
“This book is a great technical arsenal for every graduate student and post-
graduate researcher. By providing a treasure trove of concrete algorithmic
examples, the book trains the reader to recognize clues that indicate the
complexity of a broad range of algorithmic problems, while supplying
a battery of techniques for solving a particular problem in hand. …”
—Umit Catalyurek, Professor, Ohio State University

“This book is unique among texts on algorithmics in its emphasis on how
to ‘think algorithmically’ rather than just how to solve specific (classes of)
algorithmic problems. The authors skillfully engage the reader in a journey
of algorithmic self-discovery as they cover a broad spectrum of issues …
I shall be very happy to have this text on my bookshelf as a reference on
methods as well as results.”
—Arnold L. Rosenberg, Research Professor, Northeastern University, and
Distinguished University Professor Emeritus, University of Massachusetts
Amherst

“This book presents a well-balanced approach to theory and algorithms
and introduces difficult concepts using rich motivating examples. It
demonstrates the applicability of fundamental principles and analysis
techniques to practical problems facing computer scientists and engineers.
You do not have to be a theoretician to enjoy and learn from this book.”
—Rami Melhem, Professor of Computer Science, University of Pittsburgh

Presenting a complementary perspective to standard books on algorithms,
A Guide to Algorithm Design: Paradigms, Methods, and Complexity
Analysis provides a roadmap for readers to determine the difficulty of an
algorithmic problem by finding an optimal solution or proving complexity
results. It gives a practical treatment of algorithmic complexity and guides
readers in solving algorithmic problems. The book offers a comprehensive
set of problems with solutions as well as in-depth case studies that
demonstrate how to assess the complexity of a new problem.

K11226

Computer Science/Computer Engineering/Computing

Anne Benoit, Yves Robert,
and Frédéric Vivien

B
enoit, R

obert,
and V

ivien

Chapman & Hall/CRC
Applied Algorithms and Data Structures Series

A G U I D E T O

ALGORITHM
DESIGN

A
 G

U
I

D
E

 T
O

A
L

G
O

R
IT

H
M

 D
E

SIG
N

Paradigms, Methods, and Complexity Analysis

K11226_Cover.indd 1 5/31/13 9:17 AM

A G U I D E T O

ALGORITHM
DESIGN

Paradigms, Methods, and Complexity Analysis

K11226_FM.indd 1 7/24/13 8:38 AM

© 2014 by Taylor & Francis Group, LLC

Chapman & Hall/CRC

Aims and Scopes

The design and analysis of algorithms and data structures form the foundation of computer
science. As current algorithms and data structures are improved and new methods are
introduced, it becomes increasingly important to present the latest research and applications
to professionals in the field.

This series aims to capture new developments and applications in the design and analysis
of algorithms and data structures through the publication of a broad range of textbooks,
reference works, and handbooks. The inclusion of concrete examples and applications is
highly encouraged. The scope of the series includes, but is not limited to, titles in the
areas of parallel algorithms, approximation algorithms, randomized algorithms, graph
algorithms, search algorithms, machine learning algorithms, medical algorithms, data
structures, graph structures, tree data structures, and other relevant topics that might be
proposed by potential contributors.

Published Titles

A Practical Guide to Data Structures and Algorithms Using Java
Sally A. Goldman and Kenneth J. Goldman

Algorithms and Theory of Computation Handbook, Second Edition – Two Volume Set
Edited by Mikhail J. Atallah and Marina Blanton

Mathematical and Algorithmic Foundations of the Internet
Fabrizio Luccio and Linda Pagli, with Graham Steel

The Garbage Collection Handbook: The Art of Automatic Memory Management
Richard Jones, Antony Hosking, and Eliot Moss

A Guide to Algorithm Design: Paradigms, Methods, and Complexity Analysis
Anne Benoit, Yves Robert, and Frédéric Vivien

Applied Algorithms and Data Structures Series

Series Editor
Samir Khuller

University of Maryland

K11226_FM.indd 2 7/24/13 8:38 AM

© 2014 by Taylor & Francis Group, LLC

Anne Benoit, Yves Robert,
and Frédéric Vivien

A G U I D E T O

ALGORITHM
DESIGN

Paradigms, Methods, and Complexity Analysis

Chapman & Hall/CRC

Applied Algorithms and Data Structures Series

K11226_FM.indd 3 7/24/13 8:38 AM

© 2014 by Taylor & Francis Group, LLC

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130710

International Standard Book Number-13: 978-1-4398-9813-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2014 by Taylor & Francis Group, LLC

Contents

Preface xv

I Polynomial-time algorithms: Exercises 1

1 Introduction to complexity 3

1.1 On the complexity to compute xn 3

1.1.1 Naive method . 4

1.1.2 Binary method . 4

1.1.3 Factorization method 4

1.1.4 Knuth’s tree method 5

1.1.5 Complexity results . 6

1.2 Asymptotic notations: O, o, Θ, and Ω 8

1.3 Exercises . 8

Exercise 1.1: Longest balanced section 8

Exercise 1.2: Find the star . 9

Exercise 1.3: Breaking boxes 9

Exercise 1.4: Maximum of n integers 10

Exercise 1.5: Maximum and minimum of n integers 10

Exercise 1.6: Maximum and second maximum of n integers . 11

Exercise 1.7: Merging two sorted sets 11

Exercise 1.8: The toolbox . 12

Exercise 1.9: Sorting a small number of objects 12

1.4 Solutions to exercises . 14

Solution to Exercise 1.1: Longest balanced section 14

Solution to Exercise 1.2: Find the star 15

Solution to Exercise 1.3: Breaking boxes 16

Solution to Exercise 1.4: Maximum of n integers 17

Solution to Exercise 1.5: Maximum and minimum of n integers 20

Solution to Exercise 1.6: Maximum and second maximum of n
integers . 23

Solution to Exercise 1.7: Merging two sorted sets 25

Solution to Exercise 1.8: The toolbox 26

Solution to Exercise 1.9: Sorting a small number of objects . 29

1.5 Bibliographical notes . 31

v

© 2014 by Taylor & Francis Group, LLC

vi

2 Divide-and-conquer 33
2.1 Strassen’s algorithm . 33
2.2 Master theorem . 36
2.3 Solving recurrences . 37

2.3.1 Solving homogeneous recurrences 37
2.3.2 Solving nonhomogeneous recurrences 38
2.3.3 Solving the recurrence for Strassen’s algorithm 39

2.4 Exercises . 39
Exercise 2.1: Product of two polynomials 39
Exercise 2.2: Toeplitz matrices 40
Exercise 2.3: Maximum sum 40
Exercise 2.4: Boolean matrices: The Four-Russians algorithm 41
Exercise 2.5: Matrix multiplication and inversion 42

2.5 Solutions to exercises . 42
Solution to Exercise 2.1: Product of two polynomials 42
Solution to Exercise 2.2: Toeplitz matrices 44
Solution to Exercise 2.3: Maximum sum 45
Solution to Exercise 2.4: Boolean matrices: The Four-Russians

algorithm . 49
Solution to Exercise 2.5: Matrix multiplication and inversion 50

2.6 Bibliographical notes . 51

3 Greedy algorithms 53
3.1 Motivating example: The sports hall 53
3.2 Designing greedy algorithms 55
3.3 Graph coloring . 56

3.3.1 On coloring bipartite graphs 56
3.3.2 Greedy algorithms to color general graphs 57
3.3.3 Coloring interval graphs 60

3.4 Theory of matroids . 61
3.5 Exercises . 64

Exercise 3.1: Interval cover 64
Exercise 3.2: Memory usage 64
Exercise 3.3: Scheduling dependent tasks on several machines 65
Exercise 3.4: Scheduling independent tasks with priorities . . 66
Exercise 3.5: Scheduling independent tasks with deadlines . . 66
Exercise 3.6: Edge matroids 67
Exercise 3.7: Huffman code 67

3.6 Solutions to exercises . 68
Solution to Exercise 3.1: Interval cover 68
Solution to Exercise 3.2: Memory usage 69
Solution to Exercise 3.3: Scheduling dependent tasks on several

machines . 71
Solution to Exercise 3.4: Scheduling independent tasks with

priorities . 72

© 2014 by Taylor & Francis Group, LLC

vii

Solution to Exercise 3.5: Scheduling independent tasks with
deadlines . 73

Solution to Exercise 3.6: Edge matroids 74
Solution to Exercise 3.7: Huffman code 75

3.7 Bibliographical notes . 79

4 Dynamic programming 81
4.1 The coin changing problem 81
4.2 The knapsack problem . 84
4.3 Designing dynamic-programming algorithms 86
4.4 Exercises . 87

Exercise 4.1: Matrix chains 87
Exercise 4.2: The library . 88
Exercise 4.3: Polygon triangulation 88
Exercise 4.4: Square of ones 89
Exercise 4.5: The wind band 89
Exercise 4.6: Ski rental . 89
Exercise 4.7: Building set . 90

4.5 Solutions to exercises . 90
Solution to Exercise 4.1: Matrix chains 90
Solution to Exercise 4.2: The library 91
Solution to Exercise 4.3: Polygon triangulation 93
Solution to Exercise 4.4: Square of ones 96
Solution to Exercise 4.5: The wind band 98
Solution to Exercise 4.6: Ski rental 98
Solution to Exercise 4.7: Building set 102

4.6 Bibliographical notes . 103

5 Amortized analysis 105
5.1 Methods for amortized analysis 105

5.1.1 Running examples . 105
5.1.2 Aggregate analysis . 106
5.1.3 Accounting method 106
5.1.4 Potential method . 107

5.2 Exercises . 108
Exercise 5.1: Binary counter 108
Exercise 5.2: Inserting and deleting 108
Exercise 5.3: Stack . 109
Exercise 5.4: Deleting half the elements 109
Exercise 5.5: Searching and inserting 109
Exercise 5.6: Splay trees . 110
Exercise 5.7: Half perimeter of a polygon 112

5.3 Solutions to exercises . 112
Solution to Exercise 5.1: Binary counter 112
Solution to Exercise 5.2: Inserting and deleting 113

© 2014 by Taylor & Francis Group, LLC

viii

Solution to Exercise 5.3: Stack 114
Solution to Exercise 5.4: Deleting half the elements 115
Solution to Exercise 5.5: Searching and inserting 116
Solution to Exercise 5.6: Splay trees 117
Solution to Exercise 5.7: Half perimeter of a polygon 119

5.4 Bibliographical notes . 122

II NP-completeness and beyond 123

6 NP-completeness 125
6.1 A practical approach to complexity theory 125
6.2 Problem classes . 126

6.2.1 Problems in P . 127
6.2.2 Problems in NP . 129

6.3 NP-complete problems and reduction theory 132
6.3.1 Polynomial reduction 132
6.3.2 Cook’s theorem . 133
6.3.3 Growing the class NPC of NP-complete problems . . . 134
6.3.4 Optimization problems versus decision problems . . . 135

6.4 Examples of NP-complete problems and reductions 136
6.4.1 3-SAT . 136
6.4.2 CLIQUE . 138
6.4.3 VERTEX-COVER . 139
6.4.4 Scheduling problems 140
6.4.5 Other famous NP-complete problems 142

6.5 Importance of problem definition 143
6.6 Strong NP-completeness . 145
6.7 Why does it matter? . 146
6.8 Bibliographical notes . 146

7 Exercises on NP-completeness 149
7.1 Easy reductions . 149

Exercise 7.1: Wheel . 149
Exercise 7.2: Knights of the round table 149
Exercise 7.3: Variants of CLIQUE 149
Exercise 7.4: Path with vertex pairs 150
Exercise 7.5: VERTEX-COVER with even degrees 150
Exercise 7.6: Around 2-PARTITION 150

7.2 About graph coloring . 151
Exercise 7.7: COLOR . 151
Exercise 7.8: 3-COLOR . 151
Exercise 7.9: 3-COLOR-PLAN 152

7.3 Scheduling problems . 152
Exercise 7.10: Scheduling independent tasks with p processors 152

© 2014 by Taylor & Francis Group, LLC

ix

Exercise 7.11: Scheduling with two processors 152
7.4 More involved reductions . 153

Exercise 7.12: Transitive subchain 153
Exercise 7.13: INDEPENDENT SET 153
Exercise 7.14: DOMINATING SET 153
Exercise 7.15: Carpenter . 153
Exercise 7.16: k-center . 153
Exercise 7.17: Variants of 3-SAT 154
Exercise 7.18: Variants of SAT 154

7.5 2-PARTITION is NP-complete 155
Exercise 7.19: SUBSET-SUM 155
Exercise 7.20: NP-completeness of 2-PARTITION 155

7.6 Solutions to exercises . 155
Solution to Exercise 7.1: Wheel 156
Solution to Exercise 7.2: Knights of the round table 156
Solution to Exercise 7.3: Variants of CLIQUE 157
Solution to Exercise 7.4: Path with vertex pairs 158
Solution to Exercise 7.5: VERTEX-COVER with even degrees 158
Solution to Exercise 7.6: Around 2-PARTITION 159
Solution to Exercise 7.7: COLOR 160
Solution to Exercise 7.8: 3-COLOR 162
Solution to Exercise 7.9: 3-COLOR-PLAN 163
Solution to Exercise 7.10: Scheduling independent tasks with

p processors . 166
Solution to Exercise 7.11: Scheduling with two processors . . 166
Solution to Exercise 7.12: Transitive subchain 167
Solution to Exercise 7.13: INDEPENDENT SET 168
Solution to Exercise 7.14: DOMINATING SET 169
Solution to Exercise 7.15: Carpenter 170
Solution to Exercise 7.16: k-center 171
Solution to Exercise 7.17: Variants of 3-SAT 172
Solution to Exercise 7.18: Variants of SAT 174
Solution to Exercise 7.19: SUBSET-SUM 175
Solution to Exercise 7.20: NP-completeness of 2-PARTITION 177

7.7 Bibliographical notes . 178

8 Beyond NP-completeness 179
8.1 Approximation results . 179

8.1.1 Approximation algorithms 180
8.1.2 Vertex cover . 181
8.1.3 Traveling salesman problem (TSP) 182
8.1.4 Bin packing . 183
8.1.5 2-PARTITION . 187

8.2 Polynomial problem instances 192
8.2.1 Partitioning problems 193

© 2014 by Taylor & Francis Group, LLC

x

8.2.2 Assessing problem complexity 194
8.3 Linear programming . 195

8.3.1 Formal definition . 195
8.3.2 Relaxation and rounding 197

8.4 Randomized algorithms . 200
8.4.1 The algorithm . 201
8.4.2 Results . 201

8.5 Branch-and-bound and backtracking 202
8.5.1 Backtracking: The n queens 203
8.5.2 Branch-and-bound: The knapsack 204
8.5.3 Graph algorithms . 206

8.6 Bibliographical notes . 209

9 Exercises going beyond NP-completeness 211
9.1 Approximation results . 211

Exercise 9.1: Single machine scheduling 211
Exercise 9.2: SUBSET-SUM 212
Exercise 9.3: SET-COVER 213
Exercise 9.4: VERTEX-COVER 213
Exercise 9.5: Scheduling independent tasks in parallel 215
Exercise 9.6: Point clustering 215
Exercise 9.7: k-center . 216
Exercise 9.8: Knapsack . 217

9.2 Dealing with NP-complete problems 218
Exercise 9.9: Mixed integer linear program for replica place-

ment . 218
Exercise 9.10: A randomized algorithm for independent set . 218
Exercise 9.11: Branch-and-bound applied to MAX-SAT . . . 219

9.3 Solutions to exercises . 219
Solution to Exercise 9.1: Single machine scheduling 219
Solution to Exercise 9.2: SUBSET-SUM 221
Solution to Exercise 9.3: SET-COVER 223
Solution to Exercise 9.4: VERTEX-COVER 224
Solution to Exercise 9.5: Scheduling independent tasks in par-

allel . 226
Solution to Exercise 9.6: Point clustering 228
Solution to Exercise 9.7: k-center 229
Solution to Exercise 9.8: Knapsack 231
Solution to Exercise 9.9: Mixed integer linear program for

replica placement . 234
Solution to Exercise 9.10: A randomized algorithm for inde-

pendent set . 237
Solution to Exercise 9.11: Branch-and-bound applied to MAX-

SAT . 237
9.4 Bibliographical notes . 238

© 2014 by Taylor & Francis Group, LLC

xi

III Reasoning on problem complexity 239

10 Reasoning to assess a problem complexity 241
10.1 Basic reasoning . 241

10.1.1 Polynomial instances 241
10.1.2 NP-complete instances 242

10.2 Set of problems with polynomial-time algorithms 243
10.3 Set of NP-complete problems 244

10.3.1 Numbers . 245
10.3.2 Graphs . 246

11 Chains-on-chains partitioning 249
11.1 Optimal algorithms for homogeneous resources 249

11.1.1 Dynamic-programming algorithm 250
11.1.2 Binary search algorithm 250
11.1.3 Improved algorithms 250

11.2 Variants of the problem . 252
11.2.1 Communication costs 252
11.2.2 Chain of heterogeneous resources 253

11.3 Extension to a clique of heterogeneous resources 254
11.3.1 NP-completeness . 254
11.3.2 Practical solutions . 257
11.3.3 Integer linear program 257

11.4 Conclusion . 258

12 Replica placement in tree networks 261
12.1 Access policies . 262

12.1.1 Motivation . 262
12.1.2 Impact of the policies on the existence of a solution . 263
12.1.3 Impact of the policies on the cost of a solution 264

12.2 Complexity results . 266
12.2.1 Definitions . 266
12.2.2 MinNb problem . 267
12.2.3 MinCost problem . 273
12.2.4 Integer linear program 275

12.3 Variants of the replica placement problem 279
12.3.1 Enforcing a quality of service 280
12.3.2 Power-aware replica placement 282

12.4 Conclusion . 286

13 Packet routing 287
13.1 MEDP: Maximum edge-disjoint paths 288

13.1.1 Problem statement . 288
13.1.2 Naive greedy algorithm 289
13.1.3 Short-requests-first greedy algorithm 291

© 2014 by Taylor & Francis Group, LLC

xii

13.1.4 Inapproximability result 292
13.2 PRVP: Packet routing with variable-paths 294

13.2.1 Problem statement . 294
13.2.2 Bounding optimal makespan via linear programming . 295
13.2.3 Routing algorithm . 297
13.2.4 Steady-state approach 300

13.3 Conclusion . 301

14 Matrix product, or tiling the unit square 303
14.1 Problem motivation . 304
14.2 NP-completeness . 307
14.3 A guaranteed heuristic . 311

14.3.1 The ColPeriSum(s) problem 312
14.3.2 Performance guarantee 316
14.3.3 Looking for a better solution 317

14.4 Related problems . 320

15 Online scheduling 321
15.1 Flow time optimization . 322
15.2 Competitive analysis . 324

15.2.1 Definition . 324
15.2.2 Method to establish a competitive analysis result . . . 327

15.3 Makespan optimization . 334
15.3.1 List scheduling algorithms 335
15.3.2 Randomized optimization of makespan 338

15.4 Conclusion . 347

References 349

Index 359

© 2014 by Taylor & Francis Group, LLC

List of exercises

1.1 Longest balanced section . 8
1.2 Find the star . 9
1.3 Breaking boxes . 9
1.4 Maximum of n integers . 10
1.5 Maximum and minimum of n integers 10
1.6 Maximum and second maximum of n integers 11
1.7 Merging two sorted sets . 11
1.8 The toolbox . 12
1.9 Sorting a small number of objects 12

2.1 Product of two polynomials 39
2.2 Toeplitz matrices . 40
2.3 Maximum sum . 40
2.4 Boolean matrices: The Four-Russians algorithm 41
2.5 Matrix multiplication and inversion 42

3.1 Interval cover . 64
3.2 Memory usage . 64
3.3 Scheduling dependent tasks on several machines 65
3.4 Scheduling independent tasks with priorities 66
3.5 Scheduling independent tasks with deadlines 66
3.6 Edge matroids . 67
3.7 Huffman code . 67

4.1 Matrix chains . 87
4.2 The library . 88
4.3 Polygon triangulation . 88
4.4 Square of ones . 89
4.5 The wind band . 89
4.6 Ski rental . 89
4.7 Building set . 90

5.1 Binary counter . 108
5.2 Inserting and deleting . 108
5.3 Stack . 109
5.4 Deleting half the elements . 109
5.5 Searching and inserting . 109

xiii

© 2014 by Taylor & Francis Group, LLC

xiv

5.6 Splay trees . 110
5.7 Half perimeter of a polygon 112

7.1 Wheel . 149
7.2 Knights of the round table . 149
7.3 Variants of CLIQUE . 149
7.4 Path with vertex pairs . 150
7.5 VERTEX-COVER with even degrees 150
7.6 Around 2-PARTITION . 150
7.7 COLOR . 151
7.8 3-COLOR . 151
7.9 3-COLOR-PLAN . 152
7.10 Scheduling independent tasks with p processors 152
7.11 Scheduling with two processors 152
7.12 Transitive subchain . 153
7.13 INDEPENDENT SET . 153
7.14 DOMINATING SET . 153
7.15 Carpenter . 153
7.16 k-center . 153
7.17 Variants of 3-SAT . 154
7.18 Variants of SAT . 154
7.19 SUBSET-SUM . 155
7.20 NP-completeness of 2-PARTITION 155

9.1 Single machine scheduling . 211
9.2 SUBSET-SUM . 212
9.3 SET-COVER . 213
9.4 VERTEX-COVER . 213
9.5 Scheduling independent tasks in parallel 215
9.6 Point clustering . 215
9.7 k-center . 216
9.8 Knapsack . 217
9.9 Mixed integer linear program for replica placement 218
9.10 A randomized algorithm for independent set 218
9.11 Branch-and-bound applied to MAX-SAT 219

© 2014 by Taylor & Francis Group, LLC

Preface

Objective

YABA? Yet Another Book on Algorithms?
No thanks. There are so many good books on the design of algorithms that

it is hard to choose and pick one. If asked to name our two favorite refer-
ences, we would recommend Introduction to Algorithms by Cormen, Leiserson,
Rivest, and Stein [27] and Algorithms by Dasgupta, Papadimitriou, and Vazi-
rani [30]. For sure, this book does not intend to compete with such established
monuments.

Instead, this book proposes a complementary perspective. It aims at guid-
ing students and researchers who need to solve problems, either by finding
optimal algorithms or by assessing new complexity results. In a nutshell, the
main objective of this book is to outline the roadmap to follow, and to prac-
tice all the corresponding steps, in order to determine the complexity of a
problem.

Intended audience and use

The target audience for this book is graduate students and postgraduate re-
searchers in computer science and related fields.

This book does have prerequisites: We expect the reader to have some
experience with the design of algorithms, maybe through following an under-
graduate course in the field, or through reading a few chapters of the reference
books quoted above. In particular, we assume that the reader is familiar with
classic algorithms, such as comparison-based sorting (e.g., quick sort or merge
sort), and has a good knowledge of elementary graph theory, including:

• traversals (depth-first, breadth-first, connected components);
• shortest paths (one-source, such as Dijkstra, all-pairs, such as Floyd–

Warshall);
• maximum matchings in bipartite graphs.

In fact, one needs to know only that efficient algorithms exist to solve these
graph theory problems, but, of course, it is better to understand how they
work. Because excellent external sources already cover these topics, we refer
to them.

Also, we assume that readers have already been exposed, at least up to
some extent, to the basic paradigms of algorithm design: divide-and-conquer,
greedy algorithms, dynamic programming, and amortized analysis. But here,
rather than (or in addition to) referring to external sources, this book provides

xv

© 2014 by Taylor & Francis Group, LLC

xvi

extensive material so that the readers can assess their skills by solving the
many exercises in Part I.

Part II of this book can be used to teach an undergraduate or graduate class
on NP-completeness, with a focus on polynomial reductions, and a survey of
approaches that go beyond NP-completeness.

Part III of this book can be used to teach a graduate class on advanced
algorithms, either in the form of a series of classes presenting the case studies,
or in the form of projects assigned to students.

Book content and organization

The book is composed of three main parts:
• Part I: Polynomial-time algorithms: Exercises
• Part II: NP-completeness and beyond
• Part III: Reasoning on problem complexity

Part I aims at training the reader to design efficient algorithms. To do
so, we provide a comprehensive set of problems to investigate. Problems are
organized along the main design principles, which we each revisit through a
brief introduction and a series of related exercises. This leads to five chapters:

1. Introduction to complexity
2. Divide-and-conquer
3. Greedy algorithms
4. Dynamic programming
5. Amortized analysis

All solutions to exercises are provided.

Part II deals with NP-completeness and beyond. Our coverage of NP-
completeness focuses on polynomial reductions. We deliberately ignore Tur-
ing machines and the theoretic arsenal. The (small) price to pay is to admit
Cook’s theorem, the existence of the canonical NP-complete problem, for-
mula satisfiability, a.k.a. SAT. In Part II, we also cover approaches that go
beyond NP-completeness: identifying polynomial instances, approximation
algorithms, linear programming, randomized algorithms, branch-and-bound,
and backtracking. Part II consists of four chapters:

1. NP-completeness
2. Exercises on NP-completeness
3. Beyond NP-completeness
4. Exercises going beyond NP-completeness

All solutions to exercises are provided.

Part III constitutes the main originality of the book. It is devoted to case
studies whose goal is to provide the reader with tools and techniques to assess
problem complexity: which instances are polynomial, and which are NP-hard,
and what do to for the latter. Part III consists of an introduction summarizing

© 2014 by Taylor & Francis Group, LLC

xvii

how to assess the complexity of a new problem, and it is illustrated with five
case studies:

1. Chains-on-chains partitioning
2. Replica placement in tree networks
3. Packet routing
4. Matrix product, or tiling the unit square
5. Online scheduling

Thanks

The content of this book, or at least preliminary versions of it, has been
used to teach courses at École Normale Supérieure de Lyon. We are grate-
ful to the students for their feedback and suggestions. We also thank all
our colleagues who helped gather the problems of Part I. The teaching assis-
tants when Yves Robert was teaching the Algorithms course were (ordering by
year) Odile Millet-Botta, Tanguy Risset, Alain Darte, Bruno Durand, Frédéric
Vivien, Jean-Christophe Dubacq, Olivier Bodini, Daniel Hirschkoff, Matthieu
Exbrayat, Natacha Portier, Emmanuel Hyon, Eric Thierry, Michel Morvan,
and Yves Caniou. The teaching assistants when Anne Benoit took over were
(ordering by year) Victor Poupet, Damien Regnault, Benjamin Depardon,
Jean-François Pineau, Clément Rezvoy, Christophe Mouilleron, Fanny Du-
fossé, and Anne-Cécile Orgerie.

We also wish to thank the following people who have contributed to some
of the content by their insightful suggestions, their own previously published
work, or their help reviewing draft chapters: Guillaume Aupy, Marin Bougeret,
Jean-Yves l’Excellent, Arnaud Legrand, Loris Marchal, Paul Renaud-Goud,
Veronika Sonigo, and Bora Uçar.

Finally, a word of caution on bibliographical notes: Some exercises have ap-
peared in many sources, and the references that we give may well not be the
original ones. Also, the absence of any reference is not a claim for originality!
However, all solutions are ours, and they have been tested and verified by the
students at ENS Lyon, the teaching assistants, and ourselves (but we keep the
sole responsibility for errors). We welcome comments and suggestions to our
e-mail addresses.

Anne Benoit, Anne.Benoit@ens-lyon.fr
Yves Robert, Yves.Robert@ens-lyon.fr

Frédéric Vivien, Frederic.Vivien@inria.fr

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Part I

Polynomial-time
algorithms: Exercises

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 1

Introduction to complexity

This chapter revisits basic notions on the cost of an algorithm and on the
complexity of a problem. To illustrate these notions, in Section 1.1, we study
the problem of computing xn, given x and n (where n is a positive integer).
Then, in Section 1.2, we recall the classical asymptotic notations O, o, Θ,
and Ω. Finally, exercises are proposed in Section 1.3, with their solutions in
Section 1.4.

1.1 On the complexity to compute xn

We study the problem of computing xn, given x and n (where n is a positive
integer). Note that x is not necessarily a number; it can be a matrix, a
polynomial with several unknowns, or any mathematical object for which the
multiplication is defined.

We let y0 = x, and we use the following “rule of the game”: If I have already
computed y1, y2, . . . , yi−1, then I can compute yi as a product of any of two
previous temporary results: yi = yj � yk, with 0 6 j, k 6 i � 1. The goal is
to reach xn as soon as possible, i.e., to minimize the cost of the algorithm,
expressed in the number of multiplications. The cost is the first index m such
that ym = xn.

We define Opt(n) as the minimum index m such that ym = xn, where the
minimum is taken over all algorithms, i.e., all possible sequences of yi. The
cost of an algorithm, therefore, is always greater than or equal to Opt(n).
Formally,

Opt(n) = min

{
m

∣∣∣∣ 9y0 = x, y1, y2, . . . , ym−1, ym = xn,
8i 2 [1,m], 9j, k 2 [0, i� 1], yi = yj � yk

}
.

In the following, we present four methods to compute xn, and we compare
their costs. Then we end the section with some complexity results that aim
at providing bounds on Opt(n).

3

© 2014 by Taylor & Francis Group, LLC

4 Chapter 1. Introduction to complexity

1.1.1 Naive method

Let us consider the following naive algorithm: yi = y0 � yi−1. We have
yn−1 = xn, and thus a cost of n� 1.

1.1.2 Binary method

We can easily find a method more efficient than the naive algorithm:

xn =

{
xn/2 � xn/2 if n is even,
xbn/2c � xbn/2c � x if n is odd.

This algorithm can be formulated as follows: We write n in binary, and
then we replace each “1” by SX and each “0” by S, and we remove the first
SX. The word that we obtain gives a method to compute xn. The i-th letter
indicates how to compute yi; letter S corresponds to a squaring operation
(yi = yi−1� yi−1), while letter X corresponds to a multiplying by x operation
(yi = yi−1 � y0).

For instance, for n = 23 (n=10111), we obtain SX S SX SX SX, and after
removing the first SX, we obtain the word SSXSXSX. Therefore, we compute,
in order, y1 = y0�y0 = x2, y2 = y1�y1 = x4, y3 = y2�y0 = x5, y4 = y3�y3 =
x10, y5 = y4 � y0 = x11, y6 = y5 � y5 = x22, and finally y7 = y6 � y0 = x23.

The correction of the algorithm is easy to justify from the properties of
binary decomposition. The cost is blog(n)c + ν(n) � 1, where ν(n) is the
number of 1s in the binary writing of n. ν(n) � 1 is thus the number of Xs,
and blog(n)c is the number of Ss in the word. Logarithms are taken in base 2
here, and this will be the case throughout the book unless specified otherwise.
In the example n = 23, there are four Ss and three Xs, and the cost is,
therefore, 7. This value is also obtained with the formula.

Note that this binary method is not optimal; for instance, with n = 15,
we get the word SXSXSX, leading to six multiplications, while one could
notice that 15 = 3 � 5, that we need two multiplications to compute z = x3

(z = (x� x)� x), and then three additional ones to compute x15 = z5 (with
the binary method: z2, z4, z5).

1.1.3 Factorization method

This method is based on the factorization of n, that is applied recursively
when n > 2:

xn =

{
(xp)q if p is the smallest prime factor of n (n = p� q),
xn−1 � x if n is a prime number.

For instance, with this method, for n = 15, we obtain the computation
described above, i.e., x15 = (x3)5 = x3� (x3)4, leading to five multiplications:
y1 = y0�y0 = x2, y2 = y1�y0 = x3, y3 = y2�y2 = (x3)2, y4 = y3�y3 = (x3)4,
y5 = y4 � y2 = (x3)5 = x15.

© 2014 by Taylor & Francis Group, LLC

1.1. On the complexity to compute xn 5

Note that if n is a power of 2, this method is identical to the binary method.
Also, this factorization method is not optimal. For instance, with n = 33, we
have seven multiplications (x33 = (x3)11 = x3 � (x3)10 = x3 � ((x3)2)5 =
x3 � z � z4, with z = (x3)2), while the binary method requires only six

multiplications (x33 = x�x25

). Note also that there is an infinity of numbers
for which the factorization method is better than the binary method (n =
15� 2k), and reciprocally (n = 33� 2k).

However, we need to emphasize the fact that the cost of decomposing n
into prime numbers is not accounted in this formulation, while this would
be necessary to correctly quantify the cost of the factorization method. The
problem is that we do not know, as of today, how to decompose n in polynomial
time. This problem is indeed still open.

1.1.4 Knuth’s tree method

The last method that we detail consists in using Knuth’s tree [62], illustrated
in Figure 1.1. The path from the root of the tree to n indicates a sequence of
exponents from which we can compute efficiently xn.

19 21 28 22 23 26 25 30 40 27 36 48 33 34 64

14 11 13 15 20 18 24 17 32

161297 10

5 6 8

3 4

2

1

FIGURE 1.1: The first seven levels of Knuth’s tree.

Building the tree. The root of the tree is 1. The tree is then built by
induction. The (k + 1)-th level of the tree is defined from the first k levels as
follows. Consider each node j of the k-th level from the left to the right, and
create nodes j+1, j+a1, j+a2, . . . , j+ak−1 = 2j at level k+1, as children of
node j, in this order from left to right, where 1, a1, . . . , ak−1 = j is the path
from the root to j. We do not add a node in the tree if there is already a node
with the same value.

© 2014 by Taylor & Francis Group, LLC

6 Chapter 1. Introduction to complexity

The algorithm. The algorithm simply consists of finding n in the tree (it
appears only once by construction) and extracting nodes on the path from the
root to n: 1, a1, . . . , n. At each step of the algorithm, we compute yi = xai as
a product of two previous temporary results, which is possible by construction
of the tree. The number of products to be done, i.e., the cost of the algorithm,
is equal to the length of the path.

Statistics. Some interesting statistics are extracted from Knuth’s book [62].
The smallest numbers for which the tree method is not optimal are n = 77,
n = 154, and n = 233. The smallest number for which the tree method
is better both to the binary and the factorization methods is n = 23. The
smallest number for which the tree method is worse than the factorization
method is n = 19, 879 = 103� 193, and such cases are rare; for n 6 100, 000,
the tree method is better than the factorization method 88, 803 times, it is
equivalent 11, 191 times, and it is worse than the factorization method only
6 times.

At this point, we have several algorithms, but we do not know anything on
the value of Opt(n) yet. To assess the complexity of the problem, we have to
provide bounds or asymptotic estimates for Opt(n).

1.1.5 Complexity results

THEOREM 1.1. For all integer n > 1, Opt(n) > dlog(n)e.

Proof. Let us consider an algorithm that computes xn in m steps. Recall that
yi is the intermediate result at step i of the algorithm and thus ym = xn. Let
α(i) be the integer such that yi = xα(i), for 1 6 i 6 m. Then we prove by
induction that α(i) 6 2i.

Initially, we have y0 = x, and thus α(0) = 1 6 1 = 20.
For 1 6 i 6 m, there exist j and k (0 6 j, k < i) such that yi = yj � yk, by

definition of the algorithm. Therefore, we have α(i) = α(j)+α(k), and we can
apply the induction hypothesis on j and k, leading to α(j) 6 2j 6 2i−1, and
α(k) 6 2k 6 2i−1. Finally, we have α(i) 6 2i−1 + 2i−1 = 2i, which concludes
the proof.

Intuitively, the proof expresses the fact that we cannot do better at each
step than doubling the exponent. Thanks to this theorem and to the study
of the binary method, whose number of steps is bounded by 2blog(n)c (recall
that log(n) denotes log2(n)), we have the following result for all n > 2:

1 6
Opt(n)

dlog(n)e
6 2.

THEOREM 1.2. lim
n→∞

Opt(n)

log(n)
= 1.

© 2014 by Taylor & Francis Group, LLC

1.1. On the complexity to compute xn 7

Proof. The idea is to improve the binary method by applying it in base b. We
let b = 2k, where the value of k will be fixed later, and we write n in base b:
n = α0b

t + α1b
t−1 + � � � + αt, where t = blogb(n)c, and 0 6 αi 6 b � 1 (for

0 6 i 6 t). Then, we compute all xd, for 1 6 d 6 b�1, with the naive method,
in b� 2 multiplications. Note that we do not necessarily need all these values
(only the ones corresponding to the αis), but they are computed on the fly
and we can compute them without significant additional cost.

Then we successfully compute:

y0 = xα0 ,
y1 = (y0)b � xα1 = xα0b+α1 ,
y2 = (y1)b � xα2 = x(α0b+α1)b+α2 ,
...
yt = (yt−1)b � xαt = xn.

At each step i (for 1 6 i 6 t), we need k + 1 computations (k squaring to
compute (yi−1)b, and one multiplication by xαi), and, therefore, we have a
total cost of

t� (k + 1) + (b� 2) = blogb(n)c(k + 1) + 2k � 2

6 (logb(n)) (k + 1) + 2k = (log(n))
k + 1

k
+ 2k

(recall that logb(a) = logx(a)/ logx(b)).
We want k to be a function of n tending to infinity when n tends to in-

finity, so that we have (k + 1)/k tending to 1, and such that 2k = o(log(n))
(see Section 1.2 for a definition of the o-notation). For instance, with k =
b 1

2 log(log(n))c, we have 2k 6
√

log(n). (As we are interested only in the
asymptotic behavior, we assume that n > 16; then k > 1 and b > 2.)

Therefore, we have Opt(n) 6 (log(n))k+1
k +

√
log(n) and k+1

k + 1p
log(n)

tends to 1 when n tends to infinity.

Note that this method is somewhat complicated, only to gain a factor 2 by
comparison to the binary method.

Finally, we point out that the complexity of the problem of computing xn

is still open, i.e., we do not know whether there exists a polynomial-time
method that performs the exact minimum number of operations. Formally,
the underlying problem is that of addition chains. Starting with a0 = 1,
and given a0, a1, . . . , ai for i > 0, we build ai+1 as ai+1 = aj + ak where
0 6 j 6 k 6 i. The length of the chain is the smallest integer `(n), if it exists,
such that a`(n) = n. Clearly, the ais represent the exponents of the values xais
that we compute to derive xn. Given n, what is the complexity to derive an
addition chain of minimal length?

An optimal method is easily derived from Knuth’s tree. If we keep all possi-
bilities in Knuth’s tree, i.e., we add a node in the tree even if it already exists

© 2014 by Taylor & Francis Group, LLC

8 Chapter 1. Introduction to complexity

somewhere else, then we have an exhaustive method that always performs
the minimum number of operations. However, this method clearly takes an
exponential amount of time, and thus is not satisfying. In fact, to the best
of our knowledge, the complexity of the problem is still open. There is a
common misbelief that the problem of determining whether there exists an
addition chain whose length does not exceed some bound is NP-complete. In
fact, the result is known to be NP-complete only for a sequence of integers
n1, n2, . . . , nm, but not for a single value n [32].

1.2 Asymptotic notations: O, o, Θ, and Ω

Let f(n) be a function, where n is an integer. The asymptotic notations
describe the complexity of the function for large values of n.

We say that f(n) = O(g(n)) if there exist positive constants c and n0 such
that for all n > n0, 0 6 f(n) 6 c g(n). The O-notation allows us to give an
upper bound on the function, up to within a constant factor.

The o-notation expresses the fact that the upper bound is not asymptoti-
cally tight: f(n) = o(g(n)) if for any positive constant c, there exists a positive
constant n0 such that for all n > n0, 0 6 f(n) < c g(n).

The Ω-notation provides an asymptotic lower bound on the function: f(n) =
Ω(g(n)) if there exist positive constants c and n0 such that for all n > n0,
0 6 c g(n) 6 f(n).

The Θ-notation is more accurate, since it bounds the function both from
below and above: f(n) = Θ(g(n)) if there exist positive constants c1, c2, and
n0 such that for all n > n0, 0 6 c1 g(n) 6 f(n) 6 c2 g(n). In other words,
f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

1.3 Exercises

Exercise 1.1: Longest balanced section (solution p. 14)

Let F be an array of size n > 1 whose elements are 0 or 1. A section [i..j] of
consecutive elements of F , with 1 6 i < j 6 n, is balanced if it contains as
many 0 as 1 elements:

cardfk j F [k] = 0, i 6 k 6 jg = cardfk j F [k] = 1, i 6 k 6 jg.

The length of a balanced section [i..j] is its number of elements j� i+ 1. The
goal of this exercise is to find the longest balanced section of F .

© 2014 by Taylor & Francis Group, LLC

1.3. Exercises 9

1. Provide a solution whose complexity is O(n2).

2. Provide a solution whose complexity is O(n).

The reader may want to think for a while before reading the following hint
for linear-time complexity. Introduce an array Q[�n..n] of size 2n+ 1 and let
Q[b] be the first index j such that the imbalance of section [1..j] in F is equal
to b. Here the imbalance imbal(i, j) of section [i..j] is defined as

imbal(i, j) = cardfk j F [k] = 1, i 6 k 6 jg � cardfk j F [k] = 0, i 6 k 6 jg.

Exercise 1.2: Find the star (solution p. 15)

In a group of n persons (numbered from 1 to n), a star is someone who does
not know anybody else but who is known by all other persons. Our goal is to
identify a star, if one exists, in the group. The only action that can be taken
is to ask a question to any person i: “Do you know person j?” We assume
that everybody tells the truth.

1. How many stars can exist in the group?

2. Design an algorithm to find the star (if any) that requires O(n) ques-
tions.

3. Provide a lower bound on the complexity (in terms of number of ques-
tions) of any algorithm solving the problem. Prove that the best lower
bound for this problem is 3n� blog(n)c � 3.

Exercise 1.3: Breaking boxes (solution p. 16)

The problem consists of finding the lowest floor of a building from which a
box would break when dropping it. The building has n floors, numbered from
1 to n, and we have k boxes. There is only one way to know whether dropping
a box from a given floor will break it or not. Go to that floor and throw a
box from the window of the building. If the box does not break, it can be
collected at the bottom of the building and reused.

The goal is to design an algorithm that returns the index of the lowest floor
from which dropping a box will break it. The algorithm returns n+ 1 if a box
does not break when thrown from the n-th floor. The cost of the algorithm,
to be kept minimal, is expressed as the number of boxes that are thrown (note
that re-use is allowed).

1. For k > dlog(n)e, design an algorithm with O(log(n)) boxes thrown.

2. For k < dlog(n)e, design an algorithm with O
(
k + n

2k−1

)
boxes thrown.

3. For k = 2, design an algorithm with O(
p
n) boxes thrown.

© 2014 by Taylor & Francis Group, LLC

10 Chapter 1. Introduction to complexity

Exercise 1.4: Maximum of n integers (solution p. 17)

The goal is to compute the maximum of n integers, and we study the com-
plexity of the algorithms in terms of number of comparisons and number of
assignments.

1. Write a naive algorithm to solve the problem. What is its complexity in
the worst and best cases?

2. Is this algorithm optimal for the number of comparisons in the worst
case?

3. What is its complexity in the average number of comparisons or as-
signments? To compute the average number of assignments, you may
use the following reasoning. Let Pn,k be the number of permutations
σ of f1, . . . , ng such that on T [1] = σ(1), . . . , T [n] = σ(n), the algo-
rithm performs k assignments. Give a recurrence relation for Pn,k. Let
Gn(z) =

∑
Pn,kz

k. Prove that Gn(z) = z(z+1) � � � (z+n�1), and give
a conclusion.

Exercise 1.5: Maximum and minimum of n integers (solution
p. 20)

The goal is to compute simultaneously the maximum and the minimum of
n integers, and we study the complexity of the algorithms in terms of number
of comparisons in the worst case.

1. Design a naive algorithm and give its complexity.

2. One idea to improve the algorithm is to group elements by pairs, in
order to decrease the number of comparisons that must be done. Design
an algorithm based on this idea, and analyze its complexity.

3. Prove the optimality of such an algorithm by providing a lower bound
on the number of comparisons. The idea is to use the adversary method.
Let A be an algorithm that finds the maximum and minimum. For a
given input, when the algorithm is executed, a novice is an element
that has never been compared, a winner has been compared at least
once and has always been superior in comparisons, a loser has been
compared at least once and has always been inferior in comparisons,
and the remaining elements are called average elements. The number
of such elements is represented by a quadruplet of integers (i, j, k, l),
with, of course, i + j + k + l = n. Give the value of this quadruplet at
the beginning and at the end of the algorithm. Provide a strategy for
the adversary, so as to maximize the duration of the execution of the
algorithm. Conclude with a lower bound on the number of comparisons.

© 2014 by Taylor & Francis Group, LLC

1.3. Exercises 11

Exercise 1.6: Maximum and second maximum of n integers
(solution p. 23)

The goal is to compute simultaneously the maximum and the second maxi-
mum of n integers, and we study the complexity of the algorithms in terms
of the number of comparisons in the worst case.

1. Design a naive algorithm and give its complexity.

2. One idea to improve the algorithm is to compute the maximum following
a tournament (as, for instance, a tennis tournament). If there are n = 2k

numbers taking part in the tournament, how do we find the maximum
and the second maximum once the tournament is over? What is the
complexity of this algorithm? In the general case, how can we adapt the
algorithm for any value of n?

3. Prove the optimality of this algorithm by providing a lower bound on
the number of comparisons. The idea is to use decision trees. The
decision tree of an algorithm is a tree that represents all the possible
executions of the algorithm, on every possible input of size n. The
internal nodes correspond to tests. In our case, the test is a comparison;
if the answer is “yes” we move to the left child, otherwise to the right
child, hence having a binary tree. The leaves correspond to the results
of the different executions (several leaves may correspond to the same
result). Each branch of the tree corresponds to an execution of the
algorithm, and the number of comparisons is the height of the branch.
The number of comparisons in the worst case is then obtained as the
height of the tree.

(a) Prove that any decision tree that computes the maximum of n in-
tegers has at least 2n−1 leaves.

(b) Prove that any binary tree of height h and with f leaves is such
that 2h > f .

(c) Let A be a decision tree solving the problem. Give a lower bound on
its number of leaves. Conclude with a lower bound on the number
of comparisons in the worst case.

Exercise 1.7: Merging two sorted sets (solution p. 25)

The goal is to merge two sorted sets: a set A of size m and a set B of size n.
The m+n numbers to merge are all different and such that A1 < A2 < � � � <
Am and B1 < B2 < � � � < Bn.

1. Prove that we need at least

⌈
log

(
m+ n
n

)⌉
comparisons for the merge

(recall that logarithms are taken in base 2).

© 2014 by Taylor & Francis Group, LLC

12 Chapter 1. Introduction to complexity

2. Deduce that for n = m, there is a constant k such that, when n is
sufficiently large, we need at least 2n� 1

2 log(n)� k comparisons for the
merge.

3. Recall briefly the usual merging algorithm and give its complexity.

4. Prove that for n = m, we cannot do better than the usual algorithm.
Therefore, the lower bound of Question 2 cannot be matched.

Exercise 1.8: The toolbox (solution p. 26)

In a toolbox, there are n nuts, all of different sizes, and n corresponding bolts.
However, everything is mixed up, and you wish to associate each nut with the
corresponding bolt. The size differences are so small that it is not possible to
decide if a nut (or a bolt) is larger than another one just by looking at them.
The only way to proceed consists of trying one nut with one bolt, and each
operation can lead to three possible answers: (i) the nut is strictly larger than
the bolt, (ii) the bolt is strictly larger than the nut, and (iii) they correspond
to each other.

1. Design a simple algorithm with O(n2) operations that associates each
nut with the corresponding bolt.

2. Prove that the problem of finding the smallest nut and the corresponding
bolt can be solved with no more than 2n� 2 operations.

3. Prove that any algorithm solving the initial problem (i.e., associate each
nut with the corresponding bolt) requires at least Ω(n log(n)) operations
in the worst case.

Exercise 1.9: Sorting a small number of objects (solution p. 29)

This exercise investigates the complexity of sorting a small number of ob-
jects when the only possible operation is the comparison of two objects. For
n elements, we know that the number of comparisons is at least dlog(n!)e
(see, for instance, Section 10.2 page 243). We ask whether this bound can
be reached. Asymptotically, this is true because, for instance, the merge sort
has a complexity in O(n log(n)) in the worst case. We check if the bound
can be exactly reached in terms of number of comparisons. In the following
table, for 2 6 n 6 12 objects, we indicate the lower bound on the number
of comparisons (dlog(n!)e), the number of comparisons done by a merge-sort
algorithm (merge-sort(n)), and the optimal number of comparisons (opt(n)).

n 2 3 4 5 6 7 8 9 10 11 12

dlog(n!)e 1 3 5 7 10 13 16 19 22 26 29
merge-sort(n) 1 3 5 8 11 14 17 21 25 29 33
opt(n) 1 3 5 7 10 13 16 19 22 26 30

© 2014 by Taylor & Francis Group, LLC

1.3. Exercises 13

Therefore, merge-sort is not reaching the bound as soon as n > 5. The
goal of this exercise is to design ad hoc sorting algorithms for each value of n
(2 6 n 6 12) that perform the optimal number of comparisons opt(n).

Several techniques can be used:

• Binary-search insertion: If we want to insert an element in a sorted set
of k elements, the cost is of r comparisons in the worst case if 2r−1 6 k 6
2r � 1. Therefore, it is less costly to insert an element in a set of three
elements than in a set of two elements (two comparisons in both cases),
and in a set of seven elements rather than between four and six elements
(three comparisons), because the cost in the worst case is the same. In
other words, insertion is the most cost effective when k = 2r � 1.

• Incremental sort of n elements: We first sort n � 1 elements, and then
we insert the last one with a binary-search insertion.

• Divide-and-conquer: To sort four elements, we create two pairs of two
elements (a ! b) and (c ! d), where (a ! b) means that a 6 b,
and then we compare the two largest elements to obtain, for instance,
(a ! b ! d). Finally, we insert c with a binary search. The following
figure illustrates this technique:

a b

c d

For instance, for n = 3, we compare two elements, hence obtaining (a! b)
with one comparison, and then we compare the third element to a and b with
two more comparisons, obtaining 3 = opt(3) comparisons. For n = 4, we can
use the incremental sort to obtain (a ! b ! c) with three comparisons, and
then we insert the last element with a binary search, with two comparisons,
hence a total of 3 + 2 = 5 = opt(4) comparisons.

1. Provide another technique for n = 4, based on divide-and-conquer.

2. Following the previous ideas, provide algorithms for any value 5 6 n 6
11 that perform opt(n) comparisons.

3. For n = 12, provide a method with 30 comparisons. Indeed, it is im-
possible to succeed with dlog(12!)e = 29 comparisons; researchers have
tested all possible algorithms with the brute force method, and it took
two hours of computation in 1990 (and it was a real challenge at that
time!).

© 2014 by Taylor & Francis Group, LLC

14 Chapter 1. Introduction to complexity

1.4 Solutions to exercises

Solution to Exercise 1.1: Longest balanced section

Quadratic complexity. There are many possible solutions. Obviously, a
balanced section [i..j] is such that imbal(i, j) = 0. One method is to fix the
origin i of a section and to compute iteratively imbal(i, j) for all values of
j such that i + 1 6 j 6 n. This requires scanning the section [i..n] only
once, and one can record on the fly the largest value of j (if any) such that
imbal(i, j) = 0. The complexity is O(n) for each value of the origin i, hence a
solution whose cost is O(n2).

Linear complexity. The hint gives the main idea. We initialize the 2n+ 1
elements of Q to the value �1. We scan the array F by letting the index i
vary from 1 to n, computing iteratively (hence, in constant time) the value
b = imbal(1, i). Now there are two cases:

• Either the value b is met for the first time, which means we had Q[b] =
�1 before reaching i. Then we store the value of i by letting Q[b] = i.

• Or the value b had already been met, meaning that Q[b] 6= �1. Here
Q[b] was the first index such that b = imbal(1, Q[b]). But, we also have
b = imbal(1, i), which means that the section [(Q[b] + 1)..i] is balanced,
and we record its length i�Q[b] if it exceeds the largest value currently
found.

Altogether, we are led to Algorithm 1.1, whose complexity is indeed O(n):

1 max 0
2 for b = �n to n do
3 Q[b] �1

4 Q[0] 0 /* the empty section is balanced */

5 b 0 /* b is the current imbalance */

6 for i = 1 to n do
7 if F [i] = 1 then b b+ 1 else b b� 1
8 if Q[b] = �1 then Q[b] i
9 else if i�Q[b] > max then

10 max i�Q[b]

11 return max

ALGORITHM 1.1: Longest balanced section.

© 2014 by Taylor & Francis Group, LLC

1.4. Solutions to exercises 15

Solution to Exercise 1.2: Find the star

1. There is, at most, one star in a group because a star does not know any
other person; thus, no other person can be known by everybody in the
group.

2. When we ask the question: Does i know j?, we obtain the following
result:

• If the answer is “yes,” i is not a star but j may be one;
• If the answer is “no,” j is not a star but i may be one.

Therefore, each test identifies one person as not being a star. We use
this property to build a linear-time algorithm, Algorithm 1.2. This
algorithm first scans the group of persons while memorizing at each
step the only potential star candidate among the persons tested so far
(while loop at Step 2). Then it checks that the star is known by all other
group members (while loop at Step 6, optimized to take into account all
knowledge gathered by the previous loop). Finally, it checks that the
candidate star does not know any group member (while loop at Step 10).

Each of three while loops executes at most n iterations, hence a com-
plexity in O(n).

1 i 1 and j 2
2 while j 6 n do
3 if “Does j know i?” then j j + 1
4 else i j and j j + 1

5 star found true and j 1
6 while j < i and star found do
7 if “Does j know i?” then j j + 1
8 else star found false

9 k 1
10 while k 6 n and star found do
11 if k 6= i and “Does i know k?” then star found false
12 else k k + 1

13 if star found then return“The star is i.”
14 else return“There is no star.”

ALGORITHM 1.2: Algorithm identifying a star in a group.

3. First of all, we remark that the worst case is reached when the group
of persons contains a star. To identify a star, it is necessary that each

© 2014 by Taylor & Francis Group, LLC

16 Chapter 1. Introduction to complexity

person, but the star, is involved in a question that identifies him or her
as not being a star. This requires n � 1 questions. It is also necessary
that, if the group contains a star i, all n� 1 questions: Does i know j?
and all n� 1 questions: Does j know i? are asked. However, these two
sets of questions are not independent.

As noted earlier, each question can, at most, invalidate one candidate
as being a star. It is suboptimal for an algorithm to ask a question
involving a person who is known not to be a star when there are still
at least two star candidates. Indeed, in the worst case, this question
will not provide any new knowledge. This is obviously the case if we
already know that the two persons are not stars. Otherwise, the can-
didate involved will not be invalidated by the answer to the question
but will eventually turn out not to be a star. In other words, in an
optimal algorithm, each of the first n � 1 questions should involve two
persons who can still be stars, when taking into account the answers to
all questions asked so far.

Then, after n�1 questions, there remains exactly one person who can
be a star. This person has already been involved in a certain number
of questions, say k. To complete the algorithm, one needs to ask the
remaining 2n � 2 � k questions involving the candidate star. Overall,
3n� 3� k questions will be necessary in the worst case to identify the
star. If we represent the set of the initial n � 1 questions by a tree,
k is exactly the length of the path in the tree from its root to the leaf
corresponding to the candidate (the length of the path being the number
of edges visited). Therefore, in the worst case, the number of questions
needed is 3n� 3�h, where h is the length of the shortest branch of the
tree. Then, a lower bound for this value is obtained with trees for which
this value is minimal, that is, trees of minimum height. For these trees,
h = blog(n)c, and thus an overall minimal bound is

3n� 3� blog(n)c.

Solution to Exercise 1.3: Breaking boxes

1. The complexity in O(log(n)) is a hint: One should use a binary search.
Indeed, if we have k > dlog(n)e, we know the result for the floors whose
indices range from i to j by dropping a box from the m-th floor where
m =

⌊
i+j
2

⌋
and then by iterating with floors i to m� 1 if the box broke,

and by iterating with floors m to j otherwise. The principle of the binary
search guarantees that we will obtain the desired result (when i = j)
and in at most dlog(n)e steps, and, thus, after having broken at most
dlog(n)e boxes.

2. As we have only k < dlog(n)e boxes, we cannot directly apply a binary
search. We, however, will solve this problem in a simple way. We apply

© 2014 by Taylor & Francis Group, LLC

1.4. Solutions to exercises 17

the binary search using k�1 boxes in order to narrow as much as possible
the search interval around the desired floor. We then use the last box to
scan the remaining interval floor by floor, from the lowest to the highest.
After throwing k � 1 boxes, if the target floor has not been identified,
there are at most n/2k−1 floors in the search interval, hence a worst-case
complexity of O(k + n/2k−1).

3. When k = 2 we do not want to have to test each floor one after the
other, thereby ending up with a linear complexity. We, therefore, will
adapt the idea of narrowing the search interval. We partition the set of
floors into “slices” of

p
n floors (assume that n is a square without loss

of generality, or use ceil functions). Then we throw the first box from
the first floor of each slice until it breaks, starting with the lowest slice.
Then, we return to the last tested floor, m, from which the box was
dropped but did not break. We then test one by one the floors using the
second box. We start with floor m+1 and, in the worst case, we go up to
the floor from which the first box broke. There are, by construction,

p
n

floors in that slice. Therefore, we have two series of tests, with O(
p
n)

tests in each of them. Hence, the overall complexity is O(
p
n).

Solution to Exercise 1.4: Maximum of n integers

1. Algorithm 1.3 is a naive algorithm to compute the maximum over n
values.

1 max T [1]
2 for i = 2 to n do
3 if T [i] > max then max T [i]

4 return max

ALGORITHM 1.3: Maximum over n values.

Complexity in the number of comparisons: Whatever the instance,
Algorithm 1.3 performs exactly n� 1 comparisons.

Complexity in the number of assignments:

• worst case: n (when values are sorted in nondecreasing order);
• best case: 1 (if the first element is the maximum).

2. We provide two different proofs that n � 1 comparisons are requested
to determine the maximum among n values (thus establishing the opti-
mality of Algorithm 1.3). A classical error in establishing this result is

© 2014 by Taylor & Francis Group, LLC

18 Chapter 1. Introduction to complexity

to write that any nonmaximum value must have been compared to the
maximum. This is true only by transitivity.

First proof. A value that never was the smaller one in a comparison
is, potentially, the maximum. Therefore, for the maximum to be deter-
mined, all n � 1 values that are not the maximum must have been the
smaller one in at least one comparison, which requires at least n � 1
comparisons.

Second proof. We identify the values with the vertices of a graph. Ini-
tially, the graph has no edge and thus contains n connected components,
one per vertex. For each comparison, we add to the graph an edge be-
tween the two corresponding vertices. Adding an edge either decreases
the number of connected components by one or keeps it unchanged. If
the graph contains two distinct connected components at the end, then
there has been no comparison between the two sets of values; each one
may contain the maximum, and one cannot determine where the max-
imum value is. Therefore, to be able to determine the maximum, the
graph must contain a single connected component, and at least n � 1
comparisons must have been performed.

3. Average complexity in the number of comparisons. Whatever the in-
stance, the algorithm always performs n� 1 comparisons, and the aver-
age complexity is equal to the best-case and worst-case complexity.

Average complexity in the number of assignments. The average com-
plexity of an algorithm A on data of size n is defined as:

avgA(n) =
∑

d data of size n

p(d) costA(d),

where p(d) is the probability that d is an entry of algorithm A and
costA(d) is the complexity reached by algorithm A on entry d. Here the
entry data are the permutations of f1, . . . , ng. The n! possible permu-
tations are supposed to be equiprobable. The cost of algorithm A, in
this question, is the number of assignments that it performs. This cost
is equal to k for each of the permutations taken into account in Pn,k.
Therefore, the average complexity of algorithm A can be expressed as:

avgA(n) =
1

n!

∑
T permutation of {1,...,n}

costA(T) =
1

n!

n∑
k=1

kPn,k.

We compute Pn,k using a recursion. The maximum element is either
the last one (being stored in T [n]) or not:

• If the maximum is in T [n], T [n] is the cause of one assignment and,
to reach a total of k assignments, the first n� 1 values must be re-
sponsible of k�1 assignments. Therefore, in that case, the number

© 2014 by Taylor & Francis Group, LLC

1.4. Solutions to exercises 19

of permutations leading to k assignments is equal to the number
of permutations leading to k � 1 assignments when processing an
input of size n� 1: Pn,k = Pn−1,k−1.

• If the maximum is not in T [n], then all the k assignments are due to
the first n�1 values. Furthermore, there are n�1 permutations of
f1, . . . , ng that give rise to the same permutation of f1, . . . , n� 1g,
because the rank of the value T [n] (when the values are sorted)
can be anything except that of the largest value. Therefore, in
that case, the number of permutations of f1, . . . , ng leading to k
assignments is equal to Pn,k = (n� 1) Pn−1,k.

Gathering the previous two results, we obtain: Pn,k = Pn−1.k−1 + (n�
1) Pn−1,k. The limit cases are, for any integer n, Pn,0 = 0, Pn,k = 0 if
k > n, and Pn,n = 1. To explicit Pn,k, we use the generating function:
Gn(z) =

∑n
k=1 Pn,k z

k.

Gn+1(z) =
n+1∑
k=1

Pn+1,k z
k =

n+1∑
k=1

(Pn,k−1 + nPn,k) zk

=

(
n+1∑
k=1

zPn,k−1 z
k−1

)
+

(
n
n+1∑
k=1

Pn,k z
k

)

= z

(
n∑
k=0

Pn,k z
k

)
+ n

(
n+1∑
k=1

Pn,k z
k

)
However, Pn,0 = 0 and Pn,n+1 = 0. Therefore,

Gn+1(z) = z

(
n∑
k=1

Pn,k z
k

)
+ n

(
n∑
k=1

Pn,k z
k

)
= (z + n)Gn(z).

Since G1(z) = P1,1z = z, we obtain Gn(z) = z(z + 1) � � � (z + n � 1).
We now need to link the value that we want to compute, namely the
average complexity of Algorithm 1.3, to this function G1(z). We remark
that

G′n(z) =
n∑
k=1

kPn,k z
k−1 , G′n(1) =

n∑
k=1

kPn,k , and Gn(1) =
n∑
k=1

Pn,k = n!

Therefore,

avgA(n) =
G′n(1)

Gn(1)
= [ln(G(z))]′(1)

=

[
n−1∑
i=0

ln(z + i)

]′
(1)

= 1 +
1

2
+ � � �+ 1

n
= Hn

© 2014 by Taylor & Francis Group, LLC

20 Chapter 1. Introduction to complexity

where Hn is the n-th partial sum of the diverging harmonic series (or
the n-th harmonic number). Therefore, avgA(n) = O(ln(n)).

Solution to Exercise 1.5: Maximum and minimum of n inte-
gers

1. Algorithm 1.4 is a naive algorithm to compute both the maximum and
the minimum from a set of n values. This algorithm performs n � 1
comparisons to find the maximum, and as many to find the minimum.
Hence, the complexity in the number of comparisons is equal to 2n�2.

1 max T [1]
2 min T [1]
3 for i = 2 to n do
4 if T [i] > max then max T [i]

5 for i = 2 to n do
6 if T [i] < min then min T [i]

7 return (max,min)

ALGORITHM 1.4: Naive algorithm to compute the minimum and the max-
imum of a set of n values.

2. In Algorithm 1.4, we considered one new value at each step. Here we
will consider two new values at each step. We first compare them, and
then we compare the largest one to the current maximum and compare
the smallest one to the current minimum. Algorithm 1.5 presents such
an algorithm.

If n is even, there are n
2 pairs and thus n

2 comparisons of pair elements.
Then, there are n

2 �1 additional comparisons to compute the maximum
and as many for the minimum. Hence, the complexity is in 3n

2 � 2.

If n is odd, there are bn2 c pairs and thus bn2 c comparisons of pair
elements. Then, there are bn2 c � 1 additional comparisons in the loop
to compute the maximum and as many for the loop for the minimum.
Finally, there are one or two additional comparisons to handle the value
T [n], hence a maximum number of comparisons of 3 bn2 c. However,
when n is odd, 3bn2 c = d 3n

2 e � 2.

The complexity of Algorithm 1.5 in number of comparisons is thus
d 3n

2 e � 2.

3. Let A be any algorithm. The quadruplet (i, j, k, l) represents the cur-

© 2014 by Taylor & Francis Group, LLC

1.4. Solutions to exercises 21

1 for i = 1 to bn2 c do
2 if T [2i� 1] > T [2i] then exchange T [2i� 1] and T [2i]

3 max T [2]
4 for i = 2 to bn2 c do
5 if T [2i] > max then max T [2i]

6 min T [1]
7 for i = 2 to bn2 c do
8 if T [2i� 1] < min then min T [2i� 1]

9 if n is odd then
10 if T [n] > max then max T [n]
11 else if T [n] < min then min T [n]

ALGORITHM 1.5: Algorithm that groups elements by pairs to compute the
minimum and the maximum of a set of n values.

rent knowledge, that is, respectively, the number of novices, of win-
ners, of losers, and of average elements (obviously i + j + k + l = n).
The algorithm starts with no knowledge, that is, with the configuration
(i, j, k, l) = (n, 0, 0, 0). When the algorithm completes, there is only one
winner, only one loser, and all the other elements must have won and
lost at least one comparison each. The quadruplet corresponding to that
situation is (i, j, k, l) = (0, 1, 1, n� 2).

The aim of the adversary is to slow down as much as possible the pro-
gression of the algorithm. In other words, the aim of the adversary is to
minimize the knowledge gained by the algorithm from each comparison.
For instance, assume that the situation is (i, j, k, l) and that the algo-
rithm compares a novice N and a winner W . Whatever the output of
the comparison, once it is made, N is no longer a novice element. There
are nevertheless two cases:

• W < N : Then N becomes a winner and W an average element (it
just lost a comparison and had previously won at least one as it
was labeled a winner). The new situation is then (i� 1, j, k, l+ 1).

• W > N : Then W remains a winner and N becomes a loser. The
new situation is then (i� 1, j, k + 1, l).

The adversary chooses the latter case as it leads to a situation that
is further from the completion of the algorithm than the former case.
Indeed, in the former case the knowledge gain is that one element (W)
can be neither the minimum nor the maximum and thus can be safely
ignored. In the latter case, the knowledge gain is just that there is one
more element that cannot be the maximum.

Table 1.1 presents the choices made by the adversary depending on

© 2014 by Taylor & Francis Group, LLC

22 Chapter 1. Introduction to complexity

the elements compared by the algorithm. In that table, N designates a
novice, W a winner, L a loser, and A an average element. The symbol“/”
represents a case where the integer is left unchanged. The symbol“open”
means that the adversary can pick any of the two possible outcomes
except when results of previous comparisons dictate the outcome. For
instance, if we had L[2] < L[5] and L[5] < L[4], then L[2] < L[4] (this
can happen when comparing two average elements).

TABLE 1.1: Strategy of the adversary in order to maximize the number of
comparisons needed before an algorithm A can complete.

comparison choice i j k l
N : N open i� 2 j + 1 k + 1 /
N : W W > N i� 1 / k + 1 /
N : L L < N i� 1 j + 1 / /
N : A A > N i� 1 / k + 1 /

N > A i� 1 j + 1 / /
W : W open / j � 1 / l + 1
W : L W > L / / / /
W : A W > A / / / /
L : L open / / k � 1 l + 1
L : A L < A / / / /
A : A open / / / /

We now need to derive a lower bound on the number of comparisons
needed, in the worst case. Each novice must be compared at least once.
Then, the most efficient comparison type is the N : N comparison,
which decreases the number of novices by two. Therefore, we need at
least dn2 e comparisons to get rid of all novices. Furthermore, at the end
we must have n�2 average elements. A comparison creates at most one
average element. Hence, we need at least n�2 additional comparisons to
reach the desired number of average elements. Finally, we remark that
no comparison implying a novice leads to an increase in the number of
average elements. Therefore, we can add the two lower bounds (i.e., the
one to get rid of all novices and the one to create the required number
of average elements) to obtain a global lower bound. A lower bound on
the number of comparisons is thus:

n� 2 +
⌈n

2

⌉
=

⌈
3n

2

⌉
� 2.

Since this lower bound is equal to the complexity of Algorithm 1.5, this
algorithm is optimal.

© 2014 by Taylor & Francis Group, LLC

1.4. Solutions to exercises 23

Solution to Exercise 1.6: Maximum and second maximum of
n integers

1. Algorithm 1.6 is a naive algorithm that first scans all values looking for
the maximum one and then scan all values, except the maximum one, to
look for the second maximum. Its first loop performs n�1 comparisons
and the second one n � 2 for an overall complexity in the number of
comparisons of 2n� 3.

1 max1 T [1]
2 posmax1 1
3 for i = 2 to n do
4 if T [i] > max1 then
5 max1 T [i]
6 posmax1 i

7 if posmax1 6= 1 then max2 T [1] else max2 T [2]
8 for i = 2 to n with i 6= posmax1 do
9 if T [i] > max2 then max2 T [i]

10 return (max1,max2)

ALGORITHM 1.6: Algorithm computing the first and second maximum of
a set of n values.

2. We first consider the case where n = 2k. We compute the first maximum
using a classical tournament scheme. At each round, we partition the
values into pairs, perform one comparison per pair, and keep the largest
value for the next round. Figure 1.2 presents the comparison tree (to
be read bottom up). In this tree, the dotted lines mark the trajectory
of the maximum value. n � 1 comparisons are performed to determine
the maximum. The second maximum is one of the values that lost their
comparison against the maximum. Therefore, it is one of the values
tagged by a question mark in Figure 1.2. There are k such values, and,
therefore, k � 1 = log(n) � 1 comparisons are needed to determine the
second maximum. Hence, the overall complexity is of n + log(n) � 2
comparisons.

© 2014 by Taylor & Francis Group, LLC

24 Chapter 1. Introduction to complexity

?

?

?

n = 2k

FIGURE 1.2: Tree of compar-
isons to determine the maximum
of a set of n = 2k values.

n

2k

FIGURE 1.3: Tree of compar-
isons to determine the maximum
of a set of n 6= 2k values.

For the general case, we want to fall back to the case where n is a power
of 2. Therefore, we take for k the value dlog(n)e. The algorithm is then
illustrated by Figure 1.3. As previously, we need n � 1 comparisons to
identify the maximum. Then, the longest branch in the tree has a length
of dlog(n)e. Therefore, we need at most dlog(n)e � 1 comparisons to
identify the second maximum, for an overall complexity of n+dlog(n)e�
2.

3. (a) We have seen in Exercise 1.4 that we need to perform at least
n � 1 comparisons to determine the maximum among n values.
This means that any branch of the decision tree from the root
to a leaf contains at least n� 1 internal nodes that each have two
children. Indeed, internal nodes that have a single child correspond
to useless comparisons. We can suppress each such node from the
tree (directly linking its parent to its child). We then obtain a tree
whose first n levels constitute a complete binary tree. Therefore,
the decision tree contains at least 2n−1 leaves.

(b) We prove the result by induction on the height h of the tree. If
h = 0, the tree has exactly one leaf and the result holds. We now
suppose the result holds true for any tree whose height is at most h,
and we consider a tree of height h+ 1 that has f leaves. There are
two cases:

• If the root has a single child, all the leaves belong to the subtree
rooted at the single child of the root node. This subtree is a tree
of height h. Using the induction hypothesis, we have f 6 2h.
Therefore, f 6 2h+1.

• If the root has two children, let f1 and f2 be the number of the
leaves of the subtrees rooted at the left and right children of the
root. Let h1 and h2 be the respective heights of these trees.
Then, according to the induction hypothesis, f1 6 2h1 and
f2 6 2h2 . Therefore, f = f1 +f2 6 2h1 +2h2 6 2h+2h = 2h+1.

© 2014 by Taylor & Francis Group, LLC

1.4. Solutions to exercises 25

(c) Figure 1.4 presents a decision tree for the maximum and the second
maximum among four values.

We partition the leaves of the decision tree A with respect to the
value of the (first) maximum. Ai is the subtree obtained from A by
pruning exactly the branches that did not end in a leaf concluding
that T [i] is the maximum. We then remove from Ai the internal
nodes that perform a test on T [i]. These nodes obviously had a
single child each by construction of Ai. Ai is then a decision tree to
compute the second maximum when the first maximum is known
(this is T [i]). Therefore, A[i] is a decision tree for the computation
of the maximum among n � 1 values. According to Question 3a,
each tree A[i] contains at least 2n−2 leaves. Since, by construction,
the A[i]s define a partition of the leaves of A, A contains at least
n � 2n−2 leaves. Then, according to Question 3b, the height h of
the tree A must satisfy:

2h > n � 2n−2) h > n� 2 + dlog(n)e.

Therefore, any algorithm that computes the first and second max-
imum must perform, in the worst case, at least n � 2 + dlog(n)e
comparisons.

1<2

2<3 1<3

3<4 2<4 3<4 1<4

4, 3 2<4 4, 2 1<3 4, 3 1<4 4, 1 2<3

3, 4 3, 2 3<4 1<4 3, 4 3, 1 3<4 2<4

2, 4 2, 3 2, 4 2, 1 1, 4 1, 3 1, 4 1, 2

FIGURE 1.4: Decision tree for computing the first and second maximum
among four values.

Solution to Exercise 1.7: Merging two sorted sets

1. The merged list contains n + m elements. The relative order of the
elements of A is fixed, because A is an ordered set. The same is true
for B. Therefore, merging the two lists is equivalent to determining

© 2014 by Taylor & Francis Group, LLC

26 Chapter 1. Introduction to complexity

the positions in the merged list that contain elements of B. Therefore,
merging the two sorted lists can lead to

(
m+n
n

)
different solutions.

The idea is then to consider the decision tree of any given merging
algorithm (see Exercise 1.6 for the definition of decision trees). Each
node in the tree corresponds to a comparison. Each leave corresponds
to a possible output (several leaves can correspond to the same output).
From what precedes, any decision tree must have at least

(
m+n
n

)
leaves,

and its height must be at least
⌈
log
(
m+n
n

)⌉
.

2. Here we consider the case m = n. By definition, we have
(

2n
n

)
= (2n)!

(n!)2 .

We then use Stirling’s approximation of the factorial function: n! �p
2πn

(
n
e

)n
. We have 2 6

p
2π 6 3. Therefore, for n sufficiently large,

we have 2
p
n
(
n
e

)n
6
p

2πn
(
n
e

)n
6 3
p
n
(
n
e

)n
, and

(2n)!

(n!)2
>

2
p

2n
(

2n
e

)2n(
3
p
n
(
n
e

)n)2 =
2
p

2

9

1p
n

22n.

Finally, for n sufficiently large,⌈
log

(
2n

n

)⌉
> log

(
2
p

2

9

)
� 1

2
log(n) + 2n > 2n� 1

2
log(n)� 2.

3. Algorithm 1.7 merges two sorted lists. This algorithm stops performing
any comparison as soon as all the elements of one of the two input sorted
sets have been stored in the resulting array. Furthermore, each time a
comparison is done, one element from one of the two input sorted sets
is stored in C. Therefore, in the worst case, after (n � 1) + (m � 1)
comparisons, there remains one element in input set A and one in B.
Then, one final comparison is needed for the algorithm to be able to
complete its task. The worst-case complexity of Algorithm 1.7 is thus
of n+m� 1 comparisons.

4. Here, we once again consider the casem = n. Let us consider an instance
such that we have A[1] 6 B[1] 6 A[2] 6 B[2] 6 A[3] 6 B[3] 6 ... 6
A[n] 6 B[n]. Then, for 1 6 i 6 n � 1, B[i] must be compared to both
A[i] and A[i+1]. Furthermore, B[n] must be compared to A[n]. Overall
we need to perform at least 2(n� 1) + 1 = 2n� 1 comparisons. Hence,
the lower bound cannot be reached in that case (the distance to the
bound being at least equal to log(n)).

Solution to Exercise 1.8: The toolbox

1. To associate bolts and nuts, a simple solution is to pick one bolt and to
test it with each nut. In at most n tests, the associated nut is identified.

© 2014 by Taylor & Francis Group, LLC

1.4. Solutions to exercises 27

1 i 1 /* index to scan the set A */

2 j 1 /* index to scan the set B */

3 k 1 /* index to scan the resulting array C */

4 while i 6 n and j 6 m do
5 if A[i] < B[j] then
6 C[k] A[i]
7 i i+ 1

8 else
9 C[k] B[j]

10 j j + 1

11 k k + 1

12 for l = i to n do
13 C[k] A[l]
14 k k + 1

15 for l = j to m do
16 C[k] B[l]
17 k k + 1

ALGORITHM 1.7: Merge the two sorted sets A and B.

Then, one repeats the process with the remaining n� 1 bolts and n� 1
nuts, and so on. All bolts and nuts are then associated in at most
n(n−1)

2 = O(n2) tests.

2. The idea is to number, in an arbitrary order, the bolts and the nuts from
1 to n. We associate one counter to each set. While we scan the sets,
after each comparison we leave unchanged the counter corresponding
to the smaller object and we increase the other counter. If the tested
objects fit together, we memorize the association and we increment one
of the counters, always the same one (for instance, the nut counter).
Algorithm 1.8 realizes this scheme.

We now show that Algorithm 1.8 enables one to solve the problem.
At each iteration of the loop, exactly one among the nut counter and
the bolt counter is incremented, except for the case i = j = n at which
none is incremented and the algorithm completes. First, we remark that
once the smallest bolt is encountered, the bolt counter j stays constant
(Step 11 is the only one that ever increments this counter). Therefore,
when the algorithm completes, bolt j is the smallest bolt. Note also
that, because of this property on the smallest bolt, the conditional of
the while loop does not require a condition j 6 n.

© 2014 by Taylor & Francis Group, LLC

28 Chapter 1. Introduction to complexity

1 ass nut 0
2 ass bolt 0
3 i 1
4 j 1
5 while (i 6 n) do
6 if i = j = n then
7 if ass bolt = n then smallest nut ass nut
8 else smallest nut n
9 break out of the loop

10 if nut.i = bolt.j then ass nut i; ass bolt j; i i+ 1
11 if nut.i < bolt.j then j j + 1
12 if nut.i > bolt.j then i i+ 1

13 if i = n+ 1 then smallest nut ass nut
14 smallest bolt j
15 return (smallest nut, smallest bolt)

ALGORITHM 1.8: Find the smallest nut and the smallest bolt.

The nut counter i does not stay constant once the smallest nut has
been encountered. This is because of the special processing for the case
nut.i = bolt.j. But, right before increasing the nut counter i after finding
its corresponding bolt, we memorize the index of the corresponding nut
and bolt (Step 10).

If the while loop ends with the case i = j = n, then, as we have
already remarked, the smallest bolt is bolt n. If ass bolt = n, then the
smallest nut has already been encountered and is ass nut. Otherwise,
ass bolt 6= n, the smallest nut has not been encountered as of yet and it
is then the nut n. Therefore, in the case i = j = n, one can identify the
smallest nut and the corresponding bolt without performing any further
comparison.

If the algorithm does not complete on the condition i = j = n, it
completes on the condition i = n+ 1. Then, the smallest nut had been
encountered because all nuts have been visited. The smallest nut is
ass nut (and, as always, the smallest bolt is j, which is here equal to
ass bolt).

If the while loop ends with the case i = j = n, n � 1 comparisons
were necessary to increase i from 1 to n, and n� 1 to increase j from 1
to n, for a total of 2n� 2 comparisons. In any other case, the algorithm
completes with i = n+ 1 and j 6 n� 1. To reach such a state requires
at most n + (n � 2) = 2n � 2 comparisons. Hence, in the worst case,
the algorithm performs 2n� 2 comparisons. (In the best case, when the
smallest bolt is of index 1, Algorithm 1.8 performs only n comparisons.)

© 2014 by Taylor & Francis Group, LLC

1.4. Solutions to exercises 29

3. As in the two previous exercises, we consider the decision tree of any
algorithm. Such a decision tree is a ternary tree. Indeed, there are three
possible outcomes for any comparison:

(a) The nut is smaller than the bolt;
(b) The bolt is smaller than the nut;
(c) The bolt and the nut correspond.

There are n! possible ways to associate n bolts with n nuts and thus n!
possible outputs for the algorithm. Therefore, the decision tree of any
algorithm contains at least n! leaves. Let h be the height of the decision
tree of a given algorithm. A ternary tree of height h contains at most
3h leaves (see below). Hence:

3h > n! , h > log3(n!) � n log3(n) = Θ(n log(n)).

We prove by induction that a ternary tree of height h contains at most
3h leaves. When h = 0, the tree is reduced to a single leaf and the result
holds. We assume that the result holds for some value h and we consider
a tree of height h + 1. Each of the three children of the root define a
subtree of the root. These three subtrees of the root are ternary trees
of height at most h. Therefore, using the induction hypothesis, each of
these three trees contains at most 3h leaves. Therefore, overall the tree
contains at most 3� 3h = 3h+1 leaves.

Solution to Exercise 1.9: Sorting a small number of objects

1. To sort four numbers, we just follow the divide-and-conquer principle
described in the text of the exercise. We create two pairs of elements
(a! b) and (c! d) with one comparison for each pair; then we compare
the two largest elements with an additional comparison; finally, we insert
c with a binary search in the sorted list containing a and b (we already
know that c 6 d), which requires two more comparisons. Hence, we sort
four numbers in 2� 1 + 1 + 2 = 5 comparisons, which is optimal.

2. Sorting 5 numbers. Sorting four numbers and then inserting the fifth
one with a binary search would cost: 5 + 3 = 8 comparisons, which
would be suboptimal. Therefore, we proceed otherwise.
We start, as previously, by creating two pairs of two elements
(a ! b) and (c ! d) with one comparison for each pair. Then
we compare the two largest elements with an additional compari-
son. After three comparisons, we obtain the same configuration as
previously:

a b

c d

© 2014 by Taylor & Francis Group, LLC

30 Chapter 1. Introduction to complexity

Then, we insert the fifth element, e, in the chain a ! b ! d with
two comparisons. Finally, we are left only with inserting c in the
sorted chain made of the three elements a, b, and e, which costs
two additional comparisons (we already know that c 6 d). Overall,
we sort five numbers in 2� 1 + 1 + 2 + 2 = 7 comparisons.

Sorting 6 numbers. We sort five of the numbers and then insert the
sixth one using a binary search in 7 + 3 = 10 comparisons.

Sorting 7 numbers. We sort six of the numbers and then insert the
seventh one using a binary search in 10 + 3 = 13 comparisons.

Sorting 8 numbers. We sort seven of the numbers and then insert the
eighth one using a binary search in 13 + 3 = 16 comparisons.

Sorting 9 numbers. We start by creating four sorted pairs (and an
element is left alone) with four comparisons. Then we sort the
greatest elements of the pairs in five comparisons. We then obtain
the following configuration:

b d f h i

a c e g

The trick is then to insert the elements c, e, g, and i in the chain
a ! b ! d ! f ! h in such a way as to minimize the number
of comparisons required in the worst case. First, we insert e in
a ! b ! d (we already know that e 6 f) with two comparisons.
Then, if e > d, we insert c in a! b (we already know that c 6 d).
Otherwise, we insert c in fa, b, eg. In both cases, c is inserted in
a sorted chain of at most three elements, which costs two compar-
isons. So far, we have sorted the set fa, b, c, d, e, f, hg. We insert i
in this set of six elements using three comparisons. All that is left
is then to insert g in the resulting set. In fact, because g 6 h, we
need only to insert g in a set of six elements if h 6 i, or of seven
elements if i < h. Such an insertion costs three additional compar-
isons. Overall, we sort nine numbers in 4�1+5+2+2+3+3 = 19
comparisons.

Sorting 10 numbers. To sort 10 numbers, we proceed as previously.
We start by creating five sorted pairs with five comparisons. Then
we sort the greatest elements of the pairs in seven comparisons.
We then obtain the following configuration:

b d f h j

a c e g i

Next we insert e in a ! b ! d with two comparisons. Then, if
e > d, we insert c in a ! b. Otherwise, we insert c in fa, b, eg. In
both cases, c is inserted with, at most, two comparisons. So far, we

© 2014 by Taylor & Francis Group, LLC

1.5. Bibliographical notes 31

have sorted the set fa, b, c, d, e, f, h, jg. We then insert i in the set
of seven elements fa, b, c, d, e, f, h, g using three comparisons (we
already know that i 6 j). All that is left is to insert g in the
resulting set. In fact, because g 6 h, we need only to insert g in a
set of six elements if h 6 i, or of seven elements if i < h. Such an
insertion costs three additional comparisons. Overall, we sort 10
numbers in 5� 1 + 7 + 2 + 2 + 3 + 3 = 22 comparisons.

Sorting 11 numbers. We sort 10 of the numbers and then insert the
11th one using a binary search in 22 + 4 = 26 comparisons.

3. To sort 12 numbers, we first sort 11 of them and then insert the 12th
number using a binary search, in 26 + 4 = 30 comparisons.

1.5 Bibliographical notes

Section 1.1 is inspired from the book by Knuth [62] (another monument).
Several exercises come from the wonderful book by Rawlins [92], but the so-
lutions are ours. This includes Exercise 1.3 (breaking boxes), Exercise 1.5
(maximum and minimum of n integers), and Exercise 1.8 (the toolbox). Ex-
ercise 1.1 (longest balanced section) comes from the book by Dijkstra [31].
Exercise 1.2 (find the star) is the classical problem to find whether there is
a sink in a directed graph with n vertices, i.e., a vertex with in-degree n � 1
and out-degree 0; see, for instance, [17, Example 15]. Exercise 1.6 (maximum
and second maximum of n integers) and Exercise 1.9 (sorting a small number
of objects) come from the book by Froidevaux, Gaudel, and Soria [37].

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 2

Divide-and-conquer

This chapter revisits the divide-and-conquer paradigms and explains how to
solve recurrences, in particular, with the use of the “master theorem.” We
first illustrate the concept with Strassen’s matrix multiplication algorithm
(Section 2.1) before explaining the master theorem (Section 2.2) and finally
providing techniques to solve recurrences (Section 2.3). These techniques
are further illustrated in the exercises of Section 2.4, with solutions found in
Section 2.5.

2.1 Strassen’s algorithm

The classical matrix multiplication algorithm computes the product of two
matrices of size n � n with Add(n) = n2(n � 1) additions and Mult(n) = n3

multiplications. Indeed, there are n2 coefficients to compute, each of them
corresponding to a scalar product of size n, thus with n multiplications, n� 1
additions, and one affectation. Can we do better than this?

Note that the question was raised at a time when it was mainly interest-
ing to decrease the number of multiplications, even though this would imply
computing more additions. The pipelined architecture of today’s processors
allows us to perform, in steady-state mode, one addition or one multiplication
per cycle time.

Strassen introduced a new method in his seminal paper [101]. Let us com-
pute the product of two 2� 2 matrices:

(
r s
t u

)
=

(
a b
c d

)
�
(
e f
g h

)

33

© 2014 by Taylor & Francis Group, LLC

34 Chapter 2. Divide-and-conquer

We first compute seven intermediate products

p1 = a(f � h)
p2 = (a+ b)h
p3 = (c+ d)e
p4 = d(g � e)
p5 = (a+ d)(e+ h)
p6 = (b� d)(g + h)
p7 = (a� c)(e+ f)

and then we can write

r = p5 + p4 � p2 + p6

s = p1 + p2

t = p3 + p4

u = p5 + p1 � p3 � p7.

If we count operations for each method, we obtain the following:

Classic Strassen
Mult(2) = 8 Mult(2) = 7
Add(2) = 4 Add(2) = 18

Strassen’s method gains one multiplication, but at the price of 14 extra
additions, thus being worse on modern processors than the classical method
for 2 � 2 matrices. However, it is remarkable that the new method does not
require the commutativity of multiplication, and, therefore, it can be used,
for instance, with matrices instead of numbers. We can readily use it with
matrices of even size n, say n = 2m. We consider that a, b, c, d, e, f, g, h, r, s, t,
and u are matrices of size m � m. So, let n = 2m, and use the previous
approach with submatrices of size m �m. To compute each pi (1 6 i 6 7)
with the classic matrix multiplication algorithm, we need m3 multiplications,
thus a total Mult(n) = 7m3 = 7n3/8. For the additions, we need to add the
additions performed in the seven matrix multiplications to form the interme-
diate products pi, namely 7m2(m� 1), with the number of additions required
to form the auxiliary matrices, namely 18m2. Indeed, there are 10 matrix ad-
ditions to compute the pis, and then 8 other matrix additions to obtain r, s, t,
and u. Therefore, we have a total of Add(n) = 7m3 +11m2 = 7n3/8+11n2/4.

Asymptotically, the dominant term is in 7
8n

3 for Mult(n) as for Add(n),
and the new method is interesting for n large enough. The intuition is the
following: Multiplying two matrices of size n � n requires O(n3) operations
(both for pointwise multiplications and additions), while adding two matrices
of size n � n requires only O(n2) operations. For n large enough, matrix
additions have a negligible cost in comparison to matrix multiplications (and
the main source of pointwise additions is within these matrix multiplications).
That was not the case for real numbers, hence, the inefficiency of the method
for 2� 2 matrices.

© 2014 by Taylor & Francis Group, LLC

2.1. Strassen’s algorithm 35

Strassen’s algorithm is the recursive use of the decomposition explained
above. We consider the case in which n is a power of 2, i.e., n = 2s. Otherwise,
we can extend all matrices with zeroes so that they have a size that is the first
power of 2 greater than n, and replace in the following log(n) by dlog(n)e:

(X) �!
(
X 0
0 0

)
.

Let us consider matrices of size n � n, where n = 2s. We proceed by
induction. We use the method recursively to compute each of the matrix
products pi, for 1 6 i 6 7. We stop when matrices are of size 1 or, better, when
Strassen’s method is more costly than the classical method, for matrix sizes
below a “crossover point.” In practice, this crossover point is highly system
dependent. By ignoring cache effects, we can obtain crossover points as low
as n = 8 [48], while [29] determines the crossover points by benchmarking on
various systems, and it ranges from n = 400 to n = 2150.

In the following, we stop the recursion when n = 1, and:
• M(n) is the number of multiplications done by Strassen’s algorithm to

multiply two matrices of size n� n;

• A(n) is the number of additions done by Strassen’s algorithm to multiply
two matrices of size n� n.

For the multiplications, we have:{
M(1) = 1
M(n) = 7�M(n/2)

=)M(n) = 7s = 7log(n) = nlog(7).

As before, additions come from two different sources: the additions that
are done in the 7 matrix multiplications (recursive call) and the 18 matrix
additions (construction of the pi’s and of r, s, t, and u). We finally have:{

A(1) = 0
A(n) = 7�A(n/2) + 18� (n/2)2 =) A(n) = 6� (nlog(7) � n2). (2.1)

We explain in Section 2.3 how this recurrence can be solved. Note that the
recursive approach has improved the order of magnitude of the total compu-
tation cost, not just only the constant (previously, we had only 7

8n
3 instead

of n3). The new order of magnitude is O(nlog(7)) and log(7) � 2.81.
Finally, we conclude by saying that Strassen’s algorithm is not widely used

because it introduces some numerical instability. Also, there are some al-
gorithms with a better complexity. At the time of this writing, the best
algorithm is the Coppersmith–Winograd algorithm, in O(n2.376) [26]. The
problem of establishing the complexity of matrix product is still open. The
only known lower bound is a disappointing O(n2); we need to touch each
coefficient at least once.

Strassen’s algorithm provides, however, an excellent illustration of the divide-
and-conquer paradigm, which we formalize in the next section through the
master theorem.

© 2014 by Taylor & Francis Group, LLC

36 Chapter 2. Divide-and-conquer

2.2 Master theorem

Before formulating the master theorem, we need to formalize the divide-and-
conquer paradigm that was illustrated in the previous section through the
Strassen’s algorithm.

DEFINITION 2.1 (Divide-and-conquer). Consider a problem of size n. In
order to solve the problem, divide it into a subproblems of size n/b that will
allow us to find the solution. The cost of this divide-and-conquer algorithm
is then

S(n) = a� S
(n
b

)
+R(n) (2.2)

where R(n) is the cost to reconstruct the solution of the problem of size n
from the solutions of the subproblems; it is often equal to R(n) = c� nα, for
some constants c and α. Initially, we often have S(1) = 1 (or equal to another
constant value).

For instance, with Strassen’s algorithm, if we consider the number of addi-
tions to be executed in a matrix product, we have a = 7, b = 2, α = 2, and
c = 18

4 . Indeed, the product of two matrices of size n � n is performed by
first computing 7 products of matrices of size n/2 � n/2 and reconstructing
the solution through 18 additions of matrices of size n/2 � n/2; therefore,
R(n) = 18(n/2)2 = 18

4 n
2. In this case, the initial cost is S(1) = 0.

Let us assume that there exists k 2 N such that n = bk; thus, k = logb(n)
and ak = nlogb(a). If we develop the formula in equation (2.2), we obtain the
following:

S(n) = a� S(nb) + R(n)
= a2 � S(nb2) + a�R(nb) +R(n)
= � � �
= ak � S(1) +

∑k−1
i=0 a

i �R(nbi).

We consider the most usual case in which R(n) = c � nα, and, therefore,

we have σ =
∑k−1
i=0 a

i �R(nbi) = c� nα
∑k−1
i=0 (a/bα)i.

We then distinguish several cases:

1. (a > bα): σ = Θ(nα � (abα)k) = Θ(ak) =) S(n) = Θ(nlogb(a));

2. (a = bα): σ = Θ (k � nα) =) S(n) = Θ (nα � log(n));

3. (a < bα): σ = Θ
(
nα � 1

1− a
bα

)
=) S(n) = Θ(nα).

We have proved the following theorem:

THEOREM 2.1 (Master theorem). The cost of a divide-and-conquer algo-
rithm such that S(n) = a� S(nb) + c� nα is the following:

© 2014 by Taylor & Francis Group, LLC

2.3. Solving recurrences 37

(i) if a > bα, then S(n) = Θ(nlogb(a));

(ii) if a = bα, then S(n) = Θ(nα � log(n));

(iii) if a < bα, then S(n) = Θ(nα).

A fully detailed proof of Theorem 2.1 is given in [27]. Let us come back
to Strassen’s algorithm. We divided the matrices into four blocs of size n/2,
and we would like to investigate a solution in which we would rather divide
matrices into nine blocs of size n/3: �

 .

We would then have b = 3 and α = 2 (the reconstruction cost is still in n2).
Let us assume that we are in case (i) of the master theorem. Then, this new
algorithm would become better than Strassen’s if and only if:

log3(a) < log(7)
() log(a) < log(7)� log(3)
() a < 7log(3) � 21.8.

This is an open problem; one knows a method with a = 23 subproblems [69]
but not with a = 21!

2.3 Solving recurrences

In this section, we detail how to solve recurrences that occur in the cost anal-
ysis of divide-and-conquer algorithms but that are slightly more complex than
in the application case of the master theorem. We start with homogeneous
recurrences and then consider the most general case of recurrences with a
second member.

