.Griffey@somewhere.com Email sent general information.
7/12/2014 Griffey Ben Ben.Griffey@somewhere.com Phane Set up an appaintment.
7/14/2014 Griffey Ben Ben.Griffey@somewhere.com Meeting Bought a HiStandard.
7/21/2014 Griffey Ben Ben.Griffey@somewhere.com Email Sent a standard follow-up message.
3
7/19/2014 Christman Jessica lessica.Christman@somewhere.com Phone Interested in a SUHI, set up an appointment.
7/27/2014 Christman Jessica Jessica.Christman@somewhere.com Meeting Bought a SUHi.
8/3/2014 Christman Jessica Jessica.Christman@somewhere.com Email Sent a standard follow-up message.
4
7/27/2014 Christman Rob Rob.Christman@somewhere.com Phone Interested in a HiStandard, set up an appointment.
8/2/2014 Christman Rob Rob.Christman@somewhere.com Meeting Talked up to a HiLuxury. Customer bought one.
8/10/2014 Christman Rob Rob.Christman@somewhere.com Email sent a standard follow-up message.
5
8/15/2014 Hayes Judy Judy.Hayes@somewhere.com Phone General interestin a Gaea.
13. Close the Customer Contact Data Input Form by clicking the document window’s Close

button.

In the Navigation Pane, double-click the Wallingford Motors Customer Contact Report
to open it.

Click the Shutter Bar Open/Close button to minimize the Navigation Pane.

The Wallingford Motors Customer Contact Report appears, as shown in Figure AW-2-8.
Note that the form displays the data for all contacts in the CUSTOMER_CONTACT table,
sorted by CustomerNumber and Date. For example, all the contact data for Ben Griffey
(who has a CustomerID of 1) is grouped at the beginning of the report.

Close the Wallingford Motors Customer Contact Report by clicking the document win-
dow’s Close button.

Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Now, assume that Ben Griffey has changed his email address from Ben

.Griffey@somewhere.com to Ben.Griffey@elsewhere.com. In a well-formed relation, we
would have to make this change only once, but a quick examination of Figures AW-2-6
through AW-2-8 shows that Ben Griffey’s email address appears in multiple records. We
therefore have to change it in every record to avoid update problems. Unfortunately, it is
easy to miss one or more records, especially in large tables.

Updating Ben Griffey’s Email Address

1.

In the Navigation Pane, double-click the Customer Contact Data Input Form object to
open it. Because Ben Griffey is the customer in the first record, his data is already in the
form.

Edit the Email address to read Ben. Griffey@elsewhere.com, as shown in Figure AW-2-9.
Click the Next Record button to move to the next record in the table. Again, the record
shows Ben Griffey’s data, so again edit the Email address to read Ben. Griffey@elsewhere.com.
Click the Next Record button to move to the next record in the table. For the third

time, the record shows Ben Griffey’s data, so again edit the Email address to read
Ben.Griffey@elsewhere.com.

Click the Next Record button to move to the next record in the table. For the fourth

time, the record shows Ben Griffey’s data, so again edit the Email address to read
Ben.Griffey@elsewhere.com.

FIGURE AW-2-9

Chapter 2 The Relational Model 95

The Customer Contact Data Input Form with the Updated Email Address

The email address
has been updated

The Next Record
button

10.

11.

12.

=8| Customer Contact Data Input Form =

Customer Contact Data Input Form

|Griffey

_Ben

-_Sa?s 25th NE
}Séaﬂle

[wa

[sg178

|206-456-2345

|Ben.Griffey@elsewhere.com "

[7/7/2014

Type Eémail

Remarks |sent general information,

Record: 4« [1of12 | b M b 1 |Search

Click the Next Record button to move to the next record in the table. Finally, another cus-
tomer’s data (the data for Jessica Christman’s contact on 7/19/2014) appears in the form,
so we assume that we have made all the necessary updates to the database records.

Close the Customer Contact Data Input form by clicking the document window’s Close button.
In the Navigation Pane, double-click the report Wallingford Motors Customer Contact
Report to open it.

Click the Shutter Bar Open/Close button to minimize the Navigation Pane.

The Wallingford Motors Customer Contact Report now looks as shown in Figure AW-2-10.
Note that the email addresses shown for Ben Griffey are inconsistent—we missed one record
when we updated the table, and now we have inconsistent data. A modification error—in
this case an update error—has occurred.

Close the Wallingford Motors Customer Contact Report by clicking the document win-
dow’s Close button.

Click the Shutter Bar Open/Close button to expand the Navigation Pane.

This simple example shows how easily modification problems can occur in tables that

are not normalized. With a set of well-formed, normalized tables, this problem would not
have occurred.

Closing the WMCRM-Combined-Data Database

1. Click the Close button to close the database and exit Microsoft Access.

(Continued)

96 Part1i

FIGURE AW-2-10

Database Fundamentals

The Updated Wallingford Motors Customer Contact Report

A modification
problem has occurred.
Not all records were
updated with the new
email address, and
the database records
are now inconsistent

Wallingford Motors Customer Contact Report

CustomeriD Date LastName FirstName Email Type Remarks

1
General interest in a Gaea.

7/7/2014 Griffey Ben Phone

e 7/7/2014 Griffey Ben

Ben.Griffey@elsewhere.com

2/2014 Griffey Ben Ben.Griffey@elsewhere.com
7/14/2014 GIT Ben Ben.Griffey@elsewhere.com
7/21/2014 Griffey Ben Ben.Griffey@somewhere.com

Ben.Griffey@elsewhere.com
Email Sent general information.
Phone Set up an appointment.
Meeting Bought a Histandard.

Email sent a standard follow-up message.

3

7/19/2014 Christman Jessica.Christman@somewhere.com Phone Interested in a SUH, set up an appointment.

7/27/2014 Christman
8/3/2014 Christman

Jessica

Jessica Jessica.Christman@somewhere.com Meeting Bought a SUHI.

Jessica Jessica.Christman@somewhere.com Email Sent a standard follow-up message.

7/27/2014 Christman Rob Rob.Christman@somewnhere.com Phone Interested in a HiStandard, set up an appointment.

8/2/2014 Christman Rob
8/10/2014 Christman Rob

Rob.Christman@somewhere.com Meeting Talked up to a HiLuxury. Customer bought one.

Rob.Christman@somewhere.com Email Sent a standard follow-up message.

Phone General interest in a Gaea.

8/15/2014 Hayes Judy.Hayes@somewhere.com

Working with Multiple Tables
The table structure for the CUSTOMER_CONTACT table in the WMCRM-Combined-
Data database is:

CUSTOMER_CONTACT (CustomerID, LastName, FirstName, Address, City, State,
ZIP, Phone, Fax, Email, Date, Type, Remarks)

Applying the normalization process discussed in this chapter, we will have the following set

of tables:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
Fax, Email)

CONTACT (ContactID, CustomerID, ContactDate, ContactType, Remarks)
with the referential integrity constraint:
CustomerID in CONTACT must exist in CustomerID in CUSTOMER

Note that we have modified a couple of column names in the CONTACT table—we are
using ContactDate instead of Date and ContactType instead of Type. We will discuss the
reason for this later in this section. Our task now is to build and populate the CONTACT
table and then to establish the relationship and referential integrity constraint between the
two tables.

First, we need to create and populate (insert data into) the CONTACT table,
which will contain the columns and column characteristics shown in the table in Figure
AW-2-11.° The CustomerID column appears again in CONTACT, this time designated as a

¢Although we are using it for simplicity in this example, a column such as Remarks (also often called
Comments or Notes) can cause problems in a database. For a complete discussion, see David M. Kroenke
and David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 13th edition (Upper
Saddle River, NJ: Prentice Hall, 2014).

FIGURE AW-2-11

Chapter 2 The Relational Model 97

Database Column Characteristics for the CONTACT Table

Column Name Type Key Required Remarks

ContactID AutoNumber Primary Key Yes Surrogate Key

CustomerlD Number Foreign Key Yes Long Integer

ContactDate Date/Time No Yes Short Date

ContactType Text (10) No Yes Allowed values are Phone, Fax,
Email, and Meeting

Remarks Memo No No

foreign key. As discussed in this chapter, the term foreign key designates this column as the
link to the CUSTOMER table. The value in the CustomerID column of CONTACT tells
which customer was contacted. All we have to do is look up the value of CustomerID in the
CUSTOMER table.

Note that when we build the CONTACT table there is no “foreign key” setting. We
will set up the database relationship between CUSTOMER and CONTACT after we have
finished building the CONTACT table.

Note the following:

e Some new data types are being used: Number, Date/Time, and Memo.

e CustomerID must be set as a Number data type and specifically as a Long
Integer data type to match the data type Microsoft Access creates for the
AutoNumber data type in the CUSTOMER table.

¢ The Type column has only four allowed values: Phone, Fax, Email, and
Meeting. For now, we can simply input only these data values. You will learn
how to enforce the data restriction for this column in Chapter 3.

Creating the CONTACT Table

1. Open Microsoft Access 2013.

2. In the Recent list of database files, click WMCRM.accdb. The database file opens in
Microsoft Access.

3. Click the Create command tab.

4. Click the Table Design button.

5. The Tablel tabbed document window is displayed in Design view. Note that along
with the Tablel window a contextual tab named Table Tools is displayed and that this
tab adds a new command tab and ribbon, named Design, to the set of command tabs
displayed.

6. Using the steps we followed to create the CUSTOMER table in Chapter 1’s section of “The
Access Workbench,” begin to create the CONTACT table. The following steps detail only
new information that you need to know to complete the CONTACT table.

m NOTE: When creating the CONTACT table, be sure to enter appropriate comments
in the Description column.

7. When creating the CustomerID column, set the data type to Number. Note that the default
Field Size setting for Number is Long Integer, so no change is necessary. Be sure to set the
Required property to Yes.

8. After creating the ContactID column, set it as the primary key of the table.

(Continued)

98 Part1

FIGURE AW-2-12

The Reserved Word Warning

Database Fundamentals

The column name
Date is a reserved
word—do not use
reserved words as
column names

BH S
HOME

Search.
Tables
o custoMer

&-
CREATE

EXTERNAL DATA
= Insert Rows

2 Delete Rows

ation
£ Modify Lookups

Tools

¢cess Objects @ «

| Tablet

DATABASE TOOLS

TABLE TOOLS

DESIGN

A=
= BT (=)
Property Indexes Create Data Rename/
Sheet Macros = Delete Macro
Show/Hide Field, Record & Table Event

Sign in
=] r‘

Bg =<1
Object

Dependencies

Relationships

s Relationships ~

ContactiD
CustomerlD

Field Name

DataType
ber

Description (Optional) [=

Number

gate key for CONTACT
CustomerlD of customer contacted

Date
Forms.

B WMCRM Customer Data Form Microsoft Access n
Reports a \
B it e . The name you supplied is a reserved word, Reserved words have a Specific meaning to Microsoft Access or

to the Microsoft Access database engine,

If you use a reserved word, you may receive an error when referring to this field.

Was this information helpful?

Cancel Help

Field Properties

General |Looku

Afield name can be up ta 64 characters long,
including spaces, Press F1 for help on field
names,

Click the Cancel
button and revise the
column name

Design view. F6 = Switch panes. F1 = Help.

9. When creating the ContactDate column, start by using the column name Daze. As soon as
you enter the column name and try to move to the Data Type column, Microsoft Access dis-
plays a dialog box, warning you that Date is a reserved word, as shown in Figure AW-2-12.
Click the Cancel button, and change the column name to ContactDate.

m NOTE: Normally, you should avoid reserved words such as Date and Time.
Generally, column names such as ContactDate are preferred, both to avoid reserved
words and to clarify exactly which date you are referring to, and that is why we
changed the column names in the CONTACT table.

When creating the ContactDate column, set the data type to Date/Time and set the

format to Short Date, as shown in Figure AW-2-13. Be sure to set the Required prop-

erty to Yes.

To name and save the CONTACT table, click the Save button in the Quick Access

Toolbar.

Type the table name CONTACT into the Save As dialog box text box, and then click the OK

button. The table is named and saved, and it now appears with the table name CONTACT.

To close the CONTACT table, click the Close button in the upper-right corner of the

tabbed document window. The CONTACT table now appears as a table object in the

Navigation Pane.

10.

11.
12.

13.

Creating Relationships Between Tables

In Microsoft Access, you build relationships between tables by using the Relationships
window, which you access by using the Database Tools | Relationships command. After a
relationship is created in the Relationships window, referential integrity constraints are set
in the Edit Relationships dialog box within that window by using the Enforce Referential
Integrity check box.

FIGURE AW-2-13

Setting the Date Format

Chapter 2 The Relational Model 99

Select the Short Date
date format from the
drop-down list

= Tablet x
Field Name Data Type Description (Optional)
ContactiD AutoNumber Surrogate key for CONTACT
CustomeriD Number CustomerlD of customer contacted
ContactDate Date/Time "

Field Properties
General |Lookup
Format [ael
Input Mask General Date 11/12/2015 5:34:23 PM
Caption Long Date Thursday, Movember 12, 2015
Default Value Medium Date
Validation Rule
Validation Text Long Time The display layout for the field. Select a pre-
Required Med”‘”'_" Time defined format or enter a custom format. Press
Indexed shart Time Fifor help on formats,
IME Mode Mo Control
IME Sentence Mode None
Text Align General
Show Date Picker For dates

Creating the Relationship Between the CUSTOMER and CONTACT Tables

1.

N

Click the Database Tools command tab to display the Database Tools command groups, as
shown in Figure AW-2-14.

Click the Relationships button in the Show/Hide group. As shown in Figure AW-2-15, the
Relationships tabbed document window appears, together with the Show Table dialog box.
Note that along with the Relationships window, a contextual tab named Relationship Tools
is displayed and that this tab adds a new command tab named Design to the set of com-
mand tabs displayed.

In the Show Table dialog box, the CONTACT table is already selected. Click the Add
button to add CONTACT to the Relationships window.

In the Show Table dialog box, click the CUSTOMER table to select it. Click the Add
button to add CUSTOMER to the Relationships window.

In the Show Table dialog box, click the Close button to close the dialog box.

Rearrange and resize the table objects in the Relationships window using standard Windows
drag-and-drop techniques. Rearrange the CUSTOMER and CONTACT table objects until
they appear as shown in Figure AW-2-16. Now we are ready to create the relationship be-
tween the tables.

m NOTE: A formal description of how to create a relationship between two tables is
“In the Relationships window, drag a primary key column and drop it on top of the
corresponding foreign key column.” It is easier to understand this after you have actu-
ally done it.

Click and hold the column name CustomerID in the CUSTOMER table and then
drag it over the column name CustomerID in the CONTACT table. Release the mouse
button, and the Edit Relationships dialog box appears, as shown in Figure AW-2-17.

m NOTE: In CUSTOMER, CustomerID is the primary key, and in CONTACT,
CustomerlD is the foreign key.

(Continued)

100 Part1

FIGURE AW-2-14

Database Fundamentals

The Database Tools Command Tab

The DATABASE
TOOLS command tab

The Relationships
button

e Basic Mo

L] "
/ Tash ar
All Access Obj B«
Search ¥
=3 =

The Relationships
command group

/ B commact
T custonsn
Forms &

BH WMECRM Customer Data Form

FIGURE AW-2-15

The Relationships Window

Reports %
W wamnagtord Matars Custamer fe.

[T *-L- B R

il Run Relationships

WMCRM : Database- CAUsers\Auer\ Documents\ WMCRMaccdb (Access 2007 - 2012 file fermat) - Access
DATABASE TOOLS
3 Database Docusmenter
5 Anuyze Pecformance ¥
o A Anabee Table

Arasyre

T - 8 X
Sara i
L= i3]

Access SharePoint Add-
Database g~

8. Click the Enforce Referential Integrity check box.
9. Click the Create button to create the relationship between CUSTOMER and CONTACT.
The relationship between the tables now appears in the Relationships window, as shown in

Figure AW-2-18.

10. To close the Relationships window, click the Close button in the upper-right corner of
the document window. A Microsoft Access warning dialog box appears, asking whether
you want to save changes to the layout of relationships. Click the Yes button to save the

changes and close the window.

At this point, we need to add data on customer contacts to the CONTACT table.
Using the CONTACT table in Datasheet view, as discussed earlier, we enter the data
shown in Figure AW-2-1 into the CONTACT table. Again, note that there is 7o customer

The RELATIONSHIP
TOOLS contextual
command tab

The DESIGN
command tab

The Relationships
tabbed document
window

The Show Table
dialog box

Select a table name,
then click the Add
button to add the table
to the Relationships

window

BH: LR

% Clear Layout

Tables
B con
7T CUSTOMER

/ Forms A

EE WMCRM Customer Data Form
Reports
Walling,

DATABASE TOOLS

All Access Objects ® «

Close

RELATIONSHIP TOOLS

DESIGN Sign in

Search.. bl

Motars Customer Re...

= Show Table

» IEN|

Tables | Queries | Both

CUSTOMER

add | Cese |

FIGURE AW-2-16

The Table Objects in the Relationships Window

Chapter 2 The Relational Model 101

The table objects
have been enlarged
and rearranged into
the arrangement
shown here

:’-, Relationships

I

Click, drag, and drop
the CUSTOMER
CustomerlD field
onto the CONTACT
CustomerlD field

>

v ¥ CustomerlD
LastName

Fir:

Address
City
State
ZIP

Ph

Fax

Em

CUSTOMER

stMame

one

ail

FIGURE AW-2-17

CONTACT
7 ContactiD
CustomerlD
ContactDate
ContactType

Remarks

with CustomerID of 2—this is because we deleted and reentered the data for Jessica
Christman in Chapter 1’s section of “The Access Workbench.” Also note that because
referential integrity is enabled, we cannot enter a CustomerID that does not already exist
in the CUSTOMER table. The CONTACT table with the data inserted looks as shown in
Figure AW-2-19. Be sure to close the table after the data have been entered.

The Edit Relationships Dialog Box

The Edit
Relationships dialog
box

Click the Enforce
Referential Integrity
check box and then

to create the
relationship

click the Create button

Relationships *

x
-
CUSTOMER CONTACT
¥ CustomeriD ¥ ContactiD
LastMame CustomerlD
FirstName ContactDate
Address ContactType
City Remarks
State
ZIp
Phaone
Fax
Email
X Edit Relationships ?
Table/Query: Related Table/Query:
CUSTOMER CONTACT
Cancel
CustomerlD |« | CustomerlD [l
Join Type...
Ny z :
[l Enforce Referential Integrity Seetons
Cascade Update Related Fields
Cascade Delete Relsted Records
Relationship Type: One-To-Many
-
3

(Continued)

102 Part1

Database Fundamentals

FIGURE AW-2-18

The Completed Relationship

:.'-, Relationships

The new relationship
now appears in the

/

CUSTOMER

¥ CustomerlD

LastMame
FirstName
Address
City

tate
ZIp
Phone
Fax
Email

Relationships window

CONTACT
ContactiD

CustomerlD
ContactDate
ContactType
Remarks

diagram—note that
the line connects the
related fields

Using a Form That Includes Two Tables

In Chapter 1’s section of “The Access Workbench,” we created a data entry form for the
CUSTOMER table. Now we will create a Microsoft Access form that will let us work with
the combined data from both tables.

FIGURE AW-2-19

Data in the CONTACT Table

Creating a Form for Both the CUSTOMER and CONTACT Tables

1.
. Click the Form Wizard button in the Forms command group. The Form Wizard appears.
. Select the CUSTOMER table in the Tables/Queries drop-down list. To add all the columns,

Click the Create command tab.

click the right-facing double-chevron button. Do #o# click the Next button yet.

i CONTACT), x
ContactiD - [CustomerlD - | ContactDate - | ContactType - Remarks -
1 1 7/7/2014 Phone General interest in a Gaea.
2 1 7/7/2014 Email Sent general information.
3 1 7/12/2014 Phone Set up an appointment.
4 1 7/14/2014 Meeting Bought a HiStandard.
5 3 7/19/2014 Phone Interested in a SUHi, set up an appointment.
6 1 7/21/2014 Email Sent a standard follow-up message.
7 4 7/27/2014 Phone Interested in a HiStandard, set up an appointment.
8 2 7/27/2014 Meeting Boughta SUHi.
9 4 8/2/2014 Meeting Talked up to a HiLuxury. Customer bought one.
10 3 8/3/2014 Email Sent a standard follow-up message.
11 4 8/10/2014 Email Sent a standard follow-up message.
| 12 5 &8/15/2014 Phone General interest in a Gaea.
* (New) 1]
Record; W :jﬁ PR I 4 'LS_ear_ch— K3]

FIGURE AW-2-20

Chapter 2 The Relational Model 103

The Completed Form for CUSTOMER and CONTACT Data

Buttons for scrolling
through the CONTACT
records for this
customer

Buttons for scrolling
through the
CUSTOMER records

9.
10.

E_El WMCRM Customer Contacts Form x

WMCRM Customer Contacts Form

~]

CustomeriD | !‘ Email Ben.Griffey@somewhere.com
LastName iGriffey

pddress [s678 25th NE

|
FirstName [Ben |
|
|

|Seattle

[wa |

|ss178

[206-456-2345 |

Contact Data ContactDate - | ContactType - Remarks
7/7/2014 Phone General interest in a Gaea.
7/7/2014 Email Sent general information.
7/12/2014 Phone Set up an appointment.
7/14/2014 Meeting Bought a HiStandard

7/21/2014 Email Sent a standard follow-up mess

[Record: 4 [iofs [» mb [[[search_

Record: 4 1 [10f4 | » M b | % [Tsearch

Select the CONTACT table in the Tables/Queries drop-down list. Individually select and

add the ContactDate, ContactType, and Remarks columns to the Selected Fields list by

using the right-facing single-chevron button. Now click the Next button.

m NOTE: You have just created a set of columns from two tables that you want to ap-
pear on one form.

. When asked “How do you want to view your data?” use the default by CUSTOMER se-

lection because we want to see all contacts for each customer. Also use the selected Forms
with subforms option to treat the CONTACT data as a subform within the CUSTOMER
form. Click the Next button.

When asked “What layout would you like for your subform?” click the Next button to use
the default Datasheet layout.

