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Preface

It might be safe to claim that 20 years ago, neither the term ‘computational paralinguistics’
nor the field it denotes existed. Some 10 years ago, the term did not yet exist either. However,
in hindsight, the field had begun to exist if we think of the first steps towards the automatic
processing of emotions in speech in the mid-1990s. For example, Picard’s book on Affective
Computing published in 1997, and the International Speech Communication Association
(ISCA) workshop on emotion and speech in 2000, just to mention some of the many topics
and events related to and belonging to computational paralinguistics. The term ‘paralinguistics’
had already been coined in the 1950s – with different broad or narrow denotations; we will try
and sketch this history in Part I of this book. Yet, in the realm of ‘hard core’ automatic (i.e.,
computational) processing of speech, the topic was still not fully acknowledged; as one of our
colleagues said: ‘Emotion recognition, that’s esoterics with HMMs.’

Today, it might be safe to claim that computational paralinguistics has been established as
a discipline in its own right – although surprisingly, not the term itself. It is only natural that,
as a new and still somewhat exotic field, it has to cope with prejudices on the one hand, and
unrealistic promises on the other hand.

This book represents the first attempt towards a unified overview of the field, its extremely
ramified and diverse ‘genealogy’, its methodology, and the state of the art. ‘Computational
paralinguistics’ is not an established subject that can be studied, and this fact is mirrored
in the ‘scientific CVs’ of both authors. B.S. studied electrical engineering and information
technology. However, his doctoral thesis dealt with one aspect of computational paralinguistics:
the automatic recognition of human emotion in speech. During his habilitation period he
broadened the scope of his work to ‘intelligent audio analysis’ – dealing with quite a number
of further paralinguistic aspects, including those found in sung language and many other
audio processing problems such as emotion in music and general sound. A.B. started within
philology, came from diachronic phonology to phonetics in general to prosody in particular, and
via prosody in the interface for and within syntax and semantics to the automatic processing of
acted and very soon naturalistic emotions – realising, moreover, that he had been dealing with
different topics for a long time that all can be located within (computational) paralinguistics.
At the time of finalisation of the manuscript, A.B. was a professor in computer science.

Originally, the intended focus of this book was on the computational processing of emotions
and affect in speech and language, taking into account personality as well. In the early
conceptual stages, however, we realised that this would be sub-optimal and thus decided to
deal with everything ‘besides’ linguistics – namely, the computational processing of ‘para’-
linguistics in a broad sense. However, we confine ourselves to the acoustic/phonetic/linguistic
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aspects, that is, we only deal with one modality, namely speech/language including non-verbal
components, and disregard other modalities such as facial gestures or body posture. Moreover,
we do not aim at a complete description of human–human or human–machine communication
which would include the generation and production (synthesis) of speech, the interaction with
other components within a multimodal system, the role within application systems, or real-life
applications and their evaluation. Apart from the fact that most of these aspects would not
be part of our core competence, we feel that it makes sense to try to establish computational
paralinguistics as one building block amongst several others. Besides, there are already good
overview and introductory books available on these other topics. And last but not least, it
would be rather too complex for one book.

We wish to provide the reader with a sort of map presenting an overview of the field, and
useful for finding one’s own way through. The scale of this map is medium-size, and we can
only display a few of the houses in this virtual paralinguistic ‘city’ with their interiors, on an
exemplary basis. In so doing, we hope to provide guidelines for the novice and to present at
least a few new insights and perspectives to the expert. Many studies are referred to and core
results are summarised. For all of them, the caveat holds that basically all such studies are
restricted – confined to a specific choice of subjects, research questions, operationalisations,
and features employed, just to mention a few of the decisive factors. There are errors such as
the famous erroneous decimal point that made spinach more healthy than anything else – note
that reports of this error might be erroneous themselves. And of course, there is much more
that can go wrong – and hopefully, we will find out: scrutiny of results and replications of
studies will eventually converge to more stable claims.

We decided not to describe basic phonetic/linguistic knowledge such as vowel or consonant
charts, details on pitch versus F0, loudness, morphological and grammatical systems, basics
on production and perception of speech, and the like. Such information can easily be obtained
in introductory and overview books from the respective fields, as well as from online sources.
In a similar way, selections had to be made for the computation aspects. For example, many
approaches to linguistic modelling exist, and the fields of machine learning and signal pro-
cessing each deserve at least one book in its own right. Thus, we limited our choices to the
methods most established and common in the field – serving as a solid basis and inspiration
for the interested reader to look further. A connected resource of information is the book’s
homepage found at http://www.cp.openaudio.eu which includes features such as links to the
openSMILE toolkit and (part of) the data described.

Björn W. Schuller and Anton M. Batliner
Munich, February 2013

http://www.cp.openaudio.eu
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1
Introduction

1.1 What is Computational Paralinguistics? A First Approximation

So difficult it is to show the various meanings and imperfections of words when we have
nothing else but words to do it with.

(John Locke)

The term computational paralinguistics is not yet a well-established term, in contrast to com-
putational linguistics or even computational phonetics; the reader might like to try comparing
the hits for each of these terms – or for any other combination of ‘computational’ with the
name of a scientific field such as psychology or sociology – in a web search. This terminolog-
ical gap is a little puzzling given the fact that there is a plethora of studies on, for example,
affective computing (Picard 1997) and speech – which can partly be conceived as a sub-field
of computational paralinguistics (as far as speech and language are concerned). But let us first
take a look at the coarse meanings of the two words this term consists of: ‘computational’ and
‘paralinguistics’.

Here, ‘computational’ means roughly that something is done by a computer and not by a
human being; this can mean analysing the phenomenon in question, or generating humanlike
behaviour. Note that nowadays computers are used for practically all systematic and scientific
work, even if it is only for listing data, detailed information on subjects, or annotations in
an ASCII (American Standard Code for Information Exchange) file. In traditional phonetic
or psychological approaches, this can go along with the use of highly sophisticated signal
extraction and statistical programs. A borderline between the ‘simple’ use of computers for
tedious work and the use of computers for actually modelling and performing human behaviour
is of course difficult to define. Here, we simply mean both: doing the work with the help of
computers, and letting computers do the work of analysing and processing.

‘Paralinguistics’ means ‘alongside linguistics’ (from the Greek preposition παρα); thus
the phenomena in question are not typical linguistic phenomena such as the structure of a
language, its phonetics, its grammar (syntax, morphology), or its semantics. It is concerned
with how you say something rather than what you say.

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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the sciences of the universe and
of the world and of everything

the sciences of mankind the sciences of everything else

communication anthropologysociologypsychology …

unimodality multimodality

speech & languagevocal factors vision: face, gesture, posture extracommununicative context

PARALINGUISTICS PhoneticsLinguistics

analysis synthesis

statestraits

gender, age, personality  …  intoxication, sleepiness, friendliness, mood  …  emotion

long-term short-term

observation, recording, annotation → automatic processing → classification, correlation

harnessing in end-to-end systems and applications

Figure 1.1 The realm of computational paralinguistics

In Figure 1.1 we try to narrow down the realm of paralinguistics in a reasonable way, as we
conceive it and as we will deal with it in this book. Of course, there are other conceptualisations
of paralinguistics, some broader, some narrower in scope. Figure 1.1 is a sort of flowchart that
we will follow from top to bottom. A grey font indicates fields and topics that are not part of
paralinguistics, for instance, the global science of mankind or of everything else that can be
found in this world. Dashed lines lead to fields that are more or less disregarded in this book.
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The first word shown in black is ‘communication’, denoting that interactions between human
beings are focal. Paralinguistics deals with speech and language which both are primarily
means of communication; even a soliloquy has to be overheard and eventually recorded and
processed by the computer in order to be an object of investigation. The same holds for a private
diary in its written form: it might not be intended as communication with others, but as soon as
it is read by someone else, it is. Of course, human communication is an important part of related
fields such as psychology, sociology, or anthropology. Thus, we have to follow the flowchart
further down to point out what distinguishes paralinguistics from all these related fields.

In traditional linguistics, the term ‘language’ refers to the (innate and/or acquired) mental
competence, and the term ‘speech’ to the performance, that is, to the ability to convert this
competence into motor signals, acoustic waves, and percepts. In this book we adhere to a
shallower definition of these two terms, based on their use in speech and language technology.
Language is more or less synonymous with ‘natural language’ which is modelled and processed
within computational linguistics; speech is the object of investigation within automatic speech
processing, that is, ‘spoken language’, as opposed to written language.

We want to restrict paralinguistics to the unimodal processing of events primarily produced
with the voice, or secondarily encoded in written language. ‘Communication’ is used in a
broad sense: speech and language are primarily means of interaction between human beings;
however, they can be decoupled from this function and analysed on their own, that is, when
not used in a communicative setting. Note that this sort of secondary communication is natural
for written language, because here the communication of sender and addressee is normally
decoupled as for time and place.

We do not want to distinguish between extralinguistics and paralinguistics; Laver (1994,
pp. 22f) attributes extralinguistics to informative functions denoting age, sex, and suchlike,
and paralinguistics to communicative functions. Implicitly, extralinguistic functions are always
communicated, as a sort of background; we will subsume these functions under biological
trait primitives; see Section 5.1. Moreover, it would be simply too cumbersome to introduce
‘computational extralinguistics’ as an additional field.

There are alternative conceptualisations, the most important one arguably paralinguistics in
the sense of ‘multimodality’; this holds practically for every aspect, whether it be emotion, or
personality, or social signals (see Chapter 5). Undoubtedly, the most natural human–human
interaction is face-to-face, with each partner employing all the means available to them: voice,
linguistic message, face, gestures, and body. However, there are some common and natural
(interaction) scenarios where only the acoustic channel is used, for instance, in telephone
conversations or in radio plays. Moreover, it is simply natural that interaction/conversation
partners sometimes speak, and sometimes only listen. In the latter case, there is no speech
available that can be investigated; in the first case, when people are talking, analysing faces is
more difficult because the movements of speech are superposed onto the facial gestures.

In this book, apart from vocal factors, speech, and language, everything else such as facial
expressions, gestures, body posture, and any extracommunicative context is not part of pa-
ralinguistics. Needless to say, all these other aspects are very important within human–human
and human–machine communication; we will return to such multimodal aspects throughout
this book.

Moreover, paralinguistics is sort of defined ex negativo; it comprises everything which is not
the object of investigation in phonetics or linguistics: It does not address the systematic aspects
of speech and language which are dealt with in sub-fields such as phonology, morphology,
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syntax, or semantics. Note, however, that the use of specific phonological or grammatical struc-
tures within a specific context may very well be object of investigation within paralinguistics.
All this will be illustrated more extensively below.

In this book we will focus on analysis, basically excluding generation and synthesis. At first
sight, this might appear exotic: after all, analysis and generation/synthesis can be considered as
two sides of the same coin. Both are necessary for a complete account. However, methodologies
differ considerably; in Batliner and Möbius (2005) the methodological differences between
analysis on the one hand and generation/synthesis on the other hand have been detailed for the
modelling and processing of prosody. From a methodological point of view, the analysis of
gestures has perhaps more in common with the analysis of speech than its synthesis. Moreover,
analysis and not synthesis is the core competence of the authors. We therefore decided to treat
synthesis the same way as vision and extracommunicative context, as a fringe phenomenon in
this book.

So far, we have addressed broad fields of science, either including or excluding them from
our definition of paralinguistics. We will now briefly sketch the phenomena we are dealing
with, as well as the processing chain. All this will be dealt with in more depth in the chapters to
follow. In simple terms, paralinguistics deals with traits and states; traits are long-term events,
whereas states are short-term. Examples are given in Figure 1.1. Typical traits are gender,
age, and personality, and typical states are emotions. Then, there are phenomena which are
somehow in between: People can be friendly towards everybody, or, towards a specific person,
only for a very short time. You can get tipsy, that is, intoxicated, for a short time, or you can
be a regular heavy drinker. The title of this book mentions three exemplary phenomena:

personality denoting long-term character traits which are specific to individuals
or groups. In a broader sense, this encompasses everything that characterises a
specific individual, including traits such as age, gender, race, and suchlike. In a
narrower sense, this encompasses psychological traits such as neuroticism.

emotion denoting short-term states: prototypical ones such as anger, fear, joy, or
less prototypical ones such as surprise.

affect as a broader term, encompassing all kinds of manifestations of personality
such as mood, interpersonal stances, or attitudes as displayed in Table 2.1 – a very
common term since Picard (1997).

The last terms to be commented upon in the title are speech and language processing: In
basic research, the two fields of phonetics and linguistics deal with different data: phonetics
with (the production/acoustics/perception of) speech, and linguistics with (written) language.
Accordingly, there are two different lines of research traditions in paralinguistics: one deal-
ing mostly with the acoustic signal (called, for instance, ‘emotion/affect processing’), and
one dealing exclusively with written language (called, for instance, ‘sentiment analysis’). In
automatic speech processing, the approach is different: acoustic and linguistic information
are combined in a hybrid fashion. Following this tradition, we will address both acoustic and
linguistic phenomena in this book.

With observations, recordings, and annotations, we decide which phenomena we are dealing
with, and how long the single event takes. In computational paralinguistics, we then try to
process these phenomena automatically. Ultimately, this means producing some performance
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measures which tell us how good we are at doing that. All this is the core topic of this
book. Eventually, we of course want to evaluate our models not as single components but
within end-to-end-systems and to harness them in applications; this will be touched upon and
exemplified passim.

1.2 History and Subject Area

Language is not an abstract construction of the learned, or of dictionary makers, but is
something arising out of the work, needs, ties, joys, affections, tastes, of long generations
of humanity, and has its bases broad and low, close to the ground.

(Noah Webster)

So far, we have outlined the realm of computational paralinguistics. In this section, we want
to sketch the history of paralinguistics and to narrow down its subject area.

Ever since the advent of structuralism (Saussure 1916), the study of (speech and) language
has been more or less confined to the skeleton of language: phonetics/phonology, morphology,
syntax, and grammar in general; there were only rather anecdotal remarks on functions of lan-
guage which go beyond pure linguistics, for example, the following from Bloomfield (1933):

. . . pitch is the acoustic feature where gesture-like variations, non-distinctive but socially
effective, border most closely upon genuine linguistic distinctions. The investigation of
socially effective but non-distinctive patterns in speech, an investigation scarcely begun,
concerns itself, accordingly, to a large extent with pitch.

Pike (1945) was amongst the few who noticed these additional functions of intonation:

Other intonation characteristics may be affected or caused by the individual’s physi-
ological state – anger, happiness, excitement, age, sex, and so on. These help one to
identify people and to ascertain how they are feeling . . .

The basic neglect of paralinguistics holds for both European and American linguistics at that
time – both displaying different varieties of structuralism. Thus, the central focus of linguistics
in the last century was on structural, on genuine linguistic and, as far as speech is concerned,
on formal aspects within phonetics and phonology. Language was conceived of as part of
semiotics which deals with denotation, that is, with the core meaning of items.

This conviction was clearly expressed by Sapir (1921):

If speech, in its acoustic and articulatory aspect, is indeed a rigid system, how comes it,
one may plausibly object, that no two people speak alike? The answer is simple. All that
part of speech which falls out of the rigid articulatory framework is not speech in idea,
but is merely a superadded, more or less instinctively determined vocal complication
inseparable from speech in practice. All the individual color of speech – personal
emphasis, speed, personal cadence, personal pitch – is a non-linguistic fact, just as the
incidental expression of desire and emotion are, for the most part, alien to linguistic
expression. Speech, like all elements of culture, demands conceptual selection, inhibition
of the randomness of instinctive behavior.
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On the other hand, in Sapir (1927) we can find an – albeit informal – conceptualisation of
‘speech as a personality trait’, giving a rough but fair enumeration of parameters which are
relevant for characterising personality – and, by the way, emotion as well:

To summarize, we have the following materials to deal with in our attempt to get at the
personality of an individual, in so far as it can be gathered from his speech. We have
his voice. We have the dynamics of his voice, exemplified by such factors as intonation,
rhythm, continuity, and speed. We have pronunciation, vocabulary, and style. Let us look
at these materials as constituting so and so many levels on which expressive patterns
are built.

Such remarks were, however, normally anecdotal and somehow spurious. Generally, non-
linguistic aspects were conceived as fringe phenomena, often taken care of by neighbouring
disciplines such as anthropology, ethnology, or psychology. This attitude slowly changed in
the middle of the last century; linguists and phoneticians began to be interested in all these
phenomena mentioned by Bloomfield (1933) and Pike (1945), that is, in a broader conceptu-
alisation of semiotics, dealing with connotation (e.g., affective/emotive aspects) as well.

According to Trager (1958), Laver (1994), and Rauch (2008), the term ‘paralanguage’ was
first introduced by the American linguist Archibald Hill (1958).

Terms such as ‘extralinguistic’, ‘paralanguage’, and ‘paralinguistics’ were used by Trager
(1958), and later elaborated on by Crystal (1963, 1966, 1971, 1974, 1975a,b). To start with,
Crystal (1963) mentions the neglect of paralinguistics by linguistics:

The last decade has brought renewed study of this linguistic backwater, now called
paralanguage; but there has been surprisingly little attempt to approach the subject in
a sufficiently systematic and empirical way to satisfy the critical linguist.

This critical attitude seems to have persisted during the decades to come (cf. Rauch 1999):

. . . paralinguistics is to linguistics, unfortunately, a neglected stepchild at most . . .
(p. 165)

. . . the seeds for obscuring the domain of paralanguage were inherent in its twentieth-
century rebirth for linguists by linguists. (p. 166)

One of the few who not only dealt with paralinguistic phenomena but also tried to really
propagate this field was Fernando Poyatos (1991, 1993, 2002).

On the other hand, both within linguistics proper and especially with the advent of human–
computer interaction, we can say that paralinguistics and neighbouring disciplines have been
safely established. Yet, the subject areas are still defined differently. These are the definitions
given in two renowned dictionaries:

paralanguage (n.) A term used in SUPRASEGMENTAL PHONOLOGY to refer to
variations in TONE of voice which seem to be less systematic than PROSODIC features
(especially INTONATION and STRESS). Examples of paralinguistic features would
include the controlled use of BREATHY or CREAKY voice, spasmodic features (such
as giggling while speaking), and the use of secondary ARTICULATION (such as lip-
ROUNDING or NASALIZATION) to produce a tone of voice signalling attitude, social
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role, or some other language-specific meaning. Some analysts broaden the definition of
paralanguage to include KINESIC features; some exclude paralinguistic features from
LINGUISTIC analysis. (Crystal 2008)

paralanguage . . . 1. Narrowly, non-segmental vocal features in speech, such as tone of
voice, tempo, tut-tutting, sighing, grunts, and exclamations like Whew! 2. Broadly, all
of the above plus non-vocal signals such as gestures, postures and expressions – that
is, all non-linguistic behaviour which is sufficiently coded to contribute to the overall
communicative effect. . . . (Trask 1996)

Thus, since it first came into use in the middle of the last century, ‘paralinguistics’ has
been confined to the realm of human–human communication, but with a broad and a narrow
meaning. We follow Crystal (1974) who excludes visual communication and the like from the
subject area and restricts the scope of the term to ‘vocal factors involved in paralanguage’; cf.
Abercrombie (1968) for a definition along similar lines. ‘Vocal factor’, however, in itself is not
well-defined. Again, there can be a narrow meaning excluding linguistic/verbal factors, or a
broad meaning including them. We use the last one, defining paralinguistics as the discipline
dealing with those phenomena that are modulated onto or embedded into the verbal message,
be this in acoustics (vocal, non-verbal phenomena) or in linguistics (connotations of single
units or of bunches of units). This scope is mirrored and, at the same time, instantiated by
the possibility of late fusion in multimodal (‘non-verbal’) processing and by the (relative)
independence of computational paralinguistic approaches from other fields. Many tools and
procedures have been developed specifically for dealing with the speech signal or with (written)
language; many sites and researchers, specialising in speech and language, have extended their
focus onto computational paralinguistics.

To give examples for acoustic phenomena: everybody would agree that coughs are not lin-
guistic events, but they are somehow embedded in the linguistic message. The same holds for
laughter and filled pauses (such as uhm) which display some of the characteristics of language,
for example, as far as grammatical position or phonotactics is concerned. All these phenomena
are embedded in the word chain and are often modelled the same way as words in automatic
speech processing; they can denote (health) state, emotion/mood, speaker idiosyncrasies, and
the like. In contrast, high pitch as an indicator of anxiety and breathy voice indicating attrac-
tiveness, for example, are modulated onto the verbal message. As for the linguistic level, par-
alinguistics also deals with everything beyond pure phonology/morphology/syntax/semantics.
Let us give an example from semantics. The ‘normal’ word for a being that can be denoted
with these classic semantic features [+human, +female, +adult] is woman. In contrast, slut has
the same denotation but a very different connotation, indicating a strong negative valence and,
at the same time, the social class and/or the character of the speaker. Bunches of units, for
instance the use of many and/or specific adjectives or particles, can indicate personality traits
or emotional states.

Whereas the ‘garden-fencing’ within linguistics, that is, the concentration on structural
aspects, was mainly caused by theoretical considerations, a similar development can be
observed within automatic speech (and language) processing which, however, was mainly
caused by practical constraints. It began with concentrating on single words; then very con-
strained, read/acted speech, representing only one variety, that is, one rather canonical speech
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register, was addressed. Nowadays, different speech registers, dialects, and spontaneous speech
in general are processed as well.

At least amongst linguists, language has always been seen as the principal mode of com-
munication for human beings (Trager 1958) which is accompanied by other communication
systems such as body posture, movement, facial expression, cf. (Crystal 1966) where the formal
means of indicating communicative stances are listed: (1) vocalisations such as ‘mhm’, ‘shhh’,
(2) hesitations, (3) ‘non-segmental’ prosodic features such as tension (slurred, lax, tense, pre-
cise), (4) voice qualifiers (whispery, breathy, . . . ), (5) voice qualification (laugh, giggle, sob,
cry), and (6) non-linguistic personal noises (coughs, sneezes, snores, heavy breathing, etc.).

The extensional differentiation between terms such as verbal/non-verbal or vocal/non-
vocal is sometimes not easy to maintain and different usages do exist; as often, it might be
favourable to employ a prototype concept with typical and fringe phenomena (Rosch 1975). A
fringe phenomenon, for example, is filled pauses which often are conceived of as non-verbal,
vocal phenomena; however, they normally follow the native phonotactics, cannot be placed
everywhere, can be exchanged by filler words such as well, and are modelled in automatic
speech recognition the same way as words.

We can observe that different strands of research – having much in common – evolved
more or less independently of each other; thus what sometimes has been subsumed under
‘paralinguistics’ by linguists has been called non-verbal behaviour research by psychologists
(cf. Harrigan et al. 2008): facial actions, vocal behaviour, and body movement. Jones and
LeBaron (2002) mention that ‘. . . the study of “nonverbal communication” emerged in the
1960s, largely in reaction to the overwhelming emphasis placed upon verbal behavior in the
field of communication.’ They argue in favour of integrating verbal and non-verbal approaches.
Non-verbal communication from a multi-disciplinary perspective is dealt with in Burgoon
et al. (2010).

Interestingly, the terms used are normally rather ex negativo such as ‘para-/extra-linguistics’
or ‘non-verbal/non-vocal’ parameters – again indicating that from its very beginning, the field
had to be delimited from the more established discipline of linguistics.

1.3 Form versus Function

Form follows function – that has been misunderstood. Form and function should be one,
joined in a spiritual union.

(Frank Lloyd Wright)

The distinction between form and function is arguably constitutive for modern phonetics and
linguistics – form roughly meaning ‘what does it look like, and how does it relate to other
elements?’, function meaning ‘what is it used for?’. We can compare this basic distinction
with the distinction between knowledge about fabrics (the substance for clothing) and fashion
(the form, the code of clothing) on the one hand, and the function of clothing (used for an
evening in the opera, or used for mountaineering) on the other hand. There are specialists in
each of these aspects.

A phonetic form is constituted by some higher-level, structural shape or type which can
be described holistically and analysed/computed using between 1 and n low-level descriptors
(LLDs) such as pitch or intensity values and functionals such as mean or maximum values over
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time. A simple example is a high rising final tone which very often denotes, that is, functions as
indicating a question. This is a genuine linguistic function. In addition, there are paralinguistic
functions encoded in speech or in other vocal activities. Examples include a slurred voice when
the speaker is inebriated, or a loud and high-pitched voice when a person is angry. Phonetics
deals with the acoustic, perceptual, and production aspects of spoken language (speech), and
linguistics with all aspects of written language; this is the traditional point of view. From
an engineering point of view, there is a slightly different partition: normally, the focus is on
recognising and subsequent understanding of the content of spoken or written language; for
speech, acoustic modelling is combined with linguistic modelling whereas, naturally enough,
(written) language can only be modelled by linguistic means. Form is rather a means to handle
the function of speech and language.

Laver (1994, p. 20) refers to the contrast between (phonological) form – how does an element
relate to other elements? – and (phonetic) substance – for example, how does its acoustics look?
Crystal (2008, pp. 194, 204) tells apart functions within and outside linguistics: linguistic and
phonetic form and substance do have paralinguistic functions, for example, the word somewhat
with its specific phonetic realisation in a specific syntactic position functioning as a hedge can
characterise personality and/or communicative situations. In this book we will always contrast
phonetic/linguistic form (consisting of form and substance) with paralinguistic function.

The distinction between form and function is also constitutive for discriminating paralinguis-
tics as it typically is performed by linguists/phoneticians from paralinguistics as it typically is
performed by engineers, psychologists, and other neighbouring disciplines. Linguists and pho-
neticians start with some formal element and try to find out which functions can be attributed
to this specific form. Engineers and psychologists are primarily interested in modelling (man-
ually or automatically) specific phenomena such as personality, emotion, or speech pathology,
with the help of acoustic and/or linguistic parameter; that is, they are primarily interested in
one specific (type of) function and want to find out which (form) features to use for modelling
and classifying this function. A simple test whether the author of a study follows a formal
or a functional approach is to estimate the number of pages dedicated to the one or the other
aspect; of course, there are transitional forms in between.