2.3.1 Solving homogeneous recurrences

A homogeneous linear recurrence with constant coefficients has the form p0�
sn+p1�sn−1+� � �+pk�sn−k = 0, where each pi is a constant and (si)i>0 is an
unknown sequence. It is said to be homogeneous because the second member is
null, i.e., the linear combination is set equal to zero. Solving such recurrences
requires finding all the roots of the polynomial P =

∑k
i=0 pi�Xk−i, together

with their multiplicity order. However, we see that P is a polynomial of
degree k, and no algebraic method can find the roots of arbitrary polynomials

© 2014 by Taylor & Francis Group, LLC

38 Chapter 2. Divide-and-conquer

of degree 5 or higher. Therefore, we need additional information, such as
trivial roots, for high-degree recurrences.

Let us assume that we can find the k roots of P , r1, . . . , rk. If these roots
are distinct, then the general form of the solution is sn =

∑k
i=1 ci�rin, where

the cis are some constants that depend upon the first values of the sequence.
Otherwise, let qi be the order of multiplicity of root ri, for 1 6 i 6 ` (with

` < k distinct roots). Then we have sn =
∑`
i=1 Pi(n) � rin, where Pi(n) is

a polynomial of degree qi � 1. Here again, the coefficients of the Pi(n)s are
computed using the initial values of the recurrence.

2.3.2 Solving nonhomogeneous recurrences

In the general case, the recurrence may have a nonzero right-hand side, for
instance, sn � 2sn−1 = 2n+1. Such recurrences are called nonhomogeneous.
To explain how to solve them, we start by introducing a few notations. A
sequence is represented by writing down its n-th element formula in curly
brackets, for instance f3ng represents the sequence 1, 3, 9, 27, . . . (starting at
n = 0).

Then we introduce E, an operator that transforms a sequence by shifting it
and leaving out its first element. In our example, Ef3ng = 3, 9, 27, 81, . . . =
f3n+1g. More generally, Efsng = fsn+1g.

We then define the following operations on sequences:

cfsng = fcsng,
(E1 + E2)fsng = E1fsng+ E2fsng,

(E1E2)fsng = E1(E2fsng).

For instance, (E � 3)fsng = fsn+1� 3sng, and (2 +E2)fsng = f2sn + sn+2g.
We are looking for annihilators of the sequences. That is, we are looking for

operators P (E) such that P (E)fsng = f0g. For our example, (E � 3)f3ng =
f3n+1 � 3 � 3ng = f0g. We provide a few more examples, where Qk(n) is a
polynomial in n of degree k:

sequence annihilator
fcg E � 1

fQk(n)g (E � 1)k+1

fcng E � c
fcn �Qk(n)g (E � c)k+1

The first three lines are special cases of the fourth line; therefore, we need to
prove only the last relation. We prove it by induction on k. We start with
k = 0, writing Q0(n) = q:

(E � c)fcn �Q0(n)g = qEfcn)g � cfqcng = fqcn+1g � fqcn+1g = f0g.

© 2014 by Taylor & Francis Group, LLC

2.4. Exercises 39

Now by induction for k > 1, writing Qk(n) = a0n
k +Qk−1(n):

(E � c)k+1fcn �Qk(n)g = (E � c)k+1fcn � (a0n
k +Qk−1(n))g

= (E � c)k[(E � c)fcn(a0n
k +Qk−1(n))g]

= (E � c)kfcn+1(a0(n+ 1)k +Qk−1(n+ 1))

� cn+1(a0n
k +Qk−1(n))g

= (E � c)k[cn+1 �Rk−1(n)],

where Rk−1(n) is a polynomial in n of degree k�1, because both (n+1)k�nk
and Qk−1(n+1)�Qk−1(n) are polynomials of degree k�1. With the induction
hypothesis, we obtain the result: (E � c)k+1fcn �Qk(n)g = f0g.

2.3.3 Solving the recurrence for Strassen’s algorithm

We focus on the recurrence for the number of additions (see equation (2.1)):

A(n) = 7�A
(n

2

)
+

18

4
� n2.

We have n = 2s, and we consider the sequence fAsg such that As = A(2s).
Thus, we have As+1 = 7 � As + 18

4 � (2s+1)2 = 7 � As + 18 � 4s, and the
annihilator is (E � 4)(E � 7):

(E � 4)(E � 7)fAsg = (E � 4)fAs+1 � 7Asg = (E � 4)f18� 4sg = f0g.

We have found an annihilator for the sequence, namely, (E � 4)(E � 7), and,
even better, it is in decomposed form, so we immediately have its two distinct
roots, 4 and 7. From the previous result, we know the general form of the
solution, namely,

As = k1 � 7s + k2 � 4s .

From the initial conditions A0 = 0 and A1 = 18, we obtain the values k1 = 6
and k2 = �6, and, finally,

A(n) = 6� 7s � 6� 4s .

2.4 Exercises

Exercise 2.1: Product of two polynomials (solution p. 42)

The goal of this exercise is to multiply two polynomials efficiently. An n-
polynomial is a polynomial with a degree strictly less than n, thus with n co-
efficients.

© 2014 by Taylor & Francis Group, LLC

40 Chapter 2. Divide-and-conquer

Let P =
∑n−1
i=0 aiX

i and Q =
∑n−1
i=0 biX

i be two n-polynomials. Their
product R = P � Q is a (2n � 1)-polynomial. We denote by M(n) (resp.
A(n)) the number of multiplications (resp. number of additions) done by an
algorithm to multiply two n-polynomials.

1. Compute M(n) and A(n) for the usual algorithm to multiply two n-
polynomials.

2. We assume that n is even, n = 2 � m. We can then write P = P1 +
Xm�P2 and Q = Q1 +Xm�Q2. What is the degree of the polynomials
P1, P2, Q1, and Q2?

3. Let R1 = P1 � Q1, R2 = P2 � Q2, and R3 = (P1 + P2) � (Q1 + Q2).
Can you express R = P �Q as a function of R1, R2, and R3? What is
the degree of these three new polynomials? Compute M(n) and A(n),
assuming that we use the classical multiplication algorithm to compute
R1, R2, and R3.

4. We assume now that n = 2s and we apply recursively the previous
algorithm. Compute M(n) and A(n) for this algorithm.

Exercise 2.2: Toeplitz matrices (solution p. 44)

A Toeplitz matrix, or diagonal-constant matrix, named after Otto Toeplitz, is
an n � n matrix with (ai,j) coefficients (1 6 i, j 6 n) and such that ai,j =
ai−1,j−1 for 2 6 i, j 6 n.

1. Let A and B be two Toeplitz matrices. Is the sum A + B a Toeplitz
matrix? And the product A�B?

2. Give an algorithm to add two Toeplitz matrices in O(n).

3. We assume here that n = 2k. How can we compute the product of
an n � n Toeplitz matrix M by a vector T of length n? What is the
complexity of the algorithm?

Hint: Decompose M as a matrix of blocks of size 2k−1, decompose T
accordingly:

M =

(
A B
C A

)
and T =

(
X
Y

)
and consider the three matrices U = (C + A)X, V = A(Y � X), and
W = (B +A)Y .

Exercise 2.3: Maximum sum (solution p. 45)

Let T be a table of n relative integers. We want to find the maximum sum
of contiguous elements, namely, two indices i and j (1 6 i 6 j 6 n) that

maximize
∑j
k=i T [k].

© 2014 by Taylor & Francis Group, LLC

2.4. Exercises 41

1. If the values in the table are T [1] = 2, T [2] = 18, T [3] = �22, T [4] = 20,
T [5] = 8, T [6] = �6, T [7] = 10, T [8] = �24, T [9] = 13, and T [10] = 3,
can you return the two indices and the corresponding optimal sum?

2. Design an algorithm that returns the maximum sum of contiguous ele-
ments with a divide-and-conquer algorithm.

3. Design a linear-time algorithm that solves the problem through a single
scan of the array.

Exercise 2.4: Boolean matrices: The Four-Russians algorithm
(solution p. 49)

The goal in this exercise is to multiply two n�n Boolean matrices, A and B.
All matrix elements are either 0 or 1, and the sum and product correspond
respectively to the or and and operations on Booleans.

1. Can we easily apply Strassen’s algorithm to compute the product A�B?

2. Apart from the classical multiplication algorithm, another way to view
the product consists of multiplying columns of A with rows of B. Give
an expression of A � B, using Ac[`], the `-th column of A, and Br[`],
the `-th row of B.

3. To optimize the matrix product, the idea is to partition the columns of A
and the rows of B into n/k equal-sized groups of size k (we can assume,
for simplicity, that k divides n; otherwise, the last group is smaller).
Therefore, for 1 6 i 6 n/k, Ai is an n� k matrix with k columns of A
(Ac[(i� 1)� k+ 1], . . . , Ac[(i� 1)� k+ k]), and, similarly, Bi is a k�n
matrix with k rows of B (Br[(i � 1) � k + 1], . . . , Br[(i � 1) � k + k]).
Give an expression of A�B, using the matrices Ai and Bi.

4. Provide a method to compute Ci = Ai � Bi in time O(n2) for all 1 6
i 6 n/k. (Hint: Show that each row of Ci can take only 2k different
values, precompute all possible values and store them in a table. What
is the size of the table, i.e., the additional space required to run the
algorithm? What is the time required to build the table?)

5. Building upon the previous method, provide an algorithm to compute
A�B, and give its complexity, in terms of k and n.

6. Which value of k would be most suited for this algorithm? What is the
complexity of this matrix product algorithm? Compare with Strassen’s
algorithm.

Note that this algorithm is known as the Four-Russians algorithm, and it
is due to Arlazarov et al. [3, 75].

© 2014 by Taylor & Francis Group, LLC

42 Chapter 2. Divide-and-conquer

Exercise 2.5: Matrix multiplication and inversion (solution p. 50)

Let M(n) be the complexity of multiplying two square matrices of size n and
I(n) be the complexity of inverting a (square) matrix of size n. The functions
M(n) and I(n) are not known, but the goal of this exercise is to show the
following: If we assume that M(n) = Θ(nα) and I(n) = Θ(nβ), then α = β.
In other words, the complexity of both operations is of the same order under
our hypothesis.

1. Prove that 2 6 α, β 6 3.

2. Prove that α 6 β; matrix multiplication is not more complex than
matrix inversion (which is intuitive).

3. Prove that β 6 α; reciprocally, matrix inversion is not more complex
than matrix multiplication (which is less intuitive).
(Hint : Show that we can reduce the problem to inverting symmetric
and positive definite matrices A whose size is an exact power of 2, and
use the Schur complement S = D � CB−1CT to recursively compute

the inverse of A =

(
B CT

C D

)
. Note that B and D are symmetric and

positive definite, too.)

2.5 Solutions to exercises

Solution to Exercise 2.1: Product of two polynomials

1. With the usual algorithm to multiply n-polynomials:

M(n) = n2 and A(n) = n2 � (2n� 1)︸ ︷︷ ︸
assignments

= (n� 1)2.

Indeed, we multiply each of the n coefficients of P with each of the n
coefficients of Q. Then, the number of additions is equal to the number
of multiplication results minus the number of results computed, and
there are 2n� 1 coefficients in the computed polynomial.

2. P1, P2, Q1, and Q2 are m-polynomials and of degree m� 1.

3. We have R = R1 + (R3 �R2 �R1)�Xm +R2 �X2m. R1, R2, and R3

are polynomials of degree 2m�2 = n�2, and thus (n�1)-polynomials.

Following this computation scheme, M(n) = 3M(n2) = 3n2

4 , as the
computation of R1, R2, and R3 each requires M(m) = M(n2) multipli-
cations. There are four types of additions: (1) those involved in the

© 2014 by Taylor & Francis Group, LLC

2.5. Solutions to exercises 43

computations of R1, R2, and R3; (2) those involved in computing the
polynomials P1 + P2 and Q1 + Q2 needed by R3; (3) those involved in
computing R3 �R2 �R1; and (4) those needed to compute R from the
partial results. We, therefore, obtain:

A(n) = 3A(m)︸ ︷︷ ︸
R1, R2, and R3

+ 2 m︸︷︷︸
R3 arguments

+ 2(2m� 1)︸ ︷︷ ︸
R3−R2−R1

+ (2m� 2)︸ ︷︷ ︸
building R

.

Indeed, R is defined as follows:

R = R1 + (R3 �R1 �R2)�Xm +R2 �X2m

=

2m−2∑
i=0

r1,i �Xi

︸ ︷︷ ︸
X0→X2m−2

+
2m−2∑
i=0

zi �Xi+m

︸ ︷︷ ︸
Xm→X3m−2

+
2m−2∑
i=0

r2,i �Xi+2m

︸ ︷︷ ︸
X2m→X4m−2

where, for any 1 6 j 6 3, Rj =
∑2m−2
i=0 rj,iX

i and, for any 0 6 i 6
2m�2, zi = r3,i�r1,i�r2,i. Therefore, each of the terms in the second
sum, except zm−1, is added either to a term of the first sum or to a term
of the third sum. Hence, there are a total of (2m � 1) � 1 = 2m � 2
additions.

Therefore,

A(n) = 3A
(n

2

)
+ 4n� 4 = 3

(n
2
� 1
)2

+ 4n� 4 =
3

4
n2 + n� 1.

One can then check that under this scheme, the number of multiplica-
tions is always decreased, and the number of additions decreases as soon
as n > 12.

4. We recursively apply the above scheme when n = 2s. We have:{
M(1) = 1
M(n) = 3�M(n2)

=) M(n) = 3s = nlog2(3) � n1.58.

{
A(1) = 0
A(n) = 3�A

(
n
2

)
+ 4n� 4

=) A(n) = 6nlog2(3) � 8n+ 2.

The expression for A(n) is obtained using the method explained in Sec-
tion 2.3 (p. 37). Indeed, from A(n) = 3A

(
n
2

)
+ 4n � 4, we define

As = 3As−1 + 4 � 2s � 4. Then, using the notations of Section 2.3,
(E � 1)(E � 2)(E � 3)fAsg = f0g and, thus, there exist k1, k2, and k3

such that As = k1 � 3s + k2 � 2s + k3. Using A0 = 0, A1 = 4, and
A2 = 24, we obtain k1 = 6, k2 = �8, and k3 = 2.

© 2014 by Taylor & Francis Group, LLC

44 Chapter 2. Divide-and-conquer

Solution to Exercise 2.2: Toeplitz matrices

1. The sum of two Toeplitz matrices is a Toeplitz matrix. However, the
product of two Toeplitz matrices is not a Toeplitz matrix:(

1 0
1 1

)
�
(

1 1
0 1

)
=

(
1 1
1 2

)
�

2. We need to perform only the addition of the first row of A with the first
row of B, and the first column of A with the first column of B, hence,
2n� 1 additions. A Toeplitz matrix indeed can be fully represented by
its first row and its first column.

3. We compute the matrix product M �T according to the decomposition
proposed in the hint:

M � T =

(
A B
C A

)
�
(
X
Y

)
=

(
A�X +B � Y
C �X +A� Y

)
�

We remark that A, B, and C are Toeplitz matrices. With the notations
U = (C +A)X, V = A(Y �X), and W = (B +A)Y , we have:

M � T =

(
W � V
U + V

)
�

The motivation of this approach is that we went from four to three
multiplications of 2k−1 � 2k−1 matrices. To assess the potential gain of
this method, we look at the complexity of this multiplication scheme.

Computing the complexity. We denote, respectively, by M(n) and
A(n) the number of multiplications and of additions performed for the
product of two matrices of size n � n. The number of multiplications,
M(n), is defined as follows:{

M(1) = 1
M(2k) = 3�M(2k−1).

The computation of A(n) is more involved:
A(1) = 0

A(2k) = 3 �A(2k−1)︸ ︷︷ ︸
from multiplications

in U , V , and W

+ 2 � (2 � 2k−1 � 1)︸ ︷︷ ︸
(C+A) and (B+A)

+ 2k−1︸︷︷︸
Y−X

+ 2 � 2k−1︸ ︷︷ ︸
(W−V) and (U+V)

= 3 �A(2k−1) + 2 � (2k � 1) + 3 � 2k−1.

To solve the recursions, we let Ms = M(2s) = M(n) and As = A(2s) =
A(n), and we follow the method and notation of Section 2.3 (p. 37). For
the number of multiplications performed, M0 = 1 and Ms = 3Ms−1.

© 2014 by Taylor & Francis Group, LLC

2.5. Solutions to exercises 45

Therefore, (E � 3)fMsg = f0g, and thus Ms = k1 � 3s. From M0 = 1,
we obtain k1 = 1 and, finally, M(n) = 3log(n) = nlog(3).

This result also can be established using the following method:

M(2k) = 3�M(2k−1) , M(2k)

2k
=

3

2

M(2k−1)

2k−1
.

We then let uk = 3
2uk−1 and u0 = 1, which leads to uk =

(
3
2

)k
. Finally,

M(2k) =
(

3
2

)k � 2k = 3k.

We now compute the number of additions required. A0 = 0 and
As = 3As−1 + 7� 2s−1 � 2. Therefore,

As � 3As−1 = 7� 2s−1 � 2)
(E � 3)fAsg = 7� 2s � 2)
(E � 2)(E � 3)fAsg = �2)
(E � 1)(E � 2)(E � 3)fAsg = f0g.

Therefore, there exists k1, k2, and k3 such that As = k13s + k22s + k3.
As A0 = A(1) = 0, A1 = A(2) = 5, and A2 = A(4) = 27, to find k1, k2,
and k3, we have to solve the system:k1 + k2 + k3 = 0

3k1 + 2k2 + k3 = 5
9k1 + 4k2 + k3 = 27

and we obtain k1 = 6, k2 = �7, and k3 = 1. Finally,

A(n) = 6� nlog(3) � 7� n+ 1.

Solution to Exercise 2.3: Maximum sum

1. The algorithm should return the indices 4 and 7, which leads to a sum
of 32.

2. We want to divide the array T into halves. Then, three cases are possi-
ble:

(a) The interval of maximum sum is included in the first half;
(b) The interval of maximum sum is included in the second half;
(c) The interval of maximum sum contains elements from both halves.

The first two cases are solved through simple recursive calls on the
halves. For the third case, we compute the interval of maximum sum
that starts at the first element of the second half (this interval is then
included in the second half). Symmetrically, we compute the interval
of maximum sum that ends with the last element of the first half. The
union of these two intervals is the interval of maximum sum that contains

© 2014 by Taylor & Francis Group, LLC

46 Chapter 2. Divide-and-conquer

1 if b = e then return (b, b, A[b])

2 middle b e−b2 c
3 (start1, end1, sum1) LS(b, middle)
4 (start2, end2, sum2) LS(middle + 1, e)
5 LeftHalfSum A[middle]; LeftLimit middle
6 s A[middle]
7 for i = middle � 1 downto b do
8 s s+A[i]
9 if s > LeftHalfSum then

10 LeftHalfSum s; LeftLimit i

11 RightHalfSum A[middle + 1]; RightLimit middle + 1
12 s A[middle + 1]
13 for i = middle + 2 to e do
14 s s+A[i]
15 if s > RightHalfSum then
16 RightHalfSum s; RightLimit i

17 sum3 LeftHalfSum + RightHalfSum
18 if sum1 = maxfsum1, sum2, sum3g then
19 return (start1, end1, sum1)

20 if sum2 = maxfsum1, sum2, sum3g then
21 return (start2, end2, sum2)

22 return (LeftLimit , RightLimit , sum3)

ALGORITHM 2.1: LS(b, e): Find the maximum sum of contiguous elements
of the array T between the indices b and e (included).

elements from both halves. Algorithm 2.1 presents a simple realization
of this divide-and-conquer principle.

A call to Algorithm 2.1 with an array of size n leads to two recursive
calls on arrays of size n/2. Dividing the array has a constant cost. How-
ever, computing the overall results from the subresults requires scanning
the whole array and, hence, has a cost of Θ(n). Therefore, the complex-
ity is given by:

C(n) = C
(n

2

)
+ Θ(n).

Using the master theorem (p. 36), we have a = 2, b = 2, and α = 1, and
thus

C(n) = Θ(n log n).

In order to lower the complexity of the divide-and-conquer solution,
we do not want to scan the entire array to compute the interval of

© 2014 by Taylor & Francis Group, LLC

2.5. Solutions to exercises 47

maximum sum that contains elements of both halves. In other words,
we want to be able to compute such an interval in constant time. To solve
this problem, we just have to remark that the maximum-sum interval
starting with the first element of an array either is fully contained in the
first half of this array or includes all of this first half and then is equal
to the whole first half plus the maximum-sum interval starting with the
first element of the second half of the array. If the recursive calls on the
two halves identify:

• The maximum-sum interval starting with the first element;
• The maximum-sum interval ending with the last element;
• The sum of all the elements in the array

we will be able to compute these values in constant time for the original
array. Algorithm 2.2 exactly realizes this scheme.

A call to Algorithm 2.2 with an array of size n leads to two recursive
calls on arrays of size n/2. Dividing the array and computing all the
needed results from the subresults has a constant cost. Therefore, the
complexity is:

C(n) = C
(n

2

)
+ Θ(1).

Using the master theorem (p. 36), we have a = 2, b = 2, and α = 0, and
thus

C(n) = Θ(n).

3. This new solution to the maximum-sum problem relies on several prop-
erties:

• If none of the elements in the array is positive, then the interval of
maximum sum is reduced to a single element, the maximum array
element.

• No strict prefix or suffix of the interval of maximum sum has a
negative sum. We prove this result by contradiction, assuming that
the interval of maximum sum starts at index i, ends at k (k > i),
and admits a prefix of negative sum that ends at j (i 6 j < k).

Then,
∑k
l=i Tl =

(∑j
l=i Tl

)
+
(∑k

l=j+1 Tl

)
<
∑k
l=j+1 Tl.

As a consequence, if at least one element in the array is positive,
there exists an interval of maximum sum whose first and last ele-
ments are positive.

• If (j, k) is an interval of maximum sum, then, whatever the index
i < j, the interval (i, j � 1) has a nonpositive sum. To prove this,
we remark that as (j, k) is an interval of maximum sum, its sum is
greater than or equal to that of the interval (i, k). Therefore:

k∑
l=i

T [l] 6
k∑
l=j

T [l] ,
j−1∑
l=1

T [l] 6 0.

© 2014 by Taylor & Francis Group, LLC

48 Chapter 2. Divide-and-conquer

1 if b = e then return (b, T [b], b, T [b], T [b], b, b, T [b])

2 middle b f−d2 c
3 (start1, sum start1, end1, sum end1, sum1, b1, e1, s1)
 LSR(b, middle)

4 (start2, sum start2, end2, sum end2, sum2, b2, e2, s2)
 LSR(middle+1, e)

5 if sum start1 > sum1 + sum start2 then
6 sum start sum start1

7 start start1

8 else
9 sum start sum1 + sum start2

10 start start2

11 if sum end2 > sum2 + sum end1 then
12 sum end sum end2

13 end end2

14 else
15 sum end sum2 + sum end1

16 end end1

17 sum sum1 + sum2

18 b3 end1

19 e3 start2

20 s3 sum end1 + sum start2

21 if s3 = maxfs1, s2, s3g then
22 return (start , sum start , end , sum end , sum, b3, e3, s3)

23 if s2 = maxfs1, s2, s3g then
24 return (start , sum start , end , sum end , sum, b2, e2, s2)

25 return (start , sum start , end , sum end , sum, b1, e1, s1)

ALGORITHM 2.2: LSR(b, e): Find the maximum sum of contiguous ele-
ments of the array T between the indices b and e (included).

Algorithm 2.3 computes an interval of maximum sum that is based
on the above properties. First, it looks for the first positive element
in the array. If none is found, the solution is reduced to the largest
element in the array. Otherwise, starting at the first positive element, it
scans the array computing the sum of the current interval and updating
the maximum sum if needed. Once an interval of nonpositive sum is
encountered, using the last of the above properties, the algorithm skips
the elements so far. Indeed, if a suffix of the current interval was a prefix
of an interval of maximum sum, then the current interval would have a
nontrivial, nonpositive prefix and the algorithm would have skipped it.

© 2014 by Taylor & Francis Group, LLC

2.5. Solutions to exercises 49

1 start 1; sum max T [1]
2 max elem 1
3 while T [start] < 0 and start < n do
4 start start + 1
5 if T [start] > T [max elem] then max elem start

6 if start = n then return (max elem,max elem, T [max elem])
7 sum max T [start]
8 end start
9 local max sum max ; local start start

10 for i = start + 1 to n do
11 if local max + T [i] < 0 then
12 local max 0
13 local start i+ 1

14 else
15 if local max > sum max then
16 sum max local max
17 start local start
18 end i

19 return (start , end , sum max)

ALGORITHM 2.3: Find the maximum sum of contiguous elements of an
array through a single array scan.

Solution to Exercise 2.4: Boolean matrices: The Four-Russians
algorithm

1. No, because subtraction is not defined on booleans. A trick allows us to
use Strassen’s algorithm, by considering every bit as an integer modulo
n + 1, where n is the size of the matrices, and then use the rules of
addition, multiplication, and subtraction on these integers (see [75]).

2. A�B =
n∑
`=1

Ac[`]�Br[`].

3. A�B =

n/k∑
i=1

Ai �Bi.

4. Each row of Ci is a Boolean sum of the rows of Bi according to the
corresponding row of Ai; if k = 3 and the j-th row of Ai is 1 0 1, then
we add the first and the third rows of Bi to obtain the j-th row of Ci.
The rows of Ai can take only 2k different values, hence, the first result.

© 2014 by Taylor & Francis Group, LLC

50 Chapter 2. Divide-and-conquer

The table contains 2k rows, each of length n, hence, a total size
in O(n � 2k), and it must be constructed for each Bi. The row can
be addressed by coding the corresponding possible entry of Ai as an
integer (i.e., in our example, the j-th row of Ci would be accessible as
the 6th entry of the table because 1 0 1 = 5).

We precompute the tables by induction, with at most one addition of
a row for each entry. Because it takes n Boolean additions to add a row,
this precomputing is done with O(n� 2k) operations.

Finally, to compute Ci, for each of the n rows, it takes a time O(1) to
find the row in the table, and copying this row to the appropriate row
in Ci takes a time O(n), hence, a total computation time in O(n2).

5. To compute A�B, we need to compute the n/k products Ci, following
the method of the previous question. Each such product takes O(n2)
time, and constructing the table takes O(n � 2k) time. Therefore, the
total running time of the algorithm is O(n3/k + n2 � 2k/k).

6. A reasonable value would be k = log(n), so that the complexity of the

algorithm is O
(

n3

log(n)

)
. This complexity is worse than that of Strassen’s

algorithm, which is O(nlog(7)).

Solution to Exercise 2.5: Matrix multiplication and inversion

The first question is to prove that if such α and β exist, then they are between
2 and 3. The lower bound is because we need to access each matrix element
at least once. The upper bound comes from the usual algorithm for matrix
multiplication (no need for Strassen’s algorithm here), and from the Gauss–
Jordan algorithm for matrix inversion. Next, we show both inequalities as
follows:

(i) Multiplication is not more complex than inversion. We aim at
computing the product of two matrices A and B of size n. Let Z be the
matrix of size 3n defined as

Z =

 I A 0
0 I B
0 0 I

 �
We have

Z−1 =

 I �A A.B
0 I �B
0 0 I

 �
Hence, inverting Z requires computing the product AB, and M(n) � I(3n);
thus, α 6 β.

© 2014 by Taylor & Francis Group, LLC

2.6. Bibliographical notes 51

(ii) Inversion is not more complex than multiplication. We aim at
computing the inverse of a matrix A of size n. We proceed in two steps.

If A is symmetric and positive definite, and of dimension n = 2k,

then we write A =

(
B CT

C D

)
, where B, C, and D are of size 2k−1. We obtain

that

A−1 =

(
B−1 +B−1CTS−1CB−1 �B−1CTS−1

�S−1CB−1 S−1

)
where S = D � CB−1CT .

To compute A−1, we have to compute the matrices

B−1, CB−1, (CB−1)CT , S−1, S−1(CB−1), and (C.B−1)T (S−1(CB−1)).

The hint tells us that B and S are symmetric and positive definite as well
(see [40] for a reference), hence, we can use the method recursively and

I(n) = 2I(n/2) + 4M(n) +O(n2).

We deduce that I(n) = O(M(n)) from the master theorem and the fact that
2 6 α, β 6 3.

General case. If A is of dimension n, we augment it with zeros and

build Ã =

(
A 0
0 I

)
, where I is the identity matrix and the dimension of Ã is

2dlogne 6 2n. Then we let B = ÃT Ã, which is symmetric and positive definite
and of dimension an exact power of 2. We compute the inverse of B by the
previous method and write

I = B−1.B = B−1(ÃT Ã) = (B−1.ÃT)Ã,

which shows that Ã−1 = B−1ÃT . We derive that I(n) = 2M(n)+O(M(n))+
O(n2) = O(M(n)). Finally, β 6 α.

2.6 Bibliographical notes

Section 2.3 on recurrences comes from the book by Kronsjö [66]. Exercise 2.1
(product of two polynomials) is the well-known algorithm of Karatsuba used
in many computer algebra systems. Exercises 2.2 (Toeplitz matrices) and 2.5
(matrix multiplication and inversion) come from the book by Cormen, Leis-
erson, Rivest, and Stein [27]. Exercise 2.3 (maximum sum) comes from the
book by Bentley [14]. Exercise 2.4 (the Four-Russians algorithm) comes from
the book by Manber [75].

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 3

Greedy algorithms

This chapter explains the reasoning in finding optimal greedy algorithms. The
main feature of a greedy algorithm is that it builds the solution step by step,
and, at each step, it makes a decision that is locally optimal. Throughout
Sections 3.1 to 3.3, we illustrate this principle with several examples and also
outline situations where greedy algorithms are not optimal; taking a good
local decision may prove a bad choice in the end! In Section 3.4, we also cover
matroids, a (mostly theoretical) framework to prove the optimality of greedy
algorithms. All of these techniques are then illustrated with a set of exercises
in Section 3.5, with solutions found in Section 3.6.

3.1 Motivating example: The sports hall

Problem. Let us consider a sports hall in which several events should be
scheduled. The goal is to have as many events as possible, given that two
events cannot occur simultaneously (only one hall). Each event i is character-
ized by its starting time si and its ending time ei. Two events are compatible
if their time intervals do not overlap. We would like to solve the problem,
i.e., find the maximum number of events that can fit in the sports hall, with
a greedy algorithm.

A first greedy algorithm. The first idea consists of sorting events by
increasing durations ei � di. At each step, we schedule an event into the
sports hall if it fits, i.e., if it is compatible with events that have already been
scheduled. The idea is that we will be able to accommodate more shorter
events than longer ones. However, we make local decisions at each step of
the algorithm (this is a greedy algorithm!), and it turns out that we can make
decisions that do not lead to the optimal solution. For instance, in the example
of Figure 3.1, the greedy algorithm schedules only the shortest event i, while
the two compatible events j and k would lead to a better solution.

A second greedy algorithm. In order to avoid the problem encountered
in the previous example, we design a new algorithm that sorts events by

53

© 2014 by Taylor & Francis Group, LLC

54 Chapter 3. Greedy algorithms

FIGURE 3.1: The first greedy algorithm is not optimal.

starting times si and then proceeds similarly to the first greedy algorithm. In
the example of Figure 3.1, this greedy algorithm returns the optimal solution.
However, the local decisions that are made may not be the optimal ones, as
shown in the example of Figure 3.2. Indeed, the algorithm schedules event i
at the first step, and then no other event can be scheduled, while it would be
possible to have eight compatible events. Note that the first greedy algorithm
would return the optimal solution for this example.

FIGURE 3.2: The second greedy algorithm is not optimal.

A third greedy algorithm. Building upon the first two algorithms, we
observe that it is always a good idea to select first events that do not intersect
with many other events. In the first example, events j and k intersect with
only one other event, while event i intersects with two events and is chosen
later; therefore, the new algorithm finds the optimal solution. Similarly in the
second example, event i intersects eight other events, and it is the only event
not to be scheduled. However, this greedy algorithm is still not optimal. We
can build an example in which we force the algorithm to make a bad local
decision. In the example of Figure 3.3, event i is the first to be chosen because
it has the smallest number of intersecting events. However, if we schedule i,
we can have only three compatible events, while we could have a solution with
four compatible events, j, k, l, and m.

FIGURE 3.3: The third greedy algorithm is not optimal.

© 2014 by Taylor & Francis Group, LLC

3.2. Designing greedy algorithms 55

An optimal greedy algorithm. Even though many greedy choices do not
lead to an optimal solution, as observed with the preceding algorithms, there
is a greedy algorithm that solves the sports hall problem in polynomial time.
The idea is to sort the events by increasing ending times ei and then to greedily
schedule the events. This way, at each step we fit the maximum number of
events up to a given time, and we never make a bad decision. We now prove
the optimality of this algorithm.

Let f1 be the event with the smallest ending time. We prove first that
there exists an optimal solution that schedules this event. Let us consider an
optimal solution O = ffi1 , fi2 , . . . , fikg, where k is the maximum number of
events that can be scheduled in the sports hall and where events are sorted
by nondecreasing ending times. There are two possible cases: Either (i) fi1 =
f1, the optimal solution schedules f1, and nothing needs to be done, or (ii)
fi1 6= f1. In this second case, we replace fi1 with f1 in solution O. We have
e1 6 ei1 by definition of event f1, and ei1 6 si2 because O is a solution to the
problem (fi1 and fi2 are compatible). Therefore, e1 6 si2 and, thus, fi2 is
compatible with f1. The new solution is still optimal (the number of events
remain unchanged), and event f1 is scheduled.

The proof works by induction, following the previous reasoning. Once f1

is scheduled, we consider only events that do not intersect with f1, and we
iterate the reasoning on the remaining events to conclude the proof.

Finally, we emphasize that there can be many optimal solutions, and not all
of them will include the first event f1 selected by the greedy algorithm, namely,
the event with the smallest end time. However, schedules that select f1 are
dominant, meaning that there exists an optimal solution that includes f1.

3.2 Designing greedy algorithms

The example of the sports hall gives a good introduction to the design prin-
ciples of greedy algorithms. Actually, the binary method to compute xn in
Section 1.1.2 also is a greedy algorithm, in which we decide at each step which
computation to perform. We can formalize the reasoning to find greedy algo-
rithms as follows:

1. Decide on a greedy choice that allows us to optimize the problem locally;

2. Search for a counterexample that shows that the algorithm is not opti-
mal (and go back to step 1 if a counterexample is found), or prove its
optimality through steps 3 and 4;

3. Show that there is always an optimal solution that performs the greedy
choice of step 1;

© 2014 by Taylor & Francis Group, LLC

56 Chapter 3. Greedy algorithms

4. Show that if we combine the greedy choice with an optimal solution of
the subproblem that we still need to solve, then we obtain an optimal
solution.

We say that a greedy algorithm is a top-down algorithm because at each step
we make a local choice, and we then have a single subproblem to solve, given
this choice. On the contrary, we will see in Section 4 that dynamic program-
ming algorithms are bottom-up; we will need results of multiple subproblems
to make a choice.

3.3 Graph coloring

In this section, we further illustrate the principle of greedy algorithms through
the example of graph coloring. The problem consists of coloring all vertices of
a graph using the minimum number of colors while enforcing that two vertices,
which are connected with an edge, are not of the same color. Formally, let
G = (V,E) be a graph and c : V ! f1..Kg be a K-coloring such that
(x, y) 2 E) c(x) 6= c(y). The objective is to minimize K, the number of
colors.

3.3.1 On coloring bipartite graphs

We start with a small theorem that allows us to define a bipartite graph,
defined as a graph that can be colored with only two colors.

THEOREM 3.1. A graph can be colored with two colors if and only if all
its cycles are of even length.

Proof. Let us first consider a graph G that can be colored with two colors. Let
c(v) 2 f1, 2g be the color of vertex v. We prove by contradiction that all cycles
are of even length. Indeed, if G has a cycle of length 2k+ 1, v1, v2, . . . , v2k+1,
then we have c(v1) = 1, say, which implies that c(v2) = 2, c(v3) = 1, until
c(v2k+1) = 1. However, since it is a cycle, there is an edge between v1 and
v2k+1, so they cannot be of the same color, which leads to the contradiction.

Now, if all the cycles of the graph G are of even length, we search for a
2-coloring of this graph. We assume that G is connected (the problem is
independent from one connected component to another). The idea consists of
performing a breadth-first traversal of G.

Le x0 2 G, X0 = fx0g and Xn+1 =
⋃
y∈Xn N(y), where N(y) is the set

of nodes connected to y, but not yet included in a set Xk, for k 6 n. Each
vertex appears in one single set, and we color with color 1 the elements from
sets X2k, and with color 2 the elements from sets X2k+1.

© 2014 by Taylor & Francis Group, LLC

3.3. Graph coloring 57

This 2-coloring is valid if and only if two vertices connected by an edge are
of different colors. If there is an edge between y 2 Xi and z 2 Xj , where i
and j are both either even or odd, then we have a cycle x0, . . . , y, z, . . . , x0

of length i + j + 1, and this value is even, leading to a contradiction. The
coloring, therefore, is valid, which concludes the proof.

In a bipartite graph, if we partition vertices into two sets according to the
colors, all edges go from one set to the other. We retrieve here the usual
definition of bipartite graphs, namely, graphs whose vertices are partitioned
into two sets and with no edge inside these sets. We now consider colorings of
general graphs, and we propose a few greedy algorithms to solve the problem.

3.3.2 Greedy algorithms to color general graphs

The first greedy algorithm takes the vertices in a random order, and, for each
vertex v, it colors it with the smallest color number that has not been yet
given to a neighbor of v, i.e., a node connected to v.

Let Kgreedy1 be the total number of colors needed by this greedy algorithm.
Then we have Kgreedy1 6 ∆(G) + 1, where ∆(G) is the maximal degree of
a vertex (number of edges of the vertex). Indeed, at any step of the algo-
rithm, when we color vertex v, it has at most ∆(G) neighboring vertices and,
therefore, the greedy algorithm never needs to use more than ∆(G)+1 colors.

Note that this algorithm is optimal for a fully connected graph (a clique),
since we need ∆(G) + 1 colors to connect such a graph (one color per vertex).
However, this algorithm is not optimal in general; on the following bipartite
graph, if the order of coloring is 1 and then 4, we need three colors, while the
optimal coloring uses only two colors.

1 2

3 4

In order to improve the previous algorithm, one idea is to order vertices in
a smart way and then to proceed as before, i.e., color each vertex in turn with
the smallest possible color.

Let n = jV j be the number of vertices and di be the degree of vertex vi. We
have Kgreedy2 6 max16i6n min(di + 1, i). Indeed, when we color vertex vi,
it has at most min(di, i � 1) neighbors that have already been colored, and
thus its own color is at most 1 + min(di, i� 1) = min(di + 1, i). To obtain the
result, we take the maximum of these values on all vertices.

This result suggests that it would be smart to color vertices with a high
degree first, so that we have min(di + 1, i) = i. Therefore, the second greedy
algorithm sorts the vertices by nonincreasing degrees.

Once again, the algorithm is not optimal. On the following bipartite graph,
we choose to color vertex 1, then vertex 4, which imposes the use of three
colors instead of the two required ones.

© 2014 by Taylor & Francis Group, LLC

58 Chapter 3. Greedy algorithms

1 3 7 8

5 6 2 4

Based on these ideas, several greedy algorithms can be designed. In par-
ticular, a rather intuitive idea consists of giving priority to coloring vertices
that have already many colored neighbors. We define the color-degree of a
vertex as the number of its neighbors that are already colored. Initially, the
color-degree of each vertex is set to 0, and then it is updated at each step of
the greedy algorithm.

The following greedy algorithm is called the Dsatur algorithm in [20]. The
ordering is done by (color-degree, degree); we choose a vertex v with maxi-
mum color-degree, and such that its degree is the largest among the vertices
with maximum color-degree. This vertex v is then colored with the smallest
possible color, and the color-degrees of the neighbors of v are updated before
proceeding to the next step of the algorithm. We illustrate this algorithm on
the following example:

v7

v1

v2

v6

v3 v4

v5

We first choose a vertex with maximum degree, for instance v1, and it is
colored with color 1. The color-degree of v2, v5, v6, and v7 becomes 1, and we
choose v2, which has the maximum degree (between these four vertices); it is
assigned color 2. Now, v7 is the only vertex with color-degree 2; it is given
the color 3. All remaining noncolored vertices have the same color-degree 1
and the same degree 3; we arbitrarily choose v3 and color it with 1. Then, v4,
with color-degree 2, receives color 3. Finally, v5 is colored in 2 and v6 in 3;
the graph is 3-colored, and it is an optimal coloring.

The name Dsatur comes from the fact that maximum color-degree vertices
are saturated first. We prove below that Dsatur always returns an optimal
coloring on bipartite graphs; however, it may use more colors than needed on
arbitrary graphs.

THEOREM 3.2. The Dsatur algorithm is optimal on bipartite graphs, i.e.,
it always succeeds to color them with two colors.

Proof. Consider a connected bipartite graph G = (V,E), where V = B [
R and each edge in E is connecting a vertex in B (color 1 is blue) and a
vertex in R (color 2 is red). Note first that the first two greedy algorithms
may fail. Let G be such that B = fb1, b2, b3g, R = fr1, r2, r3g, and E =
f(b1, r2), (b2, r3), (b3, r1), (bi, ri)j1 6 i 6 3g, as illustrated below.

© 2014 by Taylor & Francis Group, LLC

3.3. Graph coloring 59

r3

b1

r1

b2 b3

r2

All vertices have a degree 2. If we start by coloring a vertex of B, for
instance b1, and then a nonconnected vertex of R, r3, with the same color 1,
it is not possible to complete the coloring with only two colors. The use
of the color-degree prevents us from such a mistake, since once b1 has been
colored, we need to color either r1 or r2 with the color 2 and finish the coloring
optimally.

In the general case, with Dsatur, we first color a vertex, for instance from B,
with color 1 (blue). Then we have to color a vertex of color-degree 1, that
is, a neighboring vertex. This neighboring vertex belongs necessarily to R. It
is colored with color 2 (red). We prove by induction that at any step of the
algorithm, all colored vertices of B are colored in blue, and all vertices of R
are colored in red. Indeed, if the coloring satisfies this property at a given
step of the algorithm, we choose next a vertex v with nonnul color-degree.
Because the graph is bipartite, all its neighbors are in the same set and have
the same color: red if v 2 B, or blue if v 2 R. Vertex v, therefore, is colored
in red if it is in R or in blue if it is in B.

We exhibit a counterexample to show that Dsatur is not optimal on arbi-
trary graphs.

v1

v4 v5 v6 v7

v8

v2 v3

Dsatur can choose v4 first because it has the maximum degree 3; it is
colored with 1. Between the vertices with color-degree 1, the algorithm can
(arbitrarily) choose v5, which is colored with 2. Then the algorithm can choose
to color v6, using color 1. Then, v1 is chosen between vertices of color-degree 1
and degree 3, and it is colored with 2. We finally need to use colors 3 and 4
for v2 and v3, while this graph could have been colored with only three colors
(v1, v5, v7 with color 1; v2, v6, v8 with color 2; and v3, v4 with color 3).

To build this counterexample, we force Dsatur to make a wrong decision
by coloring both v4 and v6 with color 1 and v1 with color 2, which forces four
colors because of v2 and v3. Note that it would be easy to build an example
without any tie (thereby avoiding random choices) by increasing the degree
of some vertices (for instance, in the example, v7 and v8 are there just to
increase the degrees of v5 and v6).

The problem of coloring general graphs is NP-complete, as will be shown in
Chapter 7. However, for a particular class of graphs, a smart greedy algorithm
can return the optimal solution, as we detail below.

© 2014 by Taylor & Francis Group, LLC

60 Chapter 3. Greedy algorithms

3.3.3 Coloring interval graphs

We focus now on interval graphs. Given a set of intervals, we define a graph
whose vertices are intervals and whose edges connect intersecting intervals.
The following example shows such a graph, obtained with a set of seven in-
tervals.

a d e
b

c

 f

 g

b

d

a g

fc e

The problem of coloring such a graph is quite similar to the sports hall
problem. Indeed, one can see each interval as representing an event, with its
starting and ending times, and the color as representing a sports hall. Then,
only compatible events will be colored with the same color, and we could use
one sports hall per set of compatible events. If we minimize the number of
colors, we minimize the number of sports halls that are needed to organize all
events.

Graphs that are obtained from a set of intervals are called interval graphs.
We define the following greedy algorithm: intervals (i.e., vertices) are sorted
by nondecreasing starting times (or left extremity). In the example, the order
is a, b, c, d, e, f, g. Then, the greedy coloring is done as before; for each chosen
vertex, we color it with the smallest compatible color. On the example, we
obtain the coloring 1, 2, 3, 1, 1, 2, 3, which is optimal, as the graph contains a
cycle of length 3.

We prove now that this greedy algorithm is optimal for any interval graph.
Let G be such a graph, and let dv be the starting time of interval v corre-
sponding to vertex v. We execute the greedy algorithm; it uses k colors. If
vertex v receives color k, then this means that k � 1 intervals that start no
later than dv intersect this interval and had all been colored with colors 1 to
k � 1; otherwise, v would be colored with a color c 6 k � 1. All of these
intervals are thus intersecting because they all contain the point dv; therefore,
graph G contains a clique of size k. Since all vertices of a clique must be col-
ored with distinct colors, we cannot color the graph with fewer than k colors.
The greedy algorithm, therefore, is optimal.

Once again, we point out that the order chosen by the greedy algorithm is
vital because we could force the greedy algorithm to make a wrong decision,
even on a bipartite graph as below, if we would not proceed from left to right.
We could first color a, then d, leading to the use of three colors instead of two.

a
b

c
d a b c d

© 2014 by Taylor & Francis Group, LLC

3.4. Theory of matroids 61

3.4 Theory of matroids

In this section are elementary results on matroids, a framework that allows us
to guarantee the optimality of a generic greedy algorithm in some situations.
Unfortunately, it is not easy to characterize which problems can be captured
as matroid instances. Still, the theory is beautiful, and we outline its main
ideas.

Matroids. The term matroid was introduced in 1935 by H. Whitney [107],
while working on the linear independence of the vector columns of a matrix.
We define it below and illustrate the concept through a canonical example.

DEFINITION 3.1. (S, I) is a matroid if S is a set of n elements, and I is
a collection of subsets of S, with the following properties:

i. X 2 I) (8 Y � X, Y 2 I) (hereditary property), and
ii. (A,B 2 I, jAj < jBj)) 9x 2 BnA s.t. A[fxg 2 I (exchange property).

If X 2 I, X is said to be an independent set.

Readers familiar with linear algebra will immediately see that linearly inde-
pendent subsets of a given vector set form a matroid. The canonical computer
science example follows.

Example of matroid: Forests of a graph. Let G = (V,E) be a (nondi-
rected) graph. We define a matroid with S = E (the elements are the edges
of the graph), and I = fA � E j A has no cycleg. Therefore, a set of edges
is an independent set if and only if this set of edges is a forest of the graph,
i.e., a set of trees (a tree is a connected graph with no cycle). We check that
this matroid satisfies both properties.

(i) The hereditary property. It is pretty obvious that a subset of a forest is
a forest; if we remove edges from a forest, we cannot create a cycle, thus we
still have a forest.

(ii) The exchange property. Let A and B be two forests of G (i.e., A,B 2 I)
such that jAj < jBj. jAj is the number of edges in forest A, and every vertex
is part of a tree (an isolated vertex with no edges is a tree made of a single
vertex). Then A (resp. B) contains jV j � jAj (resp. jV j � jBj) trees. Indeed,
each time an edge is added to the independent set, two trees are connected,
therefore decrementing the number of trees by one. Thus, B contains fewer
trees than A, and there exists a tree T of B that is not included in a tree of A,
i.e., two vertices u and v of tree T are not in the same tree of A. On the path
from u to v in T , there are two vertices, connected by an edge (x, y), that are
not in the same tree of A. Then, if we add this edge to the forest A, we still
have a forest, i.e., A [f(x, y)g 2 I, which concludes the proof.

© 2014 by Taylor & Francis Group, LLC

62 Chapter 3. Greedy algorithms

DEFINITION 3.2. Let F 2 I; x /2 F is an extension of F if F [fxg 2 I,
i.e., F [fxg is an independent set. An independent set is maximal if it has
no extensions.

In our running example, any edge connecting two distinct trees of a forest
is an extension. A forest is maximal if adding any edge to it would create a
cycle. A maximal independent set in the example of the forest is a spanning
tree (or spanning forest if G is not connected).

LEMMA 3.1. All maximal independent sets are of same cardinal.

Proof. If this lemma were not true, we could find an extension to the inde-
pendent set of smaller cardinal thanks to the exchange property, which would
mean that it was not maximal.

We introduce a last definition: We add weights to the elements of the
matroid and, therefore, obtain a weighted matroid.

DEFINITION 3.3. In a weighted matroid, each element of S has a weight:
x 2 S 7! w(x) 2 N. The weight of a subset X � S is defined as the sum of
the weights of its elements: w(X) =

∑
x∈X w(x).

Greedy algorithms on a weighted matroid. The problem is to find an
independent set of maximum weight. The idea of the greedy algorithm is to
sort elements of S by nonincreasing weights. We start with the empty set,
which always is an independent set because of the hereditary property. Then,
we add elements into this set, as long as we keep an independent set. This
generic algorithm is formalized in Algorithm 3.1.

1 Sort elements of S = fs1, . . . , sng by nonincreasing weight:
w(s1) > w(s2) > � � � > w(sn)

2 A ;
3 for i = 1 to n do
4 if A [fsig 2 I then
5 A A [fsig

ALGORITHM 3.1: Independent set of maximum weight.

THEOREM 3.3. Algorithm 3.1 returns an optimal solution to the problem
of finding an independent set of maximum weight in the weighted matroid.

Proof. Let sk be the first independent element of S, i.e., the first index i of
the algorithm such that fsig � I. We first prove that there exists an optimal
solution that contains sk.

© 2014 by Taylor & Francis Group, LLC

3.4. Theory of matroids 63

Let B be an optimal solution, i.e., an independent set of maximum weight.
If sk 2 B, we are finished. Otherwise, let A = fskg 2 I. While jBj > jAj,
we apply the exchange property to add an element of B to the independent
set A. We obtain the independent set with jBj elements, A = fskg [Bnfsjg,
where fsjg is the one element of B that has not been chosen for the extension
(there is already element sk in A, and at the end, jAj = jBj; therefore, all
elements of B but one are extensions of A).

We now compare the weights. We have w(A) = w(B) � w(sj) + w(sk).
Moreover, w(sk) > w(sj), because sj is independent (by hereditary property),
and j > k (by definition of sk). Finally, w(A) > w(B), and since B is an
optimal solution, w(A) = w(B). The independent set A is of maximal weight,
and it contains sk, which proves the result.

To prove the theorem, we show by induction that the greedy algorithm
returns the optimal solution; we restrict the search to a solution that con-
tains sk, and we start the reasoning again with S′ = Snfskg, and
I ′ = fX � S′ j X [fskg 2 Ig.

Back to the running example. Theorem 3.3 proves the optimality of
Kruskal’s algorithm to build a minimum weight spanning tree [67]. Edges
are sorted by nondecreasing weight, and we choose greedily the next edge
that does not add a cycle when added to the current set of edges. Of course,
we should discuss a suitable data structure so that we can easily check the
condition “no cycle has been created.” With a simple array, we can check
the condition in O(n2), and it is possible to achieve a better complexity with
other data structures [27]. In any case, the complexity of the greedy algorithm
remains polynomial.

Example: A semimatching problem. In this very simple example, we
are given a directed weighted graph. The problem is to find a maximum
weight subset of the edges so that no two starting points are the same. A
natural greedy algorithm would sort all edges according to their weight in
nonincreasing order, then consider all edges in this order, selecting an edge
(i, j) if and only if no edge (i, j′) had been selected earlier. In fact, this greedy
algorithm selects for every node the outgoing edge that has maximum weight;
hence, it can be easily implemented in time O(n+m), where n is the number of
nodes and m the number of edges of the directed graph. While the optimality
of this greedy algorithm is not difficult to prove directly, we prove it using
matroid theory.

The problem can be cast in terms of a matrix W with nonnegative entries,
with the goal to select a set of entries whose sum is maximal, subject to the
constraint that no two entries are from the same row of the matrix. There
are n rows in W , one per node in the graph. Let Wij be the entry in row
i and column j of the matrix W , and let xij 2 f0, 1g be the indicator of

© 2014 by Taylor & Francis Group, LLC

64 Chapter 3. Greedy algorithms

whether Wij is selected. We aim at maximizing
∑
i,jWijxij subject to the set

of constraints
∑
j xij 6 1 for each row i. The greedy algorithm chooses entries

one at a time in order of weight, largest first (and breaking ties arbitrarily),
rejecting an entry only if an entry in the same row has already been chosen.
Here is an example, where chosen entries are underlined:

W =

12 7 10 11
8 6 4 16
3 5 2 1
14 13 9 15

 �
To prove that the greedy algorithm is optimal, we exhibit the matroid;

independent sets are sets of entries such that no two of them are from the
same row of the matrix. We show that both properties hold. The hereditary
property is obvious. Indeed, when removing entries from an independent set,
we cannot create a row with two entries or more. The exchange property is
not difficult either. Let A and B be two independent sets with jAj < jBj.
There is at most one element per row in A and B, so there must be a row
that contains an element of B and no element of A. Adding this element to
A preserves its independence. This concludes the proof of optimality of the
greedy algorithm.

As mentioned before, it is not easy to exhibit matroid structures for which
interesting and efficient greedy algorithms can be derived. A more compli-
cated example that involves scheduling tasks with deadlines is studied in Ex-
ercise 3.5. We refer the reader to [70, 94] for much more material on matroids
and greedoids.

3.5 Exercises

Exercise 3.1: Interval cover (solution p. 68)

We are given a set X = fx1, . . . , xng of n points on a line.

1. Design a greedy algorithm that determines the smallest set of closed
intervals of length 1 that contains all the points.

2. Prove the optimality of the algorithm and give its complexity.

3. Could you use the theory of matroids to prove the optimality of the
algorithm?

Exercise 3.2: Memory usage (solution p. 69)

Given a memory of size L, we want to store a set of n files P = (P1, . . . , Pn).
File Pi (1 6 i 6 n) is of size ai, where ai is an integer. If

∑n
i=1 ai > L, we

© 2014 by Taylor & Francis Group, LLC

3.5. Exercises 65

cannot store all files. We need to select a subset Q � P of files to store, such
that

∑
Pi∈Q ai 6 L. We sort the files Pi by nondecreasing sizes (a1 6 � � � 6

an).

1. Write a greedy algorithm that maximizes the number of files in Q. The
output must be a Boolean table S such that S[i] = 1 if Pi 2 Q, and
S[i] = 0 otherwise. What is the complexity of this algorithm in number
of comparisons and number of arithmetic operations?

2. Prove that this strategy always returns a maximal subset Q. We define

the utilization ratio as
∑
Pi∈Q

ai

L . How small can it be with our strategy?

3. We now want to maximize the utilization ratio, i.e., fill the memory
as much as possible. Design a greedy algorithm for this new objective
function.

4. Is the latter greedy algorithm optimal? How small can the utilization
ratio be with this algorithm? Prove the result.

Exercise 3.3: Scheduling dependent tasks on several machines
(solution p. 71)

Let G = (V,E) be a directed acyclic graph (DAG). Here G is a task graph.
In other words, each node v 2 V represents a task, and each edge e 2 E
represents a precedence constraint, i.e., if e = (v1, v2) 2 E, then the execution
of v2 cannot start before the end of the execution of v1. We need to schedule
the tasks on an unlimited number of processors. Moreover, the execution time
of task v 2 V is w(v). The problem is to find a valid schedule, i.e., a start time
σ(v) for each task v such that no precedence constraints are violated, and that
minimizes the total execution time. The reader may refer to Section 6.4.4,
p. 140, for more background on scheduling.

1. Define formally (by induction) the top level tl(v) of a task v 2 V , which
is the earliest possible starting time of task v.

2. Propose a greedy schedule of the tasks, based on the top levels, and
prove its optimality. This schedule is called σfree.

3. We define the bottom level bl(v) of a task as the largest weight of a path
from v to an output task, i.e., a task with no successor. The weight
of the path includes the weight of v. Define bottom levels formally,
and propose a schedule of the tasks, based on the bottom levels, that is
called σlate.

4. Show that any optimal schedule σ satisfies:

8v 2 V, σfree(v) 6 σ(v) 6 σlate(v).

© 2014 by Taylor & Francis Group, LLC

66 Chapter 3. Greedy algorithms

5. Give an example of a DAG that has at least three different optimal
schedules.

Exercise 3.4: Scheduling independent tasks with priorities
(solution p. 72)

We need to schedule n independent tasks, T1, T2, . . . , Tn, on a single pro-
cessor. Each task Ti has an execution time wi and a priority pi. Because
we execute the tasks sequentially on a single processor and as we target an
optimal schedule, we can focus on schedules that execute tasks as soon as
possible. A schedule is then fully defined by the order followed to execute the
tasks. In other words, here, a schedule of tasks T1, . . . , Tn is a permutation
Tσ(1), Tσ(2), . . . , Tσ(n), specifying the order in which tasks are executed. We
assume that the first task to be executed is processed from time 0 on. The
cost of a schedule is defined as

∑n
i=1 piCi, where Ci is the completion time of

task Ti, i.e., the date at which its processing was completed. We look for a
schedule that minimizes this cost.

1. Consider any schedule and two tasks Ti and Tj that are executed con-
secutively under this schedule. Which task should be executed first in
order to minimize the cost?

2. Design an optimal greedy algorithm. What is its complexity?

Exercise 3.5: Scheduling independent tasks with deadlines
(solution p. 73)

The goal here is to exhibit a matroid to prove the optimality of a greedy
algorithm. We need to schedule n independent tasks, T1, T2, . . . , Tn, on
a single processor. Each task Ti is executed in one time unit, but it has
a deadline di that should not be exceeded. If a task does not complete its
execution before its deadline, there is a cost wi to pay. The objective here
is to find a schedule that minimizes the sum of the costs of the tasks that
are completed after their deadlines. A schedule, in this exercise, will be a
function, σ : T ! N, that associates with each task its execution time, such
that two tasks cannot be scheduled at the same time, i.e., for all 1 6 i, j 6 n,
σ(Ti) 6= σ(Tj). The first task can be executed at time 0.

We say that a task is on time if it finishes its execution before its deadline,
and that it is late otherwise. Note that minimizing the cost of late tasks is
equivalent to maximizing the cost of on-time tasks. A canonical schedule is
such that (i) on-time tasks are scheduled before late tasks, and (ii) on-time
tasks are ordered by nondecreasing deadlines.

1. Prove that there is always an optimal schedule that is canonical, i.e., we
can restrict the search to canonical schedules.

© 2014 by Taylor & Francis Group, LLC

3.5. Exercises 67

2. Design a greedy scheduling algorithm to solve the problem. What is its
complexity?

3. Illustrate the greedy algorithm on the following example with seven
tasks; the tasks are sorted by nonincreasing wi (wi = 8�i, for 1 6 i 6 7),
and their deadlines are as follows: d1 = 4, d2 = 2, d3 = 4, d4 = 3, d5 = 1,
d6 = 4, and d7 = 6.

4. Prove the optimality of the algorithm by exhibiting a matroid.

While Exercises 3.4 and 3.5 deal with simple uniprocessor scheduling prob-
lems for which the greedy algorithm is optimal, there are many more complex
scheduling problems [21]. These include, for instance, scheduling problems
with tasks with different execution times, several machines, precedence con-
straints between tasks, and so on. More scheduling problems are described in
Section 6.4.4, p. 140.

Exercise 3.6: Edge matroids (solution p. 74)

This exercise aims at illustrating the matroid theory. The goal here is to
exhibit a weighted matroid, design the corresponding greedy algorithm, and
prove its optimality.

This exercise is a generalization of the semimatching algorithm presented
in Section 3.4. We are given a directed graph G = (V,E) whose edges have
integer weights. Let w(e) be the weight of edge e 2 E. We also are given a
constraint f(u) > 0 on the out-degree of each node u 2 V . The goal is to
find a subset of edges of maximal weight and whose out-degree at any node
satisfy the constraint. We see that if f(u) = 1 for all nodes, we retrieve the
semimatching algorithm.

1. Define independent sets and prove you have a matroid.

2. What is the cardinal of maximal independent sets?

3. What is the complexity of the (optimal) greedy algorithm?

Exercise 3.7: Huffman code (solution p. 75)

Let Σ be a finite alphabet with at least two elements. A binary code is
an injective application from Σ to the set of finite suites of 0 and 1 (i.e., a
binary word, also called code word). The code can be naturally extended
by concatenation to a mapping defined on the set Σ∗ of words using the
alphabet Σ. A code is said to be of fixed length if all the letters in Σ are coded
by binary words of same size. A code is said to be a prefix code if no code
word is a prefix of another code word. Given the code of a word in Σ∗, the
decoding operation consists of finding the original word.

© 2014 by Taylor & Francis Group, LLC

68 Chapter 3. Greedy algorithms

1. Prove that the decoding operation has a unique solution, both for a code
of fixed length and for a prefix code.

2. Represent a prefix code by a binary tree, where leaves are the letters of
the alphabet Σ.

3. Consider a text in which each letter c 2 Σ appears with a frequency
f(c) 6= 0. With each prefix code of this text, represented by a tree T , is
associated a cost, defined by B(T) =

∑
c∈Σ f(c)� lT (c), where lT (c) is

the size of the code word of c. If f(c) is exactly the number of occurrences
of c in the text, then B(T) is the number of bits in the encoded text. A
prefix code T is optimal if, for this text, B(T) is minimum. Prove that
for any optimal prefix code there is a corresponding binary tree with jΣj
leaves and jΣj � 1 internal nodes.

4. Prove that there is an optimal prefix code such that two letters of small-
est frequencies are siblings in the tree (i.e., their code words have the
same size and differ only by the last bit).

Hint: Prove also that these two letters are leaves of maximal depths.

5. Given x and y, two letters of smallest frequencies, we consider the al-
phabet Σ′ = (Σ n fx, yg) [fzg, where z is a new letter with frequency
f(z) = f(x) + f(y). Let T ′ be the tree of an optimal code for Σ′. Prove
that the tree T obtained from T ′ by replacing the leaf associated with z
with an internal node with two leaves x and y is an optimal code for Σ.

6. Using both previous questions, design an algorithm that returns an op-
timal code, and give its complexity. Illustrate the algorithm on the
following problem instance: Σ = fa, b, c, d, e, gg, f(a) = 45, f(b) = 13,
f(c) = 12, f(d) = 16, f(e) = 9, and f(g) = 5.

3.6 Solutions to exercises

Solution to Exercise 3.1: Interval cover

1. Algorithm 3.2 is a greedy algorithm to solve the interval cover problem.
It builds a maximal length interval starting at the first point on the line,
removes all points included in that interval, and then iterates.

2. Sorting the points costs O(n log(n)) when the execution of the while
loop costs O(n). Therefore, the algorithm runs in O(n log(n)).

We prove the optimality of Algorithm 3.2 by induction on the number
n of points. If n = 1, there is a single point, the algorithm returns a
single interval and thus is optimal. Now, assume we have proved the

© 2014 by Taylor & Francis Group, LLC

3.6. Solutions to exercises 69

1 Sort the xi in nondecreasing order
2 X fx1, . . . , xng
3 I ;
4 while X 6= ; do
5 xk min(X)

6 I I [
{

[xk, xk + 1]
}

7 X Xn[xk, xk + 1]

8 return I

ALGORITHM 3.2: Interval cover.

optimality of Algorithm 3.2 for any set containing at most n points,
and consider an instance X including n + 1 points. Let Iopt be an
optimal cover: Iopt =

{
[a1, a1 + 1], . . . , [ap, ap + 1]

}
with a1 < � � � <

ap. Let Igreedy be the interval cover built by Algorithm 3.2: Igreedy ={
[g1, g1 + 1], . . . , [gm, gm + 1]

}
with g1 < � � � < gm. We need to show

that m = p. We let I =
(
Ioptn

{
[a1, a1 + 1]

})
[
{

[g1, g1 + 1]
}

. Because

g1 = x1, I is also an interval cover of X. Indeed, because Iopt is an
interval cover, a1 6 x1 and thus a1 + 1 6 x1 + 1 = g1 + 1. Therefore,
X\ [a1, a1 +1] � X\ [g1, g1 +1]. In other words, Ioptn

{
[a1, a1 +1]

}
is an

interval cover of Xn[g1, g1 + 1]. The induction hypothesis tells us that
Algorithm 3.2 builds an optimal interval cover of Xn[g1, g1 + 1] because
this set contains at most n points. This optimal solution is exactly{

[g2, g2 + 1], . . . , [gm, gm + 1]
}

. Because Ioptn
{

[a1, a1 + 1]
}

is an interval
cover of Xn[g1, g1 + 1] with p � 1 intervals, we have p � 1 > m � 1
and thus p > m. However, Iopt is, by definition, an optimal interval
cover of X and contains p intervals, while the cover Igreedy contains m
intervals. Therefore, p 6 m and, thus, p = m. Algorithm 3.2 is optimal
on our instance containing n+ 1 points.

3. The obvious idea would be to consider sets of nonoverlapping intervals.
Elements in this set would satisfy the hereditary property. However,
they would not satisfy the exchange property. We do not know how to
prove the optimality of Algorithm 3.2 using the theory of matroids.

Solution to Exercise 3.2: Memory usage

1. The Pis are sorted in nondecreasing size: a1 6 � � � 6 an. Algorithm 3.3
is a greedy algorithm that iteratively tries to add the remaining smallest
file to the set of already picked files. Each time we try to add a file, we
need to compare the new total size with L to check whether the file

© 2014 by Taylor & Francis Group, LLC

70 Chapter 3. Greedy algorithms

will fit. We, therefore, need n comparisons in the worst case, and n� 1
additions.

1 for i = 1 to n do S[i] 0
2 size a1

3 i 1
4 while size 6 L and i 6 n do
5 S[i] 1
6 i i+ 1
7 if i 6 n then size size+ ai

8 return S

ALGORITHM 3.3: Largest number of files that fit in a space of size L.

2. Let G be the solution built by Algorithm 3.3. Let Q be an optimal
solution that has the largest number of files in common with G. We
compare Q and G. If G contains as many files as Q, G is optimal.
Otherwise, jGj < jQj and, therefore, Q contains strictly more files than
G. Then let Pk be any file of QnG, i.e., any file of Q not belonging to G.
One can easily see that G is made up of the jGj smallest files. Therefore,
the size of Pk is larger than or equal to the size of any file of G. Let
Pj be the smallest file of G n Q, i.e., the smallest file of G that is not
a file of Q. Such a Pj exists because otherwise we would have G � Q.
Indeed, when considering file Pk, Algorithm 3.3 should have added Pk
to its current solution as (G [fPkg) � Q, and thus G [fPkg fits in a
memory of size L. This contradicts the definition of Pk. Therefore, Pj
does exist. Then, let Q′ = (Q n fPkg) [fPjg. Q′ contains as many files
as Q and is also a valid solution because we have shown that ak > aj .
Then, Q′ is an optimal solution that has one more file in common with
G than Q. This contradicts the definition of Q.

If we make no assumptions on the ais, they can be all larger than L, in
which case the utilization ratio is null. The interesting case is obviously
when, for any i 2 [1;n], ai 6 L. In that case, the worst utilization ratio
achieved by Algorithm 3.3 is 1

L as the ais are integers by hypothesis
(this is achieved, for instance, when n = 2, a1 = 1, and a2 = L).

3. This algorithm is the same as the previous one, except that we consider
the files in the reverse order.

4. Let us consider the following instance containing three files: a1 = L
2 + 1

and a2 = a3 = L
2 (where L is even). The greedy algorithm will return

© 2014 by Taylor & Francis Group, LLC

3.6. Solutions to exercises 71

the solution fP1g whose utilization ratio is 1
2 + 1

L , while the optimal
solution is fP2, P3g whose utilization ratio is 1.

The minimum utilization ratio is 1
2 + 1

L if no ai is greater than L (it
is equal to 0 otherwise). Indeed, as the sum of the sizes of all files is
strictly greater than L, the sum of the sizes of the solution of the greedy
algorithm is strictly greater than L

2 and thus greater than or equal to

1 + L
2 . Indeed, either L > an > L/2, or there exists an index k such

that
∑n
i=k ai 6

L
2 and ai−1 +

∑n
i=k ai >

L
2 (as the files are sorted by

nondecreasing sizes). Furthermore, a sum of file sizes of L2 +1 is reached
on the counterexample to optimality.

Remark. The reader may be frustrated that we are not building
any polynomial-time optimal algorithm for this problem. The reason
will later become clear; in Exercise 7.20 (p. 155) we will show the NP-
completeness of the problem 2-PARTITION (all these notions will be
defined in Chapter 6). The reader will then be able to show the NP-
completeness of the current problem when L = 1

2

∑n
i=1 ai.

Solution to Exercise 3.3: Scheduling dependent tasks on sev-
eral machines

1. The earliest start time of a task is the earliest time when all the tasks
that it depends upon are completed. Therefore, tl(v) = 0 if v does not
depend on any task, i.e., if we have f(x, y) 2 E j y = vg = ;. Otherwise,

tl(v) = max
(u,v)∈E

(tl(u) + w(u)).

2. We just let σfree(v) = tl(v). By definition of top levels, all precedence
constraints are satisfied by this schedule. The optimality also comes
from the definition of the top level of a task; it is the earliest time at
which the execution of the task can start in any schedule.

3. Bottom levels are defined recursively, the same way top levels are de-
fined:

bl(v) = w(v) + max
(v,u)∈E

bl(u).

The meaning of the bottom level is that the earliest time at which the
schedule can complete is a time bl(v) after the beginning of the execution
of v. Let MS(σfree,+1) be the execution time of the σfree schedule.
We define σlate as follows:

σlate(v) = MS(σfree,+1)� bl(v).

While σfree is an as-soon-as possible (ASAP) schedule, σlate is an as-
late-as-possible (ALAP) schedule. One can easily check that σlate is
a valid schedule, i.e., that it satisfies all the precedence constraints.
Furthermore, this is also an optimal schedule.

© 2014 by Taylor & Francis Group, LLC

72 Chapter 3. Greedy algorithms

4. These inequalities follow directly from the definitions of the top level and
of the bottom level. Indeed, by definition of the top level, the earliest
time at which the execution of a task v can start under any schedule is
σfree(v). By definition of the bottom level, the execution of a task v
must start no later than at time M� bl(v) for the whole execution to
be able to complete by time M.

5. Figure 3.4 presents a task graph that admits (at least) three distinct
optimal schedules (all tasks have unit execution time in this example).
Under the σfree schedule: At date 0 one executes A and B; at date 1,
C, D, and E; at date 2, F and G; and, finally, at date 3, H. Under the
σlate schedule: At date 0 one executes B; at date 1, A and D; at date
2, C, F, and E; and, finally, at date 3, H and G. We also can build a
schedule that is a mix of the two previous ones: At date 0 one executes
A and B; at date 1, C, D, and E; at date 2, F; and, finally, at date 3, G
and H.

A B

C D E

F G

H

FIGURE 3.4: Task graph admitting three different optimal schedules.

Solution to Exercise 3.4: Scheduling independent tasks with
priorities

1. In an optimal schedule, tasks are executed as soon as possible. The
processing of the (i + 1)-th task starts as soon as the processing of the
i-th completes. Therefore, under the schedule Tσ(1), Tσ(2), . . . , Tσ(n),

the processing of the i-th task is completed at time Cσ(i) =
∑i
j=1 wσ(j).

We consider two schedules whose only difference is the order in which
two consecutive tasks, Ti and Tj , are executed. In the first schedule,
Ti is executed right before Tj ; in the second schedule, Ti is executed
right after Tj . The costs of the two schedules are identical except for
the terms corresponding to tasks Ti and Tj . Let w be the sum of the
execution times of the tasks executed before Ti in the first schedule (or

© 2014 by Taylor & Francis Group, LLC

3.6. Solutions to exercises 73

Tj in the second). Then there exists a constant C such that:

• The cost of the first schedule is equal to:
C + (w + wi)pi + (w + wi + wj)pj .

• The cost of the second schedule is equal to:
C + (w + wj)pj + (w + wj + wi)pi.

Then the cost of the first schedule is not greater than that of the second
schedule if and only if:

C + (w +wi)pi + (w +wi +wj)pj 6 C + (w +wj)pj + (w +wj +wi)pi

that is, if and only if wipj 6 wjpi.

2. In an optimal solution, tasks must be scheduled by nondecreasing values
of the ratio wi

pi
(this is known as“Smith’s ratio rule”). An optimal greedy

algorithm first schedules one of the tasks that minimizes the ratio wi
pi

.

Such an algorithm has a complexity in O(n log n) because tasks must be
sorted.

Solution to Exercise 3.5: Scheduling independent tasks with
deadlines

1. Canonical schedules are not a restriction for this problem: (i) If a late
task were executed before an on-time task, we could exchange them
without impacting the total cost to pay. (ii) If we had two tasks on
time, such that σ(Ti) < σ(Tj) and di > dj , we could exchange them;
therefore, Tj would stay on time because it would be executed earlier,
and Ti would also stay on time because Tj initially was on time and
di > dj . The total cost would be exactly the same.

2. The greedy algorithm sorts tasks by nonincreasing cost wi. This algo-
rithm tries successively to add each task to the schedule. A task is kept
if it can be executed on time with a canonical schedule. The rationale is
that this algorithm selects the most costly tasks and decreases the cost
of late tasks as much as possible.

Note that the complexity of the greedy algorithm is in O(n2); the
number of steps is n, and it takes a time O(n) to check that all tasks in
the current set can be executed on time.

3. In the following, a canonical schedule is written as an ordered list of on-
time task indices; for instance, the schedule f3, 1g means that σ(T3) = 0
and σ(T1) = 1, while the other tasks are late.

If we apply the algorithm on the example, we obtain successively the
following schedules: f1g; f2, 1g; f2, 1, 3g; f2, 4, 1, 3g. However, we cannot
add task T5 because in the canonical order f5, 2, 4, 1, 3g task T3 is late.
We cannot add task T6 either, but f2, 4, 1, 3, 7g is a set of on-time tasks.
This is actually the optimal solution, with a cost of 5.

© 2014 by Taylor & Francis Group, LLC

74 Chapter 3. Greedy algorithms

4. To prove the optimality of this greedy algorithm, we exhibit a matroid.

We define the matroid (S, I), where S is the set of tasks and where
a subset of tasks is an independent set if and only if these tasks can all
be executed on time.

Before proceeding with the proof that (S, I) is a matroid, we establish
the following property. Let A be a set of tasks and Nt(A) be the number
of tasks of A with a deadline less than or equal to t. Then, the three
following propositions are equivalent:

(a) A is an independent set;
(b) For any t 2 [1;n], Nt(A) 6 t;
(c) If all tasks of A are executed with a canonical schedule, there are

no late tasks.

We first prove that (a) implies (b). If A is an independent set but
Nt(A) > t, then there is at least one task that will be executed after t,
which would mean that A is not independent. It is straightforward to
prove that (b) implies (c); finally, (c) implies (a) by definition of the
independent sets. Therefore, the equivalence is true.

We now prove that (S, I) is a matroid and, therefore, that the greedy
algorithm is optimal.

The hereditary property is obvious. Any subset of an independent set
is an independent set, i.e., we can always execute on time any subset of
a set of tasks that can all be executed on time.

For the exchange property, we consider two independent sets, A and B
(A,B 2 I), such that jAj < jBj. We need to find a task Ti 2 B such that
A[fTig is an independent set. For t = 0, we have N0(A) = N0(B) = 0.
Let m = max16i6n di. Then, for t = m, Nm(A) = jAj < jBj = Nm(B).
We search for the largest value of t, 0 6 t 6 m, such that Nt(A) >
Nt(B). Then, Nt+1(B) > Nt+1(A), and there are more tasks of deadline
equal to t+1 6 m in B than in A. We choose Ti 2 B nA with a deadline
di = t+ 1, and then A [fTig is an independent set.

Solution to Exercise 3.6: Edge matroids

1. Define the independent sets as all subsets of edges whose out-degree
does not exceed f(u) at each node u. For an independent set F , define
dF (u) the number of out-edges at u that belong to F . By definition of
independent sets, we have dF (u) 6 f(u) for each node u.

The hereditary property is obvious because removing some edge whose
source is a node u will decrease dF (u) and further relax the constraint
on f(u). As for the exchange property, consider two independent sets
of edges A and B, with jAj < jBj. Because there are fewer edges in A,
there must exist a node u that is the source of fewer edges in A than

© 2014 by Taylor & Francis Group, LLC

3.6. Solutions to exercises 75

in B, i.e., such that dA(u) < dB(u). Let e be an edge in B n A whose
source is u. We can safely add e to A without violating the degree
constraint f(u) because dA(u) + 1 6 dB(u) 6 f(u). Hence, A [feg is
independent.

2. Let d(u) be the out-degree of node u. Clearly, all maximal independent
sets have the same cardinal

∑
u∈V min(f(u), d(u)).

3. Because we have exhibited a weighted matroid, we have to use only
Algorithm 3.1 and Theorem 3.3 (p. 62) to define an optimal greedy
algorithm and prove its optimality. In other words, to build an optimal
solution, all we have to do is sort the edges by nonincreasing weights and
add the edges greedily, with an edge being added to the current solution
if and only if, after addition, the new solution is still an independent
set.

Checking whether an edge can be added can be done in constant
time, so the complexity of the greedy algorithm is dominated by the
time needed to sort the edges by nonincreasing weights, which requires
O(jEj log jEj) steps.

Solution to Exercise 3.7: Huffman code

1. The decoding operation for a fixed-length code is obviously unique; oth-
erwise, two different letters would have to share the same code word.
Let us assume that there exists a prefix code whose decoding does not
always lead to a unique solution. Then, there exists a text x that can
be decomposed in x = ua and x = vb where u and v are two different
code words. Then, either u is a prefix of v or v is a prefix of u. Because
the code is a prefix code, then u = v, and we have a contradiction.

2. A prefix tree can be represented by a binary tree as follows: A 0 is
associated with each left branch and a 1 with each right branch. The
code of a letter is obtained by reading the labels associated with the
branches visited on the path from the root to the leaf associated with
the letter. Figure 3.5 presents a prefix code and its associated tree
representation.

3. Each optimal prefix code corresponds to a binary tree where each inter-
nal node has two children. Indeed, if an internal node had only a single
child, we could “raise” the subtree rooted at the single child by deleting
this child (this process is illustrated in Figure 3.6). This would decrease
lT (c) or leave it unchanged for any letter c: Either the letter c belonged
to the raised subtree and then l′T (c) = lT (c)� 1, or it did not belong to
it and then l′T (c) = lT (c). By decreasing lT (c), or leaving it unchanged,
we negate the optimality assumption, hence reaching a contradiction.

© 2014 by Taylor & Francis Group, LLC

76 Chapter 3. Greedy algorithms

a 000
b 10
c 011
d 010
e 11

0 1

0 1 0 1

0 0 1
a d c

b e

FIGURE 3.5: A prefix code and its binary tree representation.

FIGURE 3.6: Prefix code optimization by the deletion of an internal node
with a single child.

Such a tree contains jΣj leaves as it codes for jΣj letters. We show by
induction that it contains jΣj � 1 internal nodes.

• A tree with two leaves contains one internal node.
• If the tree is made of two subtrees with i and j leaves, then the two

subtrees have i� 1 and j � 1 internal nodes, respectively, because
of the induction hypothesis. The whole tree then has (i� 1) + (j�
1) + 1 = i+ j � 1 internal nodes, and the property is satisfied.

4. To prove the desired property, along with the property proposed in the
hint, we consider the binary tree T representing an optimal code. Any
tree T ′ corresponding to a prefix code thus satisfies B(T) � B(T ′). Let
x and y be two letters of smallest frequencies. Let a and b be two letters
that are siblings at the maximal depth in the tree T . From T we build
a new tree T ′′ by exchanging x and a, and y and b. This transformation
is illustrated in Figure 3.7.

To prove that T ′′ also corresponds to an optimal code, we show that
B(T) > B(T ′′).

B(T)�B(T ′′) = f(a)lT (a) + f(b)lT (b) + f(x)lT (x) + f(y)lT (y)

�f(a)lT ′′(a)� f(b)lT ′′(b)� f(x)lT ′′(x)� f(y)lT ′′(y).

© 2014 by Taylor & Francis Group, LLC

3.6. Solutions to exercises 77

x

y

a b

Before optimization

a

b

x y

After optimization

FIGURE 3.7: Tree optimization by pairing the two letters of lowest frequency.

By definition of the transformation, we have the following equalities:
lT ′′(a) = lT (x), lT ′′(b) = lT (y), lT ′′(x) = lT (a), and lT ′′(y) = lT (b).
Therefore,

B(T)�B(T ′′) = (f(a)� f(x)(lT (a)�lT (x))+(f(b)�f(y))(lT (b)�lT (y)).

Because x and y are two letters of smallest frequencies, f(a) � f(x)
and f(b) � f(y). Because a and b are two letters at the maximal depth,
lT (a) � lT (x) and lT (b) � lT (y). Therefore, B(T) � B(T ′′) � 0 and,
thus, T ′′ also corresponds to an optimal code. T ′′ corresponds to an
optimal code where two letters of smallest frequencies are siblings at
the maximal depth in the tree. This property will define our greedy
choice.

5. We consider Σ′ = Σ n fx, yg+ fzg, where z is a new letter of frequency
f(z) = f(x) + f(y). Let T ′ be the tree of an optimal code for Σ′. Let
T be the tree obtained from T ′ by replacing the leaf z with an internal
node whose children are the leaves x and y. We want to show that T is
optimal for Σ.

Let T ′′ be an optimal tree for Σ. Using the property established at
the previous question, we can assume that the leaves x and y are siblings
in T ′′. We then build from T ′′ a tree T ′′′ by replacing the node parent
of the leaves x and y with the leaf z. We then have B(T ′′′) = B(T ′′)�
f(x)lT (x)�f(y)lT (y)+(f(x)+f(y))(lT (x)�1) = B(T ′′)�f(x)�f(y).
Similarly, B(T ′) = B(T) � f(x) � f(y). Because T ′ is optimal for Σ,
B(T ′) � B(T ′′′). Therefore, B(T)� f(x)� f(y) � B(T ′′)� f(x)� f(y)
and thus B(T) � B(T ′′). As T ′′ is by definition optimal for Σ, so is T .

6. Algorithm 3.4 builds the Huffman code for an alphabet Σ and its asso-
ciated frequency function f . For a binary heap,

• inserting an element costs O(log(n));
• finding an element with minimal key costs O(1);
• extracting an element with minimal key costs O(log(n)).

Therefore, the complexity of any iteration of the loop is O(log(n)). The
overall complexity is O(n log(n)) because there are n�1 iterations of the
loop and because the initial construction of the heap costs O(n log(n)).

© 2014 by Taylor & Francis Group, LLC

78 Chapter 3. Greedy algorithms

1 F build binary heap(Σ, f)
2 n jΣj
3 for i = 1 to n� 1 do
4 z allocate node()
5 x extract min(F)
6 y extract min(F)
7 z(left) x
8 z(right) y
9 f(z) f(x) + f(y)

10 Insert(F, z, f(z))

11 return extract min(F)

ALGORITHM 3.4: Building a Huffman code.

Figure 3.8 presents the tree associated with the Huffman code for the
example. In this tree, nodes are labeled by frequencies, and edges by
the associated code digit.

100

45
a

0

55

1

25

0

12
c

0

13
b

1
30

1

14

0

5
g

0

9
e

1
16
d

1

FIGURE 3.8: Tree of the Huffman code for the instance: Σ = fa, b, c, d, e, gg,
f(a) = 45, f(b) = 13, f(c) = 12, f(d) = 16, f(e) = 9, and f(g) = 5.

© 2014 by Taylor & Francis Group, LLC

3.7. Bibliographical notes 79

3.7 Bibliographical notes

Section 3.1 is an extension of an example from the book by Cormen, Leiserson,
Rivest, and Stein [27]. Section 3.3 is inspired by the nice book on graph
algorithms by West [106]. Exercise 3.5 (scheduling independent tasks with
deadlines) comes from the book by Cormen, Leiserson, Rivest, and Stein [27].

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 4

Dynamic programming

In this chapter, we focus on how to find optimal dynamic-programming al-
gorithms. Particular attention is paid to problem size in order to avoid
exponential-cost algorithms. The chapter is illustrated with two classical ex-
amples: the coin changing problem and the knapsack problem. These tech-
niques are then further illustrated with a set of exercises in Section 4.4, with
solutions found in Section 4.5.

4.1 The coin changing problem

The problem is the following: If we want to make change for S cents, and we
have an infinite supply of each coin in the set Coins = fv1, v2, . . . , vng, where
vi is the value of the i-th coin, what is the minimum number of coins required
to reach the value S?

Greedy algorithm. We propose a greedy algorithm to solve the problem.
First, we sort coins by nonincreasing values, then for each coin value we take
as many coins as possible. The algorithm is formalized as Algorithm 4.1.

1 Sort elements of Coins = fv1, . . . , vng by nonincreasing values:
v1 > v2 > � � � > vn

2 R S { R is the remaining sum to reach; it is initially S }
3 for i = 1 to n do
4 ci = bRvi c { ci is the number of coins of value vi that are taken }
5 R R� ci � vi { R is updated }

ALGORITHM 4.1: Greedy algorithm for the coin changing problem.

We first assume that Coins = f10, 5, 2, 1g (a typical European set of coins).
In this case, we can prove that Algorithm 4.1 is optimal:

81

© 2014 by Taylor & Francis Group, LLC

82 Chapter 4. Dynamic programming

• An optimal solution returns, at most, one coin of value 5 (if there are
two, it is better to use one single coin of value 10).

• An optimal solution returns, at most, one coin of value 1 (otherwise, we
can use a coin of value 2).

• An optimal solution returns, at most, two coins of value 2 (otherwise,
to obtain 6 = 2 + 2 + 2, we would rather use 6 = 5 + 1: one coin 5 and
one coin 1).

Therefore, in the optimal solution, there cannot be more than four coins that
are not of value 10, and 5 + 2 + 2 + 1 = 10, so if there are four such coins,
we would rather use a coin of 10. Thus, the optimal solution uses, at most,
three coins that are not of value 10, and their total is at most 9. We can then
conclude that the optimal number of coins of value 10 is b S10c, which is the
number selected by the greedy algorithm. It is then easy to conclude that the
greedy algorithm always selects the optimal number of coins of each value.

Note, however, that the greedy algorithm is not optimal for any set of coins.
For instance, if Coins = f6, 4, 1g and S = 8, the greedy algorithm requires
three coins 8 = 6 + 1 + 1, while the optimal solution requires two coins of
value 4. Still, U.S. readers will be pleased to know that the greedy algorithm
is optimal for the set Coins = f25, 10, 5, 1g. The proof follows an ad hoc
case analysis very similar to that conducted for European coins. Because the
greedy algorithm is not always optimal, we explore another idea to solve the
problem.

An optimal algorithm. The problem is to find the minimum number of
coins required to reach sum S, with coins of value fv1, . . . , vng, which we
denote as z(S, n). Because the greedy algorithm may fail, we try to solve
more subproblems so that we do not take a bad greedy choice as we did in the
previous example. We also allow ourselves to come back to a choice already
made and try another set of coins.

We investigate a way to solve the problem that is in appearance more com-
plex than the initial problem. In other words, we artificially ask for more than
requested and aim at finding z(T, i), the minimum number of coins required
to reach sum T 6 S with the first i coins, i.e., coins selected from the subset
fv1, . . . , vig (where 0 6 i 6 n). Instead of computing only z(S, n), the original
problem, we compute S � n values z(T, i). But now, we have a recurrence
relation to compute z(T, i):

z(T, i) = min

{
z(T, i� 1) i-th coin not used;
z(T � vi, i) + 1 i-th coin used (at least) once.

The recurrence must be properly initialized; values of i and T are decreasing,
so we consider the cases i = 0 and T 6 0:

• z(T, 0) = +1 for T > 0: There are no more coins; therefore, we cannot
reach the sum T > 0, and this solution cannot be correct.

• z(0, i) = 0: We do not need any coin to reach the sum T = 0.

© 2014 by Taylor & Francis Group, LLC

4.1. The coin changing problem 83

• z(T, i) = +1 for T < 0: We have exceeded the sum; this solution
cannot be correct.

Thanks to the recurrence relation and the initialization conditions, we are
now able to compute z(S, n) and to solve the original problem. This kind of
algorithm is called a dynamic-programming algorithm.

If the recurrence is applied without memoizing which values have already
been computed, using a recursive algorithm, there will be an exponential num-
ber of computations. Note that the word memoization comes from ”memo”:
the idea consists of memoizing the values so that we can look them up later.

However, we need to compute only S � n values of the function z(T, i)
(1 6 T 6 S and 1 6 i 6 n). This can be done either recursively, by memoizing
the values that have already been computed, or iteratively, with, for instance,
a loop with increasing i and then a loop with increasing T , so that we always
have the values required to compute z(T, i), i.e., z(T, i−1) and z(T −vi, i), as
shown in Algorithm 4.2. The precedence constraints are shown in Figure 4.1,
and they are always enforced with this algorithm (for details about precedence
constraints, see Section 6.4.4, p. 140). Note that we ensure that we never call
the function with T < 0, and, therefore, we do not need the third initialization
condition.

FIGURE 4.1: Precedence constraints for the coin changing dynamic-
programming algorithm.

The complexity of the dynamic-programming algorithm is O(n� S), while
the greedy algorithm has a complexity in O(n log n) (the execution is linear,
but sorting the coins requires a time in O(n log n)).

Finally, note that characterizing the set of coins for which the greedy algo-
rithm is optimal is still an open problem. It is easy to find sets that work.
For instance, coins f1, B,B2, B3, . . .g with B > 2. However, the general case
seems tricky. There are several variants of the coin changing problem and

© 2014 by Taylor & Francis Group, LLC

84 Chapter 4. Dynamic programming

1 for T = 1 to S do
2 z(T, 0) +1 { Initialization: case i = 0 }

3 for i = 0 to n do
4 z(0, i) 0 { Initialization: case T = 0 }

5 for i = 1 to n do
6 for T = 1 to S do
7 z(T, i) z(T, i� 1)

{ z(T, i− 1) computed at previous iteration, or case i = 0 }
8 if T � vi > 0 then
9 z(T, i) min(z(T, i), z(T � vi, i))

{ z(T − vi, i) computed earlier in this loop, or case T = 0 }

ALGORITHM 4.2: Dynamic-programming algorithm for the coin changing
problem.

many dynamic-programming algorithms to solve them. The interested reader
may refer to the following papers: [84, 97]. We move in the next section to
another classical problem: the knapsack problem.

4.2 The knapsack problem

We have a set of items, each with a weight and a value, and we want to
determine the items to include in the collection so that the total weight does
not exceed a given limit, and the total value is as large as possible. Formally,
there are n items I1, . . . , In, and item Ii has a weight wi and a value ci
(1 6 i 6 n). We are also given a maximum total weight W . The goal is to
find a subset K of f1, . . . , ng that maximizes

∑
i∈K ci, under the constraint∑

i∈K wi 6 W . The analogy with the problem of packing the best items for
a well-deserved vacation should be clear.

Greedy algorithm. Here again, we start by designing a greedy algorithm
to solve the problem. The idea consists of selecting first those items that have
a good value per unit of weight, ci

wi
. Therefore, we sort items by nonincreasing

ci
wi

, and then we greedily add them in the knapsack as long as the total weight
is not exceeded.

However, the algorithm is not optimal because items are not divisible. We
cannot take only a fraction of an item, i.e., either we take it or we discard it.
A counterexample for the greedy algorithm can be designed as follows, with

© 2014 by Taylor & Francis Group, LLC

4.2. The knapsack problem 85

three items. The first item with the greatest ratio c1/w1 is such that it fills
up the knapsack by itself (no other item can fit in the knapsack once I1 has
been chosen, i.e., w1 + wi > W , for i > 2). Then, two more items are such
that w2 +w3 6W (they fit together in the knapsack), and c2 + c3 > c1 (they
have more value than the first item alone). If we are able to construct such an
example, the greedy algorithm chooses the first item, while a better solution
consists of choosing items 2 and 3. A possible set of items is the following,
with W = 10: (w1 = 6, w2 = 5, w3 = 5) and (c1 = 7, c2 = 5, c3 = 5).

If we consider the problem of the fractional knapsack, in which it is possible
to take only a fraction of an object, then the greedy algorithm is optimal. In
the example, it would take the whole item 1 and then a fraction (4/5) of
item 2 to fill the remaining space in the knapsack. The value would then be
c1 + 4

5c2 = 7 + 4 = 11, which is optimal. It is easy to prove the optimality
of the greedy algorithm in this case. If an optimal solution is not making
the greedy choice, we can always exchange a fraction of item of the optimal
solution with the fraction of item of better value per weight unit that was not
greedily chosen, and the total value can only increase.

Dynamic-programming algorithm. We come back to the integer knap-
sack problem, and since the greedy algorithm is not optimal, we try to solve
a more complex problem, as in the coin changing problem, in order to be
able to establish a recurrence. The two parameters are the total weight and
the number of items considered. We want to compute C(v, i), which is the
maximum value that can be obtained when filling up a knapsack of maximum
total weight v, using only some of the first i items fI1, . . . , Iig. The original
problem is the value C(W,n): The knapsack is of maximum total weight W ,
and we have the n items at our disposal.

To write the recurrence, we have two choices: (1) Either we have chosen
the last object, or (2) we have not, therefore leading to:

C(v, i) = max

{
C(v, i� 1) last object not chosen;
C(v � wi, i� 1) + ci last object chosen;

with the initialization conditions:
• C(v, i) = 0 for v = 0 or i = 0;
• C(v, i) = �1 if v < 0 (capacity exceeded).

The optimal solutions of all subproblems that we solve allow us to compute
the optimal solution of the original problem. Similarly to the coin changing
problem, we need to respect the precedence constraints of the computations
carefully, and we never want to compute twice the same value of the func-
tion C(v, i). The algorithm is formalized in Algorithm 4.3. The precedence
constraints are shown in Figure 4.2. Because the computation is done row by
row, these constraints are always respected.