When asked “What titles do you want for your form?” type the form title WMCRM
Customer Contacts Form into the Form: text box and the form title Contact Data into the
Subform: text box. Click the Finish button. The completed form appears.

Click the Shutter Bar Open/Close button to minimize the Navigation Pane. The com-
pleted form is displayed as shown in Figure AW-2-20.

Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Close the form window.

Creating a Report That Includes Data from Two Tables

In this section, we will create a report that includes data from two or more tables. This
Microsoft Access report will let us use the combined data from both the CUSTOMER and
CONTACT tables.

(Continued)

104 Part1

Database Fundamentals

Creating a Report for Both the CUSTOMER and CONTACT Tables

1.

10.
11.
12.

FIGURE AW-2-21

Click the Create tab.

Click the Report Wizard button to display the Report Wizard.

Select the CUSTOMER table in the Tables/Queries drop-down list. One by one, click
LastName, FirstName, Phone, Fax, and Email to select each one, and then click the right-
facing single-chevron button to add each column to the Selected Fields list. Do 7oz click
the Next button yet.

Select the CONTACT table in the Tables/Queries drop-down list. Individually select
and add the ContactDate, ContactType, and Remarks columns to the Selected Fields
list by clicking the right-facing single-chevron button. Now click the Next button.

. When asked “How do you want to view your data?” click the Next button to use the de-

fault by CUSTOMER selection (in order to see all contacts for each customer).
When asked “Do you want to add any grouping levels?” click the Next button to use the
default nongrouped column listing.

. We are now asked “What sort order do you want for detail records?” This is the sort order

for the CONTACT information. The most useful sorting order is by date, in ascending
order. Click the sort field 1 drop-down list arrow and select ContactDate. Leave the sort
order button set to Ascending. Click the Next button.

We are now asked “How would you like to lay out your report?” We will use the default
setting of stepped layout, but click the Landscape orientation radio button to change the
report orientation to landscape. Then click the Next button.

When asked “What title do you want for your report?” edit the report title to read
Wallingford Motors Customer Contacts Report. Leave the Preview the report radio button
selected. Click the Finish button. The completed report is displayed in Print Preview mode.
Click the Close Print Preview button to close Print Preview.

Click the Home command tab.

Click the Shutter Bar Open/Close button to minimize the Navigation Pane. The com-
pleted report is displayed as shown in Figure AW-2-21.

The Wallingford Motors Customer Contact Report

View gallery arrow
button—use this
button to access
Design view if needed

-9 8-

cran

WIMERM - Do st € UseishAue Docurer Is\WMEZR. 2 el (Arcems 2007 - 2013 Fle formicl) - Arcess 7 - 8 x

TRITRNAL AR DA TALAST 1O0HS Sgnin

E O ;
o

E‘ Cit Y Selertior “—;‘;‘ Me = Tatel H S Renlnce
3 s Cop ‘ T ade v Speling | _ . % GuTar
=" | rauen o T L Mare 5 sueas B LY
Vievis Cipbesie 5 sor e Fiter itecoras Hna 1ot Formatira -~
» || 18 wamngtora Metors custemer Contacts Report =
Wallingford Motors Customer Contacts Report
LactName FrstName Phone Fax emall Contactbate ContactType Remarks
Griffey Ben 2064562345 Ban.Griffey@somawhere, com
7472001 Email Sunl geners] inlormstion.
7i7/2011 Phores Genaral inlereslin y Gass.
7/12/2011 Plune Sl up an appuinlment.
7/11/2011 Mesling Buughla HiSlardard.
7aifama Email Seril 4 standard fullow-up
message,
Christman Jessica 20C-467-3456 Jessica Christman@somewhere com
a| 7/19/2014 Phen= Interested ir a SUHi sstupzn
E| sppoinbmen
_E 7/37[2M4 Meating Rougnt a SN
E| R/AAMA Tmail Sent a standard tallow-up
- message:
=1 Christman ot 208458561 206-8/9 1iob.Chnistman slsomewhzsre.com
Herfana vhens Interested ir @ | itendard, set up
an appointment,
&/2f2014 wecting Talked up toa HiLuxery. Custamcr
bougnt one.
8/10/2014 Email Surl g slandard follow-up
message,
Hayes Judy 425-354-2765 Judy Hayes@sotiewhere com
B/15/2012 Plons Genarel inlersst in o Gase.
Vhursday, January 1b, 2018 Fage Lof1

SUMMARY

Chapter 2 The Relational Model 105

13. Although this may not be the best layout for the report, the Microsoft Access Form
Wizard has created a usable report with all columns correctly sized to display the infor-
mation (if there are any columns that are not correctly displayed use the Layout view
in the view gallery to make minor adjustments—this tool can be used to make basic
adjustments by simply clicking the report section you want to change). We will discuss
how to use report Design view to modify reports in Chapter 5’s section of “The Access
Workbench.”

14. Click the Shutter Bar Open/Close button to expand the Navigation Pane.

15. Click the document window’s Close button to close the report window.

Closing the Database and Exiting Microsoft Access

We have finished the work we need to do in this chapter’s “The Access Workbench.” As
usual, we finish by closing the database and Microsoft Access.

Closing the WMCRM Database and Exiting Microsoft Access

1. To close the WMCRM database and exit Microsoft Access 2013, click the Close button in
the upper-right corner of the Microsoft Access 2013 window.

The relational model is the most important standard in database processing today. It was
first published by E. F. Codd in 1970. Today, it is used for the design and implementation
of almost every commercial database.

An entity is something of importance to a user that needs to be represented in a data-
base. A relation is a two-dimensional table that has the characteristics listed in Figure 2-1.
In this book, and in the database world in general, the term zable is used synonymously
with the term relation. Three sets of terminology are used for relational structures. The
terms fable, row, and column are used most commonly, but file, record, and field are some-
times used in traditional data processing. Theorists also use the terms relation, tuple, and
attribute for the same three constructs. Sometimes these terms are mixed and matched.
Strictly speaking, a relation may not have duplicate rows; however, sometimes this condi-
tion is relaxed because eliminating duplicates can be a time-consuming process.

A key is one or more columns of a relation that is used to identify a row. A unique key
identifies a single row; a nonunique key identifies several rows. A composite key is a key that
has two or more attributes. A relation has one primary key, which must be a unique key. A
relation may also have additional unique keys, called candidate keys. A primary key is used to
represent the table in relationships, and many DBMS products use values of the primary key
to organize table storage. In addition, an index normally is constructed to provide fast access
via primary key values. An ideal primary key is short, numeric, and never changes.

A surrogate key is a unique numeric value that is appended to a relation to serve as the
primary key. Surrogate key values have no meaning to the user and are normally hidden on
forms, query results, and reports.

A foreign key is an attribute that is placed in a relation to represent a relationship. A
foreign key is the primary key of a table that is different from (foreign to) the table in which
it is placed. Primary and foreign keys may have different names, but they must use the same
data types and sets of values. A referential integrity constraint specifies that the values of a
foreign key be present in the primary key.

A null value occurs when no value has been given to an attribute. The problem with a
null value is that its meaning is ambiguous. It can mean that no value is appropriate, that

106 Part1 Database Fundamentals

a value is appropriate but has not yet been chosen, or that a value is appropriate and has
been chosen but is unknown to the user. It is possible to eliminate null values by requiring
attribute values. (Another problem with null values will be discussed in the next chapter.)

A functional dependency occurs when the value of one attribute (or set of attributes)
determines the value of a second attribute (or set of attributes). The attribute on the left
side of a functional dependency is called the determinant. One way to view the purpose
of a relation is to say that the relation exists to store instances of functional dependencies.
Another way to define a primary (and candidate) key is to say that such a key is an attribute
that functionally determines all the other attributes in a relation.

Normalization is the process of evaluating a relation and, when necessary, breaking
the relation into two or more relations that are better designed and said to be well formed.
According to normalization theory, a relation is poorly structured if it has a functional
dependency that does not involve the primary key. Specifically, in a well-formed relation,
every determinant is a candidate key.

A process for normalizing relations into BNCF is shown on page 79, and a discussion
of multivalued dependencies and 4NF is found on pages 86-87. According to this process,
relations that have normalization problems are divided into two or more relations that do
not have such problems. Foreign keys are established between the old and new relations,
and referential integrity constraints are created. For reference, a brief discussion of all nor-
mal forms is presented on pages 88—89.

KEY TERMS
alternate key fourth normal form (4NF) record
attribute foreign key referential integrity constraint

AUTO_INCREMENT
Boyce-Codd Normal Form (BCNF)
candidate key

column

composite key

database schema

determinant

domain key/normal form (DK/NF)
entity

field

file

fifth normal form (5NF)

first normal form (INF)

REVIEW QUESTIONS

2.1 Why is the relational model important?

functional dependency
functionally dependent
identity

identity increment
identity seed

is identity

key

multivalued dependency
nonunique key
normalization
normalization process
null value

primary key

relation

row

second normal form (2NF)
SEQUENCE

surrogate key

synonyms

table

third normal form (3NF)
transitive dependency
tuple

unique key

well-formed relation

2.2 Define the term entity and give an example of an entity (other than the one from
this chapter).

2.3 List the characteristics a table must have to be considered a relation.

2.4 Give an example of a relation (other than one from this chapter).

2.5 Give an example of a table that is not a relation (other than one from this chapter).

2.6 Under what circumstances can an attribute of a relation be of variable length?

2.7 Explain the use of the terms file, record, and field.

2.8 Explain the use of the terms relation, tuple, and attribute.

2.9
2.10
2.1
212
213
2.14
2.15
2.16
217

2.18
2.19
2.20
2.21
2.22

2.23

2.24

2.25

2.26

2.27
2.28
2.29

2.30

2.31

2.32

2.33

Chapter 2 The Relational Model 107

Under what circumstances can a relation have duplicate rows?

Define the term unigue key and give an example.

Define the term nonunique key and give an example.

Give an example of a relation with a unique composite key.

Explain the difference between a primary key and a candidate key.
Describe four uses of a primary key.

What is a surrogate key, and under what circumstances would you use one?
How do surrogate keys obtain their values?

Why are the values of surrogate keys normally hidden from users on forms, queries,
and reports?

Explain the term foreign key and give an example.

Explain how primary keys and foreign keys are denoted in this book.
Define the term referential integrity constraint and give an example of one.
Explain three possible interpretations of a null value.

Give an example of a null value (other than one from this chapter) and explain
each of the three possible interpretations for that value.

Define the terms functional dependency and determinant, using an example not
from this book.

In the following equation, name the functional dependency and identify the
determinant(s):

Area = Length X Width

Explain the meaning of the following expression:

A— (B, C)

Given this expression, tell if it is also true that:

A—>B

and:

A—>C

Explain the meaning of the following expression:

(D,E) »F

Given this expression, tell if it is also true that:

D—>F

and:

E—-F

Explain the differences in your answers to questions 2.25 and 2.26.
Define the term primary key in terms of functional dependencies.

If you assume that a relation has no duplicate data, how do you know there is al-
ways at least one primary key?

How does your answer to question 2.29 change if you allow a relation to have du-
plicate data?

In your own words, describe the nature and purpose of the normalization process.

Examine the data in the Veterinary Office List—Version One in Figure 1-30 (see
page 55) and state assumptions about functional dependencies in that table. What
is the danger of making such conclusions on the basis of sample data?

Using the assumptions you stated in your answer to question 2.32, what are the
determinants of this relation? What attribute(s) can be the primary key of this
relation?

108 Part 1

EXERCISES

Database Fundamentals

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.4

Describe a modification problem that occurs when changing data in the relation in
question 2.32 and a second modification problem that occurs when deleting data in
this relation.

Examine the data in the Veterinary Office List—Version Two in Figure 1-31 (see
page 56) and state assumptions about functional dependencies in that table.
Using the assumptions you stated in your answer to question 2.35, what are the deter-
minants of this relation? What attribute(s) can be the primary key of this relation?
Explain a modification problem that occurs when changing data in the relation in
question 2.35 and a second modification problem that occurs when deleting data in
this relation.

Apply the normalization process to the Veterinary Office List—Version One rela-
tion shown in Figure 1-30 (see page 55) to develop a set of normalized relations.
Show the results of each of the steps in the normalization process.

Apply the normalization process to the Veterinary Office List—Version Two rela-
tion shown in Figure 1-31 (see page 56) to develop a set of normalized relations.
Show the results of each of the steps in the normalization process.

What is a multivalued dependency, and how is it resolved by 4NF? To answer these
questions, consider the following relation:

STUDENT (StudentNumber, StudentName, SiblingName, Major)

Assume that the values of SiblingName are the names of all of a given student’s
brothers and sisters; also assume that students have at most one major.

A. Show an example of this relation for two students, one of whom has three sib-
lings and the other of whom has only two siblings.

List the candidate keys in this relation.
C. State the functional dependencies in this relation.

Explain why this relation does not meet the relational design criteria set out in
this chapter (that is, why this is not a well-formed relation).

E. Define and discuss 4NF, and how 4NF can be used to allow a set of well-
formed relations.

F. Divide this relation into a set of relations that meet the relational design criteria
(that is, that are well formed). Specify the type of final normal form for each
the final relations.

What is a multivalued dependency, and how is it resolved by 4NF? To answer these
questions, alter question 2.40 to allow students to have multiple majors. In this
case, the relational structure is:

STUDENT (StudentNumber, StudentName, SiblingeName, Major)

A. Show an example of this relation for two students, one of whom has three sib-
lings and the other of whom has one sibling. Assume that each student has a
single major.

B. Show the data changes necessary to add a second major for only the first
student.

FIGURE 2-26
The ORDER_ITEM Table

Chapter 2 The Relational Model 109

Based on your answer to part B, show the data changes necessary to add a sec-
ond major for the second student.

Explain the differences in your answers to parts B and C. Comment on the
desirability of this situation.

Define and discuss 4NF, and how 4NF can be used to allow a set of well-
formed relations.

Divide this relation into a set of well-formed relations. Specify the type of nor-
mal form for each of the final relations.

2.42 The text states that you can argue that “the only reason for having relations is to
store instances of functional dependencies.” Explain, in your own words, what this
means.

Consider a table named ORDER_ITEM, with data as shown in Figure 2-26. The
schema for ORDER_ITEM is:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price)

2.43

where SKU is a “Stocking Keeping Unit” number, which is similar to a part num-
ber. Here it indicates which product was sold on each line of the table. Note that
one OrderNumber must have at least one SKU associated with it, and may have
several. Use this table and the detailed discussion of normal forms on pages 8889
to answer the following questions.

A.

Define INFE. Is ORDER_ITEM in 1NF? If not, why not, and what would have
to be done to put it into INF? Make any changes necessary to put ORDER_
ITEM into 1NF If this step requires you to create an additional table, make
sure that the new table is also in 1NF.

Define 2NF. Now that ORDER_ITEM is in INF, is it also in 2NF? If not, why
not, and what would have to be done to put it into 2NF? Make any changes
necessary to put ORDER_ITEM into 2NE If this step requires you to create
an additional table, make sure that the new table is also in 2NF.

Define 3NF. Now that ORDER_ITEM is in 2NF, is it also in 3NF? If not, why
not, and what would have to be done to put it into 3NF? Make any changes
necessary to put ORDER_ITEM into 3NF. If this step requires you to create
an additional table, make sure that the new table and any other tables created
in previous steps are also in 3NF.

Define BCNFE. Now that ORDER_ITEM is in 3NF is it also in BCNF? If not,
why not, and what would have to be done to put it into BCNF? Make any
changes necessary to put ORDER_ITEM into BCNE If this step requires you
to create an additional table, make sure that the new table and any other tables
created in previous steps are also in BCNF,

OrderMumber SKLU Quartity Price
2 i 130.00
3 2000 101100 4 50.00
4 2000 101200 2 50.00
5 3000 100200 1 300.00
[3000 101100 2 50.00
7 3000 101200 1 50.00

110 Part1 Database Fundamentals

FIGURE 2-27

ACCESS WORKBENCH KEY TERMS

Edit Relationships dialog box Relationships window
Enforce Referential Integrity check box

ACCESS WORKBENCH EXERCISES

In the “Access Workbench Exercises” in Chapter 1, we created a database for the
Wedgewood Pacific Corporation (WPC) of Seattle, Washington, and created and popu-
lated the EMPLOYEE table. In this exercise, we will build the rest of the tables needed for
the database, create the referential integrity constraints between them, and populate them.

The full set of normalized tables for the WPC database is as follows:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)
PROJECT (ProjectID, ProjectName, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The primary key of DEPARTMENT is DepartmentName, the primary key of EMPLOYEE
is EmployeeNumber, and the primary key of PROJECT is ProjectID. Note that the
EMPLOYEE table is the same as the table we have created, except that Department is
now a foreign key. In EMPLOYEE and PROJECT, Department is a foreign key that refer-
ences DepartmentName in DEPARTMENT. Note that a foreign key does not need to have
the same name as the primary key to which it refers. The primary key of ASSIGNMENT
is the composite (ProjectID, EmployeeNumber). ProjectID is also a foreign key that ref-
erences ProjectID in PROJECT, and EmployeeNumber is a foreign key that references
EmployeeNumber in EMPLOYEE.
The referential integrity constraints are:

Department in EMPLOYEE must exist in DepartmentName in DEPARTMENT
Department in PROJECT must exist in DepartmentName in DEPARTMENT
ProjectID in ASSIGNMENT must exist in ProjectID in PROJECT
EmployeeNumber in ASSIGNMENT must exist in EmployeeNumber in EMPLOYEE

A. Figure 2-27 shows the column characteristics for the WPC DEPARTMENT
table. Using the column characteristics, create the DEPARTMENT table in the
WPC.accdb database.

Column Characteristics for the DEPARTMENT Table

Column Name Type Key Required Remarks
DepartmentName Text (35) Primary Key Yes
BudgetCode Text (30) No Yes
OfficeNumber Text (15) No Yes
Phone Text (12) No Yes

WPC.accdb

Chapter 2 The Relational Model 111

FIGURE 2-28
WPC DEPARTMENT Data
DepartmentName BudgetCode OfficeNumber Phone
Administration BC-100-10 BLDGO01-300 360-285-8100
Legal BC-200-10 BLDGO01-200 360-285-8200
Accounting BC-300-10 BLDGO01-100 360-285-8300
Finance BC-400-10 BLDGO01-140 360-285-8400
Human Resources BC-500-10 BLDGO01-180 360-285-8500
Production BC-600-10 BLDGO02-100 360-287-8600
Marketing BC-700-10 BLDG02-200 360-287-8700
InfoSystems BC-800-10 BLDGO02-270 360-287-8800
B. Forthe DEPARTMENT table, create a data input form named WPC Department
Data Form. Make any necessary adjustments to the form so that all data display
properly. Use this form to enter into your DEPARTMENT table the data in the
DEPARTMENT table shown in Figure 2-28.
C. Create the relationship and referential integrity constraint between
DEPARTMENT and EMPLOYEE. Enable enforcing of referential integrity and
enable cascading of data updates, but do 70z enable cascading of deletions.
D. Figure 2-29 shows the column characteristics for the WPC PROJECT table. Using
the column characteristics, create the PROJECT table in the WPC.accdb database.
E. Create the relationship and referential integrity constraint between
DEPARTMENT and PROJECT. Enable enforcing of referential integrity and en-
able cascading of data updates, but do 7oz enable cascading of deletions.
F. For the PROJECT table, create a data input form named WPC Project Data
Form. Make any necessary adjustments to the form so that all data display prop-
erly. Use this form to enter into your PROJECT table the data in the PROJECT
table shown in Figure 2-30.
FIGURE 2-29

Column Characteristics for the PROJECT Table

Column Name Type Key Required Remarks

ProjectID Number Primary Key Yes Long Integer

ProjectName Text (50) No Yes

Department Text (35) Foreign Key Yes

MaxHours Number No Yes Double, fixed, 2 decimal places
StartDate Date/Time No No Medium date

EndDate Date/Time No No Medium date

(Continued)

112 Part 1

FIGURE 2-30

Database Fundamentals

WPC PROJECT Data

ProjectID

ProjectName

Department

MaxHours

StartDate

EndDate

1000
1100
1200
1300
1400

2014 Q3 Product Plan
2014 Q3 Portfolio Analysis
2014 Q3 Tax Preparation
2014 Q4 Product Plan
2014 Q4 Portfolio Analysis

Marketing
Finance
Accounting
Marketing

Finance

135.00
120.00
145.00
150.00
140.00

10-MAY-14
05-JUL-14

10-AUG-14
10-AUG-14
05-OCT-14

15-JUN-14
25JUL-14
15-OCT-14
15-SEP-14
NULL

FIGURE 2-31

When creating and populating the DEPARTMENT table, the data were entered
into the table before the referential integrity constraint with EMPLOYEE was
created, but when creating and populating the PROJECT table the referential
integrity constraint was created before the data were entered. Why did the order
of the steps differ? Which order is normally the correct order to use?

Figure 2-31 shows the column characteristics for the WPC ASSIGNMENT
table. Using the column characteristics, create the ASSIGNMENT table in the
WPC.accdb database.

Create the relationship and referential integrity constraint between
ASSIGNMENT and PROJECT and between ASSIGNMENT and EMPLOYEE.
When creating both relations, enable enforcing of referential integrity, but do 7ot
enable cascading of data updates or cascading of data from deleted records.

For the ASSIGNMENT table, create a data input form named WPC Assignment
Data Form. Make any necessary adjustments to the form so that all data display
properly. Use this form to enter into your ASSIGNMENT table the data in the
ASSIGNMENT table shown in Figure 2-32.

