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Preface

We are a lucky generation for witnessing the microprocessor and Internet revolutions,
the type of technological marvels that mark the start of a new era: the information age.
Just like electricity, railroads, and automobiles, the information technologies have a
profound effect on our way of life and will stay with us for decades and centuries to
come. Thanks to these advances, we have been building complex communication and
computing networks on a global scale. However, it is still difficult today to predict how
this information age will progress in the future or to fully grasp its consequences. We
can hope for a complete understanding perhaps in decades to come, as past history
tells us.

Although we have engineered and built the Internet, the prime example of the
information revolution, our (mathematical) understanding of its underlying systems is
cursory at best, since their complexity is orders of magnitude greater than that of their
predecessors, e.g. the plain telephone network. Each disruptive technology brings its
own set of problems along with enormous opportunities. Just as we are still trying to
solve various issues associated with automobiles, the challenges put forward by the
information and communication networks will be there not only for us but also for the
next generations to address.

An important challenge today is security of complex computing and communication
networks. Our limited understanding of these systems has a very unexpected side-
effect: partial loss of “observability” and “control” of the very systems we build. Who
can claim today full knowledge and control of all the running computing and com-
munication processes on their laptop, corporate network, or country at all times? The
science-fiction literature has always focused on fears of losing control of “intelligent
machines.” It is ironic that very few people imagined losing control of our dumb but
complex and valuable systems to our malicious yet very own fellow human beings.

Security is a challenge stemming not only from the complexity of the systems sur-
rounding us but also from the users’ relative lack of experience with them. Unlike
other complex systems, such as vehicle traffic, ordinary users receive very little train-
ing before obtaining access to extremely powerful technologies. Despite this (or maybe
because of it), users’ expectations of their capabilities are very high. They often expect
everything to function as simply and reliably as, for example, the old telephone net-
work. However, even for advanced users, bringing all aspects of a connected computer
under control is a very time-consuming and costly process. The most diligent efforts
can unfortunately be insufficient when faced with a determined and intelligent attacker.
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These facts when combined with unrealistic expectations often result in significant
disappointment in the general public regarding security.

In spite of its difficulty, securing networked systems is indisputably important as
we enter the information age. The positive productivity benefits of networks clearly
overcome the costs of any potential security problems. Therefore, there is simply no
turning back to old ways. We have to live with and manage the security risks associated
with the new virtual worlds which reflect our old selves in novel ways.

The emerging security challenges are multifaceted ranging from complexity of under-
lying hardware, software, and network interdependencies to human and social factors.
While individuals and organizations are often very good at assessing security risks in
real life, they are quite inexperienced with the ones they encounter on networked sys-
tems, which are very different in complexity and timescale. Although many lessons
from real-world security can be transferred to the network security domain, there is a
clear need for novel and systematic approaches to address the unique issues the latter
brings about. It is widely agreed by now that security of networked systems is not a
pure engineering problem that can be solved by designing better protocols, languages,
or algorithms. It will require educating users and organizations, changing their per-
spectives, and equipping them with better tools for assessing and addressing network
security problems.

Although many aspects of the network security problem are new, it also exhibits con-
straints familiar to us, which we often encounter in real life. Many resources available
to malicious attackers and defending administrators of networks are limited. They vary
from classical resources, such as bandwidth, computing speed and capability, energy,
and manpower, to novel ones such as time, attention span, and mental load. Network
security involves decision making by both attackers and defenders in multiple levels
and timescales using the limited resources available to them. Currently, most of these
decisions are made intuitively and in an ad-hoc manner.

This book, which is the first of its kind, aims to present a theoretical foundation
for making resource allocation decisions that balance available capabilities and per-
ceived security risks in a principled manner. We focus on analytical models based on
game, information, communication, optimization, decision, and control theories that
are applied to diverse security topics. At the same time, connections between theo-
retical models and real-world security problems are highlighted so as to establish the
important feedback loop between theory and practice. Hence, this book should not be
viewed as an authoritative last word on a well-established field but rather as an attempt
to open novel and interesting research directions, hopefully to be adopted and pursued
by a broader community.

Scope and usage

This book is aimed mainly at researchers and graduate students in the field of network
security. While the emphasis is on theoretical approaches and research for decision-
making in security, we believe that it would also be beneficial to practitioners, such as
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system administrators or security officers in industry, who are interested in the latest
theoretical research results and quantitative network security models that build on con-
trol, optimization, decision, and game-theoretic foundations. An additional objective is
the introduction of the network security paradigm as an application area to researchers
well versed in control and game theory.

The book can be adopted as a reference for graduate-level network security courses
that focus on network security in diverse fields such as electrical engineering, com-
puter science and engineering, and management science. A basic overview of the
mathematical background needed to follow the underlying concepts is provided in the
Appendix.

Part I of the book is a very basic introduction to relevant network security concepts.
It also discusses the underlying motivation and the approach adopted, along with three
example scenarios. It is accessible to a general audience.

Part 2 presents security games and illustrates the usage of various game-theoretic
models as a way to quantify the interaction between malicious attackers and defend-
ers of networked systems. Deterministic, stochastic, and limited-information security
games are discussed in order of increasing complexity.

Part 3 focuses on decision making for security and provides example applications
of quantitative models from optimization and control theories to various security prob-
lems. Among the topics presented are “security risk-management,” “optimal allocation
of resources for security,” and social side of security: “usability, trust, and privacy.”
Chapters in this part are not dependent on each other and can be read independently.

Part 4 studies distributed schemes for decentralized malware and attack detection.
First, a distributed machine learning scheme is presented as a nonparametric method.
Subsequently, centralized and decentralized detection schemes are discussed, which
provide a parametric treatment of decentralized malware detection. Hence, this part
builds a bridge between security and statistical (machine) learning.
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Notation

Some of the notational conventions adopted in this book are listed below.

Symbol Description

x vector or scalar as a special case

xi i-th element of vector x

y = [y1, . . . ,yn] row vector y

M matrix

Mi, j entry at the i-th row and j-th column of matrix M

xT , MT transpose of a vector x or matrix M

S set

P A (set of) attacker player(s) in security games

P D (set of) defender player(s) in security games

R set of real numbers

{0,1} set with two elements: 0 and 1

[0,1) right-open line segment {x ∈ R : 0≤ x < 1}
[0,1] closed unit interval {x ∈ R : 0≤ x≤ 1}

f (x), V (x) real valued functions or functionals with argument
x (vector or scalar)

diag(x) diagonal matrix with diagonal entries x

≈ approximately equal

:= definition; term on the left defines the expression
on the right

I identity matrix, I := diag([1, . . . ,1])

‖x‖ , ‖M‖ norm of a vector x or of a matrix M

min, max minimum and maximum operations

inf, sup infimum and supremum operations

NE Nash equilibrium (or Nash equilibria)

FP fictitious play

Please see Appendix A for further information and definitions.





Part I

Introduction





1 Introduction

Chapter overview

1. Network security
– importance and relevance of network security
– challenges of hardware, software, and networking complexity
– multifaceted nature of network security

2. Approaches
– why and how are decision and game theories relevant
– interplay between theory and practice
– detection, decision, and response

3. Motivating examples
– security games
– security risk-management
– optimal malware epidemic response

Chapter summary

Network security is an important, challenging, and multi-dimensional research field.
In its study, theory and practice should function together as parts of a feedback loop.
Game, optimization, and control theories, among others, provide a mathematical foun-
dation to formalize the multitude of decision-making processes in network security. The
analytical approaches and quantitative frameworks presented lead to better alloca-
tion of limited resources and result in more informed responses to security problems
in complex networked systems and organizations.



4 Introduction

1.1 Network security

Networked computing and communication systems are of vital importance to the mod-
ern society simply because the civilization we know today would cease to exist without
them. A good illustration of this fact is provided by the Internet, the epitome of net-
works that has evolved to a global virtual environment and become an indispensable
part of our lives. Nowadays our communication, commerce, and entertainment are all
based on networked systems in one way or another. Once they are disrupted its cost
to society is hard to measure, but enormous, for sure. As an example, the Code Red
worm, which infected about 360,000 servers in 2001, has cost – according to estimates –
hundreds of millions of dollars globally in lost productivity and clean-up of systems
afterwards [115].

The security of computers and networks has become an increasingly important con-
cern as they have grown out of research environments where they fulfilled only specific
duties at the hands of well-trained specialists. Security problems emerged once such
systems entered general public life and started to be used for a multitude of differ-
ent purposes in business, entertainment, and communication. Today, an overwhelming
majority of users are no longer trained professionals who would know the nature and
limitations of these systems. To complicate matters further, there is no shortage of mali-
cious individuals and groups to exploit weaknesses of networked systems and their users
for financial gain or other purposes.

Despite its vital importance and the ongoing research efforts, network security
remains an open problem. This is partly because networked systems are difficult to
observe and control even by their legitimate users and owners due to their complexity
and interconnected nature. A regular user has only limited observational capabilities, for
the user interface is only the tip of the iceberg. A significant number of automated sys-
tem processes run hidden in the background, since it is simply infeasible to expose users
to all of them. Furthermore, many of these processes involve communication with mul-
tiple other computing systems across networks, creating tightly coupled supersystems.
As a simple example, the system clock of a computer is usually controlled by a spe-
cific program that runs in the background and corrects it by connecting to a time server
possibly on the other side of the world, all of which is unknown to most regular users.

The first factor that is responsible for loss of observability and control of networked
systems is complexity. Complexity is due to both hardware and software. The com-
plexity of system and application software has increased significantly as a result of
enormous advances in hardware in the last few decades. The microprocessor revolution
is probably the best example of these advances (Figure 1.1). Thanks to the progress in
microprocessors, the personal computers today are as powerful as the supercomputers
of two decades ago. As a natural consequence, the software running on computers has
become more layered and complex. The widely used Microsoft Windows and Linux
operating systems on personal computers consist of tens of millions of lines of code
(Figure 1.2).

A related issue contributing to the complexity is the unintentional flaws (bugs) in
software. In current software architectures, there is always a mismatch between the
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Figure 1.1 Intel processors with Nehalem architecture have multicores and between 500 and
1000 million transistors. Many of them are sold for home and small office usage. (Image
courtesy of Intel Corporation.)

Figure 1.2 Linux 2.6 operating system kernel, visually depicted here, is widely used on a variety
of devices and has more than 10 million source lines of code.
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intentions of the developer and the actual behavior of the program, which exhibits itself
as software bugs. Unfortunately, this is another permanently open problem due to the
fundamental miscommunication between humans, who are by nature imprecise, and
computers, which are based on rigid mathematical principles.

The second factor that contributes toward making networked systems difficult to
observe and control is their interconnected nature. The distributed architecture of
contemporary networks along with the complexity of the underlying computing and
communication environments prevent systems administrators and organizations from
having absolute control over their networks. Network boundaries are often vague and
administrators cannot exercise control outside their local domain, which leaves net-
worked systems vulnerable to distant security attacks due to global connectivity. This
issue is often half-jokingly captured by the phrase “the most secure computer is the one
unplugged from the network” (Figure 1.3).

The difficulty of observing and exercising control on networked systems can be illus-
trated by the following everyday example. Consider a laptop computer connected to
the Internet. Although the connection makes the laptop a part of the most complex sys-
tems ever built, it still shares a simple property of the simplest man-made tools: it can
be used for “good” purposes as well as exploited for “bad” ones. A malicious attacker
can potentially run a malicious program (malware) on this laptop without permission of
its owner by exploiting various vulnerabilities. While the laptop is physically next to its
rightful owner, it can thus be partially controlled by the attacker who may be on the other
side of the world. Furthermore, the owner may not even know or observe the security
problem, allowing the attacker to maintain partial control over an extended time period.

In addition to limited observability and control of the underlying complex systems,
another defining aspect of network security is its social dimension or so-called human
factors. Network security is not a problem that can be solved once and for all by engi-
neering a solution. It should be seen as a problem that needs to be managed, similarly
to the security of a city. In other words, there is no such thing as a fully secured network,
just as there is no such thing as a city without crime. Networks are man-made systems.

Figure 1.3 “The most secure computer is the one unplugged from the network.” The US
Department of Defense C2 rating of Windows NT 3.5 only applied to a computer unplugged
from the network!
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Since the system engineers are human beings who make mistakes, future networks will
have vulnerabilities in some form, no matter how carefully they are designed. As long
as there are people who would benefit from exploiting vulnerabilities for selfish reasons,
there will always be security threats and attacks.

Given the dynamic nature of network security, attackers cannot be stopped by purely
static measures such as classical firewalls. When targeting the vulnerabilities of net-
works, attackers update their strategies from day to day. Hence, it is crucial for the
defense side to also take dynamic measures and address security both in the design
phase and afterwards. Many existing defense mechanisms already adopt such a dynamic
approach and offer various security services. Automatic (patching) updates of antivirus
programs, browsers, and operating systems are well-known examples. In a sense, net-
work security is like a “game” played between attackers and defenders on the board of
complex networks using attacks and defensive measures as pieces (Figure 1.4).

The complexity, multi-dimensionality, and importance of network security makes it
hard to describe with a single definition. The multifaceted nature of network security
puts one in mind of an ancient story about blind men and an elephant. According to
the tale, a group of blind men, who have never heard of elephants, want to learn about
them by observing an elephant that comes to their village for the first time. Once they
approach the elephant, each blind man touches a different part of the animal and tells
others his opinion: the first man touches the body and says “elephant is like a wall,”
the second one touching the tusk says “elephant is like a spear,” the third one holds the
trunk and says “elephant is like a snake,” and so on . . .

The field of network security can be compared to the elephant in the story (Figure 1.5)
and security researchers to the blind men trying to understand it. For researchers in the
field of cryptography, security is all about cryptographic algorithms and hash functions.

Figure 1.4 Network security is like a “game” played between attackers and defenders.
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Figure 1.5 Elephant as metaphor for network security, from the ancient tale of blind men and an
elephant.

Those who are in information security focus mainly on privacy, watermarking, and dig-
ital rights management systems. For researchers with an interest in hardware, security
is about tamper-resistant architectures and trusted computing. Network security encom-
passes all these aspects and more. Researchers, unlike the blind men, are of course
aware of this fact regardless of their specific focus. However, a wide field such as this
calls for specialization and different perspectives.

This book also adopts a specific view of network security and introduces a decision
and game-theoretic approach. The upcoming chapters study incentive mechanisms,
analytical models, and resource allocation aspects of network security in terms of detec-
tion, decision making, and response. But first, the next section presents the adopted
decision and game-theoretic approach, which is subsequently illustrated with examples
in Section 1.3.

1.2 The approach

There is a fundamental relationship between security and decision making. Whether
it is about buying a simple lock versus installing an expensive alarm system in a house,
deploying a security suite on a personal computer, or applying a patch to a production
server, decisions on allocating limited resources while balancing risks are at the cen-
ter of network security. Making such decisions in a principled way instead of relying
on heuristics provides numerous advantages and simply corresponds to following the
celebrated scientific method.
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It is, therefore, not surprising to observe theoretical models at the system level play
an increasing role in network security as the field matures from its earlier qualitative and
empirical nature. The increasing number of books, journal articles, and conference pub-
lications that study the problem analytically is clear evidence of the emerging interest
in this approach to network security. The mathematical abstraction provided by quan-
titative models is useful for generalization of problems, combining the existing ad-hoc
schemes under a single umbrella, and opening doors to novel solutions. Hence, the ana-
lytical approach provides a unique advantage over heuristic schemes that are problem
specific. One of the main objectives of this book is to develop a deeper understanding
of existing and future network security problems from a decision and game-theoretic
perspective.

Securing information, controlling access to systems, developing protocols, discover-
ing vulnerabilities, and detecting attacks are among the well-known topics of network
security. In practice, all these involve decision making at multiple levels. Security deci-
sions allocate limited resources, balance perceived risks, and are influenced by the
underlying incentive mechanisms. Although they play an important role in everyday
security, they are often overlooked in security research and are usually made in a very
heuristic manner.

The human brain is undoubtedly a wonderful decision-making engine which current
technology has not been able even remotely to replicate. A security expert can make
very balanced decisions taking into account multiple factors and anticipating future
developments. Admittedly, none of the techniques discussed in this book can come
close to the performance of such an expert who relies on “intuition” which combines
enormous pattern recognition capabilities with years of experience.

However, relying on human expertise in this manner has its own set of shortcom-
ings. The first one is scale. Given the complexity and the number of networked systems
around us, a security expert cannot oversee all systems all the time. A second issue is the
availability of good experts. The number of experts is very limited due to the long train-
ing period required. In many cases, an organization has to work with available people
of limited knowledge in less than ideal circumstances. A third problem is the timescale.
Computers operate on a much faster timescale than humans and some security problems
(e.g. malware epidemics) require an immediate response of the order of seconds. The
human brain, despite its wonderful properties, operates on a much slower timescale.

It is hence unavoidable to have to rely on computer assistance in some form to
address network security problems. Consider, for example, an organization that employs
multiple experts to secure its networked systems. Given the scale and availability lim-
itations, the organization has to naturally direct the attention of its experts primarily
to the most important systems. This strategic resource allocation decision is often
made by the management again relying on human expertise, but manifests itself elec-
tronically through scheduling systems or spreadsheets. In addition, the organization
has to equip its security experts with a variety of computational tools to effectively
observe and respond to security problems in a timely manner. Thus, computer assis-
tance is essential in network security regardless of the degree of reliance on human
expertise.
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Both computerized support systems and security managers implicitly make numer-
ous strategic decisions in terms of resource allocation, detection, or response. Decisions
such as a log file viewer not showing some fields due to limited screen estate or a
manager ordering a security administrator to patch a certain server have nontrivial con-
sequences for overall security. In most of the existing security structures, such decisions
are made in a heuristic manner. Therefore, the issues with human experts discussed
above directly apply.

An alternative to implicit and heuristic decision making is the analytical approach
based on mathematical models. For example, a manager can pose the problem of allo-
cation of limited security experts within the organization as one of optimization where
the available resources (e.g. in terms of man-hours) and degree of importance of spe-
cific subsystems (e.g. in terms of monetary loss when attacked or down) are quantified
explicitly. Then, the problem can be solved automatically with computer assistance on
a large scale. Another example is a packet-filtering system to decide on whether or not
to drop a packet, based on a preset threshold. Unlike the previous case, this decision is
made within milliseconds and repeated millions of times. How to (dynamically) deter-
mine the threshold value used as decision criterion can be investigated analytically and
solved within an optimal and robust control framework based on given preferences.

The quantitative approach described has multiple advantages over the ad-hoc ones.
First, the knowledge of the decision maker is expressed through mathematical models
in a transparent and durable manner. Second, the decision making can now be made
on a large scale. Third, it can be made as fast as numerical solution methods allow, in
many cases of the order of milliseconds. While some security decisions, such as ones on
investments or policies, are made over days or months, there are many security decisions
made on much smaller timescales, as in the packet-filtering example mentioned. Finally,
the decision-making process captured by the model can now be checked experimentally
and improved upon, providing a way of aggregating the knowledge of multiple experts.

Developing a sound decision and game-theoretic framework for security requires
building a feedback loop between high-quality theoretical research and real-life prob-
lems experienced by practitioners on a daily basis, as depicted in Figure 1.6. Actual
problems lead to deep questions for fundamental research whereas theoretical advances
provide novel algorithms and solutions. It has been repeatedly observed in many fields
of science that weakening this feedback loop is detrimental to both theoretical and
practical efforts. Therefore, the intention here is to bridge the gap between theory and
practice as much as possible through simulations and proof-of-concept demonstrations
addressing existing and emerging network security topics.

A variety of well-established mathematical theories and tools can be utilized to
model, analyze, and address network security problems. Adopting a defensive approach,
many resource allocation aspects of protecting a networked system against malicious
attacks can be formulated as optimization problems. Especially convex optimization
problems are well understood and a plethora of tools exists to solve them efficiently.
When the underlying system dynamics play a significant role in security, control theory
provides a large field of expertise for extending static optimization formulations to con-
trol of dynamic systems. Fundamental concepts such as observability and controllability
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Figure 1.6 Feedback loop between theory and practice is of fundamental importance for the
success of both.

relevant to security have been mathematically formalized and utilized in control theory
for decades.

Beyond single-person decision making, game theory provides a rich set of mathe-
matical tools and models for investigating multi-person strategic decision-making where
the players (decision makers) compete for limited and shared resources. As a special
case, security games study the interaction between malicious attackers and defenders.
Security games and their solutions are used as a basis for formal decision-making and
algorithm development as well as to predict attacker behavior. Security games vary from
simple deterministic ones to more complex stochastic and limited information formula-
tions and are applicable to security problems in a variety of areas ranging from intrusion
detection to social, wireless, and vehicular networks.

Despite the broad scope and extent of available mathematical models in optimization,
control, and game theories, one should not consider these fields as static. There are many
open problems in each of them and they are themselves progressing. For example, how
to incorporate information structures and formalize decision making under information
limitations in single- and multiple-person dynamic problems are active research areas
of great relevance to security applications. The models in this book should be inter-
preted merely as first steps toward developing realistic frameworks for decision making
in security. Hence, establishing mature and relevant models is one of the important
research challenges in the decision-theoretic approach to security.

Organization of the book

Based on the presented approach, the remainder of the book is organized into three parts
encompassing detection, analysis, and optimized response as illustrated in Figure 1.7.
Decision and game-theoretic schemes utilizing optimization, control, and machine
learning are applied to a variety of network security topics. Principles for scalable,
robust, effective security architectures for autonomous operation as well as computer
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Figure 1.7 Organization of the book.

assistance systems are investigated. In addition to system- and network-level prob-
lems, organizational issues and human factors are also discussed, e.g. in the context
of risk-management and usability.

Analysis, modeling, and decision making based on game theory are discussed in Part
II “Security games.” Security games provide a quantitative framework for modeling
the interaction between attackers and defenders. They are used as a basis for formal
decision-making and algorithm development as well as to predict attacker behavior.
Stochastic or Markov security games model the unknown or uncontrollable parameters
in security problems and capture the dynamic nature of the underlying game parameters,
interdependencies, and external factors. The Bayesian game approach and fictitious play
analyze the many cases where the players, attackers, and especially defenders do not
have access to each others payoff functions and adjust their strategies based on estimates
of opponent’s type or observations of opponent actions. The security game framework
is applicable to security problems in a variety of areas ranging from intrusion detection
to social, wireless, and vehicular networks.

Part III “Decision making for network security” presents an optimization and
control-theoretic approach for analysis of attack prevention and response, IT risk-
management, and usability in security. The decision and control-theoretic approach
quantifies implicit costs and formalizes decision-making processes for resource allo-
cation processes in network security. The introduced approach is illustrated with three
example scenarios where various optimal and robust control methods are utilized for
placement of network filters, when responding to malware epidemics, and dynamic
filtering of suspicious packets.

Similarly, security risk assessment and response are posed as dynamic resource
allocation problems. First, a quantitative risk-management framework based on prob-
abilistic evolution of risk and Markov decision processes and then a noncooperative
game model for long-term security investments of interdependent organizations are pre-
sented. Subsequently, a cooperative game is studied to develop a better understanding
of coalition formation and operation between divisions of large-scale organizations.

Social aspects of security and human factors are also captured using decision and
game-theoretic models. The complex relationship between security and usability is
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discussed and two example schemes, one for improving usability of security alert dis-
semination and one for effective administrator response, are investigated. Finally, the
community effects in evolution of trust to digital identities in online environments are
studied using a specific noncooperative trust game.

Part IV presents a variety of approaches ranging from distributed machine learning
to decentralized detection to address the problem of “Security attack and intrusion
detection.” Detecting the presence of security threats and compromises is a challenging
task, since the underlying paradigms often do not fit into existing parametric detection
models used in signal processing. Furthermore, normal usage data as well as attack
information for the purpose of training detection algorithms are often limited or not
available. The threat analysis as well as monitoring have to be done in near real time
and should not bring excessive overheads in terms of resource usage. To counter these
challenges, decentralized and distributed machine-learning schemes are studied. Recent
advances in networking, multiprocessor systems, and multicore processors make par-
allel and distributed approaches particularly suitable for network security owing to
their efficiency, scalability, and robustness. Moreover, monitoring and data collection
processes are inherently distributed in networked systems. Hence, distributed machine
learning and detection schemes are especially relevant in the network security context.
In decentralized network structures, where a number of sensors report directly to a
fusion center, the sensors receive measurements related to a security event and then send
summaries of their observations to the fusion center. Optimization of the quantization
rules at the sensors and the fusion rule at the fusion center are also studied.

1.3 Motivating examples

The decision and game-theoretic approach to security presented in this book is illus-
trated with three specific examples. Each of these motivating examples summarizes a
specific model and application area which will be further analyzed in depth later in the
book in its respective chapters.

1.3.1 Security games

Security games provide an analytical framework for modeling the interaction between
malicious attackers, who aim to compromise networks, and owners or administrators
defending them. The “game” is played on complex and interconnected systems, where
attacks exploiting vulnerabilities as well as defensive countermeasures constitute its
moves. The strategic struggle over the control of the network and the associated inter-
action between attackers and defenders is formalized using the rich mathematical basis
provided by the field of game theory.

The underlying idea behind the game-theoretic models in security is the allocation of
limited available resources from both players’ perspectives. If the attacker and defend-
ers had access to unlimited resources (e.g. time, computing power, bandwidth), then the
solutions to these games would be trivial and the contribution of such a formalization
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would be limited. In reality, however, both attackers and defenders have to act strategi-
cally and make numerous decisions when allocating their respective resources. Security
games allow the players to develop their own strategies in a principled manner based on
formal quantitative frameworks.

A security game can be defined as having four components: the players, the set of pos-
sible actions for each player, the outcome of each player interaction (action–reaction),
and information structures in the game. In a two-player noncooperative security game,
one player is the attacker who abstracts one or multiple people with malicious intent to
compromise the defended system. Although different malicious individuals may have
varying objectives, defining a single metaphorical “attacker” player simplifies the anal-
ysis at the first iteration. The other player represents system administrators and security
officers protecting a network who usually share a common goal.

Consider the following example security game, which provides basic insights to secu-
rity decision making and the interaction between attackers and defenders in the context
of intrusion detection. A network is monitored by an intrusion detection system and tar-
geted by malicious attackers. In the simplest case, the action set of the attacker consists
of “attack” and “not attacking.” Similarly, the action set of the defender includes “inten-
sified monitoring” and “default response,” i.e. no major defensive action (Figure 1.8). It
is reasonable to assume no order of play between players, yet if there is one, it can be
easily captured within the described model.

For each action and corresponding reaction, there is an outcome in terms of costs
and benefits for the players. If the players have an estimate on these outcomes, they
can adjust their strategies accordingly and compute best-responses. At the intersection
of the best-responses lies the Nash equilibrium (NE) solution, where no player has any
incentive to deviate from the solution as it would result in a worse outcome. Hence, NE
provides a powerful solution concept for security games as is the case in other applica-
tions of game theory. If the defender adopts an NE strategy, it does not matter whether
the attacker is rational, since any deviation from the NE solution will decrease the cost of
the defender and benefit of the attacker. Therefore, when properly implemented by the
members of the organization or by security systems, NE solutions represent worst-case
defense strategies against competent attackers.

The outcome of the defined game depends on factors such as the defender’s gain for
detecting the attack, the costs of a false-alarm and missing an attack, and the detection

Figure 1.8 Simple security game.
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penalty for the attacker. Missing an attack is associated with a cost for the defense,
while false-alarms cost nothing to the attacker. Naturally, these cost factors directly
affect the NE solution of the game. The probability of the attacker targeting the network
at the NE decreases proportionally with the false-alarm cost, while the defender has
extensive resources. This naturally discourages attacks. The probability of the inten-
sified monitoring is affected by the attacker’s gain from a successful intrusion. If the
potential benefit of the attack significantly outweighs the detection penalty, then the
defender is inclined to monitor with increased frequency.

The players of security games often do not have access to each other’s payoff func-
tions. Then, they adjust their strategies based on estimates of the opponent’s type or
observations of opponent actions using various learning schemes. These observations
may not be accurate due to imperfect “communication channels” that connect the play-
ers, e.g. sensors with detection errors in the case of intrusion detection games. Security
games such as the one discussed above as well as stochastic and limited information
security games are presented in Part 2, specifically Chapters 3, 4, and 5.

1.3.2 Security risk-management

Today, networked systems have become an integral and indispensable part of daily busi-
ness. Hence, system failures and security compromises have direct consequences in
multiple dimensions for organizations. In some cases, network downtime translates to
millions of dollars lost per second, in others stolen customer data may turn into a public-
relation nightmare. Organizations and enterprises are becoming increasingly aware of
emerging IT and security risks and are learning how to manage them with the help of
security risk-management, a young and vibrant field with many research challenges and
opportunities.

Early IT and security risk-management research has been mostly empirical and
qualitative in nature. The situation is rapidly changing as the field is enriched by
quantitative models and approaches. Analytical frameworks formalize risk-management
processes and provide a foundation for computer-assisted decision-making capabilities.
Hence, they not only improve scalability and efficiency of solutions but also increase
transparency and manageability.

As an example analytical risk model, the probabilistic risk-management based on
graph-theoretic concepts provides a unified quantitative framework for investigation of
the interdependence between various business units, the potential impact of various vul-
nerabilities or threats, and the risk implications of relationships between people. These
entities are represented by the nodes of a graph that also quantifies their interdepen-
dencies with edges between them. Thus, the probabilistic risk framework is used to
model how risk cascades and gradually spreads (diffuses) in an organization. In order to
explore how business units, security vulnerabilities, and people affect and relate to each
other with respect to risks, an approach based on “diffusion processes” over a graph is
utilized.

In this graph-theoretic model, the risks are represented in relative terms through rela-
tive risk probability vectors which evolve according to the linear (Markovian) diffusion
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process over the graph. By adjusting the diffusion parameters of the model, it is pos-
sible to explore the entire spectrum between initial relative risk probabilities and the
final ones after the diffusion process stabilizes. The relative risk probability vector can
then be used to rank the nodes with respect to their immediate as well as cascaded
risks.

The model is applicable to a variety of scenarios with diverse decision makers, fac-
tors, and timescales. For example, if an employee in an enterprise fails to perform
a server maintenance function such as applying a security patch, this may result in
a compromise of the server by a malicious attacker. The attacker may then disable
some check functions which may lead to potential failures of other employees to per-
form further maintenance functions. Thus, the risks cascade to other business units and
processes.

Subsequent to the risk assessment phase, the probabilistic risk model can be used
for taking appropriate action to perform risk mitigation and control. More specifi-
cally, the question of how to control the risk-diffusion process over time is addressed
in order to achieve a more favorable risk distribution across the assets of an organi-
zation. The control actions available to the decision maker (e.g. risk manager) range
from policies and rules to allocation of security resources or updating system configu-
ration. These actions change the dependencies in the organization (between the nodes
in the graph), and hence directly affect the evolution of the relative risk probability
vectors.

Continuing with the previous example, patching a server decreases the weight
between a virus threat node and the server node in the graph model. This in turn results
in a different risk probability vector and risk ranking after the risk diffuses through the
organization graph. If a strategic server is patched, then it may prevent service failures
and decrease potential losses. The analytical model helps by identifying the right server
based on the collected information on organizational and systematic interdependencies.

Stopping potential risks at their source is clearly a good strategy and one may ask,
why not take such actions for any perceived risk? The answer lies in the hidden and open
costs of each risk control action as well as limited aggregate resources. Risk managers
have to “manage risks” by balancing available resources with potential costs all the
time. Analytical frameworks such as the one discussed can facilitate risk-management
by providing principled, scalable, and transparent methods.

The graph theoretic model mentioned above is only one specific analytical frame-
work for balancing risks and limited available resources. A detailed analysis along with
numerical examples as well as additional aspects such as security investment strategies,
cooperation between organizational divisions, and incentive mechanisms are presented
in Chapter 6.

1.3.3 Optimal malware epidemic response

The malware attacks to computer networks are growing more sophisticated and coor-
dinated as indicated by the increasing number of botnets. Self-spreading attacks such
as worm epidemics or botnets are costly not only because of the damage they cause
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but also because of the challenge of preventing and removing them. Malware attacks
often exploit the inherent difficulty of differentiating legitimate from illegitimate net-
work use, network security resource constraints, and other vulnerabilities. When such
a malware epidemic infects a network, a timely and efficient response is of crucial
importance.

Administrators responding to a malware epidemic usually have limited resources in
terms of manpower and time. While the infected hosts (servers or computers) are costly
for a network, removal rates are constrained and system update itself has a nonzero
cost. For example, productions systems must be tested extensively to ensure that they
will function well after a patch has been applied. Thus, the administrators have to make
multiple resource allocation decisions on priority and schedule.

Classical epidemic models have been successfully applied to model the spread of
computer malware epidemics. In these models, differential equations describe the rate
of change in the number of infected hosts, which is proportional to the multiplication of
currently infected and not yet infected host numbers. Such dynamic epidemic models
provide a basis for optimization of patching response strategies to a worm epidemic
within a quantitative cost–benefit framework.

A general optimal and robust control framework based on feedback control methods
for dynamic malware removal is presented. Optimal control theory allows the costs of
infected hosts and the effort required to patch them to be explicitly specified. The result-
ing quadratic cost function is used in conjunction with the dynamic epidemic model
differential equations to derive the optimal malware removal strategies.

In addition, H∞-optimal control theory can be utilized owing to the challenging
nature of detecting malware, i.e. expected inaccuracies in detection. This justifies the
need for a robust response solution capable of capturing model inaccuracies and noisy
measurements that have a non-negligible impact on performance. Hence, H∞-optimal
control with its focus on worst-case performance is directly applicable to the problem
domain.

Consider a network with multiple partially infected subnetworks. Depending on the
value of each subnetwork and the cost of removal actions, a feedback controller based
on the current number of infected hosts can be derived using optimal control theory.
Even in its approximate linear form, where individual patching rates are proportional to
infected hosts, such a controller naturally outperforms an arbitrary one. The H∞-optimal
control theory likewise results in a linear feedback controller, albeit with a different
parameter that is computed by taking into account modeling errors and observation
noise.

The practical implementation of both dynamic controllers is rather straightforward.
Once the model parameters are identified through domain knowledge or observations,
both the optimal or H∞-optimal feedback controllers’ respective feedback parameters
can be computed offline. Then, the malware removal rates are obtained by multiplying
parameters with the number of infected hosts. If needed, the parameters can be updated
periodically in certain time intervals.

In addition to the malware removal problem above, Chapter 7 presents optimal and
robust control frameworks for similar dynamic resource allocation problems in security
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such as the placement of malware filters and dynamic filtering of packets. In each
case, the analytical frameworks provide the basis for scalable and quantitative security
algorithms.

1.4 Discussion and further reading

Due to its multifaceted and interdisciplinary nature, it is difficult to cite a single source
summarizing all of the issues in network security. There fortunately exist multiple books
by various distinguished researchers providing a stimulating introduction to the subject
that may serve as a starting point [23, 50, 161]. The entire text of reference [50] as well
as essays in the book [161] are also available online (see reference [160] for more on
the latter).

The challenging nature of network security stems paradoxically from the three big
achievements of the last century: the Internet (networking and communication revolu-
tion), the integrated circuits (microprocessor revolution), and the software revolution.
The enormous advances in these fields have given birth to very complex and inter-
dependent systems that are not only difficult to control but also impossible to fully
observe or monitor. The problem of network security is difficult to appreciate without at
least a cursory knowledge of these three revolutions that have changed the (technology)
world.

The approach adopted here is based on optimization, control, and game theories,
which have a long and successful history. Due to their fundamental nature, they have
been applied over decades to a vast variety of scientific areas ranging from economics
and engineering to social and life sciences. Utilizing many results from these three
fields, this book comfortably stands on a deep and solid mathematical foundation. The
books [35, 38] in (distributed) optimization, [134] in control, and [31] in game theory,
respectively, are well known in engineering and may serve as a starting point for the
interested reader.

Although decision, control, and game theories have been applied to networking prob-
lems for more than two decades, the introduction of these frameworks and methods to
the area of network security is very recent and still in progress. A useful collection
of articles specifically on applications of game theory to networking has been pub-
lished as part of the GameNets conferences and GameComm workshops (e.g. [20, 28])
as well as in various journals including reference [104]. Additional venues publish-
ing relevant studies include the Workshop on the Economics of Information Security
(WEIS) and the recently started Conference on Decision and Game Theory for Security
(GameSec).

Given this background, the main premise of this book can be better appreciated. The
previous research efforts, which have resulted in successful formalization of various
decision-making processes in networking, also open doors to a better understanding
of network security. Hence, along with reference [50], this book is the first to present
a foundation for future network security research that adopts a decision, control, and
game-theoretic approach.
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The ancient story “Blind men and an elephant” mentioned in this chapter originates
from India but has been adopted by many cultures in Asia and Middle East. The story is
used in general – as here – to indicate that reality may be viewed differently depending
upon one’s perspective and that there may be some truth in what someone says. It is
certainly a good lesson that has to be kept in mind given the narrow specialization in
many fields of science and the need for more interdisciplinary research.



2 Network security concepts

Chapter overview

1. Networks and security threats
– a brief overview of networks and the World Wide Web
– security vulnerabilities and the ways to exploit them

2. Attackers, defenders, and their motives
– who are the attackers and what are their objectives
– who are the defenders and how are they motivated

3. Defense mechanisms
– firewalls, intrusion detection, antimalware methods
– survivability, cryptography

4. Security tradeoffs and risk-management
– tradeoffs: usability, accessibility, overhead, and economics
– security risk-management

Chapter summary

Network security is a wide field with multiple dimensions. This chapter provides a brief
overview of basic network security concepts, security tradeoffs, and risk-management
from a decision and game-theoretic perspective.
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2.1 Networks and security threats

2.1.1 Networks and the World Wide Web

A (computer) network is simply defined as a group of interconnected computing devices
which agree on a set of common communication protocols. Along with the micropro-
cessor revolution, the creation of networks permeating all segments of modern life is
arguably among the biggest accomplishments of engineering. There exists already a
great variety of networks in terms of scale, connection methods, and functions. How-
ever, networks continue to evolve and diversify with unabating speed. The devices, or
nodes, on the network can also be heterogeneous and may vary from small sensor motes
to smartphones, laptops, desktops, and servers.

The Internet, as a network of networks that is unique in its scale and global reach,
illustrates the above-mentioned diversity and heterogeneity. The set of protocols con-
necting the devices to each other on the Internet is called Internet protocols, and includes
IP (Internet protocol), TCP (transfer control protocol), UDP (user datagram proto-
col), and HTTP (hypertext transfer protocol). Compatible versions of these protocols
have to be installed on each device that connects to the Internet in order to establish
communication with others.

Networks can be classified based on their features such as scale, connection method,
functional relationship of nodes, and access control. A brief overview of networks
based on these features is provided in Table 2.1. A detailed discussion of networks,
and the underlying technologies and protocols, would easily fill an entire book. There
are already many good books which present the topic at various levels and depth. We
refer to [171] as a classical one.

The applications of and on networks are even more diverse than their types. The
main goal of networks can be succinctly stated as “moving bits from here to there.”
However, in a digital world where these bits represent all kinds of information and
data (documents, multimedia, software, etc.), the various uses of networked systems are
exponentially growing. Consequently, an increasing number of software applications
are connected to a network through a variety of protocols including the widely adopted

Table 2.1 Types of network

Feature Examples
Scale (small to large) Personal area network (PAN)

Local area network (LAN)
Wide area network (WAN), the Internet

Connection method Wired (optical networks and Ethernet),
wireless (GSM, 802.xx)

Functional relationship Client–server, peer-to-peer, hybrid

Access control Intranet, virtual private network (VPN)
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Internet protocols. This leads to a very complex coupled system that exhibits security
vulnerabilities due to flaws in both software applications and the implementation of
protocols.

Networks are today ubiquitous and already constitute an indispensable part of mod-
ern life. Thanks to recent developments in wireless technologies, especially around
the set of protocols IEEE 802.11x also known as Wi-Fi, many people have wireless
networks deployed in their homes. Businesses rely on Ethernet-based wired networks
for their intranets in addition to wireless LANs. Mobile (cellular) phones utilizing the
Global System for Mobile communications (GSM) and other wireless technologies
have reached and are actively used by more than half the world’s population. Although
currently used mostly for voice communications, smartphones and their evolution indi-
cate the coming age of wireless networked personal mobile computing devices. On a
smaller scale, sensor networks, near field communication (NFC), and radio-frequency
identification (RFID) tags make objects other than computing devices parts of networks
and open the door to ubiquitous (pervasive) computing and possibly an Internet of
things.

As one of the most popular applications on the Internet, the World Wide Web
(www), also known simply as the Web, started as a system of interlinked static doc-
uments. Today, thanks to the reach of the underlying Internet and the emergence of the
Web 2.0 paradigm, it has become an interconnected computing platform enabling com-
munication, business, and entertainment on a global scale. Using the Web browser as
a standard thin client for server applications constitutes the main idea behind Web 2.0.
This model has various advantages in terms of software maintenance and updates. It
changes, at the same time, the nature of the Web and turns it into a much more interac-
tive and social platform. Consequently, novel Web 2.0 concepts such as social networks,
publishing schemes (online media, blogs), and communication schemes (twitter) have
emerged and enjoy widespread popularity.

The Web 2.0 applications bring their own vulnerabilities, which naturally have
implications for network security. The underlying asynchronous JavaScript and XML
(AJAX) technology powering these applications follow (approximately) a classical
client–server programming and communication approach. The client program is hosted
and run on the client-side usually in a very accessible format. The server-side applica-
tion interface accessed by the client is automatically exposed to the entire network. Both
of these issues necessitate a very careful design of both the client and server interfaces
with security concerns taken into account. In practice, however, these AJAX security
issues with significant potential implications are ignored due to either economic reasons
or lack of expertise.

Another application related to Web 2.0 is cloud computing, which is a vague concept
referring to Internet-based information technology (IT) services and resources. It can
be described as a way to increase IT capacity or to add IT-related capabilities on the fly
without investing in new infrastructure, personnel, or software. The term is also used in
connection with any subscription-based or pay-per-use service that extends IT’s existing
capabilities in real time over the Internet. The recently emerging paradigm is built upon
the rapidly advancing networking technologies and commonly agreed protocols as well
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as the interactive platform aspect of Web 2.0. In addition to advantages such as building
whole businesses on “virtual infrastructure” on the cloud, outsourcing and exposing
computing and networking infrastructure in this way also brings a new set of security
risks for organizations.

2.1.2 Security threats

Attack types
Attacks in the context of network security can be defined as attempts to compromise the
confidentiality, integrity, and availability, or to obtain (partial) control of a computer or
communication network. Security threats, which can be defined similarly, are as diverse
as the uses of networks. This book adopts the convention where the term “attack” refers
to a realization of a “threat” by a malicious party.

Security threats and attacks can be classified equally well in a variety of ways. The
following classification scheme summarized in Table 2.2 is adopted in this book with-
out loss of generality [26]. Each class of attacks will be discussed next individually
along with examples.

The attacks compromising confidentiality of a system aim for unauthorized access to
confidential information of a person or organization. The simplest form of this is infor-
mation collection such as learning the IP address and operating system of a server, or
the architecture of an intranet. Preliminary information acquired on the system is often
used by attackers to launch more significant attacks and access valuable data such as
corporate secrets or customer data. Such losses can be very expensive for businesses
both monetarily and in terms of reputation. Attackers may use the information collected
about individuals for identity theft, namely impersonating people without their knowl-
edge to commit fraud. A common example is theft by stealing credit card and address
information on the Internet.

Attacks threatening the integrity of databases and systems are among the most
common. They could be as simple as defacing a website or as harmful as implanting
backdoors to a system for later use. For example, attackers may compromise multiple
nodes of a network without the knowledge of their owners through malicious software

Table 2.2 Types of Security Threat and Attack

Security service Sample threats and attacks
Confidentiality Information theft, unauthorized access,

identity theft, stealing corporate secrets

Integrity Altering websites, compromising data,
implanting backdoors and Trojans

Availability Denial-of-service (DoS) attacks

Control (Partial) control of system,
e.g. account and root access
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or malware such as worms, viruses, and Trojans. Then, they use the installed malware
on these computers as a botnet for sending spam (unwanted email messages) or to steal
information.

Other attacks compromise availability and control of a network. Botnets created
through malware are often used to launch distributed denial-of-service (DoS) attacks
in coordination, which affect the availability of online services. DoS attacks can be
motivated, for example, by commercial purposes, e.g. secretly sponsored by a company
who profits from service disruptions of the other competitor. Malware is also used to
gain partial control of larger systems such as servers. Attackers then use existing or
secret accounts on those systems to control system behavior, which constitutes one of
the most dangerous security threats.

Vulnerabilities and attack methods
Security attacks use various methods to exploit the vulnerabilities of networked systems
and their users. Since they are closely related to each other, attack methods can be clas-
sified by the underlying vulnerabilities: software, physical (hardware), communication,
and psychological/social.

Physical and hardware-based methods: It is ironic how millions’ worth of network
security measures can be circumvented simply by attackers impersonating computer
technicians and carrying away sensitive hardware, or by an employee of a government
organization forgetting disks with valuable information in a train on the way home, or
by a disgruntled employee stealing the entire customer database of a multinational com-
pany stored on a simple CD. Unsurprisingly, the encryption of sensitive information on
hard disks and other storage media is strongly recommended uniformly by all security
experts.

Another interesting class of hardware-based attacks exploit physical access to read or
patch system memory. It has been shown that even secret keys of complex encryption
schemes can be estimated using such methods. As documented in the security literature,
they can even be used to retrieve the keys of encrypted hard disks in some cases. There-
fore, the physical security of a device or network provides the foundation for the rest of
the security measures.

Software-based methods: Software-based attack methods exploiting vulnerabilities
in software are the most diverse and common of all. This is partly because the inter-
connected nature of networks, especially the Internet, increases the number of potential
attackers by orders of magnitude when compared to physical attacks which require the
physical presence of the attacker. Another important reason is the presence of software
flaws or bugs.

Software flaws leading to security vulnerabilities are caused by two factors: one is the
sheer scale and complexity of today’s software applications, made possible by Moore’s
law.1 At any given moment, the number of lines of software running or installed on a

1 Moore’s law by Gordon E. Moore, co-founder of Intel, states roughly that the number of transistors, i.e.
computing power, that can be placed inexpensively on an integrated circuit doubles approximately every
two years.
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personal laptop

1970s
supercomputer
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Figure 2.1 An ordinary personal laptop today is as powerful and complex as a supercomputer
from the 1970s. However, it is not in the hands of specialists but members of the general public
with limited knowledge of computers.

for i in group:
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Figure 2.2 There is a fundamental miscommunication between human beings, who are naturally
imprecise, and mathematically precise computing systems.

networked device is of the order of tens to hundreds of millions (Figure 1.2). More-
over, an ordinary personal laptop today is at least as powerful as a supercomputer from
the 1970s (Figure 2.1). This, combined with the network effects, results in enormous
complexity. The other factor leading to software-based security vulnerabilities is the
miscommunication of intended application behavior between human developers, who
are naturally vague, and computing systems, which operate under strict mathematical
precision (Figure 2.2). Given the software development practices of today and economic
pressures, the number of software flaws on networks that can be exploited by attackers
can be frighteningly high.

Until this point, we have used the terms virus, worm, and Trojan without distinc-
tion under the umbrella of malware (malicious software). Although these are dynamic
concepts evolving rapidly, there are accepted differences between these terms. A com-
puter virus is a malicious software that hides in an existing program on the system
and copies itself without permission or knowledge of the owner. Worms are similar to
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Table 2.3 A phishing email

REQUEST FOR URGENT BUSINESS RELATIONSHIP

I am making this contact with you on behalf of my colleagues after a satisfactory information we
gathered from an international business directory.

My colleagues and I are members of the Contractor Review Committee of the Nambutu National
Petroleum Corporation (NNPC). I have been mandated by my colleagues to look for a
trustworthy company/individual into whose account some funds is to be transferred. The funds
in question is $25.5M (twenty-five million, five hundred thousand US dollars) now in a
dedicated account with the Central Bank of Nambutu (CBN). The above funds arose from the
over-invoicing of some supplies and oil drilling works which have been executed and concluded.
The fund is therefore free to be transferred overseas.

The underlisted shall be required from you immediately by fax:- the beneficiary’s name and
confidential telephone and fax numbers, the full name and address of company/beneficiary.
All necessary particulars of the bank account where you wish the contract sum to be transferred
(account number, bank address, the telephone, fax and telex numbers of the bank).

Immediately we receive the requested information from you, we shall put up an application for
fund & transfer to the appropriate ministries and departments in favor of the beneficiary (you or
your company).

Please, we implore you to treat this deal with utmost confidentiality. As civil servants, we would
not want any exposure. Do not go through the international telephone operator when lines are
busy. Always dial direct.

Thanks for your anticipated co-operation.
Best regards,
XXX

viruses with the distinction being that they are stand-alone programs and can spread
using the network. On the other hand Trojans are not self-spreading. They are defined
as innocent-looking programs which secretly execute malicious functions. Other less
dangerous but annoying software categories include spyware, which collects personal
information without consent, and adware, which automatically displays advertisements.

Communication-based methods: The man-in-the-middle attack is one of the best
examples of this category. This attack is an active eavesdropping scheme where the
attacker intercepts and manipulates the communication between two or more parties
without their knowledge. The victims believe that they are talking to each other in a
secure way while the entire communication is controlled by the attacker. Since most
of the real-life methods used in assessing identities are not available on the Internet,
such attacks can be launched easily and with great success. Against this class of attacks,
cryptographic measures such as public key infrastructure and mutual authentication can
be used as defensive measures.

Psychological and social engineering methods: Social engineering methods rely
on, so to say, the oldest tricks in the criminal’s book: manipulation through decep-
tion. Arguably the most famous of such methods is phishing, which is defined as the
fraudulent process of acquiring sensitive (personal) information through various means
of deception. The deception is done using carefully crafted emails (see Table 2.3 for
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an example), fake websites, or combinations of both. In all cases, the target users are
deceived into thinking that the email or website is authentic. Then, they are manipulated
to reveal sensitive information about themselves, e.g. by filling out a fake form with
bank account details. Alternatively, such email messages may claim to have images
of popular people but contain malware attachments. A classical example from the
year 2001 was the “Kournikova” email, which installed a worm instead of showing
a picture of the famous tennis player “Anna Kournikova” when the user clicked the
attachment.

Phishing and social engineering attacks are very common and are expected to remain
so as they exploit fundamental human weaknesses. The difficulty of assessing identities
on the Web helps attackers to craft elaborate schemes while anonymity on the Inter-
net often protects them from prosecution. Furthermore, the general public knows little
about network security and is not capable of assessing risks on the Internet. All these
factors bring to light the need for more user education and usability as part of network
security.

2.2 Attackers, defenders, and their motives

2.2.1 Attackers

The term attacker is used in this book to personalize and abstract people with mali-
cious intent who try to compromise confidentiality, integrity, availability, or control of a
computer network without its owner’s consent or knowledge. People with very different
backgrounds and motivations fall under this umbrella. One possible classification [165]
is presented in Table 2.4.

In the early days of networks and the Internet, the attacker scene was dominated
by “gray hat” hackers, who are skilled and often asocial individuals motivated by
curiosity and fame. The so-called script kiddies, semiskilled juveniles imitating hackers
for fame using self-developed tools, and crackers, who remove copy protection mostly

Table 2.4 Attacker types

Actor Description
Script kiddie Often young, no sophisticated skills,

motivated by fame

“Black hat” hacker Semi-professional, criminal intent,
sophisticated attack tools and programs

Cracker Modifies software to remove protection

Malicious user Inside organization, criminal intent

Malicious sysadmin Control of network, criminal intent,
potentially significant damage
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from games, have also been prevalent. As the Internet evolved to a more commercial
medium, however, the attacker profiles shifted and “black hat” hackers with criminal
motivations have started to dominate. Today, the once romantic image of the hacker
has been replaced by one that has ties to organized crime, blackmails individuals and
financial organizations, and steals money from bank accounts.

Another important class of attacker are malicious users and system admins2

inside an organization. Since users often have unrestricted access to networks and
systems, they can potentially create great damage, e.g. by stealing corporate secrets
or customer data. A malicious system admin can even hold a whole city hostage.
A disgruntled computer engineer in 2008 locked out everyone but himself from San
Francisco’s new multimillion-dollar computer network, which stores city government
records such as officials’ emails, city payroll files, and confidential law enforcement
documents.

While attackers to network security share some common points with petty criminals,
there are also fundamental differences. First, the majority of attacks require a certain
level of sophistication and skill, which can be acquired only through (formal) educa-
tion. This makes network security attacks more a “white collar” crime with almost
no violence. Second, the environment in which these attackers operate, i.e. networks
and the Internet, can be described as a “virtual world” rather than the real one. This
virtual environment provides unique advantages to the attackers such as anonymity
of disguise due to the difficulty of assessing identities (on the Internet) and a global
reach.

2.2.2 Defenders

Ideally, any individual using a networked system should be aware of security issues and
be able to take defensive actions. In reality, however, the task of securing networks and
systems falls squarely on the shoulders of system administrators. Considering that
they are usually overloaded and underappreciated, it is almost a wonder that today’s
networks are as secure as they are. System administrators are often not only responsible
for configuring and monitoring the networks against attacks but also take an active role
in enforcing formal and informal security policies and educating the users on possible
vulnerabilities.

One of the main problems with network security from the defense perspective is lack
of motivation, which partly stems from the difficulty of quantifying the value added by
network security. Large organizations have started to realize the importance of network
security only very recently after the networks have become an integral part of their core
business. However, there is still a lot of confusion about how to assess and quantify net-
work security. This lack of quantification naturally affects the decision-making process
regarding security investments. Hence, attitudes towards security seem to go back and

2 “System admin” or “sysadmin” are often used abbreviations for system administrator.
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forth between “we are doomed if we don’t invest big time in security” and “no need to
worry too much, it all seems fine,” depending on the economic situation.

Another reason behind the lack of motivation is misalignment of incentives. People
affected by security breaches, people responsible for management, people selling secu-
rity services, security researchers, and people actually implementing security measures
could all be different with misaligned incentives. The management usually has an incen-
tive to cover up security breaches (as a short-term approach) while security companies
and many researchers exaggerate the risks for their own benefit such as increasing
security product sales or receiving research funding. There is an even greater discon-
nect between people suffering security breaches, e.g. customers of a bank, and system
administrators, who are at the front of defenses but at a quite low level in organizational
hierarchy: they simply do not know or care about each other. This makes network
security a complex social and management problem in addition to being a scientific one.

The lack of motivation may lead to a “security theater” that is easier and cheaper
than actually securing a system. Unless used in the right dosage for positive psycho-
logical effect (see “In praise of security theater” in reference [160]), security theater
results in a waste of resources and leads to a false sense of security. In many cases, it
is used as a tool to cover fraudulent behavior or to escape security related responsibil-
ities. For example, a company management declaring a new set of security measures
without backing them up with real investments demoralizes system administrators by
overloading them and risks a big disappointment if a real attack creates publicly known
damage.

Despite existing challenges, there are some recent positive developments for net-
work security defense. First, there is increased awareness of network security in
governments, businesses, development community, researchers, and the general public.
This awareness improves security investments and educational efforts. Second, security
is ever-increasingly perceived as an important feature, which creates demand for secure
networks and systems. Consequently, a number of security companies have emerged
providing security services to both individuals and organizations. Third, emerging
security services, by their nature, support dynamic prevention and response improv-
ing defenses. Hence, automatic patching and updating of operating systems, antivirus
programs, and firewalls have become commonplace. Finally, security research is
expanding beyond its original community. Security related decision-making processes
are increasingly studied and formalized using interdisciplinary models and approaches.

2.3 Defense mechanisms

Given the importance of network security and the existing vulnerabilities, a variety of
defense mechanisms have been developed to secure networks. Major categories encom-
passing widely deployed solutions include firewalls, antivirus software, and intrusion
detection systems.
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Firewalls inspect network traffic passing through them and filter suspicious pack-
ets, usually based on a rule-set analyzing their properties. By regulating the incoming
and outgoing traffic, firewalls maintain separated trust zones in and between networks.
While simple firewall variants use basic packet properties such as source/destination
address and port number, more sophisticated ones investigate packet types and even
content for filtering decisions. Firewalls can be implemented in software or on dedicated
hardware.

Intrusion detection and prevention systems (IDPSs) aim to detect and prevent
attacks directed at networked systems. They consist of sensors which observe secu-
rity events, a console to communicate with system admins, and a decision engine to
generate alerts or take responsive actions. IDPSs can be network based, monitoring net-
work traffic, or host based, to monitor operating system behavior, or application based,
to monitor individual applications for signs of intrusions. While passive IDPS variants,
also known as intrusion detection systems (IDSs), only generate alerts the active ver-
sions react to detected attacks by, for example, reconfiguring the system or filtering
malicious packets and malware. An IDPS can be implemented in software or dedicated
hardware and deployed in combination with firewalls. A detailed discussion on IDPSs
is provided in Section 9.1.1.

Antivirus software is a widely adopted security solution that identifies and removes
all kinds of malware including viruses on a computer. Such software scans storage
medium and memory for signs of malware in regular intervals and removes them. Since
the detection process involves recognition of malware characteristics (signatures) and
these change with each version (generation) of malware, the signature database the
antivirus software often relies on needs to be updated regularly. This makes antivirus
software one of the earliest examples of security services.

All of the discussed defense systems incorporate some type of detection mecha-
nism, which can be classified into two groups: signature based and anomaly based.
Signature-based detection is a widely used method to check monitored events (e.g.
packets on the network) against a known list of security attack signatures. This approach
has the advantage of enjoying a relatively small false-alarm rate and ease of imple-
mentation. The disadvantages are the need to maintain and update the attack signature
database, and the restriction to detection of only the known attacks documented in the
database. The second is the anomaly detection, where changes in the patterns of nom-
inal usage or behavior of the system are detected as an indicator for attacks. Although
this approach increases the probability of detecting undocumented new attacks, it is dif-
ficult to implement, and often has a higher false-alarm rate. Both of these methods are
further discussed in Section 9.1.1.

As defense mechanisms evolve and become more complex, they increasingly rely
on theoretical models. The fields of machine learning and pattern recognition play
an important role in providing the underlying scientific basis for various attack detec-
tion mechanisms used in all defense systems. Advanced classification and clustering
techniques are utilized to differentiate increasingly sophisticated attacks from normal
behavior. Similarly, game theory and control theory are emerging as candidates to pro-
vide a basis for analyzing and developing formal decision-making schemes in network
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security. They address issues such as where to allocate limited defense resources or how
to configure filtering schemes in an optimal way. In addition, some of the well-known
notions from control theory such as “observability” of a system are directly applicable
in the monitoring and detection context.

One branch of science that has a special place in network security is cryptography.
Cryptography can be defined as the practice and study of hiding information. It pro-
vides a basis for crucial security services between the sender and receiver of a message
such as

• confidentiality: ensuring that the message content is kept secret except to the
intended receiver;

• integrity: assuring the receiver that the received message has not been altered;
• authentication: the process of proving one’s identity;
• nonrepudiation: ensuring that the sender has really sent the message.

Cryptographic algorithms can be classified into

• secret key cryptography (classical cryptography), where a single secret key is used
for both encryption and decryption;

• public key cryptography, where one key is used for encryption and another for
decryption;

• hash functions, which compute a fixed-size bit string, the hash value, from given
data such that a change in the data almost certainly changes the hash value. Hence,
they ensure integrity.

While cryptography provides a foundation for network security, it can also be a double-
edged sword. Attackers can use it for their own benefit and encrypt malware as well
as attack traffic. Since current firewalls and IDSs cannot detect malware in encrypted
traffic, use of cryptographic methods by attackers may render many existing defense
mechanisms useless.

Cryptography can also be characterized as a topic that has many inherent asym-
metries. Encryption usually takes more time than decryption. The basic cryptographic
primitives rely on one-directional functions such as modular arithmetic or factorization
of primes which are easy to compute in one direction and very difficult in the other.
Creating an encryption scheme is much easier than checking whether it is indeed secure
or not.

A perspective different from those discussed above is provided by the concept of
survivability, defined as “the capability of a system to fulfill its mission, in a timely
manner, in the presence of attacks, failures, or accidents” [61, 62, 89]. Hence, instead
of focusing on the prevention and detection of attacks, survivability aims to increase
resilience or robustness of the system despite the existence of attacks. Since in many
cases full control of a network is not possible, this realistic approach is very valuable
and acts like an insurance when other defenses fail. Simple methods such as mirror-
ing services in off-location servers and regular backups may prove to be invaluable to
network owners when faced with a surprise attack or failure.
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2.4 Security tradeoffs and risk-management

2.4.1 Security tradeoffs

There are several fundamental tradeoffs in designing a network security system as
summarized in Table 2.5. Whether it is a simple mechanical door-lock protecting a
house or a firewall, a basic tradeoff is the one between security risk and ease of use. In
many cases, additional security mechanisms bring a usability overhead, hence making
the system less convenient for its users. A real-life example is keeping a frequently used
door locked against intruders versus leaving it unlocked as a security hole. Similarly,
users of computer networks want to access data easily and instantly while expecting
the sensitive data to be protected from unauthorized access. Achieving security requires
sacrificing some convenience, since it requires deployment of authentication and secu-
rity mechanisms between the user and sensitive data. It is important to strike a balance
between these requirements in order to motivate compliance of the users to security
policies (Figure 2.3).

Accessibility is another factor that needs to be balanced in network security.
In this context, accessibility describes the degree to which a network (service) is

Table 2.5 Basic security tradeoffs

Tradeoff Security versus
Usability Difficulty of use and mental overhead

Accessibility Access restrictions based on location or role

Overhead Costs on system and network resources

Economics Monetary and manpower costs

Your network
is now secure!

Figure 2.3 Security systems should not forsake usability and accessibility.
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accessible to as many people as possible. The famous Metcalfe’s law states that “the
value of a network is proportional to the square of the number of its users.” How-
ever, securing a network often involves segmentation of the network into trust zones
through access control and filtering schemes, inherently decreasing the value of the
network.

As a common example, “a user can send email to anyone” means at the same time
that “anyone can send an email to that user.” This medium of almost instantaneous data
communication makes email a killer application on the Internet, yet the unrestricted
accessibility has a downside as reminded to all email users by spam (unsolicited and
unwanted bulk emails abusing email systems) every day. The spam problem illustrates
some of the characteristics of accessibility tradeoffs in network security: nine out of
ten emails are spam today, which indicates that one end of the tradeoff spectrum is not
pleasant. On the other hand, whitelists, social network messaging, or instant messaging
all have limited value by Metcalfe’s law as an inherent disadvantage. Hence, email spam
is a good example of a network security problem that needs to be managed rather than
one that can be solved once and for all.

Another important tradeoff is the overhead caused by security systems in terms
of system and economic resources. Any defense mechanism, whether an antivirus
software, firewall, or IDS, uses network and system resources such as bandwidth, mem-
ory, and CPU cycles. Furthermore, even if they are open source and free, they still
require system administrator attention for maintenance and operation. The economic
aspects of security play an important role in the decision making of individuals and
organizations and affect the resulting security level significantly [74].

In addition to generic ones, there are many specific tradeoffs that need to be taken
into account during the operation of defense systems. For example, a basic performance
criterion for an IDS is the false-alarm rate. There exists a tradeoff between reduction
in the false-alarm rate by decreasing the system sensitivity and increase in the rate of
undetected intrusions (Figure 2.4). Clearly, on either extreme the IDS becomes totally
ineffective. Therefore, the IDS should satisfy some upper and lower bounds on the false-
alarm rate and undetected intrusions according to the specifications of the deployed
network.

missed
attacks false alarms

low highdetection sensitivity

0

1

Rate

Figure 2.4 An example tradeoff in network intrusion detection.
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Execution of
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Figure 2.5 The cycle of security risk-management.

2.4.2 Security risk-management

Security risk-management usually involves the identification of vulnerabilities,
assessment of potential risks, creating a risk-management plan, and implementation of
prevention or protection measures (Figure 2.5). While risk-management is well estab-
lished in some fields such as finance, it is relatively young in the context of network
security. Most of the current risk-management approaches focus more on organizational
and management aspects of network security rather than technological ones. However,
the main goal is the same: defending the network against attacks. It is also interesting to
note that security risk-management reinforces the point of view that network security is
a problem to be managed rather than solved once and for all through pure engineering.
Chapter 6 provides a detailed discussion on the topic.

When assessing security risks, it is important to be aware of the limits of risk mod-
els. In finance, a recent theory called Black swan studies large-impact, hard-to-predict,
and rare events (i.e. black swans) beyond the realm of “normal” expectations [170].
Rare but high-impact security events may also look like a black swan if the models used
in risk assessment are limited and take into account only past experiences within an
organization. For example, a disgruntled employee stealing and selling millions of cus-
tomer records of a multinational company is clearly a rare event and may be classified
as a “black swan.” One way to counter such rare events is by not relying solely on past
experiences but simulating virtual “what if” scenarios to assess unusual and unexpected
security risks.

2.5 Discussion and further reading

This chapter, which contains a rudimentary summary of various security concepts,
shows the breadth of the network security field. Unsurprisingly, there are multiple books
presenting the subject from different perspectives. While reference [23] provides an
excellent introductory coverage of security concepts, reference [161] focuses more on
real-life lessons. Reference [25] presents intrusion detection systems (earlier version
available online [26]). The recent work [50] adopts a game-theoretic and analytical
approach to the security of wireless networks. There are also numerous practical net-
work security books on specific architectures, systems, and protocols that discuss best
practices and daily guidelines.

Although not discussed in detail in this work, cryptography is one of the main
foundations of network security. A very useful historical perspective on cryptography
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can be found in reference [166]. The reference book [110], which is available online,
contains a detailed and easy-to-access overview of cryptography. While topics such as
key management in sensor networks is a popular research topic today, new directions
such as quantum cryptography are increasingly commanding more attention.

Classical textbooks for a general overview of communication and computer networks
include references [37, 93, 140, 171]. There has been an explosion of activity in the area
of networking during the last decade from optical technologies and cognitive radio at
the physical and networking layers to social networks and various Web technologies
(e.g. AJAX, HTML 5) at the application layer. We will discuss topics such as social
networks, vehicular, and wireless networks in the upcoming chapters within the context
of network security and will refer to respective publications.
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3 Deterministic security games

Chapter overview

1. Definitions and game model
– components of a game: players, actions, outcomes, information

2. Intrusion detection games
– formal decision-making when facing attacks
– matrix game formulation
– games with dynamic information structures

3. Sensitivity analysis
– the effect of game parameters on the results

4. Modeling malicious behavior in social networks
– modeling incentives for disruption and cooperation
– interaction between collaborative and malicious players

5. Security games for vehicular networks
– prioritization of assets and defensive actions
– numerical analysis using a realistic dataset

6. Security games in wireless networks
– random and multiple access channels

7. Revocation games

Chapter summary

Security games provide a quantitative framework for modeling the interaction between
attackers and defenders. Security games and their equilibrium solutions are used as
a basis for formal decision-making and algorithm development as well as to predict
attacker behavior. The presented analytical foundation is applicable to security prob-
lems in a variety of areas ranging from intrusion detection to social, wireless, and
vehicular networks.
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Table 3.1 Components of a security game

Component Description
Players Attacker and defender

Action space Set of attacks or defensive measures

Outcome Cost and benefit to players for each
action–reaction or game branch

Information structures Players fully or partially observe
each other’s actions

3.1 Security game model

Network security is a strategic game played between malicious attackers who aim
to compromise networks, and owners or administrators defending them. The game is
played on complex and interconnected systems, where attacks exploiting vulnerabilities
and defensive countermeasures constitute its moves. This metaphorical “game” over the
control of the network and the associated interaction between attackers and defenders
can be formally analyzed using the rich mathematical basis provided by the field of
game theory. We refer to Appendix A.2 for a brief overview of noncooperative game
theory.

A game-theoretic framework for defensive decision-making has a distinct advantage
over optimization as it explicitly captures the effects of the attacker behavior in the
model, in addition to those of the defensive actions. Plain optimization formulations,
on the other hand, focus only on the optimization of defensive resources without taking
attackers into account. Security games with their inherent multiplayer nature not only
provide a basis for defensive algorithm development but can also be used to predict
attacker behavior. Nonetheless, the security games discussed here adopt first a more
defense-oriented point of view and focus more on defense than attacker strategies.

A security game can be defined as having four components, as summarized in
Table 3.1: the players, the set of possible actions for each player, the outcome of each
player interaction (action–reaction), and information structures in the game. This chap-
ter focuses mainly on two-player noncooperative security games. One player is the
attacker, which abstracts one or multiple people with malicious intent to compromise
the defended system. Although different malicious individuals may have varying objec-
tives, defining a single metaphorical “attacker” player simplifies the analysis at the first
iteration. Moreover, this abstraction is often justified as the defenders only have vague
(limited) information on the profile of attackers. In the case of additional information,
multiple games can be defined against individual attacker types and combined within a
Bayesian game. Such formulations will be discussed in detail in Chapter 5. The system
administrators and security officers protecting a network are also represented by a sin-
gle abstract player, a defender, in the game due to the fact that these individuals usually
share a common goal and information set.
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The action spaces of attackers and defenders are the sets of possible attacks and
defensive countermeasures, respectively. The attacks often exploit vulnerabilities in the
networks and use the complexity and connectivity to their advantage. The specific secu-
rity games in this chapter abstract each attack as a single action even though many of
them consist of a multi-stage process such as reconnaissance (e.g. collecting informa-
tion about a network by scanning), preparatory actions (e.g. obtaining access to the
system by exploiting a vulnerability), and the main attack of achieving a specific goal.
Similarly, the defensive actions are modeled as a set of single “actions.” They may vary
from simply monitoring the network or systems and setting alarms to taking (automated)
measures to thwart the attacks through reconfiguration or patching.

Based on the properties of action spaces, the security game may be classified
as finite or infinite. If the set of actions is modeled as discrete choices such as
{scan,shell access} and {monitor, patch}, then this is a finite security game. On the
other hand, if the set of actions are continuous, e.g. when each attack or defensive
action is associated with a continuous intensity value, then the game is infinite. Another
important distinction is the one between actions and strategies. A strategy is a decision
rule whose outcome is an action. For example, “if a scan is detected, monitor that sub-
network more intensely” is a strategy (decision rule) where the action (control) is the
intensity of monitoring of a subnetwork in the system. This distinction disappears in
static, one-shot games where action and strategy are synonymous.

The outcome of a security game is quantified by the cost (payoff) values for each
possible action–reaction combination of the players. The actions of the attacker and
defender are mapped to a specific cost (payoff) value, representing the gain or loss of
each player for each branch of the game after it is played. In certain two-player finite
games, these mappings may be represented by a matrix for each player. If the loss of
one player is exactly the same as the gain of the other for each and every branch of the
game, then the game is said to be zero-sum. Otherwise, it is a nonzero-sum game. In the
finite static case, a zero-sum game is often described by a single game matrix and called
simply a matrix game. Similarly, a nonzero-sum finite two-player game is called a bi-
matrix game. In a matrix security game each row and column corresponds to a specific
action of the attacker and defender, respectively. Then, each matrix entry represents the
cost and gain of the attacker and defender for their respective actions.

In security games, the attacker and defender often cannot fully observe each other’s
moves and the evolution of the underlying system. Furthermore, each player has only
limited information on the opponent’s specific objectives. Hence, a security game is
more analogous to the strategy board games of Risk or Stratego rather than chess. These
information limitations can be formally modeled through various means including
(Bayesian) games with chance moves, information sets, learning schemes, or fuzzy
games. This chapter focuses on full information security games as a starting point.
Chapter 5 provides a detailed treatment of various limited information security games.

Nash equilibrium (NE) provides a powerful solution concept for security games
as is the case in other applications of game theory. At NE, a player cannot improve
his outcome by altering his decision unilaterally while others play the NE strategy. In
a security game, the NE solution provides insights to expected attacker behavior by
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mapping attacker preferences to an attack strategy under a given set of circumstances.
Likewise, the NE strategy of the defender can be used as a guideline on how to allocate
limited defense resources when facing an attacker. In zero-sum games, the NE corre-
sponds to saddle-point equilibrium (SPE), and hence in this case the two will be used
interchangeably.

Rationality of players is an important underlying assumption of the class of secu-
rity games considered here. However, individuals often do not act rationally in real life,
partly due to limitations on observations and available information. Despite this, secu-
rity games provide organizations – within the boundaries of the models – with rational
guidelines for defensive strategies and principles for algorithms that can also be imple-
mented in (semi)automated security systems. In a zero-sum setting, if the defender
adopts an NE strategy, it does not matter whether the attacker is rational, since any
deviation from the NE solution will decrease the cost of the defender and benefit of the
attacker. Therefore, when properly implemented by the members of the organization or
by security systems, NE (equivalently, SPE) solutions (in zero-sum games) represent
the defense strategies against competent attackers in the worst case.

Definitions and conventions

The security games in this chapter and in the remainder of the book adopt the following
definitions and conventions. The players of a static (bi)matrix security game are denoted
by Player A or P A for attackers and Player D or P D for defenders. The finite action
spaces are the set of attacks

AA := {a1, . . . ,aNA}
and the set of defensive measures

AD := {d1, . . . ,dND}.
The outcome of the game is captured by the NA×ND game matrices GA and GD for
the attacker (row player) and defender (column player), respectively. The entries in the
matrices GA and GD represent the costs for players which they minimize. In the case of
a zero-sum security game, i.e. when GA =−GD, the matrix

G := GD =−GA

is said to be the game matrix. In this convention, P A (attackers, row player) maximizes
its payoff while P D (defender, column player) minimizes its cost based on the entries
of the game matrix.

If a security game admits an NE solution in pure strategies, then it is denoted with a
superscript star (e.g. a∗1 ∈ AA).

Define

pA := [p1, . . . , pNA ]

as a probability distribution on the attack (action) set AA and

qD := [q1, . . . ,qND ]
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as a probability distribution on the defense (action) set AD such that 0 ≤ pi,qi ≤ 1 ∀i
and ∑i pi = ∑i qi = 1. Then, an NE solution in mixed strategies is denoted by the pair
of probability distributions (p∗,q∗). It is a well-known fact that every (bi)matrix game
admits an NE solution in mixed strategies [31]. Furthermore, the pair

(vA∗,vD∗) = (p∗GAq∗T , p∗GDq∗T )

is the NE outcome of the security game for P A and P D, respectively. Here, [.]T denotes
the transpose of a vector or a matrix.

3.2 Intrusion detection games

Intrusion detection can be defined as the process of monitoring the events occurring in
a computer system or network and analyzing them for signs of intrusions. This classi-
cal definition is somewhat limited and focuses mainly on detecting attacks after they
occur and reacting to them. Recent developments in the field have resulted in a more
extended approach of intrusion prevention where monitoring capabilities are utilized to
take preventive actions to defend against malicious attacks before or as they occur.

An intrusion detection and prevention system (IDPS) consists of three main com-
ponents: information sources, analysis, and response. Security games in the context
of intrusion detection aim to formalize decision-making processes in all three compo-
nents, often with a focus on response. A detailed discussion on IDPSs can be found in
Chapter 9.

3.2.1 Matrix games

The following example game (Figure 3.1), which is one of the simplest possible security
game formulations, provides basic insights to security decision making and the interac-
tion between attackers and defenders in the context of intrusion detection. Consider a
network monitored by an intrusion detection system and targeted by malicious attack-
ers. In the simplest case, the action set of the attacker, P A, is AA = {a1,na}, where
a1 is launching an attack on the network and na denotes no attack. The action set of

Figure 3.1 Simple intrusion detection game.
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the defender, P D, is AD = {d1,nd}, where d1 is intensified monitoring and nd denotes
default response, i.e. no major defensive action. Adopting a nonzero-sum formulation,
the game matrices are defined as

GA =
(d1) (nd)[
βc −βs

0 0

]
(a1)
(na)

, GD =
(d1) (nd)[−αc αm

α f 0

]
(a1)
(na)

, (3.1)

where the α’s and β’s are positive scalars. The parameter −αc quantifies the gain of P D

for detecting the attack. The quantities α f and αm are the costs of a false-alarm and miss-
ing an attack, respectively, for the defender. The cost βc represents the detection penalty
for the attacker, P A, whereas −βs is the benefit from a successful (undetected) attack.
Although missing an attack is associated with a cost for the defense, false-alarms cost
nothing to the attacker, and, hence, are denoted with zero entries in the game matrices.