Figure 1.2 illustrates the two different approaches. While the figure is straightforward, what
is behind it can be extremely complicated. Conceptually, it is always a one-to-many mapping
but the direction is reversed. To the left, there is the typical phonetic/linguistic approach. We
start with one – more or less complex – formal element; this can be one word, one type of
words (part-of-speech), one syntactic construction; it can be one phoneme with its allophonic
(free) variants, or one supra-segmental parameter, just to mention a few. Then we want to

FORM form1 form2 form3 formn…

FUNCTIONfunction1 functionnfunction2 function3 …

Figure 1.2 Form versus function: (left) linguistic/phonetic approach; (right) sociological, sociolinguis-
tic, psychological, and psycholinguistic approach
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find out which functions this formal element can be used for. This can be some intralinguistic
function – for instance, a pronoun serves an anaphoric function if it refers to a noun that can
be found earlier in the word chain; in this book, we are mostly interested in paralinguistic
functions. To the right, the approach typical of psychology and other neighbouring fields is
depicted. We start with one specific function – for instance, one emotion, one personality trait,
or a specific non-native accent. Then we try to find out which formal elements denote this
function and can be used for automatic modelling. In a few cases, this might be one form such
as a high final pitch value, denoting questions or proneness towards questions. Nowadays, in
brute-force approaches, we employ many formal elements, up to several thousand features.

In fact, it is mostly not a one-to-many but a many-to-many relationship because of the
intrinsically multi-functional nature of acoustic-linguistic parameters. We will return to the
distinction of form and function when presenting the different research strategies in Chap-
ters 4 and 5.

1.4 Further Aspects

As pointed out above, we restrict the realm of paralinguistics to the analysis of vocal and
verbal aspects. Of course, this is not the whole picture. There is generation and synthesis
of paralinguistics as well, often embedded in a multimodal interaction. All this has to be
modelled for human–computer interactions in prospective application scenarios. In order to
be successful, usability has to be considered from the very beginning. Above all, and at a very
early stage, ethical considerations have to be taken into account.

These aspects are not all relevant or pivotal for all subfields of paralinguistics: ‘emotionally
intelligent’ virtual agents and robots might arguably be the main target group for generation
and synthesis of adequate behaviour. In contrast, the synthesis of deviant speech (e.g., of a
foreign accent or of some variety of pathological speech) most likely comes last, as far as
meaningful applications are concerned. Of course, we can always imagine some application:
there might be some place for a virtual agent in a computer game that impersonates a foreign
language learner. Apart from being somehow exotic, such characters might be less attractive
from a marketing point of view, and more difficult to implement.

In this section, we will first give a short account of synthesis, concentrating on emotion
and personality. Then, both generation and analysis of multimodality are addressed. We will
conclude with applications and usability, and ethical considerations.

1.4.1 The Synthesis of Emotion and Personality

Basically, speech synthesis is either rule-based, with acoustic parameters generated following
specific rules (formant synthesis), or based on speech samples that are concatenated, which
can be as short as minimal sets of transitions between sounds (diphone synthesis) or whole
phrases/utterances (unit selection). The speech samples are normally obtained from controlled
recordings and a small sample of single speakers. HMM (Hidden Markov model) synthesis is a
statistical parametric synthesis, based on hidden Markov models (see Chapter 11), and trained
from speech databases.

Formant synthesis allows for systematic manipulation but does not sound fully natural. Unit
selection sounds most natural if the transitions between units can be smoothed correctly but
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necessitates too much pre-recorded information, especially if different paralinguistic phenom-
ena – normally different emotional states – have to be modelled. Explicit modelling is flexible
but not fully natural; in contrast, concatenative modelling sounds natural but is not flexible.

Of course, the building blocks are the same for synthesis and analysis, such as phones,
words, phrases, and utterances. Methodologies, however, differ considerably. These differences
did not show up very clearly in the early days of phonetic and emotion research, when
only a few features were explicitly modelled, that is, manipulated or analysed. Nowadays,
however, it seems difficult to bridge the gap between the thousands of features used for
brute-force modelling of many speakers on the one hand, and the relatively few features or
speakers modelled for rule-based or concatenative synthesis. The basically different procedural
approaches towards analysis and synthesis of prosody – which is one of the main building
blocks for emotional modelling, apart from voice quality – are elaborated on in (Batliner
and Möbius 2005). Embodied conversational agents (ECAs) can be cartoon-like or very
pronounced; they can be based on acted emotions produced by one single actor. It is conceivably
not possible to manipulate and generate thousands of acoustic-prosodic features – which is
no problem in a brute-force automatic classification. Thus, the perspective of paralinguistic
synthesis differs considerably from that of paralinguistic analysis; it is more similar to that
of traditional lab phonetics where specific hypotheses are proved with the help of carefully
manipulated stimuli presented in identification or discrimination tests.

Let us give a short account of the synthesis of emotional speech. First attempts towards
emotional, rule-based speech synthesis were reported in Murray and Arnott (1993, 1995).
Schröder (2001) gave an overview of what had been done in the field; this was continued in
Schröder (2004); see also Gobl and Nı́ Chasaide (2003) and Schröder et al. (2010). Black
(2003) deals with unit selection and emotional speech. The synthesis of ‘personality prim-
itives’ such as age and gender is straightforward. The synthesis of personality traits is not
yet a fully established field. It is addressed in Trouvain et al. (2006); Schröder et al. (2012)
describe a framework for generating and synthesising emotionally competent embodied con-
versational agents having four different personalities – aggressive, cheerful, gloomy, and prag-
matic – within a prototype of a multimodal dialogue system, the Sensitive Artificial Listener
(SAL) scenario. Schröder et al. (2011) present a conceptual view on the generic represen-
tation of emotions using an Emotion Markup Language (an agreed-upon computer-readable
representation) and ontologies (formal specifications of shared conceptualisations such as
paralinguistic states).

Of course, the divide between synthesis and analysis can be overcome, but this will take
time. Indications are, on the one hand, the use of HMM synthesis based on multiple speakers,
and on the other hand, the use of synthesised data for augmenting real-life databases used for
training automatic classifications of paralinguistic phenomena.

1.4.2 Multimodality: Analysis and Generation

Evidently, it is not only speech and language that communicate personality, emotion, affect
and the like. Darwin (1872) attributed a leading role to the face: ‘Of all parts of the body, the
face is most considered and regarded, as is natural from its being the chief seat of expression
and the source of the voice.’ In addition, there are gestures and body movements/posture
(Kleinsmith and Bianchi-Berthouze 2012).
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Although confined to a specific experimental condition, the results of Mehrabian and Wiener
(1967) were often taken as proof that the verbal channel contributes only little (7%) to the
communication of attitudes; this is called the 7%–38%–55% myth. However, already Ekman
and Friesen (1980) state that the ‘. . . claims in the literature that the face is most important
or that the nonverbal-visual channel is more important than the verbal-auditory channel have
not been supported’ in their experiments. O’Sullivan et al. (1985) elaborate further on the
complex interrelationship between different types of messages and the relative importance of
verbal compared to non-verbal factors. The answer is simply that ‘no channel is always most
important’. Further arguments can be found in Trimboli and Walker (1987), Lapakko (1997),
and Krauss et al. (1981).

Generic statements on the relative importance of single modalities do not make any sense;
we can only ask about the contribution of single modalities in specific communicative settings.
Now, does it make sense to describe single modalities at all? Jorgensen (1998) claimed that
researchers focusing only on one modality, for example, the verbal channel, ‘are no longer
studying valid communication processes, but rather disassociated parts of the whole’. A simple
but important argument against this position can be found in Planalp and Knie (2002) where
it is argued that even ‘. . . the simplest research on cue and channel combinations . . . produces
incredibly complicated results’.

An overview on affect and emotion recognition methods in multimodal human–computer
systems is given in Zeng et al. (2009) and Pantic et al. (2011). The complex task of coordinating
multiple modalities in an affective agent – this holds for analysis as well – is nicely illustrated
in the following list quoted from Martin et al. (2011):

• Equivalence/substitution: one modality conveys a meaning not borne by the other
modalities (while it could be conveyed by these other modalities)

• Redundancy/repetition: the same meaning is conveyed at the same time via several
modalities

• Complementarity:
– Amplification accentuation/moderation: one modality is used to amplify or attenu-

ate the meaning provided by another modality
– Additive: one modality adds congruent information to another modality
– Illustration/clarification: one modality is used to illustrate/clarify the meaning

conveyed by another modality
• Conflict/contradiction: the meaning transmitted on one modality is incompatible or

contrasting with the one conveyed by the other modalities; this cooperation occurs
when the meaning of the individual modalities seems conflicting but indeed the mean-
ing of their combination is not and emerges from the conflicting combination of the
meanings of the individual modalities.

• Independence: the meanings conveyed by different modalities are independent and
should not be merged.

The claim of Planalp and Knie (2002) might be slightly exaggerated; however, there is
surely a trade-off between the basic complexity of multimodality and the possibilities for
investigating complex phenomena within one single modality. Moreover, there are of course
constellations where only one channel is used and available for analysis. We will come back
to this in Section 2.12.
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1.4.3 Applications, Usability and Ethics

The computational processing of paralinguistics could be conceived of as encapsulated –
data in, measures out; thus neither applications nor usability need to be addressed. Potential
applications are often mentioned in the introduction and/or final remarks of articles; yet, it
is often not clear how the approach presented really can be harnessed in these applications.
However, they are, together with ethical considerations, decisive for success or failure of
approaches if we do not confine ourselves to pure research. Applications are, as it were, at the
lowest, practical level; mostly they are presented in the form of single examples. However,
we will try and present a tentative taxonomy. Usability is on a methodologically higher level;
pertinent considerations are based on psychological and theoretical theories. Ethics is, of
course, at the highest level, and not a genuine topic of this technologically oriented book.
However, we definitely want to stress its importance.

Applications

Examples of applications for affective computing are given in Picard (1997), Picard (2003),
and Batliner et al. (2006), and for paralinguistics in a broader sense in Burkhardt et al. (2007)
and Schuller et al. (2013). In the following, examples and presentation are inspired by the last
three references.

Basic types of application approaches are (1) speech recognition in itself, (2) analysis,
screening and monitoring of paralinguistic events or phenomena, and (3) interaction, normally
of humans with an ECA on a computer or with a robot; all these aspects can be employed
alone or in combination. Speech recognition can hopefully be improved when the speaker’s
paralinguistic peculiarities are modelled, for instance, by a preceding attribution to speaker
classes. For all the other aspects, it is the other way round: speech recognition should be as
good as possible, especially for employing linguistic features. Human–human communication
can be analysed and monitored. We are interested in the type of communication. That is,
is the communication symmetric or asymmetric? Which roles are taken up to what extent
by which communication partner? Is the communication ‘normal’, ‘as it should be’, ‘not
as it should be’, or even ‘pathological’? We can assess conversations of married couples
having problems (Lee et al. 2010), and we can monitor and summarise meetings (Kennedy
and Ellis 2003; Laskowski 2009) or call centre interactions. All types of deviant, especially
‘pathological’, speech (see Section 5.6) can be the object of analysis and monitoring, and of
periodic screening. Human–machine interaction is a wide field, encompassing all kinds of
gaming, tutoring, information, and assistive and communicative robotics. Media retrieval is
a genuine object of investigation for written data. Even cross-modal control is possible by
paralinguistic rather than linguistic means, for example, in helping artists with upper limb
disabilities to use the volume of their voice to control cursor movements to create drawings on
the screen.

A tentative taxonomy of basic properties for emotion-oriented systems is given in Batliner
et al. (2006); this was extended to speaker classification systems in Burkhardt et al. (2007).
Table 1.1, adapted from Batliner et al. (2006) and slightly edited, summarises the criteria that
can distinguish different (types of) applications. ‘Meta-assessment’ means that we are looking
at success or failure from the outside. For instance, telling a call-centre customer during the
interaction that she is angry (single instance decision, system design: on-line, mirroring) can
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Table 1.1 Some basic features of applications

features description

meta-assessment

critical application’s aims are impaired if the paralinguistic phenomenon is processed
erroneously (single instance decision)

non-critical erroneous processing does not impair application’s aims (cumulative evidence)

system design

on-line system reacts (immediately/delayed) while interacting with user
off-line no system reaction, or delayed reaction after actual interaction

mirroring user gets feedback as for his/her (expressive) behaviour
non-mirroring system does not give any explicit feedback

emotional system reacts in an emotional way
non-emotional system does not behave emotionally but ‘neutrally’

be detrimental if she is not. Collecting cumulative evidence, for instance, checking whether
customers are, in the long run, more content with one or another automatic system, is non-
critical as long as there is some correlation with the ground truth. Generally, on-line, mirroring,
and emotional system (re)actions will be more critical than off-line, non-mirroring, and non-
emotional (re)actions. Note that ‘non-critical’ as used here refers to the immediate context of
an application; later decisions based on the processing within such applications can of course
still be wrong, that is, economically unwise or unethical.

Further examples of applications will be touched upon passim in the following chapters.

Usability

Trivially, usability is largely irrelevant in the case of pure recording and monitoring or screen-
ing, and subsequent analysis and evaluation – all this constitutes the largest part of paralin-
guistic research. Of course, usability becomes relevant if the user is somehow interacting with
the system (see Table 1.1).

Kaye et al. (2011) present the historical background and contrast the traditional goals of
software design, such as utility, effectiveness and learnability, with the goals of user-centred
design (user experience goals: being motivating, fun, enjoyable) which is not a linear but
an iterative process involving users at any step of design and evaluation. Historically, the
concept of usability evolved from a narrow focus on the computational expert (engineers) in
the 1950s, passing through a focus on psychological and cognitive experts in the 1980s – the
users of the personal computer were no longer experts but rather lay people; the interface
was not only a green or amber screen with a text console but a graphical interface, and
nowadays, it can be ECAs and even robots as well. Most recent is a focus on experience-focused
human–computer interaction. An up-to-date account of the whole field is given in Rogers et al.
(2011). The specific requirements for multimodal interfaces are addressed in Oviatt (1999,
2008) and Oviatt and Cohen (2000).
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Ethical Considerations

The first question often asked – not by engineers but by people directly concerned – about
technology at large is whether we want it that way, and, in particular, whether we mind if it
takes over human work. Secretaries fear unemployment when dictation systems are used, and
speech therapists fear unemployment when screening and assessment of speech pathologies
are taken over by machines. Is technology harmful to those whose expertise is substituted, or
will they then be free to do more expert work?

The next question is whether technology does what it is supposed to do and what it promises
to do. Failure to do that might not be detrimental in the case of dictation systems: it is
straightforward to find out. It requires more effort in the case of automatic screening: a
counter-check introduces exactly that kind of manual work that should be avoided. In the case
of the lie detector, such a counter-check is not possible in real-life situations, for instance in
court, thus we have to rely on transferability from scientific studies. A chapter in Kreiman and
Sidtis (2011) describes nicely how this definitely should not be done because it simply would
violate the principle in dubio pro reo. This would be the case of an erroneous single instance
decision (Table 1.1), with monstrous unethical consequences.

Even if technology can do what it is supposed to do, we have to ask whether this is
acceptable: is the monitoring of call-centre agents ethically acceptable – even if it might be
reliable if done off-line and in an accumulative way?

Basic research on computational paralinguistics might not be much concerned with such
questions but it definitely is necessary to know about them. Ethical concerns about privacy,
however, are of utmost relevance. How can we ensure that ethical principles are observed
during recruitment of participants in experiments, during recording, storing, and during dis-
semination/displaying of recordings and other types of results? Here, we should follow the
principle of informed consent (Sneddon et al. 2011): amongst others things, participants should
be informed about the goals of the study and the experiment, and they should be given the
possibility to withdraw during and after the experiment. It should go without saying that strict
anonymity must be guaranteed later on. All these provisions might be cumbersome to maintain
but universities, research organisations and legal provisions will safeguard them.

Several further aspects of ethical concern are discussed in Ragin and Amoroso (2011),
Cowie (2011), Döring et al. (2011), and Goldie et al. (2011).

1.5 Summary and Structure of the Book

In Part I, we will lay the foundations for the computational processing that is dealt with in Part
II. In this first chapter, we began by defining ‘computational paralinguistics’, and sketched
the history of the term and the subject area. The opposition between form and function is a
guiding principle not only of phonetics and linguistics but also of paralinguistics, and was
therefore described next. In the rest of this chapter, we sketched all those aspects – generation,
synthesis, multimodality, usability, applications, and ethical considerations that we do not
focus on in the following. Chapter 2 presents a taxonomy of oppositions that can – but
need not in every case – be relevant for the different sub-fields, topics and phenomena within
paralinguistics. Chapter 3 tries to point out important aspects of modelling, that is, theories and
methodologies that heavily influence the way how we see, approach, deal with, and evaluate
paralinguistic phenomena. Chapter 4 presents examples for formal elements – segmental and
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supra-segmental, phonetic and linguistic, verbal and non-verbal – that constitute the building
blocks for the marking of all those functions that are described in Chapter 5.

Corpus Engineering is dealt with in Chapter 6, especially annotations and exemplars of
paralinguistics corpora; this constitutes the transition of Part I into Part II.

In Part II, we first give an overview of the chain of processing within computational
paralinguistics in Chapter 7. Acoustic features and their extraction on a ‘low’ frame-by-frame
level are described in Chapter 8. Linguistic features are then described in Chapter 9. Both
types of features are used for feature generation on a supra-segmental level as described in
Chapter 10. In Chapter 11 we deal with the field’s most common approaches to modelling from
a machine learning point of view. This also includes a statement on feature relevance analysis
and testing protocols. In Chapter 12 insight is given into how best to embed computational
paralinguistics in a running system’s working context. The selected aspects cover distribution in
a client–server architecture, weakly surpervised learning and confidence measure calculation.
To provide the chance of experiencing what the book describes, Chapter 13 provides a ‘hands-
on’ tutorial alongside a description of the ‘usual suspects’ when it comes to toolkits in the field.

Outside of these two main parts, Chapter 14 provides a short general epilogue.
Last but not least, the Appendix contains the description of standardised feature sets and a

feature encoding scheme.
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Batliner, A. and Möbius, B. (2005). Prosodic models, automatic speech understanding, and speech synthesis: Towards

the common ground? In W. Barry and W. Dommelen (eds), The Integration of Phonetic Knowledge in Speech
Technology, pp. 21–44. Springer, Dordrecht.
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2
Taxonomies

Taxonomy is described sometimes as a science and sometimes as an art, but really it’s
a battleground.

(Bill Bryson)

We now want to present a ‘taxonomic skeleton’ for paralinguistic events. Taxonomies deal
with the same-different problem which we could call the ‘which box(es) game’. There are
between 2 and n boxes into which the cases should be put. If n is a large number, it is a matter
of ordered or unordered classes.

Normally, the single taxonomies presented in this chapter do not describe distinct classes
but rather continua; we will not call them dimensions because this term is reserved for the
dimensional representation of phenomena such as emotional states and personality traits in
theories and models which will be dealt with especially in Sections 5.3 and 5.4.

What we are dealing with in this section are inherent characteristics of paralinguistic
phenomena. We want to tell these apart from aspects of modelling which are dealt with
in Chapter 3. Admittedly, this is not always a sharp distinction. The idea behind it is not
necessarily to establish the ultimate taxonomy for paralinguistics but to make it possible to
answer to the question as to what phenomena, such as emotions, personality traits, or types
of deviant speech, can be described within which taxonomy, and how relevant is this for the
different stages of computational paralinguistics? Examples will be given below.

In this chapter, we often have more to say on emotion and personality than on biological or
cultural traits primitives, or on the other phenomena. This is simply due to the nature of these
different paralinguistic phenomena.

2.1 Traits versus States

Time is the measurer of all things, but is itself immeasurable, and the grand discloser of
all things, but is itself undisclosed.

(Charles Caleb Colton)

In the Merriam-Webster online dictionary, a trait is (1) ‘a distinguishing quality (as of
personal character)’ or (2) ‘an inherited characteristic’. This characterises nicely the two

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
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prevailing uses of the term: The narrow one (1) is reserved for personality characteristics,
and used widely in psychological theories. The broader one (2) is more general, denoting
a quality characterising persons or things which can be inherited or acquired. We will use
the broader meaning, subsuming under ‘trait’ characteristics such as age and gender which
we want to call ‘biological trait primitives’, (see Section 5.1), as well as characteristics such
as being a native speaker of a first language and its regional or social variety or varieties,
and suchlike, which we will call ‘cultural trait primitives’ (see Section 5.2). All these
constitute different layers of a person; even if personality traits in the narrow sense might
not necessarily be influenced by biological or cultural traits, this certainly can happen: in
specific situations, males can feel more or less comfortable than women, and vice versa;
moreover, their perception and evaluation by other people might differ, because of these
differences in biological or cultural traits. To give another example, Lev-Ari and Keysar
(2010) show that non-native speech – which is deviant and more or less influenced by the
first language – not only is harder to understand, but also this causes non-native speakers to
sound less credible. In other words, a cultural trait primitive influences the perception of a
personality trait.

While traits are at least longer-lasting or fixed characteristics, states are short-term; this is
the first out of many definitions of ‘state’ in Merriam-Webster: ‘mode or condition of being’.
Although a state can be self-induced – you can put yourself into some mood – normally it is
caused by someone or something else. It takes a much shorter period of time to be put into
some state than to be put into some trait and to ‘get out of it’ again. Early approaches towards
taxonomies of traits and states can be found in Allport and Odbert (1936) and Norman (1967);
see Section 3.1.

Between long-term traits and short-term states is something we want to call medium-term
between traits and states. Such states can be self-induced – a typical example is alcoholisation –
or may be interpersonal attitudes (interpersonal stances, (see Table 2.1) towards other persons,
or social roles such as leadership taken over in specific conversational situations (dyadic
or meetings). Table 2.1, after Scherer (2003), displays some design feature delimitations

Table 2.1 Design feature delimitation of different affective states, after Scherer (2003)

Type of affective Synchron- Event Appraisal Rapidity Behav.
state Intensity Duration isation focus elicitation of change impact

Emotion ++-+++ + +++ +++ +++ ++++ +++
Mood +-++ ++ + + + ++ +
Interpers. stances +-++ +-++ + ++ + +++ ++
Attitudes 0-++ ++-+++ 0 0 + 0-+ +
Personality traits 0-+ +++ 0 0 0 0 +
Emotion: brief episode, response to an event (angry, sad, joyful, . . . )
Mood: diffuse affect state, low intensity, long duration (cheerful, gloomy, buoyant, . . . )
Interpersonal stances: toward another person (distant, cold, warm, . . . )
Attitudes: enduring, preferences, predispositions (liking, loving, hating, . . . )
Personality traits: dispositions and tendencies (nervous, anxious, morose, . . . )

0 : low, + : medium, ++ : high, +++ : very high,-: indicates a range; Behav.: Behavioural.
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of affective states – which constitute a substantial part of traits and states dealt with in
paralinguistics, but not the whole story. We can see that, implicitly, traits and states and
something in between are modelled in the ‘Duration’ column as ‘low’, ‘medium’, and ‘very
high’; this is partly correlated with rapidity of change – the shorter events are, the faster their
characteristics can change (cf. the ‘Rapidity of change column’ in Table 2.1).

However, can we always know what is what and how long it takes, and do we have to
know at all? Words are often inherently vague and do not care whether they are used for
denoting long-term traits or short-term states. Let us take ‘interest’, which does not belong
to the ‘classic’ emotions; nowadays, however, it is normally included in the list of emotions
(see Silvia 2005, 2008). Interest is conceived of as a rather short-term state and modelled
the same way as other emotions (Schuller et al. 2009, 2010); we think of someone being
interested in something, be this a display in a shop window, or a conversation partner in
a speed dating scenario, or a specific remark or information given by such a partner. But
what about this description of a guy on a dating website who remarks ‘Interests: I’m a very
interested person’? This is a generic statement, and, as such, it cannot denote a short-term
state. It could mean that he is eager to take interest in everything, and/or that interest is
a trait characterising his personality. We can try to solve these ambiguities by establishing
two different readings/meanings of ‘interest’ (cf. the two readings of ‘trait’ in Merriam-
Webster above), or we can simply leave them unspecified. This might not be conceivable in
psychological theories and models on emotion and personality, but it is a feasible way for
empirical paralinguistics. We mainly have to know how long a unit is that we have to establish
for processing; this holds both for formal – phonetic and linguistic – characteristics and for
functional traits and states as well. Formal and functional units have to be time-aligned, which
means that they first have to be segmented on the time axis (speech) or in the chain of written
words (text).

This is arguably the basic paralinguistic taxonomy, from long-term traits to short-term
states along the time axis. Again, the following listing is neither complete nor do we men-
tion all possible varieties. For instance, we assume only two genders, even if there exist
more varieties in between. These traits and states can have different intensity, of course,
apart from the ones that are binary or can be measured on an interval scale such as age or
height. The following list is adapted from Schuller et al. (2013b); we substitute references to
studies with references to the sections in this book that deal with the specific phenomena in
Chapters 4 and 5.

• Long-term traits:
– biological trait primitives such as height, weight, age, and gender, cf. Section 5.1;
– cultural trait primitives, such as group/ethnicity membership: race/culture/social class

with a weak borderline towards linguistic concepts such as speech registers, dialect, or
first language (see Section 5.2);

– personality traits (see Sections 5.3 and 5.5) such as personality in general (the ‘big five’),
and single, more specific traits such as likeability;

– a bundle of traits constitutes speaker idiosyncrasies, that is, speaker-ID; speaker traits can
be used to mutually improve classification performance, by assigning speakers to distinct
classes. For instance, subjects can be automatically assigned to either males or females,
or to children or adults, and later on be processed separately in emotion or personality
classification.
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• Medium-term between traits and states:
– (partly) self-induced more or less temporary states: sleepiness, intoxication (e.g., alco-

holisation), health state, mood (e.g., depression) (see Section 5.6);
– structural (behavioural, interactional, social) signals: role in dyads and groups, friendship

and identity, positive/negative attitude, intimacy, interest, politeness; (non-verbal) social
signals (see Section 5.7);

– discrepant signals: irony, sarcasm, lying (see Section 5.8);
– mode: speaking style and voice quality (see Section 4.2), which can also be long-term or

sometimes short-term.
• Short-term states:

– emotions (full-blown, prototypical), (see Sections 5.4 and 5.5);
– emotion-related states or affects, such as stress, confidence, uncertainty, frustration, pain

(cf. Sections 5.4 and 5.5).

Interdependencies with Other Taxonomies

We assume that traits and states are mostly orthogonal to all other taxonomies; it is the most
basic distinction, laying the foundation for all other taxonomies. The expression of biological
trait primitives is mostly not intentional; it is not possible to change one’s age – but it is
possible to influence others’ perception of one’s age. Normally, sex is either/or – but there
are stages in between, and the choice amongst them can be traced back to some mixture
of inheritance and intention. Traits are long-term, states are short-term; medium-term states
(which could be named ‘traits’ as well) are in between. To find out more about the duration of
traits and states, we have to resort to measured versus perceived. To give a somewhat exotic
example, namely displaying non-native traits in a second language: we can simply measure
the time of formal education in the second language, or the duration of residence in the foreign
country, but these are most likely not the best measures; or we can use the assessment of native
annotators (experts or naı̈ve). In the case of alcoholisation, we can measure blood alcohol
content and use this as reliable reference (ground truth), see Section 5.6.2; or we can employ
human assessments which normally are, however, less reliable.