When creating the relationships between the database tables, we allowed the cas-
cading of data changes between some tables but not between others. (Cascading
means that changes to data in one table are also made to the other table in the
relationship.) The value of a primary key changes in this case, and that change

Column Characteristics for the ASSIGNMENT Table

Column Name Type Key Required Remarks

ProjectID Number Primary Key, Yes Long Integer
Foreign Key

EmployeeNumber Number Primary Key, Yes Long Integer
Foreign Key

HoursWorked Number No No Double, fixed,

1 decimal places

Chapter 2 The Relational Model 113

FIGURE 2-32
WPC ASSIGNMENT Data
ProjectID EmployeeNumber HoursWorked

1000 1 30.0
1000 8 75.0
1000 10 55.0
1100 4 40.0
1100 6 45.0
1200 1 25.0
1200 2 20.0
1200 4 45.0
1200 5 40.0
1300 1 35.0
1300 8 80.0
1300 10 50.0
1400 4 15.0
1400 5 10.0
1400 27.5

is then made in the values of the matching foreign key. Why did we enable cas-
cading of related field values between (1) DEPARTMENT and EMPLOYEE
and (2) DEPARTMENT and PROJECT but not for (3) EMPLOYEE and
ASSIGNMENT and (4) PROJECT and ASSIGNMENT?

L. For both the DEPARTMENT and EMPLOYEE tables, create a data input form
named WPC Department Employee Data Form. This form should show all the
employees in each department.

M. Create a report named Wedgewood Pacific Corporation Department Employee
Report that presents the data contained in your DEPARTMENT and
EMPLOYEE tables. The report should group employees by department. Print
out a copy of this report.

REGIONAL LABS CASE QUESTIONS

Regional Labs is a company that conducts research and development work on a contract
basis for other companies and organizations. Figure 2-33 shows data that Regional Labs

collects about projects and the employees assigned to them.
This data is stored in a relation (table) named PROJECT:

PROJECT (ProjectID, EmployeeName, EmployeeSalary)

114 Part 1

FIGURE 2-33

Sample Data for
Regional Labs

Database Fundamentals

A

®© Mmoo ®

ProjectlD EmployeeName EmployeeSalary
100-A Eric Jones 64 000.00
100-A Donna Smith 70,000.00
100-B Donna Smith 70,000.00
200-A Eric Jones 64.,000.00
200-B Eric Jones 64,000.00
200-C Eric Parks 58,000.00
200-C Donna Smith 70,000.00
200-D Eric Parks 58,000.00

Assuming that all functional dependencies are apparent in this data, which of the fol-
lowing are true?

ProjectID — EmployeeName

ProjectID — EmployeeSalary

(ProjectID, EmployeeName) — EmployeeSalary
EmployeeName — EmployeeSalary
EmployeeSalary — ProjectID

A

EmployeeSalary — (ProjectID, EmployeeName)
What is the primary key of PROJECT?

Are all the nonkey attributes (if any) dependent on the primary key?

In what normal form is PROJECT?

Describe two modification anomalies that affect PROJECT.

Is ProjectID a determinant? If so, based on which functional dependencies in part A?

Is EmployeeName a determinant? If so, based on which functional dependencies in
part A?

Is (ProjectID, EmployeeName) a determinant? If so, based on which functional depen-
dencies in part A?

Is EmployeeSalary a determinant? If so, based on which functional dependencies in
part A?

Does this relation contain a transitive dependency? If so, what is it?

Redesign the relation to eliminate modification anomalies.

S GARDEN GLORY PROJECT QUESTIONS

Figure 2-34 shows data that Garden Glory collects about properties and services.

A

Using these data, state assumptions about functional dependencies among the columns
of data. Justify your assumptions on the basis of these sample data and also on the basis
of what you know about service businesses.

Given your assumptions in part A, comment on the appropriateness of the following
designs:

1. PROPERTY (PropertyName, PropertyType, Street, City, Zip, ServiceDate,
Description, Amount)

FIGURE 2-34

Sample Data for Garden Glory

Chapter 2 The Relational Model 115

PropertyName Type Street City ZIP ServiceDate |Description Amount

Eastlake Building Office 123 Eastlake Seattle 48119 5/5/2014 Lawn Mow $ 42.50
Elm St Apts Apartment 4 East EIm Lynnwood 98223 5812014 Lawn Mow $ 12350
Jeferson Hill Office 42 West 7th St Bellevue 98040 5/8/2014 Garden Service 5 53.00
Eastlake Building Office 123 Eastlake Seattle 98118 5/10/2014 [Lawn Mow % 4250
Eastlake Building |Office 123 Eastlake Seattle 98119 5M12/2014 |Lawn Mow $ 42.50
Elm St Apts Apartment 4 East EIm Lynnwood 98223| 5152014 |Lawn Mow $ 12380
Eastlake Building Office 123 Eastlake Seattle 98119 5/19/2014 [Lawn Mow s 42.50

2. PROPERTY (PropertyName, PropertyType, Street, City, Zip, ServiceDate,
Description, Amount)

3. PROPERTY (PropertyName, PropertyType, Street, City, Zip, ServiceDate,
Description, Amount)

4. PROPERTY (PropertylD, PropertyName, PropertyType, Street, City, Zip,
ServiceDate, Description, Amount)

5. PROPERTY (PropertylD, PropertyName, PropertyType, Street, City, Zip,
ServiceDate, Description, Amount)

6. PROPERTY (PropertylD, PropertyName, PropertyType, Street, City, Zip,
ServiceDate)

and:
SERVICE (ServiceDate, Description, Amount)

7. PROPERTY (PropertylD, PropertyName, PropertyType, Street, City, Zip,
ServiceDate)

and:
SERVICE (ServicelD, ServiceDate, Description, Amount)

8. PROPERTY (PropertylD, PropertyName, PropertyType, Street, City, Zip,
ServiceDate)

and:
SERVICE (ServicelD, ServiceDate, Description, Amount, PropertyID)

9. PROPERTY (PropertylD, PropertyName, PropertyType, Street,
City, Zip)

and:
SERVICE (SetvicelD, ServiceDate, Description, Amount, PropertyID)

C. Suppose Garden Glory decides to add the following table:

SERVICE_FEE (PropertylD, ServicelD, Description, Amount)

Add this table to what you consider to be the best design in your answer to part B.
Modify the tables from part B as necessary to minimize the amount of data duplication.
Will this design work for the data in Figure 2-34? If not, modify the design so that this
data will work. State the assumptions implied by this design.

116 Part 1 Database Fundamentals

3 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in online Appendix D, which can
be downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

‘% THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS

Figure 2-35 shows typical sales data for The Queen Anne Curiosity Shop, and Figure 2-36
shows typical purchase data.

A. Using these data, state assumptions about functional dependencies among the columns
of data. Justify your assumptions on the basis of these sample data and also on the basis
of what you know about retail sales.

B. Given your assumptions in part A, comment on the appropriateness of the following
designs:

1. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
Invoiceltem, Price, Tax, Total)

2. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
Invoiceltem, Price, Tax, Total)

3. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
Invoiceltem, Price, Tax, Total)

4, CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,
Invoiceltem, Price, Tax, Total)

FIGURE 2-35

Sample Sales Data for The Queen Anne Curiosity Shop

LastName FirstName Phone InvoiceDate Invoiceltem Price Tax Total

Shire Robert 206-524-2433 14-Dec-14 Antique Desk 3,000.00 249.00 3,249.00

Shire Robert 206-524-2433 14-Dec-14 Antique Desk 500.00 4150 541.50
Chair

Goodyear Katherine = 206-524-3544 15-Dec-14 Dining Table 1,000.00 83.00 1,083.00
Linens

Bancroft Chris 425-635-9788 15-Dec-14 Candles 50.00 4.15 54.15

Griffith John 206-524-4655 23-Dec-14 Candles 45.00 3.74 48.74

Shire Robert 206-524-2433 5-Jan-15 Desk Lamp 250.00 20.75 270.75

Tierney Doris 425-635-8677 10-Jan-15 Dining Table 750.00 62.25 812.25
Linens

Anderson Donna 360-538-7566 12-Jan-15 Book Shelf 250.00 20.75 270.75

Goodyear Katherine 206-524-3544 15-Jan-15 Antique Chair 1,250.00 103.75 1,353.75
Goodyear Katherine 206-524-3544 15-Jan-15 Antique Chair 1,750.00 14525 1,895.25

Tierney Doris 425-635-8677 25-Jan-15 Antique Candle 350.00 29.05 379.05
Holders

www.pearsonhighered.com/kroenke

FIGURE 2-36

Sample Purchase Data for The Queen Anne Curiosity Shop

Chapter 2 The Relational Model 117

Purchaseltem PurchasePrice PurchaseDate Vendor Phone

Antique Desk 1,800.00 7-Nov-14 European Specialties 206-325-7866
Antique Desk 1,750.00 7-Nov-14 European Specialties 206-325-7866
Antique Candle Holders 210.00 7-Nov-14 European Specialties 206-325-7866
Antique Candle Holders 200.00 7-Nov-14 European Specialties 206-325-7866
Dining Table Linens 600.00 14-Nov-14 Linens and Things 206-325-6755
Candles 30.00 14-Nov-14 Linens and Things 206-325-6755
Desk Lamp 150.00 14-Nov-14 Lamps and Lighting 206-325-8977
Floor Lamp 300.00 14-Nov-14 Lamps and Lighting 206-325-8977
Dining Table Linens 450.00 21-Nov-14 Linens and Things 206-325-6755
Candles 27.00 21-Nov-14 Linens and Things 206-325-6755
Book Shelf 150.00 21-Nov-14 Harrison, Denise 425-746-4322
Antique Desk 1,000.00 28-Nov-14 Lee, Andrew 425-746-5433
Antique Desk Chair 300.00 28-Nov-14 Lee, Andrew 425-746-5433
Antique Chair 750.00 28-Nov-14 New York Brokerage 206-325-9088
Antique Chair 1,050.00 28-Nov-14 New York Brokerage 206-325-9088

5. CUSTOMER (LastName, FirstName, Phone, Email, InvoiceDate,

Invoiceltem, Price, Tax, Total)

6. CUSTOMER (LastName, FirstName, Phone, Email)

and:

SALE (InvoiceDate, Invoiceltem, Price, Tax, Total)
7. CUSTOMER (LastName, FirstName, Phone, Email, IzvoiceDate)

and:

SALE (InvoiceDate, Invoiceltem, Price, Tax, Total)
8. CUSTOMER (LastName, FirstName, Phone, Email)

and:

SALE (InvoiceDate, Invoiceltem, Price, Tax, Total, LastNawmze, FirstNanze)

Modify what you consider to be the best design in part B to include surrogate ID col-
umns called CustomerID and SaleID. How does this improve the design?

Modify the design in part C by breaking SALE into two relations named SALE and
SALE_ITEM. Modify columns and add additional columns as you think necessary.
How does this improve the design?

Given your assumptions, comment on the appropriateness of the following designs:
1. PURCHASE (Purchaseltem, PurchasePrice, PurchaseDate, Vendor, Phone)
2. PURCHASE (Purchaseltem, PurchasePrice, PurchaseDate, Vendor, Phone)
3. PURCHASE (Purchaseltem, PurchasePrice, PurchaseDate, Vendor, Phone)

118 Part 1 Database Fundamentals

4, PURCHASE (Purchaseltem, PurchasePrice, PurchaseDate, Vendor, Phone)
5. PURCHASE (Purchaseltem, PurchasePrice, PurchaseDate)
and:
VENDOR (Vendor, Phone)
6. PURCHASE (Purchaseltem, PurchasePrice, PurchaseDate,Vendor)
and:
VENDOR (Vendor, Phone)
7. PURCHASE (Purchaseltem, PurchasePrice, PurchaseDate, Vendor)

and:
VENDOR (Vendor, Phone)

F. Modify what you consider to be the best design in part E to include surrogate ID col-
umns called PurchaseID and VendorID. How does this improve the design?

G. The relations in your design from part D and part F are not connected. Modify the
database design so that sales data and purchase data are related.

CHAPTER OBJECTIVES

o »
LS, "3
Ve Fant

‘ £%%HAPTER
o "}’ '-:e _ :

Learn basic SQL statements

for creating database structures =+

Learn basic SQL statements for & v

adding data to a database

Learn basic SQL SELECT statements
and options for processing a single
table

Learn basic SQL SELECT statements
for processing multiple tables with
subqueries

Learn basic SQL SELECT statements for
processing multiple tables with joins

Learn basic SQL statements for modify-
ing and deleting data from a database

Learn basic SQL statements for
modifying and deleting database
tables and constraints

Structured Query
Language

his chapter describes and discusses Structured

Query Language (SQL). SQL is not a complete pro-

gramming language; rather, it is a data sublanguage.
SQL consists only of constructs for defining and processing
a database. To obtain a full programming language, SQL
statements must be embedded in scripting languages, such
as VBScript, or in programming languages, such as Java or
C#. SQL statements also can be submitted interactively, us-
ing a DBMS-supplied command prompt.

SQL was developed by the IBM Corporation in the late
1970s, and successive versions were endorsed as na-
tional standards by the American National Standards Institute
(ANSI) in 1986, 1989, and 1992. The 1992 version is
sometimes referred to as SQL-92 or sometimes ANSI-
92 SQL. In 1999, SQL:1999 (also referred to as SQL3),
which incorporated some object-oriented concepts, was
released. This was followed by the release of SQL:2003
in 2003, SQL:2006 in 2006, SQL:2008 in 2008, and,
most recently, SQL:2011 in 2011. Each of these added
new features or extended existing SQL features, includ-
ing SQL support for Extensible Markup Language (XML),
which is discussed in Chapter 7, and, in SQL:2008, the
SQL TRUNCATE TABLE and SQL MERGE statements. SQL
has also been endorsed as a standard by the International
Organization for Standardization (IS0) (and, no, that’s not a
typo—the acronym is /SO, not /OS!). Our discussion here
focuses on common language features that have been in
SQL since SQL-92 but does include some features from
SQL:2003 and SQL:2008.*

'For more information about the history and development of SQL, see the
Standardization section of the Wikipedia article on SQL. Wikipedia also has
articles of some of the named versions of SQL. For example, see the article on

SQL:2008 for a discussion of the features added to SQL:2008.

119

120 Part1 Database Fundamentals

SQL is text oriented. It was developed long before the graphical user inter-
face (GUI) became common, and requires only a text processor. Today, Microsoft
Access, Microsoft SQL Server, Oracle Database, MySQL, and other DBMS
products provide GUI tools for performing many of the tasks that are performed
using SQL. However, the key phrase in that last sentence is many of. You can-
not do everything with graphic tools that you can do with SQL. Furthermore, to
generate SQL statements dynamically in program code, you must use SQL.

You will learn how to use SQL with Microsoft Access in this chapter’s
“The Access Workbench.” Access uses SQL but hides it behind the scenes,
presenting a variant of the Query by Example (QBE) GUI for general use.
Although knowledge of SQL is not a requirement for using Access, you will
be a stronger and more effective Access developer if you know SQL.

SQL statements are commonly divided into categories, five of which are
of interest to us here:

¢ Data definition language (DDL) statements, which are used for creating tables,
relationships, and other structures

e Data manipulation language (DML) statements, which are used for querying,
inserting, modifying, and deleting data. One component of SQL DML is SQL
view, which are discussed in Appendix E. Views are used to create predefined
queries.?

e SQL/Persistent stored modules (SAL/PSM) statements, which extend SQL by add-
ing procedural programming capabilities, such as variables and flow-of-control
statements, that provide some programmability within the SQL framework.

e Transaction control language (TCL) statements, which are used to mark transac-
tion boundaries and control transaction behavior.

e Data control language (DCL) statements, which are used to grant database
permissions (or to revoke those permissions) to users and groups, so that the
users or groups can perform various operations on the data in the database.

In this chapter, we discuss SQL DDL and DML. Additional SQL DML
(SQL views) and SQL/PSM are discussed in Appendix E, and SQL TCL and
DCL are discussed in Chapter 6.

AN EXAMPLE DATABASE

The Wedgewood Pacific Corporation (WPC), founded in 1957 in Seattle, Washington,
has grown into an internationally recognized organization. The company is located
in two buildings. One building houses the Administration, Accounting, Finance, and
Human Resources departments, and the second houses the Production, Marketing, and
Information Systems departments. The company database contains data about enzployees,
departments, projects, assets (such as computer equipment), and other aspects of company
operations.

2Queries by themselves are sometimes considered to be another major category of SQL commands, but we
do not make that distinction in this book. For more details, see the Wikipedia article on SQL.

FIGURE 3-1

Chapter 3 Structured Query Language 121

In this chapter, we use an example database for WPC that has the following four relations:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)
PROJECT (ProjectID, ProjectName, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EnployeeNumber, HoursWorked)

The primary key of DEPARTMENT is DepartmentName, the primary key of EMPLOYEE
is EmployeeNumber, and the primary key of PROJECT is ProjectID. In EMPLOYEE and
PROJECT, Department is a foreign key that references DepartmentName in DEPARTMENT.
Remember that a foreign key does not need to have the same name as the primary key to which
it refers. The primary key of ASSIGNMENT is the composite (ProjectID, EmployeeNumber).
ProjectID is also a foreign key that references ProjectID in PROJECT, and EmployeeNumber
is a foreign key that references EmployeeNumber in EMPLOYEE.

The referential integrity constraints are:

Department in EMPLOYEE must exist in Department in DEPARTMENT
Department in PROJECT must exist in Department in DEPARTMENT

ProjectID in ASSIGNMENT must exist in ProjectID in PROJECT
EmployeeNumber in ASSIGNMENT must exist in EmployeeNumber in EMPLOYEE

An illustration of these tables in Microsoft Access 2013 and the database column characteristics
for these tables are shown in Figure 3-1. Sample data for these relations are shown in Figure 3-2.

Database Column Characteristics for the WPC Database

EMPLOYEE

b EmployeeNumber
Firsthame
LastMame
Department
Phone
Email

DEPARTMEMT

ASSIGMMENT

i DepartmentMame
BudgetCode
OfficeMumber
Phone

% ProjectiD
7 EmployeeNumber
HoursWorked

PROJECT

ProjectiD

ProjectMame
Department
MaxHours
StartDate
EndDate

(a) The WPC Tables in Microsoft Access 2013
(continued)

122 Part 1

Database Fundamentals

FIGURE 3-1 Continued

Column Name Type Key Required Remarks
DepartmentName Text (35) Primary Key Yes
BudgetCode Text (30) No Yes
OfficeNumber Text (15) No Yes
Phone Text (12) No Yes

(b) DEPARTMENT Table
Column Name Type Key Required Remarks
EmployeeNumber AutoNumber Primary Key Yes Surrogate Key
FirstName Text (25) No Yes
LastName Text (25) No Yes
Department Text (35) Foreign Key Yes Links to DepartmentName in

DEPARTMENT
Phone Text (12) No No
Email Text (100) No Yes
(c) EMPLOYEE Table
Column Name Type Key Required Remarks
ProjectID Number Primary Key Yes Long Integer
ProjectName Text (50) No Yes
Department Text (35) Foreign Key Yes Links to DepartmentName in
DEPARTMENT
MaxHours Number No Yes Double
StartDate Date No No
EndDate Date No No
(d) PROJECT Table
Column Name Type Key Required Remarks
ProjectID Number Primary Key, Yes Long Integer
Foreign Key Links to ProjectID in PROJECT
EmployeeNumber Number Primary Key, Yes Long Integer
Foreign Key Links to EmployeeNumber in EMPLOYEE

HoursWorked Number No No Double

(e) ASSIGNMENT Table

FIGURE 3-2
Sample Data for the WPC Database

Chapter 3 Structured Query Language

123

DepartmentName BudgetCode OfficeNumber Phone
Administration BC-100-10 BLDGO01-300 360-285-8100
Legal BC-200-10 BLDGO01-200 360-285-8200
Accounting BC-300-10 BLDGO01-100 360-285-8300
Finance BC-400-10 BLDGO01-140 360-285-8400
Human Resources BC-500-10 BLDGO01-180 360-285-8500
Production BC-600-10 BLDG02-100 360-287-8600
Marketing BC-700-10 BLDGO02-200 360-287-8700
InfoSystems BC-800-10 BLDG02-270 360-287-8800
(a) DEPARTMENT Table

Employee
Number FirstName LastName Department Phone Email

1 Mary Jacobs Administration 360-285-8110 Mary.Jacobs@WPC.com

2 Rosalie Jackson Administration 360-285-8120 Rosalie.Jackson@WPC.com

3 Richard Bandalone Legal 360-285-8210 Richard.Bandalone@WPC.com

4 Tom Caruthers Accounting 360-285-8310 Tom.Caruthers@WPC.com

5 Heather Jones Accounting 360-285-8320 Heather.Jones@WPC.com

6 Mary Abernathy Finance 360-285-8410 Mary.Abernathy@WPC.com

7 George Smith Human Resources 360-285-8510 George.Smith@WPC.com

8 Tom Jackson Production 360-287-8610 Tom.Jackson@WPC.com

9 George Jones Production 360-287-8620 George.Jones@WPC.com
10 Ken Numoto Marketing 360-287-8710 Ken.Numoto@WPC.com
11 James Nestor InfoSystems James.Nestor@WPC.com
12 Rick Brown InfoSystems 360-287-8820 Rick.Brown@WPC.com

(b) EMPLOYEE Table
ProjectID ProjectName Department MaxHours StartDate EndDate
1000 2014 Q3 Product Plan Marketing 135.00 10-MAY-14 15-JUN-14
1100 2014 Q3 Portfolio Analysis Finance 120.00 05-JUL-14 25-JUL-14
1200 2014 Q3 Tax Preparation Accounting 145.00 10-AUG-14 15-OCT-14
1300 2014 Q4 Product Plan Marketing 150.00 10-AUG-14 15-SEP-14
1400 2014 Q4 Portfolio Analysis Finance 140.00 05-OCT-14
(c) PROJECT Table

(continued)

124 Part1 Database Fundamentals

FIGURE 3-2 Continued

ProjectID EmployeeNumber HoursWorked
1000 1 30.0
1000 8 75.0
1000 10 55.0
1100 4 40.0
1100 6 45.0
1200 1 25.0
1200 2 20.0
1200 4 45.0
1200 5 40.0
1300 1 35.0
1300 8 80.0
1300 10 50.0
1400 4 15.0
1400 5 10.0
1400 6 275
(d) ASSIGNMENT Table

In this database, each row of DEPARTMENT is potentially related to many rows of
EMPLOYEE and PROJECT. Similarly, each row of PROJECT is potentially related to
many rows of ASSIGNMENT, and each row of EMPLOYEE is potentially related to many
rows of ASSIGNMENT.