The min-max or safe strategy of a player guarantees a maximum cost, or so-called
safety level regardless of the actions of the opponent. However, it provides only lim-
ited insight into the underlying problem. Here, the positive detection cost of an attack,
βc > 0, forces the attacker’s safe strategy to be no attack, na. In cases when the cost asso-
ciated with na is zero, for example, if the attack is executed by an anonymous remote
script or botnet, both actions become equally safe for the attacker. On the other hand,
the defender P D’s safe strategy depends on the relative values of α f and αm, the costs
of false-alarm and missing an attack. If α f > αm, then P D chooses not to monitor nd1
as a safe strategy and the opposite d1, if α f < αm.

The NE of the security game is computed next. Notice that the game does not admit
a pure NE solution. Let 0 ≤ p1 ≤ 1 and 1− p1 be the probabilities for actions a1 and
na of P A, respectively. Also, let 0 ≤ q1 ≤ 1 and 1− q1 be the probabilities for actions
d1 and nd of P D. In this security game the pair of mixed strategies, (p∗,q∗), is said to
constitute a noncooperative NE solution, if the following inequalities are satisfied

p∗1 (βcq∗1−βs (1−q∗1))≤ p1 (βcq∗1−βs (1−q∗1)) ,

p∗1αm +q∗1 [α f − (α f +αc +αm)p∗1]≤ p∗1αm+
q1 [α f − (α f +αc +αm)p∗1] .

(3.2)

Note that at such an NE, the players do not have any incentive (in terms of improving
their utility or cost) to unilateral deviation.

This set of inequalities can be solved by setting the coefficients of p1 and q1 to zero
on the right-hand sides [31]. Thus, the only solution to the set of inequalities in (3.2)
constitutes the unique NE of the game

p∗1 =
α f

α f +αc +αm
and q∗1 =

βs

βc +βs
. (3.3)

The NE solution above exhibits an interesting feature as all completely mixed NE do.
While computing own NE strategy, each player pays attention only to the cost (param-
eters) of the opponent, and attempts to neutralize the opponent. Hence, the nature of
the optimization (i.e. minimization or maximization) becomes irrelevant in this case.
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This security game solution is the opposite of doing an optimization based only on own
preferences and parameters.

In the context of intrusion detection, the NE solution (3.3) of the security game is
interpreted as follows. The probability of the attacker targeting the network at NE, p∗1,
increases proportionally with α f . A smaller false-alarm cost for the defense means the
availability of extensive defense resources. This naturally discourages attacks. Similarly,
an increase in αc and αm plays a deterrent role for the attacker. On the other hand,
the probability of the defender monitoring is affected by the attacker’s gain from a
successful intrusion, −βs. If βs 	 βc, then the defender is inclined to monitor with
increased frequency. The penalty for the attacker getting detected may vary significantly,
depending on his physical reachability. If, for example, the attackers are physically close
to the network, then βc is much larger due to the increased risk, when compared to the
marginal detection cost of a script-based attack from the other side of the globe.

3.2.2 Games with dynamic information

The bi-matrix intrusion detection game is now extended by introducing a dynamic infor-
mation structure and modeling attacks to multiple systems on a network. Assume a
scenario where the defending player P D protects two systems using only one sensor,
which reports attacks to system 2 in a reliable manner, whereas there is no reliable infor-
mation on attacks to system 1. Hence, P D can only distinguish whether the attacker P A

targets system 2 at a given time instance and has to make decisions accordingly.
Such cases can be modeled using separate information sets in the security game

(Figure 3.1). Since P D can distinguish between information sets but not attacker actions
within them, this is called a dynamic information game. The second group of targets and
the related attacker, P A, actions are {a2,a12}, where a12 denotes targeting both systems
and a2 means targeting only system 2. The interpretation for {a1,na} is as before, with
a1 standing for targeting only system 1, and na meaning neither system is targeted.
Correspondingly, {d2,d12} are the actions of P D, at information set 2, where d12 means
defending both systems.

The resulting intrusion detection game is studied recursively. The first information
set has already been analyzed in the previous section. A similar analysis is repeated for
the second information set in Figure 3.2. The same game parameters are used as before
for simplicity. The parameter −αc quantifies the gain of P D for detecting the attack.
The quantities α f and αm are the costs of a false-alarm and missing an attack, respec-
tively, for the defender. The cost βc represents the detection penalty for the attacker, P A,
whereas −βs is the benefit from a successful (undetected) attack. Due to the existence
of two separate targets, the cost terms of each target are added to each other accordingly.
Hence, the following 2×2 bi-matrix game is obtained

GA =
(d2) (d12)[
βc −βc−α f

βc−βs 2βc

]
(a2)
(a12)

, GD =
(d2) (d12)[ −αc −αc +α f

−αc +αm −2αc

]
(a2)
(a12)

. (3.4)
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Attacker

Defender

Info. Set 2Info. Set 1

Figure 3.2 Intrusion detection game with two systems as potential targets and two information
sets.

Let p̄1 and 1− p̄1 be the probabilities of P A actions {a2,a12} and q̄1 and 1− q̄1 be
the respective probabilities of P D actions {d2,d12}. The security strategy of P A is deter-
mined using the relative values of αc, α f , and αm as in the previous case. Furthermore,
there is again no NE in pure strategies.

The unique NE solution in mixed strategies is obtained by solving the counterpart of
the set of inequalities (3.3), and is given by

p̄∗1 =
αm +α f

αm +αc +α f
and q̄∗1 =

βc +α f

βc +βs +α f
. (3.5)

In general, it is possible to adjust the cost parameters by taking into account various
factors such as relative importance of a subsystem for the organization, threat levels
given the output of sensors, etc. Therefore, the given game parameters should only be
considered as an example case. The equilibrium probabilities of P A and P D have a
similar interpretation as those in the previous analysis.

Given the equilibrium solutions and costs of the bi-matrix games in each information
set, P A and P D determine their overall strategies. The equilibrium strategy of P D, γ∗D,
for example, is given by

γ∗D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d1 w.p. q∗1
nd w.p. 1−q∗1

, if in information set 1,

d2 w.p. q̄∗1
d12 w.p. 1− q̄∗1

, if in information set 2.

This is a so-called behavioral strategy for P D, since he is “mixing” between the
alternatives in each information set separately (and independently), and not “mixing”
between the four actions available to him, namely {d1,nd,d2,d12}.

The equilibrium strategy of the attacker, P A, depends on the outcome of the subgames
associated with the respective information sets defined. For example, if

[p̄∗1, 1− p̄∗1]G
A [q̄∗1, 1− q̄∗1]

T < [p∗1, 1− p∗1]G
A [q∗1, 1−q∗1]

T ,
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then the equilibrium strategy γ∗A is

γ∗A =

{
a2 w.p. p̄∗1
a12 w.p. 1− p̄∗1.

The simplifying assumptions of this intrusion detection game, which allow for ana-
lytical results, can easily be extended to capture more realistic scenarios. Hence, the
example game in Figure 3.1 can be scaled up arbitrarily. Although increasing complex-
ity may prevent derivation of a closed form solution, such games can easily be solved
numerically. Thus, the discussed framework becomes applicable to practical scenarios.

3.3 Sensitivity analysis

The solution of a security game is not only affected by the game model but also is
a complex and nonlinear function of game parameters. Therefore, even if the game
structure is realistic, the output of the security game crucially depends on the input
values, defined for example in the game matrix. This input–output relationship, or how
a variation (uncertainty) in the input of a security game affects its outcome, can be
studied using sensitivity analysis.

In simple cases, such as the intrusion game (3.1), the sensitivity analysis can be con-
ducted simply by taking the derivative of the NE solution with respect to entries in the
game matrix to obtain sensitivity functions

∂p∗1
∂α f

=
αc +αm

(α f +αc +αm)2 ,
∂p∗1
∂αm

=
∂p∗1
∂αc

=
−a f

(α f +αc +αm)2 ,

and

∂q∗1
∂βs

=
βc

(βc +βs)2 ,
∂q∗1
∂βc

=
−βs

(βc +βs)2 .

Analytical expressions such as these unfortunately cannot be derived in a majority of
games. Therefore, the sensitivity analysis can be conducted numerically, for example
using Monte Carlo sampling methods. The sensitivity of defense NE probability q∗1
to parameter βs is computed numerically for the intrusion game (3.1) and shown in
Figure 3.3 for various values of βh.

A related important question in security games is how to determine the game param-
eters reliably and accurately such that the solution is useful and realistic. Definition 3.1
below from reference [31, p. 81] establishes a strategic equivalence result for bi-matrix
security games such that any affine transformation of the game matrices does not affect
the solution of the game. Therefore, as long as the input (game) values are determined
accurately relative to each other using any method, the solution of the game is not
sensitive to the absolute numbers in the game matrix. This flexibility allows for vari-
ous methods ranging from expert opinions to machine learning to be used in defining
game parameters. At the same time it increases the usefulness of game-theoretic models
significantly for real-world applications.
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Figure 3.3 Sensitivity of NE probability q∗1 to parameter βs for various values of βc in the
intrusion detection game.

Definition 3.1 The bi-matrix game (ḠA, ḠD) is said to be strategically equivalent to the
original game (GA,GD), if it is obtained by the following affine transform

ḠA
i, j = k1GA

i, j + l1, ḠD
i, j = k2GD

i, j + l2, ∀i, j,

where k1,k2 are positive constants and l1, l2 are scalar parameters.

3.4 Modeling malicious behavior in social networks

Incentive mechanisms and selfish behavior in social (e.g. peer-to-peer) and ad-hoc net-
works have been analyzed extensively in the literature using game-theoretic models, e.g.
references [50, 64, 141]. However, malicious behavior in this context has received much
less attention from the research community. The following simple but interesting games
[174] model malicious behavior where the attacker aims to disrupt collaboration in
the network rather than behaving selfishly to get a disproportionate share of network
resources.

It is possible to analyze the behavior types of different players on social networks as
part of a behavior spectrum that starts with cooperation at the one end and ends with
malicious behavior at the other (Figure 3.4). Even when players are fully cooperative,

Cooperative Selfish Malicious

Figure 3.4 Graphical representation of user behavior spectrum on networks.
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they can make unintentional mistakes which may affect the overall performance. The
next step is selfish behavior, where players still play by the rules but selfishly aim to
obtain as big a share of available network resources as possible. Finally, the players
can be outright malicious and try to destroy system performance rather than obtaining
any resource for themselves. Each of these cases can be captured using varying cost
structures for respective types of player based on their preferences. For example, the
cost function of an attacker is expected to be different from that of a collaborative player.

Consider an ad-hoc network consisting of nodes capable of deciding whether to col-
laborate with each other or defect. On the one hand, the nodes have to forward packets to
each other in order to enable multi-hop communication. On the other hand, most of
them are selfish and want to preserve their limited energy (battery). For a successful
transmission between two nodes, both of them have to collaborate. This situation can
be formalized in a forwarding game played by a set of collaborative players, P D

i , and
malicious or disruptive ones, P A

j , i, j ∈ {1,2, . . . ,M}. The action set of each player is

A = {c,d},
where c represents collaboration and d denotes defection. In order to describe the out-
come of the game, the following parameters are defined. The value E denotes the effort
(e.g. energy) spent during collaboration. The value B denotes the benefit obtained from
collaborating or forwarding. It is assumed that B > E > 0, i.e. collaboration is more
beneficial than energy preservation. In addition, define α := B−E > 0 and β := E > 0
for notational convenience.

An example game between two collaborative players, P D
1 and P D

2 , is investigated
first. The game matrices of respective players are

GD1 =
(c) (d)[−α β

0 0

]
(c)
(d)

, GD2 =
(c) (d)[−α 0
β 0

]
(c)
(d)

. (3.6)

Note that GD1 =
(
GD2
)T

since in accordance with our notational convention P D
1 is the

row player and P D
2 the column one. This nonzero-sum game admits two NE in pure

strategies, (c,c) and (d,d), with respective equilibrium costs of (−α,−α) and (0,0) for
the players. Since the equilibrium strategy (c,c) results in better costs for both players,
it is preferable over the other(s). Formally, such equilibria are called admissible.

If this game is played repeatedly between these two players, an interesting phe-
nomenon arises. If one player starts with strategy d or defects, the other player also
plays d. Since (d,d) is an NE, neither player has any incentive to deviate and they
are stuck with an unfavorable solution forever. A similar situation also emerges for the
other NE, (c,c). However, this time the outcome is desirable for both players. Within
the given model, this tit-for-tat (TFT) strategy, i.e. mimicking the behavior of the oppo-
nent, is the only rational option for the players unless there is an external (unmodeled)
factor. Moreover, the safety strategy for both of the players is d. If both players are
conservative, then the outcome of the game is the undesirable equilibrium.

When additional factors are brought into play, the players can be motivated to try
more collaborative strategies to improve the outcome. For example, if the players take
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into account a (finite) time horizon when choosing their strategies, then they can adopt
richer strategies. Such strategies involve taking a risk over the safety strategy d such
as starting the game with collaboration c or randomly trying collaboration from time to
time [64].

A game between a malicious attacker and a collaborative player, P A and P D, is
analyzed next. The game matrices of the respective players are

GA =
(c) (d)[
α β
−β 0

]
(c)
(d)

, GD =
(c) (d)[−α 0
β 0

]
(c)
(d)

. (3.7)

This game admits a unique pure strategy NE, (d,d) with the associated costs of (0,0).
It is a desirable outcome for the attacker but not for the collaborative player. In other
words, the attacker successfully disrupts the network.

Finally, both games discussed are brought together in a mixed game to model the
case when a collaborative player is surrounded by multiple others but does not know
which ones are malicious. This lack of information can be modeled within a Bayesian
game framework, which in this case is a two-player nonzero-sum game with chance
moves (Figure 3.5). Here, the well-behaved node, P D

1 , plays against an opponent P D
2

which may be malicious. Given a number of attackers on the network, let 0≤ k ≤ 1 be
the probability of the neighbor, P D

2 , being an attacker. Then, P D
1 plays the game (3.7)

against P D
2 with probability k and the game (3.6) with probability 1− k.

In order to find the NE solution(s) of this Bayesian game, the k weighted average of
game matrices (3.6) and (3.7) are computed to obtain

GD1 =
(c) (d)[
α 0
−β 0

]
(c)
(d)

, GD =
(c) (d)[−α(1−2k) β
−β 0

]
(c)
(d)

. (3.8)

The strategy (d,d) is one of the NE solutions.
If the probability k satisfies

k <
α

2α+β
,

then the collaborative strategy (c,c) is also an NE, which makes the game very similar
to that between two collaborative players. Therefore, the number of malicious nodes
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Collaborative
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malicious

C

Figure 3.5 Collaborative users against malicious ones in a Bayesian game where the probability
of a neighboring node being malicious is k.
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has to be sufficiently high in order to disrupt communication on the network by break-
ing the potential trust between collaborative players. For example, on a network with
M nodes, the number of attackers has to be at least Mα/(2α+ β). The collaborative
nodes might use a centralized or decentralized learning scheme using their own (and
possibly others’) observations to detect malicious neighbors and estimate the probabil-
ity k [174]. An example scheme where the rights and credentials of malicious nodes are
revoked by benign ones collaborating with each other to defend the system is discussed
in Section 3.7.

3.5 Security games for vehicular networks

The study of vehicular networks (VANETs) enabling vehicle-to-vehicle and vehicle-
to-infrastructure communications is an emerging research field aiming to improve
transportation security, reliability, and management. VANET security games model
the interaction between malicious attackers to vehicular networks and defense mech-
anisms protecting them on a road network. VANET security games take as an input
various measures such as traffic density or centrality measures (e.g. betweenness cen-
trality). Then, the objective of the game is to locate central (vulnerable) points on the
road topology as potential attack targets (e.g. for jamming) and deploy countermeasures
in the most effective manner. The defense system can be static in the form of roadside
units (RSUs) or dynamic in the form of mobile law enforcement units. In the static case,
all RSU positions are precomputed. In the dynamic case, RSU placement is adaptive to
conditions in the vehicular network, such as traffic patterns or attacks detected. In both
cases, the defense mechanisms are assumed to be capable of detecting attackers and
rendering them ineffective.

3.5.1 Vehicular network model

A vehicular network model consists of three layers: data traffic, vehicular traffic, and
road network. While the first two are dynamic, the last is naturally fixed. Each network
can be formally modeled as a separate graph, yet they are closely related to each other.

The vehicles can communicate with neighboring vehicles and RSUs. The vehicles’
neighbors are defined by their limited-radius (e.g. 300 m) radio coverage. The range
and data rates can be modeled, for example, as circular and fixed, respectively. The
framework developed also allows for more complex radio models, which along with
other metrics determine the input parameters of the security game. Communications
can be multi-hop and RSUs are assumed to be connected with each other. The RSUs
can also help vehicle-to-vehicle communication by tunneling data.

The road network is modeled as a graph of discrete road segments. For a given
map segment, e.g. a city district or rural region with a road network, the graph can
be obtained by discretizing (quantizing) the roads to fixed-sized segments along their
length. Then, road segments constitute the set of nodes of a road graph where the
set of edges represent neighborhood relationships between the nodes. Subsequently,
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each segment’s characteristics such as traffic density can be calculated for a given time
period.

The data traffic generated and disseminated on a VANET depends on the specific sce-
nario and applications deployed. For example, in evaluating metrics for RSU placement
for a time-critical accident warning scenario, the warning messages are disseminated
to all cars within the three-hops broadcast range. Hence, data traffic plays an indirect
role in determining the characteristics of the vehicular traffic network. In security game
formulations, the data traffic model is implicitly taken into account when defining the
vehicular network, and hence in determining the payoff matrices.

3.5.2 Attack and defense model

VANET security games abstract the interaction between malicious attackers to VANETs
and various defense mechanisms protecting them. The abstract model considered makes
the following broad assumptions regarding the nature of possible attacks and defensive
measures as well as attackers and defenders.

1. An attack causes (temporary) damage or disruption to one or more VANET
applications at a certain location.

2. The attackers have some incentive for (benefit from) causing damage to VANET
applications. At the same time, they incur costs such as the risk of being captured.

3. The defenders have mechanisms that are capable of detecting attacks (attackers)
and rendering them ineffective (capturing attackers) with some probability, if they
allocate resources to the attack location.

4. The defense systems can be static (e.g. deployed in RSUs) or dynamic (e.g. deployed
in police cars).

5. The attackers and defenders have limited information on each other’s objectives.
6. Both attackers and defenders deploy randomized (mixed) strategies.

The general class of attacks satisfying the assumptions above are location-based.
One such attack is jamming, which disrupts all communications in a region. These
attacks can be detected early by ordinary users or defensive forces if they are present
at that location. Furthermore, the attackers can be identified to some extent by their
location using triangulation techniques as long as the attack continues. Another class of
attacks involve bogus messages disseminated by the attackers for disruption of traffic
or for selfish aims, e.g. sending a false accident message to clear the road. These mes-
sages are restricted to their initial neighborhood first, even if they reach a broader area
with time. However, the attackers will probably move away by the time the message
reaches the infrastructure. Again, deployment of defensive systems at the same location
provides better capabilities for checking the correctness of the messages. In addition,
mobile defenses such as police cars may quickly assess the situation and physically cap-
ture the perpetrators if necessary, something beyond the capabilities of ordinary users.
A third class of relevant attacks involves Sybil attacks where the attackers create and
operate under multiple forged identities for self-protection as well as to increase the
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intensity of their attacks. Checking the authenticity of these identities may be resource-
wise infeasible for the ordinary vehicles nearby, due to communication overheads and
limited access rights. Deploying appropriate local defensive systems can help to detect
the attacks early and physically identify the attackers.

3.5.3 Game formulation and numerical analysis

A realistic traffic dataset is used in defining the parameters of an example security
game. The data consists of traces of car movements generated by a simulator [167],
which was created at ETH Zurich with maps from the Swiss geographic information
system (GIS). The road map of a rural region, depicted in Figure 3.6, is quantized to
an 11× 11 grid. The traces offer snapshots in 1 s intervals about the identity of a car,
its x- and y-coordinates on the map, and a time stamp. The traffic density in the region
averaged over 500 s is shown in Figure 3.7.

The specific VANET security game formulation is a finite zero-sum game where the
actions spaces of the attacker and defender consist of attacking and defending a specific
road segment. Each road segment corresponds in this case to a square element of an
11×11 grid obtained by uniformly discretizing the rural region map. For convenience
the discrete map grid is represented as a vector of size 121 = 11×11. Hence, converting
the map matrix to a vector, the action spaces of P A and P D are defined as

AA := {a1, . . . ,a121}
and

AD := {d1, . . . ,d121},
respectively. As an illustrative sample instance of the defined security game, consider
an attacker jamming one road segment with some attack probability. In response, the
defender (e.g. designer, city planner, law enforcement) allocates defense resources to
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Figure 3.6 Main (black) and side (dark gray) roads on the quantized region map.
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Figure 3.7 Vehicle density on the quantized region map.

the same or another road segment according to its own strategy. The outcome of this
game instance is then determined by the corresponding entry in the game matrix.

The zero-sum game matrix maps player actions on the road segment to outcomes for
P A and P D. The game matrix entries can be a function of the importance of each road
segment (as characterized by, for example, the traffic density), the risk of detection (gain
from capture) for the attacker (defender), as well as other factors. As an example, the
game matrix, G, of this game is defined as:

G = [Gi, j]121×121 :=

{
C(i), if i 
= j

r, if i = j, ∀i, j
(3.9)

where C( j) is defined as vehicle density on a road segment j, which can be computed
through averaging over time interval [0,T ]:

C( j) =
1
T

T

∑
t=1
∑

i
δ(i, j, t).

The indicator function δ is defined as:

δ(i, j, t) :=

{
1, if vehicle i is on road segment j at time t

0, else.

The fixed scalar r represents the risk or penalty of capture for the attacker (benefit for
defender), if the defender allocates resources to the location of the attack, i.e. the same
square on the map. It is set to r = −0.1 here, indicating a large risk for P A relative to
the gain C.
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Figure 3.8 Equilibrium attack probabilities of the vehicular network security game shown on the
rural region map.
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Figure 3.9 Equilibrium defense probabilities of the vehicular network security game shown on
the rural region map.

The zero-sum vehicular network security game defined is solved using standard meth-
ods. There is no pure-strategy equilibrium and the game admits a unique (saddle-point)
equilibrium solution in mixed strategies. The equilibrium strategies are shown on the
region map in Figure 3.8 for the attacker, P A, and Figure 3.9 for the defender, P D. A
big penalty for P A (higher diagonal values in the game matrix) leads to diversification in
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attack probabilities instead of narrowly focusing on the most valuable locations. While
the attacker chooses a few squares with almost equal probability, the defender proba-
bilities on those same squares show more variability. This is a result of the penalty (or
risk) of capture for the attacker being uniform, whereas the defender losses are more
diverse as they are proportional to the traffic density, e.g. disruptions affecting a larger
population.

3.6 Security games in wireless networks

In wireless networks, medium access control (MAC) is necessary for coordinating mul-
tiple transmissions originating from different nodes to achieve reliable and efficient
communication. Various random and multiple access approaches have been devel-
oped to achieve this goal. The ALOHA protocol and code division multiple access
(CDMA) are two well-known examples of random and multiple access schemes,
respectively.

This section analyzes the interactions between selfish and malicious nodes at the
MAC layer using security games. While the selfish nodes aim to transmit to a common
receiver and maximize their throughput, the malicious nodes try to disrupt commu-
nication by simultaneous transmissions and jamming. A security game framework is
presented that describes not only selfish behavior but also jamming and DoS at the
MAC layer.

For a finite number of transmitter nodes, random access schemes have been exten-
sively studied as a cooperative throughput optimization problem. An alternative is
noncooperative operation, in which selfish nodes select the transmission probabili-
ties to optimize their individual performance objectives. Similarly, cooperative and
noncooperative formulations have been thoroughly studied for interference-limited
systems such as CDMA, especially in the context of power management, where indi-
vidual transmissions create interference for nearby nodes resulting in a closely coupled
environment.

The noncooperative game formulations allow modeling of malicious behavior in
addition to selfishness in MAC. Different from selfish nodes who try to maximize
own throughput, the malicious nodes pursue destructive objectives such as jamming
the packet transmissions of others even when it does not improve own transmissions.
Such jamming and DoS attacks may have significant detrimental effects on the reliabil-
ity and efficiency of the wireless channel. Consequently, malicious behavior in wireless
networks has been studied with increasing intensity [153, 154, 192].

Two specific access control schemes are considered within the context of security
games in wireless networks. One of them is a slotted random access channel similar to
slotted ALOHA where only one node can use the channel at a given time slot. The other
one is an interference-limited multi-access scheme where the nodes choose their trans-
mission power levels in order to maximize their signal-to-interference-plus-noise-ratio
(SINR) which is correlated with throughput. Additional factors such as energy are also
taken into account, especially considering the often battery-limited nature of the nodes.
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It is also assumed that the malicious nodes follow the random access protocols “to
hide in the crowd” and avoid short and bursty transmissions to minimize their detection
risk.

NE provides, as before, a sound solution concept in wireless security games. The
NE solutions indicate optimal attack and defense strategies for noncooperative random
access systems. Additionally, pricing schemes and other incentive mechanisms have
been investigated in the literature to improve the throughput or other aggregate prop-
erties of the system. In particular, the possible performance loss has been evaluated if
selfish nodes defect by becoming malicious in their transmission strategies, where the
results are compared with a cooperative equilibrium outcome that optimizes the total
weighted utility sum in random access [154].

The players of the security games studied in this section are either selfish or
malicious. An interesting question is, what happens if non-malicious nodes or users
collaborate against malicious attackers and jointly implement defensive strategies such
as revocation of malicious players’ certifications? An example game considering such a
scenario is presented subsequently in Section 3.7.

3.6.1 Random access security games

The random access game models a wireless network with multiple nodes transmitting
packets to a common receiver over a shared random access channel. Each transmitter is
assumed to have saturated queues with uninterrupted availability of packets at any time
slot and infinite buffer capacity for simplicity. The random access channel is a slotted
system, in which each packet transmission takes one time slot. Any simultaneous trans-
mission or collusion results in packet loss, which corresponds to a classical collision
channel.

Let pi denote the transmission probability of a node i from the set of N transmitters.
A packet of node i is successfully received with probability ∏ j 
=i (1− p j), if the other
nodes j 
= i, j ∈N do not transmit in the same time slot. The average throughput of the
channel for successful transmissions is chosen to be one for simplicity and without any
loss of generality. The reward for any successful packet transmission of node i is quan-
tified by the value ri > 0. Since the nodes are mobile, it is natural to assume that they
are battery limited and take into account the amount of energy spent for transmissions.
We introduce the parameter ei ≥ 0 to represent the average transmission energy cost of
a node i per time slot.

The transmitting nodes in set N constitute at the same time the players of the
random access game. The players (nodes) decide on their transmission probabilities
p = [p1, . . . , pN ], where 0 ≤ pi ≤ 1 ∀i and N is the cardinality of the set N or the
number of players. Each node is associated with a cost function, Ji, that quantifies the
above-discussed positive and negative factors affecting its decision. The set of players
can be divided into two nonoverlapping sets of selfish nodes P D ⊂N , who still follow
the rules, and malicious nodes, P A ⊂N , such that P D⋃P A = N .

A selfish node i ∈ P D chooses the transmission probability pi given the transmis-
sion probabilities of other nodes in order to minimize the individual cost function, JD

i ,
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that reflects the difference between the throughput reward and the cost of transmission
energy. The cost function for selfish nodes is defined as

JD
i (p) := piei− ri pi∏

j 
=i

(1− p j) ∀i ∈ P D ⊂N . (3.10)

The malicious nodes, unlike selfish ones, are motivated by the “reward” for disrupting
or jamming the transmissions of other nodes rather than their own throughput. Hence,
the cost function for a malicious node j is defined as

JA
j (p) := p je j− c j p j ∑

k∈P D

pk ∏
l 
= j,k

(1− pl) ∀ j ∈ P A ⊂N , (3.11)

where c j > 0 is the reward for blocking random access of a selfish node. The second
term is the sum of all such rewards obtained by playing a role in jamming selfish nodes.
Note that if the transmission of a selfish node is already blocked by another malicious
or selfish node, then the malicious node j does not receive any reward.

The player optimization problems for both selfish and malicious nodes are

min
pi

JD
i (p) ∀i ∈ P D, and min

p j
JA

j (p) ∀ j ∈ P A, (3.12)

respectively.
It is illustrative to consider first a random access game with two players, N = {1,2},

and analyze the problem of two selfish but not malicious noncooperative transmitters.
Then, the impact of one malicious transmitter on another selfish node is evalu-
ated. Finally, the case of an arbitrary number of selfish and malicious transmitters is
discussed.

Two selfish players
When both players are selfish, the respective cost functions, as a special case of the one
in (3.10) to (3.11), are

J1(p) := p1e1− r1 p1(1− p2),

and

J2(p) := p2e2− r2 p2(1− p1).

An analysis of this game shows that for some values of the parameters, there are
multiple NE solutions, whereas for some other values, the NE solution is unique. This
result is summarized in the following theorem.

Theorem 3.2 The random access game with two selfish players admits the following
NE strategies (p∗1, p∗2) under the respective conditions.

1. If 0 < e1 ≤ r1 and 0 < e2 ≤ r2, there exist three NE:

p∗1 = 1, p∗2 = 0; p∗1 = 0, p∗2 = 1; p∗1 = 1− e2

r2
, p∗2 = 1− e1

r1
.
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2. If e2 = 0 and e1 < r1, there exists a continuum of NE:

p∗1 = 1, p∗2 ∈
[

1− e1

r1
, 1

]
,

and if e1 = 0 and e2 < r2, there exists likewise a continuum of NE:

p∗1 ∈
[

1− e2

r2
, 1

]
, p∗2 = 1.

3. If e1 > r1 or e2 > r2 or both, the NE is unique:
(a) p∗1 = p∗2 = 0, if e1 > r1 and e2 > r2.
(b) p∗1 = 0, p∗2 = 1, if e1 > r1 and e2 < r2.
(c) p∗1 = 1, p∗2 = 0, if e1 < r1 and e2 > r2.

Proof The NE solutions of the random access game are in the square 0≤ p1 ≤ 1, 0≤
p2 ≤ 1. Consider first NE strictly inside the square, so-called inner NE. Since both
J1 and J2 are linear in p1 and p2, respectively, every inner NE (p∗1, p∗2) has to have the
property that J1 (p1, p∗2) is independent of p1 and J2 (p∗1, p2) is independent of p2, which
leads to p∗1 = 1−e2/r2, p∗2 = 1−e1/r1. This solution is inner provided that 0 < e1 ≤ r1,
0 < e2 ≤ r2. Clearly, one can also allow e1 = r1 and/or e2 = r2 in this solution which by
inspection is also an NE, though not inner. Likewise for e1 = 0 and e2 = 0, which are
covered by case (b). Now, any other NE solution candidate will have to be at the corners
of the square. These cases are covered in parts (a) and (c) of the theorem, which follow
directly from the definition of NE.

According to Theorem 3.2, the NE strategies may not be unique for certain values of
systems parameters. For instance, if 0 < e1 < r1 and 0 < e2 < r2, then there exist three
NE strategies (p∗1, p∗2), two of them at the corners (1,0), (0,1) and the other one inner
(1− e2/r2,1− e1/r1). The NE solutions are depicted in Figure 3.10.

/

/

Figure 3.10 NE strategies of the random access game from Theorem 3.2.
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It is worth noting that for the classical collision channels, the envelope of the through-
put rate under NE strategies coincides with the boundary of the achievable throughput
region, if ∑2

i=1 ei/ri = 1.

One selfish player and one malicious player
Consider now the case when the second player is a malicious attacker. Then, the
respective cost functions of the players, as special cases of those in (3.10) and (3.11), are

J1(p) := p1e1− r1 p1(1− p2),

and

J2(p) := p2e2− cp2 p1.

This game again admits multiple and even a continuum of NE solutions, depending on
the parameter values.

Theorem 3.3 The random access game with one selfish player 1 and a malicious
player 2 admits the following NE strategies (p∗1, p∗2) under the respective conditions.

(i) p∗1 =
e2

c
, p∗2 = 1− e1

r1
, if 0 < e1 ≤ r1 and 0 < e2 ≤ c.

(ii) p∗1 = p∗2 = 0, if e1 > r1.

(iii) p∗1 = 0, p∗2 ∈
[

1− e1

r1
, 1

]
, if e1 ≤ r1 and e2 = 0.

(iv) p∗1 = 1, p∗2 = 0, if e1 < r1 and e2 > c.

(v) p∗1 ∈
[e2

c
, 1
]
, p∗2 = 1, if e1 = 0 and e2 ≤ c.

Proof The proof is similar to that of Theorem 3.2. Note that the solution in (i) here is
the inner NE.

The noncooperative NE strategies may not be unique, depending on the reward and
cost parameters, as observed also for the case of two selfish transmitters. The NE
solutions are depicted in Figure 3.11.

It is interesting to note that the inner NE strategies p∗2 of player 2 are the same,
regardless of whether node 2 is selfish or malicious. In other words, malicious operation
of node 2 only changes the inner equilibrium strategy of the selfish node 1 to be attacked.
If node 2 is selfish, the throughput rate λs

1 of node 1 is p∗1 (1− p∗2), where p∗1 and p∗2 are
given in Theorem 3.2, respectively, such that

λs
1 =
(

1− e2

r2

)
e1

r1
. (3.13)

On the other hand, if node 2 is malicious, the throughput rate λm
1 of node 1 is changed to

λm
1 =

e1 e2

cr1
, (3.14)

where the respective values of p∗1 and p∗2 are taken from Theorem 3.3.
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Figure 3.11 NE strategies of the random access game from Theorem 3.3.

Player 2 can reduce the throughput rate of node 1 by switching to malicious operation,
i.e. the DoS attack of node 2 is successful if, and only if,

λm
1 < λs

1⇒ c >
e2

1− e2/r2
. (3.15)

Consequently, the reward for jamming transmissions of node 1 should be high enough
for node 2 to compensate the increase in energy cost and the decrease in individual
throughput rate.

It is interesting to note that the selfish behavior of benign players brings a certain
degree of robustness to the overall system. Unlike the collaborative case discussed in
Section 3.4, the effect of malicious nodes is much more limited, partly because there is
less to destroy in a selfish environment than in a collaborative one. As the basic analysis
above shows, under some conditions the malicious behavior fails even to distinguish its
effect from the selfish one. This phenomenon can be interpreted as a boundary between
selfish and malicious behavior in the broad spectrum that starts with collaboration and
ends at malicious attacks.

Multiple selfish and malicious players
The results of Theorems 3.2 and 3.3 are extended to the cases of N selfish nodes and N
selfish plus one malicious node, respectively, for the inner strategy NE.

Consider N selfish transmitter nodes (players) with the properties described in the
game model of Section 3.6.1. The following theorem extends the results of Theorem 3.2
to N selfish players for inner NE strategies.

Theorem 3.4 The random access game with N selfish players admits the following
inner NE strategies

p∗i = 1− ri

ei

(
N

∏
j=1

e j

r j

) 1
N−1

, if 0 < ei < ri, i = 1, . . . ,N .
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The corresponding NE throughput rate of node i is

λ∗i =
ei

ri
−
(

N

∏
j=1

e j

r j

) 1
N−1

. (3.16)

Proof The counterpart of the argument used in the proof of Theorem 3.2 for inner NE
yields the set of equations

∏
j 
=i

(
1− p∗j

)
=

ei

ri
, i = 1, . . . ,N. (3.17)

Simple algebraic manipulations lead to

(1− p∗i )
ei

ri
=
(
1− p∗j

) e j

r j
∀i, j ,

which indicates a solution of the form

p∗i = 1− ri

ei
α

for some α. Substituting it back into (3.17) yields the inner NE transmission probabili-
ties.

The inner NE throughput rate of a node i is

λ∗i = p∗i ∏
j 
=i

(
1− p∗j

)
= p∗i

ei

ri
,

which follows directly from (3.17). Substituting the term p∗i with the above obtained
inner NE transmission probability completes the proof.

Consider now an additional malicious node A with the objective of blocking the
random access of the other N selfish nodes. For the classical collision channel studied
here, only one transmission is sufficient to block the random access of all other selfish
nodes, i.e. independent transmissions of multiple malicious nodes increase the energy
costs without extra benefits in terms of reducing the throughput rate of target nodes.
If there are multiple malicious nodes that can cooperate with each other, they should
form a coalition such that only one node transmits at a time to minimize the energy
costs. Therefore, the single malicious node case provides insights into more general
scenarios.

The counterparts of the cost functions (3.10) and (3.11) are respectively

JD
i (p) := piei− ri pi(1− pm)∏

j 
=i

(1− p j), i = 1, . . . ,N (3.18)

and

JA(p) := pmem− cpm

N

∑
j=1

p j∏
k 
= j

(1− pk), (3.19)

where pm is the transmission probability and em the energy cost of the malicious node.
The NE transmission strategies can be characterized using a similar analysis to

before. However, the set of equations is more complex, which hinders the derivation of
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simple analytical expressions for equilibrium transmission probabilities and throughput
rates. The inner NE strategies satisfy

p∗i = 1− ri

ei

(
N

∏
j=1

e j

r j

) 1
N−1 ( 1

1− p∗m

) 1
N−1

, i = 1, . . . ,N

and

p∗m = 1− rm

em

⎡
⎣ N

∑
j=1

e j

r j
−
(

N

∏
j=1

e j

r j

) 1
N−1
⎤
⎦ .

When the selfish nodes are symmetric in terms of their energy costs and rewards ei =
es and ri = rs ∀i, the relationship between the equilibrium transmission probabilities of
selfish, p∗s , and malicious players, p∗m, simplify to

p∗s =
1
N

em rs

es c
(1− p∗m) .

This equation has multiple intuitive interpretations. The equilibrium solution of selfish
players, p∗s , is

• proportional to the energy cost of malicious players and throughput reward of selfish
players;

• inversely proportional to the equilibrium transmission probability of the malicious
node;

• inversely proportional to the number of selfish nodes, energy cost of selfish players,
and the reward of the malicious node.

Similar observations can also be made for the equilibrium solution of the malicious
player, p∗m. All of these relationships are in line with intuitive expectations stemming
from the game context.

3.6.2 Interference limited multiple access security games

The previous section discussed security games played over random access channels,
specifically, a slotted ALOHA model where only one node can use the channel at a given
time slot. This section presents multiple access security games within an interference-
limited multi-access scheme where the nodes choose their transmission power levels in
order to maximize their SINR that is correlated with their throughput.

Following a treatment similar to those in Section 3.6.1, consider a security game
between transmitters of two possible (selfish or malicious) types. Define Pi ≥ 0 and ei ≥
0 as the transmission power level and the corresponding energy cost (per unit power) of
a node i, respectively. Each node independently chooses the power Pi for transmitting
to a common receiver in order to minimize the individual expected cost Ji. The SINR
value achievable by a selfish node i is

γi =
hiPi

1
L ∑ j 
=i h jPj +σ2

, (3.20)
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where h(·) is the respective channel gain, L is the processing gain, and σ2 is the back-
ground noise. The throughput reward for a selfish node i is fi(γi), which is an increasing
function of the SINR value γi. For simplicity, consider a reward function linear in SINR
such that:

fi(γi) = γi. (3.21)

An alternative formulation, where fi(γi) = log(1+ γi), is discussed in reference [153].
The performance objectives of the players incorporate throughput rewards based

on achieved SINR levels, transmission energy costs, and malicious interests such as
rewards obtained from jamming. The nodes also incur transmission energy costs pro-
portional to their power level, eP. Then, the cost function minimized by a selfish
node is

Ji(P) = eiPi− γi = eiPi− hiPi
1
L ∑ j 
=i h jPj +σ2

, (3.22)

where P = [P1, . . . ,PN ] is the transmission power vector of all nodes. Such games among
selfish players only have been studied extensively in the literature [15, 59, 157].

Unlike selfish ones, malicious nodes receive rewards for jamming others (in terms of
decreasing their performance or SINR) rather than improving their own SINR levels.
Thus, the cost function of a malicious node is defined as

Ji(P) = eiPi + ∑
j∈P D

γ j, (3.23)

where P D is the set of selfish nodes that the malicious one targets. As before, the set of
malicious nodes is denoted by P A and P D⋃P A = N , which is the set of all nodes. It is
natural to assume here that malicious nodes do not have any incentive of interfering with
or degrading each other’s transmissions. Notice additionally that without energy costs,
a game between one malicious node and one selfish node will be a zero-sum game of
throughput balancing.

It is illustrative to consider, as in Section 3.6.1, first a multiple access game between
two selfish players, N = {1,2}, and subsequently analyze the game between one
malicious and one selfish transmitter.

Two selfish transmitters
Theorem 3.5 The unique NE strategies (transmission power levels) for two selfish
transmitters on an interference-limited multiple access channel are

P∗i =
L
hi

(
h j

e j
−σ2

)
, j 
= i, if hi ≥ σ2ei, i = 1,2,

P∗i = 0, if hi < σ2ei, i = 1,2,

P∗i = 0, P∗j → ∞, if hi < σ2ei, h j > σ2e j, j 
= i.

(3.24)
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Proof The individual constrained optimization problem for each transmitter i = 1,2 is
minPi≥0 Ji(P). Define the Lagrangian

Li(P1,P2) = Ji(P1,P2)−λiPi, i = 1,2, (3.25)

where λi ≥ 0 is a Lagrange multiplier corresponding to the inequality constraint in
the individual optimization problem. The corresponding Karush–Kuhn–Tucker (KKT)
conditions are then

∂Li(P1,P2)
∂Pi

= 0, Pi ≥ 0, λi ≥ 0, λiPi = 0, i = 1,2. (3.26)

These necessary conditions are also sufficient for optimality, since the cost function
Ji(P1,P2) and inequality constraint Pi ≥ 0 are continuously differentiable and convex
functions of Pi. The equilibrium strategies (3.24) follow from applying the KKT condi-
tions (3.26) separately to each cost function Ji(P1,P2), i = 1,2, with constraint Pi ≥ 0,
where the costs of selfish nodes are given by (3.22).

The performance measure for the transmitting selfish nodes is the achievable SINR
value. The SINR values for the two selfish nodes i = 1,2 at the NE are

γi =

⎧⎪⎪⎨
⎪⎪⎩

eiP∗i , if h j > σ2e j, j 
= i,

hiP∗i
σ2 , otherwise.

(3.27)

One malicious transmitter and one selfish transmitter
Theorem 3.6 The unique NE strategies (transmission power levels) for a selfish trans-
mitter 1 and a malicious transmitter 2 on an interference-limited multiple access
channel are

P∗1 =
L
h2

e2h1

(e1)2 , P∗2 =
L
h2

(
h1

e1
−σ2

)
, if h1 ≥ σ2e1,

P∗1 = 0, P∗2 = 0, if h1 < σ2e1.

(3.28)

Proof The equilibrium strategies (3.28) follow from applying the KKT conditions
(3.26) separately to each objective function Ji(P1,P2), i = 1,2, with constraint Pi ≥
0, where the costs J1(P1,P2) and J2(P1,P2) are given by (3.22) and (3.23), respec-
tively.

The equilibrium SINR level of selfish node 1 is given by (3.27) with P1 from (3.28).
The malicious attack of node 2 is more successful in reducing the SINR of selfish node 1
compared to the alternative selfish behavior of node 2 only under the following condi-
tions. Under the assumption of hi ≥ σ2ei, i = 1,2, ensuring nonzero transmission power
levels, the malicious node is effective if, and only if,

h2

e2
> σ2 +

e2

h2

(
h1

e1

)2

,
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i.e. if h1 is sufficiently small and e1 large. Otherwise, the malicious attack fails compared
to the selfish operation, which is sometimes referred to as the “windfall of malice.”
A similar situation has also been observed in Section 3.6.1. If both transmitters are
malicious, they do not receive any reward from interfering with each other and the NE
strategies are P1 = 0 and P2 = 0.

In the general case of multiple selfish and malicious nodes, the NE solutions
are generally difficult to characterize explicitly with analytical expressions. In such
cases, first the existence (and possibly uniqueness) of equilibrium solutions needs to
be established. Then, the solutions can be computed numerically or through iterative
algorithms.

3.7 Revocation games

In settings where there is no immediately available central defense system, e.g. in
ad-hoc, vehicular, or decentralized social networks, it makes sense for the benign
(defending) players to collaborate against malicious ones and jointly implement defen-
sive strategies such as revocation of malicious players’ rights and certifications. This
section presents revocation games, which formalize a revocation approach to handling
misbehavior, and are a variant of security games.

The revocation approach facilitates “local” and fast response to misbehavior by
allowing benign players, who follow the rules, collaboratively to denounce and punish
their misbehaving “neighbors” even in rapidly changing environments. The neighbor-
hood relationships and location may be defined through physical characteristics (e.g.
wireless range) of the system such as the case in ad-hoc networks as well as through
different means, e.g. in online social networks. Revocation constitutes an alternative to
reputation or trust-based schemes which require long-term monitoring and keeping of
state information as well as more stationary settings. On the other hand, both approaches
are distributed in nature and rely on localized algorithms that do not require participation
of all nodes at all times.

Revocation schemes aim to remove attackers from the system. During a revoca-
tion decision, the amount of interaction between nodes and state information of a
given attacker are limited. A typical application of revocation involves fast and local
annulment of credentials, such as a compromised key issued by a central but “dis-
tant” certificate authority (CA). This kind of local revocation can be particularly useful
when the central authority is not immediately available to revoke the misbehaving
node (e.g. when the CA is offline) or when it cannot detect the misbehavior in time,
especially when the latter does not involve a key compromise (e.g. sending bogus
information).

The underlying system conforms to the following basic assumptions regarding the
nature of the malicious attackers and the detection capabilities of defending nodes. The
malicious nodes have the same communication capabilities and credentials as the benign
ones. The attacks aim to disrupt the network by, for example, disseminating false infor-
mation for fun or personal gain. It is assumed that the benign (defending) nodes can
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detect such attacks by virtue of possessing special detection capabilities. Such nodes
can then act as initiators and participants of revocation games. As a simplification,
the detection system of the participating nodes is assumed to function perfectly and
misbehavior by the malicious nodes is always correctly classified. In other words, all
participants correctly identify the malicious node, and hence the revocation game is
more about whether the defending nodes will converge to the correct decision of revok-
ing the accused node. Each information piece (e.g. message), even false ones, needs
to be associated with a verifiable identity, which constitutes the basis for the revoca-
tion system. Information without verifiable identity is simply ignored by the nodes. In
the system considered, Sybil attacks, where the attacker impersonates another node,
are difficult to implement and do not pose a significant issue. This assumption is jus-
tified, for example, in a public key infrastructure with an offline certificate validation
process.

3.7.1 Revocation game model

A revocation game is played among the nodes in a neighborhood relationship assuming
a certain stationary period of time. Let N be the set of all nodes in the neighborhood,
P A ⊂ N the malicious, and P D ⊂ N the defending ones. Each revocation game is
then played among the n defending players (nodes) P D against a single malicious one
M ∈ P A.

Each player i ∈ P D has three possible actions, Ai = {A,V,S}, in the revocation game
against the malicious node M ∈ P A. First, the player can abstain, A, from the local
revocation procedure. This action means that the player is not willing to contribute
to the local revocation procedure and instead expects other players or eventually the
CA to revoke the attacker. Second, the player i can participate by casting a vote, V ,
against a detected attacker [55]. It is assumed, as a simplification, that a majority vote
is required to revoke an attacker in the game. Finally, following the protocol suggested
in reference [117], the player can commit self-sacrifice, denoted by the action S, and
invalidate both its current identity (the pseudonym it currently uses) and the identity of
the attacker. This action essentially finishes the game by revoking the attacker immedi-
ately but usually comes at a high cost to the defender. A revocation game is illustrated
in Figure 3.12.
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Figure 3.12 Mobile nodes (P) may collaboratively revoke the credentials of nearby malicious
ones (M) through voting or by resorting to self-sacrifice.
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The costs associated with the actions defined above for a defending node i can be
defined as

Ji(Ai,k) =

⎧⎪⎪⎨
⎪⎪⎩

(1− k)c, if Ai = A,

v+(1− k)c− kb, if Ai = V,

cs−B, if Ai = S,

(3.29)

where the parameter k takes the value one if the revocation is successful after the game
and zero otherwise. In addition, the scalar parameters v and b denote the cost and ben-
efit of voting, respectively, c the cost of attack, cs the cost of self-sacrifice, and B the
benefit of self sacrifice. All parameters are assumed to be non-negative. The cost struc-
ture (3.29) is chosen to be broad with multiple parameters to capture various scenarios.
Notice that the parameter k provides the coupling in the revocation game. Without k,
the game would have been a trivial one.

Based on the timing of the game play, a sequential and concurrent (static) variant
of the defined revocation game will be studied next. Subsequently, various extensions,
open issues, and future research directions will be discussed.

3.7.2 Sequential revocation games

In sequential revocation games each player makes a decision sequentially (one-by-one)
while observing the current state of the game. Only a single round of the game is con-
sidered as the underlying system may not be stationary over long time intervals. The
order of play is assumed to be random. For each player i, the quantity ni denotes the
number of remaining nodes who have not yet played, and nr the number of remaining
votes required to revoke the attacker by voting. Both of these state that information is
available to the players at their turn of play.

To analyze this sequential game, which can also be expressed in an extensive form,
one can use the concept of the NE. However, the NE concept without any refinement is
somewhat loose when it is applied to extensive-form games because, first, it is generally
nonunique, and second, some of the NE could predict outcomes that are not credible for
some players, i.e. these outcomes are unreachable because the players will not play,
out of self-interest, according to the computed NE path. Hence, the stronger concept of
subgame-perfect equilibrium is a more suitable solution concept for sequential revoca-
tion games. The strategy s is a subgame-perfect equilibrium of a finite extensive-form
game, if it is an NE of any subgame defined by the appropriate subtree of the original
game. The game studied here has – by definition – a finite number of stages.

The existence of subgame-perfect equilibria can be checked by applying the one-
deviation property. This property requires that there exists no single stage in the game
in which a player i can gain by deviating from her subgame-perfect equilibrium strategy
while conforming to it at other stages. Hence, at a subgame-perfect equilibrium of a
finite extensive-form game, the one-deviation property holds.
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Consider a simplified variant of the cost structure (3.29) in the sequential revoca-
tion game. Specifically, let B = b = 0, cs = 1, and v < 1. Then, the subgame-perfect
equilibrium strategies of a player i are characterized in the following theorem.

Theorem 3.7 In the sequential revocation game, for any given values of ni, nr, v < 1,
and c, the strategy of player i that results in a subgame-perfect equilibrium is:

A∗i =

⎧⎪⎪⎨
⎪⎪⎩

A, if [c < v] or [(c > 1) and (ni ≥ 1)] or [(v < c < 1) and (ni ≥ nr)]

V, if [(v < c < 1) and (ni = nr−1)]

S, if [(c > 1) and (ni = 0)]

Proof The existence of subgame-perfect equilibria in the revocation game can be
obtained by applying the technique of backward induction, which is also called “Zer-
melo’s algorithm” in dynamic programming. Backward induction works by eliminating
suboptimal actions, i.e. yielding higher costs than the other actions in the same subtree
and at the same stage of the game tree, beginning at the leaves of the extensive-
form game tree. The obtained path (sequence of actions) in the game tree defines
the backward induction solution and any strategy profile that realizes this solution is
a subgame-perfect equilibrium [67].

Here, the one-stage-deviation principle is used to prove that deviating from each of
the strategies in the theorem under the corresponding conditions will not result in a gain.

First, assume that c < v, i.e. voting is more expensive than enduring the attack-
induced cost. If at any stage, player i deviates from the strategy A, then playing V or
S would result in a cost of v or 1, respectively. In both cases, the cost is higher than c,
since v < 1.

If v < c < 1 and ni ≥ nr, i.e. voting is less expensive than the attack-induced cost
and the number of remaining players is higher than the required number of voters, then
playing S or V would result in a cost of 1 or v, respectively. These costs are greater than
0 and the attacker will be revoked anyway, since v < c. Hence, the player i cannot gain
by deviating from the action A.

Another case that makes action A the best-response is when the attack-induced cost c
is bigger than 1, the cost of self-sacrifice, and the number of remaining players is higher
than 1 (ni ≥ 1), i.e. the attacker will be revoked by another player anyway. The proof is
similar to the previous cases.

Next, assume that v < c < 1, ni = nr − 1, and player i that is supposed to play V
according to strategy A∗i above, deviates in a single stage. If it plays S or A, it loses one
or c, respectively, both bigger than v. In both cases, the player cannot gain by deviating
from V .

Finally, if c > 1, ni = 0, and the player deviates from S by playing A or V , then the
player’s cost will be c or c+v, respectively. Both costs are greater than one and deviation
results in a loss for the player.

Thus, a deviation from any action A∗i under the corresponding conditions results in a
loss for the deviating player i which completes the proof that the strategy A∗i leads to a
subgame-perfect equilibrium.
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Theorem 3.7 essentially states that, since the attacker cost is fixed, the only objective
of the players is to remove the attacker, regardless of the actual game stage of this
happening. Thus, the revocation decision is left to the last players, either by voting or
by self-sacrifice, whichever induces less cost. For example, a node plays S only if the
attack-induced cost is higher than the cost of self-sacrifice and if it is the last player in
the sequential game.

The solution in Theorem 3.7 is not robust to changes in the system. For example, if
some of the last players move out of the system before their turn to play, then a revoca-
tion decision cannot be reached. To overcome this limitation, a variable cost version of
the revocation game is defined next.

Define a sequential game with variable costs where c j = jα, where 1 ≤ j < n is
the stage of the game, and α > 0 is the stage cost of attack. Let the attack cost at
the final stage of the revocation game grow infinitely, cn = ∞, if the attacker is not
revoked. Furthermore, assume that v < α. The subgame-perfect equilibrium strategies
in the defined variable cost sequential game are characterized in the following theorem.

Theorem 3.8 In the sequential revocation game with variable costs, for any given val-
ues of ni, nr, v < α, and α, the strategy of player i that results in a subgame-perfect
equilibrium is:

A∗i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A, if
[(

1≤ ni < min
{

nr−1, 1
α
})

and (v+(nr−1)α< 1)
]

or
[(

1≤ ni < 1
α
)

and (v+(nr−1)α> 1)
]

V, if [(ni ≥ nr−1) and (v+(nr−1)α< 1)]

S, otherwise

Proof The proof follows an argument similar to that of Theorem 3.7. If there are not
enough voters but at least another player can self-sacrifice, 1 ≤ ni < min

{
nr−1, 1

α
}

and self-sacrifice is more expensive than voting, v+(nr−1)α< 1, then deviating from
playing A has a cost of one. This is due to the fact that playing S is the only possible
option in this case as the number of voters is insufficient. Hence, the player cannot gain
by a deviation from action A.

If 1 ≤ ni < 1
α and v +(nr− 1)α > 1, deviating from playing A will cause player i a

cost of one if it plays S and a cost of v+(nr−1)α if it plays V . Hence, the player again
does not gain by deviating from A.

If there are enough voters, ni ≥ nr−1, and voting is less expensive than self-sacrifice,
v+(nr−1)α< 1, then deviating from playing V by choosing A or S costs the player niα
or one, respectively. In both cases, the cost will be greater than v+(nr−1)α, assuming
that v is negligible. Hence, the player does not gain by one-stage deviation.

The explicit condition for playing S is:

α> 1 or

(ni < nr−1) and

(
(ni = 0) or

(
ni ≥ 1

α

))
and (v+(nr−1)α< 1) or

(ni = 0)∨ (ni ≥ 1
α
))∧ (α< 1 < v+(nr−1)α).
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If the attack-induced cost is more expensive than self-sacrifice, α > 1, and player i
deviates from strategy S, it can play V or A. If it plays V , it loses v+(nr−1)α> 1 and
if it plays A, it loses niα> 1.

If the current player is the last one, ni = 0, or ni ≥ 1
α (alternately niα ≥ 1, which

means that the cost of abstaining is higher than the cost of self-sacrifice), and voting
is cheaper than self-sacrifice but there are not enough voters, v + (nr − 1)α < 1 and
ni < nr−1, deviating from S by playing A would result in a cost of niα if ni ≥ 1

α or ∞
if ni = 0 as the attacker will not be revoked. Playing V would not lead to revocation (as
there are not enough voters) and hence result in a cost of v+niα if ni ≥ 1

α or ∞ if ni = 0.
Hence, deviation from S would not pay off. A similar argument can be made if ni = 0
or ni ≥ 1

α , and α < 1 < v +(nr− 1)α: both voting and abstaining are more expensive
than self-sacrifice, and hence deviation from S would increase the cost.

Based on the arguments above, one-stage-deviation from the subgame-perfect equi-
librium strategy A∗i degrades the deviating player’s payoff, which completes the
proof.

An interpretation of the result of Theorem 3.8 is that, in contrast to the game with
fixed costs, the players are more concerned about quickly revoking the attacker as their
costs increase with time. Hence, under appropriate conditions, they will begin the revo-
cation process by voting or self-sacrifice in the early stages of the game rather than
waiting until the last opportunity.

3.7.3 Static revocation games

An alternative to the sequential revocation game is a static version where all nodes take
actions simultaneously. One of the main features of such a static revocation game is
that the players do not need to know others’ decisions before taking their own, which
obviously shortens the revocation game duration significantly and decreases the need for
keeping state information during the process. Both of these are issues that are important,
especially in ephemeral networks where stationary time windows are usually quite short.

Consider an n-player static revocation game with the action space A = {A,V,S}, cost
structure as in (3.29), and game parameters as defined before. Let, in addition, nv < n
be the number of votes required to revoke a malicious player. The NE solutions of this
game are characterized in the following theorem.

Theorem 3.9 The static revocation game admits at least one NE such that the malicious
node is revoked under one of the following conditions:

1. B≥ cs

2. B < cs and b < v and either
a. B− cs > b− v >−c or
b. b− v > B− cs >−c.

Proof The proof can be structured into four parts all of which follow directly from the
definition of the NE.
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First, if B = cs and b > v, in other words the payoff for voting is strictly greater than
for self-sacrifice, then all players voting A∗i = V ∀i is the unique NE strategy as all
players are better off voting. At this unique equilibrium, the malicious node is revoked
for n > nv by definition.

Second, if B = cs and b < v, i.e. a strictly lower payoff for voting than self-sacrifice
suggests that the latter strategy is always preferred for revocation by at least one partic-
ipating player. In this case, the NE solutions belong to the set of all combinations with
at least one self-sacrifice and all others abstain. Any of the NE revokes the malicious
node.

Third, if B < cs, b < v, and B− cs > b− v > −c, then the NE belongs to the set
of all combinations with exactly one self-sacrifice and n− 1 abstentions. Even though
both payoffs are negative, if self-sacrifice is still better than voting in terms of costs,
and the revocation is performed by one player, then it is in the best interests of all the
other players to abstain. Again, any of the NE revokes the malicious node. Notice that
the self-sacrificing node has no incentive to deviate from this equilibrium, for if it also
abstains, then its cost will be higher than self-sacrifice due to the malicious node not
revoked in that case.

Finally, if B < cs, b < v, and b− v > B− cs >−c, then the NE are all strategies that
have either one self-sacrifice with n− 1 abstentions as before or nv votes with n− nv

abstentions. In any of these NE solutions, the malicious node is clearly revoked. This
follows again directly from the definition of NE as in the previous cases. Notice that,
for the case of voting, the revocation is performed by the strict minimum number of
voters, nv.

One issue with the results in Theorem 3.9 is that there are multiple NE solutions
under many different conditions. If the game is played in one shot such that the play-
ers act concurrently, then making a choice between the feasible NE is difficult for the
players. This problem can be circumvented by adopting dynamic voting schemes [142]
or using other characteristics of the players such that the symmetry between equilib-
rium solutions is broken and an ordering among them is obtained. While doing this, it is
preferable to keep the information exchange between players at a minimum and avoid
introducing global state variables as in trust-based systems.

3.8 Discussion and further reading

Although there are many books on game theory, two specific ones, references [31] and
[136], provide substantial background to follow all game-theoretic models and anal-
ysis in this book. Other relevant books on game theory include references [95, 135];
see Appendix A.2 for additional references. The recent reference [132] provides an
overview of game theory more from a computer science perspective, and discusses its
applications to a wide variety of subjects. A brief introduction to noncooperative game
theory is in Appendix A.2.
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Although this book focuses on the NE as the main solution concept, partly due to
its simplicity, there are ongoing efforts to find alternatives to address issues arising
especially when there are multiple equilibria. Correlated equilibrium [135] by Aumann
and regret minimization [72] constitute two representative examples among many.

An extensive overview of intrusion detection systems can be found in reference [26].
Earlier articles [5, 6] complement and extend the material in Section 3.2. There are mul-
tiple works worth mentioning on security games but these could not be included due to
space limitations. The thesis [56] presents a different perspective to security games.
Additional formulations have been proposed in references [70, 71], and [73]. An appli-
cation of intrusion detection games to sensor networks is analyzed in reference [1]. The
impact of malicious players on system efficiency in the context of distributed computing
is investigated in reference [119], where security games are played over graphs.

Incentive mechanisms and selfish behavior in social (e.g. peer-to-peer) and ad-hoc
networks have been analyzed extensively in the literature using game-theoretic mod-
els, e.g. references [50, 64, 174], which provide the basis for the brief summary in
Section 3.4 and contain a more detailed treatment. Other recent works on the subject
include references [108, 109] which present a graph-theoretic formulation.

An introductory discussion on the security of vehicular networks is in reference [84].
A game-theoretic approach has also been presented in reference [50]. The articles [14,
46], upon which Section 3.5 is based, extend the discussion on the subject.

Jamming in wireless networks was first introduced in reference [192] and has sub-
sequently been analyzed extensively in the literature [50]. Among these are a dynamic
game formulation of jamming [102], correlated jamming on MIMO Gaussian fading
channels [86, 105], and key establishment using frequency hopping [168]. The material
in Section 3.6 is a revised version of the treatment in reference [153, 154] by Sagduyu
et al., where a more extended discussion of the subject can be found.

Revocation games in Section 3.7 are based on the articles [40, 141, 142], which
extend the models and results presented. They have introduced a set of protocols imple-
menting the revocation games analyzed, and discussed dynamic voting schemes for cost
and social welfare optimization. A related study on the subject is reference [117].



4 Stochastic security games

Chapter overview

1. Markov security games
– games played on a probabilistic state space
– solving Markov games using an extension of MDPs

2. Stochastic intrusion detection game
– random emergence of system vulnerabilities

3. Security of interconnected systems
– the effect of individual units on others
– states modeling attack steps and compromises

4. Malware filter placement game
– algorithms under dynamic routing
– simulations and illustrative example

Chapter summary

Stochastic or Markov security games extend the deterministic security game framework
of Chapter 3 through the utilization of probability theory to model the unknown and
uncontrollable parameters in security problems. Although they are mathematically more
complex, due to their mathematical sophistication Markov games enable a study of
the interaction between attackers and defenders in a more realistic way. Moreover, the
dynamic nature of the underlying game parameters, interdependencies, and external
factors are captured within the stochastic framework.
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4.1 Markov security games

Probabilistic approaches have been used extensively to model the faults, errors, and
failures of networked systems in the context of reliability and dependability. How-
ever, a study of security incidents differs from traditional reliability analysis. Unlike
unplanned (random) faults and errors in the system, security compromises are caused by
malicious attackers with specific goals. An increasing number of studies have recently
focused on quantifying operational security and relating security assessment to the reli-
ability domain [155] through probabilistic models as well as adopted game-theoretic
approaches.

Stochastic or Markov1 security games depart from the deterministic security games
of Chapter 3 in several aspects. The stochastic (Markov) models considered here capture
the complexities and unknown properties of the underlying networked system better
than deterministic counterparts. Hence, a more realistic depiction of attacker versus
system interaction is obtained. Another major difference is the dynamic nature of the
current model. The static security games of Chapter 3 are played repeatedly over time
in a myopic manner. On the other hand, the players here optimize their strategies, taking
into account future (discounted) costs, which allows them to refine their own strategies
over a time horizon. Markov security games rely on Markov decision processes (MDPs)
as a theoretical foundation for the development and analysis of player strategies.

Unlike their deterministic counterparts, stochastic games are played between the
attacker, P A, and the defender, P D, on a state space representing the environment
of the game. A state may be an operational mode of the networked system such as
which units are operational, active countermeasures, or whether parts of the system are
compromised.

In the adopted stochastic model, the states evolve probabilistically according to a
defined stochastic process with the Markov property. A Markov property holds naturally
in many systems and provides a nice simplification for others. The resulting stochastic
process is parameterized by player actions enabling the effect of player decisions to be
modeled on the networked system properties. For example, the probability of detection
of a specific attack is a function of attacker behavior, e.g. intensity of attack or whether
the system is targeted, as well as the amount of monitoring resources allocated by the
defender.

In addition to providing the defense system guidelines for countermeasures and
resource allocation, stochastic security games aim to analyze the behavior of ratio-
nal attackers. Within the framework of stochastic security games, attacker behavior is
represented as a probability distribution over possible attacks (actions) in each state.
Attacker strategies can be derived under various assumptions and for different scenarios
resulting in NE and other solutions.

At the same time, the stochastic state space model of the network provides a basis
for analyzing its security properties. Based on the attacker strategies, the transition

1 The two terms, Markov and stochastic, will be used interchangeably in this book when qualifying the
described class of games.
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probabilities between states can be computed for various cases. Hence, a network
security state diagram is obtained that explicitly incorporates attacker behavior.

Markov games, which have been studied extensively by the research community in
recent years, and their variants constitute the basis of stochastic security games. The
players in security games are direct adversaries, which can be modeled as zero-sum
games in most cases. Hence, zero-sum Markov games are the main focus of this chapter.
Multi-agent MDPs, such as dynamic programming methods derived from MDPs, are
utilized for solving these types of game.

Nonzero-sum Markov games, on the other hand, pose a serious challenge in terms
of convergence of solutions due to the nonuniqueness of NE at each stage. Various
methods have been suggested to overcome these convergence problems, such as gener-
alizations of NE to correlated equilibria, choosing asymmetric learning rates for players
to prevent synchronization, or cooperation schemes. Despite these efforts, there is still
no unified theory that is easily applicable to solve nonzero-sum stochastic security
games.

When limitations are imposed on information available to players in stochastic secu-
rity games, they can adopt various learning schemes. Such games are said to be of
limited information due to the fact that each player observes the other players’ moves
and the evolution of the underlying system only partially or indirectly. The players refine
their own strategies online in such cases by continuously learning more about the system
and their adversaries. Consequently, they base their decisions on limited observations
by using, for example, Q-learning methods. Such limited information security games
will be discussed in Chapter 5.

4.1.1 Markov game model

As a basis for stochastic security games, consider a two-player (P A versus P D) zero-sum
Markov game played on a finite state space, where each player has a finite number of
actions to choose from. As in Chapter 3, the action space of attacker, P A, is defined
as AA := {a1, . . . ,aNA} and constitutes the various possible attack types. Similarly,
the action set of defensive measures for P D is AD := {d1, . . . ,dND}. The environ-
ment of the networked system is captured by a finite number of environment states,
S = {s1,s2, . . . ,sNS}.

It is assumed that the states evolve according to a discrete-time finite-state Markov
chain which enables the utilization of well-established analytical tools to study the prob-
lem. Then, the state transitions parameterized by player actions are determined by the
mapping

M : S ×AA×AD→ S . (4.1)

Let pS := [p1, . . . , pNp ] be a probability distribution on the state space S , where
0 ≤ pS

i ≤ 1 ∀i and ∑i pS
i = 1. Then, in the discrete and finite case considered here,

the mapping M can be represented by an NS × NS transition (or Markov) matrix
M(a,d) = [Mi, j(a,d)]NS×NS , parameterized by a ∈ AA,d ∈ AD such that
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pS(t +1) = M(a,d) pS(t), (4.2)

where t ≥ 1 denotes the stage of the repeated stochastic security game.
The mapping M in (4.1) can be alternatively parameterized by the states to obtain as

many zero-sum game matrices G(s) as the number of states, s ∈ S , each of dimension
NA × ND. In other words, given a state s(t) ∈ S at a stage t, the players play the
zero-sum game

G(s(t)) = [Ga,d(s(t))]NA×ND . (4.3)

For example, if P A takes action a4 and P D the action d2 when in state s3, then the
outcome of the game is G4,2(3) (gain of P A and loss of P D).

The definition in (4.2) represents the most general case for the types of Markov game
considered. The state transition matrix M does not have to depend on all actions of the
players. For example, in cases when the actions of P D do not have an effect on the state
evolution, the transition matrix does not have to be parameterized by them resulting in
M(a), a ∈ AA. Likewise, if neither player has an effect on state transitions, then (4.2)
simply becomes pS(t +1) = M pS(t). On the other hand, as long as the Markov game is
not trivial, the zero-sum game matrices for each state, G(s), remain as before.

The strategies of the players are state dependent and are extensions of those in
Chapter 3. The strategy of P A,

pA(s) :=
[
pA

1 (s), . . . , pA
NA

(s)
]
,

is defined as a probability distribution on the attack (action) set AA for a given state
s ∈ S and the one of P D is

pD(s) :=
[
pD

1 (s), . . . , pD
ND

(s)
]
,

a probability distribution on the defense (action) set AD, such that 0 ≤ pA
i , pD

i ≤ 1 ∀i
and ∑i pA

i = ∑i pD
i = 1. The mixed strategies, unlike pure ones, ensure that there exists

a saddle-point equilibrium at each stage of the matrix game, G(s) by Corollary 2.3 in
reference [31, p. 28], which also states that the saddle-point value in mixed strategies
is unique.

4.1.2 Solving Markov games

There is a close relationship between the solution methods of Markov games and MDPs.
If one of the players in a stochastic security game adopts a fixed strategy, then the game
degenerates to an optimization problem for the other player and the Markov game turns
into an MDP. Consequently, the methods for solving MDPs, such as value iteration, are
directly applicable with slight modifications to Markov games.

For the zero-sum Markov game formulation in Section 4.1.1, the defending player
P D aims to minimize own aggregate cost, Q̄,2 while facing the attacker P A who tries
to maximize it. The reverse is true for the player P A due to the zero-sum nature of

2 The superscript D is dropped to simplify the notation.
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the game. Hence, it is sufficient to describe the solution algorithm for only one player.
To avoid duplication, the rest of the analysis focuses on the defensive player, P D. The
game is played in discrete-time (stages) over an infinite time horizon. As in MDP, the
aggregate cost of the defending player P D at the end of a game is the sum of all realized
stage costs discounted by the scalar factor α ∈ [0,1) and given by

Q̄ :=
∞

∑
t=1
αtGa(t),d(t)(s(t)), a(t) ∈ AA, d(t) ∈ AD, s(t) ∈ S , (4.4)

where Ga(t),d(t)(s(t)) is an entry in the stage game matrix G(s(t)) defined in (4.3).
The player can theoretically choose a different strategy pA(s(t)) at each stage t of the

game to minimize the final realized cost Q̄ in (4.4). Fortunately, this complex prob-
lem can be simplified significantly. First, it can be shown that a stationary strategy
pA(s) = pA(s(t))∀t is optimal, and hence there is no need to compute a separate optimal
strategy for each stage. Second, the problem can be solved recursively using dynamic
programming (DP) to obtain the stationary optimal strategy (solving a zero-sum matrix
game at each stage). Notice that, unlike MDP, the optimal strategy can be mixed, i.e.
stochastic for each state s. A basic overview of DP in discrete- and continuous-time is
provided in Appendix A.3.

At a given stage t, the Q-value or optimal t-stage cost, Qt(a,d,s), can be computed
iteratively using DP recursion

Qt+1(a,d,s) = Ga,d(s)+α∑s′∈S Ms,s′(a,d)

×minpD(s′) maxa∑d∈AD Qt(a,d,s′)pD
d (s′),

(4.5)

for t = 0,1, . . ., and a given initial condition Q0. Here, the Q values are defined over not
only states as in MDP but also player actions.

This recursion can be equivalently written in functional form

Tt(Q)(a,d,s),

by defining the mapping T : AA×AD× S→ AA×AD× S. The mapping T can be
interpreted as the optimal cost function for the one-stage problem that has stage cost
G(s). Furthermore, the iteration (DP algorithm) provably converges to the optimal cost
function

Q∗(a,d,s) := lim
t→∞Tt(Q)(a,d,s), ∀a,d,s. (4.6)

It is possible to write the counterpart of Bellman’s equation for the Markov game by
splitting (4.5) into two parts:

V (s) = min
pD(s)

max
a ∑

d∈AD

Qt(a,d,s)pD
d (s) (4.7)

and

Qt(a,d,s) = Ga,d(s)+α ∑
s′∈S

Ms,s′(a,d)V (s′), t = 1, . . . (4.8)
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The strategy pD(s)∀s obtained by solving (4.7) is the minimax strategy with respect
to Q. It can be computed by P D for any state s by solving the linear program

minpD(s) V (s)

s.t. ∑d∈AD Qt(a,d,s)pD
d (s)≥V (s), ∀a ∈ AA,

∑d pD
d = 1, pD

d ≥ 0, ∀d ∈ AD.

(4.9)

This linear program above is a generalization of the min operator for MDP.
The fixed points of equations (4.7) and (4.8), V ∗ and Q∗, lead to the optimal minimax

solution for the defender. One would also obtain the corresponding mixed strategy of
the attacker (in the saddle-point equilibrium) by interchanging the positions of min and
max in (4.7), this time the maximization being over pA(s) and minimization over d. This
does not change the values of V ∗ and Q∗, since the game has a saddle-point in mixed
strategies.

The Bellman equation to obtain Q∗ (for either players) is Q∗ = T (Q∗). There are
multiple ways to solve the Bellman equation. One of them is the algorithm described
by (4.7) and (4.8) together with (4.9), as captured in Algorithm 4.1 below, which is
also known as value iteration or successive approximation. An alternative method is
policy iteration. However, value iteration is often preferred over its alternatives due to
its scalability.

Algorithm 4.1 Value iteration algorithm

1: Given arbitrary Q0(a,d,s) and V (s)
2: repeat
3: for a ∈ AA and d ∈ AD do
4: Update V and Q according to (4.7) and (4.8)
5: end for
6: until V (s)→V ∗, i.e. V (s) converges.

An alternative stochastic game formulation
An alternative formulation of zero-sum stochastic games is given in reference [136,
Chap. V.3]. There, a stochastic game is said to consist of “game elements” which
are the counterparts of zero-sum game matrices G(s) for each state s ∈ S defined in
Section 4.1.1. The term

qi j(a,d), a ∈ AA, d ∈ AD, i, j ∈ S ,

denotes the probability of having to play the j-th game element (state) when currently
in element i under the given actions of the players. Hence, these “state transition”
probabilities approximately correspond to the entries of the Markov transition matrix
M(a,d) in (4.2).
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This zero-sum stochastic game model of reference [136] differs from that in
Section 4.1.1 in one important aspect. It introduces a nonzero termination probability
to the stochastic game such that the probability of infinite play is zero and all expected
costs are finite even without a discount factor. In other words, there exists a nonzero
transition probability qi,0(a,d) > 0 to a state 0 at which the game terminates regardless
of the actions of the players. Consequently, even if the discount parameter is chosen to
be one, α= 1, the aggregate cost remains finite.

It is possible to state the counterpart of value iteration equations (4.7) and (4.8) for
this stochastic game as

V (s) = min
pD(s)

max
a ∑

d∈AD

Qt(a,d,s)pD
d (s) (4.10)

and

Qt(a,d,s) = Ga,d(s)+ ∑
s′∈S

qs,s′(a,d)V (s′), t = 1, . . . (4.11)

Again, the value iteration algorithm asymptotically converges to the unique fixed points
V ∗ and Q∗, which constitute the optimal minimax solution for the player, due to

∑
j∈S

qi j(a,d) < 1 ∀i,a,d.

4.2 Stochastic intrusion detection game

The stochastic security game framework described in the previous section opens the
door to more comprehensive and realistic intrusion detection games than that investi-
gated in Section 3.2. As an illustrative example, a stochastic intrusion detection game is
defined and studied, where vulnerabilities of individual systems monitored on a network
are modeled using a controlled Markov chain.