The complexity of the greedy algorithm is in O(n log n) because the n items
must be sorted. However, the complexity of the dynamic-programming algo-

© 2014 by Taylor & Francis Group, LLC

86 Chapter 4. Dynamic programming

1 for i = 0 to n do
2 C(0, i) 0 { Initialization: case v = 0 }

3 for v = 1 to W do
4 C(v, 0) 0 { Initialization: case i = 0 }

5 for i = 1 to n do
6 for v = 1 to W do
7 C(v, i) C(v, i− 1)
8 if v − wi > 0 then
9 C(v, i) max(C(v, i), C(v − wi, i) + ci)

ALGORITHM 4.3: Dynamic-programming algorithm for the knapsack prob-
lem.

FIGURE 4.2: Precedence constraints for the knapsack dynamic-programming
algorithm.

rithm is in O(n � W) because we need to compute n � W values of the
function C(v, i), and each computation takes constant time.

4.3 Designing dynamic-programming algorithms

In the previous two sections, we have given examples of dynamic-programming
algorithms. The basic reasoning to obtain the optimal algorithm is similar in
both cases:

1. Identify subproblems whose optimal solutions can be used to build an
optimal solution to the original problem. Conversely, given an optimal

© 2014 by Taylor & Francis Group, LLC

4.4. Exercises 87

solution to the original problem, identify subparts of the solution that
are optimal solutions for some subproblems. Usually, this step means
that we identify a more complex problem derived from the original prob-
lem.

2. Write the recurrence.

3. Write the initial cases.

4. Write the algorithm, usually as an iterative algorithm, and take care
to enforce precedence constraints (use a figure to check that these con-
straints are indeed satisfied). A recursive algorithm may be used, but it
requires tests to avoid redundant computations.

5. Study the complexity of the algorithm (usually straightforward from the
iterative version of the algorithm).

Such an algorithm is bottom-up; we need results of the multiple subprob-
lems to make a choice and compute the optimal solution, while the greedy
algorithms are top-down, making a local choice at each step.

With dynamic-programming algorithms, one must be particularly cautious
about the size of the data. It is not unusual to write nonpolynomial dynamic-
programming algorithms. For instance, in the knapsack problem, the cost
of the dynamic-programming algorithm is O(nW). However, data can be
encoded in

∑n
i=1 logwi +

∑n
i=1 log ci 6 n(logW + logC), which means that

W is in fact exponential in the problem size. This important encoding issue
is related to weak NP-completeness and pseudo-polynomial algorithms, which
we come back to in Section 6.6, p. 145.

4.4 Exercises

Exercise 4.1: Matrix chains (solution p. 90)

Consider n matrices A1, . . . , An, where Ai is of size Pi−1 � Pi (1 6 i 6 n).
We want to compute A1 �A2 � � � � �An. The problem is to decide in which
order the multiplications should be done and, therefore, to add parentheses
to the expression, in order to minimize the number of operations. Note that
it costs Pa � Pb � Pc to multiply a matrix of size Pa � Pb by a matrix of size
Pb � Pc.

Propose a dynamic-programming algorithm to solve the problem and give
its complexity. Be careful to define the initial conditions and the recurrence.

© 2014 by Taylor & Francis Group, LLC

88 Chapter 4. Dynamic programming

Exercise 4.2: The library (solution p. 91)

The library is planning to move. It has a collection of n books b1, b2, . . . , bn.
Book bi has a width wi and a height hi. The books are stored on identical
shelves of width L. Each shelf is used to store a set of books of consecutive
indices. In other words, for each shelf, there exist two indices i and j such
that the shelf exactly includes the books bi, bi+1, . . . , bj−1, bj .

1. We assume first that all heights are identical: hi = h, for 1 6 i 6 n,
and we want to minimize the number of shelves that are used. Propose
a greedy algorithm to solve the problem and prove that it is optimal.

2. Now, books have different heights, but we can adjust the distance be-
tween two shelves. The new objective criteria is the total space usage,
defined as the sum of the heights of the higher book on each shelf. Give
an example where the greedy algorithm of the previous question is no
longer optimal, design an optimal algorithm to solve this problem, and
give its complexity.

3. We come back to the problem with identical heights. Now, we want to
place the n books on k shelves of same length L, and the objective is
to minimize L, while k is fixed. In other words, we need to partition
the n books into k sets, where the width of the widest set is as small
as possible. Design an algorithm to solve the problem, and give its
complexity in terms of n and k.

Exercise 4.3: Polygon triangulation (solution p. 93)

We consider planar convex polygons. A triangulation of a polygon is a set of
lines that do not intersect inside the polygon and that divide the polygon into
triangles. Here, the triangulation lines all pass through polygon vertices.

Let P = hv0, . . . , vni be a convex polygon, where v0, . . . , vn are the polygon
vertices numbered in the direct order, and let w be a weight function defined
on the triangles formed by the sides and the lines drawn in P . For instance,
w(i, j, k) can be the perimeter of the triangle defined by the vertices vi, vj ,
and vk. The problem is to find a triangulation that minimizes the sum of the
weight of the triangles induced by the triangulation.

1. For 1 6 i < j 6 n, we define t(i, j) as the weight of an optimal triangula-
tion of the polygon hvi−1, . . . , vji, with t(i, i) = 0 for 1 6 i 6 n. Express
a recurrence to compute t, derive an algorithm to solve the problem,
and give its complexity.

2. If the weight function can be anything, how many values do we need to
know for the function to be defined on all polygon triangles? Compare
with the complexity of the algorithm.

© 2014 by Taylor & Francis Group, LLC

4.4. Exercises 89

3. If the weight of a triangle is equal to its surface, what can you say about
the algorithm that you have designed?

Exercise 4.4: Square of ones (solution p. 96)

Given a matrix A of size n�m with coefficients in f0, 1g, we want to find the
maximum width K of a square of ones in A, as well as the coordinates (I, J)
of the top left corner of such a square. In other words, for all i, j such that
I 6 i 6 I +K � 1 and J 6 j 6 J +K � 1, we have A[i, j] = 1.

1. Design a dynamic-programming algorithm to solve this problem.

2. What is the complexity of your algorithm?

(Hint: Consider t[i, j], the width of the biggest square of ones whose top
left corner is (i, j).)

Exercise 4.5: The wind band (solution p. 98)

In a wind band, there are n musicians of size t1, t2, . . . , tn. For concerts,
the orchestra has m suits (m > n) of size u1, u2, . . . , um. Every year, some
musicians leave the band and are replaced by new ones, and we need to give
each musician a suit of appropriate size: α(i) is the index of the suit given to
the musician of size ti.

1. Yves, the drum player, believes that the objective is to minimize the
average difference between the size of a musician and the size of his
or her suit, i.e., minimize 1

n

∑n
i=1 jti � uα(i)j. He proposes a greedy

algorithm. We find i and j such that jti � uj j is minimum, we give the
suit of size uj to the musician of size ti, and we iterate until everybody
receives a suit. Is this algorithm optimal?

2. Anne, the horn player, believes that it is more fair to minimize the
average square of differences: 1

n

∑n
i=1(ti � uα(i))

2. Show in an example
the advantage of this objective function, compared to Yves’s. Is the
greedy algorithm optimal for this objective function?

3. If there are as many suits as musicians (i.e., n = m), then design an
optimal algorithm for Anne’s objective function.

4. Design an optimal algorithm for the general case m > n (and Anne’s
objective function).

Exercise 4.6: Ski rental (solution p. 98)

The problem is to distribute m pairs of skis of lengths s1, . . . , sm to n persons
of size h1, . . . , hn, all wanting to go skiing. We assume that there are enough

© 2014 by Taylor & Francis Group, LLC

90 Chapter 4. Dynamic programming

skis in the rental shop for everybody (i.e., m > n). The allocation is defined
by an injective function f : f1, . . . , ng ! f1, . . . ,mg, and f is optimal when
it minimizes A(n,m) =

∑n
k=1 jsf(k) � hkj.

1. Design an efficient algorithm that returns an optimal allocation of the
skis.

(Hint: Prove that the tallest person can be allocated the longest pair
of skis used.)

2. What is the complexity of the algorithm? You should refine the analysis
to guarantee that the algorithm is in O(n log n) if m = n.

3. Prove that we can obtain a better complexity when n2 = o(m).

(Hint: Restrict to O(n2) pairs of skis.)

Exercise 4.7: Building set (solution p. 102)

We want to build a tower as high as possible from a set of bricks. We have
n different types of bricks and as many bricks of each type as we want. The
brick of type i is a parallelepiped of size fxi, yi, zig, and it can be oriented in
any way, two dimensions being the base of the brick, and the third one being
the height. When we build the tower, a brick can be placed on top of another
only if the two dimensions of its base are strictly smaller than the dimensions
of the brick on which we want to place it.

1. Design an optimal dynamic-programming algorithm to build a tower of
maximum height.

2. What is the complexity of this algorithm?

4.5 Solutions to exercises

Solution to Exercise 4.1: Matrix chains

We want to compute A1 � � � � � An. Let us look for the optimal cost of
computing the product Ai � � � � � Aj . We denote this cost by C(i, j). The
optimal solution for the problem will be obtained for i = 1 and j = n.

We define C(i, j) by induction. We partition in two the product of matrices
(Ai, . . . , Aj) to indicate which two matrices were multiplied in the last matrix
multiplication. In other words, if we cut (Ai, . . . , Aj) after the position k, this
means that the last multiplication was between matrix Ai � Ai+1 � � � � � Ak
and matrix Ak+1 � � � � � Aj . Let us assume that the optimal solution was
to cut (Ai, . . . , Aj) after the matrix Ak. Then the optimal cost to compute

© 2014 by Taylor & Francis Group, LLC

4.5. Solutions to exercises 91

Ai�� � ��Aj is equal to the optimal cost of computing Ai�� � ��Ak, plus the
optimal cost of computing Ak+1 � � � � � Aj , plus the cost of computing the
final matrix product: (Ai �Ai+1 � � � � �Ak)� (Ak+1 � � � � �Aj). Therefore,
we have the induction:

C(i, j) =
j−1

min
k=i
fC(i, k) + C(k + 1, j) + (Pi−1 � Pk � Pj)g.

Thus, to compute C(i, j), one needs to have already computed all the C(i, k)s
and all the C(k, j)s, with k 2 [i; j � 1]. The initial conditions are C(i, i) = 0
and C(i, i+ 1) = Pi−1 � Pi � Pi+1.

The dynamic-programming algorithm works as follows: First, it initializes
all C(i, i)s and all C(i, i+1)s. Then, it computes all the values C(i, i+2), then
all the C(i, i+3), and so on. Computing a single C(i, j) costs O(n) and, thus,
computing all C(i, i + s) costs O(n2). Therefore, the dynamic-programming
algorithm runs in O(n3). To reconstruct the optimal solution from the output
of the dynamic program, one needs only to memoize for any couple (i, j) the
place k(i, j) of the cut that minimizes C(i, j).

Solution to Exercise 4.2: The library

1. The greedy algorithm stores as many books as possible on the first shelf,
starting with book b1 and finishing with some book bk1 (included). It
then stores as many books as possible on the second shelf, starting with
book bk1+1, and so on.

To prove the optimality of this greedy algorithm, we consider any
instance and we compare the solution of the greedy algorithm on that
instance, denoted G, to an optimal solution, denoted O. Let i be the
rank of the first shelf for which the two solutions differ. Remember that
books are stored by consecutive indices. Therefore, by definition of i,
the first book on shelf i is the same under both solutions, say bk. By
definition of the greedy algorithm and of i, G contains strictly more
books on shelf i than O. We build a new solution O′ as follows: The
first shelves, up to shelf i included, contain the same books as for the
solution G; the remaining shelves have the same composition as for O,
except that we have discarded the books already put on shelf i. This
new solution has the same number of shelves as O and, thus, is optimal.
The first i+ 1 shelves have the same composition under G and O′. By
iterating this process, since there are at most n shelves in an optimal
solution, we prove that G is an optimal solution.

2. In this question, books have different heights. For the counterexample
to the optimality of the previous greedy algorithm, we take an instance
with three books of same width equal to 1 (w1 = w2 = w3 = 1) and
where at most two books can fit on a shelf (L = 2). We pick for the
heights: h1 = 1, h2 = 2, and h3 = 3. The greedy algorithm puts the

© 2014 by Taylor & Francis Group, LLC

92 Chapter 4. Dynamic programming

first two books on the first shelf, for a height of 2, and the last one alone
on the second shelf, for a height of 3. The total cost of this solution is
thus 2 + 3 = 5. An optimal solution is to put the first book alone on the
first shelf, for a height of 1, and the last two books on the second shelf
for a height of 3. The total cost of this solution is 1 + 3 = 4.

To find the principle needed to design a dynamic-programming algo-
rithm, let us consider an optimal solution for storing books b1 through bn.
Let bk be the last book on the first shelf under this optimal solution.
Then, the way the books bk+1 through bn are stored is an optimal solu-
tion for the problem where the entire collection of books is bk+1, bk+2,
. . . , bn. Then, the cost of the whole solution is the cost of the book
organization on the first shelf, that is, the maximal height of a book on
the first shelf, plus the cost of the reminder of the solution. Therefore,
to design an optimal solution, the “only” remaining problem is to find
which book is the last one on the first shelf, knowing that the sum of
widths of the books on the first shelf cannot be greater than L. Letting
C(i) be the cost of storing optimally books bi through bn, we have:

C(i) = min
i6k6n∑k
j=i wj6L

(maxfhi, . . . , hkg+ C(k + 1)) .

To compute C(i), we must already know the values of all C(j)s for j > i.
Algorithm 4.4 is a dynamic-programming algorithm to compute these
values C(i)s. In this algorithm, LastBook[i] is the index of the last book
on the shelf starting with book i.

The complexity of Algorithm 4.4 is O(n2).

3. Once again, to find the principle needed to design a dynamic-program-
ming algorithm, consider an optimal solution for storing books b1 through
bn on k shelves. Let bi be the last book on the first shelf in this opti-
mal solution. Then, without loss of generality, we can assume that the
distribution of the books bi+1 through bn is an optimal solution for the
problem where the entire collection of books is bi+1, bi+2, . . . , bn, and
where it should be stored on k � 1 shelves. Indeed, if this book distri-
bution were not optimal for that problem, we could replace it with an
optimal solution to find another optimal solution of the original problem
(all n books on k shelves). To see that the distribution of the books bi+1

through bn on the last k� 1 shelves may not be optimal, let us consider
the following example with four books (n = 4) and three shelves (k = 3):
w1 = 3, w2 = 2, w3 = 1, and w4 = 1. L cannot be smaller than the
width of the largest book. Therefore, the solution with b1 on the first
shelf, b2 and b3 on the second one, and b4 on the last one is optimal
because it achieves L = 3. Nevertheless, the optimal distribution of the
last three books on two shelves is b2 on the first shelf and b3 and b4 on
the last one, for a width of 2.

© 2014 by Taylor & Francis Group, LLC

4.5. Solutions to exercises 93

1 C(n) hn
2 for i = n� 1 downto 1 do
3 ShelfWidth wi
4 ShelfHeight hi
5 C(i) hi + C(i+ 1)
6 LastBook[i] i
7 for j = i+ 1 to n do
8 ShelfWidth ShelfWidth + wj
9 if hj > ShelfHeight then ShelfHeight hj

10 if ShelfWidth 6 L and ShelfHeight + C(j + 1) 6 C(i) then
11 C(i) ShelfHeight + C(j + 1)
12 LastBook[i] j

ALGORITHM 4.4: Organization of books on library shelves so as to mini-
mize the overall storage space.

Let Mi,j be the cost of storing books bi through bn on j shelves.
Following the previous analysis, we have:

8i 2 [1;n],8j 2 [2; k], Mi,j = min
i6k6n

max

{
k∑
l=i

wl,Mk+1,j−1

}
8i 2 [1;n], Mi,1 =

n∑
k=i

wk

8j 2 [1; k], Mn+1,j = 0.

Algorithm 4.5 is a dynamic-programming algorithm implementing the
above recursive computation and whose complexity is O(k � n2).

Solution to Exercise 4.3: Polygon triangulation

1. To find a recursion on t, we just need to remark that the line segment
[vi−1, vj] is one side of a triangle in any triangulation considered here.
The only vertex of that triangle that is not yet defined is one of the
vertices of the polygon hvi−1, . . . , vji. Therefore, we need to look among
the vertices vi, . . . , vj−1 for the vertex vk defining the best triangulation.
This is illustrated in Figure 4.3. The weight of an optimal triangulation
is then equal to the weight of the triangle defined by vi−1, vk, and vj ,
plus the weight of an optimal triangulation of hvi−1, vi, . . . , vki, plus the
weight of an optimal triangulation of hvk, vk+1, . . . , vji. Therefore,

t(i, j) = min
i6k6j−1

(w(i� 1, k, j) + t(i, k) + t(k + 1, j)) .

© 2014 by Taylor & Francis Group, LLC

94 Chapter 4. Dynamic programming

1 Mn,1 = wn
2 for i = n� 1 downto 1 do Mi,1 = wi +Mi+1,1

3 for j = 2 to k do
4 for i = n� 1 downto 1 do
5 L Mi,j−1 /* The optimal is to leave the last shelf empty */

6 LastBook[j] n+ 1
7 ShelfWidth 0
8 for m = i to n� 1 do
9 ShelfWidth ShelfWidth + wm

10 if maxfShelfWidth,Mm+1,j−1g < L then
11 L maxfShelfWidth,Mm+1,j−1g
12 LastBook[j] m

ALGORITHM 4.5: Organization of books on k library shelves so as to
minimize the width of the widest shelf.

(We remark that this expression is valid when j = i + 1 thanks to the
convention t(i, i) = 0.)

w(i� 1, k, j)

vi−1

vi

vk

vj

t(k + 1, j)

t(i, k)

FIGURE 4.3: Recursive polygon triangulation.

We are now ready to write a dynamic-programming algorithm to com-
pute t(1, n) from the values t(k, j) where i + 1 6 k 6 j and from the
values t(i, k) where i 6 k 6 j � 1. In other words, if we represent the
values of t(i, j) to be computed with an (i, j)-diagram as the one pre-
sented in Figure 4.4, t(1, n) is computed from the values that are“below”

© 2014 by Taylor & Francis Group, LLC

4.5. Solutions to exercises 95

and “to the right” of the point (1, n). Therefore, to compute t(1, n), we
must compute the values t(i, j) for i going from 1 to n and with j > i,
and this should be done by increasing values of (j � i). Algorithm 4.6
performs such a computation.

1 n i

1

n
j t(1, n)

t(i, j)

FIGURE 4.4: (i, j)-diagram of the values to be computed by the dynamic-
programming algorithm.

To compute t(i, j), Algorithm 4.6 performs 2(j � i) additions and
j � i� 1 comparisons. Overall, the number of additions performed is

An =
n−1∑
d=1

(
(n� d)� (2d)

)
where (n � d) is the number of values t(i, j) to be computed on the
diagonal j � i = d and where 2d is the number of additions needed in
the computation of t(i, j) where j � i = d. We obtain:

An = 2n

(
n−1∑
d=1

d

)
� 2

(
n−1∑
d=1

d2

)
=

(n� 1)� n� (n+ 1)

3
= Θ(n3).

To compute the number Tn of tests needed, one just has to remark that
when computing t(i, j), the number of tests is equal to half the number
of additions, minus one. Then, Tn = An/2 � Cn where Cn is the total
number of values t[i, j] that are computed. Therefore:

Tn =
1

2
An �

n−1∑
d=1

(n� d) =
n3 � 3n2 + 2n

6
= Θ(n3).

© 2014 by Taylor & Francis Group, LLC

96 Chapter 4. Dynamic programming

The overall complexity of Algorithm 4.6 is, therefore, Θ(n3).

1 for i = 0 to n do
2 t(i, i) 0

3 for d = 1 to n� 1 do
4 for i = 1 to n� d do
5 t(i, i+d) min

i6k6i+d−1
(t(i, k)+t(k+1, i+d)+w(i�1, k, i+d))

6 return t(1, n)

ALGORITHM 4.6: Dynamic-programming algorithm to compute an opti-
mal polygon triangulation.

2. In the general case, to define fully the function w, one needs one value for
each possible triangle, that is,

(
n+1

3

)
= Θ(n3). Each of these values must

be read at least once to define an optimal triangulation. Therefore, any
algorithm must have a complexity of at least Ω(n3), and Algorithm 4.6
is optimal (at least for the order of magnitude of its complexity).

3. When the weight of a triangle is equal to its area, all triangulations have
the same weight, which is the area of the polygon. Algorithm 4.6 is not
well suited to that case. We can replace it with Algorithm 4.7. This
algorithm does not perform a single test and only n � 3 additions (far
fewer than the Θ(n3) of Algorithm 4.6).

1 Let the triangulation be defined by the line segments (v0, vi), for
2 6 i 6 n� 1

2 return Sum of the weights of the triangles

ALGORITHM 4.7: Program to compute an arbitrary polygon triangulation.

Solution to Exercise 4.4: Square of ones

1. Let Ci,j denote the largest square of ones of matrix A whose top left
corner is the element Ai,j . Let t(i, j) be the width of Ci,j . If Ai,j = 0,
then t(i, j) = 0. Otherwise, since Ci,j has size t(i, j), then all elements
Ak,l with i 6 k 6 i + t(i, j) � 1 and j 6 l 6 j + t(i, j) � 1 should be
equal to one. Therefore, for Ci,j to have size t(i, j), then:

© 2014 by Taylor & Francis Group, LLC

4.5. Solutions to exercises 97

• Ci,j+1 must have a size at least t(i, j)� 1;
• Ci+1,j must have a size at least t(i, j)� 1;
• Ci+1,j+1 must have a size at least t(i, j)� 1.

Therefore, we have the following recursive formula for any i 2 [1;n] and
j 2 [1;m]:

{
t(i, j) = 0 if Ai,j = 0
t(i, j) = min

(
t(i, j + 1), t(i+ 1, j), t(i+ 1, j + 1)

)
+ 1 otherwise

with the notation extension t(n+ 1, j) = t(i, n+ 1) = 0. Algorithm 4.8
implements this recursion.

1 for i = 1 to n do
2 t(i,m) Ai,m

3 for j = 1 to m� 1 do
4 t(n, j) An,j

5 for i = n� 1 downto 1 do
6 for j = m� 1 downto 1 do
7 if Ai,j = 0 then
8 t(i, j) 0

9 else
10 t(i, j) 1 + min

(
t(i, j + 1), t(i+ 1, j), t(i+ 1, j + 1)

)
11 K 0
12 for i = 1 to n do
13 for j = 1 to m do
14 if t(i, j) > K then
15 K t(i, j)
16 I i
17 J j

18 return (K, I, J)

ALGORITHM 4.8: Dynamic-programming algorithm to compute the largest
square of ones in a matrix with values 0 and 1.

2. The algorithm has a complexity of O(n�m).

© 2014 by Taylor & Francis Group, LLC

98 Chapter 4. Dynamic programming

Solution to Exercise 4.5: The wind band

1. We consider the following instance with two musicians and two suits:
t1 = 1, t2 = 4, u1 = 3, and u2 = 6. The greedy algorithm produces
the solution α(2) = 1 and α(1) = 2 whose score is (1 + 5)/2 = 3. The
optimal solution is α(1) = 1 and α(2) = 2 whose score is (2 + 2)/2 = 2.

2. This objective function has a strong negative impact on the large dif-
ferences in sizes. We consider the same instance as in the previous
question. The greedy algoritm produces the same solution whose score
is now (1+52)/2 = 13. The optimal solution is the same as the previous
one, and its score is now (22 + 22)/2 = 4.

3. We assume that musicians and suits are sorted by nondecreasing sizes.
Suppose that in a solution there are two musicians i and j, with i < j,
such that α(i) > α(j). Let S be the score of that solution and let S′ be
the score of the solution where we have exchanged the suits allocated to
those two musicians.

S′ � S =
(
(ti � uα(j))

2 + (tj � uα(i))
2
)
�
(
(ti � uα(i))

2 + (tj � uα(j))
2
)

= 2(uα(i) � uα(j))(ti � tj) .

By hypothesis, because i < j, ti 6 tj , and because α(i) > α(j), uα(i) >
uα(j). Therefore, S′ � S 6 0, and the new solution is better than the
original one. In other words, in an optimal solution, a taller musician
must receive a larger suit.

An optimal algorithm then sorts musicians and suits and assigns the
i-th suit to the i-th musician. Its complexity is O(n log(n)).

4. From what we have proved at the previous question, the largest of all
suits either is assigned to the tallest of the musicians or is not used. Let
us denote byMi,j the cost of the optimal solution when assigning to the j
smallest musicians suits among the i smallest ones. From what precedes,
either the largest suit is not used and Mi,j = Mi,j−1, or the largest suit
is assigned to the tallest musician and Mi,j = Mi−1,j−1 + (ui � tj)

2.
This gives us the following recursive definition of the optimal solution:

Mi,j = min
{
Mi−1,j ,Mi−1,j−1 + (ui � tj)2

}
.

Algorithm 4.9 computes this solution following a dynamic-programming
approach.

Solution to Exercise 4.6: Ski rental

1. In order to be able to follow the hint easily, we assume that the skiers are
sorted by nondecreasing heights and that the pairs of skis are sorted by
nondecreasing lengths. We want to express the optimal solution through

© 2014 by Taylor & Francis Group, LLC

4.5. Solutions to exercises 99

1 M0,0 0
2 for i = 1 to n do
3 Mi,i Mi−1,i−1 + (ui � ti)2

4 for j = i+ 1 to m do
5 if Mi,j−1 < Mi−1,j−1 + (ui � tj)2 then
6 Mi,j Mi,j−1

7 else
8 Mi,j Mi−1,j−1 + (ui � tj)2

9 Ai j /* We record the assignment */

ALGORITHM 4.9: Assignment of suits to musicians.

some recursion. Therefore, we consider the restriction of our problem
to the first i skiers and the first j pairs of skis. We assume that the
property proposed by the hint is true. In other words, we restrict our
search space by assuming that the longest pair of skis used is assigned
to the tallest person. Then we focus on the j-th pair of skis, that is, on
the pair of longest skis. There are two cases:

(a) The optimal solution for the first i skiers and first j ski pairs does
not use the j-th pair of skis. Then, A(i, j) = A(i, j � 1).

(b) The optimal solution for the first i skiers and first j ski pairs uses
the j-th pair of skis. Then, according to the hint, that pair is
used for the tallest person, that is, the i-th one. Then, A(i, j) =
A(i� 1, j � 1) + jsj � hij.

Gathering the two cases, we obtain:

A(i, j) = min fA(i, j � 1), A(i� 1, j � 1) + jsj � hijg . (4.1)

However, to achieve this result, we have assumed that the property
proposed in the hint is true. Therefore, we have to establish it.

We assume that there is an instance, and an optimal ski allocation
function f , such that, in this instance, f does not allocate the longest
pair of skis used to the tallest person. We then build a new ski assign-
ment, f ′, whose cost is not greater than the one of f , and that satisfies
the desired property. As previously, we assume that the skiers are sorted
by nondecreasing heights and that the pairs of skis are sorted by non-
decreasing lengths. Without loss of generality, we can assume that the
longest pair of skis used is the j-th one. Indeed, if this is not the case,
and if the longest pair of skis used is the k-th one, we remove from the
previous instance all the pairs of skis except the first k ones to obtain
an example with the desired property. Let p, p 2 [1;n], be the person
assigned the j-th pair of skis: f(p) = j. Then, we build a new allocation

© 2014 by Taylor & Francis Group, LLC

100 Chapter 4. Dynamic programming

function f ′ identical to f except that we swap the assignments of the
persons p and i: f ′(p) = f(i), f ′(i) = f(p) = j, and f ′(k) = f(k) for
any k 2 [1;n] n fi, pg. When evaluating the objective function, the only
terms that change are the ones involving i and p. Therefore, we focus
on the terms:

A = jsj � hpj+ jsf(i) � hij and B = jsf(i) � hpj+ jsj � hij .

We will have established the desired property if we succeed in proving
that we always have A > B. We must consider all the different relative
orderings of sf(i), sj , hp, and hi.

• hp 6 hi 6 sf(i) 6 sj :

A�B = (sj � hp � hi + sf(i))� (�hp + sf(i) + sj � hi)
= 0

• hp 6 sf(i) 6 hi 6 sj :

A�B = (sj � hp + hi � sf(i))� (�hp + sf(i) + sj � hi)
= 2(hi � sf(i)) > 0

• sf(i) 6 hp 6 hi 6 sj :

A�B = (sj � hp + hi � sf(i))� (hp � sf(i) + sj � hi)
= 2(hi � hp) > 0

• sf(i) 6 hp 6 sj 6 hi:

A�B = (sj � hp + hi � sf(i))� (hp � sf(i) � sj + hi)
= 2(sj � hp) > 0

• sf(i) 6 sj 6 hp 6 hi:

A�B = (hp � sj + hi � sf(i))� (hp � sf(i) � sj + hi)
= 0

Therefore, in all cases, we have B > A, and f ′ defines a solution whose
quality is at least as good as that of f . We can then safely use equa-
tion (4.1) to compute an optimal solution. This is what Algorithm 4.10
does (with the convention that A(0, j) = 0 for any j 2 [0;m]), where
s(i, j) records which pair of skis is assigned to skier i when the choice is
made among the first j pairs of skis. The bounds of the loop at Step 4
may surprise the reader at first sight. These bounds state only that:

• There should be at least i � 1 pairs of skis available for the first
i� 1 skiers (and we know then that none of the first i� 1 pairs of
skis are going to be assigned to one of the last n� (i� 1) skiers).

• There should be at least n � i pairs of skis available for the last
n� i skiers (and we know then that none of the last n� i pairs of
skis are going to be assigned to one of the first i skiers).

2. We remark that for the iteration i of the outermost loop, we compute
A(i, i) and then (m� n+ i)� (i+ 1) + 1 = m� n iterations of the loop

© 2014 by Taylor & Francis Group, LLC

4.5. Solutions to exercises 101

1 for i = 1 to n do
2 A(i, i) A(i� 1, i� 1) + jsi � hij
3 s(i, i) i
4 for j = i+ 1 to m� n+ i do
5 if A(i� 1, j � 1) + jsi � hj j < A(i, j � 1) then
6 A(i, j) A(i� 1, j � 1) + jsi � hj j
7 s(i, j) j

8 else
9 A(i, j) A(i, j � 1)

10 s(i, j) s(i, j � 1)

ALGORITHM 4.10: Ski allocation algorithm.

at Step 4. Hence, the complexity of Algorithm 4.10 is

n∑
i=1

(1 +m� n) = n(m� n+ 1).

When taking into account the presorting of the pairs of skis and of the
persons, we obtain an overall complexity in O(m log(m) + n(m � n))
because n 6 m. When n = m the complexity is just O(m log(m)), that
is the complexity of the initial sorts.

3. We are dealing here with a very large choice of skis. We first remark
that we can restrict the algorithm, for each skier i, to look for a solution
among its n most suitable pairs of skis, a set we denote Si. We use a
subset of size n, instead of just 1, to take into account potential conflicts
between skiers. The pairs of skis defined this way give rise to a set
S =

⋃n
i=1 Si containing at most n2 pairs of skis (some of the Si sets

may not be distinct and thus share some pairs of skis). We then apply
Algorithm 4.10 to the set S. We compute the set S in time O(n(log(m)+
n)): For each of the n persons, we find the best pair of skis with a binary
search and then visit a neighborhood of size O(n) around this best pair
to find the n best pairs. The overall complexity is then:

O(n log(n) +m log(m) + n(log(m) + n) + n2 log(n2) + n(n2 � n))

= O(n3 +m log(m))

when taking into account the original sorts. This complexity is lower
than the original one as n3 = o(n �m) because we have assumed that
n2 = o(m). However, we still have to prove that we obtain an optimal
solution when we restrict the search to the set S.

© 2014 by Taylor & Francis Group, LLC

102 Chapter 4. Dynamic programming

We remark that, by construction, for any pair of skis j /2 S and for
any skier i, there exist at least n pairs of skis sj1 , . . . , sjn in Si such that
jsj � hij > jsjk � hij (1 6 k 6 n) because we have taken pairs of skis
around the optimal pair of skis. Therefore, if there exists an optimal
assignment that uses the pair of skis j for a skier i (along, potentially,
with other pairs of skis not in S), we can replace j with a pair from Si.
This is always possible because the other skiers use at most n� 1 pairs
of skis and because Si contains n pairs of skis. Furthermore, as we have
just seen, such an exchange does not increase the objective function.
Hence, the new solution is also optimal.

Solution to Exercise 4.7: Building set

1. Given any brick fxi, yi, zig, there are a priori up to six ways to put
it on top of the tower: There are three choices for the base and then
two orientations (without loss of generality, we assume bricks are always
laid out so that their faces are parallel). The base is then defined by a
length and a width, where the length is greater than the width. One can
remark that if it is valid to put the new brick on the one at the top of
the tower so that the length of the new brick is parallel to the width of
the one at the top, then it is also valid to put the new brick on the top
of the tower with its width parallel to the width of the brick at the top.
We, therefore, can assume, without loss of generality, that bricks are
put on top of each other so that their widths are parallel. This reduces
to three the number of ways a brick can be put on top of the tower.

In the remainder of this solution, the brick (Li, li, hi) designs a paral-
lelepiped of size fLi, li, hig that can be laid down only so that its base is
Li� li, its length Li, its width li (with, thus, Li > li), and its height hi.
Therefore, from the original set of n parallelepipeds ffxi, yi, zig16i6ng,
we build a set of 3n bricks [16i6nf(zi, yi, xi), (zi, xi, yi), (yi, xi, zi)g (with
the assumption that, for any i, xi 6 yi 6 zi). With these new notations,
one can put the brick (Li, li, hi) on top of the brick (Lj , lj , hj) if and
only if Li < Lj and li < lj .

For any value of i, 1 6 i 6 3n, let Hi be the maximum height of a
tower whose top brick is the i-th brick. Then, for any i, 1 6 i 6 3n, we
can write the induction:

Hi = hi + maxf0, maxfHj j 1 6 j 6 3n, Lj > Li, lj > ligg.

(We introduced the “maximum with zero” term in case there does not
exist a single brick on which the brick i can be put.) In order to be
able to compute such an induction, the idea is to sort the 3n bricks by
nonincreasing values of Li. The induction can then be rewritten:

Hi = hi + maxf0, maxfHj j 1 6 j 6 i� 1, Lj > Li, lj > ligg.

© 2014 by Taylor & Francis Group, LLC

4.6. Bibliographical notes 103

We then have a natural ordering to compute the His. The optimal
solution is then defined by the maximum of the His. Algorithm 4.11
implements this computation (under the assumption that, for any i,
xi 6 yi 6 zi).

1 list ;
2 for i = 1 to n do
3 list list [f(zi, yi, xi), (zi, xi, yi), (yi, xi, zi)g
4 Sort list = f(Li, li, hi) j i 2 f1, . . . , 3ngg by nonincreasing Li
5 H1 h1

6 for i = 2 to 3n do
7 H fHj j Lj > Li, lj > li, 1 6 j < ig
8 if H = ; then
9 Hi hi

10 else
11 Hi hi + maxfh j h 2 Hg

12 H max16i63nHi

13 return H

ALGORITHM 4.11: Tallest tower constructed from a building set.

2. Building the set of the 3n bricks and sorting it can be done inO(n log(n)).
Then, to compute the value of Hi, one must compare Li to Lj and li
to lj for any j 2 [1, i� 1], which costs 2(i� 2) comparisons. Then, the
maximum must be taken over i� 1 values, which costs i� 2 additional
comparisons. The computation of all the His thus has a quadratic cost.
The final determination of the optimal solution is the search for the
maximum other 3n values, which costs 3n � 1. Therefore, the overall
complexity of Algorithm 4.11 is O(n2).

4.6 Bibliographical notes

Exercise 4.1 (matrix chains) comes from the book by Cormen, Leiserson,
Rivest, and Stein [27]. Exercise 4.3 (polygon triangulation) is inspired from
the book by Goodrich and Tamassia [43].

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 5

Amortized analysis

In this chapter, we briefly discuss amortized analysis, the goal of which is to
average the cost of n successive operations. This should not be confused with
the average cost of an operation. We first describe the three classical methods
with examples (Section 5.1) and then proceed with exercises in Section 5.2,
with solutions in Section 5.3.

5.1 Methods for amortized analysis

First, we introduce two examples to illustrate the methods used to conduct an
amortized analysis. Then, we present the three classical methods: aggregate
analysis, the accounting method, and the potential method.

5.1.1 Running examples

The first example is a k-bit counter that we want to increment. Initially, the
counter has a value of 0, and each operation increments it. Formally, this
counter is represented by an array A of k bits, where A[i] is the (i + 1)-th
bit, for 0 6 i 6 k � 1. A number x represented by this counter is such that
x =

∑k−1
i=0 A[i].2i. For instance, if k = 6 and if we perform n = 4 operations,

we obtain the following sequence:

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0

The cost of an increment is defined as the number of bits that should be
modified. This cost is not constant for each value of the counter; it is equal
to the number of successive 1s at the right of the counter, plus 1 (switching
the first 0 to 1).

The second example consists of inserting n elements in a table, dynamically,
starting from an empty table. We insert a new element directly in the table if

105

© 2014 by Taylor & Francis Group, LLC

106 Chapter 5. Amortized analysis

there is space, with a cost 1. Otherwise, we create a new table that has twice
the size of the original table (or a table of size 1 for the first insertion); we
copy the content of the original table and insert the new element. The cost
is then the size of the original table plus 1. Note that the table is always at
least half full (an empty table is considered full), so even if the cost may be
high for some operations, we then have free space for the next operations.

For both examples, the amortized analysis consists of asking the following
question: What is the cost of n successive operations?

5.1.2 Aggregate analysis

The goal of this method is to show that the cost of n successive operations
can be bounded by T (n). Therefore, in the worst case, the cost per operation
on average, i.e., the amortized cost per operation, is bounded by T (n)/n.

For the k-bit counter, it is obvious that the cost of n successive increment
operations is bounded by nk. However, this upper bound can be improved.
Indeed, the right-most bit flips each time, the second one flips every second
time, and so on. Therefore, the cost of n operations is at most n+ n

2 + n
4 +� � � 6

2n, regardless of the value of k. This leads to an amortized cost per operation
of 2.

For the table insertion, for any integer k > 0, the cost of the (2k + 1)-th
insertion is c(i) = 2k + 1, i.e., the size of the table is doubled. Otherwise, the
cost is c(i) = 1 (including the cost of the first insertion, c(1)). Therefore, we
have:

n∑
i=1

c(n) 6 n+

blog2(n)c∑
k=0

2k 6 3n

and an amortized cost of 3.

5.1.3 Accounting method

The principle of this method is to pay in advance for costly operations that
may happen afterwards, hence, keeping a constant cost per operation. One has
to guarantee that at the time of operation i, one has enough credit (including
advance payment and the payment for the operation) to cover the cost of the
operation.

For the k-bit counter, each time we flip a bit from 0 to 1, we decide to pay
2 euros1: 1 euro for the flip and another one so that we will be able to flip
back the bit from 1 to 0 without having to pay. For this example, since at
each increment there is only one bit to flip from 0 to 1, the cost is 2 at each

1Yes, $2 would be okay, too.

© 2014 by Taylor & Francis Group, LLC

5.1. Methods for amortized analysis 107

increment, and, hence, an upper bound of 2n for n operations (note that we
may have paid for some operations that have not been done yet).

For the table insertion, we decide to pay ¿3 at each insertion: ¿1 is used to
pay for the insertion, a second one will be used to pay for the transfer of the
element when a new table will be required, and a third one is assigned to an
element in the first half of the table that also will need to be transferred later
when the table is full. Therefore, each time the size of the table is doubling,
we can transfer all elements at no cost. This leads to an upper bound of 3n.

5.1.4 Potential method

This last method consists of representing the prepaid work of the accounting
method by a potential that can be used to pay for future operations. The
prepaid work of the accounting method is no longer associated with objects
but rather with the data structure itself. We define a potential function, which
associates to each data structure a potential. This potential function should
always be greater or equal to the potential function of the data structure
before the first operation, so that there is always enough potential to pay for
an operation. We introduce the following notations:

• Φ0 is the potential before the first operation.
• Φi > Φ0 is the potential of the data structure after i operations.
• ci is the cost of operation i.
• ĉi = ci + Φi � Φi−1 is the amortized cost of operation i. A costly

operation may have a small amortized cost if the potential function has
decreased with operation i, i.e., Φi � Φi−1 < 0.

Therefore, the amortized cost of a sequence of n operations can be computed
as:

n∑
i=1

ĉi =
n∑
i=1

ci + Φn � Φ0.

Because Φn � Φ0 > 0, the total amortized cost
∑n
i=1 ĉi gives an upper

bound on the total actual cost
∑n
i=1 ci. Note that we often define Φ so that

Φ0 = 0 and Φi > 0, for convenience.

For the k-bit counter, Φi is the number of bits that are at value 1 after
operation i. This number is always positive or null, and it is initially null. Let
t(i) be the number of right-most successive 1s just before operation i. The
potential after operation i is, therefore, Φi = Φi−1 � t(i) + 1 because t(i) 1s
have been reset to 0, and one 0 has taken the value 1. Moreover, the cost of
operation i is ci = t(i) + 1:

� � � 0 1 � � � 1 Φi−1

� � � 1 0 � � � 0︸ ︷︷ ︸ Φi = Φi−1 � t(i) + 1.

t(i)

© 2014 by Taylor & Francis Group, LLC

108 Chapter 5. Amortized analysis

Therefore, the amortized cost of operation i is ĉi = ci + Φi � Φi−1 =
t(i) + 1 + (�t(i) + 1) = 2.

For the table insertion, the potential can be seen as the richness of the
table; a table is rich when it is full. The table potential equals twice the
number of elements in the table minus the size of the table. Because the table
is always at least half full, this value cannot be negative. Formally, let numi

be the number of elements after i operations, and let sizei be the size of the
table after i operations. Initially, num0 = size0 = Φ0 = 0, and the potential
function is expressed as Φi = 2numi � sizei > 0. Because we perform only
insertions, numi = numi−1 + 1 = i.

If the size of the table remains identical after operation i, we have sizei =
sizei−1 and ci = 1. Therefore, ĉi = ci + Φi � Φi−1 = 1 + 2 = 3. However,
if sizei = 2sizei−1, this means that the cost of the operation was ci = numi

and that the table was full after operation i� 1, i.e., sizei−1 = numi−1, and,
therefore, ĉi = ci + Φi � Φi−1 = numi + 2� sizei−1 = 3.

5.2 Exercises

Exercise 5.1: Binary counter (solution p. 112)

Consider the running example of the k-bit counter introduced in Section 5.1.1
with an increment function.

1. Show that if we had also a decrement function on the counter, then a
sequence of n operations could have a cost in Θ(nk).

2. We keep only the increment function, and we add a reset operation
that resets the counter to its initial value 0. Show how to implement
this counter as a table of bits so that any sequence of n operations
(increment or reset) takes a time O(n) on a counter with initial value 0,
with the accounting method.

(Hint: Keep a pointer to the highest-order 1.)

Exercise 5.2: Inserting and deleting (solution p. 113)

Consider the running example of table insertion introduced in Section 5.1.1.
We consider now that it is also possible to delete elements from the table.

1. If we double the size of the table when it is full, and we halve the size of
the table when it is less than half empty, what would be the amortized
cost?

© 2014 by Taylor & Francis Group, LLC

5.2. Exercises 109

2. Propose an implementation of the insert and delete functions with a
constant amortized cost. Apply the accounting method and then the
potential method to compute the amortized cost.

Exercise 5.3: Stack (solution p. 114)

We consider a stack with the following operations: push(S, x) pushes object x
onto stack S, pop(S) pops the top of the stack and returns the popped object
(it returns an error if the stack is empty), and, finally, multipop(S, k) removes
the k top objects of the stack, and the entire stack if it contains fewer than
k objects (it tests at each step whether the stack is empty). Initially, the stack
is empty.

1. What is the time complexity of each of these operations? Use the aggre-
gate analysis to obtain the amortized cost of a sequence of n operations.

2. Use the accounting method to analyze the amortized cost.

3. Use the potential method to analyze the amortized cost.

4. Propose an implementation of a first-in first-out queue with two stacks,
such that adding an element in the queue and removing an element from
the queue both have an amortized cost of O(1).

Exercise 5.4: Deleting half the elements (solution p. 115)

We want to implement a data structure S with real numbers, with the follow-
ing operations: insert(S, x) inserts the object x in S, and delete(S) removes
the djSj/2e largest elements of S. Propose an implementation such that the
amortized cost of both operations is cost.

(Hint: You can find in linear time the median of a list, see Section 9.3
of [27].)

Exercise 5.5: Searching and inserting (solution p. 116)

We consider a data structure for n elements. Let k = dlog(n + 1)e, and let
(nk−1, nk−2, . . . , n0) be the binary representation of n. The data structure
consists of k sorted arrays A0, A1, . . . , Ak−1, and the size of Ai is 2i for 0 6
i 6 k � 1. The array Ai is full if ni = 1, and empty otherwise, so that
the total number of elements is n =

∑k−1
i=0 ni2

i. Note that each individual
array is sorted, but there is no particular relationship between elements of
two different arrays.

1. Propose a search operation for this data structure (find if an element is
in the data structure), and analyze its worst-case running time.

© 2014 by Taylor & Francis Group, LLC

110 Chapter 5. Amortized analysis

2. Propose an insert operation for this data structure (insert a new element
in the data structure), and analyze its worst-case and amortized running
times.

3. Discuss how to implement a delete operation.

4. Compare the costs achieved by this data structure with the costs of
searching and inserting in a sorted array of size n.

Exercise 5.6: Splay trees (solution p. 117)

The problem is to perform a sequence of m access operations on a set of n
elements that are totally ordered. The elements are represented as a binary
search tree: There is one element per node, and for any node x, all the elements
in the left subtree of x are smaller that x, while all the elements in the right
subtree of x are greater than x. The operation access(i) is then in O(d), where
d is the depth of node x containing element i. In order to reduce the total
access cost in a sequence of n accesses, we aim at moving frequently accessed
elements toward the root. Therefore, each time any element x is accessed, we
use the splaying heuristic. We repeat the following splaying steps until x is
the root of the tree (see Figure 5.1).

• zig: If p(x), the parent of x, is the tree root, rotate the edge joining x
with p(x) (this case is terminal).

• zig-zig: If p(x) is not the root and x and p(x) are both left or both right
children, rotate the edge joining p(x) with p(p(x)), and then rotate the
edge joining x with p(x).

• zig-zag: Otherwise, rotate first the edge joining x with p(x) and then
the edge joining x with the new p(x) (that was initially p(p(x))).

1. Apply the splaying heuristic on node a of the tree below:

i

J

h

I

g

H

f

A

e

G

d

B

c

C

b

D

a

E F

© 2014 by Taylor & Francis Group, LLC

5.2. Exercises 111

y

x

c

ba

zig

x

y

a

b c

z

y

dx

c

ba

zig-zig

x

a

y

z

b

c d

z

y

d

a

x

b c

zig-zag
y

a b

x

z

c d

FIGURE 5.1: The different splaying steps, where x is the accessed element.

2. What is the time complexity of the splaying heuristic, in terms of number
of rotations?

3. To analyze the amortized complexity of splaying, we use a potential
function defined as follows: We assume that each element i has a positive
weight w(i), whose value is arbitrary but fixed. The size s(x) of a node x
is the sum of the weights of all elements in the subtree rooted in x, and
the rank of x is r(x) = log s(x). The potential of a tree is the sum of
the ranks of all its nodes. The cost of an operation is the number of
rotations, but we still charge 1 if there is no rotation.

Let r(x) (resp. r′(x)) be the rank of x after (resp. before) the opera-
tion. Show that the amortized cost of a zig is at most 1+3(r′(x)�r(x))
and the amortized cost of a zig-zig or a zig-zag is at most 3(r′(x)�r(x)).
(Note that if a, b > 0, a+ b 6 1, then log(a) + log(b) 6 �2.)

4. Deduce that the amortized time to splay a tree with root t at a node x
is at most 3(r(t)� r(x)) + 1 = O(log(s(t)/s(x))). Note that this is true
for any positive weights.

5. Prove that the total access time is O((m + n) log n + m) (recall that n
is the number of elements in the tree, and m is the number of accesses).
Hint: Assign a weight to each element.

© 2014 by Taylor & Francis Group, LLC

112 Chapter 5. Amortized analysis

6. For any element i, q(i) is the access frequency of i, i.e., the total num-
ber of times i is accessed (within the m accesses). Show that if ev-
ery element is accessed at least once, then the total access time is

O
(
m+

∑n
i=1 q(i) log

(
m
q(i)

))
. Hint: Assign a weight to each element.

Exercise 5.7: Half perimeter of a polygon (solution p. 119)

We consider a polygon with n vertices, numbered in the clockwise order from
0 to n� 1. The edge from i to i+ 1 mod n, for 0 6 i < n, has a length ai.

1. We aim at finding the two vertices i and j that minimize the absolute
value of the difference between the two portions of perimeters that they

define, i.e., that minimize (the sums are modulo n)
∣∣∣∑j−1

l=i al �
∑i−1
l=j al

∣∣∣.
(a) Design a naive algorithm and give its complexity.

(b) Design a linear-time algorithm.

2. Find in linear time the three vertices i, j, and k that minimize the
difference between the larger third and the smaller third portions of the
perimeter that they define, i.e.,

max
(∑j−1

l=i al,
∑k−1
l=j al,

∑i−1
l=k al

)
� min

(∑j−1
l=i al,

∑k−1
l=j al,

∑i−1
l=k al

)
.

5.3 Solutions to exercises

Solution to Exercise 5.1: Binary counter

1. After 2k−1 � 1 operations, the value of the counter is 0 1 1 � � � 1. If we
perform a sequence of operations (increment, decrement), the counter
will alternate between 1 0 0 � � � 0 and 0 1 1 � � � 1, hence, having a
cost k for each operation, and for n operations, a cost in Θ(nk).

2. We introduce a new variable, maxA, that contains the index of the
highest-order 1 in the counter A. Initially, maxA = �1 because there
are only 0s in the counter. This value is updated at each operation, see
Algorithms 5.1 and 5.2, where jAj = k.

© 2014 by Taylor & Francis Group, LLC

5.3. Solutions to exercises 113

1 i 0
2 while i < jAj and A[i] = 1 do
3 A[i] 0
4 i i+ 1

5 if i < jAj then
6 A[i] 1
7 if i > maxA then maxA i
8 else maxA �1

ALGORITHM 5.1: Increment.

1 for i 0 to maxA do
2 A[i] 0

3 maxA �1

ALGORITHM 5.2: Reset.

We use the accounting method, with a cost 4 for an increment oper-
ation, and a cost 1 for a reset, assuming that it costs 1 to flip a bit and
also 1 to update maxA.

For an increment operation, similarly to the counter with increment
only, we pay 1 for the bit that is changed to 1 (line 6 of Algorithm 5.1),
and we give 1 to the bit so that it can be flipped back to 0, either
with a reset operation or with another increment operation. We give an
extra 1 to the bit, in case it is examined by a reset operation while it
was already flipped back to 0, in the for loop of Algorithm 5.2. We also
need to pay for the update of maxA, hence, having an extra cost of 1
for increment (and thus a total cost of 4). For the reset, we give a cost
of 1 to update maxA. All operations were already prepaid because we
explore only bits that have been paid for with increment operations (we
stop at bit maxA). The amortized cost for each operation is bounded
by 4, and, therefore, a sequence of n operations has a cost bounded
by O(n) in the worst case.

Solution to Exercise 5.2: Inserting and deleting

1. With this solution, the amortized cost is not constant. Once the table
has a size n with n � 1 elements, if the sequence of operations consists
of inserting two elements then deleting two elements, and so on, we
alternate between a table of size n and a table of size 2n, paying a

© 2014 by Taylor & Francis Group, LLC

114 Chapter 5. Amortized analysis

cost n for every other operation.

2. The idea is to double the size of the table if it is full (as before) and to
halve the size of the table when only a quarter of the table is full.

Accounting method: We charge 3 euros for an insertion as before
and only 2 euros for a deletion. Indeed, we use 1 to delete the element,
and we store 1 in the emptied slot that will be used to move elements
when the table size is halved. This way, all operations can be paid in
constant time.

Potential method: The potential function is now Φi = 2numi �
sizei if the table is at least half full, i.e., 2numi > sizei. Otherwise,
Φi = sizei/2 � numi. In both cases, Φi > 0. We need to compute the
amortized cost in all cases. The i-th operation may be an insertion or
a deletion, and depending on the ratio of the number of elements in the
table to the table size, the potential differs.

Let us start with the case in which the i-th operation is an insertion:
numi = numi−1 + 1.

• If numi−1 > sizei−1/2, then numi > sizei/2, and we have exactly
the same potential function as in the case without deletion. The
analysis is identical to that of Section 5.1.4, and ĉi = 3.

• Assume now that numi−1 < sizei−1/2. Then, after an insertion,
we have sizei = sizei−1 and ci = 1. If numi < sizei/2, then
ĉi = 1 + (sizei/2�numi)� (sizei−1/2�numi−1) = 0. Otherwise,
ĉi = 1 + (2numi� sizei)� (sizei−1/2�numi−1) = 3 + 3numi−1�
3
2sizei−1 < 3, since numi−1 < sizei−1/2.

Now, consider that the i-th operation is a deletion: numi = numi−1�1.

• If numi−1 > sizei−1/2, then, after a deletion, we have sizei =
sizei−1, and ci = 1. Either numi > sizei/2, and then ĉi = 1 +
(2numi� sizei)� (2numi−1� sizei−1) = �1. Otherwise, ĉi = 1 +
(sizei/2�numi)�(2numi−1�sizei−1) = 2�3numi−1+ 3

2sizei−1 6
2.

• If numi−1 < sizei−1/2, then the size of the table may remain the
same: sizei = sizei−1 and ci = 1. In this case, ĉi = 1 + (sizei/2�
numi)�(sizei−1/2�numi−1) = 2. Otherwise, the size of the table
is halved, and we have sizei−1/4 = numi−1, sizei = sizei−1/2
and ci = numi−1. Therefore, ĉi = numi−1 + (sizei/2 � numi) �
(sizei−1/2 + numi−1) = 1 + numi−1 � sizei−1/4 = 1.

In all cases, ĉi 6 3 and, therefore, the amortized cost of each operation
is bounded above by a constant.

Solution to Exercise 5.3: Stack

1. The push and pop operations are inO(1), whilemultipop is inO(min(jSj, k)).

© 2014 by Taylor & Francis Group, LLC

5.3. Solutions to exercises 115

Each object can be popped from the stack at most once for each push
of the same object. Therefore, there cannot be more calls to pop than
the number of calls to push, even if we count the calls to pop from
within the multipop function. In a sequence of n operations, there are
at most n calls to push and, hence, no more than n calls to pop, and it
takes a time in O(n). The amortized cost of each operation, therefore,
is in O(1).

2. For the accounting method, we associate a cost with each operation.
The amortized cost of push is 2, and the two other operations, pop
and multipop, have an amortized cost 0. Indeed, the cost of the pop
operations is prepaid when pushing an object at the top of the stack.
We then pay 1 to push the object, and we keep 1 to pay later the pop
of this object. For a sequence of n operations, the total amortized cost,
therefore, is in O(n).

3. We define the potential function Φi of the stack as the number of objects
in the stack after i operations. Therefore, Φi > 0 for all i. Initially,
Φ0 = 0 since the stack is empty. If operation i is a push, the amortized
cost is ĉi = ci + (Φi � Φi−1) = 1 + 1 = 2. If operation i is a pop, the
amortized cost is ĉi = ci+(Φi�Φi−1) = 1�1 = 0. Finally, if operation i
is multipop(S, k), the cost of this operation is ci = min(jSj, k), and we
have removed exactly ci objects from the stack during the multipop.
Therefore, the amortized cost is ĉi = ci + (Φi�Φi−1) = ci� ci = 0. We
have obtained the same amortized cost as with the accounting method,
and they are all in O(1).

4. To implement a queue, we use two stacks: Senter and Sexit. When an
object is added to the queue, we push it into stack Senter. To remove
an object from the queue, we pop an object from stack Sexit. If Sexit is
empty, we pop objects from Senter and push them back in Sexit.

We use the accounting method, with a cost 3 for adding an object in
the queue and a cost 1 for removing an object from the queue. Indeed,
once an object is added in the queue, it may require a cost of 3. We
pay 1 to push the object in Senter, and we associate 2 with the object so
that we can pay the transfer into Sexit (one pop and one push). When
removing an object from the queue, we need to pay only 1 for one pop
because the cost of the transfers from Senter to Sexit has already been
prepaid.

Solution to Exercise 5.4: Deleting half the elements

S is implemented with an unsorted list, so that the insertion takes a time O(1).
For the delete operation, it can be done in O(jSj) in the worst case. We find
the median of S in O(jSj), and then we go through the list and remove djSj/2e

© 2014 by Taylor & Francis Group, LLC

116 Chapter 5. Amortized analysis

elements that are greater than or equal to the median. This second step is
also done in O(jSj). Let a be a constant such that this delete operation takes
a time at most ajSj.

We use the potential analysis to find the amortized cost of each operation.
The potential function is Φi = ani, where ni is the size of the table before
operation i.

If operation i is an insertion, then ci = 1 and ni = ni−1 + 1. Therefore,
ĉi = 1 + (Φi�Φi−1) = 1 +a, which is a contant. If i is a delete, then ci 6 ani
and ni 6 ni−1/2. Therefore, ĉi 6 ani + a(ni−1/2� ni−1) 6 0. Therefore, the
amortized cost of both operations is, at most, a+ 1.

Solution to Exercise 5.5: Searching and inserting

1. The search is done by repeatedly searching in all arrays. The search
in an array of size m is done by binary search, in log(m), since the
arrays are sorted. In the worst case, all arrays are full and the search
takes Θ(log(2i)) for array Ai, for 0 6 i 6 k � 1. Therefore, we obtain a
time of:

T (n) = Θ(log(2k−1) + log(2k−2) + � � �+ log(20))

= Θ((k � 1) + (k � 2) + � � �+ 1 + 0) = Θ(k(k � 1)/2)

and, hence, a worst-case running time in Θ(log2(n)).

2. For the insertion, we create a new sorted array, A, with only the element
to be inserted. If A0 is empty, we replace A0 with A. Otherwise, we
merge A0 and A, thus obtaining an array of size 2. If A1 is empty,
we replace it with A; otherwise we merge again until we find an empty
array. The merge of two arrays of size 2i is done in the worst case in
time Θ(2� 2i) = Θ(2i+1), and it may happen that the k� 2 first arrays
are full, hence, leading to a worst-case running time in Θ(n):

T (n) = Θ(21 + 22 + � � �+ 2k−1)

= Θ(2k) = Θ(n).

To obtain the amortized cost, we compute the cost of a sequence of n
insertions, starting from an empty data structure. The analysis is similar
to the analysis for the binary counter, and we use the aggregate analysis.
Let r be the position of the right-most 0 in the binary representation of n.
For j < r, nj = 1. The cost of the (n + 1)-th insertion is

∑r−1
j=0 2j+1 =

O(2r).

Since we have r = 0 for every other operation, r = 1 for every fourth
operation, and so on, there are at most dn/2re insert operations for each
value of r, and we can bound the cost of n insert operations by:

© 2014 by Taylor & Francis Group, LLC

5.3. Solutions to exercises 117

O

dlog(n+1)e∑
r=0

(⌈ n
2r

⌉)
2r

 = O(n log(n)).

Finally, the amortized cost of an insert operation is in O(log(n)).

3. To delete an element x, we apply the following procedure:

• Find the smallest j such that Aj is full.

• Find the array Ai containing x.

• Delete x from Ai and replace it with the smallest element of Aj
(this element should be inserted in the array so that it remains
sorted).

• Now, Aj has only 2j � 1 elements, and we successfully place the
first element of Aj in A0, the next two elements in A1 (in order),
and so on, until the last 2j−1 elements in Aj−1. All these arrays
are initially empty by definition, and we fill all of them since 1 +
2 + ..+ 2j−1 = 2j � 1. The new arrays are already sorted because
we add elements in order.

4. In a sorted array of size n, the search is done by binary search in
O(log(n)), and the insertion is done in O(n). With the new structure,
the amortized cost of the insertions is down to O(log(n)), with only a
small increase in the search time (O(log2(n))).

Solution to Exercise 5.6: Splay trees

1. The solution is depicted in the figure below:

f

A

d

B

b

E

c

C D

e

F G

g

H

i

I J

h

a

2. The splaying heuristic on a node x at depth d takes a time Θ(d), i.e., a
time proportional to the time needed to access the element at node x.

© 2014 by Taylor & Francis Group, LLC

118 Chapter 5. Amortized analysis

3. The amortized cost is ĉ = c+Φ′�Φ, where c is the cost of the execution,
Φ the potential before the operation, and Φ′ the potential after the
operation. Before the operation, y = p(x) and z = p(y) (if it exists).
We consider the three different operations:

• zig: If the operation is a zig, then only one rotation is done (c = 1).
Only nodes x and y can change rank, and, furthermore, r′(x) >
r(x) and r(y) > r′(y). Finally, the amortized cost is

ĉ = 1 + r′(x) + r′(y)� r(x)� r(y)
6 1 + r′(x)� r(x)
6 1 + 3(r′(x)� r(x)).

• zig-zig: In this case, there are two rotations (c = 2), and only x, y,
and z can change rank. Furthermore, r′(x) = r(z), r′(x) > r′(y),
and r(y) > r(x). Finally,

ĉ = 2 + r′(x) + r′(y) + r′(z)� r(x)� r(y)� r(z)
= 2 + r′(y) + r′(z)� r(x)� r(y)
6 2 + r′(x) + r′(z)� 2r(x).

To prove that this last sum is at most 3(r′(x)� r(x)), we need to
have 2r′(x)� r(x)� r′(z) > 2. Because, for any element t, r(t) =
log s(t), r(x) + r′(z) � 2r′(x) = log(s(x)/s′(x)) + log(s′(z)/s′(x)).
Because the operation is a zig-zig, s(x) + s′(z) 6 s′(x). Moreover,
the sizes are all positive. Therefore, 0 6 s(x)/s′(x) + s′(z)/s′(x) 6
1. For any a 2]0, 1[and b 2 [0, 1 � a[, log(a) + log(1 � a � b) 6
log(a) + log(1 � a) 6 2 log(1/2) = �2 (proved by differentiating
or by using the concavity of the log function). Therefore, r(x) +
r′(z)�2r′(x) 6 �2, which allows us to conclude that the amortized
cost is at most 3(r′(x)� r(x)).

• zig-zag: In this case, there are two rotations (c = 2), and only
x, y, and z can change rank. Furthermore, as in the zig-zig case,
r′(x) = r(z) and r(x) 6 r(y). Finally,

ĉ = 2 + r′(x) + r′(y) + r′(z)� r(x)� r(y)� r(z)
6 2 + r′(y) + r′(z)� 2r(x).

Because the operation is a zig-zag, s′(y)+s′(z) 6 s′(x). Therefore,
following the study of the zig-zig case, we establish that r′(y) +
r′(z)�2r′(x) = log(s′(y)/s′(x))+log(r′(z)/r′(x)) 6 �2. Therefore,
ĉ 6 2(r′(x)� r(x)).

4. If there are no rotations, then the bound is immediate because t = x and
the cost is 1 in this case. If there are rotations, we total the amortized
costs at each step. First, we remark that only the last rotation can be a
zig. Therefore, all intermediate terms in the sum are cancelled. In the

© 2014 by Taylor & Francis Group, LLC

5.3. Solutions to exercises 119

worst case, the last operation is a zig, and, therefore, the total amortized
cost is at most 3(r′(x) � r(x)) + 1, where r(x) is the initial rank of x,
and r′(x) is the final rank of x, i.e., it is equal to r(t).

5. We assign a weight of 1/n to each element. Therefore, W =
∑n
i=1 w(i) =

1, and the size of any node x is such that 1/n 6 s(x) 6 1. Thus, for any
element, the amortized cost of access is at most 3 log(s′(x)/s(x)) + 1 6
3 log n + 1, that is, 3m log n + m for the m accesses. Moreover, the
size of a node varies between 1/n and 1, and its rank, therefore, varies
between � log(n) and 0. The decrease in potential over the sequence
of m accesses is, therefore, at most O(n log(n)). Therefore, the total
access cost is at most O((m+n) log n+m) (the amortized cost plus the
potential difference).

6. The reasoning is similar to the previous question. This time, we as-
sign a weight q(i)/m to element i. Once again, W = 1. The amor-
tized cost to access element i is now O(log(m/q(i))), and it is ac-
cessed q(i) times. The amortized cost for the m accesses is, therefore,
O(m+

∑n
i=1 q(i) log(m/q(i))).

Moreover, the decrease in potential over the sequence of m accesses is
at most

∑n
i=1 log(m/q(i)) because the rank of each element may only de-

crease by log(m/q(i)). Because q(i) > 1 for all i (we assume that each el-
ement is accessed at least once), this is also in O(

∑n
i=1 q(i) log(m/q(i))),

hence the result.

Solution to Exercise 5.7: Half perimeter of a polygon

1. (a) The obvious naive solution is to build all pairs (i, j) of endpoints
and, for each pair, to compute the difference between the two por-
tions of perimeters. This is what Algorithm 5.3 does.

Algorithm 5.4 presents a slightly refined exhaustive search that
runs in O(n2). First, Algorithm 5.4 computes the polygon perime-
ter (steps 1 through 3). Then, for any possible starting point i
(loop at step 5), the algorithm identifies in linear time the first ver-
tex j whose distance from i is at least equal to half the perimeter
(steps 6 through 10). Then, the only two candidates to partition
the polygon into halves are the vertices j (steps 11 through 13) and
j � 1 (steps 14 through 18).

(b) Algorithm 5.5 is a linear-time algorithm to solve the half-perimeter
problem. The quadratic cost of Algorithm 5.4 comes from the
linear-time computation for each vertex i of the first vertex j whose
distance from i is at least equal to half the perimeter. In Algo-
rithm 5.5, to compute the vertex “j” corresponding to vertex i+ 1,
we do not restart from scratch as in Algorithm 5.4. On the con-
trary, we restart from the memorized vertex “j” for vertex i. As the

© 2014 by Taylor & Francis Group, LLC

120 Chapter 5. Amortized analysis

1 diff min +1
2 for i = 0 to n� 1 do
3 for j = i+ 1 to i� 1 (increments are modulo n) do

4 diff

∣∣∣∣∣∣
(
j−1∑
l=i

al

)
�

i−1∑
l=j

al

∣∣∣∣∣∣
5 if diff < diff min then
6 diff min diff
7 imin i
8 jmin j

9 return (imin, jmin, diff min)

ALGORITHM 5.3: Naive algorithm in O(n3) to divide the perimeter of a
polygon into halves.

starting vertex i visits all the vertices in the polygon one by one,
it corresponding vertex j is never more than one perimeter away
and, thus, the vertex j visits at most two times each vertex of the
perimeter. Therefore, the computation of all the“j”vertices is done
in linear time. In the worst case, however, the computation of one
vertex “j” can be Ω(n). Only a global analysis, amortized over all
vertices (aggregate analysis), leads to the proof that Algorithm 5.5
is indeed a linear-time algorithm.

Then, the only differences between Algorithms 5.5 and 5.4 are
due to Algorithm 5.5 taking care not to overwrite data relative to
vertex j (initializations are done outside of the loop and temporary
variables are used at step 15) and to update the distance from the
starting vertex to the candidate j vertex at each iteration of the
loop (step 19).

2. Among the three sums
∑j−1
l=i al,

∑k−1
l=j al, and

∑i−1
l=k al defined by the

three indices i, j, and k, at least one is greater than or equal to P/3,
and at least one is smaller than or equal to P/3, where P denotes the
perimeter. In other words, either two of the sums are greater than or
equal to P/3, or two of them are smaller than or equal to P/3. To solve
the problem in linear time, we design a linear-time algorithm for each
of these two cases and take the best solution.

We first consider the case where two of the sums are greater than or
equal to P/3. Without loss of generality, we can assume that these are
the first and the second sums. For each possible value of i, j is then
the first vertex after i such that the first sum is greater than or equal to
P/3, and k is then the first vertex after j such that the second sum is

© 2014 by Taylor & Francis Group, LLC

5.3. Solutions to exercises 121

1 P 0
2 for i = 0 to n� 1 do
3 P P + ai { computation of the perimeter }

4 diff min P
5 for i = 0 to n� 1 do
6 distance 0
7 j i
8 while 2� distance < P do
9 distance distance + aj

10 j (j + 1) mod n

11 diff j2� distance � P j
12 if diff < diff min then
13 imin i; jmin j; diff min diff

14 pred (j � 1) mod n
15 distance distance � apred
16 diff j2� distance � P j
17 if diff < diff min then
18 imin i; jmin pred ; diff min diff

19 return (imin, jmin, diff min)

ALGORITHM 5.4: Algorithm in O(n2) to divide the perimeter of a polygon
into halves.

greater than or equal to P/3. As the first two sums must be greater than
or equal to P/3, when the first vertex moves forward on the perimeter
from i to i+ 1, both vertices j and k either move forward or remain at
the same position. Therefore, we can use the same amortized analysis
argument as in the previous question to prove that the algorithm built
this way runs in linear time.

The case where two sums are smaller than or equal to P/3 is similar.
Without loss of generality, we assume that these are the first and the
second sums. For each possible value of i, j is then the last vertex after
i such that the first sum is smaller than or equal to P/3, and k is then
the last vertex after j such that the second sum is smaller than or equal
to P/3.

© 2014 by Taylor & Francis Group, LLC

122 Chapter 5. Amortized analysis

1 P 0
2 for i = 0 to n� 1 do
3 P P + ai { computation of the perimeter }

4 diff min P
5 j 0
6 distance 0
7 for i = 0 to n� 1 do
8 while 2� distance < P do
9 distance distance + aj

10 j (j + 1) mod n

11 diff j2� distance � P j
12 if diff < diff min then
13 imin i; jmin j; diff min diff

14 pred (j � 1) mod n
15 pred distance distance � apred
16 diff j2� pred distance � P j
17 if diff < diff min then
18 imin i, jmin pred , diff min diff

19 distance distance � ai
20 return (imin, jmin, diff min)

ALGORITHM 5.5: Linear-time algorithm to divide the perimeter of a poly-
gon in two halves.

5.4 Bibliographical notes

Section 5.1 is inspired from the book by Cormen, Leiserson, Rivest, and
Stein [27]. Several exercises also come from this book: Exercise 5.1 (binary
counter), Exercise 5.2 (inserting and deleting), Exercise 5.3 (stack), Exer-
cise 5.4 (deleting half the elements), and Exercise 5.5 (searching and insert-
ing). Exercise 5.6 (splay trees) comes from [99]. Finally, Exercise 5.7 (half
perimeter of a polygon) is an extension of an exercise from the book by Dijk-
stra [31].

© 2014 by Taylor & Francis Group, LLC

Part II

NP-completeness and
beyond

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 6

NP-completeness

In this chapter, we introduce the complexity classes that are of paramount
importance for algorithm designers: P, NP, and NPC. We take a strictly prac-
tical approach and determinedly skip the detour through Turing machines. In
other words, we limit ourselves to NP-completeness, explaining its importance
and detailing how to prove that a problem is NP-complete.

After introducing our approach in Section 6.1, we define the complexity
classes P and NP in Section 6.2. NP-complete problems are introduced in
Section 6.3, along with the practical reasoning to prove that a problem is
NP-complete. Several examples are provided in Section 6.4. We discuss sub-
tleties in problem definitions in Section 6.5 and strong NP-completeness in
Section 6.6. Finally, we make our conclusions in Section 6.7.

6.1 A practical approach to complexity theory

This chapter introduces the key complexity classes that algorithm designers
are confronted with: P, which stands for Polynomial, and NP, which stands
for Nondeterministic Polynomial. In fact, we depart from the original defi-
nition of the class NP and use the (equivalent) characterization Polynomial
with Certificate. Within the NP class, we focus on the subclass NPC of NP-
complete problems.

When writing this chapter, we faced a cruel dilemma. Either we use a formal
approach, which requires an introduction to Turing machines, explain their
characteristics, and classify the languages that they can recognize, or we use
a practical approach that completely skips the detour through the theoretical
computer science framework and defines complexity classes out of nowhere
(almost!). We firmly believe that there is no trade-off in between, and that
a comprehensive exposure does require Turing machines. However, given the
main objectives of this book, we chose the latter approach. The price to pay
is that the reader will have to take for granted a key result, namely Cook’s
theorem [25], which we will state without proof. Cook’s theorem provides the
first NP-complete problem, and we will have to trust him on this. However,
the main advantage is that we can concentrate on the art of the algorithm

125

© 2014 by Taylor & Francis Group, LLC

126 Chapter 6. NP-completeness

designer, namely polynomial reduction.

First, why Turing machines? To assess the complexity of a problem, we need
to define its size and the number of time steps required to solve it. But what
is appropriate within a time step? A formal answer relies on Turing machines.
The size of a problem is the number of consecutive positions used to store its
data on the (infinite) ribbon of the machine. The number of time steps is the
number of moves before the Turing machine terminates the execution of its
program, given the data initially stored on its ribbon. Instead, in the practical
approach, we simply define the size of a problem as the number of memory
locations, or bits, that are needed to store its data, and we define a time
step as the maximum time needed to execute an elementary operation. Here,
an elementary operation is defined as any reasonable computation. And, the
trouble begins. Fetching the values of two memory locations, adding them
and storing them back into some memory location, is that an elementary
operation? Yes—well, provided that the access to the memory locations takes
constant time, which may require that the total memory is bounded, or at
least that two different memory locations used to solve the problem are not
too far apart in storage. We are not far from moving the head of the Turing
machine from one position to another! Similarly, adding two bits or two
bytes or two double-precision floating point numbers (64 bits) is indeed an
elementary operation, but adding two integers of unbounded length is not.
In fact, an elementary operation is anything that can be done in polynomial
time by a Turing machine, but this statement is helpful mostly to those who
are familiar with Turing machines. Here is an example of an operation that
is not reasonable. If we have two prime numbers p and q of r bits, we can
compute their product n = p� q in O(r2), but given n, we cannot find p and
q in time polynomial in r.

We refer the reader interested in the formal approach to some excellent
books. The big classic is the book by Garey and Johnson [38] with a com-
prehensive treatment of NP-completeness. A very intuitive proof of Cook’s
theorem is given by Wilf [108]. More on complexity theory is provided by
Papadimitriou [82].

6.2 Problem classes

In this section, we first emphasize the importance of polynomials in the theory.
Then, we discuss how to define the problem size and how to encode data. This
is illustrated through classical examples; integers are coded in a logarithmic
size, but we should be careful if objects must be enumerated (set of nodes in
a graph, list of tasks, etc).

© 2014 by Taylor & Francis Group, LLC

6.2. Problem classes 127

6.2.1 Problems in P

The following remark, admittedly simple, is fundamental: The composition
of two polynomials is a polynomial. Thanks to this observation, key values
(time, size) can be defined up to a polynomial factor. From the point of
view of complexity classes, values like n, n3, or n27 + 17n5 + 42 are totally
equivalent; all these values are polynomial in n. Hence, there is no difference if
an elementary operation of the algorithm would cost n3 or n27+17n5+42 time
steps of a Turing machine; as long as there is a polynomial number of such
operations, the total number of time steps for the Turing machine remains
polynomial.

The theory deals with decision problems, with a yes/no answer, rather than
with optimization problems (this is related to languages that are accepted by
Turing machines). A decision problem is in the complexity class P if it can
be solved in polynomial time. Owing to the previous remark, we do not need
to specify the degree of the polynomial, which is not relevant as far as theory
is concerned (we come back to this last point below). Hence, the key for
understanding this class P is the notion of “polynomial time.” As mentioned
before, one must decide what can be done within one unit of time. One
usually assumes that one can add, multiply, or access memory in constant
time, but the multiplication of large numbers (respectively, memory accesses)
can depend on the size of the numbers (respectively, of the memory).

From an algorithmic point of view, we usually suppose that we can add,
multiply, access memory within one unit of time, as long as numbers and
memory size are bounded, which seems reasonable. These operations are
then of polynomial time, and thus this model is polynomial with respect to
the theoretical one with the Turing machine, as long as we are careful when
dealing with nonbounded integers.

Also, the resolution time must be a polynomial of the data size, so one
needs to define this “data size” carefully. This data size can strongly depend
on the way an instance is encoded. Intuitively, integers can be coded in binary,
therefore requiring a logarithmic size rather than a linear one (when encoded
in unary). The encoding with any other basis b 6= 2 has the same size as the
binary encoding, up to a constant factor (log2(n)/ logb(n) = 1/ logb(2)). How-
ever, some integers describing a problem instance should not be encoded in
binary when they code objects to be enumerated. Otherwise, some “elemen-
tary” operations would have a cost exponential in the data size. We illustrate
this by detailing two problem examples.

Example: 2-partition

DEFINITION 6.1 (2-PARTITION). Given n positive integers a1, . . . , an,
is there a subset I of f1, . . . , ng such that

∑
i∈I ai =

∑
i/∈I ai?

The input data of a problem instance is a set of n integers. In theory,
these n integers could be encoded either in unary or in binary. However, by

© 2014 by Taylor & Francis Group, LLC

128 Chapter 6. NP-completeness

convention, in complexity theory, any integer appearing in the coding of an
instance must be encoded in binary. The only exception is for data whose
encoding in unary would not change the overall data size of the instance
(i.e., if the new data size remains polynomial in the original data size). For
instance, for 2-PARTITION, the choice of encoding for the value n itself does
not matter because encoding n integers requires a data size of at least one
per integer and thus of at least n. Therefore, for the sake of simplicity, one
usually encodes n in unary. Then, with the mandatory binary encoding of
the n integers, the data size is

∑
16i6n log(ai). With a unary encoding of the

integers, the data size of an instance would have been
∑

16i6n ai.

The choice of the encoding is vital for such a problem. Indeed, one can find
an algorithm whose time is polynomial in n�

∑
16i6n ai. We design a simple

dynamic-programming algorithm; we solve the problems c(i, T), where c(i, T)
equals true if there is a subset of fa1, . . . , aig of sum T (and false otherwise),
for 1 6 i 6 n and 0 6 T 6 S =

∑
16i6n ai. The solution to the original

problem is c(n, S2). The recurrence relation is c(i, T) = c(i � 1, T � ai) _
c(i � 1, T). This algorithm is in O(nS). Therefore, this algorithm runs in
a time that would be polynomial in the size of the data if we had allowed
the integers to be coded in unary. However, the algorithm running time is
exponential in the data size when integers are coded in binary, as mandated.
Such an algorithm is said to be pseudopolynomial.

No one knows an algorithm that is polynomial in the data size (i.e., in
O(n log(S))), so the question whether the 2-PARTITION problem is or isn’t
in P is left open.

Example: Bipartite graphs

DEFINITION 6.2 (BIPARTITE). Given a graph G = (V,E), is G a bipar-
tite graph?

This is a decision problem; the answer must be yes or no. The input data
of a problem instance is a graph (V,E), where V is the set of vertices and
E the set of edges. The size of the data depends on how the graph is stored
(or encoded). The graph consists of jV j = n vertices. One usually codes n
in unary rather than in binary. Independent vertices are vertices that are not
endpoints of any edge. Independent vertices play a trivial role with respect to
the problem, and they can therefore be safely discounted. Then, each vertex
is the endpoint of at least one edge, jEj > n/2, and encoding n in binary
does not change the data size. Therefore, for the sake of simplicity, in any
graph problem the number of vertices is always encoded in unary for the same
reason.

Then, the identifier of a vertex can be encoded in binary, thus in log(n)
for one vertex leading to a total of n log(n), which is still polynomial in n.
The number of edges is also polynomial in n because there are at most n2

edges. Then, altogether, the total size of the problem data is a polynomial

© 2014 by Taylor & Francis Group, LLC

6.2. Problem classes 129

in n, where n is the number of vertices of the graph. When designing graph
algorithms, one often denotes the size of data of a graph as jV j+ jEj (strictly
speaking, it should be jV j+ jEj log(jV j), but each expression is polynomial in
the other one). This allows us to refine the cost study of the algorithms, in
particular when jEj � jV j2. However, jV j + jEj is still polynomial in n, so
this refinement does not alter the problem classification.

Now, given a graph, in order to answer the question (yes or no), we need
to perform a number of operations that is polynomial in n (greedy graph
coloring). This problem is, therefore, in the complexity class P because it can
be solved in a time that is polynomial in the data size.

6.2.2 Problems in NP

To define the complexity class NP, we need to define the certificate of a prob-
lem, which is (an encoding of) a solution to the problem.

Problem solution: Certificate

Back to the 2-PARTITION problem, if we are given a subset I � f1, . . . , ng,
we can check in polynomial time (even in linear time) whether

∑
i∈I ai =∑

i/∈I ai, and, therefore, we can answer whether the problem has a positive an-
swer in polynomial time. Moreover, the size of the certificate I is O(n log(n)),
which is polynomial in the problem size (the certificate contains O(n) identi-
fiers, each coded on O(log(n)) bits).

Another way to provide a solution to 2-PARTITION would be to give the
certificate faigi∈I , but if the ais are coded in unary in the certificate, it is of
exponential size. However, if the ais are coded in binary, then the certificate
has polynomial size and it is perfectly acceptable; a certificate is valid if it is
polynomial in the problem size.

For the bipartite graph problem, the certificate would be the set of indices
of vertices of one of the two subsets of the graph, whose size is polynomial in
the problem size. Given this set, it is then easy to check that it is a correct
solution by looking at each edge of the graph, which takes a polynomial time.

(See also Section 6.4.4 on scheduling problems for an illustration of the care
that must be taken to design a certificate of polynomial size.)

Definition of NP

We are now ready to define the problem class NP. This is the class of decision
problems for which we can verify a certificate in a time that is polynomial
in the problem size. By verify, we mean check that the certificate is indeed a
solution, i.e., that the answer to the problem is yes. Both previous examples
are, therefore, in NP because, if we are given a certificate of polynomial size,
we can check in polynomial time whether it is a solution to the problem.

We make a short digression to explain that NP stands for Nondeterminis-
tic Polynomial, for reference to nondeterministic Turing machines that were

© 2014 by Taylor & Francis Group, LLC

130 Chapter 6. NP-completeness

originally used to define the class. As already mentioned, we define NP as
Polynomial with Certificate in this book, and we ignore equivalent character-
izations of the NP class, either older (nondeterministic Turing machines) or
newer (the famous PCP theorem). (See [4] for more information.)

It is time to recapitulate; we have defined two classes of decision problems:
P: Given an instance I of the problem of size jIj when encoded in binary,

there is an algorithm whose running time is polynomial in jIj and which
reports whether the instance has a solution or not;

NP: Given an instance I of the problem of size jIj when encoded in binary,
and a certificate of size polynomial in jIj, there is an algorithm whose
running time is polynomial in jIj and which reports whether the certifi-
cate is indeed a solution to the instance.

We observe that P � NP. If we can find a solution in polynomial time, then
we can verify the solution in polynomial time, with an empty certificate. Most
researchers believe that the inclusion is strict, i.e., P 6= NP, because it should
be easier to check whether a certificate is a solution to the problem than to
find a solution to that problem. As you may have heard before, this question
is open at the time of this writing.

We have already seen that BIPARTITE is in P; therefore, it is in NP. Also,
2-PARTITION is in NP, but we do not know whether it is in P or not. Below
are a few more examples to illustrate the class NP.

Examples: Problems in NP

DEFINITION 6.3 (COLOR). Given a graph G = (V,E) and an integer k
(1 6 k 6 jV j), can we color G with at most k colors?

This is a graph coloring problem; two vertices connected with an edge can-
not be assigned the same color. The size of the data is a polynomial in
jV j+ log(k). Indeed, we need to enumerate all vertices similarly to the prob-
lem bipartite, hence the term jV j, while the integer k is encoded in binary.
Since k 6 jV j (one never needs more colors than vertices), the size of the data
is a polynomial in jV j. A certificate can be the list of the vertices together
with their color, whose size is linear in the size of the problem instance. The
verification would amount to checking that no two adjacent vertices are as-
signed the same color, and that no more than k colors are used in total, which
can be done in linear time as well.

DEFINITION 6.4 (HC – Hamiltonian Cycle). Given a graph G = (V,E),
is there a cycle that goes through each vertex once and only once?

Similarly to other graph problems, the size of the data is a polynomial
in jV j. A certificate can be the ordered list of the vertices that constitute the
cycle (with linear size again). As before, the verification is easy: Check that
the cycle is built with existing edges in the graph, and that each vertex is
visited once and only once.

© 2014 by Taylor & Francis Group, LLC

6.2. Problem classes 131

DEFINITION 6.5 (TSP – Traveling Salesman Problem). Given a complete
graph G = (V,E), a cost function w : E ! N and an integer k, is there a
cycle C going through each vertex once and only once, with

∑
e∈C w(e) 6 k?

This classical traveling salesman problem is a weighted version of the HC
problem. There are several variants of the problem with various constraints
on the cost function w: The weights can be arbitrary, satisfy the triangular
inequality, or correspond to the Euclidean distance. The variants do not
change the problem complexity. The size of the data is a polynomial in jV j+∑
e∈E log(w(e)) + log(k). We need to enumerate vertices, and other integers

are coded in binary. A certificate can be the ordered list of the vertices that
constitute the cycle, and the verification is similar to that for the HC problem.

No one knows how to find a solution to these three problems in polynomial
time.

Problems not in NP?

One rarely encounters a problem whose membership status, with respect to
NP, is unknown. It is even rarer to come across a problem that is known
not to belong to NP. These problems are usually not very interesting from an
algorithmic point of view. They are, however, fundamental for the theory of
complexity. We provide a few examples below.

Negation of TSP: Given a problem instance of TSP, is it true that there
is no cycle in the graph of length jV j/2?

This problem is similar to TSP, but the question is asked in the reverse way.
It is difficult to think of a certificate of polynomial size that would allow us
to check in polynomial time that the answer to the question is yes. Whether
this problem belongs to NP is an open question.

Square: Given n squares whose areas sum up to 1, can we partition the
unit square into these n squares?

We are interested in this problem because it plays a prominent role in the
case study of Chapter 14. Its complexity depends on the exact definition that
is used. First, we give the variant of the problem that is used in Chapter 14;
we are given n squares of size ai, with

∑
16i6n a

2
i = 1. The ai are rational

numbers, ai = bi/ci, and the problem size is
∑

16i6n log(bi)+
∑

16i6n log(ci).
A certificate can be the position of each square, for 1 6 i 6 n, for instance
the coordinates of its top left corner. This certificate is of polynomial size.
We can then check in polynomial time whether it is a solution of the problem
or not (however, writing such a verification procedure requires some care).
Hence, this variant is in NP.

Another variant consists of having as input mi squares of size ai, for 1 6
i 6 p, with n =

∑
16i6pmi and

∑
16i6pmia

2
i = 1. The size of the data

is then n +
∑

16i6p log(mi) +
∑

16i6p log(bi) +
∑

16i6p log(ci). We do not
need to enumerate all squares but only the p basic squares, while the mis

© 2014 by Taylor & Francis Group, LLC

132 Chapter 6. NP-completeness

can be coded in binary. Then, in a certificate of polynomial size, we cannot
enumerate all the n squares to give their coordinates. There might exist a
compact analytical formula that would characterize solutions (say, the j-th
square of size ai is placed at coordinates f(i, j)), but this is far from being
obvious. We do not know whether this latter variant is in NP or not.

It is much harder to identify a problem that is known not to be in NP, at
least without making any assumption like P 6= NP. A (complicated) example
is the problem of deciding whether two regular expressions represent differ-
ent languages, where the expressions are limited to four operators: union,
concatenation, the Kleene star (zero or more copies of an expression), and
squaring (two copies of an expression). Any algorithm for this problem re-
quires exponential space, hence, exponential verification time [77].

Another problem that is not in NP is the program termination problem, or
halting problem (decide whether a program will terminate on a given input).
However, this example is a little excessive because no algorithm can exist to
solve it, regardless of its complexity [82].

6.3 NP-complete problems and reduction theory

As explained in the previous section, we do not know whether the inclusion
P � NP is strict or not. However, we are able to compare the complexity of
problems in NP; Cook’s idea was to prove that some problems of the NP class
are at least as difficult as all other problems of the same class. These problems
are called NP-complete and form the subclass NPC of the class NP. They are
the most difficult problems of NP. If we are able to solve one NP-complete
problem in polynomial time, then we will be able to solve all problems of NP
in polynomial time, and we will have P = NP. The main objective of this
section is to explain this line of reasoning in full detail and to explore some
consequences.

We detail the theory of reduction, which aims at proving that a problem is
more difficult than another one. However, if we want to prove that a problem
is more difficult than any other one, we need to identify the first NP-complete
problem, as explained in Section 6.3.2. Note that a set of NP-complete prob-
lems with the corresponding reductions is presented in Section 6.4.

6.3.1 Polynomial reduction

We start by explaining the mechanism of polynomial reduction, i.e., how to
prove that a problem is more difficult than another. Consider two decision
problems P1 and P2. How can we prove that P1 is more difficult than P2? We

say that P2 is polynomially reducible to P1 and write P2
pr�! P1 if, whenever

© 2014 by Taylor & Francis Group, LLC

6.3. NP-complete problems and reduction theory 133

we are given an instance I2 of problem P2, we can convert it, with only a
polynomial-time algorithm, into an instance I1 of P1, in such a way that I2

has the answer “Yes” if and only if I1 has the answer “Yes.”
Now, if P2 is polynomially reducible to P1, then P1 must be more difficult

than P2 (or more precisely, at least as difficult as P2). Indeed, if there exists a
polynomial algorithm to solve P1, then by applying the polynomial reduction,
and because the composition of two polynomials is a polynomial, there exists
a polynomial algorithm to solve P2. Given an instance I2 of P2, we can
indeed convert it into instance I1 of P1, and since there is an equivalence
between solutions of I1 and I2, the polynomial algorithm for P1 executed on
instance I1 returns the solution for instance I2. Take the contrapositive of
this statement. If there is no polynomial algorithm to solve P2, then there is
none to solve P1 either, so P1 is more difficult.

We point out that polynomial reduction is a transitive operation: If P3
pr�!

P2 and P2
pr�! P1, then P3

pr�! P1. Again, this is because the composition of
two polynomials is a polynomial, nothing more.

Note also that it is mandatory to have the equivalence of solutions, i.e., if
I1 has a solution then I2 has one, and if I2 has a solution then I1 has one.

Otherwise, the polynomial reduction P2
pr�! P1 would not imply that P1 is

more difficult than P2.

6.3.2 Cook’s theorem

The fundamental result of the P versus NP theory is Cook’s theorem [25],
which shows that the satisfiability problem SAT is the most difficult problem
in NP. This means that all other problems in NP are polynomially reducible
to SAT. We introduce SAT and give a brief intuitive sketch of Cook’s proof.

DEFINITION 6.6 (SAT). Let F be a Boolean formula with n variables
x1, . . . , xn and p clauses C1, . . . , Cp: F = C1^C2^� � �^Cp, with, for 1 6 i 6 p,
Ci = x∗i1 _ x

∗
i2
_ � � � _ x∗if(i) , 1 6 ik 6 n for 1 6 k 6 f(i), and x∗ = x or x.

Does there exist an instantiation of the n variables such that F is true (i.e.,
Ci is true for 1 6 i 6 p)?

Clearly, SAT is in NPC, and a certificate can simply be the list of the in-
stantiation of each variable (whether a given xi is instantiated to true or false).
However, it seems difficult to solve SAT without a certificate; because some
clauses have xi and other xi, we may have to try all 2n possible instantiations
to find one that satisfies the formula. In other words, SAT seems to be a hard
problem indeed.

Cook’s theorem states that all problems in NP are polynomially reducible
to SAT. The main idea of the proof is the following: Consider any problem P
in NP, and take an arbitrary instance I, together with its certificate C. The
proof goes by simulating the execution of the Turing machine that accepts the
couple (I, C) as input and outputs “Yes” after a polynomial number of steps.

© 2014 by Taylor & Francis Group, LLC

134 Chapter 6. NP-completeness

Because Turing machines are simple, their behavior can be characterized by
clauses linking a set of variables. We can define xt,j,s as a variable that is true
if after t steps of computation, symbol s is in position j of the ribbon, and we
can simulate the operation of the machine using these variables. There are
many such variables, but only a polynomial number in jIj, and a polynomial
number of clauses as well. A detailed, but easy-to-follow, proof is given by
Wilf [108].

6.3.3 Growing the class NPC of NP-complete problems

Now that we have the first NP-complete problem handy, how can we find
more? To prove that a problem, P1, is in NPC, we merely have to prove
that SAT is polynomially reducible to this problem. Indeed, by composition,
all problems in NP are reducible to SAT, hence, to P1. The reduction takes
several steps:

1. Prove that P1 2 NP : We must be able to build a certificate of poly-
nomial size, and then, for any instance I1 of problem P1, we must be
able to check in polynomial time whether the certificate is a solution.
Usually, this first step is easy, but it should not be forgotten.

2. Prove the completeness of P1: We transform an arbitrary instance I of
SAT into an instance I1 of P1 in polynomial time, and such that:

(a) the size of I1 is polynomial in the size of I;

(b) I1 has a solution , I has a solution.

Let us come back to the construction of instance I1. The construction
should be done in polynomial time, but this is usually implicit because the
size of I1 should be polynomial in the size of I, and because we perform only
“reasonable” operations.

Assume that we have polynomially reduced SAT to P1. We now have two
problems in NPC, namely, P1 and SAT. If we want to extend the class to a
third problem, P2 2 NP , should we reduce SAT or P1 to P2? Of course, the
answer is that either reduction works. Indeed, we have so far:

• P1
pr�! SAT and P2

pr�! SAT (both by Cook’s theorem).

• SAT
pr�! P1 (our previous reduction).

We can prove that SAT
pr�! P2 either directly or via the reduction P1

pr�! P2

because SAT
pr�! P1 and because, as we have already stated, polynomial

reduction is a transitive operation.
In other words, to show that some problem P2 in NP is in NPC, we can pick

any NP-complete problem P1 in NPC and show that P1
pr�! P2. This will

show that P2 is in NPC, and P2 will itself become a candidate NP-complete
problem to pick up for later reductions.

© 2014 by Taylor & Francis Group, LLC

6.3. NP-complete problems and reduction theory 135

A decision problem is said to be NP-hard when it can be polynomially
reduced from an NP-complete problem, but it is not known whether it belongs
to NP.

6.3.4 Optimization problems versus decision problems

We have been focusing so far on decision problems, but, in many practical
situations, we have to solve an optimization problem in which we want to
maximize or minimize a given criterion. Optimization problems (also called
search problems) are more complex than decision problems, but one can al-
ways restrict an optimization problem so that it becomes a decision problem.