Finally, assume the following rules, which are called business rules:

® If an EMPLOYEE row is to be deleted and that row is connected to any
ASSIGNMENT, the EMPLOYEE row deletion will be disallowed.

® [f a PROJECT row is deleted, then all the ASSIGNMENT rows that are connected
to the deleted PROJECT row will also be deleted.

The business sense of these rules is as follows:

® If an EMPLOYEE row is deleted (for example, if the employee is transferred),
then someone must take over that employee’s assignments. Thus, the application
needs someone to reassign assignments before deleting the employee row.

® [f a PROJECT row is deleted, then the project has been canceled, and it is unnec-
essary to maintain records of assignments to that project.

These rules are typical business rules. You will learn more about such rules in
Chapter 5.

“Does Not Work with Microsoft Access ANSI-89 SQL”

If you have completed the end-of-chapter “Access Workbench Exercises” for
Chapters 1 and 2, you will recognize the database we’re using in this chapter as the
Wedgewood Pacific Corporation database from those exercises. You can use that

FIGURE 3-3

Chapter 3 Structured Query Language 125

database to try out the SQL commands in this chapter. However, be warned that not all
standard SQL syntax works in Access.

As mentioned previously, our discussion of SQL is based on SQL features present in
SQL standards since the ANSI SQL-92 standard (which Microsoft refers to as ANSI-92
SQL). Unfortunately, Microsoft Access defaults to the earlier SQL-89 version—Microsoft
calls it ANSI-89 SQL or Microsoft Jet SQL (after the Microsoft Jet DBMS used by Access).
ANSI-89 SQL differs significantly from SQL-92, and therefore some features of the
SQL-92 language will not work in Access.

Microsoft Access 2013 (and the earlier Microsoft Access 2003, 2007, and 2010 ver-
sions) does contain a setting that allows you to use SQL-92 instead of the default ANSI-89
SQL. Microsoft included this option to allow Access tools such as forms and reports to be
used in application development for Microsoft SQL Server, which supports newer SQL
standards. To set the option, after you have opened Microsoft Access 2013, click the File
command tab and then click the Options command to open the Access Options dialog
box. In the Access Options dialog box, click the Object Designers button to display the
Access Options Object Designers page, as shown in Figure 3-3.

As shown in Figure 3-3, the SQL Server Compatible Syntax (ANSI 92) options con-
trol which version of SQL is used in an Access 2013 database. If you check the This data-
base check box, you will use SQL-92 syntax in the current database (if you open Microsoft
Access without opening a database, this option is grayed out and not available). Or you can
check the Default for new databases check box to make SQL-92 syntax the default for all
new databases you create.

The Microsoft Access 2013 Options Object Designers Page

The Object
Designers button

General &—‘—| Change the default settings for design of database objects. Most options are ignored in table
== datasheet and layout view.

The SQL Server
Compatible Syntax
(ANSI 92) option
controls the use of
SQL-89 versus
SQL-92 syntax in
Access queries

Current Database

x Datasheet Table design view

Object Designers Default field type: Short Text | v |
Proofing Default text field size: 55 =
Language Default number field size: Long Integer | »

Autolndex on Import/Create: ID;key;code;num
Show Property Update Options buttons

Client Settings

Customize Ribbon

Query design

Use this check box
to use SQL-92
syntax in just the
open database

Show table names
] Output all fields
Enable Autaloin

Add-ins

Trust Center

Use this check box
to use SQL-92
syntax when new
databases are
created

Query design font
Font: |Segoe Ul w |
Sizer B | w

\iQL Server Compatible Syntax (ANS| 92)
[] This database

| » [| Default for new databases

Form/Report design view

Selection behavior

®) Partially enclosed

) Fully enclosed
Form template: Mormal
Report template: | Normal

O Always use gvent procedures]

|

Cancel

126 Part 1

Database Fundamentals

Unfortunately, very few Access users or organizations using Access are likely to set the
Access SQL version to the SQL-92 option, and in this chapter, we assume that Access is
running in the default ANSI-89 SQL mode. One advantage of doing so is that it will help
you understand the limitations of Access ANSI-89 SQL and how to cope with them.

In the discussion that follows, we use “Does Not Work with Microsoft Access ANSI-
89 SQL” boxes to identify SQL commands and clauses that do not work in Access ANSI-
89 SQL. We also identify any workarounds that are available. Remember that the one
permanent workaround is to choose to use the SQL-92 syntax option in the databases you
create!

Different DBMS products implement SQL in slightly different ways. The
SQL statements in this chapter run on Microsoft SQL Server (SQL Server
2014 Express was used to obtain the output shown in this chapter) and
also run on Microsoft Access with exceptions as noted. If you are run-
ning the SQL statements on a different DBMS, you may need to make
adjustments—consult the documentation for the DBMS you are using.

SQL FOR DATA DEFINITION (DDL)—CREATING TABLES AND
RELATIONSHIPS

The SQL DDL is used to create and alter database structures, such as tables, and to insert,
modify, and delete data in the tables.

Before creating tables, you must create a database. Although there is an SQL state-
ment for creating a database, most developers use GUI tools to create databases. The tools
are DBMS specific. Creating a database in Microsoft Access is demonstrated in Chapter
1’s section of “The Access Workbench.” For instructions on how to create a database in
Microsoft SQL Server Express Edition, see Appendix A. For instructions on how to create
a database in Oracle Database Express Edition 11g Release 2, see Appendix B. For instruc-
tions on how to create a database in MySQL 5.6 Community Server, see Appendix C. For
all other DBMS products, consult the documentation.’

The SQL CREATE TABLE statement is used to create table structures. The essential
format of this statement is:

CREATE TABLE NewTableName (
three-part column definition,
three-part column definition,
three-part column definition,

optional table constraints

) ;

’Also see David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and
Implementation, 13th edition (Upper Saddle River, NJ: Prentice Hall, 2014), Chapter 10A for information
on creating databases in SQL Server 2012 (which is also applicable to SQL Server 2014), online Chapter
10B for information on creating databases in Oracle Database 11g Release 2, and online Chapter 10C for
information on creating databases in MySQL Community Server 5.6.

Chapter 3 Structured Query Language 127

The parts of the three-part column definition are the column name, the column data type, and,
optionally, a constraint on column values. Thus, we can restate the CREATE TABLE format as:

CREATE TABLE NewTableName (
ColumnName DataType OptionalConstraint,
ColumnName DataType OptionalConstraint,
ColumnName DataType OptionalConstraint,

optional table constraints

)
The column constraints we consider in this text are PRIMARY KEY, FOREIGN KEY,
NOT NULL, NULL, and UNIQUE. In addition to these, there is also a CHECK column
constraint, which is discussed with the ALTER statement at the end of this chapter. Finally,

the DEFAULT keyword (DEFAULT is not considered a column constraint) can be used to
set initial values.

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access ANSI-89 SQL does not support the UNIQUE and CHECK
column constraints, nor the DEFAULT keyword.

Solution: Equivalent constraints and initial values can be set in the table Design
view. See the discussion in this chapter’s section of “The Access Workbench.”

Consider the SQL CREATE TABLE statements for the DEPARTMENT
and EMPLOYEE tables shown in Figure 3-4 (which includes the DEPARTMENT,
EMPLOYEE and PROJECT tables, but intentionally omits the ASSIGNMENT table at
this point in the discussion).

The EMPLOYEE column EmployeeNumber has an Integer (abbreviated Int) data
type and a PRIMARY KEY column constraint. The next column, FirstName, uses a
Character (signified by Char) data type and is 25 characters in length. The column con-
straint NOT NULL indicates that a value must be supplied when a new row is created. The
fifth column, Phone, uses a Char(12) data type (to store separators between the area code,
prefix, and number) with a column constraint of NULL. NULL indicates that null values
are allowed, which means that a row can be created without a value for this column.

The fourth column, Department, uses the Char(35) data type, a NOT NULL column
constraint, and the DEFAULT keyword to set the department value to the human re-
sources department if no department value is entered when a new row is created.

The sixth and final column, Email, uses the VarChar(100) data type and the NOT
NULL and UNIQUE column constraints. VarChar means a variable-length character data
type. Thus, Email contains character data values that vary in length from row to row, and
the maximum length of an Email address value is 100 characters. However, if an Email ad-
dress value has only 14 characters, then only 14 characters will be stored.

As implied by the existence of VarChar, Char values are of fixed length. The Char(25)
definition for FirstName means that 25 characters will be stored for every value of
FirstName, regardless of the length of the value entered. FirstNames will be padded with
blanks to fill the 25 spaces when necessary.

You might wonder, given the apparent advantage of VarChar, why it isn’t used all the
time. The reason is that extra processing is required for VarChar columns. A few extra
bytes are required to store the length of the value, and the DBMS must go to some trouble
to arrange variable-length values in memory and on disk. Vendors of DBMS products usu-
ally provide guidelines for when to use which type, and you should check the documenta-
tion for your specific DBMS product for more information.

128 Part1 Database Fundamentals

FIGURE 3-4
SQL CREATE TABLE Statements

CREATE TABLE DEPARTMENT (
DepartmentName Char (35) PRIMARY KEY,
BudgetCode Char (30) NOT NULL,
OfficeNumber Char (15) NOT NULL,
Phone Char (12) NOT NULL,
) ;

CREATE TABLE EMPLOYEE (
EmployeeNumber Int PRIMARY KEY,
FirstName Char (25) NOT NULL,
LastName Char (25) NOT NULL,
Department Char (35) NOT NULL DEFAULT 'Human Resources',
Phone Char (12) NULL,
Email VarChar (100) NOT NULL UNIQUE,
)

CREATE TABLE PROJECT (
ProjectID Int PRIMARY KEY,
ProjectName Char (50) NOT NULL,
Department Char (35) NOT NULL,
MaxHours Numeric (8,2) NOT NULL DEFAULT 100,
StartDate Date NULL,
EndDate Date NULL,

)i

The UNIQUE column constraint for Email means that there cannot be any duplicated
values in the Email column. This ensures that each person has a different email address.

In the PROJECT table, the MaxHours column uses the Numeric(8,2) data type. This
means that MaxHours values consist of up to eight decimal numbers, with two numbers as-
sumed to the right of the decimal point. The decimal point is not stored and does not count as
one of the eight numbers. Thus, the DBMS would display the stored value 12345 as 123 .45,
and the stored value of 12345678 (which uses all eight of the allowed digits) as 123456.78.

The DEFAULT keyword is used. DEFAULT 100 means that when a new row is created,
if no value is provided for MaxHours, the DBMS is to provide the value 100.00. Note that the
input value does not assume that the last two numbers are to the right of the decimal place.

Does Not Work with Microsoft Access ANSI-89 SQL

Although Microsoft Access supports a Number data type, it does not support
the (m,n) extension to specify the number of digits and the number of digits to
the right of the decimal place.

Solution: You can set these values in the table Design view after the col-
umn is created. See the discussion in this chapter’s section of “The Access
Workbench.”

Also in the PROJECT table, the StartDate column uses the Date data type. This means
that StartDate values will consist of dates (there is a Time data type for use with times).
Various DBMS products handle date and time values in different ways, and, again, you
should consult the documentation for your specific DBMS product. According to the SQL
standard and as shown in Figure 3-4, every SQL statement should end with a semicolon.

Chapter 3 Structured Query Language 129

Although some DBMS products do not require the semicolon, it is good practice to learn
to provide it. Also, as a matter of style, we place the ending parenthesis and the semicolon
on a line of its own. This style blocks out the table definitions for easy reading.

The four data types shown in Figure 3-4 are the basic SQL data types, but DBMS ven-
dors have added others to their products. Figures 3-5(a), 3-5(b), and 3-5(c) show some of
the data types allowed by SQL Server 2014, Oracle Database Express Edition 11g Release 2,
and MySQL 5.6, respectively.

FIGURE 3-5

Data Types for Widely Used DBMS Products

Numeric Data Types| Description

Bit 1-bit integer. Values of only 0, 1 or NULL.

Tinyint 1-byte integer. Range is from 0 to 255.

Smallint 2-byte integer. Range is from -2(19) (-32,768) to +2(1%) -1 (+32,767).

Int 4-byte integer. Range is from -2(1) (-2,147,483,468) to +2031) —1
(+2,147,483,467).

Bigint 8-byte integer. Range is from -2(63) (—9,223,372,036,854,775,808) to +2(63) —1

(+9,223,372,036,854,775,807).

Decimal (p[,s]) Fixed precision (p) and scale (s) numbers. Range is from -1038 +1 to 1038 —1
with maximum precision (p) of 38. Precision ranges from 1 through

38, and default precision is 18. Scale (s) indicates the number of digits

to the right of the decimal place. Default scale value is 0, and scale

values range from 0 to p, where 0 <= s <= p.

Numeric (p[,s]) Numeric works identically to Decimal.

Smallmoney 4-byte money. Range is from -214,748.3646 to +214,748.3647 with
accuracy of one ten-thousandth of a monetary unit. Use decimal
point to separate digits.

Money 9-byte money. Range is from -922,337,203,685,477.5808 to
+922,337,203,685,477.5807 with accuracy of one ten-thousandth of
a monetary unit. Use decimal point to separate digits.

Float (n) n-bit storage of the mantissa in scientific floating point notation. The
value of n ranges from 1 to 53, and the default is 53.

Real Equivalent to Float (24).

Date and Time Description

Data Types

Date 3-bytes fixed. Default format YYYY-MM-DD. Range is from January 1, 1

(0001-01-01) through December 31, 9999 (9999-12-31).

Time 5-bytes fixed is default with 100 nanosecond precision (.0000000).
Default format is HH:MM:SS.NNNNNNN. Range is from 00:00:00.0000000
through 23:59:59.9999999.

Smalldatetime 4-bytes fixed. Restricted date range, and rounds time to nearest
second. Range is from January 1, 1900 00:00:00 AM (1900-01-01
00:00:00) through June 6, 2079 23:59.59 PM (2079-06-06 23:59.59).

(2) Common SQL Server 2014 Data Types
(continued)

130 Part1

FIGURE 3-5 Continued

Database Fundamentals

Date and Time Description

Data Types

Datetime 8-bytes fixed. Basically combines Date and Time, but spans less dates
and has less time precision (rounds to .000, .003 or .007 seconds).
Use DATETIMEZ2 for more precision. Date range is from January 1,
1753 (1753-01-01) through December 31, 9999 (9999-12-31).

Datetime2 8-bytes fixed. Combines Date and Time with full precision. Use

instead of DATETIME. Range is from January 1, 1 00:00:00.0000000 AM
(0001-01-01 00:00:00.0000000) through December 31, 9999
23:59.59.9999999 PM (9999-12-31 23:59.59.9999999).

Datetimeoffset

10-byte fixed-length default with 100 nanosecond precision (.0000000).
Uses 24 hour clock, based on Coordinated Universal Time (UTC).

UTC is a refinement of Greenwich Mean Time (GMT), based on the prime
meridian at Greenwich, England, which defines when midnight
(00:00:00.0000000) occurs. Offset is the time zone difference from the
Greenwich time zone. Default format is YYYY-MM-DD
HH:MM:SS.NNNNNNN (+|-)HH:MM. Range is from January 1,

1 00:00:00.0000000 AM (0001-01-01 00:00:00.0000000) through
December 31, 9999 23:59.59.9999999 PM (9999-12-31 23:59.59.9999999)
with an offset of —14:59 to +14:59. Use for 24 hour time.

Timestamp

See documentation.

String Data Types

Description

Char (n)

n-byte fixed-length string data (non-Unicode). Range of n is from 1 through 8000.

Varchar (n | max)

n-byte variable-length string data (non-Unicode). Range of n is from 1
through 8000. Max creates a maximum +2(31) —1 bytes (2 GBytes).

Text

Use VARCHAR(max). See documentation.

Nchar (n)

(n x 2)-byte fixed-length Unicode string data. Range of n is from 1 through 4000.

Nvarchar (n | max)

(n x 2)-byte variable-length Unicode string data. Range of n is from 1
through 4000. Max creates a maximum +2©1) —1 bytes (2 GBytes).

Ntext Use NVARCHAR(max). See documentation.
Binary (n) n-byte fixed-length binary data. Range of n is from 1 through 8000.
Other Data Types Description

Varbinary (n | max)

Variable-length binary data. Range of n is from 1 through 8000. Max
creates a maximum +2(1) —1 bytes (2 GBytes).

Image

Use VARBINARY(max). See documentation.

Uniqueidentifier

16-byte Globally Unique Identifier (GUID). See documentation.

hierarchyid See documentation.
Cursor See documentation.
Table See documentation.
XML Use for storing XML data. See documentation.
Sql_variant See documentation.

(a) continued - Common SQL Server 2014 Data Types

Chapter 3 Structured Query Language 131

FIGURE 3-5 Continued

Numeric Data Types| Description

SMALLINT Synonym for INTEGER, implemented as NUMBER(38,0).
INT Synonym for INTEGER, implemented as NUMBER(38,0).
INTEGER When specified as a data type, it is implemented as NUMBER(38,0).
NUMBER (p[,s]) 1 to 22 bytes. Fixed precision (p) and scale (s) numbers. Range is from —1038
+1 to 10% - 1 with maximum precision (p) of 38. Precision ranges
from 1 through 38, and default precision is 18. Scale (s) indicates the
number of digits to the right of the decimal place. Default scale value
is 0, and scale values range from -84 to 127, where s can be greater than p.
FLOAT (p) 1 to 22 bytes. Implemented as NUMBER(p). The value of p ranges

from 1 to 126 bits.

BINARY_FLOAT

4-byte 32-bit floating point number.

BINARY_LONG 8-byte 64-bit floating point number.

RAW (n) n-byte fixed-length raw binary data. Range of n is from 1 through
2000.

LONG RAW Raw variable-length binary data. Maximum is 2 GBytes.

BLOB Maximum [(4-GByte — 1)x(database block size)] binary large object.

BFILE See documentation.

Date and Time Description

Data Types

DATE 7-bytes fixed. Default format is set explicitly with the

NLS_DATE_FORMAT parameter. Range is from January 1, 4712 BC
through December 31, 9999 AD. It contains the fields YEAR, MONTH,
DAY, HOUR, MINUTE and SECOND (no fractional seconds). It does not
include a time zone.

TIMESTAMP (p)

Includes fractional seconds base on a precision of p. Default of p is 6,
and the range is 0 to 9. 7 to 11-bytes fixed, based on precision. Default
format is set explicitly with the NLS_TIMESTAMP_FORMAT parameter.
Range is from January 1, 4712 BC through December 31, 9999 AD.

It contains the fields YEAR, MONTH, DAY, HOUR, MINUTE and
SECOND. It contains fractional seconds. It does not include a

time zone.

TIMESTAMP (p)

WITH TIME ZONE

Includes fractional seconds base on a precision of p. Default of p is 6,
and the range is 0 to 9. 13-bytes fixed. Default format is set explicitly

with the NLS_TIMESTAMP_FORMAT parameter. Range is from January 1,
4712 BC through December 31, 9999 AD. It contains the fields YEAR,
MONTH, DAY, TIMEZONE_HOUR, TIMEZONE_MINUTE and
TIMEZONE_SECOND. It contains fractional seconds. It includes a

time zone.

TIMESTAMP (p)

WITH LOCAL TIME

ZONE

Basically the same as TIMESTAMP WITH TIME ZONE, with the
following modifications: (1) Data is stored with times based on the
database time zone, and (2) Users view data in session time zone.

(b) Common Oracle Database Express Edition 11g Release 2 Data Types

(continued)

132 Part 1

FIGURE 3-5 Continued

Database Fundamentals

INTERVAL YEAR
[p(year)] TO MONTH

See documentation.

INTERVAL DAY
[p(day)] TO SECOND
[p(seconds)]

See documentation.

String Data Types

Description

CHAR n-byte fixed-length string data (non-Unicode). Range of n is from 1 through
(n[BYTE | CHAR]) 2000. BYTE and CHAR refer to the semantic usage. See documentation.
VARCHAR2 n-byte variable-length string data (non-Unicode). Range of n is from 1

(n[BYTE | CHAR])

through 4000 BYTEs or CHARACTERSs. BYTE and CHAR refer to the
semantic usage. See documentation.

NCHAR (n)

(n x 2)-byte fixed-length Unicode string data. Up to (n x 3)-bytes for UTF8
encoding. Maximum size is from 2000 bytes.

NVARCHAR?2 (n)

Variable-length Unicode string data. Up to (n x 3)-bytes for UTF8 encoding.
Maximum size is from 4000 bytes.

LONG Variable-length string data (non-Unicode) with maximum a maximum
2(31-1) pytes (2 GBytes). See documentation.

CLOB Maximum [(4-GByte - 1)x(database block size)] character large object
(non-Unicode). Supports fixed-length and variable length character sets.

NCLOB Maximum [(4-GByte - 1)x(database block size)] Unicode character
large object. Supports fixed-length and variable length character sets.

Other Data Types Description

ROWID See documentation.

UROWID See documentation.

HTTPURIType See documentation.

XMLType Use for storing XML data. See documentation.

SDO_GEOMETRY

See documentation.

(b) continued - Common Oracle Database Express Edition 11g Release 2 Data Types

NumericData Type Description

BIT (M) M =1 to 64.

TINYINT Range is from -128 to 127.
TINYINT UNSIGNED | Range is from 0 to 255.
BOOLEAN 0 = FALSE; 1 = TRUE.
SMALLINT Range is from -32,768 to 32,767.
SMALLINT Range is from 0 to 65,535.
UNSIGNED

MEDIUMINT Range is from -8,388,608 to 8,388,607.
MEDIUMINT Range is from 0 to 16,777,215.
UNSIGNED

INT or INTEGER

Range is from -2,147,483,648 to 2,147,483,647.

(c) Common MySQL 5.6 Data Types

FIGURE 3-5 Continued

Chapter 3 Structured Query Language

NumericData Type Description
INT UNSIGNED or Range is from 0 to 4,294,967,295.
INTEGER UNSIGNED
BIGINT Range is from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
BIGINT UNSIGNED Range is from 0 to 1,844,674,073,709,551,615.
FLOAT (P) P = Precision; Range is from 0 to 24.
FLOAT (M, D) Small (single-precision) floating-point number:
M = Display width D = Number of significant digits
DOUBLE (M, P) Normal (double-precision) floating-point number:
M = Display width P = Precision; Range is from 25 to 53.