A single system is considered first, where the state space consists of two states

S = {v,nv},
representing vulnerability to attacks and being not vulnerable at a given time instance.
The state transition probabilities of the Markov chain capture the discovery or exploita-
tion probability of vulnerabilities affecting the system as well as the probability of
the system being upgraded or patched such that the vulnerability is removed. These
probabilities naturally depend on the actions of the defender. If the defender allocates
additional resources to the system for maintenance, then the probability of new vulnera-
bilities emerging decreases while one of their removal increases. In contrast, a neglected
system is more vulnerable to attacks and remains so with high probability.

The stochastic intrusion detection game is defined as a zero-sum Markov game
between the attacker, P A, and the defender P D. As in the game in Section 3.2, the
action set of P A is AA = {a,na}, where a corresponds to launching an attack on the
system and na denotes no attack. The corresponding action set of P D is

AD = {d,nd},
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where d is intensified monitoring and maintenance, and nd denotes default defensive
level. Given the state space S = {v,nv}, the probability of being in a specific state is
given by the vector

pS :=
[
pS

v , pS
nv

]
, 0≤ pS

v , pS
nv ≤ 1 ∀i and pS

v + pS
nv = 1.

Then, the state probabilities evolve according to

pS(t +1) = M(·)pS(t),

where t ≥ 1 denotes the stage of the game. The state transition or Markov matrices con-
ditioned on the actions of P D, n, and nd, are denoted by M(n) and M(nd), respectively.
Similarly, the game matrices conditioned on the states are G(nv) and G(v).

In addition to the stochastic model of the underlying environment (in this case the
system vulnerability), the stochastic intrusion detection game differs from the previous
one in Section 3.2 with its dynamic nature. The players here optimize their strategies not
only with respect to instantaneous costs but also taking into account future discounted
costs given the expected evolution of the game. The Markov game model (Section 4.1.1)
and its solution (Section 4.1.2) provide the necessary theoretical foundation for the
analysis and computation of player strategies.

Numerical example

The game introduced above is now analyzed numerically for a set of example
parameters. Let

M(d) =
[

0.9 0.8
0.1 0.2

]
, M(nd) =

[
0.1 0.2
0.9 0.8

]
. (4.12)

The diagrams (a) and (b) in Figure 4.1 depict the state transition matrices M(d) and
M(nd), respectively.

Not vulnerable Vulnerable

0.1

0.8

0.9 0.2

Not vulnerable Vulnerable
(a)

(b)

0.9

0.2

0.1 0.8

Figure 4.1 State transition diagram of the stochastic intrusion detection game for (a) the
defensive action, M(d), and (b) default level, M(nd).
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The game matrices are chosen as

G(nv) =
[−5 10

1 0

]
, G(v) =

[−3 11
2 0

]
. (4.13)

Notice that the values in G(v) indicate a higher gain and loss for P A and P D, respec-
tively, when the system is vulnerable, when compared to those in G(nv). Furthermore,
they are consistent with the parametric static game version in (3.1).

The game defined is solved using the Algorithm 4.1, where α is chosen as 0.3 to
represent heavy discounting of future costs. Just after three iterations, the Q values
converge to their final values with an accuracy of 0.01,

Q(nv) =
[−4.3 10.1

1.7 0.1

]
, Q(v) =

[−2.9 11.7
2.1 0.7

]
. (4.14)

The corresponding V values (4.7) are [1.1,1.7]. The resulting equilibrium strategies
of P A and P D in the stochastic intrusion detection game are depicted in Figure 4.2.
The strategies obtained by solving the two static games (4.13) separately are shown in
Figure 4.3 for comparison.

The stochastic intrusion detection game discussed illustrates Markov security games
and relevant solution methods through a simple and easy-to-understand example. Real-
world intrusion detection systems monitor and defend large-scale networks with many
interconnected components. Stochastic security games can easily model such systems
within the presented mathematical framework as will be illustrated in the next section.
The state space can be extended to capture not only multiple systems on the network

a,d na, nd
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Figure 4.2 Equilibrium strategies of players P A and P D in the stochastic intrusion detection
game.



4.3 Security of interconnected systems 83

a na
0

0.5

1
Attack strategies for static game

P
ro

ba
bi

lit
y

vulnerable
not vulnerable

d nd
0

0.2

0.4

0.6

0.8
Defense strategies for static game

Actions

P
ro

ba
bi

lit
y

vulnerable
not vulnerable

Figure 4.3 Equilibrium strategies of players P A and P D in the zero-sum intrusion detection
games (4.13).

but also their interdependencies. In addition, the effects of defender and attacker actions
can be incorporated into state transition probabilities. On the other hand, when using
stochastic security games, the well-known state explosion problem should be watched
out for. This can often be addressed using hierarchical decomposition and other state
reduction techniques. Furthermore, the value iteration algorithm for solving the Markov
security games involves mainly linear programming, which is very scalable.

4.3 Security of interconnected systems

Interdependencies among individual systems play a significant role in network security.
Stochastic (Markov) models, which have been successfully used in dependency anal-
ysis, can be extended and applied to the network security domain. Malicious attacks,
security compromises, and defensive actions along with (random) fault and recovery
processes form a single stochastic state-based model. Thus, the stochastic security
game framework presented in the previous section provides a basis for investigation
of attacker and defender interactions on a networked system with interconnected
components.

Each state in the stochastic model may represent an operational mode of the net-
work based on subsystem characteristics, whether specific nodes are compromised
or vulnerable, defensive processes, attack stages, etc. The number and definition of
states is an important part of security modeling and involves a tradeoff between
representativeness and complexity. Models with extreme fine granularity may become
not only computationally complex but also problematic during parameterization.
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The transition probabilities between states capture not only intrinsic random events
of the system such as errors and failures but also attacks and defensive actions. Hence,
the controlled Markov model considered encompasses attack graphs, where each state
transition corresponds to a single atomic step of a penetration, along with the impact of
attacks and defense measures on the system. This facilitates the modeling of unknown
attacks in terms of generic state transitions.

The parameters underlying the transition probabilities constitute one of the most
important components of the model. There are well-established procedures for obtain-
ing accidental failure and repair rates as part of traditional dependability analysis. How-
ever, quantifying the effects of attacker and defender actions can be challenging. Possi-
ble solutions to address this problem include collecting the opinions of security experts,
using empirical data such as historical attack data obtained from honeypots, or results
of controlled experiments. In any case, parameter uncertainty is hard to circumvent.
Therefore, conducting a sensitivity analysis as in Section 3.3 is crucial for reliability of
the results and in order to test their robustness with respect to parameter deviations.

4.3.1 Analysis of an illustrative example

Application of the stochastic security game framework of Section 4.1 to an intercon-
nected system is best demonstrated through analysis of a simple example network.
Consider a portion of a corporate network with three important elements: the web
server hosting various web-based applications (system 1), the file server hosting the
corporate database (system 2), and the administrator accounts (system 3), as depicted in
Figure 4.4.

The system states

S = {000,000∗,001,010, . . . ,111}
are defined based on whether any element is compromised, 1, or not, 0. The states are
enumerated in the order given such that 000 is state 1, 000∗ is state 2, and 001, 010, 100,
110, 111 correspond to states 3,4,5,6,7, respectively. In this model, the state 010 means
the web server (system 2), and state 011 means that both the web server and administra-
tor account (systems 2 and 4) are compromised. The state 000∗ represents the state when
no system is compromised but the attacker has gained valuable information about the

Database

Web serverAccounts

Figure 4.4 Visual illustration of a corporate network.
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(001)

(010)
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Figure 4.5 Finite state diagram of the example network with system states S .

system through scanning. The attacker P A has the actions AA = {a0,a1,a2,a3}, which
represent scanning the network a0, compromising an administrator account a1, the web
server a2, and file server a3, respectively. Similarly, the defender P D has the options
AD = {d0,d1,d2} denoting patching the systems, d0, resetting administrator passwords,
d1, and checking both file and web servers, d2, respectively.

Figure 4.5 shows the finite state diagram of the example network. Here, the transition
probabilities λ’s indicate the success probability of an individual attack. The parameters
µ’s denote the system recovery probabilities, e.g. due to routine maintenance or specific
defensive actions. The probability of the system staying in a given state is defined as γ.
Then, the Markov matrices similar to those in (4.12) are computed between the states in
the diagram for each given action–reaction pair of P A and P D. For example, the transi-
tion probabilities between states 000 and 000∗ given P A and P D actions, a0 and d0, are:

pS(000→ 000∗,a0) =
λ12

λ12 + γ1
,

pS(000∗ → 000,a0,d0) =
µ21

λ12 +µ21 + γ2
.

The Markov model illustrated is quite versatile and provides a basis for different
types of analysis in addition to the equilibrium one of the associated stochastic game.
They are summarized in Table 4.1. The game matrices of the stochastic security game
(game analysis in the table) are defined for each state, seven in total for this example, in
a way similar to those in (4.13). Subsequently, the game can be solved using methods
discussed in Section 4.1.2, for example, using the value iteration algorithm. The worst-
case analysis entails setting all attack probabilities to one and optimizing the defender
strategy using an MDP. In the best case, P A adopts the equilibrium strategy whereas the
defense uses all the measures available at the same time without worrying about the cost
of these actions. The dependency analysis, on the other hand, considers only accidental
failures in the system that are independent of attacker actions. Finally, notice that the
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Table 4.1 Security analysis types

Analysis Description
Worst case Network under attack on all fronts,

i.e. all possible attacks simultaneously

Best case Full defensive measures against
rational attackers playing equilibrium strategy

Game analysis Both P A and P D play the equilibrium
strategies from stochastic game

Dependency analysis Only accidental failures are considered
without any malicious attacks

Markov model also captures multi-stage attacks with the simple two-stage example of
“scan first and then attack” depicted here.

4.3.2 Linear influence models

This section presents two applications of a linear interdependency model based on the
concept of linear influence networks [114]; one for the relationship between security
assets and one for vulnerabilities. Both of these terms are used in a broad sense such
that security assets may refer to system nodes or business assets in the security context,
whereas vulnerabilities may also mean threats and potential attacks. Each influence
network is represented by a separate weighted directed graph.

Independent versus effective value of security assets
The term security asset refers to a node in a complex and interconnected system that
plays a security related role. The network of assets is modeled as a weighted directed
graph Gs = {N ,Es} where N is the set of nodes (assets) with cardinality n, and the set
of edges Es represents the influence among the nodes. The weight of each edge ei j ∈Es

is denoted by a scalar wi j that signifies the influence of node i on node j, i, j ∈N . The
resulting influence matrix is then defined as

Wi j :=
{

wi j if ei j ∈ Es

0 otherwise,
(4.15)

where 0 < wi j ≤ 1 ∀i, j ∈N and∑n
i=1 wi j = 1, ∀ j ∈N . The entry w j j = 1−∑n

i=1,i 
= j wi j

is the self-influence of a node on itself.
Let the vector

x = [x1,x2, . . . ,xn]

quantify the value of independent security assets, i.e. nodes in N . The vector

y = [y1,y2, . . . ,yn]
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representing the effective security assets takes into account the influence of nodes on
each other’s value. Both are related to each other by the one-to-one linear influence
mapping

y = W x. (4.16)

Since W is a stochastic matrix, i.e. ∑n
i=1 wi j = 1,∀ j ∈ N , the aggregate value of all

the effective security assets is equal to the sum of the value of all independent security
assets, which follows from

n

∑
i=1

yi =
n

∑
i=1

n

∑
j=1

wi jx j =
n

∑
j=1

n

∑
i=1

wi jx j =
n

∑
j=1

x j

n

∑
i=1

wi j =
n

∑
j=1

x j. (4.17)

The influence matrix W thus signifies the redistribution of security asset values. The
value of an independent security asset or node i is redistributed to all nodes in the
network that have an influence on i, including itself.

If a node is compromised, then the node itself and all the edges connected to it will
be removed from the graph. Hence, the security loss of the network will be the node’s
effective security asset value instead of its independent one. Conversely, if a node is
secured, it regains its original influence on other nodes. In either case, the entries of the
influence matrix W are normalized to keep it stochastic.

Notice that this linear model of independent and effective security assets can be eas-
ily applied to a variety of security scenarios including the illustrative example in the
previous section.

Influence model for vulnerabilities
The linear influence network model is now utilized to capture the interdependencies
between security vulnerabilities in a network, where the vulnerabilities of a security
asset (node) influence other nodes. For example, in a corporate network, if a work-
station is compromised, the data stored in this computer can be exploited in attacks
against other workstations; these latter computers will thus become more vulnerable to
intrusion. Such an interdependency can be captured using the linear influence network
model.

Let the nodes N of the weighted directed graph Gv = {N ,Ev} represent the security
assets as before. The edges Ev now denote the amount of influence between the nodes
in terms of vulnerabilities. Consequently, the vulnerability matrix is defined as

V :=

⎧⎪⎪⎨
⎪⎪⎩

vi j, if ei j ∈ Ev

1, if eii

0, otherwise,

(4.18)

where 0 ≤ vi j ≤ 1 quantifies the vulnerability of node i due to node j as a result of
interdependencies in the system. The self-influence is defined to be one, vii = 1, ∀i,
which can be interpreted as the default level of vulnerability of a node independent of
others. Define in addition the aggregate influence on node i from all other nodes as

vi =
n

∑
j=1

vi j.
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Note that vi≥ 1 as vii = 1 ∀i. Unlike the model for security assets in the previous section,
the influence matrix here is not normalized, and hence not stochastic.

In this vulnerability influence model, the more connected a node is, the more vulner-
abilities it has due to outside influences. This is very much in line with the discussion in
Chapter 2 and the argument “the most secure computer is the one totally disconnected
from the network.”

Define next the probability that node i is compromised as

ci(a,d,s) := max
{

cb
i (a,d,s)vi,1

}
,

where 0 ≤ cb
i (a,d,s) ≤ 1 is the baseline or standalone probability of compromise of

node i. Here, in accordance with the model in Section 4.1.1, s ∈ S is the given system
state, a ∈ AA the current attack, and d ∈ AD the defensive action taken.

Numerical example
As an illustrative example, we now analyze numerically a stochastic security game for
the network with three nodes in Section 4.3.1 (Figure 4.4) using the alternative solution
method in Section 4.1.2. Similar to the example in Section 4.3.1, the system states are
defined as

S = {000,001,010, . . . ,111}.
The states indicate whether any node is compromised one or not zero, and are enu-
merated in the order given such that 000 is state 1, 001 is state 2, and 010, 100, 011,
101,110, 111 correspond to states 3,4,5,6,7, respectively.

The influence matrix quantifying the redistribution of security asset values among the
nodes is chosen to be

W :=

⎛
⎝ 0.8 0.2 0

0 0.6 0
0.2 0.2 1

⎞
⎠ . (4.19)

The independent security asset values of the individual nodes are x := [8,8,15]. The
vulnerability matrix modeling the interdependencies between the nodes is

V =

⎛
⎝ 1 0.1 0

0.4 1 0
0.1 0.3 1

⎞
⎠ .

The parameters in the example are chosen as follows. The probability that an indepen-

dent defended node j gets compromised is p( j)
d = 0.2 whereas this probability increases

to p( j)
n = 0.4 if not defended. The probability that the system goes to state 000 is

p(1)
r = 0.7 while other transition probabilities are chosen to be p(·)

r = 0.2. Finally, the
probability that the game (attacks) ends is pe = 0.3.

For example, suppose the system is at S1 (0,0,0). The next state could be one in
{000,001,010,100} depending on the Attacker and Defender actions. The Attacker’s
pure strategies are AA = {a1,a2,a3}, and /0, which mean to attack node 1, node 2,
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node 3, or do nothing, respectively. Similarly, the Defender’s pure strategies are AD =
{d1,d2,d3}, and /0.

If the Attacker attacks node 1 and the Defender defends it, then the possible next
states are {s1 = 000,s4 = 100} and

G11(1) = c1(1,1,1)y(1)

q11(1,1) = (1− c1(1,1,1))(1− pe),

q14(1,1) = c1(1,1,1),

q1 j(1,1) = 0 ∀ j 
= 1,4,

where c1(1,1,1) = p(1)
d ∑k V1,k denotes the probability that node 1 is compromised

at state 000 and has full defensive support, as defined in the previous section. Here,

the actual probability that the game ends at this state is p(1)
e = (1 − c1(1,1,1))

pe > 0.
On the other hand, if the Attacker attacks node 1 and the Defender defends node 2,

we have

G12(1) = c1(1,2,1)y(1)

q11(1,2) = (1− c1(1,2,1))(1− pe),

q14(1,2) = c1(1,2,1),

q1 j(1,2) = 0 ∀ j 
= 1,4,

where c1(1,2,1) = p(1)
n ∑k V1,k is the probability that node 1 is compromised at state 000

and has no defensive support.
Next, suppose that the system is at s4 = 100, i.e. node 1 is compromised. The next

state could be one of {000,100,101,110}. The Attacker’s pure strategies are a2, a3,
and /0, which mean to attack node 2, node 3, or do nothing, respectively. Similarly, the
Defender’s pure strategies include d2, d3, and /0. If the Attacker attacks node 2 and the
Defender defends it, then

G22(4) = c2(2,2,4)y(4)

q47(2,2) = c2(2,2,4),

q41(2,2) = (1− c2(2,2,4))p(4)
r ,

q44(2,2) = (1− c2(2,2,4))
(

1− p(4)
r − p(4)

e

)
,

q4 j(2,2) = 0 ∀ j 
= 1,4,7,

where c2(2,2,4) = p(4)
d ∑k V2,k is the probability that node 2 is compromised at state

s4 = 100 while defended.
The other entries can be calculated in a similar way. Then, the resulting stochastic

security game can be solved using the alternative method in Section 4.1.2. The com-
puted optimal strategies of the Attacker and the Defender are depicted in Figures 4.6(a)
and 4.6(b), respectively. These strategies can be interpreted as a guideline for the players
to allocate their resources in the security game.
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Figure 4.6 Optimal Attacker (a) and Defender (b) strategies for each state s ∈ S of the stochastic
security game computed using the alternative method in Section 4.1.2.

4.4 Malware filter placement game

The malware detector and filter placement, which will be referred to here as the filter
placement problem, investigates detector and filter placement algorithms within given
hardware and network constraints. The specific objective here is to study optimal place-
ment and activation schemes taking into account the actions of malicious attackers based
on the stochastic game framework of Section 4.1.1.
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Malware filters are network security measures that are implemented on or next to the
network elements, instead of hosts, in order to enforce certain network-wide security
policies. Hence, the deployment of detection capabilities are analyzed as an integral part
of the network itself. Malware filtering is closely related to passive network monitoring,
where packets are sampled with the intention of finding out more about flows in the net-
work as well as identifying malicious packets. While monitors are only about observing,
the filters react to security problems directly by dropping (some of the) potentially mali-
cious packets. Both the monitors and filters often run on dedicated hardware in order to
handle high traffic volumes. The amount of traffic on the link monitored also affects the
type of pattern recognition algorithms that can be deployed. While only simple algo-
rithms can be run on backbone gigabit links, more sophisticated stateful inspection can
be used on lesser utilized edge links.

Malware filters cannot be fully deployed or activated on all links all the time due to
restrictions on capacity, delay, and energy. The last limitation is especially relevant in the
case of ad-hoc networks where the nodes often have limited energy. The identification
of the strategic points for deploying active network monitors can be computationally
complex due to the presence of multiple tradeoffs involved. The filter placement prob-
lem also has more general implications than security-related ones due to its importance
within the context of network management. It is studied using standard optimization
techniques in Chapter 7 through multiple formulations and utilizing betweenness cen-
trality algorithms originating from social network analysis, while omitting the effect of
malicious attackers’ actions.

The filter placement problem is investigated in this section adopting a game-theoretic
approach, more specifically the stochastic game framework of Section 4.1.1. In the
worst-case scenario, the attackers attempting to gain unauthorized access to a target sys-
tem residing in the network or to compromise its accessibility through distributed denial
of service (DDoS) attacks are expected to have complete knowledge of the internal con-
figuration of the network such as routing states or detector locations. Thus, the attackers
should be seen as rational and intelligent players who respond to defensive actions
by choosing different targets or routes to inject the malware. Due to this presumed
adaptive behavior of the opponent, dynamic defensive measures should be considered
that take into account the actions of the attackers. Otherwise, the filter placement and
activation algorithms may yield suboptimal results as a consequence of the attackers
circumventing them through intelligent routing.

The specific stochastic security game here utilizes the notion of a sampling budget,
where the sampling effort can be distributed arbitrarily over the links of the network.
This approach is useful in architectures where the routers have built-in sampling capa-
bilities. The framework considered is also applicable to the deployment of dedicated
hardware devices for detecting and filtering malicious packets. The formulation also
encompasses frequent routing state changes on the network, as is the case in, for exam-
ple, ad-hoc networks, which are modeled explicitly by the routing state transition matrix
and strategies of the players.

In practice, one of the main benefits of using stochastic security games for solv-
ing the filter placement problem is the quantitative framework enabling dynamic and
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adaptive filter placement without manual intervention. Furthermore, the equilibrium
solution ensures that, assuming guaranteed local detection rates at the links, the global
detection and filtering rate will never fall below a certain level. This is an important
feature for the protection of critical infrastructures.

4.4.1 Stochastic game formulation

The underlying network for filter placement is represented by an undirected graph
(V,E), where V is the set of vertices (e.g. computers or servers) and E the set of net-
work links. Let viv j denote the link between nodes vi and v j. The attacker P A controls
directly or indirectly a subset of vertices VA ⊆ V , which, for example, may belong to a
botnet. On the other hand, the defender P D protects a set of targets VT ⊆ V , where it
is assumed that VA∩VT = ∅ without any loss of generality. In some cases, the vertices
may represent entire subnetworks with multiple hosts, while in others only a single net-
worked device. In other words, a node v ∈ VA may be either a single client or a subnet
from which even multiple distinct attackers operate, yet are mathematically treated as a
single attacker, P A.

Adopting the stochastic security game framework of Section 4.1.1, the filter place-
ment problem is formulated as a zero-sum finite Markov game, where each player has a
finite number of attack or defensive actions to choose from. The attacker’s action space
is defined as AA := VA×VT = {a1,a2, . . . ,amax}, representing the attack routes avail-
able to the attacker from a certain node vi ∈ VA from which the attack is initiated to
the target nodes v j ∈ VT . On the other hand, the action space of the defense is taken as
AD = {d1,d2, . . . ,dmax} ⊆ E, which is the set of links on which the malware filters can
be deployed or activated. The actions of P D are restricted to the network core under
direct control, i.e. the set {viv j ∈ E such that vi,v j /∈ (VA ∪VT )}. This is, for example,
the case when P D represents an Internet service provider (ISP). For simplicity of anal-
ysis, P A is taken to choose a single source-target vertex pair and P D to deploy a filter at
a given time. This assumption is immediately relaxed when extending the analysis from
pure to mixed strategies.

The players interact on a network consisting of a set of nodes whose routing tables
may change randomly at discrete time instances with a predefined probability, which
models load balancing on the network. In addition, the framework allows for analysis
of static routing and imperfectly functioning (defective) detectors under static rout-
ing. Each of these constitute the underlying stochastic system on which the players
interact. Focusing on the dynamic load-balancing case, each possible routing configu-
ration defines the space of routing states, S = {s1,s2, . . . ,smax}. The exact mathematical
definition of the states depends on the routing protocol employed in the underlying real-
life network. In session routing, for example, for each source–sink pair (vi,v j) ∈ AA

there is a distinct path on which the packets are routed. On the other hand, in archi-
tectures that are not flow-based, all packets with the same target (Internet protocol
address) arriving at a certain router will be forwarded to the same next router. Simi-
larly, the failures of the detectors can be modeled probabilistically to obtain a set of
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detector states similar to the routing ones. The transition probabilities between the
states s for each case are denoted by M and are independent of player actions unlike
the case in the previous section. Then, the probability of being in a specific state,
pS :=

[
pS

1, pS
2, . . . , pS

max

]
, evolves according to pS(t +1) = M pS(t), where t ≥ 1 denotes

the stage of the game.
Each player is associated with a set of costs that are not only a function of the other

players’ actions but also the state of the system. The costs of P D and P A are captured
by the game matrices G(s), where s ∈ S for a given state s. The cost of P A simply
represents the number (value) of detected malware packets, in other words the cost of
a failed attack attempt. The P D benefits from such a situation (approximately) equally.
In the reverse situation, the cost represents missed malware packets, i.e. a successful
attack which benefits the attacker. Thus, the game is zero-sum. Each player knows its
own cost at each stage of the game as well as the (state) transition probabilities between
the routing configurations. Hence, the stochastic security game can be solved using the
methods of Section 4.1.2.

4.4.2 Simulations

Setup
The filter placement game described above is illustrated now on the example network
shown in Figure 4.7, which is composed of eleven nodes. Two systems (a1 and a2) are
controlled by the attacker P A and may be used to launch an attack on any of the three
target systems (t1, t2, t3). Two of these target systems are connected to the same access
router. Using the notational convention of the previous section, the action space of P A is
then {a1t1,a1t2,a1t3,a2t1,a2t2,a2t3}, where ait j corresponds to the attack from ai on t j

in the attacker’s action space. These attacks are enumerated for notational convenience
to define the P A action set as AA = {a1,a2, . . . ,a6}.

The action space of P D consists of all the links on the network where a filter
may be placed or activated by the defense. Placement of a filter directly before an
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Figure 4.7 Example network with two attack points VA = {a1,a2} and three target systems
VT = {t1, t2, t3}. The candidate links for filter placement are labeled with numbers.
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attacked node or access router (r5,r6) is generally suboptimal due to lack of informa-
tion on the exact location of attackers and targets. Hence, the action space of P D is
{r1r3,r1r4,r2r3,r2r4,r3r5,r3r6,r4r5,r4r6}, which is enumerated as AD = {d1, . . . ,d8}
as shown in Figure 4.7.

The game matrices G(s) are defined numerically next. Let p(sl ,ai) denote the path of
the packets of attack ai = am tn ∈AA traveling from am to tn under routing configuration
sl . In addition, let P D deploy a filter at d j ∈ AD. Then, the entry gi, j(sl) in game matrix
G(s) is defined as

gi, j(sl) =

{
c, if d j ∈ p(sl ,ai)

−c, otherwise
, (4.20)

where c is a positive constant. This means at the same time that the benefit of P D is c if
the current attack uses a route on which a filter is deployed and −c in case it traverses
the network undetected (due to lack of sniffers on its path or detector failures).

The state space of the game consists of the possible routing configurations on the
network. For each attack ai ∈ AA, there are exactly two distinct paths from the attacker
to the target system. Once a packet has traveled two hops and arrives at one of the
routers r3 or r4, there is only one possible path to ti. Therefore, the routing decision
has to be made after the first hop. In real-life networks, it is possible that, even though
each attack path has the same length (three hops), packets arriving at the ingress nodes
r5,r6 will not be routed over the same outgoing link. For example, this is the case for
flow-based resource reservation architectures or multi-protocol label switching (MPLS)
domains often encountered in quality of service (QoS)-aware architectures. For the sake
of reducing the number of states and to preserve the simplicity of the example, all pack-
ets arriving at node ri will be routed over the same outgoing link ri r j. However, this
routing configuration changes from time to time for load-balancing purposes or due to
failures.

Consequently, four possible environment states S = {ll, lr,rl,rr} corresponding to
the four routing configurations are defined in the example network. As a notational
convention, for example, s3 = rl denotes the configuration where all packets arriving at
r5 will be routed to the right and all packets arriving at r6 will be routed to the left. The
colloquial terms “left” and “right” hereby refer to the intuitive graphical interpretation
arising from Figure 4.7. The transition probabilities between states follow directly from
the underlying routing architecture of the network.

Results
The simulations are run on the Network Security Simulator (NeSSi) [51], a realistic
packet-level network simulation environment which allows for detailed examination
and testing of security related network algorithms. NeSSi is implemented in the Java
programming language and built upon the Java-based intelligent agent componentware
(JIAC) framework. JIAC agents are used within the simulator for modeling and imple-
menting the network entities such as routers, clients, and servers. The front-end of
NeSSi consists of a graphical user interface that allows the creation of arbitrary network
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topologies and is used here to create the one in Figure 4.7. The communication between
clients, servers, and routers takes place by realistic IPv4 packet transmission, which is
implemented using communication services between the agents. Built upon the network
layer, the simulator implements TCP and UDP protocols3 on the transport layer. At the
application layer, the hypertext transfer protocol (HTTP) and simple mail transfer pro-
tocol (SMTP) protocols4 are emulated faithfully. Thus, the results obtained through the
simulation tool are applicable to real IP networks. Moreover, different types of routing
protocol encountered in real-life IP networks, static as well as dynamic, are supported
in NeSSi. As part of NeSSi, a monitoring/filtering agent is implemented which can be
deployed on a set of links. This means that once one or multiple packets containing a
previously generated signature, indicating malicious content, traverses a sniffed link,
an alert is issued and/or those packets are filtered. In addition, since the TCP/IP stack
is faithfully emulated, the captured traffic can also be written to a common dump file
format for later post-processing with standard inspection tools.

Each simulation consists of a period of 1000 time steps in which the players update
their actions, i.e. P A sends a malware packet with a known signature over a chosen
attack path and P D deploys the filter at a link. Here, the time interval between the
steps is not exactly specified but assumed to be long enough to satisfy the information
assumptions made earlier. The malware packets sent on the network simulated in NeSSi
are real UDP packets and are captured by a realistic filter implementation using pattern
matching algorithms and a malware signature database to filter out the packets. The
routing configuration on the network changes every two time steps in accordance with
the state transition probabilities. In the simulations, it is observed that the time average
of the routing states matches well with the theoretical invariant distribution.

In the simulations, first both P A and P D use the equilibrium strategy computed from
the stochastic security game defined. The performance of the optimal filter placement
strategy of P D is shown in Figure 4.8(a). This result is compared to the case when
P D activates the filters randomly with a uniform distribution, which is depicted in
Figure 4.8(b). The total number of malware packets captured in this case is, as expected,
smaller than in the previous scenario. In addition, the opposite scenario is simulated
where P A selects a uniformly random strategy whereas P D uses the equilibrium strat-
egy. Unsurprisingly, the attacker is observed to be at a disadvantage and more packets
are filtered out than in both of the previous simulations.

4.5 Discussion and further reading

The Markov game framework adopted in this chapter is mainly based on refer-
ences [98, 195], and a discussion on value function approximation can be found
in reference [91]. Reference [36] provides a detailed overview of Markov decision

3 TCP and UDP are two of the main transport protocols on the Internet.
4 HTTP is one of the core protocols on the Web whereas SMTP is the main standard for electronic mail.
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Figure 4.8 Performance of P D under optimal (a) and uniform (b) monitor placement strategies
on the example network from Figure 4.7 under optimal attacks and dynamic routing.

processes, which Markov games take as a basis and extend upon. A basic overview
of DP in discrete- and continuous-time is provided in Appendix A.3. An alternative
approach to stochastic games presented in Section 4.1.2 is from reference [136], where
instead of an infinite horizon and discount factor α, a nonzero probability for terminat-
ing the game is introduced. In the security game setting, this can be interpreted as the
attacker ceasing to attack the system with some nonzero probability due to an external
reason.

The stochastic intrusion detection game in Section 4.2 is a reinterpretation of
the framework introduced in reference [8]. Section 4.3 summarizes some of the
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contributions in reference [155] and adopts them to the Markov game framework
presented. The concept of linear influence networks [114] and their applications to
security [129] are further elaborated upon in Section 4.3.2.

The malware filter placement game in Section 4.4 is based on [159], and provides an
example application of the Markov game framework presented.



5 Security games with
information limitations

Chapter overview

1. Bayesian security games
– Bayesian intrusion detection game

sensors and imperfect detection
extensive and continuous-kernel formulations

– Bayesian wireless security games
2. Security games with information and decision errors

– game model and fictitious play (FP)
– FP with observation errors
– FP with decision errors
– time-invariant and adaptive FP

Chapter summary

In many applications, the players, attackers, and especially defenders do not have
access to each other’s payoff functions. They adjust their strategies based on estimates
of opponent’s type or observations of opponent actions. However, these observations
may not be accurate due to imperfect “communication channels” that connect the
players, such as sensors with detection errors. Moreover, there may be inaccuracies in
player decisions and actions as a result of, for example, actuator errors. The Bayesian
game approach and fictitious play are utilized to analyze such security games with infor-
mation limitations. Illustrative examples on intrusion detection and wireless security
games are provided.
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5.1 Bayesian security games

In many security scenarios, the defenders and malicious attackers have limited infor-
mation about each other. One of the main restrictions on available information in the
security domain is the defenders’ limited observation capabilities. This can be, for
example, due to imperfections in (intrusion) detection systems. Even if the defender has
an accurate estimate of attacker preferences, the limitations on detection capabilities
have to be taken into account as a factor in defensive decisions. Similarly, the attack-
ers can exploit their knowledge of imperfect detection when choosing their targets. All
these considerations on limited observation and detection can be formalized within the
framework of Bayesian security games.

Bayesian games model lack of information about the properties of players in a non-
cooperative game using a probabilistic approach. In a Bayesian game, the players are
usually assumed to be one of many specific types. A special nature player is intro-
duced to the game which assigns a predetermined probability distribution to each player
and type combination, which constitutes its fixed strategy. Subsequently, the original
players compute their own strategies by taking into account each possible player-type
combination weighted by the predetermined probability distribution.

Bayesian security games can utilize the described probabilistic approach to model
the imperfect detection capabilities of security defense systems. For example, a virtual
sensor network used for detection of malicious activity by the defender can be defined
as the nature player. Then, by extending the security game framework of Chapter 3,
both the attacker P A and defender P D can take into account the detection probability
of the sensors, i.e. the fixed strategy of the nature player, when determining their
best-response strategies. The resulting Bayesian intrusion detection game as well as
a Bayesian extension of the wireless security (jamming) in Section 3.6 are discussed
next as two representative Bayesian security games.

5.1.1 Bayesian intrusion detection game

Sensors and imperfect detection
The defense systems often include a (virtual) sensor network in order to collect infor-
mation and detect malicious attacks, which can be represented by the nature player in
the Bayesian security game model. A virtual sensor network is defined as a collection
of autonomous hardware and/or software agents that monitors the system and collects
data, e.g. for detection purposes. The sensors report possible intrusions or anomalies
occurring in a subsystem using common techniques such as signature comparison, pat-
tern detection, or statistical analysis. The data from individual sensor nodes is often
correlated to be able to observe overall trends on the network. The virtual sensors can
be classified according to their functionality as host-based or network-based [26]. While
host-based ones collect data directly from the system they reside on, e.g. by observing
log files and system calls, the network-based sensors obtain data from network traffic
by analyzing packets and headers. A graphical depiction of an intrusion detection and
response system with a network of virtual sensors is shown in Figure 5.1. Section 9.1.1
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Figure 5.1 Intrusion detection system with a network of virtual sensors.

contains further information on (virtual) sensors and their role in intrusion detection
systems.

Consider a distributed network of sensors

S := {s1,s2, . . . ,sNS},
similar to the one depicted in Figure 5.1. The defended system monitored for signs of
malicious behavior can be represented as a set of subsystems

T := {t1, t2, . . . , tNT },
which may be targeted by the attacker. The subsystems in T may represent the operating
system, middleware, applications, or parts of the network as well as (business) processes
distributed over multiple hosts. Define the augmented set of attacks and anomalies over
a target system T as

AA := {a1,a2, . . . ,aNA}∪{na},
where na represents “no attack.” In this context, the generic term “attack” is associ-
ated with two specific attributes: a target subsystem, t ∈ T , and a threat or anomaly.
Hence, the set of attacks AA is defined as the cross-product of the set T and the set of
documented threats and detectable anomalies targeting it.

Given the set of attacks AA thus defined, the linear mapping P̄ : AA→ AA describes
the relationship between the actual attacks and the output of the sensor network S .
Specifically, the matrix

P̄ := [P̄i j]NA×NA , where 0≤ P̄i j ≤ 1, ∀i, j ∈ {1, . . . ,NA}, (5.1)

represents whether or not an attack is correctly reported. The entry P̄i j of the matrix
denotes the probability of attack i being reported as attack j. If i 
= j, then the sen-
sor network confuses one attack for another. Such misreporting is quite beneficial for
the attacker. In the case of j = na, P̄i j is the probability of failing to report an exist-
ing attack. Similarly, if i = na and j 
= na, then P̄i j is the probability of false alarm
for attack j. Thus, the matrix P̄ describes the fixed strategy of the nature player (virtual
sensor network).

Game formulation in extensive form
Based on the model in the previous section, a finite Bayesian intrusion detection game
is defined within the security game framework of Chapter 3. The finite action spaces of
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the attacker P A and the defender P D are AA := {a1, . . . ,aNA} and AD := {d1, . . . ,dND},
respectively. Notice that the attacker’s action space coincides with the set of attacks
previously defined. The defense responses may vary from a simple alert, which corre-
sponds to a passive response, to reconfiguration of the sensors and limiting access of
users to the system, which are active responses. The special action “no response” is also
included in the response set AD.

Introduce pA := [p1, . . . , pNA ] as a probability distribution on the attack (action) set
AA and qD := [q1, . . . ,qND ] as a probability distribution on the defense (action) set AD

such that 0≤ pi,qi ≤ 1 ∀i and ∑i pi = ∑i qi = 1. The fixed strategy of the nature player,
equivalently the detection probabilities of the sensor network, is captured by the matrix
P̄ defined in (5.1). Thus, given an attack probability pA, the output vector of the sensor
network is given by pAP̄.

As an illustrative example, consider the following Bayesian security game with a
single system T = {t}. The action space of the attacker consists of a single detectable
attack and “no attack,” AA = {a}∪ {na}. The defender actions are limited to “set an
alert” or “do nothing” denoted by AD := {d,nd}. The probability distributions over
these sets, pA and pD, are defined accordingly. A representation of this game in extensive
form is depicted in Figure 5.2, where {r,nr} represent the sensor network reporting an
attack and not reporting, each with a certain probability of error. The cost values for the
defender P D and the attacker P A are

[(
RA

1 ,RD
1

)
, . . . ,

(
RA

8 ,RD
8

)]
. They can be chosen to

reflect specific network security tradeoffs and risks.
The example Bayesian security game in Figure 5.2 can be further explained by

describing a specific scenario step by step that corresponds to following a path from
left to right in accordance with the order of players’ actions. The lower left branch in
the figure labeled a indicates an attack by the attacker(s) to the system. The sensor net-
work detecting this attack is represented by the r branch. Finally, given the information
from the sensor network, the defender decides in branch d to take a predefined response
action. The outcome of this scenario is quantified by a cost to the attacker and benefit
to the defender.

A numerical example of this particular game is shown in Figure 5.3 and solved using
the GAMBIT software [173]. According to the conventions of GAMBIT software, the
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Defender

Sensors

Figure 5.2 Example Bayesian security game in extensive form.
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Figure 5.3 Example Bayesian security game and its numerical solution obtained using the
GAMBIT software.

outcomes shown are not costs but payoffs which the players maximize. This game does
not admit any NE solution in pure strategies. However, a unique NE is numerically
computed in mixed strategies and shown in Figure 5.3, which also corresponds to the
unique solution in behavioral strategies.

At the NE, the attacker targets the system with a probability 1/4. A reason for this
low probability is the discouraging effect of the sensor network’s capability of correct
detection with probability 2/3 if there is no attack and 1/2 when there is. Note that
there are two information sets for the defender based on the reporting of sensors: one
indicating an attack and one for no attack. The NE strategy of the defender, given the
information by the sensor network, is “do nothing” nd with probability 8/9 if no attack
is reported, and a response d with probability 1 if an attack is reported. The defender
in this case has arguably more to lose by ignoring the attack and acts despite relatively
less reliable reporting by the sensor network. Unsurprisingly, the NE strategies of the
players are also very much dependent on the outcome payoffs of the game [6] as well
as the detection probabilities P̄ of the sensor network. Therefore, it is crucial that the
payoff values in the game correctly reflect the tradeoffs in the system at hand.

Although the extensive form of the Bayesian security game provides a detailed visu-
alization of the interaction between the players, it also has some disadvantages. One
drawback is its scalability (or lack thereof). The strategy spaces of the attacker and
defender may grow substantially for a more comprehensive analysis of a larger system.
Another difficulty is the choice of the payoff values, which have to be determined sepa-
rately for each branch of the game tree. This process may become tedious and inaccurate
for a large system. In order to overcome these limitations, a continuous-kernel version
of the Bayesian intrusion detection game is introduced next.
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Continuous-kernel game formulation
An alternative to the formulation in the previous section is the continuous-kernel
Bayesian security game. While it is more abstract in nature, it provides a model with a
much smaller number of parameters.

In the continuous-kernel formulation, the action space of the attacker is

AA :=
{

uA ∈ R
NA : uA

i ≥ 0, i = 1, . . . ,NA
}

,

and the one of the defender is

AD :=
{

uD ∈ R
ND : uD

i ≥ 0, i = 1, . . . ,ND
}

.

The fixed strategy of the sensor network is given again by (5.1). For notational conve-
nience, a matrix P is defined by multiplying the diagonal terms of the matrix P̄ with −1
to obtain

P := [Pi j] =

{
Pi j =−P̄i j if i = j

Pi j = P̄i j if i 
= j
. (5.2)

The parameters of the player cost functions are defined as follows: the non-negative

vector cD :=
[
cD

1 , . . . ,cd
NA

]
represents the cost of each attack for the defender, whereas

cA :=
[
cA

1 , . . . ,cA
NA

]
quantifies the gain of the attacker from the attack, if it is successful.

The non-negative matrix

Q := [Qi j]NA×NA , where Qi j ≥ 0, ∀i, j ∈ {1, . . . ,NA}
with Qii > 1 ∀i models the vulnerability of a specific subsystem to various attacks.
Similarly, the matrix

R := [Ri j]NA×ND , where Ri j ∈ {0,1} ∀i ∈ {1, . . . ,NA} and ∀ j ∈ {1, . . . ,ND}
with entries of ones and zeros correlates defender response actions with the attacks. The
vectors α := [α1, . . . ,αND ] and β := [β1, . . . ,βNA ] are the cost of the response and the cost
of carrying out an attack for the defender and the attacker, respectively. The relative cost
ratio of false-alarms, detection, and deception are captured by the scalar parameter γ.

Based on the defined parameters, a specific quadratic cost function is introduced for
the defender JD and the attacker JA, as

JD(uA,uD,P) := γ[uA]T PRuD +[uD]T diag(α)uD + cD(QuA−RuD), (5.3)

and

JA(uA,uD,P) :=−γ[uA]T PRuD +[uA]T diag(β)uA + cA(RuD−QuA), (5.4)

where [·]T denotes the transpose of a vector or matrix, and diag(x) is a diagonal matrix
with the diagonal entries given by the elements of the vector x.

The specific structure of the cost functions JD and JA aims to model various aspects
of the intrusion detection game. The first terms of each cost function, γ[uA]T PRuD and
−γ[uA]T PRuD, represent the cost of false alarms and the benefit of detecting the attacker
for the defender as well as the cost of capture and the benefit of deception for the
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attacker, respectively. Notice that if the cost functions consisted of only this part, then
the game would have been a zero-sum one.

The second terms [uD]T diag(α)uD and [uA]T diag(β)uA quantify the cost of defensive
measures and attacks, respectively. Depending on the scenario, this term may reflect
the resource usage costs or consequences of a defender action. For the attacker, it
may represent the cost of resources needed to carry out the attack. The third terms,
cD (QuA − RuD) and cA(RuD−QuA), capture the actual cost or benefit of a successful
attack. False alarms and detection capabilities of the sensor network at a given time are
incorporated into the values of the matrix P. In the ideal case of the sensor network
functioning perfectly, i.e. no false alarms and 100 percent detection, the matrix −P is
equal to the identity matrix, I = diag([1, . . . ,1]).

For notational convenience, define the vectors

θD(cD,R,α) :=
[
(cDR)1/(2α1), . . . ,(cDR)ND/(2αND)

]
and

θA(cA,Q,β) :=
[
(cAQ)1/(2β1), . . . ,(cAQ)NA/2βNA

]
.

The reaction functions of the attacker and defender are obtained by minimizing the
respective strictly convex cost functions (5.3) and (5.4). Hence, they are uniquely given
by

uD(uA,P) =
[
uD

1 , . . . ,uD
ND

]T
,

and

uA(uD,P) =
[
uA

1 , . . . ,uA
NA

]T
,

respectively, where

uD(uA,P) =
[
θD− γ[diag(2α)]−1RTPTuA]+ (5.5)

and

uA(uD,P) =
[
θA + γ[diag(2β)]−1PQ̄uD]+ . (5.6)

Here, the function [·]+ maps all of its negative arguments to zero.
It is desirable for the defender to configure the virtual sensor network such that all

possible threats are covered. It is also natural to assume a worst-case scenario where for
each attack (type) targeting a subsystem, there exists at least one attacker who finds it
beneficial to attack. Hence, the following holds in many practical cases: uA

i > 0 ∀i or
uI

j > 0 ∀ j.
A simple metric quantifying the performance of the sensor network is called “detec-

tion quality” or dq. For each attack, a ∈ AA , the detection quality of the monitoring
sensor network is defined as

dq(i) :=
P̄ii

∑ND
j=1 P̄i j

, i = 1, . . . ,NA.
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Within the context of the intrusion detection game defined, the pair (uD∗,uA∗)
is said to be the NE strategies of the attacker and defender, if it satisfies uD∗ =
argminuD JD(uA∗,uD,P) and uA∗ = argminuA JA(uD∗,uD,P). The following theorem
establishes the existence of a unique NE solution in pure strategies as well as providing
a complete analytical characterization of the NE solution.

Theorem 5.1 There exists a unique NE solution to the defined Bayesian intrusion
detection game. Furthermore, if

γ< min

⎛
⎜⎝ mini θD[

maxi
(
diag(2α)

)−1
RTPTθA

]+ ,
mini θA[

maxi
(
diag(2β)

)−1(−P)RθD
]+
⎞
⎟⎠ ,

(5.7)
then the NE is an inner solution, uD∗,uA∗ > 0, and is given by

uA∗ = (I +Z)−1 · [θA + γ[diag(2β)]−1PRθD] (5.8)

and

uD∗ = (I + Z̄)−1 · [θD− γ[diag(2α)]−1RTPTθA] , (5.9)

where

Z := γ2[diag(2β)]−1PR[diag(2α)]−1RTPT,

Z̄ := γ2[diag(2α)]−1RTPT[diag(2β)]−1PR,

and I is the identity matrix.

Proof The existence of the NE in the game follows from the facts that the objective
functions are strictly convex, they grow unbounded as |u| → ∞, and the constraint set is
convex [31, p. 174].

In order to show the uniqueness of the NE, let ∇ be the pseudo-gradient operator,
defined through its application on the cost vector J := [JD JA], as

∇J :=
[
∇T

uD
1

JD · · ·∇T
uD

ND
JD ∇T

uA
1
JA · · ·∇T

uA
NA

JA
]T

. (5.10)

Further define g(u) := ∇J where u := [uD uA]. Let G(u) be the Jacobian of g(u) with
respect to u,

G(u) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 0 0 |
0

. . . 0 | γ[PR]T

0 0 αND |
− − − | − − −

| β1 0 0

−γ[PR] | 0
. . . 0

| 0 0 βNA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(NA+ND)×(NA+ND)

, (5.11)
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where the matrix [PR] is of size NA × ND. Define the symmetric matrix Ḡ(u) :=
1
2 (G(u)+ G(u)T ). It immediately follows that Ḡ(u) = diag([α β]) is positive definite.
Thus, due to the positive definiteness of the Hessian-like matrix Ḡ(u), the NE solution
is unique [4, 147]. Note that this result does not use the condition (5.7) on γ.

Next, it is shown that the unique NE solution is indeed an inner one, under the
condition (5.7) on γ, by obtaining its analytical description. Substitute uD in (5.6) with
the expression in (5.5), which leads to the fixed-point equation uA∗ = uA(uD(uA∗,P),P),
such that

uA∗= θA +
[

diag

(
2β
γ

)]−1

PRθD−diag

(
γ

2β

)
PR

[
diag

(
2α
γ

)]−1

RTPTuA∗. (5.12)

Solving for uA∗ yields (5.8), where the inverse exists because Z is non-negative definite.
The equilibrium solution uD∗ in (5.9), on the other hand, can be derived by simply
substituting for uA∗ from (5.8) into (5.5). It is then straightforward to show that if (5.7)
holds, then both uD∗,uA∗ > 0, hence the NE is strictly positive and inner. Moreover,
there cannot be a boundary solution due to the uniqueness of the NE, thus completing
the proof.

5.1.2 Bayesian games for wireless security

Random access
It is often the case that the players of wireless security (jamming) games do not exactly
know the types of other player, i.e. whether they are malicious or selfish, but have their
own estimates. The Bayesian security games provide a framework for analyzing these
more realistic scenarios, which extend the wireless security games of Section 3.6.

In a two-player wireless security game between a selfish (defender) S node and a
malicious M one, let φi denote the probabilistic belief of a player (node) i ∈ {S,M}
that the opponent j 
= i is selfish. In other words, 0≤ φM ≤ 1 is the probability that the
opponent is selfish as believed by the malicious player. Likewise, 0 ≤ φS ≤ 1 denotes
the probability of the opponent being selfish for the selfish player S.

The game model is the same as that in Section 3.6.1, where a synchronous slot-
ted system with collision channels is assumed such that more than one simultaneous
transmission fails. Define pi ∈ [0,1] as the transmission probability and ei ∈ (0,1) as
energy cost (per transmission) of node i ∈ {S,M}. Here, the selfish node S receives
a unit throughput reward for successful transmission, i.e. r = 1. Then, the cost of the
selfish node, as a special case of (3.10), is

JS(p) := pSeS− pS(1− p j), j ∈ {S,M}. (5.13)

Assume that a malicious node M incurs a unit reward, if the opponent is selfish and
successfully jammed at the given time slot, i.e. c = 1. The cost function of the malicious
node, as a special case of (3.11), is

JM(p) :=

{
pMeM− pM pS, if the opponent is selfish

pMeM, if the opponent is malicious.
(5.14)
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The resulting expected costs of players under the given probabilistic beliefs about the
opponents are

JS(p,φS) := pSeS−φS pS(1− pS̃)− (1−φS)pS(1− pM), (5.15)

for the selfish player where pS̃ is the transmission probability of a selfish opponent, and

JM(p,φM)) := pMeM−φM pM pS, (5.16)

for the malicious player.
The following theorem characterizes the Bayesian NE strategies of malicious and

selfish players of the two-player wireless security (jamming) game defined. The results
follow directly from a straightforward but illustrative application of the definition of NE.

Theorem 5.2 The Bayesian NE strategies of selfish and malicious players, pS and pM,
with cost functions (5.13) and (5.14), respectively, in the wireless security (jamming)
game are uniquely given by

1.

p∗S = 1, p∗M = 0, if φS < 1− eS, φM < eM, (5.17)

2.

p∗S =
1− eS

φS
, p∗M = 0, if φS > 1− eS, eMφS > φM(1− eS), (5.18)

3.

p∗S =
eM

φM
, p∗M =

1− eS− eM
φS
φM

1−φS
, if φS < eS + eM

φS

φM
< 1, φM > eM. (5.19)

Proof (1) The expected cost of the selfish node (5.15) is minimized by transmitting
with probability pS = 1, if (1−φS)(1− pM) > eS. Note that the possibility of a self-
ish opponent is preferable over a malicious one as indicated by the cost structure,
and hence does not have an effect on the given condition in the worst case. Given
that pS = 1, the expected utility of the malicious node (5.16) is minimized by wait-
ing, i.e. pM = 0, if φM < eM , or by transmitting, if φM > eM . However, JS(pS,1) is
not minimized by pS = 1 (therefore the strategy pair pS = 1 and pM = 1 does not
yield an NE), whereas JS(pS,0) is minimized by pS = 1, if 1−φS > eS, and thus the
NE strategy pair in (5.17) follows.

The cost of a selfish node JS(pS, pM) can also be minimized by waiting, pS = 0, if
(1−φS)(1− pM) < eS. Given that pS = 0, the cost of the malicious node JM(pS, pM)
is minimized by waiting only, pM = 0. However, JS(pS,0) cannot be minimized by
pS = 0. Therefore, the strategy pS = 0 does not yield an NE.

(2) The cost JS(pS, pM) is indifferent to pS, if pS = 1−eS
φS

. Given that pS = (1− eS)/φS,
the cost of the malicious node JM(pS, pM) is minimized by pM = 0, if eMφS >

φM(1−eS), so that the NE strategy (5.18) follows. Notice that for pS = (1− eS)/φS,
the strategy pM = 1 cannot yield any NE, since JS(pS,1) is minimized only by
pS = 0 provided that eS > φS and JM(0, pM) cannot be minimized by pM = 1.
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(3) Consider the strategies such that selfish and malicious nodes are indifferent to
pS and pM , respectively, in order to minimize JS and JM . From JS(1, pM) = JS(0, pM)
and JM(pS,1) = JM(pS,0), the equilibrium strategy in (5.19) subject to 0≤ pS ≤ 1
and 0≤ pM ≤ 1 follows.

The throughput rates corresponding to the equilibrium strategies (5.17) to (5.19) in
the theorem are

λS = 1, λS =
1−ES

φS
, and λS =

EM

φM

(
ES +EM

φS
φM
−φS

1−φS

)
,

respectively. Decreasing φM or hiding own identity, i.e. convincing the malicious node
that the opponent is not selfish, is beneficial for the selfish node. On the other hand, the
malicious player benefits from a high φS, i.e. the opponent considering the malicious
node to be a selfish one.

Interference limited multiple access
Consider now an interference limited multiple access variant of the wireless security
game discussed above. The first player is again selfish and believes that the second one
is also selfish with probability φ1. The second player can indeed be selfish or malicious;
however, regardless of his type he knows that the first player is selfish.

The game model is similar to that in Section 3.6.2. Let P1 and h1 be the transmission
power level and the channel gain of the first (selfish) player. Define P2S,P2M as the power
levels and eS,eM as the energy costs of the second player for the selfish and malicious
cases, respectively. The channel gain is h2 in both cases. Let, for simplicity, eS also be
the energy cost for the first player. The cost functions are the same as in (3.22) and
(3.23) for the selfish and malicious nodes, respectively.

The NE solutions of the interference limited multiple access wireless security game
defined are given in the following theorem.

Theorem 5.3 Consider an interference limited multiple access wireless security game
between a selfish transmitter (player 1) and a second one of unknown type (player 2).
The first player estimates the probability of the second one being selfish as 0 ≤ φ1 ≤ 1
while the second player knows the type of the first one. Then, the Bayesian NE strategies
of the game are

P∗1 =
L
h1

(
h2

eS
−σ2

)
, (5.20)

P∗2S =
L
h2

⎡
⎢⎢⎣ h1φ1(

eS− (1−φ1)h1
h2
L P2M+σ2

) −σ2

⎤
⎥⎥⎦

+

, (5.21)

P∗2M =

[√
Lh1P∗1
h2eM

− Lσ2

h2

]+

, (5.22)
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if h2 ≥ σ2eS, where [x]+ = max(x,0).
Otherwise, that is if h2 < σ2eS, then

P∗1 =

([
eS− φ1h1

σ2

]+
)−2

eMLh1

h2
(1−φ1)2, (5.23)

P∗2S = 0 and P∗2M is given by (5.22) with P∗1 from (5.23).

Proof The result is obtained by applying the KKT optimality conditions separately to
the objective functions of the players under the constraints P1,P2S,P2M ≥ 0.

It is interesting to note that if this game is played repeatedly, then the first player
can learn the type of the second player by observing its transmission power level unless
P2S = P2M . Then, it can adjust its power level accordingly. Subsequently, the second
player can deduce this information (that the first one learned its type) by observing
the change in power level of the first player. Hence, the formulation turns into one
of the full information games in Section 3.6.2, depending on the type of the second
player.

5.2 Security games with observation and decision errors

In security games, if the game matrices are known to both attackers and defenders, then
each player can compute his own best-response and the NE strategies that minimize
expected loss. However, this assumption of knowing each other’s payoff values is gen-
erally not valid in practice. The players can utilize various learning schemes such as
fictitious play (FP) in such cases to learn the opponent’s (mixed) strategies and compute
their own best-response against them.

In an FP game, the players observe all the actions to estimate the mixed strategy of the
opponents. At each stage, the players update their estimates and play the pure strategy
that is the best-response (or generated based on the best-response) to the current estimate
of the other’s mixed strategy. An underlying assumption here is the perfect observability
of player actions.

In security games, the observations made by the players are usually not accurate,
which is an important factor to be taken into account. In practice, the sensor systems
that report an attack are imperfect and the actions of the defender, e.g. whether or not
countermeasures are deployed, is hard to observe for the attacker. Hence, there always
exist a positive miss probability (false negative rate) and a positive false alarm proba-
bility (false positive rate) for both players. Furthermore, the players may make decision
errors from time to time due to irrationality or to the channels carrying their commands
being error prone.

The subsequent subsections investigate scenarios where the attackers and defenders
of FP security games make decisions under incomplete information which means not
only lack of knowledge about each other’s payoff values and preferences but also
uncertainty on the decisions and observations of actions.
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5.2.1 Game model and fictitious play

Consider a security game between an attacker P A = P 1 and a defender P D = P 2 similar
to those in Chapter 3. The action spaces of the players are A1 = AA and A2 = AD, which
have the cardinalities N1 = NA and N2 = ND, respectively. For notational convenience,
let us introduce

pi := [pi1, . . . , piNi ]
T

as the probability distribution on the action set of player P i with cardinality Ni, such
that 0≤ pi j ≤ 1 ∀ j and ∑ j pi j = 1, i = 1,2.

The security game to be introduced differs from a regular matrix game in the sense
that the utility functions of players include an entropy term H to randomize their
own strategy, which can be interpreted as a way of concealing their true strategy.
Accordingly, the utility1 function Ui of player P i is given by

Ui(pi, p−i) := pT
i Gi p−i + τiH(pi), i = 1,2, (5.24)

where Gi is defined for notational convenience equal to negative of the game matrix of
attacker P A, G1 =−GA, and to the transpose of negative of the game matrix of defender
P D, G2 =

(−GD
)T

. The entropy function, H, is defined as

H(pi) :=−
Ni

∑
j=1

pi j log(pi j) =−pT
i log(pi),

and τi represents how much player P i wants to randomize own actions. Here, as standard
in game theory literature, the index −i is used to indicate those of other players, or the
opponent in this case.

In this static security game, the presence of the weighted entropy term τiH(pi) leads
to distinguishing between classical and stochastic FP. If τ1 = τ2 = 0, then the game
leads to classical FP, where the best-response mapping of players can be set-valued. If
τi > 0, however, the best-response has a unique value and the game leads to stochastic
FP [164]. This section exclusively focuses on stochastic FP due to its relevance to
security games.

The best-response mapping of player P i is the function

βi(p−i) = argmax
pi

Ui(pi, p−i). (5.25)

For the specific cost function (5.24) and if τi > 0, the best-response is unique and is
given by the soft-max function:

βi(p−i) = σ
(

Gi p−i

τi

)
, (5.26)

1 This subsection makes a departure from the overall convention of cost minimization adopted in the book
and formulates the player problem as one of utility maximization.



5.2 Security games with observation and decision errors 111

where the vector-valued soft-max function σ is defined as

σ j(x) =
ex j

∑Ni
j=1 ex j

, j = 1, . . . ,Ni. (5.27)

The range of the soft-max function is in the interior of the probability simplex and
σ j(x) > 0 ∀ j. The NE of the game (p∗1, p∗2), if it exists, can be written as the fixed point
of the best-response mappings:

p∗i = βi
(

p∗−i

)
, i = 1,2. (5.28)

Fictitious play with entropy softening
In a repeated play of the static security game, each player selects an integer action
ai ∈ A i according to the mixed strategy pi at a given time instance. The (instant) payoff
for player P i is vT

ai
Giva−i + τiH(pi), where v j, j = 1, . . . ,Ni, denotes the j-th vertex of

the probability simplex. For example, if Ni = 2, then v1 = [1 0]T for the first action
and v2 = [0 1]T for the second action. For a pair of mixed strategies (p1, p2), the utility
function in (5.24) can be computed using

Ui(pi, p−i) = E
[
vT

ai
Giva−i

]
+ τiH(pi). (5.29)

Using the static game description above, the discrete-time FP is defined as follows.
Suppose that the game is repeated at times k ∈ {0,1,2, . . .}. The empirical frequency
q j(k) of player P j obtained through observations is

q j(k +1) =
1

k +1

k

∑
l=0

va j(l). (5.30)

Using induction, the following recursive relation is derived:

q j(k +1) =
k

k +1
q j(k)+

1
k +1

va j(k) =
k

k +1
q j(k)+

1
k +1

β j(qi(k)), (5.31)

where qi(k) is the empirical frequency of player P i. Similarly, at each time step k, the
player P i picks the best-response to the empirical frequency of the opponent’s actions
using βi(q j(k)). Hence, in stochastic FP each player i = 1,2, carries out the steps in
Algorithm 5.4 below.

Algorithm 5.4 Fictitious play algorithm

1: Given game matrix Gi

2: for k ∈ {0,1,2, . . .} do
3: Update the empirical frequency of the opponent, q−i, using (5.31).
4: Compute the best-response mixed strategy βi(q−i(k)) using (5.26).
5: Randomly generate an action ai(k) according to the best-response mixed strategy

βi(q−i(k)), such that the expectation E [ai(k)] = βi(q−i(k)).
6: end for
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Alternatively, a continuous-time version of FP can be derived by approximating
the discrete-time recursions in (5.30) and (5.31) [163, 164]. The recursive equations to
update the empirical frequencies in stochastic discrete-time FP are

qi(k +1) =
k

k +1
qi(k)+

1
k +1

βi(q−i(k)).

Introduce now Δ := 1/k to write the above as

qi(k +Δk) =
k

k +Δk
qi(k)+

Δk
k +Δk

βi(q−i(k)). (5.32)

Let t = log(k) and q̃i(t) = qi(et). Then, for Δ> 0 sufficiently small,

qi(k +Δk)� qi(elog(k)+Δ) = q̃i(t +Δ).

Again for sufficiently small Δ> 0, k
k+Δk � 1−Δ and Δk

k+Δk � Δ. Hence, the recursion
(5.32) can be rearranged to

(q̃i(t +Δ)− q̃i(t))/Δ= βi(q̃−i(t))− q̃i(t).

Now letting Δ→ 0 and using pi for q̃i results in

ṗi(t) =
d pi

dt
= βi(p−i(t))− pi(t), i = 1,2, (5.33)

which is the counterpart of (5.31) in continuous time, known as continuous-time FP.
The following theorem, which is a variant of Theorem 3.2 of [164] for general τ1,τ2 >

0, establishes the convergence of the continuous-time FP for the case when players have
two actions each (i.e. a 2×2 bi-matrix game).

Theorem 5.5 Consider a two-player two-action continuous-time fictitious play with
(LT G1L)(LT G2L) 
= 0, where Gi are the game matrices of players P i i = 1,2 and L :=
(1, −1)T . The solutions of this continuous-time FP (5.33) satisfy

limt→∞ (p1(t)−β1(p2(t))) = 0
limt→∞ (p2(t)−β2(p1(t))) = 0,

(5.34)

where βi(p−i), i = 1,2, are given in (5.26).

5.2.2 Fictitious play with observation errors

In order to illustrate the effects of observation errors, define the two-player two-action
security game depicted in Figure 5.4, which is similar to those in Chapter 3, e.g. (3.1),
except that the players here maximize their utility instead of minimizing cost values.
The actions of the attacker P 1 = P A are AA = {a,na} and of the defender P 2 = P D are
AD = {d,nd}. The corresponding game matrices of the players are

G1 =−GA =
(d) (nd)(

a b
c d

)
(a)
(na)

, G2 =
(−GD)T =

(a) (na)(
e g
f h

)
(d)
(nd)

, (5.35)
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where the parameters a,b,c,d,e, f ,g are all positive. Note that we depart here from the
cost minimization as well as row-column player conventions, and players maximize their
utilities instead of minimizing their costs. The observation error (channel) matrices are
given by

C1 =
(

1−α γ
α 1− γ

)
, C2 =

(
1− ε µ
ε 1−µ

)
. (5.36)

If defender P 2 observes the strategy of the attacker, p1 = [p11 p12], perfectly, then the
resulting utility function of the defender is

U2(p1) =

{
ep11 +gp12, if P 2 plays d

f p11 +hp12, if P 2 plays nd
(5.37)

The utility function of the attacker (P 1) can be defined similarly.
However, in this game, the players do not know each others’ game matrices (only

their own) and observe the actions of the opponent with the error probabilities shown in
Figure 5.4. When the observation error probabilities are known to the players, then the
following basic result holds.

Proposition 5.6 Consider a discrete-time two-player fictitious play with imperfect
observations as depicted in Figure 5.4. Let qi be the observed frequency and qi be the
empirical frequency of player i. Then,

action observation

actionobservation

Figure 5.4 Observation errors between players are modeled as a binary channel with error
probabilities 0≤ α,γ,ε,µ < 0.5.
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Prob

(
lim
k→∞

qi(k) = Ciqi

)
= 1, i = 1,2, (5.38)

where Ci, i = 1,2, are defined in (5.36). In other words, the observed frequency, qi(k)
converges almost surely to Ciqi as k→ ∞.

The properties of fictitious play with observation errors are further studied below
using a Bayesian setting and an error compensation scheme.

Bayesian game interpretation
It is possible to analyze the security game introduced and the associated fictitious play
with observation errors as a Bayesian game. Consider first the order of play P 1-P 2

where the defender P2 observes attacker P1’s actions with observation errors as depicted
in Figure 5.5. The formulation and discussion below also apply to the reverse order of
play P 2-P 1.

The extensive form of the game in Figure 5.5 strongly resembles the Bayesian intru-
sion detection game of Section 5.1.1. The imperfect observations are captured here as
actions of the Nature player as in Section 5.1.1. The fixed strategy of this Nature player
is the same as the error probabilities in Figure 5.4. The information sets I and II in Fig-
ure 5.5 precisely correspond to the observations of the defender, P2. While the defender
knows which information set it is in, it cannot distinguish between the two nodes in
each information set with certainty: given an observation, it can only tell if there is an
attack or not with some probability of error.

The utility of the defender P 2 given a particular information set {I ,I I} and the fixed
strategy of the nature player pn := [α,1−α,γ,1− γ], is

Attacker

Defender

Observation
Errors

(a,e) (b,f)

(a,e) (b,f)

(c,g) (d,h)

(c,g) (d,h)

Info Set I

Info Set II

Figure 5.5 Bayesian game formulation of the security game with observation errors.
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U2(p1, pn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ep11(1−α)+gp12γ
p11(1−α)+ p12γ

, if P 2 plays d in info. set I

ep11α+gp12(1− γ)
p11α+ p12(1− γ) if P 2 plays d in info. set I I

f p11(1−α)+hp12γ
p11(1−α)+ p12γ

if P 2 plays nd in info. set I

f p11α+hp12(1− γ)
p11α+ p12(1− γ) if P 2 plays nd in info. set I I

, (5.39)

Based on this utility function, the player can determine own best-response. The utility of
the attacker, P 1, is defined in a similar way using pn := [ε,1−ε,µ,1−µ] as the strategy
of the nature player representing the observation errors of the attacker.

The following proposition links the studied FP and its Bayesian game interpretation.
Although the result is not surprising, it serves as a theoretical basis for Algorithm 5.8
below, where the players compensate for the effects of observation errors.

Proposition 5.7 If the observation error probabilities of an FP are known to its players,
then at each stage, the best-response based on the distribution of the information sets in
the corresponding Bayesian game is also the best-response based on the true empirical
frequency.

Proof If the defender P 2 plays d, then its expected utility in the Bayesian game,
obtained directly from (5.39), is

U2(p2,q) = q(I )
ep11(1−α)+gp12γ

p11(1−α)+ p12γ
+q(I I )

ep11α+gp12(1− γ)
p11α+ p12(1− γ) ,

where q(I ) and q(I I ) are the probabilities of the information sets I and I I , respec-
tively. By definition of the game, these probabilities are

q(I ) = p11(1−α)+ p12γ, q(I I ) = p11α+ p12(1− γ).

It immediately follows that

U2 = ep11(1−α)+gp12γ+ ep11α+gp12(1− γ) = ep11 +gp12.

Otherwise, if the defender plays nd, then the expected utility can be obtained similarly,

U2 = f p11 +hp12.

Both expected utilities are exactly the same as those in (5.37). A similar argument can
also be made for the attacker, P 1. Thus, at each stage, the best-responses of the players
of the Bayesian game are the same as the ones based on the true empirical frequency.
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Algorithm 5.8 Fictitious play with known observation errors

1: Given game Gi and observation error (channel) matrices Ci, i = 1,2 in (5.36),
2: for k ∈ {0,1,2, . . .} do
3: Update the observed frequency of the opponent, q−i, using (5.31).
4: Compute the estimated frequency using q−i = C−1

−i q−i, i = 1,2.
5: Compute the best-response mixed strategy βi(q−i(k)) using (5.26).
6: Randomly generate an action ai(k) according to the best-response mixed strategy

βi(q−i(k)), such that the expectation E [ai(k)] = βi(q−i(k)).
7: end for

Algorithm 5.8 provides the players with a way of compensating for the observation
errors if the error probabilities are known. If, on the other hand, the players do not have
any way of estimating these probabilities and ignore the errors, then the solution will
deviate from the original one without errors. The next theorem formalizes this deviation.

Theorem 5.9 Consider a two-player two-action fictitious play game with imperfect
observations described by observation error matrices (5.36) and visualized in Fig-
ure 5.4. If the players ignore these errors while playing stochastic FP and the condition
(LT G1C2L)(LT G2C1L) 
= 0 holds, then the solutions of the continuous-time FP with
imperfect observations (5.33) satisfy

limt→∞ p1(t) = σ
(

G1C2 limt→∞ p2(t)
τ1

)
,

limt→∞ p2(t) = σ
(

G2C1 limt→∞ p1(t)
τ2

)
,

(5.40)

where βi(p−i), i = 1,2, are given in (5.26), L := (1, −1)T , and σ(.) is the soft-max
function defined in (5.27).

Proof The proof basically follows the same procedure as in Section 5.2.1 to approx-
imate the discrete-time FP by the continuous-time version. Consider a stochastic
discrete-time FP where the recursive equations to update the empirical frequencies are
(for i = 1,2)

qi(k +1) =
k

k +1
qi(k)+

1
k +1

βi(C−iq−i(k)), (5.41)

where Ci are the observation error matrices in (5.36). Approximating this discrete-time
FP with its continuous-time version yields

q̇1(t) = β1(C2q2(t))−q1(t),
q̇2(t) = β2(C1q1(t))−q2(t).

Now using the result in Theorem 5.5 with G̃1 = G1C2 and G̃2 = G2C1, one obtains

lim
t→∞

(
p1(t)−σ

(
G1C2 p2(t)

τ1

))
= 0, (5.42)



5.2 Security games with observation and decision errors 117

lim
t→∞

(
p2(t)−σ

(
G2C1 p1(t)

τ2

))
= 0, (5.43)

which completes the proof.

Although the convergence of the continuous-time fictitious play with imperfect obser-
vations does not guarantee that of the discrete-time counterpart, Theorem 5.9 does
provide the necessary limiting results for the discrete-time version.

Generalized formulation and inaccurate error
The effect of observation errors on the convergence of 2× 2 fictitious play to the NE
has been discussed in the previous section, where it has been shown that if each player
has a correct estimate of observation error probabilities, they can reverse the effect of
the “error channel” to obtain the NE of the original game. We now present a general-
ization of these results to two-player games with m,n > 2 actions and inaccurate error
estimates.

Introduce a two-player fictitious play with imperfect observations where the observa-
tion errors are quantified in the following matrices

C1 =

⎛
⎜⎜⎝
α11 α12 . . . α1m

α21 α22 . . . α2m

. . .

αm1 αm2 . . . αmm

⎞
⎟⎟⎠ , C2 =

⎛
⎜⎜⎝
ε11 ε12 . . . ε1n

ε21 ε22 . . . ε2n

. . .

εn1 εn2 . . . εnn

⎞
⎟⎟⎠ , (5.44)

where αi j, i, j = 1, . . . ,m is the probability that attacker’s (P 1 = P A) action i ∈ AA

is erroneously observed as action j ∈ AA, and εi j, i, j = 1, . . . ,n is the probability
that defender’s (P 2 = P D) action i is erroneously observed as action j. Both matrices
are stochastic, i.e. αi j ≥ 0, ∑m

j=1αi j = 1, i = 1, . . . ,m and εi j ≥ 0, ∑n
j=1 εi j = 1,

i = 1, . . . ,n.
Unlike the earlier case, suppose now that the players have the following imperfect

estimates of the observation error probabilities

C1 =

⎛
⎜⎜⎝
α11 α12 . . . α1m

α21 α22 . . . α2m

. . .

αm1 αm2 . . . αmm

⎞
⎟⎟⎠ , C2 =

⎛
⎜⎜⎝
ε11 ε12 . . . ε1n

ε21 ε22 . . . ε2n

. . .

εn1 εn2 . . . εnn

⎞
⎟⎟⎠ , (5.45)

where both matrices are stochastic, i.e. αi j ≥ 0, ∑m
j=1αi j = 1, i = 1, . . . ,m, and εi j ≥

0, ∑n
j=1 εi j = 1, i = 1, . . . ,n. Note that the players having imperfect error estimates

means that

C1 
= C1, C2 
= C2.

If both players have their estimates of the error probabilities (5.45), they can play the
stochastic FP described in Algorithm 5.8 with (Ci)−1q−i to compensate for observation
errors. Again, using a procedure similar to those in the previous cases, the discrete-
time FP
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q1(k +1) =
k

k +1
q1(k)+

1
k +1

σ
(

G1(C2)−1C2q2(k)
τ1

)
,

q2(k +1) =
k

k +1
q2(k)+

1
k +1

σ
(

G2(C1)−1C1q1(k)
τ2

) (5.46)

can be approximated by its continuous-time version in terms of best-response dynamics

ṗ1(t) = σ
(

G1(C2)−1C2 p2(t)
τ1

)
− p1(t),

ṗ2(t) = σ
(

G2(C1)−1C1 p1(t)
τ2

)
− p2(t).

(5.47)

Then, the pair of mixed strategies (p∗1, p∗2) that satisfies

p∗1(t) = σ
(

G1(C2)−1C2 p∗2(t)
τ1

)
,

p∗2(t) = σ
(

G2(C1)−1C1 p∗1(t)
τ2

)
,

is by definition the NE solution to the stochastic FP (5.47) where the players implement
imperfect error compensation.

The convergence properties of stochastic FP with imperfect error compensation is
investigated next in the continuous time. Linearizing the best-response dynamics (5.47)
at the NE point (p∗1, p∗2) allows one to assess the local stability of this point by examining
the eigenvalues of the appropriate Jacobian matrix. It is possible to write pi(t) as

pi(t) = p∗i (t)+δpi(t).

Since both pi(t) and p∗i (t) are probability vectors and their elements add up to 1, the
sum of the entries of δpi(t) must be zero for i = 1,2. Therefore,

δp1(t) = Qp̃1(t), δp2(t) = Rp̃2(t), (5.48)

for some p̃1(t) and p̃2(t). The matrix Q has dimensions m× (m− 1) and matrix R has
dimensions n× (n−1), and

1T Q = 0, and QT Q = I,

1T R = 0, and RT R = I,

where I is the identity matrix and 1 and 0 are vectors of appropriate dimensions with all
entries ones and zeros, respectively. Then, the linearized system dynamics are

d
dt

(
p̃1(t)
p̃2(t)

)
= M ·

(
p̃1(t)
p̃2(t)

)
,

where the reduced-order Jacobian matrix M is

M :=
( −I QT∇β̃1 (p∗2)R

RT∇β̃2 (p∗1)Q −I

)
, (5.49)
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and

β̃1(p2) = σ
(

G1(C2)−1C2 p2

τ1

)
,

β̃2(p1) = σ
(

G2(C1)−1C1 p1

τ2

)
.

The following theorem now provides a necessary condition for the discrete-time FP
process with observation errors to converge almost surely to an equilibrium point.