Main Relevance for Computational Processing

So far, segmentation of traits and states into most appropriate lengths of units of analysis has
been a stepchild of computational approaches. Normally, whole recordings – either whole
dialogues, or single wave files representing single utterances or dialogue moves – are taken
as units, or a pause detection algorithm is employed. Sometimes, unit length is addressed by
segmenting into equally spaced parts – for instance, an utterance is split into units of 1 second
each, or into three parts of equal length (initial part, middle part, final part). We do not feel
that this is an optimal strategy because it is simply ‘dumb’, ignoring any genuine segment
boundaries in the data; however, it can be used without any linguistic modelling. Segmentation
(cf. Section 3.3) gets even more complicated when it comes to multimodal processing, when
different modalities have to be time-aligned. It is not clear yet whether and when a ‘most
appropriate’ segmentation really pays off in terms of performance measures; there are some
indications that it does (see Batliner et al. 2010). Pure performance is not the only criterion,
though: in the long run, a closer dovetailing of, for instance, acoustic and linguistic analysis
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will necessitate a segmentation into linguistically meaningful units as well. As traits normally
change not at all or only very slowly, experiments are possible only between speakers and not
within speakers; for short-term states, both are feasible, and for medium-term states, within-
speaker designs might be possible if the speakers are available for a longer period of time.
Modelling medium-term states such as alcoholisation or sleepiness by fusion of utterance-level
decisions can improve classification performance considerably (Schuller et al. 2013a).

2.2 Acted versus Spontaneous

The most important lesson for acting: Be yourself. Be authentic. Be honest.
(Arnold Schwarzenegger)

There might be some common-sense agreement on the difference between acted and sponta-
neous. When acting, you learn by heart what you have to say, you dress up in some way, you
pretend you are in love when in fact you are not; when being spontaneous, you are just your
usual self, you do not pretend to be someone else, you show the emotions that you really have,
no more, no less, you speak as you normally do.

In the same vein, there might be consensus that in principle we would like to aim at ‘sponta-
neous data’ when collecting speech or language data for paralinguistic research. However, this
is rather difficult to accomplish, and moreover, at second glance, the term is not very precise.
Obtaining acted data is easier but has its drawbacks, too.

The prototypical actor went to drama school and acts in a dramatic production, on stage or
in a movie. Besides, anybody can act in a community theatre. Acting styles will differ, between
amateurs and professionals, between cultures, and depending on time and generation – just
compare the style of movie actors from the 1950s with those of the present day. Konijn (2000)
deals with different professional styles of acting emotions; although she is not concerned with
acted emotions used for the automatic classification of emotions, her taxonomy is of interest
to us. Her starting point is Diderot’s Paradoxe in Diderot (1883):

A good actor feels nothing at all and can therefore evoke the strongest of feelings in
the audience – this was Diderot’s proposal in ‘Paradoxe sur le Comédien’. The actor
should act emotions on stage without feeling.

This leads to ‘the actor’s dilemma’: should the actor be involved or detached? Should the
emotions – or any other attitudes and feelings – of the portrayed character be identical with the
momentary private emotions, attitudes and feelings, or not? In contrast to Diderot and to other
schools – for instance, the ‘epic theatre’ of Bertold Brecht, the Russian director Stanislavsky
and the acting teacher Lee Strasberg propagate the style of involvement: the actor should
identify himself with the character. It is often reported that great actors project themselves into
the roles they have to impersonate, and change their appearance and their own speech for the
time being. This can be a real impersonation and/or the portrayal of a stereotype – excellently
acted by good actors but often badly acted in daytime TV soaps. But what about participants
in experiments who are told to act as if they had specific emotions, feelings, or attitudes?

Table 2.2 attempts to summarise the most frequent strategies employed for collecting
data, displaying different types on an exemplary basis. Such speech data can be analysed
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Table 2.2 Type of speech data and methods

type subjects method experimental control

read specific target groups predefined, written stimuli high

acted: stage, movie professionals screenplay high
acted: prompted professionals, laymen scripted high
acted: non-prompted laymen elicited medium

induced explicitly professionals, laymen emotion/mood-ind. techniques high
induced implicitly professionals, laymen emotion/mood-ind. context medium

naturalistic, scripted preselected groups TV recordings medium
naturalistic, unscripted any role attribution medium

naturalistic, free any (hidden) rec. in the wild low

acoustically, or transcribed orthographically and then serve for grammatical or sentiment
analyses. There are genuinely written data besides, but for these the question whether they
are acted or spontaneous or something in between is not immediately relevant; of course,
in writing, we can also pretend, lie, or be honest. There are many types and subtypes in
between, and especially mixtures of types, but we hope that this table is useful for clarifying
the approaches mostly used in research.

The most prototypical types shown in Table 2.2 are those on the first and last lines. For
many decades, the main object of investigation was read, scripted, prompted speech obtained
in the lab. The speaker should be representative of a language, a dialect, or some other variety,
or of specific target groups such as females or children, or have some speech pathologies such
as stuttering, or be non-native in the language. Recordings are done in the lab, the stimuli to
be produced are normally predefined and presented in written form, the experimental control
is very high and both audio quality and acoustic conditions of the recordings are excellent.
Such data are still believed to be indispensable for research (see Xu 2010).

The opposite can be found at the bottom of Table 2.2: naturalistic, free, spontaneous
productions, by any speaker or speaker group, or by specific target groups, recorded in real-
life settings. However, speech quality and experimental control are low, and we might not
find the specific phenomena we are interested in – there can be a severe sparse-data problem.
Moreover, we are confronted with Labov’s observer’s paradox (Labov 1972, p. 209):

The aim of linguistic research in the community must be to find out how people talk
when they are not being systematically observed; yet we can only obtain these data by
systematic observation.

There may be some ways out: people forget that they are being recorded, either by force of
habit (they are connected to audio recording devices for hours and weeks) or because they are
distracted by some tasks. Other methods are described in Llamas (2007). However, there can
be severe privacy issues (cf. Section 1.4.3) if people are being observed in their daily life.

Now let us go down the table, starting with three types of acted data. ‘Acted: stage, movie’
is normally based on a screenplay and involves professional actors, and the recording quality
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is high. Such data can be taken as prototypical performances; a genuine use can be, in media
retrieval, to look for specific combinations of factors, for instance, for love scenes in American
versus Italian movies from the 1940s. Control is high because, basically, meta-information
should be available, for instance, the screenplay with instructions.

‘Acted: prompted’ is like doing a (very) short movie in the lab, employing either professional
actors or laymen; the actors are told what they should do, which emotion they should express,
either by always using the same carrier sentence, or by choosing their own words. This can
be called ‘prompting’ (Schiel 1999) the acting of emotions. This has been the usual strategy
in earlier studies, for instance in the cases of the well-known Berlin emotional database
(Burkhardt et al. 2005) and the Danish emotional database (Engberg et al. 1997). Experimental
control is high.

The next type, ‘Acted: non-prompted’, is rather special. Imagine that someone is told to act
in a simulated call-centre scenario. Her task is to get some information and to buy a flight
ticket. She is not told in any way that she should get angry when the system does not work
properly, or to stay calm even if the systems does not work properly. In such a scenario, we
can at least assume that any emotion triggered by system malfunctions are not acted. This
is sometimes called ‘inducing’ emotion; however, the explicit task is scripted in some way
even if the wording can be freely chosen. It is a ‘slight’ type of acting, close to the roles the
participants can take on in daily life as well. Experimental control is medium: the design of
the task makes it likely that participants react in specific ways but they do not have to.

A closely related task is given in the row called ‘induced implicitly’. We have to distinguish
the ‘as if’ task of booking a ticket – it is evident that this is not the real act of booking a ticket
and having to pay for it later – from a task such as telling children to direct a robot from A to
B (Batliner et al. 2008) because this is a real task that can be accomplished or not. Here, the
context (the task and difficulties introduced by the experimental design) can implicitly induce
mood or emotions.

Induction can be explicit as well, such as in the approach put forward by Velten (1968). A
film or story is presented which can induce both positive and negative states. This is claimed
to be a reliable method by Westermann et al. (1996) and Scherer (2013).

The next two types are called ‘naturalistic’ – not because they necessarily are, but because
that epithet is often used especially for the first type, ‘naturalistic, scripted’. Scherer (2013) calls
this type ‘convenience sampling’ because TV recordings such as reality shows or YouTube
videos are convenient to obtain. He cautions against this type because participants mostly
will be scripted in some way, thus playing predefined roles and not behaving ‘naturally’.
Experimental control is medium, albeit post hoc, because the scripted TV recordings can
be selected.

The typical scenario for ‘naturalistic, unscripted’ is a multi-party interaction where more
than two participants play some roles, for instance, in a project group. This type is more or less
close to ‘acted, non-prompted’, and to ‘induced implicitly’, depending on the experimental
setting. In many of these scenarios, the role taken over by the participant is not necessarily
exclusive; for instance, they can speak aside to a third party present, and thus leave their role
for a moment. The distinction between the types in Table 2.2 has of cause something to do with
the lab versus life distinction dealt with in Section 3.6; however, lab speech is not necessarily
acted, and vice versa. The researcher decides whether to use the lab or to record in some
real-life setting, or to use existing recordings.

The opposition of acted versus spontaneous (real life) is weakened by the fact that, more or
less intentionally (cf. Section 2.7), the expression of traits and states in speech is controlled
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by display rules (Ekman 1972) and by control and regulation. This makes it possible that the
divide between the two varieties is not too large. However, there is no easy means – or no
means at all – to assess these differences and similarities.

There is a long tradition within psychology of preferring scenarios with a high experimental
control. Scherer (2013) strongly advocates emotion/mood-inducing techniques or even por-
trayal or enacting of different emotions because such techniques guarantee a proper balance of
classes, claiming that ‘there is theoretical and empirical evidence that strategic emotion regula-
tion, particularly for expression, is extremely frequent in day-to-day “natural” expressions’. He
finds ‘a rather strong similarity between the vocal changes produced by an established mood
induction procedure and a scenario-based acting or portrayal procedure’. This does not yet
prove, however, that both methods really yield ‘natural emotions’. A decisive experiment would
be to compare really ‘naturally produced’ emotions with induced ones for the same speakers,
not to compare two elicitation methods. We do not know of any such study and doubt their
feasibility in general. Appropriate ‘auxiliary’ measures are surely post-experimental question-
naires to check the impression of the participants, and careful observations of edge conditions
and participants’ behaviour – not just recording and extracting of information.

Thus we are left with a problem for which we cannot find the ultimate answer: what is
a real (natural/spontaneous) expression of emotion (or of attitudes, personality traits, and
suchlike)? It might be easier to decide upon our own research interest: as Bühler (1934)
assumes for speech signs in general, Scherer (2013) attributes a three-part function to non-
verbal vocal expressions as well: symptoms of speakers, appeals to listeners, and symbols
for concepts which are iconically represented. Now what are the interests of computational
paralinguistics that normally – but not exclusively – has the intention to employ the results in
some application? They are consistency, performance and function in the application – criteria
close to but not fully identical with reliability and validity. We can largely disregard symbols;
appeals to listeners are closest to human–human or human–machine interaction and constitute
the main interest. Symptoms will be in focus, for instance, when investigating personality
traits, especially pathologies.

The disadvantages set out by Scherer, as far as ‘naturalistic’ data are concerned, can be
seen as advantages for applications which need training data as close as possible to test data;
this pertains not only to the phenomena one wants to model, but also to everything else
that influences modelling, even sparsity of data, unbalanced data, or reverberation and noise.
From this point of view, there are (only) a few constellations where acted databases are fully
appropriate; we have to distinguish acted data that are congruent with and practically the
same as the data we want to model, from acted data that only intend to be close to those
we want to model. When we conduct experiments with movie speech aiming at multimedia
retrieval applications such as searching for love scenes in a movie database, acted data are
fully appropriate. The same holds for the use of acted emotion data for teaching children with
autism spectrum conditions to understand and produce emotions ‘correctly’ – in the latter
case, what we want the children to do is first to act and subsequently to be able to produce
emotions less voluntarily. This can be compared with the acquisition of the prosody of a
foreign language. Wizard of Oz studies (the role of the machine is taken over by a human
supervisor) for call-centre scenarios are basically a workaround for real data because the
users do not really need the information they want to obtain. However, it is a familiar task
and chances are high that the speech produced is very similar to that in real-life situations.
Another constellation where acting is tolerable is, for instance, cross-cultural studies; here,
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we have to keep constant as many factors as possible because the one factor we are interested
in – cross-cultural differences, similarities or transfer – is complex enough. We have to keep
in mind, however, that with such a design, we might first of all model stereotypes and not
necessarily and exactly the production of realistic, non-prompted emotions; however, such
stereotypes are interesting enough to warrant such studies.

Interestingly, acted emotions are fairly common in research. In contrast, acted traits –
be it personality traits, non-native/dialectal/vernacular traits, or pathological speech – are
not employed for investigating their basic – and thus, their non-acted – characteristics. The
traditional means of investigating personality has been self-assessment or others’ assessment
with questionnaires; for non-native or pathological traits, it has been read speech or sometimes
less controlled narratives. We know, however, that good actors can impersonate all these
different traits.

Matters are a little different in engineering approaches where we can find a few studies that
use acted data for the automatic detection/classification of personality (Polzehl et al. 2010)
or of focus of attention (Hacker et al. 2006); see Section 5.8.3. Scripted mood-induction
procedures (for moods such as aggressive, intoxicated, tired, cheerful, nervous) are used in
Schuller et al. (2007). Realistic medium-term state induction procedures are, for example,
employed in Krajewski et al. (2009) for sleepiness by keeping the subjects awake at night and
in Schiel et al. (2012) for intoxication by providing the subjects with controlled amounts of
alcoholic drinks.

Interdependencies with Other Taxonomies

The different ways of acting dealt with above have something to do with ‘felt versus perceived’
and ‘intentional versus instinctual’. Different cultures have different styles of acting; this holds
especially for different cultural spheres, for example, Western versus Japanese ways of acting;
it holds, however, even for different nationalities within Western society and for different
periods and generations – we mentioned different styles of movie actors above. Thus, cross-
cultural considerations should play a role (cf. ‘universal versus culture-specific’). Acted and
stereotypical traits and states might tend more towards prototypes than towards peripheral
types of expression.

Main Relevance for Computational Processing

A promising maxim for the building of databases aimed at training and subsequent testing
is that the training data should be as close as possible to the test data; this is one of the
basic requirements in automatic speech recognition. It is never clear whether the claim of
universality or at least transferability from training data onto test data is warranted until it has
been proven. What has been proven so far is that transferability is at least rather weak (Batliner
et al. 2000; Eyben et al. 2010), as far as prompted versus non-prompted, or cross-database
studies are concerned. Thus, if possible, the best way to ensure transferability is, for instance,
to use the same call centre and the same (type of) clients for training and testing.

We always make certain assumptions – such as ‘naturalistic data are really natural/
realistic/spontaneous’ or ‘acting with well-induced emotions really yields realistic emotions’ –
and question or criticise the opposite assumption. For such discussions, a shift towards the
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question why we are doing so and what our aim is might be beneficial; in computational
processing, we normally aim at usability in applications – and chances are higher if perfor-
mance is better. Thus, we normally do not want to use read speech and standard varieties when
trying to model (and test) spontaneous, vernacular speech. In the same way, it most often will
be sub-optimal to use prompted, acted emotions for the training and modelling of spontaneous
emotions, even if these spontaneous emotions are regulated and altered by display rules.

2.3 Complex versus Simple

‘When I use a word,’ Humpty Dumpty said, in rather a scornful tone, ‘it means just what
I choose it to mean – neither more nor less.’

(Lewis Carroll, Through the Looking Glass and What Alice Found There)

Imagine two different situations. In the one, you have just learned that the one you are madly
in love with reciprocates your feelings – which are now plain and utter joy and elation. In the
other, you learn that the one you live with and still love does not love you any longer: your
feelings may well be a mixture of love, hate, disappointment and despair.

Less dramatic is the situation where you wanted to buy something on eBay, forgot the
last bid and failed – only to learn that the final price was pretty low. This might cause
plain, straightforward anger, or just slight disappointment, depending on your hopes and
expectations. More complex situations can yield more complex emotions and feelings; see the
study of Scherer and Ceschi (2000) on baggage loss at an airport where customers reported
experiencing several different emotions at the same time. However, it might not be necessary
for specific applications to model such a complexity: it might suffice to realise that a customer
is ‘really angry’, and thus that the system should take some action.

Ben-Ze’ev (2000) points out the complexity of emotions due to their ‘great sensitivity to
personal and contextual circumstances’ and because ‘ . . . they often consist of a cluster of
emotions and not merely a single one’. Moreover, there are many different types and shades.

Emotions are good exemplars for demonstrating complex versus simple; however, every
other paralinguistic phenomenon, for instance, a speech variety, can be as complex as feelings,
emotions, or bundles of personality traits – or it can display only a few ‘simple’ formal traits.
Fossilised remains of non-native traits in a foreign language can be a few incorrect word accent
(stress) placements while everything else seems to be fine. For example, Swedish speakers
who master English perfectly can sometimes still be recognised by the quality of their /a/
sounds. Similar phenomena can be observed in non-typical, pathological speech.

Interdependencies with Other Taxonomies

Complexity might be directly connected to one of the other taxonomies; they all can be more
or less complex. Mostly, it might rather be in the eye of the observer, that is, in the approach
chosen, whether phenomena are conceived of and treated as complex or not.

Main Relevance for Computational Processing

It is a basic approach of any kind of science, thus also of paralinguistic research, to focus on
specific aspects only in order to make the task manageable. We will present several exemplars
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in Chapter 4, as far as formal aspects are concerned. As for functional aspects, we normally
concentrate on one phenomenon only, be it (some specific) emotion or (some specific type of)
deviant speech. Decisions can be based on theoretical considerations; this is mostly the case
in basic research, for instance, when investigating the ‘big five’ personality traits, (see Section
3.1). It can be based on data and on requirements of applications we are having in mind; a
typical approach is to record call-centre interactions and look only for angry users, that is, for
only one specific emotion. On the other hand, Scherer (2013) advocates the precise modelling
of several predefined emotions; this is only possible when inducing these emotions in the lab,
getting rid of the sparse-data problem, of noise, reverberation, and suchlike.

Thus, irrespective of the corpora and phenomena to be processed, we can reduce complexity
from the very beginning, or later. Mixed or blended emotions are addressed in the recordings
and annotations of Sobol-Shikler and Robinson (2010), and in Devillers et al. (2005) who
model major and minor emotions for the same segments. The inevitable reduction of com-
plexity comes later: Sobol-Shikler and Robinson (2010) resort to separate classifications of
pairs of emotions, and Devillers et al. (2005) to a coarser-grained modelling of emotions, and
thus have fewer classes to classify. Majority voting, that is, assigning the label chosen by most
of the annotators (Steidl 2009), is one of many other strategies to reduce complexity. Another
is dimensional modelling where the problem of arranging many more or less related categories
is boiled down to assigning values on a few dimensions, for instance, the one or the other
dimension in the traditional emotion model with arousal and valence. As for personality, the
two prevailing approaches are to model either main traits such as the ‘big five’big five – disre-
garding the complexity below this highest level – or specific traits that seem to be interesting
and promising within applications, such as leadership, attractiveness or aggressiveness.

2.4 Measured versus Assessed

If it can’t be expressed in figures, it is not science; it is opinion.
(Robert Heinlein)

For some paralinguistic phenomena, objective measures are applicable that can be taken as
‘ground truth’, or at least as being highly correlated with the ground truth. Measures can be
mapped one-to-one onto the variable/factor in question: height in centimetres/inches, weight
in pounds, or age in years/days. Blood alcohol content is a reliable measure, and specific values
often serve as legal thresholds. Acoustic parameters can be measured: F0, intensity, formants,
and the like. However, there is no simple one-to-one relation to their perceptual equivalent
(see Section 4.2). Physiological signals (biosignals) can be measured more or less ‘directly’
with biomedical sensors (Kaniusas 2012), or indirectly – see Skopin and Baglikov (2009) and
Mesleh et al. (2012) who extract heart rate from voiced parts of the speech signal. It is still
debated to what extent physiological measures – for example, skin conductance as measure
of stress – can be taken as ground truth, or whether they should not rather be modelled as yet
another feature set (Knapp et al. 2011).

On the other hand, there are phenomena that can only be assessed (annotated/labelled)
perceptually, such as (degree of) interest, likeability, attractiveness, or politeness; this holds
especially for the valence dimension but even for arousal, where at least some correlation
with ‘lower, smaller’ versus ‘higher, louder, greater’ can been assumed. Basically, this holds
for deviant speech as well: of course, the deviation of some acoustic-phonetic measure from
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typical, ‘normal’ speech can be measured but the combined impact of different (types of)
deviations on the degree of, for example, non-nativeness or pathology has to be assessed with
perceptive judgements. Perceptual assessment is more or less subjective, and subjects can
have different ‘perceptual reference points’ serving as ‘anchor’; however, chances are high
that employing several labellers reveals central tendencies (see Section 3.10). Ranking-based
measures (Han et al. 2012) with relative, not absolute, judgements can be favourable as well.

Statistical levels of measurement (Stevens 1946) go along with the order from measured to
assessed. To start with, the ratio level and the interval level can be measured, the ordinal level
is normally be obtained via human assessment/annotation, and the nominal (categorical) level
is either annotated or given (such as sex or nationality). In reality it is more complicated, and
the levels are often mapped onto each other: parametric procedures suited for the ratio/interval
level are often used for annotation measures, especially mean values, and ordinal data are
mapped onto categories.

An important aspect of measured versus assessed is the problem of how ‘real’ the object of
our investigation is. The terms implicitly used to refer to the certainty of ‘realness’ are ground
truth, gold standard, and reference.

The term ground truth comes from cartography and satellite imagery. All information taken
from distance can be verified with reference to the ground; someone literally can be sent there
to check. This is a very strong verification: the object in question really can be measured.
Thus, the ground truth lies in the characteristics of the object.

The term gold standard is taken from the monetary gold standard – see Claassen (2005)
and Morris (2003), who describes its origin:

As the monetary gold standard was waning, the gold standard in clinical research was
gaining currency. Under a monetary gold standard, the value of money is anchored
to measurable reserves of the precious metal gold. By analogy, the gold standard in
clinical research anchors a patient’s diagnosis to another objective measure – results of
unequivocal tests.

In speech and language research, we normally have to do with some manual annotation which
has to be scrutinised to determine whether it can serve as such a standard – see Carbone et al.
(2004) who present ‘ . . . several techniques for unifying multiple discourse annotations into a
single hierarchy, deemed a “gold standard” – the segmentation that best captures the underlying
linguistic structure of the discourse’. Thus, such a gold standard lies in the human agreement.

Reference is a more neutral term; its history is sketched by Hájek (2007) who attributes to
Reichenbach (1949, p. 374) the standard formulation of the reference class problem:

If we are asked to find the probability holding for an individual future event, we must
first incorporate the case in a suitable reference class. An individual thing or event may
be incorporated in many reference classes, from which different probabilities will result.
This ambiguity has been called the problem of the reference class.

Thus, the reference lies in the perspective of the observer – which (types of) classes she is inter-
ested in for the moment. The term is somewhat neutral and used as an extensional definition:
reference is what belongs to the cases/items belonging, for instance, to our training set.
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If we aim to distinguish the different types of references, that is, ‘ground truth’, ‘gold
standard’, and ‘reference’, we should reserve ‘ground truth’ for characteristics that can be
measured (age, weight), ‘gold standard’ for agreed-upon human annotation procedures, and
use ‘reference’ in a technical sense, taking a ‘conservative’ (cautious) stance, for instance, as
denoting the class(es) we have available in our training data and want to assign automatically
in our test data.

Interdependencies with Other Taxonomies

There does not seem to be a clear relationship to other taxonomies in the sense that there is
some high contingency – sometimes we can measure, sometimes we have to assess.

Main Relevance for Computational Processing

The relevance for computational processing is straightforward. According to the levels of
measurement, we have to choose appropriate procedures. This is straightforward for parameters
that ‘really can be measured’, such as time in milliseconds, or any acoustic measure. For
practical reasons, such as data sparseness or needs imposed by applications, we often map
‘precise’ measures onto coarser-grained levels.

2.5 Categorical versus Continuous

PICTURE, n. A representation in two dimensions of something wearisome in three.
(Ambrose Bierce, The Devil’s Dictionary)

The notion of categories and categorisations, the nature of categories (discrete or vague), and
their status (universal and/or innate) is dealt with extensively in Cohen and Lefebre (2005).
The paradigm of categorical perception (Harnad 1987) was one of the prevailing phonetic
models in the 1980s (Repp 1981): it was claimed that consonants especially are perceived
in a categorical way, with sharp boundaries between the categories, for instance, between
/p/ and /b/ (IPA/SAMPA notation). This was investigated with psychoacoustic experiments
(identification or discriminations tasks, among others). However, the strong paradigm gave
way to more ‘less categorical opinions’ – interestingly, in a voluminous reader on hearing and
speech, it was not even mentioned (Summerfield 1991). It seems to be more difficult to make
such strict hypotheses – which can be proved right or wrong – when it comes to paralinguistics.

In paralinguistics, the formal characteristics can normally be measured somehow, and this
means a continuous representation on some scale; different formal characteristics aligned with
different scales represent some paralinguistic function which can be conceived of holistically,
as phenomenological gestalt – this holds for straightforward phenomena such as filled pauses
or laughter, and for complex phenomena such as specific emotions or personality traits.
Whether we perceive or conceive something as categorical, that is, as belonging to mutually
exclusive classes, or as continuous, that is, as more or less representing classes that might not
be mutually exclusive, almost always seems to be a matter of perspective, even of taste. We
will come back to these different perspectives in Section 3.9. Biological trait primitives such
as sex/gender are normally taken as two categories, that is, either male or female, when we try
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to optimise performance by telling apart these two classes that display formal characteristics
in slightly different ways (e.g. the pitch register is higher for females than for males). On the
other hand, there are varieties of sex/gender that definitely are not either/or, and within these
classes there are degrees of femininity and masculinity which in turn are closely interrelated
with degrees of attractiveness and sexiness (see Section 5.3). The same holds for categories
such as nationality, first language versus second language, or for different varieties of the
same language. We sometimes speak of diglossia if two language varieties are distinct and
used in different situational settings. Yet, this might as well be only a very strong tendency
and not a fully clear-cut difference between categories. There are clear-cut cases of lying, but
we can also lie just a little bit.