DEC (M[,D]) or
DECIMAL (M[,D]) or

Fixed-point number:
M = Total number of digits

FIXED (MI[,D]) D = Number of decimals.
Date and Time Description
Data Types
DATE YYYY-MM-DD : Range is from 1000-01-01 to 9999-12-31.
DATETIME YYYY-MM-DD HH:MM:SS.
Range is from 1000-01-01 00:00:00 to 9999-12-31 23:59:59.
TIMESTAMP See documentation.
TIME HH:MM:SS : Range is from 00:00:00 to 23:59:59.
YEAR (M) M = 2 or 4 (default).

IF M = 2, then range is from 1970 to 2069 (70 to 69).

IF M = 4, then range is from 1901 to 2155.

String Data Types Description

CHAR (M) M = 0 to 255.

VARCHAR (M) M =1 to 255.

BLOB (M) BLOB = Binary Large Object: maximum 65,535 characters.

TEXT (M) Maximum 65,535 characters.

TINYBLOB See documentation.

MEDIUMBLOB

LONGBLOB

TINYTEXT

MEDIUMTEXT

LONGTEXT

ENUM (‘valuet’, An enumeration. Only one value, but chosen from list. See documentation.
‘value?’, . ..)

SET (‘valuet’, A set. Zero or more values, all chosen from list. See documentation.
‘value?’, ...)

(c) continued - Common MySQL 5.6 Data Types

133

Even when Microsoft Access reads standard SQL, the results of running an
SQL statement may be a bit different in Access. For example, Microsoft
Access reads SQL statements containing both Char and VarChar data types,
but converts both these data types to a fixed Text data type in the Access
database.

134 Part1

Database Fundamentals

Defining Primary Keys with Table Constraints

Although primary keys can be defined as shown in Figure 3-4, we prefer to define pri-
mary keys using a table constraint. Table constraints are identified by the CONSTRAINT
keyword and can be used to implement various constraints. Consider the CREATE
TABLE statements shown in Figure 3-6, with the ASSIGNMENT table now included,
which shows how to define the primary key of a table by using a table constraint.

First, the columns of the table are defined as usual, except that the column that will
be the primary key must be given the column constraint NOT NULL. After the table
columns are defined, a table constraint, identified by the word CONSTRAINT, is used
to create the primary key. Every table constraint has a name followed by the definition of
the constraint. Note that in the DEPARTMENT table the DepartmentName column is

now labeled as NOT NULL and a CONSTRAINT clause has been added at the end of

the table definition. The constraint is named DEPARTMENT_PK, and it is defined by
the keywords PRIMARY KEY (DepartmentName). The constraint name is selected by the
developer, and the only naming restriction is that the constraint name must be unique in
the database. Usually a standard naming convention is used. In this text, we name primary
key constraints using the name of the table followed by an underscore and the letters:

CONSTRAINT TABLENAME PK

FIGURE 3-6

Creating Primary Keys with Table Constraints

CREATE TABLE DEPARTMENT (
DepartmentName Char (35)
BudgetCode Char (30)
OfficeNumber Char (15)
Phone Char (12)
CONSTRAINT DEPARTMENT PK
) i

CREATE TABLE EMPLOYEE (
EmployeeNumber Int
FirstName Char (25)
LastName Char (25)
Department Char (35)
Phone Char (12)
Email VarChar (100)
CONSTRAINT EMPLOYEE PK
) 7

CREATE TABLE PROJECT (

ProjectID Int
ProjectName Char (50)
Department Char (35)
MaxHours Numeric (8, 2)
StartDate Date
EndDate Date
CONSTRAINT PROJECT PK

) ;

CREATE TABLE ASSIGNMENT (

ProjectID Int
EmployeeNumber Int
HoursWorked Numeric (6,2)
CONSTRAINT ASSTGNMENT PK

) ;

NOT
NOT
NOT
NOT

PRIMARY KEY ({PrimaryKeyColumns})

NULL,
NULL,
NULL,
NULL,

PRIMARY KEY (DepartmentName)

NOT
NOT
NOT
NOT

NULL IDENTITY (1, 1),

NULL,

NULL,

NULL DEFAULT 'Human Resources',

NULL,

NOT

NULL UNIQUE,

PRIMARY KEY (EmployeeNumber) ,

NOT
NOT
NOT
NOT

NULL IDENTITY
NULL,
NULL,
NULL DEFAULT 100,

(1000, 100),

NULL,
NULL,

PRIMARY KEY

NOT
NOT

(ProjectID),

NULL,
NULL,

NULL,

PRIMARY KEY

(ProjectID, EmployeeNumber),

Chapter 3 Structured Query Language 135

Defining primary keys using table constraints offers three advantages. First, it is re-
quired for defining composite keys because the PRIMARY KEY column constraint cannot
be used on more than one column. We previously excluded the ASSIGNMENT table from
Figure 3-4 because it is not possible to declare the primary key of the ASSIGNMENT
table using the technique in Figure 3-4, but Figure 3-6 now includes the ASSIGNMENT
table and illustrates the declaration of the primary key ASSIGNMENT_PK as a composite
key using the SQL phrase PRIMARY KEY (ProjectID, EmployeeNumber). The second
advantage is that by using table constraints you can choose the name of the constraint that
defines the primary key. Controlling the name of the constraint has advantages for adminis-
tering the database, as you will see later when we discuss the SQL DROP statement.

Finally, using a table constraint to define the primary key allows us to easily define surro-
gate keys in some DBMS products. Notice that in Figure 3-6 the EmployeeNumber column
definition in EMPLOYEE and the ProjectID column definition in PROJECT now include
the IDENTITY (M,N) property. This illustrates how surrogate keys are defined in Microsoft
SQL Server. The keyword IDENTITY indicates that this is a surrogate key that will start a
value M for the first row created and increase by increment N as each additional row is cre-
ated. Thus, EmployeeNumber will start with the number 1 and increase by an increment of 1
(thatis, 1,2, 3,4,5,...). ProjectID will start with the number 1000 and increase by 100 (that
is, 1000, 1100, 1200, ...). The exact techniques used to define surrogate key sequences vary
extensively from DBMS to DBMS, so consult the documentation for your specific product.

Does Not Work with Microsoft Access ANSI-89 SQL

Although Microsoft Access does support an AutoNumber data type, it always
starts at 1 and increments by 1. Further, AutoNumber cannot be used as an
SQL data type.

Solution: Set the AutoNumber data type manually after the table is created. Any
other numbering system must be supported manually or by application code.

Defining Foreign Keys with the Table Constraints

You may have noticed that none of the tables in Figure 3-4 or Figure 3-6 include any
foreign key columns. You can also use table constraints to define foreign keys and their
associated referential integrity constraints. Figure 3-7 shows the final SQL code for our
tables, complete with the foreign key constraints.

EMPLOYEE has a table constraint named EMP_DEPART_FK that defines the
foreign key relationship between the Department column in EMPLOYEE and the
DepartmentName column in DEPARTMENT.

Notice the phrase ON UPDATE CASCADE. The ON UPDATE phrase shows what
action should be taken if a value of the primary key DepartmentName in DEPARTMENT
changes. The CASCADE keyword means that the same change should be made to the
related Department column in EMPLOYEE. This means that if a department name
Marketing is changed to Sales and Marketing, then the foreign key values should be up-
dated to reflect this change. Because DepartmentName is not a surrogate key, the values
could be changed, and setting ON UPDATE CASCADE is reasonable.

The PROJECT table has a similar foreign key relationship with DEPARTMENT, and the
same logic applies, except that here there will be two types of project: completed and in-process.
The business rules dealing with this situation are explored in the end-of-chapter exercises.

For the ASSIGNMENT table, there are two foreign key constraints: one to
EMPLOYEE and one to PROJECT. The first one defines the constraint ASSIGN_PROJ_
FK (the name is up to the developer, as long as it is unique) that specifies that ProjectID in
ASSIGNMENT references the ProjectID column in PROJECT. Here the ON UPDATE
phrase is set to NO ACTION. Recall that ProjectID is a surrogate key and thus will never
change. In this situation, there is no need to cascade updates to the referenced primary key.

136 Part1 Database Fundamentals

FIGURE 3-7
Creating Foreign Keys with Table Constraints

CREATE TABLE DEPARTMENT (

DepartmentName Char (35) NOT NULL,
BudgetCode Char (30) NOT NULL,
OfficeNumber Char (15) NOT NULL,
Phone Char(12) NOT NULL,
CONSTRAINT DEPARTMENT PK PRIMARY KEY (DepartmentName)
)
CREATE TABLE EMPLOYEE (
EmployeeNumber Int NOT NULL IDENTITY (1, 1),
FirstName Char (25) NOT NULL,
LastName Char (25) NOT NULL,
Department Char (35) NOT NULL DEFAULT 'Human Resources',
Phone Char(12) NULL,
Email VarChar (100) NOT NULL UNIQUE,
CONSTRAINT EMPLOYEE PK PRIMARY KEY (EmployeeNumber),
CONSTRAINT EMP DEPART FK FOREIGN KEY (Department)

REFERENCES DEPARTMENT (DepartmentName)
ON UPDATE CASCADE

)i

CREATE TABLE PROJECT (

ProjectID Int NOT NULL IDENTITY (1000, 100),
ProjectName Char (50) NOT NULL,

Department Char (35) NOT NULL,

MaxHours Numeric (8, 2) NOT NULL DEFAULT 100,
StartDate Date NULL,

EndDate Date NULL,

CONSTRAINT PROJECT PK PRIMARY KEY (ProjectID),
CONSTRAINT PROJ DEPART FK FOREIGN KEY (Department)

REFERENCES DEPARTMENT (DepartmentName)
ON UPDATE CASCADE

)

CREATE TABLE ASSIGNMENT (

ProjectID Int NOT NULL,
EmployeeNumber Int NOT NULL,

HoursWorked Numeric (6,2) NULL,

CONSTRAINT ASSIGNMENT PK PRIMARY KEY (ProjectID, EmployeeNumber),
CONSTRAINT ASSIGN PROJ FK FOREIGN KEY (ProjectlID)

REFERENCES PROJECT (ProjectID)
ON UPDATE NO ACTION
ON DELETE CASCADE,
CONSTRAINT ASSIGN_EMP FK FOREIGN KEY (EmployeeNumber)
REFERENCES EMPLOYEE (EmployeeNumber)
ON UPDATE NO ACTION
ON DELETE NO ACTION

Notice that there is also an ON DELETE phrase, which shows what action should be
taken if a row in PROJECT is deleted. Here the phrase ON DELETE CASCADE means
that when a PROJECT row is deleted all rows in ASSIGNMENT that are connected to the
deleted row in PROJECT also should be deleted. Thus, when a PROJECT row is deleted,
all ASSIGNMENT rows for that PROJECT row will be deleted as well. This action imple-
ments the second business rule on page 124.

Chapter 3 Structured Query Language 137

The second foreign key table constraint defines the foreign key constraint ASSIGN_
EMP_FK. This constraint indicates that the EmployeeNumber column references the
EmployeeNumber column of EMPLOYEE. Again, the referenced primary key is a surro-
gate key, so ON UPDATE NO ACTION is appropriate for this constraint. The phrase ON
DELETE NO ACTION indicates to the DBMS that no EMPLOYEE row deletion should
be allowed if that row is connected to an ASSIGNMENT row. This declaration imple-
ments the first business rule on page 124.

Because ON DELETE NO ACTION is the default, you can omit the ON DELETE
expression, and the declaration will default to no action. However, specifying it makes bet-
ter documentation.*

Table constraints can be used for purposes other than creating primary and foreign
keys. One of the most important purposes is to define constraints on data values, and we
will explore defining CHECK constraints in the end-of-chapter exercises. As always, see
the documentation for your DBMS for more information on this topic.

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access does not completely support foreign key CONSTRAINT
phrases. Although the basic referential integrity constraint can be created us-
ing SQL, the ON UPDATE and ON DELETE clauses are not supported.

Solution: ON UPDATE and ON DELETE actions can be set manually after the
relationship is created. See the discussion in this chapter’s section of “The
Access Workbench.”

Submitting SQL to the DBMS

After you have developed a text file with SQL statements like those in Figures 3-4, 3-6, and
3-7, you can submit them to the DBMS. The means by which you do this varies from DBMS
to DBMS. With SQL Server 2014, you can type them into a query window in the Microsoft
SQL Server Management Studio, or you can enter them via Visual Studio.NET. Oracle
Database Express Edition 11g Release 2 and MySQL 5.6 use similar techniques. How to do
this in Microsoft Access is discussed in this chapter’s section of “The Access Workbench.”

Figure 3-8 shows the Microsoft SQL Server Management Studio window after the
SQL statements in Figure 3-7 have been entered and processed in SQL Server Express
Edition. The SQL code itself appears in a query window on the upper right, and the mes-
sage “Command(s) completed successfully” in the Messages window on the lower right
indicates that the SQL statements were processed correctly. The object icons representing
the tables can be seen in the Object Explorer window on the left, where the name of each
table is prefixed with dbo, which SQL Server uses for database owner.

Figure 3-9 shows the Oracle SQL Devleoper window after the SQL statements in
Figure 3-7 (slightly modified to conform to Oracle Database syntax—see Appendix B)
have been processed in Oracle Database 11g Release 2. The SQL code appears in a tabbed
script window on the left, and object icons representing the newly created table can be seen
in the tabbed Connections window on the right.

Figure 3-10 shows the MySQL Workbench window after the SQL statements in
Figure 3-7 (slightly modified to conform to MySQL syntax—see Appendix C and note the

4You may be wondering why we don’t use the ON DELETE phrase with the foreign key constraints be-
tween DEPARTMENT and EMPLOYEE and between DEPARTMENT and PROJECT. After all, there
will probably be business rules defining what should be done with employees and projects if a department
is deleted. However, enforcing those rules will be more complex than simply using an ON DELETE state-
ment, and this topic is beyond the scope of this book. For a full discussion, see David M. Kroenke and
David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 13th edition (Upper Saddle
River, NJ: Prentice Hall, 2014), Chapter 6.

138 Part 1

FIGURE 3-8

Database Fundamentals

Processing the CREATE TABLE Statements Using Microsoft SQL Server 2014

The SQL script in
the tabbed script
window

The objects
representing the
tables created by
the script are shown
in the expanded
Tables folder—dbo
stands for database
owner

Messages are
shown here—either
that the commands
were successful or
appropriate error
messages

FIGURE 3-9

Processing the CREATE TABLE Statements Using Oracle Database Express Edition 11g Release 2

1 DBC-e07-MS5QL-WPC-Create-Tablessal - WINS1-001\SQLEXPRESSWPC (WIN81-001\Auer (54)) - Microsoft SQL Server Management .. ~ & [HES|

Object Explorer
Connect~ 3¢ 3J T 2] ah

File Edit View Ouevy Project. Dzbug Tools Window Heip

CREATE TABLE DEPARTMENT(

= | WINg1-001\SQLEXPRESS (SOL Server 12/
= @ Databases
@ [System Databases
@ | Art_Course_Database
i |] ReportServer$SQLEXPRESS
i | ReporiServerSSQLEXPRESSTempl]
2 [wee
\.g [Database Diagrams
£ [Tables
1 [System Tables
@ [FileTables
@ O dbo.ASSIGNMENT
@ =1 dbo.DEPARTMENT
® 1 dbo.EMPLOYEE
1 1 dbo.PROJECT
@ [Views
@ [Synonyms
[[Programmability
@ [Service Broker

[[Storage
s
Security

Server Objects
@ [Replication
& [Management

DepartmentName Char(35)

BudgetCode Char(38)
officeNumber Char(15)
Phone Char (12}
COMSTRAINT DEPARTMENT PK

CREATE TABLE EMPLOYEE(
EmployeeNumber Int

Firstiame Char(25)
LastName Char(25)
Department char(35)
Phone Char(12)
Email varchar(18@)
CONSTRAINT EMPLOYEE_PK
CONSTRAINT EMP_DEPART FK

CREATE TABLE PROJECT (

ProjectID Int
ProjectName Char(50)
100% -
| [Messages

Command(s) completed successfully.

100% -~

(D Query executed successfully.

3 i £ = &
DRSSP0 A) _

PRIMARY KEY(DepartmentName)

NOT NULL IDENTITY (1, 1),

LL UNIQUE,

PRIMARY KEY(EmployeeNumber),

FOREIGN KEY({Department)

REFERENCES DEPARTMENT (DepartmentName)
ON UPDATE CASCADE

T NULL

WINS1-001\SQLEXPRESS (12.0 ..

L DEFAULT 'Human Resources',

NULL IDENTITY (1688, 188),

iEE

[ES
=

WINS1-001\Auver (54) | WPC | 00:00:00 | O rows

The SQL script in
the tabbed SQL
Worksheet window

loper : TAAuer-Projects\DBC-e07\DEC-€0

—mam@ae

Databases D

The objects
representing the
tables created by
the script are shown
in the expanded
Tables folder

Messages are
shown here—either
that the commands
were successful or
appropriate error
messages

w B pec-e0s-0p5-WPC-Chos-Create-Tables.sql

0.46900001 seconds

@ we -

PRIMARY KEY (DepartmentName)

NOT NULL UNIOUE,
PRIMARY KEY (EmployeeNumber),

Connections
e WTB SQU Worksheat History
B Conecare FER-BA RE Bueds
B Art_Course Database Worksheet | Query Buider
i wee S CREATE TADLE DEPARTMENT
- Tables (Fitered) DepertmentName Char{35] NOT NOLL,
=4 [assichmEnT BudgetCode Char (30) NOT WULL,
- 2 DEPARTMENT OfficeNumber Char(15) NOT NULL,
i+ [E EvpLOtEE Phone Char(12) NOT WOLL,
- PROJECT CONSTRAINT DEPARTMENT PK
{88 Views)i -
+/--[#8) Edifioring Views
- {3 Indexes S/CREATE TABLE EMPLOYEE(
-l Packages Employeelumber Int HOT WULL,
#i- (3] Procedures FirstName Char (25) HOT NULL,
{38 Functions Lasthame Char (25) HOT NULL,
-(1f] Queves Department Char (35) HOT NULL,
B Queves Tables Phone Char(12) HULL,
L Triggers Email VarChar (100)
- [28 Crossedition Triggers CONSTRAINT EMPLOYEE X
(g Types CONSTRATNT EMP DEPART FK FOREIGN KEY (Department)
=-{gd Sequences (Filtered)
G)

REFERENCES DEFARTMENT (DepartmentName)

Synanyms
{2} Public Synonyms
=

~ud SEQEID 5
- Mat Views -
i1 (8 Materialized View A
@ Elscipt output x

2¢BEE

Task completed in 0,463 seconds

Reports

[AlReports

{2 Data Dictionary Reports
{2 Dats Modeler Reports
& {&- OLAP Reports

- {2 TimesTen Reports

- {2 User Defined Reports

1 ||cable DEPARTMENT created.
table EMPLOYEE created.
" |sequence SEQEID created.
table PROJECT created.
table ASSIGNMENT created.

Chapter 3 Structured Query Language 139

FIGURE 3-10
Processing the CREATE TABLE Statements Using MySQL 5.6

The SQL script in e MySQL Workbench =
p M Localinstance MySQLSE x
the tabbed Script L&
window 8 W= |
Navigator:::
SENEMBS o WMHI FFAQIMBA| B l¥aq @R
Q, |Filter ohjects 19 ® CJCREATE TABLE DEPARTMENT(~
= i 20 Departmentiame Char(::) NOT NULL,
: = arft-m;“-dat;bm 21 BudgetCode char(z2) NOT NULL,
s ;”"a s :ma 22 OfficeNumber Char(15) NOT NULL,
¥ £ perarmancs: suheme 23 Phone Char(12) NOT NULL,
» . LS 24 CONSTRATNT DEPARTMENT_PK PRIMARY KEY(DepartmentName)
¥ [wpc 25 L =
w B Tables 2 %
» E assignment 27 ® EICREATE TABLE EMPLOYEE(
» = department 28 Employechiumber Int NOT NULL AUTO_INCREMENT,
» E employes 29 Firstiame Char(25) NOT NULL,
» B proea 30 LastName char(25) NOT NULL,
» B views 31 Department Char(35) NOT NULL DEFAULT ‘Human Resources’,
» B Stored Procedures 32 Phone Char(12) NULL,
» B Functions 33 Email VarChar(108) NOT NULL UNIQUE,
34 CONSTRAINT EMPLOYEE_PK PRIMARY KEY(Employeehumber),
35 CONSTRAINT £MP_DEPART_FK FOREIGN KEY (Department)
36 REFERENCES DEPARTMENT(Departmenthame)
37 ON UPDATE CASCADE
38 i)i
39
4@ ® CICREATE TABLE PROJECT(
41 ProjectID Int NOT NULL,
42 Projectiame char(52) NOT NULL, v
< >
The objects Output
representing the Management ~ Schemas [Action Output 5
. Time Action Message Durstion / Fetch ~
Information o
tables created by © 3 10:4952 CREATE TABLE DEPARTMENT(DepattmentiameCharl . 0 rowis) affscted 025058
the SCFipt are Shown il © 4 104952 CREATE TABLE EMPLOYEE(EmployeeNumberit N... Orowis)affected 0.312sec
q © 5 104952 CREATE TABLEPROJECT(ProjectiD It NOTNU.. Orowis)affected 0375sec
in the expanded e, © 6 104953 CREATE TABLEASSIGNMENT (ProjeetiD It N.. Drowis)affected 0219sec
v
wpc schema
Query Completed

AUTO_INCREMENT keyword instead of IDENTITY (1, 1)] have been processed in MySQL.
The SQL code appears in a tabbed script window on the left, and the object icons representing
the newly created tables can be seen in the Object Browser window on the left.

Does Not Work with Microsoft Access ANSI-89 SQL

Unlike SQL Server 2014, Oracle Database Express Edition 11g Release 2, and
MySQL 5.6, Microsoft Access does not support SQL scripts.