Theorem 5.10 Let (p∗1, p∗2) be an NE of the FP system (5.47). If the Jacobian matrix M
has a positive eigenvalue λ with Re(λ) > 0, then the equilibrium (p∗1, p∗2) is unstable
under both the discrete- and continuous-time dynamics (5.46) and (5.47), in the
sense that

Prob

{
lim
k→∞

qi(k) = p∗i

}
= 0, i = 1,2. (5.50)

When m = n = 2 as a special case, the equilibrium point (p∗1, p∗2) is globally stable for
the continuous-time FP under some mild assumptions as summarized in the following
theorem.

Theorem 5.11 Consider a two-player two-action fictitious play with imperfect obser-
vations quantified by error matrices

C1 =
(

1−α γ
α 1− γ

)
, C2 =

(
1− ε µ
ε 1−µ

)
, (5.51)

and the players having the following estimates of the error probabilities

C1 =
(

1−α γ
α 1− γ

)
, C2 =

(
1− ε µ
ε 1−µ

)
. (5.52)

In the stochastic FP, where the players compensate for observation errors using their
estimates, if (LT M1(C2)−1C2L)(LT M2(C1)−1C1L) 
= 0, then the continuous-time FP
with imperfect observations (5.47) converges to

lim
t→∞ p1(t) = σ

(
G1(C2)−1C2 limt→∞ p2(t)

τ1

)
,

lim
t→∞ p2(t) = σ

(
G2(C1)−1C1 limt→∞ p1(t)

τ2

)
. (5.53)

Here, σ(.) is the soft-max function defined in (5.27) and L := (1, −1)T .

Remark 5.12 The following remarks apply to Theorem 5.11:

• The result in this theorem can be extended to the case where only one player is
restricted to two actions, and the other has more than two actions.

• When Ci = Ci = I, i = 1,2, the result reduces to convergence of stochastic FP in
reference [164].
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• When Ci = I, i = 1,2, the result reduces to convergence of stochastic FP with
imperfect observations in Theorem 5.9.

• When Ci = Ci, i = 1,2, the result reduces to convergence of stochastic FP with
imperfect observations where players completely reverse the effect of erroneous
channels.

5.2.3 Fictitious play with decision errors

The occurrence of observation errors is not the only issue that comes up in the appli-
cation of fictitious play to security problems. A similar set of problems arises when
players are not totally rational or the channels carrying commands are error prone. In
many security scenarios the attackers or defenders may act irrationally by misjudging
their preferences or due to emotional reasons. This situation is similar to the well-known
“trembling hand” problem discussed in the game theory literature (e.g. see [31, Sec-
tion 3.5.5]). Another case is when the action commands issued by attackers (e.g. using
botnets) or defenders (e.g. IDPSs) may reach the actuators, i.e. actual systems imple-
menting them, with some error. These cases and the resulting FP with decision errors
can be analyzed similarly to that in Section 5.2.2. Since the methods are very similar to
those used in the previous subsection, only the main results are presented here.

Consider a game where the attacker (P 1 = P A) makes decision errors with probabil-
ities αi j’s, where αi j, i, j = 1, . . . ,m, is the probability that P 1 intends to play action
i∈AA but ends up playing action j ∈AA, αi j ≥ 0, ∑m

j=1αi j = 1, i = 1, . . . ,m. Similarly,
the decision error probabilities of the defender (P 2 = P D) are given by εi j, εi j ≥ 0,
∑m

j=1 εi j = 1, i = 1, . . . ,n. The corresponding decision error matrices are

D1 =

⎛
⎜⎜⎝
α11 α12 . . . α1m

α21 α22 . . . α2m

. . .

αm1 αm2 . . . αmm

⎞
⎟⎟⎠ , D2 =

⎛
⎜⎜⎝
ε11 ε12 . . . ε1n

ε21 ε22 . . . ε2n

. . .

εn1 εn2 . . . εnn

⎞
⎟⎟⎠ . (5.54)

In the special case of m = n = 2, the decision error matrices can be written as

D1 =
(

1−α γ
α 1− γ

)
, D2 =

(
1− ε µ
ε 1−µ

)
. (5.55)

As in Section 5.2.2, we first study the case where the players both have complete
information about the decision error matrices Di, i = 1,2. This formulation can be inter-
preted as a stochastic version of the “trembling hand” scenario. Specifically, suppose
that the players want to randomize their empirical frequency pi (instead of the fre-
quency of their intended actions, or intended frequency, pi) by including an entropy
term in their utility function. Then, the corresponding utility functions are

Ui(pi, p−i) = pT
i G̃i p−i + τiH(Di pi), i = 1,2, (5.56)

where pi’s are the intended frequencies, G̃1 = DT
1 G1D2 and G̃2 = DT

2 G2D1. Using
pi := Di pi, i = 1,2, the utility functions can now be written as



5.2 Security games with observation and decision errors 121

Ui(pi, p−i) = pT
i Gi p−i + τiH(pi).

The game is thus reduced to the one without decision errors and the NE of the static
game satisfies

p∗i = βi
(

p∗−i

)
, (5.57)

or equivalently (with the assumption that Di’s are invertible)

p∗i = (Di)−1βi
(
D−i p

∗
−i

)
, (5.58)

where the players’ best-response functions are

pi = (Di)−1βi(p−i) = (Di)−1σ
(

Gi p−i

τi

)
, i = 1,2. (5.59)

In the corresponding fictitious play (the “trembling hand stochastic FP”), the mean
dynamics of the empirical frequencies are

q1(k +1) =
k

k +1
q1(k)+

1
k +1

β1(q2(k)),

q2(k +1) =
k

k +1
q2(k)+

1
k +1

β2(q1(k)).
(5.60)

The continuous-time approximation of these dynamics become

ṗ1(t) = β1(p2(t))− p1(t),

ṗ2(t) = β2(p1(t))− p2(t).
(5.61)

Each player P i can observe here the opponent’s empirical frequency p−i directly, and
hence does not need to know D−i to compute the best-response. Thus, with knowledge
of their own decision errors, the players can completely precompensate for these errors
and the equilibrium empirical frequencies remain the same as those of the original game
without decision errors. The following theorem provides a convergence result for the FP
process with decision errors in the case of m = n = 2.

Proposition 5.13 Consider a two-player two-action fictitious play where players make
decision errors with invertible decision error matrices D1 and D2 in (5.55). Suppose that
at each step, the players calculate their best-responses taking into account their own
decision errors using (5.59). If (LT G1L)(LT G2L) 
= 0 holds, then the continuous-time
FP with decision errors converges to

lim
t→∞ p1(t) = D−1

1 σ
(

G1D2 limt→∞ p2(t)
τ1

)
,

lim
t→∞ p2(t) = D−1

2 σ
(

G2D1 limt→∞ p1(t)
τ2

)
, (5.62)

where σ(.) is the soft-max function defined in (5.27) and L = (1, −1)T .

In the opposite case when the decision error probabilities are not known to the players
and are ignored, the mean dynamics of the empirical frequencies become



122 Security games with information limitations

q1(k +1) =
k

k +1
q1(k)+

1
k +1

D1β1(q2(k)),

q2(k +1) =
k

k +1
q2(k)+

1
k +1

D2β2(q1(k)).

(5.63)

The continuous-time approximations of these dynamics are

ṗ1(t) = D1β1(p2(t))− p1(t),

ṗ2(t) = D2β2(p1(t))− p2(t).
(5.64)

The equilibrium solution to (5.64) is naturally different from the original one.
The following two theorems are direct counterparts of Theorems 5.10 and 5.11 of

Section 5.2.2.

Theorem 5.14 Consider the two-player FP with decision errors where both players
are unaware of the decision error probabilities. Let (p∗1, p∗2) be an equilibrium point of
system (5.64). If the Jacobian matrix

MD =
( −I QT D1∇β1 (p∗2)R

RT D2∇β2 (p∗1)Q −I

)

has an eigenvalue λ with Re(λ) > 0, then the equilibrium (p∗1, p∗2) is unstable under the
discrete- or continuous-time dynamics, (5.63) and (5.64), respectively, so that

Prob

{
lim
k→∞

qi(k) = p∗i

}
= 0, i = 1,2. (5.65)

We note additionally that when m = n = 2, the point (p∗1, p∗2) is globally stable for the
continuous-time system under some mild assumptions.

Theorem 5.15 Consider a two-player two-action fictitious play where players make
decision errors according to D1 and D2 in (5.55). Suppose that both players are
unaware of all the decision error probabilities and use the regular stochastic FP in
Algorithm 5.4. If Di, i = 1,2, are invertible and (LT M1D2L)(LT M2D1L) 
= 0, the
solutions of continuous-time FP process with decision errors (5.61) satisfy

lim
t→∞ p1(t) = D1σ

(
G1 limt→∞ p2(t)

τ1

)
,

lim
t→∞ p2(t) = D2σ

(
G2 limt→∞ p1(t)

τ2

)
, (5.66)

where σ(.) is the soft-max function defined in (5.27) and L = (1, −1)T .

Note that the result in this theorem can be extended to the case where only one player
is restricted to two actions, and the other has more than two actions [164]. Furthermore,
the results in the subsection can easily be extended to address the general case where
each player has estimates of the decision errors and includes them in the best-response
to compensate for decision errors.
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5.2.4 Time-invariant and adaptive fictitious play

It is possible to define a version of the fictitious play which uses time-invariant fre-
quency updates by modifying the running or cumulative averaging of observations in
the empirical frequency calculation

q j(k +1) =
1

k +1

k

∑
l=0

va j(l) =
k

k +1
q j(k)+

1
k +1

va j(k), (5.67)

where q j = [q j1, . . . ,q jN ] is the empirical frequency vector of player P j, k the time step,
and va j(k) is a vector of ones and zeros with a single one at the index corresponding
to action a j of the player. The recursive empirical frequency computation in (5.67) is
actually a low-pass filter. At the same time, it is a time-varying dynamical system that is
more difficult to analyze compared to a time-invariant one. As an alternative, the obser-
vations can be filtered using an exponential moving average scheme with a (piecewise)
fixed smoothing factor.

Consider the following alternative computation of time-invariant empirical frequency
r by taking the exponential moving average

ri(k +1) = (1−η)ri(k)+ηvi(k), ri(1) = vi(0), (5.68)

where the parameter η is a positive smoothing constant. Then, the characteristics of the
low-pass filter (e.g. bandwidth) can be adjusted by varying the parameter 0 <η< 1. The
time-invariant empirical frequencies in (5.67) can also be defined directly as estimates
of mixed strategies,

ri(k) = (1−η)k−1vi(0)+ · · ·+(1−η)ηvi(k−2)+ηvi(k−1), k ≥ 2. (5.69)

Note that the weight on older data points decreases exponentially in the computation,
which places more emphasis on recent observations.

The time-invariant fictitious play2 leads to the following time-invariant dynamic
system for two players:

r1(k +1) = (1−η)r1(k)+ηβ1(r2(k)), (5.70)

r2(k +1) = (1−η)r2(k)+ηβ2(r1(k)),

where βi are the best-response functions of the players. We next establish the relation-
ship between time-varying and time-invariant empirical frequencies, q and r.

Proposition 5.16 The time-varying empirical frequencies q are related to the time-
invariant ones r through

qi(k +1) =
1

k +1

(
2η−1
η

ri(1)+ ri(2)+ · · ·+ ri(k)+
ri(k +1)
η

)
. (5.71)

2 With a slight abuse of terminology, we will henceforth be referring to “fictitious play with time-invariant
frequency updates” as “time-invariant fictitious play.”
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Proof It immediately follows from the definition in (5.67) that

vi(0) = ri(1),

vi(1) =
1
η

[ri(2)− (1−η)ri(1)] ,

. . .

vi(k) =
1
η

[ri(k +1)− (1−η)ri(k)] .

(5.72)

Summing up the left- and right-hand sides of these equations yields

k

∑
j=0

vi( j) =
2η−1
η

ri(1)+ ri(2)+ · · ·+ ri(k)+
ri(k +1)
η

, (5.73)

and hence the result in (5.71) follows.

Consider now the two-player two-action security game in Section 5.2.2 with the game
matrices

G1 =−GA =
(d) (nd)(

a b
c d

)
(a)
(na)

, G2 =
(−GD)T =

(a) (na)(
e g
f h

)
(d)
(nd)

, (5.74)

as before, where all entries are positive. We make the following assumptions on these
game parameters:

• a < c: when the defender (P 2) defends, the benefit of an attack is less;
• b > d: when the defender does not defend an attack, the attacker has more to gain

from it;
• e > f : when an attack is defended, the defender benefits more;
• g < h: when there is defensive action without attack (false alarm), the cost to the

defender is higher.

These assumptions are consistent with previously discussed security games, e.g. the
matrix intrusion detection game in (3.1).

For this game, it is possible to establish the local stability of the time-invariant ficti-
tious play in (5.70), i.e. if the players start with sufficiently close (correct) estimates
of each other’s mixed strategies, then their empirical frequency estimates converge
asymptotically to the real values, as shown below.

Theorem 5.17 Consider the time-invariant fictitious play system (5.70) of the two-
player two-action security game in Section 5.2.2. Assume that the positive game
parameters satisfy a < c, b > d, e > f , and g < h and the system admits an equilibrium
solution (r̄1, r̄2) such that

r̄1 = β1(r̄2)
r̄2 = β2(r̄1)

.
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Then, the empirical frequency estimates in (5.70) are asymptotically stable around the
given equilibrium point if, and only if

η<
2

[(c−a)+(b−d)][(e− f )+(h−g)]
r̄11r̄12r̄21r̄22

τ1τ2
+1

. (5.75)

Proof The time-invariant empirical frequency vectors for this game are

r1 = [r11, 1− r11]T and r2 = [r21, 1− r21]T .

Thus, the system (5.70) can be reduced to two dimensions and written as

r(k +1) = F(r(k)), or r1(k +1) = F1(r(k)) and r2(k +1) = F2(r(k)).

Linearizing this system around the equilibrium point (r̄1, r̄2) yields the Jacobian
matrix

M :=
∂F(r)
∂r

=

⎛
⎜⎜⎜⎝
∂F1(r)
∂r11

∂F1(r)
∂r21

∂F2(r)
∂r11

∂F2(r)
∂r21

⎞
⎟⎟⎟⎠ . (5.76)

These definitions directly yield

∂F1(r)
∂r11

=
∂F2(r)
∂r21

= 1−η, (5.77)

and

∂F1(r)
∂r21

= η
∂β1(r2)
∂r21

. (5.78)

Likewise, from the definition of β,

G1r2

τ1
=

(
1
τ1

[ar21 +b(1− r21)]
1
τ1

[cr21 +d(1− r21)]

)
, (5.79)

β11(r2) =
e

(
1
τ1

[ar21+b(1−r21)]
)

e

(
1
τ1

[ar21+b(1−r21)]
)
+ e

(
1
τ1

[cr21+d(1−r21)]
) , (5.80)

and

dβ1(r2)
dr21

=
1
τ1

[(a− c)+(d−b)]β11(r2)β12(r2) (5.81)

follow. Therefore, the other entries of the Jacobian matrix are

∂F1(r)
∂r21

=
η
τ1

[(a− c)+(d−b)]β11(r2)β12(r2), (5.82)

and

∂F2(r)
∂r11

=
η
τ2

[(e− f )+(h−g)]β21(r1)β22(r1), (5.83)
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which is computed similarly.
Thus, at the equilibrium point, the following hold:

∂F1(r̄)
∂r21

=
η
τ1

[(a− c)+(d−b)]r̄11r̄12, (5.84)

∂F2(r̄)
∂r11

=
η
τ2

[(e− f )+(h−g)]r̄21r̄22. (5.85)

Finally, one can show using straightforward algebraic manipulations that in order for
the spectral radius of the Jacobian matrix (or absolute value of all its eigenvalues) to be
less than one, the necessary and sufficient condition (5.75) has to be satisfied.

Numerical example
The following numerical example illustrates the properties of stochastic and time-
invariant discrete-time FP. The game (payoff) matrices of players are chosen as

M1 =
(

1 5
3 2

)
, M2 =

(
4 1
3 5

)
. (5.86)

Note that the players maximize their payoffs here, departing from the cost minimization
convention. The static game with simultaneous moves admits the mixed strategy NE:
p∗1 = [0.4, 0.6] and p∗2 = [0.6, 0.4]. The entropy parameters are picked as τ1 = τ2 = 0.2.

The evolution of empirical frequency estimates for the time-varying stochastic FP
in (5.67) and time-invariant FP in (5.68) with a step-size of η = 0.01 are depicted in
Figures 5.6 and 5.7, respectively. In both variants of FP, there is ongoing fluctuation as
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Figure 5.6 Evolution of observed empirical frequencies of players in time-varying stochastic
fictitious play.
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Figure 5.7 Evolution of observed empirical frequencies of players in time-invariant fictitious
play with a step size of η= 0.01.

a result of randomization due to the entropy term in the player utilities. It is observed
that time-invariant FP converges quickly to a random limit cycle with high variance
since the step-size is fixed, while that of time-varying FP naturally decreases over time.

Adaptive time-invariant fictitious play
Choosing the step size of time-invariant FP to be large leads to high variance fluctu-
ations, whereas keeping it small increases the convergence time. However, there is no
reason to keep the step size constant and not vary it adaptively similarly to, for example,
Newton’s method in gradient descent. Adaptive time-invariant FP is based on this idea.
One possible definition provided in Algorithm 5.18 differs from regular time-invariant
FP through the dynamically updated step size, which is constant over each time period.
In the specific example implementation, the step size is either kept fixed or halved, based
on the variance of empirical frequency in the previous time window.

The adaptive time-invariant FP is studied using the numerical example above. Initial
and minimum step sizes are chosen as η0 = 0.1 and ηmin = 0.0005, respectively.
The time window for updating the step size is T = 50 steps. The evolution of the
observed empirical frequencies are depicted in Figure 5.8, which shows that adap-
tive time-invariant FP converges much faster than the time-varying FP. The reason
behind faster convergence is the adaptive update of step size, illustrated in Figure 5.9.
Note that when compared to fixed 1/k decrease in the time-varying FP, the step
sizes in the adaptive time-invariant FP are higher in the beginning and smaller after-
wards, resulting in aggressive convergence first and less fluctuation in the stable
phase.



128 Security games with information limitations

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time step

P
ro

ba
bi

lit
y

Adaptive time-invariant FP empirical frequencies (r1, r2)

r1

r2

Figure 5.8 Evolution of observed empirical frequencies of players in adaptive time-invariant
fictitious play described in Algorithm 5.18.
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Algorithm 5.18 Adaptive time-invariant fictitious play

1: Given game matrices G1, G2, initial step size η0, minimum step size ηmin, and
window size T .

2: for k ∈ {0,1,2, . . .} do
3: Update the observed empirical frequency of the opponent, q−i, using (5.68).
4: Compute the best-response mixed strategy βi(q−i(k)) using (5.26).
5: Randomly play an action ai(k) according to the best-response mixed strategy

βi(q−i(k)), such that the expectation E [ai(k)] = βi(q−i(k)).
6: if at the end of a time window, mod (k,T ) = 0, then
7: Compute standard deviation (std) of observed empirical frequency in the time

window [q−i(k), . . . ,q−i(k−T )]:

std(k) =

√√√√ 1
T

k

∑
k−T

(
q−i(k)−

[
1

T +1

k

∑
k−T

q−i(k)

])2

8: if the computed std(k) has decreased compared to previous time window then
9: Decrease step size: η= 0.5η and η= max(η,ηmin).

10: else
11: Keep step size η constant.
12: end if
13: end if
14: end for

5.3 Discussion and further reading

Bayesian games were first introduced by Nobel Laureate John Harsanyi as a method for
analysis of games of incomplete information. Considering the crucial role that informa-
tion limitations play in security games, the Bayesian game approach and fictitious play
discussed in this chapter should only be seen as a starting point.

Two illustrative Bayesian security games have been presented in Section 5.1: a
Bayesian intrusion detection game based on reference [6] and a Bayesian game for wire-
less networks summarizing reference [153]. An earlier work applying Bayesian games
to intrusion detection in wireless ad-hoc networks is reference [99].

Section 5.2 on security games with observation and decision errors builds upon the
results reported in reference [128]. Properties of fictitious play without observation and
decision errors have been analyzed earlier in references [34, 163, 164]. A more detailed
discussion on time-invariant and adaptive fictitious play presented in Section 5.2.4 is in
reference [130].
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6 Security risk-management

Chapter overview

1. Quantitative risk-management
– risk in networked systems and organizations
– a probabilistic risk framework: Risk-Rank
– dynamic risk mitigation and control

2. Security investment games
– influence network and game model
– equilibrium and convergence analysis
– incentives and game design

3. Cooperative games for security investments
– coalitional games and coalition formation

Chapter summary

Security risk assessment and response are posed as dynamic resource allocation prob-
lems. First, a quantitative risk-management framework based on the probabilistic evolu-
tion of risk and Markov decision processes is presented. Second, a noncooperative game
model is analyzed for the long-term security investments of interdependent organiza-
tions. In addition, incentive mechanisms are investigated to achieve organization-wide
objectives. Finally, a cooperative game is studied to develop a better understanding of
coalition formation and operation between the divisions of large organizations.
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6.1 Quantitative risk-management

6.1.1 Risk in networked systems and organizations

Networked systems have become an integral and indispensable part of daily business.
Hence, system failures and security compromises have direct consequences for orga-
nizations in multiple dimensions. For a company in e-commerce, network downtime
translates to millions of dollars lost per second. For a telecommunications company,
stolen customer data may turn into a public relations nightmare. The municipality of
an entire city can be held hostage by a single disgruntled former system adminis-
trator. In a simpler and more common scenario, a computer virus or worm infection
may simply mean a free day for the entire office, resulting in significant productivity
loss.

Such risks and security threats are the novel consequences of the IT revolution, which
at the same time has brought immense productivity gains and new business opportuni-
ties. As organizations and enterprises are becoming increasingly aware of these risks,
they have little option other than learning how to manage emerging IT and security
risks. Risk-management in this specific area is, consequently, a young and vibrant field
with substantial research challenges and opportunities.

Early IT and security risk-management research has been mostly empirical and quali-
tative in nature. This is partly due to the fact that IT risk-management has its roots more
in social and management sciences. It can also be attributed to the young age of the
field, for example when compared to financial risk-management. However, the research
landscape dominated by qualitative principles, empirical calculations on spreadsheets,
and white papers is increasingly enriched by quantitative models and approaches.

Quantitative and analytical frameworks not only formalize risk-management1

processes but also provide a foundation for computer-assisted assessment and decision-
making capabilities. Given the complexity of the problem and the underlying networked
systems, a risk-management scheme that relies on too many manual processes can-
not be expected to succeed. Even in personal computers, most of the security services
such as antivirus software, firewalls, and patching of browsers rely on automated
updates. Unsurprisingly, a variety and increasing number of software solutions exist to
streamline and automate data collection and risk-management processes in large-scale
organizations.

One of the objectives of quantitative risk models is to take this formalization trend
one step further and create a solid analytical foundation for security and IT risk. Such a
mathematical abstraction is useful to combine seemingly different problems under a sin-
gle umbrella, facilitate future research, and develop computer-based scalable solutions
that rely on rational principles and transparency. On the other hand, one should not for-
get that risk-management is not a purely technical problem and cannot be addressed by
purely technical solutions. Organizational and human aspects play at least as important
a part as do the technical ones.

1 We will use the term risk exclusively in the context of security and IT in this chapter.
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Figure 6.1 Properties of IT and security risks: nature versus malice and systems versus
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Figure 6.2 Three main components of the security risk-management.

When defining the properties and sources of risks, people and systems as well as
nature and malice are among the fundamental factors. For example, system failures
are often related to natural causes while botnets are systems organized by people with
malicious intent. A cyber attack by a malicious person is different from an acciden-
tal configuration error introduced by a system administrator. Figure 6.1 depicts these
factors by characterizing a few example risks.

While the sources, properties, and effects of security risks can be different, they
share the same fundamental risk management principles and steps. The basic risk-
management process can be divided into the following three steps:

• risk assessment involving identification of vulnerabilities and assessment of their
potential effects;

• risk analysis and decision making, which includes creating a risk-management plan
as well as deciding on what are the feasible countermeasures given organizational
priorities and constraints; and

• execution of measures that may involve dynamic allocation of existing resources,
organizational changes, and future investments.

These steps and the resulting risk-management cycle are visualized in Figure 6.2.
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Risk assessment involves the identification of vulnerabilities against security attacks
and IT failures, what effects these can have on business processes, their potential cost,
and whether the countermeasures taken are satisfactory. Risk assessment is closely
related to domain knowledge on and observation of the networked system in the broad
sense including business processes. If the owners do not know about and observe what
happens in their systems, then it is unrealistic to expect them to correctly analyze
security threats and other risks. Therefore, risk assessment invariably includes building
observation capabilities that enable better defenses against unwanted behavior and mali-
cious security compromises to be built. There exists an increasing number of software
solutions that focus on the problem of data collection.

Even with software support, implementing such a data collection scheme can be
challenging and costly. One issue is to find the people in the organization who are
knowledgeable in their domain and to motivate their involvement. Another problem
is the fact that it is a repeating (sometimes even in real-time) process rather than a
static one. This means that observation and risk assessment need to be well integrated
to almost the entire organization. A final obstacle is the precision of the observations.
Complexity of the underlying networked systems and human factors affect the reliability
of the data provided even by the experts or carefully designed schemes.

The inherent uncertainty and imprecise nature of the input data makes risk analy-
sis a challenging task. The analysis and subsequent decision making have to take into
account information limitations as well as other constraints such as financial and orga-
nizational ones. Most of these decision-making processes can be formalized within the
mathematical frameworks provided by decision and game theories. Such a formaliza-
tion has multiple benefits ranging from efficiency, prioritization, and clear expression
of tradeoffs in a quantitative manner to scalability and transparency. It also opens doors
to software support for risk analysis, which is currently mostly lacking. Combined with
telecommunications aspects, computer-assisted decision support systems may have pro-
foundly positive consequences for the whole field of risk analysis and related decision
making.

Risk analysis is closely related to decision variables, actors, and an available set of
actions that may vary significantly in terms of scope and timescale. While some security
threats such as fast, self-spreading malware require immediate and often automated
action by an IDPS, others such as security investments require decision making at chief
information officer level and have a time horizon of months. Three example scenarios
with different actors, timescales, and decision variables are summarized in Table 6.1.

The third step of the risk-management cycle is the execution of measures or imple-
mentation. A number of issues have to be addressed for this important step to be
successful. First, it requires significant commitment from management who has to over-
come organizational resistance to change and transparency. Sometimes, psychological
factors such as “nobody likes the bearer of bad news” also create nontrivial obstacles.
If these issues are not properly addressed, then the previous two steps in the risk-
management cycle may well degenerate into a futile bureaucratic exercise. The second
issue is the limited number of realistic options available to the organization to counter
the risks and security threats given budget and manpower limitations. In some cases,
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Table 6.1 Decision variables in risk-management

Decision maker Timescale Actions
CIO Months Company-wide policies,

major security investments
Dept. head Days to hours Department rules, allocation of

manpower and other resources
IDPS Seconds or less Block ports, access control,

packet inspection

Products
and services

Business processes

Applications and software

Infrastructure and hardware

Figure 6.3 Business units encompass infrastructure, applications, processes, and services.

the best an organization can do is to be rationally aware of risks, accept them, and take
the most reasonable course of action given the constraints. In general, having as much
and as high quality information as possible about the systems and business processes, in
other words transparency, is very useful to achieve a higher degree of control of risks.
On the other hand, if the only tool available to a risk manager is a “hammer,” then there
is no need to buy a “magnifier” to collect detailed information on the networked system.

6.1.2 A probabilistic risk framework

As an example of an analytical risk model, a probabilistic risk-management approach
is presented that provides a unified quantitative framework for investigation of the
interdependence between various business units, the potential impact of various vul-
nerabilities or threats, and the risk implications of relationships between people. The
term business unit encompasses infrastructure, software, business processes, and prod-
ucts as depicted in Figure 6.3. Vulnerabilities and security threats can be very diverse,
ranging from generic malware to specifically targeted phishing attacks. Employees in an
organization have diverse roles, responsibilities, and relationships with respect to each
other and the business processes.
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The business units, vulnerabilities, and people constitute the main three factors of the
risk-management framework:

• business units, NB =
{

nB
1 , . . . ,nB

MB

}
, representing infrastructure elements (e.g. com-

puting servers), applications (e.g. software), processes (e.g. billing, customer care),
and products or services (e.g. DSL service, SMS service);

• security threats and vulnerabilities, NS =
{

nS
1, . . . ,n

S
MS

}
, targeting or adversely

affecting the business units NB;
• the people NP =

{
nP

1 , . . . ,nP
MP

}
, e.g. managers and employees, who run the business

units NB.

Here, the positive integers MB, MS, and MP are the cardinalities of the respective sets.
The chosen categorization and the formal definitions above enable a quantitative study
of the complex interdependencies between these factors and how they contribute to the
security risk profile of an organization.

Based on the definitions of the sets NB, NS, and NP, the intradependencies among
their members are formalized using the following graphs:

1. GB = (NB,EB) is the graph of intradependencies among business units in NB, where
each edge εB

i j = (i, j)∈EB represents the dependency or interaction between business
units i and j in NN . Each edge is associated with a scalar weight wB

i j denoting its
“intensity” or propensity to transfer and cascade risk.

2. GS = (NS,ES) is the graph of intradependencies among the security threats and
vulnerabilities in NS, where each edge εS

i j = (i, j) ∈ ES represents the dependency

between threats i and j in NS and is associated with a scalar weight wS
i j. This weight

represents the propensity to transfer and cascade risk such as the likelihood that
exploiting one vulnerability i will lead to exploiting j subsequently.

3. GP = (NP,EP) is the graph of intradependencies among people in the organization,
where each edge εP

i j = (i, j) ∈ EP represents the relationship between employees
i and j in NE and is associated with a scalar weight wP

i j. It represents again the
propensity to transfer and cascade risk such as compliance failure of employee i
leading to compliance failure of employee j.

Consequently, the matrices W B = {wB
i j}, W S = {wS

i j}, and W P = {wP
i j}, which contain

scalar intradependency weights, are associated with the respective graphs.
Bipartite graphs are utilized in order to model the interdependencies across the

sets NB, NV , and NP. Consider first the bipartite graph GPB = (NB,NP,EPB), shown
in Figure 6.4, that represents the cross-relationships between employees and business
units. For example, it could reflect who is responsible for a process, or product, or for
running an infrastructure system, such as a server. Here, EPB denotes the edges between
the sets NP and NB. It is important to note that the edges of this graph are always
between the members of the respective disjoint sets NB and NP, but not within each set.
The latter case is already modeled by the graphs GB and GP. The cross-relationships
across the other graphs can be modeled using similarly defined bipartite graphs.
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Figure 6.4 Regular and bipartite graphs can be used to represent the relationships between
business units, people, and security threats.

Figure 6.5 Risk diffusion on a bipartite graph and the “ping-pong” effect.

Cross-set risk-diffusion and equilibrium
The bipartite structure of the probabilistic risk framework is used to model how risk
cascades and gradually spreads (diffuses) in an organization. In order to explore how
business units, security vulnerabilities, and people affect and relate to each other with
respect to risks, an approach based on “diffusion processes” over a graph [32, 112] is
adopted. Diffusion processes, as means for computing similarities among the vertices
of graphs and ranking them, have been investigated by several studies [2, 85, 193].
This methodology is a distinguishing feature of the approach here and is leveraged
for security risk assessment. Thus, secondary and indirect relations between entities
(nodes) are explored through computation of a risk-diffusion process over the respective
bipartite graph [32] as shown in Figure 6.5.

Consider the risk-diffusion across a generic bipartite graph GXY = (NX ,NY ,EXY ) as
in Figure 6.5 without any loss of generality. First, define the relative risk probability
vector (RRPV)
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vX (t) =
[
vX

1 (t), ...,vX
i (t), ...,vX

MX
(t)
]

(6.1)

at time slot t ∈ {0,1,2, ...} such that 0 ≤ vX
i (t) ≤ 1, ∑i vX

i (t) = 1 ∀t. This normalized
relative risk vector represents risk probability as a normalized measure of security com-
promises and failures over the members of the set NX . Note that this set can be any one
of NB, NV , or NP. Similarly, define the RRPV of the set NY as

vY (t) =
[
vY

1 (t), ...,vY
i (t), ...,vY

MX
(t)
]
.

These definitions allow representation of an isolated risk factor associated with the i-th
member of a set NX using the RRPV vX = e(i), where e(i) := [0, . . . ,1, . . . ,0] is defined
as the i-th basis vector in R

MX .
Based on the definition of the RRPV as a probabilistic measure of relative risks faced

by the elements of a set, the relative risk value vector (RRVV) is defined by the mul-
tiplication of business values of individual members of the set with the relative risk
probabilities they individually face. In other words, given the business value vector of
the set NX ,

bX =
[
bX

1 , ...,bX
i , ...,bX

MX

]
,

the RRVV at time t is the elementwise product of vX (t) and βX :

rX
i (t) := vX

i (t) ·bX
i ∀i ∈ {1, . . . ,MX}.

The one-step risk diffusion or cascade from a set NX to NY over the bipartite
graph GXY = (NX ,NY ,EXY ) is captured by the normalized risk cascade matrix, R.
Consequently, one can write vY

i (t +1) = ∑MX
j=1 Ri jvX

j (t) or in matrix form

vY (t +1) = RvX (t),

where R := Ri j, i ∈ {1, ...MY}, j ∈ {1, ...,MX}}. Note that here any intranode risk
transfer between NY -nodes themselves are ignored for simplicity.

Similarly, define S ji to be the normalized risk transfer from node nY
i of NY at t to

node nX
j of NX at t +1. It follows that vX

j (t +1) = ∑MY
i=1 S jivY

i (t) or in matrix form

vX (t +1) = SvY (t),

where S = {S ji, i∈ {1, ...,MY}, j ∈ {1, ...,MX}} is the normalized risk cascade matrix in
the opposite direction of R with∑MX

j=1 S ji = 1 for each j ∈ {1, ...,MY}. Hence, it provides
the one-step risk-diffusion from Y to X within the bipartite graph GXY .

Combining normalized risk cascade matrices R and S, define the matrix

H := SR,

which captures the two-step risk-diffusion Y → X → Y via a “ping-pong” risk cascade
effect. As in S and R, the matrix H is also column-normalized (left-stochastic). This
follows directly from

∑
i

Hi j =∑
i
∑
k

SikRk j =∑
k

(
∑

i
Sik

)
=∑

k

Rk j = 1
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for every j ∈ {1, ...,MX}, since R and S are column-normalized (left-stochastic) matri-
ces, i.e. ∑k Rk j = 1 for all j and ∑i Sik = 1 for all k. It is worth remembering that
the vectors vX (t) and vY (t) are probability vectors. Hence, the matrix H is a Markov
transition matrix on vY (t).

Risk-Rank (RR) algorithm
Given an initial RRPV vY (0) on NY , it is possible to naively rank the nodes in NY based
on their immediate relative risk probability, and declare the one with maximum imme-
diate risk to be “in most danger.” This naive ranking strategy, however, fails to recognize
the diffusion or cascade of risk from NY to NX and back, which influences the initial
risk vector through the risk “ping-pong” effect. On the other hand, if the diffusion effect
is taken to the limit, then it leads eventually to the stationary RRPV vY∗ = limt→0 vY (t)
via the iteration vY (t +1) = HvY (t) as t→∞. In this case, the resulting RRPV vY∗ does
not retain any memory of the initial one vY (0); the memory fades away and risk diffuses
through the system.

It is desirable to devise a general algorithm that is flexible enough to take into account
both the immediate risk and diffusion effects. The RR algorithm, which aims to satisfy
this goal, is defined as the following dynamic stochastic process

vY (t +1) = αHvY (t)+βvY (0), (6.2)

where α,β ∈ [0,1] are the relative weights of immediate versus cascaded risks and α+
β = 1. The algorithm basically describes the cascading effect of an initial event vY (0)
or a member of the set NY on other members through evolution of risk probabilities vY .

In the special case of α= 1 in (6.2), the RR iteration

vY (t +1) = HvY (t)

converges to a unique stationary risk probability vector (distribution) vY∗ as t → ∞, if
the sets NX and NY are finite and the stochastic matrix H is irreducible. In general, when
0≤ α< 1, the Markov process (6.2) converges to

vY∗ = lim
t→∞vY (t) = β(I−αH)−1 vY (0), (6.3)

where I denotes the identity matrix, under the assumption of [I−αH] being invertible.
The RR vector vY∗ can then be used to rank the nodes with respect to their immediate as
well as cascaded risk probabilities, balancing between current and future risk as desired
using parameters α and β.

The mapping β(I−αH)−1 in (6.3) constitutes a diffusion kernel. At the same time,
the RR algorithm in (6.2) roughly corresponds to the iterative version of the adjusted
page rank procedure used by the Google search engine [93]. However, a distinguishing
feature of the RR algorithm is that it operates over a bipartite graph rather than an
adjacency one.

Remark 6.1 The RR approach can also be used to describe the cascading effect of
an initial event v(0)X (or member of the set NX ) on NY through evolution of risk
probabilities,
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vY (t +1) = αHvY (t)+βRvX (0), (6.4)

which converges to

vY∗ = lim
t→∞vY (t) = β(I−αH)−1RvX (0),

again under the assumption that I−αH is invertible.

Given, for example, an adjacency matrix WY as a representation of the intra-
dependencies of the graph GY = (NY ,EY ), it is possible to extend the RR algorithm to:

vY (t +1) = αHvY (t)+ γWY vY (t)+βvY (0), (6.5)

where α+β+γ= 1 and 0≤ γ≤ 1. If the matrix αH +γWY is aperiodic and irreducible,
then the process again converges to the unique solution [148]

vY∗ = β(I−αH− γWY )−1 vY (0),

which can be used by risk managers to rank relative risks.
The parameters α, β, and γ provide a way to adjust the weights of the following

three distinct factors when computing the solution. The first factor (α) emphasizes the
risk-diffusion process which results in a stationary risk distribution irrespective of the
initial starting point. The second one (β) is the counterpart of the first and represents
the immediate risks. The third one (γ) provides a way of taking into account the effects
of dependencies between members of the same set on risk probabilities.

Remark 6.2 It is possible to capture mathematically the relationships between the
nodes in a single generic graph and study risk diffusion on it. However, this assumes
full knowledge of all internal and external relationships, which may not be the case in
many scenarios. The RR approach imposes a special structure on the set of nodes based
on the natural partitioning of business units, security threats, and people. Subsequently,
cross-relationships are studied using bipartite graphs. This model is arguably better
suited to the problem domain, for it captures inherent properties and enables the study
of cases where only partial information is available.

The application of the RR algorithm to operational situations can be illustrated with
the following example. Let NY be the set of business units NB in an enterprise, and NX

the set of people NP running the business units. If an employee fails to perform a server
maintenance function such as applying a security patch, this may result in a compro-
mise of the server by a malicious attacker. The attacker may then disable some check
functions which may lead to potential failures of other employees to perform further
maintenance functions. Thus, the risks cascade to other business units and processes.
Several such risk-diffusion steps via “ping-pong” iterations may in the end result in
catastrophic failures that affect the whole organization.

Scenarios similar to the one above are not at all unusual in complex systems.
Well-known accidents with catastrophic consequences from Titanic to space shuttle Dis-
covery are results of similar cascading processes. Other examples, such as the NASA
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metric conversion fiasco or more mundane events such as failure of wide area networks
(Telecom) can be, fortunately, less damaging but still significantly costly. If the risks in
such complex systems can be analyzed in a principled way and prioritized (ranked)
properly, then it may be feasible to address them within the given resources of the
respective projects and organizations. The next section addresses this risk mitigation
problem from an optimization and control perspective.

6.1.3 Dynamic risk mitigation and control

The previous section focused on risk assessment as a first step in risk-management
(Figure 6.2) and specifically on the RR algorithm, which can be used to prioritize risks
based on the collected data. This section presents a quantitative framework for taking
appropriate actions to perform risk mitigation and control as the next step once the
assessment phase is completed. Hence, it is shown how the RR approach can also be
used to evaluate risk mitigation strategies. More specifically, the question of how to
control the risk-diffusion process defined in the previous section over time is addressed
in order to achieve a more favorable risk distribution across the assets of an organization.

The control actions available to the decision maker (e.g. risk manager) range from
policies and rules to the allocation of security resources or updating system configu-
ration. These actions change the dependencies in the organization, and hence directly
affect the evolution of the RRPV vY (t) (6.1). For example, patching a server decreases
the weight between a virus threat node and the server node in the organization graph.

The objective of risk control is to achieve a more favorable risk distribution. Suppose
that every element in NY has a value zy ∈ R

+ for the organization such that

zY :=
[
zY

1 ,zY
2 , . . . ,zY

MY

]
.

For example, if NY is a set of business units, then each unit would have an associated
value that represents the cost incurred if that unit is compromised. Then, the risk cost
incurred by the elements of NY during time period t can be quantified according to

c(t) = vY (t) · zY ,

where “ · ” denotes the dot product between two vectors. This definition supports the
intuition that the risk manager’s expected cost increases as the higher-value nodes gain
a larger proportion of the total risk. Therefore, the goal of the risk mitigation actions
should be to drive risk away from high-value nodes.

Due to the normalization inherent to the RR approach, controlling the risk-diffusion
process over NY will result in a redistribution of risk over this set of nodes. However,
the framework as it is does not model the absolute amount of risk. In order to allow
the absolute amount of risk to decrease as a result of possible control actions, it is
convenient to define a risk sink as an artificial node with zero value and add it to the set
NY such that its cardinality is now MY +1. Any proportion of risk which accumulates on
this node can be thought of as having left the network. Note that this requires appropriate
modifications of H, vY (t), and zY , but that once these are made, the mechanics of the
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risk-diffusion process are basically the same. A related assumption is: if no control
actions are taken, no risk will diffuse into the risk sink.

The control actions can now be applied to modify the evolution of relative risk (6.2)
and reduce the risk cost accumulated over time. The theory of MDPs [148] provides
a suitable framework for analyzing this stochastic optimization problem. MDPs have
also been discussed in the context of Markov security games in Section 4.1 and the
underlying dynamic programming principles are presented in Appendix A.3. An MDP
is defined by four key elements: a state space, a set of possible actions, a set of transition
probabilities between states given each action, and a cost or reward function. Each of
these elements is described next in the context of security risk-management.

It is possible to use the RRPV, vY(t), as the risk state of the system at time t. However,
the relative risk probability simplex

R X :=

{
p ∈ R

X : pi ∈ [0,1] ∀i and
X

∑
i=1

pi = 1

}

is not suitable as a state space since in actual deployments of the proposed risk analysis
techniques the state space is more likely to be quantized to a finite number of lev-
els. This is a consequence of limited system observability. As the relative risk evolves,
it is very difficult for an organization to track it with a high level of precision, and
it is much more likely that only a rough estimate of the relative risk probability can
be obtained. In addition, continuous state spaces are typically infeasible for evaluating
MDPs numerically.

Therefore, the finite state space

S = {s1,s2, ...,sk, . . . ,sK}
is defined as an alternative after quantizing the relative risk probability simplex R into
K risk regions (such as those in reference [111]). Figure 6.6 shows a visualization of an
example partitioning of the probability simplex R 3 into risk regions. Each risk region
or state k is associated with an average risk vector v̄Y

k , which is taken to be the arithmetic
mean of risk vectors which belong to partition k. One way that this average vector can
be determined is through Monte Carlo simulation, i.e. by generating random vectors
according to a uniform distribution over the probability simplex. Note that the defini-
tions of risk regions can be very application-specific, due to the diversity of risk metrics
employed in industry today. An example partitioning will be discussed as part of a
numerical example later in this section.

To reach a desirable risk state or region, the risk manager takes an action al out of a
set of available actions

A = {a1,a2, . . . ,al , . . . ,aL} .
Without loss of any generality, it is assumed here that only one action can be taken in
each time step. Each action changes the weights of one or more edges in the bipartite
graph model of Section 6.1.2. In terms of risk-diffusion dynamics (6.2), these actions
correspond to modified versions of the matrix H, resulting in the set
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Figure 6.6 Example partitioning of the probability simplex R 3 into four risk regions.

H = {H1,H2, . . . ,Hl , . . . ,HL} ,
of the same cardinality as the actions.

The probability of transitioning from the current state s(t) = sk to another state s(t +
1) = sk′ , given that action a(t) = al is taken, is

Prob(s(t +1) = sk′ |s(t) = sk,a(t) = al).

For each action al , the K×K probability transition matrix P(al) is constructed, where
the entries are

Pi j(al) = Prob(s(t +1) = j|s(t) = i,a(t) = al).

The transition probabilities which make up P(al) can be estimated, for example using
Monte Carlo simulation. It is important to distinguish here between H, which describes
the evolution of relative risk probabilities, and P(al), which denotes the transition
probabilities from one state (risk region) to another.

Given the transition probabilities, the evolution of states over time is described next.
Let the vector xY (t) ∈ R

K represent the probabilities of being in each state at time t.
Then, taking action al leads to

xY (t +1) = P(al)xY (t).

As the last step of MDP formulation, define an additive cost function that sums the
risk cost accumulated by the system over a finite number of time steps 1, ...,T . At time
t, the current state contributes a cost of cs(s(t)), while the action taken contributes a cost
ca(a(t)). The cost ca is usually application-specific and captures the cost of performing
some action, for example, hardening a node against attack. The cost of the risk state cs

is based on the definition of risk cost above. In particular, it is given by
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Table 6.2 Example vulnerability classes

Class 1 Windows vulnerabilities

Class 2 Microsoft SQL server vulnerabilities

Class 3 IIS server vulnerabilities

Class 4 Microsoft Office vulnerabilities

Class 5 Phishing-related vulnerabilities

cs(si) = v̄Y
i · zY ,

where v̄Y
i is the representative (mean) probability vector of state (region) i. Therefore,

the total cost C(T ) accumulated up to time T is

C (T ) = γT cs(s(T ))+
T−1

∑
t=0
γt [cs(s(t))+ ca(a(t))] , (6.6)

where γ ∈ (0,1] is a discount factor which captures the typical scenario that risk reduc-
tions closer to the present are of more value than those in the future. The goal of the risk
manager is then to minimize C(T ), where T is the time span of interest. Notice that it is
also possible to define infinite horizon versions of the problem as in the MDP literature.

Given the MDP formulation above, standard methods such as value or policy iter-
ation [148] can be used to solve for the optimal risk cost-minimizing strategy. The
risk control approach described in this section is particularly applicable to scenarios
in which a fixed resource must be redeployed over a given time period in response
to a dynamic, rapidly evolving risk situation. Such a scenario is discussed next as an
illustrative numerical example.

Numerical example
The dynamic risk control and mitigation framework presented is illustrated with a
numerical example scenario. Consider an IT manager responsible for patching five cor-
porate subnets that consist of multiple computers and servers. On each subnet, there
is a number of high-priority vulnerabilities that need to be patched. Each vulnerability
belongs to one of five common vulnerability classes in a Windows environment, listed
in Table 6.2.

A set of costs is associated with the subnets, signifying the productivity losses
incurred if a subnet is compromised by the exploitation of a vulnerability. Assume that,
since patching is a time-intensive process [112], the IT manager can work only on one
subnet at a given time period. Hence, it is important to determine the proper order of
patching, which can have a significant financial impact.

A simplistic approach would be to start with the subnet which contains the highest
number of vulnerabilities, patch them, and then proceed to the next subnet. However,
this strategy is far from optimal, for several reasons. One of these is due to the case when
a vulnerability on one of the subnets with a low number of vulnerabilities is exploited
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in an attack, all other subnets are at a much higher risk. Another reason is the fact
that attacks exploiting different vulnerabilities may vary significantly in terms of their
financial and productivity impact. Therefore, it is expected that an optimized patching
strategy that relies on the presented framework would lead to much better results.

Let NS be the set of vulnerability classes, indexed by i = 1, . . . ,5, and NB be the
set of subnets, indexed by j = 1, . . . ,5. The productivity losses incurred by the failures
of subnets make up the vector zY . Time is discrete and indexed by t = 0,1, . . . ,T . The
number of vulnerabilities on each subnet at time t = 0 is q j, and the number of class i
vulnerabilities on each subnet at time t = 0 is qi

j.
Given the number of vulnerabilities in each class and consequently for each subnet,

the IT manager can determine the relative risk posed to each subnet by each vulnera-
bility class using the simple equation θ ji := qi

j/q j, so that θ ji denotes the proportion of
the vulnerabilities on subnet j which belong to class i. These values can be interpreted
as the relative probabilities that each subnet will serve as an entry point into the overall
corporate network for a vulnerability of the associated class.

At the same time, the IT manager also knows how many class i vulnerabilities exist
across the entire network, as well as the distribution of these vulnerabilities over the
various subnets. Suppose that there are bi total class i vulnerabilities in the system. Then,
the proportion of these vulnerabilities which lies on each subnet is φi j := qi

j/bi, which
can be thought of as the relative probability that if a class i vulnerability is exploited on
the network, it would occur on subnet j.

Adopting the notation in Section 6.1.2, let the matrix S represent the cross-set risk-
diffusion from NB to NS, and R the cross-set risk-diffusion back from NS to NB. Then,
the entries of S and R are defined respectively as S ji = θ ji and Ri j = φi j ∀i, j. The
diffusion matrix H from NB to NB is consequently H = S ·R, which is given in this
example by (prior to the inclusion of the risk sink):

H =

⎛
⎜⎜⎜⎜⎜⎝

0.61 0.05 0.03 0.25 0.06
0.05 0.69 0.04 0.18 0.04
0.04 0.05 0.56 0.29 0.06
0.06 0.04 0.06 0.78 0.06
0.07 0.04 0.05 0.26 0.58

⎞
⎟⎟⎟⎟⎟⎠ .

Suppose that the IT manager uses the proportion of the total number of vulnerabilities
on each subnet as an estimate of the initial risk vector vY (0). Choosing α = 0.95 and
β = 0.05 in the RR algorithm (6.2), which suggests that the risk evolution is highly
dynamic, results in a very different risk estimate than the initial one, due to the cascade
of risks, as shown in Figure 6.7. For example, subnet number 4 is much more at risk in
the long run than estimated initially due to interdependencies in the system.

The risk assessment obtained through the RR algorithm is now used as a basis for
developing an optimal patching strategy for risk mitigation. First, a risk sink is added to
the set NB, which is called node nB

6 . This results in the following change to the matrix
H: the risk sink is incorporated in a way such that no risk can diffuse into the risk sink,
but a small amount of risk can diffuse out of it. It can be interpreted as a small amount
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Figure 6.7 Initial versus the RR estimate of risk highlighting the effects of complex
interdependencies.

of additional risk entering the network over time, perhaps due to the announcement of
new vulnerabilities.

Next, the resulting probability simplex R 6 is partitioned into risk regions by quan-
tizing each entry vY

j (t) of vY (t) into five levels through the function L : R 6 �−→ Q =
{1,2,3,4,5}. These five levels represent {very low, low, medium, high, very high} risk
levels.

The set of actions available to the IT manager for risk mitigation can be, for example,
assigning employees to patch subnets, purchasing automatic software upgrades, etc.
For simplicity, it is assumed that in each time period t, the IT manager takes one of
these actions on a particular subnet or does nothing. The patching actions are labeled as
a1, . . . ,a5 for the respective subnets, and the action corresponding to doing nothing is
denoted by a6.

When an action is taken, the effect manifests itself as a modification of the matrix
H as discussed earlier. Furthermore, each action is associated with a cost reflecting the
effort required to take that action. Here, this cost is assumed to be small compared to
the productivity losses incurred if a subnet is compromised. In addition, the following
assumptions are made: if no action is taken the matrix remains the same, H6 = H. If the
subnet nB

j is patched, then the corresponding row of H is modified such that

Hl( j, j′) =

{
(1−δ)H( j, j′) , if j′ = 1, . . . ,5

δ , if j′ = 6

where δ ∈ [0,1] represents the proportion of risk that is taken out of the network by
taking patching action on a subnet. This change to H represents the fact that patching a
subnet will reduce the risk it transfers to other subnets.
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Figure 6.8 Relative risk under random action and MDP risk control strategies.
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Figure 6.9 Aggregate cost of the optimal MDP-based risk mitigation strategy versus the average
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Thus, this example is an instance of MDP and solved numerically for the given matrix
H with

zY = [500,400,30,8000,100] ·103,

δ = 0.1, γ = 1, α = 0.95, and β = 0.05. The time horizon is chosen to be T = 70. The
results in Figures 6.8 and 6.9 clearly show that, in comparison to choosing actions at
random, the dynamic risk mitigation method can provide considerable risk reduction.
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6.2 Security investment games

The increasing interaction and collaboration between various organizations and com-
panies create complex interdependencies on a global scale. Consequently, these
organizations often share sophisticated information and communication infrastructures
providing data access, business applications, and services. In such a complex environ-
ment, the security of one organization depends on not only its own defensive actions but
also the preventive measures taken by others. Likewise, the vulnerability of one organi-
zation may lead to cascading failures and compromises for others. In addition, a single
large-scale organization, such as a multinational company, often consists of autonomous
yet interdependent units with different incentives and agendas.

Ensuring that interdependent organizations and units collaborate with each other in
a mutually beneficial security prevention framework is a challenge for security officers
defending their networked systems. Even in cases where there is willingness for collab-
oration between enterprises or units within a company to improve their security, it is not
immediately clear how individual systems, services, and business processes affect and
interact with each other. Hence, making informed decisions on how to take preventive
measures, allocate limited resources, and address vulnerabilities across the units and
organizations remains a significant challenge.

To address the questions posed above, a linear influence network-based security
investment game framework is presented in this section for evaluating risks, ben-
efits, incentives, and investments by independent organizations or autonomous units
with interdependent operations.2 The framework builds a connection between eco-
nomic (game-theoretic) modeling techniques and security problems. Based on game-
theoretic techniques, it provides a quantitative evaluation of possible investments,
given sufficiently accurate quantitative estimates of the governing parameters. In addi-
tion, reasonable qualitative insight can be obtained using rough estimates of relevant
input quantities. The framework also investigates the interdependent nature of security
investments by modeling the relationships between players in a flexible way.

The influence network, which models the interdependence between a security
investment or vulnerability at one organization and the resulting security benefit or cost
at another is assumed to be linear. While nonlinear relationships may exist in some sit-
uations, it is reasonable to use a linear approximation. Furthermore, in many situations
of interest, obtaining meaningful estimates of numerical parameters for more complex
nonlinear models is not possible. Hence, a linear approximation is consistent with the
accuracy of available numerical input to the model.

A security investment game played among the organizations is defined based on
the linear influence networks described. In this noncooperative game, each organiza-
tion (player) decides on its own individual security investment level, which is a positive
quantity. The security investments or preventive measures need not have a symmetric

2 In the remainder of the chapter, the two scenarios of independent organizations collaborating with each
other and autonomous units of a single organization will be used interchangeably.
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effect between organizations. A decision by one player can be either beneficial or
detrimental to neighboring players resulting in positive or negative interactions. An
investment in security by one player may benefit others because the investment reduces
a risk shared by both players. A negative interaction may result from the fact that given
two potential victims, an attacker will likely choose the path of least resistance. In other
words, an investment in security by one player may increase the likelihood that the
others within the network are attacked instead.

Each player is associated with a cost function that is defined as the difference
between a linear pricing function denoting the price of security investments and a util-
ity function, which represents the nonlinear relationship between improved security
through preventive investments and the total value of all deployed security mechanisms
to the organization. The use of a nonlinear utility function is an important feature of
the game-theoretic model. This feature distinguishes the investment game from purely
probabilistic fault tolerance and failure ones that only aim to provide probability esti-
mates of break-ins or failures. The players choose a non-negative investment level to
minimize their own cost functions in a selfish manner. Thus, the game is defined as a
noncooperative one that models the misalignment of incentives between players. The
players are assumed to observe others’ actions rather accurately, either because they are
independent but collaborating organizations, or because they are divisions of the same
umbrella company.

In its pure form, the investment game differs from the security games in Chapter 3
as it is played among agents (organizations) who are selfish but not hostile to each
other. The interaction between agents is based mainly on how their security invest-
ment decisions affect each other through their respective utility functions. However,
the model is flexible enough to incorporate malicious attackers as players in the
game by reinterpreting their respective decision variables and cost functions. In this
case, the decision variable of the attacker is the attack intensity and the negative
weights in the linear influence model indicate how much other agents are affected
by the attacks. The cost function of the attacker can be, for example, the difference
between the price of launching an attack and gain from it, quantified by the utility
function.

6.2.1 Influence network and game model

The linear influence network modeling the interdependency between players of the
investment game is similar to those in Section 4.3.2. It is a weighted directed graph
G(N ,E), where N = {n1, . . . ,nN} is the set of vertices or nodes and E is the set
of edges or links. Each node is associated with a unique player (e.g. an enterprise or
autonomous unit) resulting in an N-player game. The link ei j ∈ E between players i
and j captures the effect of player i’s actions on player j. The real value or weight of
an individual link, ψi j ∈ R, denotes the degree of influence of node i on node j. The
weighted influence graph can be represented by the N×N matrix W = [wi j]N×N whose
entries are defined as
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Figure 6.10 Example linear influence network with five nodes.

wi j :=

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j

ψi j, if ei j ∈ E

0, else

. (6.7)

Notice that the matrix W is not necessarily symmetric. An example influence network
is shown in Figure 6.10 with the associated matrix

W =

⎡
⎢⎢⎢⎢⎢⎣

1 ψ12 0 ψ14 ψ15

ψ21 1 ψ23 0 0
0 0 1 0 0
ψ41 0 ψ43 1 ψ45

0 ψ52 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

In the security investment game, each player i chooses a security investment level xi ∈
[0,∞). Then, the investments of all players are given by the vector x := (x1, . . . ,xN) ∈
R

N . Based on the influence network defined through matrix W , the scalar value (W T x)i

(the i-th element of the vector W T x) represents the total effective security investment of
player i, taking into account the effect of all other players in the network. The quantity

yi := (W T x)i

at the same time constitutes the argument of the utility function of this player. One
can think of this utility function as a function that translates the effective investment in
security into the total “benefit” experienced by that player.

The i-th player’s cost function is defined as

Ji(x) := cixi−Ui
(
(W T x)i

)
, (6.8)

where ci is a user-specific pricing parameter. The term cixi is the linear price due to the
level of effort or investment. The utility function Ui(·) represents the benefit received
from the effective investment made by itself and all of its neighbors in security. Since
a single unit of investment does not necessarily translate into the same unit amount in
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benefit, there is a nonlinear relationship between the investment and the benefit. We now
make a number of assumptions on the utility function.

Assumption 6.3
1. The utility function Ui(·) is continuous, twice differentiable, and strictly concave on
[0,∞), ∀i.
2. Ui(0) = 0,

dUi(yi)
dyi

∣∣∣∣
yi=0

> ci, and limyi→∞
dUi(yi)

dyi
< ci, for ci > 0 in (6.8), ∀i.

The first assumption ensures mathematical tractability and diminishing returns for
each additional unit of security investment following the marginalist principle in eco-
nomics. The second assumption suggests that if no effective investment is made, there is
no benefit; investment prices are low enough that some amount of investment is feasible
for each user; and the optimal investment level for each user is finite.

The resulting N-player noncooperative game will now be solved to obtain the NE in
pure strategies; that is, we are looking for an x∗ := (x∗1, . . . ,x

∗
N) satisfying

Ji
(
x∗i ,x

∗
−i

)≤ Ji
(
xi,x

∗
−i

)
, ∀xi ∈ [0,∞),∀i, (6.9)

where x∗−i denotes the NE strategy of all players except the i-th one. Alternatively, as
we have seen earlier, NE can be defined in terms of “best-response” functions. Let

ri(xi,x−i) := argmin
xi≥0

Ji(xi,x−i) (6.10)

be the best-response function of player i. Then, x∗ is an NE solution of the security
investment game if, and only if,

x∗i = ri
(
x∗i ,x

∗
−i

) ∀i. (6.11)

In other words, x∗ is a fixed point of the best-response functions, ri ∀i.

6.2.2 Equilibrium and convergence analysis

Under Assumption 6.3, the strictly convex cost function of player i in (6.8) admits a
unique positive minimum solution. Let bi be defined as the single positive value such
that

dUi(yi)
dyi

∣∣∣∣
yi=bi

from (6.8). The value bi represents the optimal level of investment made by player
i independent of network effects or externalities. It then follows from the first-order
optimality conditions that any equilibrium must satisfy

(W T x)i = bi if xi > 0
(W T x)i ≥ bi if xi = 0,

(6.12)

which are also sufficient by the concavity assumptions made.
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Equivalently, the optimality conditions for the equilibrium solution can be expressed
in terms of vectors x and y such that

y = W T x−b
yT x = 0
x≥ 0, y≥ 0.

(6.13)

Any solution (x∗,y∗) denotes both the NE investment levels and the “slacks” on those
players who invest nothing. The conditions thus take the form of the classic, extensively
studied linear complementarity problem (LCP). Since these optimality conditions are
both necessary and sufficient, it follows that finding an NE of the security investment
game is equivalent to solving the associated LCP for x∗. By leveraging results from the
latter, strong existence, uniqueness, and convergence results can be obtained.

The existence and uniqueness of NE are closely related to the influence matrix W
being strictly diagonally dominant. In general, a matrix W ∈ R

N×N is said to be strictly
diagonally dominant in the row sense if ∑ j 
=i |wi j| < |wii| = 1 ∀i. If W is strictly diag-
onally dominant, then this has the following interpretation here: the fixed amount of
investment by all players other than i produces less value for player i than an individ-
ual investment of the same fixed amount. On the other hand, due to differences in utility
functions, an agent’s investment in itself may still end up being more valuable to another
player. In other words, a fixed amount of investment by one company may translate into
a smaller benefit for itself when compared to the benefit of another company which has
a higher utility for that investment.

The following uniqueness theorem establishes the relationship between the diagonal
dominance of W and the existence of NE.

Theorem 6.4 If Assumption 6.3 holds and W is strictly diagonally dominant, then the
security investment game admits a unique NE.

Proof First, it is established that if W is diagonally dominant, then it is a P-matrix. A
P-matrix is a matrix in which every real eigenvalue of each principal submatrix is
positive. If W is a diagonally dominant matrix with diagonal elements of ones, then
it has only positive real eigenvalue (from the Gershgorin circle theorem). Since each
submatrix of a diagonally dominant matrix with positive diagonal elements is also diag-
onally dominant with positive diagonal elements, it must be a P-matrix. Therefore, if W
is diagonally dominant, then it is a P-matrix, and thus the associated LCP of (6.13) has
a unique solution for any b. Therefore, the game admits a unique NE solution.

Although the NE can be obtained in the case of complete information on all players
and centrally solving the LCP of (6.13), in reality the organizations repeatedly play
this game using “best-response” strategy updates and “solve” it in a distributed manner
without knowing the utility functions of other players. Suppose that players update their
investment levels in discrete time instances and in parallel but without any coordination
among themselves. In order to formalize the game dynamics, let the time be slotted and
indexed as t = 0,1,2, . . . Each agent updates its investment level xi asynchronously at
times ti according to its “best-response” function
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ri(x) = max(0, [(I−W T )x]i +bi), (6.14)

where I denotes the identity matrix. Then, the formal asynchronous update algorithm is
described in Algorithm 6.5.

Algorithm 6.5 Asynchronous update algorithm

1: Given x(0)≥ 0
2: Set t← 0
3: repeat
4: for i = 1 . . .N do
5: if iε {set of updating players} then
6: xi(t +1) = ri(x(t))
7: else
8: xi(t +1) = xi(t)
9: end if
10: end for
11: t← t +1
12: until converged

Assume that the set of update times is infinite for each player, i.e. each player updates
its strategy infinitely often even though these updates need not be regular or peri-
odic. Then, the global asymptotic convergence of this algorithm is established in the
following theorem.

Theorem 6.6 Let Assumption 6.3 hold. If W is strictly diagonally dominant, then Algo-
rithm 6.5 globally asymptotically converges to the unique NE point of the game. In
other words, starting from any feasible point x(0)≥ 0, the system converges, x(t)→ x∗,
as t→ ∞ under Algorithm 6.5.

Proof Let M := |I−W T |, which is a non-negative matrix with all zero diagonal ele-
ments and a maximum row (or column) sum strictly less than one by definition of W .
From the Gershgorin circle theorem [78] it necessarily follows that the spectral radius
of matrix M, ρ(M) < 1. Hence, there exists an N-component positive vector, w > 0,
such that the weighted infinity matrix norm is less than one, ‖M‖w

∞ < 1. The weighted
infinity matrix norm is defined here as

||M||w∞ := max
x 
=0

|Mx|w∞
|x|w∞

,

where the weighted infinity vector norm is defined as

|x|w∞ := max
i

|xi|
wi

.

In reference [3], it is proven that the synchronous algorithm satisfies:

|x(t +1)− x∗| ≤M |x(t)− x∗|. (6.15)
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Taking the weighted infinity norm of both sides yields

|x(t +1)− x∗|w∞ ≤ |M |x(t)− x∗| |w∞
≤ ||M||w∞ |x(t)− x∗|w∞
= β |x(t)− x∗|w∞

(6.16)

for some constant 0 < β< 1. Thus, the synchronous algorithm represents a contraction
with respect to the weighted infinity norm.

Using the notation from reference [38], define the sets

X(k) = {x ∈ R
N
+ : |x− x∗|w∞ ≤ βk|x(0)− x∗|w∞}. (6.17)

Then, it follows that

• . . .⊂ X(k +1)⊂ X(k)⊂ . . .⊂ X(0);
• x(k +1) ∈ X(k +1) ∀k and x ∈ X(k);
• for any sequence xk ∈ X(k) ∀k, limk→∞ = x∗;
• for each k, one can write X(k) = X1(k)×X2(k)× . . .×Xn(k) for sets Xi(k)⊂ R+.

Subsequently, it follows from the asynchronous convergence theorem in refer-
ence [38, p. 464] that the asynchronous update algorithm globally asymptotically
converges to the unique equilibrium solution.

Although the result in Theorem 6.6 ensures global convergence of Algorithm 6.5, it is
asymptotic in nature. Therefore, usually a stopping criterion is used in practice to decide
when to stop the updates, i.e. to decide on the convergence in step 12 of the algorithm.
One possible stopping criterion is ‖x− r(x)‖∞ < ε for a chosen sufficiently small ε> 0.

6.2.3 Incentives and game design

One of the important features of the game-theoretic framework presented is the property
that investments by one enterprise can produce externalities on its neighbors. When a
player benefits from positive externalities produced by a neighbor, the affected player
ultimately invests less than it would in isolation. This is commonly referred to as “free
riding” in economics. For example, while a company in isolation would make a security
investment of b by optimizing its own cost (6.8), with positive externalities from its
neighbors the same company no longer needs to bear the full burden of investing in
security for itself and makes an investment in an amount less than b. On the other hand,
when an enterprise receives negative externalities from its neighbors, it is forced to
invest more than it would in isolation (b). These relationships can be formalized by
defining a metric called “free riding ratio.”

The free riding ratio, γi, for a user i is defined as

γi =
(W T x)i− xi

bi
, (6.18)

for given security investment game parameters and functions W , Ui(·), and ci ∀i. In
the vector form it is defined for all users as γ = [γ1, . . . ,γN ]. Verbally, the free riding
ratio of a player, γi ∈ R, is the ratio of the externalities produced by i’s neighbors over
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the amount it would invest in isolation. Since bi > 0 and |x| < ∞, this ratio is always
finite and well defined. If γi is negative, then player i is forced to overinvest, since the
neighbors’ contributions are a net negative. If γi = 0, then the player invests as if it
is isolated. If 0 < γi < 1, then the player enjoys limited free riding, yet it still makes
a positive investment, i.e. bi > 0. If γi ≥ 1, however, the player i is completely ”free
riding“ and contributes nothing, i.e. bi = 0.

The incentive mechanisms for security investments are complicated even in single
large-scale enterprises with autonomous yet interdependent units with their own agen-
das and incentives. Security divisions in such enterprises have the difficult task of
ensuring that these autonomous units collaborate with each other within a mutually
beneficial security prevention framework in order to reach the security objectives of
the entire company. The influence model discussed provides a quantitative scheme for
capturing the interaction between individual systems, services, and processes of these
business units. In addition, the decision-making mechanisms are quantified within the
game-theoretic framework.

The equilibrium outcome of a security investment game played between autonomous
business units of an enterprise may be suboptimal with respect to the goals of the entire
organization. In this case, the results of the game can be influenced by the security divi-
sion of the enterprise by deploying explicit incentive mechanisms such as subsidies to
other units. Thus, the NE of the game can be optimized or “designed” [18] or optimized
using a subsidy mechanism according to some enterprise-wide security objectives, such
as enforcing a certain security investment policy.

The subsidy mechanism used by the security division of the organization is formal-
ized by subtracting a subsidy term αixi from the cost function of player i, which is an
autonomous unit within the company,

Ji(x) := cixi−Ui
(
(W T x)i

)−αixi, (6.19)

where αi is a player-specific subsidy constant. In this case, the matrix W represents the
effects of a security investment decision of units on others within the company.

Let x∗ be the NE solution of the N-player security investment game with the cost
functions (6.19) and for a given vector of subsidies α := [α1, . . . ,αN ]. Then, a game
mapping T can be defined that maps the subsidy α to the unique NE point x∗ such that
x∗ = T (α). Similarly, the inverse mapping T̂ is defined as α = T̂ (x∗). Notice that the
mappings T and T̂ are highly nonlinear, often not explicitly expressible except from
special cases.

The security policy of the company can be expressed in terms of a desired region
Ω of investments, x ∈ Ω, or a function F(x) which is maximized using the sub-
sidy α. Consider the special case of the function F(x) being twice continuously
differentiable, strictly concave, and unimodal such that it admits a unique maximum
x̂ := argmaxx≥0 F(x) without any loss of generality.3 Then, there is a unique subsidy

3 The methods discussed are also applicable to the more general cases of a desired region Ω and multiple
maxima of F(x).
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â = T̂ (x̂) which ensures that the NE of the game coincides with the desired security
investment profile x∗ = x̂ [18]. This result is summarized in the following theorem.

Theorem 6.7 For the security investment game with the cost structure given in (6.19)
and assuming that the policy enforcer has full access to the player investment levels,
there is a unique subsidy vector, α, which locates the unique NE point of the game to any
desirable feasible point, x̂ ∈Ω (x̂ := argmaxx≥0 F(x)), where Ω is a desired investment
region (F(x) an investment objective function) of the organization.

Proof The proof immediately follows from the first-order necessary optimality condi-
tions of player cost optimization problems due to the convexity of the cost structure and
uniqueness of NE,

ci−αi− ∂Ui(W T x̂)
∂xi

= 0⇒ α̂i = ci− ∂Ui(W T x̂)
∂xi

∀i,

and for any feasible x̂.

Theorem 6.7 establishes that if there is an additional incentive mechanism, then
the security investment decisions of the business units can be influenced such that
a company-wide security objective is achieved. A similar system can be devised for
independent yet collaborating organizations through a neutral overseeing body which
enforces industry-wide security investment objectives such as United States Computer
Emergency Readiness Team (US-CERT).

6.3 Cooperative games for security risk-management

Risk-management and related decision making by autonomous yet interdependent orga-
nizations and divisions have been studied in Section 6.2 within a noncooperative game
framework. This section presents an alternative model for cooperation among a num-
ber of divisions in an organization. At the same time, various risk-management factors
such as interdependencies, vulnerabilities, security resources, and organizational fric-
tions are taken into account. The model is based on coalitional game theory, where
divisions can form a cooperative group or coalition after evaluating the potential bene-
fits and costs from this cooperation. In addition, various coalitional structures as well as
the conditions needed for cooperation are presented.

6.3.1 Coalitional game model

Consider an organization with N divisions denoted by the set N . Each division affects
its neighbors both positively and negatively. The positive influence is due to the effect of
security resources such as the budget, investments, and expertise. At the same time each
division is under certain threats and has vulnerabilities that can affect neighboring divi-
sions negatively. The divisions being “neighbors” often refers to their interdependencies
due to their roles in the organization rather than geographical location.
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The security relationships between the divisions are represented by linear influence
graphs as in Section 6.2.1. The graph Gp(N ,Ep) models the positive influence of each
division’s resources on others and Gn(N ,En) captures the negative influences. The
graph Gp is represented by the N×N matrix W p = [Wi j] with elements

W p
i j =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j,

ψi j, if ei j ∈ Ep,

0, otherwise,

i, j = 1, . . . ,N,

where 0 < ψi j ≤ 1 is a real number that quantifies the degree of positive influence from
the resources of division i on division j, and ei j is the edge between those divisions.
Similarly, the negative influence graph Gn is captured by an N ×N influence matrix

W n =
[
W n

i j

]
where each element is defined as

W n
i j =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j,

ηi j, if ei j ∈ En,

0, otherwise.

i, j = 1, . . . ,N.

Here, 0 < ηi j ≤ 1 quantifies how much the vulnerabilities of division i influence or
threaten division j. Note that own vulnerabilities affect the division fully corresponding
to unit weight.

Let

x := [x1,x2, . . . ,xN ]

be the vector of security resources of all divisions that can be used to defend against
security risks, and

ν := [ν1,ν2, . . . ,νN ]

be the vector of threats or vulnerabilities of respective divisions. The total effective
security resources of a division i ∈ N is (W pT · x)i and the total effective threats of
division i ∈ N is (W nT · ν)i. Define the utility function of division i, which it tries to
maximize, as

Ui(x,ν) = b((W pT · x)i)− c((W nT ·ν)i). (6.20)

The functions b(·) and c(·) are the actual resource benefit and threat cost of division i,
which take its total effective resources and vulnerabilities respectively as arguments.

Cooperative model
Unlike the security investment games of Section 6.2, the players here have fixed
resources x and vulnerabilities ν, which they cannot change for a certain time period.
Nevertheless, they can cooperate by forming coalitions (cooperative groups) as an alter-
native way of improving their effective security resources and reducing their effective
threats. By forming a coalition, S1 ⊆N , the divisions can strengthen the positive effect
on each other and improve the weights W p

i j ∀i, j ∈ S1, for example by working together
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more effectively. It is further assumed that even if two divisions have no influence
noncooperatively, i.e. Wi j = 0, they might still be able to create a positive influence by
cooperating. At the same time the divisions can reduce the negative effect of threats
on each other and decrease the weights W n

i j ∀i, j ∈ S1 by sharing information and
collaboratively addressing vulnerabilities.

Define a coalition structure S = {S1, . . .SM}, Si ⊂N ∀i such that Si∩S j = /0, if i 
= j
and

⋃M
i=1 Si = N . Its positive and negative effects are captured by modified matrices

W
p(S) and W

n(S), respectively. For notational convenience, the arguments are dropped
to obtain W

p
and W

n
, when the coalition structure is clear from the context. Given any

two divisions i, j ∈ N , and a coalition S1 ⊆ N , the elements of the matrix W
p

are
defined as

W
p
i j :=

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j,

W p
i j , if i /∈ S1 or j /∈ S1,

f
(

W p
i j

)
, if i, j ∈ S1,

i, j = 1, . . . ,N, (6.21)

where f
(

W p
i j

)
≥W p

i j is the cooperative improvement in the positive influence W p
i j when

the two divisions i and j belong to the same coalition. Similarly, the matrix W
n

with
elements

W
n
i j :=

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j,

W n
i j, if i /∈ S1 or j /∈ S1,

g
(

W n
i j

)
, if i, j ∈ S1,

i, j = 1, . . . ,N, (6.22)

represents the reduction of the negative influence whenever the two divisions i and j
join the same coalition. The underlying assumption here is: when two divisions are in
the same coalition, they are able to operate cooperatively and reduce their threats on
each other.

Coalitions often entail, in addition to benefits, certain costs due to cultural, eco-
nomical, or social reasons. For example, it may be quite costly for a well-organized
division to cooperate with a badly organized one. There are usually natural frictions
between divisions due to business culture or social differences that need to be over-
come to establish a coalition. Furthermore, as the number of employees in a coalition
increases, various challenges emerge, e.g. coordination or scaling of existing structures.
These frictions and size effects can lead to non-negligible impediments to the potential
cooperation between divisions as well as the whole organization.

The frictions between various divisions can be modeled using a friction graph
Q (N ,EQ) defined over the set of divisions N . The effects of the friction graph Q
are captured by the friction matrix Q where each element is given by

Qi j :=

{
χi j, if ei j ∈ EQ and i 
= j,

0, otherwise,
(6.23)

and χi j > 0 is a positive real number indicating the degree of friction between divisions
i and j. In addition to the friction cost, for any coalition S ⊆ N an increase in its size
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|S |, defined as the cardinality of the set, yields an additional cost pertaining to the extra
effort that the employees in S need to invest for coordination within their coalition.