For instance, the graph coloring problem is usually an optimization problem:
What is the minimum number of colors required to color the graph? The
restriction to the decision problem is the COLOR problem of Definition 6.3:
Can we color the graph with at most k colors? If we can solve the optimization
problem, we have immediately the solution to the decision problem, for any
value of k. In this particular case, we also can go the other way round. If
we are able to solve the decision problem, then we can find the answer to
the optimization problem by performing a binary search on k (1 6 k 6 jV j)
and computing the answer of the decision problem for each value of k. The
binary search adds a factor log(jV j) to the algorithm complexity, so that if
we had a polynomial algorithm, it remains polynomial. The two problems
(optimization and decision) have the same complexity. In most cases, the
optimization problem can be solved using a binary search as described above.
However, this result is not always true; it can be difficult to find the answer
to the optimization problem, even though we can solve the decision problem.
In some extreme situations, there may be no solution to the optimization
problem. For instance, there is no solution to the problem “Find the smallest
rational number x such that x2 > 2” because

p
2 is irrational, while it is easy

to solve the decision problem in polynomial time: “Given a rational number x,
do we have x2 > 2?” (simply compute a square and compare it to 2).

Transforming a decision problem into an optimization problem may not
be natural or even possible. However, we can always define the associated
decision problem of an optimization problem: If the optimization problem
aims at minimizing a value x with some constraints, the decision problem
adds a value x0 as an input to the problem, and the question is whether there
is a solution achieving a value x 6 x0.

A typical example is based on 2-PARTITION. Consider the scheduling prob-
lem with two processors, where we want to schedule n tasks of length ai. Ide-
ally, we want to 2-partition the tasks so that the execution finishes as soon as
possible, but if this is not possible, we minimize the difference of finish times,
which amounts to minimizing the global finish time. Formally, the objective
is to find a subset I that minimizes x = j

∑
i∈I ai �

∑
i/∈I aij. The associated

decision problem with target value x0 = 0 is exactly 2-PARTITION, that will
be shown to be NP-complete (Exercise 7.20, p. 155). By misuse of language,

© 2014 by Taylor & Francis Group, LLC

136 Chapter 6. NP-completeness

we say that an optimization problem is NP-complete if the associated deci-
sion problem for some well-chosen target value is NP-complete. Hence, the
scheduling problem with two processors as defined above is NP-complete.

6.4 Examples of NP-complete problems and reductions

At this point, we know that SAT is NP-complete. As already discussed,
we proceed by reduction to increase the list of NP-complete problems. In
this section, we show that 3-SAT, CLIQUE, and VERTEX-COVER are in
NPC. We also give references for the NP-completeness of 2-PARTITION, HC
(Hamiltonian Cycle), and then show that TSP (Traveling Salesman Problem)
is NP-complete.

6.4.1 3-SAT

DEFINITION 6.7 (3-SAT). Let F be a Boolean formula with n variables
x1, . . . , xn and p clauses C1, . . . , Cp: F = C1^C2^� � �^Cp, with, for 1 6 i 6 p,
Ci = x∗i1 _ x

∗
i2
_ x∗i3 , 1 6 ik 6 n for 1 6 k 6 3, and x∗ = x or x. Does there

exist an instantiation of the variables such that F is true (i.e., Ci is true for
1 6 i 6 p)?

This problem is the restriction of SAT to the case where each clause consists
of three variables, i.e., following the notations of Section 6.3.2, f(i) = 3 for
1 6 i 6 p. In fact, 3-SAT is so close to SAT that one might wonder why
consider 3-SAT in addition to, or replacement of, SAT. The reason is that it is
much easier to manipulate clauses with exactly three variables. Furthermore,
proving the NP-completeness of 3-SAT is also a good exercise for our first
reduction.

THEOREM 6.1. 3-SAT is NP-complete.

Proof. This proof, as well as the next ones, follows the reduction method to
prove that a problem is NP-complete.

First, we prove that 3-SAT is in NP. We can simply claim that it is in NP
because it is a restriction of SAT, which itself is in NP. It also is easy to prove
it directly. We consider an instance I of 3-SAT, which is of size O(n + p).
A certificate is a set of truth values, one for each variable. Therefore, it is
of size O(n), which is polynomial in the size of the instance. It is easy to
check whether the certificate is a solution, and this takes a time O(n + p).
Altogether, 3-SAT is in NP.

To prove the completeness, we reduce an instance of SAT. So far, it is the
only problem that we know to be NP-complete, thanks to Cook’s theorem, so
we have no choice.

© 2014 by Taylor & Francis Group, LLC

6.4. Examples of NP-complete problems and reductions 137

Let I1 be an instance of SAT. First, we need to build an instance I2 of 3-
SAT that will have a solution if and only if I1 has one. I1 consists of p clauses
C1, . . . , Cp, of lengths f(1), . . . , f(p), and each clause is made of some of the
n variables x1, . . . , xn.

Instance I2 initially consists of the n variables x1, . . . , xn. Then, we add
to I2 variables and clauses corresponding to each clause Ci of I1. We build
a set of clauses made of exactly three variables, and the goal is to have the
equivalence between Ci and the constructed clauses. We consider various
cases:

• If Ci has a single variable x, we add to instance I2 two new variables ai
and bi and four clauses: x_ai _ bi, x_ai _ bi, x_ai _ bi, and x_ai _ bi.

• If Ci has two variables x1_x2, we add to instance I2 one new variable ci
and two clauses: x1 _ x2 _ ci and x1 _ x2 _ ci.

• If Ci has three variables, we add it to I2.
• If Ci has k variables, with k > 3, Ci = x1 _ x2 _ � � � _ xk, then we

add k � 3 new variables zi1, z
i
2, . . . , z

i
k−3 and k � 2 clauses: x1 _ x2 _ zi1,

x3 _ zi1 _ zi2, . . ., xk−2 _ zik−4 _ zik−3, and xk−1 _ xk _ zik−3.

Note that all clauses that are added to I2 are exactly made of three vari-
ables, and that the construction is done in polynomial time. Then, we must
check the different points of the reduction.

First, note that size(I2) is polynomial in size(I1) (and even linear); indeed,
size(I2) = O(n+

∑p
i=1 f(i)).

Then, we start with the easy side, which consists of proving that if I1 has
a solution, then I2 has a solution. Let us assume that I1 has a solution. We
have an instantiation of variables x1, . . . , xn such that Ci is true for 1 6 i 6 p.
Then, a solution for I2 keeps the same values for the xis, and set all aj , bj and
cj values to true. Therefore, if a clause with at most three variables is true
in I1, all corresponding clauses in I2 are true. Consider now a clause Ci in I1

with k > 3 variables: Ci = x1_x2_� � �_xk. Let xj be the first variable of the
clause that is true. Then, for the solution of I2, we instantiate zi1, . . . , z

i
j−2 to

true and zij−1, . . . , z
i
k−3 to false. With this instantiation, all clauses of I2 are

true, and thus I1) I2.

For the other side, let us assume that I2 has a solution. We have an
instantiation of all variables xi, ai, bi, ci, and zij that is a solution of I2. Then,
we prove that the same instantiation of x1, . . . , xn is a solution of the initial
instance I1. First, for a clause with one or two variables, whatever the values
of ai, bi, and ci, we necessarily have x or x1 _ x2 equal to true because we
have added clauses constraining the extra variables. The clauses with three
variables remain true since we have not modified them. Finally, let Ci be a
clause of I1 with k > 3 variables, Ci = x1 _ x2 _ � � � _ xk. We reason by
contradiction. If this clause is false, then, necessarily, because of the first
clause added to I2 when processing clause Ci, z

i
1 must be true, and similarly

we can prove that all zij variables must be true. The contradiction arises for

the last clause because it imposes that zik−3 should be true if xk−1 and xk are

© 2014 by Taylor & Francis Group, LLC

138 Chapter 6. NP-completeness

both false. Therefore, by contradiction, at least one of the xjs must be true
and the clause of I1 is true. We finally have I2) I1, which concludes the
proof.

As a final remark, we point out that not all restrictions of a given NP-
complete problem remain NP-complete. For instance, 2-SAT, the SAT prob-
lem where each clause contains exactly two variables, belongs to P. Several
variants of 3-SAT are shown NP-complete in the exercises.

6.4.2 CLIQUE

We now consider a problem that is very different from SAT.

DEFINITION 6.8 (CLIQUE). Let G = (V,E) be a graph and k be an
integer such that 1 6 k 6 jV j. Does there exist a clique of size k (i.e., a
complete subgraph of G with k vertices)?

This is a graph problem, and the size of the instance is polynomial in jV j
(recall that jEj 6 jV j2, so we do not need to consider jEj in the instance size).

THEOREM 6.2. CLIQUE is NP-complete.

Proof. First we prove that CLIQUE is in NP. The certificate is the list of
vertices of a clique, and we can check in polynomial time (even quadratic
time) whether it is a clique or not. For each vertex pair of the certificate, the
edge between these vertices must be in E.

The completeness is obtained with a reduction from 3-SAT. We could do
a reduction from SAT, but 3-SAT is more regular, so we give it preference
for the reduction. Let I1 be an instance of 3-SAT with n variables and p
clauses. Then we build an instance I2 of CLIQUE. We add three vertices to
the graph for each clause (each vertex corresponds to one of the literals of
the clause) and then we add an edge between two vertices if and only if (i)
they are not part of the same clause and (ii) they are not antagonist (i.e., one
corresponding to a variable xi and the other to its negation xi). An example is
shown in Figure 6.1, with the graph obtained for a formula with three clauses
C1^C2^C3, with C1 = x1_x2_x3, C2 = x1_x2_x3, and C3 = x1_x2_x3.

Note that I2 is a graph with 3p vertices; the size of this instance, therefore,
is polynomial in the size of I1. Moreover, we fix in instance I2 the integer k
of the CLIQUE definition such that k = p. We are now ready to check the
equivalence of the solutions.

Assume first that the instance I1 of 3-SAT has a solution. Then, we pick
a vertex corresponding to a variable that is true in each clause, and it is easy
to check that the subgraph made of these p vertices is a clique. Indeed, two
of such vertices are not in the same clause, and they are not antagonistic;
therefore, there is an edge between them.

On the other side, if there is a clique of size k in instance I2, then necessarily
there is one vertex of the clique in each clause (otherwise, the two vertices

© 2014 by Taylor & Francis Group, LLC

6.4. Examples of NP-complete problems and reductions 139

x2

x1

x1

C1

C2 C3

x2 x3

x1

x2

x3 x3

FIGURE 6.1: Example: Reduction of an instance of 3-SAT to an instance of
CLIQUE.

within the same clause would not be connected). We choose these vertices
to instantiate the variables, and we obtain a solution because we never make
contradictory choices (because two antagonistic vertices cannot be part of the
clique, there is no edge between them). This concludes the proof.

We discuss variants of the CLIQUE problem in Section 6.5.

6.4.3 VERTEX-COVER

We continue to enrich the class NPC with another graph problem. We say
that an edge e = (u, v) is covered by its endpoints u and v.

DEFINITION 6.9 (VERTEX-COVER). Let G = (V,E) be a graph and k
be an integer such that 1 6 k 6 jV j. Do there exist k vertices vi1 , . . . , vik such
that each edge e 2 E is covered by (at least) one of the vij , for 1 6 j 6 k?

THEOREM 6.3. VERTEX-COVER is NP-complete.

Proof. It is easy to check that VERTEX-COVER is in NP. The certificate is
a set of k vertices, Vc � V , and for each edge (v1, v2) 2 E, we check whether
v1 2 Vc or v2 2 Vc. The verification is done in time jEj � k, and, therefore, it
is polynomial in the problem size.

This problem is once again a graph problem, so we choose to use a reduction
from CLIQUE, which turns out to be straightforward. Let I1 be an instance
of CLIQUE: It consists of a graph G = (V,E) and an integer k. We consider
the following instance I2 of VERTEX-COVER. The graph is G = (V,E),
which is the complementary graph of G, i.e., an edge is in G if and only if it
is not in G (see the example in Figure 6.2). Moreover, we set the size of the
covering set to jV j � k.

If instance I1 has a solution, G has a clique of size k, and, therefore, the jV j�
k vertices that are not part of the clique form a covering set of G. Reciprocally,

© 2014 by Taylor & Francis Group, LLC

140 Chapter 6. NP-completeness

FIGURE 6.2: Example: Reduction of an instance of CLIQUE (on the left,
graph G, k = 4) to an instance of VERTEX-COVER (on the right, graph G,
size of the cover jV j � k = 2).

if I2 has a solution, then the vertices that are not part of the covering set form
a clique in the original graph G. This concludes the proof.

6.4.4 Scheduling problems

Scheduling is the activity that consists of mapping an application onto a tar-
get platform and of assigning execution times to its constitutive parts. The
application can often be represented as a task graph, where nodes denote
computational tasks and edges model precedence constraints between tasks.
For each task, an assignment (choose the processor that will execute the task)
and a schedule (decide when to start the execution) are determined. The
goal is to obtain an efficient execution of the application, which translates
into optimizing some objective function. The traditional objective function in
the scheduling literature is the minimization of the total execution time, or
makespan; however, we will see examples with other objectives, such as those
of the case study devoted to online scheduling (Chapter 15).

Traditional scheduling assumes that the target platform is a set of p identical
processors, and that no communication cost is paid. In that context, a task
graph is a directed acyclic vertex-weighted graph G = (V,E,w), where the
set V of vertices represents the tasks, the set E of edges represents precedence
constraints between tasks (e = (u, v) 2 E if and only if u � v, where � is the
precedence relation), and the weight function w : V �! N∗ gives the weight
(or duration) of each task. Task weights are assumed to be positive integers.
A schedule σ of a task graph is a function that assigns a start time to each
task: σ : V �! N∗ such that σ(u) +w(u) 6 σ(v) whenever e = (u, v) 2 E. In
other words, a schedule preserves the precedence constraints induced by the
precedence relation � and embodied by the edges of the precedence graph. If
u � v, then the execution of u begins at time σ(u) and requires w(u) units
of time, and the execution of v at time σ(v) must start after the end of the
execution of u. Obviously, if there were a cycle in the task graph, no schedule
could exist, hence, the restriction to acyclic graphs and, thus, the focus on
Directed Acyclic Graphs (DAGs).

© 2014 by Taylor & Francis Group, LLC

6.4. Examples of NP-complete problems and reductions 141

There are other constraints that must be met by schedules, namely, re-
source constraints. When there is an infinite number of processors (in fact,
when there are as many processors as tasks), the problem is with unlimited
processors, and denoted P1jprecjCmax in the literature [44]. We use the
shorter notation SCHED(1) in this book; each task can be assigned to its
own processor. When there is a fixed number p < n of available processors,
the problem is with limited processors, and the general problem is denoted
SCHED(p). SCHED(2) represents the scheduling problem with only two pro-
cessors. Note that SCHED(1) is equivalent to SCHED(q) for any value q > n,
where n is the number of tasks. In the case with limited processors, a problem
is defined by the task graph and the number of processors p. An allocation
function alloc : V �! P is then required, where P = f1, . . . , pg denotes the set
of available processors. This function assigns a target processor to each task.
The resource constraints simply specify that no processor can be allocated
more than one task at the same time:

alloc(T) = alloc(T ′))
{

σ(T) + w(T) 6 σ(T ′)
or σ(T ′) + w(T ′) 6 σ(T).

This condition expresses the fact that if two tasks T and T ′ are allocated to
the same processor, then their executions cannot overlap in time.

The makespan MS(σ, p) of a schedule σ that uses p processors is its total
execution time: MS(σ, p) = maxv∈V fσ(v) + w(v)g (assuming that the first
task(s) is (are) scheduled at time 0). The makespan is the total execution time,
or finish time, of the schedule. Let MSopt(p) be the value of the makespan of
an optimal schedule with p processors: MSopt(p) = minσ MS(σ, p). Because
schedules respect precedence constraints, we have MSopt(p) > w(Φ) for all
paths Φ in G (weights extend to paths in G as usual). We also have Seq 6
p � MSopt(p), where Seq =

∑
v∈V w(v) = MSopt(1) is the sum of all task

weights.

While SCHED(1) has polynomial complexity (simply traverse the graph
and start each task as soon as possible using a fresh processor), problems with
a fixed amount of resources are known to be difficult. Letting DEC be the
decision problem associated with SCHED, and INDEP the restriction of DEC
to independent tasks (no precedence constraints), i.e., E = ;, well-known
complexity results are summarized below:

• INDEP(2) is NP-complete but can be solved by a pseudopolynomial
algorithm. Moreover, 8 ε > 0, INDEP(2) admits a (1+ε)-approximation
whose complexity is polynomial in 1

ε (see Section 8.1.5, p. 187).
• INDEP is NP-complete in the strong sense (see Exercise 7.10, p. 152)

but can be approximated up to some constant factor (see Exercise 9.5,
p. 215). Moreover, 8ε > 0, there is a (1 + ε)-approximation algorithm
for this problem [50].

• DEC(2) (and hence DEC) is NP-complete in the strong sense (see Ex-
ercise 7.11, p. 152).

© 2014 by Taylor & Francis Group, LLC

142 Chapter 6. NP-completeness

All these results are gathered here for the sake of comprehensiveness. The
impatient reader who wonders what is the meaning of NP-complete in the
strong sense may refer to Section 6.6, p. 145, and to understand what is an
approximation algorithm, she/he may have a quick look at Section 8.1, p. 179
right now.

Scheduling and certificates

Scheduling problems provide a nice illustration of the attention that must be
paid to certificates. Consider the DEC decision problem, namely, scheduling
a task graph with p processors and a given deadline D. For the schedule to
be valid, both precedence and resource constraints must be enforced. The
question is to decide whether there exists a schedule whose makespan does
not exceed the deadline.

A naive verification of the schedule is to describe which tasks are executed
onto which processors at each time step. Unfortunately, this description may
lead to a certificate of exponential size; the time steps range from 1 to D,
and the size of the scheduling problem is O(n + p + logW + logD), where
W =

∑
v∈V w(v).

A polynomial size verification of the schedule can be easily obtained using
events, which are time steps where a new task begins or ends. There is a
polynomial number of such events (2n), and for each of them we perform a
polynomial number of checks. From the definition of the schedule, we first
construct the ordered list of events in polynomial time. The basic idea is to
maintain the set of tasks that have been completed and the set of processors
that are currently idle. If the event corresponds to starting a new task, we
check that all its predecessors have been completed, and that the target pro-
cessor belongs to the set of idle processors (and then we remove it from this
set). If the event corresponds to completing a task, we mark the task ac-
cordingly, and we re-insert the target processor into the set of idle processors.
Note that if several events take place at the same time step, we should start
with those that correspond to task completions. We perform these checks one
event after the other until we reach the last one, which corresponds to the
completion of the last task, and which much take place not later than D.

In summary, we see that the weights of the tasks (given by the function w)
prevent us from using a naive verification of the validity of a schedule at each
step of its execution. This is because the makespan is not polynomial in the
problem size.

6.4.5 Other famous NP-complete problems

We have initiated discussions with the 2-PARTITION problem (Definition 6.1)
that is one of the most widely used problems to perform reductions, since it
turns out to be NP-complete while being quite simple in its formulation. The
NP-completeness of 2-PARTITION will be shown in Exercise 7.20, p. 155, but

© 2014 by Taylor & Francis Group, LLC

6.5. Importance of problem definition 143

from now on, we assume that this problem is indeed NP-complete.

The COLOR problem (see Definition 6.3) given in Section 6.2.2 is also NP-
complete and the proof is the purpose of Exercise 7.7, p. 151. Other problems
will discuss variants of this graph coloring problem.

Another useful problem is HC (Hamiltonian Cycle, see Definition 6.4). We
have already shown that HC is in NP (see Section 6.2.2). For the completeness,
we refer the interested reader to involved reduction in [27]. There is a nice
reduction from 3-SAT in the first edition of the book, and the current edition
performs a reduction from VERTEX-COVER.

Starting from HC, it is easy to prove that TSP (see Definition 6.5) also is
NP-complete. It is clear that TSP is in NP; a certificate is an ordered list of
vertices. The reduction comes from HC. Let I1 be an instance of HC: This is
a graph G = (V,E). We build the following instance I2 of TSP. The graph
G′ = (V,E′) has the same set of vertices as G, but it is a complete graph. We
set k = 0, i.e., we want to find a cycle of weight 0. Finally, for e 2 E′ we define
the cost function w such that w(e) = 0 if e 2 E, and w(e) = 1 otherwise. This
reduction is obviously of polynomial time, and the equivalence of solutions is
straightforward. Note that this last NP-completeness result comes from the
fact that TSP is a weighted version of HC.

For a reference list of problems known to be NP-complete, we refer the
reader to the book by Garey and Johnson [38].

6.5 Importance of problem definition

In this section, we point out subtleties in problem definitions. A parameter
can be either fixed for the problem or part of the problem instance. Consider
the problem CLIQUE introduced in Section 6.4.2. Given a graph G = (V,E),
we introduce the notion of β-clique of size k, where β is a rational such that
0 < β 6 1 [83]; a β-clique is a subgraph of G of size k (k vertices), with edge
density at least β. The edge density is the ratio of the number of edges in the
subgraph over the number of edges in a clique of size k, i.e.,

(
k
2

)
. We can now

define a variant of the CLIQUE problem:

DEFINITION 6.10 (BCLIQUE). Let G = (V,E) be a graph, β be a ratio-
nal number such that 0 < β 6 1, and k be an integer such that 1 6 k 6 jV j.
Does there exist a β-clique of size k in G?

In the BCLIQUE problem, β is part of the instance. Therefore, we can do a
trivial reduction from CLIQUE, letting β = 1, to prove that it is NP-complete.
However, we may define the problem in a different way, where β is given. For
a constant β such that 0 < β 6 1, we define:

© 2014 by Taylor & Francis Group, LLC

144 Chapter 6. NP-completeness

DEFINITION 6.11 (BCLIQUE(β)). Let G = (V,E) be a graph and k be
an integer such that 1 6 k 6 jV j. Does there exist a β-clique of size k in G?

We have CLIQUE = BCLIQUE(1). However, the NP-completeness of
CLIQUE does not imply the NP-completeness of BCLIQUE(β) for any value
of β. We prove this NP-completeness for any fixed value 0 < β < 1 in the
following theorem:

THEOREM 6.4. BCLIQUE(β) is NP-complete for any rational number β =
p
q , where p and q are positive integer constants and p < q.

Proof. It is clear that BCLIQUE(β) is in NP, and the reduction comes logically
from the classical CLIQUE problem. The idea is to construct an auxiliary
graph G′ = (V ′, E′) and to prove that G has a clique of size k if and only if
G [G′ has a β-clique of size jV ′j+ k.

We build the set of vertices V ′ of size jV ′j = 4(jV j2 + k2)q � k, containing
vertices v′1 to v′|V ′|. For 1 6 i 6 jV ′j and j 2 [i+ 1, i+ jV j] mod jV ′j, we add

an edge between vi and vj . Therefore, each node has 2jV j edges, and we have
added a total of jV jjV ′j edges. Next, we add random edges in order to have a

total of K = p
q

(|V ′|+k
2

)
�
(
k
2

)
edges between the jV ′j vertices. Because jV ′j+k

is a multiple of 2q, K is an integer. Moreover, jV ′j is large enough so that

we can prove that
(|V ′|

2

)
> K > jV jjV ′j (see [83]), i.e., there were initially

fewer than K edges, and we can have a total of K edges without exceeding
the maximum number of edges in jV ′j.

There remains to prove that G has a clique of size k if and only if G [G′
has a p

q -clique of size jV ′j+ k. Suppose first that there is a clique C of size k

in G. We consider the subgraph Q of G [G′ containing vertices C [V ′. We

have jQj = jV ′j+k and the number of edges is K+
(
k
2

)
= p

q

(|V ′|+k
2

)
; therefore,

Q is a p
q -clique by definition.

Suppose now that there is a p
q -clique Q of size jV ′j+ k in G [G′. We first

construct a p
q -clique Q′ such that jQ′j = jQj and V ′ � Q′. Since jQj > jV ′j,

jV ′ nQj 6 jV j, and each vertex in V ′ nQ cannot be connected to more than
jV j � 1 vertices of V ′ n Q. Moreover, each vertex of V ′ n Q is of degree at
least 2jV j and, therefore, it is connected to at least jV j+1 vertices of Q, while
vertices of Q\V are connected to at most jV j�1 vertices (all of them from V).
Therefore, we can replace jV ′nQj vertices of Q\V with the remaining vertices
of V ′, with no reduction in the edge density. We obtain a p

q -clique Q′ such

that jQ′j = jQj and V ′ � Q′. Then, jQ′\V j = k. To see that Q′\V is a clique
of size k in V , consider the density of G′; it is K by construction. If Q′ \ V
does not contribute

(
k
2

)
edges, then Q′ cannot have density p

q . Therefore,

Q′ \ V is a clique of size k, hence concluding the proof.

In scheduling problems (see Section 6.4.4, p. 140), the same distinction
is often implicitly made, whether the number of processors p is part of the
problem instance or not. For instance, if all tasks are unit-weighted, DEC is

© 2014 by Taylor & Francis Group, LLC

6.6. Strong NP-completeness 145

NP-complete (with p in the problem instance), while DEC(2) can be solved
in polynomial time and DEC(3) is an open problem [38].

6.6 Strong NP-completeness

The last technical discussion of this chapter is related to weak and strong NP-
completeness. This refinement of the NPC problem class applies to problems
involving numbers, such as 2-PARTITION, but also TSP, because of edge
weights.

Consider a decision problem P , and let I be an instance of this problem.
We have already discussed how to compute size(I), the size of the instance,
encoded in binary. We now define max(I), which is the maximum size of
the instance, typically corresponding to the problem instance with integers
coded in unary. To give an example, consider an instance I of 2-PARTITION
with n integers a1, . . . , an. As already discussed, we can have size(I) = n +∑

16i6n log(ai), or any similar (polynomially related) expression. Now we can
have max(I) = n+

∑
16i6n ai, or max(I) = n+ max16i6n ai, or any similar

(polynomially related) expression.
Then, given a polynomial p, we define Pp, the problem P restricted to p, as

the problem restricted to instances such thatmax(I) is smaller than p(size(I)),
i.e., the size of the instance coded in unary is bounded applying p to the binary
size of the instance. A problem P (in NP) is NP-complete in the strong sense
if and only if there exists a polynomial p such that Pp remains NP-complete.
Otherwise, if the problem restricted to p can be solved in polynomial time,
the problem is NP-complete in the weak sense; intuitively, in this case, the
problem is difficult only if we do not bound the size of the input in the problem
instance.

Note that for a graph problem such as the bipartite graph problem, there
are no numbers, so max(I) = size(I) and the problem is NP-complete in the
strong sense. For problems with numbers (including weighted graph prob-
lems), one must be more careful. Coming back to 2-PARTITION, we have
seen in Section 6.2.1 that it can be solved by a dynamic-programming al-
gorithm running in time O(n

∑n
i=1 ai), or equivalently in time O(max(I)).

Therefore, any instance I of 2-PARTITION can be solved in time polyno-
mial in max(I), which is the definition of a pseudopolynomial problem. And
2-PARTITION is not NP-complete in the strong sense (one says it is NP-
complete in the weak sense).

To conclude this section, we introduce a problem with numbers that is NP-
complete in the strong sense: 3-PARTITION. The name of this problem is
misleading because this problem is different from partitioning n integers into
three sets of same size.

© 2014 by Taylor & Francis Group, LLC

146 Chapter 6. NP-completeness

DEFINITION 6.12 (3-PARTITION). Given an integer B, and 3n integers
a1, . . . , a3n, can we partition the 3n integers into n triplets, each of sum B?
We can assume that

∑3n
i=1 ai = nB (otherwise, there is no solution), and that

B/4 < ai < B/2 (so that one needs exactly three elements to obtain a sum B).

Contrary to 2-PARTITION, 3-PARTITION is NP-complete in the strong
sense [38].

6.7 Why does it matter?

We conclude this chapter with a discussion on polynomial problems. Why
focus on polynomial problems? If the size of the data is in n, from a practical
perspective it is much better to have an algorithm in (1.0001)n, which is
exponential, than a polynomial-time algorithm in n1000. In such a case, the
polynomial-time algorithm is still slower than the exponential one for n = 109,
and, therefore, the exponential algorithm is faster in any practical situation.
However, n1000 is not practical either. In general, polynomial algorithms have
a small degree, typically not exceeding 4 and almost always smaller than 10.

Polynomial-time algorithms are likely to be efficient algorithms, so when
confronted with a new problem, the first thing we do is to look for an algorithm
that would solve it in polynomial time. If we succeed, we are finished. If we
do not succeed, we have another way to go—prove that the problem is NP-
complete. Then the chance of somebody else coming later and providing an
optimal solution to the problem is very small because it is very unlikely that
P = NP. In other words, if we can show that our problem is more difficult
than one (hence all) of these famous NP-complete problems, then we show
strong evidence of the intrinsic difficulty of the problem.

Of course, proving a problem NP-complete does not make it go away. One
needs to keep a constructive approach, such as proposing an algorithm that
provides a near-optimal solution in polynomial time (or again, proving that
no such approximation algorithm exists). This is the subject of Chapter 8.

6.8 Bibliographical notes

As already mentioned, our approach to NP-completeness is original. See
the book by Garey and Johnson [38] for a comprehensive treatment of NP-
completeness and a famous catalog of NP-complete problems. A very intuitive
proof of Cook’s theorem is given in the book by Wilf [108]. A theory-oriented
approach with Turing machines and complexity results is available in the book

© 2014 by Taylor & Francis Group, LLC

6.8. Bibliographical notes 147

by Papadimitriou [82]. The more adventurous reader can investigate the book
by Arora and Barak [4].

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 7

Exercises on NP-completeness

This chapter presents a set of exercises related to NP-completeness. The aim
of most questions is to prove the NP-completeness of a new problem, so that
the reader will become more familiar with this reasoning.

We assume in the first sections that 2-PARTITION is NP-complete, as
stated in Section 6.4.5, so that we can warm up with easy reductions in Sec-
tion 7.1. We also provide thematic exercises around graph coloring (Sec-
tion 7.2) and scheduling (Section 7.3). More involved reductions are proposed
in Section 7.4. Finally, the NP-completeness of 2-PARTITION is proved in
Section 7.5.

Some of the exercises contain hints. Additional hints can be found on
page 155 at the beginning of Section 7.6, which is the section where solutions
to all of the exercises are given.

7.1 Easy reductions

Exercise 7.1: Wheel (solution p. 156)

Prove that the following decision problem is NP-complete. Given a graph
G = (V,E) and an integer K > 3, does G include a wheel of size K, i.e., a
set of K + 1 vertices w, v1, v2, . . . , vK such that E contains the set of edges
(vK , v1), f(vi, vi+1)g16i<K , and f(vi, w)g16i6K (w is the center of the wheel)?

Exercise 7.2: Knights of the round table (solution p. 156)

Prove that the following decision problem is NP-complete. Given n knights,
and a set of pairs of knights who are enemies, is it possible to arrange the
knights around a round table so that two enemies do not sit side by side?

Exercise 7.3: Variants of CLIQUE (solution p. 157)

Prove that the two following variants of CLIQUE are also NP-complete prob-
lems.

149

© 2014 by Taylor & Francis Group, LLC

150 Chapter 7. Exercises on NP-completeness

1. TWO-CLIQUES: Let G = (V,E) be a graph and k be an integer such
that 1 6 k 6 jV j. Do there exist two disjoint cliques of size k in G (i.e.,
two disjoint complete subgraphs of G with k vertices)?

2. CLIQUE-REG-GRAPH: Let G = (V,E) be a graph whose vertices are
all of the same degree and k be an integer. Does there exist a clique of
size k in G?

Exercise 7.4: Path with vertex pairs (solution p. 158)

Prove that the following decision problem is NP-complete. Let G = (V,E) be
a directed graph (therefore, in this graph, the arc (u, v) is different from the
arc (v, u)). Let s and t be two vertices of G and let P = f(a1, b1), . . . , (an, bn)g
be a list of pairs of vertices of G. Does there exist a directed path from s to t
in G that includes at most one vertex from each of the pairs in the list P?

(Hint: Build a reduction from 3-SAT.)

Exercise 7.5: VERTEX-COVER with even degrees (solution
p. 158)

Prove that the following decision problem is NP-complete. Let G = (V,E) be
a graph whose vertices all have an even degree, and let k be a positive integer.
Is there a subset of the vertices of G that covers all the edges of G and whose
size is at most k?

Exercise 7.6: Around 2-PARTITION (solution p. 159)

Reminder: All integers in the 2-PARTITION problem and its variants must
be (strictly) positive. Furthermore, we assume that 2-PARTITION is NP-
complete.

Prove that the four following decision problems are NP-complete:

1. 2PARTNEVEN: Given 2n integers a1, a2, . . . , a2n, is there a subset I of
f1, . . . , 2ng such that

∑
i∈I ai =

∑
i/∈I ai?

2. 2PARTEQ: Given 2n integers a1, a2, . . . , a2n, is there a subset I of
f1, . . . , 2ng such that

∑
i∈I ai =

∑
i/∈I ai, with jIj = n?

3. 2PARTODDEVEN: Given 2n integers a1, a2, . . . , a2n, is there a subset I
of f1, . . . , 2ng such that

∑
i∈I ai =

∑
i/∈I ai with, for any j 2 f1, . . . , ng,

exactly one integer between a2j−1 and a2j belongs to I?
4. PARTITIONIN3: Given n integers a1, a2, . . . , an, are there three disjoint

subsets I1, I2, and I3 of f1, . . . , ng such that
∑
i∈I1 ai =

∑
i∈I2 ai =∑

i∈I3 ai?

5. Are the above decision problems NP-complete in the strong sense or the
weak sense?

© 2014 by Taylor & Francis Group, LLC

7.2. About graph coloring 151

7.2 About graph coloring

We recall the definition of COLOR (see Definition 6.3): Given a graph G =
(V,E) and an integer k (1 6 k 6 jV j), can we color G with at most k colors?
A graph coloring is valid if any two vertices connected with an edge are not
assigned the same color.

We define two variants of COLOR. The first is a restriction on the number of
colors, and the second is a restriction on the structure of the graphs considered.

DEFINITION 7.1 (N -COLOR). Given a graph G = (V,E), can we color G
with at most N colors?

Note that in the definition of N -COLOR, N is not part of the problem
instance, as k in COLOR.

DEFINITION 7.2 (3-COLOR-PLAN). Given a planar graph G = (V,E)
(i.e., we can draw it without having intersecting edges), can we color G with
at most three colors?

Exercise 7.7: COLOR (solution p. 160)

Prove that problem COLOR is NP-complete.

Exercise 7.8: 3-COLOR (solution p. 162)

1. Propose a polynomial-time algorithm to solve 2-COLOR.
2. Prove that problem 3-COLOR is NP-complete.

(Hint: Use the widget in Figure 7.1 to build a reduction from 3-SAT.
We denote the three colors by 0, 1, and 2. One can show that the widget
has the two following properties:
(a) If x = y = z = 0, then v = 0.
(b) For any other input (x, y, z), v can be colored 1 or 2.)

x

y

z

v x

y

z

v

FIGURE 7.1: The widget used for proving the NP-completeness of 3-COLOR
(on the left) and its representation (on the right).

© 2014 by Taylor & Francis Group, LLC

152 Chapter 7. Exercises on NP-completeness

Exercise 7.9: 3-COLOR-PLAN (solution p. 163)

Prove that problem 3-COLOR-PLAN is NP-complete.

(Hint: We propose to do a reduction from 3-
COLOR using the widget presented on the right.
First prove that this widget has the two follow-
ing properties:

1. In any valid 3-coloring of the widget, ver-
tices a and a′ have the same color, and
vertices b and b′ have the same color.

2. If a and a′ have the same (given) color and
if b and b′ have the same (given) color, then
the coloring can be completed into a valid
3-coloring.)

a ? ? ? a′

b′

?

?

?

b

? ?

??

7.3 Scheduling problems

Exercise 7.10: Scheduling independent tasks with p processors
(solution p. 166)

This exercise deals with the complexity of scheduling independent tasks with
p processors. This is problem INDEP(p) defined in Section 6.4.4: Given a
set V = fv1, v2, . . . , vng of n independent tasks, where each task vi has a
nonnegative integer weight w(vi) = ai (1 6 i 6 n), given p processors, and a
time bound K, does there exist a valid schedule σ whose makespan does not
exceed the bound K? Here there are no precedence constraints, so we search
for a partition of the n tasks onto the p processors such that the maximal load
of any processor (which is the sum of the weights of the tasks assigned to it)
does not exceed the bound K. Prove that INDEP(p) is NP-complete in the
strong sense.

Exercise 7.11: Scheduling with two processors (solution p. 166)

This exercise deals with the complexity of scheduling a graph of tasks with
two processors. This is problem DEC(p) defined in Section 6.4.4: Given a task
graph G = (V,E,w), a number p of processors, and a bound on the execution
time K, does there exist a valid schedule σ (that respects both precedence and
resource constraints) whose makespan does not exceed the bound K? Prove
that DEC(p) is NP-complete in the strong sense.

© 2014 by Taylor & Francis Group, LLC

7.4. More involved reductions 153

7.4 More involved reductions

Exercise 7.12: Transitive subchain (solution p. 167)

In a directed graph, a k-tuple of vertices (x1, . . . , xk) is a transitive subchain
of length k if and only if, for any 1 6 i < j 6 k, (xi, xj) 2 E.

Prove that the following decision problem is NP-complete: Let G = (V,E)
be a directed graph. Does G contain a transitive subchain of length at least
equal to bjV j/2c?

(Hint: The reduction can be made from 3-SAT. For an instance of 3-
SAT with clauses C1, . . . , Ck where, for any i 2 [1; k], Ci = (x1

i _ x2
i _

x3
i), one can build an instance of TRANSITIVE SUBCHAIN where V =
fC0g

⋃
16i6kfCi, x1

i , x
2
i , x

3
i g. The set E of edges must be carefully defined.)

Exercise 7.13: INDEPENDENT SET (solution p. 168)

In a graph G = (V,E), an independent set is a subset V ′ of the set of vertices,
V ′ � V , such that for every two vertices u, v in V ′, there is no edge connecting
the two, i.e., (u, v) /2 E. A maximum independent set is a largest independent
set for a given graph, i.e., jV ′j is maximum. Prove that finding a maximum
independent set is NP-complete.

Exercise 7.14: DOMINATING SET (solution p. 169)

Prove that the following decision problem is NP-complete: Given a graph
G = (V,E) and an integer K > 3, does G include a dominating set of size K,
i.e., a subset D of V of size K such that for any vertex u 2 V nD, there exists
a vertex v 2 D such that (u, v) 2 E?

Exercise 7.15: Carpenter (solution p. 170)

We are given a set of n wooden sticks whose lengths, a1, a2, . . . , an, are in-
tegers. These sticks are connected by hinges. The i-th stick, of length ai,
is connected at one end to the (i � 1)-th stick and at the other end to the
(i + 1)-th stick. The problem is to fold the set of wooden sticks so that the
total width does not exceed a given bound k. Figure 7.2 gives an example.

Prove that the following decision problem is NP-complete: Given n wooden
stick lengths and an integer k, does there exist a folding of width at most k?

Exercise 7.16: k-center (solution p. 171)

Let G = (V,E) be a complete graph whose edges are weighted by a weight
function w that satisfies the triangle inequality: w(u, v) 6 w(u, x) + w(x, v)

© 2014 by Taylor & Francis Group, LLC

154 Chapter 7. Exercises on NP-completeness

a1 a2

a3

a4 a5

6 k

FIGURE 7.2: Example of a folding of a set of wooden sticks (the hinges are
in black).

for any u, v, and x in V . Let k be a positive integer (k > 1). For any subset
S of the vertices (S � V) and any vertex v not in S (v 2 V n S), we define
connect(v, S) as the minimum weight of an edge linking v to a vertex of S:
connect(v, S) = mins∈S w(v, s). A k-center is a subset S of V of cardinal at
most k such that center(S) = maxv∈V \S connect(v, S) is minimum.

Prove that the following decision problem is NP-complete: Given a complete
weighted graph G with a weight function that satisfies the triangle inequality,
and an integer k > 1, does there exist a k-center in G?

Exercise 7.17: Variants of 3-SAT (solution p. 172)

Prove that the two following variants of 3-SAT are NP-complete problems:

1. 3-SAT NAE (not all equal): The three literals of a clause cannot take
the same value.

2. 3-SAT OIT (one in three): Exactly one literal per clause has the value
true.

Exercise 7.18: Variants of SAT (solution p. 174)

We call SAT-N the problem SAT restricted to formulas that do not contain
more than N occurrences of each variable.

1. Prove that SAT-3 is at least as hard as SAT. Prove that for any N > 3,
SAT-N is NP-complete.

2. Let x be a variable occurring in an instance F of SAT-2. Exhibit a
formula equivalent to F and in which the variable x does not appear.
Propose a polynomial-time algorithm to solve SAT-2.

© 2014 by Taylor & Francis Group, LLC

7.5. 2-PARTITION is NP-complete 155

7.5 2-PARTITION is NP-complete

Exercise 7.19: SUBSET-SUM (solution p. 175)

The problem SUBSET-SUM is defined as follows: Given a finite set S of
positive integers and an integer t, is there a subset S′ of S such that

∑
x∈S′ x =

t? Prove that the SUBSET-SUM problem is NP-complete, using a reduction
from 3-SAT.

(Hint: From a set of clauses C0, . . . , Cm−1 on the variables x0, . . . , xn−1,
we build a set S of integers as follows. First, we define the values bij and b′ij
for 0 6 i 6 n� 1 and 0 6 j 6 m� 1:

bij =

{
1 if xi appears in Cj
0 otherwise

and b′ij =

{
1 if xi appears in Cj
0 otherwise.

Then, let vi = 10m+i +
∑m−1
j=0 bij10j , v′i = 10m+i +

∑m−1
j=0 b′ij10j , for 0 6

i 6 n � 1, and sj = 10j , s′j = 2 � 10j , for 0 6 j 6 m � 1. S is defined
as S = fvi, v′ig06i6n−1 [fsj , s′jg06j6m−1. To fully define the instance of
SUBSET-SUM, one still needs to define an integer t such that there exists a
subset S′ � S whose sum is t if and only if there exists an instantiation for
which all clauses are true.)

Exercise 7.20: NP-completeness of 2-PARTITION (solution
p. 177)

Prove that the 2-PARTITION problem is NP-complete: Given n integers
a1, . . . , an, is there a subset I of f1, . . . , ng such that

∑
i∈I ai =

∑
i/∈I ai?

7.6 Solutions to exercises

Additional hints
• Exercise 7.1 “Wheel”: Try a reduction from HC (Hamiltonian Cycle).
• Exercise 7.2 “Knights of the round table”: Try a reduction from HC

(Hamiltonian Cycle).
• Exercise 7.3 “Variants of CLIQUE”: Try a reduction from CLIQUE.
• Exercise 7.4 “Path with vertex pairs”: Try a reduction from 3-SAT.
• Exercise 7.5 “VERTEX-COVER with even degrees”: Try a reduction

from VERTEX-COVER.
• Exercise 7.6“Around 2-PARTITION”: Try reductions from 2-PARTITION.
• Exercise 7.7 “COLOR”: Try a reduction from 3-SAT.
• Exercise 7.8 “3-COLOR”: Try a reduction from COLOR.

© 2014 by Taylor & Francis Group, LLC

156 Chapter 7. Exercises on NP-completeness

• Exercise 7.9 “3-COLOR-PLAN”: Try a reduction from COLOR.
• Exercise 7.10 “Scheduling independent tasks with p processors”: Try a

reduction from 3-PARTITION.
• Exercise 7.11 “Scheduling with two processors”: Try a reduction from

3-PARTITION.
• Exercise 7.12 “Transitive subchain”: Try a reduction from 3-SAT.
• Exercise 7.13 “INDEPENDENT SET”: Try a reduction from 3-SAT or

CLIQUE.
• Exercise 7.14 “DOMINATING SET”: Try a reduction from VERTEX-

COVER.
• Exercise 7.15 “Carpenter”: Try a reduction from 2-PARTITION.
• Exercise 7.16 “k-center”: Try a reduction from DOMINATING SET.
• Exercise 7.17 “Variants of 3-SAT”: Try building reductions from 3-SAT.

To a clause Ci = ai _ bi _ ci associate the clauses:
– ai _ bi _ xi and ci _ xi _ f for 3-SAT NAE;
– ai _ xi _ yi, bi _ xi _ x′i, and ci _ yi _ y′i for 3-SAT OIT.

• Exercise 7.18 “Variants of SAT”: Try reductions from SAT.
• Exercise 7.20 “NP-completeness of 2-PARTITION”: Try a reduction

from SUBSET-SUM.

Solution to Exercise 7.1: Wheel

The certificate is nothing but the list of vertices, and one can check that a
certificate is valid in linear time. Therefore, this decision problem belongs to
NP.

We build a reduction from HC (Hamiltonian Cycle, see Definition 6.4,
p. 130). We thus start from an instance I1 = (V,E) of HC. From I1, we
build an instance I2 of wheel by adding a vertex w to I1 and one edge be-
tween w and each of the vertices of I1. Finally, we let K = jV j. The reduction
is obviously polynomial.

If I1 contains a Hamiltonian cycle, then I2 contains a wheel of size jV j.
Reciprocally, we assume that I2 contains a wheel of size jV j. Then, let w′ be
its center. If w 6= w′, as w′ is linked to any vertex in the wheel (by definition
of a wheel) and as, by construction, w is linked to any vertex of V , w and w′

can exchange their roles: w′ takes the place of w in the circle of size jV j and
w becomes the center. Therefore, I2 contains a wheel of center w and of size
jV j and, thus, I1 contains a Hamiltonian cycle.

Therefore, the instance I1 of HC has a solution if and only if instance I2 of
wheel has one. The latter problem is thus in NPC.

Solution to Exercise 7.2: Knights of the round table

This problem trivially belongs to NP.
We craft the reduction from HC (Hamiltonian Cycle, see Definition 6.4,

p. 130). Let I1 be an instance of HC. Then, I1 is a graph (V,E). From it, we

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 157

build an instance I2 of our problem. We have a knight in I2 for each vertex
of I1. Two knights are enemies if and only if there are no edges in E between
the two corresponding vertices of V .

We now show that there is a Hamiltonian cycle in I1 if and only if there is
a valid sitting for the knights of instance I2.

Let us first assume that there is a Hamiltonian cycle in I1. Then, we arrange
the knights in the order of their corresponding vertices along the Hamiltonian
cycle. As there are no edge in E between two vertices corresponding to two
enemy knights, two vertices of I1 corresponding to enemy knights cannot be
consecutive in the Hamiltonian cycle. Therefore, the knight arrangement is
valid.

Reciprocally, we assume that there is a valid knight sitting for instance I2.
Then, the ordering of the knights around the table defines a Hamiltonian cycle
among the corresponding vertices.

Solution to Exercise 7.3: Variants of CLIQUE

The two problems belong to NP for the same reasons for which CLIQUE
belongs to NP. For both problems, we craft a reduction from CLIQUE (Defi-
nition 6.8, p. 138).

1. We start from an instance I1 of CLIQUE. I1 is thus a graph G. We
build an instance I2 of TWO-CLIQUES, which is made up of exactly
two distinct copies of G. The size of I2 is equal to two times the size of
I1, and the reduction is thus polynomial.

Then, if there is a clique of size k in I1, there is one in each of the
two copies of G in I2. Reciprocally, if I2 contains two disjoint cliques
of size k, because I2 only contains two copies of G (we have not added
any edges between these two copies), then each clique is included in
one of the copies, which means that G, and thus I1, contains (at least)
one clique of size k. Therefore, the instance I1 of CLIQUE contains a
clique of size k if and only if instance I2 of TWO-CLIQUES contains
two cliques of size k.

2. We start from an instance I1 of CLIQUE, that is, a graph G = (V,E).

Let δ(G) be the maximum degree of a vertex of G. In other words,
δ(G) = maxv∈V degree(v). We build an instance I2 of CLIQUE-REG-
GRAPH as follows: We create δ(G) copies of G; for each vertex v 2 V ,
we create δ(G) � degree(v) new vertices, each of them being linked to
each of the δ(G) copies of v. This way we obtain a graph whose vertices
all have a degree δ(G).

It is then easy to see that the new vertices and new edges do not
create new nontrivial cliques and do not enlarge the size of existing
cliques. Then, there is a clique of size k in I1 if and only if there is a
clique of size k in I2.

© 2014 by Taylor & Francis Group, LLC

158 Chapter 7. Exercises on NP-completeness

Solution to Exercise 7.4: Path with vertex pairs

A certificate for this problem is a path. It is then easy to check in polynomial
time whether this path answers the question. Therefore, the problem is in
NP.

We start from an instance I1 of 3-SAT. I1 = C1^� � �^Cm where Ck = (l1,k_
l2,k _ l3,k). Let x1, . . . , xn be the variables appearing in I1. From I1 we build
an instance I2 = (V,E, s, t, P) of “path with vertex pairs.” First, we define
the set of vertices: V = fli,j j(i, j) 2 [1; 3] � [1;m]g [fs, tg. Then, we define
the set of edges: E = f(s, l1,i)gi∈[1;3] [f(lk,i, lk+1,i′)gk∈[1;m−1],i∈[1;3],i′∈[1;3] [
flm,i, tgi∈[1;3]. Finally, let P = f(xi, xi)gi∈[1;n]. The size of I2 is polynomial
in the size of I1, and the reduction is thus polynomial.

Let us assume that there exists a solution to I1, that is, an instantiation
of the variables of I1 such that all of its clauses are true. Then, we build a
path in I2 from s to t, which goes through exactly one true literal per clause.
There is at least one such literal per clause as we start from a solution of I1.
Furthermore, this path does not contain the two vertices xj and xj of a pair
of P because both literals cannot be simultaneously true.

Reciprocally, let us assume that I2 has a solution, i.e., that there exists a
path P from s to t that does not include both vertices of a forbidden pair.
Then, we define an instantiation of I1 by assigning the value true to any
literal whose corresponding vertex is included in P. This partial instantiation
is correct. Indeed, the path P cannot contain both vertices xi and xi for a
given value of i 2 [1;n] because P includes the pair (xi, xi). We complete
this partial instantiation arbitrarily (i.e., we give whatever value to any still
undefined variable). As the (i + 1)-th vertex of P corresponds to a literal of
clause Ci, for i 2 [1;m], this instantiation sets all the clauses of I1 to true.

Therefore, instance I1 of 3-SAT has a solution if and only if instance I2 of
“path with vertex pairs” has one. The latter problem is thus NP-complete.

Solution to Exercise 7.5: VERTEX-COVER with even de-
grees

This problem is in NP because the problem VERTEX-COVER is in NP.

We build a reduction from VERTEX-COVER. Let I1 = (G, k) be an in-
stance of VERTEX-COVER. From it we build an instance I2 of VERTEX-
COVER with even degrees. First, we remark that there is an even number of
vertices whose degree is odd, because

∑
v∈V degree(v) = 2jEj. We then build

the instance I2 = (G′, k + 2) by adding to G three new vertices, x, y, and
z one edge between x and any odd-degree vertex of G and the edges (x, y),
(x, z), and (y, z). This construction is illustrated in Figure 7.3. The size of I2

is obviously polynomial in the size of I1, and the reduction is thus polynomial.

Let us assume that there is a solution for I1, i.e., a cover C of the edges of
G containing at most k vertices. Then, C [fx, yg is a cover of G′ containing

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 159

x

zy

FIGURE 7.3: Reduction from an instance of VERTEX-COVER (left) to an
instance of VERTEX-COVER with even degrees.

at most k + 2 vertices and is thus a solution for I2.
Reciprocally, we assume that there exists a solution for I2, i.e., that there

exists a cover C ′ of G′ containing at most k+2 vertices. Then, as the vertices
y and z are linked only to the vertex x and to each other, at least two of the
three vertices x, y, and z must belong to C ′. Therefore, C ′ n fx, y, zg is a
cover of G containing at most k vertices.

Thus, there exists a solution for any instance I1 of VERTEX-COVER if and
only if there exists a solution to the corresponding instance I2 of VERTEX-
COVER with even degrees. The latter problem is thus NP-complete.

Solution to Exercise 7.6: Around 2-PARTITION

We first remark that the four decision problems are in NP, the reasoning
being the same as in 2-PARTITION. These problems being variants of 2-
PARTITION, all the reductions will be made from 2-PARTITION or from
variants of it.

1. Let I1 be an instance of 2-PARTITION including n integers a1, . . . , an.
If n is even, we let I2 = I1. Otherwise, we let I2 = I1 [f2S, 2S, 4Sg,
where

∑n
i=1 ai = S. The equivalence is then straightforward.

2. Let I1 be an instance of 2-PARTITION including n integers a1, . . . , an.
From I1, we create the instance I2 including the elements a1 + 1, a2 +
1, . . . , an + 1 and n elements equal to 1.

If I1 admits a solution I, then we obtain a partition of I2 of weight
S/2 + n and of size n by taking the elements fai + 1gi∈I and n � jIj
elements of weight 1, where

∑n
i=1 ai = S.

Reciprocally, any solution I ′ of I2 is such that
∑
i∈I′(ai+1)+n�jI ′j =

S/2+n, as jI ′j must be equal to n. Then,
∑
i∈I′ ai = S/2 and I ′ defines

a solution of I1.

3. Let I1 be an instance of 2PARTEQ including 2n integers a1, . . . , a2n. We
then build an instance I2 of 2PARTODDEVEN: I2 = (a1, B, a2, B, . . . ,

© 2014 by Taylor & Francis Group, LLC

160 Chapter 7. Exercises on NP-completeness

a2n, B) with B >
∑2n
i=1 ai. The equivalence is straightforward once one

realizes that, in any solution of I2, there must be exactly n elements
equal to B in each subset.

4. Let I1 be an instance of 2-PARTITION including n integers a1, . . . , an.
Let S =

∑n
i=1 ai. We can assume that, for any i in [1;n], ai 6 S/2;

otherwise, the instance has trivially no solution. We build the instance
I2 of PARTITIONIN3: I2 = I1 [fan+1 = S/2g. In any solution of I2

one of the three subsets must exclusively contains an+1. The two other
subsets define the solution to I1.

5. None of these problems are NP-complete in the strong sense because the
reduction comes from 2-PARTITION.

Solution to Exercise 7.7: COLOR

We first prove that COLOR is in NP. An instance I of COLOR is a couple
(G, k) of size jV j+ jEj+ log k with k 6 jV j. For the certificate, we can take
a list of the colors of the vertices. One can check in linear time O(jV j+ jEj)
whether for each edge (x, y) 2 E the condition color(x) 6= color(y) holds and
whether there are at most k colors used.

We now build a reduction from 3-SAT.
Let I1 be an instance of 3-SAT, including p clauses, C1, . . . , Cp, and n vari-

ables, x1, . . . , xn. Without loss of generality, we can ignore “easy” instances.
Therefore, we assume that n > 4. From this instance, we build an instance
I2 of COLOR, i.e., a graph G = (V,E). G includes the 3n + p vertices:
x1, . . . , xn, x1, . . . , xn, y1, . . . , yn, c1, . . . , cp. G exactly includes the edges:

1. (xi, xi) for i 2 [1;n];
2. (yi, yj), (yi, xj), and (yi, xj) for (i, j) 2 [1;n]� [1;n] and i 6= j;
3. (xi, ck) if and only if xi 62 Ck;
4. (xi, ck) if and only if xi 62 Ck.

The size of instance I2 is polynomial in the size of I1 as jV j = O(n + p).
Figure 7.4 presents an example of such a reduction.

We now prove that I1 has a solution if and only if instance I2 can be colored
with n+ 1 colors.

) We assume that I1 has a solution. There exists an assignment of the
variables such that each clause Ci, 1 6 i 6 p, is true. We define the following
coloring:

color(xi) = i if xi is true
color(xi) = n+ 1 if xi is false
color(xi) = i if xi is true
color(xi) = n+ 1 if xi is false
color(yi) = i

and, finally, for any clause Ck, 1 6 k 6 p, we pick arbitrarily one of the literals
that set Ck to true, and we assign its color to ck.

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 161

c1

x1 x1

x2

x3

c2

y1

y2

y3

x2

x3

FIGURE 7.4: Instance of COLOR built from the 3-SAT instance (x1 _ x2 _
x3) ^ (x1 _ x2 _ x3).

We must show that color defines a valid coloring. The only problem could
arise from the edges (xi, ck) or the edges (xi, ck). Let Ck be a clause, and let i
be the color of Ck. Then, clause Ck has color i because it contains either the
literal xi, which is true, or the literal xi, which is true, and that true literal
is also colored with color i. Without loss of generality, assume the true literal
is xi. Then, there is no edge between xi and ck. There is, however, an edge
between xi and ck, but then the literal xi is false and is colored with color
n + 1. Hence, the coloring satisfies this edge. For any j 2 [1;n], if j 6= i,
neither xj nor xj has color i, and thus these vertices cannot lead to a problem
with the vertex ck. Therefore, the coloring is valid.

(Let us now assume that there exists a coloring of I2 using n+ 1 colors.
The vertices yi, 1 6 i 6 n, form a clique. Therefore, we can permute the

colors so that, for any i 2 [1;n], color(yi) = i. There is an edge between the
vertices xi and xi, and between them and any of the vertex yj , for j 2 [1;n] and
j 6= i. Therefore, the vertices xi and xi are colored with different colors, and
the only colors available to them are i and n+ 1. Hence, (color(xi), color(xi)
is equal to either (i, n+ 1) or to (n+ 1, i). Then, we let:

xi =

{
1 if color(xi) = i

0 if color(xi) = n+ 1
and xi =

{
1 if color(xi) = i

0 if color(xi) = n+ 1.

Let us consider a clause Ck, for k 2 [1, p]. As n > 4, there exists an index
i 2 [1;n] such that xi 62 Ck and xi 62 Ck. Then, there is an edge between
ck and both xi and xi. As we have seen that at least one among xi and xi
has n + 1 for color, the color of ck is not n + 1. Then, there is a variable xj
such that either the literal xj or the literal xj has the same color as ck. Then,
there is no edge between that literal and ck (because the coloring is valid).
Therefore, that literal is true (its color is the color of ck and thus not n+ 1),

© 2014 by Taylor & Francis Group, LLC

162 Chapter 7. Exercises on NP-completeness

and it is included in the clause Ck. Therefore, this clause is true, and there is
a solution to I1.

Solution to Exercise 7.8: 3-COLOR

1. To check whether a graph can be colored with only two colors, one just
has to procede greedily. Pick arbitrarily a vertex and its color, and
propagate the coloring until all vertices (in the connected components)
are colored or one has reached a vertex impossible to color.

This illustrates that the fact that COLOR is NP-complete does not
imply that N -COLOR is NP-complete for a given value of N . This is
because N -COLOR is a restriction of COLOR, i.e., an easier problem.
The NP-completeness of N-COLOR can come from the parameter N .

2. 3-COLOR is in NP because COLOR is in NP.

We first prove that the widget in Figure 7.1 satisfies property (a).
Figure 7.5 presents the only two possible 3-coloring of the widget when
all three entries x, y, and z have color 0. In both cases, the output v
also has color 0. To prove property (b), one just has to consider one by
one all possible sets of inputs and to exhibit a valid 3-coloring for which
node v is colored either 1 or 2.

x

y

z

v
0

0

0

0 0

2/1

1/2

2/1

1/2

FIGURE 7.5: If x, y, and z have color 0, v also has color 0.

Using this widget, we build an instance of 3-COLOR from an instance
I1 = C1^C2^� � �^Cp of 3-SAT containing n variables x1, . . . , xn. This
construction is illustrated in Figure 7.6. First, we have two extremum
vertices D and Z and the edge (D,Z). For each variable i 2 [1;n],
we build two vertices corresponding to xi and xi, and we add the edges
(xi, xi), (D,xi), and (D,xi). We add to the graph p copies of the widget,
one per clause. We add an edge between the vertex Z and each node v
of a copy of the widget. Finally, we merge each of the three entries of the
widget corresponding to a clause with the three vertices corresponding
to the literals of that clause. The graph I2 built this way contains
2 + 2n+ 6p vertices, and its size is thus polynomial in the size of I1.

We now show that I1 has a solution if and only if I2 has a 3-coloring.

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 163

D

x1 x1 x2 x2 x3 x3 x4 x4

v1 v2 v3

Z

FIGURE 7.6: Instance of 3-COLOR built from the instance (x1 _ x2 _ x3) ^
(x1 _ x2 _ x4) ^ (x2 _ x3 _ x4) of 3-SAT.

Let us first assume that I1 has a solution. In other words, there is
an assignment of truth values to variables such that all clauses are true.
We define colors as follows:

color(xi) =

{
1 if xi is true

0 otherwise
and color(xi) =

{
1 if xi is true

0 otherwise.

Because in each clause there is at least one literal that is true, then
there is at least one entry of each widget that has the color 1. The
second property of the widget enables us to extend the coloring of all
the widgets such that none of the vertices vj , 1 6 j 6 p has the color 0.
We then let color(D) = 2 and color(Z) = 0 to obtain a valid 3-coloring
of the whole instance.

We now assume that there exists a 3-coloring of I2. Without loss of
generality, we assume that color(D) = 2, color(Z) = 0. Then, for any
i 2 [1;n], because of the edge (xi, xi), either (color(xi), color(xi)) =
(0, 1) or (color(xi), color(xi)) = (1, 0). As color(Z) = 0, the color of
vertex vj , 1 6 j 6 p must be either 1 or 2. Because of the first property
of the widget, this implies that at least one of the literals of each clause
is not of color 0. Therefore, the assignment:

xi =

{
1 if color(xi) = 1

0 if color(xi) = 0

is such that all clauses are true.

Solution to Exercise 7.9: 3-COLOR-PLAN

We start by proving simultaneously the two properties on the widget. To do
that, we exhibit all of the valid 3-colorings of the widget.

We represent the three colors by 0, 1, and 2. We have two cases to consider:
a = b and a 6= b. We first consider the case a = b. Without loss of generality,

© 2014 by Taylor & Francis Group, LLC

164 Chapter 7. Exercises on NP-completeness

we assume a = b = 0. Up to a permutation between colors 1 and 2, there
is only a single solution to the coloring of the widget. It is presented in
Figure 7.7. In Figures 7.7 through 7.10, the number between parentheses
written beside a color number is the step at which the color was defined
during the coloring. In Figure 7.7, at the first step we have to pick a color
arbitrarily for the vertex that is linked to both a and b. We arbitrarily picked
the color 1. From that point, we are able to derive the whole coloring of the
widget; the coloring is fully defined and valid. We then check that we end up
with a = a′ = 0 and b = b′ = 0.

0 1(3) 0(4) 1(5) 0(7)

0(9)

2(5)

0(4)

2(2)

0

1(1) 2(6)

1(8)2(4)

FIGURE 7.7: Coloring the widget
when a = b = 0.

0 X ? ? ?

?

?

?

0(2)

1

2(1) ?

??

FIGURE 7.8: Starting coloring the
widget when a 6= b.

We then consider the case a 6= b. Without loss of generality, we assume
a = 0 and b = 1. We start coloring the widget, as shown by Figure 7.8.
We have not enough constraint to decide whether the color of vertex X is 1
or 2, or whether it could be either color. We first try the case X = 1 and
end up with the coloring displayed in Figure 7.9. In this coloring, we have
a = a′ = 0 and b = b′ = 1. We then try the case X = 2 and end up with the
coloring displayed in Figure 7.10. This coloring cannot be completed into a
valid 3-coloring because each of the three neighbors of vertex Y has a different
color.

Therefore, there are only two valid 3-coloring of the widget (up to a permu-
tation of colors), and, in all cases, a and a′ have the same color, and so have
b and b′.

We now prove the NP-completeness of 3-COLOR-PLAN. First, note that
3-COLOR-PLAN is in NP because 3-COLOR is in NP. The reduction comes
from 3-COLOR. Therefore, we consider an instance I1 of 3-COLOR. I1 is thus
a graph I1 = (V,E). We build from I1 an instance I2 of 3-COLOR-PLAN
iteratively as illustrated by Figure 7.11.

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 165

0 1(3) 2(4) 1(5) 0(8)

1(6)

0(5)

2(4)

0(2)

1

2(1) 2(6)

2(7)2(4)

FIGURE 7.9: Coloring the widget
when a = b = 0.

0 2(3) 1(4) 2(5) 1(7)

2(6)

0(5)

1(4)

0(2)

1

2(1) 0(6)

Y1(4)

FIGURE 7.10: Starting coloring
the widget when a 6= b.

For each edge (u, v) of E, replace each point at which this edge crosses
another edge with a copy of the widget. Merge the adjacent corners of any
two consecutive widgets, and merge u with the adjacent corner of the first
widget. Each such transformation removes at least one intersection from the
original graph, and a graph contains fewer than jEj2 intersections. Therefore,
the transformation eventually terminates, and the graph obtained has a size
polynomial in the size of I1 (it contains fewer than 13jEj2 additional vertices
and fewer than 26jEj2 additional edges).

Then, let us assume that I2 admits a 3-coloring. We use this coloring for
the vertices of I1. Let us consider the edge (u, v) of Figure 7.11. Because of
property (a), the corner of the widget to which v is connected is of the same
color as u. Therefore, u and v have different colors, and the coloring is valid.

Reciprocally, let us assume that I1 admits a 3-coloring. We use this coloring
for the vertices of I2 corresponding to vertices of I1. Because of property (b),
this can be extended to a full valid 3-coloring of I2.

u v u v
W W W

FIGURE 7.11: Elementary step in the transformation of a nonplanar graph
into a planar graph. An intersection in the left-hand-side graph is removed
by the insertion of a widget (right-hand-side graph).

© 2014 by Taylor & Francis Group, LLC

166 Chapter 7. Exercises on NP-completeness

Solution to Exercise 7.10: Scheduling independent tasks with
p processors

INDEP(p) clearly belongs to NP: Given the list of tasks assigned to each
processor as certificate, just check that we have indeed a partition of the
original set of tasks and that no processor load exceeds the bound K.

The reduction for the strong NP-completeness of INDEP(p) is straight-
forward. It comes from 3-PARTITION. Consider an arbitrary instance I1 of
3-PARTITION, with 3n integers fa1, a2, . . . , a3ng and bound B. The instance
I2 of INDEP(p) is built with 3n independent tasks of weight ai, p = n pro-
cessors, and K = B. Clearly, I1 has a solution if and only if there exists a
schedule that meets the bound K, hence, if and only if I2 has a solution.

Solution to Exercise 7.11: Scheduling with two processors

Clearly, the problem belongs to NP. The certificate is the list of scheduling
decisions, i.e., for each task, the identity of the processor that it is assigned
to and the time step at which the execution begins. It is then easy to check
in polynomial time that each precedence constraint is satisfied, and that no
two tasks are executed simultaneously by the same processor. For instance,
we can sort the tasks by their starting times and check all the conditions by
scanning the sorted array.

The reduction for the strong NP-completeness comes from 3-PARTITION.
Consider again an arbitrary instance I1 of 3-PARTITION, with 3n integers
fa1, a2, . . . , a3ng and bound B. Remember that we can assume that

∑3n
i=1 ai =

nB (otherwise there is no solution), and that B/4 < ai < B/2 (so that one
needs exactly three elements to obtain a sum B).

The instance I2 of DEC(2) is built as follows: 3n independent tasks fT1,
. . . , T3ng, where the weight of Ti is ai; and 3n other tasks, fX1, Y1, Z1, . . . , Xn,
Yn, Zng, all of weight B, linked by the following precedence constraints:

� � �

Z1

X1

Y1

X3

Zn

Xn

Yn

X2

Y2

Z2

Finally, we let K = 2nB.

Assume first that I1 has a solution I1[I2[� � �[In, where each Ii is composed
of three numbers whose sum is B. The solution to I2 is the following schedule
σ:

• The first processor P1 executes all 2n tasks Xi and Yi. These tasks are
totally ordered along a precedence path of length K = 2nB.

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 167

• The second processor P2 executes Zi while P1 executes Yi. While P1

executes a task Xi, it has a slot of size B to execute the three tasks Tj
that belong to Ii.

Altogether, all precedence and resource constraints are satisfied, and σ is a
valid schedule of makespan K.

Now, assume that I2 has a solution schedule σ. We see that the schedule σ is
quite constrained. Because X1 ! Y1 ! X2 ! � � � ! Xn ! Yn is a precedence
path of length K, these tasks must be processed as soon as possible, without
any idle time in between. But X1 ! Z1 ! X2 ! � � � ! Xn ! Zn is
another precedence path of the same length, so these tasks must be processed
as soon as possible as well. This enforces that σ(Xi) = (2i � 2)B and that
σ(Yi) = σ(Zi) = (2i � 1)B. Up to some exchanges, we can assume that P1

executes all the Xi and Yi, and that P2 executes all the Zi. We see that the 3n
tasks Ti are executed by P2 during n intervals of length B, hence constituting
a solution to I1.

Solution to Exercise 7.12: Transitive subchain

First, remark that TRANSITIVE SUBCHAIN belongs to NP. Indeed, a cer-

tificate is a k-tuple with k 2
[⌊
|V |
2

⌋
; jV j

]
. To check the validity of a certificate

including k vertices, one must just check the presence of k(k−1)
2 edges.

Let G = (V,E) be a directed graph with V = fC0g
⋃

16i6kfCi, x1
i , x

2
i , x

3
i g.

The three literals making clause Ci are independent (they do not share any
variable). E is exactly the following set of edges:

• For each i in [1; k], each j in [1; 3], and each l in [i, k], (xji , Cl) 2 E.

• For each i in [0; k�1], each j in [1; 3], and each l in [i+1, k], (Ci, x
j
l) 2 E.

• For each (i, j) such that 0 6 i < j 6 k, (Ci, Cj) 2 E.
• For each (i, j) such that 1 6 i < j 6 k and each (h, h′) such that

1 6 h, h′ 6 3, (xhi , x
h′

j) 2 E if and only if xhi 6= xh
′

j .
Graph G has a size polynomial in the size of the instance of 3-SAT as it
contains 4k + 1 vertices (and thus fewer than (4k + 1)2 edges).

Figure 7.12 displays the graph built from the 3-SAT instance: (x1
1 _ x2

1 _
x3

1) ^ (x1
2 _ x2

2 _ x3
2) ^ (x1

3 _ x2
3 _ x3

3) where x1
1 = x2

2, x3
1 = x3

3, and x3
2 = x1

3.
We now show that an instance I of 3-SAT has a solution if and only if the as-

sociated directed graph includes a transitive subchain of length at least
⌊
|V |
2

⌋
.

Let us assume that I has a solution. Therefore, each clause Ci, 1 6 i 6 k
has at least one literal whose value is true. We pick arbitrarily such a literal
li for clause Ci for i in [1; k]. The set of true literals cannot contain a literal
and its negation: For all (i, j) 2 [1; k]2, li 6= lj . Then, G contains a chain
whose vertices are exactly those corresponding to clauses fCig06i6k or to the
true literals flig16i6k. The subgraph induced by this chain is a transitive
subchain. Furthermore, this chain contains 2k + 1 vertices. Hence, its length

is 2k =
⌊
|V |
2

⌋
since jV j = 4k + 1.

© 2014 by Taylor & Francis Group, LLC

168 Chapter 7. Exercises on NP-completeness

C0

x1
1

x2
1

x3
1

C1

x1
2

x2
2

x3
2

C2

x1
3

x2
3

x3
3

C3 missing transitive arc

FIGURE 7.12: Graph built for the 3-SAT instance: (x1
1_x2

1_x3
1)^ (x1

2_x2
2_

x3
2)^ (x1

3 _ x2
3 _ x3

3) where x1
1 = x2

2, x3
1 = x3

3, and x3
2 = x1

3. Transitive arcs are
not shown. The dashed arcs are not part of the graph.

Reciprocally, let us assume that G includes a transitive subchain of size⌊
|V |
2

⌋
. Then, this subchain must include each vertex Ci, 0 6 i 6 k, and one

literal lj for each clause Cj for 1 6 j 6 k. Because of the transitivity, there
cannot exist two indices i and j, 1 6 i, j 6 k with li = lj . Therefore, the
subchain defines an instantiation of the variables of I for which I is true.

Solution to Exercise 7.13: INDEPENDENT SET

An optimization problem is NP-complete if the associated decision problem
is NP-complete. Here the decision problem would be, given an integer k,
whether there exists an independent set of size k (this latter problem is the
one called INDEPENDENT SET in the literature).

The certificate for this decision problem is the independent set, whose size
is obviously polynomial in the size of the problem (k 6 jV j). To check that
a certificate is valid, one has to consider all pairs of vertices in the candidate
independent set and see whether the corresponding edge belongs to E. There-
fore, a certificate is checked in a time quadratic in its size. Independent set is
thus in NP.

To prove the completeness, we build a reduction from 3-SAT. Let I1 be
an instance of 3-SAT: I1 = C1 ^ � � � ^ Ck, such that Ci = a1,i _ a2,i _ a3,i

(where aj,i = xj or xj , xj being a variable). For each literal of each clause, we
create a vertex labeled by the literal (therefore, we can have several vertices
with the same label). For each clause Ci, we add an edge between any pair of
its three corresponding vertices. We call the graph corresponding to a clause
a widget. A widget consists of three vertices and three edges. Finally, we
add an edge between a pair of opposite literals, that is, between any pair of
vertices (xi, xi). This construction is illustrated in Figure 7.13. This way, we
build a graph G. This gives us an instance I2 of independent set once we have
defined the size of the independent set we target. We chose k, the number of
clauses in I1. The size of I2 is polynomial in the size of I1, and the reduction

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 169

is thus polynomial.

a

b

c

c

a

d

FIGURE 7.13: Reduction for the instance of 3-SAT: (a _ b _ c) ^ (c _ a _ d).

Let us first assume that there is a valid instantiation of I1. Therefore, each
clause of I1 has at least one true literal. We define a subset S of the vertices
of G as follows. For each clause Ci, for i 2 [1; k], we arbitrarily pick one true
literal, and we put its associated vertex in S. There are exactly k vertices in S.
As we take only one vertex per widget, the independence of the set cannot be
violated by an edge included in a widget. The edges between widgets connect
the literals which are negations of each other. Obviously, two such literals
cannot simultaneously be true. Therefore, S is an independent set.

Reciprocally, let us assume that I2 has an independent set S of size k. As
S is independent, it contains at most one vertex per widget, as each widget
is a complete graph. As there are k widgets, S contains exactly one vertex
per widget. Then we set to true each literal that corresponds to a vertex of
S. This instantiation is well defined, as S cannot contain simultaneously the
literals xi and xi for some i 2 [1;n] because their associated vertices are linked
by an edge and cannot be both included in an independent set. Furthermore,
this instantiation sets each clause of I1 to true because it contains one literal
per clause of I1.

Instance I1 of 3-SAT has a solution if and only if the instance I2 of the
decision problem associated with finding the maximum independent set has
one. Therefore, this decision problem is an NP-complete problem, and INDE-
PENDENT SET is an NP-complete problem.

Other solution: The reduction also can be done from CLIQUE. Starting
from a graph G, one takes the complementary graph, i.e., the graph having
the same vertices, but in which there is an edge between any pair (u, v) of
vertices if and only if there was not one in the original graph. Then, there is
a clique of size k in a graph G if and only if there is an independent set of
size k in its complementary graph.

Solution to Exercise 7.14: DOMINATING SET

A certificate is the dominating set D. To check whether a set D is indeed a
dominating set, one must take each vertex v of V nD one by one and check
whether there is a vertex u of D such that the graph includes the edge (u, v).

© 2014 by Taylor & Francis Group, LLC

170 Chapter 7. Exercises on NP-completeness

The cost of this verification is quadratic in the size of V and thus polynomial
in the size of the problem. Therefore, this problem belongs to NP.

We craft a reduction from VERTEX-COVER. We start from an instance
I1 = (V,E,K) of VERTEX-COVER. From it we build an instance I2 of
dominating set by adding to I1, for each (u, v) of E, a vertex uv and the two
edges (u, uv) and (v, uv). Let I � V be the set of isolated vertices of G, i.e.,
the set of the vertices that are not included in any edge. To complete the
definition of I2, we let K ′ = K + jIj.

We now prove that instance I1 of VERTEX-COVER has a solution if and
only if instance I2 of DOMINATING SET has one. This will prove that
DOMINATING SET is an NP-complete problem.

We start by assuming that there is a solution for I1, i.e., a subset D of V
of size at most K such that, for any edge (x, y) of E, x 2 D and/or y 2 D.
Then, D[I is a dominating set for I2. First, we remark that jD[Ij 6 K+jIj.
Then, let u be any vertex of V n (D [I). By definition of I there exists at
least one vertex v 2 V such that the edge (u, v) belongs to E. Then, as u does
not belong to D and as D is a vertex cover of I1 = (V,E), then, necessarily,
v belongs to D.

Reciprocally, let D be a dominating set of I2 of size at most K + jIj. Any
isolated vertex must be included in any dominating set (as such a vertex
cannot be linked by an edge to a vertex included in the dominating set).
Therefore, I � D, and D n I is of size at most K. Without loss of generality,
we can assume that, whatever the edge (u, v) 2 E, D does not contain the
vertex uv. If this is not the case, we transform D into a dominating set of
size at most K + jIj that satisfies this property. Indeed, let us assume that
D contains uv. If D also contains either u or v, we can just discard uv from
D to obtain a new dominating set of size at most K + jIj and not containing
the vertex uv (remember that I2 includes both the edges (uv, u) and (uv, v);
therefore, uv is linked to a vertex of the new dominating set). Otherwise, D
contains neither u nor v. Then, we arbitrarily replace the vertex uv in D with
the vertex u. This does not change the size of the set. The new set is still a
dominating set as vertices v and uv are each linked by an edge to the vertex
u of the new dominating set.

Without loss of generality, therefore, we now assume that D is a subset
of V . To conclude, it remains to be shown that D n I is a vertex-cover of I1.
To establish this result, let us consider any edge (u, v) 2 E. Then, I2 includes
the vertex uv. By hypothesis, uv does not belong to D. Therefore, uv must
be linked to a vertex of D. As uv is included only in the two edges (uv, u)
and (uv, v), then D n I must include u and/or v and D n I covers the edge
(u, v) and is thus a cover.

Solution to Exercise 7.15: Carpenter

A certificate can be given as the set of hinges that are folded. For the instance
drawn in Figure 7.2, the certificate would be (2, 3), (3, 4) to indicate that the

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 171

hinge between the second and the third wooden sticks is folded, as the one
between the third and the fourth stick. Then, to check that a certificate is
valid, one has to compute the coordinate of the rightmost and leftmost ends
of wooden sticks and compute the difference. This can be done in linear time;
therefore, this problem belongs to NP.

To prove that this problem is NP-complete, we build a reduction from 2-
PARTITION. Let I1 = fa1, . . . , ang be an instance of 2-PARTITION. We
then build an instance I2 of the carpenter problem including n + 4 sticks.
I2 = (S, S/2, a1, . . . , an, S/2, S) where S =

∑n
i=1 ai. We let k = S. The size

of I2 is obviously polynomial in the size of I1.
Let us assume that I1 as a solution I:

∑
i∈I ai =

∑
i/∈I ai. Then, we fold

instance I2 as follows. The first stick is from left to right, from abscisse 0 to
S (without loss of generality). We then fold the hinge, and the second stick
is from right to left, thus ending at S/2. Then, for any i 2 [1, n], if i 2 I
the stick is laid from left to right, and right to left otherwise. The (n+ 3)-th
stick is laid from left to right and the last one right to left. We focus on the
sticks corresponding to integers in I1. As

∑
i∈I ai =

∑
i/∈I ai, the sum of the

lengths of those laid from left to right is equal to the sum of the lengths of
those laid from right to left. Therefore, the one before the last stick, of length
S/2, is laid from S/2 to S, and the last one from S to 0. Furthermore, as∑
i∈I ai =

∑
i/∈I ai, the sum of the sizes of any subset of I and of any subset of

[1;n]n I is smaller than or equal to S/2. Therefore, no stick has an end whose
abscisse is smaller than 0 or greater than S. We have built a valid solution
for I2.

Let us now assume that I2 has a solution. Let I be the set of the indices of
integers in I1 corresponding to sticks that are laid from left to right. Then,
the difference of the abscisses of the second end of the second stick and the
first end of the (n+ 3)-th stick is equal to

∑
i∈I ai�

∑
i/∈I ai. Without loss of

generality, we can assume that the first stick is laid from left to right, from 0
to S. Then, the second stick must be laid from right to left, from S to S/2.
The last stick, being of length S, must be laid between 0 and S, whatever its
direction. If it is laid left to right, from 0 to S, the (n + 3)-th stick is laid
from S/2 to 0. If the last stick is laid from right to left, from S to 0, then the
(n+ 3)-th stick must be laid from S/2 to S. In both cases, the first end of the
(n + 3)-th stick is in S/2. Therefore, the second stick ends in S/2 where the
(n+ 3)-th stick starts. Therefore,

∑
i∈I ai =

∑
i/∈I ai, and we have a solution

to I1.

Solution to Exercise 7.16: k-center

To define the decision problem associated with the minimization of a k center,
we need a value c. Then, the decision problem is: Is there a k center S
such that center(S) 6 c? The certificate for this problem is a set of size
k 6 jV j and is thus polynomial in the size of the problem. Checking that a
candidate k-center satisfies the condition mandates at worst that all edges in

© 2014 by Taylor & Francis Group, LLC

172 Chapter 7. Exercises on NP-completeness

the (complete) graph are scanned. This has a cost polynomial in the size of
the graph. Therefore, this decision problem belongs to NP.

We craft a reduction from DOMINATING SET (see Exercise 7.14, p. 153).

Let I1 = (G = (V,E), k) be an instance of DOMINATING SET. We build
an instance I2 of k-center as follows. We build a complete graph G′ = (V,E′).
We define a function w that associates a weight with any edge e 2 E′: w(e) = 1
if e 2 E, and w(e) = 2 otherwise. As all the distances in G′ are equal to
either 1 or 2, the value of any k-center is then either 1 or 2. Therefore, we let
c = 1. Instance I2 is then fully defined, and its size is polynomial in the size
of I1. The reduction is thus polynomial. This construction is illustrated in
Figure 7.14.

Let us assume we have a solution for instance I1 of DOMINATING SET,
that is, a dominating set D of size k for I1. Then, we take D as the k-center.
Indeed, by definition of a dominating set, for any vertex u in V nD, there is
a vertex v 2 D such that (u, v) 2 E. Then, the edge (u, v) has a weight 1 in
G′.

Reciprocally, let us assume that I2 admits a k-center S satisfying the prop-
erty center(S) 6 1. Then, let us consider any vertex u in V nS. By definition
of the k center, there exists a vertex v 2 S such that the edge (u, v) of G′ has
a weight of 1, which means that the edge (u, v) belongs to S. Therefore, in
G, any vertex in V n S is connected to at least one vertex of S. Thus, S is a
dominating set of size k of I1.

Instance I1 of DOMINATING SET has a solution if and only if instance
I2 of the decision problem associated with k-center has one. Therefore, this
decision problem is NP-complete, and k-center is an NP-complete problem.

G

1 1
1

1
2 2

G′

FIGURE 7.14: Example of a reduction from DOMINATING SET to k-center.

Solution to Exercise 7.17: Variants of 3-SAT

The two problems 3-SAT NAE and 3-SAT OIT belong to NP because 3-SAT
does. For both problems, we craft a reduction from 3-SAT.

1. 3-SAT NAE

We start from an instance I1 of 3-SAT. For any clause Ci = ai_bi_ci,
we include in I2 the two clauses ai _ bi _ xi and ci _ xi _ f where f is

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 173

common to all the clauses created this way. I2 has twice as many clauses
as I1, and its number of variables is increased by one (f) plus the number
of clauses. Therefore, the size of I2 is polynomial in the size of I1.

We now show that the instance I1 of 3-SAT admits an instantiation
if and only if the instance I2 of 3-SAT NAE does.

Let us assume that there exists an instantiation of the variables of
instance I1 of 3-SAT such that all of its clauses are true. Then, for I2,
we take the same values as for the variables of I1. We complete this
assignment by having xi = ai _ bi and by setting f to false. Indeed,
if either ai or bi is true, then clause ai _ bi _ xi is true with xi being
false, and clause ci _ xi _ f is true because of xi while f is false. If ai
and bi are both false, then ci is true because all clauses of I1 are true,
including ai _ bi _ ci. Then, clause ai _ bi _ xi is true because of xi (its
only true literal), and clause ci _ xi _ f is true because of ci, while f
is false. Therefore, in all cases, we have built a valid assignment of I2,
i.e., one in which not all literals in a clause are true.

Reciprocally, let us assume that there is a valid instantiation of in-
stance I2 of 3-SAT NAE. We have to consider two cases:

(a) f is false. We take for each variable of I1 its value in the instan-
tiation of I2. Indeed, for the clause Ci either ci is true, and then
clause Ci is true, or ci is false and, then, because f is also false, xi
must be true. Hence, xi is false, and because ai _ bi _ xi is true,
then either ai or bi is and thus also Ci.

(b) f is true. We take for each variable of I1 the negation of its value
in the instantiation of I2. Indeed because, by definition, not all
variables can be equal in a clause, the negation of a valid instantia-
tion is also a valid instantiation. And the previous case shows that
taking for the variables of I1 their values from an instantiation of
I2 where f is false defines a valid solution.

2. 3-SAT OIT

We start from an instance I1 of 3-SAT. For any clause Ci = ai_bi_ci,
we include in I2 the three clauses ai_xi_yi, bi_xi_x′i, and ci_yi_y′i.
I2 contains three times as many clauses as I1. Furthermore, its number
of variables is equal to that of I1 plus four times the number of clauses.
Therefore, the size of I2 is polynomial in the size of I1.

We now show that the instance I1 of 3-SAT admits an instantiation
if and only if the instance I2 of 3-SAT OIT does.

We first assume that there exists an instantiation of the instance I1 of
3-SAT. We take for the variables of I2 that are variables of I1 their value
in the instantiation of I1. We then consider any clause Ci = ai _ bi _ ci
of I1. Then, if ai is true, we let xi = yi = false, x′i = bi, and y′i = ci.
Otherwise, ai is false. Then, bi and/or ci is true because we start from a

© 2014 by Taylor & Francis Group, LLC

174 Chapter 7. Exercises on NP-completeness

valid instantiation of I1, i.e., one for which each clause is true. Without
loss of generality (as our construction is symmetric for bi and ci), let us
assume that bi is true. Then, we let x′i = yi = false, xi = true, and
y′i = ci. One can then check that in all cases, we have exactly one true
literal per clause of I2. We, thus, have defined a valid instantiation of
I2.

Reciprocally, let us assume that there exists an instantiation of in-
stance I2 of 3-SAT OIT. Then, to obtain a valid instantiation of I1, we
have only to take for the values of its variables the values of the corre-
sponding variables in I2. Indeed, if, under this instantiation, there were
a clause Ci = ai _ bi _ ci that was false, then ai, bi, and ci would be
false. Then, because of the clauses bi _xi _x′i and ci _ yi _ y′i, we would
have xi = yi = false, as exactly one literal per clause is true under the
instantiation of I2. Then, the clause ai _ xi _ yi of I2 would be false,
which would contradict the hypothesis that we are dealing with a valid
instantiation of I2.

Solution to Exercise 7.18: Variants of SAT

1. Whatever the value N , the decision problem SAT-N belongs to the class
NP because SAT does.

We start from an instance I1 of SAT. To each variable xi appearing
k times in I1, with k > 3, we apply the following transformation. First,
we replace the j-th occurrence of the variable xi with the variable yi,j .
Then, we add to the instance the k clauses:

yi,1 _ yi,2, yi,2 _ yi,3, . . . , yi,k−1 _ yi,k, yi,k _ yi,1.

Each of the new variables yi,j appears exactly three times: once replac-
ing an occurrence of xi, and the two other times in the new clauses
(as yi,j and yi,j). Furthermore, all these variables have the same value
because of the new clauses. Indeed, if yi,j is true, then yi,j−1 must also
be true (or yi,k if j = 1). Reciprocally, if yi,j is false, then yi,j+1 must
also be false (or yi,1 if j = k). As the set of new clauses corresponding
to variable xi forms a cycle of constraints, all the variables yi,j have the
same value in a valid instantiation of the new formula. Hence, the two
formulas are equivalent.

Finally, if I1 contains n variables and m clauses, the new instance
contains at most nm variables and (m + nm) clauses. Therefore, any
instance of SAT can be transformed in polynomial time in an equiva-
lent instance of instance SAT-3. Therefore, SAT-3 is an NP-complete
problem.

As, for any value N > 3, SAT-3 is a particular case of SAT-N, then
SAT-N is an NP-complete problem.

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 175

2. Let x be a variable in a formula F of SAT-2. Depending on the use of x,
we transform F so that the new formula does not contain the variable
x and such that there is a valid instantiation of the new formula if and
only if there was one for the original formula.

• If x (or x) does appear only once, we just discard the clause in
which this variable appears. Indeed, we are free to instantiate x
(or x) to true, therefore setting the clause to true.

• If x (or x) appears twice in a same clause, or in two distinct clauses,
we discard the clause or clauses including x for the same reason.

• If x and x appear in the same clause, this clause is true whatever
the instantiation, and we just discard it.

• If x and x appear in two distinct clauses, x _ C1 and x _ C2, then
the formula has a valid instantiation if and only if at least one of
the two clauses C1 and C2 can be instantiated to true while all
the other clauses can be instantiated to true. (If only one of these
two clauses C1 and C2 is true, we pick the value of x so that both
x _ C1 and x _ C2 are true.)

– If C1 = C2 = ;, the original formula does not have any valid
instantiation.

– Otherwise, we remove the two clauses and replace them with
the clause C1 _ C2.

This way, we define an algorithm in n steps, one per variable. At each
step, we decide the value of a variable for a cost of m, where m is the
initial number of clauses. We, therefore, can solve SAT-2 in time O(nm).

Solution to Exercise 7.19: SUBSET-SUM

The certificate for the SUBSET-SUM problem is the set S′, and checking the
value of its sum can obviously be done in a time polynomial in the size of the
problem. Hence, SUBSET-SUM belongs to NP.

It is easy to show that SUBSET-SUM is NP-complete by using a reduc-
tion from 2-PARTITION. Indeed, to do so, one just has to take for t half
of the sum of the values of the elements in the instance of 2-PARTITION.
However, SUBSET-SUM is actually used to prove the NP-completeness of 2-
PARTITION in the next exercise, so we have to assume that we do not know
yet whether 2-PARTITION is NP-complete.

We thus start from an instance I1 of 3-SAT and build an instance I2 of
SUBSET-SUM as proposed in the hint. In order to fully understand the
proposed construction, we consider all the vis, v

′
is, sjs, and s′js as integers

with n+m (decimal) digits.
• For any i 2 [0;n� 1], the n most significant digits of these integers are

used to identify variables. These digits are all null for vi and v′i except

© 2014 by Taylor & Francis Group, LLC

176 Chapter 7. Exercises on NP-completeness

for the digit standing for variable i, namely, the (1 +m+ i) digit that is
equal to 1. This identifies vi and v′i as integers representing the variable i
(they respectively represent the literals xi and xi).

• For any i 2 [0;m� 1], the m least significant digits of these integers are
used to identify clauses. These digits are all zero for vi except for the
digits corresponding to clauses in which the literal xi appears. In other
words, if the literal xi appears in clause Cj , then the 1 + j-th digit of vi
is equal to 1. The same is true for v′i and the literal xi.

As we want to be able to build a valid instantiation of I1 from the solution of
I2, we want in the solution of SUBSET-SUM exactly one of the two integers
corresponding to a variable xi, i.e., exactly one integer between vi and v′i, is
taken. To ensure this, we want the n most significant digits of t to be equal
to 1.

Suppose we have an instantiation of I1. Let us consider the integer T
obtained by taking, for any i 2 [1;n], the integer vi if xi is true in this instan-

tiation and by taking the integer v′i otherwise. Formally, T =
∑n−1
k=0 [xkvk +

(1� xk)v′k] (by assuming that true is encoded by the value 1 and false by
the value 0). The n most significant digits of T are equal to 1. Let us focus
on one of the m least significant digits of T , say, the digit of rank j (the least
significant digit is said to be of rank 0). This digit corresponds to clause Cj .
Its value is equal to the number of literals in Cj that are true in the instantia-
tion considered. So, this value is between 1 and 3 in a solution to the instance
of 3-SAT considered. We want to avoid the cases where one of these digits is
zero. We cannot, however, impose that all of these digits are equal to one,
because such a property is not necessarily satisfied in any valid instantiation
of any instance of 3-SAT. This is where the integers sj and s′j , for j 2 [0;m],
come into play; we use them to complement the value obtained for the digit
of rank j of T . We take them so as to reach a target value, but it is a target
that cannot be reached if the digit is originally zero. Taking sj and/or s′j or
none of them enables one to add a value of 0, 1, 2, and 3. Hence, 4 is the
lowest value that is not reachable if the digit of T is zero. Furthermore, if the
value of the digit of T is:

• 3, taking sj enables to reach 4 (=3+1);
• 2, taking s′j enables to reach 4 (=2+2);
• 1, taking both sj and s′j enables to reach 4 (=1+1+2).

Therefore, we take for t the integer whose n most significant digits are equal
to 1 and the m least significant ones are equal to 4:

t = 11 � � � 11︸ ︷︷ ︸
n

44 � � � 44︸ ︷︷ ︸
m

.

So, from the instance I1 of 3-SAT, we build the instance I2 of SUBSET-SUM
where S = fvij0 6 i 6 n�1g[fv′ij0 6 i 6 n�1g[fsj j0 6 j 6 m�1g[fsj j0 6
j 6 m� 1g, and t = 11 � � � 11︸ ︷︷ ︸

n

44 � � � 44︸ ︷︷ ︸
m

.

© 2014 by Taylor & Francis Group, LLC

7.6. Solutions to exercises 177

From what precedes, if there is a solution of the instance I1 of 3-SAT, then
we build a solution of the instance I2 of SUBSET-SUM by putting into the
set S′, for any i 2 [0;n � 1], the integer vi if the variable xi is true, and the
integer v′i otherwise. We complete S′ by taking, for any j 2 [0;m � 1], the
integer sj if the clause Cj has exactly three true literals; the integer s′j if it
has two true literals; and both integers sj and s′j otherwise.