Solution: You can still create tables by using the SQL CREATE command and
inserting data by using the SQL INSERT command (discussed later in this chap-
ter), but you must do so one command at a time. See the discussion in this
chapter’s section of “The Access Workbench.”

Some DBMS products can create database diagrams that show the tables and relation-
ships in a database. We've already used the Microsoft Access Relationships window (in
Chapter 2’s section of “The Access Workbench”). For SQL Server 2014, Figure 3-11 shows
the WPC database structure in Microsoft SQL Server Management Studio.

SQL FOR DATA MANIPULATION (DML)—INSERTING DATA

The SQL DML is used to query databases and to modify data in the tables. In this section,
we discuss how to use SQL to insert data into a database, how to query the data, and how
to change and delete the data.

There are three possible data modification operations: insert, update, and delete.
Because we need to populate our database tables, we discuss how to insert data at this time.

140 Part1

FIGURE 3-11

Database Fundamentals

Database Diagram in the Microsoft SQL Server Management Studio

The database tables
and the links between
them are shown in
the tabbed Diagram
window

" et View Projest TPH;DNM Dstabase Disgram Tocks Wind
Pl 0 S | ey B 5| 4 0B 9 -
£ 37 5| R |l

—

Object Expiorar
Connect~ % 4 = LA
£ [WINBT-001\SQLEXPRESS (SQL 58

= [Datzbases

DEPARTMENT

EMPLOYEE

The object
representing the
database diagram is
shown in the expanded
Database Diagrams
folder—adbo stands for
database owner

& [0 System Databases
| Art_Course Database
|J ReportServerSSOLEXPRESS
@ | ReportServerSSQLEXPRESSTempl|
= (1 wec
© [Database Diagrams
P 22 dbo.WPC-Database-Diagy
= £ Tables
[System Tables
[FileTables
= dbo.ASSIGNMENT
= dbo.DEPARTMENT
@ O dbo.EMPLOYEE

¥ DepartmentName
BudgetCode
OfficeNumber

§ EmployeeNumber
FirstName
LastName

Phone Department

Phone

Email

PROJECT
¥ ProjectiD

ASSIGNMENT
F ProjectiD

= dbo.PROJECT

& C3 Views
@ Synonyms
@ 3 Programmability
[Service Broker
@ 3 Storage
® [Security

[l Security

3 Server Objects

@ 3@ Replication

3 Management

ProjectMame § EmployeeNumber

HoursWorked

]

Department

MaxHours

StartDate
EndDate

We will wait until later in the chapter, after we’ve discussed some other useful SQL syntax,
to consider updating and deleting data.

Inserting Data

Data can be added to a relation by using the SQL INSERT statement. This statement has
two forms, depending on whether data are supplied for all of the columns,

We'll put the data shown in Figure 3-2(a) into the DEPARTMENT table. If the data
for all columns are supplied, such as for the administration department, then the following

INSERT can be used:

INSERT INTO DEPARTMENT VALUES ('Administration',
'BC-100-10', 'BLDG01-300', '360-285-8100");

If the DBMS is providing a surrogate key, then the primary key value does not need to be
specified.

SQL statements can also include an SQL comment, which is a block of text that is used to
document the SQL statement but not executed as part of the SQL statement. SQL comments
are enclosed in the symbols /* and */, and any text between these symbols is ignored when the
SQL statement is executed. For example, here is the previous SQL INSERT statement with an
SQL comment added to document the statement by including a statement label:

/* *%% SOL-INSERT-CHO3-01 **% %/
INSERT INTO DEPARTMENT VALUES ('Administration',
'"BC-100-10', 'BLDG01-300', '360-285-8100"');

Because the SQL comment is ignored when the SQL statement is executed, the result
of running this statement will be identical to the result of running the statement without

Chapter 3 Structured Query Language 141

the comment. We will use similar comments to label the SQL statements in this chapter as
an easy way to reference a specific SQL statement in the text.

The data shown in Figure 3-2(c) will be put in the PROJECT table. Because ProjectID
is a surrogate key—specified as IDENTITY (1000, 100) in SQL Server—the same type of
INSERT statement can be used when data are supplied for all other columns. For example,
to insert the data for the 2014 Q3 Product Plan, the following INSERT can be used:

/* *%*%x SQL-INSERT-CH03-02 *** x/
INSERT INTO PROJECT VALUES('2014 Q3 Product Plan',
'Marketing', 135.00, '10-MAY-14', '15-JUN-14');

Note that numbers such as Integer and Numeric values are not enclosed in single quotes,
but Char, VarChar, and DateTime values are.

SQL is very fussy about single quotes. It wants the plain, nondirectional
quotes found in basic text editors. The fancy directional quotes produced
by many word processors will produce errors. For example, the data value
'2014 Q3 Product Plan' is correctly stated, but ‘2014 Q3 Product Plan’ is
not. Do you see the difference?

If data for some columns are missing, then the names of the columns for which data
are provided must be listed. For example, consider the 2014 Q4 Portfolio Analysis project,
which does not have an EndDate value. The correct INSERT statement for this data is:

/* *%% SQL-INSERT-CH03-03 **% */

INSERT INTO PROJECT
(ProjectName, Department, MaxHours, StartDate)
VALUES ('2014 Q4 Portfolio Analysis', 'Finance',
140.00, '05-0CT-14"');

A NULL value will be inserted for EndDate.

Let’s consider three points regarding the second version of the INSERT command.
First, the order of the column names must match the order of the values. In the preceding
example, the order of the column names is Name, Department, MaxHours, StartDate, so
the order of the values must also be Name, Department, MaxHours, StartDate.

Second, although the order of the data must match the order of the column names, the
order of the column names does not have to match the order of the columns in the table.
For example, the following INSERT, where Department is placed at the beginning of the
column list, would also work:

/* *x% SQL-INSERT-CH03-04 **x */

INSERT INTO PROJECT
(Department, ProjectName, MaxHours, StartDate)

VALUES ('Finance', '2014 Q4 Portfolio Analysis',
140.00, '05-0OCT-14"') ;

Finally, for the INSERT to work, values for all NOT NULL columns must be provided.
You can omit EndDate only because this column is defined as NULL.

142 Part 1 Database Fundamentals

Figure 3-12 shows the SQL INSERT statements needed to populate the WPC data-
base tables created by the SQL. CREATE TABLE statements in Figure 3-7. Note that the
order in which the tables are populated does matter because of the foreign key referential
integrity constraints.

FIGURE 3-12
SQL INSERT Statements

/***** DEPARTMENT DATA ************‘k****************‘k************************/

INSERT INTO DEPARTMENT VALUES (

'Administration', 'BC-100-10', 'BLDG01-300', '360-285-8100");
INSERT INTO DEPARTMENT VALUES (

'Legal', 'BC-200-10', 'BLDG01-200', '360-285-8200");
INSERT INTO DEPARTMENT VALUES (

'Accounting', 'BC-300-10', 'BLDG01-100', '360-285-8300");
INSERT INTO DEPARTMENT VALUES (

'Finance', 'BC-400-10', 'BLDG01-140', '360-285-8400");
INSERT INTO DEPARTMENT VALUES (

'"Human Resources', 'BC-500-10', 'BLDG01-180', '360-285-8500");
INSERT INTO DEPARTMENT VALUES (

'Production', 'BC-600-10', 'BLDG02-100', '360-287-8600") ;
INSERT INTO DEPARTMENT VALUES (

'Marketing', 'BC-700-10', 'BLDG02-200', '360-287-8700");
INSERT INTO DEPARTMENT VALUES (

'InfoSystems', 'BC-800-10', 'BLDG02-270', '360-287-8800");
/‘k‘k‘k** EMPLOYEE DATA *******‘k*‘k‘k*************‘k*‘k*****************‘k‘k‘k*********/

INSERT INTO EMPLOYEE VALUES (

'Mary', 'Jacobs', 'Administration', '360-285-8110', 'Mary.Jacobs@WPC.com') ;
INSERT INTO EMPLOYEE VALUES (
'Rosalie', 'Jackson', 'Administration', '360-285-8120",

'Rosalie.Jackson@WPC.com') ;
INSERT INTO EMPLOYEE VALUES (
'Richard', 'Bandalone', 'Legal', '360-285-8210",
'Richard.Bandalone@WPC.com') ;
INSERT INTO EMPLOYEE VALUES (
'Tom', 'Caruthers', 'Accounting', '360-285-8310",
'Tom.Caruthers@WPC.com') ;
INSERT INTO EMPLOYEE VALUES (

'Heather', 'Jones', 'Accounting', '360-285-8320', 'Heather.Jones@WPC.com') ;
INSERT INTO EMPLOYEE VALUES (
'Mary', 'Abernathy', 'Finance', '360-285-8410",

'Mary.Abernathy@WPC.com') ;

INSERT INTO EMPLOYEE VALUES (
'George', 'Smith', 'Human Resources', '360-285-8510",
'George.Smith@WPC.com') ;

INSERT INTO EMPLOYEE VALUES (

'Tom', 'Jackson', 'Production', '360-287-8610', 'Tom.Jackson@WPC.com') ;
INSERT INTO EMPLOYEE VALUES (
'George', 'Jones', 'Production', '360-287-8620",

'George.Jones@WPC.com') ;
INSERT INTO EMPLOYEE VALUES (

'Ken', 'Numoto', 'Marketing', '360-287-8710', 'Ken.Numoto@WPC.com') ;
INSERT INTO EMPLOYEE (FirstName, LastName, Department, Email)
VALUES ('James', 'Nestor', 'InfoSystems', 'James.Nestor@WPC.com')

INSERT INTO EMPLOYEE VALUES (
'Rick', 'Brown', 'InfoSystems', '360-287-8820', 'Rick.Brown@WPC.com')

Chapter 3 Structured Query Language 143

FIGURE 3-12 Continued

/***** PROJECT DATA ***/

INSERT INTO
'2014
INSERT INTO
'2014
INSERT INTO
'2014
INSERT INTO
'2014
INSERT INTO

PROJECT VALUES (

Q3 Product Plan', 'Marketing', 135.00, 'l10-MAY-14', '15-JUN-14");
PROJECT VALUES (

Q3 Portfolio Analysis', 'Finance', 120.00, '05-JUL-14', '25-JUL-14");
PROJECT VALUES (

Q3 Tax Preparation', 'Accounting', 145.00, '1l0-AUG-14', '15-0CT-14");
PROJECT VALUES (

Q4 Product Plan', 'Marketing', 150.00, '10-AUG-14', '15-SEP-14");
PROJECT (ProjectName, Department, MaxHours, StartDate)

VALUES ('2014 Q4 Portfolio Analysis', 'Finance', 140.00, '05-0CT-14");

INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO

/***** ASSTIGNMENT DATA **/
ASSIGNMENT VALUES (1000, 1, 30.0);
ASSIGNMENT VALUES (1000, 8, 75.0);
ASSIGNMENT VALUES (1000, 10, 55.0);
ASSIGNMENT VALUES (1100, 4, 40.0);
ASSIGNMENT VALUES (1100, 6, 45.0);
ASSIGNMENT VALUES (1200, 1, 25.0);
ASSIGNMENT VALUES (1200, 2, 20.0);
ASSIGNMENT VALUES (1200, 4, 45.0);
ASSIGNMENT VALUES (1200, 5, 40.0);
ASSIGNMENT VALUES (1300, 1, 35.0);
ASSIGNMENT VALUES (1300, 8, 80.0);
ASSIGNMENT VALUES (1300, 10, 50.0);
ASSIGNMENT VALUES (1400, 4, 15.0);
ASSIGNMENT VALUES (1400, 5, 10.0);
ASSIGNMENT VALUES (1400, 6, 27.5);

/**/

Oracle Database and MySQL handle surrogate keys in their own unique
ways. Oracle Database uses sequences (see Appendix B and the Oracle
Database Express Edition 11g Release 2 documentation), and MySQL
treats the AUTO_INCREMENT value as a missing value so that you have
to list all the other column names (see Appendix C and the MySQL 5.6
Community Server documentation).

SQL FOR DATA MANIPULATION (DML)—SINGLE TABLE QUERIES

After the tables have been defined and populated, you can use SQL DML to query data
in many ways. You can also use it to change and delete data, but the SQL statements for
these activities will be easier to learn if we begin with the query statements. In the follow-
ing discussion, assume that the sample data shown in Figure 3-2 have been entered into the
database.

144 Part 1

Database Fundamentals

The SQL SELECT/FROM/WHERE Framework

This section introduces the fundamental statement framework for SQL query statements.
After we discuss this basic structure, you will learn how to submit SQL statements to
Microsoft Access, SQL Server, Oracle Database, and MySQL. If you choose, you can then
follow along with the text and process additional SQL statements as they are explained in
the rest of this chapter. The basic form of SQL queries uses the SQL SELECT/FROM/
WHERE framework. In this framework:

® The SQL SELECT clause specifies which columns are to be listed in the query
results.

® The SQL FROM clause specifies which zables are to be used in the query.

® The SQL WHERE clause specifies which rows are to be listed in the query results.

We will use and expand this framework as we work through examples in the following
sections. All the examples use the data in Figure 3-2 as the basis for the results of the queries.

Reading Specified Columns from a Single Table
The following SQL statement queries (reads) three of the six columns of the PROJECT
table:

/* *** SQL-QUERY-CHO03-01 *** %/
SELECT ProjectName, Department, MaxHours
FROM PROJECT;

Notice that the names of the columns to be queried follow the keyword SELECT, and the
name of the relation to use follows the keyword FROM. The result of this statement is:

ProjectMame Department MaxHours
| 2014 Q3 Product Plan : Marketing 135.00
2014 Q3 Portfolio Analysis Finance 120.00
2014 Q3 Tax Preparation Accounting 14500
2014 Q4 Product Plan Marketing 150.00
2014 Q4 Portfolio Analysis Finance 140.00

N o W R

To show you how the results look in actual DBMS management tools, Figure 3-13
shows the query as executed in Microsoft SQL Server 2014 using Microsoft SQL Server
Management Studio, Figure 3-14 shows the query as executed in Oracle Database Express
Edition 11g Release 2 using Oracle SQL Developer, and Figure 3-15 shows the query as
executed in the MySQL 5.6 using MySQL Workbench.

The result of an SQL SELECT statement is a relation. This is always true for SELECT
statements. They start with one or more relations, manipulate them in some way, and then
produce a relation. Even if the result of the manipulation is a single number, that number is
considered to be a relation with one row and one column.

The order of the column names after the keyword SELECT determines the order of

the columns in the resulting table. Thus, if you change the order of columns in the previous
SELECT statement to:

/* *** SQOL-QUERY-CH03-02 *** %/
SELECT ProjectName, MaxHours, Department
FROM PROJECT;

Chapter 3 Structured Query Language 145

FIGURE 3-13

SQL Query Results in the Microsoft SQL Server Management Studio

The New Query
button

The Execute button

SELECT ProjectName, Department, MaxHours
FROM PROJECT;

The SQL statement I
in the tabbed query (] o o

- [J ReportServerSSQLEXPRESS

window 7] Regmgg,:;mmmmssnmpl
2 [wec)

The query results I\ £ L1 Database Disgrams

=2 dbo WPC-Database-Diag ‘
=]
s 00% -
3 System Tal

[FileTables [~ Resuts | [y Messages|

@ = dbo ASSIGNMENT ProjectName _ Depattment MaxHous
1 = dbo.DEPARTMENT 1 Z014Q3PoduciFln | Makeng 13500
1 dbo.EMPLOYEE 2 2014Q3Potfolo Analysis Finance 12000
= dbo.PROJECT 3 201403 TaxPreparaion Accounting 145.00
@ 3 Views 4 2014Q4 Product Plan Marketing 150.00
[Synonyms 5 2014Q4 Potfolo Analysis Finance 140.00
[Programmability
[Service Broker
[[Storage
[Security
® [Security
[3 Server Objects
[[Replication
3 Management
<1 3 1@ Query executed successfully. | WINB1-0014SQLEXPRESS (12.0 ... | WINB1-D0T\Auer (54) | WRC | D0:00:00 | 5 rows

FIGURE 3-14

SQL Query Results in the Oracle SQL Developer

The WPC tabbed SQL

Worksheet window
< =1 M >
The Run Statement | & - m v & | e S e — :
button v N e ;
o @we |y SELECT FProjectliame, Departwent, Mawfours

in the tabbed SQL 1 ;
Worksheet window | g PROTECT

The SQL statement % ‘ :
- 5] DEPARTMENT |

The query results in -
the tabbed Query || 2 Erema

A G- {33 Functions]
Result window \@m‘%\
A o i
-3 Triagers By Query Result. ‘

-8 Crossedition Triggers

- Types o &) B s | AlRowsFetched: 5in 0.062 seconds
g Sequences (Fitered) { PROJECTHAME [oeparTMENT [maxrours
| uld sEoED 12014 Q3 Product Plan Markecing 135 +
Q--JﬁMa!eﬁamd\ﬁaws 7 2014 Q3 Dortfolio Analysis Finance 120
(- ({7 Materialized View Logs 3
i S 2014 Q3 Tax Preparation Accounting 145
- [Pubic Synonyms | 42014 Q4 Product Flan Marketing 150
5 2014 04 Portfolio Rnalysis Finance 140
Reports T
(@ Alreports -
{2 Data Dictionary Reports
- (2 Data Modeler Reparts
- {2 OLAP Reports
(= TimesTen Reports U
- User Defined Reports > L

| Line 2 Column 17 | Insert | Modified | Windaws: CF

146 Part 1

Database Fundamentals

FIGURE 3-15
SQL Query Results in the MySQL Workbench

L MysQL Workbench N < |
The Execute button I_ =
ew Query Datsbase Server Tools Scripfing Help
The SQL statement in w @ L=
the MySQL Workbench f——agstor
. q SCHEMAS ¥ F B |8 B | R S TRE
SQL File window Q [Fitter objects 1@ SELECT ProjectName, Department, MaxHours
» | art_course database 2 FROM PROJECTY|
The query results > B Eaitions e
in the results tabbed ‘s
window named TR s
PROJECT 1 £ e
= employee
» I project
» B viehg
» B stored®cocedures
» B Functions
< >
| RentGrid | F§ 4% Fiter Roves: | et @ B B | eworyimpor: B BB | wrepcelcontent: I8 a I
[\ | projectiame Department MaxHours
O 2 cororn [T [
2014 Q3 Portfolio Analysis Finance 120,00
2014 Q3 Tax Preparation Accounting 145.00
2014 Q4 Product Plan Marketing 150.00
Management Schemas 2014 Q4 Portfolio Analysis Finance 140.00
i fiivn | L
Information *1
Object Info~ Session PROJECT1 x Apply Cancel
The result will be:
ProjectName MaxHours Department
1 | 2014 Q3 Product Plan i 135.00 Marketing
2 2014 Q3 Portfolio Analysis 120,00 Finance
3 2014 Q3 Tax Preparation 145.00 Accournting
4 2014 Q4 Product Plan 150.00 Marketing
Li] 2014 Q4 Portfolio Anahysis 140,00 Finance

The next SQL statement obtains only the Department column from the PROJECT table:

/* *%*%x SOL-QUERY-CHQ03-03 *** */
SELECT
FROM

Department
PROJECT;

The result is:

....................................

I S

Chapter 3 Structured Query Language 147

Notice that the first and fourth rows of this table are duplicates, as are the second and
last rows. According to the definition of relation given in Chapter 2, such duplicate rows
are prohibited. However, as also mentioned in Chapter 2, the process of checking for and
eliminating duplicate rows is time-consuming. Therefore, by default, DBMS products do
not check for duplication. Thus, in practice, duplicate rows can occur.

If you want the DBMS to check for and eliminate duplicate rows, you must use the
DISTINCT keyword, as follows:

/* **%x SQL-QUERY-CHQ03-04 #**% */
SELECT DISTINCT Department
FROM PROJECT;

The result of this statement is:

Department
5 ﬁ." ¥ m?ﬁ'.‘f.’.h o diE
3 Marketing

The duplicate rows have been eliminated, as desired.

Reading Specified Rows from a Single Table

In the previous SQL statements, we selected certain columns for all rows of a table. SQL
statements can also be used for the reverse; that is, they can be used to select all the col-
umns for certain rows. The rows to be selected are specified by using the SQL WHERE
clause. For example, the following SQL statement will obtain all the columns of the
PROJECT table for projects sponsored by the finance department:

/* *%*%x SOL-QUERY-CHQ03-05 #**% */

SELECT ProjectID, ProjectName, Department, MaxHours,
StartDate, EndDate

FROM PROJECT

WHERE Department = 'Finance';

The result is:

ProjectlD ProjectMame Depatment MaxHours StartDate EndDate

2014 Q32 Portfolio Analysis Finance 120.00 200140705 2014-07-25

1400 " 2014 Q4 Portfolio Analysis Finance 140.00 201410405 MULL

The specific treatment of date and time values varies widely among DBMS
products. Note that we input the StartDate for ProjectID 1100 as 05-JUL-14
(DD-MMM-YY), but the output above shows it as 2014-07-05 (YYYY-MM-DD).
As always, see the documentation for your DBMS product.

148 Part 1

Database Fundamentals

A second way to specify all the columns of a table is to use the SQL asterisk (*) wild-
card operator after the keyword SELECT. The following SQL statement is equivalent to
the previous one:

/* *%*%x SQL-QUERY-CH03-06 #**% */

SELECT *
FROM PROJECT
WHERE Department = 'Finance';

The result is a table of all the columns of PROJECT for rows that have a Department value
of Finance:

ProjectlD ProjectMame Depatment MaxHours StartDate EndDate
1100 | 2014 Q3 Portfolio Analysis Finance 120.00 20140705 2014407-25
1400 2014 Q4 Portfolio Analysis Finance 140.00 2014-10:05 MWULL

As previously stated, the pattern SELECT/FROM/WHERE is the fundamental pat-
tern of SQL SELECT statements. Many different conditions can be placed in a WHERE
clause. For example, the query:

/* **% SQL-QUERY-CHO03-07 **x */

SELECT *
FROM PROJECT
WHERE MaxHours > 135;

selects all columns from PROJECT where the value of the MaxHours column is greater
than 135. The result is:

ProjectlD ProjectMame Department MacHours StartDate EndDate
11200 | 2014Q3 TaxPreparation Accounting 14500 20140810 2014-10-15
Tk 2014 Q4 Product Plan Marketing 15000 20140810 20140915

1400 2014 Q4 Portfolio Analysis Finance 140.00 201410405 NULL

Notice that when the column data type is Char or VarChar, comparison values must be
placed in single quotes. If the column is Integer or Numeric, no quotes are necessary. Thus,
you use the notation Department = 'Finance' for a WHERE condition of the VarChar column
Department, but you use the notation MaxHours = 100 for the Numeric column MaxHours.