Taking into account the friction matrix Q and the size of coalition S , define a cost
function p(Q,S). It is natural to assume that the cost is an increasing function of the
total friction induced by the graph Q (N ,EQ) and of the coalition size |S |, which reflects
the cost of coordination within large divisions.

The value of a coalition S ⊆N is given by

V (S) = b((W pT · x)S)− c((W nT ·ν)S)− p(Q,S), (6.24)

where Q is the associated friction graph,

(W pT · x)S :=∑
i∈S

(W pT · x)i

is the total cooperative effective security resources and

(W nT · x)S :=∑
i∈S

(W nT ·ν)i

is the total cooperative effective threats and vulnerabilities for coalition S . For the sim-
plicity of the analysis, it will be assumed here that both the “resource benefit” function
b(·) and “threat cost” function c(·) are linear, such that

V (S) = (W pT · x)S− (W nT ·ν)S− p(Q,S). (6.25)

The model described can be analyzed as a (N ,v) coalitional game [123, 151] with the
players being the divisions and the value function given by (6.25). Due to the presence of
a cost for cooperation as per (6.25), traditional solution concepts for coalitional games
such as the core [123] may not be applicable. In fact, in order for the core to exist
as a solution concept, a coalitional game must ensure that the grand coalition, i.e. the
coalition of all players, will form. However, in the formulated game, the grand coalition
may not always form due to the friction between the divisions. Instead, independent
and disjoint coalitions may emerge in the organization. Thus, the game is classified as
a coalition formation game [151] where the objective is to characterize the coalitional
structure that will possibly form between the players.

6.3.2 Coalition formation under ideal cooperation

The functions f and g in (6.21) and (6.22) depend strictly on the cooperative protocol of
the divisions within a single coalition. The cooperative model of Section 6.3.1 is quite
generic and accommodates any kind of cooperative protocol. It is, nonetheless, useful
to present an example to illustrate the properties of the described model.

As a basic example, consider an ideal cooperation protocol. Under this protocol, a
coalition S of divisions can maximize the positive effects of cooperation and totally
eliminate the negative effect of threats on each other. Thus, this cooperation protocol is
specified by

f
(

W p
i j

)
= 1, ∀i, j ∈ S (6.26)
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and

g
(
W n

i j

)
= 0, ∀i, j ∈ S and i 
= j. (6.27)

The protocol describes an ideal case where, by sharing expertise, skills, and resources,
a group of cooperating divisions can effectively eliminate the vulnerabilities and have a
perfect synergy among themselves. Although in practice this assumption may not hold,
it still provides valuable insights on possible coalitions.

As a first step of analyzing cooperation possibilities among the divisions, the merger
of two coalitions is discussed next. In fact, cooperation between two coalitions con-
stitutes a building block for the organization-wide cooperation. The following theorem
states the necessary and sufficient condition for the merger of two coalitions.

Theorem 6.8 Consider two disjoint coalitions S1 ⊆ N , S2 ⊆ N , S1 ∩ S2 = /0 in the
defined ideal cooperation environment and with value functions (6.25). The value of a
merger between these two coalitions for the organization is larger than their aggregate
value when being separate, i.e.

V (S1∪S2)≥V (S1)+V (S2),

if, and only if, the following condition on the cost functions holds

p(Q,S1∪S2)− (p(Q,S1)+ p(Q,S2))≤ γ, (6.28)

where

γ := ∑ j∈S2
x j

(
|S1|−∑i∈S1

W p
ji

)
+∑ j∈S1

x j

(
|S2|−∑i∈S2

W p
ji

)

+
(
∑i∈S2∑ j∈S1

W n
jiν j +∑i∈S1∑ j∈S2

W n
jiν j

)
is the total effective benefit of this merger for the organization.

Proof The value of coalition S1 is from (6.25),

V (S1) = ∑
i∈S1

(W pT · x)i− ∑
i∈S1

(W nT ·ν)i− p(Q,S1),

⇒V (S1) = ∑
i∈S1

∑
j∈N

W
pT
i j · x j− ∑

i∈S1

∑
j∈N

W
nT
i j ·ν j− p(Q,S1).

Using the definitions of f and g in (6.26) and (6.27), respectively, this value becomes

V (S1) = |S1| ∑
i∈S1

xi + ∑
i∈S1

∑
j∈N \S1

W p
jix j− ∑

i∈S1

∑
j∈N \S1

W n
jiν j

− ∑
i∈S1

νi− p(Q,S1).
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The value of coalition S2,

V (S2) = |S2| ∑
i∈S2

xi + ∑
i∈S2

∑
j∈N \S2

W p
jix j− ∑

i∈S2

∑
j∈N \S2

W n
jiν j

− ∑
i∈S2

νi− p(Q,S2),

and the one of S1∪S2,

V (S1∪S2) = |S1∪S2| ∑
i∈S1∪S2

xi + ∑
i∈S1∪S2

∑
j∈N \(S1∪S2)

W p
jix j

− ∑
i∈S1∪S2

∑
j∈N \(S1∪S2)

W n
jiν j− ∑

i∈S1∪S2

νi− p(Q,S1∪S2),

are obtained similarly.
Simply substituting these expressions into V (S1 ∪ S2) ≥ V (S1) +V (S2) yields then

the necessary and sufficient condition in the theorem.

Theorem 6.8 provides a quantitative criterion in the form of a condition on the cost
functions, which allows an organization (or divisions within) to assess when a merger
of two potential coalitions is beneficial. This result can be further investigated by con-
sidering a special case with a concrete cost function. In many practical scenarios, the
cost p of a coalition S can be defined as a linear function of the total friction and the
coalition size,

p(Q,S) =

{
α ·∑i∈S ∑ j∈S Qi j +β · |S |, if |S |> 1,

0, otherwise,
(6.29)

where Q is the friction matrix. Note that this matrix does not have to be symmetric. The
parameters α > 0 and β > 0 quantify the price of forming a coalition with |S| > 1 per
unit friction and per unit size unit, respectively. The following result is a special case of
Theorem 6.8 for the cost function defined.

Theorem 6.9 Consider two disjoint coalitions S1 ⊆ N , S2 ⊆ N , S1 ∩ S2 = /0 in the
defined ideal cooperation environment with the value function (6.25), where the cost is
defined in (6.29). If both coalitions have more than one division, |S1|> 1 and |S2|> 1,
they cooperate to form the coalition S1 ∪ S2 for the benefit of the organization if, and
only if

α≤ γ
T (S1∪S2)

,

where

T (S1∪S2) := ∑
i∈S1

∑
j∈S2

(Qi j +Q ji) (6.30)

is the total friction between the members of S1 and the members of S2.
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Proof The cost of the coalition S1∪S2 is

p(Q,S1∪S2) = α · ∑
i∈S1∪S2

∑
j∈S1∪S2

Qi j +β|S1∪S2|

⇒ p(Q,S1∪S2) = α ∑
i∈S1

∑
j∈S1

Qi j +α ∑
i∈S2

∑
j∈S2

Qi j

+α ∑
i∈S1

∑
j∈S2

(Qi j +Q ji)+β|S1|+β|S2|.

Applying the definitions of cost p in (6.29) and total friction T in (6.30), to the cost
function in (6.31) yields

p(Q,S1∪S2) = p(Q,S1)+ p(Q,S2)+αT (S1∪S2).

Then, the result follows immediately from condition (6.28) in Theorem 6.8.

Theorem 6.9 supports the intuition that the benefit of cooperation among two coali-
tions of divisions in a company mainly depends on the ratio between the total effective
benefit γ to the total friction T between the members of the two coalitions. Furthermore,
the friction between the members of a single coalition does not affect whether or not
this coalition will cooperate with another one. Finally, the theorem provides an upper-
bound on the price per unit of friction above which no cooperation is possible between
any two coalitions of size larger than one.

The next example illustrates the results of Theorems 6.8 and 6.9 in the particular
case of cooperation among two single divisions. On the other hand, there are many
generalizations and extensions to the presented results. One direction is to investigate
nonlinear “resource benefit” b(·) and “threat cost” c(·) functions in (6.25). Another
natural extension is to study the case of a generic nonideal cooperation protocol where
the improvement in the positive and negative weights is partial, i.e. f and g are different
from those in (6.26) and (6.27), respectively.

Example: merger of two divisions
As an illustrative example, consider the particular case of cooperation among two sin-
gle divisions. Applying the results in Theorems 6.8 and 6.9, the condition for the two
divisions to merge is

α(Q12 +Q21)+2β≤ x1
(
1−W p

12

)
+ x2

(
1−W p

21

)
+W n

12ν1 +W n
21ν2. (6.31)

Applying (6.31) to the following particular case yields interesting results. When the
two divisions have no threats on each other, i.e. ν1 = ν2 = 0, β is very small, β≈ 0, and
q := Q12 = Q21, the condition in (6.31) reduces to(

1−W p
12

)
x1 +

(
1−W p

21

)
x2 > 2αq. (6.32)

This condition has several interesting properties and interpretations:

1. If there is no friction, q = 0, then cooperation is always beneficial.
2. If there is already strong positive influence between divisions, W p

12,W
p

21 → 1, then
they have almost no incentive to cooperate.
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3. If one division already benefits from strong positive influence, e.g. W p
12→ 1, then the

second division needs to have the sufficient resources x2 to overcome the friction and
cooperate.

4. In the case of no prior positive influence, W p
12 = W p

21 = 0, it is sufficient that the total
resources of both divisions are greater than the friction, x1 + x2 > 2αq.

6.4 Discussion and further reading

There are very few quantitative studies in the area of risk-management for decision
making in the context of information technology and network security [70, 111, 112].
Section 6.1 presents a novel probabilistic risk analysis and dynamic control framework
summarizing results in references [9] and [121], respectively. A popular book that pro-
vides valuable insights to cascading risks, effects of corporate culture, and social factors
in risk-management is reference [183].

The security investment games in Section 6.2 are based on references [113, 114].
The game-design approach to incentive mechanisms in security is an application of
the framework introduced in references [18, 19]. The cooperative game-based analysis
presented in Section 6.3 is based on reference [150] and utilizes the coalitional game
models of reference [151].



7 Resource allocation for security

Chapter overview

1. An optimization approach to malware filtering
– traffic centrality measures
– centrality-based problem formulations
– constrained problems

2. Robust control framework for security response
– network traffic filtering model
– derivation of optimal controller and state estimator
– discussion on system implementation

3. Optimal and robust epidemic response
– epidemic models and feedback response
– multiple network case
– malware removal using optimal and robust control methods

Chapter summary

The decision and control-theoretic approach quantifies implicit costs and formalizes
decision-making processes for resource allocation in network security. The optimal and
robust control methods utilized are illustrated with three example scenarios: place-
ment of malware filters, dynamic filtering of suspicious packets, and robust response
to malware epidemics.
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7.1 An optimization approach to malware filtering

Placement of malware filters in the presence of an intelligent attacker has been mod-
eled within a stochastic security game framework and investigated in Section 4.4.
This section studies deployment and configuration strategies for next-generation net-
work traffic filters within an optimization framework. In contrast to the high-level
and long-term security decision-making models earlier in Section 6.2, the objec-
tive here is to analyze decision-making schemes at a technical level and closer to
real time, using the filter deployment and configuration problem as an illustrative
setting.

Network traffic filtering aims to stop malware packets while they traverse net-
work links by sampling packets or sessions and either comparing their contents to
known malware signatures or looking for anomalies likely to be malware. Filtering
capabilities are increasingly integrated into routers themselves to reduce hardware
deployment costs and to allow for more adaptive security. Traffic filters are expected
to be configurable, networked, and even autonomous. The objective here is to inves-
tigate the deployment and configuration of such devices within an optimization
framework.

In this section, a network of configurable, networked routers is considered with traf-
fic filtering capabilities which can be dynamically and remotely set by a (centralized)
server. Some subsets of these routers act as source routers, another subset as destination,
and the remaining as core routers. The model is independent of the effectiveness of mal-
ware filters. It is assumed that packets are marked only once. In addition, the network
administrator has full knowledge of the network traffic, possibly with some delay. Due
to the small percentage of dropped malware packets within the total packet volume, the
effect of filtering on traffic flow volumes is ignored. Alternatively, a flag can be inserted
to the headers of suspicious packets instead of discarding them. It is worth noting that,
although the focus here is on packet filtering, all of the theoretical results also apply to
the filtering of sessions.

One of the main aspects of the framework discussed is the expression of the value
or importance of a single router or link in a network with a given traffic pattern. Using
modified versions of well-known centrality measures from graph theory, it is shown
that when source–destination pairs are weighted based on traffic magnitude in cen-
trality algorithms, the resulting centrality measure for each router is equivalent to the
traffic seen at each router under certain assumptions on routing algorithms. This intu-
itive but not immediately obvious result allows the utilization of centrality measures in
cost functions, and facilitates capturing common network security objectives within a
quantitative model.

The quantitative optimization framework introduced is used as a basis for the deriva-
tion of optimal filtering strategies, which indicate at what rate to filter packets or
sessions at a specific configurable filtering router or device at a given time and traffic
pattern. In order to demonstrate the applicability of the approach to a variety of scenar-
ios, multiple optimization problems are formulated and solved to determine the optimal
filtering strategy for different objectives involving security level, centrality, and costs.
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Furthermore, various hardware- and security-level constraints are taken into account in
these problems.

7.1.1 Traffic centrality measures

Traffic centrality measures capture the importance of routers (or links) on a net-
work, and hence are helpful when defining objective functions for malware filtering
problems [45]. Two specific centrality measures applicable to communication networks
are studied for use within the context of the filter placement problem. Traditional cen-
trality measures used in social networking usually involve source–destination pairs,
but each pair is weighted identically. Moreover, they consider every node to be a
potential source or destination. Modifying these assumptions, a more relevant traffic
centrality measure is obtained. First, the source–destination pairs are weighted accord-
ing to the magnitude of traffic that travels between them. Second, only nodes that are
in fact sources and/or destinations on the network (i.e. no core routers) are used in
computations.

Traffic betweenness centrality (TBC) is a betweenness centrality metric that differs
from traditional ones due to the two changes mentioned above. Let the undirected con-
nected graph (V,E) represent a network, where V = {v1, . . . ,vN} is the set of network
nodes and E is the set of links weighted by the amount of traffic passing through them.
Let S⊂V be the set of all the sources, D⊂V be the set of all destinations, and L be the
set of all source–destination pairs (s,d). The number of shortest paths between s∈ S and
d ∈D is denoted by σsd ≥ 1, which immediately follows from the connectivity assump-
tion. The number of these shortest paths that pass through some router r ∈V is σsd(r).
Moreover, the amount of traffic between s and d is usd , which is assumed to be positive.
It is assumed that if there are multiple shortest paths between a source and a destination,
then they are equally likely to be used, which corresponds to a load-balancing scheme.
Then, the TBC of a router r is defined as

CB(r) := ∑
(s,d)∈L

usd
σsd(r)
σsd

. (7.1)

In other words, it is the fraction of shortest paths of all source–destination pairs that
pass through a particular router, with each source–destination pair being weighted by
its traffic magnitude. If at least one shortest path for any source–destination pair passes
through a given router r, then CB(r) > 0. Note that a traditional betweenness centrality
measure would not restrict the sum to only those pairs of vertices that are in the set of
actual source–destination pairs, L.

The traffic stress centrality (TSC) is defined as a special case of TBC, where only one
path is active at a given time between a source–destination pair. In other words, there is
no load-balancing on the network. In this case, if a node is on this active shortest route,
then σsd = 1, otherwise it is zero. The TSC of a router r is defined as

CS(r) := ∑
(s,d)∈L

usdσsd(r). (7.2)
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The following theorem establishes an intuitive but not immediately obvious relation-
ship between the traffic centrality measures defined here and the actual traffic that passes
through a router.

Theorem 7.1 Let the TBC and TSC of a node r on a given network be defined by (7.1)
and (7.2), respectively.

1. If the traffic on the network is routed using a load-balancing shortest path routing
scheme, where all the packets from a source to a destination are equally likely to be
delivered through multiple shortest paths between them, then the amount of traffic on
a router is equal to its TBC measure.

2. If the network uses a simplest shortest path routing scheme, where all packets
between a source and a destination follow a single shortest route, then the amount
of traffic on a router is equal to its TSC measure.

Proof In the first part of the theorem, if there are multiple shortest paths between a
source–destination node pair, then they are equally likely to be used. Consider a single
source–destination pair i ∈ L with a traffic flow ui and σi aggregate number of shortest
paths. Let σi(r) of these paths pass through router r. Consequently, the amount of traffic
for this source–destination pair that passes through router r is simply

ui(r) = ui
σi(r)
σi

. (7.3)

Then, the total traffic at router r is obtained by summing (7.3) over all source–
destination pairs L resulting in

ur =∑
i∈L

ui(r) =∑
i∈L

ui
σi(r)
σi

= CB(r), (7.4)

which establishes the first part.
In the second part, it is assumed that there is only one shortest path available or in

use. Then, the result follows directly as a special case where σi is always one and σi(r)
is one if router r is on the used shortest path and zero otherwise. Thus,

ur = ∑
j∈L

u jσ j(r) = CS(r), (7.5)

which completes the proof.

7.1.2 Filtering problem formulations

In this section, multiple optimization problems are formulated for network-filtering
scenarios and solved to determine the optimal filtering strategy for different objectives
involving security level, centrality, and costs. Each formulation utilizes centrality mea-
sures and takes into account various hardware- and security-level constraints. A brief
overview of the relevant background on optimization is available in Appendix A.1.3.
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Centrality-based problem
The first filtering problem formulation is based on the assumption that the damage
caused by malware within the network is quadratically increasing.1 Let pr be the
traffic-filtering rate at a router. Then, the cost function is defined as

∑
r∈V

Mr(pr),where Mr(pr) = CS(r)2(1− pr)2, (7.6)

which is a strictly convex function. This cost function admits an interpretation in
terms of malware traffic. Let mr be the number of malignant packets to traverse
a router r ∈ V in a time interval. Then, mr(t)(1− pr) such packets will success-
fully pass by the router undetected. From Theorem 7.1, if the amount of mal-
ware at a router is proportional to the amount of traffic at the router, then it is
also proportional to the centrality of the router. Thus, the traffic centrality measure
CS(r) in (7.6) can be substituted with mr(t) and would still lead to the same cost
expression.

The centrality-based malware filtering problem is defined as

min
p ∑

r∈V
Mr(pr), such that ∑

r∈V
ur(t)pr ≤ θ, (7.7)

where Mr(pr) is defined in (7.6). The positive constant θ denotes here an upper bound
on the total packet-filtering capacity, which follows from technological restrictions
on filtering devices. This problem is a convex optimization problem with a strictly
convex cost function, and hence admits a unique solution. Furthermore, depending on
the routing properties of the network, CB can be equivalently used instead of CS in this
formulation.

Although the filtering problem (7.7) has additional constraints such as the natural one
on the filtering rate pr ∈ [0,1] ∀r, an analytical solution is discussed first in its current
form to gain further insight and for illustrative purposes. Toward this end, the problem
(7.7) is rewritten as

minp
1
2

pT Bp+ cT p

subject to: uT p≤ θ, (7.8)

where

cT = [−CTS(1)2 −CTS(2)2 · · · −CTS(N)2],

B = diag(−c), uT = [u1 u2 · · · uN],

and N is the number of routers. Note that diag(·) denotes here a diagonal matrix with
elements from its (vector) argument, and hence, B is positive definite.

1 This analysis can be extended under different assumptions on the relationship between malware traffic and
cost to the network (linear, logarithmic, etc.).
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The corresponding dual problem is the scalar concave maximization problem:

maxµ −1
2

µ2Q− tµ− 1
2

cT B−1c

subject to: µ≥ 0 (7.9)

where both Q > 0 and t are scalars:

Q = uT B−1u and t = θ+uT B−1c.

This maximization problem admits the unique solution

µ∗ = max

(
0,
−θ−uT B−1c

uT B−1u

)
. (7.10)

By substituting it back into the relation p =−B−1(c+uµ), which is the unique solution
to (7.8), the optimal pr values are obtained:

p∗r = 1− µ∗ur

CTS(r)2 . (7.11)

This expression is simplified significantly using the equality between CTS(r) and ur to
obtain

p∗r = 1−
[

ū− θ̄
ur

]
, (7.12)

under the assumption of θ+ uT B−1c < 0. Here, ū refers to the average traffic at all
routers and θ̄= θ/N.

In this case, the optimal filtering rate p∗r can be found with localized information,
aside from the average traffic on all links. Hence, it can be computed in a distributed
manner. As the filtering capacity per router (θ̄) approaches the average traffic per router
(ū), the filtering probabilities increase. Similarly, as the traffic at a router (ur) increases,
the filtering probability at that router increases. An inherent assumption here is that
pr ∈ (0,1), i.e. an inner solution, which occurs when θ̄< ū and ū− θ̄> ur.

Constrained centrality-based problem
The problem (7.7) in the previous section is redefined as the constrained centrality-
based problem when additional constraints are enforced, First, the filtering rate pr

cannot be negative or more than 100 percent. Second, if there is a marking mechanism
for detected packets that prevents them from being processed again, certain restrictions
can be imposed upon the effective sampling rate for source–destination pairs.

Let the index j refer to a source–destination pair in the set of source–destination pairs
L and ξ j(r) denote the fraction of shortest paths that a router r lies on for a particular
source–destination pair j. If there is only one shortest path or only one that is used
for source–destination pair j, then ξ j(r) is equal to one for all routers on that path and
zero for all other routers. Finally, let yr be a discrete variable indicating whether or not
filtering is enabled on the router r. Thus, considering that packets are not sampled twice
because of packet marking, the effective sampling rate for pair j becomes
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ρ j = ∑
r∈V
ξ j(r)pryr. (7.13)

Here, pr still refers to the proportion of the total amount of traffic at a router as a
simplifying assumption.

It is possible to define a minimum effective sampling rate 0 < α < 1 on ρ. These
constraints are then summarized as

pr ∈ [0,1], r ∈ R

ρ j ∈ [α,1], j ∈ P (7.14)

Due to the strict convexity of the cost function and convexity of the constraint set,
the constrained centrality-based problem has a unique optimal solution. However, this
problem usually does not have a simple closed-form solution as in the unconstrained
version. In this case, a centralized server calculates optimal filtering for the current time
step based on traffic measurements from the last time step by solving the quadratic
programming problem (7.7) with the constraints (7.14). This problem can be solved
using a gradient projection method [35].

Centrality and sampling cost-based problem
As a variation of the formulations in Section 7.1.2, the strict upper bound on the filtering
capacity (number of packets filtered networkwide) can be replaced by a cost on packet
sampling, which is included within the centrality-based metric in the objective to be
minimized. Hence, the objective now is to minimize the sum of the Mr(pr) and a cost
on the sampling rate weighted by γū. The weight parameter ū allows for more accurate
comparisons of γ values across networks with different traffic loads. Thus, the problem
is formulated as

min
p ∑

r∈V
[Mr(pr)+ γūur prcr] , (7.15)

where cr is a per-packet sampling cost on link r. The constraints on the effective
sampling rate remain as in (7.14):

pr ∈ [0,1], r ∈ R

ρ j ∈ [α,1], j ∈ P (7.16)

This is again a convex optimization problem over a compact set and admits a globally
optimal solution. Therefore, the same methods used for solving the previous problem
also apply here. Notice that if γ = 0 and the constraint on the total quantity of filtering
θ is added, the centrality-based problem of Section 7.1.2 is obtained as a special case.

Effective sampling rate and filtering cost-based problem
In this variant of the filtering problem, the objective function combines the cost of
enabling traffic filters at the routers, a per-packet sampling cost, and a utility term that
captures the benefit of higher effective sampling rates. A constraint-effective sampling
is imposed such that each source–destination pair has some minimum effective sam-
pling rate. Assume that fr is the cost of implementing filtering at a particular router
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r ∈ V per time step. This cost will depend on the particular hardware being used as
well as the potential effects of filtering on traffic flow. The discrete variable yr ∈ {0,1}
indicates whether or not filtering is enabled at a particular router. In addition, the utility
of sampling a source–destination pair traffic is taken into account explicitly. In certain
cases it may be beneficial to filter more than the minimum effective sampling rates. For
illustrative purposes, define the linear utility function

U(ρ j, j) = ρ js jd j, (7.17)

as one possible version. Here, the effective sampling rate ρ is weighted by the value of
the destination d j and the suspicion level of the source s j, each represented by a positive
real number. The problem is then formulated as a mixed-integer nonlinear program
(MINLP) as

min
p,y ∑

r∈V
[ fryr + yrcr prur]− γū∑

j∈L
U(ρ j, j). (7.18)

An interesting special case of this problem is when γ= 0. Then, the objective is sim-
ply to achieve the constraints on p and the effective sampling rates ρ j while minimizing
the filtering costs.

The constraints on the effective sampling rate are similar to those in the previous
problems. In addition, let pmax(r) denote the maximum filtering rate available at a router
r ∈ V . If the filter can only filter packets at a certain rate z, then pmax(r) could be set
equal to z/ur or in the worst case, z/υr, where υr is the capacity of router r. The resulting
set of constraints is

ρ j ∈ [α,1] ∀ j

pr ∈ [0, pmax(r)] , r ∈ R

yr ∈ {0,1}, r ∈ R (7.19)

This formulated problem admits a global optimal solution which may not be unique.
For each given filter activation pattern, i.e. a set of enabled filters on the network, the
problem turns into a linear optimization problem on a compact set, which will have an
optimal (potentially nonunique) solution. The global optimum can only be found by
solving 2R such problems, one for each possible filter configuration.

7.2 A robust control framework for security response

Section 7.1 has focused on how to decide on the sampling rates of adaptive malware
filters based on the measurements of dynamic traffic patterns. In this section, a robust
dynamic filtering framework is introduced and analyzed that is not a function of overall
traffic measurements, but one of suspected malware traffic. Instead of deciding what
fraction of traffic on the network should be sampled as a precautionary measure, filter-
ing rules are derived here to drop packets or sessions given their suspicion levels as a
security response.
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Distinguishing malware from legitimate network traffic is a very challenging task. A
variety of detection schemes, e.g. machine learning or statistical methods, have been
proposed in the literature to differentiate malicious traffic from regular traffic. Given
that it is not possible to know with certainty whether or not a packet or session contains
malware, when should a packet or session be dropped?

The objective here is to formalize this decision process within a quantitative frame-
work under the assumption of imperfect detection or classification. The introduced
framework captures the tradeoff between false alarms (e.g. dropping clean packets)
and not filtering suspected malware. Specifically, H∞-optimal control, a robust optimal
control-theoretical tool, is used to analyze this problem (see Appendix A.3.4 for a brief
overview). A feedback filtering rate controller is derived that explicitly considers the
cost of malware infection as well as the cost of filtering. The resulting dynamic mal-
ware filtering algorithms are aggressive in the face of malware attacks and thus likely
to prevent or at least delay their spread.

The H∞-optimal control framework allows for dynamically changing filtering rules
or parameters in order to ensure a certain performance level. In H∞-optimal control,
disturbances (malware) to the network can be interpreted as an intelligent maximizing
opponent in a dynamic zero-sum game who plays with knowledge of the minimizer’s
control action. Hence, one evaluates the network under the worst possible conditions.
This approach applies naturally to the problem of malware response as the traffic devi-
ation resulting from a malware attack is not merely random noise, but represents the
efforts of an intelligent attacker. Moreover, the objectives of the defense and attackers
are diametrically opposed, so the zero-sum assumption is accurate. Thus, H∞-optimal
control provides a worst-case framework that ensures a performance guarantee in the
form of a minimum security level.

7.2.1 Network traffic filtering model

In this section, a linear system model for malware traffic is presented and used as a basis
for studying the problem of malware filtering. The optimal filtering strategies derived
here can also be applied to other types of filtering problem in addition to network traffic
filtering, such as spam filtering, distributed denial of service attacks, etc.

One common way to provide network security is to implement network traffic fil-
ters (firewalls) that eliminate suspicious packets. For example, packets corresponding
to a certain port number or from a subclass of IP addresses might be filtered because
these characteristics indicate that the packets are probably not legitimate. These filters
are dynamic if they can easily be reconfigured to respond to changing network circum-
stances. The objective here is to investigate the criteria that should be used for selecting
which packets to filter; in other words, to answer the question: how many packets are
suspicious enough to be filtered? Given the difficulty in differentiating legitimate pack-
ets from those containing malware and the inherent costs associated with false decisions,
this is not a question with an easy answer.

Consider a computer network under the control of a single administrative unit, such as
a corporate network. Assume the network is divided into subnetworks for administrative
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and security purposes. While the model is described within the context of this sce-
nario, the corresponding control framework can be applied to other contexts as well by
redefining the entities in question. For example, a large telecommunications company
may apply this model and control schemes to much larger units, such as the clients it
serves.

Let x(t) represent the number of malware packets that traverse a link on their way
to the destination subnetwork at time t originating from infected sources outside the
subnetwork. This malware flow to the subnetwork is modeled using a linear differential
equation with control and disturbance terms – a framework commonly used in control
theory:

ẋ(t) = ax(t)+bu(t)+wa(t), (7.20)

where u(t) represents the number of packets that are filtered at a particular time. Usually,
only some proportion, b, of the packets filtered are actually malware related. Thus,
(1−b) is the proportion of filtered packets that are not malware related (false alarms).

The term wa(t) represents the number of malware packets added to the link at time t
intentionally by malicious sources or unintentionally by hidden software running on
hosts, both located outside the subnetwork considered. Alternatively, it represents a
worm attack, expressed in terms of the number of malware packets sent from a subnet-
work to other subnetworks at each time instant. Note again that no assumption is made
on the form of the attack.

Consequently, u(t) and wa(t) represent the packet-filtering rate and malware infiltra-
tion rate for this specific subnetwork, respectively. The negative value a represents the
instantaneous proportion of malware packets on the link that are actually delivered to the
subnetwork. Figure 7.1 visualizes the model considered within the context of malware
traffic filtering.

Increasing the dimension of the model in (7.20) leads to a set of linear differential
equations:

ẋ(t) = Ax(t)+Bu(t)+Dwa(t), (7.21)

which captures the multiple networks case. In this case both A and B are obtained
simply by multiplying the identity matrix by a and b, respectively. The D matrix imposes
a propagation model on the attack and quantifies how malware is routed and distributed

Firewall

Filtered
malware

Filtered
legitimate

(false alarm)

Protected
subnetwork

Network

Figure 7.1 Graphical description of the malware traffic filtering model.
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on this network. Here, we take it to have zeros for its diagonal terms (intra-subnetwork
malware traffic does not leave the subnetwork), and each column must sum to one to
ensure conservation of packets.

Overall, this model simplifies actual network dynamics by assuming a linear system
and using a fluid approximation of traffic flow.

Denote by y(t) the number of measured inbound malicious packets prior to filtering.
Note that the separation between detection (y(t)) and response (u(t)) is only at the con-
ceptual level. In the implementation, both may occur on the same device. Inaccuracies
in y(t) are inevitable due to the challenging problem of distinguishing malicious packets
from legitimate ones [24]. To capture this uncertainty formally, define y(t) as

y(t) := Cx(t)+Ewn(t), (7.22)

where wn(t) is measurement noise of any form. To simplify notation, the measurement
noise and attack disturbance are denoted both as respective parts of the vector w :=
[wa wn]T . In addition, define N := EET and assume that it is positive definite, meaning
that the measurement noise impacts each dimension of the measured output. The C
matrix models the fact that y(t) is higher than and proportional to x(t), the measurement
prior to filtering. When implemented, this constant could be measured from an analysis
of packet filtering and the calculations required to determine that the optimal controller
could be rerun periodically.

Note that no assumption is made on how y(t) is obtained. It could be the result of
some statistical analysis comparing the expected traffic to the measured traffic or be
based on a set of rules where packets with certain characteristics are assumed to be
malicious.

The model at hand contains several simplifications and assumptions to ensure
analytical tractability:

• The components of the B matrix are set to be constants, although in reality the values
of these components are variable and dependent on the specific attack type.

• The assumption of a constant value for the C matrix is an approximation, as in real-
ity the number of malware packets prior to filtering will probably not be linearly
dependent upon the number after filtering.

• Network dynamics are modeled using a fluid approximation of traffic flow.

7.2.2 Derivation of optimal controller and state estimator

In this subsection, an algorithm or controller for traffic filtering is designed under a
given imperfect detection (measure) of inbound malicious packets.

As part of the H∞-optimal control analysis and design, first the controlled output is
defined

z(t) := Hx(t)+Gu(t), (7.23)

where GT G is assumed to be positive definite, and no cost is placed on the product
of control actions and states: HT G = 0. The matrix H represents a cost on malicious
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packets arriving at a subnetwork. The conditions for the H∞-optimal control theory to
apply are that (A, B) and (A, D) be stabilizable, and (A, H) and (A, C) be detectable.

If x becomes negative, then this means that legitimate packets are filtered from the
link. A balanced policy is adopted by penalizing underfiltering malicious traffic equally
to overfiltering, which prevents legitimate network traffic from traversing the link. The
cost on filtering legitimate traffic can be defined in further detail. If a cost of fl is
assigned to filtering legitimate packets, a (1− b) portion of total traffic, and a cost
of fa to the filtering action itself, then the components g of G can be specified as
g = fl(1−b)+ fa.

The overall cost for the purpose of H∞ analysis is subsequently defined by

F(x,u,w) =
‖z‖
‖w‖ , (7.24)

where ‖z‖ :=
(∫ ∞
−∞ |z(t)|2dt

)1/2
, the L2-norm of the function z(·), and a similar defi-

nition applies to ‖w‖. Although it is a cost ratio, it will be referred to as the cost for
simplicity. It captures the proportional changes in z due to changes in w. More intu-
itively, it is the ratio of the cost incurred by the system to the corresponding attacker
and measurement noise “effort.” Notice that the focus here is on the malware traffic
rather than the effects of it (e.g. disabling hosts or servers), which usually depend on the
malware type.

H∞-optimal control theory not only applies very directly and appropriately to the
problem of worm response, but also guarantees that a performance factor (the H∞ norm)
will be met. This norm can be thought of as the worst possible value for the cost L and
bounded above by

γ∗ := inf
u

sup
w

F(u,w), (7.25)

which can also be viewed as the optimal performance level in this H∞ context.
In order to actually solve for the optimal controller µ(y), the number of packets to

filter as a function of the inaccurately measured number of inbound malicious packets,
a corresponding differential game is defined between the attackers and the malware
filtering system, which is parameterized by γ, where γ< γ∗

Lγ(u,w) = ‖z‖2− γ2‖w‖2. (7.26)

The malicious attackers try to maximize this cost function in the worst case by varying
w while the malware filtering algorithm minimizes it via the controller u. This can be
seen as a security game similar to those discussed in Chapter 3.

The optimal filtering strategy u = µγ(x̂) is derived from this differential game
formulation for any γ> γ∗ as2

µγ(x̂) =−(GT G)−1BT Z̄γ x̂, (7.27)

2 The theory behind this and the derivation of this solution can be found in reference [29].



178 Resource allocation for security

where Z̄γ is solved from the so-called generalized algebraic Riccati equations (GARE)

AT Z +ZA−Z(B(GT G)−1BT − γ−2DDT )Z +HT H = 0, (7.28)

as its unique minimal positive definite solution, and x̂ is generated by

˙̂x =
[
A− (B(GT G)−1BT − γ−2DDT )Z̄γ

]
x̂

+
[
I− γ−2Σ̄γZ̄γ

]−1 Σ̄γCT N−1(y−Cx̂), (7.29)

where Σ̄γ is the unique minimal positive definite solution of the GARE

AΣ+ΣAT −Σ(CT N−1C− γ−2HT H)Σ+DDT = 0. (7.30)

Here, x̂ is an estimate for x, corresponding to the worst possible values of w under the
criterion (7.26). This is a linear feedback controller operating on a state estimate x̂, and
γ∗ is the smallest γ such that the spectral radius condition ρ

(
Σ̄γZ̄γ

)
< γ2 holds.

The H∞-optimal controller derived can be calculated offline using only the linear
quadratic system model. The online calculation is simply a multiplication by the
estimate of the system state. Also note that this controller requires a networkwide
knowledge of the system state estimate and thus, this is a centralized control solution.

There are a few assumptions implicit in this specific controller formation. The var-
ious filters will have to send control packets to each other, indicating their y values.
Moreover, it is assumed that these filters are able to convert a number of packets to
filter per time step (u(t)) into a filtering rule that will implement that filtering rate.
The packets that are most likely to be malicious should be filtered first. Exactly how
this is done depends on the system implementation. For example, a rule-based filter
could implement more rules (block more ports or IP addresses) or the sensitivity of an
anomaly-based detector could be increased when u(t) increases.

Remark 7.2 The H∞-optimal controller derived, (7.27), is a centralized control solu-
tion due to the D matrix, which imposes a specific malware propagation model. How-
ever, the same framework can be applied to each subnetwork separately by using (7.20)
for each. This leads to a decentralized solution consisting of multiple independent scalar
H∞-optimal controllers.

Discussion on system implementation
The numerical analysis and simulation results in reference [43] based on the analytical
framework presented are promising and may be extended to an experimental analysis.
It is possible to implement the robust control framework in a realistic environment
as part of a dynamic malware filtering system using a procedural description of the
H∞ controller given in Algorithm 7.3. Such an experimental evaluation is on the one
hand specific to the system setup and implementation. On the other hand, it can provide
deeper insights into the practical aspects of the problem and illustrate the applicability
of the developed algorithms.

The robust and dynamic malware filtering framework presented allows security engi-
neers to make malware filtering decisions (e.g. setting filter thresholds) in a principled
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Algorithm 7.3 H∞-Optimal robust malware filtering
1: Choose the preference parameters H and G in (7.23) and a sufficiently large γ.
2: Estimate the parameters A,B,C,D,E in (7.21) and (7.22).
3: while Filtering system is operational do
4: repeat
5: Decrease γ.
6: Compute Z̄γ using (7.28).
7: Compute Σ̄γ using (7.30).
8: until spectral radius ρ(Σ̄γZ̄γ) = γ2− ε, for some small ε> 0.
9: for t in the next fixed time period
10: Compute x̂(t) using (7.29).
11: Compute the optimal filtering strategy u(t) = µγ(x̂(t)) from (7.27).
12: Apply the filter to the system using computed u
13: end for
14: Observe the system to re-estimate A,B,C,D,E.
15: end while

way. The costs and benefits in the system are modeled quantitatively, which enables the
administrators to explicitly express their preferences. The quantitative approach brings
significant advantages over heuristic decision making. For example, the quantitative
framework is more scalable as it translates preferences to decisions in a semi-automated
manner rather than configuring each threshold manually. In practice, this enables a
smaller expert team to oversee a larger system.

Another significant advantage of the robust control framework is its relative insen-
sitivity to parameter variations. Some of the parameters of the model have to be
determined through an additional observation and estimation system that operates on
a longer timescale than actual filtering dynamics. However, this process can be imper-
fect or parameters may shift in the intervals between estimation instances. The robust
control framework is perfectly suited to such situations, increasing its potential practical
applicability.

7.3 Optimal and robust epidemic response

Despite various preventive measures, computer networks continue to be infected with
malware. Self-spreading attacks such as worm epidemics are costly not only due to the
damage they cause but also due to the challenge of preventing and removing them.
These attacks often exploit the inherent difficulty of differentiating legitimate from ille-
gitimate network use, network security resource constraints, and other vulnerabilities.
When such malware epidemics cannot be prevented and start to infect a large number
of hosts, timely and efficient response becomes very important. This section utilizes a
decision and control approach to provide security officers and system administrators
with a quantitative and optimal response framework for malware removal.
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The objective is optimization of patching response strategies to a worm epidemic
within a quantitative cost-benefit framework incorporating epidemic models. While
the hosts infected with a worm are costly for a network, patching rates are constrained
and patching itself has a nonzero cost. For example, production systems must be tested
extensively to ensure that they will function well after the patch has been applied.
Furthermore, patching itself takes system administrators time and effort. These costs
are expressed explicitly and balanced against each other within an optimal and robust
control framework based on the epidemic models.

Classical epidemic models have been successfully applied to model the spread of
computer worm epidemics. However, we show that the widely accepted proportional
patching response rate assumption in such epidemic models is suboptimal. Optimal
control theory allows one to explicitly specify the costs of infected hosts and the effort
required to patch them. The resulting cost function is used in conjunction with the
dynamic epidemic model differential equations to derive the optimal feedback patching
strategies.

Single and multiple network versions of the classical epidemic model are considered
to analyze and derive the optimal response in each case. Determining these expres-
sions in the single network case involves the use of the Hamilton–Jacobi–Bellman
(HJB) equation to solve for a value function. By considering the response in the case
of several networks, we obtain a multi-dimensional model. In this case we linearize the
system and derive controllers using pole placement, linear quadratic regulator (LQR)
optimal control theory, and H∞-optimal control theory.

The advantage of H∞-optimal control theory in particular is that it accounts
for (as we have seen in the previous section) worst-case system and measurement
noise, which captures model inaccuracies and noisy measurements that have a non-
negligible impact on performance. In addition, the challenging nature of detecting
malware, i.e. expected inaccuracies in detection, justifies the need for a robust response
solution.

A brief introduction to optimal and robust control can be found in Appendix A.3.
Reference [29] contains further information on H∞-optimal control theory.

7.3.1 Epidemic models

The quantitative framework studied is based on the classical epidemic model [75],
which uses a differential equation to model the spread of a virus or worm (also in a
computer network). For a single network, this classical model is described by

ẋ(t) = β [N− x(t)]x(t)−u(t), (7.31)

where u(t) is the number of patches applied at a given time, x(t) is the number of
infected hosts, N is the number of hosts in the system, and β is a parameter that
captures the rate of spread of the epidemic and is referred to as the pairwise rate of
infection.

This model can be readily extended to the multiple networks case. Given M net-
works, let xi(t) denote the number of infected hosts in network i, where i = 1,2, . . . ,M.
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Likewise, let ui(t) be the malware removal rate for network i. Let α be the cross-network
pairwise rate of infection. Note that the more security measures are used between
various networks, the smaller is α relative to β. Further, let Ni denote the number of
hosts on a particular network i. In general, because computers on a network are more
likely to communicate with each other than those on different networks, and because
individual networks typically have independent security measures, malware will be
assumed to spread more rapidly within a network than between networks. Therefore,
β> α. Overall, one arrives at the model

ẋi(t) = β [Ni− xi(t)]xi(t)+
M

∑
j=1, j 
=i

α [Ni− xi(t)]x j(t)−ui(t),

for i = 1, . . . ,M.
Another epidemic model considers the case where hosts that have had malware

removed are no longer susceptible to malware infection. This model is referred to as
the epidemic model with removals. When only one network is considered, this model
becomes

ẋ1(t) = β [N− x1(t)− x2(t)]x1(t)−u(t)

ẋ2(t) = u(t). (7.32)

Note that for each network, there are two state variables in this case. The first is the
number of infected hosts in the network. Its dynamics are very similar to those of the
regular epidemic model. The second keeps track of the number of hosts that have been
patched and thus are no longer vulnerable to attack.

The epidemic model with removals can also be extended to the case where there are
multiple networks, as described above. This leads to the set of 2M coupled differential
equations

ẋi(t) = β [Ni− xi(t)− xM+i(t)]xi(t)

+∑M
j=1, j 
=iα [Ni− xi(t)− xM+i(t)]x j(t)−ui(t)

ẋM+i(t) = ui(t),

(7.33)

for i = 1, . . . ,M. Here, x1, . . . ,xM are the number of infected hosts in networks
1, . . . ,M, and xM+1, . . . ,x2M are the number of patched hosts in networks 1 through
M, respectively.

Traditionally, when patching infected hosts, it is assumed that a particular propor-
tion of them are patched at each time instance, referred to as a proportional patching
controller,

ui(t) = κixi(t),

for some κi ∈ (0,1), and for all i = 1, . . . ,M. The coefficient κ is known as the removal
rate of infectious hosts.

In order to properly define an optimal control strategy, first a cost function must be
chosen as the criterion of optimality. Traditionally, quadratic costs are implemented on
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both the state (number of infected hosts) and control (patching rate). This structure is
theoretically reasonable and mathematically tractable. Consider the cost function

J(x(·),u(·)) =
∫ ∞

0

[
xT (t)Qx(t)+uT (t)Ru(t)

]
dt, (7.34)

where x and u are vectors of the state and control variables. In the classical epidemic
model the Q and R matrices are chosen as diagonal matrices, with the (i, i) entry desig-
nating the cost of an infected host in network i (for Q) and a particular patching response
rate in network i (for R). In the epidemic model with removal, the Q matrix is similarly
structured but with no cost placed on states xM+1 to x2M , as these merely keep track of
the number of patched hosts. The R matrix is unchanged in this case.

7.3.2 Feedback response for malware removal

Optimal malware removal feedback controllers of the form

u = µ(x)

are derived in this subsection using standard optimal control methods for the single
network epidemic models. This derivation utilizes continuous-time dynamic program-
ming and the ensuing HJB equation. The critical quantity (function) of interest here is
the value function, V (x, t), which is the minimum value of (7.34) subject to the state
dynamics, when the integration interval is [t,∞), and the state x(·) at time t is x(t) = x.
The value function, V , satisfies the HJB equation, written as

−Vt(x) = min
u∈U

[
g(x,u)+Vx(x)T f (x,u)

]
, (7.35)

where we have suppressed the dependence of V on t; g(x,u) refers to the quantity inside
the integral in the cost equation (7.34) and f (x,u) is the right-hand side of the system
dynamic equation (7.31). Vt(x) and Vx(x) refer to the partial derivative of the value
function with respect to t and x, respectively.

A couple of observations are in order here toward derivation of the feedback con-
troller. First, in the infinite time horizon case Vt(x) ≡ 0; second, the minimum control
in (7.35) is obtained by differentiating the HJB equation with respect to u, setting the
resulting expression equal to zero, and solving for u∗(t), yielding

u∗(t) =
Vx(x)

2r
. (7.36)

Substituting this into the HJB equation leads to a quadratic equation in Vx, which can
be solved for Vx:

Vx(x) = 2ra(x)x+2r

√
a2(x)x2 +

q
r

x2, (7.37)

where a(x) = β(N− x). Using this in (7.36) yields the optimal feedback controller

µ∗(x(t)) =
(

a(x)+
√

a2(x)+
q
r

)
x. (7.38)
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The derivation of the optimal controller for the single network epidemic model with
removal (7.32) is similar. In this case the HJB equation becomes

0 = min
u

{
qx2

1 + ru2 +Vx1 [β [N− x2− x1]x1−u]+Vx2u
}

. (7.39)

The minimizing u∗(t) becomes

u∗(t) =
Vx1 −Vx2

2r
. (7.40)

Substituting this back into (7.39) yields

0 = qx2
1(t)−

1
4r

(Vx1 −Vx2)
2 +Vx1 [β(N− x1(t)− x2(t))x1(t)] . (7.41)

Solving for Vx1 and Vx2 explicitly proves difficult in this case. Instead, two approxi-
mate solutions are investigated for the optimal controller with removal, µr(x(t)).

The first approximation is obtained by starting with a quadratic structure for V :

V = k0 + k1x1 + k2x2 + k3x2
1 + k4x1x2 + k5x2

2. (7.42)

The partial derivatives of this assumed form with respect to x1 and x2 are substituted
back into (7.41). When the coefficients of the various terms in this equation (x1, x2, x2

1,
etc.) are set to zero, a system of nine equations in five variables is obtained. A study of
these equations yields two possible solutions. Numerical analysis of these two solutions
confirms that one approximate optimal feedback controller is

µr1(x)≈
(
βN +

√
β2N2 +

q
r

)
x1. (7.43)

The second controller can be inferred by investigating and slightly altering the
optimal solution derived for the classic epidemic model (7.38):

µr2(x)≈
(

a(x1 + x2)+
√

a2(x1 + x2)+
q
r

)
x1, (7.44)

where the term x in a(x) is simply replaced with (x1 + x2).
Each of the derived strategies (7.38), (7.43), and (7.44) describe the (approximately)

optimal patching or malware removal rate in the form of a feedback controller for a
given set of cost parameters. Notice that all of these strategies differ significantly in
form from a proportional patching controller.

7.3.3 Multiple networks

A generalization of the results presented in the previous subsection to the multiple
networks case is not straightforward. It may not be possible to derive closed-form
analytical expressions for feedback controllers of the nonlinear system models (7.32)
and (7.33). Therefore, we next focus instead on derivation of stabilizing feedback con-
trollers. Subsequently, LQR and H∞-optimal malware feedback response strategies will
be derived.



184 Resource allocation for security

Stabilizing response
The nonlinear models (7.32) and (7.33) have particular properties which can be
exploited to derive suboptimal but reasonable stabilizing feedback controllers or
malware response strategies. One crucial observation is that xi(t) has to be non-negative
for all i. This leads to the insight that all of the cross-terms and squared terms in
the models (7.32) and (7.33) decrease the magnitude of the infection rates (ẋi(t)).
Therefore, if these helpful squared and cross-terms are disregarded, then one would be
working with systems of equations that are actually more difficult to stabilize than the
original models. Moreover, when these terms are disregarded, the models reduce to the
same linear model

ẋ(t) = Ax(t)+Bu(t), (7.45)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

βN1 αN1 αN1 · · · αN1

αN2 βN2 αN2 · · · αN2
...

. . .
...

...
. . .

...
αNM αNM · · · αNM βNM

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.46)

and B is simply the negative identity matrix of dimension M×M.
Notice that the epidemic models have the inherent physical constraints

0≤ xi ≤ Ni, i = 1, . . . ,M.

However, if xi = Ni for any i, then ẋi < 0 for the original nonlinear system (7.32)
under the condition u < 0, which is discussed in detail later in this section. In other
words, the trajectory leaves the boundary [N1, . . . ,NM] immediately. A similar argu-
ment can also be made for (7.33). Therefore, the upper bounds are disregarded in
the simplified linear system (7.45) and the analysis focuses on the lower bounds
(positivity)

xi ≥ 0, i = 1, . . . ,M. (7.47)

Under (7.47), the constrained linear model becomes

ẋi =

⎧⎪⎪⎨
⎪⎪⎩

[Ax+Bu]i , if

{
xi > 0 or

[Ax+Bu]i ≥ 0 and xi = 0

0, else

(7.48)

for all i = 1, . . . ,M.
While it is known that a linear feedback controller can stabilize the linear model

(7.45), whether such a controller also stabilizes the nonlinear models (7.32), (7.33), and
(7.48) is a question which is investigated next.
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Stability analysis
The stability of the system (7.48) is analyzed and established under the set of boundary
constraints (7.47) when controlled by the linear feedback controller

us =−Kx, (7.49)

where K is the feedback matrix. Obviously, the origin constitutes the unique equilibrium
for this system.

A sufficient condition for stability can be found by considering the special structure
of this problem. Since it is known that the components of x will never become neg-
ative, the closed-loop system matrix does not even need to be Hurwitz, i.e. all of its
eigenvalues have a strictly negative real part. A sufficient condition for stability is that
the diagonal elements are negative and that the non-diagonal elements are nonpositive.
This condition is easy to verify upon inspection of the closed-loop matrix.

Theorem 7.4 The nonlinear system of the form in (7.48) is stable under feedback con-
trol u = −Kx, if the closed-loop matrix (A−BK) has negative diagonal entries and
nonpositive off-diagonal entries.

Proof In the context of the system (7.48), components of x can only be positive or
zero. In this case the diagonal entries of the closed-loop matrix (A−BK) are assumed
to be negative and the off-diagonal entries are nonpositive. Clearly, this implies that
each component of ẋ is nonpositive.

However, this is not enough to guarantee stability. It must also be shown that any
positive component of x will decrease to zero. This is ensured because the diagonal
elements of the closed-loop system matrix are assumed to be negative. Therefore, all
positive components of x will decrease to zero at a rate faster than or equal to that
specified by the corresponding diagonal entry in (A−BK).

The feedback controllers to be derived later, using LQR and H∞-optimal control, may
not have this property. Nevertheless, in many situations controllers derived with optimal
control theory will meet this condition and therefore can be used to stabilize the system
under consideration. In cases where such controllers violate the sufficient conditions,
they can be appropriately modified to obtain suboptimal but stabilizing counterparts
without having a significant effect on the performance.

It is next argued that the stabilizing controller (7.49) which meets the conditions
of Theorem 7.4 also stabilizes the actual nonlinear systems (7.32) and (7.33). Given
that x ≥ 0, the nonlinear terms in these equations will only decrease the magnitude
of the components of ẋ. If x could become negative, this may destabilize the system.
However, in this case it only adds additional negative drift, leading to faster stabilization.
In conclusion, the stabilizing condition in Theorem 7.4 ensures stability over the entire
state space, even in the nonlinear case.

Linear quadratic regulator optimal response
Determining the optimal malware removal strategy relative to the cost (7.34) for the epi-
demic models (7.32) and (7.33) is nontrivial. When multiple networks are considered,
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even if only two networks are studied and a very simple form for the value function
is assumed, the approach presented in Section 7.3.2 leads to an overdetermined set of
nonlinear equations, which is not tractable. Therefore, a more tractable but suboptimal
approach to this problem is investigated next, based on the linear model (7.45).

The linear model (7.45) and the quadratic cost function (7.34) lead to the well-studied
LQR optimal control problem, whose optimal solution can readily be obtained:

u0(t) =−R−1BT Px(t), (7.50)

where P is the unique positive definite solution to the algebraic Riccati equation (ARE)

AT P+PA−PBR−1BT P+Q = 0. (7.51)

Here, the fact that (A,B) is controllable is used, which follows because B is the negative
identity matrix. Also, note that because Q > 0, the observability condition holds, and
consequently the solution to (7.51), P > 0, exists and is unique, and the closed-loop
matrix A−BR−1BT P is Hurwitz.

H∞-optimal response
While the model (7.45) in Section 7.3.3 is useful, it entails several assumptions. First,
the nonlinear terms in the more precise models (7.32) and (7.33) have been ignored.
Second, availability of perfect measurement of the number of infected hosts in each
network has been assumed. And third, the original epidemic models (7.32) and (7.33)
themselves only approximate malware propagation.

To capture these approximations and imperfections, the linear model (7.48) is
altered to include a noise term. Then, the problem is formulated within an H∞-optimal
control framework. Let

δi = [Ax+Bu+Dwa]i .

Then

ẋi =

⎧⎪⎪⎨
⎪⎪⎩
δi, if

{
xi > 0 or

δi ≥ 0 and xi = 0

0, else.

(7.52)

Here, wa(t) is a noise term that accounts for model assumptions and approximations.
It is important to note that this disturbance term differs from that in Section 7.2 in
its interpretation. While it represents actions of malicious attackers in the model of
Section 7.2, it merely captures modeling errors here.

The D matrix describes how this noise term impacts the dynamics of x(t) and will be
set to the identity matrix. In addition, a measurement error can be introduced: if y(t) is
the measured number of infected hosts, then

y(t) = x(t)+wn(t), (7.53)

which says that the noise vector wn(t) impacts the measurement of the number of
infected hosts on each network (each element of y(t)).
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In order to develop the H∞-optimal controller, several definitions and assumptions
have to be made. First, a controlled output, z, is defined as

z(t) = Hx(t)+Gu(t). (7.54)

It is assumed here that GT G and HT H are positive definite and that HT G = 0. This
says that there is no cost placed on the product of patching response and infected hosts,
although each of those quantities individually contributes to the cost. To compare the
cost ‖z‖2 (defined below) with the cost (7.34) for the LQR controller, let Q = HT H and
R = GT G. A few other conditions that must be met for this H∞-optimal control theory
to apply are that (A, B) and (A, D) be stabilizable, and (A, H) and (A, I) be detectable,
which, however, all hold given that B = −I, D = I, and Q > 0. Define w :=

[
wT

a wT
n

]T
as the total disturbance to the system. Let the cost ratio used in the H∞ analysis be

F(x,u,w) =
‖z‖
‖w‖ , (7.55)

where ‖z‖2 :=
∫ ∞
−∞ |z(t)|2dt and a similar definition applies to ‖w‖2. This captures the

proportional changes in z due to changes in w, as discussed earlier.
H∞-optimal control theory also produces a performance bound (the H∞ norm) that

one can guarantee will be met. This norm can be thought of as the worst possible value,
γ, for the cost L. The lowest possible value of γ is

γ∗ := inf
u

sup
w

F(u,w), (7.56)

which can also be viewed as the optimal performance level in the H∞-control context.
In order to actually solve for the optimal controller µ(y), a corresponding differential

game is introduced, which is parameterized by γ. The optimal worst-case controller
uw = µγ(y) can be determined from this differential game for any γ > γ∗, following an
analysis similar to that in Section 7.2.2. Note that here, γ∗ is the smallest γ such that Σ̄γ
and Z̄γ exist, and the spectral radius bound ρ(Σ̄γZ̄γ) < γ2 holds.

The linear H∞-optimal feedback controller provides a robust malware response or
epidemic removal strategy based on the estimate of the number of infected hosts. It can
be calculated offline using only the linear quadratic system model. The numerical results
in reference [44] indicate that the H∞-optimal feedback controller leads to an aggressive
malware removal strategy which may be suboptimal in some cases, especially when
compared to the LQR controller, but is still the only approach that ensures a minimum
performance bound and exhibits robustness under noise and modeling errors.

7.4 Discussion and further reading

This chapter summarizes results from the MS thesis of M. Bloem and related pub-
lications [42–45]. Section 7.1 is based on reference [45], which includes extensive
analyses of and simulations on optimization formulations for malware filtering. Ear-
lier work on this subject using a similar approach are references [52, 169]. The malware
filter placement problem has also been analyzed within a stochastic game framework
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in Section 4.4. In a related study [88], another (deterministic) game formulation for the
monitor placement problem has been presented.

Although Section 7.2 focuses on malware traffic filtering, the framework is quite
general in nature and can be applied to different contexts such as email (spam). The
approach was introduced first in reference [42] which contains additional simula-
tion results and discussion. Reference [29] contains all the background knowledge on
H∞-optimal control theory needed to follow the derivations in this chapter and more.

The well-known classical epidemic model, on which the analysis in Section 7.3 is
based, has been extensively used to study the propagation of and response to worm
epidemics in computer networks [57, 116, 146, 196]. Quarantine strategies in order
to contain worm epidemics by partitioning networks into subnetworks have been pro-
posed in reference [57]. Another study adopting an optimal control approach to prevent
worm epidemics is reference [107]. An earlier version of the material in Section 7.3
has appeared in reference [42] and later in reference [44], which additionally contains a
numerical example and analysis.



8 Usability, trust, and privacy

Chapter overview

1. Security and usability
– complex relationship between security and usability
– a system for security alert dissemination
– effective administrator response scheme

2. Digital trust in online communities
– community trust game
– equilibrium, dynamics, convergence
– numerical analysis

3. Location privacy: a game-theoretic analysis
– a location privacy model
– location privacy games

Chapter summary

Security has a strong social dimension, connected to human factors and areas such as
usability, trust, and privacy. This chapter presents example applications of the decision
and game-theoretic approach to social aspects of security using various models. First,
the complex relationship between security and usability is discussed and two example
schemes, one for improving the usability of security alert dissemination and another one
for effective administrator response, are investigated. Next, the community effects in the
evolution of trust to digital identities in online environments are studied using a specific
noncooperative trust game. Finally, a game-theoretic analysis of location privacy in
wireless networks is presented.
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8.1 Security and usability

The relationship between security and usability is a complex one. Some in the research
community claim that they go hand in hand whereas others argue that security and
usability are inversely proportional to each other. Security is not a purely engineering
issue but has also social, economic, and psychological dimensions. Likewise, usability
is a field that goes beyond pure engineering and intersects with security in these aspects.
While the question of “how security and usability relate to each other” does not have
a plain and simple answer, it is relevant and deserves an exploration from multiple
angles.

Usability, similar to security, is a rich concept that is difficult to capture within a
widely agreed formal definition. One possible description of usability, provided by
the US Department of Health and Human Services, is given below. In addition, the
word “usability” may refer to methods for improving ease of use during the design
process [131].

Definition 8.1 Usability is the measure of the quality of a user’s experience when inter-
acting with a product or system – whether a website, a software application, mobile
technology, or any user-operated device. Usability is a combination of factors that affect
the user’s experience with the product or system, including ease of learning, efficiency
of use, memorability, error frequency and severity, and subjective satisfaction.

Usability is relevant to security simply because the users of networked systems can
easily render carefully planned security mechanisms useless. A confusing system that is
hard to configure and use increases the probability of its users making mistakes, leading
to various vulnerabilities. It is a known fact that a significant portion of vulnerabilities
stems from configuration errors. Furthermore, there is a whole class of attacks using
psychological and social engineering factors as discussed in Section 2.1.2. The dictum
“Only amateurs attack machines; professionals target people”1 summarizes this fact
elegantly and can be supported by numerous examples from real life.

Although the human factor is an important aspect of security in practice, it is still not
sufficiently emphasized in security systems and research. This is partly due to lack of
incentive mechanisms (e.g. pushing responsibility conveniently to users) and partly due
to limited collaboration between these research fields.

Making a system usable is not trivial, just as a good design is hard to achieve.
Many companies (e.g. Apple) that distinguish themselves from competition mainly
on usability and elegant design can be seen as anecdotal evidence for this. When the
requirements of securing a system are added to those of usability, these two create
additional challenges for system developers. Even if the claim that usability and
security go hand in hand is accepted, this extra cost at the design and implementation
phase cannot be ignored.

1 Attributed to Bruce Schneier [23].
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The economic costs of properly integrating usability and security into systems play a
significant role in incentive mechanisms of the systems’ stakeholders. The misalignment
of incentives among users, security officers, and management has been discussed in
Section 2.2. Adding usability considerations as a factor naturally does not simplify
these relationships. Although the customers (users) desire usability and security as fea-
tures, they do not necessarily want to pay for them. Hence, a difficult situation emerges
from the business perspective as making a system secure and usable requires additional
development and testing effort, e.g. implementation of additional functionality and con-
ducting user studies. Such multi-dimensional incentive mechanisms lie at the center of
the complex relationship between usability and security, which can be explained only if
the underlying incentives are properly understood.

The objective of the decision and game-theoretic approach is to make these hidden
costs and incentives explicit by quantifying them. At the same time, the approach aims
to formalize the security decision processes as a first step to disentangle the complexi-
ties described. Once objectives and the way to achieve them are formalized and handled
in a principled way, a methodology for alignment of conflicting incentives emerges.
An insecure system may seem usable but this illusion breaks down once attacks ren-
der it useless! A difficult-to-use security system pushed to end users may seemingly
relieve a security officer of responsibility but once users start to circumvent it and
even bigger security problems emerge later, it proves to be inefficient. A networked
system can be optimized with respect to usability, security, and design criteria, if prior-
ities are expressed explicitly over the chosen time horizon. A rich set of decision and
game-theoretic tools already exists to address such problems as demonstrated below.

8.1.1 A system for security alert dissemination

The number of security vulnerabilities on networked systems has increased signifi-
cantly in recent years. The trend is expected to continue as networked systems become
more complex and ubiquitous. The statistics issued by CERT at Carnegie Mellon Uni-
versity, which are shown in Figure 8.1, demonstrate the magnitude of the problem faced
by the security community. Each of these vulnerabilities can be exploited by malicious
attackers to compromise computer systems, and has potential financial and productivity
related consequences for enterprises and organizations.

There are multiple sources which inform and warn system administrators about
recently discovered security vulnerabilities. The “@RISK: The Consensus Security Vul-
nerability Alert” newsletter issued weekly by the SysAdmin, Audit, Network, Security
(SANS) Institute is one example. It summarizes the warnings that matter most, tells
what damage they do and how to protect from them. However, each warning is not
necessarily relevant to all systems as vulnerabilities are almost always platform- and
application-dependent. For example, in a company with Linux servers, only the Win-
dows server-related security warnings are irrelevant. Furthermore, even if a warning is
relevant, it is time-consuming to find and test all solutions. The security officers must
filter the incoming data and prioritize their defensive actions according to the priorities
of their own systems.
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Figure 8.1 Number of cataloged vulnerabilities by CERT during 1995–2008. (*2008 estimate)
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Figure 8.2 Overview of the game-theoretic recommendation system for efficient security alert
dissemination.

This section presents a recommendation system (Figure 8.2) that aims to improve
the efficiency of security alert dissemination process and the evaluation of security
alerts. The objective is to design a mechanism which brings together two communi-
ties: security experts, who issue warnings, and system administrators (sysadmins), who
evaluate warnings and implement respective measures on their own networks. The sys-
tem computes a strategy recommendation for each of its sysadmin users based on the
local network description of and security alerts issued by experts. This strategy filters
out irrelevant reports and focuses on local systems which may be potentially targeted
as a result of discovered vulnerabilities. It suggests how to allocate limited defense
resources through prioritization. At the same time, it partly automates security-related
decision making. Thus, the recommendation system helps to increase productivity of
security personnel. It acts as a security service which builds a bridge between security
researchers and sysadmins on the field.
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A security game modeling attacker behavior provides the engine of the recommen-
dation system. Each discovered vulnerability is a potential threat and paves the way for
malicious attacks. While security vulnerabilities are rapidly increasing, the resources
allocated to counter them remain limited. Each new vulnerability may require a specific
configuration change or patching of a system which costs time and effort. This creates a
widening gap between the resources needed to prevent security attacks and the resources
available. Consequently, the system administrators and security personnel have to allo-
cate their limited resources efficiently in order not to become overwhelmed. Prioritizing
individual devices on their network is one way of increasing efficiency. These factors
are brought together in a security game, similar to those in Chapter 3, which provides a
quantitative method for formal decision making. The equilibrium solution of the game
constitutes the recommended strategy to sysadmins.

Recommendation game formulation
The recommendation game models the interaction between attackers and defend-
ers (sysadmins) by taking into account the threat posed by discovered vulnerabilities
and the priorities of the sysadmins. It is based on the same security game framework
introduced in Chapter 3. The defender, P D, patches and removes vulnerabilities from
the devices on the network, AD = {d1, . . . ,dN}. On the other hand, the action set of
the attacker, P A, consists of potential attacks exploiting the discovered vulnerabilities
AA = {a1, . . . ,aN}. An inherent assumption here is that a vulnerability can be used by
attackers sooner or later as a basis for an attack on the defended network.

The game matrix, P, maps player actions (attacks exploiting vulnerabilities and
defensive/preventive actions such as patching or reconfiguration) to outcomes, i.e.
payoff and cost for the attacker and defender, respectively. The diagonal entries of the
matrix are zero based on the assumption that if a sysadmin (defender) properly patches
a vulnerability or reconfigures a device, the attacker cannot harm that device anymore.
The remaining entries of the game matrix are functions of the importance of each device
and the vulnerability of the respective device category. Here, the functions are chosen to
be bilinear, i.e. the vulnerability and preference values of the device are multiplied with
each other to determine the outcome. Accordingly, the game matrix, P, is defined as

P = [P(i, j)] :=

{
vi ri, if i 
= j

0, if i = j, ∀i, j ∈ AD
(8.1)

where v denotes the vulnerability level of a device and r the importance attached
to the device by the sysadmin. Both vulnerability and importance values are repre-
sented by five levels {very low, low, medium, high, very high} and quantified by
v,r ∈ {1,2,3,4,5}. The vulnerability level of a device is chosen to be the maximum
of the categories it belongs to.

The mixed-strategy solution of this two-player zero-sum matrix game, which is
known to exist, can be obtained using standard methods [31]. The equilibrium strategy
of the attacker can be interpreted as expected attack probabilities which follow from
the vulnerability level and value of the devices on the network. The computed defense
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Figure 8.3 Possible quantization function for defense strategy.

strategy is quantized by the function shown in Figure 8.3 as one possibility. The result
is then used as a guideline to decide where to allocate limited defense resources.

Demonstrative prototype
A proof-of-concept prototype is discussed to illustrate the core functionality of the intro-
duced system. The system allows for two types of participant: (security) experts and
(sysadmin) users. Given a categorization or taxonomy of platforms and applications, the
security experts enter the vulnerability levels for each device category based on the most
recent information. Each sysadmin user, on the other hand, enters the system descrip-
tion along with own preferences. Subsequently, the system computes the recommended
strategy for each user separately using the security game formulation in Section 8.1.1
and displays the results.

The prototype is implemented as a web application to improve its flexibility and
designed for access from mobile devices. As the programming language, Python is
chosen for its efficiency and library support. The web application server is realized using
the TurboGears web framework, which allows for rapid application development. The
cvxopt library is used in solving linear programs associated with the zero-sum games.
A screenshot of the system for an example network is shown in Figure 8.4.

The current implementation adopts a security service approach possibly as a paid ser-
vice, where users register to a remote system and receive recommendations from experts
based on recently discovered vulnerabilities. The privacy of the users are protected as
the experts do not see details of individual users. Instead, a device categorization maps
vulnerabilities discovered by experts to individual user networks. This can be taken a
step further and an alternative open community approach can be adopted. Then, the
system can be deployed locally in a single user scheme and receive vulnerability infor-
mation from a central repository which is updated by voluntary security experts in the
community.



8.1 Security and usability 195

Figure 8.4 Example system and computed recommended strategy.

8.1.2 Effective administrator response

One of the often overlooked constraints of security systems is the limited manpower
available for handling security incidents and addressing security vulnerabilities. System
administrators and security officers usually operate under severe time limitations while
each incident separately requires time and attention. This shortcoming will continue
to exist until the development of advanced “artificial intelligence” systems. Taking also
into account the attacks conducted by human opponents, contemporary security systems
have to rely on human intervention for the foreseeable future.

Given the mentioned time constraints, it is not realistic to expect that system
administrators handle every reported anomaly or suspected attack with the same level
of attention. Therefore, a computer support system, however imperfect, would be
beneficial to increase efficiency. The algorithm considered in this section describes one
possible approach for deciding on which attacks are forwarded to the administrator and
which are not.
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The approach presented next relies on machine-learning methods such as clustering
and classification to separate most commonly encountered and very rare security inci-
dents from others. These are arguably the most “interesting” security events observed
in the networked system and are natural candidates for handling by a system adminis-
trator rather than being processed and responded to automatically. There exists a variety
of advanced machine-learning methods to address this attack classification problem as
long as a certain probability of error is taken into account (see, e.g., Chapter 9). Then,
the decision to be made is what percentage of the incidents to forward to the admin-
istrator and what percentage to handle automatically. This resource allocation problem
can be formalized within a standard optimization (linear programming) framework.

A security incident can be represented as a finite feature vector in most cases. This
vector may include features such as the resource (device) under attack, IP address of the
attacker, and time of attack. Then, the task of the classification algorithm is to sort out
the set of incidents observed in a time interval into three categories: frequent, normal,
and rare events. Thus, the problem is turned into a static (vector) classification problem,
which can be solved by a variety of existing methods. For example, Kohonen self-
organizing maps (SOMs) can be used as a well-known clustering algorithm to detect
frequent features. SOMs can be trained using a standard Kohonen learning rule with
existing dataset to specify “neurons” corresponding to representative abstract incidents.
Subsequently, a distance measure (e.g. Euclidean distance) can be defined to compute
frequent events (close to neurons) and rare ones (distant to neurons). In order to max-
imize the applicability of the discussed algorithm to diverse and future systems, the
formulation here is kept abstract rather than focusing on a specific system or a specific
machine learning method.

Automatic or administrator response algorithm
The decision on whether to alert the system administrator or respond automatically to
the outlying security incident is formulated as a resource allocation problem. As a quan-
titative decision criterion, relative costs are assigned to these two options. A parameter
c1 > 0 represents the cost of automated response to incidents, which also includes
the risk of making mistakes due to imperfections in the automated process. Another
parameter c2 > 0 quantifies the cost of time and effort spent by the system administra-
tor per incident. In many cases c1 is less than c2 unless the automated response system
performs unacceptably poorly. An analogous case is, for example, voice recognition for
customer service systems, where the exceptional incidents that cannot be handled by
the automated recognition are forwarded to human operators.

Let x1 represent the proportion of incidents that are sent to the event classification
mechanism for further analysis and response. The value x2 = 1− x1 is then the pro-
portion of incidents that are randomly forwarded to the system administrator. Of those
sent to the event classification mechanism, let λ be the proportion that are chosen to
be forwarded to the administrator. Finally, let N be the average number of incidents
per time slot and L be the number of cases the system administrator can handle per
given time slot. A “time slot” refers to a period of time between the recalibrations of
these parameters.



8.1 Security and usability 197

The overall cost function, which reflects the tradeoffs mentioned in the previous
section, is defined for a given time slot as

J(x1,x2) := Nx1[(1−λ)c1 +λc2]+Nx2c2. (8.2)

Thus, the constrained optimization problem which constitutes the basis of the automatic
or administrator response (AOAR) algorithm is

min
x1,x2

J(x1,x2) = Nx1[(1 − λ)c1 +λc2]+Nx2c2

such that N(λx1 + x2) ≤ L

x1 + x2 = 1

x1, x2 ≥ 0. (8.3)

The individual steps of the AOAR are given in Algorithm 8.2, and Figure 8.5 graphically
depicts its operation. We refer to Appendix A.1.3 for an overview on how to solve such
optimization problems.

Although the variable λ is treated as a parameter in the problem formulation (8.3), it is
an implicit decision variable that depends on the specific event classification algorithm
used. For example, in the case of the SOM clustering method, the value of λ can be
affected by varying the threshold distances used in classification. A target value for

Algorithm 8.2 AOAR algorithm
1: Given c1, c2, N, and L as input
2: Given initial dataset
3: Train event classification system (ECS)
4: repeat
5: Update estimates of N and L
6: Solve the optimization problem (8.3) to obtain x1 and x2.
7: for each incident i do
8: Forward i to sysadmin with probability x2

9: Send i to ECS with probability x1

10: for each incident j sent to ECS do
11: if incident j is outlier then
12: Forward j to sysadmin
13: else
14: Handle j by automated response
15: end if
16: end for
17: end for
18: Given estimate of λ, update ECS parameters
19: if ECS performance ! = target then
20: Adjust λ
21: end if
22: until
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Figure 8.5 Graphical depiction of AOAR algorithm.

this parameter can be selected based on how well the classification algorithm functions
in practice. Then, threshold values (parameters) of the classification algorithm can be
adjusted in an adaptive manner to keep the value of λ stable.

Forwarding a portion (x2) of incidents randomly to the system administrator is anal-
ogous to random searches of passengers at airport security checks, and it is essentially
another layer of protection that adds robustness to the system. If λ is set to zero, then
the event classification system is offline and the algorithm relies purely on “random
search.” In contrast, if λ is set to one, then there is no random search, which means that
the classification system is fully trusted.

8.2 Digital trust in online communities

Digital identity constitutes one of the building blocks of the World Wide Web for all
types of activity ranging from social networking to e-commerce. During the explosive
growth phase of the Web, a variety of digital identity and trust management mech-
anisms were developed organically to satisfy the emerging needs. However, most of
these existing solutions have been either ad-hoc or heuristic in nature [82]. An analyti-
cal foundation for digital identity and trust is important not only for the growth of Web
services but also in terms of security.

Individuals interact and make security decisions based on digital identities in a virtual
environment such as the Web. Opening an attachment from an email address, buying a
service or good from an online merchant website, or sharing information with some-
one on a social network are all trust-related decisions with security consequences. In
many situations, community effects play a significant role when these decisions are
made. The rating and community reviews of a merchant may influence individual trust
or referrals from trusted sources are taken into account during interactions on a social
network.

Although some of these mechanisms also exist in the physical world, the online
environments and digital identities have special distinguishing characteristics that also
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influence trust mechanisms. On the one hand, new digital identities are often very easy
to create. On the other hand, acquiring trust and sustaining it over long periods of time is
rather difficult due to fast information dissemination (e.g. news, gossip) and long-term
memory (storage) in the digital world.

Digital trust and reputation are two concepts that are closely related to each other. An
individual often decides whether or not to trust a digital identity based on the reputation
of that identity. Therefore, reputation of a digital identity can be seen as an aggregate
metric which is a function of community members’ trust in that identity. Online environ-
ments allow for quick dissemination and sharing of such trust decisions (user opinions)
through rating systems.