Reciprocally, assume that there exists a subset S′ of S such that
∑
x∈S′ x =

t. Then, for any i 2 [0;n � 1], S′ contains exactly one of the two integers vi
and v′i as the n most significant digits of t are equal to 1. Then, we set xi to
true if vi belongs to S′ and to false otherwise. We need to prove that under
this instantiation any clause Cj , for j 2 [0;m � 1] is set to true. The digit
of rank j of t is equal to 4. As we have seen, this implies that S′ contains at
least one integer whose digit of rank j is equal to 1. Then, the corresponding
literal is set to true; it is included by definition in the clause Cj and thus
sets Cj to true.

Therefore, the instance I1 of 3-SAT has a solution if and only if instance I2

of SUBSET-SUM has one, and SUBSET-SUM is an NP-complete problem.

Solution to Exercise 7.20: NP-completeness of 2-PARTITION

We already know that 2-PARTITION is in NP. To prove the completeness,
we craft a reduction from SUBSET-SUM.

Let I1 be an instance of SUBSET-SUM. Given a finite set S = fa1, . . . , ang
of positive integers, and an integer t, is there a subset S′ of S such that∑
x∈S′ x = t? We build an instance of 2-PARTITION as follows.

• If t 6
∑n
i=1 ai < 2t, let an+1 = 2t �

∑n
i=1 ai. We build an instance I2

of 2-PARTITION with a1, . . . , an, an+1. Therefore,
∑n+1
i=1 ai = 2t. If

I1 has a solution S′, we have
∑
x∈S′ x = t, and S′ is also a solution

for instance I2, since 1
2

∑n+1
i=1 ai = t. Let us now assume that I2 has a

solution I. Then, either n + 1 2 I, or n + 1 2 f1, . . . , n + 1g n I. The
set S′ that does not contain an+1 is a solution to I1.

• If 2t 6
∑n
i=1 ai, let an+1 =

∑n
i=1 ai � 2t, and we build I2 as before.

We have
∑n+1
i=1 ai = 2

∑n
i=1 ai � 2t. As before, solutions are equivalent

to
∑
i∈I ai =

∑
i∈{1,...,n+1}\I ai =

∑n
i=1 ai � t. Let J be the subset

that does not contain an+1. Then, we have the equivalence with S′ =
faigi∈{1,...,n+1}\J , since

∑
x∈S′ x =

∑n
i=1 ai �

∑
i∈J ai = t.

Therefore, 2-PARTITION is NP-complete.

© 2014 by Taylor & Francis Group, LLC

178 Chapter 7. Exercises on NP-completeness

7.7 Bibliographical notes

Many exercises in this chapter are quite classical and can be found in several
textbooks. Exercises 7.7, 7.8, and 7.9 (graph coloring) and Exercise 7.15
(carpenter) come from the book by Kozen [65].

© 2014 by Taylor & Francis Group, LLC

Chapter 8

Beyond NP-completeness

At the conclusion of Chapter 6, we stated that proving a problem is NP-
complete does not make it go away. The subject of this chapter is to go
beyond NP-completeness and to describe the various approaches that can be
taken when confronted with an NP-complete problem.

The first approach (see Section 8.1) is the most elegant. When deriving
approximation algorithms, we search for an approximate solution, but we also
guarantee that it is of good quality. Of course, the approximated solution
must be found in polynomial time.

The second approach (see Section 8.2) is less ambitious. Given an NP-
complete problem, we show how to characterize particular instances that have
polynomial complexity.

The third approach (see Section 8.3) often provides useful lower bounds.
The idea is to cast the optimization problem under study in terms of a lin-
ear program. While solving a linear program with integer variables is NP-
complete, solving a linear program with rational variables has polynomial
complexity (we are restricted to rational variables because of the impossibil-
ity of efficiently encoding real numbers). The difficulty is then to reconstruct
a solution of the integer linear program from an optimal solution of that pro-
gram with rational variables. This is not always possible, but this method at
least provides a lower bound on any optimal integer solution.

We briefly introduce, in Section 8.4, randomized algorithms as a fourth ap-
proach that solves “most” instances of an NP-complete problem in polynomial
time.

Finally, we provide in Section 8.5 a detailed discussion of branch-and-bound
and backtracking strategies, where one explores the space of all potential so-
lutions in a clever way. While the worst-case exploration may require expo-
nential time, on average, the optimal solution is found in “reasonable” time.

8.1 Approximation results

In this section, we first define polynomial-time approximation algorithms and
(fully) polynomial-time approximation schemes (PTAS and FPTAS). Then,

179

© 2014 by Taylor & Francis Group, LLC

180 Chapter 8. Beyond NP-completeness

we give some examples of approximation and inapproximability results.

8.1.1 Approximation algorithms

In Chapter 6, we have defined the NP-completeness of problems and exhibited
several NP-complete decision problems. As discussed in Section 6.3.4, the
target problem is often an optimization problem that has been restricted to a
decision problem so that we can prove its NP-completeness.

If the optimal solution of an optimization problem cannot be found in poly-
nomial time, one may want to find an approximate solution in polynomial
time.

DEFINITION 8.1. A λ-approximation algorithm is an algorithm whose
execution time is polynomial in the instance size and that returns an approx-
imate solution guaranteed to be, in the worst case, at a factor λ away from
the optimal solution.

For instance, for each instance I of a minimization problem, the solution
of the approximation algorithm for instance I must be smaller than or equal
to λ times the optimal solution for instance I.

The closer λ to 1, the better the approximation algorithm. We catego-
rize some particular approximation algorithms for which λ is close to 1 as
polynomial-time approximation schemes.

DEFINITION 8.2. A Polynomial-Time Approximation Scheme (PTAS) is
such that for any constant λ = 1+ε > 1, there exists a λ-approximation algo-
rithm, i.e., an algorithm that is polynomial in the instance size and guaranteed
at a factor λ.

Note that the algorithm may not be polynomial in 1/ε and thus have a
high complexity when ε gets close to zero. A Fully PTAS is such that the
algorithm is polynomial both in the instance size and in 1/ε.

DEFINITION 8.3. A Fully Polynomial-Time Approximation Scheme, or
FPTAS, is such that for any constant λ = 1 + ε > 1, there exists a λ-
approximation algorithm that is polynomial in the instance size and in 1/ε.

The difference between PTAS and FPTAS is simply that the 8ε quantifier
changes sides. For a PTAS, ε is a fixed constant, so that 2

1
ε is a constant as

well. On the contrary, the complexity of an FPTAS scheme must be polyno-
mial in 1

ε . Of course, having an FPTAS is a stronger property than having
a PTAS (i.e., FPTAS) PTAS).

Finally, we define asymptotic PTAS and FPTAS, which add a constant to
the approximation scheme. We define formally only the APTAS for a mini-
mization problem, and the definition can easily be extended for maximization
problems and AFPTAS.

© 2014 by Taylor & Francis Group, LLC

8.1. Approximation results 181

DEFINITION 8.4. An Asymptotic Polynomial-Time Approximation Sche-
me, or APTAS, is such that for any constant λ = 1 + ε > 1, there exists an
algorithm, polynomial in the instance size, such that CAPTAS 6 λCopt + β
(for a minimization problem), where CAPTAS is the cost of the solution of the
algorithm, Copt is the cost of an optimal solution, and β is a constant that
may depend on ε but should be independent of the problem size.

In the following, we discuss several approximation algorithms, and we show
how to prove that an algorithm is an approximation algorithm (possibly an
(A)PTAS or (A)FPTAS) or how to prove that a problem cannot be approxi-
mated in polynomial time up to any fixed constant λ.

8.1.2 Vertex cover

We consider here the classical vertex cover problem, which was shown to be
NP-complete in Section 6.4.3. We discuss a weighted version of this problem
in Section 8.3.

We first recall the definition of the vertex cover problem in its optimization
problem formulation. Given a graph G = (V,E), we want to find a set of
vertices of minimum size that is covering all edges (i.e., any edge in E includes
at least one of the vertices of the set).

We consider the following greedy algorithm to solve the problem, called
greedy-vc. Initialize S = ;. Then, while some edges are not covered (i.e.,
neither of their end vertices are in set S), pick one edge e = (u, v), add both
vertices u and v to set S, and mark all edges including u or v as covered. It is
clear that greedy-vc returns a valid vertex cover, and that it is polynomial in
the size of the instance. We now prove that it is a 2-approximation algorithm
for the vertex cover optimization problem.

THEOREM 8.1. Greedy-vc is a 2-approximation algorithm for vertex
cover.

Proof. Let A be the set of edges selected by the greedy algorithm. Two edges
of A cannot have a common vertex, and, therefore, the size of the cover of
this algorithm is Cgreedy-vc = 2jAj. However, all edges selected greedily
are independent, and each of them must be covered in any solution; hence,
an optimal solution has at least jAj vertices: Copt > jAj. We deduce that
Cgreedy-vc 6 2� Copt, which concludes the proof.

Note that this approximation factor of 2 is achieved, for instance, if G con-
sists of two vertices joined by an edge. There is a polynomial-time algorithm

that is a 2 � log(log(|V |))
2 log(|V |) approximation [79], but, for instance, we do not

know any polynomial-time algorithms that would be a 1.99 approximation
(the problem is still open).

© 2014 by Taylor & Francis Group, LLC

182 Chapter 8. Beyond NP-completeness

8.1.3 Traveling salesman problem (TSP)

Let G = (V,E) be a complete graph and w : E ! N be a cost function. The
TSP problem consists of finding a cycle C going through each vertex once and
only once, with

∑
e∈C w(e) 6 k. The decision problem, in which k is a fixed

integer, is NP-complete, as mentioned in Section 6.4.5. For the optimization
problem, the goal is to minimize k.

First, we prove that TSP cannot be approximated unless P = NP. Then,
we propose an approximation algorithm in the particular case where the cost
function follows the triangle inequality.

Inapproximability of TSP

THEOREM 8.2. For any constant λ > 1, there does not exist any λ-
approximation algorithm for TSP unless P = NP.

To prove such a result, the methodology is often as follows. The idea
consists of assuming that there is a λ-approximation algorithm for the target
problem (by definition, this is a polynomial-time algorithm). Then, one uses
this approximation algorithm to solve in polynomial time a problem that is
known to be NP-complete. For TSP, we show how any instance of problem
Hamiltonian Cycle (HC, see Definition 6.4) can be solved in polynomial time
using any approximation algorithm for TSP.

Proof. Let us assume that there is a λ-approximation algorithm for TSP. We
consider an instance Ihc of HC, which is a graph G = (V,E), with n = jV j.
Then, we build an instance Itsp of TSP as follows. In the complete graph,
we build a cost function such that w(e) = 1 if e 2 E, and w(e) = λn + 1
otherwise. The size of Itsp is obviously polynomial in the size of Ihc.

We use the λ-approximation algorithm to solve Itsp. Let Calgo be its so-
lution. This solution is such that Calgo 6 λCopt, where Copt is the optimal
solution.

We consider the two following cases:

• If Calgo > λn + 1, then Copt > n. This means that instance Ihc has
no solution. Indeed, a Hamiltonian Cycle for Ihc would be a solution of
cost n for Itsp.

• Otherwise, Calgo < λn + 1, and therefore the solution of Itsp is not
using any edge not in E (otherwise, the cost would be at least λn+ 1).
This solution is therefore a Hamiltonian Cycle for Ihc, which means that
instance Ihp has a solution.

Therefore, the result of the algorithm for Itsp allows us to conclude whether
there is a Hamiltonian Cycle in Ihc, which concludes the proof.

Note that we assumed that λ is constant, but we can even have λ = 1+2−n,
since the algorithm would still be polynomial in the instance size (λ can be

© 2014 by Taylor & Francis Group, LLC

8.1. Approximation results 183

encoded in logarithmic size, hence in O(n)). However, Theorem 8.2 does not

forbid the existence of a 22−n -approximation algorithm.

Approximation algorithm with triangle inequality

We now assume that the cost function w satisfies the triangle inequality, i.e.,
for all vertices v1, v2, v3 2 V , w(v1, v3) 6 w(v1, v2) + w(v2, v3).

The approximation algorithm spanning-tsp works as follows. First, we
build a minimum spanning tree T of the graph G, which can be done in
polynomial time with a greedy algorithm (remove edges by nonincreasing
costs while keeping a connected graph, see Section 3.4). Then, we perform a
tree traversal of T (once a node u is visited, one completely visits the subtree
rooted at one of the children of u before starting to visit any subtree rooted at
another child). Each edge of T is visited exactly twice. We extract a solution
for TSP, i.e., a Hamiltonian Cycle, by recording the order in which vertices
are visited for the first time. From this ordered list of vertices, we build a
cycle by taking the edges that link consecutive vertices (recall that the graph
is complete).

We now prove that this algorithm is a 2-approximation.

THEOREM 8.3. Spanning-tsp is a 2-approximation algorithm for the
traveling salesman problem with the triangle inequality.

Proof. The optimal cost Copt is at least equal to the sum of the costs of the
edges in the minimum spanning tree T , denoted by w(T). Indeed, an optimal
solution is a cycle. If we remove an edge from an optimal solution, we obtain
a spanning tree, and T is a spanning tree of minimum weight. Therefore,
Copt > w(T).

Now, we consider the cost of the solution returned by the algorithm. We
denote this solution by S and its cost by Cspanning-tsp. Let O be the order in
which the vertices are visited in the traversal of T . Vertices that are not leaves
of T appear several times in O. S is obtained from O by keeping only the
first occurrence of each vertex. Because of the triangular inequality, deleting
a vertex from O does not increase the cost of the associated path. (Suppose
we delete the vertex y in the sequence (x, y, z) of O; this is equivalent to
replacing the two edges (x, y) and (y, z) with the single edge (x, z).) Hence,
Cspanning-tsp is less than or equal to the cost of the path associated with O.
Furthermore, the path associated with O contains each edge exactly twice,
and its cost is exactly 2 � w(T). Therefore, Cspanning-tsp 6 2Copt, which
proves the approximation result.

8.1.4 Bin packing

In this section, we introduce a new classical problem that is the bin packing
problem.

© 2014 by Taylor & Francis Group, LLC

184 Chapter 8. Beyond NP-completeness

DEFINITION 8.5 (BP – Bin Packing). Given n rational numbers (also
called objects) a1, . . . , an, with 0 < ai 6 1, for 1 6 i 6 n, can we partition
them in k bins B1, . . . , Bk of capacity 1, i.e., for each 1 6 j 6 k,

∑
i∈Bj ai 6 1?

First, we prove the NP-completeness of this problem, then we exhibit several
approximation results.

NP-completeness of BP

THEOREM 8.4. BP is NP-complete.

Proof. It is straightforward to see that BP is in NP: A certificate is the list,
for each bin, of the indices of the numbers it contains.

The reduction comes from 2-PARTITION. We consider an instance I1 of
2-PARTITION, with n integers b1, . . . , bn. We build the following instance I2

of BP: For 1 6 i 6 n, ai = 2bi
S , with S =

∑n
i=1 bi, and we set k = 2.

It is then straightforward to see that the size of the new instance is poly-
nomial and to check the equivalence of solutions.

Inapproximability of BP

THEOREM 8.5. For all ε > 0, there does not exist any (3
2�ε)-approximation

algorithm for BP unless P = NP.

Proof. Let us assume that there is a (3
2 � ε)-approximation algorithm for BP.

We then exhibit a polynomial algorithm to solve 2-PARTITION.
Given an instance of 2-PARTITION, we execute the algorithm for BP with

the ai as defined earlier. If there exists a 2-PARTITION of the bi, the al-
gorithm returns at most 2 � (3

2 � ε) = 3 � 2ε bins, so it returns two bins.
Otherwise, the algorithm returns a solution with at least three bins. Thanks
to the polynomial approximation algorithm, we can solve 2-PARTITION in
polynomial time, which implies that P = NP. This concludes the proof.

Approximation algorithms for BP

We start with a simple greedy algorithm in which we select objects in a random
order, and, at each step, we place the object either in the last used bin where
it fits (next-fit algorithm) or in the first used bin where it fits (first-fit
algorithm); otherwise (i.e., the object is not fitting in any used bin), we create
a new bin and place the object in this new bin. We prove below that next-fit
(and, hence, first-fit) is a 2-approximation algorithm for the BP problem.

THEOREM 8.6. Next-fit is a 2-approximation algorithm for BP.

Proof. Let A =
∑n
i=1 ai. We have a lower bound on the cost of the optimal

solution (the number of bins used by the optimal solution): Copt > dAe.
Now we bound the cost of next-fit as follows. If we consider two consecu-

tive bins, the sum of the objects that they contain is strictly greater than 1;

© 2014 by Taylor & Francis Group, LLC

8.1. Approximation results 185

otherwise, we would not have created a new bin. Therefore, if Cnext-fit = K,
and Bk is the k-th bin of the solution returned by next-fit, for 1 6 k 6 K,
then by summing the contents of two consecutive bins, we get

K−1∑
k=1

∑
i∈Bk

ai +
∑

i∈Bk+1

ai

 > K � 1 .

Moreover, by definition of A, we have
∑K−1
k=1

(∑
i∈Bk ai +

∑
i∈Bk+1

ai

)
6 2A,

and, therefore, K � 1 < 2A 6 2dAe. Finally, Cnext-fit = K 6 2dAe 6 2Copt,
which concludes the proof.

Note that the approximation ratio is tight for the next-fit algorithm. Con-
sider an instance of BP with 4n objects such that a2i−1 = 1

2 and a2i = 1
2n , for

1 6 i 6 2n. Then, if next-fit chooses the objects in the sequential order, its
solution uses 2n bins (one object a2i−1 and one object a2i in each bin), while
the optimal solution uses only n + 1 bins (for 1 6 i 6 2n, the 2n objects a2i

in one bin and two objects a2i−1 in each of the other n bins).
The previous algorithms can be qualified as online algorithms because no

sorting is done on the objects, and we can pack them in the bins when they
arrive, on the fly. If we have the knowledge of all objects before executing
the algorithm, we can refine the algorithm by sorting the objects beforehand.
Such algorithms are called offline algorithms. The first-fit-dec algorithm
sorts the objects by nonincreasing size (dec stands for decreasing), and then
it applies the first-fit rule: The object is placed in the first used bin in which
it fits; otherwise, a new bin is created.

THEOREM 8.7. Cfirst-fit-dec 6 3
2Copt + 1, where Cfirst-fit-dec is the cost

returned by the first-fit-dec algorithm, and Copt is the optimal cost.

Note that this is not an approximation algorithm as defined above because
of the “+1” in the expression, which corresponds to one extra bin that the
first-fit-dec algorithm may use. This is rather an asymptotic approximation
algorithm, which is similar to an A(F)PTAS scheme. Indeed, the constant 1
is independent of the problem size, and the algorithm is asymptotically a
3
2 -approximation.

Proof. We split the ai in four categories:

A =

{
ai >

2

3

}
B =

{
2

3
� ai >

1

2

}
C =

{
1

2
� ai >

1

3

}
D =

{
1

3
� ai

}
Case 1: There is at least one bin containing only objects of category D in

the solution of first-fit-dec. In this case, at most one bin (the last one) has
a sum of objects of less than 2

3 , and it contains only objects of category D.
Indeed, if the objects of D of the last bin have not fit in the previous bins, it
means that each bin (except the last one) has a sum of objects of at least 2

3 .

© 2014 by Taylor & Francis Group, LLC

186 Chapter 8. Beyond NP-completeness

Therefore, if we ignore the last bin, Copt >
∑n
i=1 ai >

2
3 (Cfirst-fit-dec � 1),

which concludes the proof for this case.
Case 2: There is no bin with only objects of category D. In this case, we

can ignore the objects of category D because they are added into the bins at
the end of the algorithm, and they do not lead to the creation of new bins.
We now prove that the solution of first-fit-dec for the objects of A, B, and C
is optimal. Indeed, in any solution, objects of A are alone in a bin, and there
are at most two objects of B and C in a bin, with at most one object of B.
The first-fit-dec algorithm is placing first each object A and B in a separate
bin, then it does the best matching of objects C, because they are placed in
the bins by decreasing order. In this case, first-fit-dec is optimal.

Note that the reasoning does not hold if the categories are made differently,
with, for instance, 1

4 instead of 1
3 . Indeed, we can then fit three objects of

category C in a single bin, and the reasoning does not hold anymore. However,
we point out that it is also possible to prove that Cfirst-fit-dec 6 11

9 Copt + 1,
and we refer to [112] for further details. The idea of the proof is similar, but
more categories of objects are considered, and the algorithm turns out to be
much more complex.

Without allowing an extra bin, we can finally prove that first-fit-dec is a
3
2 -approximation algorithm.

THEOREM 8.8. First-fit-dec is a 3
2 -approximation algorithm for the bin

packing problem.

Proof. Let k = Cfirst-fit-dec be the cost returned by the first-fit-dec algo-
rithm, and let j =

⌈
2
3k
⌉
. Bins are numbered from 1 to k, and we consider two

cases.
Case 1: If bin j contains an object ai such that ai >

1
2 , then if j′ < j, there

is an object ai′ in bin j′ such that ai′ > ai >
1
2 . This is true for 1 6 j′ < j,

and, therefore, there are at least j objects of size greater than 1
2 that should

be placed in distinct bins. This implies that the optimal cost Copt is greater
than j.

Case 2: None of the bins j′ > j contains any object of size strictly greater
than 1

2 ; there are at least two objects per bin, except for bin k that may
contain only one object, hence 2(k�j)+1 objects in bins j, j+1, . . . , k. None
of these objects fits into bins 1, 2, . . . , j � 1, by definition of first-fit-dec.
We show below that 2(k � j) + 1 > j � 1, and by combining j � 1 of these
objects with each of the first j � 1 bins, we obtain that the sum of the ais
is strictly greater than j � 1, i.e., Copt is greater than j. In order to prove
the inequality 2(k � j) + 1 > j � 1, we show that j =

⌈
2
3k
⌉
6 2

3 (k + 1).
Let y = j � 2

3k. Note that j and k are integers, and 0 6 y < 1. Moreover,
k = 3

2j �
3
2y. If j is even, then 3

2j is an integer; therefore, 3
2y is an integer

strictly smaller than 3
2 , i.e., 3

2y 6 1 and y 6 2
3 . Otherwise, 3

2y + 1
2 is an

integer, and because y < 1, we have 3
2y + 1

2 < 2, i.e., 3
2y + 1

2 6 1 and y 6 1
3 .

Altogether,
⌈

2
3k
⌉

= j = 2
3k + y 6 2

3k + 2
3 .

© 2014 by Taylor & Francis Group, LLC

8.1. Approximation results 187

In both cases, we have

Copt > j =

⌈
2

3
k

⌉
>

2

3
Cfirst-fit-dec ,

which concludes the proof.

8.1.5 2-PARTITION

We discuss approximation algorithms for the 2-PARTITION problem. The
optimization problem associated with 2-PARTITION is the following: Given n
integers a1, . . . , an, find a subset I of f1, . . . , ng such that max

(∑
i∈I ai,

∑
i/∈I ai

)
is minimum. Note that the minimum is always at least max (Pmax, Psum/2),
where Pmax = max16i6n ai and Psum =

∑n
i=1 ai.

This problem is similar to a scheduling problem with two identical proces-
sors. There are n independent tasks T1, . . . , Tn, and task Ti (1 6 i 6 n) can
be executed on one of the two processors in time ai. The goal is to minimize
the total execution time. The processors are denoted by P1 and P2.

We start by analyzing two greedy algorithms for this problem. Then, we
show how to derive a PTAS for 2-PARTITION and even an FPTAS.

Greedy algorithms

The two natural greedy algorithms are the following. We choose tasks in a
random order (online algorithm, greedy-online) or sorted by nonincreasing
execution time (offline algorithm, greedy-offline), and we assign the chosen
task to the processor that has the lowest current load.

The idea of sorting in the offline algorithm is that a task with a large execu-
tion time, if considered at the end of the algorithm, may unbalance the entire
execution. However, the offline version requires that all execution times are
known beforehand. The online algorithm can be applied in a problem where
tasks arrive dynamically (for instance, scheduling user jobs on a biprocessor
server).

THEOREM 8.9. Greedy-online is a 3
2 -approximation algorithm, and gree-

dy-offline is a 7
6 -approximation algorithm for the 2-PARTITION problem.

Moreover, these approximation ratios are tight.

Proof. First, we consider the greedy-online algorithm. Let us assume that
processor P1 finishes the execution at time M1 >M2 (where M2 is the time at
which P2 finishes its execution), and that Tj is the last task executed on P1.
We have M1 + M2 = Psum. Moreover, since the greedy algorithm chose
processor P1 to execute task Tj , it means that M1 � aj 6 M2; otherwise,
Tj would have been scheduled on P2. Finally, the cost of greedy-online is
such that:

Conline = M1 =
1

2
(M1 + (M1�aj) +aj) 6

1

2
(M1 +M2 +aj) =

1

2
(Psum+aj),

© 2014 by Taylor & Francis Group, LLC

188 Chapter 8. Beyond NP-completeness

and since Copt > Psum/2 and Copt > ai for 1 6 i 6 n, we have Conline 6
Copt + 1

2Copt = 3
2Copt, which concludes the proof.

For the offline version of the greedy algorithm, we start as before, but we
refine the inequality aj 6 Copt. If aj 6 1

3Copt, we obtain the approximation
ratio of the theorem, i.e., Coffline 6 7

6Copt. We focus now on the case where
aj >

1
3Copt. Then, j 6 4. Indeed, if aj were the fifth task, because the tasks

are sorted by nonincreasing execution times, there would be at least five tasks
of time at least 1

3Copt, and any schedule would need to schedule at least three
of these tasks on the same processor, leading to an execution time strictly
greater than Copt, and hence a contradiction. Then, we note that, in this
case, the cost Coffline when we restrict to the scheduling of the first four tasks
is identical to the cost when scheduling all tasks. Finally, it is easy to check
(exhaustively) that greedy-offline is optimal when scheduling at most four
tasks. We conclude that Coffline = Copt in this case, which ends the proof.

Finally, we prove that the ratios are tight. For greedy-online, we consider
an instance with two tasks of time 1 and one task of time 2. The greedy algo-
rithm schedules the tasks in time 3 (each task of time 1 on a distinct processor,
then the task of time 2 after one of those), while the optimal algorithm takes
a time 2 (with the two first tasks on the same processor). For greedy-offline,
we consider an instance with two tasks of time 3 and three tasks of time 2.
The greedy algorithm schedules each task of time 3 on a distinct processor,
leading to a total execution time of 7, while the optimal solution consists of
grouping those two tasks on the same processor, with a total time of 6.

PTAS: A (1 + ε)-approximation algorithm

THEOREM 8.10. 8ε > 0, there is a (1 + ε)-approximation algorithm for
the 2-PARTITION problem. In order words, 2-PARTITION has a PTAS.

Proof. We consider an instance I of 2-PARTITION, a1, . . . , an (recall that
the ais can be interpreted as the execution time of tasks), and ε > 0.

We classify the tasks into two categories. Let L = max (Pmax, Psum/2).
The big tasks are in the set Tbig = fi j ai > εLg, while the small tasks are in
the set Tsmall = fi j ai 6 εLg. We consider an instance I∗ of the problem with
the tasks of Tbig, and

⌊
S
εL

⌋
tasks of identical size εL, where S =

∑
i∈Tsmall ai.

The proof goes as follows. We show that the optimal schedule for in-
stance I∗ has a cost C∗opt close to the cost Copt of the optimal schedule for
instance I, i.e., C∗opt 6 (1 + ε)Copt. Moreover, it is possible to compute the
optimal schedule for instance I∗ in a polynomial time. Building upon this
schedule, we finally construct a solution to the original instance I, with a
guaranteed cost.

First, we prove that C∗opt 6 (1 + ε)Copt. Let opt be an optimal schedule
for instance I, of cost Copt. Then, let S1 (resp. S2) be the sum of the small
tasks in this optimal schedule on processor P1 (resp. P2). We build a new
schedule sched∗ in which the big tasks of the optimal schedule opt remain on

© 2014 by Taylor & Francis Group, LLC

8.1. Approximation results 189

the same processors, but small tasks are replaced with
⌈
Si
εL

⌉
tasks of size εL

on processor Pi, for i = 1, 2. Because⌈
S1

εL

⌉
+

⌈
S2

εL

⌉
>

⌊
S1 + S2

εL

⌋
=

⌊
S

εL

⌋
,

we have scheduled at least as many tasks of size εL as the total number of
small tasks in instance I∗. Moreover, the execution time on processor Pi, for
i = 1, 2, has been increased of at most⌈

Si
εL

⌉
� εL � Si 6 εL ,

which means that the cost of this schedule is such that C∗sched 6 Copt + εL.
Moreover, this schedule is a schedule for instance I∗ and, therefore, C∗sched >
C∗opt. Finally, C∗opt 6 Copt + εL 6 Copt + ε� Copt, which concludes the proof
that C∗opt 6 (1 + ε)Copt.

Next, we discuss how to find an optimal schedule for instance I∗. First,
we provide a bound on the number of tasks in I∗. Because we replaced small
tasks of I with tasks of size εL, we have not increased the total execution
time, which is at most Psum 6 2L. Each task of I∗ has an execution time
of at least εL (small tasks), so there are at most 2L

εL = 2
ε tasks. Note that

this is a constant number because ε is a constant. Moreover, we note that the
size of I∗ is polynomial in the size of instance I (because the size of I∗ is a

constant). We can optimally schedule I∗ by trying all 2
2
ε possible schedules

and keeping the best one. Of course, this algorithm is not polynomial in 1/ε,
but it is polynomial in the size of the instance I because it is a constant.

Now we have an optimal schedule opt∗ for instance I∗, of cost C∗opt, and we
aim to build a schedule sched for instance I. For i = 1, 2, we let L∗i = B∗i +S∗i
be the total execution time of processor Pi in the schedule opt∗, where B∗i
(resp. S∗i) is the time spent on big (resp. small) tasks. Then, we build the
schedule sched in which the big tasks are kept on the same processor as in
opt∗, and we greedily assign small tasks to processors. First, we assign small
tasks to processor P1 until their processing time does not exceed S∗1 + 2εL.
Then, we schedule the remaining small tasks to processor P2. Let us prove
now that once all small tasks have been scheduled, the execution time has not
increased by more than 2εL.

Because small tasks have a size of at most εL, the greedy algorithm assigns
at least a total of S∗1 + εL small tasks on processor P1. Then, there are at
most a total of S � (S∗1 + εL) small jobs to assign to processor P2. However,
by construction of I∗, we have S∗1 + S∗2 = εL

⌊
S
εL

⌋
> S � εL and, therefore,

S � (S∗1 + εL) 6 S∗2 , and the execution time of P2 in the new schedule sched
is not greater than in the schedule opt∗.

The schedule sched is a schedule for instance I, which is built in polynomial
time. The cost of this schedule is at most Csched 6 C∗opt + 2εL. We use the

© 2014 by Taylor & Francis Group, LLC

190 Chapter 8. Beyond NP-completeness

previous result that C∗opt 6 (1+ε)Copt and the fact that L 6 Copt to conclude
that Csched 6 C∗opt + 2εL 6 (1 + 3ε)Copt. This is true for all ε, so we can
apply this algorithm with ε/3 to obtain the desired ratio.

Note that a simpler proof can be done by using an optimal schedule for the
big tasks, of cost Cbig, and the greedy-online algorithm introduced above.
Once the small tasks have been scheduled greedily on the two processors,
there are two cases. If the total time has not changed, i.e., it is Cbig, it
is optimal. Otherwise, the processor that ends the execution is executing a
small task aj . This means that before the greedy choice of scheduling task aj
onto this processor, the finishing time of the processor was less than Psum/2;
otherwise, task aj would have been assigned to the other processor because of
the greedy choice. Finally, the cost of the schedule returned by this algorithm
is at most Psum/2 + aj 6 L+ εL 6 (1 + ε)Copt.

A PTAS provides an approximate solution that is as close to the optimal
as one wants. The only downside is that the algorithm running time increases
with the quality of the approximate solution. Some readers may thus be
puzzled by the idea of having a PTAS or an FPTAS for an NP-complete
problem whose objective function takes values in a discrete set, such as 2-
PARTITION. Indeed, a PTAS, for such a problem, enables one to obtain an
optimal solution whenever one is ready to pay the cost. Let us consider any
given instance I of 2-PARTITION. Let S be the sum of the elements of I. If
ε < 1

S , then any 1 + ε approximation produces an optimal solution. Indeed,
(1 + ε)Copt < (1 + 1

S)Copt 6 Copt + 1 because Copt 6 S and because the
objective function can take only integral values. This may be surprising at
first sight, but it does not contradict anything we have written so far. One
should not forget that the running time of an FPTAS is polynomial in the
size of 1

ε , that is, in our example, in the size of S. The running time of a
PTAS can even be exponential in the size of 1

ε . Finding the optimal solution
for 2-PARTITION in time exponential in the size of S is quite simple. One
generates all the subsets of I and computes the sum of the elements of each
subset. If I includes n elements, there are 2n = O(2S) subsets of I. The sum
of the elements of each of them is computed in time O(n) and thus O(S).
Therefore, readers should not be surprised that, for a given value of ε, an
algorithm whose running time is polynomial in the size of the instance can
find an optimal solution to 2-PARTITION.

FPTAS for 2-PARTITION

We have provided a PTAS for 2-PARTITION, but the algorithm finds an
optimal schedule for instance I∗ (i.e., an optimal schedule of the big tasks),
and this is not polynomial in 1/ε. Below, we provide an FPTAS, i.e., a (1+ε)-
approximation algorithm that is polynomial in the size of I and in 1/ε.

© 2014 by Taylor & Francis Group, LLC

8.1. Approximation results 191

THEOREM 8.11. 8ε > 0, there is a (1 + ε)-approximation algorithm for
the 2-PARTITION problem that is polynomial in 1/ε. In order words, 2-
PARTITION has an FPTAS.

Proof. The idea of the proof is to encode the schedules as vector sets, in
which the first (resp. second) element of a vector represents the running time
of the first (resp. second) processor. Formally, for 1 6 k 6 n, V Sk is the set
of vectors representing schedules of tasks a1, . . . , ak: V S1 = f[a1, 0], [0, a1]g,
and we build V Sk from V Sk−1 as follows. For all [x, y] 2 V Sk−1, we add
[x + ak, y] and [x, y + ak] to V Sk. The optimal schedule is represented by a
vector [x, y] 2 V Sn, and it is such that max(x, y) is minimized.

The approximation algorithm enumerates all possible schedules, but some
of them are discarded on the fly so that we keep a polynomial algorithm.

Let ∆ = 1 + ε
2n . We partition the square Psum � Psum following the

power of ∆, from 0 to ∆M . We have M = dlog∆(Psum)e =
⌈

ln(Psum)
ln(∆)

⌉
6⌈(

1 + 2n
ε

)
ln(Psum)

⌉
. Indeed, note that if z > 1, then ln(z) > 1� 1

z .

The idea of the algorithm consists of building the vector sets but adding a
new vector to a set only if there are no other vectors in the same square of
the partitioned Psum � Psum square. Because M is polynomial in 1/ε and in
ln(Psum), and the size of instance I is greater than ln(Psum), the algorithm
is polynomial both in the size of I and in 1/ε. We need to prove that this
algorithm is a (1 + ε)-approximation to conclude the proof.

First, let us formally describe the algorithm. Initially, V S#
1 = V S1. Then,

for 2 6 k 6 n, we build V S#
k from V S#

k−1 as follows. For all [x, y] 2 V S#
k−1,

we add [x+ ak, y] (resp. [x, y + ak]) to V S#
k if and only if there is no vector

from V S#
k in the same square. Note that two vectors [x1, y1] and [x2, y2] are

in the same square if and only if x1

∆ 6 x2 6 ∆x1 and y1
∆ 6 y2 6 ∆y1.

We keep at most one vector per square at each step, which gives an overall
complexity in n�M2, which is polynomial both in the size of instance I and
in 1/ε.

Next, we prove that for all 1 6 k 6 n and [x, y] 2 V Sk there exists

[x#, y#] 2 V S#
k such that x# 6 ∆kx and y# 6 ∆ky. The proof is done

recursively. The result is trivial for k = 1. If we assume that the result is
true for k � 1, then let us consider [x, y] 2 V Sk. Either x = u + ak and
y = v (case 1), or x = u and y = v + ak (case 2), with [u, v] 2 V Sk−1. By

recursion hypothesis, there exists [u#, v#] 2 V S#
k−1 with u# 6 ∆k−1u and

v# 6 ∆k−1v. For case 1, note that [u# + ak, v
#] may not be in V S#

k , but

we know that there is at least one vector in the same square in V S#
k ; there

exists [x#, y#] 2 V S#
k such that x# 6 ∆

(
u# + ak

)
and y# 6 ∆v#. Finally,

we have x# 6 ∆ku + ∆ak 6 ∆k(u + ak) = ∆kx and y# 6 ∆v# 6 ∆ky, and
case 2 is symmetrical. This proves the result.

For k = n, we can deduce that max(x#, y#) 6 ∆n max(x, y). There remains
to be proven that ∆n 6 (1+ε), where ∆n =

(
1 + ε

2n

)n
. We rearrange the last

© 2014 by Taylor & Francis Group, LLC

192 Chapter 8. Beyond NP-completeness

inequality and study the function f(z) =
(
1 + z

n

)n � 1 � 2z, for 0 6 z 6 1,

f ′(z) = 1
nn
(
1 + z

n

)n−1 � 2. We deduce that f is a convex function, and that

its minimum is reached in λ0 = n
(
n−1
p

2� 1
)
. Moreover, f(0) = �1 and

f(1) =
(
1 + 1

n

)n � 3 6 0. Because f is convex, and f(z) 6 0 for z = 0
and z = 1, we can deduce that f(z) 6 0 for 0 6 z 6 1. This concludes the
proof.

8.2 Polynomial problem instances

When confronted with an NP-complete problem, one algorithmic solution con-
sists of finding good approximation algorithms. While some problems may
have good approximation schemes, such as PTAS or FPTAS (see Section 8.1),
some problems cannot be approximated. However, with a slight change of the
problem parameters (constant value for a parameter, different rule of the
game, etc.), it may be possible to find a good approximation algorithm or
even to be able to solve the problem in pseudopolynomial or polynomial time.

The analysis of a problem is comprehensive when we are able to identify at
which point the problem becomes NP-complete and then at which point the
problem cannot be approximated any more. We refine the problem complexity
as follows:

• The class P consists of all optimization problems that can be solved in
polynomial time.

• The class FPTAS consists of all optimization problems that have an
FPTAS, and it contains P.

• The class PTAS consists of all optimization problems that have a PTAS,
and it contains FPTAS.

• The class APX consists of all optimization problems that have a polyno-
mial-time approximation algorithm with a constant ratio, and it contains
PTAS.

• Finally, the class NP contains APX: Some problems may be in NP but
not in APX.

We also consider the class of problems that can be solved in pseudopoly-
nomial time, PPT. This class includes P but none of the other previous
classes. Some problems that can be solved in pseudopolynomial time may
not have an FPTAS or may not even be in APX. The problems of (i) find-
ing a pseudopolynomial-time algorithm to solve the problem exactly and (ii)
finding good polynomial-time approximation algorithms are not correlated.

© 2014 by Taylor & Francis Group, LLC

8.2. Polynomial problem instances 193

In the following, we illustrate how the problem can move from one category
to another when parameters are modified. In particular, we check whether the
problem can be solved in polynomial time or in pseudopolynomial time, and
if there is no polynomial-time algorithm to solve the problem, we investigate
polynomial-time approximation algorithms.

8.2.1 Partitioning problems

First, we provide both the optimization and decision versions of the parti-
tioning problem that we consider, and then we investigate variants of the
problem.

Optimization problem (PART-OPT). Let a1, . . . , an be n positive
integers. The goal is to partition these integers into p subsets A1, . . . , Ap, in
order to minimize the maximum (over all subsets) of the sum of the integers
in a subset:

min

 max
16j6p

∑
i∈Aj

ai

 .

Decision problem (PART-DEC). The associated decision problem is
the following: Let a1, . . . , an be n positive integers. Given a bound K, is it
possible to partition these integers into p subsets A1, . . . , Ap, such that the
sum of the integers in each subset does not exceed K? In other words,

for all 1 6 j 6 p,
∑
i∈Aj

ai 6 K .

We can easily prove, from a reduction from 3-PARTITION, that PART-
DEC is NP-complete in the strong sense. No pseudopolynomial algorithm
is known to solve PART-DEC. However, PART-OPT is a classical scheduling
problem. The goal is to schedule n independent tasks onto p processors, where
ai is the execution time of task Ti, for 1 6 i 6 n, and the goal is to minimize
the total execution time. There is a PTAS to approximate this problem [49].

One way to simplify the problem is to restrict it to the case p = 2. The prob-
lem is then equivalent to 2-PARTITION, and it can be solved in pseudopolyno-
mial time using a dynamic-programming algorithm (see Section 6.2.1). More-
over, this problem is in the class FPTAS, as was shown in Section 8.1.5.

In order to identify polynomial instances of this problem, we consider the
following variants:

1. We consider the case in which all integers are equal, i.e., a1 = a2 =
� � � = an = a. In this case, we can find the solution to the optimization

problem, which is simply
⌈
n
p

⌉
� a. Therefore, we also can solve the

decision problem in polynomial time, even in constant time.

2. We change the rule of the game. The subsets must contain only con-
tinuous elements, for instance, [ai, ai+1, . . . , ai′]. The subsets are then

© 2014 by Taylor & Francis Group, LLC

194 Chapter 8. Beyond NP-completeness

intervals, and the problem can be solved in polynomial time. It is the
classical chains-on-chains partitioning problem (see Chapter 11), which
can be solved, for instance, with a dynamic-programming algorithm in
time O(n2 � p).

If we consider the problem as a scheduling problem where we must schedule
n tasks onto p processors, we can conclude that the problem becomes difficult
(NP-complete) as soon as the tasks are different (the case of identical tasks
is case 1) and as soon as we are allowed any mapping (no fixed ordering to
enforce, such as in case 2). Moreover, while the problem is in PPT and has an
FPTAS with p = 2 processors, it is no longer in PPT for an arbitrary number
of processors and has only a PTAS.

For a deeper analysis of partitioning problems, the interested reader can
refer to the chains-on-chains partitioning case study (Chapter 11).

8.2.2 Assessing problem complexity

In this section, we mention two classical approaches when facing NP-complete
problems and aiming at identifying polynomial instances. We illustrate these
approaches with two different problems.

The first problem is a routing problem, which is discussed extensively in
Chapter 13. Given a directed graph G = (V,E) and a set of terminal pairs
R = fRi = (si, ti)g, the goal is to connect as many pairs as possible using
edge-disjoint simple paths. In a solution A, each Ri 2 A must be assigned
a simple path πi from si to ti in G so that no two paths πi and πj , where
Ri 2 A, Rj 2 A and i 6= j, have an edge in common.

The goal is to maximize jAj, the cardinality of A, i.e., the number of con-
nected terminal pairs. It turns out that this routing problem is NP-complete,
and Chapter 13 presents approximation algorithms. But how can we find
polynomial instances? A first idea is to bound the number of terminal pairs
with a constant, but this does not work, as it turns out that the problem
remains NP-complete with only two terminal pairs [35]. Another idea is to
restrict the problem to some special classes of graphs. We show in Chapter 13
that the problem is polynomial for linear chains and stars, regardless of the
number of terminal pairs.

The second problem is a geometric problem, which is investigated in Chap-
ter 14. How can we partition the unit square into p rectangles of given area
s1, s2, . . . , sp (such that

∑p
i=1 si = 1) so as to minimize the sum of the p

half perimeters of the rectangles? In Chapter 14, we explain the relevance
of this problem to parallel computing, and we show that it is NP-complete.
What can we do here? The problem becomes polynomial if we restrict to
same-size rectangles [64], but this is very restrictive. Another approach is to
change the rules of the game and ask for some specific partitioning of the
unit square. Indeed, we show in Chapter 14 that the problem becomes poly-
nomial when restricting to column-based partitioning, i.e., imposing that the

© 2014 by Taylor & Francis Group, LLC

8.3. Linear programming 195

rectangles are arranged along several columns within the unit square. Going
further in that direction, we show that the optimal column-based partitioning
is indeed a good approximation of the general solution. We hope that this
short discussion will urge the reader to read the full case study of Chapter 14.

8.3 Linear programming

Sometimes the solution of an NP-complete problem can be expressed as the
solution of an integer linear program. Once we have written an optimization
problem as an integer linear program, we can do three things:

1. Solve the integer linear program to obtain optimal solutions for (very)
small instances.

2. Relax the integer linear program into a (rational) linear program and
solve it to obtain a bound on the optimal solution for the original prob-
lem.

3. Relax the integer linear program into a (rational) linear program, solve
the latter program to obtain a rational solution, and build an integral
solution from the rational one.

We first introduce the necessary notions and definitions (Section 8.3.1). Then
we describe several rounding approaches to transform a solution of a relaxed
linear program into a solution of the original integer linear program (Sec-
tion 8.3.2).

8.3.1 Formal definition

Linear programming is a mathematical method in which an optimization prob-
lem is expressed as the minimization (or maximization) of a linear function
whose arguments are constrained by a set of affine equations and inequalities.

DEFINITION 8.6 (Linear program). A linear program is an optimization
problem of the form:

Minimize cT � x subject to

Ax 6 b and x > 0

where x is an (unknown) vector of variables of size n, A is a (known) matrix of
coefficients of size m�n, and b and c are the two (known) vectors of coefficients
of respective size m and n (and where cT is the transpose of vector c).

An integer linear program is a linear program whose variables can take only
integral values. A mixed linear program is a linear program in which some
variables must take integral values and some can take rational values.

© 2014 by Taylor & Francis Group, LLC

196 Chapter 8. Beyond NP-completeness

In the above formal definition, linear programs are given under a canonical
form. Therefore, the formal definition of linear programs may look more
restrictive than the informal definition we gave right before the formal one.
In fact, both definitions are equivalent:

• A maximization problem with the objective function cT �x is equivalent
to a minimization problem with the objective function �cT � x.

• An equality dT � x = e is equivalent to the set of two inequalities:{
dT � x 6 e
�dT � x 6 �e.

• A variable that can take both positive and negative values can be equiv-
alently replaced by the difference of two nonnegative variables.

An example: Weighted vertex cover

In Section 8.1.2, we have seen the classical version of the vertex cover problem.
Given a graph G = (V,E), we want to return a set U of vertices (U � V)
of minimum size that is covering all edges, i.e., such that for each edge e =
(i, j) 2 E, i 2 U and/or j 2 U .

Here, we consider the weighted version of this problem. We assign a weight
wi to each vertex i 2 V . The problem is then to minimize

∑
i∈U wi, where

U is once again a vertex cover. This problem amounts to the classical one if
wi = 1 for all i 2 V and is also NP-complete.

We express this minimization problem as an integer linear program. We
introduce a set of Boolean variables, one for each vertex, stating whether the
corresponding vertex belongs to the cover. Let xi be the variable associated
with vertex i 2 V . We will have xi = 1 if i belongs to the cover (i 2 U) and
xi = 0 otherwise.

Minimize
∑
i∈V

xiwi subject to

 8(i, j) 2 E �xi � xj 6 �1
8i 2 V xi 6 1
8i 2 V xi > 0

(8.1)

We now show that solving the Integer Linear Program (8.1), with xi 2 f0, 1g,
is absolutely equivalent to solving the minimum weighted vertex cover problem
for the graph G.

One can easily check that, if U is an optimal solution to the weighted vertex
cover problem, then, by letting xi = 1 for any vertex i in U and xj = 0 for
any vertex j not in U , one builds a solution to the above linear program for
which the objective function takes the value of the cost of the cover U .

Reciprocally, consider an optimal solution to the Integer Linear Program (8.1),
with xi 2 f0, 1g. From this solution, we build a subset U of V as follows.
For any vertex i of V , i belongs to U if and only if xi = 1. For any edge

© 2014 by Taylor & Francis Group, LLC

8.3. Linear programming 197

e = (i, j) 2 E we have �xi � xj 6 �1, which is equivalent to xi + xj > 1. In
other words, either xi or xj or both variables are equal to 1 (remember that
here the xis are integer variables). Therefore, at least one of the two vertices
i and j is a member of U , and U is thus a cover. The objective function is
obviously the cost of the cover U . Therefore, U is a cover of minimum weight.

Complexity

In the general case, the decision problem associated with the problem of solv-
ing integer linear programs is an NP-complete problem [58, 38]. However,
(rational) linear programs can be solved in polynomial time [93]. Hence, the
motivation, when confronted with an NP-complete problem, is to express it as
an integer or mixed linear program and then to solve this program as if it were
a rational linear program. This method is called relaxation. However, the so-
lution obtained this way may be meaningless. For instance, in the case of the
linear program for the weighted vertex cover problem (Linear Program (8.1)),
one of the variables xi can have a value different from 0 and 1, which does not
make any sense because a vertex cannot be partially included in the solution.
The problem then becomes how to build an integral solution from a rational
one. We now focus on this problem, which is called rounding.

8.3.2 Relaxation and rounding

Rounding to the nearest integer

The simplest rounding method is the rounding of any rational variable to the
nearest integer. (Obviously, this method is not fully defined because one will
still have to decide how to handle variables whose values are of the form z+0.5
where z is an integer.) We illustrate this method with the weighted vertex
cover problem.

Algorithm lp-wvc is defined as follows. First, solve the Linear Program (8.1)
over the rationals rather than on the integers, and let fx∗i gi∈V be the found
optimal solution. Then, any vertex i of V belongs to the cover U if and only
if x∗i > 1

2 . In other words, we build from the x∗i s the Boolean variables xis,
by: xi = 1 , x∗i > 1

2 . Not only is Algorithm lp-wvc correct, it is even an
approximation algorithm, as we now prove.

THEOREM 8.12. lp-wvc is a 2-approximation algorithm for weighted ver-
tex cover.

Proof. First, we check that lp-wvc returns a cover. Let (i, j) 2 E be an
edge. Then, because the x∗i s are a rational solution to the linear program, we
have x∗i + x∗j > 1, and at least one of them is greater than or equal to 1/2.
Therefore, in the solution of our problem, we have either xi = 1 or xj = 1 (we
also can have xi = xj = 1). Therefore, the edge (i, j) is covered, xi + xj > 1.

To prove that the algorithm is a 2-approximation, we compare the cost of
the algorithm Clp-wvc =

∑
i∈V xiwi with the cost of an optimal solution Copt.

© 2014 by Taylor & Francis Group, LLC

198 Chapter 8. Beyond NP-completeness

The result comes from two observations: (i) For all i, we have xi 6 2x∗i
(whether i has been chosen to be part of the cover or not), and (ii) the optimal
solution of the linear program over the integers has necessarily a higher cost
than the rational solution (the integer solution is a solution to the rational
problem). Because

∑
i∈V x

∗
iwi is an optimal solution to the rational problem,

Copt >
∑
i∈V x

∗
iwi. Finally, we have

Clp-wvc =
∑
i∈V

xiwi 6
∑
i∈V

(2x∗i)wi 6 2Copt,

which concludes the proof.

Threshold rounding

We do not have any a priori guarantee that the rounding to the nearest integer
will produce a valid integer solution. We illustrate this potential problem with
the set cover problem.

DEFINITION 8.7 (SET-COVER). Let V be a set. Let S be a collection
of k subsets of V : S = fS1, . . . , Skg where, for 1 6 i 6 k, Si � V . Let K be
an integer, with K < k. Is there a subcollection of at most K elements of S
that covers all elements of V ?

SET-COVER is an NP-complete problem [58, 38]. It easily can be coded as
an integer linear program. Let δi,j be a Boolean constant indicating whether
the element v 2 V belongs to the subset s 2 S. As previously, variable xs
indicates whether the set s 2 S belongs to the solution. The following integer
linear program then searches for a minimum set cover. The first inequality
just states that, whatever the element v of V , at least one of the subsets
containing v must be picked in the solution.

Minimize
∑
s∈S

xs subject to

8v 2 V �

∑
s∈S

δv,sxs 6 �1

8s 2 S xs 6 1
8s 2 S �xs 6 0

(8.2)

Now, consider the following particular instance of minimum cover: V =
fa, b, c, dg and S = fS1 = fa, b, cg, S2 = fa, b, dg, S3 = fa, c, dg, S4 = fb, c, dgg.
One can easily see that any two elements of S define an optimal solution. We

© 2014 by Taylor & Francis Group, LLC

8.3. Linear programming 199

write explicitly the Linear Program (8.2) for that instance:

Minimize xS1
+ xS2

+ xS3
+ xS4

subject to

�xS1 � xS2 � xS3 6 �1
�xS1

� xS2
� xS4

6 �1
�xS1

� xS3
� xS4

6 �1
�xS2

� xS3
� xS4

6 �1
8s 2 fS1, S2, S3, S4g xs 6 1
8s 2 fS1, S2, S3, S4g �xs 6 0.

(8.3)

By summing the first four inequalities, we obtain xS1
+ xS2

+ xS3
+ xS4

> 4
3 .

Hence, the optimal value of the objective function is not smaller than 4
3 . Then,

one can check that x∗S1
= x∗S2

= x∗S3
= x∗S4

= 1
3 defines an optimal solution

of the relaxed (rational) version of the Linear Program (8.3). Rounding this
optimal rational solution to the nearest integer would lead to xS1

= xS2
=

xS3
= xS4

= 0, which, obviously, does not define a cover. To circumvent this
problem, rather than to round each variable to the nearest integer, one can
use a generalization of this technique: threshold rounding. When variables
are 0-1 variables, that is, when variables can take only the values 0 or 1, one
first sets a threshold and then rounds to 1 exactly those variables whose values
are not smaller than the threshold. This technique leads to an approximation
algorithm for the minimum set cover problem.

THEOREM 8.13. Let P = (V,S) be an instance of the minimum set cover
problem in which each element of V belongs to at most p elements of S. Then,
solving the Linear Program (8.3) over the rationals and rounding the solution
with the threshold 1

p builds a cover whose size is at most p times the optimal.

Proof. Let us consider an optimal solution x∗ of the relaxed linear program.
Let v be any element of V . By definition of p, v belongs to q 6 p elements
of S: Sσ(1), . . . , Sσ(q). The Linear Program (8.2) contains the constraint
�x∗Sσ(1) � x∗Sσ(2) � � � � � x∗Sσ(q) 6 �1. Therefore, there exists at least one

i 2 [1, q] such that xSσ(i) > 1
q > 1

p and the solution contains at least one
element of S that includes v, namely, Sσ(i). Thus, the solution is a valid

cover. Then, for any element s of S, xs 6 p � x∗s. Indeed, if x∗s > 1
p , then

xs = 1 and xs = 0 otherwise. This completes the proof for the approximation
ratio.

Randomized rounding

In the previous two approaches, the value of a variable in a rational solution
was considered to be a deterministic indication of what should be the value
of this variable in an integer solution. In the randomized rounding approach,
the fractional part of such a value is interpreted as a probability.

© 2014 by Taylor & Francis Group, LLC

200 Chapter 8. Beyond NP-completeness

Let us consider a nonintegral component x∗i of an optimal rational solu-
tion x∗, and let y∗i be its fractional part: x∗i = bx∗i c + y∗i , with 0 < y∗i < 1.
Then, in randomized rounding, y∗i is considered to be the probability that, in
the integral solution, xi will be equal to dx∗i e rather than to bx∗i c. In practice,
using any uniform random generator over the interval [0, 1], one generates a
number r 2 [0, 1]. If r > y∗i , then we let xi = dx∗i e, and xi = bx∗i c otherwise.

Iterative rounding

In all the previously described rounding approaches, a single relaxed linear
program is solved, and then one tries to build an integral solution from the
rational solution. A potential problem of these approaches is that the as-
signment of a particular value to one of the variables may force the value of
some other variables in any valid solution. For instance, let us go back to the
example showing that rounding to the nearest integer could lead to nonfea-
sible solutions to the minimum cover problem. There, setting xS1

= 0 and
xS2

= 0 imposes that xS3
= xS4

= 1 (because, respectively, a and b must be
covered). Rounding to the nearest integer ignores this implication and leads
to an infeasible solution. A way to avoid such a problem is to assign values
only to a subset of the variables and then solve the relaxed version of the
linear program while taking into account the assignments made so far. This
way, we obtain a new rational solution where fewer variables have noninte-
gral values. The process is then iterated until an integral solution is built (or
the transformed linear program has no solution). The smaller the number of
variables assigned at each iteration, the higher the probability to end up with
a valid solution but also the higher the number of iterations, the complexity,
and the execution time.

8.4 Randomized algorithms

In this section, we briefly explore how randomized algorithms can help deal
with NP-complete problems. We restrict ourselves to a randomized algorithm
to solve the NP-complete HC problem (recall that HC stands for Hamiltonian
Cycle, see Definition 6.4, p. 130). Given an undirected graph, the algorithm
incrementally builds a cycle, taking random decisions on the next vertex to
visit to augment the current path. The algorithm will indeed output a Hamil-
tonian cycle with high probability as soon as the graph contains enough edges.
We will quantify this last statement in what follows.

© 2014 by Taylor & Francis Group, LLC

8.4. Randomized algorithms 201

8.4.1 The algorithm

Consider a graph G = (V,E). How can we build a Hamiltonian cycle in G
by taking random decisions? The first idea is to grow a path iteratively by
picking any neighbor of the current path head that has not been picked so
far. Start by picking a vertex, say v1, at random, and make it the head of the
path. Then, pick any neighbor of v1, say v2, and make it the new head of the
path. Progress likewise at each step; pick any neighbor vk+1 of the current
path head vk, and make it the new head of the path. But what if vk+1 is
equal to some vertex vi, 1 6 i 6 k � 1, that is already present in the path?
Then, the algorithm can perform a rotation, as illustrated by Figure 8.1.

v1 v2 v3 vi vi+1 vk

v1 v2 v3 vi vi+1 vk

Rotation (vi, vk)

FIGURE 8.1: Rotation (vk, vi) of the path. The new head is vi+1.

We obtain the following algorithm, where at each step we pick at random
a neighbor u of the current path head vk among the set of edges originating
from vk that have not been used so far. At the beginning, no edge has been
used yet.

8.4.2 Results

What is the probability that Algorithm 8.1 will successfully build a Hamilto-
nian cycle for G? We would like to express this probability as a function of
n = jV j, the number of vertices in G. Note that there exist exactly 2n(n−1)/2

different graphs with n vertices because there are
(
n
2

)
possible edges that can

or cannot be added to the graph.

THEOREM 8.14. There exist constants c and d such that if we pick at ran-
dom a graph G with n vertices and at least c log n edges, then with probability
at least 1 � 1

n , Algorithm 8.1 will find a Hamiltonian cycle during its first
dn log n steps.

Proving this theorem is not difficult. This requires, however, some ba-
sic knowledge about probability theory (binomial distributions and Markov
bound essentially) that is out of the scope of this chapter. We refer the reader
to [78] for a proof and many more details about random graphs. We limit
ourselves to some comments. First, the randomized algorithm does not give
any insight on the P versus NP problem, nor does it help solve all instances of
the HC problem. However, on the positive side, we have a fast algorithm that

© 2014 by Taylor & Francis Group, LLC

202 Chapter 8. Beyond NP-completeness

Input: graph G = (V,E) with n vertices
Output: a Hamiltonian cycle in G or failure

1 foreach v 2 V do
2 unused(v) := f(v, u) j (v, u) 2 Eg
3 pick a vertex at random and make it the head of the path
4 while true do
5 let (v1, . . . , vk) be the current path (with head vk)
6 if unused(vk) = ; then return failure
7 else let (vk, u) be the first element in unused(vk)
8 delete edge (vk, u) from unused(vk) and unused(u)
9 if u /2 fv1, . . . , vk−1g then

10 add u to the path and let vk+1 = u be the new path head
11 else
12 let i be such that vi = u
13 if k = n and vi = v1 then return fv1, . . . , vng
14 else rotate (vk, vi) and let vi+1 be the new path head

ALGORITHM 8.1: Randomized algorithm for the HC problem.

solves HC in most instances, as soon as the graph has enough edges. This
is expected news, as we expect a random graph to be connected and then to
have large cliques, or a Hamiltonian cycle, when its number of edges grow.
But the beauty of Theorem 8.14 is to quantify this observation.

8.5 Branch-and-bound and backtracking

In this last section, we introduce branch-and-bound and backtracking tech-
niques. The principle is to represent as a tree the search space (i.e., all candi-
date solutions) and then to explore this tree and remove branches that either
lead to no valid solution or lead to solutions that are less good. Such algo-
rithms return exact solutions to an NP-complete problem. For decision prob-
lems, the technique is called backtracking, while it is called branch-and-bound
for optimization problems. While there is no guarantee on the execution time
of such algorithms (the worst case may well be exponential because we may
need to explore the entire search space), they are offering practical and often
efficient solutions to deal with NP-complete problems.

We first present a small example of a backtracking algorithm with the n-
queens problem. Then, we investigate branch-and-bound with the knapsack
problem. Finally, we discuss some more complex graph algorithms.

© 2014 by Taylor & Francis Group, LLC

8.5. Branch-and-bound and backtracking 203

{
FIGURE 8.2: The n-queens backtracking tree.

8.5.1 Backtracking: The n queens

In a chess game, a queen can move as far as she wants: horizontally, vertically,
or diagonally. We consider a chess board with n rows and n columns. The
problem is to place n queens on this chess board so that none of them can
attack any other in one move.

In any solution, there is exactly one queen per row. Therefore, the search
space is of size nn. However, because of the many constraints, many solutions
can be discarded. The idea of the backtracking algorithm is to place a queen
on the first row (n possible choices) and then perform a recursive call for the
next row. We discard the choices that lead to no solution, and if no solution is
found on a branch of the tree, we go up in the tree and try the next possibility
(the next branch).

Figure 8.2 illustrates the tree for n = 4. Because the problem is symmetri-
cal, we develop only the portion of the tree in which we place the first queen
either on the first or on the second column. Once a queen has been placed,
the squares on which it is not possible to place another queen have been col-
ored. Therefore, if we place the first queen on the top left corner, the queen
on the second row can be placed only on the third or fourth column. If we
place it on the third column, there is no further choice for the third queen.
If we place it on the fourth column, we can still place the third queen on the
second column, but then there is no possibility for the last queen. However,
a solution is found by exploring the second branch of the tree.

© 2014 by Taylor & Francis Group, LLC

204 Chapter 8. Beyond NP-completeness

8.5.2 Branch-and-bound: The knapsack

A branch-and-bound algorithm works in two phases. The branch consists of
splitting a set of solutions into subsets, while the bound consists of evaluating
the solutions of a subset by bounding the value of the best solution in this
subset.

We consider the knapsack problem, which was introduced in Section 4.2
and that we redefine briefly. Given a set of items I1, . . . , In, where item Ii has
a weight wi and a value ci (1 6 i 6 n), we want to determine the items to
include in the collection so that the total weight is less than a given limit W
and the total value is as large as possible. We consider the variant of the
problem where we have as many units of each item as we want. Let xi be the
number of units of item Ii that we decide to add into the knapsack. The goal
is to maximize

∑n
i=1 xi � ci, under the constraint

∑n
i=1 xi � wi 6W .

We consider the running example from [15]. There are four items, and the
goal is to find max(4x1 +5x2 +6x3 +2x4), under the constraint 33x1 +49x2 +
60x3 + 32x4 6 130.

The search space is represented as a tree. The leaves of the tree correspond
to maximal solutions, i.e., solutions to which we cannot add any item because
of the constraint on total weight. At the root of the tree, we have not chosen

any item. The root has
⌈
W
w1

⌉
+ 1 children, which corresponds to picking,

respectively, 0, 1, . . . ,
⌈
W
w1

⌉
units of I1. Then, for each of these nodes, we add

one child for each possible number of units of the next item that can be chosen.
For the last item, we fill the knapsack by adding systematically as many units
of this item as we can. A part of the tree corresponding to this example is
depicted in Figure 8.3. Its height is equal to the number of different items, n.
Each leaf corresponds to a solution, and the number of leaves is exponential
in the problem size.

Note that we have ordered the items such that the ci/wi are nonincreasing,
i.e., the first item has the best value/weight ratio.

Given a search space represented by a tree, the branch-and-bound algorithm
works as follows. At the beginning, there is only one active node, the root of
the tree. At each step, we choose an active node, and we process its children
nodes. If a child has only one child itself, we traverse the branch until we
eventually find a leaf or a node with at least two children. Then we evaluate
the node as follows: (i) If the node is a leaf, it corresponds to a solution, and
we can compute the exact value of this solution. We keep the best solution
between case (i) and the previously best known solution; (ii) otherwise, we
provide an upper bound on the solutions in the branch by filling the unused
weight with the item that has not yet been considered and that has the best
value/weight ratio as if it were a liquid, that is, as if we were allowed to use a
noninteger number of items. All the nodes from case (ii) become active. Before
moving to the next step (i.e., picking up a new active node), we remove the
active nodes that will never lead to a better solution than one of the solutions

© 2014 by Taylor & Francis Group, LLC

8.5. Branch-and-bound and backtracking 205

14,53 13,89 13,26

14,4

12 13 14

FIGURE 8.3: Branch-and-bound algorithm for the knapsack problem.

already found, i.e., if their upper bound is smaller than the value of the best
solution. This corresponds to the pruning of the search space.

In the example (see Figure 8.3), we first process the child node correspond-
ing to x1 = 3. We cannot add any other item in the knapsack, so we reach
a leaf of the tree. The value of the solution is 3 � 4 = 12. This is the best
current solution. Then, we consider the second child node of the root, corre-
sponding to x1 = 2. It has two children, corresponding to x2 = 1 and x2 = 0
(we cannot add more than one unit of item I2 in the knapsack). Therefore,
we evaluate this node. The upper bound is computed with x1 = 2, and all the
remaining space (130� 66) is filled with item I2, which is the remaining item
with the best value/weight ratio. We obtain 2�4+5/49� (130�66) = 14.53.
Because 14.53 > 12 + 1, it may be possible to find a better solution than
the current one (whose value is 12) in this tree, i.e., a solution whose value
is at least 13 (solutions are integers). Therefore, this node becomes active.
With x2 = 1, we obtain a solution of value 13. Then, we evaluate the node
for x2 = 0 because there may still be a solution of value 14 in this subtree.
The evaluation is done by filling the remaining space with item I3, leading to
2 � 4 + 6/60 � (130 � 66) = 14.4. This branch leads to a solution 14, with
x3 = 1. Because the upper bound for this subtree is 14.4, we cannot find a
better solution. We evaluate the third child of the root to 13.89 and then the
last child to 13.26; therefore, no better solution can be found. There are no
more active nodes. The nodes of the tree colored in black are the nodes that
have been evaluated.

Note that several strategies can be considered for the choice of the next ac-
tive node. A depth-first search, as we have done in the example, is very practi-
cal because there are few nodes that are simultaneously active. A breadth-first

© 2014 by Taylor & Francis Group, LLC

206 Chapter 8. Beyond NP-completeness

search often leads to poor results. Another strategy consists of picking the
active node with the best evaluation. Some hybrid strategies also can be con-
sidered. For instance, one can perform a depth-first search until a solution is
found and then use a best evaluation strategy to find even better solutions.
Such a strategy may allow the pruning of several branches.

Note that other strategies can be used to solve this kind of problem. The
branch-and-bound algorithm is often not very efficient in the worst case. How-
ever, it often leads to efficient algorithms on average, as we detail in the next
section.

8.5.3 Graph algorithms

In this section, we consider two important NP-complete graph problems that
we aim to solve with backtracking algorithms. First, we investigate the prob-
lem of finding the largest independent set, and then we investigate the graph
coloring problem.

8.5.3.1 Independent sets

Let G = (V,E) be a graph with n vertices, numbered from 1 to n. The
problem is to find the size of the largest independent set of G, i.e., a subset
S � V such that, for all i, i′ 2 S, (i, i′) /2 E, and jSj is maximum.

The backtracking algorithm is easy to describe and analyze for this problem.
The idea is to explore all possible independent sets and to build a tree with all
the solutions to the problem. The root of the tree corresponds to the empty
set. The children of the root node correspond to independent sets of size 1,
and we add a node only if it is an independent set. The tree is built in a depth-
first traversal. First, we search for independent sets containing vertex 1, which
correspond to the first child of the root, denoted f1g (if (1, 1) /2 E). We then
try to increase the size of this set by adding vertex 2. The children of f1g are
the independent sets of size 2 containing vertex 1. If (1, 2) 2 E, then there
is no independent set containing both 1 and 2; therefore, we do not add any
node in the solution tree and proceed with vertices 3, . . . , n. Otherwise, we
add f1, 2g as a child node of f1g and move to the next level of the tree, trying
to add vertices 3, . . . , n to this independent set and building independent sets
of size 3. When no vertex can be further added, we backtrack up in the tree
and develop all remaining branches of the solution tree. The height of the
solution tree gives the maximum size of an independent set.

The solution tree has one node per independent set and, therefore, the
complexity of the algorithm depends on the number of independent sets, which
can be exponential: For a graph with E = ;, this number is 2n. However, for
a clique of size n, there are only n+ 1 independent sets. The analysis aims at
determining the average complexity of the algorithm, i.e., the average number
of independent sets, denoted In.

Let I(G) be the number of independent sets of a graph G = (VG, E).

© 2014 by Taylor & Francis Group, LLC

8.5. Branch-and-bound and backtracking 207

H(G,S) equals 1 if S is an independent set of G, and 0 otherwise. Therefore,
I(G) =

∑
S⊆VG H(G,S), and the sum contains the 2n possible subsets of V .

The average number of independent sets In is then the sum over all possible
graphs G with n vertices, divided by the number of such graphs, 2n(n−1)/2.
We obtain

In = 2−n(n−1)/2
∑
|VG|=n

∑
S⊆VG

H(G,S) .

We can invert the two sums, and we examine
∑
|VG|=nH(G,S). Given

a set S, this value corresponds to the number of graphs with n nodes that
contain S as an independent set. If jSj = k, there are k(k � 1)/2 edges that
cannot exist in G, and there are n(n�1)/2�k(k�1)/2 possible edges, which
leads to 2n(n−1)/2−k(k−1)/2 graphs with n vertices such that H(G,S) = 1.
Finally, since the number of sets S with k vertices is

(
n
k

)
, we obtain

In =
n∑
k=0

(
n

k

)
2−k(k−1)/2 .

On average, the algorithm is much better than in the worst case; for in-
stance, with n = 40, In = 3862.9, while 2n > 1012. In fact, for large values
of n, In = O(nlog(n)) and, therefore, the average complexity of the algorithm
remains subexponential.

8.5.3.2 Graph coloring

For the graph coloring problem, the backtracking algorithm leads to more
efficient results on average than for the independent sets problem because it
turns out that the average complexity is, in fact, constant for a fixed number
of colors, even when the number of vertices tends to infinity.

Let G = (V,E) be a graph with n vertices, numbered from 1 to n, and K
be an integer. The K-coloring problem is to associate a color with each vertex
such that two vertices connected by an edge have a different color, where K
is the number of colors.

The backtracking algorithm builds all partial colorings of the graph with
only a subset of vertices f1, . . . , Lg, with 1 6 L 6 n. The root of the tree
corresponds to the coloring of the empty graph; it is represented by an empty
set. It has K children nodes, corresponding to the possible colors for vertex 1.
The node is labeled by the set of colors for the vertices that we consider,
i.e., the children of the root are labeled 1, . . . ,K. Similar to the backtracking
algorithm for the independent sets problem, we build the tree in a depth-first
traversal. We add a node 11 as a child of 1 if and only if (1, 2) /2 E, then
we assign the lowest possible color to the third vertex, and so on. If there
is no possible color for one of the vertices, or if we have successfully colored
all vertices, we go up in the tree until we can try another color for one of

© 2014 by Taylor & Francis Group, LLC

208 Chapter 8. Beyond NP-completeness

the vertices. (Remember that the backtracking algorithm builds all partial
colorings of the graph.)

Note that the branch of a tree may stop before a color has been assigned
to each vertex, and it may happen that no valid coloring can be found. At
level L of the tree, we have all partial colorings of vertices f1, . . . , Lg, and
a valid coloring has been found if the tree has nodes of level n. Graph G
restricted to vertices f1, . . . , Lg is denoted HL(G) in the following.

The goal is to determine the average number of nodes An,K of a backtrack
tree generated when coloring a graph of size n with at most K colors. There
are 2n(n−1)/2 different graphs, and we decompose the backtrack trees into
levels. If G is a graph with n vertices, we denote by P (K,HL(G)) the number
of nodes at level L of the backtrack tree of G. It is equal to the number of
correct colorings of graph HL(G) with K colors. Finally,

An,K = 2−n(n−1)/2
∑
|VG|=n

n∑
L=0

P (K,HL(G)) .

We invert the two sums and examine
∑
|VG|=n P (K,HL(G)), given a level L.

Note that there are exactly 2n(n−1)/2−L(L−1)/2 graphs that share the same
graph HL(G), and, therefore,

An,K = 2−n(n−1)/2
n∑

L=0

2n(n−1)/2−L(L−1)/2BL,K =
n∑

L=0

2−L(L−1)/2BL,K ,

where BL,K is the total number of correct colorings with K colors of all
graphs with L vertices. Given a coloring, we denote by si the number of
vertices that are colored with the color i, for 1 6 i 6 K. Because the graphs
have L vertices, we have

∑K
i=1 si = L. Moreover, an edge can connect only

two vertices of different colors, and, thus, the maximum number of edges is
En,K = s1s2 + s1s3 + � � �+ s1sK + s2s3 + � � �+ sK−1sK =

∑
16i<j6K sisj . We

compute this value as follows:

En,K = 1
2

∑
i6=j sisj = 1

2

(∑K
i,j=1 sisj �

∑K
i=1 s

2
i

)
= 1

2

(∑K
i=1 si

)2

� 1
2

∑K
i=1 s

2
i = 1

2L
2 � 1

2

∑K
i=1 s

2
i .

It is easy to check that
∑K
i=1 s

2
i > L2/K, because L =

∑K
i=1 si:∑K

i=1 s
2
i � L2/K =

∑K
i=1 s

2
i � 2L2/K + L2/K

=
∑K
i=1

(
s2
i � 2Lsi/K + L2/K2

)
=
∑K
i=1 (si � L/K)

2 > 0 .

Therefore, En,K 6 1
2L

2 � 1
2L

2/K = L2(1 � 1/K)/2. The number of graphs

HL(G) with the same coloring is at most 2L
2(1−1/K)/2. Because there are

at most KL different colorings (counting invalid ones), we obtain BL,K 6
KL2L

2(1−1/K)/2, and, finally,

© 2014 by Taylor & Francis Group, LLC

8.6. Bibliographical notes 209

An,K 6
n∑

L=0

2−L(L−1)/2KL2L
2(1−1/K)/2 6

∞∑
L=0

KL2L/22−L
2/2K .

This infinite series is converging; therefore, A(n,K) is bounded for all n.

8.6 Bibliographical notes

The FPTAS for scheduling independent tasks on two processors (Section 8.1.5)
is presented in [95]. Further references for approximation algorithms are the
books by Ausiello et al. [5] and by Vazirani [103]. Randomized algorithms
(Section 8.4) are dealt with in the books by Mitzenmacher and Upfal [78] and
by Motwani and Raghavan [80]. Section 8.5.2 (branch-and-bound) is inspired
from [15]. The backtracking graph algorithms (Section 8.5.3) are analyzed
in [108].

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 9

Exercises going beyond
NP-completeness

This chapter presents a set of exercises related to Chapter 8. The main focus
is on approximation results (Section 9.1), and there are also exercises deal-
ing with linear programming, randomized algorithms, and branch-and-bound
techniques (Section 9.2). Solutions are provided in Section 9.3.

9.1 Approximation results

Exercise 9.1: Single machine scheduling (solution p. 219)

We have n independent tasks, T1, . . . , Tn, to execute on a single computer. For
any 1 6 j 6 n, the execution time of task Tj is wj and task Tj is submitted
to the system at time rj . In other words, the processing of task Tj cannot
start earlier than time rj . We denote by Cj the completion time of task Tj ,
that is, the time at which its processing completes. We assume that wj is a
positive integer and rj is a nonnegative integer.

The objective function is the sum of the completion times: S =
∑n
j=1 Cj .

1. We assume in this question that tasks can be preempted (we explain
below in detail what preemption is). Prove that in this framework the
optimal solution is obtained by scheduling during each interval [i; i+ 1],
for any nonnegative integer i, the task whose remaining processing time
is the smallest. This scheduling algorithm is called Shortest Remaining
Processing Time first, or SRPT.

To explain preemption, let us consider a task Tj that is executed
during the time interval [i; i + 1] (where i is some integer) and whose
processing has not completed at time i + 1. We allow another task Tk
(with j 6= k) to be processed during the time interval [i + 1; i + 2].
The execution of task Tj will eventually be resumed. The sum of the
durations of the time intervals during which Tj is executed is equal to
wj ; when the execution of Tj resumes after a preemption, it restarts
from where it was interrupted.

211

© 2014 by Taylor & Francis Group, LLC

212 Chapter 9. Exercises going beyond NP-completeness

2. We order the tasks by their completion times under an execution of
algorithm SRPT using preemption. Prove that scheduling the tasks
according to this order defines an approximation algorithm for the case
without preemption. (We admit that the problem is NP-hard.)

Exercise 9.2: SUBSET-SUM (solution p. 221)

In Exercise 7.19 (p. 155), we proved that the decision problem SUBSET-SUM
was NP-complete. Here we focus on the associated optimization problem:
Given a finite set S of positive integers, and an integer t, we look for a subset
S′ of S such that the sum of its elements is the largest possible while being
not greater than t (

∑
x∈S′ x 6 t). We call the sum of the elements of S′ the

optimal sum.

Let S = fx1, x2, . . . , xng. In the following, we assume that all the lists are
sorted in nondecreasing order. Given a list of integers L and an integer x,
L+x denotes the list of integers obtained by adding x to each of the elements
of L. Given two (sorted) lists L and L′, we denote by Merge(L,L′) the sorted
union of the elements of the two lists. Algorithm 9.1 is an attempt at finding
the optimal sum.

1 n jSj
2 L0 f0g
3 for i = 1 to n do
4 Li Merge(Li−1, Li−1 + xi)
5 Discard from Li any element greater than t

6 return the largest element of Ln

ALGORITHM 9.1: Sum(S, t).

1. Does Algorithm 9.1 return the optimal sum?
2. What is the complexity of Algorithm 9.1?

In order to define an approximation algorithm for the SUBSET-SUM prob-
lem, we introduce Algorithm 9.2, which takes as input a sorted list and a
threshold δ and outputs a subset of the original list such that two consecutive
elements are at least at a factor 1 + δ from each other. We use this algorithm
to define Algorithm 9.3.

3. Evaluate the number of elements in Li at the end of Step 6. What is
the complexity of Algorithm 9.3?

4. Show that Algorithm 9.3 is a fully polynomial-time approximation scheme
(FPTAS).

© 2014 by Taylor & Francis Group, LLC

9.1. Approximation results 213

1 L′ hy1i
2 last y1

3 for i = 2 to m do
4 if yi > (1 + δ)last then
5 Insert yi at the end of L′

6 last yi

7 return L′

ALGORITHM 9.2: Threshold(L, δ), where L = hy1, . . . , ymi is sorted.

1 n jSj
2 L0 f0g
3 for i = 1 to n do
4 Li Merge(Li−1, Li−1 + xi)
5 Li Threshold(Li, ε/2n)
6 Discard from Li each element greater than t

7 return the largest element of Ln

ALGORITHM 9.3: Sum-with-threshold(S, t, ε).

Exercise 9.3: SET-COVER (solution p. 223)

The decision problem SET-COVER is defined as follows: Given a set X con-
taining n elements, m subsets of X, S1, . . . , Sm, and an integer k 6 n, is there
a set of k of the subsets that covers all elements of X? In other words, is there
a subset I of f1, . . . ,mg, jIj 6 k, such that for all x 2 X, x 2 [i∈ISi?

SET-COVER is an NP-complete problem [38]. The associated optimiza-
tion problem is to find the smallest cover. We consider the following greedy
algorithm for this optimization problem:

• Pick a subset Sj that covers the largest number of elements of X.
• Suppress from X and from the remaining Sis the elements covered by
Sj , and start again.

1. Is this greedy algorithm optimal?
2. Prove that if an optimal solution contains k subsets, the greedy algo-

rithm takes at most O(k ln(n)) subsets.
3. Is this greedy algorithm a λ-approximation of SET-COVER? If so, what

is the value of λ?

Exercise 9.4: VERTEX-COVER (solution p. 224)

We recall here the VERTEX-COVER problem that was introduced in Sec-
tion 6.4.3 (p. 139): Let G = (V,E) be a graph and k be an integer such that

© 2014 by Taylor & Francis Group, LLC

214 Chapter 9. Exercises going beyond NP-completeness

1 6 k 6 jV j; do there exist k vertices vi1 , . . . , vik such that each edge e 2 E
is covered by (at least) one of the vij , for 1 6 j 6 k?

We consider here the weighted version. We have a weight function on the
vertices w : V ! Q+, and the optimization problem is the search for a
vertex-cover S � V whose weight is minimal. To build a 2-approximation,
we introduce a particular weight function where the weight is proportional
to the degree (there exists a constant c such that for any vertex v 2 V ,
w(v) = c� degree(v)).

1. Let fG = (V,E), wg be an instance of VERTEX-COVER such that
there exists a constant c that satisfies w(v) = c � degree(v) for any
vertex v 2 V . Show that w(V) 6 2w(OPT) where w(V) =

∑
v∈V w(v)

and OPT is an optimal cover.

2. We know how to build a 2-approximation of any instance where the
weight function is proportional to the degree. Propose a method to
build a weight function w′ that is proportional to the degree, not greater
than w (i.e., w′(v) 6 w(v) for all v 2 V), and maximal.

3. We consider Algorithm 9.4. Prove that this algorithm terminates in
polynomial time.

1 t 0
2 G0 G
3 w0 w
4 while Gt contains at least one edge do
5 Dt fu 2 Vt : degreet(u) = 0g
6 w′t maximal weight function of Gt proportional to the degree

and not greater than wt
7 St fu 2 Vt j w′t(u) = wt(u)g
8 Gt+1 Gt n (Dt [St)
9 wt+1 wt � w′t

10 t t+ 1

11 return C =

t−1⋃
k=0

Sk

ALGORITHM 9.4: Building a vertex-cover of G = (V,E,w).

4. Prove that the set C returned is a vertex cover.

5. For each vertex v in the cover C, express w(v) as a function of the
w′i(v)s. What about the vertices not in the cover?

© 2014 by Taylor & Francis Group, LLC

9.1. Approximation results 215

Note: we will let w′i(u) = 0 for any vertex u that does not belong to
Gi.

6. Let C∗ be an optimal vertex cover for fG = (V,E), wg. At each itera-
tion i of the “while” loop, compare w′i(C \Gi) and w′i(C

∗ \Gi).

7. Prove that Algorithm 9.4 is a 2-approximation for the minimum weight
vertex cover.

Exercise 9.5: Scheduling independent tasks in parallel (solution
p. 226)

We aim at scheduling a set V = fv1, v2, . . . , vng of n independent tasks, where
each task vi has a nonnegative integer weight (or size) w(vi) = ai (1 6 i 6 n),
on p identical processors (see problem INDEP(p) in Section 6.4.4). We have
shown that this problem is NP-complete in the strong sense in Exercise 7.10.
We extend to the p processor case both greedy algorithms introduced in Sec-
tion 8.1.5 (p. 187) for the two-processor case: greedy-online that considers
the task in an arbitrary order, and greedy-offline that considers the task
in nonincreasing weight. Both algorithms assign the next task on the least
loaded processor.

1. Determine λ such that greedy-online is a λ-approximation algorithm.
Prove that your bound is tight.

2. Determine λ such that greedy-offline is a λ-approximation algorithm.
Prove that your bound is tight.

Exercise 9.6: Point clustering (solution p. 228)

We consider a set S of n points of a metric space (distances satisfy the triangle
inequality). We want to partition S into k groups such that the maximum
diameter of a group is minimized. The diameter of a group is the maximum
distance between two points in the group. In this problem, n and k are fixed
given values.

1. We suppose that the optimal diameter d is known. Propose a 2-approx-
imation algorithm.

2. Let us consider an algorithm that chooses k times as “center” the point
that is the farthest from the already chosen centers. This algorithm
then assigns each point to the center closer to it. Using the result of the
previous question, show that this algorithm is also a 2-approximation
algorithm.

© 2014 by Taylor & Francis Group, LLC

216 Chapter 9. Exercises going beyond NP-completeness

Exercise 9.7: k-center (solution p. 229)

Let G = (V,E) be a complete graph whose edges are weighted by a function w
that satisfies the triangle inequality: w(u, v) 6 w(u,w)+w(w, v) for any three
vertices u, v, and w. For any subset S of the vertices, S � V , and each vertex
v, v 2 V n S, let connect(v, S) be the minimum weight of an edge linking v
to a vertex of S: connect(v, S) = mins∈S w(v, s). Let k be a positive integer
(k > 1). The problem here is to find a k-center, that is, a subset S of size k of
the vertices and such that center(S) = maxv∈V \S connect(v, S) is minimal.
We will build a 2-approximation of the k-center problem, i.e., a subset S of
size k with center(S) 6 2OPT , where OPT = minS⊂V,|S|=k center(S).

1. We sort the edges of E by nondecreasing weights: w(e1) 6 w(e2) 6 � � � 6
w(em), where m = jEj. We let Gi = (V,Ei) where Ei = fe1, e2, . . . , eig
is the set of the first i edges. Show that solving the k-center problem is
equivalent to finding the smallest index i such that Gi has a dominating
set of size at most k, i.e., a subset D of V of size k such that for any
vertex u 2 V nD there exists a vertex v 2 D such that (u, v) 2 Ei.

2. The square of a graph G = (V,E), denoted G(2) = (V,E(2)), is the graph
whose edges are the paths of length at most two of G: (u, v) 2 E(2) if
(u, v) 2 E or if there exists w 2 V such that (u,w) 2 E and (w, v) 2 E.
An independent set is a subset V ′ of the set of vertices, V ′ � V , such
that no two vertices of V ′ are linked by an edge. If H is any graph and
I an independent set of its square graph H(2), prove that jIj 6 dom(H)
where dom(H) is the size of the smallest dominating set of H.

3. We study Algorithm 9.5. Prove that (i) w(ej) 6 OPT , and (ii) this
algorithm is a 2-approximation algorithm.

1 Build the graphs G
(2)
1 , G

(2)
2 , . . . , G

(2)
m

2 for each i in [1;m] do

3 Greedily build a maximal independent set Mi of the graph G
(2)
i

(i.e., an independent set to which no vertex can be added)

4 Let j be the smallest index in [1;m] such that jMj j 6 k
5 return Mj

ALGORITHM 9.5: 2-approximation k-center for graph G.

4. Prove that the approximation ratio of 2 is tight. Exhibit a graph on
which the algorithm solution is indeed twice as large as the optimal one.

© 2014 by Taylor & Francis Group, LLC

9.1. Approximation results 217

5. Prove that, if P 6= NP, there does not exist a (2 � ε)-approximation
algorithm for the k-center for any ε > 0.

Exercise 9.8: Knapsack (solution p. 231)

Given a finite set X of n objects, each object xi 2 X having a value pi 2 N and
a size ai 2 N, the problem is to find a subset Y of X whose value is maximal
and whose total size

∑
xi∈Y ai is not greater than a given bound B. We denote

by m∗(X) the optimal value. We build two approximation algorithms. The
first one is a greedy algorithm (Questions 1 and 2), and the second one is a
dynamic program (Questions 3 and 4).

1. We consider the greedy algorithm that adds objects to the solution by
nonincreasing value of the ratio pi/ai. Let mg(X) denote the value
of its solution. For any integer K, build an instance XK such that
m∗(XK)/mg(XK) > K.

2. Let pmax be the maximal value of an object. Prove that

m∗(X)

maxfmg(X), pmaxg
< 2

and propose a 2-approximation algorithm.

(Hint. Let j be the index of the first object not taken by the greedy

algorithm. Prove that m∗(X) 6
∑j
i=1 pi.)

3. We now build a dynamic program solving the knapsack problem but
that differs from the classic one (i.e., Algorithm 4.3, p. 86). For any k
(1 6 k 6 n) and any candidate value p (0 6 p 6

∑n
i=1 pi), we look

among all the subsets of fx1, x2, . . . , xkg of value equal to p and of
size at most B for one subset of minimal size. We denote by M∗(k, p)
the optimal solution and by S∗(k, p) its size. Propose an algorithm
to compute the M∗(k, p)s through a dynamic programming approach.
What is the complexity of your algorithm?

4. For any rational r > 1, we consider the following approximation scheme.
Let pmax be the maximal value of an object and let t = blog2(r−1

r
pmax
n)c.

Let X ′ be the instance defined by the set of n objects f(p′i, ai)gi∈[1;n]

where p′i = bpi2t c. We use the dynamic program of Question 3 to solve
the knapsack problem for instance X ′. From this solution we build a
solution for X; the solution for X contains the i-th object if and only if
the solution for X ′ contains it. We then denote by mAS(X, r) the value
of the solution for X obtained by this method.

(a) Prove that the execution time of this method is O(r
r−1n

3).

(b) Show that
m∗(X)

mAS(X, r)
6 r.

(Hint: prove that m∗(X)−mAS(X,r)
m∗(X) 6 n2t

pmax
.)

© 2014 by Taylor & Francis Group, LLC

218 Chapter 9. Exercises going beyond NP-completeness

9.2 Dealing with NP-complete problems

Exercise 9.9: Mixed integer linear program for replica place-
ment (solution p. 234)

We consider a tree T whose set of nodes is C [N , where the clients C
are leaves of the tree. Each client i 2 C has ri 2 N requests; each node
j 2 N has a processing capacity Wj 2 N. We need to decide which node is
equipped with a replica and thus becomes a server (j 2 R, where R is the set
of replicas). Requests are subject to a distance constraint, i.e., the requests
of i 2 C can be served only by nodes j on the path from i to the root of
the tree (j 2 ancestors(i)), such that the number of hops between i and j,
dist(i, j), does not exceed di. The goal is then to minimize the cost of replicas,
i.e.,

∑
j∈RWj .

1. Give an integer linear program to solve the problem based on the fol-
lowing variables:

• xj is a Boolean variable equal to 1 if j is a server (for one or several
clients);

• yi,j is an integer variable equal to the number of requests from
client i processed by node j.

2. We solve the previous linear program without enforcing that the yi,js
are integer but allowing yi,j 2 Q, for i 2 C and j 2 N . Show how we
can build an exact solution in polynomial time based on the mixed LP
solution.

3. What can we say if the xjs are also rational numbers?

Exercise 9.10: A randomized algorithm for independent set
(solution p. 237)

An independent set in a graph is a subset of vertices with no edge between
them. Finding the largest independent set is NP-hard, as we have seen in
Exercise 7.13 (p. 153). Let G = (V,E) be a graph with n = jV j vertices and
m = jEj edges. Assume that d = 2m

n > 1. This exercise uses a randomized
algorithm to show that there always exists an independent set with at least

d n
2

4me vertices. The algorithm is the following:

Step 1: Delete each vertex of G, together with all its incident edges, inde-
pendently and with probability 1� 1

d .
Step 2: For each remaining edge, remove it and one of its adjacent vertices.

Show that when the algorithm terminates, it outputs an independent set

whose expected size is at least n2

4m . Deduce the result.

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 219

Exercise 9.11: Branch-and-bound applied to MAX-SAT (solu-
tion p. 237)

We consider the problem MAX-SAT, which is the optimization version of the
classical SAT optimization problem (see Definition 6.6). We want to maximize
the number of clauses that are satisfied.

1. Draw the complete search tree with all solutions for this problem for the
formula (x1 _x2)^ (x1 _x3 _x4)^ (x1 _x2)^ (x1 _x3 _x4)^ (x2 _x3 _
x4) ^ (x1 _ x3 _ x4) ^ x3 ^ (x1 _ x4) ^ (x1 _ x3) ^ x1. Can this formula
be satisfied? What is the optimal solution to MAX-SAT?

2. When we find a solution, how can we cut some branches of the tree to
reduce the search space? Propose an algorithm based on a depth-first-
search strategy.

3. Can you adapt the algorithm using a breadth-first-search strategy? Com-
pare its time complexity with the previous algorithm (in terms of number
of generated vertices) in the example.

4. Apply both algorithms when the order of the variables is modified to
x4, x3, x1, x2, and compare the number of visited vertices using the dif-
ferent search strategies.

9.3 Solutions to exercises

Solution to Exercise 9.1: Single machine scheduling

1. To prove the optimality of the Shortest Remaining Processing Time
(SRPT) first policy, we use an exchange argument. Let I be an instance
of the problem and let A be a scheduling algorithm whose output is
optimal in this instance for our objective function, the minimization of
the sum of completion times. We then consider the first time t at which
the behaviors of A and of SRPT differ. Then, at time t SRPT processes
a task Ti and A processes a task Tj , with i 6= j. From A we construct an
alternative schedule A′. This construction is illustrated in Figure 9.1.
A′ is identical to A before the date t and, after that date, for all tasks
except Ti and Tj . After date t, during each time interval during which A
processed either Ti or Tj , A′ first processes Ti and, when the processing
of Ti is completed, A′ processes Tj .

Let Ck (respectively C ′k) denote the completion time of task Tk, for
any k 2 [1;n], under A (respectively A′). Only the completion times
of Ti and Tj are modified when transforming A into A′. Therefore, for
any k 2 [1;n] n fi, jg, Ck = C ′k. Ti is completed earlier under A′ than

© 2014 by Taylor & Francis Group, LLC

220 Chapter 9. Exercises going beyond NP-completeness

under A; therefore, C ′i 6 Ci. Furthermore, at time t, as SRPT decides
to schedule Ti rather than Tj , this means that the remaining processing
time of Tj is not smaller than that of Ti. Therefore, Ti is completed
under A′ not later than Tj under A: C ′i 6 Cj . Moreover, as A and
A′ use the same time slots to process Ti and Tj after t, maxfCi, Cjg =
maxfC ′i, C ′jg. We have two cases to consider:

(a) maxfCi, Cjg = Cj . Then, C ′j = Cj . Because C ′i 6 Ci, we obtain
C ′i + C ′j 6 Ci + Cj .

(b) maxfCi, Cjg = Ci. Then, C ′j = Ci. Because C ′i 6 Cj , we obtain
C ′i + C ′j 6 Cj + Ci.

In all cases we have:

∑
k∈[1;n]

C ′k =

 ∑
k∈[1;n]\{i,j}

C ′k

+C ′i +C ′j 6

 ∑
k∈[1;n]\{i,j}

Ck

+Ci+Cj .

Therefore, A′ is optimal for instance I because A is optimal by hypothe-
sis. If the solution produced by A′ differs from SRPT, its first difference
happens strictly later than for A. We then iterate the transformation
process we just applied to A. We will eventually obtain a schedule iden-
tical to SRPT and whose sum of completion times is optimal, hence,
proving the desired result.