Values placed in quotation marks may be case sensitive. For example, WHERE
Department = 'Finance' and WHERE Department = 'FINANCE' may not be considered the
same—check your DBMS documentation (or experiment with some data).

You can place more than one condition in a WHERE clause by using the AND key-
word. If the AND keyword is used, only rows meeting // the conditions will be selected.
For example, the following query determines which projects are sponsored by the finance
department and are allocated a maximum number of hours greater than 135:

/* **% SQL-QUERY-CH03-08 **x */

SELECT *
FROM PROJECT
WHERE Department = 'Finance'

AND MaxHours > 135;

Chapter 3 Structured Query Language 149

The result of this query is:

ProjectlD ProjectMame Department MaxHours StartDate EndDate

i 1400 2014 4 Portfolio Analysis Finance 140.00 20141005 NULL

Reading Specified Columns and Specified Rows
from a Single Table

You can combine the techniques just shown to select some columns and some rows from
a table. For example, to obtain only the FirstName, LastName, Phone, and Department
values of employees in the accounting department, you use:

/* *%*x SQOL-QUERY-CHQ03-09 **% */

SELECT FirstName, LastName, Phone, Department
FROM EMPLOYEE
WHERE Department = 'Accounting';

The result is:

FirstMame LastName Phone Department

1 Tnm Canthers 360-2858310 Accounting

You can combine two or more conditions in the WHERE clause by using the AND
keyword and the OR keyword. As stated previously, if the AND keyword is used, only rows
meeting a// the conditions will be selected. However, if the OR keyword is used, then rows
that meet any of the conditions will be selected.

For example, the following query uses the AND keyword to ask for employees that
work in accounting and have the phone number 360-285-8310:

/* *%*%x SQOL-QUERY-CHQ03-10 *** */

SELECT FirstName, LastName, Phone, Department
FROM EMPLOYEE
WHERE Department = 'Accounting'

AND Phone = '360-285-8310"';

The result is:

FistName LastName Phone Department

.................................

However, the following query uses the OR keyword to ask for employees that work in
accounting or have the phone number 360-285-8410:

/* *%*%x SQL-QUERY-CHQ03-11 #**% */

SELECT FirstName, LastName, Phone, Department
FROM EMPLOYEE
WHERE Department = 'Accounting'

OR Phone = '360-285-8410";

150 Part1 Database Fundamentals

The result is:

S
o
=0

Another use of the WHERE clause is to specify that a column should have one of a set
of values by using the IN keyword, as follows:

/* *%*x SQL-QUERY-CHQ03-12 **%* */

SELECT FirstName, LastName, Phone, Department

FROM EMPLOYEE

WHERE Department IN ('Accounting', 'Finance',
'Marketing') ;

In this query, a row will be displayed if it has a Department value equal to Accounting,
Finance, or Marketing. The result is:

To select rows that do not have any of these Department values, you would use the
NOT keyword in the NOT IN phrase, as follows:

/* *%*x SQL-QUERY-CHQ3-13 #**% */

SELECT FirstName, LastName, Phone, Department

FROM EMPLOYEE

WHERE Department NOT IN ('Accounting', 'Finance',
'"Marketing') ;

The result of this query is:

FirstName LastName

Chapter 3 Structured Query Language 151

Notice the essential difference between IN and NOT IN. When using IN, the column
may equal any of the values in the list. When using NOT IN, the column must not be equal
to all the values in the list.

Ranges, Wildcards, and Nulls in WHERE Clauses

WHERE clauses can refer to ranges of values and partial values. The BETWEEN keyword
is used for ranges of values. For example, the statement:

/* *x% SQL-QUERY-CHO3-14 *** */

SELECT FirstName, LastName, Phone, Department
FROM EMPLOYEE
WHERE EmployeeNumber BETWEEN 2 AND 5;

will produce the following result:

FirstMame lastMame Phone Department
, T ah 02859210 Legal
3 Tom Canthers: 360-285-8310 Accounting
4 Heather Jones 360-285-8320 Accourting

Note that the SQL keyword BETWEEN includes the end points, and thus
SQL-QUERY-CHO03-14 is equivalent to the following query, which uses the SQL compari-
son operators >= (greater than or equal to) and <= (less than or equal to):

/* *%*x SQOL-QUERY-CHQ3-15 #**% */

SELECT FirstName, LastName, Phone, Department
FROM EMPLOYEE
WHERE EmployeeNumber >= 2

AND EmployeeNumber <= 5;

Thus, the end values of BETWEEN (here 2 and 5) are included in the selected range. The

set of SQL comparison operators is shown in Figure 3-16. You can use any of them when
creating WHERE clauses.

The LIKE keyword is used in SQL expressions to select partial values. It is used with
wildcard characters, which represent unknown characters in a pattern. The SQL wildcard
characters are the underscore symbol (_), which represents a single, unspecified character,
and the percent sign (%), which is used to represent a series of one or more unspecified
characters.

In the following query, LIKE is used with the underscore symbol to find values that fit
a pattern:

/* **%* SOL-QUERY-CHO03-16 *** */

SELECT *

FROM PROJECT

WHERE ProjectName LIKE '2014 Q Portfolio Analysis';

152 Part 1

Database Fundamentals

FIGURE 3-16

SQL Comparison Operators

Operator Indicates
= Equal to

Greater than

Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to

The underscore means that any character can occur in the spot occupied by the under-
score. The result of this statement is:

Projectlll ProjectMame Depatment MaxHours StaitDate EndDate
1100 | 2014 Q3 Portfolio Analysis ~ Finance 120.00 20140705 2014407-25
1400 2014 Q4 Portfolio Analysis ~ Finance 140.00 20141005 NULL

One underscore is used for each unknown character. To find all employees who have a
Phone value that begins with 360-287-, you can use four underscores to represent any last
four digits, as follows:

/* *x% SQL-QUERY-CHO3-17 *** */

SELECT *
FROM EMPLOYEE
WHERE Phone LIKE '360-287- '

The result is:

Employesbumber FirstName LastName Deparitment Phone Email
1 - . Tom Jackson Production 360-287-8610 Tom.Jackson@WPC com
2 I8 George Jones. Production 3602878620 George Jones@WPC.com
3 10 Ken Numoto ~ Marketing 3602878710 Ken Numoto @WPC.com
4 12 Rick Browm: InfoSystems 360-287-8820 Rick Brown@WPC com

Because the percent sign represents one or more unknown characters, another way to write
the query for employees who have a phone number that starts with 360-287- is:

/* *x% SQL-QUERY-CHO03-18 ***% */
SELECT *

FROM EMPLOYEE

WHERE Phone LIKE '360-287-%';

Chapter 3 Structured Query Language 153

The result is the same as in the previous example:

Employesbumber FirstName LastName Deparitment Phone Email
1 _ . Tom Jackson Production 3602878610 Tom Jackson@WPC.com
> |8 George Jomes Production 360-287-8620 George Jones@WPC.com
3 10 Ken Numoto ~ Marketing 360-287-8710 Ken.Numoto@WPC com
4 12 Rick Ercwm InfoSystems 360-287-8820 Rick Brown@WPC .com

If you want to find all the employees who work in departments that end in zg, you can
use the % character as follows:

/* *%*%x SOL-QUERY-CHQ03-19 *** */

SELECT *
FROM EMPLOYEE
WHERE Department LIKE '%$ing';

The result is:

EmployeeMumber Firstilame LastMame Depatmert Phone Email

4 . Tom Canthers Accourting 360-2858310 Tom Caruthers @WPC .com
h Heather Jones Accounting 360-285-8320 Heather.Jones @WPC .com
10 Ken Mumaoto Marketing 3602878710 Ken. Numato@WPC com

The NOT keyword, which we used previously as part of the NOT IN phrase,
can also be used with LIKE to form the NOT LIKE phrase. For example, if you

want to find all the employees who work in departments that do not end in
ing, you can use the following SQL query:

/* *%*x SQL-QUERY-CHQ03-20 #**%* */

SELECT *
FROM EMPLOYEE
WHERE Department NOT LIKE '%ing';

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access ANSI-89 SQL uses wildcards but not the SQL-92 standard
wildcards. Microsoft Access uses a question mark (?) instead of an underscore
to represent single characters and an asterisk (*) instead of a percent sign to
represent multiple characters. These symbols have their roots in the SQL-89
standard, where they are the correct standard.

(continued)

154 Part1 Database Fundamentals

Furthermore, Microsoft Access can sometimes be fussy about stored
trailing spaces in a text field. You may have problems with a WHERE clause like
this:

WHERE ProjectName LIKE '2014 Q? Portfolio Analysis';

But the clause will work if you use a trailing asterisk (*), which allows for the trail-
ing spaces:

WHERE ProjectName LIKE '2014 Q? Portfolio Analysis*';

Solution: Use the appropriate Microsoft Access wildcard characters, and in-
clude a trailing asterisk (*), if needed.

Another useful SQL keyword is the IS NULL keyword, which can be used in a
WHERE clause to search for null values. The following SQL will find the names and de-
partments of all employees who have a null value for Phone:

/* *x% SQL-QUERY-CHO03-21 *** */

SELECT FirstName, LastName, Phone, Department
FROM EMPLOYEE
WHERE Phone IS NULL;

The result of this query is:

FirstName lastName Phone Department

1 James | Nestor NULL InfoSystems

The NOT keyword can also be used with IS NULL to form the IS NOT NULL
phrase. For example, if you want to find all the employees who do have
phone numbers, you can use the following SQL query:

/* ***% SQL-QUERY-CH03-22 **x */

SELECT FirstName, LastName, Phone, Department
FROM EMPLOYEE
WHERE Phone IS NOT NULL;

Sorting the Results of a Query

The order of rows in the result of a SELECT statement is somewhat arbitrary. If this is
undesirable, we can use the ORDER BY clause to sort the rows. For example, the follow-
ing will display the names, phone numbers, and departments of all employees, sorted by
Department:

Chapter 3 Structured Query Language 155

/* *%*%x SQOL-QUERY-CHQ03-23 *** */

SELECT FirstName, LastName, Phone,
FROM EMPLOYEE
ORDER BY Department;

The result is:

Department

By default, SQL sorts in ascending order. The ASC keyword and DESC keyword can
be used to specify ascending and descending order when necessary. Thus, to sort employ-

ees in descending order by Department, use:

/* **%% SQOL-QUERY-CHO03-24 ***%* *x/

SELECT FirstName, LastName, Phone,
FROM EMPLOYEE
ORDER BY Department DESC;

The result is:

Department

;
2

3

4

& B
i

8
9

10
&0

1 Tom

156 Part 1

Database Fundamentals

Two or more columns can be used for sorting purposes. To sort the employee names
and departments first in descending value of Department and then within Department by
ascending value of LastName, you specify:

/* **%* SOL-QUERY-CH03-25 *** */

SELECT FirstName, LastName, Phone, Department
FROM EMPLOYEE

ORDER BY Department DESC, LastName ASC;

The result is:

FistMame LastMlame Fhone Department
1 - Jackson 360-287-8610 Production
2 ~Jones. 3602878620 Production
3 Numoto 360-287-8710 Markefing
4 Bandalone 360-285-8210 legal
5 Brown 360-287-8820 InfoSystems
[Mestor NULL InfoSystems.
7 Smith 360-285-8510 Human Resources:
8 Abemathy 360-285-8410 Finance
9 Jackson 360-285-8120 Administration
10 : Jacobs 360-285-8110 Administration
11 Tom Canthers 3602858310 Accourting
12 Heather Jones 360-285-8320 Accourting

SQL Built-in Functions and Calculations

SQL allows you to calculate values based on the data in the tables. You can use arith-
metic formulas, and you can also use SQL built-in functions. SQL includes five built-in
functions: COUNT, SUM, AVG, MAX, and MIN. These functions operate on the re-
sults of a SELECT statement. COUNT works regardless of column data type, but SUM,
AVG, MAX, and MIN operate only on integer, numeric, and other number-oriented
columns.

COUNT and SUM sound similar but are different. COUNT counts the number of
rows in the result, whereas SUM totals the set of values of a numeric column. Thus, the fol-
lowing SQL statement counts the number of rows in the PROJECT table:

/* **%* SQOL-QUERY-CHO03-26 *** */
SELECT COUNT (*)
FROM PROJECT;

The result of this statement is the following relation:

{Mo column name)
1 &5

Chapter 3 Structured Query Language 157

As stated earlier, the result of an SQL SELECT statement is always a relation. If, as is
the case here, the result is a single number, that number is considered to be a relation that
has only a single row and a single column.

Note that the result shown above has no column name. You can assign a column name
to the result by using the AS keyword:

/* *%% SQL-QUERY-CHO03-27 ***% %/
SELECT COUNT (*) AS NumberOfProjects
FROM PROJECT;

Now the resulting number is identified by the column title:

MumberCfProjects
1 -8

Consider the following two SELECT statements:

/* **x* SOL-QUERY-CHO03-28 *** *x/

SELECT COUNT (Department) AS NumberOfDepartments
FROM PROJECT;
and:

/* *%% SQL-QUERY-CHO03-29 **x% %/
SELECT COUNT (DISTINCT Department) AS NumberOfDepartments
FROM PROJECT;

The result of SQL-QUERY-CHO03-28 is the relation:

Mumberlf Departments
1 -8

and the result of SQL-QUERY-CHO03-29 is:

Mumberlf Departments
1

The difference in answers occurs because duplicate rows were eliminated in the count of
the departments in the second SELECT.

158 Part 1

Database Fundamentals

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access does not support the DISTINCT keyword as part of the
COUNT expression, so while the SQL command with COUNT (Department) will
work, the SQL command with COUNT (DISTINCT Department) will fail.

Solution: Use an SQL subquery structure (discussed later in this chapter)
with the DISTINCT keyword in the subquery itself. The following SQL query
works:

/* **x* SOL-QUERY-CHO03-29-Access *** */

SELECT COUNT (*) AS NumberOfDepartments
FROM (SELECT DISTINCT Department
FROM PROJECT) AS DEPT;

Note that this query is a bit different from the other queries using subqueries
we show in this text because the subquery above is in the FROM clause instead
of (as you'll see) the WHERE clause. Basically, this subquery builds a new tem-
porary table named DEPT containing only distinct Department values, and the
query counts the number of those values.

The following is another example of built-in functions:

/* **x* SQOL-QUERY-CHO03-30 *** *x/
SELECT MIN (MaxHours) AS MinimumMaxHours,

MAX (MaxHours) AS MaximumMaxHours,
SUM (MaxHours) AS TotalMaxHours

FROM PROJECT
WHERE ProjectID <= 1200;

The result is:

Minmum MaxHours Madmum MaxHours TotalMaxHours

1 12000 . 145.00 400,00

Standard mathematical calculations can also be done in SQL. For example, suppose

that all employees at Wedgewood Pacific Corporation are paid $18.50 per hour. Given that
each project has a MaxHours value, you might want to calculate a maximum project cost
value for each project that is equal to MaxHours multiplied by the hour wage rate. You can
calculate the needed numbers by using the following query:

/* **x* SOL-QUERY-CHO03-31 *** *x/
SELECT ProjectID, ProjectName, MaxHours,

(18.50 * MaxHours) AS MaxProjectCost

FROM PROJECT;

Chapter 3 Structured Query Language 159

The result of the query, which now shows the maximum project cost for each project, is:

ProjectlD ProjectMName MaxHours MaxProjectCost
111000 2014Q3 Product Plan 13500 2497.5000
2 1100 2014Q3Porfolio Analysis 12000 22200000
3 1200 2014 Q3 Tax Preparation 145.00 2682 5000
4 1300 2014 Q4 Product Plan 15000 2775.0000
5 1400 2014 Q4 Porfolio Analysis 14000 2590.0000

Note that the SQL standard does not allow column names to be mixed with built-in
functions, except in certain uses of the SQL GROUP BY clause, as discussed in the next
section. Thus, the following is not allowed:

[rFkx* SQL-QUERY-CHO3-32 %% */

SELECT MaxHou#s”, SUM (MaxHours)
FROM PROJEET
WHERE ProjectID <="3200;

SQL Server returns the following error message if you attempt to run this query:

Msg 8128, Level 16, State 1, Line 1
Column 'PROJECT.MaxHours' is invalid in the select list because

it is not contained in either an aggregate function or the GROUP
BY clause.

Also, DBMS products vary in the ways in which built-in functions can be used.
Generally, built-in functions cannot be used in WHERE clauses. Thus, a WHERE clause
such as the following is not normally allowed:

/* k& * SQL-QUERY-CHO03-33~%** */
SELECT ProjgctID, MaxHours

FROM PROJECT

WHERE MaxHours < AVG (MaxHours) ;

SQL Server returns the following error message if you attempt to run this query:

M=g 147, Lewel 15, State 1, Line 3

An aggregate may not appear in the WHERE clause unless it is
in a subguery contained in a HAVING clause or a select list,
and the column being aggregeted is an outer reference.

Built-in Functions and Grouping

In SQL, you can use the GROUP BY clause to group rows by common values. This in-
creases the utility of built-in functions because you can apply them to groups of rows. For
example, the following statement counts the number of employees in each department:

/* *x% SQL-QUERY-CHO03-34 ***% */

SELECT Department, Count (*) AS NumberOfEmployees
FROM EMPLOYEE

GROUP BY Department;

160 Part 1

Database Fundamentals

The result is:

Department MNumberCf Employess

PP

2

2
Finance 1
Human Resources 1
InfoSystems 2
Legal 1
Marketing 1
Production 2

(= =R I - TR N S TS R S

The GROUP BY keyword tells the DBMS to sort the table by the named column
and then to apply the built-in function to groups of rows that have the same value for the
named column. When GROUP BY is used, the name of the grouping column and built-in
functions may appear in the SELECT clause. This is the oz/y time that a column name and
a built-in function can appear together.

We can further restrict the results by using the HAVING clause to apply conditions
to the groups that are formed. For example, if you want to consider only groups with more
than two members, you could specify:

/* *x% SQL-QUERY-CHO3-35 **% */

SELECT Department, Count (*) AS NumberOfEmployees
FROM EMPLOYEE

GROUP BY Department

HAVING COUNT (*) > 1;

The result of this SQL statement is:

Department MumberCf Employees
> . o : ..u.._.'...h....i. gm 5
3 InfoSystems 2
4 Production 2

It is possible to add WHERE clauses when using GROUP BY. However, an ambigu-
ity results when this is done. If the WHERE condition is applied before the groups are
formed, we obtain one result. If, however, the WHERE condition is applied after the
groups are formed, we get a different result. To resolve this ambiguity, the SQL standard
specifies that when WHERE and GROUP BY occur together, the WHERE condition will
be applied first. For example, consider the following query:

/* **%* SQL-QUERY-CH03-36 **x */

SELECT Department, Count (*) AS NumberOfEmployees
FROM EMPLOYEE
WHERE EmployeeNumber <= 6

GROUP BY Department
HAVING COUNT (*) > 1;

Chapter 3 Structured Query Language 161

In this expression, first the WHERE clause is applied to select employees with an
EmployeeNumber less than or equal to 6. Then the groups are formed. Finally, the
HAVING condition is applied. The result is:

Department NumberOf Employees

SQL FOR DATA MANIPULATION (DML)—MULTIPLE TABLE QUERIES

The queries considered so far have involved data from a single table. However, at times,
more than one table must be processed to obtain the desired information.

Querying Multiple Tables with Subqueries

For example, suppose we want to know the names of all employees who have worked
more than 50 hours on any single assignment. The names of employees are stored in the
EMPLOYEE table, but the hours they have worked are stored in the ASSIGNMENT
table.

If we knew that employees with EmployeeNumber 8 and 10 have worked more than
50 hours on an assignment (which is true), we could obtain their names with the following
expression:

/* **%* SQL-QUERY-CH03-37 **x */

SELECT FirstName, LastName
FROM EMPLOYEE
WHERE EmployeeNumber IN (8, 10);

The result is:

FirstMame LastMame

.................................

1 | Tom . Jackson
2 Ken MNumoto

But, according to the problem description, we are not given the employee numbers. We
can, however, obtain the appropriate employee numbers with the following query:

/* *%*%x SOL-QUERY-CHQ03-38 **% */

SELECT DISTINCT EmployeeNumber
FROM ASSTIGNMENT
WHERE HoursWorked > 50;

The result is:

162 Part 1

Database Fundamentals

Now, we can combine these two SQL statements by using a subquery, as follows:

/* *%*%x SOL-QUERY-CHQ03-39 *** */

SELECT FirstName, LastName

FROM EMPLOYEE

WHERE EmployeeNumber IN
(SELECT DISTINCT EmployeeNumber
FROM ASSIGNMENT
WHERE HoursWorked > 50) ;

The result of this expression is:

FirstMame LastName
LTaéL. Jackson

These are indeed the names of the employees who have worked more than 50 hours on any
single assignment.