As for personality and emotion, there is a long-standing discussion on whether they should
be modelled as classes or as continua. In personality research, types are contrasted with traits;
in emotion research, categories are contrasted with dimensions. “Personality types are discrete
categories that differ qualitatively in kind rather than in degree. Personality types are categories
that can involve a constellation of personality characteristics that are present in an all-or-none
fashion’ (Flett 2007, p. 28). Nowadays, personality trait models prevail with a dimensional
approach, and within such models the so-called five-factor model is predominant; it is described
in Section 3.1. In emotion research, categories seem to be more common than in personality
research; however, both categorical and dimensional models coexist. Emotion categories have
a long-standing tradition and are, for example, referred to in chapter headings in Darwin
(1872): ‘Low spirits, anxiety, grief, dejection, despair’ (Chapter VII) and ‘Joy, high spirits, love,
tender feelings, devotion’ (Chapter VIII). The first (modern) study using emotional dimensions
seems to be by Schlosberg (1941) who proposed two scales: pleasantness/unpleasantness and
attention/rejection; note that Wundt (1896) had already spoken of ‘affective directions’ such
as ‘pleasurable and unpleasurable’ (see Section 3.2). Schlosberg (1954) further introduced the
activation dimension, referring to physiological variables such as galvanic skin response.

The seminal work of Osgood et al. (1957) and Osgood (1964) introduced the semantic
differential method. Scales with contrasting adjectives such as ‘good–bad’, ‘strong–weak’,
‘loud–soft’, or ‘pleasant–unpleasant’ were given to subjects who had to use these scales for
rating the semantics of concepts. A subsequent factor analysis resulted in three most important
factors: evaluation, potency and activity. These dimensions were reviewed and evaluated in
Mehrabian and Russell (1974) for determining the emotional space. Evaluation/valence and
arousal/activity remain the best-established and most widely used emotional dimensions; stud-
ies dealing with emotion dimensions and speech are referred to in Section 5.4. However, for
a complete modelling of emotions, two dimensions will hardly suffice. Fontaine et al. (2007)
eventually establish four dimensions: ‘In order of importance, these dimensions are evaluation-
pleasantness, potency-control, activation-arousal, and unpredictability.’ Cochrane (2009) pro-
poses eight dimensions: ‘(1) attracted-repulsed, (2) powerful-weak, (3) free-constrained, (4)
certain-uncertain, (5) generalized-focused, (6) future directed-past directed, (7) enduring-
sudden, (8) socially connected-disconnected.’

Plutchik (1980) proposed a circular structure of emotion. Complex emotions are modelled
as mixtures of primary emotions. This is elaborated on in Plutchik and Conte (1997) where
the ‘circumplex model’ is described: personality traits and emotions are conceived as being
structurally similar and can be described in a circular/circumplex order. Another attempt to
relate categories to dimension can be found in Scherer (2000) where (categorical) emotion
terms are placed within a two-dimensional, circular representation of activity and valence.
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Obviously, all has not yet been said about the number and the characteristics of continua
and dimensions and their relationship with categories: which dimensions we should even-
tually assume, and where we can assume a continuum, where an ordered relationship, and
where clear-cut categories. We definitely should distinguish coarse processing from in-depth
processing. Sex and gender can serve as examples: a coarse partition into two different sex
classes for a subsequent processing of other phenomena, simply to get better performance,
will mostly do. However, this will not suffice to do justice for all the different manifestations
of gender differences.

Interdependencies with Other Taxonomies

Perhaps ‘categorical versus continuous’ is, besides ‘traits versus states’, another global and
universal distinction, orthogonal to the other taxonomies: for each of the other taxonomies,
we can imagine more or less categorical or continuous representations.

Main Relevance for Computational Processing

The relevance is straightforward: in the case of categories, the normal way of processing is
classification, based on n classes, n being at least 2 but not too high. In the case of continua,
these are normally modelled with regression and correlation. However, there is always the
possibility of mapping categories onto continua and vice versa, albeit normally not without
loss of information.

2.6 Felt versus Perceived

All that we see or seem
Is but a dream within a dream.

(Edgar Allan Poe)

Let us take up the father–son example from Batliner et al. (2010): a young boy is messing
around, and his father gets angry and shouts at him. Now the father may be angry because he
has told his son several times to stop, because he is a person inclined to get angry (personality
trait), or for many other reasons. However, the father may only be pretending to be angry (see
Section 2.7) – while in fact he is amused – just because he thinks as a father he should, because
he has been told by his wife to act in this way in such a situation, or for many other reasons.
The boy – especially if he is very young and not yet sophisticated enough – may take his
father’s anger at face value, and may stop or continue, running the risk of facing even greater
anger; however, if older and cleverer, he may figure out that the anger is only a pretense,
and react accordingly. Of course, both such felt and perceived states can be straightforward
or mixed/complex (see Section 2.3). In a real father–child interaction, the boy might be well
advised to obey – even if he knows that his father is only pretending.

Normally, what we feel is induced – by oneself or by others – and described and annotated
afterwards, by the person herself who felt that way (internal perspective). In contrast, we
perceive from the outside (external perspective). We can imagine more complicated scenarios,
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for instance, trying to tell apart felt and perceived states or traits by the person herself or by
others. We can try and look at ourself from the outside (‘externalised perspective’) and when
observing other people, we might not only label their feelings but feel the same way as they do
(we might call this ‘internalised perspective’). However, all this might be far too complicated
to be employed in any computational processing (see also Section 2.8).

Naturally enough, as far as type of annotation is concerned, self-annotation for ‘felt’ can
only be done by one person describing her own states, whereas annotation of perceived by
others normally is conducted by several labellers.

Emotion is exemplary for ‘felt versus perceived’; to a lesser extent, we might ‘feel’ person-
ality traits or even cultural trait primitives, and we can adopt speech characteristics in order
to play a role. Personality scales can be obtained based on self-assessment or assessment by
others, both normally with the help of questionnaires (see Section 5.3). As personality traits
are long-term, they are easier to assess by the subjects themselves than emotions which have
to be time-aligned: in the case of emotions, the subjects have to remember when they were in
which state. However, in both constellations, self-observations and others’ observations do not
necessarily coincide. When we are interested in the actual communication with others and the
impact of personality traits and emotions on others, perceptual annotation (i.e., others’ obser-
vations) might be appropriate. However, when we are interested in the self, self-observation
(in combination with correspondences and discrepancies with respect to others’ observations)
might be more adequate.

Self-assessment is somewhat controversial. Some researchers claim that this is the most
reliable assessment – after all, people themselves should know what they are feeling. Others
argue against this, especially if self-assessment is done some time after the event, for instance,
when the subjects listen to their own recordings, or observe themselves video-taped. Again,
studies on convergence of different methodologies are needed.

Interdependencies with Other Taxonomies

There are many interdependencies with other taxonomies. One type of acting, recommended
by Scherer (2013), for example, implies the induction of specific felt emotions. Of course,
there is a relationship to ‘measured versus perceived’. Here, the perspective is pivotal: seen
from one’s own perspective or seen from the outside. ‘Measured versus perceived’ relates
to possibilities of constituting references and modelling them. When aiming at ‘felt’, we for
instance can try to measure physiological signals; ‘perceived’ can normally only be obtained
by ‘external’ annotation. Another relationship is that with ‘intentional versus instinctual’. If
the father in our example above pretends to be angry but is not – or only a little – then
he does so intentionally. ‘Instinctual’ can be congruent with ‘felt’ but need not be so. ‘Per-
ceived’ is within the ‘receiver’ who, at the same time, can reason about any intention of the
‘sender’. Moreover, we can speculate whether discrepant communication can be based on
consistent feelings.

Main Relevance for Computational Processing

Both for ‘felt’ and ‘perceived’, only ‘vague’ reference values – at best constituting some gold
standard but not any ground truth in its strict sense – are available, based on human assessment.
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2.7 Intentional versus Instinctual

Good intentions aren’t good enough!
(George W. Bush)

We will follow Tomasello et al. (2005, p. 675) who establish a close link between intentionality
and cognition in both phylogeny and ontogeny of mankind – shared intentionality as a species-
unique feature of cultural cognition: ‘Participation in such activities requires not only especially
powerful forms of intention reading and cultural learning, but also a unique motivation to share
psychological states with others and unique forms of cognitive representation for doing so.’
Lacewing (2004, p. 175) summarises a recent framework which claims that ‘ . . . emotions
are a form of evaluative response to their intentional objects, centrally involving cognition
or something akin to cognition, in which the evaluation of the object relates to the concerns,
interests, or well-being of the subject.’ See also Roberts (1988).

A well-known example is the snake that appears all of a sudden: we do need cognition to
be able to recognise that it is a snake, and that it is potentially dangerous. However, especially
if we have a snake phobia, our reaction is very instinctual. If not, it might depend on the
circumstances: how big the snake is, how far away, whether we have been told that there are
poisonous snakes around – in the latter case, there will be a specific cognitive (and most likely,
affective) priming. In cognition the pre-frontal cortex is involved, in affect the amygdala (see
Roesch et al. 2011).

Now this example looks very conclusive; however, it might not be very representative for
human–human or human–machine communication, or other scenarios representative of com-
putational processing. A better example might be that of the father getting angry with his
child depicted in Section 2.6: in such a situation we can imagine everything from fully inten-
tional/cognitive/acted, via any stage in between, to fully instinctual/automatic/spontaneous.

Social interaction in general – and this can pertain all paralinguistic phenomena – and
emotion in particular are constantly regulated, and past and future actions of the communication
partner are taken into account (Marinetti et al. 2011). This can mean following socially agreed-
upon display rules that are more or less culture-specific (Matsumoto 1990). There seems to
be no agreement on whether phenomena such as emotions should be dealt with in their ‘pure’
form, or when altered by such display rules. Scherer (2013) obviously aims at the pure form,
arguing against employing ‘convenience’ databases from TV recordings which are heavily
influenced by display rules. On the other hand, for many scenarios in human–human or
human–machine interaction, display rules are an integral part because they are applied all the
time, and are constitutive for the interaction partners’ reactions.

Interdependencies with Other Taxonomies

There are many interactions and interdependencies with other taxonomies and types of par-
alinguistic phenomena. Acting is normally intentional. We can reason about whether ‘felt’ is
more ‘instinctual’ and ‘perceived’ transformed by more or less intentionally applied display
rules. Biological/cultural trait primitives and deviant signals might normally not be changed
intentionally, but they can be, in specific situations. Discrepant speech is very often inten-
tional, for instance, when someone is lying or being sarcastic. ‘Intentional versus instinctual’
might constitute a continuum or two categories, or two continua with a mutual, complex
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interrelationship; admittedly, such interrelationships can be imagined but are far too compli-
cated to be adequately processed automatically.

Main Relevance for Computational Processing

In general, we always have to consider the general scenario and the specific situation where
we will obtain our data, and especially our research interest. There is a high relevance, as
far as biosignals as reference are concerned. It might be possible to establish biosignals
as a real ground truth in the case of very instinctual events, such as being confronted
with a dangerous snake. There might be a possibility that instinctual emotions yield more
pronounced acoustic-prosodic feature characteristics. However, this will not be always the
case (see Section 2.2): a good actor might – but need not – produce higher arousal than in the
case of spontaneous emotions – and vice versa.

2.8 Consistent versus Discrepant

Life is full of misery, loneliness, and suffering – and it’s all over much too soon.
(Woody Allen)

The ideal interaction is consistent and honest (Pentland 2008), and follows the maxims estab-
lished by Grice (1975) for felicitous communication (see Section 5.8). Inconsistent, dis-
crepant – because unexpected – information can be in the eye of the communication partner
or observer only; examples are unusual high-pitched voices in males, or low-pitched voices in
females. Or imagine a Caucasian (‘white’) boy in an African village speaking a strong local
dialect of Swahili. In such cases, the context triggering the expectation of the communication
partner is responsible for the discrepant impression. A discrepancy between the literal meaning
of a message and the context can point towards irony, which is defined in Merriam-Webster
as ‘the use of words to express something other than and especially the opposite of the literal
meaning’. And a discrepancy between situational context and what is being said can point
towards the fact that the speaker is not telling the truth but lying.

Irony and sarcasm are rather rhetorical figures: the speaker normally wants to be understood
so that Oh, that’s really wonderful, produced in a discordant context, is understood in a negative
way. In contrast, pretending and lying normally intend to be taken at face value.

Consistency or discrepancy can exist within and across modalities. In a fully consistent
behaviour, speech, language, gestures, facial gestures and posture all signal the same intention.
In contrast, the father described in Section 2.6 can signal pure anger with his voice but his
smile might indicate that he does not mean it really seriously.

Multimodal discrepancy might be more common and more ‘normal’: it might be easier –
and more ‘natural’ – to signal different messages with different modalities. This can make
multimodal processing more difficult and error-prone; in turn, it can make unimodal processing
more straightforward.

Interdependencies with Other Taxonomies

In discrepant communication, there might often be some type of acting involved. Measure-
ment – if possible – might reveal other characteristics than in the case of consistent, honest
communication.
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Main Relevance for Computational Processing

Discrepant signals can constitute ‘rare birds’ that normally are classified wrongly because
of their low frequency which makes modelling cumbersome or impossible. Normally, we
are assuming consistent, honest signals when trying to analyse and recognise paralinguistic
phenomena. For a successful processing of discrepant signals, we have to know the difference
with respect to consistent signals; thus, we do need data sets with both discrepant and
consistent items. This normally requires some sophisticated experimental set-up or specific
constellations with some external evidence: for instance, we should know that a speaker is
lying or telling the truth.

2.9 Private versus Social

The only thing you owe the public is a good performance.
(Humphrey Bogart)

Parkinson (1996) claims that emotions are not primarily individual reactions but should be
viewed as social phenomena because they usually have consequences for other people. When
embedded in a communicative setting, the partners communicate all their states and traits,
sometimes explicitly, if expressing plain anger, sometimes implicitly, when using social and
regional varieties, or expressing personality traits. However, the opposite is not necessarily true.
Imagine a person wearing a recorder all day long and being recorded; even when she is alone,
she can express her emotions vocally and verbally, for instance, she can sigh, she can swear,
she can talk to herself (private speech; see Section 5.8.3). All this is fairly ‘normal’. However,
when we hear her reprimanding or using motherese (Batliner et al. 2008) while alone, this is
less ‘normal’ because there is no communication partner around. Thus the only explanation
would be that this person takes on a role in an imagined dialogue – as if some addressee were
present. Even interest or love need an object, to a greater extent than depression. Hareli and
Parkinson (2008) and Manstead (2005) address different aspects of the social character of
emotions.

There is a narrow and a broad conceptualisation of ‘communication’. The narrow one is
what we normally think of, typically a dialogue between two partners – which is a special case
of multi-party communications. The broad conceptualisation includes every human production
that can be observed and recorded. In the narrow conceptualisation, non-verbal factors, and
thus multimodality, are genuinely involved. In the broad one, we can imagine many situations
where this is not the case: for the screening of pathological speech, we only need speech
data. For call-centre interactions, multimodality is non-existent because normally it cannot be
recorded – even if, of course, the face displays emotions continuously.

A clear contrast exists between expressing the speaker’s state (rather private) versus directing
the listener (definitely social). However, even while ‘only’ expressing your own state, you act
socially if someone else is present. Even if no one is present – as in the case of ‘private speech’
or when you write a diary – what you are saying or writing becomes social when someone
else listens to the recordings or reads what you have written: one cannot not communicate
(Watzlawick et al. 1967).

Basic aspects of speech and language – which variety you speak, whether you tend towards
fluent or hesitant speech, which words you prefer, all this is not social per se but contributes
to the social impression you are making on an interaction partner.



40 Computational Paralinguistics

Interdependencies with Other Taxonomies

‘Private versus social’ is often orthogonal to the other taxonomies. However, you can act for
yourself – albeit more often you want an audience. ‘Perceived’ is of course social, in contrast
to ‘felt’. ‘Instinctual’ might be more private than ‘intentional’.

Main Relevance for Computational Processing

The main relevance of this opposition for computational processing might lie in the greater
impact of the situational and acoustic/linguistic context in the case of phenomena that are
more social than private.

2.10 Prototypical versus Peripheral

From the time of Aristotle to the later work of Wittgenstein, categories were thought be
[sic] well understood and unproblematic. They were assumed to be abstract containers,
with things either inside or outside the category. Things were assumed to be in the same
category if and only if they had certain properties in common. And the properties they
had in common were taken as defining the categories.

(George Lakoff)

This quotation from Lakoff (1987, p. 6) nicely describes the traditional concept of categories.
This classic concept was questioned by Ludwig Wittgenstein in Philosophische Untersuchun-
gen, posthumously published in 1953 (see Wittgenstein 2009), introducing family resem-
blances which can be described and defined by using language (Sprachspiel, language game).
The concept of prototypes was developed by E. Rosch (see Rosch 1975; Rosch and Mervis
1975): a prototype is a salient, central member of a category and typically most often asso-
ciated with this category (graded categorisation). Fuzzy boundaries between categories were
introduced in (Zadeh 1965).

Ultimately, all alternatives to clear-cut categories such as mixed/blended emotions, stereo-
types, and many more can be traced back to these works, or be described within these
frameworks. Fehr and Russel (1984) applied the prototype theory to emotions and showed that
the layman’s conceptualisation of emotion is prototypical, with fuzzy boundaries and graded
degrees of family resemblances.

Shaver et al. (1987) collected prototypicality ratings for 213 emotion words: love, anger,
hate, depression, fear, jealousy, and happiness had the highest, and interest, self-control,
alertness, carefulness, practicality, deliberateness, and intelligence had the lowest scores.
Russell (1991) defends this conceptualisation against critics; see also Niedenthal and Cantor
(1984) and Fuhrmann (1988). Encyclopaedic accounts of category concepts are Harnad (1987)
and Cohen and Lefebre (2005).

Nowadays, the concept of prototypes is still appealing; however, it is not really established
in theoretical or computational approaches. The reason might be that the instruments of science
seem to be more inclined towards categorical or clear continuous approaches which are easier to
manage than less marked-off classes. However, even if not named that way, all these concepts
sneak, as it were, into the scientific discourse if researchers go from clear-cut, predefined
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categories onto real-life data. If no external criterion is available, real-life data have to be
annotated manually to provide a reference for automatic processing. Thus a straightforward
operationalisation is to speak of ‘prototypical’ cases if the labellers agree. Non-prototypical –
weak and/or mixed – emotions can be found when labellers annotate more than one emotion per
item, or when we preserve the disagreement of several labellers in some sort of graded/mixed
annotation. Note that irrespective of the type of annotation, we can always generate either
categorical labels representing pure or mixed cases, or a continuous representation by placing
each case on some dimension scale, whether it be for valence or arousal. Basically, it is always
possible to convert a continuous representation into a categorical one, and vice versa. Still, the
relationship between prototypicality and dimensional or categorical approaches seems rather
complicated.

A sequel of the prototype theory is the exemplar-based theory introduced in psychology; a
key assumption is that categories are represented not (only) by a prototype but by clouds of
exemplars (Nosofsky 1986; Nosofsky and Zaki 2002; Skousen et al. 2002). As far as we can
see, it has not yet really been applied to paralinguistics but rather to linguistics proper, that is,
phonetics, phonology and grammar (Johnson 2006; Lacerda 1995; Walsh et al. 2010).

Interdependencies with Other Taxonomies

Prototypes might be universal rather than culture-specific; for instance, Ekman’s six basic (and
thus prototypical) emotions are claimed to be universal; see, however, Kövecses (2000). Less
prototypical cases might be more complex and not represent clear-cut categories but rather be
found somewhere on a continuum.

Main Relevance for Computational Processing

Prototypes might be produced more unambiguously and thus easier to process; therefore, they
might be good candidates for demonstrating and teaching. However, they might not be as
frequent as less prototypical members of a category.

2.11 Universal versus Culture-Specific

If we spoke a different language, we would perceive a somewhat different world.
(Ludwig Wittgenstein)

So far, at several points, we have pointed out that for application-minded computational
processing, we should aim at data used for modelling and training that are as close as possible
to the data used for testing and found within the application. This governing principle will
exclude a situation where we are faced with the question whether the phenomena we are
dealing with are universal or culture-specific. Cross-corpora studies where the corpora used
are cross-linguistic and cross-cultural – even if not generated for this purpose – are of course
interesting per se. So far, there are only a few studies using non-acted emotions, and, due to the
availability of different acted emotion corpora, a few more using acted emotions. Studies that,
from the start, are designed as cross-cultural studies, normally use tightly controlled data. On
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the basis of such data, Sauter (2006) and Sauter et al. (2010) find that non-verbal emotional
vocalisations (screams, laughs) are perceived similarly across two strikingly different culture
groups, as far as the signalling of basic emotions is concerned. However, it seems that other,
positive emotions are communicated by using culture-specific means. As for facial expressions
and emotion, the strong hypothesis that has prevailed so far – that the ‘big six’ basic emotions
are culturally universal – has recently been disproved by Jack et al. (2012) in a cross-cultural
experiment with individuals from Western and Eastern cultures. Culturally specific ‘display
rules’ for emotions have been addressed in the work of Paul Ekman and colleagues (Ekman
1972). There are certainly similar display rules for other states and traits, such as intoxication,
sleepiness, openness, neuroticism, female versus male traits, or age.

As far as linguistic means are concerned, the discussion in modern times can be traced
back to the old dispute on linguistic relativity as to whether language influences our way of
conceptualising and thinking. Is this relativity a strong, weak, or non-existent tendency? Great
battles were fought between supporters of the so-called Sapir–Whorf hypothesis (Whorf 1956)
and of the universalist theories with Chomsky as protagonist. Some cognitive linguists, for
example, Lakoff (1987), took an intermediate stance.

For instance, the term Schadenfreude for a specific emotion is a ‘synthetic’ term in German,
not existing as such in English and thus an English loanword, but of course its semantics can be
expressed ‘analytically’ in English (for instance, as ‘pleasure in the misfortune of others’) and
other languages as well. It is still an empirical question whether the means made or not made
available by a specific language predefine the ways of thinking and acting, and/or whether the
means available are used differently by different cultures; as for culture-specific semantics of
emotions, see Wierzbicka (1986) and Kövecses (2000); culture-specific appraisal biases are
addressed in Scherer and Brosch (2009). A weak form of linguistic relativity, such as advocated
by Boroditsky (2003), seems to be a reasonable stance to take. It is a chicken-and-egg problem
whether language users shape their culture and create words denoting specific phenomena or
whether the language partly influences the way of thinking by providing specific words.

The characteristics of deviant speech should by and large be universal: the speech of
children with cleft palate, or that of laryngectomised elderly people, will basically show the
same characteristics across languages. The same holds for biological trait primitives. Thus for
these phenomena, cross-linguistic studies, or simply employing data from another language
for modelling, seem to be more promising and frequent. There are exceptions, though. For
instance, the pitch register of women can be higher or lower than expected, due to culture-
specific influences; see Section 4.2 and the display rules mentioned above.

Interdependencies with Other Taxonomies

Acting might be different in different cultures, and due to weak relativity constraints, reports
on felt states – using the different linguistic means available in different languages – might
differ between cultures.

Main Relevance for Computational Processing

Although it might be possible simply to transfer methodologies and feature sets onto data
obtained from other cultures, this is still a research topic; the few cross-cultural emotion
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studies so far (see above) show that there will be some loss of performance. However, we do
not know yet whether this is due to cross-cultural factors or simply to differences in databases
used for training and testing. As for deviant speech, cross-cultural differences might turn out not
to be very relevant – apart from differences due to phonetic and linguistic systems, of course.

The data for training, validation, and testing are normally taken from a consistent population,
for example, culture-specific when utmost performance is targeted.

2.12 Unimodal versus Multimodal

The computer can’t tell you the emotional story. It can give you the exact mathematical
design, but what’s missing is the eyebrows.

(Frank Zappa)

We have briefly addressed multimodality in Section 1.4. On the one hand, it is evident that
humans are ‘multimodal beings’ employing all modalities at hand for communicating and
expressing themselves. However, sometimes not every modality is available for the sender
and/or receiver of a communicative message; it is such situations that we want to address in
this section.

Vision or hearing might not be employed either because people are handicapped (hard of
hearing or vision-impaired) or because the situational context does not allow it. ‘Speech-only’
situations are: over the phone, in the dark, over long distances (facial gestures are not visible
but perhaps posture and gestures are), or addressing from behind (a popular but outdated
strategy for addressing hard-of-hearing children, to find out whether they can hear or not); the
driver of a car can speak to his passenger but should not face her – however, the driver’s face
can be seen by the passenger and monitored by a camera.

A deaf father who normally uses sign language cannot possibly ‘speak’ – meaning com-
municate with his child in the normal way by signing – while carrying a heavy box with both
hands. This is no severe handicap – he simply has to do the one after the other. The same
holds for the normal way of communicating via sign language with eye contact – looking
simultaneously at a picture book and communicating with signing is not possible.

‘Vision-only’ situations are: temporary loss of voice due to illness, ‘conversation’ between
two people who do not understand each other’s language at all (normally with some vocalisa-
tions, though), or interactions in very noisy surroundings.

Written language is by its very nature unimodal but can of course be enriched with drawings,
icons, and the like – think of emoticons in email messages. Conversations with the help of
written messages (with or without visual cues) do occur, for instance, in the case of a temporary
or permanent loss of voice.

Telephone calls are speech-only (note that call-centre interaction is a standard use case for
computational paralinguistics), as are pure audio media retrieval scenarios, audio documents
in general (e.g., the famous report on the Hindenburg disaster when a German airship caught
fire and was destroyed in 1937), radio plays and radio news. A prototypical multimodal setting
is face-to-face interaction. From a processing point of view, such an interaction can be partly
unimodal, for instance, when one partner is only listening while the other is talking. Moreover,
there might be some reason for only monitoring the speech of the talking partner because the
affect expressed in his/her face is distorted by the movements of the speaking organs.
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In any case, we have to consider that the functional load for, on the one hand, linguistic-
semantic messages, and on the other hand, paralinguistic messages, can be different. When deaf
people use sign language, then not only hand gestures but also facial gestures are often used
to convey a semantic message (e.g., raised eyebrows indicating a question). In such situations,
this sign is encoded with a specific semantic function and might not function well any longer
as ‘free variant’ – free for transmitting paralinguistic messages. The same restriction can apply
for spoken language: In noisy environments, we have to speak very loudly and might thus not
be able to express something like irony with the help of voice quality, intonation, and the like.