This section presents a game-theoretic model of community effects on trust in
digital identities. Factors such as peer pressure, personality traits such as timidness
or reluctance to pass judgment, and influence of community leaders are investigated
in a noncooperative game setting. As an example, the players (users) take part in a
digital trust management system where they explicitly share their opinions on an exter-
nal digital identity (e.g. seller in e-commerce). After a dynamic evaluation process,
the resulting opinion is a mixture of their own individual assessment and commu-
nity influences. The effect of various parameters on the final outcome as well as
the equilibrium and convergence properties of the iterative processes are rigorously
studied.

It is worth noting that the term “trust” is used here in a social context, in the sense
of trusting a digital identity, for example a seller in e-commerce. This should be dis-
tinguished from the use of trust in “trusted computing” or “trusted systems,” where the
term denotes consistent behavior enforced by hardware in the former and reliance upon
a system to enforce a specified security policy in the latter.

8.2.1 Community trust game

Consider a set of agents, A := {a1, . . . ,ai, . . . ,aN}, which can represent users of a social
network (e.g. Facebook or Slashdot) or participants in an e-commerce environment such
as the one provided by Amazon or eBay. For simplicity, each agent is associated with
a single digital identity. The agents may be symmetric in their properties, for example,
as members of a social network. In other cases, e.g. in e-commerce environments, they
can be divided into two main groups of buyers and sellers.

The agents are issued their digital identities by a digital identity provider of the
given digital environment. This role is customarily played by the respective owner of
the social networking or e-commerce site itself as in the case of Amazon, Facebook, or
eBay. In addition, the identity provider usually provides a reputation and trust manage-
ment service for the users, allowing them to establish trust relationships for their digital
identities. The trust in a digital identity may sometimes be almost independent of its
real-life owner. Furthermore, a (positive or negative) reputation may not be as trans-
ferable between real-life and digital identity as one might expect. This phenomenon
can be partly explained with the geographically dispersed and virtual nature of online
communities.
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Based on the properties of the agents and digital identity providers, digital reputation
and trust systems can be classified according to two factors:

1. Symmetric versus asymmetric agents. An example of the former is social networking
such as Facebook, Eopinions, and Slashdot. The examples of the latter include eBay,
Amazon, and Newegg, where agents are separated into buyers and sellers.

2. Centralized versus decentralized identity providers. Most of the existing e-commerce
and social networking sites belong to the former category, whereas decentralized P2P
communities such as bittorrent are examples of the latter.

Figure 8.6 visualizes a classification of some specific digital reputation and trust
schemes based on the factors discussed above.

Game model
The community trust game focuses on the asymmetric and centralized digital identity
systems (upper left-hand corner of Figure 8.6). However, the approach to be presented
is also applicable to the remaining cases. For simplicity, the game is played among N
agents in the set A , who evaluate a single given identity or seller s over a certain finite
time interval. In what follows, the terms agent, user, and buyer as well as the terms
evaluated identity and seller will be used interchangeably without any loss of generality.

It is assumed here that the seller has a stationary initial reputation over this time
window. The perceived initial image of the seller by individual agents may, however,
vary according to personal experiences and observations. The digital trust game allows
agents to form new opinions on the seller by sharing their evaluations and may result in
a community reputation (aggregate trust) that differs from the initial reputation or trust.

Symmetric

Asymmetric

Centralized Decentralized

Slashdot

Amazon

eBay

Bittorrent

Participants

P2P e−commerce

System

Figure 8.6 Simple overview of example digital identity and trust systems based on their system
implementation and the nature of participants.
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Given the initial reputation of the seller, rs ∈ R, the initial image (or trust level),
ei ∈ R, perceived by an agent ai can be considered as a noisy measurement of rs and is
defined by

ei = rs +ni. (8.4)

The bias term, ni, captures the individual variation in initial opinion of agent i on the
seller. This may be a result of varying personal experiences or observational limitations
and distortions. Depending on the specific system, the vector n = [n1, . . . ,nN ] can be
modeled as additive (zero-mean) Gaussian noise.

Using the initial image ei as a starting point, an agent ai forms an opinion (trust),
xi ∈ R, of the seller after exchanging information with the rest of the community. The
individual opinion or trust, xi, is influenced by various community effects as well as
individual properties of the agent. The opinions of all the agents represented by the
vector

x = [x1, . . . ,xN ] ∈ X ⊂ R
N

define the decision space of the digital trust game. The opinions are time-dependent as
they are formed over time through an iterative update process.

In the game, xi = 0 corresponds to a neutral or default opinion of agent ai on the seller.
Consequently, the positive values, xi > 0, represent a positive opinion and negative ones,
xi < 0, a negative opinion. The same convention also applies to the variables rs and e,
which admit similar interpretations.

The agents’ opinions are not only a function of the initial reputation and image but
also of factors capturing community influences. The decision process of an agent ai

can be modeled by the minimization of a well-defined cost function that quantifies the
factors affecting the opinion of the agent. The cost function of agent ai is defined as

Ji(xi,x−i) =
αi

2
x2

i +
βi

2

(
xi− 1

N−1∑j 
=i

x j

)2

+
γi
2

(xi− ei)2, (8.5)

where 0 ≤ αi,βi,γi ≤ 1, αi + βi + γi = 1 ∀i, and x−i := [x1, . . . ,xi−1,xi+1, . . . ,xN ].
It is naturally possible to define different cost functions that capture the paradigms
discussed. The specific one in (8.5) is mainly chosen due to its analytical tractability.

The first term, αix2
i , in the cost function (8.5) quantifies the timidness of agent ai.

The term quadratically penalizes any positive or negative opinion of the agent, forcing
it to the neutral or zero opinion. Agents with different properties can be represented
by choosing the weighting parameter α appropriately. A timid agent, who is reluctant
to pass judgment, is expected to have a high value of α whereas a self-assertive or
opinionated one is captured by a small α parameter value.

The second term in the cost function quantifies the influence of peer pressure on the
agent. Here, peer pressure is modeled using a quadratic cost on any opinion deviating
from the mean value of others. An individualistic or independent agent is represented
with a small β value. On the other hand, an agent who follows the crowd is expected to
have a high-valued β parameter.



202 Usability, trust, and privacy

The third term, γi(xi−ei)2, captures the effect of the initial image ei of an agent ai on
the final opinion xi. A steadfast agent who does not change its own opinion as a result of
community interactions or sharing is represented by a high γ value. On the other hand,
an agent who updates its opinion easily has a small γ parameter in the respective cost
function.

Notice that the weighting parameters α, β, γ are normalized in such a way that the
factors discussed above are balanced against each other. Hence, the inherent tradeoffs
between the factors are captured by the cost function and the game.

The set of players or agents A , the decision space X , and the cost functions Ji ∀i
define together the digital trust game, G1(A ,X ,J). In this noncooperative game each
individual agent ai minimizes its own cost Ji by choosing its own opinion (trust
decision), xi ∈ R, given the opinions (trust decisions) of others, x−i, i.e.

xi = argmin
xi

Ji(xi,x−i). (8.6)

An overview of methods for analyzing such games is provided in Appendix A.2 as well
as in references [4] and [31].

Equilibrium analysis
Nash equilibrium (NE) [31] provides an appropriate solution concept for the digital
trust game. In this context, NE is defined as a set of agent opinions x∗ of a given seller
(and the corresponding one costs J∗), with the property that no agent has any incentive
for modifying its own opinion while the other agents keep theirs fixed. The questions
of whether the game G1 admits one or multiple NE solutions and how to compute them
are discussed next.

The opinion of an agent given the opinions of others is uniquely determined by the
best-response function defined in (8.6). The first and second derivatives of the agent i’s
cost Ji(xi,x−i) with respect to xi are

∂Ji

∂xi
= xi−

(
βi

N−1∑j 
=i

x j + γiei

)
(8.7)

and

∂2Ji

∂x2
i

= 1 > 0. (8.8)

Hence, Ji is a quadratic function strictly convex in xi and the minimization in (8.6)
admits a unique globally optimum solution. Consequently, the decision, xi, of agent ai

is a unique response to any given x−i.
If the agents (players) are symmetric in their properties, i.e. αi = α, βi = β, and

γi = γ ∀i, then the NE solution of the digital trust game can be explicitly characterized
with an analytical expression. Let x̄ = ∑i xi and ē = ∑i ei. Due to the strict convexity of
J, it is sufficient to check the first-order necessary condition for optimality
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∂Ji

∂xi
= 0⇒ x∗i =

(
β

N−1∑j 
=i

x∗j + γei

)
∀i.

Then, simple algebraic manipulations using the symmetry of agents yield(
1+

β
N−1

)
x∗i =

β
N−1

x̄∗+ γei,

and

x̄ =
γ

1−β ē.

Thus, the unique NE of the game G1 is given by

x∗i =
γ

N−1+β

(
β

1−β ē+(N−1)ei

)
∀i.

Even when the agents are not symmetric, the uniqueness of the NE is preserved.
The best-response functions of the agents can then be written at the NE, x∗, in
matrix form

x∗ = Ax∗+ c, (8.9)

where ci = γiei ∀i and

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
β1

N−1
· · · β1

N−1
...

. . .
...

...
. . .

...
βN

N−1
βN

N−1
· · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

N×N

.

Hence, the NE is

x∗ = (I−A)−1c,

where I is the identity matrix and (·)−1 denotes the matrix inverse. Notice that the
matrix I − A is diagonally dominant as Aii = 1 > ∑ j Ai j = bi ∀i. Therefore, it is of
full rank and invertible. Consequently, the digital trust game G1 has a unique NE
solution.

8.2.2 Dynamics and convergence

The agents participating in the digital trust game cannot usually reach a stable opinion
in a single round. They may also change their decisions dynamically while interacting
with each other, unless the system is at the NE. These agent dynamics can be modeled
using iterative update algorithms. Update algorithms and their convergence analyses
are of practical importance and provide valuable insights into the dynamical aspects of
digital reputation systems.
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Parallel and round robin update
The parallel update algorithm (PUA) and its sequential variant, the round robin update
(RRU), are studied as two basic and relevant examples of iterative update schemes.
In the PUA, all agents (players) update their opinions (trust decisions) synchronously
and in parallel. In the RRU, the agents update their opinions sequentially (one-by-one)
given the opinions of previous agents. In both cases, the updates are done in discrete
time instances and the initial reputation of the seller, rs, as well as its initial image, ei,
perceived by the agents are assumed to be constant.

In the PUA, each agent ai updates its own opinion xi(t) together (in parallel) with
all other agents at the same discrete time instances t = 1,2, . . . Therefore, the PUA is
also known as the synchronous update algorithm. The updates are done according to the
best-response function of the agent. Then, the PUA is formally defined as

xi(t +1) =
βi

N−1∑j 
=i

x j(t)+ γiei, ∀i. (8.10)

The PUA iteration can be alternatively written in matrix form

x(t +1) = Ax(t)+ c. (8.11)

Algorithm 8.3 summarizes the steps of the PUA.
From the Perron–Frobenius theorem [78], the eigenvalues, λ, of the matrix A satisfy

min
i
βi ≤ |λ| ≤max

i
βi, i = 1,2, . . . ,N.

Hence, all of the eigenvalues of the linear system in (8.11) are inside the unit circle, and
the PUA globally geometrically converges to the unique NE of the game, x∗.

Algorithm 8.3 Parallel update algorithm (PUA)
Input: Individual trust values e, convergence threshold ε.
Initialize trust values xi(0) = ei ∀i and time step t = 0.
while ‖x(t +1)− x(t)‖> ε do

t = t +1
Compute s(t) := ∑i xi(t)
for i = 1 to N do

Compute xi(t +1) =
βi

N−1
(s(t)− xi(t))+ γiei.

end for
end while

In the RRU, all agents update their decisions one by one in discrete time instances.
The difference between the PUA and the RRU is that, in the RRU each agent knows the
decisions of all other agents who played before and responds accordingly. After some
rounds, the agents converge exactly to the same NE as in the PUA, yet their convergence
speeds may vary. The RRU for the i-th agent is formally defined as
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xi(t +1) =
βi

N−1

(
∑
j<i

x j(t +1)+∑
j>i

x j(t)

)
+ γiei, (8.12)

where the agents are assumed to play with the order i = 1, . . . ,N. Algorithm 8.4
summarizes the steps of the RRU.

Algorithm 8.4 Round robin update (RRU)
Input: Individual trust values e, convergence threshold ε.
Initialize trust values xi(0) = ei ∀i and time step t = 0.
while ‖x(t +1)− x(t)‖> ε do

t = t +1
for i = 1 to N do

Compute

xi(t +1) =
βi

N−1

(
∑
j<i

x j(t +1)+∑
j>i

x j(t)

)
+ γiei.

end for
end while

For a scenario with 20 symmetric agents and parameters, [α,β,γ] = [0.2,0.3,0.5], the
iterative evolution of trust under the PUA is shown in Figure 8.7.

Robustness and asynchronous update
In many practical cases, such as in P2P networks or e-commerce, it is not always pos-
sible to ensure that all agents update their trust decisions sequentially or synchronously
in parallel. For example, some of the agents may be offline or their decision update
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Figure 8.7 Evolution of trust under the PUA. The convergence to the NE point is geometric.
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messages may be received with delay. The asynchronous update algorithm (AUA),
where only a random subset of agents update their opinions at a given time instance,
provides a realistic alternative scheme for such settings.

The AUA can be seen as a natural generalization of the PUA due to its parallel nature.
The AUA is a more suitable scheme for practical scenarios and P2P networks when it
is difficult for the agents to synchronize their exact update instances or sequence. The
AUA is defined as

xi(t +1) =

⎧⎨
⎩

βi

N−1
∑ j 
=i x j(t)+ γiei, if ai ∈U(t)

xi(t), if ai ∈ Ū(t)
(8.13)

where the random set U(t) represents the updating agents at time t and Ū(t) the non-
updating agents. Naturally, U(t)∪ Ū(t) = A . Algorithm 8.5 summarizes the steps of
the ASU.

Algorithm 8.5 Asynchronous update algorithm (AUA)
Input: Individual trust values e, convergence threshold ε.
Initialize trust values xi(0) = ei ∀i and time step t = 0.
while ‖x(t +1)− x(t)‖> ε do

t = t +1
Compute s(t) := ∑i xi(t)
for i = 1 to N do

if agent i updates then

Compute xi(t +1) =
βi

N−1
(s(t)− xi(t))+ γiei.

else
No change in decision, xi(t +1) = xi(t).

end if
end for

end while

The ASU converges to the unique NE of the trust game as it satisfies the synchronous
convergence condition, which follows from the spectral radius of the matrix |A| being
less than one, ρ(|A|) < 1, and the box condition. Hence, global geometric convergence
of the ASU is established by Proposition 3.1 [38, p. 435]. Figure 8.8 shows the evolution
of trust under the AUA again for a scenario with 20 symmetric agents and param-
eters, [α,β,γ] = [0.2,0.3,0.5]. The convergence speed is, although geometric, slower
than those of both the PUA and the RRU.

8.2.3 Numerical analysis

We now present a numerical analysis of the digital trust game based on three exam-
ple scenarios. These scenarios illustrate the underlying concepts discussed, such as
community effects and agent properties. They also facilitate a basic exploration of the
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Figure 8.8 Evolution of trust under the AUA where the agents update their decisions with
probability 0.5 in an iteration. The speed of convergence to NE, although geometric, is slower
than those of both the PUA and the RRU.

game parameter space, which is large due to the general nature of the cost function
(8.5). In each of the following scenarios, the digital trust game is played among 20
agents, who have a random initial trust level (image) of the seller, ei, i = 1, . . . ,20.
The same initial values are used for all tests. Since the convergence properties of
various update schemes are already established, the focus here is on the initial and
final (NE) trust values of the agents, which are depicted with dark and light bars,
respectively.

Effects of peer pressure
This scenario studies the effects of peer pressure on agents, for example, in an online
community. If the term β, which quantifies the influence of peer pressure on the agent
is dominant in the cost function (8.5), then the agents have a strong incentive not to
deviate from the mean trust value of others. The cost parameters are

[α,β,γ] = [0.2,0.6,0.2]

for all agents. The results in Figure 8.9 show that the trust levels of all agents converge
close to a common value under strong peer influence, which can be interpreted as a
community opinion.

Timid versus self-assertive agents
The case when the agents are timid, i.e. undecided or reluctant to trust or mistrust,
is captured by a dominant α value in the cost function. Such agents are hesitant to
trust or mistrust a digital identity which causes the trust decisions to converge to values
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Figure 8.9 Initial and NE trust values for agents with cost parameters [α,β,γ] = [0.2,0.6,0.2]
representing strong peer pressure.
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Figure 8.10 Initial and NE trust values for timid agents represented by cost parameters
[α,β,γ] = [0.6,0.3,0.1].

close to zero (neutral opinion). The initial and final NE values for timid agents with the
parameter set

[α,β,γ] = [0.6,0.3,0.1]

are depicted in Figure 8.10.



8.2 Digital trust in online communities 209

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Identity of agent

T
ru

st
 le

ve
l

Initial versus NE trust for α = 0.1, β = 0.2, γ = 0.7 

Initial trust
NE trust

Figure 8.11 Initial and NE trust values for self assertive agents represented by cost parameters
[α,β,γ] = [0.1,0.2,0.7].

On the other hand, if the agents are self-assertive (opinionated), which is captured
by having a dominant γ value, they do not deviate much from their initial opinion.
The results of a numerical analysis with self-assertive agents and the parameter set
[α,β,γ] = [0.1,0.2,0.7] are illustrated in Figure 8.11.

Influence of a community leader
In many online communities there are individuals who can influence others. The opin-
ions of such “community leaders” can widely affect the decisions of people who trust
them. The effect of community leaders can be taken into account by adding a new term
to the cost function (8.5), which now reads:

J̃i(xi,x−i) =
αi

2
x2

i +
βi

2

(
xi− 1

N−1∑j 
=i

x j

)2

+
γi
2

(xi− ei)2 +
δi

2
(xi− xk)2,

where agent ak is a community leader, 0 ≤ αi,βi,γi,δi ≤ 1, and αi + βi + γi + δi =
1 ∀i. Here, only the effect of a single community leader is modeled. However, the
function can be further modified to capture the effects of several leaders who may be
of different opinions. It is assumed here that the community leader does not follow the
same cost-based behavior model and maintains its own fixed opinion. The fourth term
in the equation, δi(xi− xk)2, captures the effect of the community leader on the trust
decision of agent i, xi. An agent who faithfully follows the leader is represented by a
large δ value.

The influence of the community leader is numerically analyzed under the parame-
ter set [α,β,γ,δ] = [0.1,0.1,0.1,0.7]. When the agents faithfully follow a community
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Figure 8.12 Initial and NE trust values in a community under the influence of a leader (agent 1).

leader, the final value is close to that of the leader. The results are shown in Figure 8.12,
with agent 1 in the figure being the leader.

8.3 Location privacy in mobile networks

Privacy, just like usability discussed in Section 8.1, is a complex problem with social,
legal, and psychological dimensions. As a simple definition, it deals with issues related
to the dissemination and control of information that is specific to an individual or group.
Privacy is an old problem that is exacerbated by recent technological developments,
which make it very easy to communicate, store, and analyze (personal) information.
New technologies have sometimes unintended consequences, as here. For example, a
piece of personal information such as a joke posted to a social networking site can be
read decades later by a potential employer and can lead to significant problems for the
individual. At the same time, social networks can facilitate new ways of establishing
personal and business contacts with many positive effects.

The problem of privacy in a digital and networked world shares many common
aspects with other security issues discussed in previous chapters. One aspect is observ-
ability, which in this context refers to knowing who has access to personal information
and how they use or abuse it. Another issue is how much control individuals have of
disclosing personal information, i.e. how much information is revealed and in which
manner.

The same fundamental reasons that complicate other security problems are also
in play when it comes to privacy: the computational (hardware and software) com-
plexity along with global networking makes it difficult for individuals to control the
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dissemination of their own private information as well as observing how it is used by
others. Due to the complexity and scale of networked systems, the individuals need all
the technological assistance they can get (along with social and legal ones) to obtain a
reasonable level of privacy and to prevent the abuse of personal information in a digi-
tal world. Analytical models and quantitative analyses constitute the first step towards
providing such assistance.

This section presents an example analytical model, which is based on game theory,
and provides a setting in which to analyze and address the problem of location privacy
in wireless networks with mobile nodes. Location is an important piece of information
that compromises the privacy of an individual in a significant way, especially when
revealed to an adversary. With proper equipment, a malicious attacker can track indi-
vidual mobile nodes by monitoring their identity and correlating it with their location
information. A frequently proposed solution to protect location privacy involves mobile
nodes using pseudonyms and collectively changing them in special regions called mix
zones. A mix zone is a special place where the attacker cannot distinguish the individual
locations of mobile nodes, and hence confuses the location–pseudonym pairs of mobile
nodes. The model, which will be discussed next, studies the noncooperative behavior
of mobile nodes in a setting where each player aims at maximizing its location privacy
at a minimum cost.

8.3.1 A location privacy model

A specific location privacy model is presented based on multiple pseudonyms as one
of several techniques used to mitigate the tracking of mobile nodes [66]. In this tech-
nique, mobile nodes change their pseudonym, with which they sign messages, over
time. Thus, they reduce the long-term linkability of name and location. As is commonly
done in such networks, the existence of an offline CA is assumed. The CA is run by an
independent trusted third party and pre-establishes the credentials, e.g. public–private
key pairs for the devices. Here, a public key serves as the pseudonym (identifier) of the
owner node. In order to thwart Sybil attacks, as soon as a node changes pseudonym, the
old pseudonym expires.

In order to avoid the spatial correlation of their location, mobile nodes can coordinate
pseudonym changes with their neighbors, especially in mix-zone regions, which may be
fixed and part of the infrastructure or user-generated and ad hoc. Mix zones can also con-
ceal the trajectory of mobile nodes to protect against the spatial correlation of location
traces, e.g. by using silent mix zones [79, 96], a mobile proxy [156], or regions where
the adversary has no coverage [49]. Without loss of generality, the proposed model
assumes silent mix zones where the mobile nodes turn off their transceivers and stop
sending messages for a certain period of time. If at least two nodes change pseudonyms
in a silent mix zone, a mixing of their whereabouts occurs and the mix zone becomes
a confusion point for the attacker. This flexible approach has obvious advantages over
creating fixed “clean regions.”

The (location) privacy needs of individual users (mobile nodes) may vary depending
on time and location. Hence, it is desirable to adopt a user-centric approach that allows
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each user to decide when and where to protect its location privacy. In user-centric
location privacy, each mobile node locally monitors its location privacy level over
time and takes individual actions. This opens the door to scalable, fine-grained, and
distributed schemes.

Consider a mobile network composed of a set of mobile nodes, P D, with cardinality
N. When, at time t, a group of n(t) mobile nodes are in close proximity, one of the
nodes can initiate the pseudonym change using the one-round protocol suggested
in reference [96] (i.e. the Swing protocol): a mobile node broadcasts an initiation
message to start the pseudonym change. The n(t)−1 mobile nodes in proximity receive
the message and enter a silent period during which they decide whether or not to
change their pseudonyms. During the silent period, nodes cannot observe each other’s
messages. At the end of the silent period, it appears to the attacker that all pseudonym
changes occur simultaneously.

The attacker P A observes the set of n
(
T �

i

)
nodes changing pseudonyms, where T �

i is
the (last) time at which a successful pseudonym change occurs for node i. Subsequently,
the attacker compares the set B of pseudonyms before the change with the set D of
pseudonyms after the change, in order to predict the most probable matching [33, 96].
Let pd|b denote the probability that a new pseudonym d ∈ D corresponds to an old
pseudonym b ∈ B . The uncertainty of the adversary is defined using the entropy term

Ai(T �) =−
n(T �)

∑
d=1

pd|b log2(pd|b), (8.14)

which concurrently quantifies the location privacy level of a node i involved in a
successful pseudonym change in a mix zone.

The achievable location privacy depends on both the number of nodes, n
(
T �

i

)
, and

the unpredictability of their whereabouts in the mix zone, pd|b. If a node i is the only
one to change its pseudonym, then its identity is known to the adversary and its location
privacy level is defined to be Ai

(
T �

i

)
= 0. The upper-bound on the entropy is obtained

for a uniform probability distribution pd|b, which would provide node i with a location
privacy level of log2

(
n
(
T �

i

))
. This can only happen after a coordinated pseudonym

change by all players.
Assume a linear loss of privacy with time. This can be interpreted in multiple ways

such as the amount of information collected by an adversary or the perceived risk
increasing with time. A linear function with a user-specific parameter is chosen as a
first approximation and the analysis can easily be extended to nonlinear loss functions.
Then, the location privacy function of a mobile node i is

Ai(t) = max
(

Ai

(
T �

i

)
−λ
[
t−T �

i

]
,0
)

, T �
i ≤ t < T f

i , (8.15)

in the time period between the last successful pseudonym change at t = T �
i which

has provided a location privacy level of Ai
(
T �

i

)
and the next one at t = T f

i . Here, the
parameter λ denotes the privacy loss rate and is chosen to be symmetric for all nodes
for simplicity. Notice that the location privacy level provided by pseudonym changes

depends on various factors and may be different each time, i.e. Ai
(
T �

i

) 
= Ai

(
T f

i

)
. The
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privacy level dropping to zero means the successful identification and monitoring of the
mobile node identity and position by an attacker. Thus, the resulting location privacy
function of a mobile node resembles a sawtooth pattern over the x-axis.

8.3.2 Location privacy games

Based on the model in the previous section, a noncooperative pseudonym change or
location privacy game is defined among n(t) mobile nodes, who are in transmission
range of each other at time t. In this section, full information games are studied, where
each node or player P D

i knows the number and properties of other players in the mix
zone. This information can be obtained, for example, by running a special protocol
such as neighbor discovery [182]. A Bayesian extension of location privacy games is
discussed in reference [66].

The location privacy game considered is as a succession of one-shot or static games
since all nodes make a single decision in parallel during the silent period of the mix
zone on whether or not to change their pseudonyms. Thus, the action (strategy), si, of
a player i can be one of the two moves si ∈ {C,D}, cooperate (C) or defect (D). The
actions of all other players are denoted by s−i as is customary.

The cost function of a player is the difference between the cost of a pseudonym
change, γ, [65] and the privacy benefit obtained from the change. For simplicity, the cost
γ is assumed to be symmetric for all users. A possible cost function is then defined as

Ji(si,s−i) =

{
γ−max

(
Ai, Âi(s−i)

)
, if si = C

−Ai, if si = D,
(8.16)

where Ai is the privacy level of the player at the time of play, Âi(s−i) is the new pri-
vacy level as a function of the number of other players cooperating, i.e. joining the
pseudonym change. If no other player cooperates, then the pseudonym change fails
and Âi = 0. Let n̄ be the total number of nodes in the system. Then, by definition,
Ai ≤ log2(n̄) and Âi ≤ log2(n̄) hold.

In order to gain further insight into the location privacy game defined, first a two-
player version is investigated. Subsequently, an n-player extension is discussed.

Two-player game
Consider a full information location privacy game between two mobile nodes or players,
P D

1 and P D
2 . If upon a successful pseudonym change, each node achieves the same level

of privacy, then all cooperative players receive a new privacy level of Â = log2(2) = 1.
As a special case of (8.16), the game matrices of players P D

1 and P D
2 are

G1 =
(C) (D)[
γ−1 γ−A1

−A1 −A1

]
(C)
(D)

, G2 =
(C) (D)[
γ−1 −A2

γ−A2 −A2

]
(C)
(D)

, (8.17)

where A1 and A2 are player privacy levels, respectively. Note that A1,A2 < 1 from
(8.15) and assuming a minimum amount of time between pseudonym change attempts
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or games, the next theorem characterizes NE strategies under various conditions on
game parameters.

Theorem 8.6 The two-player location privacy game admits the following NE solutions:

(a) the pure strategy (D,D), regardless of game parameters,
(b) the pure strategy (C,C), if γ< max(1−A1,1−A2),
(c) the mixed strategy (p∗,q∗), given by

p∗ =
γ

1−A2
, q∗ =

γ
1−A1

, γ< max(1−A1,1−A2),

where p and q are the probabilities of the collaboration of players P D
1 and P D

2 ,
respectively.

Proof The pure strategy equilibria follow directly from the definition of NE. The mixed
equilibrium is obtained directly from the indifference condition

J1(p,q∗) = const., J2(p∗,q) = const. ∀p,q,

similarly to the cases studied in Chapter 3.

If the condition γ< max(1−A1,1−A2) is satisfied, i.e. the cost γ or both A1,A2 are
sufficiently low that collaboration is feasible, then the pure NE strategy (C,C) is the
dominant one and preferred by both players over other equilibria. The players then have
an incentive to collaborate and change their pseudonyms when they are in proximity of
each other. This is naturally not the case if the condition is violated, for example, when
one of the players has just changed its own pseudonym (i.e. Ai high) or when the name
change cost γ is prohibitively high.

N-player game
Consider now an n-player location privacy game as an extension of the two-player ver-
sion. It is useful to reorder (relabel) players, P D

i ∈ AD, i = 1, . . . ,n, based on their
current privacy levels such that A1 ≤ A2 ≤ ·· · ≤ An. Then, define the set AD(k) ⊂ AD

as one of the first k < n players.
If k players (collaborate) participate in a successful pseudonym change, then each of

them obtains a new privacy level, e.g. Â = log2(k). Each node minimizes its own cost
in (8.16) as before. The equilibrium solutions of this game are characterized in the next
theorem.

Theorem 8.7 Consider an n-player location privacy game between the set of players
AD, where the players are labeled in increasing order based on their current privacy
levels such that A1 ≤ A2 ≤ ·· · ≤ An. The game admits the following pure-strategy NE
solutions under the respective conditions.

(i) The strategy where all players defect, (D, . . . ,D), is an NE.
(ii) The pure strategy where first 2 ≤ k < n players, AD(k), collaborate (C) and the

remaining, AD\AD(k), defect (D), i.e.
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(C, . . . . ,Ck,

k
D, . . . ,D)

n− k
, 2≤ k < n,

is an NE, if

Ak+1 + γ> Â(k) > Ak + γ.

(iii) The pure strategy where all players collaborate, (C, . . . ,C), is an NE, if

Â(n) > An + γ.

Proof The cases of (i) and (iii) follow directly from the definition of NE. In order
to prove case (ii), it is sufficient to show that no player from the set of 2 ≤ k < n
collaborating players, AD(k), has an incentive to defect and from the set AD\AD(k)
to collaborate. This follows immediately from (8.16), since for any player i ∈ AD(k)
the condition in the theorem states that Â(k) > Ai + γ, and hence Ji(D,s−i) > Ji(C,s−i).
Likewise for any player i∈ (AD\AD(k)), the condition leads to Ai +γ> Â(k), and hence
Ji(D,s−i) < Ji(C,s−i).

The results in the theorem can be intuitively interpreted as follows, assuming that
pseudonym change cost γ is reasonably low. If all the players have high privacy levels,
then nobody has an incentive for collaboration and all nodes defect. If two or more
players have sufficiently low privacy levels, then they collaborate to create a group for
successful pseudonym change. Finally, if all players have low privacy levels, then all in
the mix zone collaborate.

8.4 Discussion and further reading

Reference [58] contains a comprehensive discussion on security and usability from
multiple perspectives and dimensions. The relation between security and usability is
further studied in reference [23, Chap. 2] and reference [149]. The security alert dis-
semination system [16] in Section 8.1.1 is one example application of decision and
the game-theoretic approach for improving usability in network security. The effec-
tive administrator response scheme in Section 8.1.2 is another example that utilizes an
optimization framework which was first introduced in reference [41].

The community trust game presented in Section 8.2 extends reference [17] and
studies community effects on trust decisions for digital identities and in virtual envi-
ronments. For a survey on trust and reputation systems, see reference [82]. Earlier
game-theoretic approaches to the topic include references [63, 118, 133, 194]. Trust and
reputation on the Internet is investigated in references [143, 144]. Other studies, such as
reference [47, 48], have applied reputation systems to P2P and mobile ad-hoc networks.

Section 8.3 discusses location privacy in mobile networks and presents a summary of
the model in reference [66]. The location privacy approach here is based on mix zones
and pseudonym changes [79, 96] building upon the intuitive idea of “disappearing in
the crowd.” An incomplete information extension and a protocol implementation of the
same privacy scheme are also investigated in references [65] and [66].
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9 Machine learning for
intrusion and anomaly detection

Chapter overview

1. Intrusion and anomaly detection
– intrusion detection and prevention systems (IDPSs)
– open problems in intrusion detection

2. Machine learning (ML) for security
– overview of ML methods
– open problems in ML for security

3. Distributed machine learning
– support-vector-machine (SVM) classification
– parallel update algorithms
– asynchronous and stochastic algorithms
– active set-based algorithm and a numerical example
– behavioral malware detection in mobile devices

Chapter summary

An overview of anomaly and intrusion detection (prevention) as well as machine learn-
ing is presented along with a discussion of open research problems. Machine learning
provides a scalable and decentralized framework for detection, analysis, and decision
making in network security. As an example of a distributed machine-learning (ML)
scheme, a distributed binary SVM classification algorithm is analyzed. It is then applied
to the problem of malware detection in mobile devices using behavioral personalized
signatures.
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9.1 Intrusion and anomaly detection

Networked systems are difficult to observe and control even by their owners due to
their complexity. The complexity is a result of three factors: powerful and ubiquitous
computing hardware, complex software running on the hardware, and interconnectiv-
ity between separate computing systems. The same factors also make it difficult to
observe the multitude of processes on modern networked systems. As a simple exam-
ple, it is practically impossible for users to continuously be conscious of which software
and communication processes are running on their mobile phone and to control their
functionality.

An intuitive result, supported also by the classical control theory, states that it is very
difficult to control any system that is not observable. Therefore, observation capabilities
should be seen as the first step towards controlling networked systems by their owners.
Increasing observability of systems (by their owners) enables building better defenses
against unwanted behavior and malicious security compromises. Nevertheless, obser-
vation capabilities are often not a built-in feature of networked systems. Furthermore,
collecting, interpreting, and storing such data brings additional overhead and requires a
nontrivial investment.

It is useful to briefly review the history of network security in order to better under-
stand the current problems. When networked systems started playing an increasingly
important role in almost all aspects of modern life, security threats against them both
increased and were taken more seriously by the owners of the systems. Ever since,
the potential and actual costs of security compromises have been naturally motivating
defensive measures. The first defenses were mostly static such as firewalls establishing
a perimeter and protecting it or reactive such as the signature-based antivirus software.
Next, dynamic intrusion detection systems emerged, which increased system observa-
tion capabilities. More recently, the trend is towards dynamic and preventive measures
with the emergence of intrusion prevention systems augmenting detection capabilities.
This is partly a result of technological developments making such preventive measures
feasible on the network and hosts.

On the other side, the attacks have also become more sophisticated. The security
threats have evolved from simple ones driven by scientific curiosity of renegade enthu-
siasts to complex and distributed attacks for financial gain, sometimes in connection
with organized crime. The botnets which launch hybrid worm-Trojan malware from
thousands of computers (without the knowledge of their owners) exemplify the level of
sophistication of recent attacks.

The castle analogy provides a useful and fun model for visualizing the fundamen-
tal security concepts discussed above [69]. If the networked system to be secured is
compared to a medieval castle, then static security measures such as firewalls, authenti-
cation, and access control correspond to the walls and gates of the castle, respectively.
Reactive measures such as antivirus software can be similarly compared to antisiege
weapons. All these semistatic security measures naturally require maintenance and
upgrades in the face of new technologies. On the other hand, no matter how strong
the walls are, the castle is not secure without guards defending it. Without dynamic
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measures the castle, however well protected, would be vulnerable and “blind” to
security violations and attacks. The direct counterpart of these guards in the IT con-
text is intrusion detection systems. Similarly, scouts and guards patrolling the vicinity
of the castle can be compared to intrusion prevention systems which detect and try to
address threats before they arrive at the gates.

The characteristics of attackers and defenders can also be modeled within the same
castle analogy. Over time, the defensive guards have evolved from simple people or
owners defending the castle to professional soldiers protecting it. The attackers, like-
wise, turned into well-organized and equipped opponent armies from their humble
beginnings of disorganized roving bands of outlaws.

This chapter focuses on computer-assisted security attack detection and analysis
using (statistical) ML methods from the perspective of the defense side. As already
mentioned, observation capabilities provide the necessary basis for attack prevention
and security measures. It is obvious yet worth mentioning that observation and detec-
tion in the context of network security cannot be done manually by human beings
and require computer assistance at the minimum. Therefore, state-of-the-art ML tech-
niques are potentially an indispensable component of computer assistance systems for
the detection, analysis, and prevention of security threats.

9.1.1 Intrusion detection and prevention systems

Intrusion detection can be defined as the process of monitoring the events occurring
in a computer system or network and analyzing them for signs of intrusions [25, 26].
This classical definition is somewhat limited and focuses mainly on detecting attacks
after they occur and reacting to them. Recent developments in the field have resulted
in a more extended approach of intrusion prevention where monitoring capabilities are
utilized to take preventive actions to defend against malicious attacks before or as they
occur.

The evolution of intrusion detection systems to hybrid intrusion detection and
prevention systems is not very surprising in light of the close relationship between
observation and control as discussed above. While intrusion detection focuses more
on detection and reporting aspects of the problem, prevention systems tend to be
more action- and response-oriented. Responses such as filtering of malicious packets
at the perimeter of the network aim to prevent attacks proactively. This shift can be
seen as a result of continuous technological improvements, which enable better and
economically feasible defensive solutions. Consequently, once monitoring capabilities
are developed and available, it makes sense to deploy them both inside a networked
system and at the periphery.

Although IDPSs are constantly evolving, it is useful to study the basic concepts
and building blocks, which mostly remain invariant. An IDPS consists of three main
components: information sources, analysis, and response.

The information sources in an IDPS observe the networked system and collect
data that will help to detect and prevent attacks. They can be implemented, for
example, as software agents running as virtual sensors or on dedicated hardware for
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packet inspection. The data collected is often sequential and heterogeneous in nature.
Depending on the type and number of sources, the amount of data collected can be quite
large, which may require significant storage and processing capabilities.

A set of (virtual) sensors network can be deployed as part of an IDPS in order to col-
lect information and detect malicious attacks on the network (see Figure 9.1). A virtual
sensor network is defined as a collection of autonomous software agents that moni-
tors the system and collects data for detection purposes. The sensors report possible
intrusions or anomalies occurring in a subsystem using common pattern recognition
and statistical analysis techniques. Some of the desired properties of sensors can be
summarized [191] as

• completeness: a sensor should cover the assigned subsystem in the sense that it
collects all the information necessary for detection. Structural differences between
the information sources such as log files, packet headers, etc. and resource constraints
increase the difficulty of this task;

• correctness: the integrity of the collected information by the sensor should be ascer-
tained against any tampering by the attacker. Misinformation is much more harmful
to the IDS than partial information;

• resource usage: especially host-based sensors use a portion of the system resources,
which include memory, storage space, processing power, and bandwidth. Hence, they
are naturally bounded by them;

• reconfigurability: sensors should be reconfigurable both in terms of operating
parameters and deployment.

It is informative to compare and contrast the virtual sensors, including those in
dedicated appliance devices, with physical hardware-based sensors (motes). Motion,
temperature, and biometric sensor motes are, for example, utilized for the physical secu-
rity of buildings and rooms. While both classes of sensor are functionally similar with
the common goal of collecting information on a system, there are some fundamental
differences in terms of resource constraints. For example, there is no limit to the num-
ber of virtual sensors to be deployed in a system except from the communication and
computation overhead. Clearly, this is not the case with physical sensors. Moreover, vir-
tual sensors do not have power constraints. On the other hand, communication overhead
is a problem for both networks. The unique characteristics of the virtual sensor network
have to be taken into account in the IDS deployment process as well as in addressing
the related resource allocation problems.

Monitor
Internet

sensor sensor

Server

Firewall
Router

Figure 9.1 Graphical representation of a virtual sensor network for intrusion detection.
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According to their deployment and source of information, IDPSs are categorized as
host-based or network-based. Network-based IDPSs detect attacks by capturing and
analyzing individual packets on the network. They can be deployed at the periphery
or gateway, monitoring the entire traffic or at individual switches. They can provide
blanket protection to the entire network and potentially stop attacks before they reach
the protected system. On the other hand, large data volumes or encrypted traffic pose
significant challenges for such systems.

A concept related to information collection is a honeypot. A honeypot is an isolated,
unprotected, and monitored component of the protected system, e.g. a computer. Its sole
purpose is to collect attack data but it has no other production value. The information
collected by honeypots is valuable as a surveillance and early warning tool. Honeypots
can be deployed in production environments to assess the actual threats faced as well as
for research purposes.

Host-based IDPSs are deployed in individual computer systems and utilize, for
example, operating system calls and system logs to detect attacks. They can also
check file system integrity. Although they are immune to the issues faced by network-
based variants, host-based IDPSs have their own problems. They are often difficult to
manage, have nontrivial computational overhead, and can themselves be targeted by
attacks.

Once the observational data is collected, it needs to be analyzed for signs of security
threats. There are two main approaches for the analysis of the collected data: misuse and
anomaly detection. Misuse detectors analyze the data, looking for events that match a
predefined pattern of a known attack. Since the patterns corresponding to known attacks
are often called (attack) signatures, the terms “signature-based detection” and “misuse
detection” are used interchangeably. The most well-known and widely used example of
signature-based detection is that used in antivirus software. Another example is the rules
in the Snort IDPS software.1 The signatures have to be written manually by experts one
by one for each threat. The updated signatures are then sent to individual IDPS software
periodically. As a countermeasure the attackers create multiple variants of the same
malware as well as malware that self-mutates. Zero-day attacks for which no signature
is generated yet and the huge number of threat types make signature-based detection a
limited solution.

The second analysis approach is anomaly detection where “abnormal” or unusual
behavior (anomalies) on the networked system are identified using various pattern
recognition and (statistical) machine-learning techniques. The underlying assumption
here is that attacks will be observable in the data collected by (legitimate) activity
differing from “normal.” This approach has the potentially desirable properties of scal-
ability and detection of previously unknown attacks for which there is no manually
generated signature. In practice, however, anomaly detectors have often very high false
positive rates, i.e. mistake legitimate events for anomalies. This is maybe not surpris-
ing considering that detecting an anomaly in a large dataset is roughly analogous to

1 http://www.snort.org/
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Table 9.1 Comparison of signature-based and anomaly detection

Signature-based Anomaly
Effective in detecting known attacks Detects previously unknown attacks
Quick and reliable Many false-alarms
Manual signature generation Often requires training sets
Not scalable with threat types Potentially scalable

finding a needle in a haystack. As a further complication, most ML techniques require
a “clean” training set to learn normal behavior, which may not exist at all. A summary
of signature-based and anomaly detection techniques’ properties is shown in Table 9.1.

Once the data is collected and analyzed, the response to detected incidents can be
active or passive. Passive response mainly involves alerting the system administrators
and logging the suspected events for later analysis or network forensics. The problems
of prioritizing alerts and how to present them to the administrators can be addressed
within an optimization framework as discussed in Section 8.1.2. Given the limited time
and attention of security officers, these tasks have to take usability into account as an
important factor.

Active response schemes are one of the main distinguishing characteristics of intru-
sion prevention systems. One possible active response approach is to drop suspected
packets and flows to prevent attacks before they reach the protected system. If not care-
fully configured, however, such measures can have significant detrimental side effects.
A less drastic approach is to initiate additional investigation on the incident, for exam-
ple, by collecting more data than usual via additional sensors. Another alternative is to
reconfigure the environment, e.g. by increasing access restrictions and isolating parts of
the protected system. Active response is crucial especially in cases where response time
is an important factor such as fast-spreading worms or viruses which can paralyze the
whole networked system within minutes.

9.1.2 Open problems and challenges

Although IDPSs are important components of network security, they are far from perfect
and face open problems. One problem is the attacks targeting IDPSs and their capabili-
ties directly. A second one is usability, deployment, and configuration of IDPSs. A third
problem is the inherent difficulty of the detection task itself, which, using the earlier
analogy, is similar to “searching for a needle in a haystack.”

Just like the system it protects, the IDPS can itself be targeted by attackers. Care-
fully constructed packets or behavior patterns may function as a DoS attack against the
IDPS and render it ineffective. Alternatively, the attackers can use clever stealth tech-
niques to avoid detection by IDPS. One example is polymorphic worms that change
their representation as they spread throughout networks and can evade especially
signature-based worm detection systems which rely on fixed descriptions. Another
example is encrypted network traffic that is becoming more and more common. If
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an attacker encrypts the command and control mechanisms of a botnet, the challenge
for an IDPS to detect and disrupt it becomes an order of magnitude more difficult.
Another class of attacks targets the learning phase of anomaly detection schemes. Here,
a malicious adversary constructs labeled samples artificially on purpose and lets them
be observed by the IDPS. If these samples are used by the detection algorithm as data
points during training, the accuracy of the classifier is compromised for the benefit of
the attacker.

Usability of IDPSs is an important problem that is usually overlooked by security
researchers, partly owing to its nontechnical nature. Since each networked system is
different, the IDPS has to be configured according to the deployment environment.
Consequently, the initial deployment and configuration of an IDPS in a medium- to
large-scale networked system can be so complex that it becomes a barrier itself.
Recently, a variety of security appliances have been developed as a solution to address
the usability issue. They are, however, usually only network-based and focus mainly on
packet filtering.

A third problem, which may well be the most significant of all, is the base-rate
fallacy and its implications for intrusion detection [24]. It is a direct consequence of the
basic Bayesian theorem and is best explained by means of a numerical example. If an
IDPS generates one million records a day and only 20 of them indicate real intrusions,
then to reach a true positive (attack detection) rate of 0.7 and a Bayesian detection rate
(the rate an alarm really indicates an intrusion) of 0.58, the false-alarm probability has
to be as low as 0.00001.

This rather unexpected result puts significant constraints on the desired effectiveness
of an IDPS. One of the underlying issues here is the rarity of intrusion-related events
within a significant amount of data. Another is the adverse effects of false-alarms, which
make the job of security officers more difficult and potentially waste resources. In other
words, the situation is worse than looking for a “needle in a haystack” since one has
not only to go through a big haystack to find the needle but also have a very sharp eye
distinguishing each straw from the needle very accurately.

9.2 Machine learning for security: an overview

Complex networked systems cannot be continuously observed, controlled, and defended
against security compromises manually by their users or administrators. Computer
assistance is absolutely necessary to facilitate all these processes. This requires certain
decisions to be taken automatically without human intervention. Machine (statistical)
learning studies such decision-making problems in a variety of fields ranging from com-
puter vision to speech recognition. Hence, machine learning has significant potential
and has been increasingly used in the security domain.

The application of ML to network security has interesting implications for both
fields. While ML creates a foundation for computer-assisted decision making in net-
work security, it in turn benefits from unique aspects of this relatively novel application
domain. This opens up interesting research directions such as data mining for security,
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distributed ML, and adversarial ML. Among these, distributed machine learning in
networked environments will be discussed in Section 9.3 in more detail.

As we have already seen, intrusion and anomaly detection involves collecting a sig-
nificant amount of observation data and its analysis. Therefore, it is natural to adopt
existing statistical and pattern recognition schemes in the analysis of the collected data
to classify anomalous and potentially malicious behavior. One way to approach this
problem is to characterize the data within a parametric statistical model and estimate
its parameters from the dataset. The anomalies potentially indicating malicious behav-
ior can then be distinguished using hypothesis testing. There exists a rich literature on
detection and estimation theory which approaches this problem from a signal process-
ing and information theoretic perspective. This point of view will be presented and
discussed in Chapter 10.

On the other hand, it is often difficult to characterize the IDPS-collected data by
a probability distribution or an independent identically distributed random process. In
such cases nonparametric ML and data-mining algorithms such as clustering, support
vector machines (SVMs), or kernel-based methods become more relevant. It is worth
noting that the distinction between parametric (statistical) and nonparametric (ML)
methods is not as crisp as it may first seem. Both approaches aim to solve similar prob-
lems, share fundamental properties, and usually borrow many techniques from each
other.

Although it is not feasible to provide here a comprehensive treatment of ML meth-
ods, a brief overview is beneficial to better understand their advantages and limitations
within network security context. The basic properties of various ML algorithms [40]
and their relevancy to decision making in the security domain are discussed next.

9.2.1 Overview of machine-learning methods

We provide in this section an overview of preprocessing, unsupervised and supervised
learning, and reinforcement learning, which are the salient ML methods.

Preprocessing
The first step of data analysis is preprocessing where original input variables are trans-
formed into a new variable space and – if possible – undergo a dimension reduction
to facilitate subsequent computations. This may involve feature extraction where a
subset of features that preserves useful discriminatory information are selected. The
data transformation and feature selection may be done in such a way that variance
of the projected feature set is maximized as in the well-known principle component
analysis (PCA). Preprocessing is one of the most important yet sometimes overlooked
aspects of ML and plays a crucial role in the success of any subsequent data analysis
method.

In the case of network security problems, the amount of data collected by IDPS is
often large. Furthermore, the data is usually noisy and redundant due to its observational
nature. Proper application of preprocessing techniques in combination with problem-
dependent domain knowledge helps to reduce the problem dimension and decrease
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the computational costs in subsequent steps significantly. However, proper care must
be shown in preprocessing in order not to discard potentially useful information from
original input data.

Unsupervised learning
One of the two main approaches in the analysis of IDPS observations is unsupervised
learning. Clustering, density estimation, and visualization are among the well-known
unsupervised learning techniques. Clustering discovers patterns in the dataset by group-
ing data points with similar features, density estimation studies the distribution of
the data within the input space, and visualization projects the data into two or three
dimensions to facilitate its human readability.

Security visualization2 aims to process and transform complex security data col-
lected into human-readable visual representations. Hence, the actual tasks of intrusion
and anomaly detection are left to system administrators to be handled manually. The
main idea is to utilize the superb pattern recognition capabilities of the human brain
instead of relying on various ML algorithms. Thus, security visualization can be seen
both as a computer-assistance scheme for security monitoring and as an alternative
approach that addresses the disadvantages of fully automated anomaly detection meth-
ods. On the other hand, this approach has its own potential disadvantages such as
imperfect data aggregation and scalability issues owing to its manual nature.

Density estimation assumes a probabilistic model of the input data and estimates
the parameters of the model, e.g. probability distribution, from the given dataset
which may be incomplete. Therefore, it can be categorized as a parametric or a
statistical technique. As an example, the expectation–maximization algorithm is a well-
known formal statistical technique for finding the maximum likelihood estimates of
the model parameters. It can be used in the security context, for example, to char-
acterize network traffic, and hence detect flow anomalies which may indicate DoS
attacks.

Clustering is probably the most well-known and widely used unsupervised learning
method in ML and data mining. Clustering techniques categorize data points in the
input set to subsets or categories (clusters) based on a similarity measure defined over
their feature space. A well-known variant called K-means clustering partitions n given
points into a predefined k cluster in which each point is assigned to the cluster with
the nearest mean value. Expectation–maximization is another widely used clustering
method. While neither algorithm guarantees a globally optimal solution, they are both
fast and easy to implement.

Clustering techniques have been utilized in network security especially for anomaly
detection. The common approach is as follows: the data collected by IDPS is clustered
based on a chosen feature vector and distance metric on the feature space. The computed
clusters are then used to characterize the data. For example, the “neurons” of a SOM
are a discretized representation of the input data. After this analysis step, subsequent

2 http://www.secviz.org/
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IDPS observations can be compared with the computed representation using a distance
metric. If it can be ensured that the initial dataset represents “normal” system behavior,
then any future data that significantly deviates from the computed representation can be
interpreted as an “anomaly.”

Supervised learning
ML methods that aim to “learn” a function from a given training data set constitute the
second main approach, called supervised learning, for the analysis of IDPS observa-
tions. The objective of classification problems is to learn a function that assigns a label
from a discrete set such as {clear,malicious} to each data point. If the label set has only
two elements, then the problem is called binary classification. On the other hand, if the
function to be learned is real-valued, then the problem is called regression. For example,
each packet analyzed by the IDPS can be assigned a real-valued suspicion level between
zero and one.

Two main criteria for the success of supervised learning algorithms are prediction and
generalization. The learned function should be able to predict successfully the output
for data other than in the training set used. At the same time, it should act as a model
that captures the underlying characteristics of the training data and generalize to new
data points. The opposite behavior is called overfitting where the function describes the
training data perfectly but has poor predictive power. The performance of a supervised
learning algorithm is quantitatively assessed using a test data set and cross-validation
techniques.

Supervised ML techniques offer an invaluable set of formalized computing meth-
ods to develop computer-assisted detection, analysis, and decision systems for network
security. These methods have been successfully applied to a wide variety of fields rang-
ing from image recognition, speech processing, and data mining. In the network security
domain, whether the objective is to distinguish whether a packet contains malicious pay-
load or to assess how suspicious is certain behavior (e.g. flow pattern), the problem can
be naturally formulated within the ML framework. IDPSs benefit from the scalability
and computational power of ML algorithms as opposed to manual processing by sys-
tem administrators. Furthermore, an IDPS usually generates significant amounts of data
which improves the performance of many ML algorithms.

9.2.2 Open problems and challenges

In addition to its potential, the application of machine learning to network security gives
rise to multiple problems and research directions. The first issue is the lack of good
quality datasets to assess the performance of ML algorithms in the security domain.
This lack of data hinders research efforts and is in stark contrast to other application
fields of ML such as computer vision. The second problem is the fact that attackers
can (secretly) influence the learning and decision processes in ML, especially in the
training phase. This opens up an interesting new research direction for ML called adver-
sarial machine learning. The adversarial ML algorithms, which adopt the role of the
defender, try to accomplish their objectives while facing a malicious attacker who aims
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to undermine their efforts. The third problem is distributed machine learning, which
extends ML to networked environments where the training set itself may be distributed
and the communication between distributed algorithm subroutines may be imperfect.

The current lack of good quality datasets in network security is an important
yet hopefully temporary problem. The problem was acknowledged a decade ago and
the famous IDS evaluation dataset was published by the Defense Advanced Research
Projects Agency (DARPA)3 in 1998, which was then used in 1999 at the knowledge
discovery and data mining (KDD) cup. Since then, the KDD dataset has been used
by numerous papers, partly owing to lack of alternatives and partly for convenience.
Recently, various flaws with this dataset have been discovered. Its usage as an eval-
uation tool is discouraged by many experts. Disappointingly, there is almost no other
dataset proposed as a replacement until now.

Some security researchers claim that the only way of checking a security mechanism
is to test it experimentally in a realistic setting. Although it has its obvious merits, this
approach can also be potentially harmful to research efforts in the field. Building an
experimental IDPS environment is a costly endeavor in terms of both manpower and
monetary expenses. Therefore, such an approach creates a significant barrier of entry
for cross-disciplinary efforts and prevents knowledge transfer from the ML community
to security researchers and vice versa. It is unrealistic to expect every ML researcher,
who is interested in security as an application field, to have a full-fledged and expensive
security laboratory. Considering that quantitative evaluation using training and testing
datasets is an indispensable aspect of ML algorithms, lack of high-quality datasets
shared by the whole community is potentially harmful to the healthy development of
ML in the security domain.

Adversarial machine learning constitutes a second open problem and potentially
promising research direction. In classical ML, the training data can be noisy; yet there
is no conscious attacker trying to manipulate it. The presence of an attacker, who either
tries to hide attack symptoms or poison the training data to mislead the algorithm,
brings a novel and interesting dimension to existing ML approaches discussed above.
Given the widespread use of optimization formulations in classical ML, game theory,
which can be seen as the multi-person decision-making counterpart of optimization, can
provide the needed framework to investigate adversarial ML problems. Security game
formulations discussed in Chapter 3 may be especially relevant here.

Recent advances in cloud computing, multiprocessor systems, and multicore proces-
sors make distributed machine learning an important research field relevant not only
to the security domain but also to many others. The widespread and cheap availability of
powerful parallel and distributed computing resources already provides a motivation for
distributed and parallel ML schemes. They find a natural application domain in network
security due to the inherently distributed nature of networked systems. The data col-
lection, analysis, and storage processes of a networked IDPS are often decentralized.
Distributed ML can easily be deployed within such an IDPS and remove the need

3 DARPA is an agency of the United States Department of Defense.
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for forced centralization at a security center within the network. A distributed binary
classification algorithm will be discussed in the next section as an example.

9.3 Distributed machine learning

Powerful parallel and distributed computing systems have recently become widely
available in the form of multicore processors and cloud computing platforms. Motivated
by these developments, distributed machine learning algorithms can be naturally
applied to address various decision-making problems in network security, where data
collection and storage processes are inherently distributed. Both the efficiency and
robustness of IDPSs are improved by taking advantage of computing capabilities
distributed over the whole networked system. Furthermore, overall communication
overhead is decreased by not sending all of the observation data to a single information
fusion and decision-making center. A similar approach is also applicable in multicore
processors or GPU programming, albeit in a smaller scale.

This section discusses a distributed SVM-based binary classification framework
as an exemplary distributed ML scheme. First, the quadratic SVM binary classification
problem is divided into multiple separate subproblems by relaxing it using a penalty
function. Then, distributed continuous- and discrete-time gradient algorithms are ana-
lyzed that solve the relaxed problem iteratively and in parallel. A sufficient condition
is derived under which the synchronous parallel update converges to the approximate
solution geometrically. Next, an asynchronous algorithm is investigated where only a
random subset of processing units update at a given time instance and show its conver-
gence under the same condition. Subsequently, stochastic update algorithms are studied
which may arise due to imperfect information flow between units or distortions in
parameters. Sufficient conditions are derived under which a broad class of stochastic
algorithms converge to the solution.

Unlike sequential or centralized approaches in the classical ML literature, the focus
here is exclusively on parallel update schemes to address classification problems such
as detecting malware and suspicious activity given data obtained by an IDPS. The
approach introduced allows individual processing units to do simultaneous computa-
tions. This is in contrast to training SVMs either sequentially or in parallel first and
then fusing them into a centralized classifier for intrusion detection. The distributed
SVM classifier is especially useful when each unit has access to a different subset of the
overall dataset, which may be time-varying, and has its own computing resources.

In practice, the communication overhead and the number of support vectors resulting
from the relaxation of the original binary SVM classification problem can be unaccept-
ably high, regardless of the update algorithm used. To address this issue, active set
methods are utilized, which have been widely used in solving general quadratic prob-
lems as well as in centralized SVM formulations. The resulting algorithm is greedy
in nature and has been observed to converge to a solution in a low number of rounds.
In addition, the framework is suitable for online learning and gives a choice on the
upper-bound of the resulting support vectors.
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9.3.1 SVM classification and decomposition

First, an overview of the classical SVM-based binary classification problem is provided.
Subsequently, a relaxation of the centralized formulation and its decomposition into
parallel subproblems are discussed.

Centralized classification problem
Assume that a set of labeled data,

S := {(x1,y1), . . . ,(xN ,yN)},

is given where xd ∈ R
L and yd ∈ {±1}, d = 1, . . . ,N. A classification problem is con-

sidered with the objective of deriving a generalized rule from this training data that
associates an input x with a label y as accurately as possible. It is important to note that
no assumption is made on the nature of the training or test data. A well-known method
for addressing this binary classification problem involves the representation of input
vectors in a high(er)-dimensional feature space through a (nonlinear) transformation.
Define the dot product of two feature vectors, say xd and xe, as a kernel, k(xd , xe). In
many cases this dot product can be computed without actually calculating the individual
transformations, which is known as the kernel trick.

The optimal margin nonlinear binary SVM classification problem [162] described
above is formalized using the quadratic programming problem

max
αd

N

∑
d=1

αd− 1
2

N

∑
d=1

N

∑
e=1
αdαeqd,e

such that αd ≥ 0, d = 1, . . . ,N (9.1)

and
N

∑
d=1

αdyd = 0, (9.2)

where the αd are the Lagrange multipliers of the corresponding support vectors (SVs)
and qd,e are the entries of the positive definite matrix

Q :=
[
(ydye k(xd ,xe))d,e

]
N×N

. (9.3)

The positive definiteness of Q simply follows from the assumption that the kernel matrix
Kd,e := [k(xd , xe)]N×N is positive definite [162]. The decision function classifying an
input x is then

f (x) = sgn

(
ND

∑
l=1

αlylk(x,xl)+b

)
,

where b is the bias term and ND < N is the number of support vectors. Here, the well-
known representer theorem [162] enables a finite solution to the infinite-dimensional
optimization theorem in the span of N particular kernels, k(x,xd), centered on the
training points xd , ∀d.
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Decomposition into subproblems
In order to decompose the centralized classification problem into subproblems, define
a set M := {1,2, . . . ,M} of separate processing units with access to different (possibly
overlapping) subsets, Si, i ∈M , of the labeled training data such that S =

⋃M
i=1 Si. The

initial partition of the data S can be due to the nature of the specific problem at hand
or as a result of a partitioning scheme at the preprocessing stage. Given the partition,

define the vectors {α(1),α(2), . . . ,α(M)} where the i-th one is α(i) :=
[
α(i)

1 , . . . ,α(i)
Ni

]
. In

order to devise a distributed algorithm that solves the optimization problem (9.1), it is
relaxed by substituting the constraint ∑N

d=1αdyd = 0 by a quadratic penalty function,

0.5Mβ
(
∑N

d=1αdyd
)2

, where β > 0. Next, an upper-bound αmax on αd is imposed such
that αd ≤ αmax ∀d. This upper-bound can be chosen to derive a soft margin hyperplane
(i.e. maximizing the margin). Alternatively, it can be chosen as very large to minimize
the training error ignoring the margin. Thus, the following constrained optimization
problem

max
αd∈[0,αmax]

F(α) =
N

∑
d=1

αd− 1
2

N

∑
d=1

N

∑
e=1
αdαeqd,e− Mβ

2

(
N

∑
l=1

αlyl

)2

(9.4)

approximates (9.1). Note that the objective function F(α) is strictly concave in all its
arguments due to Q in (9.3) being positive definite, and the constraint set X := [0,αmax]N

is convex, compact, and nonempty.
The convex optimization problem (9.4) is next partitioned into M subproblems.

Hence, the i-th unit’s optimization problem is

maximize
αd∈[0,αmax], d∈Si

Fi(α) = ∑
d∈Si

αd− 1
2 ∑d∈Si

N

∑
e=1
αdαeqd,e− β2

(
N

∑
l=1

αlyl

)2

. (9.5)

Again, the individual objective functions Fi(α) are strictly concave in all αd ∈ Si, and
the respective constraint sets are convex, compact, and nonempty for all i.

Remark 9.1 The individual optimization problems of the units are interdependent.
Hence they cannot be solved individually without deployment of an information
exchange scheme between the processing units.

9.3.2 Parallel update algorithms

Continuous-time gradient algorithm
A distributed continuous-time algorithm, similar to that in reference [15], solves the
problem (9.4). Clearly, solving all unit problems at the same time is equivalent to finding
the solution of the relaxed problem (9.4). One possible way of achieving this objective
is to utilize a gradient algorithm that converges to the unique maximum, α∗, of (9.4)
which closely approximates that of the original optimization problem. Then, every unit
implements the following gradient algorithm for each of its training samples
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dαd

dt
= κd

[
1− αdqdd−∑eαeqd,e

2
−βyd

N

∑
l=1

αlyl

]P

(9.6)

for all d ∈ Si and all i where κd > 0 is a unit-specific step-size constant. Here, the
shorthand [·]P refers to the following projection of the ȧd := dαd/dt:

α̇d =

⎧⎪⎪⎨
⎪⎪⎩
α̇d if 0 < αd < αmax

α̇d if αd = 0, α̇d > 0 or αd = αmax, α̇d < 0

0 otherwise

Each unit i has access to only its own (possibly overlapping) training data Si whereas
the algorithm (9.6) requires more information to be shared between units. One possible
solution to this communication problem is to define a system node facilitating the infor-
mation flow between individual units by collecting and sending back all the necessary
information from and to each unit, respectively. Every unit sends to the central node

its own set of SVs D(i) =
{

(xd ,yd ,αd)|xd ,yd ∈ Si,∀d s.t. α(i)
d > 0

}
. The system node

aggregates this information D :=
⋃M

i=1 D(i) to obtain

xD = {xd ∈ S|αd > 0}
yD = {yd ∈ S|αd > 0}
αD = {αd > 0}.

Subsequently, the system node broadcasts the triple (xD,yD,αD) back to all units
{1, . . . ,M} after which each unit i locally computes the terms

t(i) = Q(i)
Ni×ND

αD

u = αT
D yD, (9.7)

where [·]T denotes transpose operation, ND is the number of elements of xD, and Q(i)
Ni×N

is the portion of the matrix Q relevant to the unit. Thus, the unit update algorithm (9.6)
is redefined as

α̇d = κ
[

1− 1
2
αdqdd− 1

2
t(i)d −βydu

]P

, ∀d ∈ Si, ∀i. (9.8)

Theorem 9.2 The distributed scheme (9.6) globally asymptotically converges to the
unique maximum of the centralized problem (9.4).

Proof In order to investigate the convergence properties of the unit algorithms (9.6),
first define a Lyapunov function V on the compact and convex constraint set X =
[0,αmax]N :

V (α) =
N

∑
d=1

αd− 1
2

N

∑
d=1

N

∑
e=1
αdαeqd,e− β2

(
N

∑
l=1

αlyl

)2

. (9.9)
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This function is strictly concave and admits its global maximum at the solution of
(9.4). Furthermore, its unique maximum, α∗ ∈ X , coincides with that of the centralized
problem (9.4).

Taking the derivative of the Lyapunov function with respect to αd and time t,
respectively, yields

∂V (α)
∂αd

= 1−αdqdd− 1
2 ∑e 
=d

αeqd,e−βyd

N

∑
l=1

αlyl

and

dV (α)
dt

=
N

∑
d=1

∂V (α)
∂αd

(α̇d).

If αmax > αd > 0 for some d, then

∂V (α)
∂αd

α̇d = κd

[
1−αdqdd− 1

2 ∑e 
=d

αeqd,e−βyd

N

∑
l=1

αlyl

]2

> 0.

In the case of αd = 0 for a data point d, either α̇d > 0 and (∂V/∂αd)α̇d > 0 as above or
α̇d = 0 leading to (∂V/∂αd)α̇d = 0. The cases where αd = αmax (i.e. upper-bound) are
handled similarly.

If the trajectory hits the boundary (i.e. ad = 0 or αd = αmax for some d) at a point
other than the unique maximum α∗ ∈ X , then dV (α)/dt > 0 until the trajectory reaches
α∗, where [dV (α)/dt]P = 0. Assume otherwise, i.e. that there exists a point α̃ on the
boundary of the set X and α̃ 
= α∗. Then, the projection of the gradient [dV/dt]P is
zero at the point α̃ ∈ X . However, due to the strict concavity of V , there exists at
least one term d such that (∂V/∂α̃d) ˙̃αd > 0 resulting in [dV/dt]P > 0 which leads to
a contradiction. Thus, the system convergences globally asymptotically to the unique
maximum α∗.

Discrete-time gradient projection algorithm
We discuss a discrete-time counterpart of the parallel update scheme (9.6). In this case,
every processing unit implements the following discrete-time gradient projection
algorithm for each of its training samples

αd(n+1) = [αd(n)+κdGd(α)]+ ∀d, (9.10)

where

Gd(α(n)) := 1− 1
2

(
αd(n)qdd−

N

∑
e=1
αe(n)qd,e

)
−βyd

N

∑
l=1

αl(n)yl .

Here, n denotes the update instances and the notation [·]+ represents the orthogonal pro-
jection of a vector onto the convex set X defined by [α]+ := argminz∈X ‖z−α‖2, where
‖·‖2 is the Euclidean norm. In this special case, the projection of αd onto X can be com-
puted by mapping αd onto [0,αmax] for each d. This facilitates an easy implementation
of the parallel algorithm.
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The function F(α) in (9.4) is a polynomial and hence continuously differentiable in
its arguments. Furthermore, there exists a scalar constant C such that

‖∇F(γ)−∇F(δ)‖2 ≤C‖γ−δ‖2 , ∀γ,δ ∈ X ,

where ∇F is the gradient operator. Define z := γ−δ. Then,

‖∇F(γ)−∇F(δ)‖2
2 = zT AT Az,

where

A :=
1
2

diag(Q)+
1
2

Q+βyyT . (9.11)

The matrix diag(Q) contains the diagonal elements of Q with all its off-diagonal
elements set to zero. The scalar constant C is then given by

C =
√

maxλ(AT A),

where maxλ(·) is the maximum eigenvalue. Therefore, the gradient of the objective
function F(α), ∇F , is Lipschitz continuous. Moreover, it is bounded from above on X .

Theorem 9.3 The gradient projection algorithm (9.10) converges to the unique
maximum, α∗, of the objective function F in (9.4), if the step-size constant κd satisfies

0 < κd <
2√

maxλ(AT A)
, ∀d.

Proof The proof follows directly from the upper-boundedness and strict concavity of
the function F and Lipschitz continuity of its gradient ∇F . Propositions 3.3 and 3.4 in
reference [38, p. 213] contain the details.

Theorem 9.4 Assume that the conditions in Theorem 9.3 hold. Then, the gradient
projection algorithm (9.10) converges to the unique maximum α∗ of (9.4) geometrically.

Proof This result follows directly from Proposition 3.5 of [38, p. 215], if there exists a
constant c > 0 such that

(∇F(γ)−∇F(δ))T (γ−δ)≥ c‖γ−δ‖2
2 , ∀γ,δ ∈ X .

Let us again define z := γ−δ. Then,

(∇F(γ)−∇F(δ))T (γ−δ) = zT AT z
≥ zT maxλ(AT )z,

∀γ,δ ∈ X , where the matrix A is defined in (9.11). We note that the matrix A is the sum
of two positive definite matrices, diag(Q) and Q, and a positive semidefinite one, yyT .
It is hence positive definite and all of its eigenvalues are positive. Hence, there exists a
positive constant c which satisfies the sufficient condition for the theorem to hold.
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Asynchronous update algorithm
A natural generalization of the parallel update algorithms presented is the asynchronous
update scheme where only a random subset of processing units update their α values
at a given time instance. Notice that the synchronous update scheme can be thought of
as a limiting case of this more general version where all units participate in a random

subset update. Define the set of units that update at a given instance n as M (n)
u and the

rest as M (n)
no , such that M (n)

u ∪M (n)
no = M ∀n. Then, the update algorithm for the i-th

unit is:

αd(n+1) =

{
[αd(n)+κdGd(α)]+ ,∀d ∈ Si, if i ∈M (n)

u

αd(n),∀d ∈ Si, if i ∈M (n)
no ,

(9.12)

where Gd(α) is defined in (9.10).
Asynchronous update schemes are in fact more relevant in practical implemen-

tations, since it is usually difficult for the units to synchronize their exact update
instances. Two well-known conditions, which are given below, are together sufficient
for the asynchronous convergence of a nonlinear iterative mapping x(n+1) = T (x) [38,
p. 431].

Definition 9.5 (Synchronous convergence condition) For a sequence of nonempty sets
{X(k)} with . . .⊂X(k+1)⊂X(k)⊂ . . .X , we have T (x)∈X(k+1), ∀k, and x∈X(k).
Furthermore, if {yk} is a sequence such that yk ∈ X(k) for every k, then every limit point
of {yk} is a fixed point of T .

Definition 9.6 (Box condition) Given a closed and bounded set X in R, for every k,
there exist sets Xi(k)⊂ X such that

X(k) := X1(k)×X2(k)×·· ·×XM(k).

For the gradient projection algorithm (9.10), it is straightforward to apply the results
of the convergence analysis above to the asynchronous update case. Towards this end,
define the sequence of nonempty, convex, and compact sets

X(k) := X1×X2×·· ·XM,

where Xi := [x∗i −δ(k),x∗i +δ(k)] ∀i and δ(k) := ‖α(k)−α∗‖. Since δ(k+1) < δ(k) by
Theorem 9.4, we obtain

· · · ⊂ X(k +1)⊂ X(k)⊂ ·· ·X .

Here, X is defined as the interval [0,αmax] where a sufficiently large fixed αmax is
chosen without any loss of generality due to the existence of a finite equilibrium point
and geometric convergence. Hence, the box condition is satisfied by the definition of
X(k). Since δ(k) is monotonically decreasing in k by Theorem 9.4, the synchronous
convergence condition also holds. Therefore, the next convergence result for the asyn-
chronous counterpart of the parallel update algorithm (9.10) immediately follows from
the asynchronous convergence theorem [38, p. 431]:
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Theorem 9.7 Assume that the conditions in Theorem 9.3 hold. If a random subset of
the units update their α values at each iteration according to (9.10) while others keep
theirs fixed, then the resulting (totally) asynchronous update algorithm defined in (9.12)
converges to the unique maximum α∗ of (9.4).

Stochastic update algorithm
All of the update schemes described heretofore require an information exchange system
(see Remark 9.1) to function properly. Also, the information flow within the system has
been assumed to be perfect, i.e. the units have access to all the parameters needed by the
update algorithms. However, this may not be the case in practice for a variety of reasons
such as communication errors, i.e. if the units are not collocated or approximations are
imposed in order to reduce the communication load between the units. To accommodate
this, consider the update algorithm

α(n+1) = [α(n)+κs(n)]+ . (9.13)

Define s(n) := G(α,n)+β(n), where G(α,n) is defined componentwise in (9.10). Here,
β(n) is the random distortion at time instance n. It is possible to establish convergence
of the algorithm (9.13) which can be interpreted as a parallel update scheme under
stochastic distortions, if these random perturbations satisfy some conditions. Toward
this end, let us characterize the relationship between the distortion term β(n) and the
real gradient G(α,n) through the variables ρ(n) > 0 and −π≤ θ(n)≤ π:

|β(n)|= ρ(n) |G(α,n)| , cos(θ(n)) =
βT (n)G(α,n)
|β(n)| |G(α,n)| . (9.14)

Theorem 9.8 Let the stochastic distortion β(n) defined in (9.14) through parameters
ρ(n) > 0 and −π≤ θ(n)≤ π satisfy:

ρ2(n)+2ρ(n)cos(θ(n))+1 > 0, ∀n,

and

1+ρ(n)cos(θ(n))
(1+ρ(n))2 ≥ K̄ > 0, ∀n,

where K̄ is a positive real number. Then, the update algorithm (9.13) converges to the
unique maximum, α∗, of the objective function F in (9.4) geometrically, if the elements
of the step-size vector, κd, satisfy

0 < κd <
2K̄√

maxλ(AT A)
, ∀d.

Proof The proof makes use of the upper-boundedness and strict concavity of the
function F and Lipschitz continuity of its gradient G(α) = ∇F as in the proof of
Theorem 9.3. Modify the function F , without any loss of generality, such that it is
bounded above by zero. It is straightforward to show that the conditions in the theorem
on the distortion, β(n), imposed through parameters ρ(n) and θ(n) ensure that
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‖s(n)‖2 ≥ k‖G(α,n)‖ ∀n,

where k > 0 is a positive constant and

s(n)T G(α,n)≥ K̄ ‖s(n)‖2
2 ∀n.

These conditions, together with that on the positive step-size constant vector k, ensure
that the update algorithm (9.13) converges to the unique maximum of the objective
function F , which follows immediately from Propositions 2.1 and 2.3 in reference [38,
pp. 204–206]. Furthermore, since the objective function is strictly concave, the rate of
convergence is geometrical (see Proposition 2.4 in reference [38] for details).

The conditions in Theorem 9.8 are now investigated through a couple of illustrative
examples.

Example 1
Let −π/2 < θ(n) < π/2 ∀n. The theorem holds for any value of ρ as long as the con-
dition on the step-size κ is satisfied, where K̄ ≤ (1 + ρ(n)cos(θ(n)))/(1 + ρ(n))2 ∀n.
This means in practice that if the angle between the gradient G(α) and distortion β vec-
tors remains less than 90◦, then it is possible to choose a sufficiently small step-size to
compensate for the errors and ensure convergence.

Example 2
Let |θ(n)| > π/2 ∀n. If ρ(n) < 1, then the step-size can be chosen sufficiently small
and the conditions in the theorem can be satisfied. In this case, the distortion is in the
almost opposite direction of the correct gradient, and hence its norm with respect to the
gradient needs to be bounded.