Subqueries can be extended to include three, four, or even more levels. Suppose, for
example, that you need to know the names of employees who have worked more than 40
hours on an assignment sponsored by the accounting department. You can obtain the proj-
ect IDs of projects sponsored by accounting with:

/* *%*%x SOL-QUERY-CHQ03-40 *** */

SELECT ProjectID
FROM PROJECT
WHERE Department = 'Accounting';

The result is:

Project|D
1 i 1200

You can obtain the employee numbers of employees working more than 40 hours on
those projects with:

/* *%*x SQL-QUERY-CHQ3-41 #**% */

SELECT DISTINCT EmployeeNumber
FROM ASSIGNMENT
WHERE HoursWorked > 40
AND ProjectID IN
(SELECT ProjectID
FROM PROJECT

WHERE Department = 'Accounting') ;

Chapter 3 Structured Query Language 163

The result is:

EmployesNumber
1 '

Finally, you can obtain the names of the employees in the preceding SQL statement
with:

/* *x* SQL-QUERY-CHO3-42 *** */

SELECT FirstName, LastName

FROM EMPLOYEE

WHERE EmployeeNumber IN
(SELECT DISTINCT EmployeeNumber
FROM ASSIGNMENT
WHERE HoursWorked > 40

AND ProjectID IN
(SELECT ProjectID
FROM PROJECT
WHERE Department = 'Accounting')) ;

The final result is:

FirstMame LastName

Querying Multiple Tables with Joins

Subqueries are effective for processing multiple tables, as long as the results come from a
single table. If, however, we need to display data from two or more tables, subqueries do
not work. We need to use an SQL join operation instead.

The basic idea of a join is to form a new relation by connecting the contents of two or
more other relations. Consider the following example:

/* *%*%x SOL-QUERY-CHQ03-43 **% */

SELECT FirstName, LastName, HoursWorked
FROM EMPLOYEE, ASSIGNMENT
WHERE EMPLOYEE.EmployeeNumber =

ASSIGNMENT.EmployeeNumber;

The function of this statement is to create a new table having the three columns LastName,
FirstName, and HoursWorked. Those columns are to be taken from the EMPLOYEE and
ASSIGNMENT tables, under the condition that EmployeeNumber in EMPLOYEE (writ-
ten in the format TABLENAME.ColumnName as EMPLOYEE.EmployeeNumber) equals
EmployeeNumber in ASSIGNMENT (written as ASSIGNMENT.EmployeeNumber).
Whenever there is ambiguity about which table the column data are coming from, the

164 Part 1

Database Fundamentals

column name is always preceded with the table name in the format TABLENAME
.ColumnNamze.

This ambiguity about which table the column data are coming from often
happens (as in this case) because the primary key and foreign key column
names are the same, but it can happen in other situations. For example,
both EMPLOYEE and DEPARTMENT have a Phone column, but Phone is
not a primary key or foreign key in either table. If we wanted to list em-
ployees with both their own phone number and their department phone
number, we would have to qualify the field names as EMPLOYEE.Phone
and DEPARTMENT.Phone.

You can think of the join operation working as follows. Start with the first row
in EMPLOYEE. Using the value of EmployeeNumber in this first row (1 for the
data in Figure 3-2(b)), examine the rows in ASSIGNMENT. When you find a row in
ASSIGNMENT where EmployeeNumber is also equal to 1, join FirstName and LastName
of the first row of EMPLOYEE with HoursWorked from the row you just found in
ASSIGNMENT.

For the data in Figure 3-2(c), the first row of ASSIGNMENT has EmployeeNumber
equal to 1, so you join FirstName and LastName from the first row of EMPLOYEE with
HoursWorked from the first row in ASSIGNMENT to form the first row of the join. The

result is:

FirstMame LastMame HoursWordked
EJacd:m 30.06

Now, still using the EmployeeNumber value of 1, look for a second row in
ASSIGNMENT that has EmployeeNumber equal to 1. For our data, the sixth row of
ASSIGNMENT has such a value. So, join FirstName and LastName from the first row of
EMPLOYEE to HoursWorked in the sixth row of ASSIGNMENT to obtain the second
row of the join, as follows:

FirstMame LastMame HousWordied

.................................

| Mary Jacobs 30.00
2 Mary Jacobs 25.00

Continue in this way, looking for matches for the EmployeeNumber value of 1. There
is one more in the 10th row, and you would add the data for that match to obtain the result:

FirstMame LastMame HoursWorked
1 Ma;:.r s T
5 MET s —
3 Mary Jacobs 35.00

Chapter 3 Structured Query Language 165

At this point, no more EmployeeNumber values of 1 appear in the sample data, so now
you move to the second row of EMPLOYEE, obtain the new value of EmployeeNumber
(2), and begin searching for matches for it in the rows of ASSIGNMENT. In this case, the
seventh row has such a match, so you add FirstName, LastName, and HoursWorked to the
result to obtain:

FirstMame LastMame HoursWored
1 Maq.r i T
» Ma}f e =
3 Mary Jacohs 35.00
4 Rosalie Jackson 20.00

You continue until all rows of EMPLOYEE have been examined. The final result is:

FirstMame LastMame HoursWored
Maq.r iz s
Maq,f PR s

Mary Jacohs 35.00

Rosalie Jackson 20.00

Cansthers 45,04

(4= B = TR [TR 5. SR - SO TN R L
g

Tom Cantthers 4000
Tom Canthers 15.00
Heather Jones 10.00
Heather Jones 4000
10 Mary Abemathy 4500
11 Many Pbemathy 27.50
12 | Tom Jackson 80.00
13 SEam Jackson 75.00
14 Ken Mumoto 55.00
15 Ken MNumoto 50.00

Actually, that is the theoretical result. But remember that row order in an SQL query
can be arbitrary. To ensure that you get the above result, you need to add an ORDER BY
clause to the query:

/* **% SQL-QUERY-CHO03-44 **x */

SELECT FirstName, LastName, HoursWorked
FROM EMPLOYEE, ASSIGNMENT
WHERE EMPLOYEE.EmployeeNumber =

ASSIGNMENT.EmployeeNumber
ORDER BY EMPLOYEE.EmployeeNumber, ProjectID;

166 Part 1

Database Fundamentals

The actual result when the original query is run in SQL Server is:

L e

Y AL M e e

The data results are the same, but the row order is definitely different!

A join is just another table, so all the earlier SQL SELECT commands are available
for use. We could, for example, group the rows of the join by employee and sum the hours
they worked. The following is the SQL for such a query:

/* **%* SQL-

SELECT

FROM
WHERE
GROUP BY

QUERY-CHQ03-45 *** */

FirstName, LastName,

SUM (HoursWorked) AS TotalHoursWorked
EMPLOYEE AS E, ASSIGNMENT AS A

E.EmployeeNumber = A.EmployeeNumber
LastName, FirstName;

Note another use for the AS keyword, which is now used to assign aliases to table
names so that we can use these aliases in the WHERE clause. This makes it much easier to
write queries with long table names. The result of this query is:

Chapter 3 Structured Query Language 167

Or we could apply a WHERE clause during the process of creating the join as follows:

/* **%x SQL-QUERY-CHQ03-46 #**% */

SELECT FirstName, LastName, HoursWorked

FROM EMPLOYEE AS E, ASSIGNMENT AS A

WHERE E.EmployeeNumber = A.EmployeeNumber
AND HoursWorked > 50;

The result of this join is:

FirstMame LastMame HoursWorked
1 Tom Jackson 7500
m N 5500
3 Tom Jackson 8000

Now, suppose we want to join PROJECT to EMPLOYEE and ASSIGNMENT to
show the names of the projects that the employees worked on. We can use the same SQL

statement structure as before, except for one complication—now you have to use two
WHERE phrases combined by an AND to join the three tables:

/* *x* SQL-QUERY-CHO03-47 *** */

SELECT ProjectName, FirstName, LastName, HoursWorked
FROM EMPLOYEE AS E, PROJECT AS P, ASSIGNMENT AS A
WHERE E.EmployeeNumber = A.EmployeeNumber

AND P.ProjectID = A.ProjectID

ORDER BY P.ProjectID, A.EmployeeNumber;

The result of this query is:

ProjectMName FirstMame LastMame HoursWorked
1 | 2014Q3 Product Plan Mary Jacobs 30.00
2 2014 Q3 Product Plan Tom Jacksaon 7500
3 2014 3 Product Plan Ken Mumota 5500
4 2014 Q3 Portfolio Analysis Tom Caruthers 40,00
& 2014 Q3 Portfolio Analysis ~ Mary Abemathy 45.00
6 2014 Q3 Tax Preparation Mary Jacobs 2500
Fi 2014 Q3 Tax Preparation Rosalie Jacksaon 20,00
a 2014 Q3 Tax Preparation Tom Canuthers 45.00
5 2014 Q3 Tax Preparation Heather Jones 40.00
10 2014 Q4 Product Plan Many Jacobs 35.00
11 2014 Q4 Product Plan Tom Jackson 20.00
12 2014 Q4 Product Plan Ken Mumeto 50.00
13 2014 Q4 Portfolio Analysis Tom Canthers 15.00
14 2014 Q4 Porffolio Analysis Heather Jones 10.00
15 2014 Q4 Portfolio Analysis Mary Abemathy 2750

168 Part 1

Database Fundamentals

The SQL JOIN ON Syntax

Our SQL join examples so far have used the original, but older, form of the SQL join
syntax. While it can still be used, today most SQL users prefer to use the SQL JOIN
ON syntax. Consider our query example SQL-QUERY-CHO03-43 as modified with an
ORDER BY clause to become SQL-QUERY-CHO03-44. This query uses a join in the
WHERE clause:

/* *x* SQL-QUERY-CHO03-44 *** */

SELECT FirstName, LastName, HoursWorked
FROM EMPLOYEE, ASSIGNMENT
WHERE EMPLOYEE . EmployeeNumber =

ASSIGNMENT.EmployeeNumber
ORDER BY EMPLOYEE.EmployeeNumber, ProjectID;

Using the JOIN ON syntax, SQL-QUERY-CH-44 would be modified as follows to become
SQL-QUERY-CH03-48:

/* *x* SQL-QUERY-CHO03-48 *** */

SELECT FirstName, LastName, HoursWorked
FROM EMPLOYEE JOIN ASSIGNMENT
ON EMPLOYEE . EmployeeNumber =

ASSIGNMENT.EmployeeNumber
ORDER BY EMPLOYEE.EmployeeNumber, ProjectID;

The result of the query, as you would expect, is:

HoursWorced
30.00
25,00
35.00
2000
40.00
45
1500
40.00
10.00
45,00
27.50
Jackson 75,00
Jackson 80.00
MNumota 55.00

O B3] LM b (LS RS

if
]
ik

§8g4d

=
&n

Chapter 3 Structured Query Language 169

Note that the SQL JOIN ON syntax links tables in the FROM clause with the SQL
JOIN keyword instead of a comma, and then moves the join condition that was previous
in the WHERE clause into the FROM clause by use of the SQL ON keyword. This creates
easy to read lines of code that make semantic sense to the reader.

Our first example used only two tables, but we can also use the JOIN ON syntax for

joins of more than two tables. Here is the previous query to combine data for EMPLOYEE,
PROJECT, and ASSIGNMENT rewritten using the JOIN ON style:

/* **%x SQL-QUERY-CHQ03-49 #**% */

SELECT ProjectName, FirstName, LastName, HoursWorked
FROM EMPLOYEE AS E JOIN ASSIGNMENT AS A
ON E.EmployeeNumber = A.EmployeeNumber
JOIN PROJECT AS P
ON A.ProjectID = P.ProjectID

ORDER BY P.ProjectID, A.EmployeeNumber;

Note how the additional table is added into the query by the additional JOIN ON con-
struction. For each new table added to the query, we simply add another JOIN ON phrase.
For our earlier three-table example, the result, as you would expect, is the same as we ob-
tained with the previous query:

ProjectMName FirstMame LastMame HoursWorked
1 | 2014Q3 Product Plan Mary Jacobs 30.00
2 2014 Q3 Product Plan Tom Jacksaon 7500
3 2014 3 Product Plan Ken Mumota 5500
4 2014 Q3 Portfolio Analysis Tom Caruthers 40,00
& 2014 Q3 Portfolio Analysis ~ Mary Abemathy 45.00
6 2014 Q3 Tax Preparation Mary Jacobs 2500
Fi 2014 Q3 Tax Preparation Rosalie Jacksaon 20,00
a 2014 Q3 Tax Preparation Tom Canuthers 45.00
5 2014 Q3 Tax Preparation Heather Jones 40.00
10 2014 Q4 Product Plan Many Jacobs 35.00
11 2014 Q4 Product Plan Tom Jackson 20.00
12 2014 Q4 Product Plan Ken Mumeto 50.00
13 2014 Q4 Portfolio Analysis Tom Canthers 15.00
14 2014 Q4 Porffolio Analysis Heather Jones 10.00
15 2014 Q4 Portfolio Analysis Mary Abemathy 2750

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access supports the JOIN ON syntax only with a keyword specifying a
standard (INNER) or nonstandard (OUTER) JOIN. OUTER joins are discussed
next in the text.

(continued)

170 Part1 Database Fundamentals

Solution: The Microsoft Access JOIN ON queries run when written with the
INNER keyword as:

/% *%%* SOL-QUERY-CHO03-48-AcCcess *x* */
SELECT FirstName, LastName, HoursWorked
FROM EMPLOYEE INNER JOIN ASSIGNMENT

ON EMPLOYEE . EmployeeNumber =
ASSIGNMENT.EmployeeNumber

ORDER BY EMPLOYEE.EmployeeNumber, ProjectID;

Further, Microsoft Access requires that the joins be grouped using parentheses
when three or more tables are joined:

/* *%% SQOL-QUERY-CHO03-40-Access *** */
SELECT ProjectName, FirstName, LastName, HoursWorked
FROM (EMPLOYEE AS E INNER JOIN ASSIGNMENT AS A
ON E.EmployeeNumber = A.EmployeeNumber)
INNER JOIN PROJECT AS P

ON A.ProjectID = P.ProjectID
ORDER BY P.ProjectID, A.EmployeeNumber;

Inner Joins and Outer Joins

Let’s add a new project, the 2014 Q4 Tax Preparation project run by the accounting de-
partment, to the PROJECT table as follows:

/* *%*%* SQL-INSERT-CHO03-05 *** */

INSERT INTO PROJECT
(ProjectName, Department, MaxHours, StartDate)
VALUES ('2014 Q4 Tax Preparation', 'Accounting',
175.00, '1l0-DEC-14"');

To see the updated PROJECT table, we use the query:

/* *%*x SQL-QUERY-CHQ03-50 *** */
SELECT * FROM PROJECT;

The results are:

(= R 1 S

ProjectlDl ProjectName Depatment MaxHours StartDate EndDate
11000 | 2014Q3 Product Plan Marketing 13500 20140510 20140615
oo 2014 Q3 Portfolio Analysis Finance 120.00 20140705 2014-07-25

1200 2014 Q3 Tax Preparation Accourting 145.00 20140810 2014-10-15

1300 2014 Q4 Product Plan Marketing 150.00 20140510 201409-15

1400 2014 Q4 Portfolio Analysis ~ Finance 140,00 20141005 NULL

1500 2014 Q4 Tax Preparstion Accourting 175.00 20141212 NULL

Chapter 3 Structured Query Language 171

Now, with the new project added to PROJECT, we’ll rerun the previous query on
EMPLOYEE, ASSIGNMENT, and PROJECT:

/* *%%* SOL-QUERY-CHO3-51 *** %/
SELECT ProjectName, FirstName, LastName, HoursWorked
FROM EMPLOYEE AS E JOIN ASSIGNMENT AS A
ON E.EmployeeNumber = A.EmployeeNumber
JOIN PROJECT AS P
ON A.ProjectID = P.ProjectID
ORDER BY P.ProjectID, A.EmployeeNumber;

The results are:

ProjectName FistMame LastMame HoursWorked
1 1 2014Q3 Product Plan . Mary Jacobs 30.00
2 2014 Q3 Product Plan Tem Jackson 75,00
3 2014 33 Product Plan Ken Numoto 55.00
4 2014 Q3 Portfolio Analysis Tom Canuthers 40,00
b 2014 Q3 Portfolio Analysis Mary Abemathy 45.00
& 2014 3 Tax Preparation Many Jacobs 2500
7 2014 Q3 Tax Preparation Rosalie Jackson 20,00
g8 2014 Q3 Tax Preparation Tom Canthers 45.00
9 2014 Q3 Tax Preparation Heather Jones 40.00
10 | 20714 Q4 Preduct Plan Mary Jacohs 35,00
1 2014 Q34 Product Plan Tom Jackson 20.00
12 20714 Q4 Product Plan Ken Mumoto 50,00
13 2014 Q4 Porfolic Analysis Tom Cangthers 1500
14 2014 G4 Pordfolio Analysis Heather Jones 10.00
15 2014 Q4 Portfolio Analysis = Marny Abemathy 27.50

The results shown here are correct, but a surprising result occurs. What happened
to the new 2014 Q4 Tax Preparation project? The answer is that it does not appear in the
join results because its ProjectID value of 1500 had no match in the ASSIGNMENT table.
Nothing is wrong with this result; you just need to be aware that unmatched rows do not
appear in the result of a join.The join operation discussed in the previous sections is some-
times referred to as an SQL equijoin or SQL inner join. An inner join only displays data
from the rows that match based on join conditions, and as you saw in the last query in the
previous section, data can be lost (or at least appear to be lost) when you perform an inner
join. In particular, if a row has a value that does not match the WHERE clause condition,
that row will not be included in the join result. The 2014 Q4 Tax Preparation project did
not appear in the previous join because no row in ASSIGNMENT matched its ProjectID
value. This kind of loss is not always desirable, so a special type of join, called an SQL
outer join, was created to avoid it.

Consider the STUDENT and LOCKER tables in Figure 3-17(A), where we have drawn
two tables to highlight the relationships between the rows in each table. The STUDENT
table shows the StudentPK (student number) and StudentName of students at a university.
The LOCKER table shows the LockerPK (locker number) and LockerType (full size or half

172 Part 1 Database Fundamentals
FIGURE 3-17
Types of JOINS
STUDENT LOCKER
StudentPK StudentName LockerFK LockerPK LockerType
1 Adams MNULL
2 Buchanan NULL
3 Carter 10 10 Full
4 Ford 20 20 Full
5 Hoover 30 a0 Half
6 Kennedy 40 40 Full
7 Roosevelt 50 50 Full
8 Truman 60 60 Half
70 Full
80 Full
90 Half

(a) The STUDENT and LOCKER Tables Aligned to Show Row Relationships

Only the rows where StudentPK StudentName LockerFK LockerPK LockerType
LockerFK=LockerPK 3 Carter 10 10 Full
are shown—Note that a Ford 20 20 Full
some StudentPK and 5 Hoover 30 30 Half
some LockerPK 6 Kennedy 40 40 Full
values are notinthe ———— 7 Roosevelt 50 50 Full
results 2 Truman ——> 60 60 Half
(b) INNER JOIN of the STUDENT and LOCKER Tables
StudentPK StudentName LockerFK LockerPK LockerType
All rows from STUDENT 1 Adams NULL NULL NULL
are shown, even where 2 Buchanan NULL NULL NULL
there is no matching 3 Carter 10 10 Full
LockerFK=LockerPK 4 Ford 20 20 Full
value 5 Hoover 30 30 Half
6 Kennedy 40 40 Full
7 Roosevelt 50 50 Full
8 Truman 60 60 Half
(c) LEFT OUTER JOIN of the STUDENT and LOCKER Tables
StudentPK StudentName LockerFK LockerPK LockerType
All rows from 3 Carter 10 10 Full
LOCKER are shown, 4 Ford 20 20 Full
even where there is no 5 Hoover 30 30 Half
matching 6 Kennedy 40 40 Full
LockerFK=LockerPK 7 Roosevelt 50 50 Full
value 3 Truman 60 60 Half
X NULL NULL NULL 70 Full
NULL NULL NULL 30 Full
NULL NULL NULL 30 Half

(d) RIGHT OUTER JOIN of the STUDENT and LOCKER Tables

Chapter 3 Structured Query Language 173

size) of lockers at the recreation center on campus. If we run a join between these two tables
as shown in SQL-QUERY-CHO03-52, we get a table of students who have lockers assigned to
them together with their assigned locker. This result is shown in Figure 3-17(B).

* *%%* EXAMPLE CODE — DO NOT RUN **% */
/* *** SQL-Query-CHO3-52 *** %/

SELECT StudentPK, StudentName, LockerFK,
LockerPK, LockerType
FROM STUDENT INNER JOIN LOCKER

ON STUDENT.LockerFK = LOCKER.LockerPK
ORDER BY StudentPK;

The type of SQL join shown in SQL QUERY-CHO03-52 is an SQL inner join using an
SQL JOIN ON syntax that uses the SQL INNER JOIN syntax.

Now, suppose we want to show all the rows already in the join, but also want to show
any rows (students) in the STUDENT table that are not included in the inner join. This
means that we want to see all students, including those who have not been assigned a locker.
To do this, we use the SQL outer join, which is designed for this very purpose. And because
the table we want is listed first in the query and is thus on the left side of the table listing,
we specifically use an SQL left outer join, which uses the SQL LEFT JOIN syntax. This is
shown in SQL QUERY-CHO03-53, which produces the results shown in Figure 3-17(C).

/* *x% EXAMPLE CODE - DO NOT RUN ***x */
/* **%x SQL-Query-CHQ03-53 #**% */

SELECT StudentPK, StudentName, LockerFK,
LockerPK, LockerType
FROM STUDENT LEFT OUTER JOIN LOCKER

ON STUDENT.LockerFK = LOCKER.LockerPK
ORDER BY StudentPK;

In the results shown in Figure 3-17(C), note that all the rows from the STUDENT table
are now included and that rows that have no match in the LOCKER table are shown with
NULL values. Looking at the output, we can see that the students Adams and Buchanan
have no linked rows in the LOCKER table. This means that Adams and Buchanan have not
been assigned a locker in the recreation center.

If we want to show all the rows already in the join, but now also any rows in the
LOCKER table that are not included in the inner join, we specifically use an SQL right
outer join, which uses the SQL RIGHT JOIN syntax because the table we want is listed
second in the query and is thus on the right side of the table listing. This means that we
want to see all lockers, including those that have not been assigned to a student. This is
shown in SQL QUERY-CHO03-54, which produces the results shown in Figure 3-17(D).

/* *** EXAMPLE CODE - DO NOT RUN *** */
/* *** SQL-Query-CHO3-54 *** %/

SELECT StudentPK, StudentName, LockerFK,
LockerPK, LockerType
FROM STUDENT RIGHT OUTER JOIN LOCKER

ON STUDENT.LockerFK = LOCKER.LockerPK
ORDER BY LockerPK;

In the results shown in Figure 3-17(D),