In such cases, a full synchrony of functional means might not be possible, but of course they
can be employed sequentially – the same way as in written messages, the emoticon comes
after the word sequence to which it pertains.

Even deviant speech can be claimed to be a multimodal phenomenon, and strictly speaking
it certainly is because speaking is caused by the speech organs that can be tracked with
video recordings. Speech therapy is genuinely multimodal. So far, the automatic processing
of pathological speech has been exclusively unimodal.

Interdependencies with Other Taxonomies

There are cultural differences as to the importance of multimodality; people from southern
Europe use gestures to a larger extent than people from northern Europe. Yet, we do not
know of any study that has addressed the question whether acoustic-prosodic information is
employed to a larger or lesser extent, or differently, in any of these cultures. A straightforward
relation exists with ‘complex versus simple’: of course, multimodal communication is, other
things being equal, more complex than unimodal communication. However, it can be that in the
case of unimodal communication, subtler means are employed than in the case of multimodal
communication, where one modality is fully free to indicate some specific paralinguistic (or
extralinguistic) function.

Main Relevance for Computational Processing

The question is always whether one modality – in our case, speech/language – signals every-
thing or at least the most important aspects of the relevant information. That is, do we face a
loss of performance in the case of unimodal modelling?

Some of the examples above might be rather peripheral for the computational processing of
paralinguistics but they are well suited for exemplifying the complex interdependency between
modalities.

2.13 All These Taxonomies – So What?

There are known knowns. These are things we know that we know. There are known
unknowns. That is to say, there are things that we know we don’t know. But there are
also unknown unknowns. There are things we don’t know we don’t know.

(Donald Rumsfeld)

We do not claim that the taxonomies presented in this chapter are on the same level as biological
taxonomies, or as the taxonomies of personality and emotion research that have evolved over
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many decades. In a practical sense, all of them can be taken as a catalogue of questions
we should ask when addressing any of the paralinguistic phenomena we want to deal with:
whether they apply, whether they can be employed in any useful way, and what our stance is
towards any of them. An experienced traveller does not necessarily need a checklist of what
to pack – but it might come in handy because it is easy to forget one single but important item.
An experienced researcher in computational paralinguistics might not need a checklist of the
phenomenon she wants to address – but here as well, it might be useful to go through a list of
all possible taxonomies and to consider what to do about them. A checked box can inspire us
to get more acquainted with this taxonomy; for instance, when we check ‘social’ in ‘private
versus social’, we might read more about the social constructivist perspective in emotion
research, or about social signals (see Sections 3.2 and 5.7). It might not be that important to
know the ‘correct’ answer, that is, to tick the ‘correct’ box; sometimes we simply do not know
exactly, but even this is important.

We now want to demonstrate how this checklist can be used for databases; for this purpose,
we use two databases that we are very familiar with, the FAU (Friedrich Alexander University)
Aibo Emotion Corpus (AEC) used in the first Interspeech Emotion Challenge 2009 (Batliner
et al. 2008; Steidl 2009), and the C-AuDiT database (Hönig et al. 2012).

2.13.1 Emotion Data: The FAU AEC

German children were recorded while communicating with Sony’s Aibo pet robot. They were
led to believe that Aibo was responding to their commands, whereas the robot was actually
being controlled by a human operator who caused Aibo to perform a fixed, predetermined
sequence of actions; sometimes Aibo behaved disobediently, thereby provoking emotional
reactions. The data were collected at two different schools from 51 children (aged 10–13, 21
male, 30 female; about 8.9 hours of speech without pauses, sampling rate 16 bits at 16 kHz).
The recordings were segmented automatically into ‘turns’ using a pause threshold of 1000
ms. Five labellers listened to the turns in sequential order and annotated each word as neutral
(default) or as belonging to one of ten other classes. If three or more labellers agreed, the label
was attributed to the word (majority voting). The number of cases with majority votes is given
in parentheses: joyful (101), surprised (0), emphatic (2528) as a pre-stage of ‘angry’, helpless
(3), touchy, that is, irritated (225), angry (84), motherese (1260), bored (11), reprimanding
(310), rest, that is, non-neutral but not belonging to the other categories (3), neutral (39 169);
4707 words had no majority votes; all in all, there were 48 401 words. As some of the labels
are very sparse, they are mapped onto cover classes (Steidl 2009): touchy and reprimanding,
together with angry, are mapped onto Angry as representing different but closely related kinds
of negative attitude. (Angry can consist, for instance, of two touchy and one reprimanding
label; thus the number of Angry cases is far higher than the sum of touchy, reprimanding, and
angry majority voting cases.) Some other classes, like joyful, surprised, helpless, bored and
rest, do not appear in this subset.

Table 2.3 displays the FAU AEC checklist. on a five-point either/or scale. We have to decide
between X (e.g., trait) and Y (e.g., state), with the following possibilities: I am sure that it
is X; it is X rather than Y; it is something in between X and Y; it is Y rather than X; I am
sure that it is Y. The phenomena we were annotating were clearly states and not traits; it
was evident, though, that the children’s personality determined which states they employed
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Table 2.3 Checklist for FAU AEC

either sure rather in between rather sure or

trait x state

acted x spontaneous

complex x simple

measured x assessed

categorical x continuous

felt x perceived

intentional x x instinctual

consistent x discrepant

private x x social

prototypical x peripheral

universal ? culture-specific

unimodal x multimodal

‘x’, ‘applicable’; ‘?’, ‘don’t know for sure’; ‘0’, ‘not applicable’; more than one box can be ticked.

how often – there were very active children, and very shy children. The children’s behaviour
was not prompted in any way; however, there is no clear-cut criterion for deciding whether
your subjects are acting or behaving spontaneously: we simply have to design a non-prompted
experiment and have to observe our subjects. In this case, there was no indication that the
children were not spontaneous. We could observe both simple, that is, clear-cut states, and
complex, mixed cases – the annotators agreed on some cases, and disagreed on others; this is
the usual outcome. We did not measure but only annotated, thus, the data are fully assessed.
Here, complex/simple and categorical/continuous are mutually dependent, thus we decide not
to decide between categorical and continuous. There is no self-annotation, thus our labels are
perceived by others. The children had to give commands to the robot, thus we can assume
intentional behaviour which is mirrored in motherese/reprimanding and emphatic; on the other
hand, there are cases of instinctual behaviour, for instance, ‘real’ anger. There is no indication
that the children do not behave in a consistent way. Motherese and reprimanding are clearly
social, anger at least partly private. The states that were annotated are rather prototypical and
not exotic; seen from the point of view of emotion theory, only anger – being a member of the
‘big six’ (Section 3.2) – is a prototypical emotional state. As our subjects are from one specific
culture, we cannot say anything about universal versus culture-specific characteristics. The
children were not told that the robot could observe their behaviour or not; thus, we cannot
decide from start whether they employed any multimodal behaviour in communicating with
the robot. The video recordings revealed that some of the children were very static, some very
lively, and that some of them pointed towards the target the robot should go to.
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Of course, some of the boxes were ‘ticked in advance’; the experimental setting resulted
in states and not in traits to be annotated, and made it very likely that we really could elicit
spontaneous speech. Yet, we did not envisage exactly this combination of rather ‘private’
emotions and ‘interactional’ states such as motheresing and reprimanding. The combination
inspired us to use non-metrical dimensional scaling – a visualisation method in n-dimensional
space which led to two dimensions, the first being valence, and the second being not arousal
but social interaction (Batliner et al. 2008). Inspection of the video recordings – which were
not intended to be analysed but to constitute a sort of fall-back documentation – inspired an
analysis of the interplay between body movements, hand gestures (especially pointing), and
affective states; in (Batliner et al. 2011) we demonstrate a correlation between body movements
and hand gestures on the one hand, and the use of specific emotions on the other hand.

2.13.2 Non-native Data: The C-AuDiT corpus

For the C-AuDiT (Computer-Assisted Pronunciation and Dialogue Training) corpus (Hönig
et al. 2012), 55 speakers of English as a second language (L2) were recorded: 25 German,
10 French, 10 Spanish, and 10 Italian speakers. They had to read aloud 329 utterances shown
on the screen display of an automated recording program. The data to be recorded consisted
of two short stories (broken down into sentences to be displayed on the screen), sentences
containing, inter alia, different types of phenomena such as question intonation or position
of phrase accent (This is a house. versus Is this really a house?), or tongue-twisters, and
words/phrases such as Arabic/Arabia/The Arab World/In Saudi Arabia, . . . ; pairs such as
SUBject versus subJECT had to be repeated after the pre-recorded production of a tutor. Some
sentences were taken from the Italian and German Spoken Learners’ English (ISLE) corpus
(Menzel et al. 2000). Based on annotations of three experienced labellers (Hönig et al. 2009),
a subset was defined consisting of those five sentences that were judged as ‘prosodically most
error-prone for L2 speakers of English’ (Hönig et al. 2010).

For annotation, a perception experiment was conducted for scoring intelligibility, non-native
accent, perceived first language (L1), melody and rhythm, using the PEAKS tool (Maier et al.
2009). Twenty native American English, 19 native British English, and 21 native Scottish
English speakers with normal hearing abilities judged each sentence in random order. These
were the possible answers to the melody question: This sentence’s melody sounds: (1) normal;
(2) acceptable, but not perfectly normal; (3) slightly unusual; (4) unusual; (5) very unusual.
The labels on the Likert scales were averaged over all sentences of a speaker to get a single
score for each criterion.

Table 2.4 displays the C-AuDiT checklist. Such recordings of read non-native speech
typically display traits, that is, cultural trait primitives; one can imagine testing again, after an
intensive learning period of a few weeks, therefore we entered ‘?’ under ‘rather’ to indicate
that this trait can change in the foreseeable future, and within-speaker experiments might be
possible. ‘Acted’ versus ‘spontaneous’ does not really apply for read speech, especially if the
data to be read are not embedded in a dialogue. The formal characteristics of this type of
speech are rather complex – wrong word accent position, substitution or deletion of segments,
non-native rhythm, and so on. The data were assessed by human annotators. Non-native speech
is typically more or less non-native, thus a somewhat continuous phenomenon; the assessment
was done on an ordinal scale resulting in a sort of continuous scale after averaging across
annotators. The annotation was perceived; note that additionally, the subjects assessed their



48 Computational Paralinguistics

Table 2.4 Checklist for C-AuDiT

either sure rather in between rather sure or

trait x ? state

acted 0 spontaneous

complex x simple

measured x assessed

categorical x continuous

felt x perceived

intentional 0 instinctual

consistent ? discrepant

private 0 social

prototypical x x peripheral

universal x culture-specific

unimodal x multimodal

‘x’, ‘applicable’; “?’, ‘don’t know for sure’; ‘0’, ‘not applicable’; more than one box can be ticked.

own L2 proficiency on a coarse scale. The next three taxonomies do not really apply; sometimes
the formal characteristics might be discrepant, when, for instance, a strong non-native rhythm
went together with a close-to-perfect segmental pronunciation. However, this happens rarely.
There are L2 speakers who are prototypical for a specific L1, and there are L2 speakers who
cannot easily be assigned to any L1. The non-native traits are culture-specific in the sense that
the L1 can be seen as cultural trait primitive (see Section 5.2). These types of read data are
typically unimodal – no video recordings, no interactions with peers or teachers. Of course,
video recordings of the speakers could be taken to reveal their states, for instance, ‘flow’ when
they do not have any problems in pronouncing the items, or ‘stuck’ when it is getting difficult
for them.

Obviously, our taxonomies are more useful for emotion modelling than for non-native
speech – most likely because non-native speech is less influenced by personality traits or by
complex interactions of other traits or states (cf. the different levels displayed in Figure 5.1).
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3
Aspects of Modelling

My lord, facts are like cows. If you look them in the face hard enough, they generally
run away.

(Dorothy L. Sayers, Clouds of Witness)

This chapter deals with the perspectives from which a phenomenon is viewed in models and
theories; it does not deal with intrinsic characteristics of phenomena – these were addressed in
Chapter 2. State-of-the-art and paralinguistic phenomena themselves are dealt with in Chapters
4 and 5.

This might seem to tear apart what belongs together. However, with this structure we want
to disentangle aspects that are, as it were, external to paralinguistics proper, belonging to other
fields of science such as psychology or medicine, or to general principles of methodology, for
instance, whether data should be collected in the lab or in real-life settings.

3.1 Theories and Models of Personality

All the games people play now / Every night, every day now
Never meanin’ what they say now / Never sayin’ what they mean

(Joe South, 1968)

Personality is a term of uncertain origin derived from the Latin ‘persona’ (‘mask’, ‘character’
in a play, as in the phrase dramatis personae); thus, originally, the term did not denote the
character of a person but the character that is played by her on stage – a nice metaphor for the
dual character of paralinguistic phenomena, expressed also in the ‘felt versus perceived’ and
‘intentional versus instinctual’ taxonomies.

The following definition of the concept of ‘personality’ is given in Flett (2007, p. 4):

‘Personality’ refers to relatively stable individual differences that are believed to [be]
present early in life and involves characteristics that generalize across time and across
situations. We usually discuss personality in terms of the dispositioned factors and

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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associated behaviours that distinguish us and make us different from other people, but
there are some personality characteristics and processes that may be at least somewhat
similar across individuals.’

The forebears of personality theories are all those eminent historical theories and figures in
psychology – because psychology per se deals with the personality of humans: the psychoan-
alytic theories of Freud, Jung, Adler, Horney, Erikson and Fromm; the behaviouristic theories
of Skinner and Eysenck; and the humanistic theories of Maslow, Rogers and Frankl. This list
could be extended.

Allport was one of the early researchers to study personality traits (Allport and Allport
1921; Allport 1927) and to start with a lexical approach taking the words found in natural
language as a basis for taxonomies (Allport and Odbert 1936). This work was continued by
Norman (1967) who established specifications for seven categories: stable terms (biophysical
traits); temporary states, moods and attitudes; social roles and relationships; evaluative terms
and mere quantifiers; terms for anatomical medical, physical and grooming characteristics;
ambiguous, vague and tenuously or obliquely metaphorical terms; and very difficult, obscure,
and little-known terms. Such terms can be conceived of as mutually exclusive categories or,
as Chaplin et al. (1988) suggest, as prototypes (see Section 2.10).

Following this early work, different granularities or levels of personality traits were pro-
posed – cf. the title of Eysenck (1991): ‘Dimensions of personality: 16, 5 or 3?’ These
descriptive, empirically oriented approaches towards personality eventually resulted in the
now well-established so-called five-factor model of personality (the ‘big five’) which is based
on a lexical tradition (clustering of lexical synonyms) and a questionnaire tradition (assess-
ment of one’s own or others’ personality with the help of standardised questionnaires); see
McCrae and John (1992). This five-factor model is elaborated on in Digman (1990) and John
and Srivastava (1999) who favour a mnemonic convention besides the numbering convention
which reflects the relative size of the factors in lexical studies; differently ordered, this results
in an acronym that forms the OCEAN of personality dimensions:

E Extraversion (or ‘extroversion’), energy, enthusiasm

A Agreeableness, altruism, affection

C Conscientiousness, control, constraint

N Neuroticism, negative affectivity, nervousness

O Openness, originality, open-mindedness

This five-factor model of personality, naturally enough, does not meet the high standards
of biological taxonomies because it is not based on (fully) ‘objective’ measures, and its
terminology might be culture- and language-dependent (John and Srivastava 1999). Thus the
‘big five’ are both established and still controversial; as Scherer (2013) puts it, ‘the definition of
the traits and their measurement remain highly debated. This is more of a problem for symptom
studies in which the personality of the speakers used needs to be reliably measured than in
attribution studies (appeal) in which there tends to be a certain level of agreement on a small set
of popularly used personality descriptors’. Open questions, as already mentioned in Chapter 2,
are for instance: universality, cross-linguistics, cross-cultural, and prototypical versus discrete.
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The default methodology in paralinguistic approaches towards personality is to resort either
to the ‘big five’ or to one or more subcategories where some intersubjectivity has been
established, for instance, by agreed-upon scales. The ‘Big Five Inventory’ can be tested, for
example, with a longer questionnaire consisting of 44 short phrases (John and Srivastava 1999),
or a shorter one consisting of 10 short phrases (Rammstedt and John 2007) yielding lower
effect sizes but still usable if time is limited. Studies addressing the automatic recognition of
different types and different granularities of personality traits based on acoustic and linguistic
information will be dealt with in Section 5.3.

3.2 Theories and Models of Emotion and Affect

Siobhan also says that if you close your mouth and breathe out loudly through your
nose it can mean that you are relaxed, or that you are bored, or that you are angry and
it all depends on how much air comes out of your nose and how fast and what shape
your mouth is when you do it and how you are sitting and what you said just before and
hundreds of other things which are too complicated to work out in a few seconds.

(Mark Haddon, The Curious Incident of the Dog in the Night-Time, 2003)

The autistic boy in Haddon’s novel obviously has difficulties mapping the many formal
elements that can be perceived onto the many different functions (emotions and emotion-
related states) that can be indicated by them. As ‘normal’, ‘typically developed’ people we
might not have the same problems in daily life but we definitely do have similar problems
when trying to describe, annotate, and model something that is as pervasive and, at the same
time, evasive, as emotion. It is pervasive because it is ‘. . . present in most of life, but absent
when people are emotionless (which . . . happens rather rarely)’ (Cowie et al. 2011, p. 14).
It is evasive because there are too many and too different everyday conceptualisations of
emotion. This two-headed state is mirrored in theoretical approaches as well. On the one
hand, there are the well-known full-blown emotions – everybody agrees that they are emotions
but only adherents to special theories claim that they are the only ones. On the other hand,
there is something like emotional intelligence which is claimed to be as important as cognitive
intelligence and to pervade the whole of life (Mayer et al. 2008; Salovey and Mayer 1990). This
concept seems to be used by practitioners but is rather stigmatised by theoreticians because it
is claimed to be too vague and too all-encompassing (Locke 2005).

A broad and a narrow definition of ‘emotion’ coexist not only in theoretical approaches but
also in normal language use and thus in dictionaries. The following definition of a strong and
a weak variant of emotion can be found in the Merriam-Webster online dictionary:

1 a obsolete : DISTURBANCE
b : EXCITEMENT

2 a : the affective aspect of consciousness : FEELING
b : a state of feeling
c : a conscious mental reaction (as anger or fear) subjectively experienced as strong

feeling usually directed toward a specific object and typically accompanied by physio-
logical and behavioural changes in the body
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The definition in the Oxford Dictionaries online reads differently but again, there is a broad
and a narrow definition:

noun: a strong feeling deriving from one’s circumstances, mood, or relationships with
others: she was attempting to control her emotions

mass noun: his voice was shaky with emotion

• mass noun: instinctive or intuitive feeling as distinguished from reasoning or knowl-
edge: responses have to be based on historical insight, not simply on emotion

Emotion can be viewed from different perspectives. Giving an overview of theories and
models of emotion is not an easy task; statements like this often introduce introductory
chapters in longer studies, or shorter introductions into the subject. This book is no exception.
It is relatively straightforward to mention the ‘forebears’ of basic approaches – which we will
do, following Cornelius (2000) – and to mention prominent representatives of present-day
emotion research. This will be done in the following as well. As long as one is confined to the
realm of one specific theory, matters can seem to be relatively straightforward. This holds for
other fields as well, for instance, for different linguistic theories.

In the Darwinian perspective (Darwin 1872), emotions are evolved phenomena with impor-
tant survival functions. This evolutionary perspective suggests conceiving emotions as rather
universal; see Ekman et al. (1987) and the so-called ‘big six’ (happiness, sadness, fear, disgust,
anger, and surprise). These are claimed to be basic and other emotions to be derived from
them. In the Jamesian perspective (James 1884), emotions are considered to be experienced
and constituted via bodily responses to the environment. In the cognitive perspective (Arnold
1960; Clore and Ortony 2000), emotions are constituted via appraisal by which events are
judged as positive or negative. Finally, in the social constructivist perspective (Averill 1980),
emotions are based on culture and learned social rules.

The mediating link between basic theories of emotion and computational approaches in
paralinguistics is methodology. Implicitly, when we employ physiological signals as features
or, even more importantly, as ground truth, we adhere to a Darwinian perspective. When we are
interested in intentionally produced emotions, we adhere to a social constructivist perspective.
The concept of arousal implies a sort of biologistic point of view, the concept of valence (to
evaluate something as positive or negative) rather a cognitive one (appraisal).

It seems to us that the ‘points of contact’ between emotion theories and ‘practical’ computa-
tional paralinguistics do not necessarily concern pivotal, basic theoretical concepts but rather
the edges of theories: lists of traits and states, types of annotation or modelling (categories
versus dimensions), quantifications, and especially knowledge of the phenomena one wants
to deal with. The ultimate criterion within computational paralinguistics is not adequacy for
and within specific theoretical constructs but adequacy for specific applications and/or per-
formance in classification and modelling. It is like being at the greengrocer: you do not care
about the biological taxonomies of fruits or vegetables, you just pick the ones you want to eat.
We will come back to this pivotal difference in perspective throughout the following chapters.

Cowie et al. (2011) try to disentangle the many (slightly) different conceptualisations of the
terms ‘feeling’, ‘affect’, and ‘emotion’. The prevailing language use is to reserve ‘emotion’
for some specific states; (Scherer (2005, 2013) presents such a prototypical conceptualisation
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of ‘emotion’); and to use ‘affect’, most likely due to the impact of the seminal book by Picard
(1997), in a broader sense, encompassing emotions and ‘emotion-related states’:

‘Affect’ is a word that deserves special attention, because it is much used in the area, and
it has a very curious semantic profile. It is rarely used in everyday discourse. Insofar as
it has a generally accepted meaning, it signifies something akin to emotion, but broader
in some sense. Experts have taken it up and given it a great variety of more precise
senses, often grounded in a theory which implies that emotional and emotion-related
phenomena divide naturally in particular ways.

(Cowie et al. 2011, p. 12)

Note that in German, the meaning of ‘affect’ is extremely narrow: it means ‘utmost emo-
tionality’ (you kill someone ‘in affect’). A somehow fuzzy semantics also has the term
‘emotion-related states’ – often used in the same rather vague sense as ‘affect’ in English. In
Scherer (2003) and Juslin and Scherer (2005), ‘affective states’ encompass personality traits
and several different states such as emotion, mood, interpersonal stances, and attitudes (see
Table 2.1).

Within such a broad conceptualisation of affect, traits and states have a complex relationship.
Peculiarities of short(er) states are influenced by personality traits; this holds for the ‘same’
phenomena as well (Reisenzein and Weber 2009; Revelle and Scherer 2009); see also Endler
and Kocovski (2001, p. 232) who refer to ‘trait anxiety as an individual’s predisposition
to respond, and state anxiety as a transitory emotion characterized by physiological arousal
and consciously perceived feelings of apprehension, dread, and tension’. The same holds for
emotion-related states and traits (see our example of the ‘interested person’ in Section 2.1).

The big issues – still debated today – were introduced by Wundt (1896):

On the basis of quality we may distinguish certain fundamental emotional forms cor-
responding to the chief affective directions distinguished before. . . . This gives us plea-
surable and unpleasurable, exciting and depressing, straining and relaxing emotions. It
must be noted, however, that because of their more composite character the emotions,
are always, even more than the feelings, mixed forms. Generally, only a single affective
direction can be called the primary tendency for a particular emotion.

Wundt’s first two ‘affective directions’, ‘pleasurable/unpleasurable’ and ‘exciting/
depressing’, are mirrored in the prevalent dimensional model with evaluation and arousal
(cf. Section 2.5). Emotion categories are nowadays mostly processed as ‘single’, ‘primary’
emotion, most likely for practical reasons. More complex models are, for example, major
versus minor emotions (Schuller et al. 2010a; Vidrascu and Devillers 2005), or composite
models with graphical representations such as the ‘emogram’ (in analogy to ‘sonagram’) in
Adelhardt et al. (2006) or the emotion profile in Mower et al. (2011).

Final Note on Theories and Models

We confine our short presentation of theories and models to personality and emotion/affect. As
for the other paralinguistic phenomena, we do not necessarily need ‘big’ theories. Of course,
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there are psychological, sociological, cultural and literal theories and models, for instance, of
age – to mention just a few fields that deal with age. As far as computational paralinguistics
is concerned, age is mostly a straightforward phenomenon which can be modelled in years,
or at the very beginning of life in months or other shorter time frames. Note that it is not
straightforward to find out the exact age – it can deliberately be masked, and it can be
indicated differently by females, males, or different cultures, and relevant parameters can be
influenced by any other factors. A non-native accent or some variety of pathological speech
can be complicated to describe and model computationally but the phenomenon behind it is
often relatively straightforward. When it is not, this problem normally belongs to theories
external to paralinguistics.

3.3 Type and Segmentation of Units

Being determines consciousness.
(Karl Marx)

The limits of my language means the limits of my world.
(Ludwig Wittgenstein)

Although the extraction and segmentation of units of analysis could simply be viewed as a
technicality, we decided to treat it in this chapter on modelling. In so doing, we want to stress
the impact of seemingly down-to-earth decisions on units of analysis. Figure 3.1 tries to give
a ‘practical’ account of the alternatives, not a strict and complete theoretical taxonomy.

First of all, the scientific field – and thus the possibility of obtaining and processing data –
predefines the type of data addressed; this is displayed on the vertical axis. Linguists and
computer linguists normally deal with written language. Phoneticians – but often psychologists
and clinicians as well – deal with spoken language, that is, speech which is often very restricted,
such as prompted short utterances, words, or even sustained vowels. The same holds for non-
verbal, vocal events such as laughter or coughing. Speech processing lies in some sense
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Figure 3.1 Type and time duration of units, and frequency
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between linguistics and phonetics: sometimes it only deals with pure acoustic phenomena
(phonetics), sometimes manually or automatically transcribed words or higher units are objects
of investigation.

The impact of dealing with acoustic or linguistic information only is straightforward: in
the former case, we cannot say anything on linguistic parameters that might be relevant;
in the latter case, vice versa. In speech processing, when both acoustics and linguistics are
being modelled, we face either sub-optimal parameter representation if we employ speech
recognition, or a great effort of manual transcription and annotation.

On the horizontal axis, we display linguistically meaningful units, from shortest (left) to
longest (right). A typical unit in clinical studies is sustained vowels (phones). Mostly, higher
units are simply speech signals, either recorded and stored separately, or cut out from longer
passages, using more or less ‘intelligent’ criteria. The strategies chosen of course depend
on the phenomena one wants to model; it is less decisive for traits where we segment, than
for states where the unit of investigation should be coextensive with the state one wants
to model.