SRPT Ti

A Tj Ti Tj Tj Ti

Ci

A′ Ti Ti Ti Tj Tj

t C ′i

FIGURE 9.1: Exchange used to prove the optimality of SRPT.

2. We schedule the tasks in the order of their completion times under the
SRPT schedule with preemption. This way we define a schedule S,
under which task Tj completes at time Cj . The same task completed
at time C ′j under SRPT with preemption. Under S, the tasks that
complete before Tj starts are exactly the ones that complete before Tj
completes under SRPT-preemption. As Tj completes at time C ′j under
SRPT-preemption, all of these tasks complete by that time under SRPT-
preemption. Therefore, the sum of the execution times of these tasks
is not greater than C ′j (because all release dates are nonnegative). The
completion time of Tj under S is equal to the release time rj of Tj ,

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 221

plus the remaining processing time of the tasks scheduled before Tj and
not completed by time rj , plus the execution time of Tj . Therefore,
Cj 6 rj + C ′j + wj 6 2C ′j because, obviously, rj + wj 6 C ′j . Finally,∑

j∈[1;n]

Cj 6 2
∑
j∈[1;n]

C ′j = 2SSRPT-preemption 6 2Sopt

where SA denotes the sum of completion times under algorithm A. We
establish this inequality by remarking that SRPT is optimal for minimiz-
ing the sum of completion times with preemption and that the optimal
sum of completion times without preemption cannot be smaller than the
optimal sum of completion times with preemption.

Solution to Exercise 9.2: SUBSET-SUM

1. In Algorithm 9.1, for any i 2 [1;n], Li is the set of all partial sums
of elements of fx1, . . . , xig that are not greater than t (this is trivially
proved by induction). Therefore, max(Ln) is the optimal sum, and
Algorithm 9.1 always returns the optimal sum.

2. In the worst case, not a single value is discarded from Li at Step 5,
for any i 2 [1;n]. This worst case occurs when t >

∑n
i=1 xi. In the

worst case, jLij = 2 � jLi−1j. This happens if there are never two
distinct subsets of S that give rise to the same sum. The instance
S = f1, 2, 22, . . . , 2i, . . . , 2n−1g with t > 2n leads to such a worst case.
Then, as the complexity of the merging of two sorted lists is the sum
of the size of the input lists, the overall complexity of Algorithm 9.1, in
the worst case, is O(2n).

3. Algorithm 9.2 discards elements that are too close to already kept el-
ements (remember that elements are considered in nondecreasing or-
der). We consider the list Ln at the end of Algorithm 9.3. Let Ln =
fy0, . . . , ym−1g. We want to establish an upper bound on m. For any
i in [1;m � 1], the value yi was kept by Algorithm 9.2 because it was
greater than (1 + δ) times the currently largest kept value, which was
yi−1. Furthermore, in all the calls to Algorithm 9.2, δ = ε

2n . Therefore,
as all integers in S are (strictly) positive:

t > ym−1 > (1 + δ)ym−2 > (1 + δ)m−2y0 > (1 + δ)m−2 =
(

1 +
ε

2n

)m−2

.

Therefore,

m 6 2 +
log2(t)

log2(1 + ε
2n)

.

We assume that ε < 2n (as we are interested only in small values of
epsilon). Then, as log2(1 + x) > x for x 2 [0; 1], we obtain:

m 6 2 +
2n log2(t)

ε
.

© 2014 by Taylor & Francis Group, LLC

222 Chapter 9. Exercises going beyond NP-completeness

m is thus polynomial in log2 t, in 1/ε et in n, therefore, in the size of the
input. Algorithm 9.3 has a complexity of O(mn) because the complexity
of each iteration of the loop is linear on the size of the list processed.

The overall complexity is then O
(
n�

(
2n log2(t)

ε + 2
))

= O
(
n2 log2(t)

ε

)
and is polynomial in the size of the input and in 1

ε .

4. As the complexity of Algorithm 9.3 is polynomial in the size of the
input and in 1

ε , to show that it is a fully polynomial-time approximation
scheme, we have only to prove that its output is a (1+ε)-approximation
of the optimal sum. In other words, we must show that maxx∈Ln x �
Opt

(1+ε) , where Opt is the optimal sum.

We denote by Pi the set of all the partial sums not greater than t
that are obtained from the set of integers fx1, . . . , xig. (Then, Opt =
maxx∈Pn x.)

We prove by induction the following property: For any partial sum
x 2 Pi, there exists a partial sum y 2 Li, such that x/(1 + δ)i � y � x.

We initiate the reduction with the case i = 1. If x belongs to Pi nLi,
then, by definition of Algorithm 9.2, there exists a partial sum y 2 Li
such that x 6 (1 + δ)y, and we have y 6 x because Algorithm 9.2 works
on nondecreasing lists. This proves the invariant for the case i = 1.

We now assume that the invariant holds up to rank (i� 1) included,
and we look at the case i. Let x 2 Pi. As Pi = Pi−1[(Pi−1 +xi), x can
be decomposed only as follows: x = x′ + e where x′ 2 Pi−1 and where
e = 0 or e = xi. We then apply the invariant to x′ as x′ 2 Pi−1. There
exists some partial sum y′ 2 Li−1 such that x′/(1 + δ)i−1 � y′ � x′.
We have two cases to consider depending whether y′ + e was kept or
discarded by Algorithm 9.2 during the construction of Li.

(a) y′ + e was kept (i.e., y′ + e 2 Li). Then, using the induction
hypothesis recalled above, we get:

x′ + e

(1 + δ)i
6

x′ + e

(1 + δ)i−1
6

x′

(1 + δ)i−1
+ e 6 y′ + e 6 x′ + e.

As x′ + e = x and as y′ + e 2 Li, the invariant is satisfied.
(b) y′ + e was discarded (i.e, y′ + e /2 li). Therefore, there exists an

element y′′ of Li such that y′′ � y′ + e � (1 + δ)y′′. In addition to
the definition of y′′, we use the induction hypothesis to establish:

x′ + e

(1 + δ)i
6

1

1 + δ

(
x′

(1 + δ)i−1
+ e

)
6

1

1 + δ
(y′ + e) 6 y′′.

As y′′ 6 y′ + e 6 x′ + e and as x′ + e = x, the invariant is also
satisfied in this case.

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 223

We then apply the invariant to the partial sum Opt: There exists an
element y∗ 2 Ln such that:

Opt = max
x∈Pn

x > y∗ >
Opt

(1 + δ)n
=

Opt(
1 + ε

2n

)n .
As ln(1 + x) 6 x for any x > 0, then

(
1 + ε

2n

)n
6 eε/2. As for jxj 6 1,

ex 6 1 + x + x2, and as 1 + x
2 + (x2)2 6 1 + x for 0 > x > 1, then(

1 + ε
2n

)n
6 1 + ε. Therefore,

max
x∈Ln

x > y∗ >
Opt

(1 + δ)n
=

Opt(
1 + ε

2n

)n >
Opt

1 + ε

and Algorithm 9.3 is an (1 + ε)-approximation algorithm. Because of
the algorithm complexity, this algorithm is an FPTAS.

Solution to Exercise 9.3: SET-COVER

1. The greedy algorithm has obviously a polynomial complexity. We have
given, however, a reference to the NP-completeness of the associated
decision problem. Therefore, one should not believe for a single second
that this algorithm is optimal.

We consider the following instance of SET-COVER.X = f1, 2, 3, 4, 5, 6g,
S1 = f1, 2, 3g, S2 = f4, 5, 6g, and S3 = f1, 2, 5, 6g. As all subsets of X
are strict subsets, any set cover must contain at least two of the subsets,
and thus fS1, S2g is an optimal solution. Furthermore, S1 is the sole
subset containing 3, and S2 is the sole subset containing 4. Therefore,
any solution must contain S1 and S2. The greedy algorithm starts by
picking S3. Thus, it builds a solution containing the three subsets and
is not optimal.

2. The set X contains n elements. We assume there exists a set cover of
X made of k of the subsets S1, . . . , Sm with k > 1 (we do not consider
the trivial case where one of the subsets is equal to X). Therefore, there
must exist at least one subset that contains at least n

k elements. Then,
Si1 , the first subset chosen by the greedy algorithm, is such a set. Let
n1 be the number of elements of X not covered by Si1 . Then:

n1 = n� jSi1 j 6 n� n

k
= n

(
1� 1

k

)
.

We then apply the previous reasoning to X n Si1 and to S1 n Si1 , . . . ,
Sm n Si1 . We know, by hypothesis, that there exists a k-cover of X.
Thus, there exists a k-cover of X n Si1 . Thus, the second subset chosen

by the greedy algorithm, Si2 , contains at least
|X\Si1 |

k = n1

k elements of

© 2014 by Taylor & Francis Group, LLC

224 Chapter 9. Exercises going beyond NP-completeness

X n Si1 . Then,

n2 = n1 � jSi2 j 6 n1 �
n1

k
= n1

(
1� 1

k

)
6 n

(
1� 1

k

)2

.

It immediately comes by induction that after m iterations of the greedy
algorithm, the size nm of the elements of X that are not yet covered
satisfies

nm 6 n

(
1� 1

k

)m
.

We want to upper bound m. When m tends to infinity, the right-hand
side of the above inequality tends to zero. Therefore, as soon as m is
large enough for

n

(
1� 1

k

)m
< 1,

the greedy algorithm has built a cover:

n

(
1� 1

k

)m
< 1 , ln(n) +m ln

(
1� 1

k

)
< 0 , m >

� ln(n)

ln
(
1� 1

k

) .
Therefore, we take as upper bound for m:

mlim = 1 +
� ln(n)

ln
(
1� 1

k

) .
Then, when x 2]0; 1[, we have ln(1 � x) 6 �x. This is equivalent to
−1

ln(1−x) 6 1
x . Therefore,

mlim 6 1 + k ln(n).

3. The greedy algorithm is an approximation algorithm with an approxi-
mation factor of ln(n) + 1 (because 1 + k ln(n) 6 k(ln(n) + 1)).

Solution to Exercise 9.4: VERTEX-COVER

1. Let Opt be an optimal vertex cover. By definition, the set of the
edges that are incident to the vertices of Opt is E itself. Therefore,∑
v∈Opt degree(v) > jEj (this is an inequality because an edge can be

incident to two vertices of Opt). Then,

w(Opt) =
∑
v∈Opt

w(v) = c
∑
v∈Opt

degree(v) > cjEj.

We now consider the whole set of vertices as a solution:

w(V) =
∑
v∈V

w(v) = c
∑
v∈V

degree(v) = 2cjEj

and thus w(V) 6 2w(Opt).

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 225

2. We are looking for a weight function w′ such that:

• for any v 2 V , w′(v) 6 w(v);
• there exists c′ such that w′(v) = c′.degree(v).

Therefore, for any vertex v in V whose degree is nonnull, we must have

c′.degree(v) 6 w(v), which is equivalent to c′ 6 w(v)
degree(v) . Furthermore,

we have no constraints for the vertices whose degree is null. w′ is obvi-
ously maximal when c′ is. The solution to our problem is then to define
c′ as:

c′ = min
v∈V,degree(v) 6=0

w(v)

degree(v)
.

3. At each step jStj > 1 because w′t is maximal. As Gt+1 Gt n (Dt [St),
then Vt+1 (Vt and the “while” loop is executed at most jV j times.
Then, any of the steps inside the “while” loop can be completed in time
O(jV j) except the construction of the new graph whose complexity is at
most jV j2. The overall complexity of Algorithm 9.4 is polynomial in the
size of G and thus in the problem size.

4. Let e = (u, v) be any edge of E = E0. There is an index i such that
e 2 Ei and e /2 Ei+1. Therefore, either u, v, or both vertices belong
to (Si [Di). Without loss of generality, we suppose u 2 (Si [Di). As
(u, v) 2 Ei by hypothesis, degreei(u) > 1, and thus u does not belong
to Di. Therefore, u belongs to Si, and thus u belongs to C and e is
covered by C. C is thus a vertex cover.

5. Let K be the number of iterations of the “while” loop: C = [K−1
i=0 Si. At

each iteration we have wt+1 wt � w′t. Let v be a vertex in the cover
C. Then, there exists an index j 2 [0;K � 1] such that v 2 Sj . Then,

w(v) =

j∑
k=0

w′k(v). Therefore, w(v) =
K−1∑
k=0

w′k(v).

We now consider a vertex u that is not in C: u 2 V n C. There is
thus an index j 2 [0;K � 1] such that u 2 Dj . We then have w(u) =(∑j−1

i=0 w
′
i(u)

)
+ wj(u) >

∑j−1
i=0 w

′
i(u) =

∑K−1
i=0 w′i(u).

6. For any i 2 [0;K�1], let Opti be an optimal cover of Hi = (Vi, Ei, w
′
i),

i.e., Hi as the same structure than Gi, but the weight function is w′i in-
stead of wi. A cover is stable when we take its restriction to a subgraph.
Therefore, both C\Gi and C∗\Gi are covers of Hi. Then, according to
Question 1, we have: w′i(C\Gi) 6 2�w′i(Opti). As C∗\Gi is a cover of
Hi and Opti is an optimal cover of Hi, then w′i(C

∗ \Gi) > w′i(Opti).
Therefore, w′i(C \Gi) 6 2�w′i(C∗ \Gi).

© 2014 by Taylor & Francis Group, LLC

226 Chapter 9. Exercises going beyond NP-completeness

7. We start by using the inequality established at Question 5:

w(C) =
∑
v∈C

w(v) =
∑
v∈C

K−1∑
i=0

w′i(v) =
K−1∑
i=0

∑
v∈C

w′i(v) =
K−1∑
i=0

w′i(C \Gi).

We then use the inequality established at the previous question:

w(C) =
K−1∑
i=0

w′i(C \Gi) 6 2�
K−1∑
i=0

w′i(C
∗ \Gi) 6 2w(C∗).

Therefore, Algorithm 9.4 is a 2-approximation for VERTEX-COVER.

Solution to Exercise 9.5: Scheduling independent tasks in
parallel

1. Let M1, . . . , Mp denote the respective completion time of the processors.
The makespan of greedy-online, i.e., the time at which the overall
computation completes, is then: M = max16i6pMi. Let j be the index
of one of the processors whose completion time defined the makespan:
Mj = M . Then, let k be the index of the last task assigned to processor
Pj . As greedy-online assigns a task to the least loaded processor at
the time of the assignment, then all processors were working at the time
of this assignment, that is, at time Mj � ak. Therefore, for all i 2 [1; p],
Mi >Mj�ak. Let W be the sum of the sizes of the tasks: W =

∑n
i=1 ai.

Then, since processors are never left idle,

W =

p∑
i=1

Mi = Mj +
∑

16i6p,i6=j

Mi

>Mj + (p� 1)(Mj � ak) = p �Mj � (p� 1)ak.

Therefore,

M = Mj 6
W

p
+

(
1� 1

p

)
ak.

Let Mopt be the optimal makespan. There are two obvious bounds to
the makespan. The makespan cannot be smaller than any task (for all
i 2 [1;n], ai 6 Mopt), and it cannot be smaller than the average load
of a processor (Wp 6Mopt). Therefore,

M 6
W

p
+

(
1� 1

p

)
ak. 6Mopt +

(
1� 1

p

)
Mopt =

(
2� 1

p

)
Mopt

and λ = 2� 1
p .

To show that this approximation ratio is tight, we consider an instance
including p(p � 1) tasks of size 1 and one task of size p. The optimal

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 227

solution is to assign p tasks of size 1 to each of the first p� 1 processors
and the task of size p to the last processor, achieving a makespan of p.
If, in the arbitrary task order considered by greedy-offline, the task of
size p is scheduled last, at that time all processors were assigned p � 1
tasks of size 1 and the makespan achieved is equal to 2p� 1. Hence, the
approximation ratio in that case is equal to 2p−1

p = 2� 1
p .

2. The greedy-offline algorithm considers the tasks in nonincreasing or-
der: a1 > a2 > � � � > an. Once again, we focus on the task ak that
completes last. We consider two cases. If ak 6 Mopt

3 , we reuse the
previous analysis and obtain:

M 6
W

p
+

(
1� 1

p

)
ak 6Mopt +

(
1� 1

p

)
Mopt

3
=

(
4

3
� 1

3p

)
Mopt.

We now consider the case ak >
Mopt

3 . We can assume that k = n, i.e.,

that ak is the last task. Indeed, let Mopt′ be the optimal makespan
for the instance a1, . . . , ak, and let M ′ be the makespan achieved by
greedy-offline on that instance. Then, we obviously have Mopt′ 6

Mopt and M = M ′. Therefore, if we show that M ′ 6
(

4
3 �

1
3p

)
Mopt′ ,

we will have established the desired result. Therefore, we assume that
k = n. Because (i) tasks are sorted in nonincreasing order, (ii) ak is
the last task, and (iii) ak > Mopt

3 , then all tasks have a size strictly

greater than Mopt

3 and each processor is assigned at most two tasks.
Then, the schedule built by greedy-offline is optimal. We establish
this result by contradiction assuming that greedy-offline is not optimal
for that instance. Let Pj be the processor on which ak is assigned under
greedy-offline. In any optimal solution, no two of the first p tasks
are assigned to the same processor; otherwise, that processor would
be at least as loaded as Pj under greedy-offline, contradicting the
hypothesis. Without loss of generality, we assume that the i-th task,
for i 2 [1; p], is assigned to processor Pi under any optimal solution
and under greedy-optimal. None of the processors P1, . . . , Pj−1 are
assigned two tasks in an optimal solution because it would then be at
least as loaded as Pj under greedy-optimal. No processor can be
assigned three tasks under an optimal solution because each task has a
size strictly greater than Mopt

3 . Then, each of the processors Pp through
Pj is assigned two tasks under an optimal schedule. Then, Pj is assigned
a second task under any optimal schedule, a task whose size is at least
equal to ak, as ak is the smallest task. Hence, there is a contradiction,
which concludes the proof.

To show that this approximation ratio is tight, we consider the fol-
lowing instance that includes 2p+1 tasks: three tasks of size p and then
two tasks each of the sizes p+ 1, p+ 2, . . . , 2p�1. The optimal solution
is to schedule on one processor the three tasks of size p, and then on

© 2014 by Taylor & Francis Group, LLC

228 Chapter 9. Exercises going beyond NP-completeness

each of the other processors two tasks whose sum of sizes is 3p. The
makespan is then equal to 3p. We now focus on the assignment of the
2p largest tasks by greedy-offline (that is, all tasks except one of the
tasks of size p). greedy-offline assigned exactly two of these tasks per
processor, one task of size 2p � 1 with one of size p, one task of size
2p � 2 with one of size p + 1, etc. Then, all processors have a load of
3p� 1. Whatever the processor the last task of size p is assigned to, the
makespan will be 4p� 1 and the approximation ratio: 4p−1

3p = 4
3 �

1
3p .

Solution to Exercise 9.6: Point clustering

1. We consider Algorithm 9.6.

1 for i = 1 to k and S 6= ; do
2 Randomly pick a point pi 2 S
3 Ci = fp′ j d(pi, p

′) 6 dg
4 P = P [fCig
5 S S n Ci
6 return P

ALGORITHM 9.6: Partition a set S in k parts of diameters at most 2d.

As we have assumed that the points of S belong to a metric system,
the distances satisfy the triangle inequality, and the diameter of any
part is at most equal to 2d. Indeed, let us consider the subset Ci for any
integer i 2 [1; k]. We have 8q 2 Ci,8r 2 Ci, d(q, r) 6 d(q, pi)+d(pi, r) 6
2d. We still have to show that P is indeed a partition. For that, we
must show that any point of S belongs to exactly one of the Cis. By
construction, any point of S belongs to at most one of the Cis. Let us
suppose that there exists a point q of S that does not belong to any of
the Cis. Then, for any i 2 [1; k], by definition of Ci, d(pi, q) > d and
d(pi, pj) > d for any j 2 [1; k], j 6= i. Therefore, the set fp1, . . . , pk, qg
is a set of k + 1 distinct points of S so that any two of them are at a
distance strictly greater than d from each other. This contradicts the
hypothesis that there exists a k partition of diameter d. Indeed, in any
partition of size k, at least one of the k parts contains at least two of
the k + 1 elements of the set fp1, . . . , pk, qg, and its diameter is strictly
greater than d.

2. Let A be the algorithm we must study in this question. We compare its
output to that of Algorithm 9.6. At each of its iteration, Algorithm 9.6
randomly picks the seed pi of the new part it builds. If, among the

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 229

possible choices of Algorithm 9.6, there are exactly the centers picked by
Algorithm A, then the latter algorithm is a 2-approximation algorithm
because Algorithm 9.6 is one. Let us suppose that this choice is not
available to Algorithm 9.6. Then, let i be the first step at which A picks
a center qi that does not belong to S n

(
[i−1
j=1Cj

)
. (As the choice was

available to Algorithm 9.6, we assume it picked the same centers as A at
the first i� 1 steps.) Therefore, there exists an index l 2 [1; i� 1] such
that qi 2 Cl and thus d(qi, pl) 6 d as ql = pl by minimality of i. As A
picks at each step the point that is the farthest from the already chosen
centers, this means that all points in S are at a distance at most d from
the chosen centers and that A has already defined a 2-approximation
solution.

Solution to Exercise 9.7: k-center

1. We want to prove that, for a subset S of the vertices, S is a dominating
set of Gi if and only if center(S) 6 w(ei).

S is a dominating set of Gi ,
8v 2 V n S, 9s 2 S such that (v, s) 2 Ei ,
8v 2 V n S, 9s 2 S such that w(v, s) 6 w(ei) ,
8v 2 V n S, connect(v, S) 6 w(ei) ,
center(S) = max

v∈V \S
fconnect(v, S)g 6 w(ei)

Therefore, to minimize center(S) with jSj 6 k is equivalent to finding
the smallest w(ei) (i.e., the minimum index i as the w(ei)s are sorted in
nondecreasing order) such that Gi has a dominating set S of size k.

2. We want to show that if I is an independent set of H(2) (i.e., 8x 2
I, 8y 2 I, (x, y) 62 E(2)

H), then jIj 6 dom(H). Let D be a dominating
set of H. Then, any vertex of I is dominated by (i.e., is linked to
or is equal to) a vertex of D in H, by definition of a dominating set.
Furthermore, any vertex of D dominates at most one vertex of I. Let
us assume that a vertex u of D dominates two distinct vertices v and
w of I. If u is equal to either v or w, there is an edge between u and
the other vertex, and the vertices v and w are at distance 1 in H. If u
is distinct from both v and w, there is an edge between u and each of
these vertices and v and w are at most at distance 2 in H. Whatever
the case, v and w are at most at distance 2 from each other in H and
thus are at distance 1 in H(2), which contradicts the hypothesis that I
is an independent set of H(2). Therefore, any vertex of D dominates at
most one vertex of I, and thus jIj 6 dom(H).

3. (a) By definition of j, for any i 2 [1; j � 1], jMij > k. On the other
hand, for any i, according to Question 2, jMij 6 dom(Gi). There-

© 2014 by Taylor & Francis Group, LLC

230 Chapter 9. Exercises going beyond NP-completeness

fore, for any i 2 [1; j � 1], dom(Gi) > k. According to Ques-
tion 1, OPT = minifw(ei) j dom(Gi) 6 kg. Then, OPT =
mini>jfw(ei) j dom(Gi) 6 kg, and thus OPT > w(ej) because
the edges are ordered by nondecreasing weights.

(b) We need to show that center(Mj) 6 2 �OPT . By definition:

center(Mj) = max
v∈V \Mj

fconnect(v,Mj)g.

We are going to estimate connect(v,Mj) for any vertex of V nMj .
Let v be any such vertex. As Mj is a maximal independent set of

G
(2)
j , Mj [fvg is not an independent set of G

(2)
j . Therefore, there

exists a vertex s of Mj such that (v, s) is an edge of G
(2)
j . We then

have two cases to consider:

• (v, s) is an edge of Gj . Then, w(v, s) 6 w(ej).
• (v, s) is not an edge of Gj . Then, there exists a vertex z such

that Gj includes the edges (v, z) and (z, s). Using the triangle
inequality we obtain: w(v, s) 6 w(v, z) + w(z, s) 6 2 � w(ej).

In both cases, w(v, s) 6 2 � w(ej) and thus connect(v,Mj) 6 2 �
w(ej). Therefore, center(Mj) = maxv∈V \Mj

fconnect(v,Mj)g 6
2 � w(ej) 6 2 �OPT using the result of Question 3.

Finally, we must check that the proposed algorithm runs in poly-

nomial time. Step 1 can be executed in time O(m � n3) (G
(2)
i is

built from Gi in O(n3) using a product of adjacency matrices).
Step 3 can be executed in O(n2) with a greedy algorithm, which
picks a vertex in V nMi, discards this vertex and its neighbors from

G
(2)
i , and iterates on the remaining of the graph. Step 4 can be

executed in O(m). Overall, Algorithm 9.5 runs in polynomial time
and is a 2-approximation algorithm.

4. A graph on which the bound of 2 is reached is, for example, a wheel with
n + 1 vertices (see Figure 9.2) where each edge incident to the center
has a weight of 1 and any over edge has a weight of 2. When k = 1,
the optimal solution is to take the center of the wheel. We then have

OPT = 1. G
(2)
n is the first square graph that is a clique. Therefore,

Algorithm 9.5 returns j = n and Mj contains a single vertex. If this
vertex is not the center, the solution has a cost of 2.

5. We will show that if there existed such an approximation algorithm, it
would solve an NP-complete problem in polynomial time. We build a
reduction from DOMINATING SET. Let (G = (V,E), k) be an instance
of DOMINATING SET. We build a complete graph G′ = (V,E′) with
the following weight function:

cost(u, v) =

{
1, if (u, v) 2 E
2 otherwise.

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 231

FIGURE 9.2: Wheel with n = 8: The edges of weight 1 are thin and the edges
of weight 2 are thick. Not all thick edges are drawn.

One can check that G′ satisfies the triangle inequality. Furthermore, the
reduction satisfies the following conditions:

• If dom(G) 6 k, then G′ has a k-center of cost 1;
• If dom(G) > k, then the optimal cost of a k-center of G′ is 2.

Using a (2�ε)-approximation algorithm on the graph G′ would produce
a solution of cost 1 because it cannot use an edge of cost 2. We would
then have, with such an approximation algorithm, a way to check in
polynomial time whether there exists a dominating set of size k. If P 6=
NP, this is impossible; therefore, such an approximation algorithm does
not exist if P 6= NP.

Solution to Exercise 9.8: Knapsack

1. We consider the following instance I including two objects: p1 = a1 = 1,
p2 = B � 1 and a2 = B, and we take B = K + 2. We then have
m∗(I) = B � 1 = K + 1. The greedy algorithm considers first the first
object, adds it to the knapsack, and stops there and its solution is valued
mg(I) = 1. Therefore, we have:

m∗(I)

mg(I)
=
K + 1

1
> K.

2. Let j be the index of the first object not taken by the greedy algorithm.
When j is considered, the value of knapsack and the size of its content
are, respectively:

pj =

j−1∑
i=1

pi 6 mg(x) and aj =

j−1∑
i=1

ai 6 B.

We first show that for an optimal solution m∗(X) < pj+pj . Let Kj =
fx1, . . . , xj−1g be the current solution of the greedy algorithm. Let x′j
be a task of size a′j = B�aj and of value p′j =

B−aj
aj

pj . Note that x′j has

exactly the same value-to-size ratio as xj . The optimal solution for the
instance X[fx′jg is obviously Kj[fx′jg because this solution completely

© 2014 by Taylor & Francis Group, LLC

232 Chapter 9. Exercises going beyond NP-completeness

fills the knapsack while using only the objects of largest value-to-size
ratio. Furthermore, we obviously have m∗(X) 6 m∗(X [fx′jg) because
any solution of instance X is a solution of instance X [fx′jg. Therefore,

m∗(X) 6 m∗(Xfx′jg) = pj + p′j < pj + pj .

To complete the proof, we must consider two cases. If pj 6 pj , then

m∗(X) < 2pj 6 2mg(X) 6 2 maxfmg(X), pmaxg.

Otherwise, pj > pj and then pmax > pj . In this case

m∗(X) < pj + pj 6 pj + pmax < 2pmax 6 2 maxfmg(X), pmaxg.

From what precedes, taking the best solution among the one pro-
duced by the greedy algorithm and the one including the most valuable
object defines a solution that is never more than two times less valu-
able than the optimal one. As the greedy algorithm obviously runs in
polynomial time, the enhanced greedy algorithm we just defined is a
2-approximation algorithm.

3. For values of k and p for which M∗(k, p) is undefined, we let S∗(k, p) =
1 +

∑n
i=1 ai, i.e., we specify a size that exceeds the bound.

We have the following limit conditions when our choice is limited to
the first object:

• M∗(1, 0) = ; and S∗(1, 0) = 0.
• M∗(1, p1) = fx1g and S∗(1, p1) = a1.
• M∗(1, p) = undefined and S∗(1, p) = 1 +

∑n
i=1 ai for any positive

value p 6= p1.

To define the recursion for the general case (k > 2), we remark that
the best subset of fx1, . . . , xkg of value p is either the best subset of
fx1, . . . , xk−1g of value p or the best subset of fx1, . . . , xk−1g of value p�
pk plus the object xk. Therefore, if pk 6 p, if M∗(k�1, p�pk) is defined,
if S∗(k�1, p�pk)+ak < S∗(k�1, p), and if S∗(k�1, p�pk)+ak 6 B,
then M∗(k, p) = M∗(k� 1, p� pk)[fxkg and M∗(k, p) = M∗(k� 1, p)
otherwise (even if the latter is not defined, in which case M∗(k, p) is
also not defined). From this property, we define Algorithm 9.7.

Algorithm 9.7 builds a solution in time O(n
∑n
i=1 pi). The execution

time is thus polynomial in the sum of objects values, which is exponential
in the input size.

4. (a) The execution time is O(n
∑n
i=1 p

′
i) when running Algorithm 9.7 on

the instance f(p′i, ai)gi∈[1;n]. For any i 2 [1;n], using the definition
of p′i and of t, we obtain:

p′i =
⌊pi

2t

⌋
6
pi
2t

=
pi

2blog2(r−1
r

pmax
n)c 6

pi

2(log2(r−1
r

pmax
n))−1

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 233

1 for p = 1 to
∑n
i=1 pi do

2 M∗(1, p) undefined
3 S∗(1, p) 1 +

∑n
i=1 si

4 M∗(1, 0) ; and S∗(1, 0) 0
5 M∗(1, p1) fx1g and S∗(1, p1) a1

6 for k = 2 to n do
7 for p = 0 to

∑n
i=1 pi do

8 if (pk 6 p) and (M∗(k � 1, p� pk) 6= undefined) and
(S∗(k � 1, p� pk) + ak < S∗(k � 1, p)) and
(S∗(k � 1, p� pk) + ak 6 B) then

9 M∗(k, p) M∗(k � 1, p� pk) [fxkg
10 S∗(k, p) S∗(k � 1, p� pk) + ak
11 else
12 M∗(k, p) M∗(k � 1, p)
13 S∗(k, p) S∗(k � 1, p)

14 p∗ maxfp j M∗(n, p) 6= undefinedg
15 return M∗(n, p∗)

ALGORITHM 9.7: Another dynamic program to solve the knapsack prob-
lem for instance (p1, a1), . . . , (pn, an).

and, therefore,

p′i 6
2 r n pi

(r � 1)pmax
6

2 r n

(r � 1)

as pi 6 pmax. The execution time of the algorithm on that instance
is thus O(r

r−1n
3).

Note that we have made no assumption to ensure that t is posi-
tive. In fact, when r tends to 1, t tends to �1.

(b) Let I be the set of the indices of the objects taken in a optimal
solution for X, and J for an optimal solution for X ′. Then,

m∗(X)� n � 2t =

(∑
i∈I

pi

)
� n � 2t

6
∑
i∈I

(
pi � 2t

)
= 2t

∑
i∈I

(pi
2t
� 1
)

6 2t
∑
i∈I

⌊pi
2t

⌋
6 2t

∑
j∈J

⌊pj
2t

⌋
6 2t

∑
j∈J

pj
2t

=
∑
j∈J

pj = mAS(X, r).

© 2014 by Taylor & Francis Group, LLC

234 Chapter 9. Exercises going beyond NP-completeness

Therefore, we have m∗(X) �mAS(X, r) 6 n � 2t. Furthermore, as
pmax is the largest value of an object in X, n � pmax > m∗(X) >
pmax (assuming, without loss of generality, that no object has a
size greater than B). Consequently,

m∗(X)�mAS(X, r)

m∗(X)
6
n � 2t

pmax
,

which leads to

m∗(X) 6
pmax

pmax � n � 2t
mAS(X, r).

Using the definition of t, we can show that

pmax
pmax � n � 2t

6 r,

which completes the proof.

Solution to Exercise 9.9: Mixed integer linear program for
replica placement

1. The constraints of the integer linear program are the following:

(a) If j /2 ancestors(i), we set yi,j = 0, because the requests can be
served only by nodes on the path from i to the root.

(b) Every request is assigned a server: 8i 2 C,
∑
j∈ancestors(i) yi,j = ri.

(c) Server capacities are not exceeded: 8j 2 N ,
∑
i∈C yi,j 6 Wjxj .

Note that this ensures that if j is the server for one or more requests,
there is indeed a replica located in node j.

(d) Distance constraints are fulfilled:
8i 2 C,8j 2 ancestors(i), dist(i, j)yi,j 6 diyi,j .

The objective function is the cost of replicas,
∑
j∈N Wjxj .

2. We build an integer solution, keeping the same xjs and without breaking
any constraint. In the following, for any variable y, byc is the integer
part of y, and ỹ is the fractional part: y = byc + ỹ, and ỹ < 1. We
denote by subtree(j) the tree rooted in node j.

Let us consider a client i 2 C such that 9j 2 N j ỹi,j > 0, i.e.,
yi,j is not an integer. We consider j1 being the closest server to i not
serving an integer number of requests of client i, and more generally
jk, (1 6 k 6 K) the servers on the path from i to the root, such that
ỹi,jk > 0. We want to move bits of requests in order to obtain an integer
value for yi,j1 . This elementary transformation is called trans(i, j1). We
consider the two following cases.

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 235

(a) If
∑
i′∈subtree(j1)∩C yi′,j1 6Wj1 � (1� ỹi,j1), there is enough space

at server j1 to fulfill an integer number of requests from client i.
Because the total number of requests of client i is an integer,∑K
k=1 ỹi,jk is a nonnull integer. Thus,

∑K
k=2 ỹi,jk > 1�ỹi,j1 , and we

can move down 1�ỹi,j1 bits of requests from servers jk (2 6 k 6 K)
to j1. No constraints will be violated because there is enough space
on the server. The move is done by changing the values of the yi,jks.
After such a transformation, yi,j1 is an integer variable.

(b) Otherwise, if server j1 is already too full in order to add a fraction
of requests from client i, we need to exchange some requests with
other clients. First, if there is some free space on the server, we
start by filling completely server j1 with fractions of requests of
client i from servers jk (2 6 k 6 K). We know there are such
requests; otherwise, yi,j1 would be an integer. This transforma-
tion is similar to the one done in the first case. We now have∑
i′∈subtree(j1)∩C yi′,j1 = Wj1 . Let us denote by it, for 1 6 t 6 T ,

the clients it 2 subtree(j1) \ C n fig such that ỹit,j1 > 0. Because

Wj1 is an integer and ỹi,j1 > 0, we have
∑T
t=1 ỹit,j1 > 1� ỹi,j1 and

also
∑K
k=2 ỹi,jk > 1 � ỹi,j1 . We can select in both sets 1 � ỹi,j1

bits of requests that will be exchanged, i.e., bits of requests from
client it initially treated by j1 will be moved on some servers jk,
which are in ancestors(j1), and the corresponding amount of re-
quests of i will be moved back on server j1. In this case, we may
break a distance constraint because it is not certain that clients
its can be served higher than j1 in order to respect their distance
constraint. However, we will see that in the general transforma-
tion process, we prevent such cases to happen. Note that all other
constraints are still fulfilled.

Once trans(i, j1) has been done, yi,j1 is an integer, and because only
noninteger bits of requests have been moved, we have not assigned any
integer part of the solution and have decreased at least by one the num-
ber of noninteger variables in the solution.

Let us detail now the complete transformation algorithm in order
to obtain an integer solution. Particular attention must be paid to
respect the distance constraints at all time. We consider each server in
a bottom-up order, so that we are sure that each time we perform an
elementary transformation, the server is the first one on the way from
the client to the root having a noninteger number of requests. In fact,
when transforming server j, each server in subtree(j) has already been
transformed and, thus, has no fraction numbers of requests.

In order to transform server j, we look at the set C′ of clients having a
noninteger number of requests processed at j. If the set is empty, there
is nothing to transform at j. Otherwise, we perform the elementary

© 2014 by Taylor & Francis Group, LLC

236 Chapter 9. Exercises going beyond NP-completeness

1 for j 2 N taken in a bottom-up traversal order do
2 finish=1
3 while (finish==1) do
4 C′ = fi′ 2 C \ subtree(j) j ỹi′,j > 0g
5 if C′ == ; then
6 finish=0

7 else
8 i = mini′∈C′ fdi′ � dist(i′, j)g
9 trans(i, j)

ALGORITHM 9.8: Algorithm to transform a rational into an integer solu-
tion.

transformation with the client i that minimizes (di′�dist(i′, j)), for i′ 2
C′. This ensures that when we perform an elementary transformation
as in the second case above, the distance constraint will be respected
for all clients it, because we are moving their requests into servers at a
distance of at most d = di � dist(i, j) from j, and their own distance
constraint allows them to be processed at a distance dit�dist(it, j) > d.
Figure 9.3 illustrates this phase of the algorithm; the algorithm being
formally presented by Algorithm 9.8.

distance constraint for i′

j

i

i′

i′′

distance constraint for i
di � dist(i, j)

dist(i, j)

FIGURE 9.3: Illustration of the transformation algorithm.

At the end of the while loop, server j is processing only integer num-
bers of requests, and, thus, we will not modify its assignment of requests
any more in the following.

The constraints are all respected in all steps of the transformation,

© 2014 by Taylor & Francis Group, LLC

9.3. Solutions to exercises 237

and we do not add or remove any replica, so the solution has exactly
the same cost as the initial LP-based solution, and the transformed
solution is fully integer. Moreover, this transformation algorithm works
in polynomial time, in the worst case in jN j+ jCj2, but most of the time
it is much faster because the transformations do not concern all clients
simultaneously, only a few of them.

3. If the xjs are also rational numbers, there is no hope in finding an op-
timal solution in polynomial time because the problem is NP-complete!
The interested reader will refer to the case study of Chapter 12.

Solution to Exercise 9.10: A randomized algorithm for inde-
pendent set

Let X be the random variable that counts the number of vertices that survive
the first step. Because each vertex survives the first step with probability 1

d ,
we have E[X] = n

d , where E[X] denotes the expectation of X. Let Y be the
random variable that counts the number of edges that survive the first step.
Because an edge survives if and only if its two adjacent vertices survive, which
happens with probability 1

d2 , we have E[Y] = m
d2 (as the expectation of the

sum over all edges is equal to the sum of the expectations).
The second step removes all Y edges and at most Y vertices. The algorithm

outputs an independent set of size at least X�Y , where E[X�Y] = n
d �

m
d2 =

n2

2m �
n2

4m = n2

4m .
We conclude by using the following result: If Z is a discrete random variable

such that E[Z] = µ, then P (X > µ) > 0, and there exists at least one instance
in the sample space for which the value of Z is at least µ. We can take the
ceiling function because the size of an independent set is an integer.

Solution to Exercise 9.11: Branch-and-bound applied to MAX-
SAT

1. The search tree is depicted in Figure 9.4. The number associated with
each leaf of the tree (i.e., a solution) indicates the number of clauses
satisfied by this solution. Therefore, the formula cannot be satisfied,
and the maximum number of clauses that can be satisfied is 9 (over 10
clauses).

2. Once a partial assignment is found, the idea is to check how many clauses
cannot be satisfied and to cut the branches once a solution with more
clauses is found. The algorithm explores the tree with a depth-first
search strategy and obtains the first solution with xi = 1 for all i, for
which n clauses cannot be satisfied. In the example, n = 1 since 9
clauses are satisfied by x1 = x2 = x3 = x4 = 1. Pursuing the depth-first
search, we cut branches that cannot lead to a better solution, i.e., partial

© 2014 by Taylor & Francis Group, LLC

238 Chapter 9. Exercises going beyond NP-completeness

9 9 9 9 8 8 7 8 7 6 6 6 8 7 6 7

x4 = 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

x3 = 1 0 1 0 1 0 1 0

x2 = 1 0 1 0

x1 = 1 0

FIGURE 9.4: Search tree.

assignments with at least n clauses that cannot be satisfied. If a better
solution is found, we update n before continuing the tree exploration.
In the example, for the partial assignment x1 = x2 = x3 = 1, clause
x1 _ x3 cannot be satisfied by any choice of the free variable x4, and,
therefore, we do not explore the branch x4 = 0. Then, for the partial
assignment x1 = x2 = 1, all clauses can be satisfied; we explore the
branch with x3 = 0, but then clause x3 cannot be satisfied and we do
not go further. Similarly, we stop the exploration at x1 = 1 and x2 = 0
because clause x1 _ x2 cannot be satisfied, and then we stop at x1 = 0
because clause x1 cannot be satisfied.

3. With a breadth-first search strategy, the idea is to explore first the
branch with the smallest number of clauses that cannot be satisfied.

4. The exploration is done in a different order when the variables are or-
dered differently, leading to a modified algorithm complexity. We let
the reader draw the corresponding trees and apply both the depth-first
search and the breadth-first search strategies.

9.4 Bibliographical notes

Many exercises in this chapter are quite classical and can be found in several
textbooks. Exercise 9.9 (mixed integer linear program for replica placement)
is inspired from [11]. Exercise 9.11 (branch-and-bound applied to MAX-SAT)
is inspired from the book by Hromkovic [51].

© 2014 by Taylor & Francis Group, LLC

Part III

Reasoning on problem
complexity

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 10

Reasoning to assess a problem
complexity

The third part of the book builds upon the previous chapters, and its objective
is to show the reader how to establish complexity results in their field, by
providing hints on how to assess the complexity of a new problem.

This chapter is organized as follows: In Section 10.1, we first review the basic
reasoning to assess a problem complexity. Then, in Section 10.2, we recall
some very classical problems for which there exist polynomial-time optimal
algorithms. Finally, in Section 10.3, we exhibit a set of useful NP-complete
problems that may be helpful when looking for a reduction.

The following chapters provide a comprehensive set of case studies, which
illustrate the different techniques that can be used to determine the complex-
ity of a new problem. Following the reasoning of Chapter 8, some practical
solutions are proposed to tackle NP-complete problem instances.

10.1 Basic reasoning

In our opinion, the basic reasoning to assess a problem complexity is the fol-
lowing. First, we try to design an algorithm to solve the problem in polynomial
time (see Section 10.1.1). If the complexity of the algorithm remains expo-
nential despite our best efforts, we acknowledge the combinatorial nature of
the problem and try to prove its NP-completeness (see Section 10.1.2). In this
latter case, some practical solutions are then investigated to (approximately)
solve the NP-complete problem.

10.1.1 Polynomial instances

When dealing with a new problem, the most natural approach is to try to
solve it with a greedy algorithm, following the guidelines of Chapter 3. Coun-
terexamples may be exhibited to prove the nonoptimality of the greedy choice.
While a counterexample is found, we refine the greedy choice in order to take
better local decisions, if possible. If no counterexample can be exhibited, we
may try to prove the optimality of this greedy algorithm.

241

© 2014 by Taylor & Francis Group, LLC

242 Chapter 10. Reasoning to assess a problem complexity

If there is no obvious greedy choice to make, or if the attempts to design
a greedy algorithm lead only to nonoptimal algorithms, the next step is to
try to design a dynamic-programming algorithm to solve the problem, as in
Chapter 4. This means identifying subproblems whose optimal solutions can
be used to build an optimal solution to the original problem. While search-
ing for subproblems, one may resort to the divide-and-conquer approach of
Chapter 2, where identical problems of smaller size are solved, and the solu-
tion to the original problem can be reconstructed from these partial solutions.
Note that a particular care should be taken to identify the complexity of the
dynamic-programming algorithm, which may well turn out to be exponential.

If the previous attempts to solve the problem have been unsuccessful or
have resulted in exponential-time algorithms, another way to approach the
problem is to fix the target value to be achieved and search for a solution to
the decision problem that needs to match this target, rather than solve the
optimization problem. Again, a greedy or dynamic-programming algorithm
can be used to solve the decision problem. It may become easier to take local
choices because the target value is known. In case of success, one can resort to
a binary search to solve the original optimization problem. Then, particular
care must be taken about the number of iterations required by the binary
search. This technique will lead to a polynomial-time algorithm only if the
domain of the target value is well identified.

Finally, if none of these techniques work, thanks to the knowledge gained
on the problem by trying to solve it with polynomial algorithms, we can
change gear and try to establish the NP-completeness following the approach
of Section 10.1.2.

10.1.2 NP-complete instances

In order to prove the NP-completeness of the problem, the first step consists
of proving that the problem belongs to the class NP. Even though this step is
often trivial, it should not be neglected, in order to be sure that the problem
is well defined.

Then, it is necessary to understand the combinatorial nature of the problem.
In other words, why does the greedy approach not work? This knowledge is
usually acquired while trying to solve greedily the problem and can be refined
by running several examples and identifying in which cases a greedy algorithm
is likely to fail.

The next step is to decide from which NP-complete problem the reduction
should be done. In theory, all NP-complete problems are equivalent candidates
by definition, but in practice the reduction is much easier if it involves a
problem “similar” to our problem.

One can refer to the set of NP-complete problems provided in Section 10.3
and identify a problem that is close enough to the problem of open complex-
ity. For problems with numbers, the reduction often comes from a partition
problem, and toy examples may exhibit a partition problem, hence, leading

© 2014 by Taylor & Francis Group, LLC

10.2. Set of problems with polynomial-time algorithms 243

to the proof. For graph problems, there is a whole set of different problems,
and, depending upon the structure of the graph, one may resort to one or the
other. If none of the classical problems seem to lead to an easy reduction,
further investigation should be done; a whole set of NP-complete problems
can be found in [38]. Note that while some reductions are straightforward,
it is not unusual to think about the problem for several months before the
appropriate NP-complete problem for the reduction can be identified, and the
reduction may have some tricky parts. Our advice: Do not give up.

It also may be the case that it is not obvious whether to search for a
polynomial-time algorithm or for an NP-completeness proof, because the prob-
lem complexity seems to lie in between. In such cases, one should alternate
between phases searching for a polynomial algorithm, following the guidelines
of Section 10.1.1, and phases trying to establish the NP-completeness of the
problem, following the guidelines of this section. During each phase, some
new insights about the complexity of the problem may be gained and help
decide whether the problem is NP-complete.

Once the problem has been successfully proved NP-complete, the research
around this problem does not necessarily come to an end. It might be interest-
ing, from a theoretical point of view, to discuss approximation results. From
the NP-completeness proof, it is sometimes possible to derive some inapprox-
imability result. Also, the algorithms that were designed while investigating
the combinatorial nature of the problem may well turn out to be good approx-
imation algorithms (see Section 8.1). Some of those algorithms also may be
adapted to provide a bound on the solution (for instance, a lower bound for a
minimization problem) and, hence, they may prove useful to assess the perfor-
mance of heuristic algorithms that would solve the problem. More generally,
all techniques discussed in Chapter 8 may be considered.

10.2 Set of problems with polynomial-time algorithms

There are a few algorithmic kernels that are used time and again in the design
of new algorithms. We briefly review some of them here.

Sorting. The problem of sorting a set of n objects on which a total order
exists can obviously be solved in polynomial time. A naive solution is to find
the maximum object, to remove it from the set, and then to iterate. This
scheme has a complexity of Θ(n2). Using decision trees, one can easily prove
that the running time of any sorting algorithm is Ω(n log(n)) in the worst
case. (This result holds as long as the algorithm has no knowledge on the
objects other than the results of the comparisons that it performs.) Heapsort
and mergesort are algorithms that sort n objects in time O(n log(n)) and,

© 2014 by Taylor & Francis Group, LLC

244 Chapter 10. Reasoning to assess a problem complexity

thus, are asymptotically optimal.

Shortest paths. When dealing with a graph G where edges are labeled with
weights, a common question is what is the shortest path between a node u and
a node v? The length of the path is then defined as the sum of the weights
of its constitutive edges. Many variants of this problem exist, depending on
whether the weights are all nonnegative or can take negative values, whether
edges are directed, and whether one wishes to know the answer for a given
pair of graph vertices or for all possible pairs. Let V denote the set of the
graph vertices and E the set of the graph edges.

• The Bellman–Ford algorithm solves in time O(jV jjEj) the single-source
(all destinations) shortest-paths problem for undirected graphs whose
edges can have negative weights.

• Dijkstra’s algorithm solves in time O(jV j2) the single-source (all desti-
nations) shortest-paths problem for directed graphs whose edges have
nonnegative weights. (The running time of this algorithm can be lowered
to O(jV j log(jV j) + jEj).)

• The Floyd–Warshall algorithm is a dynamic-programming algorithm
that solves the all-pairs shortest-paths problem on directed graphs with
negative edges in time Θ(jV j3). Obviously, when dealing with graphs
including negative-weight edges, we assume that the graph does not con-
tain any negative-weight cycles. Indeed, shortest paths are undefined in
the presence of such cycles.

Maximum bipartite matching. A graph G = (V,E) is a bipartite graph
if its set V of vertices can be partitioned in two subsets S and T such that
any edge in G connects a vertex of S to a vertex of T (see also Section 3.3.1).
A matching is a subset M of the edges such that at most one edge in M
is incident to any given vertex. Finding a maximum matching, that is, a
matching of maximum cardinality, in a bipartite graph can be solved in time
O(jV jjEj) using the Ford–Fulkerson method.

10.3 Set of NP-complete problems

First, the reader needs to identify the nature of the problem whose complexity
must be assessed. Usually, the combinatorial nature of the problem comes
from numbers (as, for instance, task weights, processor speeds, and so on) or
from graphs (if there are no numbers that render the problem combinatorial).
Occasionally, the problem may not belong to any of these two main categories
that are discussed in Sections 10.3.1 and 10.3.2. One may then resort to
different kinds of NP-complete problems, as, for instance, the mother-source

© 2014 by Taylor & Francis Group, LLC

10.3. Set of NP-complete problems 245

3-SAT problem (see Section 6.4), even though 3-SAT may look even more
different from the original problem than classical number and graph problems.

10.3.1 Numbers

For problems with numbers, most reductions can be done from 2-PARTITION,
3-PARTITION, or a variant of these problems. If the reduction does not come
easily from a partition problem because the problem is slightly too complex, we
often found the three-dimensional matching and permutation sums problems
very useful.

First, we recall the 2-PARTITION problem and some of its most useful
variants.

DEFINITION 10.1 (2-PARTITION). Given n integers a1, . . . , an, is there
a subset I of f1, . . . , ng such that

∑
i∈I ai =

∑
i/∈I ai?

DEFINITION 10.2 (2-PARTITION-EQUAL). Given 2n integers a1, . . . , a2n,
is there a subset I of f1, . . . , 2ng such that jIj = n and

∑
i∈I ai =

∑
i/∈I ai?

DEFINITION 10.3 (2-PARTITION-EVEN-ODD). Given 2n integers a1, . . .,
a2n, is there a subset I of f1, . . . , 2ng such that

∑
i∈I ai =

∑
i/∈I ai, and for

1 6 j 6 n, either a2j−1 2 I and a2j /2 I, or a2j 2 I and a2j−1 /2 I?

DEFINITION 10.4 (THREE-2-PARTITION). Given n integers a1, . . . , an,
are there three subsets I1, I2, and I3 that realize a partition of f1, . . . , ng, and
such that

∑
i∈I1 ai =

∑
i∈I2 ai =

∑
i∈I3 ai?

It is easy to see that all these partition problems can be solved in pseudo-
polynomial time. THREE-2-PARTITION is a bit misleading; it is a problem
very similar to 2-PARTITION, and despite its name, it is very different from
3-PARTITION, which is NP-complete in the strong sense. Therefore, it is bet-
ter, whenever possible, to perform the reduction from 3-PARTITION, hence,
proving that the problem is NP-complete in the strong sense.

DEFINITION 10.5 (3-PARTITION). Given an integer B, 3n integers a1,
. . ., a3n, can we partition the 3n integers into n sets, each of sum B? We
can assume that

∑3n
i=1 ai = nB (otherwise, there is no solution) and that

B/4 < ai < B/2 (so that one needs exactly three elements to obtain a sum B).

We do not list all NP-complete problems involving numbers in this section
but only those that we found the most useful to perform reductions. Numerical
3-Dimensional Matching (N3DM) is one of them.

DEFINITION 10.6 (N3DM). Given three disjoint sets W , X, and Y each
containing n elements, given, for each element a 2W [X[Y , an integer s(a),
and given a bound B, can W [X [Y be partitioned into n disjoint sets
A1, . . . , An such that each Ai contains exactly one element from each of W ,
X, and Y and such that, for 1 6 i 6 n,

∑
a∈Ai s(a) = B?

© 2014 by Taylor & Francis Group, LLC

246 Chapter 10. Reasoning to assess a problem complexity

In fact, the following particular instance of N3DM has been proved to be
strongly NP-complete by Yu, Hoogeveen, and Lenstra [111]. Instead of match-
ing arbitrary elements, we have to find only two permutations of [1..n], which
may greatly ease the reduction.

DEFINITION 10.7 (RN3DM). Given an integer vectorA = (A[1], . . . , A[n])
of size n, do there exist two permutations λ1 and λ2 of f1, 2, . . . , ng such that
81 6 i 6 n, λ1(i) + λ2(i) = A[i]? We can assume that 2 6 A[i] 6 2n for all
i and that

∑n
i=1A[i] = n(n+ 1) (otherwise, there is no solution).

10.3.2 Graphs

We list below the most usual NP-complete problems in graphs. Note that
these problems are all NP-complete in the strong sense because they do not
involve numbers.

DEFINITION 10.8 (CLIQUE). Let G = (V,E) be a graph and k be an
integer such that 1 6 k 6 jV j. Does there exist a clique of size k (i.e., a
complete subgraph of G with k vertices)?

DEFINITION 10.9 (VERTEX-COVER). Let G = (V,E) be a graph and
k be an integer such that 1 6 k 6 jV j. Do there exist k vertices vi1 , . . . , vik
such that any edge e 2 E is incident to at least one of the vij , for 1 6 j 6 k?

DEFINITION 10.10 (HC – Hamiltonian Cycle). Given a graph G = (V,E),
is there a circuit that goes through each vertex once and only once?

DEFINITION 10.11 (HP – Hamiltonian Path). Given a graph G = (V,E)
and two vertices u, v 2 V , is there a path from u to v that goes through each
vertex once and only once?

DEFINITION 10.12 (TSP – Traveling Salesman Problem). Given a com-
plete graph G = (V,E), a cost function w : E ! N, and an integer k, is there
a cycle C going through each vertex once and only once, with

∑
e∈C w(e) 6 k?

DEFINITION 10.13 (COLOR). Given a graph G = (V,E) and an integer k
(1 6 k 6 jV j), can we color G with at most k colors?

The disjoint connecting paths problem is slightly less usual, but it turns
out to be very useful for some problems. In particular, we point out that the
problem has been shown to be NP-complete even when restricted to two paths
in the case of directed graphs (2DCP) [35].

DEFINITION 10.14 (DCP – Disjoint Connecting Paths). Given a graph
G = (V,E) and a collection of k+ 1 disjoint vertex pairs (x1, y1), (x2, y2), . . .,
(xk+1, yk+1) 2 V � V , does G contain k + 1 mutually vertex-disjoint paths,
one connecting xi and yi for each i, 1 6 i 6 k + 1? The number of nodes in
the graph is n = jV j, and we have 1 6 k 6 n.

© 2014 by Taylor & Francis Group, LLC

10.3. Set of NP-complete problems 247

DEFINITION 10.15 (2DCP). Given a directed graph G = (V,E) and two
disjoint vertex pairs (x1, y1), (x2, y2) 2 V � V , does G contain two mutually
vertex-disjoint paths, one going from x1 to y1 and the other going from x2

to y2?

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 11

Chains-on-chains partitioning

This case study is devoted to the chains-on-chains partitioning (CCP) prob-
lem. Given an array of n elements a1, a2, . . . , an, the problem is to partition
the array into p intervals whose element sums are well balanced. This prob-
lem has been extensively studied in the literature because it has various ap-
plications. In particular, it amounts to load-balancing n computations whose
ordering must be preserved (hence, the restriction to intervals) onto p proces-
sors. Then, each ai corresponds to the execution time of the i-th task, and
the sum of the elements in interval Ik is the load of the processor to which
Ik is assigned. Several algorithms and heuristics have been proposed to solve
this load-balancing problem, including [19, 47, 52, 53, 81]. We refer the reader
to the survey paper by Pinar and Aykanat [86] for a detailed overview and
comparison of the literature.

In this case study, we first discuss, in Section 11.1, the classical version
of the problem with identical processors, and we propose optimal efficient
algorithms to solve the problem. Then, in Section 11.2, we study variants of
the problem, such as taking into account communication costs or considering
a chain of heterogeneous processors [87]. Finally, in Section 11.3, we assess
the complexity of the problem when extending it to a clique of heterogeneous
resources [13]. We conclude in Section 11.4.

11.1 Optimal algorithms for homogeneous resources

DEFINITION 11.1 (CCP). Given an array of n elements a1, a2, . . . , an, the
chains-on-chains partitioning (CCP) problem consists of partitioning the array
into p consecutive intervals I1, I2, . . . , Ip, where Ik = [dk, ek] and d1 = 1,
ep = n, dk 6 ek, and dk+1 = ek + 1 for 1 6 k 6 p � 1. The objective is to
minimize

max
16k6p

∑
i∈Ik

ai = max
16k6p

ek∑
i=dk

ai.

We invite the reader to design several polynomial-time algorithms to solve
this problem in the next sections.

249

© 2014 by Taylor & Francis Group, LLC

250 Chapter 11. Chains-on-chains partitioning

11.1.1 Dynamic-programming algorithm

We first solve the CCP problem with a dynamic-programming algorithm. De-
sign such an the algorithm and give its complexity.

(Hint: The subproblem can be the optimal partitioning of a subset of the
n elements into k 6 p intervals.)

Solution. We define the cost of a partitioning as the maximum interval
sum. For 1 6 i 6 n and 1 6 k 6 p, let g(i, k) be the optimal cost when
partitioning [a1, . . . , ai] into k intervals. We want to find g(n, p), with initial

values g(i, 1) =
∑i
j=1 aj for 1 6 i 6 n, and g(i, k) = +1 for 1 6 i < k 6 p.

For k > 2, the recursion writes:

g(i, k) = min
16s<i

max

g(s, k � 1),
i∑

j=s+1

aj

 .

With the above equation, we simply try all possible splits into [1, s] (with k�1
intervals) and the single interval [s+ 1, i].

We precompute all values f(s, i) =
∑i
j=s+1 aj , for 2 6 i 6 n and 1 6 s 6

i� 1, in time O(n2). Then, there are n� p values of g(i, k) to compute, each
in O(n) (minimum taken over up to n values). Therefore, the complexity is
O(n2 � p).

11.1.2 Binary search algorithm

Another way to solve the CCP problem is to perform a binary search on the
value of the objective function. Give such an algorithm and its complexity.

(Hint: Be careful to account properly for the complexity of the binary
search.)

Solution. Given a bound M , can we partition [a1, a2, . . . , an] into p in-
tervals I1, I2, . . . , Ip whose sums are not greater than M? We answer this
question with a simple greedy algorithm. For I1, we start with a1 and in-
clude the next elements until the sum exceeds M . Formally, e1 is defined by∑e1
i=1 ai 6M and

∑e1+1
i=1 ai > M . For I2, we start from ae1+1 and repeat the

procedure. We have a solution if and only if we reach the last element within
p steps. Checking for a solution with M has a cost O(n).

Obviously, a lower bound for M is L = max
(

maxi(ai),
1
p

∑n
i=1 ai

)
. An

upper bound is U =
∑n
i=1 ai. The number of iterations in the binary search

for M is bounded by log(U � L), which is polynomial in the problem size.

11.1.3 Improved algorithms

In this section, we investigate how to improve the complexity of the dynamic-
programming algorithm introduced in Section 11.1.1. The idea is to exploit
the monotonicity of g(i, k), which is nondecreasing in i for i > k (see [81]).

© 2014 by Taylor & Francis Group, LLC

11.1. Optimal algorithms for homogeneous resources 251

First, we prove that g(i, k) (the optimal cost when partitioning [a1, . . . , ai]
into k intervals) is nondecreasing in i for i > k. The optimal partition for
g(i + 1, k) can be used for [a1, . . . , ai]. Indeed, we just need to remove ai+1

from the last interval. If the last interval is containing only ai+1, we divide
any interval with more than two elements into two disjoint intervals (because
k < i + 1, such an interval exists). Therefore, the cost of this new solution
is not greater than g(i + 1, k), and it is not lower than g(i, k), because it is
a partition of [a1, . . . , ai]. Finally, g(i, k) 6 g(i + 1, k), which concludes the
proof.

Let us now define the balance of two integers i, k, with 1 6 i 6 n and
2 6 k 6 p. The balance bi,k is such that:

• 1 6 bi,k 6 i,

•
∑i
j=bi,k+1 aj < g(bi,k, k � 1), and

•
∑i
j=bi,k

aj > g(bi,k � 1, k � 1).

Intuitively, for s > bi,k, the maximum is dictated by g(s, k � 1), while it is

dictated by
∑i
j=s+1 aj otherwise. It is easy to prove that the balance point

exists and is unique, by monotonicity of the functions.
The next step is to use the balance bi,k to compute g(i, k). We prove indeed

that

g(i, k) = min

g(bi,k, k � 1),

i∑
j=bi,k

aj

 .

The proof is done by contradiction, first for the case
∑i
j=bi,k

aj 6 g(bi,k, k�1),
and then for the symmetrical case, exploiting the properties of the balance.

From these observations, we compute the optimal position of the separator s
when computing g(i, k), which we denote by si,k. We have si,k > si−1,k, and
recursively,

si,k = argminsi−1,k6s<i

max
(
g(s, k � 1),

i∑
j=s+1

aj

) ,

with

g(i, k) = max

g(si,k, k � 1),
i∑

j=si,k+1

aj

 .

The initialization writes s1,k = 1, si,1 = i, and g(i, 1) =
∑i
k=1 aj . There-

fore, the balance allows us to compute all g(i, k) entries for 1 6 i 6 n in only
one pass over the elements (i.e., in O(n)), which reduces the complexity of the
algorithm to O(n� p) (instead of O(n2 � p)).

© 2014 by Taylor & Francis Group, LLC

252 Chapter 11. Chains-on-chains partitioning

The complexity can be further reduced to O(p(n � p)) by observing that
there are no empty intervals, and, therefore, the pass over the elements is
restrained to an interval of n�p elements. The initialization becomes g(i, i) =
max16j6i(aj); if k = i, we keep i intervals with one element in each interval.

11.2 Variants of the problem

In this section, we study two variants of the CCP problem. First, we add
communication costs in Section 11.2.1, and then in Section 11.2.2 we consider
that processors are heterogeneous but that their order is predefined (i.e., the
target platform is a chain of processors).

11.2.1 Communication costs

If we want to account for communication costs, we first need to define the
communication model. Our aim is to have a realistic model that remains
tractable. For this problem, we assume that there is an amount of communi-
cation to be transferred from one processor to another, if they are processing
contiguous intervals: for 1 6 i 6 n, δi is the size of the output of the i-th
element. It is often assumed that intraprocessor communication time is neg-
ligible, even though it would be easy to account for this time by lumping it
with the execution times, i.e., the size of the elements. We define below the
chains-on-chains partitioning problem with communications (CCPC).

DEFINITION 11.2 (CCPC). Given an array of n elements a1, a2, . . . , an,
and an array of communication costs δ1, δ2, . . . , δn, the chains-on-chains parti-
tioning problem with communications (CCPC) consists of partitioning the ar-
ray of n elements into p consecutive intervals I1, I2, . . . , Ip, where Ik = [dk, ek]
and d1 = 1, ep = n, dk 6 ek, and dk+1 = ek + 1 for 1 6 k 6 p � 1. The
objective is to minimize

max
16k6p

(∑
i∈Ik

ai + comm(Ik)

)
= max

16k6p

(
ek∑
i=dk

ai + δek

)
.

We assume that the communication cost for interval Ik, comm(Ik), is equal
to the size of the output communication of the interval, i.e., δek . Is it possible
to extend the previous algorithms for the CCPC problem? Do communication
costs impact their complexity?

Solution. For the dynamic-programming algorithm, we just need to refine
the values f(s, i) to account for communication costs: f(s, i) =

∑i
j=s+1 aj+δi.

Also, the initial values become g(i, 1) =
∑i
j=1 aj+δi. The complexity remains

identical.

© 2014 by Taylor & Francis Group, LLC

11.2. Variants of the problem 253

For the binary search, the previous algorithm builds a first interval as soon
as the bound M is exceeded. With communication costs, it may happen that
the bound is exceeded because of a large output size, while it would be fine
to include one more element in the interval. Formally, e1 is now defined as
the maximum value e such that

∑e
i=1 ai + δe 6 M . It can still be obtained

in O(n). We now start with the last interval and with e = n and stop as soon
as we find a valid interval. The complexity remains the same.

However, it is not possible to adapt easily the improved algorithms because
they heavily rely on the balance, which cannot be defined with communication
costs. The classical dynamic-programming algorithm must be used.

11.2.2 Chain of heterogeneous resources

In this section, we consider the CCP problem in which the target platform is a
chain of heterogeneous processors. The goal is still to partition the n elements
into p intervals, but the element sums must now match p prescribed values (the
processor speeds) as closely as possible. Let s1, s2, . . . , sp denote these values.
The order of the processors is known, i.e., interval Ik is mapped onto the k-th
processor, and the sum of its elements must match sk. This heterogeneous
version of CCP is called heterogeneous chains-on-chains partitioning problem
(CCPH) and is discussed extensively in [87].

DEFINITION 11.3 (CCPH). Given an array of n elements a1, a2, . . . , an,
and an array of p values s1, s2, . . . , sp, the heterogeneous chains-on-chains
partitioning problem (CCPH) consists of partitioning the array of n elements
into p consecutive intervals I1, I2, . . . , Ip, where Ik = [dk, ek] and d1 = 1,
ep = n, dk 6 ek, and dk+1 = ek + 1 for 1 6 k 6 p � 1. The objective is to
minimize

max
16k6p

∑
i∈Ik ai

sk
.

We ask whether it is possible to extend previous algorithms for the CCPH
problem.

Solution. Here again, the extension of the first two algorithms is quite
straightforward, because we know at each step which processor we are tar-
geting, and, therefore, we just need to divide the sum of the ai values by the
corresponding sk. We also must slightly modify the algorithms by observing
that it may now be the case that a processor is left behind (if its speed sk is
too slow). To compute g(i, k), we take the minimum for 1 6 s 6 i instead of
1 6 s < i. However, the complexity of the algorithms remains the same.

In this case, it is even possible to adapt the improved algorithm; the prop-
erties of the balance remain true, by dividing the sums as explained above.
However, the complexity is in O(n� p), and the last optimization is not pos-
sible because a slow processor may be discarded.

© 2014 by Taylor & Francis Group, LLC

254 Chapter 11. Chains-on-chains partitioning

11.3 Extension to a clique of heterogeneous resources

The advent of heterogeneous clusters leads to the following generalization of
the CCPH problem. The goal is still to partition the n elements into p in-
tervals whose element sums match p prescribed values (the processor speeds
s1, s2, . . . , sp) as closely as possible. But, now, we search not only for a par-
tition of [1..n] into p intervals Ik = [dk, ek] but also for a permutation σ of
f1, 2, . . . , pg, with the objective to minimize

max
16k6p

∑
i∈Ik ai

sσ(k)
.

Another way to express the problem is that intervals are now weighted by
the si values, while we had si = 1 for the homogeneous version CCP. This
problem is called CPH (heterogeneous chains partitioning). Can we extend
the efficient algorithms described above to solve CPH? In fact, the problem
seems combinatorial because of the search over all possible permutations to
weight the intervals.

Indeed, we prove the NP-completeness of (the decision problem associated
with) CPH in Section 11.3.1 before discussing practical solutions to solve the
problem in Sections 11.3.2 and 11.3.3.

DEFINITION 11.4 (CPH). Given an array of n elements a1, a2, . . . , an, and
an array of p values s1, s2, . . . , sp, the heterogeneous chain partitioning prob-
lem (CPH) consists of finding a partition of [1..n] into p intervals I1, I2, . . . , Ip,
with Ik = [dk, ek] and d1 = 1, ep = n, dk 6 ek, and dk+1 = ek + 1 for
1 6 k 6 p � 1, and a permutation σ of f1, 2, . . . , pg. The objective is to
minimize

max
16k6p

∑
i∈Ik ai

sσ(k)
.

11.3.1 NP-completeness

THEOREM 11.1. The decision problem associated with the CPH optimiza-
tion problem is NP-complete.

We consider the associated decision problem: Given a bound K, can we

find a partition and a permutation such that max16k6p

∑
i∈Ik

ai

sσ(k)
6 K?

Because of the intervals, it seems difficult to have a straightforward re-
duction from 2-PARTITION for this problem. Actually, the proof is quite
involved, and it provides a nice example of reduction from NUMERICAL
MATCHING WITH TARGET SUMS (NMWTS) [38].

We first explain the reasoning that leads us to the proof before providing the
formal proof. The first challenge is to create a repetitive pattern on which we

© 2014 by Taylor & Francis Group, LLC

11.3. Extension to a clique of heterogeneous resources 255

use the initial problem: NMWTS. In order to do so, we introduce n large tasks
such that they will be each mapped alone on a dedicated processor (the tasks
of weight D below). Then, in order to add some combinatorial freedom in
the choices made by the optimal solution, we add two processors per interval,
and a set of M small tasks of weight 1, so that the interval must be split
somewhere between two such tasks. This way, we force that the appropriate
processors must be used for each interval, and, by tuning the parameters, we
obtain a matching problem.

Another proof, based on 3-PARTITION, can be found in [87]. The idea is
still to create a repetitive pattern with n large tasks, and all other tasks have a
weight 1. The processor speeds correspond to the integers of 3-PARTITION,
and we enforce that three processors must be assigned to each pattern.

Proof. The CPH problem clearly belongs to the class NP. Given a solution, it
is easy to verify in polynomial time that the partition into p intervals is valid
and that the maximum sum of the elements in a given interval divided by the
corresponding s value does not exceed the bound K.

To establish the completeness, we use a reduction from NMWTS, which is
NP-complete in the strong sense [38]. We consider an instance I1 of NMWTS.
Given 3m numbers x1, x2, . . . , xm, y1, y2, . . . , ym, and z1, z2, . . . , zm, do there
exist two permutations σ1 and σ2 of f1, 2, . . . ,mg, such that xi+yσ1(i) = zσ2(i)

for 1 6 i 6 m? Because NMWTS is NP-complete in the strong sense, we can
encode the 3m numbers in unary and assume that the size of I1 is O(m �
M), where M = maxifxi, yi, zig. We also assume that

∑m
i=1 xi +

∑m
i=1 yi =∑m

i=1 zi; otherwise, I1 cannot have a solution.

We build the following instance I2 of CPH (we use the formulation in terms
of task weights and processor speeds, which is more intuitive):

• We define n = (M + 3)m tasks, whose weights are outlined below:

A1, 1, 1, � � � , 1︸ ︷︷ ︸
M

, C,D,A2, 1, 1, � � � , 1︸ ︷︷ ︸
M

, C,D, � � � , Am, 1, 1, � � � , 1︸ ︷︷ ︸
M

, C,D.

Here, B = 2M , C = 5M , D = 7M , and Ai = B + xi for 1 6 i 6 m.
To define the ais formally for 1 6 i 6 n, let N = M + 3. We have for
1 6 i 6 m: a(i−1)N+1 = Ai = B + xi

a(i−1)N+j = 1 for 2 6 j 6M + 1
aiN−1 = C, aiN = D.

• For the number of processors (and intervals), we choose p = 3m. As for
the speeds, we let si be the speed of processor Pi where, for 1 6 i 6 m:

si = B + zi, sm+i = C +M � yi, s2m+i = D.

© 2014 by Taylor & Francis Group, LLC

256 Chapter 11. Chains-on-chains partitioning

Finally, we ask whether there exists a solution matching the bound K = 1.
Clearly, the size of I2 is polynomial in the size of I1. We now show that
instance I1 has a solution if and only if instance I2 does.

Suppose first that I1 has a solution, with permutations σ1 and σ2 such that
xi + yσ1(i) = zσ2(i). For 1 6 i 6 m,

• we map each task Ai and the following yσ1(i) tasks of weight 1 onto
processor Pσ2(i);

• we map the following M � yσ1(i) tasks of weight 1 and the next task, of
weight C, onto processor Pm+σ1(i);

• we map the next task, of weight D, onto processor P2m+i.

We do have a valid partition of all the tasks into p = 3m intervals. For
1 6 i 6 m, the load and speed of processor Pi are indeed equal:

• The load of Pσ2(i) is Ai+yσ1(i) = B+xi+yσ1(i) and its speed is B+zσ2(i);
• The load of Pm+σ1(i) is M � yσ1(i) + C, which is equal to its speed;
• The load and speed of P2m+i are both D.

The mapping does achieve the bound K = 1, hence, a solution to I1.

Suppose now that I2 has a solution, i.e., a mapping matching the bound
K = 1. We first observe that si < sm+j < s2m+k = D for 1 6 i, j, k 6 m.
Indeed si = B + zi 6 B + M = 3M , 5M 6 sm+j = C + M � yj 6 6M ,
and D = 7M . Hence, each of the m tasks of weight D must be assigned to a
processor of speed D, and it is the only task assigned to this processor. These
m singleton assignments divide the set of tasks into m intervals, namely, the
set of tasks before the first task of weight D, and the m� 1 sets of tasks lying
between two consecutive tasks of weight D. The total weight of each of these
m intervals is Ai+M+C > B+M+C = 10M , while the largest speed of the
2m remaining processors is 6M . Therefore, each of them must be assigned to
at least two processors. However, there remains only 2m available processors,
hence, each interval is assigned exactly two processors.

Consider such an interval Ai 111 � � � 1 C with M tasks of weight 1, and let
Pi1 and Pi2 be the two processors assigned to this interval. Tasks Ai and C
are not assigned to the same processor (otherwise, the whole interval would
be assigned to the same processor). So, Pi1 receives task Ai and hi tasks of
weight 1, while Pi2 receives M � hi tasks of weight 1 and task C. The weight
of Pi2 is M � hi + C > C = 5M , while si 6 3M for 1 6 i 6 m. Hence, Pi1
must be some Pi, 1 6 i 6 m, while Pi2 must be some Pm+j , 1 6 j 6 m.
Because this holds true on each interval, this defines two permutations σ2(i)
and σ1(i) such that Pi1 = Pσ2(i) and Pi2 = Pσ1(i). Because the bound K = 1
is achieved, we have:

• Ai + hi = B + xi + hi 6 B + zσ2(i);
• M � hi + C 6 C +M � yσ1(i).

Therefore, yσ1(i) 6 hi, xi +hi 6 zσ2(i), and
∑m
i=1 xi +

∑m
i=1 yi 6

∑m
i=1 xi +∑m

i=1 hi 6
∑m
i=1 zi. By hypothesis,

∑m
i=1 xi +

∑m
i=1 yi =

∑m
i=1 zi, hence, all

inequalities are tight, and in particular
∑m
i=1 xi +

∑m
i=1 hi =

∑m
i=1 zi.

© 2014 by Taylor & Francis Group, LLC

11.3. Extension to a clique of heterogeneous resources 257

We can deduce that
∑m
i=1 yi =

∑m
i=1 hi =

∑m
i=1 zi �

∑m
i=1 xi and, because

yσ1(i) 6 hi for all i, we have yσ1(i) = hi for all i. Similarly, we deduce that
xi + hi = zσ2(i) for all i, and, therefore, xi + yσ1(i) = zσ2(i).

Altogether, we have found a solution for I1, which concludes the proof.

11.3.2 Practical solutions

The complexity study shows that we need to resort to heuristics in order to
have practical solutions to the CPH problem. It turns out that the use of the
optimal CCPH algorithms can help in deriving efficient heuristics. The idea is
to fix arbitrarily an order for the processors and then to run the CCPH optimal
algorithm. It turns out that this heuristic is efficient in practice, provided that
the heterogeneity of the processors is moderate (see the experiments reported
in [87]).

We provide below a simple approximation algorithm for CPH. In the fol-
lowing, smax = max16k6p sk, and smin = min16k6p sk.

THEOREM 11.2. There exists a smax

smin
approximation algorithm for CPH.

Proof. Let Mopt be an optimal solution to CPH. First, we compute the op-
timal CCP solution, assuming that all processor speeds are equal to smax,
and we denote this solution by Mmax. Because the speeds available in the
optimal solution are all smaller than smax, we necessarily have Mopt >Mmax;
otherwise, we could find a better CCP solution to the problem with speeds
equal to smax.

The approximation algorithm simply reuses the intervals created in the
solution Mmax, but the speeds of the processors are now the original speeds.
The interval I that realizes the maximum is using a processor Pj of speed sj ,
and the solution is Malgo =

∑
i∈I ai/sj . Because I is an interval obtained

from Mmax, we have
∑
i∈I ai/smax 6Mmax. It follows that

Malgo =

∑
i∈I ai

sj
6Mmax �

smax

sj
6Mopt �

smax

smin
,

which concludes the proof.

The problem of improving this approximation ratio is left open, and, in
particular, the problem of establishing a better approximation ratio for the
more sophisticated heuristic algorithm based on CCPH is open.

11.3.3 Integer linear program

We present here an integer linear program to compute the optimal solution of
CPH. We denote by Iu the interval of elements handled by the processor of
speed su, for 1 6 u 6 p. First, we need to define a few variables:

© 2014 by Taylor & Francis Group, LLC

258 Chapter 11. Chains-on-chains partitioning

• For 1 6 i 6 n and 1 6 u 6 p, xi,u is a Boolean variable equal to 1 if
ai 2 Iu, and 0 otherwise;

• For 1 6 u 6 p, du is an integer variable that denotes the first element
of Iu; similarly, eu denotes the last element of Iu (Iu = [du, eu]); of
course, 1 6 du 6 eu 6 n;

• K is the objective variable.

The objective function is to minimize K, and the following constraints need
to be enforced:

• Each stage is in an interval: 81 6 i 6 n,
∑

16u6p xi,u = 1;

• If ai 2 Iu, then necessarily du 6 i 6 eu; this constraint writes
81 6 i 6 n,81 6 u 6 p, du 6 i� xi,u + n� (1� xi,u) and eu > i� xi,u;

• If ai 2 Iu and ai+1 2 Iv, with u 6= v, then necessarily dv > i + 1 and
eu 6 i; this constraint writes
81 6 i < n, 81 6 u, v 6 p, u 6= v, dv > (i+ 1)� (xi,u + xi+1,v � 1)

and eu 6 i� (xi,u + xi+1,v � 1) + n� (2� xi,u � xi+1,v);

• There remains to compute the sum on each interval and to constrain it
by K: 81 6 u 6 p,

∑n
i=1

ai
su
xi,u 6 K.

We have (n+ 2)� p+ 1 variables and O(n� p2) constraints. All variables
are Boolean or integer, except K, which is rational.

Note that it also is possible to extend this integer linear programming for-
mulation to account for heterogeneous communication costs, hence, tackling
the most complex combination of variants introduced in this case study. The
formulation can be found in [13].

11.4 Conclusion

In this case study, we have thoroughly studied the chains-on-chains parti-
tioning problem. Optimal solutions can be found for different variants of the
problem, with dynamic-programming algorithms or a combination of binary
search and greedy techniques. More efficient algorithms can be derived for
easier problem instances.

The problem becomes NP-hard when we relax the chains-on-chains prob-
lem to a chain partitioning problem, in which the target platform is no longer
a chain of processors but a clique of heterogeneous processors. We propose
practical solutions to overcome the combinatorial nature of the problem: an

© 2014 by Taylor & Francis Group, LLC

11.4. Conclusion 259

efficient polynomial-time heuristic, an approximation algorithm, and an inte-
ger linear programming formulation.

Chains-on-chains partitioning is widely used in the context of streaming
applications, when a linear chain application must be mapped onto a platform,
with the objective to minimize the throughput of the application, i.e., the
rate at which two consecutive data sets can be processed. The computation
requirement of each pipeline stage corresponds to an element of the previous
problem definitions, ai, with 1 6 i 6 n. We also can consider communication
costs, δi, as in the definition of CCPC.

We often restrict solutions to be interval mappings, hence, enforcing the
chain partitioning constraint. Therefore, the goal is to find a partition of
the pipeline stages into intervals, and a one-to-one mapping of these intervals
onto processors, such that the period of the application, i.e., the longest cycle-
time to operate a stage, is minimized. Note that the period is the inverse of
the throughput that can be achieved, and it corresponds to the objective of
CPH. The problem is, therefore, NP-hard, even without communication costs.
However, when processors and bandwidth links are homogeneous, the problem
is CCPC (with communication costs), and it can be solved in polynomial time.

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 12

Replica placement in tree networks

This case study deals with the general problem of replica placement in tree
networks. Informally, there are clients issuing requests to be satisfied by
servers. The clients are known (both their position in the tree and their
number of requests), while the number and location of the servers are to
be determined. A client is a leaf node of the tree, and its requests can be
served by one or several internal nodes. Initially, there are no replicas; when
a node is equipped with a replica, it can process a number of requests up
to its capacity limit. Nodes equipped with a replica, also called servers, can
serve only clients located in their subtree (so that the root, if equipped with
a replica, can serve any client); this restriction is usually adopted to enforce
the hierarchical nature of the target application platforms where a node has
knowledge only of its parent and children in the tree.

The rule of the game is to assign replicas to nodes so that some optimiza-
tion function is minimized. Typically, this optimization function is the total
utilization cost of the servers. If all the nodes are identical, this reduces to
minimizing the number of replicas. If the nodes are heterogeneous, it is nat-
ural to assign a cost proportional to their capacity (so that one replica on a
node capable of handling 200 requests is equivalent to two replicas on nodes
of capacity 100 each).

We point out that the distribution tree (clients and nodes) is fixed in our
approach. This key assumption is quite natural for a broad spectrum of
applications, as, for instance, video on demand service delivery [24, 55, 56,
72, 105, 109]. The root server has the original copy of the database but
cannot serve all clients directly, so a distribution tree is deployed to provide
a hierarchical and distributed access to replicas of the original data. On
the contrary, in other more decentralized applications (e.g., allocating Web
mirrors in distributed networks), a two-step approach is used [57, 60, 74,
91, 102, 104]. First, determine a “good” distribution tree in an arbitrary
interconnection graph, and then determine a “good” placement of replicas
among the tree nodes. Both steps are interdependent, and the problem is
much more complex, due to the combinatorial solution space (the number of
candidate distribution trees may well be exponential).

We first detail the framework in Section 12.1, and, in particular, we motivate
the different policies that can be enforced for replica placement; we investigate
different access policies and compare them. Then, we provide exhaustive

261

© 2014 by Taylor & Francis Group, LLC

262 Chapter 12. Replica placement in tree networks

complexity results for the different policies in Section 12.2. Unsurprisingly,
all problem instances become NP-hard with heterogeneous servers, but we
exhibit variants of the problem in Section 12.3, for which the problem becomes
NP-hard even in the homogeneous case. Either we must guarantee a quality
of service (QoS), or we do not focus on the cost of the solution, but rather we
try to minimize the power consumption of a given replica placement. Finally,
we conclude in Section 12.4.

12.1 Access policies

First, we motivate and define various access policies in Section 12.1.1. Then,
we study the impact of the policies that we retain for this case study on the
existence of a solution (see Section 12.1.2) and on the cost of a solution (see
Section 12.1.3).

12.1.1 Motivation

Given a distribution tree, with a set of client requests, and an access policy,
the problem is to place replicas in the tree, following the rules of the access
policy, so that the cost is minimized. In this section, we discuss several access
policies.

Consider first that a client can be served by any internal node in the tree.
We call this policy One-to-any. The problem turns out to be immediately
NP-hard, even in the homogeneous case, from a straightforward reduction
from 2-PARTITION (see Definition 10.1, p. 245): Consider an instance with
n clients, the i-th client has ai requests (the ais are from the instance of 2-

PARTITION), and the node capacity is
∑n
i=1 ai
2 . It is easy to see that there is

a solution with two servers if and only if there is a 2-PARTITION of the ais.

Why restrict to one server per client? The One-to-many policy is similar to
the previous one, except that the processing of a given client’s requests can be
split among several servers. The previous reduction does not work anymore.
Indeed, the problem becomes trivially polynomial in the homogeneous case:
We fill the servers up to their capacities until there are no more requests to
process. For the heterogeneous case, however, the problem remains NP-hard,
again from a reduction from 2-PARTITION. This time, the server capacities
are set to ai (from the instance of 2-PARTITION), and the total number of

requests is
∑n
i=1 ai
2 . It is easy to see that there is a solution of cost

∑n
i=1 ai
2

if and only if there is a 2-PARTITION of the ais. Otherwise, there is some
server capacity that is unused, and the cost is greater.

From what precedes, both policies that we introduced so far have little
theoretical interest. Moreover, as motivated earlier, it is often assumed that

© 2014 by Taylor & Francis Group, LLC

12.1. Access policies 263

a server can serve only clients located in its subtree, so the practical interest
of the previous policies is limited as well. Rather, in most papers from the
literature, all requests of a client are served by the closest replica, i.e., the first
replica found in the unique path from the client to the root in the distribution
tree. This Closest policy is simple and natural but may be unduly restrictive,
leading to a waste of resources. We discuss below two policies that are less
constraining.

In the Upwards policy, we keep the restriction that all requests from a
given client are processed by the same replica, but we allow client requests
to “traverse” servers so as to be processed by other replicas located higher
in the path (closer to the root). The trade-off to explore is that the Closest
policy assigns replicas at proximity of the clients but may need to allocate too
many of them if some local subtree issues a great number of requests. The
Upwards policy will ensure a better resource usage, load-balancing the process
of requests on a larger scale; the possible drawback is that requests will be
served by remote servers, likely to take a longer time to process them. Taking
quality of service constraints into account would typically be more important
for the Upwards policy.

In the Multiple policy, we further relax access constraints and grant the pos-
sibility for a client to be assigned several replicas. With this policy, the pro-
cessing of a given client’s requests will be split among several servers located
in the tree path from the client to the root, similarly to the above-described
One-to-many policy. Obviously, this policy is the most flexible, and likely to
achieve the best resource usage, among policies that restrict to the fact that a
server can serve only clients located in its subtree. The only drawback is the
(modest) additional complexity induced by the fact that requests must now
be tagged with the replica server identifier in addition to the client identifier.

The comparison among the three latter access policies (Closest , Upwards,
and Multiple) is done below in a framework with identical node capacities;
thus, the problem amounts at minimizing the number of servers.

12.1.2 Impact of the policies on the existence of a solution

We first show the impact of the policies on a very simple instance of the
problem. In this example, there are two nodes, B being the unique child of
A, the tree root (Figure 12.1). Each node can process W = 1 request.

W = 1

B(a)

1

A

B(b)

1 1

(c)

A

B

2

A

FIGURE 12.1: Solution existence.

© 2014 by Taylor & Francis Group, LLC

264 Chapter 12. Replica placement in tree networks

If B has one client child making 1 request, the problem has a solution with
all three policies, placing a replica on B or on A indifferently (Figure 12.1(a)).
If B has two client children, each making 1 request, the problem has no more
solution with Closest . However, we have a solution with both Upwards and
Multiple if we place replicas on both nodes. Each server will process the
request of one of the clients (Figure 12.1(b)). Finally, if B has only one client
child making 2 requests, only Multiple has a solution because we need to
process one request on B and the other on A, thus requesting multiple servers
(Figure 12.1(c)).

12.1.3 Impact of the policies on the cost of a solution

Recall that the cost of a solution is the number of replicas that are placed
in the tree, because we consider that all servers are identical. We first com-
pare Closest and Upwards, and then we compare Upwards and Multiple. By
transitivity, Multiple is better than Closest .

We construct an instance of the problem where the Upwards policy is ar-
bitrarily better than the Closest policy. We consider the tree network of
Figure 12.2, where there are 2n + 2 internal nodes of capacity W = n, and
2n+1 clients, each of them making one request. With the Upwards policy, we
place three replicas in A, B, and S2n. All requests can be satisfied with these
three replicas. When considering the Closest policy, first we need to place a
replica in A to cover its client. Then, we can decide to place a replica on B or
not. If we place a replica on B, then this replica is handling n requests, but
there remain n other requests from the clients in its subtree that cannot be
processed by B. Thus, we need to add n replicas among S1, . . . , S2n. Other-
wise, n� 1 requests of the 2n clients in the subtree of B can be processed by
A in addition to its own client. We need to add n + 1 extra replicas among
S1, . . . , S2n. In both cases, we are placing n + 2 replicas, instead of the 3
replicas needed with the Upwards policy, thus, a performance factor of n+2

3 .
This proves that Upwards can be arbitrary better than Closest , even in the
simple case with homogeneous servers.

W = n

B

S1

1 1

S2n

1

A

FIGURE 12.2: Solution cost: Upwards versus Closest .

© 2014 by Taylor & Francis Group, LLC

12.1. Access policies 265

The second comparison is between Multiple and Upwards. We build an
instance of the replica placement problem where both access policies have a
solution, but the solution of Multiple is arbitrarily better than the solution
of Upwards. Consider the instance represented in Figure 12.3, with 3 + n
nodes of capacity W = 4n. The root A has n + 2 children nodes: B, C, and
S1, ..., Sn. Node B has two client children, one with 2n � 1 requests and the
other with 4n requests. Node C has two client children, one with 2n requests
and the other with 2n + 1 requests. Each node Si (1 6 i 6 n) has a unique
child, a client with 2 requests.

• The Multiple policy assigns three replicas, one each to A, B, and C.
B handles the 4n requests of its second client, while the other client is
served by A. C handles 2n requests from both of its clients, and the
one remaining request is processed by A. Server A, therefore, processes
(2n� 1) + 1 = 2n requests coming up from B and C. Requests coming
from the n remaining nodes sum up to 2n; thus, A is able to process all
of them.

• For the Upwards policy, we need to assign replicas everywhere. Indeed,
with this policy, C cannot handle more than 2n + 1 requests because
it is unable to process requests from both of its children, and, thus, A
has (2n� 1) + 2n requests coming from B and C. It cannot handle any
of the 2n remaining requests, and each remaining node Si (1 6 i 6 n)
must process requests coming from its own client. This leads to a total
of n+ 3 replicas.

The performance factor is n+3
3 , which can be arbitrarily big when n becomes

large. This proves that Multiple can be arbitrary better than Upwards, even
in the simple case with homogeneous servers.

2n� 12 2 2n 2n+ 1

S1 Sn B C

A

4n

W = 4n

FIGURE 12.3: Solution cost: Multiple versus Upwards.

© 2014 by Taylor & Francis Group, LLC

266 Chapter 12. Replica placement in tree networks

12.2 Complexity results

One major goal of this case study is to assess the impact of the access policy on
the problem with homogeneous versus heterogeneous servers, as explained be-
low. First, we formally define the different problem instances in Section 12.2.1.
Then, we tackle the homogeneous instances in Section 12.2.2 and the hetero-
geneous ones in Section 12.2.3. We conclude this complexity study with an
integer linear programming formulation (see Section 12.2.4) that allows us to
solve the combinatorial instances of the problem.

12.2.1 Definitions

We consider a tree T whose set of nodes is C [N , where the clients C
are leaves of the tree. Each client i 2 C has ri requests; each node j 2 N
has processing capacity Wj and storage cost scj = Wj . We need to decide
which node is equipped with a replica and, thus, becomes a server (j 2 R,
where R is the set of replicas). This problem comes in two flavors, either with
homogeneous nodes (Wj = W for all j 2 N) (MinNb, the goal is to minimize
the number of servers jRj) or with heterogeneous nodes, i.e., servers with
different capacities/costs (MinCost, the goal is to minimize the total storage
cost

∑
j∈R scj). The comparison among policies was done in the homogeneous

case and holds true for the heterogeneous case.
In the single server version of the problem (Closest and Upwards policies),

we need to find a server server(i) for each client i 2 C. R is the set of replicas,
i.e., the servers chosen among the nodes in N . The constraint is that server
capacities cannot be exceeded; this translates into∑

i∈C,server(i)=j

ri 6Wj for all j 2 R.

The objective is to find a valid solution of minimal storage cost
∑
j∈RWj .

In the Multiple policy with multiple servers per client, for any client i 2 C
and any node j 2 N , ri,j is the number of requests from i that are processed
by j (ri,j = 0 if j /2 R, and

∑
j∈N ri,j = ri for all i 2 C). The capacity

constraint now writes ∑
i∈C

ri,j 6Wj for all j 2 R,

while the objective function is the same as for the single server version.

The decision problems associated with the previous optimization problems
are easy to formulate. Given a bound on the number of servers (homogeneous
version) or on the total storage cost (heterogeneous version), is there a valid
solution that meets the bound?

© 2014 by Taylor & Francis Group, LLC

12.2. Complexity results 267

12.2.2 MinNb problem

In this section, we establish the complexity of the MinNb problem, i.e., min-
imizing the number of (identical) servers.

First, we provide a greedy algorithm to solve the problem for the Closest
policy in polynomial time [110]. Then, we prove the NP-completeness of the
Upwards case [11], which comes as a surprise because all previously known
instances were shown to be polynomial. Finally, we provide a multipass greedy
algorithm to show the polynomial complexity of the Multiple problem [11].

THEOREM 12.1. The instance of the MinNb problem with the Closest
policy can be solved in polynomial time.

This problem can be solved by greedily adding nodes in the replica set. A
node is chosen such that there is an optimal solution that contains it, and,
hence, we are able to prove the optimality of this greedy algorithm.

Proof. We provide a greedy polynomial-time algorithm to solve the problem.
First, we greedily compute the workload of all internal nodes, which is defined
as the total number of requests in the subtree of a node. Thus, the workload
on a leaf i 2 C is ri, and the workload on an internal node is the sum of the
workloads of its children. This computation is done in O(jN j). If a tree node
has a workload greater than W , we call it a heavy node; otherwise, it is a light
node. If a light node has a heavy parent, we call it a critical node.