9.3.3 Active set method and a numerical example

Although the update algorithms presented in Section 9.3.2 provably converge to the
unique solution of (9.4), and hence approximately solve the original binary classification
problem (9.1), they often result in a large number of support vectors. This is undesirable
not only for efficiency reasons but also due to the communication overhead it brings to
the system. To address this problem, active set methods are proposed, which have been
widely used in solving general quadratic problems. Furthermore, they have also been
applied to SVMs in centralized classification formulations [122, 158, 187].

Active set algorithms solve the problem iteratively by changing the set of active
constraints, i.e. the inequality constraints that are fulfilled with equality, starting with an
initial active set A0. Since the initial set is in most cases not the correct one, it is modified
iteratively by adding and removing constraints according to some criteria and testing if
the solution remains feasible [187]. Active set methods are considered to be more robust
and better suited for warm starts, i.e. when there is some prior knowledge on the initial
set [94]. For the relaxed problem (9.4), there are only non-negativity constraints on α.
In this case, the vectors with α > 0 constitute the set of SVs. Hence, the set of SVs is
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the complement of the active set and both sets are mutually exclusive. Furthermore, the
union of both sets gives the (universal) set of all feature vectors.

A combinatorial trial-and-error approach is infeasible in practice except from very
small constraint sets. Several schemes have been proposed in the literature for itera-
tively updating the active set. However, popular approaches such as line search [158]
are not suitable for distributed implementation. The selection of active constraint sets
has also been studied in the context of the simplex method [106]. In order to mini-
mize the communication overhead and simplify implementations, a greedy approach
has been proposed [11] for updating the active set, similar to those in the literature. For
many problems, such heuristic methods are known to perform well [162].

The greedy algorithm adopted for updating the active set is summarized as follows.
At each iteration, the data point with the highest positive gradient (derivative of the
objective function F in (9.4)) is removed from the active set as an SV candidate. Next,
the problem described in Section 9.3.2 is solved through parallel updates under the
resulting active set constraints. Finally, the SV with the lowest α is added to the active
set which is a rough approximation to finding the constraint that is violated by the
solution.

The last step in the algorithm both speeds up the convergence and ensures a user-
defined upper-bound on the number of SVs, thus turning it into a tunable parameter of
the scheme. The total number of active set updates (iterations) in the algorithm should
be at most as many as the desired number of SVs in general unless specific assumptions
are made on the initial active set. Due to its iterative nature, this algorithm is also very
suitable for online learning where training data is dynamic. Clearly, there is no need to
rerun the whole algorithm in order to incorporate new data into the decision function
each step.

Communication overhead
The communication overhead of the active set-based approach is significantly lower
than the plain algorithm presented in Section 9.3.2. During parallel updates at each
active set stage (inner loop), individual nodes exchange only the scalar α parameter
values. They send an SV to the system node only when there is a change in the active
set. Naturally, the amount of information sent by each unit would have been exces-
sive if there were no active set restriction and all the corresponding data points were
transmitted. Therefore, limiting the number of SVs through the active set decreases the
communication load significantly. The information flow within the distributed system
results, thus, in an efficient communication scheme.

Numerical example
The framework presented is analyzed on a synthetic but complex two-dimensional4

dataset and compared with the centralized solution. First, the problem is solved centrally
using a standard radial-basis-function (RBF) kernel and quadratic programming tools

4 This two-dimensional dataset [76] is selected to facilitate visualization, and not because of any restriction
of the algorithm on data dimension.
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provided by Matlab. Next, the results of the distributed algorithm are obtained with an
imposed upper-bound on the number of support vectors of 40, respectively. The starting
point of the algorithm is random and perfect information flow is assumed in the system.
The SVs of the centralized classifier and an example solution of the distributed one are
depicted in Figure 9.2. It is observed that the distributed algorithm performs almost as
well as the centralized one. The increased number of SVs needed for classification and
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Figure 9.2 Comparison of (a) a centralized classifier with (b) the distributed one.
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slight performance degradation in the distributed case are attributed to the approximate
nature of the algorithm and the specific penalty function used in the relaxation of the
problem. However, the presented framework, especially the active-set algorithm, has
a lot of room for improvement in terms of, for example, preprocessing, better search
heuristics, and post clustering of obtained SVs.

9.3.4 Behavioral malware detection for mobile devices

Widespread use and general-purpose computing capabilities of next generation smart-
phones make them the next big targets of malware and security attacks. Given the
battery, computing power, and bandwidth limitations inherent in mobile devices, detec-
tion of malware on them is a nontrivial research challenge that requires a different
approach from those used for desktop or laptop computing. The distributed machine
learning and SVM classification framework presented has many suitable characteristics
and can be applied to this problem as an alternative or additional defense method.

Mobile device usage patterns such as the number of SMSs sent and call durations can
be exploited to collaboratively derive flexible, personalized, and behavioral signatures
of malware. For example, a security laboratory can provide the malware behavior data
while the participating users join the system with their normal usage data. Once a binary
classification function (either specific to malware or for aggregate anomaly detection)
is collectively trained, it is used to detect malware and other attacks. The distributed
learning approach adopted provides multiple advantages:

1. It does not require the mobiles to send all of their behavior data to a security center.
Hence, it is lightweight in terms of bandwidth usage.

2. Due to the abstract nature of feature vectors and not requiring a central repository for
all of the user data, it preserves the privacy of the participating users.

3. The classification function learned is essentially an automatically generated behav-
ioral (malware) signature that takes into account the usage patterns of ordinary
users.

Given its favorable properties, this scheme provides a promising and low-overhead
defensive layer for mobile devices, possibly alongside existing approaches.

Simulations and example implementation
A proof-of-concept illustrative prototype (Figure 9.3) is developed on smartphones with
Symbian S60 operating system that communicates to the main server over HTTP. Both
the server and clients use Python programming language [180] for ease of implemen-
tation. In addition, multiple clients are faithfully emulated on a single computer as part
of more extensive simulations thanks to the interpreted nature of the Python language.
Hence, the experimental infrastructure requirements are kept at minimum.

A dataset from the MIT reality mining project [60] is used for the simulations. It
consists of phone call, SMS, and data communication logs collected via a special appli-
cation during normal daily usage of volunteers. This usage data is preprocessed to
generate histograms with a set of 20 features (see Table 9.2) over 6 h periods. Here,
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Table 9.2 Histogram features

Feature (in numbers per 6 h intervals)
Short-duration calls (less than 2 min)
Medium-duration calls (between 2 and 6 min)
Long-duration calls (more than 6 min)
Short intervals between calls (less than 1 h)
Medium-length intervals between calls (between 1 and 3 h)
Long-length intervals between calls (more than 3 h)

Outgoing SMS
Short periods between outgoing SMS
Medium periods between outgoing SMS
Long periods between outgoing SMS
Incoming SMS
Short periods between incoming SMS
Medium periods between incoming SMS
Long periods between incoming SMS

Short-duration packet-sending activities
Medium-duration sending activities
Long-duration sending activities
Short periods between sending activities
Medium periods between sending activities
Long periods between sending activities

Server

Security Lab

Users

Figure 9.3 Illustration of the distributed malware detection system for smartphones.

the short periods or intervals refer to less than 1 h, medium ones to between 1 and 3 h,
and long ones to more than 3 h, respectively. Short-call duration refers to less than 2 min,
medium one to between 2 and 6 min, and long one to more than 6 min.

The selected example feature set is clearly statistical in nature, and hence, privacy
preserving. The system focuses on aggregate and high-level usage characteristics rather
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than private data such as lists of people, time, and content. Thus, it is possible to run the
algorithm on the server side without intruding into the privacy of the mobile user.

In one experiment, usage data from a subject over 50 days (200 samples) constitutes
the training set. A malware is artificially injected into a test set of 25 days. The sim-
ulated malware behavior is based on well-known Viver5 and Beselo6 Trojans. These
Trojans (malware) exhibit themselves by excessive SMS usage, e.g. sending out up to
20 SMSs in a short duration of time. The results obtained are promising and indicate
high accuracy rates typically on the order of 90 percent or more.

9.4 Discussion and further reading

A comprehensive overview of intrusion detection and prevention systems can be found
in references [25, 26]. The thesis, reference [191], presents use of internal and virtual
sensors for intrusion detection. The base-rate fallacy is defined and discussed in detail
in reference [24].

References [40, 162] provide an excellent introduction to machine learning and the
kernel methods mentioned in Section 9.2. A recent book focusing on applications of
machine learning to security is reference [103].

The distributed machine learning framework in Section 9.3 is based upon refer-
ences [11, 12]. It has been recently applied to behavioral malware detection for mobile
devices (smartphones) as discussed in Section 9.3.4. Another recent application of
machine learning (probabilistic diffusion) to malware detection on mobile devices is
reported in reference [13], which also contains an overview of the related literature in
this area.

5 http://www.f-secure.com/v-descs/trojan_symbos_viver_a.shtml
6 http://www.f-secure.com/v-descs/worm_symbos_beselo.shtml
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– decision rules at the sensors and at the fusion center
– decentralized Bayesian hypothesis testing
– decentralized Neyman–Pearson hypothesis testing

4. The majority vote versus the likelihood ratio test
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Chapter summary

Hypothesis testing (signal detection) has been increasingly used in network secu-
rity to detect attacks, anomalies, and malicious behavior. An overview of various
approaches to multiple hypothesis testing is provided, among which are Bayesian, min-
imax, Neyman–Pearson, sequential, composite, nonparametric, and robust hypothesis
testing. Decentralized detection of hypotheses, where observations (measurements) of
different sensors are correlated, is discussed under Bayesian and Neyman–Pearson cri-
teria. In addition, a connection with the majority vote is established for some special
cases, and an algorithm for the computation of thresholds in likelihood ratio tests is
introduced.
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10.1 Hypothesis testing and network security

The previous chapter has discussed applications of machine learning in network secu-
rity, where statistical techniques, among others, are employed to detect and learn the
behaviors of friends and foes in a network. This chapter focuses on another statisti-
cal method, used more and more widely in network security: that based on hypothesis
testing (also called signal detection). In addition to providing an overview of the sub-
ject, the chapter will discuss the decentralized detection problem where the observations
from different sensors are correlated, a scenario that is prevalent in network intrusion
detection problems.

Recently, there has been a surge of research activity in applying hypothesis testing
(HT) to network attack and anomaly detection, which is a task often delegated to IDSs as
discussed in Section 9.1. Intrusion and attack detection approaches are normally classi-
fied into two categories: anomaly detection and misuse detection. In anomaly detection,
the IDS characterizes the correct and/or acceptable behavior of the system to detect
wrongful behavior. Misuse detection, on the contrary, uses known patterns of attack,
called signatures, to detect intrusions.

Security approaches using HT can be considered to lie somewhere in between these
two categories. As recognized earlier, in today’s networks both regular nodes and mis-
behaving or attacker nodes are much more powerful and smarter than their predecessors.
In some situations, canonical approaches based on fixed patterns (of acceptable or
intrusive behaviors) may not be effective anymore. Rather, HT-based attack detection
differentiates behaviors using the probabilistic models of their observed parameters. In
a loose sense, the signatures are now the probability densities of these parameterized
behaviors.

The most widely used approaches in hypothesis testing are Bayesian, minimax, and
Neyman–Pearson. In Bayesian HT, given the prior densities of the hypotheses and based
on the measurements made,1 the most likely hypothesis is selected using a decision rule
obtained through minimization of the average cost or risk. In practical situations where
the prior densities are unknown, an alternative design criterion is the minimax approach,
where the maximum of all the conditional costs given each hypothesis is minimized.
The third criterion, Neyman–Pearson, is used in situations where a cost structure is not
available or is not desirable. In this approach, the miss probability is minimized given an
upper bound on the false alarm probability. All of these approaches will be introduced
in more detail in Section 10.2.

Results from centralized HT do not readily carry over to the decentralized setting,
particularly if the measurements at the sensors given each hypothesis are not condition-
ally independent. However, this scenario is one that is often encountered in network
security problems. The existence of optimal solutions for both Bayesian and Neyman–
Pearson formulations of the decentralized HT problem, where the sensor observations
are conditionally correlated, is established in Section 10.3. Subsequently, Section 10.4
investigates some relationships between the majority vote and the likelihood ratio test

1 We use the terms measurement and observation interchangeably in this chapter.
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for a parallel configuration. Building on the theoretical results obtained, Section 10.5
presents an algorithm for computation of the optimal thresholds, provided that the
sensors are restricted to use likelihood ratio tests.

10.2 An overview of hypothesis testing

Signal detection or hypothesis testing deals with problems where the goal is to make
an accurate decision on the actual hypothesis based on a single measurement or a set
of measurements that involve the hypothesis. Its earlier application area has been radar
systems, and more recently it has found applications in sensor networks and network
security.

Specifically, for a single sensor problem, the sensor is to decide which hypothesis
is true among M hypotheses, H0,H1 . . . ,HM−1. The observation is a random variable
Y that take values in a finite or an infinite observation set Y . The conditional density2

of Y given hypothesis Hi, denoted by Pi(Y ), is assumed to be known to the sensor for
each hypothesis i = 0, . . . ,M− 1. A typical example of hypothesis testing in commu-
nications is the problem of modulation/demodulation, which entails binary hypothesis
testing, where M = 2. Suppose that the transmitter employs a simple antipodal modu-
lation scheme, where zero and one are modulated as pulses of amplitude −1 volt and
+1 volt, respectively, where zero stands for hypothesis H0 and one stands for hypothe-
sis H1. Suppose further that the signal goes through a channel with zero-mean additive
Gaussian noise (AGN) that has noise with variance σ2. The conditional probability den-
sity functions (pdfs) of the observation given each of the two hypotheses, P0(Y ) and
P1(Y ), will be Gaussian with variance σ2 and means −1 and +1, respectively. Given an
observed value of Y , the receiver has to decide whether the transmitter had sent zero or
one. If at the transmitter zero and one are equally likely, it is well known (and totally
intuitive) that the decision rule that minimizes the probability of error will be symmetric,
and given by:

δ(y) =
{

1 if y≥ 0
0 otherwise .

(10.1)

This actually is just a special case of the standard likelihood ratio test (LRT), where one
picks H1 if the likelihood ratio P1(Y )/P0(Y ) exceeds 1, and H0 otherwise. In this case
we also have P1(Y )/P0(Y ) a monotone increasing function of Y , and hence equivalently
Y = y is tested against a threshold, which in this case is 0. It is known that in general the
test will be a threshold test based on the likelihood ratio for all three criteria – Bayesian,
minimax, and Neyman–Pearson criteria, as discussed below. In the context of network
security, hypothesis testing models can be readily applied to detect the state of a network
or a node (normal or abnormal), the type of a connection (regular connection or some
kind of attack), or a misbehaving node.

2 We will occasionally use “density” to mean probability density function (pdf) or probability mass function
(pmf) depending on whether the random variables are continuous or discrete.
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10.2.1 Bayesian hypothesis testing

For Bayesian hypothesis testing, it is assumed that the a priori probabilities of the M
hypotheses, π0,π1, . . . ,πM−1, are known. A cost matrix {Ci j} is defined, where Ci j is
the cost of deciding Hi when actually Hj is the true hypothesis (e.g. false alarm or
missed attack). The sensor, in the process of arriving at a decision, is to minimize the
expected cost (also called the Bayes risk) E[Ci j], which can be written as

r(δ) =
M−1

∑
j=0
π jR j(δ), (10.2)

where R j(δ) is the conditional risk for decision rule δ given Hj, that is

R j(δ) =
M−1

∑
i=0

Ci jPj(δ(y) = i) , (10.3)

where Pj(δ(y) = i) is the probability of a particular decision rule δ ending up ruling Hi

when the actual hypothesis is Hj. For the case of binary hypothesis testing (that is, when
M = 2), the Bayes decision rule, which minimizes the Bayes risk, is given by

δ(y) =

⎧⎨
⎩1, if

P1(y)
P0(y)

≥ π0(C10−C00)
π1(C01−C11)

0, otherwise,
(10.4)

where we use the indices of the hypotheses (0, 1) to indicate the hypotheses (H0, H1).
When the cost parameters are uniform, i.e. C10 = C01 = 1 and C00 = C11 = 0, the
Bayes risk becomes the average probability of error, Pe. When there are more than
two hypotheses, the Bayesian decision rule is also a threshold rule based on likelihood
ratios, but now involving not two but M partitions of the space Y where y takes values
in. For more details, the interested reader is referred to references [138, 181].

10.2.2 Minimax hypothesis testing

In practice, the prior probabilities on the hypotheses may not be available. One approach
to overcome this shortcoming is to use Neyman–Pearson detection, which will be
introduced in Section 10.2.3. Another approach is minimax decision making. It entails
finding a decision rule that minimizes the maximum of the conditional risk Ri(δ),
with maximization taken over the hypotheses H0, . . . ,HM−1, or equivalently over the
indices i = 0, . . . ,M− 1. Note that what we have in this case is a zero-sum game (see
Appendix A.2), where the decision maker is the minimizer and the “adversary” who
picks the hypothesis is the maximizer. In what follows, we focus on binary hypothesis
testing. Let r(π0,δ) denote the Bayes risk when the decision rule δ is used and the prior
probabilities of H0 and H1 are π0 and π1 = 1−π0, respectively. Then, the problem the
decision maker has to solve can be stated as

min
δ

max
0≤π0≤1

r(π0,δ). (10.5)
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This gives advantage to the “adversary,” who picks the maximizing π0 after the mini-
mizer picks δ, and hence is known as the upper value of the game. An alternative (for
the game) would be first for the adversary to pick π0 and then the decision maker to
pick δ which would give an advantage to the decision maker, leading to what is known
as the lower value of the game:

max
0≤π0≤1

min
δ

r(π0,δ), (10.6)

where the adversary maximizes the minimum risk obtained by the decision maker.
The saddle point, if it exists, is a pair (π∗,δ∗) that satisfies

r(π0,δ∗)≤ r(π∗,δ∗)≤ (π∗,δ), ∀π0 ∈ [0,1],∀δ , (10.7)

in which case the upper and lower values are equal.
Now coming back to the upper value (10.2), note that for each δ, the Bayes risk

r(π0,δ) is affine in π0 (see (10.2) along with( 10.3)), say

r(π0,δ) = aδπ0 +bδ ,

where aδ and bδ are parameters that depend on δ.3 If aδ > 0, then the maximizing π0

will be π0 = 1, whereas if aδ < 0, the unique choice will be π0 = 0. If aδ = 0, however,
r(π0,δ) would be independent of π0, and hence any choice out of the interval [0,1]
would be a maximizing one for the adversary.

Now looking at the lower value (10.6), the minimizing decision rule will depend on
the choices of π0, denoted as δπ0 , and this is the Bayes decision rule since it minimizes
the Bayes risk r(π0,δ). If we have a π0 against which a particular δ is Bayes, and if
these choices are consistent with the conclusion arrived at in the discussion of the upper
value, then we have a saddle point as in (10.7), where π∗0 is known as the least favorable
prior for hypothesis H0. This discussion also covers the possibility that δ∗ could be a
randomized policy.

To explore the path outlined in the two preceding paragraphs, let V (π0) := r(π0,δπ0),
where δπ0 is the Bayes rule associated with the prior π0. Thus, V (π0) is the minimum
Bayes risk for the prior π0. It can be shown that V (π0) is a continuous concave function
of π0, with π0 ∈ [0,1]. From references [138] and [120], the minimax decision rule is the
Bayes rule at the so-called least-favorable prior πL, where πL could be either 0, or 1, or
an interior point that maximizes V (π0). As shown in Figure 10.1, the line r(π0,δπL) is
tangent to the curve V (π0) at the point (π0,V (π0)) if V (π0) is differentiable at this point.
If V (π0) is not differentiable at πL (which, in this case, has to be an interior point), the
decision will be randomized at πL. Let δ̃(y) denote the probability of saying H1 given
that the observation Y = y, that is δ̃(y) ≡ Pr(δ(y) = 1|y). Then, we have the minimax
decision rule as follows

3 The precise expressions for these parameters are: aδ = R0(δ)−R1(δ) and bδ = R1(δ).
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Figure 10.1 Minimax decision rule when πL is an interior point and V (π0) is differentiable at πL.
(Figure adapted from reference [138].)

δ̃(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if
P1(y)
P0(y)

> τ

β, if
P1(y)
P0(y)

= τ

0, if
P1(y)
P0(y)

< τ ,

(10.8)

where

τ =
πL(C10−C00)

(1−πL)(C01−C11)
,

β =
V ′
(
π+

L

)
V ′
(
π+

L

)−V ′
(
π−L
) .

Here, V ′
(
π+

L

)
and V ′

(
π−L
)

are respectively the left-hand and right-hand derivatives of
V (π0) at πL. It should, however, be noted that if Pr(P1(y)/P0(y) = τ) = 0 under H0 and
H1, the value β becomes immaterial. The line r(π0,δπL) of the minimax decision rule in
this case is illustrated in Figure 10.2.

10.2.3 Neyman–Pearson hypothesis testing

The Neyman–Pearson problem is one of maximizing the detection probability (PD) (or
minimizing the miss probability PM = 1−PD,) subject to an upper bound on the false
alarm probability (PF ). Note that

PF(δ) ≡ P0 (δ(y) = 1) , (10.9)

PD(δ) ≡ P1 (δ(y) = 1) . (10.10)
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Figure 10.2 Minimax decision rule when V (π0) is not differentiable at πL. (Figure adapted from
reference [138].)

Then, mathematically, the Neyman–Pearson HT problem is

maximize PD(δ) subject to PF(δ)≤ α, 0 < α< 1 . (10.11)

The decision rule that solves this problem is again of the form as in (10.8) but with
different threshold τ and 0≤ β≤ 1 values. Letting P1(y)/P0(y) =: L, the likelihood ratio,
the false alarm probability and the detection probability resulting from this decision rule
can be written as

PD = P1 (δ(y) = 1) = P1 (L > τ)+βP1 (L = τ) , (10.12)

PF = P0 (δ(y) = 1) = P0 (L > τ)+βP0 (L = τ) . (10.13)

The values of β and τ can then be computed as follows. First, we construct a function
of the threshold t: f (t) := P0 (L > t), and pick τ to be the smallest number such that
P0 (L > t) ≤ α. Now, if P0 (L > τ) = α, which means P0 (L = τ) = 0, then β can be
anything in [0,1]. Otherwise, if P0 (L > τ) < α, which means that f (t) is not continuous
at τ (in which case P0 (L = τ) > 0), βwill be chosen to satisfy PF =α, where PF is given
in (10.13). Specifically,

β=
α−P0(L > τ)

P0(L = τ)
. (10.14)

10.2.4 Other hypothesis testing schemes

We briefly discuss here five other hypothesis testing schemes that can be used for
network security: Centralized hypothesis testing with vector measurements, sequential
hypothesis testing, and composite, nonparametric, and robust hypothesis testing.

Centralized hypothesis testing with vector measurements
In the previous sections, the hypothesis-testing problem with only one piece of observa-
tion (Y was taken as a scalar random variable) was examined. The solutions, however,
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CDU,

Figure 10.3 Centralized detection, where the CDU has full access to the observations of the
sensors.

can easily be extended to the case where the observation is instead a random vector. In
this case, the likelihood ratio can be calculated from the conditional joint densities of
all the random variables that constitute the random vector. Consider the configuration
given in Figure 10.3. This is a parallel configuration with a finite number of sensors
and a central decision unit (CDU). The sensors all observe the M hypotheses (M ≥ 2),
H0,H1, . . . ,HM−1. The observations of the sensors are Y1,Y2, . . . ,YN . Given hypothesis
Hi, the joint density of the observations is Pi(y1, . . . ,yN), where i = 0,1, . . . ,M− 1. In
this model, it is assumed that the CDU has full access to the observations of the sensors.
It then uses all the data to decide finally which hypothesis is true. This is in fact a simple
extension of the problems presented in the previous sections, where the observation of
the CDU is now a vector instead of a scalar value. The Bayesian decision rule at the
CDU for the case of binary hypotheses (M = 2) can thus be stated as follows:

γ0(y1,y2, . . .yN) =

⎧⎨
⎩1, if

P1(y1,y2, . . .yN)
P0(y1,y2, . . .yN)

≥ π0(C10−C00)
π1(C01−C11)

0, otherwise,
(10.15)

where γ0 is the decision rule at the CDU. For the centralized minimax and Neyman–
Pearson problems, the decision rules of the CDU can be extended from those in the
previous sections in a straightforward manner.

Sequential hypothesis testing
As shown above, once the sensors are up and running, centralized HT problems deal
with a fixed sample size, i.e. fixed number of observations: the CDU makes the deci-
sion when it has received all the values of the observation vector. In network security,
however, it is desirable to have a detector that is not only optimal in terms of detec-
tion probability and false alarm probability, but can also make a decision as quickly as
possible. These requirements are addressed through the design of a sequential detec-
tor, where the expected number of samples is minimized given upper bounds on miss
probability and false-alarm probability.



252 Hypothesis testing for attack detection

Sequential hypothesis testing (also known as sequential analysis, or sequential prob-
ability ratio test – SPRT) was developed by Abraham Wald during World War II [189].
A sequential detector entails two distinct rules: a stopping rule and a terminal decision
rule. Suppose that the observation samples arrive as a sequence. Then, the stopping
rule tells us when the detector has collected enough samples to make the final decision.
When the detector has stopped sampling (or receiving measurements), then the terminal
decision rule is used to make the final decision on the hypotheses.

Specifically, suppose having a sequence of observations in the form of continuous
random variables with given probability density functions, y1, . . . ,yk, . . ., involving the
hypotheses H0 and H1. As before, let P0 and P1 denote the conditional pdfs of the obser-
vations under H0 and H1, respectively. At stage k, the logarithm of the likelihood ratio
of observations y1, . . . ,yk is

Sk = log

(
P1(y1, . . . ,yk)
P0(y1, . . . ,yk)

)
. (10.16)

If the observations are conditionally independent, then Sk can be written as

Sk =
k

∑
j=1

log

(
P1(y j)
P0(y j)

)
. (10.17)

The decision possibilities at stage k are to stop and declare H1, to stop and declare H0,
or to continue. More precisely,

Sk ≥ b⇒ δ(y1, . . . ,yk) = 1,

Sk < a⇒ δ(y1, . . . ,yk) = 0, (10.18)

a≤ Sk < b⇒ take another observation ,

where a and b (a < b) are the parameters to be determined, and will depend on PF and
PM . The solution process is governed by the Wald–Wolfowitz theorem, which says that
given upper bounds on PF and PM , the SPRT is the detector with the smallest expected
value of sample size [138]. The values of a and b can be approximated using Wald’s
approximations

a≈ ln
PM

1−PF
, b≈ ln

1−PM

PF
.

For more details on sequential hypothesis testing, we refer to the original book by Wald
[189], the textbook by Poor [138], and the survey by Lai [92].

Composite, nonparametric, and robust hypothesis testing
A standard assumption in HT which may not be valid in network security is availability
of the conditional density of the observations. If, however, each of the conditional densi-
ties can be considered to belong to a class of densities (also called an uncertainty class),
one may use composite hypothesis testing, nonparametric hypothesis testing, or robust
hypothesis testing, depending on how much information is given about these classes
and how diverse they are. In the following, these hypothesis-testing schemes are briefly
discussed.
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To be specific, consider a centralized binary hypothesis testing problem, where the
observations Yj, k = 1,2, . . . ,N, are independent and identically distributed given each
hypothesis, and where we have

H0 : Yj ∼ P ∈ P0,

H1 : Yj ∼ P ∈ P1,

where P0 and P1 are two uncertainty classes given H0 and H1, respectively. If P0 and
P1 can be parameterized by a finite-dimensional parameter, this problem is said to be
parametric. If these classes are too broad to be parameterized by such a parameter, it is
called a nonparametric hypothesis-testing problem.

Let us first consider the case where the uncertainty classes are given as

P0 := {PΘ, Θ ∈ Λ0} ,
P1 := {PΘ, Θ ∈ Λ1} ,

where Θ is some parameter of the probability densities in each class. In the example
given in Section 10.2 where a digital signal is corrupted by additive Gaussian noise,
we may have, for example, Θ as the mean of the noise, and Λ0 = (−∞,0) and Λ1 =
[0,∞). This class of problems is called composite hypothesis testing, as opposed to the
problems presented in Sections 10.2.1 to 10.2.3 that now can be referred to as simple
hypothesis testing problems. It has been shown that the Bayesian decision rule for the
composite hypothesis test is in a similar form to the simple Bayesian HT problem in
Section 10.2.1, that is

δ(y) =

⎧⎨
⎩1, if

P(y|Θ ∈ Λ1)
P(y|Θ ∈ Λ0)

≥ π0(C10−C00)
π1(C01−C11)

0, otherwise.
(10.19)

The minimax and the Neyman–Pearson formulations of the composite hypothesis
testing problem can also be extended from those in Section 10.2.2 and Section 10.2.3.

When the uncertainty classes P0 and P1 cannot be parameterized, a possible approach
is to use nonparametric hypothesis testing. An illustrative example demonstrating this
can be found in reference [138] where P0 is the class of all densities on the reals that
have P(Y > 0) = 1/2, and P1 is the class of all densities on the reals that have P(Y > 0)∈
(1/2,1). Neither of these two classes of densities can be related to a finite-dimensional
parameter through a one-to-one correspondence, and therefore the test of H0 against
H1 is a nonparametric one. The Neyman–Pearson test for this problem is based on the
number of samples y j’s that are positive, and is thus called a sign test [138] .

Consider now the cases where we have more information on the two uncertainty
classes P0 and P1, say each of them consists of some well-defined distributions which
depend on a parameter. A common approach in these situations is to optimize the
worst case performance of the detector (over the distributions in each uncertainty class).
Such a problem is called a robust hypothesis testing problem. Specifically, the Bayes,
minimax, and Neyman–Pearson formulations of the robust test of H0 against H1 are
given as
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min
δ

[
π0 sup

P∈P0

PF(δ,P)+π1 sup
P∈P1

PM(δ,P)

]
(Bayes),

min
δ

[
max

{
sup
P∈P0

PF(δ,P), sup
P∈P1

PM(δ,P)

}]
(Minimax), and

min
δ

[
sup
P∈P1

PM(δ,P)

]
subject to

(
sup
P∈P0

PF(δ,P)≤ α
)

(Neyman–Pearson).

Robust tests may be perceived as too conservative if the uncertainty classes P0 and P1

happen to be too large. If these classes instead contain slightly deviated versions of
two nominal distributions corresponding to H0 and H1, robust HT schemes are good
choices for maintaining good performance against the uncertainty of the conditional
distributions. The interested reader is referred to [138] for a more complete treatment
of these topics.

Example: misbehavior detection in wireless networks
An example application of hypothesis testing in network security is in reference [139],
where robust sequential hypothesis testing is used to detect misbehaving nodes at the
MAC layer in wireless networks. Recall that the random access protocol in IEEE 802.11
wireless LAN (Wi-Fi) is called Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA). In CSMA/CA, if a node has data to transmit but the channel is sensed to
be busy, it will pick a random back-off value c uniformly from the set {0,1, . . . ,W −1},
where W is the size of the contention window. The back-off counter is counted down
at each time slot when the channel is sensed as idle, and the node starts transmitting
after c idle slots. If, however, this transmission fails due to collision, the contention
window size will be doubled; otherwise, if the transmission is successful, it will be
reset to the minimum value of W . A malicious node can thus choose statistically smaller
back-off values to gain advantage in transmission. In reference [139], it is assumed that
an immediate neighbor (one within the transmission radius) of a node in question can
measure its back-off times. The goal is to detect, as quickly as possible, whether this
node is a regular one or a malicious one.

This problem can thus be addressed within the framework of sequential hypoth-
esis testing presented earlier in this section under the following assumptions. First,
although the contention window size changes along the test (2iW, i = 1,2, ...), the
back-off value (of a regular node) can be considered to be uniformly distributed in
the set {0,1, . . . ,W − 1}, due to the scaling property. Second, pdf s are used instead of
probability mass functions (pmfs) for the sake of mathematical treatment.

Let H0 be the hypothesis that the node in question is a regular node with the corre-
sponding pdf f0; H1 be the hypothesis that the node in question is a malicious node with
unknown pdf f . The pdf of the regular node is then f0(y) = 1/W , and the conditional
expectation of Y given H0 is E0[Y ] = W/2. The malicious node wants to ensure that
E1[Y ] < W/2. Thus, the uncertainty class under H1 is defined as
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Fε =
{

f (x) :
∫ W

0
x f (x)dx≤ W

2
− ε
}

, (10.20)

where 0 < ε< W/2.
This is a minimax problem, where the detector tries to minimize the number of obser-

vation samples against all the distributions f ∈ Fε with given PF and PM . The malicious
node, on the other hand, tries to maximize the number of samples against all the decision
rules of the detector. The problem finally can be reduced to

min
f

∫ W

0
f (x) ln

f (x)
f0(x)

dx (10.21)

subject to the constraints∫ W

0
f (x)dx = 1 and

∫ W

0
x f (x)dx≤ W

2
− ε. (10.22)

At this point the saddle point ( f ∗,d∗) can be computed, where f (x) has the exponential
form, and d∗ is a sequential probability ratio test, as described above.

For more details on the HT schemes mentioned in this section, the interested reader
is referred to [80, 92, 138, 139, 186] and other references therein.

10.3 Decentralized hypothesis testing with correlated observations

The previous section has briefly discussed the centralized HT problem, where the
peripheral sensors first send their observations to a CDU, which then makes the deci-
sion on the hypotheses. This is essentially no different from the central unit receiving all
the measurements directly. In some practical situations, however, the peripheral sensors
have to send out summaries of their observations instead. One typical reason is that the
peripheral sensors may be located at distances far from the CDU and connected with
the CDU through band-limited communication channels. If the channel bandwidth is
not sufficient for frequent update of the observation, a peripheral sensor will have to
compress the data it dispatches to the CDU. Another reason is that real-world IDSs may
consist of multiple heterogeneous decision units, both signature- and anomaly-based,
each making its own (local) decision. Such situations will give rise to a decentralized
HT problem where, in place of the CDU, a fusion center is now needed to fuse all the
summaries (or local decisions) to make the final decision on the hypotheses.

Accordingly, this section formulates the problem of decentralized HT with correlated
observations. In Section 10.3.2, details on the fusion rule and the average probability of
error at the fusion center are discussed.

10.3.1 Decentralized hypothesis testing

Consider a decentralized Bayesian HT problem with a parallel configuration. Each
sensor uses a decision rule, which is a map γ j : Y j �→ {0,1, . . . ,D− 1}, and then
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Figure 10.4 Decentralized hypothesis testing with N sensors and a fusion center.

sends the resulting message, which is an integer d j ∈ {0,1, . . . ,D− 1}, to the fusion
center. The communication channels between the sensors and the fusion center are
assumed to be perfect (no communication errors). At the fusion center, a fusion rule
γ0 : {0,1, . . . ,D−1}N �→ {0,1 . . . ,M−1} is employed to finally decide which hypoth-
esis is true. The configuration of the N sensors and the fusion center is shown in
Figure 10.4.

Naturally, given the same a priori probabilities of the hypotheses and conditional joint
distributions of the observations, the decentralized configuration will yield an average
probability of error that is no smaller than the centralized configuration. The reason is
that there is generally information loss (and definitely no information gain) after the
quantization at the sensors [175]. Putting it another way, given the observations of the
sensors and assuming the use of a likelihood ratio test at the fusion center in the cen-
tralized configuration, the test in (10.15) will yield the minimum probability of error.
The decentralized configuration, however, can always be considered as a special setup
of the fusion center in the centralized case, where the observations from the sensors are
quantized before being fused together.

For this decentralized detection problem, under the assumption that the observations
are conditionally independent, there exists an optimal solution for the local sensors,
which is a deterministic (likelihood ratio) threshold strategy [175]. When the observa-
tions are conditionally dependent, however, the threshold rule is no longer necessarily
optimal [175]. In this case, obtaining the overall optimal non-threshold rule is a very
challenging problem. In view of this, we restrict the analysis and discussion here to
threshold-type rules at the local sensors (which are suboptimal) and seek optimality
within that restricted class. The optimal fusion rule, as shown next, will also be a
likelihood ratio test.

Taking a realization of the random variable Yj and sending out a message in
{0,1, . . . ,D− 1}, each sensor can be considered as a quantizer. As mentioned earlier,
reference [176] characterizes these quantizers based on the set of marginal distributions
of the messages given each hypothesis. Following reference [176], let

q j
d(γ j|Hi) = Pr(γ j(Yj) = d|Hi),
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for each i = 0, . . . ,M− 1, j = 1, . . . ,N, and d = 0, . . . ,D− 1. Here, Pr(γ j(Yj) = d|Hi)
denotes the probability of the event {Yj ∈Y j : γ j(Yj) = d} conditioned on the occurrence
of hypothesis Hi. For any γ j ∈ Γ j, where Γ j is the set of all deterministic quantizers for
sensor j, let

q j(γ j|Hi) = (q0(γ j|Hi), . . . ,qD−1(γ j|Hi)). (10.23)

Define the vector q j(γ j) ∈ RMD, for any γ j ∈ Γ j, as

q j(γ j) = (q j(γ j|H0), . . . ,q j(γ j|HM−1)). (10.24)

Now a quantizer can be represented by the vector q(γ) for the purpose of detecting the
hypotheses,

Q j = {q j(γ j) : γ j ∈ Γ j}. (10.25)

For a parallel configuration with N sensors, define

q(γ1,γ2, . . . ,γN) = (q1(γ1),q2(γ2), . . . ,qN(γN)) . (10.26)

This yields q(γ1,γ2, . . . ,γN) ∈ Qa, where Qa is the Cartesian product of all Q j, j =
1, . . . ,N, that is Qa =×N

j=1Q j.
As previously mentioned, Q j is a compact set [176], and thus any cost function that is

a continuous function on Q j will attain a minimum (see Appendix A.1.3). In a parallel
configuration with multiple sensors and a fusion center, if the sensor observations are
independent given each hypothesis, then there exists an optimal solution over the set Qa

[176].

10.3.2 Decision rules at the sensors and at the fusion center

First, define two classes of decision rule at each sensor and the fusion center.4 A
general rule is one in which the observation space is partitioned into M regions,
Ri, i = 0,1, . . . ,M− 1, and the sensor will pick Hi if Y ∈ Ri. Consistent with the ear-
lier discussion, define the threshold rule for the case of binary hypotheses (M = 2) as
one where

R1 =
{

y ∈ Y :
P1(y)
P0(y)

≥ τ
}

(10.27)

R0 =
{

y ∈ Y :
P1(y)
P0(y)

< τ
}

. (10.28)

Here, Y is the observation space of the sensor, and P0(y) and P1(y) are the conditional
pdfs or the conditional pmfs (as the case may be) of the observation Y = y given H0 and
H1, respectively. In the case of a specific sensor j, these quantities are indexed by j; τ j

denotes the threshold, and R( j)
i the region i for sensor j.

4 A fusion center can also be viewed as a sensor; thus we will occasionally use the term “sensor” to refer to
both in this section.
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Assuming uniform costs, the Bayes risk will become the average probability of error
[138]. As mentioned earlier, the fusion center can be considered as a sensor with the
observation being (d1, . . . ,dN). Note that in order to minimize the Bayes risk, a joint
optimization of the decision rules at the (local) sensors and the fusion rule at the fusion
center is needed. However, if the decision rules at the (local) sensors have already been
optimized over, or have been fixed according to some rule, then the fusion rule at the
fusion center must be the solution to the centralized detection problem to minimize
the Bayes risk. From (10.15), the fusion rule for binary hypotheses can be written as a
likelihood ratio test:

γ0(d1,d2, . . . ,dN) =

⎧⎨
⎩1, if

P1(d1, . . . ,dN)
P0(d1, . . . ,dN)

≥ π0

π1

0, otherwise,
(10.29)

and the corresponding average probability of error at the fusion center is

Pe = π0P0

(
La ≥ π0

π1

)
+π1P1

(
La <

π0

π1

)
= π0 ∑

(d1,...,dN):La≥ π0
π1

P0(d1, . . . ,dN)

+ π1 ∑
(d1,...,dN):La<

π0
π1

P1(d1, . . . ,dN)

where La =
P1(d1, . . . ,dN)
P0(d1, . . . ,dN)

. (10.30)

In the above, Pi(d1,d2, . . . ,dN), i = 0,1, are the conditional probabilities (given Hi) of
the decisions d1,d2, . . . ,dN , which are observations to the fusion center, and by a slight
abuse of notation P0(A) and P1(B) denote the probabilities of the events A and B condi-
tioned on H0 and H1, respectively. If the observation sets of the peripheral sensors are
infinite and the joint probabilities are given as pdfs, the conditional probabilities of the
collection of decisions can be computed as

Pi(d1,d2, . . . ,dN) =
∫

R
(N)
dN

. . .
∫

R
(1)
d1

Pi(y1, . . . ,yN)dy1, . . . ,dyN

where d j = 0,1, . . . ,D−1 and R( j)
d j

is the region where sensor j decides to send message
d j, j = 1, . . . ,N. Thus, it can be seen that in the optimal solution (which achieves the
minimum Pe) the fusion rule is always a likelihood ratio test, but the decision rules at
the local sensors can be general rules.

When the sensor observations are independent given each hypothesis, the optimal
solution can be achieved with the decision rule at each sensor being also a threshold
rule [175]. However, when the sensor observations are conditionally dependent, the
global minimum of Pe cannot necessarily be achieved within the class of threshold rules
at the local sensors [175]. It is also worth noting that, in general, the minimum Pe at the
fusion center only depends on the decision rules at the sensors. If we restrict the sensors
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to threshold rules, however, the minimum Pe will only depend on the thresholds at the
sensors, {τ1,τ2, . . . ,τN}.

10.3.3 Decentralized Bayesian hypothesis testing

In this section, we first prove that when the observations are conditionally dependent, Pe

can no longer be expressed as a function of the marginal distributions of the messages
from the sensors. We then characterize Pe based on the set of joint distributions of the
sensor messages. We show that this set is compact and that there exists an optimal solu-
tion (that minimizes Pe) when general rules are used at the sensors. We further show that
there also exists an optimal solution when the sensors are restricted to threshold rules.
The first two propositions below (Propositions 10.1 and 10.2) are stated for D = 2 and
M = 2, which is sufficient for our purposes since they are negative results (on optimality
of threshold rules); naturally, their statements can be extended to M > 2 and D > 2.

Proposition 10.1 Let f0(y1,y2) and f1(y1,y2) be two nonidentical joint pdfs, where
fi(y1,y2), i = 0,1, are continuous on R

2 and nonzero for −∞ < y1,y2 < ∞. Let
Φi(y1,y2), i = 0,1, denote the corresponding cumulative distribution functions. Let

α0 =Φ0 (y∗1,y
∗
2) =

∫ y∗1

−∞

∫ y∗2

−∞
f0(y1,y2)dy2 dy1, (10.31)

α1 =Φ1 (y∗1,y
∗
2) =

∫ y∗1

−∞

∫ y∗2

−∞
f1(y1,y2)dy2 dy1, (10.32)

where (y∗1,y
∗
2) is an arbitrary point in R

2. Then, specifying a value for α0 ∈ (0,1) does
not uniquely determine the value of α1, and vice versa.

Proof Let gi(y1) and hi(y2) be the marginal densities of y1 and y2 given Hi, where
i = 0,1. For each 0 < α0 < 1, we can pick γ0 > 0 such that α0 + γ0 < 1. As the con-
ditional marginal density g0(y1) is continuous, we can always uniquely pick y∗1 such

that
∫ y∗1−∞ g0(y1)dy1 = α0 + γ0. Once y∗1 is specified, we can also choose y∗2 such that∫ y∗1−∞
∫ y∗2−∞ f0(y1,y2)dy2dy1 = α0. Thus, for each fixed value of γ0, we have a unique

pair (y∗1,y
∗
2). It can be seen that there are infinitely many values of γ0 satisfying

α0 + γ0 < 1, each of which yields a different pair (y∗1,y
∗
2). Therefore, specifying a value

for α0 ∈ (0,1) does not uniquely determine the value of α1, and vice versa, unless
f0(y1,y2) and f1(y1,y2) are identically equal.

Proposition 10.2 Consider a parallel structure as in Figure 10.4 with the number of
sensors N ≥ 2, the number of messages D = 2, and the number of hypotheses M = 2.
When the observations of the sensors are conditionally dependent, there exists a fusion
rule γ0 in which the minimum average probability of error Pe given in (10.30) cannot be
expressed solely as a function of q(γ1, . . . ,γN) (given in (10.26)).

Proof We first prove this proposition for the two-sensor case and then use induction
to extend the result to N > 2. As before, let d1 and d2 denote the messages that sensor
1 and sensor 2 send to the fusion center. For notational simplicity, let Pi(l1, l2) denote
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y1

y2

f0(y1,y2)

f1(y1,y2)

Figure 10.5 α0 and α1 are integrations of f0(y1,y2) and f1(y1,y2) over the same region.

P(d1 = l1,d2 = l2|Hi) where l1, l2 ∈ {0,1}. We have the following linear system of
equations with Pi(0,0),Pi(0,1),Pi(1,0), and Pi(1,1) as the unknowns:

Pi(0,0)+Pi(0,1) = Pi(l1 = 0)

Pi(1,0)+Pi(1,1) = Pi(l1 = 1) = 1−Pi(l1 = 0)

Pi(0,0)+Pi(1,0) = Pi(l2 = 0)

Pi(0,1)+Pi(1,1) = Pi(l2 = 1) = 1−Pi(l2 = 0)

Note that the matrix of coefficients is singular. Solving this system yields

Pi(0,0) = αi

Pi(0,1) = Pi(l1 = 0)−αi

Pi(1,0) = Pi(l2 = 0)−αi

Pi(1,1) = 1−Pi(l1 = 0)−Pi(l2 = 0)+αi

where αi, i = 0,1, corresponding to H0,H1 are real numbers in (0,1).
Now we rewrite (10.30) for a fixed fusion rule γ0:

Pe = π0 ∑
(d1,d2)∈R1

P0(d1,d2)+π1 ∑
(d1,d2)∈R0

P1(d1,d2) (10.33)

where R0 and R1 are two partitions of the set of all possible values of (d1,d2) in
which the fusion center decides, respectively, whether hypothesis H0 or hypothesis H1

is true. Now suppose that the fusion center uses the following fusion rule: it picks one if
(d1,d2) = (1,1) and picks zero for the remaining three cases. After some manipulation,
expression (10.33) becomes

Pe = π0(1−P0(d1 = 0)−P0(d2 = 0)+α0)+π1 (P1(d1 = 0)+P1(d2 = 0)−α1) .
(10.34)
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From Proposition 10.1, α0 is not uniquely determined given α1 and vice versa. Thus Pe

in (10.33) cannot be expressed solely as a function of q(γ1,γ2).
Now we prove the proposition for N > 2 by induction on N. Suppose that there exists

a fusion rule γ(N)
0 that results in P(N)

e which cannot be expressed solely as a function of

q(γ1, . . . ,γN); we will then show that there exists a fusion rule γ(N+1)
0 that yields P(N+1)

e

which cannot be expressed solely as a function of q(γ1, . . . ,γN+1).
Let R̃(N)

0 and R̃(N)
1 be the decision regions (for H0 and H1, respectively) at the fusion

center when there are N sensors. Let R̃(N+1)
0 and R̃(N+1)

1 be those of the (N + 1)-sensor
case. Without loss of generality, we assume that the observation of sensor (N + 1) is
independent of those of the first N sensors. Rewriting (10.30) for the N-sensor problem,
we have:

P(N)
e = π0 ∑

(l1,...,lN)∈R̃
(N)
1

P0(l1, . . . , lN)+π1 ∑
(l1,...,lN)∈R̃

(N)
0

P1(l1, . . . , lN). (10.35)

Now we construct R̃(N+1)
0 and R̃(N+1)

1 based on R̃(N)
0 and R̃(N)

1 as follows. R̃(N+1)
0 consists

of combinations of the forms (l1, . . . , lN ,0) and (l1, . . . , lN ,1) where (l1, . . . , lN) ∈ R̃(N)
0 ;

R̃(N+1)
1 consists of combinations of the forms (l1, . . . , lN ,0) and (l1, . . . , lN ,1) where

(l1, . . . , lN) ∈ R̃(N)
1 . Note that, for i = 0,1,

Pi(l1, . . . , lN ,0)+Pi(l1, . . . , lN ,1) = Pi(l1, . . . , lN) .

Thus, Pe for the (N +1)-sensor case can be written as

P(N+1)
e = π0 ∑

(l1,..,lN ,lN+1)∈R̃
(N+1)
1

P0(l1, .., lN , lN+1)

+π1 ∑
(l1,..,lN ,lN+1)∈R̃

(N+1)
0

P1(l1, .., lN+1)

= π0 ∑
(l1,..,lN)∈R̃

(N)
1

P0(l1, .., lN)+ π1 ∑
(l1,..,lN)∈R̃

(N)
0

P1(l1, .., lN)

= P(N)
e .

But P(N)
e cannot be expressed solely as a function of q(γ1, . . . ,γN) and q(γN+1) due to the

induction hypothesis and the independence assumption of sensor (N +1)’s observation.

Thus, P(N+1)
e cannot be expressed solely as a function of q(γ1, . . . ,γN+1).

Thus, for the case of conditionally dependent observations, instead of using condi-
tional marginal distributions, we relate the Bayesian probability of error to the joint
distribution of the decisions of the sensors. In what follows, we use γ as before collec-
tively to denote (γ1,γ2, . . . ,γN) and Γ to denote the Cartesian product of Γ1,Γ2, . . . ,ΓN ,
where Γ j is the set of all deterministic decision rules (quantizers) of sensor j, j =
1, . . . ,N. Also, we define

sd1,...,dN (γ|Hi) = Pr(γ1 = d1, . . . ,γN = dN |Hi). (10.36)
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Then, the DN-tuple s(γ|Hi) is defined as:

s(γ|Hi) := (s0,0,...,0(γ|Hi),s0,0,...,1(γ|Hi), . . . ,sD−1,D−1,...,D−1(γ|Hi)) . (10.37)

Finally, we define the M×DN-tuple s(γ):

s(γ) := (s(γ|H0),s(γ|H1), . . . ,s(γ|HM−1)) . (10.38)

From (10.30), it can be seen that Pe is a continuous function on s(γ) for a fixed fusion
rule. We now prove that the set S = {s(γ) : γ1 ∈ Γ1, . . . ,γN ∈ ΓN} is compact, and there-
fore there exists an optimal solution for a fixed fusion rule. As the number of fusion
rules is finite, we can then conclude that there exists an optimal solution for the whole
system for each class of decision rule at the sensors.

Proposition 10.3 The set S given by

S := {s(γ) : γ1 ∈ Γ1,γ2 ∈ Γ2, . . . ,γN ∈ ΓN} (10.39)

is compact.

Proof 5 The proof is an extension of the proof of a similar result in reference [176]
for the single sensor case. Let Φ= (Φ0 + · · ·+ΦM−1)/M, where Φ0, . . . ,ΦM−1 are the
conditional distributions of the observations given H0, . . . ,HM−1, respectively, and we
let P denote the corresponding probability measure. We use G to denote the set of all
measurable functions from the observation space, Y = Y1×Y2×·· ·×YN , into {0,1}.
Let G(DN) denote the Cartesian product of DN replicas of G. Let

F =
{

( f00...0, . . . , f(D−1)(D−1)···(D−1)) ∈ G(DN)∣∣∣∣∣P
(

D−1

∑
d1,...,dN=0

fd1,...,dN (Y ) = 1

)
= 1

}

For any γ∈ Γ and d1, . . . ,dN ∈ {0, . . . ,D−1}, we define fd1,...,dN such that fd1,...,dN (y) =
1 if, and only if, γ(y) = (d1, . . . ,dN), and fd1,...,dN (y) = 0 otherwise. Then, fd1,...,dN

will be the indicator function of the set γ−1(d1, . . . ,dN). It can be seen that
( f00···0, . . . , f(D−1)(D−1)···(D−1)) ∈ F . Also, we have

sd1,...,dN (γ|Hi) = Pr(γ(y) = (d1, . . . ,dN)|Hi) =
∫

fd1,...,dN (y)dΦi(y).

Conversely, for any f = ( f00···0, . . . , f(D−1)(D−1)···(D−1)) ∈ F , define γ ∈ Γ as follows.

• If ∑D−1
d1,...,dN=0 fd1,...,dN (y) = 1, then

γ(y) = (d1, . . . ,dN) such that fd1,...,dN (y) = 1.

• If ∑D
d1,...,dN=1 fd1,...,dN (y) 
= 1, then

γ(y) = (1,1, . . . ,1).

5 The proof uses some topological notions not introduced in the book, and it can be skipped in a first reading.
Details of the proof are not needed to follow the main result of the theorem stated next.
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As P
(
∑D

d1,...,dN=1 fd1,...,dN (Y ) 
= 1
)

= 0, (10.40) still holds. Now we define a mapping

h : F →ℜMDN
such that

hi,d1,...,dN ( f ) =
∫

fd1,...,dN dΦi(y). (10.40)

It can be seen that S = h(F). If we can find a topology on G in which F is compact and
h is continuous, S will be a compact set.

Let L1(Y ;P ) denote the set of all measurable functions f : Y → R that satisfy∫ | f (y)|dΦ(y) < ∞, L∞(Y ;P ) denote the set of all measurable functions f : Y → R

such that f is bounded after removing the set Yz ⊂ Y that has P (Yz) = 0. Then G is a
subset of L∞(Y ;P ). It is known that L∞(Y ;P ) is the dual of L1(Y ;P ) [101]. Consider
the weak* topology on L∞(Y ;P ), which is the weakest topology where the mapping

f →
∫

f (y)g(y)dΦ(y) (10.41)

is continuous for every g ∈ L1(Y ;P ). Using Alaoglu’s theorem [101], we have that the
unit ball in L∞(Y ;P ) is weak*-compact. Thus G is compact. Then G(DN), which is a
Cartesian product of DN compact sets, is also compact. Now, from (10.40), every point(

f00···0, . . . , f(D−1)(D−1)···(D−1)
) ∈ F satisfies∫

A

D−1

∑
d1,...,dN=0

fd1,...,dN (y)dΦ(y) = P (A), (10.42)

where A is any measurable subset of Y . If we let XA denote the indicator function of A,
it follows that ∫

D−1

∑
d1,...,dN=0

fd1,...,dN (y)XA(y)dΦ(y) = P (A). (10.43)

As XA ∈ L1(Y ;P ) and the mapping in (10.41) is continuous for every g ∈ L1(Y ;P ),
we have that the map f → P (A) is also continuous. Furthermore, F is a subset of the
compact set G(DN), and thus F is also compact.

Let gi, i = 0, . . . ,M− 1 denote the Radon–Nikodym derivative of Φi with respect to
P , gi(y) = dΦi(y)/dΦ(y). Then we have gi ∈ L1(Y ;P ) [176]. Also, we have that∫

fd1,...,dN (y)dΦi(y) =
∫

fd1,...,dN (y)gi(y)dΦ(y), ∀i,d1, . . . ,dN .

From (10.41), (10.44), and the fact that gi ∈ L1(Y ;P ), it follows that the mapping
f → ∫

fd1,...,dN (y)dΦi(y) is continuous. Therefore, the mapping h given in (10.40) is
continuous. As S = h(F), we finally have that S is compact.

We next state the counterpart of Proposition 10.3 when sensors are restricted to
threshold rules (again in the multiple hypothesis case), whose proof is similar to that
of Proposition 10.3. First a definition to pave the way.

Definition 10.4 [176] (a) A threshold set T is a vector t = (t1, . . . , tD−1) ∈ [0,∞]D−1,
satisfying 0 ≤ t1 ≤ t2 ≤ . . . ≤ tD−1, and the intervals associated with this threshold set
are defined by I1 = [0, t1], I1 = [t1, t2], . . . , ID = [tD−1,∞].
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(b) A decision rule γ is a monotone likelihood ratio quantizer (LRQ) with threshold
vector t ∈ T if

P(γ(Y ) = d and L(Y ) /∈ Id |Hi) = 0, ∀d, i. (10.44)

(c) A decision rule is an LRQ if there exists some permutation function π :
{1, . . . ,D} �→ {1, . . . ,D} such that π(γ(Y )) is a monotone LRQ.

Proposition 10.5 Let Γ(t)
j denote the set of all monotone LRQs for the sensor j, j =

1, . . . ,N. The set S(t) given by

S(t) =
{

s(γ) : γ1 ∈ Γ(t)
1 ,γ2 ∈ Γ(t)

2 , . . . ,γN ∈ Γ(t)
N

}
(10.45)

is compact.

We can now state and prove the following theorem.

Theorem 10.6 There exists an optimal solution for the general rules at the sensors, and
there also exists an optimal solution for the special case where the sensors are restricted
to threshold rules on likelihood ratios.

Proof For each fixed fusion rule γ0 at the fusion center, the probability of error Pe

given in (10.30) is a continuous function on the compact set S. Thus, by the Weierstrass
theorem [101], there exists an optimal solution that minimizes Pe for each γ0. Further-
more, there is a finite number of fusion rules γ0 at the fusion center (in particular, this is
the number of ways to partition the set {d1,d2, . . . ,dN} into two subsets, which is 2N).
Therefore, there exists an optimal solution over all the fusion rules at the fusion center.
Note that the use of the general rule or the threshold rule will result in different fusion
rules, but will not affect the reasoning in this proof. The optimal solutions in each case,
however, will be different in general. More specifically, the set of all the decision rules
(of the sensors) based on the threshold rule will be a subset of the set of all decision rules
(of the sensors), thus the optimal solution in the former case will be no better (actually
worse) than that of the latter.

10.3.4 Decentralized Neyman–Pearson hypothesis testing

We now examine the decentralized Neyman–Pearson problem, but for the case
M = 2, i.e. the case of only two hypotheses. Consider a finite sequence
of deterministic strategies {γ(k) ∈ Γ, k = 1, . . . ,K}, where γ(k) ∈ Γ stands for{
γ(k)1 ∈ Γ1,γ

(k)
2 ∈ Γ2, . . . ,γ

(k)
N ∈ ΓN

}
. Suppose that each deterministic strategy γ(k) is

used with probability 0 ≤ pk ≤ 1, where ∑K
k=1 pk = 1. Let Γ denote the set of all such

randomized strategies. For γ ∈ Γ, we have that
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s(γ) =
K

∑
k=1

pks(γ(k)). (10.46)

Note that the set of strategies resulting from this randomization scheme includes (as a
subset) those generated by the “independent randomization” scheme, where the strate-
gies of each peripheral sensor are randomized independently. From (10.46), it can be
seen that the set S of all such s(γ) is the convex hull of S defined in (10.3), S = co(S). As
shown in reference [127], S is a finite-dimensional space and is clearly bounded. Thus,
S is also finite-dimensional and bounded. Furthermore, it is shown in reference [127]
that S is a closed set. As S is the convex hull of S, it is also a closed set. Thus, we can
state the following result.

Proposition 10.7 The set S defined by S := {s(γ) : γ ∈ Γ} is compact.

Note that for the Bayesian formulation, the extension to randomized rules will not
improve the optimal solution, as stated in the following proposition.

Proposition 10.8 Consider the problem of minimizing the Bayes risk Pe on the set of
randomized rules Γ. There exists an optimal solution that entails deterministic rules at
peripheral sensors.

Proof Consider a fixed fusion rule, where the Bayes risk is given by

Pe = π0 ∑
(d1,...,dN):(d1,...,dN)∈R1

P0(d1, . . . ,dN)

+ π1 ∑
(d1,...,dN):(d1,...,dN)∈R0

P1(d1, . . . ,dN),

where R0 and R1 are the regions in which the fusion center decides H0 and H1,
respectively. If randomized rules are used at peripheral sensors, the Bayes risk can be
written as

Pe = π0 ∑
(d1,...,dN):(d1,...,dN)∈R1

sd1,...,dN (γ|H0)

+ π1 ∑
(d1,...,dN):(d1,...,dN)∈R0

sd1,...,dN (γ|H1),

where s(γ) is given by

s(γ) =
K

∑
k=1

pks(γ(k)). (10.47)

In particular, we have

sd1,...,dN (γ|Hj) =
K

∑
k=1

pksd1,...,dN (γ(k)|Hj), j = 0,1. (10.48)

Thus, the Bayes risk is now minimized over the convex hull of K points
(s(γ(1)), . . . ,s(γ(K))). Using the fundamental theorem of linear programming (see, for
example, reference [100]), if there is an optimal solution, there is an optimal solution
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that is an extreme point of the convex hull, which corresponds to deterministic rules at
the peripheral sensors.

The extension from deterministic strategies to randomized strategies helps the
Neyman–Pearson test to be accommodated at peripheral sensors. Now, similarly to
decentralized Bayesian, the fusion center can be considered as a sensor with the obser-
vation being d ≡ (d1,d2, . . . ,dN). We seek a joint optimization of the decision rules at
the peripheral sensors and the fusion rules at the fusion center to solve the Neyman–
Pearson problem at the fusion center. The decentralized Neyman–Pearson problem at
the fusion center can be stated as follows:

maximize PD(γ) subject to PF(γ)≤ α, 0 < α< 1, (10.49)

where the false alarm probability (PF ) and the detection probability (PD) are given by

PF ≡ P0
(
γ0(d) = 1

)
, (10.50)

PD ≡ P1
(
γ0(d) = 1

)
. (10.51)

Here we have used γ0 to denote the fusion rule at the fusion center. Note that when
the decision rules at the peripheral sensors have already been optimized on, or picked
according to some predetermined rule, the fusion rule at the fusion center must be the
solution to the centralized Neyman–Pearson detection problem.

Let γ̃0(d) ≡ Pr(γ0(d) = 1|d). From a natural extension of (10.8) to vector valued
observations (see reference [138]), the fusion rule can be written as a likelihood ratio
test:

γ̃0(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if
P1(d)
P0(d)

> τ

β, if
P1(d)
P0(d)

= τ

0, if
P1(d)
P0(d)

< τ,

(10.52)

where τ is the threshold and 0 ≤ β ≤ 1. Letting La ≡ P1(d)
P0(d)

, the false-alarm probability

and the detection probability resulting from this fusion rule can be written as

PF = P0
(
γ0(d) = 1

)
= P0 (La > τ)+βP0 (La = τ)

= ∑
(d1,...,dN):La>τ

P0(d)+β ∑
(d1,...,dN):La=τ

P0(d), (10.53)

PD = P1
(
γ0(d) = 1

)
= P1 (La > τ)+βP1 (La = τ)

= ∑
(d1,...,dN):La>τ

P1(d)+β ∑
(d1,...,dN):La=τ

P1(d). (10.54)
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Here, Pi(d) ≡ Pi(d1,d2, . . . ,dN), i = 0,1, are the conditional probabilities (given Hi) of
the decision d, which can be computed as follows

Pi(d1, . . . ,dN) =
K

∑
k=1

pkP(k)
i (d1, . . . ,dN), (10.55)

P(k)
i (d1, . . . ,dN) =

∫
R

(N)
dN

. . .
∫

R
(1)
d1

Pi(y1, . . . ,yN)dy1, . . . ,dyN , (10.56)

where d j = 0,1, . . . ,D−1, and R( j)
d j

is the region where sensor j decides to send message

d j, j = 1, . . . ,N for the deterministic decision profile γ(k). (Note that the partitions of
sensor observation spaces on the right-hand side of (10.56) are of a specific deterministic
strategy k; however, we have omitted the superscript k to simplify the formula; note
also that Pi’s are probability densities.) Thus, it can be seen that in the optimal solution,
the fusion rule is always a likelihood ratio test (10.52), but the decision rules at the
peripheral sensors can be general rules. We now formally state this in the following
theorem.

Theorem 10.9 There exists an optimal solution for the decentralized configuration in
Figure 10.4 with the Neyman–Pearson criterion, where the decision rules at peripheral
sensors lie in Γ, and the fusion rule at the fusion center is a standard Neyman–Pearson
likelihood ratio test.

Proof For each fixed fusion rule γ0 at the fusion center, the false alarm probability PF

given in (10.53) and the detection probability PD given in (10.54) are both continuous
functions on the compact set S. Hence, the set Γ0 ≡ {γ ∈ Γ : PF(γ) ≤ α} is also closed

and bounded. Also, recall that Γ is a finite-dimensional space. Thus Γ0
is a compact

set. Therefore, by the Weierstrass theorem [101], there exists an optimal solution that
maximizes PD given that PF ≤ α for each γ0. Furthermore, there is a finite number of
fusion rules γ0 at the fusion center (in particular, this is upper-bounded by the number
of ways to partition the set {d1,d2, . . . ,dN} into three subsets with La > τ, La = τ, and
La < τ, which is 3N). Note that once this partition is fixed, τ and β can be calculated
accordingly. Therefore, there exists an optimal solution over all the fusion rules at the
fusion center.

In what follows, we introduce a special case where we can further characterize the
optimal solution. First, we present the following definition [175].

Definition 10.10 A likelihood ratio L j(y j) is said to have no point mass if

Pr(L j(y j) = x|Hi) = 0, ∀x ∈ [0,∞], i = 1,2. (10.57)

It can be seen that this property holds when Pi(y j), i = 1,2, are both continuous.

Proposition 10.11 If all peripheral sensors are restricted to threshold rules on like-
lihood ratios, and L j(y j), j = 1, . . . ,N, have no point mass, there exists an optimal
solution that is a deterministic rule at peripheral sensors, that is, γ ∈ Γ.
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Proof When L j(y j), j = 1, . . . ,N have no point mass, Pr(L j(y j) = τd) = 0, thus what
each sensor does at the boundary of decision regions is immaterial.

10.4 The majority vote versus the likelihood ratio test

In the rest of this chapter, we consider the discrete case where the distributions of the
observations are given as pmfs. In this section, we first show that if the observations
of the sensors are conditionally independent, given the set of thresholds at the local
sensors, any sensor switching from decision 0 to decision 1 will increase the likelihood
ratio at the fusion center. Furthermore, if the observations are conditionally independent
and identically distributed and the sensors all use the same threshold for the likelihood
ratio test, the likelihood ratio test at the fusion center becomes equivalent to a majority
vote. In the general case, where the observations are not independent and identically
distributed, this property no longer holds; we provide towards the end of the section an
example where the likelihood ratio test and the majority vote yield different results.

Recall that the fusion rule at the fusion center is given by (10.29). If the observations
of the sensors are conditionally independent, the likelihood ratio at the fusion center
becomes:

P1(d1,d2, . . . ,dN)
P0(d1,d2, . . . ,dN)

= ∏N
n=1 P1(dn)

∏N
n=1 P0(dn)

=
N

∏
n=1

P1(dn)
P0(dn)

.

Let us denote by N the set of all local sensors (represented by their indices). We divide
N into two partitions: N0, the set of local sensors that send 0 to the fusion center, and
N1, the set of local sensors that send 1 to the fusion center. Then, we have N0

⋃
N1 = N

and N0
⋂

N1 = /0. Note that, given the conditional joint probabilities of the observations,
N0 and N1 are set-valued functions of the thresholds {τ1,τ2, . . . ,τN}. Let N0 and N1

denote the cardinalities of N0 and N1, respectively. Obviously, N0,N1 ∈ Z (where Z is
the set of all integers), 0≤ N0,N1 ≤ N, and N0 +N1 = N. Now the likelihood ratio can
be written as:

P1(d1,d2, . . . ,dN)
P0(d1,d2, . . . ,dN)

= ∏
n∈N0

P1(dn = 0)
P0(dn = 0) ∏

m∈N1

P1(dm = 1)
P0(dm = 1)

. (10.58)

From the definitions of the decision regions in (10.64) and (10.65), it follows that

P1(dn = 1) = ∑
Yn:LYn≥τn

P1(Yn) and P0(dn = 1) = ∑
Yn:LYn≥τn

P0(Yn).

Consider the region where sensor n decides 1 (defined in (10.64)), {Rn1 : Yn ∈ Yn : LYn =
P1(Yn)/P0(Yn)≥ τn}. In this region, we have that

P1(dn = 1) = ∑
Yn:LYn≥τn

P1(Yn)≥ τn ∑
Yn:LYn≥τn

P0(Yn)≥ τnP0(dn = 1),

or

P1(dn = 1)
P0(dn = 1)

≥ τn. (10.59)
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Similarly, summing over the region where sensor n decides 0 (defined in (10.65)), {Rn0 :
Yn ∈ Yn : LYn = P1(Yn)/P0(Yn) < τn} , we have that

P1(dn = 0)
P0(dn = 0)

< τn. (10.60)

From (10.58), (10.59), and (10.60), we can see that any sensor switching from decision
0 to decision 1 will increase the likelihood ratio at the fusion center.

Now, if the observations are conditionally independent and identically distributed and
all the sensors use the same threshold, then

Pi(dn = 1) = ∑
Yn:LYn≥τ

Pi(Yn) = Pi(dm = 1)

where i = 0,1; 0≤ m,n≤ N. Thus we can write (10.58) as follows:

P1(d1,d2, . . . ,dN)
P0(d1,d2, . . . ,dN)

=
(

P1(d = 0)
P0(d = 0)

)N−N1
(

P1(d = 1)
P0(d = 1)

)N1

. (10.61)

The fusion rule compares the likelihood ratio in (10.61) with the ratio π0/π1. Again,
using (10.59) and (10.60), it can be seen that the likelihood ratio is a non-decreasing
function of N1. Therefore, the likelihood ratio test becomes equivalent to a majority
vote rule in this case.

In what follows, we present an example where L(001) > L(110) for the case of three
sensors. The observations are taken to be conditionally independent but not condition-
ally identically distributed. If we use the majority vote, the fusion center will output H1

if it receives (1,1,0) and H0 if it receives (0,0,1). On the contrary, we will show that, if
the likelihood ratio test is used, the fusion center will pick (0,0,1) against (1,1,0) for
H1. Under the independence assumption, the likelihood ratios are:

L(110) =
P1(110)
P0(110)

=
P1(d1 = 1)
P0(d1 = 1)

P1(d2 = 1)
P0(d2 = 1)

P1(d3 = 0)
P0(d3 = 0)

,

L(001) =
P1(001)
P0(001)

=
P1(d1 = 0)
P0(d1 = 0)

P1(d2 = 0)
P0(d2 = 0)

P1(d3 = 1)
P0(d3 = 1)

.

Consider the ratio

L(001)
L(110)

=
P1(d1 = 0)P0(d1 = 1)
P1(d1 = 1)P0(d1 = 0)

P1(d2 = 0)P0(d2 = 1)
P1(d2 = 1)P0(d2 = 0)

P1(d3 = 1)P0(d3 = 0)
P1(d3 = 0)P0(d3 = 1)

=
[1−P1(d1 = 1)][1−P0(d1 = 0)]

P1(d1 = 1)P0(d1 = 0)
[1−P1(d2 = 1)][1−P0(d2 = 0)]

P1(d2 = 1)P0(d2 = 0)
P1(d3 = 1)P0(d3 = 0)

[1−P1(d3 = 1)][1−P0(d3 = 0)]
. (10.62)

As d1, d2, and d3 are conditionally independent given each hypothesis, we can choose
their conditional probabilities such that the ratio in (10.62) is larger than 1. For example,
we can choose the conditional probabilities as follows:

P1(d1 = 1) = P0(d1 = 0) = P1(d2 = 1) = P0(d2 = 0) = 0.6,

P1(d3 = 1) = P0(d3 = 0) = 0.9.
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Figure 10.6 The majority vote versus the likelihood ratio test: If P0 and P1 of each sensor is as
shown, the thresholds for all three quantizers satisfy 1/(k−1) < τ< k−1 with k = 2.5 for
sensor 1 and sensor 2 and k = 10 for sensor 3, then L(001) > L(110). A majority vote will
output H1 if it receives (1,1,0) and H0 if it receives (0,0,1), while the likelihood ratio test
favors (0,0,1) for H1.

Such conditional probabilities can be obtained if we choose P0 and P1 as in Figure 10.6
with k = 2.5 for sensor 1 and sensor 2, and k = 10 for sensor 3; and the thresholds for
all three quantizers satisfy 1/(k−1) < τ< k−1.

10.5 An algorithm to compute the optimal thresholds

The binary decentralized detection problem with two sensors, binary messages, and the
fusion rule fixed a priori is known to be NP-complete [177]. In the light of this, we study
in this section a brute-force search algorithm (as a starting point) to solve the underlying
optimization problem, which is suitable for small sensor networks.6

For each combination of the thresholds at the sensors, {τ1,τ2, . . . ,τN}, the fusion rule
(γ0) is determined based on the likelihood ratio test at the fusion center given in (10.52).

6 For a discussion on the complexity of this kind of algorithm, see references [175] and [177].
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Recall that the average probability of error at the fusion center is then given by
(10.30). As we are considering the discrete case, where the conditional pdfs of obser-
vations are replaced by pmfs, the conditional joint pmfs of the local decisions can be
written as:

Pi(d1,d2, . . . ,dN) = ∑
YN∈RNiN

. . . ∑
Y1∈R1i1

Pi(Y1,Y2, . . . ,YN), (10.63)

where in = 0,1, and Rnin is the region where sensor n decides to send bit in, n = 1, . . . ,N.
These regions are given by

Rn1 =
{

Yn ∈ Yn : LYn =
P1(Yn)
P0(Yn)

≥ τn

}
(10.64)

Rn0 =
{

Yn ∈ Yn : LYn =
P1(Yn)
P0(Yn)

< τn

}
, (10.65)

where LYn = P1(Yn)/P0(Yn) is the likelihood ratio at sensor n.
Our goal is to find the combination {τ1,τ2, . . . ,τN} that yields the minimum probabil-

ity of error at the fusion center. If the number of threshold candidates for every sensor
is finite, the number of combinations of thresholds will also be finite. Then there is an
optimal solution, i.e. a combination of thresholds {τ1,τ2, . . . ,τN} that yields the mini-
mum probability of error. In the algorithms to follow, we address the question of how
to pick the threshold candidates for each sensor.

Suppose that we are given a training dataset each record of which has been labeled
with either “Normal” or “Attack.” Suppose further that each record consists of N
parameters, each of which takes values in a finite set. We do not assume that the
observations of the sensors (the parameters) are conditionally independent nor iden-
tically distributed. The a priori probabilities and the conditional joint pmfs given each
hypothesis then can be learnt from the training dataset. Once the optimal thresholds
for the sensors have been computed (offline), we can use Algorithm 10.12 to detect
attacks in the system. Finally, if we have a labeled dataset where each record has been
marked as “Normal” or “Attack,” we can compute the error probabilities using Algo-
rithm 10.13. The underlying search algorithm for the optimal thresholds is presented in
Algorithm 10.14.

Algorithm 10.12 Using the optimal thresholds for attack detection.
1: Given R records of connection.
2: for r = 1 to R do
3: Each local sensor quantizes the corresponding parameter into a single bit of

information (indicating whether or not there is an attack).
4: The fusion center collects all the bits from the local sensors and computes the

likelihood ratio using (10.63) (the joint conditional pmfs are drawn from the
training data).

5: The fusion center makes the final decision using (10.52).
6: end for
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Algorithm 10.13 Computing the probabilities of error.
1: Given R records of connection.
2: Compute the actual a priori probabilities (π0 and π1), the false-alarm probability

(PF = P0(γ0(.) = 1), and the misdetection probability (PM = P1(γ0(.) = 0).
3: Compute the average probability of error using the equation

Pe = π0×PF +π1×PM. (10.66)

Algorithm 10.14 An algorithm to compute the optimal thresholds at the sensors.

1: Given hypotheses H0 (“Normal”) and H1 (“Attack”) and N parameters {1,2, . . . ,N}.
2: for j = 1 to N do
3: Group all possible values of parameter j into b j equally spaced bins. {In general,

b j’s do not have to be equal.}
4: end for
5: for i = 0 to 1 do
6: Compute the a priori probability πi of hypothesis Hi.
7: Compute the conditional joint pmfs Pi(d1, . . . ,dn) and the conditional marginal

pmfs Pi(d j) of the parameters for hypothesis i.
8: end for
9: for j = 1 to N do
10: Compute the likelihood ratios for parameter j: τ1

n,τ2
n, . . . ,τbn

n {0≤ τ1
n ≤ τ2

n . . .≤
τbn

n ≤ ∞.}
11: end for
12: for j = 1 to N do
13: Remove threshold duplications in the likelihood ratios computed from Step

10.14 to have the candidates for the local likelihood ratio test of parameter j:

τ0
j = 0 < τ1

j < τ2
j . . . < τ

b′j
j < τ

b′j+1
j = ∞. (10.67)

{τ1
j ,τ2

j , . . . ,τ
b′j
j are the b′j values of likelihood ratio of parameter j

(
b′j ≤ b j

)
.}

14: end for
15: for j1 = 0 to b′1 +1 do
16: for . . . do
17: for jn = 0 to b′n +1 do

18: For each combination
{
τ j1

1 ,τ j2
2 , . . . ,τ jn

n

}
, determine the fusion rule (γ0)

based on the likelihood ratio test at the fusion center given in (10.52).