Pang and Lee (2008) demonstrate for text-based opinion mining and sentiment analysis
the differences in analysis for different textual units. In Batliner et al. (2011) it is shown not
only that both acoustic and linguistic phenomena contribute to the marking of emotion-related
states but also that linguistic information – for instance, whether words are content words or
function words – is implicitly modelled in acoustic parameters. In Batliner et al. (2010) units
of different size such as words versus chunks are demonstrated to have different impact on
the performance of emotion classification; Seppi et al. (2010) demonstrate that it is stressed
syllables that carry emotion information, and not unstressed ones. All these results feature
a stronger dovetailing between acoustics and linguistics than one might expect, having only
studies in mind that address either/or.

Moreover, there are ‘linguistically blind’, technically oriented solutions towards smaller
units. We can model single frames (mostly with a length of 10 ms), or fractions of longer time
units (mostly of seconds), or we can subdivide the whole signal into equally spaced parts. This
is a typical ‘engineering solution’. Its advantages are that we do not need any other higher-
level information. Its disadvantage is, of course, that we might lose information by cutting
across meaningful units; this might level out with higher frequencies and longer durations
of units.

The third dimension displayed in Figure 3.1 is frequency. High frequency is aimed at, but
often we have to face the sparse-data problem. A single instance ‘token’ is a so-called hapax
legomenon, a single instance ‘type’ is simply just the same unit (the vowel /a/, or the filled
pause ‘uhm’, or the word ‘stupid’ occurring more than once).

Basically, each study within paralinguistics might be placed in the three-dimensional rep-
resentation of Figure 3.1, according to the units that are modelled and addressed. This is a
placement of the formal unit of analysis which can be related to the function we are interested
in. So far, the combination of different (types of) technical segmentations has proved to be
very promising, as was shown for emotion processing in Schuller and Rigoll (2006) and in
Schuller et al. (2008) where absolute time intervals of equal length and relative time inter-
vals were combined in a hierarchical approach. The same holds for higher-level information
on syntactically or emotionally consistent chunks (Batliner et al. 2010) or for combining
word- and utterance-level processing (Batliner et al. 2011); it remains to be seen whether this
performance gain can be transferred onto fully automatic processing.



60 Computational Paralinguistics

3.4 Typical versus Atypical Speech

I’m obsessively opposed to the typical.
(Lady Gaga)

In (computational) paralinguistics, we try to find, collect, annotate, extract features, describe,
and contrast the phenomena processed with other ones. These can be regular, ‘normal’, frequent
phenomena, or less normal and less frequent phenomena. Ben-Ze’ev (2000, p. 9) observes a
frequent ‘confusion of extreme, typical, and common cases of a mental category’, as far as
emotions are concerned. To speak about (proto)typical emotions can mean to speak about two
different things: very extreme – and therefore infrequent – emotions such as utmost rage, or
very frequent – and therefore less pronounced – emotions or emotion-related states such as
interest or boredom. In automatic speech processing, the notion of ‘typical versus atypical’
speech seems to be simpler and mostly based on frequency, that is, on the availability of large
quantities of data for training. Another use of ‘typical’ can be observed in speech pathology:
a frequent combination is ‘typical speech and language development’ aiming to describe the
normal development of speech and language in a child, and contrasting this with possible
deviations thereof (‘atypical speech/language’). This allows stigmatised and sometimes less
politically correct terms such as ‘pathological’ to be avoided. For example, children and adults
with autism spectrum condition are contrasted with those who are ‘typically developed’. Note,
however, that there are tendencies to replace ‘atypical’ with terms such as ‘wider spectrum’
in order to avoid any negative connotations. Irrespective of such considerations of political
correctness, the term ‘atypical’ should not be taken as implying any assessment but rather as
meaning simply ‘less frequent’.

In all these constellations, the research interest is either to find out the differences between
typical and atypical speech, or to classify cases as belonging to the one or the other class, in
order to improve the processing of atypical speech, or to screen and monitor atypical speech.
This is nicely illustrated in the editorial of a special issue on ‘atypical’ speech by Stemmer
et al. (2010):

Unfortunately, the algorithms used in current systems for robust modeling, speaker
normalization and adaptation have many limitations, in particular for speech that devi-
ates significantly from the data in the training corpus. Atypical speakers like nonnative
speakers, children, or members of the elderly population still lead to much higher error
rates in state-of-the-art speech recognizers. . . .

The phenomena dealt with in this special issue read like a catalogue of paralinguistic topics:
speech recognition for non-native speakers (Doremalen et al. 2010); mismatches between
adults’ and children’s speech (Ghai and Sinha 2010); breathy and whispery speech, both being
special types of phonation, normally indicating speaker idiosyncrasies or specific functions
(Ishi et al. 2010); speech recognition for the evaluation of voice and speech disorders in head
and neck cancer (Maier et al. 2010); recognition of children’s emotional speech, a combination
of two atypical types, children’s speech and emotional speech (Steidl et al. 2010); and speech
recognition of ageing voices (Vipperla et al. 2010).

Thus, typicality lies in the eyes of the observer; ‘typically developed’ children are contrasted
with handicapped children, but they are atypical if compared with adults, because they are less
studied and thus there are less and smaller databases available with this type of speech.
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Speech per se is not only typical or atypical, it can be either/or, seen from the point of view
of dialogue modelling. In a dialogue – which can be taken as a simplification of a multi-party
interaction with only two interaction partners – speech is normally directed at the dialogue
partner. However, it can be ‘private’, ‘egocentric’, ‘self-directed’ speech, directed to the speaker
herself, or it can be directed to someone other than the dialogue partner, also called ‘off-talk’
(Oppermann et al. 2001). This is a fully normal and adequate use of language; however, it
has to be detected in an automatic dialogue system and thus modelled as ‘atypical’ – if not,
misunderstandings might happen. We will come back to this type of speech in Section 5.8.

3.5 Context

Language is not merely a set of unrelated sounds, clauses, rules, and meanings; it is a
total coherent system of these integrating with each other, and with behavior, context,
universe of discourse, and observer perspective.

(Kenneth L. Pike)

There are different types of context: (1) phonetic/linguistic context, that is, what a speaker pro-
duced before or after the unit we want to analyse; (2) multimodal context, that is, which body
posture, gestures, and facial gestures the speaker produces concomitantly, synchronously or
before and after the unit we want to analyse; (3) immediate situational context, that is, the over-
all setting (communication partners, type of communication, room characteristics, etc.); and
(4) general context in time and space, that is, generally speaking, in which historic/geographic
situation the communication partners are – this can be narrow, concentrating on the speaker
herself and her personal situation and what she has experienced in recent hours, it can be wide,
including macro-sociological and political constellations, and it can simply be be narrowed
down to membership of class, etc.

Paradigmatic and syntagmatic relations are basic to linguistic structure. A paradigmatic
(vertical in Figure 3.2) relationship exists between elements that can substitute each other and
result in another regular unit, for instance, the phonemes /g/ and /t/ in gold versus told, or the
words ‘blue’ and ‘yellow’ in a blue shirt versus a yellow shirt. A syntagmatic (horizontal in
Figure 3.2) relationship exists between units that can be combined linearly (sequentially), for
instance, five + brown + bottles. Moreover, there can be paradigmatic, concomitant relation-
ships between paralinguistic and linguistic parameters, and within paralinguistic parameters,
across paralinguistic functions. For instance, pitch excursion can indicate word stress, phrase
accent, and/or higher emotional arousal. Breathy voice can indicate some pathology and/or
intimacy and attractiveness.

Figure 3.2 illustrates some concordant or discrepant paradigmatic and syntagmatic relation-
ships; for the sake of simplicity, we do not display immediate paradigmatic situational context,
and display only linguistic context and not phonetic context such as high/low pitch maximum,
modal/breathy voice and suchlike, which could modify the paralinguistic message. The reader
can consider the different combinations of linguistic context and which of them are likely or
not – given the linguistic message and given the different context in time and space.

An abundance of different types of context can be modelled – we should say ‘could be
modelled’, because the context that has been modelled so far is mostly local or restricted
to a few types that are relatively easy to deal with, such as immediate acoustic or linguistic
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Figure 3.2 Paradigmatic and syntagmatic relationships

context to the left and right, or a separate processing of female and male subjects. Situational
or ‘historic’ context is modelled rather seldom. This is simply due to the complexity of the
task of extracting context features and combining this information in automatic processing.
This holds especially for any type of wider syntagmatic modelling. We can easily imagine that
somebody is more prone to anger when he got out of bed on the wrong side (which is just a
metaphorical way of summarising syntagmatic contextual factors); it is almost impossible to
model this in experiments or real-life studies, though. It is more promising in more structured
settings such as interactions with an automatic call-centre system when the agent only has a
limited range of actions available which can be traced back and modelled in relation to the
user’s reactions (Steidl et al. 2004; Walker et al. 2000). Moreover, there are quite a few studies
on multimodal modelling of context which in itself is rather local (mostly paradigmatic, that
is, concomitant); see, for example, the studies on focus of attention referred to in Section 5.8.

3.6 Lab versus Life, or Through the Looking Glass

The two requirements of naturalness and rigorousness appear to occupy the opposite
ends of a continuous scale of gradual mutual exclusion. At one extreme we find complete
naturalness coupled with complete lack of control; at the other end, complete control
over the experimental design at the expense of naturalness and linguistic relevance.

(Lehiste 1963, quoted in Ladd 1996)

Laboratory (lab) speech was the main object of investigation for phonetics and paralinguistics
until the 1980s. Branches of theoretical linguistics studied a few, often constructed, examples.
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Even when doing field studies, aiming at dialects or less investigated languages, researchers
did normally not record ‘free’ speech but mostly used a structured questionnaire. Moreover,
analogue recording and processing devices (such as the oscillograph or the pitch-meter) and
early computational processing of speech data normally implied tightly controlled – and not
too many – lab data.

With the advent of digital recording and storing devices, and consequently the advent of
specially tailored and eventually open-source software for processing large amounts of data,
the situation changed; it now was possible to address large databases which did not necessarily
have to be of excellent signal quality. However, there is still a divide between proponents
of lab speech – who are normally oriented towards theoretical approaches – and proponents
of real-life data – who are likely to be interested in applications. Of course, this is a rough
picture and does not do justice to everything: for instance, there is research aimed at clinical
applications, using highly controlled lab data. However, this is due to practical constraints and
not necessarily to a strong inclination towards theory.

The difference between ‘lab’ and ‘life’ will accompany us throughout this book. At first
sight, this is just a difference in data collection; in fact, it is much more. It pertains to concep-
tualisation, prototypicality of data, classes to be modelled, relevant features, etc. Often, this
pairing goes along with acted versus realistic – but not necessarily: there are lab constellations
which guarantee fairly realistic data, for instance in a so-called Wizard of Oz setting where the
role of the system is played by a human operator (Fraser and Gilbert 1991); and conversely,
there are recordings ‘in the wild’, for instance, from TV shows, where the expression of
feelings and emotions is predefined by the stage director and thus acted and regulated by the
participants; cf. the convenience databases mentioned by Scherer (2013).

As Xu (2010) puts it:

. . . because it allows systematic experimental control, lab speech is indispensable in
our quest to understand the underlying mechanisms of human language. In contrast,
although spontaneous speech is rich in various patterns, and so is useful for many
purposes, the difficulty in recognizing and controlling the contributing factors makes it
less likely than lab speech to lead to true insights about the nature of human speech.

A discussion along similar lines can be found in Scherer (2013) for emotion research; but see
Wilting et al. (2006) who use the the same elicitation procedure as Scherer (2013) and argue
against using actors for the study of real emotions, based on their findings.

The problem is about experimental control and the observer’s paradox (see Section 2.2), that
we cannot observe spontaneous behaviour if we observe it – and the description of spontaneous
behaviour ‘in the wild’ should, after all, be the ultimate goal. There is always a lacuna in the
argumentation, whether we are describing the metabolism or the behaviour of mice in a cage, or
the speech of humans in the lab, and want to extrapolate onto the metabolism or the behaviour
of humans in real life. If we are interested in cerebral correlates of speech production, or in
the speech of patients with severe disabilities, there is no way out of the lab. If acted (and
thus controlled) data are a genuine object of investigation themselves (Section 2.2), there is no
doubt at all that they should be investigated. Read data are easily obtainable and can be used,
for instance, to augment training databases. Moreover, a sophisticated experimental setting
might come close to modelling real-life data but there is no straightforward way to find out
whether this is really the case. We do not agree with the claim of Xu (2010) that controlled lab
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data are necessary for really finding out something. Admittedly, methodologies, procedures,
and the size of databases sometimes lag behind. Basically, however, there are means of dealing
with noisy and less pronounced data.

Methodologies differ. Whereas the typical methodology for lab speech, especially in basic
phonetic or psychological research, is a highly developed analysis of variance meeting the
standards of high-impact psychological journals (results meeting alpha below 0.01, etc.), for
less controlled real-life speech, highly developed statistical procedures for classification and
regression, aiming at high(er) performance in recall, accuracy, unweighted average recall, etc.,
are employed. We will elaborate on these differences in Section 3.10.

3.7 Sheep and Goats, or Single Instance Decision versus Cumulative
Evidence and Overall Performance

When the Son of Man comes in his glory, and all the angels with him, he will sit on his
glorious throne. All the nations will be gathered before him, and he will separate the
people one from another as a shepherd separates the sheep from the goats. He will put
the sheep on his right and the goats on his left.

(Matthew 25: 31–33)

Doddington et al. (1998) extended the rudimentary menagerie of sheep and goats in automatic
speech recognition (ASR) (Danis 1989) to two further types, for the speaker verification task:

Sheep comprise our default speaker type. . . . [They] dominate the population and
systems perform nominally well for them.

Goats . . . are those speakers who are particularly difficult to recognize. . . .

Lambs . . . are those speakers who are particularly easy to imitate.

Wolves . . . are those speakers who are particularly successful at imitating other
speakers.

Thus, the sheep are good – because they are easy to recognise; this can be extended to
any paralinguistic problem. Goats are bad because they cannot be recognised. Lambs and
wolves are surely interesting for specific paralinguistic tasks, not only for modelling speakers
for entry control systems. For instance, comedians good at imitating celebrities have the
capabilities of wolves, and the more particular the voices of celebrities are, the easier it might
be to imitate them (lambs). However, normally we deal with groups of sheep or goats when
trying to automatically classify paralinguistic phenomena; single sheep or goats are used for
demonstration, or – albeit rather seldom – for detailed error analysis. The measure of success
is overall accuracy or recognition, and an incorrect single instance decision is not detrimental;
however, it can be, in special circumstances: remember Bill Gates’ failing to demonstrate USB
plug and play, crushing Microsoft Windows 98. Or demonstrating a system at a computer expo
in the presence of a very important person, for instance, the prime minister tell him to use the
system but his speech is not recognised. Telling a customer of an automated call centre that he
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is angry and trying to calm him down when he is not can be fatal. The failure of a lie detector
in court can have tremendous consequences if its decision is taken as evidence.

Therefore, single instance decisions can be important – for better or for worse. The usual
measure, however, is overall performance, and the criterion is something like a test of signif-
icance in basic psychological research, effect size, or percentage correct in automatic speech
processing. All these criteria are based on some convention within the scientific community,
and do have their shortcomings. If the number of instances is high, for a two-class problem,
practically every second instance can be classified incorrectly, and still the difference can be
‘significant’. Effect size should be a means of overcoming this deficit, but in practice it is
not transformed into a percentage of instances, classified correctly or incorrectly. It might
be a good strategy to conceptually convert any of these measures into a rough but intuitive
figure: ‘every x th case is classified incorrectly’. For instance, the recognition rate of automatic
dictation systems was, at a certain time, above 95% correct, but acceptance was still rather low.
So, one incorrect word out of 20 on average made such a bad impression on the customers.
We will elaborate on the pros and cons of different measures of performance in Section 3.10.

Standard performance measures in computational paralinguistics are necessary for bench-
marks and challenges, to enable strict comparability. The same holds for basic research. How-
ever, if we aim at specific applications, we should consider whether we should not, besides the
standard measures, conceptually and algorithmically take into account whether we are aiming
at good single instance decisions, or at overall assessment. Both points of view can be com-
bined in repeated screening approaches because a sub-optimal one-time performance normally
gives way to a more reliable estimation of tendencies if such measures are repeatedly applied.

To give one example, employing the detection of single instances of customers’ anger
in a call-centre application might be risky because false alarms are inevitable. Using such
information in a cumulative way for checking call-centre agents’ quality is promising; however,
from an ethical point of view, such an application might be questionable.

3.8 The Few and the Many, or How to Analyse a Hamburger

Hamburgers! The cornerstone of any nutritious breakfast.
(Jules Winnfield in Pulp Fiction)

The approach of food critics towards the hamburger – if they care for such a thing at all –
and the approach of food chemists is strikingly different. The food critic will comment on
appearance and especially on taste, pointing out a few pivotal features. The food chemist uses a
mass spectrometer and squishes everything, so the result will be some indeterminate porridge
that will be analysed chemically. It is not easy to go back, from the mush analysed by the food
chemists and their lists of hundreds of ingredients, to the more holistic description of the food
critics.

In the historic development of computational paralinguistics, we took the road from the
critic to the chemist, from the few to the many. In the ‘pre-automatic’ phase of emotion
modelling (Frick 1985; Lieberman and Michaels 1962) the inventory of acoustic features was
more or less predefined or at least inspired by basic (phonetic) research. Note that acoustic
and linguistic features will be introduced and explained in detail in Chapters 8 and 9.
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Hence, until the 1990s, features were ‘hand-picked’, expert-driven, and based on phonetic
knowledge and models; this was especially true for pitch (contour) features which were often
based on intonation models (see Mozziconacci 1998). To give some examples of developments
in recent years: at the beginning of a ‘real’ automatic processing of emotion, Dellaert et al.
(1996) used 17 pitch features; McGilloway et al. (2000) reduced 375 measures to 32 variables
as robust markers of emotion; Batliner et al. (2000) used 27 prosodic features on the utter-
ance level; Oudeyer (2003) 200 features and information gain for feature reduction; Schuller
et al. (2005) 276 features and support vector machines with sequential floating forward search
(SFFS); and Vogt and André (2005) 1280 features and correlation-based feature subset selec-
tion; classifiers and feature selection procedures will be explained in detail in chapter 11. The
increase in the number of features employed in the Interspeech challenges 2009–2012 can
be taken as paradigmatic example: 384 in the Interspeech 2009 Emotion Challenge (Schuller
et al. 2009), 1582 in the Interspeech 2010 Paralinguistics Challenge (Schuller et al. 2010b),
4368 in the Interspeech 2011 Speaker State Challenge (Schuller et al. 2011), and 6125 in
the Interspeech 2012 Speaker Trait Challenge (Schuller et al. 2012). Within a straightforward
brute-force approach, ‘more’ seems to be better; this can change with a sophisticated feature
selection; however, a reduced feature set, especially tailored for a specific data set, might go
along with a loss of generalisation if applied for other (types of) data.

The traditional approach towards features was of course influenced by technical constraints
and possibilities, and confined to processing only a few (Lieberman and Michaels 1962); later
on, types of features were investigated, for instance, only fundamental frequency (F0) features,
or prosodic features including intensity and duration modelling as well. Researchers from
the ASR community naturally enough often start with the mel-frequency cepstral coefficient
(MFCC), when they shift the focus onto paralinguistic phenomena. At the extremes nowadays,
on the one hand, we can place very large feature sets within a brute-force approach – running the
risk of not being able to say something about the most important features. On the other hand, we
can employ just a few features, well known to be relevant to the actual task: for instance, speech
tempo, which quite reliably can be modelled with syllables per second, has turned out to be
very relevant to the assessment of non-native prosody in particular, and many types of deviant
prosody in general. Pitch excursion or pitch mean and intensity are intuitively good predictors
for arousal – what goes up must come down: the same way as a fast heart rate, indicating
arousal, will slow down in the relaxation phase, a higher pitch mean value will normally drop
in more relaxed, neutral speech. Employing just a few features of course does not tell us how
far we could get with a more complete feature set. Thus, we badly need studies employing
very large feature sets with many different types of features, including feature (type) selection
and/or reduction, and especially an estimate of the impact of not only single features but also
feature types. This can be done in a sort of univariate approach (see Schuller et al. 2007) where
information gain ratio has been used for obtaining most important features within the same
feature type; Batliner et al. (2011) used a sort of multivariate approach by doing SFFS for all
feature types together and determining the ‘share’ of each feature type, that is, the percentage
of features belonging to each feature type and surviving the feature selection procedure. In both
cases, the FAU Aibo database was used. Classification performance for the different feature
types was similar for both univariate and multivariate approaches. The multivariate approach
also allows ‘trading relations’ (interdependencies) to be found, for instance, between acoustic
and linguistic feature types. A straightforward example is unnormalised duration which is
highly interrelated with word class, especially with content word (such as noun, adjective,
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or verb) versus function word (such as particle, pronoun, or interjection): content words are
normally longer than function words and, at the same time, semantically more important. A
similar approach is used in (Busso and Rahman 2012).

3.9 Reifications, and What You are Looking for is What You Get

There is an error; but it is merely the accidental error of mistaking the abstract for the
concrete. It is an example of what I will call the ‘Fallacy of Misplaced Concreteness’.

(Whitehead 1925, p. 52)
Life is largely a matter of expectation.

(Horace)

In this section, we comment on two fallacies that sometimes cannot be avoided; however, we
should at least be aware of them.

The first is the reification (called the ’Fallacy of Misplaced Concreteness’ by Whitehead)
of terms and concepts. Let us discuss an example from prosody. ToBI (‘TOnes and Break
Indices’) is a phonologically inspired intonation model (Silverman et al. 1992), characterised
by a small set of conventions for describing prosodic grouping (breaks) and tonal events
(tones). In this model, an H*L tone, for example, characterises an F0 (pitch) peak on a stressed
syllable, followed by a falling pitch movement. However, we should always be aware that we
do not produce a ToBI tone H*L – we produce something that can be described, within one
specific model, with this terminology. The same holds for the much debated question of what
an emotion is, after all: if we call almost everything ‘emotional intelligence’, then this use
might be unfortunate but it cannot be wrong in itself. Terminology is a matter of convention,
not of truth. (This recalls the famous distinction made by Householder (1952) between two
extreme positions on the ‘metaphysics of linguistics’ – the God’s truth position (a language
has a structure) and the hocus-pocus position (the linguist imposes some sort of structure onto
formless data). In their pure form, these positions are outdated; however, they are reflected in
present-day theoretical debates.)

The second fallacy is to restrict the object of investigation to a specific phenomenon, a
specific selection of subjects and tasks, and/or to restrict the features employed to only a few,
and then to make claims going far beyond this specific constellation. It is a commonplace
that very often, a specific type of (young, male, middle-class, Protestant, white/‘Caucasian’)
American student is taken as a subject in an experiment, and, based on these results, statements
about ‘the human’ are made.

The problem can be compared, technically speaking, with a situation where there is too
much weight on testing the alternative hypothesis against a null hypothesis which simply states
that there is not such a difference as formulated in the alternative hypothesis. Instead, we could
consider more and different alternative hypotheses. Let us take the case of pitch/F0 against
other prosodic parameters as an example. The term ‘pitch accent’ is rather unfortunate; as
Boves et al. (1984, p. 20) claim:

There is, however, a real danger in a research strategy that concentrates fully on a single
factor at the expense of all others . . . The fact that many authors confine the meaning
of the term ‘intonation’ to pitch movement without any references whatsoever to other
factors can be taken as a proof.
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Nowadays, the term ‘prosody’ is normally used generically for pitch, energy, duration, and
sometimes voice quality, whereas ‘intonation’ is confined to pitch phenomena. The problem
is that even within intonation models, pitch cannot stand alone: it is naturally correlated with
energy and duration, and it cannot be described at all without recourse to the time axis; in
ToBI, this is basically a sequence of tones, that is, a coarse-grained before/after relationship
(Batliner and Möbius 2005).

Thus, what you are looking for is what you get. In parallel to the acronym WYSIWYG
(what you see is what you get), we can call this ‘WYALFIWYG’ (Batliner 1989). If you
only look for the relevance of intonational (i.e., pitch) features, you will only get results for
pitch features. This primacy of pitch resulted in a wealth of different intonation models, ToBI
being arguably the most prominent, at the cost of the other prosodic factors. Falling for this
WYALFIWYG phenomenon obscures the contributions of other prosodic parameters. In spite
of several studies that employed more prosodic parameters apart from pitch, showing that
pitch is not the most relevant parameter for phenomena such as boundaries or accents (see, for
example, Batliner et al. 1999 2001; Kochanski et al. 2005), there are still (too) many studies
conducted that only deal with pitch. We do not want to belittle the impact of pitch; we just
want to point out that it is an empirical question which feature type(s) contribute(s) to what
extent – which only can be answered reliably if we do not confine our approaches to just one
out of several feature types.

3.10 Magical Numbers versus Sound Reasoning

All is number.
(Pythagoras)

A good decision is based on knowledge and not on numbers.
(Plato)

‘The Answer to the Great Question . . . Of . . . Life, the Universe and Everything . . .
Is . . . Forty-two.’

(Douglas Adams, The Hitch-Hiker’s Guide to the Galaxy)

During corpus engineering (see Chapter 6) and the evaluation of results, based on the pro-
cessing of our corpora, we are sort of ‘accompanied by numbers’ – considerations on the
necessary number of speakers, utterances, labellers, necessary ‘threshold values’ such as lev-
els of significance, and the semantics of these numbers. Here, we cannot give a full account of
such measures and their pros and cons. However, we want to sketch the basic problems, give
references, and suggest ways out.