We remove from the tree all light nodes that are noncritical nodes, because
we prove that there exists an optimal replica set that does not contain any
light and noncritical nodes. Indeed, we can easily build a solution in which
the server placed on a light and noncritical node j 2 N is replaced by a server
on the only ancestor of j that is critical, jc. (If no ancestor of j is critical, then
the root is not a heavy node, and an optimal solution is to place a single server
at the root of the tree.) By definition, jc is a light node, so it can process
its entire subtree, and the workload of the ancestors of jc has not increased.
Note that if there were already a server at node jc, the solution would not be
optimal because we could simply remove the server at node j and obtain a
better solution. Therefore, we need only to consider heavy and critical nodes
when searching for the optimal replica set.

Then, at each step, we greedily add a replica in the solution by selecting a
heavy node j with no heavy node child and adding its child j∗ with maximum
workload to the replica set. Indeed, we prove that if j is a heavy node whose
children are all critical nodes (i.e., no heavy node child), then there exists
an optimal replica set that contains the child of j that has the maximum
workload. Indeed, because j is heavy, at least one of its children must have a
replica; otherwise, j would have too many requests to handle. Let j′ be one
of these children in the optimal solution, and let j∗ be the child that has the
maximum workload. If there is no replica at node j∗, we replace the replica
at j′ with a replica at j∗, hence, processing more requests, and reducing only

© 2014 by Taylor & Francis Group, LLC

268 Chapter 12. Replica placement in tree networks

the workload of node j. Because j∗ is a light node (by hypothesis), this
replacement is always possible.

The greedy choice is always optimal, and, therefore, node j∗ is added to the
replica set and removed from the tree. Also, the workloads of all ancestors
of j∗ are then updated (removing the requests coming from j∗). Some nodes
may become noncritical, and we remove them from the tree as well. We then
find a solution to the subproblem that we still need to solve by iterating the
greedy choice until the tree is empty or the root node becomes a light node,
which means that all remaining requests can be processed by the root node,
if there are any.

The number of iterations is equal to the number of replicas in the solu-
tion, and it is bounded by jN j. Moreover, each iteration is clearly done in
polynomial time, which completes the proof.

THEOREM 12.2. The instance of the MinNb problem with the Upwards
policy is NP-complete in the strong sense.

Because all requests of a client must be processed by the same server, the
intuition leads directly to a partition problem. With two servers A and B,
where B is the unique child of A, and n clients that are the children of B,
the problem is a 2-PARTITION (see Definition 10.1, p. 245), where the ais
correspond to the number of requests of each child, and the server capacity

is W =
∑n
i=1 ai
2 . We can use the same reasoning with a 3-PARTITION (see

Definition 10.5, p. 245), hence, proving the NP-completeness in the strong
sense.

Proof. The problem clearly belongs to the class NP. Given a solution, it is easy
to verify in polynomial time that all requests are served and that no server
capacity is exceeded. To establish the completeness in the strong sense, we use
a reduction from 3-PARTITION (see Definition 10.5, p. 245). We consider an
instance I1 of 3-PARTITION: Given 3m positive integers a1, a2, . . . , a3m such
that B/4 < ai < B/2 for 1 6 i 6 3m, and

∑3m
i=1 ai = mB, can we partition

these integers into m triples, each of sum B?
We build the following instance I2 of MinNb (Figure 12.4), with 3m clients

ci with ri = ai for 1 6 i 6 3m, and m internal nodes nj (1 6 j 6 m)
with W = B, such that the children of n1 are all the 3m clients ci, and for
1 6 j 6 m � 1, the parent of nj is nj+1 (hence, nm is the root). Finally,
we ask whether there exists a solution with total storage cost mB, i.e., with
a replica located at each internal node. Clearly, the size of I2 is polynomial
(and even linear) in the size of I1.

We now show that instance I1 has a solution if and only if instance I2

does. Suppose first that I1 has a solution. Let (ak1 , ak2 , ak3) be the triple
in I1. We assign the three clients ck1 , ck2 , and ck3 to server nk. Because
ak1 + ak2 + ak3 = B, no server capacity is exceeded. Because the m triples
partition the ais, all requests are satisfied. We do have a solution to I2.

© 2014 by Taylor & Francis Group, LLC

12.2. Complexity results 269

Suppose now that I2 has a solution. Let Ik be the set of clients served by
node nk if there is a replica located at nk, then

∑
i∈Ik ai 6 B. The total

number of requests to be satisfied is
∑3m
i=1 ai = mB, and there are at most m

replicas of capacity B. Therefore, no set Ik can be empty, and
∑
i∈Ik ai = B

for 1 6 k 6 m. Because B/4 < ai < B/2, each Ik must be a triple. This
leads to the desired solution of I1.

THEOREM 12.3. The instance of the MinNb problem with the Multiple
policy can be solved in polynomial time.

We outline below an optimal algorithm to solve the problem, and then we
illustrate it in an example. The proof of optimality is quite technical, and we
refer to [11] for the details that are omitted.

Algorithm for the Multiple policy

We propose a greedy algorithm to solve the MinNb problem. Recall that W
is the total number of requests that a server can handle. This algorithm works
in three passes. First, we select the nodes that will have a replica handling
exactly W requests. Then, a second pass allows us to select some extra servers
that are fulfilling the remaining requests. Finally, we need to decide for each
server how many requests of each client it is processing. Each pass is a greedy
algorithm.

We assume that each node i knows its parent parent(i) and its children
children(i) in the tree. Also, we introduce a new variable that is the flow
coming up in the tree (requests that are not already fulfilled by a server). It
is denoted by
mathitflowi for the flow between i and parent(i). Initially, 8i 2 C,
mathitflowi = ri and 8i 2 N ,
mathitflowi = �1. Moreover, the set of replicas is empty in the beginning:
R = ;.

n1

c2 c3c1

n2

nm

c3m

FIGURE 12.4: The platform used in the reduction for Theorem 12.2.

© 2014 by Taylor & Francis Group, LLC

270 Chapter 12. Replica placement in tree networks

Pass 1. We greedily select in this step some nodes that will process W
requests and that are as close to the leaves as possible, and we place a replica
on such nodes. We call such a node a saturated node. Starting from the root
of the tree r, the procedure goes down the tree recursively in order to compute
the flows (the flow of an internal node is the sum of the flows of its children).
When a flow exceeds W , we place a replica because the corresponding server
will be fully used, and we remove the W processed requests from the flow
going upwards.

At the end of this pass, if flowr = 0 or (flowr 6 W and r /2 R), we have
an optimal solution because all replicas are fully used and all requests are
satisfied by adding a replica in r if flowr 6= 0. In this case, we skip pass 2 and
go directly to pass 3. Otherwise, we need some extra replicas because some
requests are not satisfied yet, and the root cannot satisfy all the remaining
requests. To place these extra replicas, we go through pass 2.

Pass 2. In this pass, we need to select the nodes where to add replicas. To
do so, while there are too many requests going up to the root, we select the
node that can process the highest number of requests, and we place a replica
there. The number of requests that a node j 2 N can eventually process is
the minimum of the flows between j and the root r, denoted uflow j (for useful
flow). Indeed, some requests that are accounted for in the flow of node j might
be processed by a server on the path between j and r, where a replica has
been placed in pass 1. This is a key property of the greedy choice to prove
the optimality of this algorithm, which is not trivial.

It may happen that this pass attempts to place replicas on all nodes, but
this solution is not feasible because there are still some requests that are not
processed going up to the root. In this case, the original problem instance had
no solution. However, if we succeed to place replicas such that flowr = 0, we
have a set of replicas that succeeds to process all requests. We then go through
pass 3 to assign requests to servers, i.e., to compute how many requests of
each client should be processed by each server.

Pass 3. This pass is, in fact, straightforward, starting from the leaves and
distributing the requests to the servers from the bottom until the top of the
tree. We decide, for instance, to assign requests from clients starting to the
left. Starting from the root of the tree r, the procedure goes down the tree
recursively. Note that a server that was computing W requests in pass 1 may
end up computing fewer requests if one of its descendants in the tree has
earned a replica in pass 2. But, this does not impact the optimality of the
result, because we keep the same number of replicas.

The sketch of proof below shows the equivalence between the solution built
by this algorithm and any optimal solution, thus proving the optimality of
the algorithm. First, we illustrate the step-by-step execution of the algorithm
in an example.

© 2014 by Taylor & Francis Group, LLC

12.2. Complexity results 271

Example. Figure 12.5(a) provides an example of a network on which we are
placing replicas with the Multiple policy. The network is homogeneous, and
we fix W = 10. Pass 1 of the algorithm is quite straightforward to unroll, and
Figure 12.5(b) indicates the flow on each link and the saturated replicas are
the black nodes.

2

2

2

n5
n6

n7 n8

n9 n11

12

1

1

9

7

W = 10

n4

2

2

n5
n6

n7 n8

n9 n11

12

1

1

9

7 7

2

2

2 12

1

1

7 7

4

1

(b) Pass 1

3

7
4

8

4

37 3

3

4

2

2

12

1

1

9

7 7 3

4

n4

2

2

n5
n6

n7

n9 n11

12

1

1

9

7 7

2

2

2

(c) Pass 2

3

(d) Pass 3

2

10

1

1

1

3

3
4

92

6
1

1

1

1

1

1 3

344

4

4

8

7

2

n1

n3n2

n10

n4

n1

6

n2

n10

2

n3

n2

4

2

n10
1

n3

4

n8

n1

4

7

2
8

4

(a) Initial network

FIGURE 12.5: Algorithm for the MinNb problem with the Multiple policy.

During pass 2, we select the nodes of maximum useful flow. Figure 12.5(c)
represents these useful flows at the beginning of the pass; we see that node n4

is the one with the maximum useful flow (7), so we assign it a replica and
update the useful flows. All the useful flows are then reduced down to 1
because there is only 1 request going through the root n1. The first node of
maximum useful flow 1 to be selected is n2, which is set to be a replica of
pass 2. The flow at the root is then 0, and it is the end of pass 2.

Finally, pass 3 assigns the servers to the clients and decides which requests
are served by which replica (Figure 12.5(d)). For instance, the client with

© 2014 by Taylor & Francis Group, LLC

272 Chapter 12. Replica placement in tree networks

12 requests shares its requests between n10 (10 requests) and n2 (2 requests).
Requests are assigned from the bottom of the tree up to the top. Note that the
root n1, even though it was a saturated replica of pass 1, has only 5 requests
to proceed in the end.

Sketch of the proof of optimality

Let Ropt be an optimal solution to an instance of the problem. The core of
the proof consists of transforming this solution into an equivalent canonical
optimal solution Rcan. We then show that the multipass algorithm is building
this canonical solution, and thus it is producing an optimal solution.

First, given a distribution tree and an optimal solution Ropt, we define the
flow flow j of a node j by the number of requests going through this node up to
its parents, accounting for the requests processed by node j. Also, we define
the total flow tflow j , which is summing all requests, including those processed
by replicas. Then, we show that it is possible to change request assignments
while keeping an optimal solution. The flows need to be recomputed after any
such modification.

Let j 2 N \Ropt be a server processing strictly fewer than W requests. We
can change the request assignment between replicas of the optimal solution in
such a way that node j processes exactly min(tflow j ,W) requests. We point
out that we just change the flows of the solution, but at this point, we do
not move, add, or delete replicas. Therefore, the solution is still optimal. We
invite the reader to write formally the proof of this assertion, which can be
found in [11].

We now introduce a new definition, completely independent from the opti-
mal solution but related to the tree network. The canonical flow is obtained
by distinguishing nodes that receive a flow greater than W from the other
nodes. We compute the canonical flow cflow of the tree, independently of
the replica placement, and define a subset of nodes that are saturated, SN .
We also compute the number of saturated nodes in subtree(k), denoted nsnk,
for any node k 2 C [N of the tree. For i 2 C, cflow i = ri and nsni = 0,
and we then compute recursively the canonical flows for nodes j 2 N . Let
fj =

∑
i∈children(j) cflow i and xj =

∑
i∈children(j) nsni. If fj > W , then

j 2 SN , cflow j = fj �W and nsnj = xj + 1. Otherwise, j is not saturated,
cflow j = fj and nsnj = xj . We then have the following result:

LEMMA 12.1. For all nodes j 2 C [N , tflow j > nsnj �W .

This lemma is proved recursively on the tree. Indeed, we first note that
a nonsaturated node always has a canonical flow being less than W : 8j 2
N nSN, cflow j < W . Then, we show that cflow j = tflow j�nsnj�W . This
property is true for the clients, and we can see that it remains true for a node
if the property is true for all of its children (see [11]).

We are now ready to transform Ropt into a new optimal solution, Rsat, by
redistributing the requests among the replicas and moving some replicas, in

© 2014 by Taylor & Francis Group, LLC

12.2. Complexity results 273

order to place a replica at each saturated node, and assigning W requests to
this replica. Note that it is easy to show that it is always possible to move
a replica to a node without a replica that is one of its ancestors in the tree,
while keeping an optimal solution.

This transformation is done starting at the leaves of the tree and considering
all nodes j 2 SN . If there is already a replica on node j, we just need to change
the assignment of requests, and Lemma 12.1 ensures that there are enough
requests that can be moved, so that the workload of this saturated node is W .
Otherwise, we need to move a replica of Ropt and place it at node j while
keeping a valid solution. If there is a replica in subtree(j) that is not in SN ,
it is straightforward to move it. Otherwise, we need to rearrange requests,
and because of the properties of the flows, we can prove that we can assign W
requests to node j and remove a replica that is, in the optimal solution, on
the path from j to the root.

Once we have applied this procedure up to the root, we have an optimal
solution Rsat in which all nodes of SN have a replica and are processing W
requests. We will not change the assignment of these replicas anymore in the
following. Note that nodes of SN correspond to nodes that are chosen by
pass 1 of the greedy algorithm.

In a next step, we further modify the Rsat optimal solution in order to
obtain what we call the canonical solution Rcan. Rcan is the solution that is
built with the greedy algorithm in polynomial time, and the transformation
is aiming at applying the greedy choice for the nonsaturated replicas of the
optimal solution. To do so, we change the request assignment of the replicas
that are not in SN . We “saturate” some of them as much as we can, and we
integrate them into the subset of nodes SN , redefining the cflow accordingly.
At the end of the process, SN = Rcan and we have not added replicas, i.e.,
jRcanj = jRsatj = jRoptj. This is the most technical part of the proof, and we
omit it from this case study. The interested reader can try to finish the proof,
using the useful flows introduced in the greedy algorithm. The detailed proof
can be found in [11].

12.2.3 MinCost problem

All problems become NP-complete when dealing with resource heterogene-
ity. Note that previous NP-completeness results involved general graphs
rather than trees, and the combinatorial nature of the problem came from
the difficulty to extract a good replica tree out of an arbitrary communication
graph [74, 91]. Here the tree is fixed, but the problem remains combinatorial
due to resource heterogeneity [11].

THEOREM 12.4. All three instances of the MinCost problem with het-
erogeneous nodes are NP-complete.

Compared to the proof of the NP-completeness of the Upwards policy in the
homogeneous case (see Theorem 12.2), we can now play on the heterogeneity of

© 2014 by Taylor & Francis Group, LLC

274 Chapter 12. Replica placement in tree networks

n1

c2 cm cm+1

r

n2 nm

c1

FIGURE 12.6: The platform used in the reduction for Theorem 12.4.

servers to enforce a partition. The reduction comes from 2-PARTITION (see
Definition 10.1, p. 245), the root of the tree can process half of the ais, and the
other servers can process only one of the ais. Because of the cost function, the
cost of the solution will be minimized if the root server is processing exactly
half of the ais. Moreover, the reduction works for all policies. The reader is
invited to search for this proof before reading the solution below.

Proof. Obviously, the NP-completeness of the Upwards policy is a conse-
quence of Theorem 12.2. For the other two policies, the problem clearly
belongs to the class NP; given a solution, it is easy to verify in polynomial
time that all requests are served and that no server capacity is exceeded. To
establish the completeness, we use a reduction from 2-PARTITION (see Def-
inition 10.1, p. 245). We consider an instance I1 of 2-PARTITION: Given m
positive integers a1, a2, . . . , am, does there exist a subset I � f1, . . . ,mg such
that

∑
i∈I ai =

∑
i/∈I ai? Let S =

∑m
i=1 ai. We build the following instance

I2 of MinCost (see Figure 12.6):

• m+ 1 clients ci with ri = ai for 1 6 i 6 m and rm+1 = 1;

• m internal nodes nj , 1 6 j 6 m, with Wj = scj = aj ; the only child of
nj is cj ;

• A root node r with Wr = scr = S/2+1, and r has m+1 children nodes:
nj for 1 6 j 6 m and cm+1.

Finally, we ask whether there exists a solution with total storage cost S + 1.
Clearly, the size of I2 is polynomial (and even linear) in the size of I1. We
now show that instance I1 has a solution if and only if instance I2 does. The
same reduction works for both policies, Closest and Multiple.

Suppose first that I1 has a solution. We assign a replica to each node ni,
i 2 I, and one to the root r. Client ci is served by ni if i 2 I, and by
the root r otherwise, i.e., if i /2 I or if i = m + 1. The total storage cost is∑
j∈IWj+Wr = S+1. Because Wr = S/2+1 =

∑
i/∈I ri+rm+1, the capacity

© 2014 by Taylor & Francis Group, LLC

12.2. Complexity results 275

of the root is not exceeded. Note that the server allocation is compatible with
both the Closest and Multiple policies. In both cases, we have a solution
to I2.

Suppose now that I2 has a solution. Necessarily, there is a replica located
at the root; otherwise, client cm+1 would not be served. Let I be the index
set of nodes nj , 1 6 j 6 n that have been allocated a replica in the solution
of I2. For j /2 I, there is no replica at node nj , hence, all requests of client cj
are processed by the root, whose storage capacity is S/2 + 1. We derive that∑
j /∈I rj 6 S/2. Because the total storage capacity is S + 1, the total storage

capacity of nodes in I is S/2. The proof is slightly different for the two server
policies.

For the Closest policy, all requests from a client cj 2 I are served by nj ,
hence,

∑
j∈I rj 6 S/2. Because

∑
j∈I rj +

∑
j /∈I rj = S, we derive that∑

j∈I rj =
∑
j /∈I rj = S/2, hence, a solution to I2.

For the Multiple policy, consider a server j 2 I. Let r′j be the number
of requests from client cj served by nj , and r′′j be the number of requests
from cj served by the root r (of course, rj = r′j + r′′j). All requests from a
client cj , j /2 I, are served by the root. Let A =

∑
j∈I r

′
j , B =

∑
j∈I r

′′
j , and

C =
∑
j /∈I rj . The total storage cost is A+B+S/2 + 1, hence, A+B 6 S/2.

We have seen that C 6 S/2. However, A+B+C = S. Therefore, A+B = S/2
and C = S/2. Thus, B = 0 because all the capacity of the server at the root
is used to process the requests from cm+1 and from the cjs with j /2 I. Hence,
A = C = S/2 and we have a solution to I2.

12.2.4 Integer linear program

We also provide an expression of the optimization problem in terms of an
integer linear program. We deal with the most general instance of the problem
on a heterogeneous tree, including bounds on server capacities. We derive
a formulation for each of the three server access policies, namely, Closest ,
Upwards, and Multiple.

We introduce some extra notations to express the tree hierarchy. If i 2 C is
a client, then ancestors(i) � N is the set of internal nodes that are ancestors
of i in the tree, i.e., on the path between i and the root of the tree. Similarly,
we define the ancestors of a node j 2 N as ancestors(j). Finally, we denote
by subtree(j) the tree rooted in node j.

12.2.4.1 Single server

We start with the single server policies, namely, the Upwards and Closest
access policies. First, we define a few variables:

• For all j 2 N , xj is a Boolean variable equal to 1 if j is a server (for one
or several clients);

© 2014 by Taylor & Francis Group, LLC

276 Chapter 12. Replica placement in tree networks

• For all i 2 C and j 2 N , yi,j is a Boolean variable equal to 1 if j =
server(i); if j /2 ancestors(i), we directly set yi,j = 0.

The objective function is the total storage cost, namely,
∑
j∈N scjxj . We

list below the constraints, common to the Closest and Upwards policies, that
express server usage:

• Every client is assigned a server: 8i 2 C,
∑
j∈ancestors(i) yi,j = 1.

• The processing capacity of any server cannot be exceeded:
8j 2 N ,

∑
i∈C riyi,j 6 Wjxj . Note that this constraint ensures that if

j is the server of i, there is indeed a replica located at node j.

Altogether, we have fully characterized the linear program for the Upwards
policy. We need additional constraints for the Closest policy, which is a par-
ticular case of the Upwards policy (thus, all constraints and equations remain
valid). We need to express that if node j is the server of client i, then no
ancestor of j can be the server of a client in the subtree rooted at j. Indeed,
a client in this subtree would need to be served by j and not by one of its an-
cestors, according to the Closest policy. A direct way to write this constraint
is 8i 2 C,8j 2 ancestors(i),8i′ 2 C \ subtree(j),8j′ 2 ancestors(j), yi,j 6
1� yi′,j′ . Indeed, if yi,j = 1, meaning that j = server(i), then any client i′ in
the subtree rooted in j must have its server in that subtree, not closer to the
root than j. Hence, yi′,j′ = 0 for any ancestor j′ of j. There are O(s4) such
constraints to write where s = jCj+ jN j is the problem size.

12.2.4.2 Multiple servers

We now proceed to the Multiple policy. We slightly change the definition of
the variables: yi,j is now an integer variable equal to the number of requests
from client i processed by node j.

The objective function is unchanged, as the total storage cost still writes∑
j∈N scjxj , but the constraints must be slightly modified:

• Every request is assigned a server: 8i 2 C,
∑
j∈ancestors(i) yi,j = ri.

• Server capacities: 8j 2 N ,
∑
i∈C yi,j 6 Wjxj . Note that this ensures

that if j is the server for one or more requests from i, there is indeed a
replica located in node j.

Altogether, we have fully characterized the linear program for the Multiple
policy.

12.2.4.3 An LP-based lower bound

The previous linear program contains Boolean or integer variables, because it
does not make sense to assign half a request or to place one third of a replica
on a node. Thus, it must be solved in integer values if we wish to obtain an

© 2014 by Taylor & Francis Group, LLC

12.2. Complexity results 277

exact solution to an instance of the problem, and there is no efficient algorithm
to solve integer linear programs (unless P = NP). For each access policy, there
is a large number of variables, and the problem cannot be solved for platforms
of size s > 50, where s = jN j + jCj. Thus, we cannot use this approach for
large-scale problems.

However, this formulation is extremely useful as it leads to an absolute
lower bound; we can solve the integer linear program over the rationals. In
this case, all constraints are relaxed, and we assume that all variables can take
rational values. The optimal solution of the relaxed program can be obtained
in polynomial time (in theory using the ellipsoid method [93], in practice using
standard software packages [76, 39]), and the value of its objective function
provides an absolute lower bound on the cost of any valid (integer) solution.
For all practical values of the problem size, the rational linear program returns
a solution in a few minutes. We tested up to several thousands of nodes
and clients, and we always found a solution within 10 seconds. Of course,
the relaxation makes the most sense for the Multiple policy, because several
fractions of servers are assigned by the rational program.

However, we can obtain a more precise lower bound for trees with up to
s = 400 nodes and clients by using a rational solution of the Multiple instance
of the linear program with fewer integer variables. We treat the yi,j as rational
variables and require only the xj to be integer variables. These variables are
set to 1 if and only if there is a replica on the corresponding node. Thus,
forbidding to set 0 < xj < 1 allows us to get a realistic value of the cost of a
solution of the problem. For instance, a server might be used at only 50% of
its capacity; thus, setting x = 0.5 would be enough to ensure that all requests
are processed. However, in this case, the cost of placing the replica at this
node is halved, which is incorrect. While we can place a replica or not, it is
impossible to place half of a replica.

In practice, this lower bound provides a drastic improvement over the un-
reachable lower bound provided by the fully rational linear program. The
good news is that we can compute the refined lower bound for problem sizes
up to s = 400, using GLPK (GNU Linear Programming Kit) [39]. In the
next section, we show that this refined bound is an achievable bound, and we
provide an exact solution to the Multiple instance of the problem, based on
the solution of this mixed integer linear program.

12.2.4.4 An exact MIP-based solution for Multiple

THEOREM 12.5. The solution of the linear program detailed in 12.2.4.2,
when solved with all variables being rational except the xis, is an achievable
bound for the Multiple problem, and we can build an exact solution in poly-
nomial time, based on the LP solution.

Proof. Consider the solution of the LP program:
• 8i 2 C, xi 2 f0, 1g;
• 8i 2 C,8j 2 N , yi,j 2 Q.

© 2014 by Taylor & Francis Group, LLC

278 Chapter 12. Replica placement in tree networks

To prove that the lower bound obtained by this program is achievable, we
are building an integer solution where the y′i,js are integer numbers, keeping
the same xis and without breaking any constraints.

In the following, for any variable y, byc is the integer part of y, and ỹ is the
fractional part: y = byc+ ỹ, and ỹ < 1.

Let us consider a client i 2 C such that 9j 2 N j ỹi,j > 0, i.e., yi,j is not
an integer. We consider j1 being the closest server to i not serving an integer
number of requests of client i, and more generally, for 1 6 k 6 K, jk is the
k-th server on the path from i to the root, such that ỹi,jk > 0. Note that K
is the number of servers that are not serving an integer number of requests of
client i. We want to move bits of requests in order to obtain an integer value
for yi,j1 . This elementary transformation is called trans(i, j1). We consider
the two following cases.

First case: ∑
i′∈subtree(j1)∩C

yi′,j1 6Wj1 � (1� ỹi,j1) .

In this case, there is enough space at server j1 to fulfill an integer number
of requests from client i. Because the total number of requests of client i
is an integer,

∑K
k=1 ỹi,jk is a nonnull integer. Thus,

∑K
k=2 ỹi,jk > 1 �

ỹi,j1 , and we can move down 1 � ỹi,j1 bits of requests from servers jk
(2 6 k 6 K) to j1. No constraints will be violated because there is
enough space on the server. The move is done by changing the values
of yi,jk , for 1 6 k 6 K. After such a transformation, yi,j1 is an integer
variable.

Second case: If server j1 is already too full in order to add a fraction of
requests from client i, we need to exchange some requests with other
clients. First, if there is some free space on the server, we start by filling
completely server j1 with fractions of requests of client i from servers jk
(1 6 k 6 K). We know there are such requests; otherwise, yi,j1 would
be an integer. This transformation is similar to the one done in the first
case. We now have

∑
i′∈subtree(j1)∩C yi′,j1 = Wj1 . Let us denote by it

(1 6 t 6 T) the clients it 2 subtree(j1) \ C n fig such that ỹit,j1 > 0.

Because Wj1 is an integer and ỹi,j1 > 0, we have
∑T
t=1 ỹit,j1 > 1� ỹi,j1 ,

and also
∑K
k=2 ỹi,jk > 1 � ỹi,j1 . We can select in both sets 1 � ỹi,j1

bits of requests that will be exchanged, i.e., bits of requests from client
it initially treated by j1 will be moved on some servers jk that are in
ancestors(j1), and the corresponding amount of requests of i will be
moved back on server j1. Note that all constraints are still fulfilled.

Once trans(i, j1) has been applied, yi,j1 is an integer. Because only nonin-
teger bits of requests have been moved, no variables with integral values were
modified, and we have decreased at least by one the number of noninteger
variables in the solution.

© 2014 by Taylor & Francis Group, LLC

12.3. Variants of the replica placement problem 279

1 for j 2 N taken in a bottom-up traversal order do
2 finish=1
3 while (finish==1) do
4 C′ = fi′ 2 C \ subtree(j) j ỹi′,j > 0g
5 if C′ == ; then
6 finish=0

7 else
8 Choose arbitrarily i 2 C′
9 trans(i, j)

ALGORITHM 12.1: Building an integer solution for Multiple from a rational
one.

Let us detail now the complete transformation algorithm, Algorithm 12.1,
in order to obtain an integer solution. We consider each server in a bottom-up
order, so that we are sure that each time we perform an elementary transfor-
mation, the server is the first one on the way from the client to the root having
a noninteger number of requests. In fact, when transforming server j, each
server in subtree(j) has already been transformed and thus has no fraction
numbers of requests.

In order to transform server j, we look at the set C′ of clients having a non-
integer number of requests processed at j. If the set is empty, there is nothing
to transform at j. Otherwise, we perform the elementary transformation with
one client i 2 C′.

At the end of the “while” loop of Algorithm 12.1, server j is processing only
integer numbers of requests, and thus we will not modify its assignment of
requests anymore in the following.

The constraints are all respected at each step of the transformation, and
we do not add or remove any replica, so the solution has exactly the same
cost as the initial LP-based solution, and the transformed solution is fully
integer. Moreover, this transformation algorithm works in polynomial time,
in the worst case in jN j+ jCj2, but most of the time it is much faster because
the transformations do not concern all clients simultaneously, only a few of
them.

12.3 Variants of the replica placement problem

In this section, we discuss two variants of the initial replica placement problem
with homogeneous servers (MinNb) in order to exhibit problem instances for

© 2014 by Taylor & Francis Group, LLC

280 Chapter 12. Replica placement in tree networks

which the problem with the Multiple or Closest policy becomes NP-hard.
First, in Section 12.3.1, we introduce the notion of quality of service, in

terms of distance between a client and its server. For the Multiple policy, the
problem, which could be solved in polynomial time without QoS constraints,
becomes NP-hard.

A second variant targets a power-aware replica placement problem (MinPo-
wer, see Section 12.3.2), where the objective is to minimize not the cost of
the solution anymore but rather the power consumption. In this case, the
instance of the problem with the Closest policy becomes NP-hard.

12.3.1 Enforcing a quality of service

We consider that a quality of service must be enforced for each client, in
terms of distance between a client and its server. A distance is associated
with each edge of the tree, and for each client, a maximum distance is fixed,
which should not be exceeded. While it is possible to extend the Closest
algorithm for MinNb with QoS (see [110]), the problem becomes NP-hard for
the Multiple policy.

The reduction holds even when all distances in the tree are identical, and
the QoS of a client i 2 C is then defined as qi, the maximum number of hops
between i and server(i).

THEOREM 12.6. The instance of the MinNb problem with the Multiple
policy and QoS constraints is NP-complete.

The proof is more involved than the ones seen so far, but because we can
play on the number of requests, it is natural to perform the reduction from a
partition problem. In this case, we use the 2-PARTITION-EQUAL problem
(see Definition 10.2, p. 245), which is a variant of 2-PARTITION where the
ais must be partitioned in two sets of identical cardinality, m. Clients with
QoS equal to 1 allow us to enforce the placement of replicas anywhere in the
tree. Then, we add nodes with two clients, and we must decide whether to
place a replica on these nodes or not. A total of m replicas will be required.
Therefore, this will lead to a 2-PARTITION-EQUAL.

Proof. The problem clearly belongs to the class NP. Given a solution, it is
easy to verify in polynomial time that all requests are served, that all QoS
constraints are satisfied, and that no server capacity is exceeded.

To establish the completeness, we use a reduction from 2-PARTITION-
EQUAL (see Definition 10.2, p. 245). We consider an instance I1 of 2-PAR-
TITION-EQUAL. Given 2m positive integers a1, a2, . . . , a2m, does there exist
a subset I � f1, . . . , 2mg of cardinal m such that

∑
i∈I ai =

∑
i/∈I ai? Let

S =
∑2m
i=1 ai, W = S

2 + 1, and bi = S
2 � 2ai for 1 6 i 6 2m. We build the

following instance I2 of our problem (Figure 12.7), with 5m� 1 clients ci and
3m� 1 internal nodes nj of identical capacity W :

© 2014 by Taylor & Francis Group, LLC

12.3. Variants of the replica placement problem 281

n3m−1

a2 a2mb1 b2 b2m

n2m+1

n2m+2

n2m+3

n1 n2 n2m

W = S
2
+ 1

1

1

1

1

a1

FIGURE 12.7: The platform used in the reduction for Theorem 12.6.

• Nodes:

– For 1 6 j 6 2m, the parent of node nj is node n2m+1;
– For 2m+ 1 6 j 6 3m� 2, the parent of node nj is node nj+1;
– Node n3m−1 is the root of the tree.

• Clients:

– For 1 6 i 6 2m, client ci has ri = ai requests of QoS qi = 2, and
its parent is node ni;

– For 2m + 1 6 i 6 4m, client ci has ri = bi−2m requests of QoS
qi = m, and its parent is node ni−2m;

– For 4m+1 6 i 6 5m�1, client ci has ri = 1 request of QoS qi = 1,
and its parent is node ni−2m.

Finally, we ask whether there exists a solution with 2m�1 servers. Clearly,
the size of I2 is polynomial (and even linear) in the size of I1. We now show
that instance I1 has a solution if and only if instance I2 does.

Suppose first that I1 has a solution. We assign a replica to each node ni,
i 2 I, (by hypothesis there are m of them) and one to each of the m � 1
top nodes n2m+1 to n3m−1. All m� 1 clients with QoS 1 are served by their
parent.

For 1 6 i 6 2m, there are two cases: (i) If i 2 I, both clients ci and ci+2m

are served by their parent ni. Node ni serves a total of ai + bi = S
2 � ai 6W

requests. (ii) If i /2 I, client ci is served by node n2m+1 and client ci+2m is
served by one or several ancestors of n2m+1, i.e., nodes n2m+2 to n3m−1. Node
n2m+1, which also serves the unique request of client c2m+1, serves a total of∑
i/∈I ai + 1 = W requests. The m � 2 ancestors of n2m+1 receive the load∑
i/∈I bi = mS�2S. They also serve m�2 clients with a single request, hence,

© 2014 by Taylor & Francis Group, LLC

282 Chapter 12. Replica placement in tree networks

a total load of (m � 2)S + m � 2 = (m � 2)W requests to distribute among
them. This is precisely the sum of their capacities, and any assignment will
do the job.

Note that the allocation of requests to servers is compatible with all QoS
constraints. All requests with QoS 1 are served by the parent node. All
requests with QoS 2, i.e., with value ai, are served either by the parent node
(if i 2 I) or by the grandparent node (if i /2 I). Altogether, we have a solution
to I2.

Suppose now that I2 has a solution with 2m� 1 servers. Necessarily, there
is a replica located in each of the top m�1 nodes n2m+1 to n3m−1; otherwise,
some request with QoS 1 would not be served satisfactorily. Each of these
nodes serves one of these requests, hence, has remaining capacity W � 1 = S

2 .
There remainm servers that are placed among nodes n1 to n2m. Let I be the

set of indices of those m nodes that have not received a replica. Necessarily,
requests ai, with i 2 I, are served by node n2m+1, because of their QoS
constraint. Hence,

∑
i∈I ai 6

S
2 . Next, all requests ai and bi, with i 2 I, are

served by nodes n2m+1 to n3m−1, whose total remaining capacity is (m�1)S2 .

There are (
∑
i∈I ai) + (mS

2 � 2
∑
i∈I ai) such requests, thus:

m
S

2
�
∑
i∈I

ai 6 (m� 1)
S

2
.

From this equation, we derive that
∑
i∈I ai >

S
2 . Finally, we have

∑
i∈I ai =

S
2 , with jIj = m, hence, a solution to I2.

12.3.2 Power-aware replica placement

In this section, we introduce a variant of the MinNb problem, MinPower,
which aims at minimizing the power consumption of a replica placement. We
prove the NP-completeness of this problem for the Closest policy, even with
no static power, when processors can have an arbitrary number of modes.

We assume that servers may operate under a set M = fW1, . . . ,WMg of
different speeds, or modes, depending upon the number of requests that they
have to process per time unit. Modes are indexed according to increasing
values, and WM = W , the maximal capacity. If a server j 2 R processes rj
requests, with Wi−1 < rj 6 Wi, then it is operated at mode Wi, and we let
mode(j) = i. The power consumption of a server j 2 R obeys the classical
model:

P(j) = P(static) +
(
Wmode(j)

)α
,

where P(static) is the static power consumption (constant part), whileWα
mode(j)

is the dynamic part that depends upon the operated mode. Finally, α 2 [2, 3]
is a rational constant that depends upon the model for power [6, 22, 23, 54, 90].
The total power consumption P(R) of the solution is the sum of the power

© 2014 by Taylor & Francis Group, LLC

12.3. Variants of the replica placement problem 283

consumption of all server nodes:

P(R) =
∑
j∈R
P(j) = jRj � P(static) +

∑
j∈R

(
Wmode(j)

)α
. (12.1)

Intuitively, this equation calls for balancing two conflicting terms: static
power is minimized with few servers, while dynamic power is minimized with
many servers operated in the slowest mode.

THEOREM 12.7. The instance of the MinPower problem with the Closest
policy is NP-complete.

This proof, even though the reduction comes from the now well-known
2-PARTITION problem, is quite involved because of the α exponent in equa-
tion (12.1). The idea is to use all the capacity given by a mode. We enforce
that the root of the tree must run at the highest mode, and a 2-PARTITION
must exist so that the capacity is fully utilized.

Proof. We consider the associated decision problem. Given a total power
consumption P, is there a solution that does not consume more than P?

First, the problem is clearly in NP. Given a solution, i.e., a set of servers,
and the mode of each server, it is easy to check in polynomial time that no
capacity constraint is exceeded and that the power consumption meets the
bound.

To establish the completeness, we use a reduction from 2-PARTITION (see
Definition 10.1, p. 245). We consider an instance I1 of 2-PARTITION. Given n
strictly positive integers a1, a2, . . . , an, does there exist a subset I of f1, . . . , ng
such that

∑
i∈I ai =

∑
i/∈I ai? Let S =

∑n
i=1 ai; we assume that S is even

(otherwise, there is no solution).
We build an instance I2 of our problem where each server has n+ 2 modes.

We assume that the ai are sorted in increasing order, i.e., a1 6 � � � 6 an. The
modes are then, when sorted in increasing order:

• W1 = K;

• 81 6 i 6 n, Wi+1 = K + ai �X;

• Wn+2 = K + S �X;

where the values of K and X will be determined later.
We furthermore decide that there is no static power, and the power con-

sumption for a server running at capacity Wi is, therefore, Pi = Wα
i , where α

is the rational exponent used in the computation of the power, and 2 6 α 6 3.
The idea is to have K large and X small, so that we have an upper bound on
the power consumed by a server running at capacity Wi+1, for 1 6 i 6 n:

Wα
i+1 = (K + ai �X)α 6 Kα + ai +

1

n
. (12.2)

© 2014 by Taylor & Francis Group, LLC

284 Chapter 12. Replica placement in tree networks

FIGURE 12.8: Illustration of the NP-completeness proof.

To ensure that equation (12.2) is satisfied, we set

X =
1

α×Kα−1
,

and then we have (K+ai�X)α = Kα(1+ ai
αKα)α, with K > S and, therefore,

ai
αKα < 1. We set xi = ai

αKα , and we want to ensure that

(1 + xi)
α 6 1 + α� xi +

1

n�Kα
. (12.3)

To do so, we study the function

f(x) = (1 + x)α � (1 + α� x)� 5x2,

and we show that f(x) 6 0 for x 6 1
2 (thanks to the term in �5x2). We

have f(0) = 0, and f ′(x) = α(1 + x)α−1 � α � 10x. We have f ′(0) = 0, and
f ′′(x) = α(α�1)(1+x)α−2�10. Because α 6 3, α(α�1)(1+x)α−2 6 6(1+x),
and for x 6 1

2 , f ′′(x) < 0. We deduce that f ′(x) is nonincreasing for x 6 1
2 ,

and because f ′(0) = 0, f ′(x) is nonpositive for x 6 1
2 .

Finally, f(x) is nonincreasing for x 6 1
2 , and because f(0) = 0, we have

(1 + x)α < (1 + α� x) + 5x2 for x 6 1
2 .

Equation (12.3), therefore, is satisfied if 5x2
i 6 1

n×Kα , i.e., Kα > 5a2i×n
α2 .

This condition is satisfied for

K = n� S2,

and we then have xi <
1
2 , which ensures that the previous reasoning was

correct. Finally, with these values of K and X, equation (12.2) is satisfied.
Then, the distribution tree is the following: The root node r has one client

with K+ S
2 �X requests and n children A1, . . . , An. Each node Ai has a client

with ai�X requests and a children node Bi that has K requests. Figure 12.8
illustrates the instance of the reduction.

© 2014 by Taylor & Francis Group, LLC

12.3. Variants of the replica placement problem 285

Finally, we ask if we can find a placement of replicas with a maximum power
consumption of

Pmax = (K + S �X)α + n�Kα +
S

2
+
n� 1

n
.

Clearly, the size of I2 is polynomial in the size of I1 because K and X are
of polynomial size. We now show that I1 has a solution if and only if I2 does.

Let us assume first that I1 has a solution, I. The solution for I2 is then as
follows: There is one server at the root, running at capacity Wn+2. Then, for
i 2 I, we place a server at node Ai running at capacity W1+i, while for i /2 I,
we place a server at node Bi running at capacity W1. It is easy to check that
all capacity constraints are satisfied for nodes Ai and Bi. At the root of the
tree, there are K+ S

2 �X+
∑
i/∈I ai�X = K+S�X requests. The total power

consumption is then P = (K + S �X)α +
∑
i∈I(K + ai �X)α +

∑
i/∈I K

α.

Thanks to equation (12.2), P 6 (K + S � X)α +
∑
i∈I
(
Kα + ai + 1

n

)
+∑

i/∈I K
α, and finally, P 6 (K+S�X)α +n�Kα +

∑
i∈I ai + n−1

n . Because
I is a solution to 2-PARTITION, we have P 6 Pmax. Finally, I2 has a
solution.

Suppose now that I2 has a solution. There is a server at the root node r,
which runs at mode Wn+2, because this is the only way to handle its K +
S
2 � X requests. This server has a power consumption of (K + S � X)α.
Then, there cannot be more than n other servers. Indeed, if there were n+ 1
servers, running at the smallest mode W1, their power consumption would be
(n+1)Kα, which is strictly greater than n�Kα+ S

2 +1. Therefore, the power
consumption would exceed Pmax. So, there are at most n extra servers.

Consider that there exists i 2 f1, . . . , ng such that there is no server, nei-
ther on Ai nor on Bi. Then, the number of requests at node r is at least
2K; however, 2K > Wn+2, so the server cannot handle all of these requests.
Therefore, for each i 2 f1, . . . , ng, there is exactly one server either on Ai or
on Bi. We define the set I as the indices for which there is a server at node Ai
in the solution. Now, we show that I is a solution to I1, the original instance
of 2-PARTITION.

First, if we sum up the requests at the root node, we have

K +
S

2
�X +

∑
i/∈I

ai �X 6 K + S �X.

Therefore,
∑
i/∈I ai 6

S
2 .

Now, if we consider the power consumption of the solution, we have

(K + S �X)α +
∑
i∈I

(K + ai �X)α +
∑
i/∈I

Kα 6 Pmax.

© 2014 by Taylor & Francis Group, LLC

286 Chapter 12. Replica placement in tree networks

Let us assume that
∑
i∈I ai >

S
2 . Because the ais are integers, we have∑

i∈I ai >
S
2 + 1. It is easy to see that (K + ai � X)α > Kα + ai. Finally,∑

i∈I(K + ai�X)α +
∑
i/∈I K

α > n�Kα +
∑
i∈I ai > n�Kα + S

2 + 1. This
implies that the total power consumption is greater than Pmax, which leads
to a contradiction, and, therefore,

∑
i∈I ai 6

S
2 .

We conclude that
∑
i/∈I ai =

∑
i∈I ai = S

2 , and so the solution I is a 2-
PARTITION for instance I1. This concludes the proof.

12.4 Conclusion

In this case study, we have introduced and analyzed three meaningful policies
for the replica placement problem; the Upwards and Multiple policies are
natural variants of the standard Closest approach.

On the theoretical side, we have fully assessed the complexity of the prob-
lem with each of these policies, both for homogeneous and heterogeneous plat-
forms. The polynomial complexity of the Multiple policy in the homogeneous
case is quite unexpected, and we have provided an elegant algorithm to com-
pute the optimal cost for this policy. Not surprisingly, all three policies turn
out to be NP-complete for heterogeneous nodes, which provides yet another
example of the additional difficulties induced by resource heterogeneity.

When adding QoS constraints, the problem on homogeneous platforms with
the Multiple policy becomes NP-complete, which illustrates the additional
complexity induced by such constraints. We also have demonstrated the dif-
ficulty induced by power-aware replica placement, because the problem of
minimizing the power consumption becomes NP-hard with identical servers
for the Closest policy.

On the practical side, several polynomial-time heuristics for the Closest ,
Upwards, and Multiple policies can be found in [11], and their performance is
compared using several problem instances, with or without QoS constraints.
The impact of the policy is impressive. The number of trees that admit a
solution is much higher with the Upwards and Multiple policies than with the
Closest policy. In order to handle the power consumption problem, [12] pro-
poses a pseudopolynomial algorithm capable of optimizing power consumption
for a bounded cost. The algorithm is exponential in the total number of pro-
cessor modes, and, therefore, it turns out to be of polynomial time with a
fixed number of modes.

© 2014 by Taylor & Francis Group, LLC

Chapter 13

Packet routing

In this case study, we deal with two famous routing problems, which have
received considerable attention in the literature. The focus here is on approx-
imation techniques rather than on NP-completeness proofs, which for once
are not given in the text (but references are provided).

Informally, routing is the activity to move packets from source to destina-
tion. The underlying interconnection network is modeled as a directed graph
G = (V,E). There is a set R of routing requests to satisfy. Each request
Ri 2 R has a source si and a destination ti, which are both vertices of V . In
addition, each request has a number ni of elementary data items, or packets,
to be routed from si to ti. For each packet of Ri, we must find a simple path
in G, along whose edges the packet will “ripple down” from si to ti.

We study the following two variants of the problem:

Maximum edge-disjoint path (MEDP) problem. Here the rule of the
game is that all packets of a given request follow the same path. In
addition, no two request paths are allowed to share any edge in the
graph. In other words, each request is assigned a private path that is
reserved for its own usage. It may well be the case that all requests
cannot be accommodated simultaneously, so the natural objective is to
maximize the number of accepted (routed) requests. In terms of graph
theory, given a set of source/destination pairs, we aim at finding the
maximum number of edge-disjoint paths between them.

Packet routing with variable-paths (PRVP). In this second variant,
each packet can be routed along a distinct path. Two packet paths can
share edges, but packets are routed sequentially. At any time step at
most one packet can cross an edge of the graph (but several edges can be
crossed by different packets simultaneously). Here the natural objective
is to minimize the total execution time, i.e., the time needed to move
each packet from its source to its destination. Technically, requests are
less important than individual packets here, because two packets of the
same request can follow two arbitrarily different paths, which may either
intersect or be edge-disjoint. Requests can be viewed as different marks,
or types, for the packets.

Both MEDP and PRVP, along with several extensions, have been exten-
sively studied because they lie at the heart of many network problems. Com-

287

© 2014 by Taylor & Francis Group, LLC

288 Chapter 13. Packet routing

prehensive surveys are provided in [33] for MEDP and in [85] for PRVP. In
this case study, we focus on proving the following results:

• A tight approximation factor for MEDP;
• An asymptotically optimal algorithm for PRVP.

13.1 MEDP: Maximum edge-disjoint paths

In this section, we study the MEDP problem, and we prove that some greedy
algorithm provides the best possible approximation factor. We start with a
precise formulation in terms of graph theory.

13.1.1 Problem statement

Given a directed graph G = (V,E) and a set of terminal pairs R = fRi =
(si, ti)g, the goal of MEDP is to connect as many pairs as possible using
edge-disjoint simple paths. In line with the previous discussion, each terminal
pair in R is also called a request. A feasible solution is a subset A of accepted
requests. In the solution, each Ri 2 A must be assigned a simple path πi
from si to ti in G, so that no two paths πi and πj , where Ri 2 A, Rj 2 A,
and i 6= j have an edge of the graph in common. Requests in A are said to
be accepted while those in R n A are rejected.

The goal is to maximize jAj, the cardinality of A, i.e., the number of ac-
cepted requests. In the following, A∗ will denote an optimal solution. We
also let n = jV j and m = jEj. The MEDP problem is NP-complete with only
two requests [35] (note that Definition 10.15, p. 247, refers to a very similar
problem, with vertex-disjoint paths). In the following, we analyze two greedy
algorithms, and we show that the second one is, in essence, the best that we
can hope for. Beforehand, we briefly mention two special classes of graphs,
for which the optimal solution can be found in polynomial time.

Chains. When G is a chain, the problem should look familiar. Each request
can be viewed as an interval, and the goal is to identify the maximum
number of nonoverlapping intervals. We recognize the sports hall prob-
lem of Section 3.1. Recall that the optimal solution is to sort the inter-
vals (requests) by ending time (termination vertex) and to select them
greedily.

Stars. When G is a star, the problem can still be solved in polynomial time
but with a more advanced graph algorithm. In a star graph, source
vertices are connected to destination vertices by a single path of two
edges that go through the same intermediate vertex, the center of the
star. To accommodate for the case where a request starts from the

© 2014 by Taylor & Francis Group, LLC

13.1. MEDP: Maximum edge-disjoint paths 289

central vertex, we simply add a new source vertex to the graph (and we
add a new destination vertex if a request ends in the central vertex).
Next, we build a bipartite graph from sources to destinations, and we
add an edge between a source and a destination if and only if there
is a request between them. There remains to be found a maximum
cardinality matching in the bipartite graph [106] to derive the optimal
solution.

13.1.2 Naive greedy algorithm

The simplest, or naive, greedy algorithm tries to accept the requests in any
order. The algorithm accepts the first request R1 if there exists a path from
s1 to t1 in G. However, there may exist several paths. Because edges are the
scarce resource in the problem, the algorithm looks for a shortest-path π1 from
s1 to t1 (if there exist many shortest paths, it picks one arbitrarily). Each
time a request is accepted, we have to prune the graph and remove the edges
that appear in the shortest path selected for that request, so as to enforce
that only edge-independent paths will be used throughout the execution. We
derive Algorithm 13.1:

1 A ;
2 for i = 1 to jRj do
3 if there exists a path from si to ti in G then
4 accept: A A [fRig
5 route: πi a shortest path from si to ti in G
6 prune: remove all edges of πi from G

ALGORITHM 13.1: Naive greedy algorithm.

The complexity of this naive greedy algorithm can easily be upper-bounded
by O(jRj.jV j2). There are many algorithms to find a shortest path from
a source to a destination (in fact, all destinations) in a directed graph with
nonnegative weights; for instance, Dijkstra’s algorithm without advanced data
structures has complexity O(jV j2) (see [27]).

THEOREM 13.1. Algorithm 13.1 has approximation ratio n�1 for MEDP
in graphs with n vertices, and this bound is tight.

Proof. Given an instance of MEDP, let A be the solution returned by Algo-
rithm 13.1, and let A∗ be an optimal solution. We start with the tightness of
the bound. Consider a chain with n vertices:

v1 ! v2 ! � � � ! vn .

© 2014 by Taylor & Francis Group, LLC

290 Chapter 13. Packet routing

There are n requests R1 = (v1, vn), and Ri = (vi−1, vi) for 2 6 i 6 n. If the
algorithm starts with R1, no other request can be accepted, so that jAj = 1.
Obviously, the optimal solution is to accept the last n � 1 requests, so that
jA∗j = n� 1.

Now, we show that for any instance of MEDP on a graph G with n vertices,
we have

jA∗j 6 (n� 1)� jAj .

For Ri 2 A, let πi be the path assigned by Algorithm 13.1. Similarly, for
Rj 2 A∗, let π∗j be the path assigned by the optimal solution. Consider the
execution of Algorithm 13.1 at each step. Each time it accepts a request Ri,
we prune the optimal solution A∗ by deleting Ri itself if it belongs to A∗, and
also all those requests Rj 2 A∗ whose paths π∗j are not edge-disjoint with πi.
For instance, assume that Algorithm 13.1 rejects R1 and then accepts R2 and
R3, we do the following actions on A∗:

• We leave it unchanged at step 1;
• We remove all requests whose paths intersect π2 at step 2;
• We remove all remaining requests whose paths intersect π3 at step 3.

At each step of the execution of Algorithm 13.1, there remains in A∗ only
requests Rj whose paths π∗j are edge-disjoint with all the paths πi of the
requests Ri that have been previously accepted by Algorithm 13.1. Also,
the set A∗ must be empty at the end of the execution of Algorithm 13.1.
Otherwise, if there remained a request, Algorithm 13.1 could (and greedily
would) accept it. Therefore, we have proved the following result:

LEMMA 13.1. To show that jA∗j 6 λ � jAj for some constant λ, it is
sufficient to show that whenever the greedy algorithm accepts a request, no
more than λ requests are deleted from A∗.

We now use Lemma 13.1 with λ = n� 1. Consider Algorithm 13.1 when it
accepts a request Ri = (si, ti). The path πi is a shortest (hence, simple) path
from si to ti in G , and it has at most n� 1 edges. There are two cases:

1. πi has at most n�2 edges. Then, there are at most n�2 requests in A∗
(one per edge of πi) whose paths are not edge-disjoint from πi. Adding
Ri itself, there are at most λ = n� 1 requests that are deleted from A∗.

2. πi has exactly n � 1 edges. Then, πi goes through all vertices of G.
Because πi and π∗i are both shortest paths from si to ti, they cannot be
edge-disjoint. In fact, we can show that they share the same first edge.
Otherwise, let vi be the first node visited by πi and v∗i the first node
visited by π∗i . Because πi visits all nodes, it visits v∗i at some point.
But, replacing the beginning of πi from si to v∗i with the edge (si, v

∗
i),

which belongs to π∗i , and is still available in the graph at that point
of the execution, leads to a shorter path from si to ti, a contradiction.
Now, there are at most n� 1 requests in A∗ (one per edge of πi) whose
paths are not edge-disjoint from πi, and this set includes Ri.

© 2014 by Taylor & Francis Group, LLC

13.1. MEDP: Maximum edge-disjoint paths 291

Altogether, this concludes the proof of Theorem 13.1.

13.1.3 Short-requests-first greedy algorithm

When executing the greedy algorithm, it would be quite desirable to give
priority to short requests, i.e., requests that can be routed with the smallest
number of edges in the graph. Note that we need to recompute the length
of the shortest path from sources to destinations at each step, because we
remove edges from the graph whenever accepting a request. This modification
of Algorithm 13.1 leads to Algorithm 13.2:

1 A ;
2 while there exists a request in R that can be routed do
3 choose: Ri a request in R whose shortest path from si to ti

in G has minimum length among all requests in R
4 accept: A A [fRig
5 route: πi a shortest path from si to ti in G
6 prune: remove all edges of πi from G

ALGORITHM 13.2: Short-requests-first greedy algorithm.

The complexity of this second greedy algorithm can easily be upper-bounded
by O(jRj.jV j3) using, for instance, the Floyd–Warshall algorithm (whose com-
plexity is O(jV j3) to find a shortest path from all sources to all destinations
in G (see [27]).

THEOREM 13.2. Algorithm 13.2 has approximation ratio d
p
m e for prob-

lem MEDP in graphs with m edges, and this bound is tight.

Proof. Given an instance of MEDP, let A be the solution returned by Al-
gorithm 13.2, and let A∗ be an optimal solution. Again, we start with the
tightness of the bound. Consider the following directed graph made of the
following q + 1 paths, each with q edges:

• a first path p0 with q edges ei, 1 6 i 6 q;
• q paths pi, 1 6 i 6 q, such that:

– the first edge of pi is ei;
– the following q � 1 edges of pi are edges private to pi.

The graph contains m = q2 edges. There are q + 1 requests Ri, one per
path pi, 0 6 i 6 q, whose source and destination are the first and final nodes
of the path.

Because all paths have the same length, Algorithm 13.2 may well accept
request R0 first. No other request can be accepted, so that jAj = 1. But, the

© 2014 by Taylor & Francis Group, LLC

292 Chapter 13. Packet routing

optimal solution is to accept the other q requests, so that jA∗j = q. The ratio
is indeed q =

p
m (which is an integer).

Now, we show that for any instance of MEDP on a graph G with m vertices,
we have

jA∗j 6 d
p
m e � jAj .

The proof is similar to that of Theorem 13.1; we use Lemma 13.1 but this
time with the value λ = d

p
m e.

As before, for Ri 2 A, let πi be the path chosen by Algorithm 13.2. Simi-
larly, for Rj 2 A∗, let π∗j be the path chosen by the optimal solution. Consider
the path πi chosen by Algorithm 13.2 when it accepts a request Ri. This path
πi is a shortest (hence, simple) path from si to ti in G, and it has the fewest
number of edges among all requests that can still be accepted at this point.
There are two cases:

1. πi has at most d
p
m e � 1 edges. Then, there are at most d

p
m e � 1

requests in A∗ (one per edge of πi) whose paths are not edge-disjoint
from πi. Adding Ri itself, there are at most λ = d

p
m e requests that

are deleted from A∗.

2. πi has at least d
p
m e edges. Then, all remaining requests in A∗ cor-

respond to paths with at least as many edges, because they can all be
accepted at this point of the execution of Algorithm 13.2, and because
Algorithm 13.2 always chooses the shortest possible request. Hence, all
the remaining requests in A∗ (possibly including Ri itself) are edge-
disjoint and have no fewer than d

p
m e edges. With a total number

of m edges in the graph (some of which may have been deleted), there
cannot be more than d

p
m e such requests. This shows that we never

delete more than d
p
m e requests in A∗.

Altogether, this concludes the proof of Theorem 13.2

13.1.4 Inapproximability result

The performance ratio d
p
m e of Algorithm 13.2 may appear disappointing.

However, a surprising result is that we cannot do much better. We formally
state this result in the following theorem, due to [46].

THEOREM 13.3. Unless P = NP, for any ε > 0, there cannot exist an
m

1
2−ε approximation algorithm for MEDP in graphs with m edges.

Proof. The proof is based on the NP-hardness of the instance of MEDP with
two requests [35], which we call 2DirPath. Consider an arbitrary instance I1

of 2DirPath, i.e., a directed graph G′ = (V ′, E′) and four different vertices
u1, v1, u2, v2. We ask whether there exist two edge-disjoint paths in G′, one
from u1 to v1, and one from u2 to v2. Consider ε > 0 and let k = djE′j 1ε e. We

© 2014 by Taylor & Francis Group, LLC

13.1. MEDP: Maximum edge-disjoint paths 293

build an instance I2 of MEDP by arranging a triangle mesh of (k � 1)(k �
2)/2 copies of G′ and linking them by k chains of k edges each, as shown in
Figure 13.1. The resulting graph G has n = (k� 1)(k� 2)jV ′j/2 + 2k vertices
(corresponding to the copies of G′ and to the additional 2k extremities of the
paths), and m = (k � 1)(k � 2)jE′j/2 + k2 � 2k + 3 edges (in addition to the
edges of the copies of G′, there are two input edges for each of these copies
and an input edge for each of the tis). There are k requests Ri = (si, ti) for
1 6 i 6 k.

t6

s1 s2 s3 s4 s5 s6

t1

t2

t3

t4

t5

FIGURE 13.1: Construction of the instance I2 of MEDP (with k = 6).

The main idea is the following: If I1 has a solution, we can accept all k
requests in I2 simply by traversing the copies of G′ with its two independent
paths. But, if I1 has no solution, then only one request can be accepted in
I2: Once we have accepted any request, we cannot traverse the copies of G′

that it includes with independent paths, which “blocks” all other requests and
forbids their acceptance. In other words, the optimal solution to I2 has either
k or one requests, depending upon whether I1 has a solution or not. If there
would exist a polynomial approximation of ratio smaller than k, we would
decide for I1, hence, solve the P = NP question. There remains to be checked
that our choice of k is such that m

1
2−ε < k. We have m = Θ(k2jE′j), where

Θ denotes the order of magnitude. Then, m
1
2−ε = Θ(k1−2εjE′j 12−ε). Since

k = djE′j 1ε e, we get

m
1
2−ε = Θ(k1−3ε/2−ε2).

We can assume that jE′j > 2 without loss of generality. Then, we have:

m =
(k � 1)(k � 2)

2
jE′j+ (k2 � 2k + 3) 6

k2

2
jE′j+ k2 6 k2jE′j 6 k2+ε

© 2014 by Taylor & Francis Group, LLC

294 Chapter 13. Packet routing

by definition of k. Therefore,

m
1
2−ε 6 k1− 3

2 ε−ε
2

< k,

which leads to the result.

13.2 PRVP: Packet routing with variable-paths

In this section, we study the PRVP problem, and we design a simple algorithm
that is asymptotically optimal. The key technique is original and is based upon
optimizing the throughput of the algorithm in steady-state mode. We start
with a precise formulation of the problem and a quick overview of the main
known complexity results.

13.2.1 Problem statement

Consider a directed graph G = (V,E). To simplify notations, let V =
f1, 2, . . . , ng, and (i ! j) 2 E denote the edge from i to j (if it exists).
In an instance of PRVP, we are given a set of node pairs R = f(k, l)g; for
each pair (k, l) 2 R (each request), there is a number of packets nk,l > 0
that need to be routed from source k to destination l. Such packets are called
packets of type (k, l). See Figure 13.2 for an example with three requests (two
of which have the same source).

The rules of the game are the following:
• Routing paths are not fixed a priori, and packets of the same type may

follow different paths;
• A packet traverses an edge within one time step;
• At any time step, at most one packet traverses an edge.

So, not only do we have to find a path for each packet, but at any time step,
we also have to decide which packet to route along each edge. We can view
the PRVP problem as a scheduling problem, as the objective is to route all
packets from source to destination in the fewest possible number of time steps.
Indeed, the objective is to minimize the total execution time, or makespan.
An example of possible actions at the first time step is shown in Figure 13.3.
The scheduler has decided to route two black packets (of type (A,C)), one
white packet (of type (A,D)), and two gray packets (of type (B,C)).

The NP-completeness of the PRVP problem is given in [85]. In fact, the
proof of [85] shows that PRVP cannot be approximated with a factor 6

5 � ε
for any ε > 0 (unless P = NP). An approximation algorithm with some
(complicated) constant factor is provided in [100], using an approach based
on linear programming. Here, we present an algorithm due to Bertsimas
and Gamarnik [16], which is also based upon a linear programming approach

© 2014 by Taylor & Francis Group, LLC

13.2. PRVP: Packet routing with variable-paths 295

B

C

H

D
F

A

E

G

FIGURE 13.2: An instance of PRVP (for clarity, nodes are denoted with
letters rather than numbers).

B

C

H

D
F

A

E

G

FIGURE 13.3: An example of possible actions at the first time step.

but which uses a very interesting relaxation technique. We show that the
algorithm of [16] achieves a makespan C 6 C∗ + O(

p
C∗), where C∗ is the

optimal makespan. As a consequence, the algorithm is asymptotically optimal
when the total number of packets to be routed increases to infinity. The reader
may want to refer to Section 8.3 for a background on linear programming
techniques.

13.2.2 Bounding optimal makespan via linear programming

In this section, we derive a lower bound on the optimal makespan C∗. Consider
the optimal solution, and let xk,li,j be the total number of packets of type (k, l)
that traverse the edge (i, j):

xk,li,j

k

i

l

j

nk,l

Let the congestion Ci,j of an edge (i ! j) 2 E be the total number of

© 2014 by Taylor & Francis Group, LLC

296 Chapter 13. Packet routing

packets crossing that edge:

Ci,j =
∑

(k,l)∈R

xk,li,j .

Clearly, the optimal execution time is at least equal to the maximal con-
gestion of any edge:

C∗ > max
(i→j)∈E

Ci,j .

This lower bound leads us to write the following linear program, which we
state as a whole before explaining each equation with further details:

Minimize Cmax under the constraints

(13.1a) 8(k, l) 2 R,8(i! j) 2 E, xk,li,j > 0

(13.1b) 8(k, l) 2 R,8(i! k) 2 E, xk,li,k = 0

(13.1c) 8(k, l) 2 R,8(l! j) 2 E, xk,ll,j = 0

(13.1d) 8(k, l) 2 R,
∑

j:(k→j)∈E

xk,lk,j = nk,l

(13.1e) 8(k, l) 2 R,
∑

i:(i→l)∈E

xk,li,l = nk,l

(13.1f) 8(k, l) 2 R,8i 6= k, l,
∑

h:(h→i)∈E

xk,lh,i =
∑

j:(i→j)∈E

xk,li,j

(13.1g) 8(i! j) 2 E, Ci,j =
∑

(k,l)∈R

xk,li,j

(13.1h) 8(i! j) 2 E, Ci,j 6 Cmax.

(13.1)

Here is an explanation of the equations (see also Figure 13.4):
• Equation (13.1a): All variables are nonnegative.
• Equation (13.1b): We can assume that a packet of type (k, l) never

revisits its source node k.
• Equation (13.1c): We can assume that a packet of type (k, l) never leaves

its destination node l.
• Equation (13.1d): All packets of type (k, l) eventually leave their source

node k.
• Equation (13.1e): All packets of type (k, l) eventually reach their desti-

nation node l.
• Equation (13.1f): Conservation of packets (all types) in intermediate

node i.
• Equation (13.1g): Definition of the congestion of edge (i! j).
• Equation (13.1h): Definition of Cmax as the maximum of all edge con-

gestions.

© 2014 by Taylor & Francis Group, LLC

13.2. PRVP: Packet routing with variable-paths 297

B

A

E

G

C

H

D
F

(a) Initial status, with seven packets of type (A,D).

B

A

E

G

(b) Equation (13.1d): All seven packets eventually leave their source node A.

D
G

H

(c) Equation (13.1e): All seven packets eventually reach their destination
node D.

G G

(d) Equation (13.1f): Conservation of packets (all types) in intermediate
node G.

FIGURE 13.4: Illustrating the linear program.

Of course, for an actual execution, we need integer values for the vari-
ables xk,li,j . But, we can solve the linear program with rational variables, hence,
in polynomial time [93]. We then derive a rational value for the optimal solu-
tion of the linear program, which we still denote as Cmax. A fortiori, we have
Cmax 6 C∗, where C∗ is the optimal makespan. We will now use this value
to derive the routing algorithm.

13.2.3 Routing algorithm

The routing algorithm is the following:

• Compute the optimal solution Cmax, xk,li,j of the linear program (equa-
tion (13.1)).

• Periodic schedule:

– Define Ω = d
√
Cmaxe;

– Use P =
⌈
Cmax

Ω

⌉
periods of length Ω;

© 2014 by Taylor & Francis Group, LLC

298 Chapter 13. Packet routing

– During each period, edge (i! j) forwards

ak,li,j =

⌊
xk,li,jΩ

Cmax

⌋

packets of type (k, l) (if enough such packets are available; other-
wise, it forwards all available ones).

• Clean-up phase: Sequentially route each residual packet inside the net-
work up to its destination.

Before discussing the performance of this algorithm, let us explain the in-
tuition behind it. The value of Ω is not important by itself; what is important
is the idea of organizing the algorithm into periods of length Ω. During each
period, the same scheme of execution is repeated. Because we aim to reach
an execution time that is close to Cmax, we try to route a number of packets
of each type (k, l) in proportion; a total of xk,li,j must be routed in time Cmax,

which means xk,li,j/Cmax per time step, which in turns means Ω � xk,li,j/Cmax

in Ω time steps. And, we take the floor function to be on the safe side (and
with an integer number of packets).

Now, consider an edge (i ! j) at the beginning of a given period. There
are two cases:

• There are at least than ak,li,j packets stored in node i; then, during the

period, the algorithm routes ak,li,j of them across the edge.

• There are fewer than ak,li,j packets stored in node i; then, during the
period, the algorithm routes all these packets across the edge.

Thus, despite the fact that the algorithm is divided into P periods, it is not
periodic because it does not perform exactly the same operations within each
period.

THEOREM 13.4. The routing algorithm routes all the packets in time Cra,
where

Cmax 6 C∗ 6 Cra 6 Cmax +O(
√
Cmax) .

Here, C∗ denotes the optimal makespan.

As a consequence, we have that Cra

C∗ ! 1 as
∑

(k,l)∈R nk,l ! +1. The
algorithm is asymptotically optimal when the total number of packets becomes
large.

Proof. The proof that the algorithm is feasible is easy. It suffices to show
that as many as ak,li,j packets of each type (k, l) can indeed be routed within a
period. We derive

∑
(k,l)∈R

ak,li,j 6
∑

(k,l)∈R

xk,li,jΩ

Cmax
=
Ci,jΩ

Cmax
6 Ω .

© 2014 by Taylor & Francis Group, LLC

13.2. PRVP: Packet routing with variable-paths 299

The tricky part is to bound the execution time. Here, the value of Ω comes
into play. We show that at the end of the last period, i.e., at time

T = P � Ω =

⌈
Cmax

Ω

⌉
� Ω 6 Cmax + Ω , (13.2)

only a small number of packets still resides in the network, and that the time
to route them all up to their destination is negligible in front of Cmax.

Consider the nk,l packets of type (k, l) 2 R. During each period [mΩ, (m+

1)Ω[, where 0 6 m < P , the source node k processes exactly ak,li,j packets,
because they are all available there. Let δ(k) be the out degree of node k (the
number of its outgoing edges). We have

∑
j:(k→j)∈E

ak,lk,j >
∑

j:(k→j)∈E

(
xk,lk,jΩ

Cmax
� 1

)
>
nk,lΩ

Cmax
� δ(k)

(see equation (13.1d)). Hence, the number of packets of type (k, l) that remain
at node k at time T is at most

nk,l�P �
(
nk,lΩ

Cmax
� δ(k)

)
6 nk,l�

Cmax

Ω
�
(
nk,lΩ

Cmax
� δ(k)

)
=
Cmax

Ω
� δ(k) .

Consider now another node i 6= k. We also will bound the number of packets
of type (k, l) that are stored in i at time T . Initially, there is no packet of
type (k, l) available in node i. Let [m0Ω, (m0 + 1)Ω[be the first period during
which one or more packets of type (k, l) arrive into node i. For m > m0, let

fk,li (m) be the number of packets of type (k, l) that arrive into node i, and

gk,li (m) be the number of packets of type (k, l) that depart from node i, during
the period [mΩ, (m+ 1)Ω[. We have

• Reception: For m > m0, fk,li (m) 6
∑

h:(h→i)∈E

ak,lh,i 6
∑

h:(h→i)∈E

xk,lh,iΩ

Cmax
.

• Emission: For m > m0 + 1, the schedule sends ak,li,j >
xk,li,jΩ

Cmax
� 1 packets

along each outgoing edge j, if enough packets are available. Otherwise,
it sends all available packets. So,

fk,li (m)�gk,li (m) 6
∑

h:(h→i)∈E

xk,lh,iΩ

Cmax
�

 ∑
j:(i→j)∈E

(
xk,li,jΩ

Cmax
� 1

) = δ(i)

(see equation (13.1f)). Hence, the number of packets of type (k, l) that
reside in node i increases by at most δ(i) during each period.

Altogether, there remains at most fk,li (m0) + Pδ(i) 6

 ∑
h:(h→i)∈E

xk,lh,iΩ

Cmax

 +

Pδ(i) packets of type (k, l) in node i at time T .

© 2014 by Taylor & Francis Group, LLC

300 Chapter 13. Packet routing

We can now bound the total number of packets fP that remain in the
network at time T :

fP =
∑
i∈V

∑
(k,l)∈R

 ∑
h:(h→i)∈E

xk,lh,iΩ

Cmax

+ P � δ(i)

6

 ∑
(i→j)∈E

Ci,jΩ

Cmax

+

(
Cmax

Ω
+ 1

)
2� jRj � jEj

6 jEj � Ω +

(
Cmax

Ω
+ 1

)
2� jRj � jEj .

Because Ω = d
√
Cmaxe, we derive fP 6 (jEj+ 2� jRj � jEj)(

p
Cmax + 1).

Each of the remaining packets can be individually routed in time at most
jV j, using any shortest (simple) path in the graph. The total duration of the
clean-up phase is bounded by fP � jV j = O(

p
Cmax), which concludes the

proof (recall that jV j and jEj are constants in the asymptotic analysis, and
that jRj 6 jEj). Note that the bound on the clean-up phase is very crude,
as some packets could be routed in parallel, but it is enough to derive the
result.

13.2.4 Steady-state approach

We conclude this study with a few remarks on the approach of Bertsimas and
Gamarnik [16]. Their approach can be summarized as follows:

• Use a bound Cmax from the rational linear program.
• Concentrate on the steady-state operation of the schedule, divided into

periods.
• Ensure that periods are long enough so that rounding down to integer

numbers has a negligible impact.
• Ensure that periods are numerous enough so that the clean-up phase

has a negligible impact.

This explains the trade-off achieved by choosing Ω =
p
Cmax. In addition,

using periods enables one to describe the schedule in compact form. There
is no need to specify which packet is routed across which edge at which time
step. Instead, only a small (and polynomial) number of values ak,li,j need to
be specified to characterize the whole routing operation. Such a steady-state
approach has successfully been applied to many other scheduling problems.

© 2014 by Taylor & Francis Group, LLC

13.3. Conclusion 301

13.3 Conclusion

Routing problems are ubiquitous in computer science. This case study has
dealt with two classical and important instances, MEDP and PRVP, and
has illustrated very different techniques. For MEDP, we have followed the
typical approach for an NP-complete problem: (i) design a greedy algorithm,
(ii) prove that it is an approximation algorithm with bound B, and (iii) prove
that the bound B cannot be improved (unless P = NP). For PRVP, the
main idea is to relax the original problem and to concentrate on steady-state
operation. In other words, the focus is on optimizing the throughput rather
than the makespan. This technique is very powerful, as shown by the result
of asymptotic optimality. Refer to [10] for further examples of the use of
steady-state techniques to solve various scheduling problems.

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

Chapter 14

Matrix product, or tiling the unit
square

In this case study, we deal with a simple geometric problem: How do we
partition the unit square into p rectangles of given area s1, s2, . . . , sp (such
that

∑p
i=1 si = 1), so as to minimize the sum of the p semiperimeters of

the rectangles? Note that there always exists a solution to this problem.
For instance, we can tile the unit square into p horizontal slices of height
s1, s2, . . . , sp. The difficulty is to minimize the objective function.

For an illustration, consider the following example with p = 5 rectangles
R1, . . . , R5 of areas s1 = 0.36, s2 = 0.25, s3 = s4 = s5 = 0.13. A possible
partition of the unit square is shown in Figure 14.1. The size of each rectangle
is: 0.61 � 36

61 for R1; 0.61 � 25
61 for R2; and 0.39 � 1

3 for R3, R4, and R5. We
compute that the sum of the semiperimeters is 4.39, while an absolute lower
bound is

∑p
i=1 2

p
si � 4.36 (obtained when all rectangles are squares, which is

not achievable in this example). Here, the partition turns out to be excellent
with respect to the objective function.

The geometric interpretation for the sum of the semiperimeters is nice. It
is the length of the lines drawn to make the partition, plus two lines corre-
sponding to the right and bottom edges of the unit square.

25/61

0.61 0.39

1/3

1/3

1/3

s1

s2

s3

s4

s5

36/61

FIGURE 14.1: A simple example with p = 5 rectangles.

Before addressing the complexity of this geometric problem, we start (Sec-
tion 14.1) by describing the original motivation for its study. The reader will

303

© 2014 by Taylor & Francis Group, LLC

304 Chapter 14. Matrix product, or tiling the unit square

not be surprised that the problem arises from the design of some parallel al-
gorithm. However, we are not speaking of just yet another parallel algorithm;
we target the product of two square matrices, which is the main building
block of many computational kernels in numerical linear algebra. Then, in
Section 14.2, we formally state the optimization problem, and we establish
its NP-completeness. This is the key result of this case study because the
reduction is quite involved. We outline the main ideas for each step of the
proof. Section 14.3 is devoted to the design of approximation algorithms that
are based on partitions into columns of rectangles. Finally, in Section 14.4,
we briefly survey some related optimization problems.

14.1 Problem motivation

The motivation for this work is the design of parallel matrix product algo-
rithms targeted to heterogeneous platforms, such as heterogeneous clusters of
workstations or collections of such clusters. In the following, we describe a
parallel matrix product algorithm with identical processors before moving to
the case of different-speed processors.

With identical processors, the reference algorithm [18] works as follows: Let
C = A�B the product to be computed, where A and B are square matrices
of size n�n. Assume that there are p = q2 processors. Assume that q divides
n and let n = r� q. We assign an r� r block of each matrix to each processor
according to a two-dimensional grid/torus topology of size q � q. We denote

the three matrix blocks assigned to processor Pi,j by Âi,j , B̂i,j , and Ĉi,j , as
depicted in Figure 14.2 for matrix A.

P0,3

P1,3

P2,3

P3,3

P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

P3,0 P3,1 P3,2

P0,0 Â0,3Â0,2

Â1,0 Â1,1 Â1,2 Â1,3

Â2,0 Â2,1 Â2,2 Â2,3

Â3,0 Â3,1 Â3,2 Â3,3

Â0,1Â0,0

FIGURE 14.2: Block distribution of an n�n matrix (n = 24) on a grid/torus
of p = q2 processors (q = 4).

© 2014 by Taylor & Francis Group, LLC

14.1. Problem motivation 305

While the standard algorithm for matrix multiplication is often written
as a sequence of inner product computations, operations can be ordered in
many different ways. One option is to write the algorithm as a series of outer
products, which amounts to simply switching the order of the loops from i, j, k
to k, i, j:

for k = 0 to n� 1 do
for i = 0 to n� 1 do

for j = 0 to n� 1 do
Ci,j Ci,j +Ai,k �Bk,j

Here, we assume that all elements of matrix C are initialized to zero. It
turns out that this so-called outer-product algorithm [1, 36, 68] leads to a
particularly simple and elegant parallelization on a two-dimensional processor
grid. The algorithm proceeds in n steps, that is, n iterations of the outer
loop. At each step k, Ci,j is updated using Ai,k and Bk,j . Recall that all
three matrices are partitioned in q2 blocks of size r � r, as on the right side
of Figure 14.2. The algorithm above can be written in terms of matrix blocks
and of matrix multiplications, and it proceeds in q steps as follows:

for k = 0 to q � 1 do
for i = 0 to q � 1 do

for j = 0 to q � 1 do

Ĉi,j Ĉi,j + Âi,k � B̂k,j

Now, consider the execution of this algorithm on a two-dimensional grid
of p = q2 processors. Processor Pi,j holds block Ĉi,j and is responsible for
updating this block at each step of the above algorithm. To perform this
update at step k, processor Pi,j needs blocks Âi,k and B̂k,j . At step k = j,

Pi,j already happens to hold Âi,k. For all other steps, Pi,j must receive Âi,k
from the processor that holds it, that is, Pi,k. This is true for all Pi,j , j 6= k,
processors. Therefore, at step k, processor Pi,k must broadcast its block
of matrix A to all processors Pi,j , j 6= k, that is, all processors that are
on processor Pi,k’s processor row. This is true for all i. Similarly, blocks
of matrix B must be broadcast at step k by Pk,j to all processors on its
processor column, for all j. The resulting communication pattern is illustrated
in Figure 14.3. The figure shows which blocks of matrices A and B are sent
to which processors at step k = 1 of the algorithm in the case of a 4� 4 grid.
For instance, block Â2,1, which is held by processor P2,1, is sent to processors
P2,0, P2,2, and P2,3.

How can we extend this outer product algorithm to deal with heterogeneous
platforms? The idea is to keep the same framework; at each step, one pivot
column and one pivot row are communicated to all processors, and indepen-
dent updates take place. However, with different-speed processors, we cannot

© 2014 by Taylor & Francis Group, LLC

306 Chapter 14. Matrix product, or tiling the unit square

Â0,1

Â1,1

Â2,1

Â3,1

P0,0

P1,0

P2,0

P3,0

P0,2 P0,3

P1,2 P1,3

P3,3P3,2

P2,3P2,2

Matrix BMatrix A

P0,0 P0,1 P0,3P0,2

P2,0

P3,0

P2,3

P3,3P3,2P3,1

P2,2P2,1

B̂1,0 B̂1,1 B̂1,2 B̂1,3

FIGURE 14.3: Communications of blocks of matrices A and B at step k = 1
of the outer-product matrix multiplication algorithm on a 4�4 processor grid.

distribute same-size rectangles from the C matrix to the processors. Intu-
itively, we want to balance the computing load so that each processor receives
an amount of work in accordance to its computing power. In fact, a C rect-
angle block requires an amount of arithmetic operations that is proportional
to its area, so that the areas of the blocks assigned to the processors should
be proportional to their speeds. To parallelize the matrix product C = AB,
we have to tile the C matrix into p nonoverlapping rectangles, each rectangle
being assigned to one processor. If the speed of a processor is twice as large
as that of another one, it should be assigned a rectangle of twice the area.

Figure 14.4 shows an example with 13 different-speed computing resources.
For this example, we picked a prime number of processors to emphasize the
fact that for solving the general problem it is not necessary that the proces-
sors be arranged along a two-dimensional grid. At each step of the outer-
product algorithm, there is a horizontal broadcast of a column of A and a
vertical broadcast of a row of B. These broadcasts involve different numbers
of source and destination processors, depending upon where the column or
row is located. The figure details the vertical broadcast of a row of B, which
is partially held by four processors. For instance, the processor holding the
top right block of the matrix is involved in receiving data from three source
processors, while the processor holding the bottom left block of the matrix is
involved in receiving data from only one source processor.

Given p processors with speeds s1, . . . , sp, normalized so that
∑p
i=1 si = 1,

it is always possible to partition the unit square in p rectangles with areas
s1, s2, . . . , sp. From now on we always reason on the unit square, knowing that
we can then multiply rectangle dimensions by the matrix size n and round to
appropriate integer values to obtain actual matrix blocks. One possibility for
partitioning the unit square is simply to use a unidimensional distribution in
block rows. But, the question is: What is the best partitioning among the
ones that achieve perfect load balancing?

To formalize this question, one must define an objective function. Given
that we consider only partitioning schemes that balance the load perfectly,

© 2014 by Taylor & Francis Group, LLC

14.2. NP-completeness 307

FIGURE 14.4: Distributing the matrices across 13 heterogeneous processors,
and vertical broadcast of a row of matrix B during a step of the outer-product
algorithm (the horizontal broadcast of a column of matrix A at the same step
is not shown).

we can distinguish them by the amount of communication these partitioning
schemes induce for our outer-product matrix multiplication algorithm. At
each step (see Figure 14.4), each processor is involved in communicating an
amount of data proportional to the semiperimeter of the rectangular matrix
block associated with that processor (except for the right and bottom bound-
aries of the whole square). This leads to a very intuitive geometric interpreta-
tion of our problem. While the areas of the rectangular blocks are fixed, one
can adjust their shapes to lead to the lowest amount of total communication
volume. At last we have found the geometric interpretation of our problem:
How can one partition a unit square in p rectangles with prescribed areas
s1, s2, . . . , sp, such that

∑p
i=1 si = 1, so that the sum Ĉ of the semiperimeters

of the rectangles is minimized? Indeed, Ĉ � 2 (for the boundaries) is equal to
the total communication volume of the algorithm.

14.2 NP-completeness

We now formally state the problem. We have to determine p rectangles Ri,
of prescribed areas si, 1 6 i 6 p, where

∑p
i=1 si = 1. The shape of each Ri

is the degree of freedom; we want to tile the unit square so as to solve the
following optimization problem:

DEFINITION 14.1. PeriSum(s): Given p real positive numbers s1, . . . , sp
such that

∑p
i=1 si = 1, find a partition of the unit square into p rectangles Ri

of area si and of size hi � vi, so that Ĉ =
∑p
i=1(hi + vi) is minimized.

There is an obvious lower bound for PeriSum(s):

LEMMA 14.1. For all solutions of PeriSum(s), Ĉ > 2
∑p
i=1

p
si.

© 2014 by Taylor & Francis Group, LLC

308 Chapter 14. Matrix product, or tiling the unit square

Proof. The semiperimeter of each rectangle Ri is always larger than 2
p
si,

the value when it is a square. Of course, tiling the unit square into p squares
of area si is not always possible, so the lower bound for PeriSum(s) is not
always tight.

The decision problem associated with the optimization problem PeriSum(s)
is the following.

DEFINITION 14.2. PeriSum(s,K): Given p real positive numbers s1, . . .,
sp such that

∑p
i=1 si = 1 and a positive real bound K, is there a partition

of the unit square into p rectangles Ri of area si and of size hi � vi, so that∑p
i=1(hi + vi) 6 K?

THEOREM 14.1. PeriSum(s,K) is NP-complete.

Proof. The problem obviously belongs to NP. The proof of completeness is
both lengthy and technical, so we start by outlining the main ideas:

• First, we polynomially reduce the decision problem PeriSum(s,K) to
a geometric problem (which we name ASP for All-Square Partition),
which amounts to checking if there exists a partition of the unit square
into squares of given areas.

• Then, we prove the NP-completeness of ASP using a polynomial reduc-
tion to the 2-PARTITION-EQUAL problem (2PEQ for short), which is
NP-complete [38].

The idea of partitioning into squares rather than into arbitrary instances
comes from the lower bound: If such a partition exists, then it is optimal.
Formally, we state the following lemma.

LEMMA 14.2. 2PEQ
pr�! ASP

pr�! PeriSum(s,K), where
pr�! denotes

polynomial reduction (see Section 6.3.1), and where 2PEQ and ASP are de-
fined as follows.

DEFINITION 14.3 (2PEQ - 2-PARTITION-EQUAL). Given a set of p
integers A = fa1, . . . , apg, is there a partition of f1, . . . , pg into two subsets
A1 and A2 such that∑

i∈A1

ai =
∑
i∈A2

ai and card(A1) = card(A2) ?

(recall that this variant of 2-PARTITION has been discussed in Section 7.6).

DEFINITION 14.4 (ASP - All-Square Partition). Given a set L = fl1, . . .,
lpg of p real positive numbers such that

∑p
i=1 l

2
i = 1, is there a partition of

the unit square into p squares S1, ..., Sp, where Si is of width li?

© 2014 by Taylor & Francis Group, LLC

14.2. NP-completeness 309

Because 2PEQ is known to be NP-Complete [38], Lemma 14.2 will complete
the proof of Theorem 14.1. We start by proving the easy part of Lemma 14.2,

i.e., ASP
pr�! PeriSum(s,K). Let L = fl1, . . . , lpg be a set of p real pos-

itive numbers such that
∑p
i=1 l

2
i = 1. Solving ASP is equivalent to solving

PeriSum(s,K) with K =
∑p
i=1 2li, and for 1 6 i 6 p, si = l2i . Therefore,

ASP
pr�! PeriSum(s,K).

Next, we consider an arbitrary instance of the 2-PARTITION-EQUAL
(2PEQ) problem, i.e., a set A = fa1, . . . , ang of n integers. We assume that
n > 400 without loss of generality. We have to transform this instance poly-
nomially into an instance of the ASP problem that has a solution if and only if
the original instance of 2PEQ has a solution. This transformation is sketched
as follows:

• Move from set A to set B: The idea is to build an equivalent instance
of this problem using a set B = fb1, b2, . . . , bng, where bi = 2(ai +
2nmaxk ak). The goal is to have bi >

2
3 maxk bk for all i. Under a few

technical assumptions, we show that there exists a solution to the initial
2PEQ problem if and only if B can be partitioned into two subsets of
same sum (but not necessarily of same cardinal).

• Build from B an instance of ASP, as illustrated in Figures 14.5 and 14.6.
The instance is made of three kinds of squares: 14 large squares (repre-
sented in Figure 14.5 and denoted as Ai,j), n squares of size bi� bi (de-
noted as Abi in Figure 14.6), and a polynomial number of other squares
(denoted as Abi,j in Figure 14.6). We show that the only possible con-
figuration is the one shown in Figure 14.5. In this configuration, there
are two nonadjacent M � S rectangular zones (where M = 4

3 maxk bk
and S =

∑
i
bi
2), which are partitioned as shown in Figure 14.6. Because

of the condition bi >
2
3 maxk bk = M

2 , necessarily the Abi squares of size
bi � bi are adjacent and never on top of each other. Therefore, for each
rectangle, the sum of the bis is not larger than S, and in fact it is equal
to S because all the Abi rectangles have to fit inside the nonrectangular
zones. Intuitively, the large squares are introduced to create the two
nonadjacent rectangular zones of area M � S; the n squares Abi must
be aligned within these two zones, and the other squares are here to fill
up the holes in the two rectangular zones.

Formally, recall that we have defined bi = 2(ai + 2nmaxk ak), S =
∑
i bi
2 ,

M = 4
3 maxk bk, and that n > 400. Then, S > 1

2n
M
2 > 100M , and M

2 < bi 6
3M
4 for all i. The reason for introducing M is to fill up the two nonadjacent

rectangular zones of area M �S with a polynomial number of rectangles. We
will tile the n rectangles Ri of size bi�(M�bi) (see Figure 14.6) into a minimal
number of squares KS(i), following the procedure of Kenyon [59]. Here, KS
stands for Kenyon’s squares. To get a logarithmic number of squares KS(i),
the rectangle Ri must not be too elongated, which is ensured by the inequality

© 2014 by Taylor & Francis Group, LLC

310 Chapter 14. Matrix product, or tiling the unit square

M � bi < bi 6 3(M � bi). We obtain from [59] that KS(i) 6 3 + C log bi,
where C is a universal constant. In the following, for 1 6 i 6 n, we let
w(bi, j), 1 6 j 6 KS(i), denote the widths of the KS(i) squares obtained by
the procedure in [59] to tile the rectangle Ri of size bi � (M � bi).

Altogether, we build the following instance of the ASP problem: Is there a
partition of the unit square into 14 + n +

∑n
i=1KS(i) squares of respective

widths (13S+11M)
l (�1), (7S+6M)

l (�3), (4S+3M)
l (�2), (3S+3M)

l (�2), (3S+2M)
l

(�2), (2S+2M)
l (�4), bi

l (for all i), w(bi,j)
l (for all i and for all j 6 KS(i)),

where l = (20S + 17M)?

A3,2

A4,3

A7,6

A13,11

A7,6 A7,6

M × S rectangles

A2,2

A2,2

A3,2A3,3

A3,3
A4,3

A2,2 A2,2

FIGURE 14.5: General position of the squares.

S

Abi

Abi,j

M

FIGURE 14.6: Zoom in on the M � S rectangle areas.

For convenience, we can consider the (equivalent) scaled problem: Is there
a partition of the (20S+17M)�(20S+17M) square into 14+n+

∑n
i=1KS(i)

© 2014 by Taylor & Francis Group, LLC

14.3. A guaranteed heuristic 311

squares of respective width

13S + 11M (�1),
7S + 6M (�3),
4S + 3M (�2),
3S + 3M (�2),
3S + 2M (�2),
2S + 2M (�4),
bi (8i, 1 6 i 6 n),

w(bi, j) (8i, 1 6 i 6 n; 8j, 1 6 j 6 KS(i)) ?

Let Ai,j denote a square of width (iS+jM), Abi denote a square of width bi,
and Abi,j denote a Kenyon’s square of width w(bi, j). The idea is to prove
that such a partition is the one depicted in Figure 14.5, where the two small
M�S rectangle areas are shown by arrows in Figure 14.5 and fully described in
Figure 14.6. The intuitive idea of the proof is the following: The large squares
are used to prevent the two small M � S rectangular zones from becoming
neighbors. Hence, these areas must be filled separately by the remaining
squares, namely, the squares Abi and the Kenyon’s squares. This will be
possible if and only if the bis can be partitioned into two subsets of the same
sum, which in turn will be possible if and only if the ais can be partitioned
into two subsets of same sum and same cardinal. The Kenyon’s squares are
introduced to fill the holes in the two rectangular zones and to obtain a true
tiling of the whole area.

Altogether, the proof is technical, but the two main ideas are simple: (i)
Force the Abi rectangles to lie into one of the two M�S rectangle areas, hence,
separating them into two sides of the partition, and (ii) fill up these areas with
a polynomial number of squares. Note that using many little squares of width
1 would have led to using a number of squares exponential in the size of the
original instance. Of course, there remain several technical and painstaking
constraints to check, but the main ideas are all here. Please refer to [8] for
further details.

14.3 A guaranteed heuristic

In this section, we investigate a restriction of the PeriSum(s,K) partitioning
problem where one considers partitions that consist of columns of rectangles.
For this restriction, one can compute the optimal solution in polynomial time,
via dynamic programming. We describe here this optimal solution, and then
we analyze the performance guarantee obtained when comparing to the solu-
tion of PeriSum(s,K).

© 2014 by Taylor & Francis Group, LLC

312 Chapter 14. Matrix product, or tiling the unit square

14.3.1 The ColPeriSum(s) problem

Because PeriSum(s) is NP-hard, we consider a more constrained problem,
ColPeriSum(s). In this new problem, we specify that the partition of the
unit square must consist of columns of rectangles, as shown in the example
in Figure 14.7. Formally, given p real positive numbers s1, . . . , sp such that∑p
i=1 si = 1, we want to partition the unit square into C columns (where C is

to be determined) of widths c1, . . . , cC. Each column Ci is itself partitioned in
ki rows (to be determined as well). The resulting partition of the unit square

consists of
∑C
i=1 ki = p rectangles. The goal is to produce such a partition

that minimizes the sum of the semiperimeters of the rectangles.

c2 c3

1

S1

S2

S4

S6

S7

S9

S8

S3

S5

S11

S10

S12

1

c1

FIGURE 14.7: Column partition of the unit square with C = 3 columns with
k1 = 5, k2 = 3, and k3 = 4 rectangles, respectively.

An optimal algorithm to solve this problem uses dynamic programming and
relies on the two following ideas:

1. It renumbers variables s1, . . . , sp so that s1 6 s2 6 � � � 6 sp. Indeed, we
show in the following that we can restrict to sorted sequences.

2. It iteratively constructs p functions fC for values of C going from 1 to p.
For q 2 f1, . . . , pg, fC(q) is defined as the sum of the semiperimeters
in an optimal partition of a rectangle with height 1 and width

∑q
i=1 si,

into C columns and q rectangles with areas s1, . . . , sq.