19: For each combination
{
τ j1

1 ,τ j2
2 , . . . ,τ jn

n

}
, evaluate the average probability

of error Pe using (10.30) and (10.63).
20: end for
21: end for. . .
22: end for
23: Choose a combination that minimizes Pe.
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10.6 Discussion and further reading

While Section 10.2 provides a summary from classical sources as cited in the text and
discussed next, Sections 10.3, 10.4, and 10.5 are mainly based on references [126]
and [127].

Centralized HT has been examined in many papers and texts (see, for example, refer-
ence [138]). Tenney and Sandell [172] were the first to study HT within a decentralized
setting, where each of two sensors locally selected its threshold for the likelihood ratio
test to minimize a common cost function. Sadjadi [152] later extended this work to
accommodate arbitrary numbers of sensors and hypotheses, without, however, con-
sidering a fusion center: the cost was a function of the sensor decisions and the true
hypothesis.

A comprehensive survey of decentralized detection can be found in reference [175],
which examined different decentralized detection structures with both conditionally
independent and correlated sensor observations. The complexity of decentralized detec-
tion problems was also studied in reference [177]. In reference [77], Hoballah and
Varshney proposed a person-by-person optimization (PBPO) scheme to optimize a
distributed detection system using the Bayesian criterion. The decentralized detection
problem with quantized observations was addressed in reference [53], where the authors
also introduced a joint power constraint on the sensors. An extension to reference [53]
was given in reference [87], where the constraint was placed on the average cost of
the system. References [184] and [185] have studied decentralized sequential detection
where either the fusion center or the sensors perform the sequential tests.

For a single sensor, it has been shown in reference [176] that the set of conditional
distributions of sensor messages is a compact set, and thus any cost function that is a
continuous function on this set will attain a minimum, which corresponds to an optimal
quantizer. In a parallel configuration with multiple sensors and a fusion center, if the
sensor observations are independent given each hypothesis, it has been shown in refer-
ence [176] that there exists an optimal solution over the Cartesian product of the sets
of conditional marginal probabilities of sensor messages. However, in several applica-
tions of HT such as sensor networks and attack/anomaly detection, it is generally seen
that the observations from different sensors may be correlated (see, for example, ref-
erences [54], [126], [190], [178]). This chapter provides a leading way toward such
detection problems.



A Optimization, game theory,
and optimal and robust control

This appendix provides some background material on those aspects of optimization,
game theory, and optimal and robust control theory which are frequently used in the
text. It also serves to introduce the reader to our notation and terminology. For more
detailed expositions on the topics covered here, standard references are [31, 136] for
game theory, [35, 36] for optimal control, and [29] for robust (H∞) control.

A.1 Introduction to optimization

We discuss in this section elements of and some key results from optimization in
finite-dimensional spaces, including nonlinear, convex and linear programming, and
distributed computation. Before we do this, however, it will be useful to introduce the
notions of sets, spaces, norms, and functionals, which are building blocks of a theory of
optimization.

A.1.1 Sets, spaces, and norms

A set S is a collection of elements. If s is a member (element) of S , we write s ∈ S ; if
s does not belong to S , we write s 
∈ S . If S contains a finite number of elements, it is
called a finite set; otherwise it is called an infinite set. If the number of elements of an
infinite set is countable (i.e. if there is a one-to-one correspondence between its elements
and positive integers), we say that it is a denumerable (countable) set, otherwise it is a
nondenumerable (uncountable) set.

A set S with some specific structure attached to it is called a space, and it is called
a linear (vector) space if this specific structure is of an algebraic nature with certain
well-known properties, such as it being closed under addition and scalar multiplication,
having a unique zero element, and satisfying associative and distributive laws. If S is
a vector space, a subset of S which is also a vector space is called a subspace. An
example of a vector space is the n-dimensional Euclidean space (denoted by R

n), each
element of which is determined by n real numbers. A vector x ∈ R

n can be written
either as a row vector x = (x1, . . . ,xn) where x1, . . . ,xn are real numbers and denote the
components of x, or as a column vector which is the “transpose” of (x1, . . . ,xn) (written
as x = (x1, . . . ,xn)T ).
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Given a finite set of vectors s1, . . . ,sn in a vector space S , we say that this set of vectors
is linearly independent if the equation ∑n

i=1αisi = 0 implies that αi = 0 ∀i = 1, . . . ,n.
Furthermore, if every element of S can be written as a linear combination of these
vectors, we say that this set of vectors generates S . Now, if S is generated by such
a linearly independent finite set (say, X ), it is said to be finite dimensional with its
unique “dimension” being equal to the number of elements of X ; otherwise, S is infinite
dimensional.

A linear vector space S is called a normed linear vector space if there is a real-valued
function defined on it, which maps each element u ∈ S into a real number ‖u‖; such a
function is called the norm of u. Norm satisfies the following three axioms:

1. ‖u‖ ≥ 0 ∀u ∈ S ; ‖u‖= 0 if, and only if, u = 0.
2. ‖u+ v‖ ≤ ‖u‖+‖v‖ for each u, v ∈ S .
3. ‖αu‖= |α| · ‖u‖ ∀α ∈ R and for each u ∈ S .

An infinite sequence of vectors {s1,s2, . . . ,si . . .} in a normed vector space S is said
to converge to a vector s if, given an ε > 0, there exists an N such that ‖s− si‖ < ε for
all i≥ N. In this case, we write si→ s, or limi→∞ si = s, and call s the limit point of the
sequence {si}. More generally, a point s is said to be a limit point of an infinite sequence
{si} if it has an infinite subsequence {sik} that converges to s.

An infinite sequence {si} in a normed vector space is said to be a Cauchy sequence
if, given an ε> 0, there exists an N such that ‖sn− sm‖< ε for all n, m≥ N. A normed
vector space S is said to be complete, or a Banach space, if every Cauchy sequence in
S is convergent to an element of S . Let S be a normed vector space. Given an s ∈ S and
an ε > 0, the set Nε(s) = {x ∈ S : ‖x− s‖ < ε} is said to be an ε-neighborhood of s. A
subset X of S is open if, for every x ∈ X , there exists an ε > 0 such that Nε(x) ⊂ X . A
subset X of S is closed if its complement in S is open; equivalently, X is closed if every
convergent sequence in X has its limit point in X . Given a set X ⊂ S , the largest subset
of X which is open is called the interior of X .

A subset X of a normed vector space S is said to be compact if every infinite sequence
in X has a convergent subsequence whose limit point is in X . If X is finite dimensional,
compactness is equivalent to being closed and bounded.

A.1.2 Functionals, continuity, and convexity

A mapping f of a vector space S into a vector space T is called a transformation or
a function, and is written symbolically as f : S → T or y = f (x), for x ∈ S , y ∈ T . A
transformation f is said to be a functional if T = R.

Let f : S → T where S and T are normed linear spaces. f is said to be continuous
at x0 ∈ S if, for every ε > 0, there exists a δ > 0 such that f (x) ∈ Nε( f (x0)) for every
x ∈ Nδ(x0). If f is continuous at every point of S it is said to be continuous everywhere
or, simply, continuous.

A subset C of a vector space S is said to be convex if for every u, v ∈ C and every
α ∈ [0,1], we have αu +(1−α)v ∈ C . A functional f : C → R defined over a convex
subset C of a vector space S is said to be convex if, for every u, v ∈ C and every scalar
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α ∈ [0,1], we have f (αu+(1−α)v)≤ α f (u)+(1−α) f (v). If this is a strict inequality
for every α ∈ (0,1), then f is said to be strictly convex. A functional f is said to be
concave if (− f ) is convex, and strictly concave if (− f ) is strictly convex.

A functional f : R
n → R is said to be differentiable if, with x = (x1, . . . ,xn)T ∈ R

n,
the partial derivatives of f with respect to the components of x exist, in which case we
write

∇ f (x) =
[
∂ f (x)
∂x1

, . . . ,
∂ f (x)
∂xn

]
.

∇ f (x) is called the gradient of f at x and is a row vector. We shall also use the notation
fx(x) or d f (x)/dx to denote the same quantity. If we partition x into two vectors y
and z of dimensions n1 and n− n1, respectively, and are interested only in the partial
derivatives of f with respect to the components of y, then we use the notation ∇y f (y,z)
or ∂ f (y,z)/∂y to denote this partial gradient.

Let g : R
n → R

m be a vector-valued function whose components are differentiable
with respect to the components of x ∈ R

n. Then, we say that g(x) is differentiable, with
the derivative dg(x)/dx being an m×n matrix whose i j-th element is ∂gi(x)/∂x j. (Here
gi denotes the i-th component of g.) The gradient ∇ f (x) being a vector, its derivative
(which is the second derivative of f : R

n→ R) will thus be an n× n matrix, assuming
that f (x) is twice continuously differentiable in terms of the components of x. This
matrix, denoted by ∇2 f (x), is symmetric, and is called the Hessian matrix of f at x.
This Hessian matrix is non-negative definite for all x ∈ R

n if, and only if, f is convex.
In general, an n×n real symmetric matrix M is positive (negative) definite, if zT Mz > 0
(zT Mz < 0) for all nonzero vectors z ∈ R

n. Likewise, M is non-negative definite or
positive-semidefinite if zT Mz≥ 0 for all nonzero z ∈ R

n.

A.1.3 Optimization of functionals

Given a functional f : S → R , where S is a vector space, and given a subset X ⊆ S , by
the optimization problem

minimize f (x) subject to x ∈ X

we mean the problem of finding an element x∗ ∈ X (called a minimizing element or an
optimal solution) such that

f (x∗)≤ f (x) ∀x ∈ X .

This is sometimes also referred to as a globally minimizing solution in order to differ-
entiate it from the other alternative – a locally minimizing solution. An element x◦ ∈ X
is called a locally minimizing solution if we can find an ε> 0 such that

f (x◦)≤ f (x) ∀x ∈ Nε(x◦)∩X ,

i.e. we compare f (x◦) with values of f (x) in that part of a certain ε-neighborhood of x◦,
Nε, which lies in X .
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For a given optimization problem, it is not necessarily true that an optimal (minimiz-
ing) solution exists; an optimal solution will exist if the set of real numbers { f (x) : x ∈
X } is bounded below and there exists an x∗ ∈ X such that inf{ f (x) : x ∈ X }= f (x∗), in
which case we write

f (x∗) = inf
x∈X

f (x) = min
x∈X

f (x).

If such an x∗ cannot be found, even though inf{ f (x) : x ∈ X } is finite, we simply say
that an optimal solution does not exist; but we declare the quantity

inf{ f (x) : x ∈ X } or inf
x∈X

f (x)

as the optimal value (or the infimum) of the optimization problem. If { f (x) : x ∈ X }
is not bounded below, i.e. infx∈X f (x) = −∞, then neither an optimal solution nor an
optimal value exists.

An optimization problem which involves maximization instead of minimization may
be converted into a minimization problem by simply replacing f by − f . Any optimal
solution of this minimization problem is also an optimal solution for the initial maxi-
mization problem, and the optimal value of the latter, denoted supx∈X f (x), is equal to
minus the optimal value of the former. When a maximizing element x∗ ∈ X exists, then
supx∈X f (x) = maxx∈X f (x) = f (x∗).

Existence of optimal solutions

In the minimization problem formulated above, an optimal solution exists if X is a finite
set, since then there is only a finite number of comparisons to make. When X is not
finite, however, the existence of an optimal solution is not always guaranteed; it is guar-
anteed if f is continuous and X is compact – a result known as the Weierstrass theorem.
For the special case when X is finite dimensional, we should recall that compactness is
equivalent to being closed and bounded.

Necessary and sufficient conditions for optimality in the absence of constraints

Let S = R
n, and f : R

n→R be a differentiable function. If X is an open set, a first-order
necessary condition for an optimal solution to satisfy is

∇ f (x∗) = 0.

If, in addition, f is twice continuously differentiable on R
n, a second-order necessary

condition is

∇2 f (x∗)≥ 0 ,

by which we mean that all eigenvalues of the symmetric matrix ∇2 f (x∗) are non-
negative. The pair of conditions {∇ f (x∗) = 0,∇2 f (x∗) > 0} (that is, stationarity
together with all eigenvalues of ∇2 f (x∗) being positive) is sufficient for x∗ ∈ X to be a
locally minimizing solution. These conditions are also sufficient for global optimality
if, in addition, X is a convex set and f is a convex functional on X .
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Necessary conditions for optimality in the presence of constraints

If X is not an open set, then there is the possibility for an optimum to be on the boundary
of X . To capture these cases, we now bring some structure to the characterization of the
constraint set X . Again working with the finite-dimensional case, that is, with S = R

n,
let g j : R

n→R be a continuously differentiable function, for j = 1, . . . ,m, where m < n.
Let X = {g j(x) = 0, j = 1, . . . ,m}, and consider again the minimization of f over X .
This is known as an optimization problem with equality constraints. We can write these
constraints also using the compact notation g(x) = 0, where g := (g1, . . . ,gm)T . Let
x∗ ∈ X be a locally minimizing solution for this optimization problem, and x∗ be a
regular point of the constraints, meaning that the m×n matrix dg(x∗)/dx is of full rank
m, that is the Jacobian of g is full rank. Then, there exist m scalars, {λ j, j = 1, . . . ,m}
(called Lagrange multipliers), such that the Lagrangian

L(x;λ) = f (x)+
m

∑
j=1
λ jg j(x) =: f (x)+λT g(x)

has a stationary point at x=x∗, that is, ∇xL(x∗;λ)=0, along with the condition
g(x∗)=0. This is, of course, a necessary condition (under the regularity assumption)
also for global minima.

We now modify the constraint set by including inequality constraints. Let hk : R
n→R

be a continuously differentiable function, for k = 1, . . . , p, and X = {x ∈R
n : g j(x) = 0,

hk(x)≤ 0, j = 1, . . . ,m;k = 1, . . . , p}. Consider again the minimization of f over X . This
is now known as an optimization problem with equality and inequality constraints. We
can write the inequality constraints again using a compact notation as h(x) ≤ 0, where
h := (h1, . . . ,hp)T . Let x∗ ∈ X be a locally minimizing solution for this optimization
problem. We say that an inequality constraint corresponding to an index k is active at
x = x∗ if hk(x∗) = 0; otherwise an inequality constraint is inactive at x = x∗. Let K ∗

be the set of all indices corresponding to active inequality constraints at x = x∗. Then
the counterpart of the regularity condition in this case (or rather extension of it) is the
so-called Karush–Kuhn–Tucker constraint qualification condition, which requires that
the vectors

∂g j(x∗)
∂x

, j = 1, . . . ,m;
∂hk(x∗)
∂x

, k ∈K ∗

be linearly independent. Then, there exist multipliers, λ j, j = 1, . . . ,m; µk ≥ 0, k =
1, . . . , p, such that the Lagrangian

L(x;λ,µ) = f (x)+
m

∑
j=1
λ jg j(x)+

p

∑
k=1

µkhk(x) =: f (x)+λT g(x)+µT h(x)

has a stationary point at x = x∗, that is

∇xL(x∗;λ,µ) = 0 ,

along with the conditions

g(x∗) = 0, µ′h(x∗) = 0, h(x∗)≤ 0, µ≥ 0 .
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Note that the condition µT h(x∗) = 0 above along with the non-negativity condition on
the µ’s force µk = 0 for indices k not in K ∗.

Duality and convex programming

The optimization problem above is known as the nonlinear programming problem. Let
λ∗ and µ∗ be the Lagrange multiplier vectors associated with this problem, correspond-
ing to a locally optimal solution x∗. Assume that the Lagrangian L(x;λ∗,µ∗) is twice
continuously differentiable at x = x∗, and the associated matrix of second partials (that
is, the Hessian matrix ∇2

xL(x;λ∗,µ∗)) evaluated at x = x∗ is positive definite. Consider
the unconstrained local minimization of L(x;λ,µ) in an open neighborhood of x = x∗

for each λ and µ≥ 0. Denote this local minimum value by φ(λ,µ), that is

φ(λ,µ) = min
x

L(x;λ,µ) ,

which is known as the dual function associated with the nonlinear programming prob-
lem. One of the fundamental results in nonlinear programming is that λ∗ and µ∗

introduced earlier locally maximize the dual function φ(λ,µ) when the components of
µ are restricted to be non-negative. This maximization problem is known as the dual
problem.

If, in addition to the other assumptions, f and hk, k = 0, . . . , p are convex, and g j, j =
0, . . . ,m are affine (linear plus constant), then we have a convex programming problem,
and any local minimum is also a global minimum, and thus x∗ is globally minimizing.
Furthermore, the Lagrangian L(x;λ,µ) is convex for each λ,µ ≥ 0, and thus the dual
function φ(λ,µ) is obtained as a result of global minimization. Moreover, φ is concave
in its arguments, and hence λ∗ and µ∗ are obtained as a result of global maximization of
φ(λ,µ), with λ unconstrained and µ constrained to be non-negative.

What we see above for the convex programming problem is that x∗ is the result of an
unconstrained minimization problem involving the Lagrangian L, when the multipliers
are held at their optimum values, whereas the optimum values of the multipliers are
obtained by maximizing the dual function, which (one can show) is equivalent to global
maximization of the Lagrangian L with respect to the multipliers λ and µ≥ 0, when x
is held at its optimum value x∗, namely

L(x∗;λ∗,µ∗) = min
x∈Rn

L(x;λ∗,µ∗) = max
(λ,µ≥0)

L(x∗;λ,µ).

The preceding equation says that x∗ is in saddle-point equilibrium with (λ∗,µ∗) with
respect to the function L.

The result above in fact holds with somewhat more tightening on x, restricting it to
a convex subset, say Ω, of R

n, in other words X can now be taken as X = {x ∈ Ω :
g j(x) = 0,hk(x)≤ 0, j = 1, . . . ,m;k = 1, . . . , p}, assuming that it is not empty, where as
before g j’s are affine, hk’s are convex, and the constraint qualification condition holds.
X is then convex, and L is also convex on Ω as a function of x. Saddle-point property
again holds, with simply the minimization now being over Ω, that is

L(x∗;λ∗,µ∗) = min
x∈Ω

L(x;λ∗,µ∗) = max
λ, µ≥0

L(x∗;λ,µ).
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Linear programming

A special case of the convex programming problem that is of wide applicability is the
linear program (LP), where f is linear, written as cT x, where c is an n-vector, and
hk(x) = −xk,k = 1, . . . ,n. Further, we can write the equality constraint as (since g is
affine) Ax = b, where A is an m×n matrix and b is an m-vector. Hence, the constraint
set in this case is X = {x ∈R

n : Ax = b,x≥ 0}, which we assume to be nonempty. This
is a convex polytope, which need not be bounded. If it is bounded, however, then X is
a convex polyhedron, and the minimum of the linear function f (x) = cT x has to appear
on the boundary of X . Hence, we have either f (x) unbounded (from below) on X , in
which case the LP does not admit a solution, or f (x) is bounded from below on X , in
which case the LP does admit a globally optimal solution, which is on the boundary.

To obtain the dual function associated with the LP, it is convenient to view the non-
negativity constraint on x being captured by the earlier defined convex set Ω, that is
Ω= {x ∈R

n : x≥ 0}, and forgo the inequality constraint. Then the dual function would
have only λ as its argument:

φ(λ) = min
x≥0

[cT x+λT (b−Ax)] .

The dual function would be well defined only if the coefficient of x is non-negative (that
is, c−ATλ ≥ 0), in which case its minimum value is λT b. Hence, the dual problem
associated with the LP is

max
{λ∈Rm:AT λ≤c}

bTλ,

which is another LP. Let the solution of the dual problem (if it exists) be λ∗, and the solu-
tion of the original LP (known as primal problem) be x∗. Then, a fundamental result in
linear programming, known as the dual theorem of linear programming, is that if either
problem has a finite optimal solution, then so does the other. In other words, the exis-
tence of x∗ implies existence of λ∗, and vice versa. In this case, the corresponding values
are equal, cT x∗ = bTλ∗. Furthermore, if either problem has an unbounded objective (on
the corresponding constraint set), then the other problem has no feasible solution.

Lagrangian decomposition and distributed computation

Consider the original general nonlinear programming problem, with f , g j’s, and hk’s
having the following additive structures:

f (x) =
n

∑
i=1

fi(xi) , g j(x) =
n

∑
i=1

g ji(xi) , hk(x) =
n

∑
i=1

hki(xi).

Let gi := (g1i, . . . ,gmi)T and hi := (h1i, . . . ,hpi)T . Then the Lagrangian can be written as

L(x;λ,µ) =
n

∑
i=1

fi(xi)+λT
n

∑
i=1

gi(xi)+µT
n

∑
i=1

hi(xi)≡
n

∑
i=1

Li(xi;λ,µ),

where

Li(xi;λ,µ) := fi(xi)+λT gi(xi)+µhi(xi).



A.2 Introduction to noncooperative game theory 281

It can be interpreted as the Lagrangian associated with the i-th component of x. Now
note that if λ∗ and µ∗ are the optimal values of the multipliers for the nonlinear
programming problem (local or global), then the optimal (again local or global) value
of x is obtained from

L(x∗;λ∗,µ∗) = min
x

L(x;λ∗,µ∗)≡
n

∑
i=1

min
xi

Li(xi;λ∗,µ∗) =
n

∑
i=1

Li (x∗i ;λ∗,µ∗) ,

that is, instead of solving a single optimization problem in an n-dimensional space, one
solves n one-dimensional optimization problems. This leads to savings in complexity in
computation (particularly if n is large) in addition to opening the door for a distributed
computation of the solution, with each computational unit solving only a scalar problem.
Such a computation would of course be possible if there is a way of obtaining the
optimal values of the multipliers centrally, without the need for the values of x. This
can actually be done using the dual function introduced earlier, by maximizing it with
respect to the multipliers. One way of doing this would be to use a gradient ascent
algorithm, assuming that the dual function is differentiable; for more on this topic, see
reference [38].

A.2 Introduction to noncooperative game theory

Game theory deals with strategic interactions among multiple decision makers, called
players. Each player’s preference ordering among multiple alternatives is captured in an
objective function for that player, which s/ he tries to either maximize (in which case the
objective function is a utility function or benefit function) or minimize (in which case
we refer to the objective function as a cost function or a loss function).

For a nontrivial game, the objective function of a player depends on the choices
(actions, or equivalently decision variables) of at least one other player, and gener-
ally of all the players. Hence, a player cannot simply optimize his/ her own objective
function independent of the choices of the other players. This results in a coupling
between the actions of the players, and binds them together in decision making even in
a noncooperative environment.

If the players were able to enter into a cooperative agreement so that the selection
of actions or decisions is done collectively and with full trust, so that all players would
benefit to the extent possible, and no inefficiency would arise, then we would be in the
realm of cooperative game theory, with issues of bargaining, coalition formation, excess
utility distribution, etc. of relevance there. Cooperative game theory will not be covered
in this overview; see for example references [67, 136, 188].

If no cooperation is allowed or possible among the players, then we are in the realm
of noncooperative game theory, where one has to introduce first a satisfactory solution
concept. Leaving aside for the moment the issue of how the players can reach a satis-
factory solution point, let us address the following question: if the players are at such
a satisfactory solution point, what are the minimum features one would expect to see
there? To first order, such a solution point should have the property that if all players but
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one stay put, then the player who has the option of moving away from the solution point
should not have any incentive to do so because s/ he cannot improve his/ her payoff.
Note that we cannot allow two or more players to move collectively from the solution
point, because such a collective move requires cooperation, which is not allowed in
a noncooperative game. Such a solution point where none of the players can improve
his/ her payoff by a unilateral move is known as a noncooperative equilibrium or Nash
equilibrium (NE), named after John Nash, who introduced it and proved that it exists in
finite games (that is, games where each player has only a finite number of alternatives),
some 60 years ago [124, 125]. This is what we discuss below, following some termi-
nology, a classification of noncooperative games according to various attributes, and a
mathematical formulation.

We say that a noncooperative game is nonzero-sum if the sum of the players’
objective functions cannot be made zero even after appropriate positive scaling and/or
translation that do not depend on the players’ decision variables. We say that a
two-player game is zero-sum if the sum of the objective functions of the two players
is zero or can be made zero by appropriate positive scaling and translation that do not
depend on the decision variables of the players. If the two players’ objective functions
add up to a constant (without scaling or translation), then the game is sometimes called
constant sum, but according to our convention such games are also zero-sum (since it
can be converted to one).

A game is a finite game if each player has only a finite number of alternatives, that
is the players pick their actions out of finite sets (action sets); otherwise the game is an
infinite game; finite games are also known as matrix games. An infinite game is said to
be a continuous-kernel game if the action sets of the players are continua (continuums),
and the players’ objective functions are continuous with respect to action variables of
all players. A game is said to be deterministic if the players’ actions uniquely determine
the outcome, as captured in the objective functions, whereas if the objective function
of at least one player depends on an additional variable (state of nature) with a known
probability distribution, then we have a stochastic game.

A game is a complete information game if the description of the game (that is,
the players, the objective functions, and the underlying probability distributions – if
stochastic) is common information to all players; otherwise we have an incomplete
information game. Finally, we say that a game is static if each player acts only once, and
none of the players has access to information on the actions of any of the other players;
otherwise what we have is a dynamic game. A dynamic game is said to be a differential
game if the evolution of the decision process (controlled by the players over time) takes
place in continuous time, and generally involves a differential equation. In this section,
we will be covering only static, deterministic, complete information noncooperative
games.

A.2.1 General formulation for noncooperative games and equilibrium solutions

We consider an N-player game, with N := {1, . . . ,N} denoting the Players set. The
decision or action variable of Player i is denoted by xi ∈ Xi, where Xi is the action set
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of Player i. Let x denote the N-tuple of action variables of all players, x := (x1, . . . ,xN).
Allowing for possibly coupled constraints, let Ω⊂ X be the constraint set for the game,
where X is the N-product of X1, . . . ,XN . Hence, for an N-tuple of action variables to be
feasible, we need x ∈ Ω. The players are minimizers, with the objective function (loss
function or cost function) of Player i denoted by Li(xi,x−i), where x−i stands for the
action variables of all players except the i-th one.

Now, an N-tuple of action variables x∗ ∈Ω is a Nash equilibrium (or, noncooperative
equilibrium) if, for all i ∈N ,

Li
(
x∗i ,x

∗
−i

)≤ Li
(
xi,x

∗
−i

)
, ∀xi ∈ Xi , such that

(
xi,x

∗
−i

) ∈Ω. (A.1)

If N = 2, and L1 ≡−L2 =: L, then we have a two-player zero-sum game, with Player 1
minimizing L and Player 2 maximizing the same quantity. In this case, the Nash equilib-
rium becomes the saddle-point equilibrium, which is formally defined as follows: a pair
of actions (x∗1,x

∗
2) ∈ X is in saddle-point equilibrium for a game with cost function L, if

L(x∗1,x2)≤ L(x∗1,x
∗
2)≤ L(x1,x

∗
2) , ∀(x1,x2) ∈ X . (A.2)

Here, we leave out the coupling constraint Ω or simply assume it to be equal to
the product set X := X1 × X2. This definition also implies that the order in which
minimization and maximization are carried out is inconsequential, that is

min
x1∈X1

max
x2∈X2

L(x1,x2) = max
x2∈X2

min
x1∈X1

L(x1,x2) = L(x∗1,x
∗
2) =: L∗,

where the first expression on the left is known as the upper value of the game, the second
expression is the lower value of the game, and L∗ is known as the value of the game.1

Note that the value of a game, whenever it exists (which it certainly does if there
exists a saddle point), is unique. Hence, if there exists another saddle-point solution,
say (x̂1, x̂2), then L(x̂1, x̂2) = L∗. Moreover, these multiple saddle points are orderly
interchangeable, that is, the pairs (x∗1, x̂2) and (x̂1,x∗2) are also in saddle-point equi-
librium. This property that saddle-point equilibria enjoy does not extend to multiple
Nash equilibria (for nonzero-sum games): multiple Nash equilibria are generally not
interchangeable, and further, they do not lead to the same values for the Players’ cost
functions, the implication being that when players switch from one equilibrium to
another, some players may benefit from that (in terms of reduction in cost) while oth-
ers may see an increase in their costs. Further, if the players pick randomly (for their
actions) from the multiple Nash equilibria of the game, then the resulting N-tuple of
actions may not be in Nash equilibrium.

Now coming back to the zero-sum game, a saddle point does not exist if there is no
value, which essentially means that the upper and lower values are not equal, i.e. the
former is strictly higher than the latter:

min
x1∈X1

max
x2∈X2

L(x1,x2) > max
x2∈X2

min
x1∈X1

L(x1,x2) .

1 Upper and lower values are defined in more general terms using infimum (inf) and supremum (sup) replac-
ing minimum and maximum, respectively, to account for the fact that minima and maxima may not exist.
When the action sets are finite, however, the latter always exist.



284 Appendix

We then say in this case that the zero-sum game does not have a saddle point in pure
strategies. This opens the door for looking for a mixed-strategy equilibrium.

A mixed strategy is for each player a probability distribution over his action set, which
we denote by pi for Player i. This argument also extends to the general N-player game,
which may not have a Nash equilibrium in pure strategies (actions, in this case). In
search of a mixed-strategy equilibrium, Li is replaced by its expected value taken with
respect to the mixed strategy choices of the players, which we denote for Player i by
Ji(p1, . . . , pN). Nash equilibrium over mixed strategies is then introduced as before, with
just Ji’s replacing Li’s, and pi’s replacing xi’s, and pi ∈ Pi, where Pi is the set of all prob-
ability distributions on Xi. We do not bring Ω into the picture here, assuming that the
constraint sets are rectangular. If Xi is finite, then pi will be a probability vector, taking
values in the probability simplex determined by Xi. Then, the N-tuple (p∗1, . . . , p∗N) is in
(mixed-strategy) Nash equilibrium if

Ji
(

p∗i , p∗−i

)≤ Ji
(

pi, p∗−i

)
, ∀ pi ∈ Pi . (A.3)

This readily leads, in the case of zero-sum games, as a special case, to the following
definition of a saddle point in mixed strategies: a pair (p∗1, p∗2) constitutes a saddle point
in mixed strategies (or a mixed-strategy saddle-point equilibrium), if

J (p∗1, p2)≤ J (p∗1, p∗2)≤ J (p1, p∗2) , ∀(p1, p2) ∈ P ,

where J(p1, p2) = Ep1,p2 [L(x1,x2)], and P := P1×P2. Here, J∗ = J (p∗1, p∗2) is the value
of the zero-sum game in mixed strategies.

A.2.2 Existence of Nash and saddle-point equilibria in finite games

Let us first consider zero-sum finite games, or equivalently matrix games. For any such
game we have to specify the cardinality of action sets X1 and X2 (card (X1) and card
(X2)), and the objective function L(x1,x2) defined on the product of these finite sets. As
per our earlier convention, Player 1 is the minimizer and Player 2 the maximizer. Let
card (X1) = m and card (X2) = n, that is, the minimizer has m choices and the maximizer
has n choices, and let the elements of X1 and X2 be ordered according to some (could be
arbitrary) convention. We can equivalently associate an m×n matrix A with this game,
whose entries are the values of L(x1,x2), following the same ordering as that of the
elements of the action sets, that is i j-th entry of A is the value of L(x1,x2) when x1 is
the i-th element of X1 and x2 is the j-th element of X2. Player 1’s choices are then the
rows of the matrix A and Player 2’s are its columns.

It is easy to come up with example matrix games where a saddle point does not exist
in pure strategies, with perhaps the simplest one being the game known as Matching
Pennies, where

A =
(

1 −1
−1 1

)
. (A.4)

Here, there is no row-column combination at which the players would not have an
incentive to deviate and improve their returns.
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The next question is whether there exists a saddle point in mixed strategies, in terms
of the matrix A, and the probability vectors p1 and p2 (both column vectors) we had
introduced earlier. Note that p1 is of dimension m and p2 is of dimension n, and compo-
nents of each are non-negative and add up to 1. We can in this case rewrite the expected
cost function as

J(p1, p2) = pT
1 Ap2 .

By the minimax theorem, due to John von Neumann [179], J indeed admits a saddle
point, which means that the matrix game A has a saddle point in mixed strategies, that
is, there exists a pair (p∗1, p∗2) such that for all other probability vectors p1 and p2, of
dimensions m and n, respectively, the following pair of saddle-point inequalities holds:

p∗1
T Ap2 ≤ p∗1

T Ap∗2 ≤ pT
1 Ap∗2.

The quantity p∗1
T Ap∗2 is the value of the game in mixed strategies. This result is now

captured in the following Minimax theorem.

Theorem A.1 Every finite two-person zero-sum game has a saddle point in mixed
strategies.

Extension of this result to N-player finite games was provided by John Nash [125],
as captured in the following theorem.

Theorem A.2 Every finite N-player nonzero-sum game has an NE in mixed strategies.

A standard proof for this result uses Brouwer’s fixed point theorem [31].2 Note
that clearly the minimax theorem follows from this one since zero-sum games are
special cases of nonzero-sum games. The main difference between the two, however,
is that in zero-sum games the value is unique (even though there may be multiple
saddle-point solutions), whereas in genuine nonzero-sum games the expected cost
N-tuple to the players under multiple Nash equilibria need not be the same. In zero-sum
games, multiple equilibria have the ordered interchangeability property, whereas in
nonzero-sum games they do not.

A.2.3 Existence and uniqueness of Nash and saddle-point equilibria in
continuous-kernel (infinite) games

We now go back to the general class of N-player games introduced through (A.1),
with Xi being a finite-dimensional space (for example, mi-dimensional Euclidean space,
R

mi ), for i ∈ N ; Li a continuous function on the product space X , which of course
is also finite-dimensional (for example, if Xi = R

mi , X can be viewed as R
m, where

2 Brouwer’s theorem says that a continuous mapping, f , of a closed, bounded, convex subset (S) of a finite-
dimensional space into itself (that is, S) has a fixed point, that is, a p ∈ S such that f (p) = p.
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m := ∑i∈N mi); and the constraint set Ω a subset of X . This class of games is known
as continuous-kernel (or infinite) games with coupled constraints, and of course if the
constraints are not coupled, for example with each player having a separate constraint
set Ωi ⊂ Xi, this would also be covered as a special case. Now, further assume that Ω
is closed, bounded, and convex, and for each i ∈ N , Li(xi,x−i) is convex in xi ∈ Xi for
every x−i ∈ × j 
=iX j. Then the basic result for such games is that they admit a Nash
equilibrium in pure strategies (but the equilibria need not be unique), as stated in the
theorem below; for a proof, see references [31] and [147].

Theorem A.3 For the N-player nonzero-sum continuous-kernel game formulated
above, with the constraint set Ω a closed, bounded, and convex subset of R

m, and with
Li(xi,x−i) convex in xi for each x−i, and each i ∈N , there exists a Nash equilibrium in
pure strategies.

For the special class of similarly structured two-person zero-sum games, the same
result clearly holds, implying the existence of a saddle-point solution (in pure strate-
gies). Note that in this case the single objective function (L≡L1≡−L2) to be minimized
by Player 1 and maximized by Player 2, is convex in x1 and concave in x2, in view
of which such zero-sum games are known as convex–concave games. Even though
convex–concave games could admit multiple saddle-point solutions, they are ordered
interchangeable, and the values of the games are unique (which is not the case for multi-
ple Nash equilibria in genuine nonzero-sum games). Now, if the convexity–concavity is
replaced by strict convexity–concavity, then the result can be sharpened as below, which,
however, has no counterpart for Nash equilibrium in genuine nonzero-sum games.

Theorem A.4 For a two-person zero-sum game on closed, bounded, and convex finite-
dimensional action setsΩ1×Ω2, defined by the continuous kernel L(x1,x2), let L(x1,x2)
be strictly convex in x1 for each x2 ∈ Ω2 and strictly concave in x2 for each x1 ∈ Ω1.
Then, the game admits a unique pure-strategy saddle-point equilibrium.

If the structural assumptions of Theorem A.3 do not hold, then a pure-strategy Nash
equilibrium may not exist, but there may exist one in mixed strategies. In this case,
mixed strategy for a player (say, Player i) is a probability distribution on that player’s
action set, which we take to be a closed and bounded subset, Ωi, of Xi = R

mi . We
denote a mixed strategy for Player i by pi, and the set of all probability distribution
on Ωi by Si. Nash equilibrium, then, is defined using the expected values of Li’s
given mixed strategies of all the players, which we denote by Ji as in Section A.2.1.
Nash equilibrium is then defined by the N-tuple of inequalities (A.3). The following
theorem now states the basic result on existence of mixed-strategy Nash equilibrium in
continuous-kernel games.

Theorem A.5 In the N-player nonzero-sum continuous-kernel game formulated above,
let the constrained action set Ωi for Player i be a closed and bounded subset of R

mi ,
and Li(xi,x−i) be continuous on Ω = Ω1× ·· · ×ΩN, for each i ∈ N . There exists a
mixed-strategy Nash equilibrium, (p∗1, . . . , p∗N), in this game satisfying (A.3).
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The existence of a pure-strategy Nash equilibrium does not preclude the existence
also of a genuine mixed-strategy Nash equilibrium,3 and all such (multiple) Nash
equilibria are generally non-interchangeable, unless the game is (or is strategically
equivalent to) a zero-sum game.

A.2.4 Online computation of Nash equilibrium policies

We discuss here some online recursive schemes for the computation of Nash equilibrium
in continuous-kernel games. We consider games for which the structural assumptions
of Theorem A.3 hold, and further, the action sets of the players are not jointly coupled,
that is, Ω = Ω1×·· ·×ΩN . For simplicity in exposition, let us further assume that for
each i ∈ N , Li(xi,x−i) is strictly convex in xi, and not only convex. We already know
that for such games there exists a pure-strategy NE.

Consider now the following update mechanism, known as parallel update:

x(n+1)
i = arg min

ξ∈Ωi

L
(
ξ,x(n)
−i

)
=: νi

(
x(n)
−i

)
, n = 0,1, . . . ; i ∈N ,

where the minimum exists and is unique becauseΩi is a closed, bounded, convex subset
of a finite-dimensional space, and Li is strictly convex in xi. Note that in this update algo-
rithm, each player is responding to the action choices of the other players at the previous
step of the iteration, that is, the sequence is generated using the optimum response (νi) of
each player, and the players update in parallel. The algorithm generally starts with arbi-
trary selections out of the players’ action sets, at time t = 0, and clearly if the sequence
generated converges, that is, xn

i → x∗i , i ∈ N , then the x∗i ’s constitute an NE, and if,

furthermore, the limit is independent of the starting choices, that is, of
{

x(0)
i , i ∈N

}
,

then the NE is unique.
Parallel update is not the only possible update scheme in the online computation

of NE. One could have round robin, where the players take turns in their responses,
with only one player being active at each step of the iteration, following a strict order;
or random polling, where at each point of time one player is picked at random to be
the active player. Another alternative is the stochastic asynchronous update or random
update, where at each step of the iteration a subset of N is picked at random, and
only those players belonging to that subset become active players, generating their next
actions as in parallel update. For convergence in this latter case (as well as in random
polling), it is necessary for each player to be active infinitely many times, i.e. no player
can be left out of the update process for extended periods of time. It is worth noting
that in all these online computational algorithms, the players do not have to know the
objective functions of the other players; the only information each player needs is the
most recent actions of other players and his/ her own reaction function, which is unique
under the assumption of strict convexity.

3 The qualifier genuine is used here to stress the point that mixed strategies in this statement are not pure
strategies (even though pure strategies are indeed special types of mixed strategy, with all probability weight
concentrated on one point).
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All four of these update mechanisms can be written in a unifying compact form: for
all i ∈N , and for n = 0,1, . . .,

x(n+1)
i = νi

(
x(n)
−i

)
, if i ∈ Kn

= x(n)
i , else

where Kn is the set of active players at step n. It is N for parallel update; Kn = {(n +
k)mod N + 1} with k arbitrary, in round robin; it is an independent process on N in
random polling; and it is an independent set-valued process on all subsets of N in
stochastic asynchronous update. In each case, we have a mapping, say ρ, of Ω into
itself, and NE is a fixed point of ρ, that is, x∗ = ρ(x∗). If ρ is a contraction on Ω,4 then
the sequence it generates converges, and the NE is unique. This is in fact one of the
most effective ways of showing the uniqueness of NE. For a demonstration of this for
different classes of nonzero-sum games, see references [27, 30, 97], and for applications
in communication systems and networks, see, e.g., references [7, 10, 21].

If a noncooperative game does not admit a pure-strategy NE, but a mixed-strategy
one, then the iterations above will have to be modified. For example, in the two-person
zero-sum matrix game of (A.4), a parallel update or round robin will lead to indefinite
cycling and would never converge. In fact for a mixed-strategy equilibrium,5 the players
will have to build empirical frequencies of the other players’ actions over the course of
the game, and pick their actions at each stage so as to optimize their expected costs under
these empirical probabilities. If the sequence of empirical probabilities thus generated
converge, then they converge to the mixed-strategy NE (assuming that it is unique). Such
a scheme was first introduced in the context of zero-sum matrix games by Robinson
[145], and is known as fictitious play. This is still an active area of research, and is also
discussed in Chapter 5 of this book, where further references can be found.

A.3 Introduction to optimal and robust control theory

Optimal control theory deals with the selection of best inputs over time for a dynamic
system – best in the sense of optimization of a performance index. Robust control the-
ory deals with the selection of inputs that are robust to the presence of unmodeled
disturbances. The time interval over which the inputs are picked could be continu-
ous or discrete, with the underlying problems respectively called continuous-time or
discrete-time.

In this section, we discuss some key elements of optimal and robust control
problems, and present some of the main results. The section comprises four sub-
sections. The first two deal with dynamic programming applied to discrete-time and

4 Contraction means that there exists a λ ∈ (0,1), such that, using the Euclidean norm, ‖ ·‖, ‖ρ(x)−ρ(ξ)‖ ≤
λ‖x− ξ‖ , ∀x,ξ ∈ Ω. If ρ : Ω→ Ω, and Ω is a compact subset of a complete vector space, then ρ has a
fixed point.

5 In the zero-sum matrix game of (A.4), the unique mixed-strategy saddle point is for each player to mix
between his/ her two choices with equal probability, 1/2.
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continuous-time optimal control problems, the third is on the alternative theory provided
by the minimum principle, and the fourth and last section deals with robust optimal
control (more precisely, H∞ control) for only linear-quadratic systems.

A.3.1 Dynamic programming for discrete-time systems

The method of dynamic programming (DP) is based on the principle of optimality,
which states that an optimal strategy (or decision) has the property that, whatever the
initial state and time are, all remaining decisions from that particular initial state and
particular initial time onwards must also constitute an optimal strategy. To exploit this
principle, one works in retrograde time, starting at all possible final states with the
corresponding final times.

Consider the dynamic system whose n-dimensional state x evolves according to the
difference equation:

xk+1 = fk(xk,uk), uk ∈Uk, k = 1, . . . ,K,

where uk is the r-dimensional control input at the discrete time instant k, chosen from
the constraint set Uk, and fk is the function characterizing the system dynamics. The
performance index is given by the cost functional (to be minimized)

J(u) =
K

∑
k=1

gk(xk+1,uk,xk),

where u := {uk, k = 1, . . . ,K}, and gk,k = 1, . . . ,K, is the so-called stagewise cost.
The control is allowed to depend on the current value of the state, uk = µk(xk), where

µk(·) denotes a permissible (control) strategy at stage k. Such a control function is
known as feedback control, and dynamic programming makes it possible to obtain the
optimal feedback control, as opposed to the open-loop control which depends only on
the initial state, x1, for all time k. Now, in order to determine the minimizing feedback
control strategy, we will need the expression for the minimum cost from any starting
point (state) at any starting time. This is also called the value function, and is defined as

V (k,x) = min
µk,...,µK

[
K

∑
i=k

gi(xi+1,ui,xi)

]

with ui = µi(xi)∈Ui and xk = x. A direct application of the principle of optimality leads
to the recursive relation (DP equation)

V (k,x) = min
uk∈Uk

[gk( fk(x,uk),uk,x)+V (k +1, fk(x,uk))].

If the optimal control problem admits a solution u∗ =
{

u∗k ,k = 1, . . . ,K
}

, then the solu-
tion V (1,x1) of the recursive equation above should equal J(u∗), and furthermore each
u∗k should be determined as an argument of the right-hand-side of the DP equation.
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Affine-quadratic problems

An important special case is the so-called affine-quadratic (or linear-quadratic)
discrete-time optimal control problem, which is described by the state equation

xk+1 = Akxk +Bkuk + ck,

and cost functional

J(u) =
1
2

K

∑
k=1

(
xT

k+1Qk+1xk+1 +uT
k Rkuk

)
,

where, ck ∈ R
n, Rk > 0 is an r× r matrix, Qk+1 ≥ 0 is an n× n matrix for all k =

1, . . . ,K, and A(·), B(·) are matrices of appropriate dimensions. Here, the corresponding
expression for fk is obvious, but the one for gk is not uniquely defined; however, it is
more convenient to take it as

gk(uk,xk) =

⎧⎪⎨
⎪⎩

uT
1 R1u1 ,k = 1

uT
k Rkuk + xT

k Qkxk ,k 
= 1,K +1

xT
K+1QK+1xK+1 ,k = K +1.

It follows by inspection that V (k,x) is a general quadratic function of x for all k =
1, . . . ,K, and that V (K + 1,xK+1) = 1

2 xT
K+1QK+1xK+1. This leads to the structural form

V (k,x) = 1
2 xT Skx + xT sk +qk. Substitution of this in the DP equation yields the unique

solution of the affine-quadratic optimal control problem to be:

u∗k = µ∗k(xk) =−PkSk+1Akxk−Pk(sk+1 +Sk+1ck), k = 1, . . . ,K,

where

Pk =
[
Rk +BT

k Sk+1Bk
]−1

BT
k

Sk = Qk +AT
k Sk+1[I−BkPkSk+1]Ak; Sk+1 = QK+1

sk = AT
k [I−BkPkSk+1]T [sk+1 +Sk+1ck]; sK+1 = 0 .

The equation generating the {Sk} above is known as the discrete-time Riccati equation.
Furthermore, the minimum value of J(u) is

J(u∗) =
1
2

xT
1 S1x1 + xT

1 s1 +q1

where

q1 =
1
2

K

∑
k=1

cT
k Sk+1ck− (sk+1 +Sk+1ck)T PT

k BT
k (sk+1 +Sk+1ck)+2cT

k sk+1.

Infinite horizon linear-quadratic problems

We now consider the time-invariant version of the linear-quadratic optimal control
problem (that is, with ck = 0 for all k, and matrices Ak,Bk,Qk, and Rk independent of
k, which we henceforth write without the index k) when the number of stages is infinite
(that is, K → ∞). This is known as the discrete-time infinite-horizon linear-quadratic
optimal control problem, which is formulated as
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min
u

1
2

∞

∑
k=1

(
xT

k+1Qxk+1 +uT
k Ruk

)
; Q≥ 0, R > 0

subject to

xk+1 = Axk +Buk , k = 1, . . .

For the problem to be well defined, one has to assume that there exists at least one
control sequence under which the infinite-horizon cost is finite, and that the optimization
process yields a control that results in a stable closed-loop system.

The conditions that guarantee this are stabilizability of the matrix pair (A,B), and
detectability of the matrix pair (A,D), where D is a matrix such that DT D = Q. These
notions of stabilizability and detectability belong to the realm of the theory of linear
systems; see, for instance, references [83] or [22]. The pair (A,B) is stabilizable if an
r×n matrix F exists such that (A+BF) is a stable matrix for a discrete-time linear sys-
tem. In other words, all vector sequences generated by the system xk+1 = (A + BF)xk

corresponding to all initial conditions x1 converge asymptotically to zero, or equiva-
lently all eigenvalues of (A + BF) lie strictly within the unit circle. The pair (A,D) is
detectable if its “dual pair,” (AT ,DT ) is stabilizable. In terms of the cost function, this
means that all unstable modes of the open-loop system (of the matrix A), which affect
the term xT DDT x, have to be made stable through the optimization process such that the
cost remains bounded. This is of course only possible if those modes are stabilizable,
which is already guaranteed by the first condition.

Under the conditions above, and for the infinite-horizon optimal control problem
posed, there exists a unique time-invariant optimal feedback control law,

u∗(t) = µ∗(x(t)) = F∗x(t)≡−[R+BT SB]−1BT SAx(t) ,

where S is the unique solution of the discrete-time algebraic Riccati equation (ARE)

S = Q+AT S[I−B(R+BT SB)−1BS]A (DT-ARE)

within the class of non-negative definite matrices.6,7 Furthermore, the (closed-loop)
matrix A−B(R+BT SB)−1BS is stable (that is, all its eigenvalues lie strictly within the
unit circle), and the minimum value of the cost functional is 1

2 xT
1 Sx1.

A.3.2 Dynamic programming for continuous-time systems

We provide here the counterparts of the results of the previous section in the continu-
ous time. The system dynamics and the cost function for a finite-horizon problem are
given by

6 This solution is the convergent limit of the sequence {Sk} generated by the discrete-time Riccati equation,

for any starting condition SK+1 = QK+1 ≥ 0 as k→−∞, or equivalently if S(K)
k denotes the solution of the

finite-horizon discrete-time Riccati equation, then S(K)
k → S, the unique solution of (DT-ARE) in the class

of non-negative definite matrices, for each finite k as K→ ∞.
7 Under the further condition that (A,D) is observable, every non-negative-definite matrix solution of DT-

ARE is positive definite.
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ẋ = f (t,x,u(t)), x(0) = x0, t ≥ 0

and

J(u) =
∫ T

0
g(t,x,u)dt +q(x(T )) ,

where f , g, and q are assumed to be continuous in their arguments. Here the interval
of interest is [0,T ], q denotes the terminal cost, and g the incremental cost. The control
u is generated again using the feedback policy, u(t) = µ(t,x(t)), where µ has to satisfy
additional conditions such that when it is substituted for u in the state equation, the
resulting differential equation admits a unique continuously differentiable solution for
each initial condition x(0) = x0. One such set of conditions is for µ(t,x) to be continuous
in t and Lipschitz in x, in addition to f being continuous in t and Lipschitz in x and u.
Such control laws are said to be admissible; we henceforth restrict the analysis to the
class of admissible feedback strategies.

The minimum cost-to-go from any initial state (x) and any initial time (t) is described
by the so-called value function, V (t,x), which is defined by

V (t,x) = min
{u(s),s≥t}

[∫ T

t
g(s,x(s),u(s))ds+q(x(T ))

]
,

satisfying the boundary condition

V (T,x) = q(x) .

Let us assume that V is continuously differentiable in both arguments. Then, a direct
application of the principle of optimality on this problem leads to the HJB equation,
which is a partial differential equation:

−∂V (t,x)
∂t

= min
u

[
∂V (t,x)
∂x

f (t,x,u)+g(t,x,u)
]

; V (T,x) = q(x) .

If a continuously differentiable solution to this HJB equation exists, then it generates the
optimal control law through the static (pointwise) minimization problem defined by its
right-hand side, leading to u∗(t) = µ∗(t,x). Note that this is a closed-loop state-feedback
controller, which has the property that if some non-optimal control is applied initially in
some subinterval [0,s), then µ∗ is still the optimal controller from that point on, that is,
on the remaining interval [s,T ]; such controllers are called strongly time consistent [31].

Affine-quadratic problems

The HJB equation does not generally admit a closed-form solution, but it does for affine-
quadratic (or linear-quadratic) problems. In these problems (as the continuous-time
counterpart of the earlier discrete-time problem), the system dynamics are described by

ẋ = A(t)x+B(t)u(t)+ c(t); x(0) = x0,

and the cost functional to be minimized is given as

J(u) =
1
2

xT (T )Q f x(T )+
1
2

∫ T

0
(xT Qx+2xT p+uT Ru)dt ,
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where A(·), B(·), Q(·) ≥ 0, R(·) > 0 are matrices of appropriate dimensions and with
continuous entries on [0,T ]. Q f is a non-negative definite matrix, and c(·) and p(·) are
continuous vector-valued functions, taking values in R

n. Then, the value function is
general quadratic, in the form

V (t,x) =
1
2

xT S(t)x+ kT (t)x+m(t) ,

where S(·) is a symmetric n×n matrix with continuously differentiable entries, k(·) is a
continuously differentiable n-vector, and m(·) is a continuously differentiable function.
Substitution of this structure into the HJB equation leads to

−1
2

xT Ṡx− xT k̇− ṁ

= min
u∈Rn

[
(Sx+ k)T (Ax+Bu+ c)+

1
2

xT Qx+ xT p+
1
2

uT Ru

]
.

Carrying out the minimization on the right-hand side yields

u∗(t) = µ∗(t,x(t)) =−R−1BT [S(t)x(t)+ k(t)],

substitution of which back into the HJB equation leads to an identity relation which is
readily satisfied if

Ṡ +SA+AT S−SBR−1BT S +Q = 0, S(T ) = Q f ,

k̇ +(A−BR−1BT S)T k +Sc+ p = 0, k(T ) = 0,

ṁ+ kT c− 1
2

kT BR−1BT k = 0, m(T ) = 0 ,

where the S equation is known as the Riccati differential equation (RDE), which admits
a unique continuously differentiable solution which is non-negative definite. The other
two equations (for k and m) being affine also admit unique continuously differentiable
solutions. The end result is that µ∗ above is indeed the unique optimal control law, and
the minimum value of the cost functional is

J(µ∗) =
1
2

xT
0 S(0)x0 + kT (0)x0 +m(0).

Infinite-horizon linear-quadratic problems
Meaningful continuous-time linear-quadratic optimal control problems when T → ∞
can also be formulated, paralleling the development in the discrete-time case dis-
cussed in the previous section. Toward that end we take c(t) ≡ 0, and the matrices
A(t),B(t),Q(t) and R(t) to be independent of t. Then the problem becomes

min
u

1
2

∫ ∞

0
(xT Qx+uT Ru)dt ; Q≥ 0, R > 0,

subject to

ẋ = Ax+Bu.

Conditions which ensure that this problem is well defined (with a finite minimum) are
precisely those of the discrete-time analog of this problem, i.e. the matrix pair (A,B)
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must be stabilizable and the matrix pair (D,A), where D is a matrix such that DT D = Q,
must be detectable; see, for instance, reference [83] for discussions on these notions in
the continuous time. The pair (A,B) is stabilizable if an r×n matrix F exists such that
(A+BF) is stable in the sense of continuous-time systems, i.e. all its eigenvalues lie in
the open left half of the complex plane (note the difference of this definition of stability
from that for its discrete-time counterpart). Furthermore, the pair (D,A) is detectable if
its “dual pair,” (AT ,DT ) is stabilizable. Under these two conditions, the infinite-horizon
LQ optimal control problem (also known as the LQR) admits a unique time-invariant
optimal feedback control law,

u∗(t) = µ∗(x(t)) =−R−1BT Sx(t) ,

where S is the unique solution of the continuous-time ARE

SA+AT S−SBR−1BT S +Q = 0 (CT-ARE)

within the class of non-negative definite matrices.8,9 Furthermore, the (closed-loop)
matrix A−BR−1BT S is stable (i.e. all its eigenvalues lie in the open left half of the
complex plane), and the minimum value of the cost functional is 1

2 xT
0 Sx0.

A.3.3 The minimum principle

The dynamic programming approach to optimal control, discussed in the previous sec-
tion, yields a state-feedback control policy, µ∗, which is a function of time, t, and the
current value of the state, x. A corresponding open-loop control policy, that is, one that
depends only on time and the initial state, can be obtained by substituting the feedback
control in the state equation, solving for the corresponding (optimal) state trajectory,
and then evaluating the feedback control policy on that optimal trajectory. Hence, if
x∗(t), t ≥ 0, is the optimal state trajectory (in continuous time), then it will be generated
by the differential equation

ẋ∗ = f (t,x∗,µ∗(t,x∗)) , x∗(0) = x0 ,

and the optimal open-loop control will be given by

u∗(t) = µ∗(t,x∗(t)) ,

where we have suppressed the dependence on the initial state x0. This control function
also minimizes the cost

J(u) =
∫ T

0
g(t,x,u)dt +q(x(T )) ,

8 This solution S has the property that for fixed t, and for every Q f ≥ 0, the unique non-negative definite
solution to the continuous-time RDE, ST (t), converges to S (uniformly in t < T ) as T → ∞.

9 Under the stronger condition that (A,D) is observable (a sufficient condition for which is Q > 0), the
solution to CT-ARE (in the class of non-negative definite matrices) is positive definite.
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under the dynamic state constraint

ẋ = f (t,x,u(t)), x(0) = x0, t ≥ 0 ,

and hence solves the optimal control problem. But, it is not strongly time consistent,
that is, if there is any deviation in the state trajectory at some time t = s due to some
non-optimal control input over the interval (0,s), u∗ will no longer be optimal from that
point on. If there is no such deviation, however, then re-optimizing from time s on (with
new initial condition x(s) = x∗(s)) will lead still to u∗ as the optimal control over [s,T ];
to capture this one says that u∗ is time consistent, but not strongly (as in the case of the
optimal state-feedback control).

Now the question is whether the optimal open-loop control can be derived directly,
without resorting to dynamic programming and the solution of the HJB equation. The
answer to this question lies in the minimum principle, developed by Pontryagin in the
late 1950s [137]. Introduce the Hamiltonian

H(t, p,x,u) = g(t,x,u)+ pT (t) f (t,x,u) ,

where p(·) is the co-state variable. If u∗(·) is the open-loop controller that solves the
optimal control problem, then it minimizes the Hamiltonian for each t, that is10

u∗(t) = arg min
u

H(t, p(t),x∗(t),u) ,

where x∗(·) is the optimum state

ẋ∗(t) =
(
∂H
∂p

)T

= f (t,x∗(t),u∗(t)) , x∗(0) = x0 ,

and the co-state p solves the retrograde differential equation

ṗT (t) =−∂H(t, p(t),x∗(t),u∗(t))
∂x

, pT (T ) =
∂q(x∗(T ))

∂x
.

The minimum principle applies to a broader class of optimal control problems where
the solution need not be smooth (for example, the optimal open-loop control could be
of the bang-bang type, switching back and forth between extreme values), but when the
solution is smooth, and the HJB equation admits a continuously differentiable solution,
the co-state variable is equal to the gradient of the optimal value function evaluated on
the optimal trajectory, that is

pT (t) = ∂V (t,x∗(t))/∂x ,

which is the connection between the HJB approach to optimal control and the minimum
principle.

10 If there are any pointwise constraints on u for each t, such as u(t) ∈U(t), where U(t) is a given constraint
set in R

r , then the minimization below will be over this set U(t).
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A.3.4 H∞-optimal control

We discuss in this section a robust control approach to optimal control, first when the
state dynamics are disturbed by an unknown input (so-called disturbance input), and
then when the measurements are also perturbed by disturbance (or unknown noise).
Hence, the earlier state dynamics are now replaced by

ẋ = f (t;x(t),u(t),w(t)) , x(0) = x0, t ≥ 0 ,

where w(·) is the unknown disturbance input, of dimension not necessarily the same as
that of u or that of x. The cost functional is still given as before

L(u,w) =
∫ T

0
g(t,x(t),u(t))dt +q(x(T )) ,

where now we have w also appearing as an argument because L depends on w through x.
The objective is to find the controller (say, state-feedback controller) under which some
safe value of the performance is obtained regardless of the choice of w. One criterion
is to make the ratio of L to the square of the norm of w as small as possible for worst
(maximizing) values of w. For mathematical convenience, one also lumps the norm of
x0 with that of w, by viewing x0 as also unknown, leading to the ratio

L(u,w)/[‖w‖2 +qo(x0)]

where

‖w‖2 :=
∫ T

0
wT (t)w(t)dt ,

and qo(x0) is a positive cost on x0, which is zero at zero, such as the square of the
Euclidean norm. We want to find the state-feedback control law µ which minimizes
the maximum of the ratio over all (unrestricted) w’s and xo’s. If that min max, or more
precisely the sup inf value is denoted by γ∗, even though it may not be achieved, one
would be looking at feedback controls that achieve (for the ratio) some γ > γ∗, known
as disturbance attenuation. In the linear-quadratic case (that is, when the dynamics are
linear and L is quadratic, supremum (over all w’s) of this ratio (or of its square root) is
known as the H∞ norm, and hence the controller sought would be minimizing the H∞

norm — the reason why this class of problems is known as H∞-optimal control or simply
H∞-control. An application of H∞-optimal control to network security is presented in
Chapter 7.

It can be shown that minimization of this H∞ norm is equivalent to solving a game (a
zero-sum differential game), with dynamics as given above, and with a parameterized
objective function

Lγ(u,w) = L(u,w)− γ2 ‖w‖2− γ2 q0(x0) ,

where the scalar γ > γ∗, and we take x0 at this point to be fixed and known (instead
of being controlled by an adversary). This objective function will be maximized by the
disturbance w (which we can call the maximizing player) and minimized by the con-
troller, u(t) = µ(t,x(t)) (which we can call the minimizing player), and the maximizing



A.3 Introduction to optimal and robust control theory 297

disturbance can also be allowed to depend on the state, that is, w(t) = ν(t,x(t)). If
this game admits a saddle-point solution,

(
µ∗γ ,ν∗γ

)
over the policy spaces of the two

players,11 that is

min
µ

Lγ
(
µ,ν∗γ

)
= max

ν
Lγ
(
µ∗γ ,ν

)
= Lγ

(
µ∗γ ,ν

∗
γ
)

=: L∗γ ,

then L∗γ is known as the value of the game. If we consider a version of the same game
over a (truncated) shorter interval, say [s,T ], with the value of the state at time t = s
being x(s) = x, then we can introduce the value of that truncated (in time) game as a
function of s and x, which we denote by Vγ(s,x). If V is continuously differentiable in
the two arguments, then it satisfies the Isaacs equation (or the Hamilton–Jacobi–Isaacs
(HJI) equation),12 which is the counterpart (in fact, generalization) of the HJB equation
that arises in optimal control, which was introduced in the previous section:

∂V (t,x)
∂t

= inf
u

sup
w

[
∂V (t,x)
∂x

f (t,x,u,w)+g(t,x,u)− γ2 |w|2
]

=
∂V (t,x)
∂x

f (t,x,µ∗(t,x),ν∗(t,x))

+g(t,x,µ∗(t,x))− γ2 |ν∗(t,x)|2
V (T,x) = q(x) ,

where we have suppressed the dependence of the saddle-point policies on the parame-
ter γ. Then the value of the game over the original horizon, [0,T ], will be V (0,x0)−
γ2qo(x0), and if x0 is also viewed as being controlled by the disturbance (adversary), its
worst value will be the one that maximizes this function, that is

x∗0 = arg max
x∈Rn

[
V (0,x)− γ2qo(x)

]
,

leading to Vγ (0,x∗0)− γ2qo (x∗0) as the value of the game for each γ> γ∗.
Of course, γ∗ is not known a priori, and has to be computed a posteriori. We now

discuss this further for the case when the state dynamics are linear and the objective
function is quadratic, and the initial state is x0 = 0, which is the original H∞-control
problem, when T → ∞. But we first discuss the finite-horizon time-varying problem,
and subsequently the infinite-horizon one.

LQ systems with state-feedback controller: finite-horizon case

Consider now the following structural choices for f , g, and q, and take the initial state
to be x0 = 0:

f (t,x,u,w) = A(t)x+ B(t)u(t) + D(t)w(t) ,

g(t,x,u) =
1
2

[
xT Q(t)x+uT u

]
, q(x) =

1
2

xT Q f x ,

11 Since the game is parameterized in γ, the saddle-point solution will depend on this parameter, which is
why we have γ appearing as a subscript in the two policies.

12 This was first introduced by Rufus Isaacs while he was working at RAND Corporation in the early 1950s;
his book, Differential Games, later appeared in 1965 [81].
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where A(·),B(·),D(·),Q(·)≥ 0 are matrices of appropriate dimensions with continuous
entries, and Q f ≥ 0. Using this structure in the HJI equation leads to the solution
Vγ(t,x) = 1

2 xT Zγ(t)x, where Zγ(·) ≥ 0 solves the following generalized Riccati differ-
ential equation:

GRDE-1 :

Ż +AT Z +ZA−Z(BBT − γ−2DDT )Z +Q = 0; Z(T ) = Q f ,

assuming of course that such a solution exists. Under this condition, the saddle-point
solution of the underlying differential game is

µ∗γ(t,x) =−B(t)T Zγ(t)x , ν∗γ(t,x) = γ−2D(t)T Zγ(t)x .

Note that the GRDE-1 becomes identical to the RDE encountered in the context of
the LQ optimal control problem when γ−2 = 0, that is, when there is infinite cost on the
disturbance, in which case we have already noted that there exists a unique solution. In
view of this, let us introduce the following:

γ̂ := inf{γ> 0 : GRDE-1 admits a solution on [0,T ]}.
Then, γ∗ = γ̂, that is the optimum disturbance attenuation level, γ∗, can be computed
offline in connection with the solution of the GRDE-1. For each γ > γ∗, the saddle-
point property of the state-feedback control policy, µ∗γ , introduced above, implies that it
achieves the performance bound γ for the linear system, that is

sup
w

[
L
(
µ∗γ ,w

)
/‖w‖2]≤ γ2 ,

and γ∗ is the smallest such γ for any state-feedback controller. The controller

µ∗γ(t,x) =−B(t)T Zγ(t)x , for γ< γ∗ ,

is known as the H∞ controller.

LQ systems with state-feedback controller: infinite-horizon case

For the infinite-horizon case, as in the case of the LQR problem, we take all matrices
to be time invariant, Q f = 0, and let T → ∞. Then, the GRDE-1 is replaced with the
generalized algebraic Riccati equation (GARE):

GARE-1 : AT Z +ZA−Z(BBT − γ−2DDT )Z +Q = 0

for which we seek a non-negative-definite solution. Note again that for γ−2 = 0, this
equation becomes identical to CT-ARE introduced for the LQR problem earlier. The
counterpart of γ̂ in this case is

γ̂∞ := inf{γ> 0 : GARE-1 admits a non-negative-definite solution}.
As in the case of LQR, we require the pair (A,B) to be stabilizable, and the pair (H,A)
to be detectable, where H is any matrix with the property HT H = Q. Then, we have the
following results:
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1. γ∗∞ is finite, and γ∗∞ = γ̂∞.

2. For each γ > γ∗∞, GARE-1 admits a unique minimal non-negative-definite solution,
Z̄+
γ , in the sense that if there is some other non-negative-definite solution, Ẑ 
= Z̄+,

then Ẑ− Z̄+ ≥ 0.

3. For each γ> γ∗∞, there exists a time-invariant state-feedback controller that achieves
the performance bound γ, which is given by

µ∗γ(x) =−BT Z̄+
γ x .

Equivalently, if L2[0,∞) denotes the space of square-integrable functions on [0,∞) of
dimension equal to that of w,

L
(
µ∗γ ,w

)≤ γ2‖w‖ , ∀w ∈ L2[0,∞).

4. The state-feedback controller above leads to a bounded input bounded state (BIBS)
stable system, that is, the matrix A−BBT Z̄+

γ has all its eigenvalues in the open left
half plane (that is, it is Hurwitz).

LQ systems with imperfect state measurements

We now discuss the solution of the H∞-control problem when the controller has access
to only a noise-corrupted version of the state, with the noise being again an unknown
disturbance. We cover only the infinite-horizon (time-invariant) case. The finite-horizon
case and details of the derivation of the solution below for the infinite-horizon case can
be found in reference [29].

The m-dimensional measured output available to the controller is

y(t) = C x(t) + E v(t) , EET =: N, N > 0,

where C is an m× n matrix, v is an additional disturbance of dimension no lower than
m, and the positive definiteness of EET implies that all components of y are corrupted
by noise. The control has access to the current as well as past values of y; we call such
control policies closed-loop measurement feedback. The performance index (PI) now
also has the norm of v entering alongside w:(‖x‖2

Q +‖u‖2)/(‖w‖2 +‖v‖2)
where

‖x‖2
Q :=

∫ ∞

−∞
x(t)T Qx(t)dt

with similar definitions applying to other norms. The H∞-control problem is one of
finding a closed-loop measurement feedback controller which yields the lowest possible
value to PI when both w and v are maximizers. Denote this lowest possible value by γ∗I∞,
which is the optimum disturbance attenuation for the measurement output feedback
problem.
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In addition to GARE-1 introduced earlier, let us introduce a second GARE:

GARE-2 : AΣ+ΣAT −Σ(CT N−1C− γ−2HT H)Σ+DDT = 0

Let γ̂I∞ be the infimum of the set of all γ > 0 such that GARE-1 and GARE-2 admit
non-negative-definite solutions Z̄γ and Σ̄γ, with the property that ρ(Σ̄γZ̄γ) < γ2 , where
ρ(·) is the spectral radius.
Assume that (A,B) and (A,D) are stabilizable, and (H,A) and (C,A) are detectable.
Then, we have the following:

1. γ∗I∞ is finite, and γ∗I∞ = γ̂I∞.

2. For each γ > γ∗I∞, GARE-1 admits a unique minimal non-negative-definite solution,
Z̄+
γ , and GARE-2 admits a unique minimal non-negative-definite solution, Σ̄+

γ ,
which further satisfy the spectral radius condition ρ

(
Σ̄+
γ Z̄+

γ
)

< γ2.

3. For each γ > γ∗I∞, there exists a controller that achieves the performance bound γ,
which is given by

µ∗γ(y) =−BT Z̄+
γ x̂(t) ,

where

˙̂x =
[
A− (BBT − γ−2DDT )Z̄+

γ
]

x̂+
[
I− γ−2Σ̄+

γ Z̄+
γ
]−1 Σ̄+

γ CT N−1(y−Cx̂).

Equivalently, with u(t) = µ∗γ (y) =−BT Z̄+
γ x̂(t),

‖x‖2
Q +‖u‖2 ≤ γ2 (‖w‖2 +‖v‖2) , ∀w ∈ L2(−∞,∞) and ∀v ∈ L2(−∞,∞).

4. The controller above leads to a BIBS stable 2n-dimensional system, that is, the
matrices A−BBT Z̄+

γ and A− Σ̄+
γ CT N−1C are Hurwitz.

It is instructive to consider the limiting case of this solution (as well as of the problem)
when γ−2 = 0. As we have commented earlier, GARE-1 becomes the standard CT-ARE
in this case:

AT Z +ZA−ZBBT Z +Q = 0 .

GARE-2, on the other hand, also becomes a standard GARE:

AΣ+ΣAT −ΣCT N−1CΣ+DDT = 0 ,

which is that of Kalman filtering, where in the measurement equation, as well as in
the system dynamics, v and w are taken as independent white noise processes. Under
the given stabilizability and detectability conditions, there exist unique non-negative-
definite solutions to these two equations, which we denote by Z̄ and Σ̄, respectively. The
differential equation generating x̂ now becomes

˙̂x = [A−BBT Z̄] x̂+ Σ̄CT N−1(y−Cx̂),
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which is the evolution of the conditional mean in the Kalman filter. The robust
controller, µ∗γ , then becomes

u∗(t) = µ∗(x̂) =−BT Z̄ x̂(t) , t ≥ 0,

which is the unique optimal control associated with the linear-quadratic-Gaussian
(LQG) problem. Note that since this corresponds to γ=∞, the optimum LQG controller
does not guarantee any level of disturbance attenuation.
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[15] T. Alpcan, X. Fan, T. Başar, M. Arcak, and J. T. Wen, “Power control for multicell CDMA
wireless networks: A team optimization approach,” Wireless Networks, 14(5), 647–657, Oct.
2008.



References 303

[16] T. Alpcan and X. Liu, “A game theoretic recommendation system for security alert
dissemination,” in Proc. IEEE/IFIP Intl Conf. on Network and Service Security (N2S 2009), Paris,
France, June 2009.

[17] T. Alpcan, C. Orencik, A. Levi, and E. Savas, “A game theoretic model for digital identity and trust
in online communities,” in Proc. 5th ACM Symp. on Information, Computer and Communications
Security (ASIACCS), April 2010.

[18] T. Alpcan and L. Pavel, “Nash equilibrium design and optimization,” in Proc. Intl Conf. on Game
Theory for Networks (GameNets), Istanbul, Turkey, May 2009.

[19] T. Alpcan, L. Pavel, and N. Stefanovic, “A control theoretic approach to noncooperative game
design,” in Proc. 48th IEEE Conf. on Decision and Control (CDC), Shanghai, China, December
2009.

[20] T. Alpcan, N. Shimkin, and L. Wynter, “International Workshop on Game Theory in Commu-
nication Networks (GameComm),” October 2008. [Online]. Available: http://www.game-comm.
org
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[31] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd edn. Philadelphia, PA:

SIAM, 1999.
[32] C. Bauckhage, “Image tagging using pagerank over bipartite graphs,” in LNCS: Pattern Recogni-

tion, G. Rigoll, ed. Berlin / Heidelberg: Springer, 2008, vol. 5096/2008.
[33] A. Beresford and F. Stajano, “Mix zones: User privacy in location-aware services,” in Proc. 2nd

IEEE Conference on Pervasive Computing and Communications Workshops, 2004, March 2004,
pp. 127–131.

[34] U. Berger, “Fictitious play in 2xn games,” J. Econ. Theor., 120(2), 139–154, 2005.
[35] D. Bertsekas, Nonlinear Programming, 2nd edn. Belmont, MA: Athena Scientific, 1999.
[36] ——, Dynamic Programming and Optimal Control, 3rd edn. Belmont, MA: Athena Scientific,

2007, vol. 2.
[37] D. Bertsekas and R. Gallager, Data Networks. 2nd edn. Upper Saddle River, NJ: Prentice Hall,

1992.



304 References

[38] D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods.
Upper Saddle River, NJ: Prentice Hall, 1989.

[39] I. Bilogrevic, M. H. Manshaei, M. Raya, and J.-P. Hubaux, “Optimal revocations in ephemeral
networks: A game-theoretic framework,” in Proc. of 8th Intl. Symp. on Modeling and Optimiza-
tion in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Avignon, France, May 2010.

[40] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics).
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
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[86] A. Kashyap, T. Başar, and R. Srikant, “Correlated jamming on MIMO Gaussian fading channels,”
IEEE Trans. Inf. Theory, 50(9), 2119–2123, Sept. 2004.

[87] ——, “Asymptotically optimal quantization for detection in power constrained decentralized net-
works,” in Proc. 2006 American Control Conf. (ACC), Minneapolis, MN, USA, June 2006, pp.
14–16.

[88] M. Kodialam and T. V. Lakshman, “Detecting network intrusions via sampling: A game theoretic
approach,” in Proc. 22nd IEEE Conf. on Computer Communications (Infocom), San Fransisco,
CA, April 2003, vol. 3, pp. 1880–1889.

[89] O. Kreidl and T. Frazier, “Feedback control applied to survivability: A host-based autonomic
defense system,” IEEE Trans. Reliability, 53(1), 148–166, March 2004.

[90] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 5th ed. USA:
Addison-Wesley, 2009.

[91] M. G. Lagoudakis and R. Parr, “Value function approximation in zero sum Markov games,” in
Proc. 18th Conf. on Uncertainty in Artificial Intelligence (UAI). Morgan Kaufmann, 2002, pp.
283–292.

[92] T. L. Lai, “Sequential analysis: some classical problems and new challenges,” Statistica Sinica,
11, 303–408, 2001.

[93] A. Langville and C. Meyer, “A survey of eigenvector methods for Web information retrieval,”
SIAM Rev., 47(1), 135–161, 2005.

[94] S. Leyffer, “The return of the active set method,” Oberwolfach Reports, 2(1), 2005.
[95] K. Leyton-Brown and Y. Shoham, Essentials of Game Theory: A Concise, Multidisciplinary

Introduction, ser. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
Claypool Publishers, 2008.

[96] M. Li, K. Sampigethaya, L. Huang, and R. Poovendran, “Swing & swap: User centric approaches
towards maximizing location privacy,” in Workshop on Privacy in the Electronic Society (WPES),
2006.
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