All these numbers are not ‘God’s truth’ measures (Section 3.9) but based on conventions
that are more or less accepted in the respective fields of academia. As far as we can see,
the stronger the measures (thresholds) are, the more debated they are. We want to deal with
these measures under three headings: rules of thumb refer to (rather vague) requirements
of the minimum/maximum number of speakers, utterances, labellers, features, and the like;
weak thresholds refer to evaluation measures such as kappa, effect size, and classification
performance; strong thresholds refer to tests of significance, normally the so-called null
hypothesis decision or null hypothesis testing procedure.
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Rules of Thumb

There is no agreed-upon catalogue of the minimum (or maximum) number of speakers, items
(words, sentences, utterances, paragraphs on the one hand, and phenomena such as specific
emotions and non-verbals on the other hand), annotators and annotations. The basic maxim
is: the more, the better. A number of speakers equal to one would be rather exotic; however,
there exist several well-known databases with a number of speakers well below 10 and there
are some databases with only one or two annotators. Of course, all this depends on the
availability of speakers and the difficulties of recording. To illustrate with two constellations:
native or even non-native English recordings of adult speakers are relatively easy to obtain,
especially if the data are scripted; on the other hand, non-scripted recordings of non-typically
developed children are not that easy to obtain. Gibbon et al. (1997, pp. 107ff.) mention,
as representative of automatic speech processing, one to five speakers for basic research
and speech synthesis systems, five to 50 for experimental research, and more than 50 for
speech recognition or speaker verification. These figures could constitute a rough guideline
for computational paralinguistics as well. As for annotators, more than two will allow for
majority voting, thus three could be taken as minimum requirement; again, it depends on
the difficulty of the task – and perhaps simply on financial means – how many annotators we
eventually can afford and do ‘need’. For the perceptual evaluation of non-native prosody, Hönig
et al. (2010 2012) showed that the loss of performance is low when we employ five annotators
(compared to up to 60 annotators); this holds both for ‘experts’ (trained phoneticians) and
‘naı̈ve’ labellers. For most tasks, employing some 10 annotators seems to be well above the
minimum requirement and allows for outliers as well.

As far as number of cases/items versus number of features (‘predictors’) is concerned,
we are often faced with a sparse-data problem on the one hand – especially when we aim
for realistic data, some very interesting phenomena are simply rare – and with (too) many
features, especially when we employ a brute-force approach. There exist some rules of thumb
such as ‘at least twice as many cases as there are features’ – which are often violated. Such
violations might not hurt for classifiers such as support vector machines (cf. Chapter 11) and
simple linear classifiers; due to their nature, it certainly works for random forests because here,
many decision trees are employed, each of them with only a few features out of the whole
feature vector. Eventually, it is a matter of experience – and of scrutinising one’s own results –
whether such violations can be accepted or must be avoided.

Weak Thresholds

Arguably, of most interest for computational paralinguistics is finding an answer to the question
‘How good are we?’ because this tells us to what extent our models fit the data and whether we
might be able to employ these models successfully in real-life applications. Typical evaluation
measures are (different varieties of) kappa for inter-labeller correspondence, correlation mea-
sures (Pearson’s r or Spearman’s rho), and different measures of ‘effect size’, such as Cohen’s
d. Classification performance is mostly given as ‘percentage correctly classified’. We now
want to characterise these measures on an exemplary basis; note that several other measures
are used besides, such as the so-called area under the ‘receiver operating characteristic’ (ROC)
curve; see Section 11.3.3.

Kappa, alpha. Cohen’s kappa (Cohen 1960, 1968) is a measure of inter-labeller agreement
for categorical ratings with values between 1 (complete agreement) and 0 (no agreement)
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which was introduced into (computational) linguistics by Carletta (1996). An alternative for
more than two raters is given in Fleiss (1971). Another alternative for different levels of
measurement, again with values between 1 and 0, was introduced by Krippendorff (1970);
see also Krippendorff (2004). An in-depth account of kappa is given in Gwet (2010). For
Cronbach’s alpha, see Cronbach (1951).

Correlation. Pearson’s product-moment correlation coefficient r (Pearson 1901) measures
the correlation, that is, the linear dependency, between two variables on an interval scale;
a non-parametric alternative for ordinal data is Spearman’s rank correlation coefficient rho
(Spearman 1904). Both can have values between +1 and −1, ±1 meaning a perfect correlation,
0 meaning no correlation at all.

Effect size. This gives a quantitative estimate of the difference between two groups and
of the strength of a phenomenon (mirrored in this difference). Note that both correlation
measures (r and rho) as well as the so-called ‘explained variance’ (r2) (O’Grady 1982)
and measures of classification performance estimate effect size as well. Here, we will only
address one measure, namely the standardised mean difference between two groups, Cohen’s
d (Cohen 1992); see also Coe (2002), Ferguson (2009), Durlak (2009) and Ellis (2010). Fritz
et al. (2012) point out that although estimates of effect size ‘. . . are useful for determining
the practical or theoretical importance of an effect . . .’ and are called for in the publication
manuals of psychological journals, they are not used that often: ‘The most often reported
analysis was analysis of variance, and almost half of these reports were not accompanied by
effect sizes.’ Cohen’s d can have values well above 1, although most often values below 1 are
reported; we will come back to this below.

Classification performance. Weighted average recall (WAR), that is, the sum of the number
of cases in the diagonal of the confusion matrix divided by the overall number of all cases,
and unweighted average recall (UAR), that is, the unweighted (by number of instances in each
class) mean of the percentage correctly classified in the diagonal of the confusion matrix, are
two different measures for ‘percentage correctly classified’ (see Section 11.3.3). The chance
baseline for two-class problems is either constituted by the larger class for WAR, or by 50% for
UAR; we will concentrate on UAR because for this measure, chance level is only defined by
the number of classes (50% for two classes, 33.3% for three classes, 25% for four classes, and
so on) and not by the number of cases per class which varies across experiments. Comparable
to correlations, kappa, and other measures, UAR has values up to 1 (or 100%). For the sake
of the argument, in this section, we will assume a balanced distribution of the two classes,
meaning that WAR = UAR.

Note that in different fields such as engineering, psychology, or clinical studies, there exist
different terms for measures that combine and summarise the cell entries in a confusion matrix,
especially for the standard setting of two classes, such as recall/hit, false alarms, true/false
positives/negatives, and recall or precision or sensitivity or specifity (see Section 11.3.3).
UAR was introduced for the processing of prosodic phenomena under the name of ‘class-wise
averaged recall’ in Batliner et al. (1998). A full account of all these measures is, however,
beyond the scope of this short section; some are dealt with in more detail below.

Strong Thresholds

Null hypothesis testing (NHT) or null hypothesis decision (NHD) is the preferred method in
basic psychological research and related fields; p-values below a certain level (0.05, 0.01, or
0.001) are the preferred measure and function as strong thresholds. If p-values are above these
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levels, results are mostly deemed to be not significant, in both sense of the word: not statistically
significant and not relevant. NHT has been critically evaluated for decades. According to
Rozeboom (1960), the ‘most basic error [of the NHT procedure] lies in mistaking the aim of a
scientific investigation to be a decision, rather than a cognitive evaluation of propositions’. This
criticism has been repeated by Cohen (1994), Gigerenzer (2004), and Hubbard and Lindsay
(2008), amongst many others. These and other authors mention several deficiencies of NHT,
amongst them that: (1) samples are almost never randomly drawn from the population; (2)
the rejection of the null hypothesis does not affirm the alternate hypothesis; (3) p is not the
probability that the null hypothesis is false; (4) levels of significance are pure conventions; (5)
large sample sizes will almost always produce ‘significant’ results even if the effect is very low
or non-existent. (Note that significance tests are dealt with in Section 11.3.4.) Adjustments of
the significance level in the case of repeated measurements are often not done; however, these
are problematic themselves (Pernegger 1998). Cumming et al. (2007) demonstrate that NHT
still prevails in psychological journals – whereas they are not found that often in computational
studies.

Instead, at least exact p-values should be reported, error bars and/or confidence intervals,
and effect sizes given in combination with descriptive statistics. Confidence intervals ‘can
be . . . conceptually defined as a range of plausible values for the corresponding parameter
(i.e., for the unstandardized size of the effect in the population’ (Beaulieu-Prévost 2006,
p. 12). They are advocated by Beaulieu-Prévost (2006), Brandstätter (1999) and Wilkinson
(1999). A few simple significance tests are explained in more detail in Section 11.3.4.

The Semantics of Numbers

Different wordings are used but the semantics of the values for correlation, inter-labeller
correspondence (kappa), and effect size (note that this can change for different computations
of effect size) are similar; the following scale is often used for the assessment of correlations:
0.0–0.2, very low; 0.2–0.4, low; 0.4–0.6, medium; 0.6–0.8, good; and 0.8–1.0, excellent.
Although d can have values far above 1.0, Cohen (1992) mentions the following ranking: 0.2,
small; 0.5, medium; and 0.8, large. Note that such rankings were typically not intended to
be taken literally – they more or less evolved from very weak into stronger thresholds; for
instance, a value of 0.39 will be rightly interpreted differently from a value of 0.21 although
both are in the same interval. Such evaluation metrics are often required by journal editors
and reviewers, and they definitely should be computed in order to get a feeling for one’s own
data and processing steps. However, they have to be interpreted with care: a very low value,
for instance for inter-labeller correspondence, will indicate some severe problems. Too high
a value, on the other hand, can indicate a trivial problem, or simply a precisely defined task
that may or may not be adequate for the phenomenon you want to model. A moderately low
value can simply indicate a difficult labelling task. A trivial example is to assign the label
‘angry’ if you encounter the word angry or anger. This will yield a perfect inter-labeller
correspondence but can simply be wrong if the preceding context is a negation (not angry),
and one definitely will miss some instances of anger if it is expressed by different means. A
less trivial example is the labelling of tones within the ToBI approach which is an intonation
model where pitch values are mapped onto a small number of ‘high’ and ‘low’ tones; good
inter-labeller correspondence might mean that the formal differences can be learnt quite well
but we do not know whether functional differences correspond exactly to the same thresholds
(Batliner and Möbius 2005).
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A very interesting relationship of effect size measures with classification performance is
discussed in Coe (2002):

Another way to conceptualise the overlap [of two experimental groups] is in terms of
the probability that one could guess which group a person came from, based only on
their test score – or whatever value was being compared. If the effect size were 0 (i.e.,
the two groups were the same) then the probability of a correct guess would be exactly
a half – or 0.50. With a difference between the two groups equivalent to an effect size of
0.3, there is still plenty of overlap, and the probability of correctly identifying the groups
rises only slightly to 0.56. With an effect size of 1, the probability is now 0.69, just over
a two-thirds chance. . . . It is clear that the overlap between experimental and control
groups is substantial (and therefore the probability is still close to 0.5), even when the
[effect size] is quite large.

The relationship of correlation r and effect size d with classification performance for a two-
class problem is displayed in Table 3.1; for the assumptions needed for converting these values
into each other, see Coe (2002). At first sight, this seems strange: an effect size greater than 0.8
is normally considered to be very good, yet it only corresponds to a classification performance
of 0.66 in a balanced two-class problem. However, such an effect is definitely important if it
pertains, for instance, to differences in the income of males and females, morbidity after cancer
treatment, or – to illustrate with an example from computational paralinguistics – differences
in the assessment of non-native traits between groups with or without specific pronunciation
training in a given L2. In contrast, for instance, if a customer has to be convinced that automatic
dictation systems are a good thing to use, 66% correct (i.e., every third word is incorrect) is
a rather devastating outcome. Here again, we see the difference between single instance
decisions and cumulative evidence (see Section 3.7).

A classification performance of 56% correct for a two-class-problem will quite often be
statistically significantly different from chance level. This corresponds to an effect size of
0.3 – which is considered to be rather low. Even an effect size of 0.8, which is considered

Table 3.1 Relationship of correlation r and effect size
d with classification performance (here, WAR = UAR)
for two classes, according to Coe (2002)

Classification
Correlation r Effect size d performance

0.0 0.0 0.50
0.10 0.2 0.54
0.15 0.3 0.56
0.29 0.6 0.62
0.37 0.8 0.66
0.45 1.0 0.69
0.57 1.4 0.76
0.71 2.0 0.84
0.83 3.0 0.93
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to be good, corresponds only to 66% correct. Again, this does not mean that such results are
useless. However, most of the time, either only significance is reported (in humanities), or
percentage correct (in engineering approaches); neither tells the whole story. It depends on the
(application) task whether such results are ‘only for the records’, or useful in the long run for
science, or in the short run for some application task.

In computational approaches, it is nowadays quite common to evaluate the effect size used,
that is, classification performance, not only in terms of absolute values (such as 57% for
a two-class problem as ‘poor’, 73% as ‘medium’, or 95% as ‘very good’) but also relative
to some baseline that has been defined by the authors themselves or by other authors. For
instance, any performance obtained for the recognition of acted emotions cannot be realistically
expected for realistic, spontaneous emotions. Often it is claimed that differences between new
values obtained and such baselines should be proven to be ‘statistically significant’. However,
confidence intervals can be a reasonable alternative or addition (see Seppi et al. 2010).

Thus, we are faced with different traditional measures within, on the one hand, psycholog-
ical, sociological, or medical studies, and on the other hand, studies within computer science
or engineering, even if the topic can be very similar or identical: on the one hand, statistical
significance from NHT, only sometimes with concomitant effect sizes, and on the other hand,
classification performance (an effect size), only sometimes complemented with information
on ‘significant’ differences between measures. Thus, NHT is primary in basic and to some
extent in clinical studies, and secondary in computational approaches; for effect size mea-
sures (classification performance), it is the other way round. Note that this does not hold for
correlations because these measure effect size by default.

A first step towards bridging the gap between all these disciplines would be to always report
both types of measures, and especially relate the ‘classic’ effect size measures to classification
performance as used within computer science (cf. Table 3.1). In classification, the confusion
matrix is the ‘mother of measures’ and should be given if possible, ideally with number of
test instances per class in a separate column/row, or directly in numbers of test instances;
this provides the complete basis of calculation. All this will also help harmonise the different
semantics of these different measures, including p-values, across fields, to put into perspective
a ‘statistically significant p-value’ if the corresponding effect size is pretty low, and especially
to level out the different semantics of ‘good effect sizes’ and ‘low classification performance’
if, in fact, they are equivalent (cf. Table 3.1).

Last but not least, we want to point out that decimal places have their own semantics in
paralinguistic research: care should be taken not to report too many decimal places just because
the software provides them. If, for instance, we report percentage correct for less than 100
experimental subjects (our ‘cases’), then even one decimal place does not really make much
sense – what is the semantics of 0.3 persons? In this case, two or three decimal places are
simply nonsensical.

As a more precise rule of thumb, the number of decimal places Ndec in relation to the total
number of test data instances NTest can be determined as:

Ndec = �log10 NTest� − 1 and NTest ≥ 10.

Moreover, all these numbers should be given in a consistent way, that is, always with the same
number of decimal places throughout the study, and always either rounded up or rounded
down.
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4
Formal Aspects

4.1 The Linguistic Code and Beyond

It is one of the aims of linguistics to define itself, to recognise what belongs within its
domain. In those cases where it relies upon psychology, it will do so indirectly, remaining
independent.

(Ferdinand de Saussure)

Here, we want to give a short and necessarily rough account of some basic principles of
linguistics, especially of linguistic structure, contrasting them with the basic principles of
paralinguistics; note that in this usage, linguistics encompasses both phonetics and linguistics
proper – the same way as paralinguistics as we understand it encompasses aspects encoded in
voice and speech, and additionally in (written) language.

The classic sub-systems of linguistic structure are phonetics/phonology, morphology, syn-
tax, and semantics; moreover, there is pragmatics as a borderline system in transition to all
the other cultural systems. The building blocks of linguistic structure are distinctive units;
phonemes are the smallest distinctive segmental units in the sound system (phonology), mor-
phemes are the smallest distinctive, semantically meaningful units in the language system;
they are distinctive because if we exchange them with some other distinctive unit, the meaning
changes. Note that in this usage, ‘distinctive’ is used in its linguistic meaning, ‘non-distinctive’
as well; thus, linguistically non-distinctive elements and features can very well distinguish
paralinguistic functions. Typically, this distinction is, however, not all-or-nothing but a matter
of degree.

Distinctive feature theory is based in the structuralism ‘founded’ by de Saussure, and in
the Prague School of phonology, and was formalised for the first time in 1941 by Jakobson
(1969). It was later employed in (lexical) semantics. Examples are: [+syllabic, +high, +front,
−round] denoting the phoneme /i/ represented by the phone [i], and [+human, +female,
+adult] denoting a woman. The distinction between the words ‘rabid’ and ‘rapid’ can be
claimed to be based on the distinction between [+voiced] and [−voiced]. However, Lisker
and Abramson (1964) and Lisker (1986) showed that quite a lot of features change when going
from one to another category; thus, it is much more than only the distinction in voicing.

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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The term denotation refers to the ‘referential meaning’ of a linguistic unit; the unit is nor-
mally a word or any higher constituent/expression. The referent can be concrete and unique
(e.g., a person, a thing), or an (abstract) concept (e.g., the horizon). The term connotation
refers to the more or less vague emotive and affective meanings associated with a linguis-
tic unit/expression. Linguistics deals with denotation, and paralinguistics with connotations.
These terms are described in Bussmann (1996):

. . . denotation refers to the constant, abstract, and basic meaning of a linguistic expres-
sion independent of context and situation, as opposed to the connotative, i.e. subjectively
variable, emotive components of meaning. Thus, the denotation of night can be described
as the ‘period of time from sunset to the following sunrise,’ while the connotation may
include such components as ‘scary’, ‘lonely’, or ‘romantic.’

A reference book on all aspects of phonetics is Hardcastle et al. (2010); sounds and sound
systems of languages are extensively dealt with in Ladefoged and Maddieson (1996). A reader
covering all aspects of linguistics is Aronoff and Rees-Miller (2001). Some of the classic
books on linguistics are: Saussure (1916), Sapir (1921), and Bloomfield (1933) on American
and classic structuralist linguistics. Standard introductions to modern linguistics are Lyons
(1968) and Fromkin et al. (2002). For an overview, we can refer to Crystal (1997) which is
suitable for the non-technical reader, and Newmeyer (1988) for an in-depth account. A survey
of the world’s major languages is given in Comrie (2009).

Good guides through the – sometimes not fully consistent – linguistic terminology are
the following dictionaries of linguistics and phonetics: Trask (1996), Bussmann (1996), and
Crystal (2008). The terminology of communication disorders in the fields of speech, language
and hearing is covered in Nicolosi et al. (2004).

Especially relevant for paralinguistics are the fields of linguistics that are marginal to
theoretical core linguistics, but close to or identical with paralinguistics, namely pragmatics
and another ‘hyphenated’ linguistics, namely sociolinguistics. Pragmatics mainly deals with
the use of linguistic means in conversation, thus the topics are close to or sometimes identical
with social signal processing; Morris (1938) introduced the term ‘pragmatics’ into a general
theory of semiotics, consisting of syntax, semantics and pragmatics. Standard introductions
to the field are Levinson (1983), Mey (2001) and Horn and Ward (2005). Sociolinguistics
mainly deals with linguistic and phonetic traits characterising different social variables such
as class, regional variants, gender, and the like; the early use of the term is ascribed to
Currie (1952) although in Hymes (1979) it is attributed to T.C. Hudson in 1939. Standard
handbooks and readers are: Coulmas (1997), Paulston and Tucker (2003), Ammon et al. (2004)
and Wodak et al. (2011). Trudgill (2004) mentions different sub-fields of sociolinguistics:
macro-sociolinguistics encompassing linguistic varieties used by large groups of speakers such
as dialects or regional variants; micro-sociolinguistics dealing with face-to-face-interactions
(discourse and conversation analysis); ethnomethodology dealing with ‘talk’ but not language;
and much more. Sociophonetics can be seen as a parallel field to sociolinguistics, focusing
on spoken language, or as part of sociolinguistics (Foulkes et al. 2010); as often, there is a
narrow meaning of ‘linguistics’ (dealing with written/‘natural’ language) and a broad meaning
(‘linguistics’ dealing with all aspects of spoken or written language). All this nicely illustrates
that sociolinguistics could be conceived of as part of paralinguistics, with a special focus on the
non-private aspects, that is, on interaction within a societal setting. Note that we do not want
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to usurp this or other fields and incorporate them into paralinguistics; we just want to point
out that there is a considerable overlap, and that it definitely is worthwhile to look for studies
conducted within these fields, when we are interested in specific paralinguistic phenomena.

Within a variety – be this a language, a dialect, or a sociolect – there are necessary, regular
elements that have to be there; and there are free variants for these elements that are not lin-
guistically distinctive. The more intrinsic variety in a phoneme of a language, or in any other
phonetic parameter, without ‘crossing the border’ towards another category, the more likely
it might be that variation within the categories can be employed for indicating paralinguistic
functions and differences. Varieties within phonemic categories are called free variants or
allophones. Allophones of /r/ are a typical example and will be dealt with in Section 4.2.1.
Suprasegmental parameters such as voice quality and pitch can often be employed for indicat-
ing paralinguistic functions because their functional load within the linguistic system is low;
however, tone languages, for example, restrict the degrees of freedom.

Moreover, as far as the lexicon is concerned, the language user is free to choose amongst
a multitude of (types of) words; thus, the choice of words and word classes can indicate
paralinguistic functions as well.

In the next two sections, we will deal with such elements and parameters, thereby covering
distinctions ‘beyond the linguistic code’; we first address exemplary phonetic phenomena in
Section 4.2, and then linguistic phenomena in Section 4.3. The next two sections deal with
deviations from the ‘correct’ linguistic code (disfluencies in Section 4.4), and with phenomena
external to the linguistic code, namely non-verbal, vocal events (Section 4.5). The form of all
these phenomena can – but need not – indicate some paralinguistic function.

4.2 The Non-Distinctive Use of Phonetic Elements

In this section, we want to illustrate the rather formal approaches towards phonetic phenom-
ena in paralinguistics, presenting one exemplar for the segmental level (/r/ variants), one
for the supra-segmental, prosodic level (pitch), and one for both (voice quality, especially
laryngealisations, which are both segmental and supra-segmental phenomena).

4.2.1 Segmental Level: The Case of /r/ Variants

The quantity of consonants in the English language is constant. If omitted in one place,
they turn up in another. When a Bostonian ‘pahks’ his ‘cah’, the lost r’s migrate
southwest, causing a Texan to ‘warsh’ his car and invest in ‘erl wells’.

(Author unknown)

/r/ sounds (rhotics) form a class of sounds that can only be characterised by their being
‘ . . . written with a particular character in orthographic systems derived from the Greco-Roman
tradition, namely the letter “r” or its Greek counterpart rho’ (Ladefoged and Maddieson 1996,
p. 215). As for manner of articulation, the class consists of trills, flaps, fricatives, and approx-
imants; place of articulation can be alveolar, retroflex, and uvular – there are even labialised
variants. Thus, manner and place of articulation vary widely. Rhotics can be deleted, especially
after low, back vowels such as /a/. The bilabial trill is not part of rhotics – it is practically never
a phoneme in any language, either. The most frequent type is the voiced alveolar trill, and it
is most typical for languages to have only one /r/ sound (Maddieson 1984, pp. 78ff.). Lindau
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(1985) concludes that ‘there is no physical property that constitutes the essence of all rhotics.
Instead, the relations between members of the class are more of a family resemblance.’

Perceptually, different types of /r/ sounds are clearly distinct, but normally, they still belong
to the same phoneme. These different types are therefore free variants – free to indicate
paralinguistic functions (Scobbie 2006). Diachronically, the dorsal variants of /r/, such as
[R], seem to have originated in Parisian French in the seventeenth century and have spread
throughout western Europe, replacing the alveolar variants such as [r] (Chambers and Trudgill
1980). Thus, a prestigious form of speech that manifested itself in the speech of outstanding
figures such as kings and politicians was taken over, spreading to other countries/languages,
and social classes, the same way as table manners spread from the higher classes to the lower
classes (Elias 1939). Van Hout and Van de Velde (2001) give a concise introduction to the
manifold aspects of /r/ sounds in western Europe, their origin and possible reasons for sound
changes – a development that, for instance, still can be observed in southern parts of Germany,
where dialectal forms give way to standard forms. Note that it can also be the other way
round: The vowels of Queen Elizabeth II have not influenced the standard southern British
accent of the 1980s, but the reverse; we can speculate that this development can be taken as
an implicit social signal, not within one communication but ‘long term’, of democratisation
by diminishing the distance between the Queen’s speech and the speech of speakers who are
younger and lower in the social hierarchy (Harrington et al. 2000).

In a seminal study on sociolinguistic variables in the city of New York, Labov (2006)
shows that the preservation or deletion of /r/ in final or post-vocalic, pre-consonantal position
(car, cart) is a strong indicator of social class membership. In southern American English, /r/
deletion in such positions characterises dialects.

Now what does all this mean for computational paralinguistics? As far as we can see,
specific phenomena such as /r/ variants are normally not yet explicitly employed in compu-
tational paralinguistic approaches. To distinguish language varieties such as regional accents
or sociolects, methods from automatic speech recognition (ASR) are applied. Modelling sep-
arate phenomena such as /r/ variants might simply be too complex and manual modelling is
required. However, we should keep in mind that computational ‘macro-approaches’ towards
modelling and discriminating varieties of speech such as regional accents always are based on
a multitude of such ‘micro-distinctions’.

Explicit modelling of specific segmental distinctions is done, however, in approaches
towards computer-aided/assisted pronunciation training in foreign language teaching, in order
to obtain highly reliable classifications of non-native pronunciation, and to give corrective
feedback to the learner (see Cucchiarini et al. 2009), because such specific mispronunciations
can be marked non-native traits, sometimes fossilised, and do have a great impact on the
impression of non-nativeness.

4.2.2 Supra-segmental Level: The Case of Pitch and Fundamental
Frequency – and of Other Prosodic Parameters

‘You crazy’, said Max. It was either a statement or question.
(John le Carré, Tinker Tailor Soldier Spy)

‘So you’re our man, then’ he said. It was half statement, half question.
(Josef Skvorecky, The Engineer of Human Souls)
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In this section, we want to discuss the interplay of linguistic and paralinguistic functions of
pitch; sometimes, we have to refer to the other main supra-segmental parameters of duration,
intensity, rhythm, and voice quality because all these usually function as a bundle of parameters,
more or less highly correlated with each other.

The lexical function of pitch is to distinguish between segmentally identical words, for
instance, in ‘real’ tone language such as Chinese where tones are distinguished by their shape
(contour) and their pitch range (register), and in a ‘simpler’ variety, to distinguish between
accent I and accent II words in Swedish and Norwegian. Another lexical function is to signal
stress (word accent position), in conjunction with the other prosodic parameters – sometimes
called pitch accent, a term that should, in our opinion, be avoided if we are talking, for instance,
about English or German. This serves to tell words apart as well, for example, OBject versus
obJECT in English, or TENor versus TenOR in German. Languages have typical positions
of word accents. This is sometimes a rule: first syllable in Czech, penultimate syllable in
Polish, last in French. Sometimes there are preferred positions which can be more or less
formulated as rules, for instance, in English or German. The signalling of the phrase accent,
that is, of the focal unit, serves to indicate the most important (often, the ‘new’) semantic
message. Sentence mood, especially question versus non-question, is, across languages, very
often indicated by high versus low final pitch movements; note that this is a (strong) tendency,
not a rule without exception, as Studdert-Kennedy and Hadding (1973) and Hadding-Koch and
Studdert-Kennedy (1964) have pointed out; moreover, questions can be signalled by specific
particles, for instance, in Finnish. We will address a similar formal means, namely the so-called
‘uptalk’, below.