The key idea behind the algorithm is that it is straightforward to compute
function fC recursively based on function fC−1 as follows:

fC(q) = min
a∈[C−1,q−1]

(
1 + (q � a)

∑
a<i6q

si + fC−1(a)
)
. (14.1)

© 2014 by Taylor & Francis Group, LLC

14.3. A guaranteed heuristic 313

TABLE 14.1: The values of fC(q) and of a0 (separated by a “j”) for our eight-
rectangle example. The values in boldface indicate the optimal solution.
HH

HHHC
q

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

C = 1 1.05 j 0 1.2 j 0 1.54 j 0 2.12 j 0 2.9 j 0 4 j 0 5.90 j 0 9 j 0
C = 2 2.10 j 1 2.28 j 2 2.56 j 2 2.94 j 3 3.50 j 3 4.38 j 4 5.76 j 5
C = 3 3.18 j 2 3.38 j 3 3.66 j 4 4 j 4 4.58 j 5 5.50 j 6
C = 4 4.28 j 3 4.48 j 4 4.78 j 5 5.20 j 6 5.88 j 7
C = 5 5.38 j 4 5.60 j 5 5.98 j 6 6.50 j 7
C = 6 6.50 j 5 6.80 j 6 7.28 j 7
C = 7 7.70 j 6 8.10 j 7
C = 8 9 j 7

In the above minimum, a corresponds to the number of rectangles in the first
C � 1 columns, and thus q � a corresponds to the number of rectangles in
the last column. The first term in the minimum, 1 + (q� a)

∑
a<i6q si, is the

contribution of the last column to the total sum of the semiperimeters. The
intuitive interpretation of equation (14.1) is that it looks at all possible ways to
make use of an additional column to achieve the optimal partition. We denote
by a0 the value of parameter a that achieves the minimum in equation (14.1).
This recursion is initialized by setting

f1(q) = 1 + q �
q∑
i=1

si ,

which simply gives the sum of the semiperimeters of a partition of a rectangle
with height 1 and width (

∑q
i=1 si) into one column and q rectangles with areas

s1, . . . , sq.

To understand better how the algorithm works, let us apply it in an exam-
ple. Consider p = 8 rectangles with areas (0.05; 0.05; 0.08; 0.1; 0.1; 0.12; 0.2;
0.3). The algorithm recursively computes all fC(q) values for 1 6 q,C 6 8, as
shown in Table 14.1. Because we wish to partition the unit square in eight
rectangles, we look at column q = 8 and find that the optimal fC(q) value,
5.5, is achieved for C = 3, indicating that the optimal partition consists of
three columns. Furthermore, the optimal fC(q) value is achieved for a0 = 6.
Therefore, the last column of the optimal partition must contain 8 � 6 = 2
rectangles. We now look at column q = 6 of the table and find out that the
optimal fC(q) value is achieved for a0 = 3. Therefore, the next-to-last column
of the optimal partition must contain 6 � 3 = 3 of the remaining rectangles.
Similarly, we determine that, in column q = 3 of the table, the optimal fC(q)
value is achieved for a0 = 0. The first column of the optimal partitioning
consists of all remaining 3� 0 = 3 rectangles, which makes sense because we
know that the optimal partitioning consists of three columns. The widths
of the three columns in the optimal partitioning are thus c1 = s1 + s2 + s3,
c2 = s4 + s5 + s6, and c3 = s7 + s8. This partitioning is shown in Figure 14.8.

© 2014 by Taylor & Francis Group, LLC

314 Chapter 14. Matrix product, or tiling the unit square

0.32� 3 + 1
optimal partitioning

0.32

0.12

0.10

0.10

f2(6) = 3.5

semiperimeter

0.18

0.08

0.05

0.05

0.18� 3 + 1

f1(3) = 1.54

semiperimeter

0.3

0.2

0.5

0.5� 2 + 1

f3(8) = 5.5

semiperimeter

1

FIGURE 14.8: Optimal column partitioning for our eight-rectangle example.
The thicker lines correspond to the rectangle sides that contribute to the sum
of the semiperimeters.

Algorithm 14.1 makes it possible to compute the optimal partition with, in
the worst case, a complexity of O(p3). The final partition corresponds to func-
tion fCopt(p) = min16C6p fC(p). This partition is found by Algorithm 14.2.
We saw in an example how this algorithm operates, namely, by reading Ta-
ble 14.1 from right to left and by following the values in boldface. The unit
square is partitioned in Copt columns. The i-th column contains rectangles
sdi , sdi+1, . . . , sdi+ki with di = k1 + k2 + � � �+ ki−1.

Algorithms 14.1 and 14.2 together compute the optimal solution of problem
ColPeriSum(s), under the assumption that the rectangles are sorted accord-
ing to their areas. There remains to be shown that one can indeed consider
only ordered s1 6 s2 6 � � � 6 sp sequences.

DEFINITION 14.5. A partitioning is said to be well ordered if for any
pair of columns Ci and Cj , either all elements of Ci are smaller than or equal
to all elements of Cj , or the other way around. Figure 14.9 illustrates this
definition.

Without loss of generality, consider a partitioning into C columns whose
number of rectangles is k1 > k2 > � � � > kC (swapping columns around
does not change the quality of the partitioning). Assume that the si val-
ues are indexed so that s1 6 s2 6 � � � 6 sp; let τ be a permutation of
f1, 2, . . . , pg such that the i-th column of the partitioning contains rectan-
gles sτ(di+1), . . . , sτ(di+ki), where di = k1 + k2 + � � � + ki−1. Recall from
equation (14.1) that the contribution of column Ci to the total sum of the

© 2014 by Taylor & Francis Group, LLC

14.3. A guaranteed heuristic 315

1 PARTITION(s1, . . . , sp)
2 S = 0
3 for q = 1 to p do
4 S = S + sq
5 f1(q) = 1 + S � q
6 f cut

1 (q) = 0

7 for C = 2 to p do
8 for q = C to p do

9 fC(q) = min
a∈[C−1,q−1]

1 + (q � a)
∑
a<i6q

si + fC−1(a)

10 f cut

C (q) = q � a0 { where a0 is the value of a that leads to

the minimum in the previous expression }

11 return (f cut
∗)

ALGORITHM 14.1: Algorithm for ColPeriSum(s): Construction of the
functions fC. f cut

C (q) corresponds to the number of rectangles used in the
C� 1 first columns, which leaves q � f cut

C (q) rectangles in column C.

semiperimeters is 1 + ki
∑di+ki
j=di+1 sτ(j). The total sum is computed as follows:

C + k1sτ(1) + k1sτ(2) + � � �+ k1sτ(k1)

+ k2sτ(k1+1) + k2sτ(k1+2) + � � �+ k2sτ(k1+k2)

+ � � �
+ kCsτ(k1+···+kC−1+1) + kCsτ(k1+···+kC−1+2) + � � �+ kCsτ(k1+···+kC) .

Because k1 > k2 > � � � > kC, the above expression is minimized when
τ is the identity, which characterizes a well-ordered partition. The proof is
completed via an induction on the number of element swaps in permutation τ .

1 RE-BUILD(f cut
∗ ,Copt)

2 q = p
3 for C = Copt down to 1 do
4 kC = q � f cut

C (q)
5 q = f cut

C (q)

6 return (k1, . . . , kCopt)

ALGORITHM 14.2: Reconstructing the optimal solution from functions
f cut
C .

© 2014 by Taylor & Francis Group, LLC

316 Chapter 14. Matrix product, or tiling the unit square

15

3
3

6

6

6

66

3

6

6

6

6

3

6

28

12

9

28

12

15

9

not well ordered well ordered

FIGURE 14.9: Two example column partitions. The one on the left is not
well ordered, while the one on the right is. For clarity, rectangle areas are
shown in percentage of the total area.

We conclude that, for any partition, there is a corresponding well-ordered
partition that leads to a total sum of semiperimeters that is lower than or equal
to that of the original partition. This completes the proof that Algorithms 14.1
and 14.2 compute the optimal solution to ColPeriSum(s).

14.3.2 Performance guarantee

In this section, we show that column partitioning leads to a good approxi-
mation of the optimal (arbitrary) partition. This is especially true when the
ratio between the largest rectangle area, max si, and the smallest one, min si,
is low.

THEOREM 14.2. Let r = max si
min si

. Let Ĉ denote the sum of the semiperime-

ters of the rectangles in the optimal column partition, and let LB = 2
∑p
i=1

p
si.

Then, we have

Ĉ

LB
6
p
r

(
1 +

1
p
p

)
=

√
max si
min si

(
1 +

1
p
p

)
.

Proof. We define C = d
p
r
∑
i

p
sie. Let us consider the partition that consists

of C columns in which the rectangles are distributed evenly across the columns.
Therefore, the number of rectangles per column is either b pCc or

⌈
p
C
⌉
. Let Ĉ∗

denote the sum of the semiperimeters of this partitioning. We, then, have

Ĉ∗ 6

⌈
p
r
∑
i

p
si

⌉
+

⌈
p⌈p

r
∑
i

p
si
⌉⌉

6 2 +
p
r
∑
i

p
si +

pp
r
∑
i

p
si
.

© 2014 by Taylor & Francis Group, LLC

14.3. A guaranteed heuristic 317

And, therefore,

Ĉ∗

2
∑
i

p
si

6
1∑
i

p
si

+

p
r

2
+

p

2
p
r(
∑
i

p
si)2

.

Furthermore, ∑
i

si = 1 =) pmax si > 1

=) min si >
1

pr
,

which leads to ∑
i

p
si > p

√
min si >

√
p

r
.

Finally, we obtain

Ĉ∗

2
∑
i

p
si

6
√
r

p
+

p
r

2
+

p
r

2

6
p
r

(
1 +

1
p
p

)
.

Because Ĉ corresponds to the best solution among all the possible column
partitionings, we have Ĉ 6 Ĉ∗, which completes the proof.

If r = 1, i.e., if all rectangles have the same area, column partitioning is
asymptotically optimal. By contrast, if r is large, then the upper bound of
Theorem 14.2 is very pessimistic.

14.3.3 Looking for a better solution

The column-based solution may not be very satisfactory in some “degenerate”
artificial cases. To illustrate the point, consider the following partitioning
problem into p = 6 rectangles of respective areas

(0.2488, 0.2488, 0.2488, 0.2488, 0.0024, 0.0024).

The absolute lower bound for this example is LB = 2
∑6
i=1

p
si = 4.19.

Consider the following solutions, which have different degrees of freedom:

1. The partitioning is constrained to be a column-based partitioning. Us-
ing the column-based algorithm, we obtain the solution depicted in Fig-
ure 14.10.

© 2014 by Taylor & Francis Group, LLC

318 Chapter 14. Matrix product, or tiling the unit square

2. The partitioning is constrained to be recursively defined as follows. The
unit square is divided into several columns. Each column, in turn, is di-
vided into several rows, and so on. Of course, there are multiple choices
for the number of columns, and for the number of rows within each col-
umn, and so on. In Figure 14.11, we give an example with two columns
divided into two and three rows, respectively. Finally, the last row of
the second column is split into two rectangles. In the example, this par-
titioning is optimal among recursively defined partitionings (proof by
exhaustive case analysis). Note that it is shown in [9] that one can de-
sign an approximation algorithm that builds a recursive partitioning and
that is a 7/4 approximation to PeriSum(s), regardless of the relative
sizes of the rectangles.

3. The partitioning is constrained to be made out only of rectangles. An ex-
ample is given in Figure 14.12. Note that this solution is neither column-
based nor recursively defined. This partitioning is optimal among all
rectangle-based partitionings.

0.5

0.4976

0.5

0.2488 0.2488

0.24880.2488

0.0024

0.0048

FIGURE 14.10: Optimal column-based partitioning. The sum of the
semiperimeters is 5.

Clearly, the less constrained the partitioning, the better the solution. Note
that the improvement over the column-based partitioning is not negligible
here, roughly 16% for the rectangle-based solution. However, going back to the
original motivation of the problem in terms of matrix product with different-
speed processors, we point out that the rectangle areas correspond to six
processors whose relative cycle-times are approximately (1, 1, 1, 1, 100, 100).
In a realistic experiment, we would never use a processor in conjunction with
another one that is 100 times faster; this is why the previous example may be
called artificial.

© 2014 by Taylor & Francis Group, LLC

14.3. A guaranteed heuristic 319

0.5 0.2488

0.2488

0.4976

0.0024

0.2488

0.2488

0.5024

0.4952

0.0096

FIGURE 14.11: Optimal recursively defined partitioning. The sum of the
semiperimeters is 4.51.

0.0024

0.2488 0.2488

0.24880.2488

0.0692

0.5346

0.46540.0692

FIGURE 14.12: Optimal rectangle-based partitioning. The sum of the
semiperimeters is 4.21.

© 2014 by Taylor & Francis Group, LLC

320 Chapter 14. Matrix product, or tiling the unit square

14.4 Related problems

To conclude this case study, we outline several problems related to PeriSum(s)
that have been considered in the literature:

• The most similar problem is the following: How do we tile the unit
square into p rectangles of same area so as to minimize the maximum
perimeter of these rectangles? This problem is shown to be polynomial
by Kong et al. [63, 64]. The optimal solution is one of the following two
arrangements: let either m = bppc or m = dppe, and use m columns
composed of b pmc or d pme rectangles. This problem is motivated by
a data-allocation problem, which is related to our matrix-product for-
mulation in the following sense: Assume that we have p equal-speed
processors and that we aim at minimizing the largest amount of com-
munications made by one processor (as opposed to the total volume of
communications in our original problem).

The heterogeneous counterpart of this problem is how do we tile
the unit square into p nonoverlapping rectangles of prescribed areas
s1, . . . , sp whose sum is 1, so that the largest perimeter is minimized.
Or, in terms of parallel algorithms (given p different-speed processors),
how to allocate data so that the length of the largest communication
is optimized? This interesting problem is NP-complete, too [9], which
again shows the intrinsic difficulty of designing heterogeneous parallel
algorithms.

• Another related problem is to find the minimum partition of a rectangle
with interior points. Given a rectangle R and a finite set P of points
located inside R, find a set of line segments that partition R into rect-
angles such that every point in P is on the boundary of some rectangle.
The goal is to minimize the total length of the introduced line segments.
This problem is shown NP-complete in [41, 42, 73], where approximation
algorithms are given. The link with our problem is that the objective
function is the same, but the original motivation in [41, 42] was a VLSI
(very-large-scale integration) routing problem (and the constraints are
quite different).

• Several other NP-complete geometric optimization problems are listed
in [28]. One example is the minimum rectangle tiling problem [61]:
Given an n� n array A of nonnegative numbers and a positive integer
p, find a partition of A into p nonoverlapping rectangular subarrays, such
that the maximum weight of any rectangle in the partition is minimized
(the weight of a rectangle is the sum of its elements).

© 2014 by Taylor & Francis Group, LLC

Chapter 15

Online scheduling

In all the other case studies (Chapters 11 to 14), we are given full knowledge
of a problem instance, and we are interested in finding the best possible so-
lution for that particular instance. In this chapter, however, we are focusing
on online problems, i.e., on problems for which algorithmic decisions must be
taken before all the characteristics of the whole instance are known. More
specifically, we are considering online scheduling problems. Several tasks are
submitted to a system that must process them. The scheduling system must
decide at what time to allocate which resource to which task. The problem
being online by nature, the system does not know beforehand how many tasks
it will have to process, when they will arrive in the system, and what their
characteristics will be. Hence, the scheduling system will have to make deci-
sions with only a partial knowledge of the instance at hand. One would think
that in such a context it is impossible to design optimal algorithms. However,
some scheduling problems are still simple enough to enable the existence of
algorithms making optimal decisions at any step of any online scenario. For
more complex problems, we need a way to assess the quality of the solution
produced by an online algorithm, independently of the scenario. This is the
purpose of competitive analysis.

In Section 15.1, we show that, for some settings and objective functions,
there exist optimal online algorithms. Since this is obviously not always the
case, this section also motivates the need for a way to assess the performance
of online algorithms. We introduce competitive analysis in Section 15.2 and
show how one can establish a competitive result for an algorithm, or a bound
on the performance of any algorithm. Finally, in Section 15.3, we change the
framework and the target objective function. This gives us the opportunity
to introduce a randomized algorithm that achieves a better performance than
any deterministic algorithm could provide.

We conclude this introduction by mentioning that the online scheduling
problems addressed in this chapter have little in common with the task graph
scheduling problems presented in Section 6.4.4, p. 140: There are no prece-
dence constraints, the number of tasks is unknown, and the objective function
is not always makespan minimization (recall that the makespan of a sched-
ule is its total execution time). Still, we are playing a scheduling game that
assigns tasks to processors.

321

© 2014 by Taylor & Francis Group, LLC

322 Chapter 15. Online scheduling

15.1 Flow time optimization

Consider a series of n tasks, T1, . . . , Tn, submitted online to a system com-
prising a single processor. Neither the value of n nor the release dates of these
n tasks are known beforehand. Furthermore, the execution time wj of task
Tj is known only at the time when Tj arrives in the system. We denote by
rj the release date of task Tj , that is, the date at which it is submitted to
the system. We denote by Cj its completion time, that is, the date at which
its processing is completed. The flow time Fj (or response time) of a task
Tj is the time spent in the system by the task, between its release date and
its completion time: Fj = Cj � rj . The first objective that we consider is
the minimization of the maximum flow time: max16i6n Fi. Even in an online
setting, this problem can be optimally solved:

THEOREM 15.1. First Come First Served (FCFS) optimally solves the
online minimization of the maximum-flow.

Note that, by definition, FCFS does not use preemption (for a definition
of preemption, see Exercise 9.1, p. 211). In other words, under FCFS, the
processing of a task is never interrupted to be resumed after the processing of
another task. This theorem is proved below for settings without preemption,
but it remains valid for settings taking preemption into account (see [71]).

Proof. The proof follows a simple exchange argument illustrated in Figure 15.1.
We consider any optimal schedule S. We assume that the optimal solution
differs from that of FCFS. Thus, there exist two tasks Ti and Tk such that:

• Tk is executed right after Ti (and thus Ci < Ck);
• Ti was released after Tk: ri > rk.

In this optimal schedule, looking at flow times, we have: Fk = Ck � rk >
Ci � rk > Ci � ri. (Note that two tasks sharing the same release date can be
executed in any order. Therefore, we do not need to consider that case.)

We build from S a new schedule S ′ identical to S except that the executions
of Ti and Tk are interchanged. Figure 15.1 illustrates these two schedules.
Since the executions of Ti and Tk were consecutive under schedule S, and
since Tk was released earlier than Ti, the execution of Tk can start under S ′
at the time the execution of Ti started under S. Furthermore, the execution
times of the other tasks are not modified. Therefore, Ti and Tk are the only
tasks whose flow times are modified by the transformation of the schedule.
Their new flow times are{

F ′i = C ′i � ri = Ck � ri < Ck � rk = Fk
F ′k = C ′k � rk < Ck � rk = Fk

.

Therefore, maxfF ′i , F ′kg < Fk � maxfFi, Fkg and the maximum flow of S ′ is
not greater than that of S. One can thus transform any optimal schedule into

© 2014 by Taylor & Francis Group, LLC

15.1. Flow time optimization 323

F ′i

F ′k

Schedule S ′ TiTk

rk ri
Fi

Fk

TiSchedule S Tk

FIGURE 15.1: Exchange argument used in the proof of Theorem 15.1.

the FCFS schedule by the repeated application of this exchange argument,
first to reduce the number of tasks executed before the first submitted task,
then to reduce the number of tasks executed before the second submitted task,
and so on. This proves that the maximum flow time of the FCFS schedule is
not greater than the optimal maximum flow time.

r2

T2

FCFS schedule

F2

F1

r1

Optimal schedule

T1T2

F2

r2r1

F1

T1

FIGURE 15.2: Example showing the suboptimality of FCFS for the mini-
mization of the sum of flow times.

Thus, FCFS is optimal for the minimization of the maximum flow time.
Another important optimization objective is the sum of flow times, namely,∑n
i=1 Fi, which corresponds to the average response time for each task (divid-

ing by the constant n does not change the optimization problem). FCFS is not
optimal, however, for the minimization of the sum of flow times. Figure 15.2
shows a counterexample with two tasks: The first task is released at time 0
and has an execution time of 4; the second task is released at time 1 and its
execution time is 1. FCFS achieves a sum of flow times of 8 in this exam-
ple when the optimal value is 7 (when preemption is not allowed). One can
easily check that FCFS is optimal for variants of the counterexample where
the second task is not released before time 4, or where the execution time of

© 2014 by Taylor & Francis Group, LLC

324 Chapter 15. Online scheduling

the second task is at least equal to 2. Therefore, for some instances, FCFS
is suboptimal, and, for some other instances, it is optimal. We would like
to have a way to assess the performance of FCFS for this objective function,
knowing that we are in an online setting. To achieve this purpose, the notion
of competitive analysis has been introduced by Sleator and Tarjan [98].

15.2 Competitive analysis

15.2.1 Definition

In competitive analysis, the performance of an online algorithm A for a given
objective function is compared to the performance of the optimal offline al-
gorithm, that is, to the performance of the optimal solution when all of the
instance characteristics are known beforehand.

DEFINITION 15.1 (Competitive algorithm). Let A be an online algorithm
for a minimization problem. For any instance I, let CA(I) denote the value
of the objective function for algorithm A, and Copt(I) that of the optimal
(offline) solution. Then, algorithm A is said to be %-competitive if there exist
two constants % > 1 and c such that, for any instance I,

CA(I) 6 %� Copt(I) + c.

(To adapt this definition to a maximization problem, one needs only to
change the inequality sign and to replace % with 1/% in the condition.) We
have given here the most general definition of a competitive algorithm. This
definition contains an “offset” c in addition to the competitive ratio %. How-
ever, in all the competitive results presented in this chapter, this offset will
be zero.

The notion of competitive algorithm can be seen as an extension of the
notion of approximation algorithm (Section 8.1) for online settings. An im-
portant difference is that the complexity of an algorithm does not play any
role in the definition of a competitive algorithm, contrarily to the definition
of an approximation algorithm (cf. Definition 8.1, p. 180).

We now establish a competitive result for FCFS when the objective is the
minimization of the sum of flow times. In the next section, we will show how
one can elaborate and derive such a result.

THEOREM 15.2 ([71]). FCFS is ∆-competitive for the online minimization
of the sum of flow times, where ∆ is the ratio of the largest task size to the
smallest one. Furthermore, this bound is tight.

Proof. We first show that FCFS is ∆ competitive, then we show that this
bound is tight. In this proof, FA(I) denotes the sum of flow times achieved

© 2014 by Taylor & Francis Group, LLC

15.2. Competitive analysis 325

by the schedule A on instance I. Fopt(I) is the optimal sum of flow times
for instance I.

Let I = fT1 = (r1, w1), . . . , Tn = (rn, wn)g be any instance (recall that ri is
the release date of task Ti and wi its execution time). We show by induction
on n that Ffcfs(I) 6 ∆Fopt(I). This property obviously holds for n = 1.
Let us assume that it has been proved for n and prove that it holds true for
n+ 1.

Consider I = fT1 = (r1, w1), . . . , Tn+1 = (rn+1, wn+1)g an instance with
n+1 tasks. Without loss of generality, we assume that minj wj = 1. Therefore,
∆ is the size of the largest task in instance I. Without loss of generality, we
can restrict the study to schedules such that the processor is never deliberately
left idle. Furthermore, we also can restrict the study to schedules for which,
at any time, the task executed is, among all of the available tasks, the task
that completes at the earliest under that schedule. Indeed, transforming a
schedule so that it meets this assumption can only decrease its sum of flow
times. Under these assumptions, a schedule is completely defined by the order
of task completions. We call this order a priority list. Thus, let Θ denote an
optimal priority list for I; the corresponding schedule is an optimal schedule.
In the following, we denote by A1 the set of tasks that have a higher priority
than Tn+1 and A2 the set of tasks that have a lower priority than Tn+1 under
Θ. topt(k) denotes the remaining processing time of Tk at time rn+1 in the
optimal schedule. This remaining processing time is equal to: i) 0 if task Tk
was completed at the latest at time rn+1, ii) wk if the processing of Tk has
not started by time rn+1, and, otherwise, iii) wk minus the time elapsed since
the processing of Tk started. We can see that the execution of the n+ 1 tasks
of I with the priority list Θ as the scheduling of the n first tasks of I in which
task Tn+1 had been inserted. Thus, we have:

Fopt(T1, . . . , Tn+1) = Fopt(T1, . . . , Tn) + wn+1 +
∑
k∈A1

topt(k)︸ ︷︷ ︸
Flow of Tn+1

+
∑
k∈A2

wn+1︸ ︷︷ ︸
Cost induced

by Tn+1

.

We also have (using the recurrence hypothesis to establish the first inequal-
ity):

Ffcfs(T1, . . . , Tn+1) = Ffcfs(T1, . . . , Tn) + wn+1 +
∑
k6n

tfcfs(k)︸ ︷︷ ︸
Flow of Tn+1

6 ∆Fopt(T1, . . . , Tn) + wn+1 +
∑
k6n

tfcfs(k)

= ∆Fopt(T1, . . . , Tn) + wn+1 +
∑
k6n

topt(k).

The last equality is established by focusing at any given time t on the sum of
the task remaining processing times under any priority-based schedule. Let

© 2014 by Taylor & Francis Group, LLC

326 Chapter 15. Online scheduling

τ be the last date prior to t at which the processor was idle. Then, the sum
of the task remaining processing times is equal to the sum of the execution
times of the tasks released between τ and t minus t � τ , that is, minus the
amount of processing that was performed during that time interval. This is
independent of the priority list. Therefore, this sum is the same under FCFS
and under an optimal priority-based schedule. Now, since we have

topt(k) 6 ∆ 6 ∆wn+1 and
∑
k6n

topt(k) =
∑
k∈A1

topt(k) +
∑
k∈A2

topt(k), we get:

Ffcfs(T1, ..., Tn+1) 6 ∆Fopt(T1, ..., Tn) + wn+1 +
∑
k∈A1

topt(k) +
∑
k∈A2

∆wn+1

6 ∆Fopt(T1, ..., Tn)+∆wn+1+∆
∑
k∈A1

topt(k)+∆
∑
k∈A2

wn+1

6 ∆Fopt(T1, ..., Tn+1).

We now prove that the previous bound is tight. Let us consider the following
example: n tasks T1, . . . , Tn of size ∆ arrive at time 0, and, then, for 1 6 j 6
n2, task Tn+j of size 1 arrives at time j � 1 + 1

n .
A possible schedule would be to process each of the n2 tasks Tn+j , . . . ,

Tn+n2 at their release dates and to wait for the completion of the last of these
tasks before completing tasks T1, . . . , Tn. The sum of flow times would then be

n2�1+(n2+∆+ 1
n)+(n2+2∆+ 1

n)+� � �+(n2+n∆+ 1
n) = n3+n2+ n(n+1)

2 ∆+1.
Therefore, the optimal sum of flow times is not greater than this value, and
this value can be used as an upper bound (we do not need to prove that it is
the optimal value).

Rather, FCFS schedules first the tasks of size ∆, and the sum of flow times
achieved by FCFS on this instance is

∆ + 2∆ + � � �+ n∆ + n2

(
1 + n∆� 1

n

)
=

2n3∆ + n2(2 + ∆) + n(∆� 2)

2
.

Therefore, the competitive ratio %(n) of FCFS on this instance satisfies:

%(n) > ν(n) =
2n3∆+n2(2+∆)+n(∆−2)

2

n3 + n2 + n(n+1)
2 ∆ + 1

=
2n3∆ + n2(2 + ∆) + n(∆� 2)

2n3 + 2n2 + n(n+ 1)∆ + 2
.

To conclude, we only have to remark that limn→+∞ ν(n) = ∆.

It is important to see that different objective functions that share the same
optimal solutions may lead to different competitive ratios for nonoptimal so-
lutions. Take, for instance, the sum of flow times

∑n
i=1 Fi =

∑n
i=1(Ci � ri)

and the sum of completion times
∑n
i=1 Ci. The two objectives differ by the

constant (for a given instance) term
∑n
i=1 ri. Therefore, any schedule optimal

© 2014 by Taylor & Francis Group, LLC

15.2. Competitive analysis 327

for the sum of flow times is also optimal for the sum of completion times, and
reciprocally. Furthermore, a scheduling algorithm Θ that is %-competitive for
the sum of flow times is also %-competitive for the sum of completion times.
This is easily proved (remember that, by definition, % > 1):

n∑
i=1

(CΘ
i � ri) 6 %

n∑
i=1

(Copt
i � ri)

)
n∑
i=1

CΘ
i 6 %

(
n∑
i=1

Copt
i

)
� (%� 1)

n∑
i=1

ri

)
n∑
i=1

CΘ
i 6 %

(
n∑
i=1

Copt
i

)
.

The reverse, however, is not true. A competitive result on the sum of com-
pletion times does not imply the same result for the sum of flow times.

Finally, an obvious remark: Not all online algorithms have competitive ra-
tios. For instance, take the Shortest Processing Time First algorithm. This
algorithm leads to unbounded maximum flows and, therefore, is not a com-
petitive algorithm for maximum flow minimization. To establish this result
one needs only to consider an instance made of a task of size 2 released at
time 0, and n tasks of size 1, the i-th task, 1 6 i 6 n being released at time
i� 1. The optimal maximum flow is equal to 3. It is obtained by scheduling
first the task of size 2 and then the other tasks in the FCFS order. Shortest
Processing Time First achieves a maximum flow of n+ 2.

15.2.2 Method to establish a competitive analysis result

We now explain how to establish a bound on the competitiveness of any online
algorithm. The idea is to start from a problematic instance. A problematic
instance, for an online scheduler, is an instance in which the optimal choice
for the first task, or for a handful of first tasks, depends on the potentially
following tasks. Therefore, depending on whether the first task(s) is (are)
followed by some other tasks, schedulers should not make the same decision.

Starting from a problematic instance, one generalizes it. One, thus, replaces
the instance characteristics with parameters. The instance characteristics are
the characteristics of tasks and of the processing platform. One, then, studies
all possible responses by schedulers, and one adds constraints on the instance
characteristics so as to force schedulers to make bad decisions. One then
expresses the competitive ratio of any algorithm as a function of the instance
characteristics. Finally, one looks for a set of instance characteristics that
maximizes this bound on the competitive ratio.

We now illustrate this method with the scheduling of identical tasks with
realease dates on a heterogeneous master-worker platform. The processing

© 2014 by Taylor & Francis Group, LLC

328 Chapter 15. Online scheduling

platform, illustrated in Figure 15.3, is composed of a master that sends tasks
to workers that are then in charge of processing them. The master cannot
send several tasks simultaneously, and each task is sent to a single worker. It
takes a time ci for the master to send a task to processor Pi. Worker Pi must
wait to have completely received a task from the master before it can start
processing it. This processing takes a time wi. Each worker must process
tasks one at a time and wait for the completion of the processing of one task
before starting the processing of the next one. Different processors, however,
can simultaneously be processing different tasks. The platform is said to be
heterogeneous because the communication and processing times are worker
dependent. The objective function is then to minimize the maximum flow
time, where the flow time of a task is defined as before as the completion time
minus the release date.

Sun

Sun
VA LINUX

VA LINUX

c1 c3c2

w3w2w1

FIGURE 15.3: Example of a heterogeneous master-worker platform.

Which is the most interesting processor to process a given task? The answer
depends on when tasks are submitted to the system (remember, all tasks share
the same characteristics in our problem). To establish the result stated in
Theorem 15.3, we build an instance in which an optimal (online) schedule
executes the first submitted task on the processor that maximizes its flow
time (instead of minimizing it!).

THEOREM 15.3 ([88]). There is no online algorithm for scheduling identi-
cal tasks on a master-worker platform that achieves a competitive ratio strictly
lower than

p
2 for the minimization of the maximum flow time.

A weaker result is that no online algorithm is optimal for this problem. To
establish such a result, we must prove that, whatever the online algorithm,
there exists a scenario for which the produced schedule is suboptimal. In
order to prove a result such as the one stated in Theorem 15.3, one builds
a scenario that provokes the failure of any online algorithm. Hopefully, with
this scenario comes a lower bound % > 1 on the performance of any online
algorithm. We will tune the value of the parameters defining the scenario in
order to maximize %.

In this proof, we use the adversary technique. Each time the scheduling
algorithm makes a decision (or decides to delay making a decision), the ad-

© 2014 by Taylor & Francis Group, LLC

15.2. Competitive analysis 329

versary decides whether the instance will contain any more tasks and when
they will be released. Each time the adversary defines the “next part” of the
instance, its aim is for the last decision by the algorithm to have the worst
possible consequences on the objective function.

Proof. Since we want to show how to establish a theorem such as Theo-
rem 15.3, we assume that we want to establish a lower bound % > 1 on
the competitive ratio, but we do not know yet that % =

p
2. We prove The-

orem 15.3 by contradiction. Let us assume that there exists a deterministic
online algorithm A whose competitive ratio is % � ε, with ε > 0. We build a
platform and an adversary to derive a contradiction. The platform is made
up of three processors P1, P2, and P3. The idea is to have one processor
very slow at communicating but very quick at computing (P1) and two other
processors that are identical, quick at communicating, slow at processing, and
slower than P1 for the overall processing (communication + computation) of
a single task. The idea is that:

• If a single task is submitted to the platform, the optimal solution is to
schedule it on P1.

• If several tasks are submitted to the platform, the first one should not be
assigned to P1. This is because the duration of the communication in-
duced by the first task is potentially impacting all tasks (remember that
a single communication can take place at any time) while computations
can be run in parallel.

This is the structure of our problematic instance. Formally, we have the
properties:

• c2 = c3 and w2 = w3 (P2 and P3 are identical);
• c1 > c2 (P1 communicates slowly);
• w1 < w2 (P1 computes quickly);
• c1 +w1 < c2 +w2 (P1 is the optimal choice if only one task is submitted

to the platform).
Initially, the adversary sends a single task i at time 0. A can execute the

task i on:
• P1. The maximum flow time is then at least equal to c1 + w1.

Note that we wrote “at least” because nothing forbids the scheduler to
wait some time before initiating the communication from the master to
worker P1. Also, nothing forbids the scheduler to impose some idle time
on P1 between the end of the reception of the first task and the beginning
of its processing. We are trying to establish a bound on the performance
of any algorithm. Therefore, almost anything can happen, however
inefficient it may look, and our study must take that into account.

• P2 or P3. The maximum flow time is then at least equal to c2 + w2 =
c3 + w3.

At time τ—the value of τ is also a parameter that will be defined later—
we check whether A has made a decision concerning the scheduling of i, and
which one. We want any online algorithm to make the wrong decision, that

© 2014 by Taylor & Francis Group, LLC

330 Chapter 15. Online scheduling

is, to send task i right away to worker P1. Thanks to our hypotheses, this is
the optimal behavior when a single task is submitted to the system. Let us
assume that A does not send the first task to P1, or at least not before time
τ . Then the adversary does not send any more tasks. The behavior of A is
then obviously suboptimal. We need only to obtain a contradiction with the
assumption on A (namely, that A has a competitive ratio of at most % � ε).
So, we consider all the possible behaviors for A and add the corresponding
constraints on %, that is, we add the constraint that % is smaller than the
smallest competitive ratio that A can obtain on these instances. This will
give us a contradiction because the smallest competitive ratio that A can
obtain on these instances must be, by hypothesis, not greater than %� ε. We
have two cases to consider:

1. A scheduled the task i on P2 or P3. Then, the best possible maximum
flow time is c2 +w2 = c3 +w3. The optimal scheduling has a maximum
flow time of c1 +w1. Hence, the competitive ratio of A, in this case, is at
least equal to c2+w2

c1+w1
. Since we have assumed that A has a competitive

ratio of %� ε, this implies:

%� ε > c2 + w2

c1 + w1
. (15.1)

Since we want to forbid the scheduling of task i on P2 or P3, we add
the weakest possible constraint on % that contradicts equation (15.1).
Therefore, we decide that the lower bound % on the competitive ratio of
any algorithm must satisfy:

% 6
c2 + w2

c1 + w1
. (15.2)

2. A did not begin to send task i. Then, the best maximum flow time that
can be achieved is equal to τ + c1 + w1. The competitive ratio of A is
thus at least equal to τ+c1+w1

c1+w1
and

%� ε > τ + c1 + w1

c1 + w1
. (15.3)

To forbid this case from happening, we proceed as for the previous case
and add the minimal constraint on % that contradicts equation (15.3),
that is:

% 6
τ + c1 + w1

c1 + w1
= 1 +

τ

c1 + w1
. (15.4)

With the two additional constraints on the value of %, equations (15.2) and
(15.4), algorithm A has no choice but to send task i to processor P1. Indeed,
because of equations (15.2) and (15.4), any other decision would contradict the
hypothesis on the competitive ratio of algorithm A. Then, the most favorable
case for algorithm A is to send it as soon as possible, that is, as soon as it is
submitted to the system at time 0.

© 2014 by Taylor & Francis Group, LLC

15.2. Competitive analysis 331

Now, at time τ , the adversary sends two tasks, j and k. We consider all
the scheduling possibilities:

1. j and k are scheduled on P1. Then, the best achievable maximum flow
time is the maximum of the flows of tasks i, j, and k:

• Flow of i: c1 + w1.
• Flow of j: Task j can be sent neither before it is released (at time τ)

nor before the communication link from the master is freed from
the sending of task i (at time c1). Hence, task j is sent at the
earliest at time maxfc1, τg. Then, the processing of j cannot start
before the end of its communication or the end of the previous
computation on P1, that is, at time: maxfmaxfc1, τg + c1, c1 +
w1g = c1 +maxfc1, τ, w1g. Therefore, the flow of j is at least equal
to: c1 + w1 + maxfc1, τ, w1g � τ as task j was released at time τ .

• Flow of k: Task k is sent at the earliest at the time the commu-
nication of task j ends, that is, at time maxfc1, τg + c1. (Since
tasks j and k are identical, we can assume without loss of general-
ity that task j is sent before task k.) The processing of task k can
start neither before the end of its communication nor earlier than
the completion time of task j. Hence, since task k was released
at time τ , its flow is at least equal to: maxfmaxfc1, τg+ 2c1, c1 +
w1 + maxfc1, τ, w1gg + w1 � τ = c1 + maxfmaxfc1, τg + c1, w1 +
maxfc1, τ, w1gg+ w1 � τ .

Since the flow of task k is not smaller than that of task j, which is not
smaller than that of task i, the maximum flow in this case is at least
equal to: c1 + w1 + maxfmaxfc1, τg+ c1, w1 + maxfc1, τ, w1gg � τ .

We derive the lower bounds on the maximum flow time of the other
cases along the same lines.

2. The first of the two tasks (j and k) is scheduled on P2 (or P3) and the
other one on P1.

• Without loss of generality, we assume task j is scheduled on P2.
Then, its flow is at least: maxfc1, τg+ c2 + w2 � τ .

• The flow of task k is then at least: maxfc1 +w1,maxfc1, τg+ c2 +
c1g+ w1 � τ = c1 + maxfw1,maxfc1, τg+ c2g+ w1 � τ .

Then, the best achievable maximum flow time is

maxfmaxfc1, τg+ c2 + w2, c1 + w1 + maxfw1,maxfc1, τg+ c2gg � τ.

3. The first of the two tasks (j and k) is scheduled on P1 (say j) and the
other one on P2 (or P3).

• The flow of j is at least: maxfc1, τ, w1g+ c1 +w1 � τ (cf. case 1).
• The flow of k is at least: maxfc1, τg+ c1 + c2 + w2 � τ .

© 2014 by Taylor & Francis Group, LLC

332 Chapter 15. Online scheduling

Since, by hypothesis, c1 + w1 < c2 + w2, then w1 6 c2 + w2 and the
best achievable maximum flow time is: c1 + maxf2w1,maxfc1, τg+ c2 +
w2g � τ .

4. One of the two tasks (j and k) is scheduled on P2 and the other one
on P3.

• The flow of j is at least: maxfc1, τg+ c2 + w2 � τ .
• The flow of k is at least: maxfc1, τg+ 2c2 +w2� τ (as c3 = c2 and
w3 = w2).

The best achievable maximum flow time is then: maxfc1, τg + 2c2 +
w2 � τ .

5. The case where j and k are both executed on P2, or both on P3, leads to
an even worse maximum flow time than the previous case. Therefore, we
do not need to study it. Indeed, we are interested in the best achievable
maximum flow time, and this case never leads to it.

Hence, whatever the choices made by algorithm A, its best achievable maxi-
mum flow time is the minimum of the maximum flow time of cases 1 through
5, which we denote µ:

µ = min

c1 + w1 + maxfmaxfc1, τg+ c1, w1 + maxfc1, τ, w1gg � τ,

max

{
maxfc1, τg+ c2 + w2,
c1 + w1 + maxfw1,maxfc1, τg+ c2g

}
� τ,

c1 + maxf2w1,maxfc1, τg+ c2 + w2g � τ,
maxfc1, τg+ 2c2 + w2 � τ.

(15.5)

We now deal with the optimal (offline) schedule of the three tasks and want
it completely different. Instead of having task i being processed by processor
P1, we want task i to be processed by P2, then task j on P3, and finally task k
on P1, each task being in turn scheduled as soon as possible. We now establish
the maximum flow achieved by this schedule:

• Flow of task i: c2 + w2.
• Flow of task j: Its sending to P3 can start neither before its release

date nor before the end of the communication of task i. Its processing
can take place as soon as P3 has received it. Its flow is thus equal to:
maxfτ, c2g+c2+w2�τ (since P2 and P3 share the same characteristics).

• Flow of task k: The reasoning follows the one we had for task j; its flow
is: maxfτ, c2g+ c2 + c1 + w1 � τ .

Thus, the maximum flow achieved by this schedule is equal to:

max
{
c2 + w2, maxfc2, τg+ c2 + w2 � τ, maxfc2, τg+ c2 + c1 + w1 � τ

}
= maxfc2, τg+ c2 + maxfw2, c1 + w1g � τ. (15.6)

© 2014 by Taylor & Francis Group, LLC

15.2. Competitive analysis 333

Therefore, the best achievable competitive ratio for algorithm A, denoted ν,
is the ratio of its best achievable maximum flow, µ, and of the maximum flow
of the best schedule, as expressed by equation (15.6). Since, by hypothesis,
the competitive ratio of algorithm A is not greater than % � ε, % � ε > ν,
where

ν =
µ

maxfc2, τg+ c2 + maxfw2, c1 + w1g � τ
. (15.7)

The problem, now, is to find values of c1, c2, w1, w2, and τ that maximize
the value of ν while satisfying the constraints set on %, i.e., equations (15.2)
and (15.4). In other words, we want to solve the following problem:

Maximize ν under the constraints

0 6 w1 < w2

0 6 c2 < c1
c1 + w1 < c2 + w2

ν 6
c2 + w2

c1 + w1

ν 6 1 +
τ

c1 + w1

ν 6
c1 + w1 + maxfmaxfc1, τg+ c1, w1 + maxfc1, τ, w1gg � τ

maxfc2, τg+ c2 + maxfw2, c1 + w1g � τ
ν 6

maxfmaxfc1, τg+ c2 + w2, c1 + w1 + maxfw1,maxfc1, τg+ c2gg � τ
maxfc2, τg+ c2 + maxfw2, c1 + w1g � τ

ν 6
c1 + maxf2w1,maxfc1, τg+ c2 + w2g � τ
maxfc2, τg+ c2 + maxfw2, c1 + w1g � τ

ν 6
maxfc1, τg+ 2c2 + w2 � τ

maxfc2, τg+ c2 + maxfw2, c1 + w1g � τ
.

(15.8)
System (15.8) seems too formidable to be analytically solved. To circumvent
this difficulty, we start by solving it numerically. We can indeed solve it with
any available software package. The obtained numerical solution gives us the
shape of the solution. In our case, this leads to: w1 = 0, τ = c2 = 1, 1 < c1,
and c1 = w2. We can then simplify the system of equations (15.8). We then
obtain:

Maximize ν under the constraints

1 < c1

ν 6 1 +
1

c1

ν 6
3c1 � 1

1 + c1

ν 6
2c1

1 + c1

ν 6
3c1

1 + c1

ν 6
2c1 + 1

1 + c1
�

© 2014 by Taylor & Francis Group, LLC

334 Chapter 15. Online scheduling

By deleting the redundant constraints, we obtain the following equivalent
system:

Maximize ν under the constraints
1 < c1

ν 6 1 +
1

c1

ν 6
2c1

1 + c1
�

Therefore, we look at maximizing the minimum between 1 + 1
c1

and 2c1
1+c1

=

2� 2
1+c1

. The former expression being decreasing with c1 while the second is
increasing, the maximum is obtained when both expressions are equal. This
leads to c1 = 1 +

p
2 and ν =

p
2.

Therefore, we have proved that there is no optimal online algorithm for the
minimization of the maximum flow time for the scheduling of independent
tasks on heterogeneous master-worker platforms. Furthermore, we also have
proved that any competitive algorithm for this problem, if there exists any,
has at least a competitive ratio of

p
2.

In the proof of Theorem 15.3, we have used the technique of the adversary.
At first sight, this technique seems to imply that the entity that submits
tasks must have knowledge of the algorithm behavior to design the difficult
instances. In fact, this is not the case. The adversary does not need to monitor
the algorithm for its decisions. It needs only to envision what decisions it
can make and to build a difficult instance for each possible decision. In the
context of Theorem 15.3, only two instances are needed. The first instance
contains a single task sent at time 0. The second instance contains three
tasks: one sent at time 0 and two sent at time 1. The adversary does not
need to monitor the algorithm because the algorithms that we considered in
this proof are deterministic, i.e., they always make the same decisions for the
same instances. In the next section, we also consider randomized, and, thus,
nondeterministic, algorithms.

15.3 Makespan optimization

In this section, we consider the variant of the online scheduling problem that
is sometimes called online-list [89]. The tasks are presented one by one to
the scheduler, which must schedule each task on a processor before seeing the
next submitted task.

© 2014 by Taylor & Francis Group, LLC

15.3. Makespan optimization 335

15.3.1 List scheduling algorithms

A list schedule is a schedule such that no processor is deliberately left idle.
As soon as a processor is available, the first free task—first according to some
priority list—is scheduled on it. However, simple as these greedy algorithms
may seem to be, these algorithms are quite efficient as shown by Theorem 15.4
and Lemma 15.1.

THEOREM 15.4 ([45]). Any list scheduling algorithm is
(
2� 1

m

)
-competitive

for the online minimization of the makespan on m processors, and this bound
is tight.

In the definition of list schedules, we introduced the term “free” tasks. This
is because list algorithms are often used when tasks can depend on each other,
and because Theorem 15.4 holds in this broader context. If task Tj depends
on task Ti, then the execution of task Ti must have been completed before the
execution of task Tj can start. The set of precedence constraints naturally
defines a directed (precedence) graph. This graph is obviously acyclic. A task
is said to be free if it does not depend on any task, or if all the tasks that it
depends upon have already been completed.

Proof. In this proof, we consider a set of potentially dependent tasks and their
precedence graph G. We first need to establish a preliminary result. There
exists a precedence path φ in G whose weight w(φ) satisfies

Idle 6 (m� 1)� w(φ),

where Idle is the cumulated idle time of the m processors during the whole
execution of the list schedule, and where the weight of a path in the precedence
graph is equal to the sum of the execution times of its constitutive tasks.

Let Ti1 be a task whose execution terminates at the end of the schedule.
Let t1 be the latest time before the start of the execution of Ti,1 such that
there exists an idle processor during the time interval [t1, t1 + 1[(let t1 = 0 if
such a time does not exist).1 Why is this processor idle? Since the schedule is
a list schedule, no task is free at t1; otherwise, the idle processor would start
executing a free task at that time. Therefore, there must be a task Ti,2 that
is a (direct or indirect) predecessor of Ti,1 and that is being executed at time
t1; otherwise, Ti,1 would have been started at time t1 by the idle processor.
Because of the definition of t1, we know that all processors are active between
the end of the execution of Ti,2 and the beginning of the execution of Ti,1. We
start the construction again from Ti,2 so that we obtain a task Ti,3 such that
all processors are active between the end of Ti,3 and the beginning of Ti,2.
Iterating the process, we end up with r tasks Ti,r, Ti,r−1, . . . , Ti,1 that belong
to a precedence path φ of G and such that all processors are always active

1Here we assume, without loss of generality, that all values are integers. If needed, we can
always scale them up for this to be true.

© 2014 by Taylor & Francis Group, LLC

336 Chapter 15. Online scheduling

except perhaps during the execution of the tasks constituting φ. In other
words, the idleness of some processors can occur only during the execution
of these r tasks, during which at least one processor is active (the one that
executes the task). Hence,

Idle 6 (m� 1)�
r∑
j=1

w(Ti,j) 6 (m� 1)� w(φ).

We now use this property to establish the competitive ratio. LetM be the
makespan of the considered list schedule and n the number of tasks. Then,
since a processor is either busy or idle at any time,

m�M = Idle +

n∑
i=1

wi.

Now, take the precedence path φ that we previously constructed. We have
that w(φ) is a lower bound on the optimal makespan Mopt, because the
makespan of any schedule is greater than the weight of all precedence paths
in G (simply because precedence constraints must be met). Furthermore,∑n
i=1 wi 6 m�Mopt (with equality only if all m processors are active all the

time). Putting this together, we get

m�M = Idle +
n∑
i=1

wi 6 (m� 1)� w(φ) +m�Mopt 6 (2m� 1)�Mopt,

which proves the competitive ratio.

We now prove that this bound is tight. Let K be an arbitrarily large
integer. We build a set of dependent tasks G for which any list schedule has a
makespan M � 2m−1

m Mopt. There are 2m + 1 tasks, whose execution times
are as follows: wi = K(m � 1) for 1 6 i 6 m � 1; wm = 1; wi = K for
m + 1 6 i 6 2m; and w2m+1 = K(m � 1). The only existing precedence
constraints are as follows:

• All the tasks Ti, for m+ 1 6 i 6 2m, depend on task Tm;
• Task T2m+1 depends on each of the tasks Ti, for m+ 1 6 i 6 2m.

There are exactly m entry tasks, i.e., tasks that do not depend on any other
tasks, tasks Ti for 1 6 i 6 m. Hence, any list schedule schedules them at
time 0. At time 1, the execution of Tm completes and the free processor
(the one that executed Tm) will be successively assigned m� 1 of the m free
tasks Tm+1, Tm+2, . . . , T2m. Note that this processor starts the execution of
the last of its m � 1 tasks at time 1 + K(m � 2) and terminates it at time
1 + K(m � 1). Therefore, the remaining m-th task will be executed at time
K(m� 1) by another processor. Only at time K(m� 1) +K = Km will task
T2m+1 be free, which leads to M = Km+K(m� 1) = K(2m� 1).

However, the tasks can be scheduled in only Km + 1 time units. The key
is to keep m� 1 processors idle deliberately while executing task Tm at time

© 2014 by Taylor & Francis Group, LLC

15.3. Makespan optimization 337

0 (which is forbidden in a list schedule). Then, at time 1, each processor
executes one of the m tasks Tm+1, Tm+2, . . . , T2m. At time 1 + K, one
processor starts executing T2m+1 while the other m � 1 processors execute
tasks T1, T2, . . . , Tm−1. This defines a schedule with a makespan equal to
1 + K + K(m � 1) = Km + 1, which is optimal because it is equal to the
weight of the precedence path from Tm to Tm+1 to T2m+1. Hence, we obtain

the ratio M
Mopt > K(2m−1)

Km+1 = 2m−1
m � 2m−1

m(Km+1) �!
m→+∞

2m−1
m . This concludes

the proof.

Theorem 15.4 establishes a competitive ratio for any list scheduling al-
gorithm. One can then wonder whether some scheduling algorithms could
achieve a better ratio. To establish such a result, one can either exhibit an
algorithm with a lower competitive ratio or establish a lower bound on the
competitive ratio of any algorithm. We will start with the latter option.

To establish lower bounds, we use the notion of prefix instances. A problem
instance I1 with n tasks is a prefix of an instance I2 if the first n tasks of
I2 are exactly the tasks of I1 in the same order. Then, under the online-list
model, any (deterministic) scheduler will take the exact same decisions for
each of the first n tasks of I2 than for its counterpart task in I1. Indeed, as a
scheduler must have scheduled a task before it can discover the characteristics
of the next task in the instance, the set of the first n tasks of instance I2

is undistinguishable from instance I1. We use this property to prove the
following lemma.

LEMMA 15.1 ([34]). If the platform contains two or three processors (i.e.,
m = 2 or m = 3), then any list scheduling algorithm achieves the best possible
competitive ratio for the online minimization of the makespan.

Proof. To establish this result, we just have to show that if m 2 f2, 3g, any
online algorithm has a competitive ratio of at least 2� 1

m . Since we are under
the online-list model, in all the instances used in this proof, we assume that
all tasks are available from the start, and each instance is fully characterized
by a sequence of task sizes. Indeed, under the online-list model, the scheduler
must decide where (and when) to execute a task before it can discover the
characteristics of the next task. Here, once assigned on a processor, tasks are
executed as soon as possible.

m = 2. We consider two instances: I1 = (1, 1) and I2 = (1, 1, 2). In other
words, I1 is made of two unitary tasks and I2 of two unitary tasks and
then one task of size 2. Because of the online-list model, up to the second
task included, scheduling algorithms take the exact same decisions when
processing instances I1 and I2.

An algorithm that schedules both tasks of I1 on the same processor
achieves a ratio of at least 2 on I1 and thus a ratio greater than our
target ratio of 2� 1

m = 3
2 . Therefore, we need only to focus on the other

© 2014 by Taylor & Francis Group, LLC

338 Chapter 15. Online scheduling

algorithms, that is, those that schedule both tasks of I1 on two different
processors. Such an algorithm achieves a ratio of at least 3

2 on I2, since
the optimal makespan for I2 is achieved by scheduling the task of size
2 alone on a processor, leading to a makespan of 2.

We have shown that any algorithm achieves either a ratio of 2 on I1 or
a ratio of 3

2 on I2, hence, the desired lower bound.

m = 3. We consider three instances: I1 = (1, 1, 1), I2 = (1, 1, 1, 3, 3, 3), and
I3 = (1, 1, 1, 3, 3, 3, 6). Because of the online-list model, up to the third
(respectively sixth) task included, scheduling algorithms take the exact
same decisions when processing instances I1 and I2 (resp. I1, I2, and
I3).

Any algorithm that schedules two tasks of I1 on the same processor
achieves a ratio of at least 2 and thus greater than 2� 1

m = 5
3 . Therefore,

we need only to focus on the other algorithms, the ones that schedule
the tasks of I1 (and, thus, the first three tasks of I2 and of I3) on
three different processors. Such an algorithm that schedules two tasks
of size 3 of I2 on the same processor achieves a ratio of at least 7

4 >
5
3 .

Therefore, we need only to focus on algorithms that schedule on each
processor exactly one unitary task and one task of size 3 when dealing
with I2 and, thus, with I3. Such an algorithm achieves a makespan of
at least 10 on I3. The optimal schedule for I3 is to schedule the three
unitary tasks and one task of size 3 on one processor, the two remaining
tasks of size 3 on a second processor, and the task of size 6 on the last
processor, hence, achieving a makespan of 6. Therefore, any schedule
that achieves a competitive ratio strictly smaller than minf2, 7

4g on I1

and I2 achieves a ratio of at least 10
6 = 5

3 on I3. This concludes the
proof.

Therefore, no deterministic online algorithm can achieve a better competi-
tive ratio than list scheduling algorithms when the computing platform com-
prises two or three processors. When the number of processors is strictly
greater than four, it is possible to design online algorithms with lower com-
petitive ratios than those of list scheduling algorithms [7]. Rather than focus
on the design of such algorithms, we look for randomized algorithms that
achieve lower competitive ratios than list scheduling algorithms.

15.3.2 Randomized optimization of makespan

In this section, we consider randomized algorithms, i.e., algorithms that can
make random decisions. The principles and advantages of randomized algo-
rithms have been presented in Section 8.4. We recall them here.

© 2014 by Taylor & Francis Group, LLC

15.3. Makespan optimization 339

Let us consider an online scheduling problem and an incomplete instance I
for which any online scheduling algorithm has to make a choice between two
potential schedules. The first schedule will deliver a strictly better or a strictly
worse performance than the second schedule, depending on the tasks yet to
be submitted (if any). By definition, a deterministic algorithm will always
choose the same schedule when facing instance I. A randomized algorithm
will toss a coin to decide which schedule to pick. The worst-case performance
of a randomized algorithm is obviously the worst performance between those
of the deterministic algorithms that uses the same schedules. What matters
for randomized algorithms is their average performance. The hope is that not
always using the same schedule will lead to an average performance better
than the worst case of a deterministic algorithm.

We start our study of randomized algorithms for the online minimization
of the makespan by giving a lower bound on the competitive ratio of any
randomized algorithm.

THEOREM 15.5 ([7]). There is no randomized scheduling algorithm for the
online minimization of the makespan whose competitive ratio is strictly lower
than 4

3 .

Proof. We consider an instance with m processors, a randomized scheduling
algorithmA whose competitive ratio is %, and two instances denoted I1 and I2.
I1 is composed of m unitary tasks. I2 is identical to I1 except that it contains
a (m + 1)-th task of size 2. Therefore, instance I1 is a prefix of instance I2.
With m unitary tasks to schedule, algorithm A can:

1. Schedule the m unitary tasks on the m different processors. Algorithm
A makes such a choice with probability p. If the submitted instance is

I1: The makespan of A is 1 and so is its ratio.
I2: The makespan of A is at least 3, while the optimal makespan is 2

(by assigning two unitary tasks to the same processor and having
one processor free to process the task of size 2), hence, a ratio of
at least 3

2 .

2. Schedule at least two of the m unitary tasks on the same processor,
freeing at least one processor. Algorithm A makes such a choice with
probability 1� p. If the submitted instance is

I1: The makespan of A and its competitive ratio are at least equal to
2.

I2: The makespan of A can be 2, which is optimal (hence, a ratio of 1).

To compute (a lower bound on) the competitive ratio of A, we take into
account the different choices that algorithm A can make and the respective
probabilities of these choices. If the submitted instance is I1, the competitive
ratio % of algorithm A satisfies:

% > p� 1 + (1� p)� 2 = 2� p.

© 2014 by Taylor & Francis Group, LLC

340 Chapter 15. Online scheduling

Note that here the lower bound on the competitive ratio is a function of
the probability of the random choice. If the submitted instance is I2, the
competitive ratio % of algorithm A satisfies:

% > p� 3

2
+ (1� p)� 1 = 1 +

p

2
.

Overall, we have

% > max
{

2� p, 1 +
p

2

}
>

4

3

since the maximum is minimized for p = 2
3 . This concludes the proof.

Note that in the proof of Theorem 15.5, letting p = 0 or p = 1 enables to
also model deterministic algorithms. Hence, the proof and the theorem are
valid for both randomized and deterministic algorithms.

One should remark that Theorem 15.5 states a lower bound for the competi-
tive ratio of randomized algorithms that is strictly lower than the best achiev-
able competitive ratio 3

2 for any deterministic online algorithm, as stated by
Lemma 15.1. We now introduce an algorithm that achieves this lower bound
for two processors.

A very significant problem for online scheduling algorithms is the arrival of a
large task when the load is perfectly balanced. In such a case, the makespan
is increased by the size of the task; the larger the size, the worse the im-
balance, and the worse the lower bound for the algorithm competitive ratio.
The solution to avoid this problem is for scheduling algorithms to purpose-
fully maintain some imbalance between processors. The problem, then, is to
keep the imbalance large enough to be able to cope with the arrival of large
tasks, while keeping the imbalance small enough for the algorithm to achieve
a low competitive ratio. This is what Algorithm 15.1 [7] tries to achieve for
platforms with two processors.

With two processors

In the two-processor framework, the imbalance is the difference between the
current makespan of both processors. Algorithm 15.1 randomly schedules
the next task so that the imbalance, in expectation, is exactly equal to one
third of the size of all already scheduled tasks (Step 10). To achieve this
goal, Algorithm 15.1 adjusts the probability to assign the next task to the
most loaded processor or to the least loaded one. If the algorithm is unable
to achieve this goal, the next task is deterministically assigned to the least
loaded processor (Step 17). In order to be able to compute the expectation
of the imbalance, Algorithm 15.1 records all the schedules that it may have
built so far (each one as a triplet of the probability of occurrence of the
schedule, the loads of the least loaded processor, and that of the most loaded
one). Therefore, Algorithm 15.1 has an exponential complexity. We will

© 2014 by Taylor & Francis Group, LLC

15.3. Makespan optimization 341

conclude this section by showing how it can be converted into a polynomial-
time complexity algorithm.

THEOREM 15.6 ([7]). Algorithm 15.1 is exactly 4
3 -competitive.

Proof. We know from Theorem 15.5 that, if Algorithm 15.1 has a competitive
ratio, then it is at least equal to 4

3 . Therefore, we only have to prove that it
has a competitive ratio and that this ratio is not greater than 4

3 .

1 Schedule task T1 on the first processor
2 S f(1, 0, w1)g { The only schedule has a probability 1, the minimum

load is 0 (on processor 2), and the maximum load is w1 (on

processor 1) }
3 for t = 2 to n do
4 Umin 0 { Umin is the expectation of the imbalance if task Tt is

scheduled on the least loaded processor }
5 Umax 0 { Umax is the expectation of the imbalance if task Tt is

scheduled on the most loaded processor }
6 foreach (π,Wmin,Wmax) in S do
7 Umin Umin + π � j(Wmin + wt)�Wmaxj
8 Umax Umax + π � j(Wmax + wt)�Wminj
9 S ′ ;

10 if 9p 2 [0, 1] such that p � Umin + (1� p) � Umax = 1
3

∑t
i=1 wi then

11 Schedule Tt on the processor with lower makespan with
probability p

12 foreach (π,Wmin,Wmax) in S do
13 (W ′min,W

′
max) = sortfWmin + wt,Wmaxg

14 S ′ S ′ [f(pπ,W ′min,W
′
max)g

(W ′min,W
′
max) = (Wmin,Wmax + wt)

15 S ′ S ′ [f((1� p)π,W ′min,W
′
max)g

16 else
17 Schedule Tt on the processor with lower makespan
18 foreach (π,Wmin,Wmax) in S do
19 (W ′min,W

′
max) = sortfWmin + wt,Wmaxg

20 S ′ S ′ [f(π,W ′min,W
′
max)g

21 S S ′

ALGORITHM 15.1: Randomized algorithm for the minimization of the
makespan on two processors.

Algorithm 15.1 maintains an invariant on the imbalance in average; the

© 2014 by Taylor & Francis Group, LLC

342 Chapter 15. Online scheduling

imbalance is always equal to at least one third of the sum of all scheduled
tasks. We establish this invariant by induction. The invariant obviously holds
after the scheduling of the first task (the imbalance is equal to the size of
the first task). We suppose that the invariant holds after the scheduling of
task Ti. The invariant obviously holds if the test at Step 10 is positive for
task Ti+1; for such a task, the imbalance is exactly equal to one third of this
sum. We then say that the invariant is tight. Let us suppose now that the
test is negative. Because the invariant held after the scheduling of task Ti,
placing task Ti+1 on the most loaded processor would increase the imbalance
by wi+1, and the new imbalance would be strictly greater than one third of
the sum of the sizes of the tasks from T1 to Ti+1. Therefore, since the test at
Step 10 is negative, placing Ti+1 on the least loaded processor also leads to
an imbalance strictly larger than one third of the sum of the sizes and, hence,
the invariant holds.

The proof on the upper bound of the competitive ratio is a proof by in-
duction on the scheduled tasks. We prove that the upper bound holds after
the scheduling of the first task, and that if the upper bound holds after the
scheduling of task Ti, then it also holds after the scheduling of Ti+1. The
proof relies on the notion of large tasks. A large task is a task whose size is
at least equal to the sum of the sizes of the previous tasks. Formally, task Ti
is large if and only if wi >

∑i−1
j=1 wj . Note that T1 is a large task. To prove

the induction, we consider several cases and prove the following properties:

1. The upper bound holds whenever the invariant is tight, i.e., whenever
the test at Step 10 is positive.

2. If the invariant is tight after the scheduling of task Ti but not after the
scheduling of task Ti+1, then Ti+1 is a large task.

3. The upper bound holds after the scheduling of a large task (and, hence,
after the scheduling of task T1).

4. The upper bound holds when the invariant is not tight and the task is
not a large task (this property covers all remaining cases).

We now prove these properties one by one:

1. We assume that the test at Step 10 is positive for some task Ti. In other
words, there exists a value p such that p�Umin+(1�p)�Umax = 1

3

∑i
j=1 wj .

Let Mi be the expectation of the makespan of Algorithm 15.1 after
task Ti is scheduled. This is the average of the makespans of all the pos-
sible schedules, the schedules being weighted by their respective prob-
abilities. Let Ui be the expected (average) imbalance at that time. Ui
is the expectation of the difference of the makespans of the two pro-
cessors, i.e., Ui = 1

3

∑i
j=1 wj . Finally, let Oi be the optimal makespan

when scheduling the set of the first i tasks: Oi > 1
2

∑i
j=1 wj . One of

the processors is busy from the start up to the completion of the whole
schedule, while the other remains idle at the end for a time equal, by

© 2014 by Taylor & Francis Group, LLC

15.3. Makespan optimization 343

definition, to the imbalance. Therefore, we have

Mi =
1

2

Ui +
i∑

j=1

wj

 =
1

2

1

3

i∑
j=1

wj +
i∑

j=1

wj

 =
2

3

i∑
j=1

wj 6
4

3
Oi,

and the upper bound on the competitive ratio is satisfied.

2. We now assume that the invariant is tight after the scheduling of task Ti
but not after the scheduling of task Ti+1. We do not prove anything on
the competitive ratio for this property, but proving that Ti+1 is a large
task will then allow us to prove easily the upper bound.

Let m be the number of possible schedules after the scheduling of
task Ti. Let pj and uj , respectively, be the probability and imbalance of

the j-th of these schedules. Let S =
∑i
j=1 wj . Then, since the invariant

is tight after the schedule of Ti,
∑m
j=1 pjuj = 1

3S.

As seen when proving the invariant, the invariant is not tight if and
only if the expected imbalance is strictly greater than one third of the
sum of the task sizes when placing the new task, here Ti+1, on the
least loaded processor. Therefore, we focus on the expected imbalance,
U(wi+1), when Ti+1 is placed on the least loaded processor. We want to
assess under which condition(s) this imbalance is strictly greater than
one third of the sum of task sizes, 1

3 (S + wi+1), when the invariant is
tight after the scheduling of Ti. We consider the function:

f(wi+1) = U(wi+1)� 1

3

i+1∑
j=1

wj = U(wi+1)� 1

3
(S + wi+1)

and study its sign; the invariant is not tight if and only if f is strictly
positive. If the invariant for a schedule is uj , then after placing Ti+1 on
the least loaded processor, the imbalance becomes juj�wi+1j. Therefore,

f(wi+1) =

 n∑
j=1

pj juj � wi+1j

� 1

3
(S + wi+1).

Because the invariant is tight after the scheduling of task Ti, f(0) = 0.
Note that each uj is smaller than the sum of the sizes of the tasks from
1 to i, i.e., S. In order to ease the study, we add two new indices to the
set of ujs: u0 = 0 and um+1 = +1. We also assume, without loss of
generality, that the schedules are ordered by nondecreasing imbalance:
u1 6 u2 6 � � � 6 um. Let k be any integer such that 0 6 k 6 i and
let us assume that wi+1 belongs to the interval [uk, uk+1[. We can then

© 2014 by Taylor & Francis Group, LLC

344 Chapter 15. Online scheduling

rewrite f as follows:

f(wi+1) =

 k∑
j=1

pj(wi+1 � uj)

+

 m∑
j=k+1

pj(uj � wi+1)

� 1

3
(S + wi+1)

=

 k∑
j=1

pj �
m∑

j=k+1

pj �
1

3

wi+1

�

 k∑
j=1

pjuj

+

 m∑
j=k+1

pjuj

� 1

3
S.

Function f is a continuous, piecewise affine function. The coefficient
of wi+1 is nondecreasing from an interval]uk, uk+1[to the next, going
from � 4

3 (case k = 0) to 2
3 (case k = m). Therefore, on the interval

[0,+1[, the function f is strictly decreasing, may be constant, and then
is strictly increasing, at the latest starting from S. We have seen that
f(0) = 0, and we have also f(S) = 0. Therefore, f is nonpositive on
[0, S] and strictly positive on]S,+1[. In other words, if the invariant is
tight after the scheduling of task Ti, it is also tight after the scheduling
of task Ti+1 if and only if 0 6 wi+1 6 S, i.e., if and only if Ti+1 is not
a large task, hence, the result.

3. Assume that Ti is a large task. Let S =
∑i−1
j=1 wj . From the study of the

previous case, the invariant cannot be tight after the scheduling of Ti,
and Ti is placed on the least loaded processor. If U was the imbalance
before Ti was scheduled, the imbalance after its scheduling is wi � U
as wi > S > U . Let E be the expectation of the makespan after the
scheduling of Ti. By definition of the imbalance, the expectation of
the makespan is equal to one half of the sum of the task sizes plus the
imbalance. Therefore,

E =
1

2
((S + wi) + (wi � U)) =

1

2
S + wi �

1

2
U.

We then use the lower bound of the imbalance given by the invariant:

E =
1

2
S + wi �

1

2
U 6

1

2
S + wi �

1

2

1

3
S =

1

3
S + wi 6

4

3
wi

because Ti is a large task (S 6 wi). Obviously, the optimal makespan
cannot be smaller than the size of the largest task, that is, Ti. Hence,
the property holds for large tasks.

4. We now consider the remaining cases. The task Ti considered is not a
large task because large tasks are covered by point 3 (i.e., the upper

© 2014 by Taylor & Francis Group, LLC

15.3. Makespan optimization 345

bound holds when Ti is a large task). The invariant was not tight after
the scheduling of Ti, as this case was covered by point 1. Then, since Ti
is not a large task, thanks to point 2, we know that the invariant was
not tight after the scheduling of task Ti−1 (otherwise, we would have a
contradiction). Let Tr be the last large task scheduled before Ti. We
know, thanks to point 3, that the upper bound held after the scheduling
of Tr. By definition of Tr and Ti, none of the tasks Tr+1, . . . , Ti is large,
and for none of these tasks is the invariant tight (because of point 2).
We extend this sequence of tasks as much as possible. Let Tl be the last
task such that none of the tasks Tr+1, . . . , Tl is large, and for none of
these tasks is the invariant tight. We show that the makespan does not
increase when scheduling tasks Tr+1 through Tl. Since the upper bound
held after the scheduling of Tr (because it is a large task by definition),
this will conclude the proof.

Let m be the number of possible schedules after the scheduling of
task Tr−1. Let pj and uj , respectively, be the probability and imbalance

of the j-th of these schedules. Let S =
∑r−1
j=1 wj . Since Tr is a large

task, we have wr > S > uj , for 1 6 j 6 m. Indeed, the imbalance can
never be greater than the sum of the sizes of all the scheduled tasks.
Therefore, the average imbalance after Tr is scheduled, U , is equal to:

U =

m∑
j=1

pj jwr � uj j =
m∑
j=1

pj(wr � uj) = wr �
m∑
j=1

pjuj .

Because of the invariant, we know that
∑m
j=1 pjuj > S

3 , and, hence,

we have wr � S 6 U 6 wr � S
3 .

Note that S + wr is the sum of the sizes of all tasks up to task Tr
included. Therefore, the invariant exactly states that b is nonnegative,
where

b =
3

4

(
U � S + wr

3

)
. (15.9)

Moreover,

0 6 b 6
3

4

((
wr �

S

3

)
� S + wr

3

)
=

1

2
(wr � S) 6 wr � S .

By definition, for any j 2 [r + 1, l], the invariant is not tight after the
scheduling of task Tj . Therefore, task Tj is scheduled on the processor
that is the least loaded after the scheduling of task Tj−1.

If
∑l
j=r+1 wj 6 b, then, since b 6 wr�S 6 U , all tasks are scheduled

on the processor the least loaded after the scheduling of Tr (and thus
they are all scheduled on the same processor) and the makespan does

© 2014 by Taylor & Francis Group, LLC

346 Chapter 15. Online scheduling

not increase when scheduling tasks Tr+1 through Tl, hence, ensuring the
upper bound after the scheduling of task Ti.

To complete the proof, we show that the case
∑l
j=r+1 wj > b can

never happen. Let the index t be defined by:
∑t−1
j=r+1 wj 6 b and∑t

j=r+1 wj > b. As previously, tasks Tr+1 through Tt are all scheduled
on the same processor, the least loaded one after the scheduling of Tr.
Let

∑t
j=r+1 wj = b + ∆. Instead of scheduling tasks Tr+1 through Tt,

let us suppose that a task of size b and then a task of size ∆ are sched-
uled. Both tasks are deterministically scheduled on the processor the
least loaded after the scheduling of Tr. The expected imbalance after
the scheduling of these two tasks is obviously equal to the expected
imbalance after the scheduling of tasks Tr+1 through Tt.

By definition of t, ∆ > 0. Furthermore, by definition, task Tt is not
large. Therefore,

wt <
t−1∑
j=1

wj = S + wr +
t−1∑

j=r+1

wj 6 S + wr + b.

After the (fictitious) task of size b is scheduled on the least loaded
processor, the imbalance is, according to equation (15.9),

U � b =

(
4

3
b+

S + wr
3

)
� b =

S + wr + b

3
.

Therefore, the invariant is tight after the scheduling of the (fictitious)
task of size b. Since ∆ < S + wr + b, the (fictitious) task of size ∆ is
not a large task. According to point 2, the invariant is tight after the
scheduling of the task of size ∆. From what precedes, the invariant,
therefore, is tight after the scheduling of task Tt. This contradicts the
hypothesis on task Tt (recall that r + 1 6 t 6 l, and by definition the
invariant is not tight after the scheduling of one of the tasks Tt+1 to Tl).

Therefore, the case
∑l
j=r+1 wj > b cannot occur, which concludes the

proof.

Algorithm 15.1 can be adapted to have a polynomial-time complexity while
retaining is competitive ratio of 4

3 . To do so, the number of possible schedules,
and thus of memorized schedules, is limited to at most i after the scheduling
of i tasks. This is done as follows. We suppose there are m possible schedules
after the scheduling of tasks T1 to Ti. If the test at Step 10 is negative, that
is, if the invariant is not tight after the scheduling of task Ti+1, then task Ti+1

is deterministically scheduled on the least loaded processor, and there are m
possible schedules after the scheduling of task Ti+1.

© 2014 by Taylor & Francis Group, LLC

15.4. Conclusion 347

We now suppose that the test at Step 10 is positive (the invariant is tight).
We number the m possible schedules in an arbitrary order. We assign Ti+1 to
the least loaded processor for each of these schedules. Because the invariant
is tight, we know that the imbalance is then not greater than one third of
the sum of task sizes. We then consider one by one the m schedules, and, for
each schedule, we move task Ti+1 from the least loaded to the most loaded
processor. We do that as long as, after the move, the expected imbalance
remains not greater than one third of the sum of all task sizes. Let k be the
last schedule for which we moved Ti+1. We know that k < m because if Ti+1 is
scheduled on the most loaded processor for each schedule, then the imbalance
is strictly greater than one third of the sum of task sizes. Then, for schedules
1 through k, Ti+1 is deterministically allocated to the most loaded processor;
for schedules k+ 2 through m, Ti+1 is deterministically allocated to the least
loaded processor; and for schedule k + 1, Ti+1 is allocated to the least loaded
processor with the probability p that enables the invariant to be tight. Hence,
the number of schedules has been increased by only one.

15.4 Conclusion

The aim of this chapter was to introduce the notion and analysis of online algo-
rithms. Competitive analysis was first introduced by Sleator and Tarjan [98].
The interested readers will find several additional randomized algorithms for
makespan minimization in Seiden’s article [96], along with references of de-
terministic algorithms achieving competitive ratios that are lower than those
of list scheduling algorithms. More generally, we refer readers to the surveys
on online scheduling by Albers [2] and by Pruhs, Sgall, and Torng [89].

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

References

[1] R. Agarwal, F. Gustavson, and M. Zubair. A high performance matrix
multiplication algorithm on a distributed-memory parallel computer,
using overlapped communication. IBM Journal of Research and Devel-
opment, 38(6):673–681, 1994.

[2] S. Albers. Online algorithms: a survey. Mathematical Programming,
97:3–26, 2003.

[3] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On
economical construction of the transitive closure of a directed graph.
Soviet Mathematics – Doklady, 11:1209–1210, May 1970.

[4] S. Arora and B. Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation. Springer,
1999.

[6] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Proceedings of the 17th IEEE International Paral-
lel & Distributed Processing Symposium (IPDPS), pages 113–121. IEEE
Computer Society Press, 2003.

[7] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an
ancient scheduling problem. Journal of Computer and System Sciences,
51(3):359–366, 1995.

[8] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix multipli-
cation on heterogeneous platforms. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1033–1051, 2001.

[9] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Partitioning a
square into rectangles: NP-completeness and approximation algorithms.
Algorithmica, 34:217–239, 2002.

[10] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-state
scheduling on heterogeneous clusters. International Journal of Founda-
tions of Computer Science, 16(2):163–194, 2005.

[11] A. Benoit, V. Rehn-Sonigo, and Y. Robert. Replica placement and
access policies in tree networks. IEEE Transactions on Parallel and
Distributed Systems, 19(12):1614–1627, 2008.

349

© 2014 by Taylor & Francis Group, LLC

350 References

[12] A. Benoit, P. Renaud-Goud, and Y. Robert. Power-aware replica place-
ment and update strategies in tree networks. In Proceedings of the
25th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE Computer Society Press, 2011.

[13] A. Benoit and Y. Robert. Mapping pipeline skeletons onto hetero-
geneous platforms. Journal of Parallel and Distributed Computing,
68(6):790–808, 2008.

[14] J. L. Bentley. Programming Pearls. Addison-Wesley, 1986.

[15] P. Berlioux, M.-P. Cani, A. Lux, R. Mohr, D. Naddef, and J.-L. Roch.
Algorithmique et Recherche Opérationnelle. Cours 2e année ENSIMAG,
1998/99.

[16] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithm
for job shop scheduling and packet routing. Journal of Algorithms,
33(2):296–318, 1999.

[17] M. Best, P. van Emde Boas, and H. Lenstra. A sharpened version
of the Aanderaa-Rosenberg conjecture. Research Report ZW 30/74,
Mathematisch Centrum, Amsterdam, NL, 1974.

[18] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan-
ley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM,
1997.

[19] S. H. Bokhari. Partitioning problems in parallel, pipeline, and dis-
tributed computing. IEEE Transactions on Computers, 37(1):48–57,
1988.

[20] D. Brélaz. New methods to color the vertices of a graph. Communica-
tions of the ACM, 22:251–256, April 1979.

[21] P. Brucker. Scheduling Algorithms. Springer, 2007.

[22] A. P. Chandrakasan and A. Sinha. JouleTrack – A Web Based Tool
for Software Energy Profiling. In Proceedings of the Design Automation
Conference (DAC), pages 220–225. IEEE Computer Society Press, 2001.

[23] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling
for real-time tasks. In Proceedings of the International Conference on
Parallel Processing (ICPP), pages 13–20. IEEE Computer Society Press,
2005.

[24] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic
content. Computer Networks, 40:205–218, 2002.

[25] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the 3rd ACM Symposium on Theory of Computing (STOC),
pages 151–158. ACM Press, 1971.

© 2014 by Taylor & Francis Group, LLC

References 351

[26] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing (STOC), pages 1–6, 1987.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 2009.

[28] P. Crescenzi and V. Kann. A compendium of NP optimization prob-
lems. World Wide Web document, URL: http://www.nada.kth.se/
˜viggo/wwwcompendium/.

[29] P. D’Alberto and A. Nicolau. Adaptive Strassen’s matrix multiplication.
In Proceedings of the 21st International Conference on Supercomputing,
ICS’07, pages 284–292. ACM, 2007.

[30] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-
Hill, 2008.

[31] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[32] P. J. Downey, B. L. Leong, and R. Sethi. Computing sequences with
addition chains. SIAM Journal on Computing, 10(3):638–646, 1981.

[33] T. Erlebach. Approximation algorithms for edge-disjoint paths and un-
splittable flow. In Efficient Approximation and Online Algorithms, vol-
ume 3484 of Lecture Notes in Computer Science. Springer, 2006.

[34] U. Faigle, W. Kern, and G. Turán. On the performance of on-line algo-
rithms for partition problems. Acta Cybernetica, 9(2):107–119, 1989.

[35] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeo-
morphism problem. Theoretical Computer Science, 10(2):111–121, 1980.

[36] G. Fox, S. Otto, and A. Hey. Matrix algorithms on a hypercube I:
matrix multiplication. Parallel Computing, 3:17–31, 1987.

[37] D. Froidevaux, M. Gaudel, and D. Soria. Types de données et algo-
rithmes. McGraw-Hill, 1990.

[38] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[39] GLPK: GNU Linear Programming Kit. http://www.gnu.org/software/
glpk.

[40] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins,
1989.

[41] T. F. Gonzalez and S. Zheng. Improved bounds for rectangular and guil-
lotine partitions. Journal of Symbolic Computation, 7:591–610, 1989.

[42] T. F. Gonzalez and S. Zheng. Approximation algorithm for partitioning
a rectangle with interior points. Algorithmica, 5:11–42, 1990.

© 2014 by Taylor & Francis Group, LLC

352 References

[43] M. T. Goodrich and R. Tamassia. Algorithm Design. John Wiley &
Sons, Inc., 2002.

[44] R. Graham, E. Lawler, J. Lenstra, and A. R. Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey.
Annals of Discrete Mathematics, 5:287–326, 1979.

[45] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell
System Technical Journal, XLV(9):1563–1581, 1966.

[46] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yan-
nakakis. Near-optimal hardness results and approximation algorithms
for edge-disjoint paths and related problems. Journal of Computer and
System Sciences, 67:473–496, 2003.

[47] P. Hansen and K.-W. Lih. Improved algorithms for partitioning prob-
lems in parallel, pipeline, and distributed computing. IEEE Transac-
tions on Computers, 41(6):769–771, 1992.

[48] N. J. Higham. Exploiting Fast Matrix Multiplication Within the Level
3 BLAS. ACM Transactions on Mathematical Software, 16(4):352–368,
1990.

[49] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algo-
rithms for scheduling problems: theoretical and practical results. Jour-
nal of the ACM, 34:144–162, 1987.

[50] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation
scheme for scheduling on uniform processors: using the dual approx-
imation approach. SIAM Journal on Computing, 17(3):539–551, 1988.

[51] J. Hromkovic. Algorithmics for Hard Problems: Introduction to Combi-
natorial Optimization, Randomization, Approximation, and Heuristics.
Springer, 2004.

[52] M. A. Iqbal. Approximate algorithms for partitioning problems. Inter-
national Journal of Parallel Programming, 20(5):341–361, 1991.

[53] M. A. Iqbal and S. H. Bokhari. Efficient algorithms for a class of par-
titioning problems. IEEE Transactions on Parallel and Distrbuted Sys-
tems, 6(2):170–175, 1995.

[54] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically
variable voltage processors. In Proceedings of the International Sympo-
sium on Low Power Electronics and Design (ISLPED), pages 197–202.
ACM Press, 1998.

[55] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of repli-
cas in trees with read, write, and storage costs. IEEE Transactions on
Parallel and Distributed Systems, 12(6):628–637, 2001.

© 2014 by Taylor & Francis Group, LLC

References 353

[56] K. Kalpakis, K. Dasgupta, and O. Wolfson. Steiner-Optimal Data
Replication in Tree Networks with Storage Costs. In Proceedings of
the 2001 International Symposium on Database Engineering & Appli-
cations (IDEAS), pages 285–293. IEEE Computer Society Press, 2001.

[57] M. Karlsson and C. Karamanolis. Choosing Replica Placement Heuris-
tics for Wide-Area Systems. In Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS), pages 350–
359. IEEE Computer Society, 2004.

[58] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum, 1972.

[59] R. W. Kenyon. Tiling a rectangle with the fewest squares. Journal of
Combinatorial Theory A, 76:272–291, 1996.

[60] S. U. Khan and I. Ahmad. RAMM: a game theoretical replica allocation
and management mechanism. In Proceedings of the International Sym-
posium on Parallel Architectures, Algorithms and Networks ISPAN’05.
IEEE Computer Society Press, 2005.

[61] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximat-
ing rectangle tiling and packing. In Proceedings of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 384–
393. ACM Press, 1998.

[62] D. E. Knuth. The Art of Computer Programming; volumes 1-3.
Addison-Wesley, 1997.

[63] T. Y. Kong, D. M. Mount, and W. Roscoe. The decomposition of
a rectangle into rectangles of minimal perimeter. SIAM Journal on
Computing, 17(6):1215–1231, 1988.

[64] T. Y. Kong, D. M. Mount, and M. Wermann. The decomposition of a
square into rectangles of minimal perimeter. Discrete Applied Mathe-
matics, 16:239–243, 1987.

[65] D. C. Kozen. The Design and Analysis of Algorithms. Springer, 1992.

[66] L. Kronsjö. Computational complexity of sequential and parallel algo-
rithms. John Wiley & Sons, Inc., 1986.

[67] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem. Proceedings of the American Mathematical
Society, 7(1):48–50, 1956.

[68] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Par-
allel Computing. The Benjamin/Cummings Publishing Company, Inc.,
1994.

© 2014 by Taylor & Francis Group, LLC

354 References

[69] J. D. Laderman. A noncommutative algorithm for multiplying 3x3 ma-
trices using 23 multiplications. Bulletin of the American Mathematical
Society, 82(1), 1976.

[70] E. Lawler. Combinatorial Optimization — Networks and Matroids.
Dover Publications, 1976.

[71] A. Legrand, A. Su, and F. Vivien. Minimizing the stretch when schedul-
ing flows of divisible requests. Journal of Scheduling, 11(5):381–404,
2008.

[72] Y.-F. Lin, P. Liu, and J.-J. Wu. Optimal placement of replicas in data
grid environments with locality assurance. In Proceedings of the In-
ternational Conference on Parallel and Distributed Systems (ICPADS).
IEEE Computer Society Press, 2006.

[73] A. Lingas, R. Y. Pinter, R. L. Rivest, and A. Shamir. Minimum edge
length partitioning of rectilinear polygons. In Proceedings 20th An-
nual Allerton Conference on Communication, Control, and Computing,
pages 53–63, 1982.

[74] T. Loukopoulos, I. Ahmad, and D. Papadias. An overview of data repli-
cation on the Internet. In Proceedings of the International Symposium
on Parallel Architectures, Algorithms and Networks ISPAN’02. IEEE
Computer Society Press, 2002.

[75] U. Manber. Introduction to Algorithms: A Creative Approach. Addison-
Wesley, 1989.

[76] Maple. http://www.maplesoft.com/products/maple/.

[77] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proceedings
of the 13th Annual Symposium on Switching and Automata Theory,
SWAT’72, pages 125–129. IEEE Computer Society, 1972.

[78] M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press,
2005.

[79] B. Monien and E. Speckenmeyer. Ramsey numbers and an approx-
imation algorithm for the vertex cover problem. Acta Informatica,
22(1):115–123, 1985.

[80] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[81] B. Olstad and F. Manne. Efficient partitioning of sequences. IEEE
Transactions on Computers, 44(11):1322–1326, 1995.

[82] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

© 2014 by Taylor & Francis Group, LLC

References 355

[83] J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. On the maximum
quasi-clique problem. Discrete Applied Mathematics, 161(1–2):244–257,
2013.

[84] D. Pearson. A polynomial-time algorithm for the change-making prob-
lem. Operations Research Letters, 33(3):231–234, May 2005.

[85] B. Peis, M. Skutella, and A. Wiese. Packet routing: complexity and
algorithms. In 7th International Workshop on Approximation and On-
line Algorithms (WAOA 2009), LNCS 5893. Springer, 2009. Extended
version: Technical Report 003-2009, Technical University Berlin.

[86] A. Pinar and C. Aykanat. Fast optimal load balancing algorithms for 1D
partitioning. Journal of Parallel and Distributed Computing, 64(8):974–
996, 2004.

[87] A. Pinar, E. K. Tabak, and C. Aykanat. One-dimensional partitioning
for heterogeneous systems: Theory and practice. Journal of Parallel
and Distributed Computing, 68:1473–1486, 2008.

[88] J.-F. Pineau, Y. Robert, and F. Vivien. The impact of heterogeneity
on master-slave scheduling. Parallel Computing, 34(3):158–176, 2008.

[89] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In J. Y.-T. Leung,
editor, Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, 2004.

[90] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scaling of tasks with
precedence constraints. Theory of Computing Systems, 43:67–80, 2008.

[91] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the Placement of
Web Server Replicas. In Proceedings of INFOCOM, pages 1587–1596.
IEEE Computer Society Press, 2001.

[92] G. J. E. Rawlins. Compared to what?: an introduction to the analysis
of algorithms. Computer Science Press, Inc., 1992.

[93] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, Inc., 1986.

[94] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency,
volume 24 of Algorithms and Combinatorics. Springer, 2003.

[95] P. Schuurman and G. J. Woeginger. Approximation schemes — a tuto-
rial, 2001. www.win.tue.nl/˜gwoegi/papers/ptas.pdf.

[96] S. Seiden. Randomized algorithms for that ancient scheduling problem.
In F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamassia, editors,
Algorithms and Data Structures, volume 1272 of Lecture Notes in Com-
puter Science, pages 210–223. Springer, 1997.

© 2014 by Taylor & Francis Group, LLC

356 References

[97] J. Shallit. What this country needs is an 18-cent piece. Mathematical
Intelligencer, 25(2):20–23, 2003.

[98] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

[99] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees.
Journal of the ACM, 32(3):652–686, 1985.

[100] A. Srinivasan and C.-P. Teo. A constant-factor approximation algorithm
for packet routing and balancing local vs. global criteria. SIAM Journal
on Computing, 30(6):2051–2068, 2000.

[101] V. Strassen. Gaussian Elimination is not Optimal. Numerische Mathe-
matik, 13(4):354–356, 1969.

[102] X. Tang and J. Xu. QoS-Aware Replica Placement for Content Dis-
tribution. IEEE Transactions on Parallel and Distributed Systems,
16(10):921–932, 2005.

[103] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[104] C.-M. Wang, C.-C. Hsu, P. Liu, H.-M. Chen, and J.-J. Wu. Optimizing
Server Placement in Hierarchical Grid Environments. In Proceedings
of the 1st International Conference on Grid and Pervasive Computing
GPC’07, volume 1900 of Lecture Notes in Computer Science, pages 1–
11, 2007.

[105] H. Wang, P. Liu, and J.-J. Wu. A QoS-aware Heuristic Algorithm for
Replica Placement. In Proceedings of the 7th International Conference
on Grid Computing (GRID2006), pages 96–103. IEEE Computer Soci-
ety Press, 2006.

[106] D. B. West. Introduction to Graph Theory. Prentice-Hall, 1996.

[107] H. Whitney. On the abstract properties of linear dependence. American
Journal of Mathematics, 57(3):509–533, 1935.

[108] H. S. Wilf. Algorithms and Complexity. A. K. Peter, 1985. Available
at http://www.cis.upenn.edu/˜wilf/.

[109] O. Wolfson and A. Milo. The multicast policy and its relationship to
replicated data placement. ACM Transactions on Database Systems,
16(1):181–205, 1991.

[110] J.-J. Wu, Y.-F. Lin, and P. Liu. Optimal replica placement in hier-
archical data grids with locality assurance. Journal of Parallel and
Distributed Computing, 68(12):1517–1538, 2008.

[111] W. Yu, H. Hoogeveen, and J. K. Lenstra. Minimizing makespan in a
two-machine flow shop with delays and unit-time operations is NP-hard.
Journal of Scheduling, 7(5):333–348, 2004.

© 2014 by Taylor & Francis Group, LLC

References 357

[112] M. Yue. A simple proof of the inequality FFD(L) 6 11
9 OPT (L) + 1,

8L, for the FFD bin-packing algorithm. Acta Mathematicae Applicatae
Sinica (English Series), 7:321–331, 1991.

© 2014 by Taylor & Francis Group, LLC

© 2014 by Taylor & Francis Group, LLC

“This book is a great technical arsenal for every graduate student and post-
graduate researcher. By providing a treasure trove of concrete algorithmic
examples, the book trains the reader to recognize clues that indicate the
complexity of a broad range of algorithmic problems, while supplying
a battery of techniques for solving a particular problem in hand. …”
—Umit Catalyurek, Professor, Ohio State University

“This book is unique among texts on algorithmics in its emphasis on how
to ‘think algorithmically’ rather than just how to solve specific (classes of)
algorithmic problems. The authors skillfully engage the reader in a journey
of algorithmic self-discovery as they cover a broad spectrum of issues …
I shall be very happy to have this text on my bookshelf as a reference on
methods as well as results.”
—Arnold L. Rosenberg, Research Professor, Northeastern University, and
Distinguished University Professor Emeritus, University of Massachusetts
Amherst

“This book presents a well-balanced approach to theory and algorithms
and introduces difficult concepts using rich motivating examples. It
demonstrates the applicability of fundamental principles and analysis
techniques to practical problems facing computer scientists and engineers.
You do not have to be a theoretician to enjoy and learn from this book.”
—Rami Melhem, Professor of Computer Science, University of Pittsburgh

Presenting a complementary perspective to standard books on algorithms,
A Guide to Algorithm Design: Paradigms, Methods, and Complexity
Analysis provides a roadmap for readers to determine the difficulty of an
algorithmic problem by finding an optimal solution or proving complexity
results. It gives a practical treatment of algorithmic complexity and guides
readers in solving algorithmic problems. The book offers a comprehensive
set of problems with solutions as well as in-depth case studies that
demonstrate how to assess the complexity of a new problem.

K11226

Computer Science/Computer Engineering/Computing

Anne Benoit, Yves Robert,
and Frédéric Vivien

B
enoit, R

obert,
and V

ivien

Chapman & Hall/CRC
Applied Algorithms and Data Structures Series

A G U I D E T O

ALGORITHM
DESIGN

A
 G

U
I

D
E

 T
O

A
L

G
O

R
IT

H
M

 D
E

SIG
N

Paradigms, Methods, and Complexity Analysis

K11226_Cover.indd 1 5/31/13 9:17 AM

	Front Cover
	Contents
	Preface
	Part I: Polynomial-time algorithms: Exercises
	Chapter 1: Introduction to complexity
	Chapter 2: Divide-and-conquer
	Chapter 3: Greedy algorithms
	Chapter 4: Dynamic programming
	Chapter 5: Amortized analysis
	Part II: NP-completeness and beyond
	Chapter 6: NP-completeness
	Chapter 7: Exercises on NP-completeness
	Chapter 8: Beyond NP-completeness
	Chapter 9: Exercises going beyond NP-completeness
	Part III: Reasoning on problem complexity
	Chapter 10: Reasoning to assess a problem complexity
	Chapter 11: Chains-on-chains partitioning
	Chapter 12: Replica placement in tree networks
	Chapter13: Packet routing
	Chapter 14: Matrix product, or tiling the unit square
	Chapter 15: Online scheduling
	References
	Back Cover