The indication of all these functions is layered, following more or less strict rules, from word
level to phrase and utterance level. Together, they form a language-specific rhythm that helps
the child acquire his/her first language, and that can be one of the big obstacles to acquiring
a native pronunciation in a foreign language. Note that even on this language-specific layer,
there can be a considerable degree of freedom, with respect to not only the pitch register but
also positions of focal accents and the like. In an intonation model, there might be only one
possibility for producing a sentence ‘out of the blue’ or within a specific context; however,
in reality, there are often several alternatives. The cross-language and, by tendency, universal
utilisation of pitch from an ethological perspective is addressed in Ohala (1984).

The marking of paralinguistic functions is, so to speak, modulated onto the linguistic layer;
this will now be discussed, more or less following the structure of Chapter 5.

The most important biological trait primitive is the difference between adults and children,
and between females and males, in pitch register, that is, average pitch height: some 100–
150 Hz in male speech, 150–250 Hz in female speech, and 300–500 Hz in children’s speech.
A full and very detailed account of the ‘Physiological, aerodynamic, and acoustic differences
between male and female voices’ is given in Kreiman and Sidtis (2011, pp. 124ff.). For
instance, a man’s larynx is about 20% larger than a woman’s. However, this does not fully
explain the differences between pitch height in males and females; there are additional cultural
factors as well. Van Bezooijen (1995) has found that Japanese women have higher pitches than
Dutch women; this has been traced back to the assumption that ‘Japanese women raise their
pitch in order to project a vocal image associated with feminine attributes of powerlessness’
(Van Bezooijen 1995, p. 253). Similar stereotypes exist in the United States as well, but with
opposed tendencies. Imagine the high-pitched attractive voice of Marilyn Monroe versus the
equally attractive but lower-pitched voice of Lauren Bacall. It seems that, on average, female



84 Computational Paralinguistics

pitch has been lowered in the US and other Western countries since the 1950s due to the
changing role of women in society.

Pitch is a good use case to demonstrate that what we produce is not the same as what we can
measure (fundamental frequency, F0) or what we perceive (pitch), although there is a regular
and highly positive correlation between these parameters. To take such correspondences into
account, Scherer (2003) advocates the Brunswikian lens model with distal indicators and
proximal percepts. There are other models for different sender–receiver characteristics; it will
do as well to be familiar with the differences between articulatory/phonatory mechanisms, the
acoustics of the phonetic signal, and perceptive phonetics. There are different perceptually
adequate pitch scales: the mel scale, based on a subjective magnitude estimation of pitch;
the Bark scale, based on measurements of the so-called critical bands; and the equivalent
rectangular bandwidth (ERB) scale, based on measurements of the bandwidth of the auditory
filters. All of them are logarithmic above 500 Hz; below 500 Hz, the mel and Bark scales are
linear, and the ERB scale between linear and logarithmic; details can be found in Zwicker and
Fastl (1999) and Hermes and Gestel (1991).

To take into account the different pitch registers of males and women – whether caused only
by physiological factors or also by social stereotypes – we have to either model females and
males separately, or normalise F0 with respect to different reference values such as speaker-
specific baselines, that is, the lowest possible F0 value for a speaker, or to the F0 mean value
of the unit of analysis, for instance, the utterance; moreover, we can use the transformations
mentioned above. Most important is the normalisation to some gender-, speaker-, or utterance-
specific reference value; however, a perceptually adequate modelling can have some added
value as well. In automatic speech processing, speaker normalisation is often done for all
acoustic-prosodic features.

Irrespective of the normalisation chosen, we have to distinguish whether differences in
the expression of emotion or any other paralinguistic trait are ‘simply’ due to these bodily
differences (biological trait primitive), whether they are due to a straightforward stereotype
that women generally speak with higher pitch (cultural trait primitive), or whether they are
really due to the employment of different features by male and female speakers (culturally
or personally influenced differences in the use of pitch for indicating affect and emotions).
It is thus not really of interest just to report that when using non-normalised pitch values, a
separate modelling of females and males yields better performance. However, to disentangle
different conditioning factors and features and to attribute to them relative importance, would
be of great interest. We will return in Section 4.2.3 to a tendency in female speech to lower
pitch in such a way as to result in irregular phonation (laryngealisations).

As for personality traits, we can expect that, for instance, less lively characters are mirrored
in lower pitch register and especially lower pitch range; recall the extraversion, energy, enthu-
siasm factor in the OCEAN dimensions mentioned in Section 3.1. As for emotions, raised
pitch is a relatively stable indicator of arousal, be this negative (anger) or positive (joy). In
parallel, lowered pitch indicates sadness. Such results are consistent for acted data and have
been repeatedly reported by Scherer and colleagues; they can more or less be expected for
non-acted data as well. Note that the marking of emotion seems to comply with the linguis-
tic structure; Seppi et al. (2010) have shown that it is stronger for content words than for
function words, and, within content words, stronger for the word accent syllable. This corre-
sponds to the assumption that paralinguistic structure is modulated onto linguistic structure,
and not distributed randomly or independently. Of course, this correspondence can be out of
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tune in non-typical (deviant, non-native) speech; in turn, this can be taken as an indicator of
non-typical speech.

So far we have dealt with pitch in the speech of individuals. Of course, it serves, together
with other prosodic features, specific functions in dyadic and multi-party interactions; there,
it is a complex interplay of entrainment – the tendency of dialogue partners to adapt to the
other’s speaking style – and signalling different roles. Entrainment can be observed for all
acoustic, prosodic and linguistic parameters – pausing, back-channelling, adaptation of tempo
and pitch, and choice of words. This is a dynamic process that can – but need not – change the
initial attribution of social status which can be either symmetric or asymmetric (higher/lower
status). Lower pitch (going over to laryngealised speech; see Section 4.2.3) can signal higher
status, both in humans (Ohala 1984) and in other mammals (Wilden et al. 1998).

Returning to a linguistic function of pitch, namely the indication of questions, in Batliner
(1989), two pragmatic (i.e., paralinguistic) dimensions of meaning for questions were estab-
lished: first, expectancy of answer with the extremes of fully open questions at one end,
and fully rhetorical questions at the other end; and second, indicated interest in an answer,
with no interest at all in rhetorical questions at one end, and very strong interest at the other
end. The higher the expectancy or the interest is, the higher the (final) pitch rise may be. In
German, modal particles can help to disambiguate such nuances; in English, it is mostly the
job of intonation. Kreiman and Sidtis (2011, p. 301) reflect on the theoretical consequences.
We can consider linguistic categories such as question versus non-question as categorical,
and paralinguistic meanings as graded. This means that questions are questions but with a
more or less pronounced additional meaning, for instance, additional expression of surprise
or bewilderment which are indicated by higher than usual final pitch values. In fact, we can
analytically distinguish the linguistic from the paralinguistic constellation; however, we doubt
that speakers do the same. In experiments, it depends on the interest of the researcher and, thus,
on the experimental design; recall WYALFIWYG in Section 3.9. So it boils down to a matter
of methodological considerations what to attribute to which component. For description, the
suggestion of Kreiman and Sidtis (2011, p. 301) to distinguish categorical linguistics from
graded paralinguistics might be a good choice. In practice, we most likely will do linguistic
and paralinguistic analyses and processing alongside each other, and will model pitch values
and final pitch curves separately in both components.

Final rises for indicating questions should be distinguished from uptalk characterising
statements, a more or less regular final pitch rise in regional or social varieties. It is well
known to exist in varieties of Irish English, for instance, in the Belfast dialect, and in some
varieties of Swiss German (in connection with a final question tag oder?, functioning in
the same way as isn’t it?); further references can be found in Foulkes and Docherty (2006)
who summarise this and other similar phenomena under the heading ‘sociophonetics’. It
seems to be spreading among both the male and female population in southern California
and does not function as continuation or question marker but rather as a symptom of group
membership (Kreiman and Sidtis 2011, pp. 129, 272). It might be difficult to distinguish these
two functions – indicating questions or indicating group membership – just by analysing the
pitch contour. However, in specific cases, a pragmatic test might do: unless we can assume
a rhetorical question, such an intonation contour in a statement about oneself (I am hungry)
suggests uptalk and not questioning.

In computational paralinguistics, we can model pitch implicitly, together with a multitude
of other features, with or without trying to assess its impact for the function we are interested
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in. Nowadays, this is the usual brute-force approach. In basic research, we often address single
formal parameters such as pitch. In so doing, we can find out more about the behaviour of
this single feature/parameter. Yet, this comes at the cost of disregarding other parameters; for
instance, in order to be able to distinguish between uptalk and question intonation, we might
need additional information on the variety spoken by the speaker.

4.2.3 In Between: The Case of Other Voice Qualities, Especially
Laryngealisation

Is Chantal the brunette that speaks in the slow, deep, creaky voice? She pronounces
every word like its torture.

(Pomme de Divan, Forum, Candid Reality Shows)

According to Abercrombie (1967, p. 91), voice quality ‘ . . . refers to those characteristics
which are present more or less all the time that a person is talking; it is a quasi-permanent
quality running through all the sound that issues from his mouth’. Laver (1980), Crys-
tal (2008), and Kreiman and Sidtis (2011) all subscribe to this definition which encom-
passes pitch, loudness, tempo, and timbre. Gordon and Ladefoged (2001) deal with cross-
linguistic aspects of voice quality. Gerratt and Kreiman (2001) try to establish a taxonomy
of non-modal phonation, and Kreiman et al. (1993, 2007) address perceptual assessment of
voice quality.

It is difficult, if not impossible, to extract surgically, as it were, pitch from other voice qual-
ities; for instance, jitter (micro-variations of F0) is sometimes attributed to pitch, sometimes
to voice quality. Pitch is often modelled under the assumption that we are dealing with the
typical, ‘modal’ variety of phonation; if not, and if extraction ‘fails’, we have to reconstruct
pitch by extrapolating pitch across unvoiced passages, and/or by getting rid of octave errors
that can often be observed in irregular phonation; examples of such irregular passages are
given in Figure 4.1.

In Section 4.2.2 we dealt with pitch and mostly with upward deviations indicating gender-
specificity, cultural stereotypes, and markers of social group membership. We now address
the opposite: downward deviation, resulting in irregular phonation. Other non-typical voice
qualities will also be mentioned but not dealt with in depth. This means that we do not want to
get rid of such irregularities but to investigate them as is and to find out which paralinguistic
function they indicate.

‘Phonation concerns the generation of acoustic energy . . . at the larynx, by the action of the
vocal folds’ (Laver 1994, p. 132). The three main sub-types of phonation are: ‘normal’ modal
voice, laryngealisation (frequency range below the modal voice), and falsetto (frequency range
above the modal voice). Laryngealisation shows up as irregular voiced stretches of speech.
Mostly, it does not disturb pitch perception but is perceived as supra-segmental, differently
shaped irritation modulated onto the pitch curve which can be found both in typical and
atypical speech. This irregular phonation is still less well known and understood than typical,
modal phonation. Its occurrences and distributions nicely demonstrate the interplay of local
(partly segmental in the phonological sense) and global phenomena. Such an interplay also
exists for pitch; however, it is practically impossible to disentangle both factors on the time
axis because pitch is ubiquitous – if there is voicing, then there is pitch. Irregular phonation,
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however, can be restricted to specific segments or to specific local contexts; examples are
given below.

Laver (1968) gives a good overview of classic approaches to voice quality as an index of
biological, psychological and social characteristics of a speaker. Painter (1991) describes the
different types in terms of laryngeal configurations, based on video recordings.

There are various terms for this phenomenon used more or less synonymously: irregular
phonation, laryngealisation, glottalisation, creak, vocal fry, creaky voice, pulse register, etc.
We use ‘laryngealisation’ as a catch-all term for all these phenomena originating in the larynx
that show up as irregular voiced stretches of speech. Irrespective of terminology, the definition
of sub-types is mostly holistic, taking into account physiological, acoustic, and perceptual
aspects. Batliner et al. (1994) developed a taxonomy strictly based on formal characteristics of
the time signal along six dimensions: number of glottal pulses; degree of damping; amplitude
and F0 variations, both intrinsic (paradigmatic aspect) and with respect to left and right context
(syntagmatic aspect). These dimensions allow us to establish five distinct types: glottalisation,
diplophonia, damping, sub-harmonic, and aperiodicity, in addition to a less distinct waste-
paper-basket category; they are displayed in Figure 4.1. Phonation outside the boxes is regular
(modal), inside the boxes irregular (laryngealised).

Figure 4.1 Six types of laryngealisation (Batliner et al. 1994)
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There have been a few attempts to classify laryngealisations automatically (Ishi et al.
2005; Kießling et al. 1995). Normally, there is no explicit modelling and classification of
laryngealisations in automatic approaches to paralinguistics.

As for the functional aspect, one can try and find different functions for this formal phe-
nomenon. In spite of the fact that it is largely unnoticed by speakers even if they employ it
themselves, there are a plethora of such functions; the following presentation is adapted from
Batliner et al. (2007) and extended.

Table 4.1 displays different functions of laryngealisations which can be linguistic or paralin-
guistic. They can be caused either by greater effort or by relaxation; in the former case, they go
together with accentuation (prominence) which is, of course, a local phenomenon. (Actually,
it might be that laryngealisation does not denote accentuation but can be accompanied by
it, in the case of low and/or back vowels such as [a] in a stressed syllable (cf. below); note
that in stressed position, laryngealisation cannot be caused by relaxation.) A typical place
for relaxation is the end of an utterance (Böhm and Shattuck-Hufnagel 2007); turn-taking
can thus be signalled to the dialogue partner; this is again a local phenomenon. Local and
Kelly (1986) report that different types of laryngealisations are used in (British and American)
English conversations for holding the floor (filled pauses with glottal closure, no evidence of
creaky phonation) and for yielding the floor (filled pauses with lax creaky phonation, no glottal
closure). Word boundaries in the hiatus,that is, a word final vowel followed by a word initial
vowel, can be marked by laryngealisations in German. Boundary marking with such irregular
phonation which is, of course, local, is dealt with in Huber (1988), Kushan and Slifka (2006),
and Nı́ Chasaide and Gobl (2004). It is well known that back vowels such as [a] tend to be

Table 4.1 Functions of laryngealisations, adapted from Batliner et al. (2007)

phenomenon time domain
linguistic functions: phonotactics, grammar, . . .

vowels local
accentuation local
word boundaries local
the end of an utterance local
native language local

paralinguistic functions
speaker idiosyncrasies local–global
speaker pathology trait
too many drinks/cigarettes temporary
competence/power trait/temporary
social group/class membership local/trait/temporary
emotions state or temporary

explanation of ‘time domains’
local: phonotactically definable (utterance-final, word-initial, etc.) or
phone-dependent
state: short-term
temporary: medium-term, longer than state but not trait
trait: persistent
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more laryngealised than front vowels such as [i] (local phenomenon). A language-specific
use of laryngealisations either can be due to phonotactics, as in German, where every vowel
in word-initial position is ‘glottalised’, or phonemes can be laryngealised, as in the case of
the vowels in Jalapa Mazatec (Ladefoged and Maddieson 1996, p. 317) which can be creaky
(laryngealised), breathy (murmured), or modal (plain); this is a local phenomenon, denot-
ing the native language. Normally, specific segments which are laryngealised characterise
languages (see, for vowels, Gerfen and Baker 2005); in Danish, the glottal catch or ‘stød’
(Fischer-Jørgensen 1989) can be found in vowels and consonants. Paralinguistic functions are
displayed in the middle part of Table 4.1. Laver (1994, pp. 194ff.) lists different uses and
functions of ‘creak’ phonation, amongst them the paralinguistic function ‘bored resignation’
in English Received Pronunciation, ‘commiseration and complaint’ in Tzeltal, and ‘apology
or supplication’ in an Otomanguean language of Central America. Laryngealisations can be a
marker of personal identity and/or social class; often, they indicate higher-class speech. How-
ever, in the same way as table manners spread from higher to lower classes, specific phonation
types can be employed by other social groups, such as young females (see below). Wilden
et al. (1998) refer to evidence, not just for human voices but for mammals in general, that
‘non-linear phenomena’ (i.e., irregular phonation/laryngealisation) can denote individuality
and status, that is, pitch is used as an indicator of a large body size and/or social dominance:
‘ . . . subharmonic components might be used to mimic a low-sounding voice’. Emotional
states such as despair, boredom and sadness, are short-term or temporary. Bad news is com-
municated with a breathy and creaky voice (Freese and Maynard 1998), boredom with a lax
creaky voice, and, to a smaller extent, sadness with a creaky voice (Gobl and Nı́ Chasaide 2003).
Drioli et al. (2003) report for perception experiments with synthesised stimuli that disgust is
conveyed with a creaky voice. Erickson et al. (2004) found, for one female Japanese speaker,
creaky voice in imitated sadness but not in spontaneous sadness; thus they assume a social
connotation of creaky voice. Display of boredom and upper-class behaviour might coincide;
the same can happen if someone who permanently uses laryngealisations as a speaker-specific
trait tells a sad story. On the other hand, at first sight, speakers who exhibit laryngealisations
as an idiosyncratic trait can make a sad impression without actually being sad. A common
denominator for some of the paralinguistic functions of laryngealisations might be inactivity/
passivity in mood (boredom, sadness, etc.) corresponding to relaxation — which is one of the
possible physiological sources of laryngealisations. However, this is not a must: if laryngeal-
isations are used to signal competence/power, then the basic attitude can be composure and
need not be passivity. However, if speakers habitually produce laryngealised speech, then it is
at least very difficult to distinguish other functions.

Note that all these characteristics which per se are not characteristics of single speakers
can – apart perhaps from the language-specific phonemes – be used more or less distinctly
by different speakers (Batliner et al. 2007). As for the para- and extralinguistic function of
laryngealisations, speakers can simply use them throughout to a higher extent; such speaker
idiosyncrasies are local/traits. Some children display severe phonation irregularities such as
harsh voice and/or laryngealisations, due to lack of control of laryngeal settings. ‘Creaky
superstars’ like Tom Waits or Leonard Cohen, who claimed that his voice got even lower
after having stopped smoking, are well known. Laryngealisations can be a consistent trait
throughout phonation, or may only be employed in utterance-final position; note that this is
not a new observation – it was also observed in the actress Mae West who impersonated a
both attractive and dominant person. The same can be observed in female professionals in
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the US – a famous example being the editor of the New York Times. Yuasa (2010, p. 315)
found that female speakers of American English in California used a creaky voice to a higher
extent than comparable American male or Japanese female speakers. A new stereotype seems
to be emerging with the ‘female creaky voice as hesitant, nonaggressive, and informal but also
educated, urban-oriented, and upwardly mobile’. In a study by Wolk et al. (2012), two-thirds
of a sample of young adult Standard American English speakers used vocal fry, especially at
the end of sentences.

Anecdotal evidence shows that nasalisation in young German women might also be an
adapted trait to signal group membership, initiated by the advent of TV and especially early
evening soaps. The use of laryngealisations by younger American woman might serve the
same purpose. We can speculate that there are two tendencies. First, in the US, pitch in
women’s voices has lowered in the last 50 years. Second, as an alternative to higher pitch as
an indication of femininity, there is a trend towards laryngealisation, that is, lowering pitch,
to signal competence.

Both trends – using uptalk and producing laryngealisations – help in stabilising group mem-
bership. There might be an additional ethological factor: low voice means big and powerful.
This can be adapted by groups that are not big and powerful, such as female teenagers. A par-
allel can be found in diachronic linguistic change, which is always characterised by opposite
tendencies, for instance, towards simplification (and thus deletion of phonemes or morphemes)
on the one hand, and by evolving complexity, on the other hand. Laryngealised speech might
indicate a trend towards complexity. Thus, again, we are faced with both multi-functionality
of this phenomenon, and with changes that only can be explained if we consider the cultural
and historical context.

Other types of phonation serve the same or similar purposes. Breathy voice (Campbell and
Mokhtari 2003; Laver 1991) is well known, with a higher proportion of noise (harmonics-
to-noise ratio) than usual; famous speakers (and singers) are Harry Belafonte, Brigitte Bar-
dot, and Carla Bruni. Breathiness conveys both attractiveness and intimacy (Batliner et al.
2006). We can speculate about the origin of this personality trait. In intimate situations
(mother–child or male–female interaction), the partners are close together and subtle, less
prominent voice characteristics can be employed. In contrast (see Section 5.3), leadership
and charisma are correlated with voice characteristics such as greater loudness, higher and
more variable pitch (Weninger et al. 2012) – these being features that can be heard across
distances greater than those found in intimate scenarios. Less attractive and not yet fully
understood as an indicator of personality seems to be another phonation type, namely hyper-
functional dysphonia, where the voice is hoarse and too forceful – famous speakers being
Paris Hilton and Heidi Klum – with women considerably overrepresented by a factor of up to
8 (Wilson et al. 1995); at least, such voice qualities are ‘ear-catching’, simply because they
are atypical.

We have chosen to detail the different functions of laryngealisations in order to demonstrate
the advantage and disadvantage of a formal approach: only by starting with one specific formal
phenomenon and trying to find out where and when it is employed and by which groups of
speakers do we get a complete account of this formal characteristic. Laryngealisations differ
from rhotics, which are a segmental phenomenon, and from pitch, which is a supra-segmental
parameter: they can be confined to segments or to specific local contexts, they can be global,
or they can combine segmental and global characteristics. However, we do not yet know the
specific relevance of this formal characteristic for indicating specific functions that is, its
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contribution to automatic modelling; this can only be achieved when we model all features
that are possibly relevant for a specific function.

Within automatic speech processing and computational paralinguistics we can (1) try to get
rid of laryngealisations, as indicated above; (2) try to model them implicitly, simply by using
brute force and a very large feature set, for classifying any function; and (3) try to model them
more or less explicitly, aiming at specific functions such as those mentioned in this section.

4.3 The Non-Distinctive Use of Linguistics Elements

A shprakh iz a dialekt mit an armey un flot. – A language is a dialect with an army and
navy.

(Max Weinreich, who attributed this statement to a participant in one of his seminars)

In traditional linguistics, the system of a language is conceived of as being rather monolithic,
based on paradigmatic and syntagmatic distinctive traits and elements. There are many more
degrees of freedom in the use of a language. Each variety thereof could be seen as a language
system in itself, although there have been many attempts to define the relationship of language
with dialect or regional accents or varieties. Varieties can be regional (horizontal) or social
(vertical), or both; additionally, and within these horizontal and vertical varieties, there are
individual varieties characterising a single speaker. For each of these varieties, there exist
linguistically distinctive and non-distinctive traits. Again, it is a matter of which language
system or variety we take as ground, that is, as typical, when we model atypical variations
within this system (in phonological terminology, allophones or free variants) as figure standing
out from the ground.1

In this section, we deal with units of mostly but not exclusively written (‘natural’) language
that can indicate more or less specific paralinguistic functions, again on an exemplary basis, that
is, at the word level, and thus with the lexicon, with word classes, and at the phrase level. We
will concentrate on object language, that is, on the use of linguistic elements by individuals or
groups, and not on metalanguage, which is employed for describing paralinguistic phenomena
and dealt with in Section 5.3.

4.3.1 Words and Word Classes

Rose is a rose is a rose is a rose.
(Gertrude Stein)

The lexicon can change much more easily than the phonology or the syntax of a language;
new words emerge, and other words vanish. Moreover, the word is the basic unit in automatic
speech recognition (ASR) – no wonder that this, especially in earlier times, has also been
called ‘automatic word recognition’ (Clapper 1971) – and this knowledge can be exploited
in computational paralinguistics. For the lexicon, we can do tokenisation, that is, map the
text onto word classes (e.g., to part-of-speech (POS) classes), and stemming, that is, cluster

1On figure–ground organisation in gestalt psychology, see Koffka (1935).
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morphological variants of a word by its stem into a lexeme. With both strategies, we reduce the
number of entries in the vocabulary and at the same time provide more training instances per
class. Rough estimates of the size of the lexicon are 500 000 items for English and German,
and 1000 items for the basic vocabulary needed to understand some 85% of a text. The most
frequent words are function words (articles, personal pronouns, etc.). Although the lexicon
of a speech corpus or of a specific application such as call-centre interaction is much smaller
than the lexicon of a language, this illustrates the problem: the lexicon is an open class, and
we will often face many unknown, so-called out-of-vocabulary (OOV) words. The lexicon of
a language or of a language variety is composed of many entries that differ in connotation,
not in denotation. The users of this language (variety) can choose amongst them in order to
express their likes and dislikes. In our context, the semantic connotations of content words
are more interesting than those of function words; as for (relative or absolute) frequency,
both content and function words are relevant. Thus, there is a nested type–token relationship.
By way of illustration, let us return to the woman versus slut example from Section 1.2:
woman is the denotation type, and one token denoting this type, but with rather specific
connotations, is slut. Looking at such type–token relationships, we might be able to find out
something about the ‘social psychology behind languages’ (Batliner 1981). As for language
usage, we can have a look at how often a specific word (type), such as slut, has been used by
a specific speaker (token) or by groups of speakers. This is a genuine topic in paralinguistic
research which, however, normally addresses not single words but bunches of words with either
negative or positive connotations (valence), or indicating specific traits and states or types of
speech/language.

Single words or just a few words can serve to indicate the language or regional dialect and
thereby the nationality of speakers; so far, this information has been used more by humans than
within computational paralinguistic approaches. For instance, during the few decades when
there were two German republics, the GDR and the FRG, it was not morphology or syntax that
drifted apart, but the lexicon. Thus, the use of Broiler instead of Brathähnchen (roast chicken),
or of Plaste instead of Plastik (plastic) revealed that the speaker came from the GDR.

The first applied sociologists (known to us) were those Israelites who used the word
shibbóleth to distinguish friends from enemies, within a rather straightforward application:

The Gileadites captured the fords of the Jordan leading to Ephraim, and whenever a
survivor of Ephraim said, ‘Let me cross over’, the men of Gilead asked him, ‘Are you
an Ephraimite?’ If he replied, ‘No,’ they said, ‘All right, say “Shibboleth.”’ If he said,
‘Sibboleth,’ because he could not pronounce the word correctly, they seized him and
killed him at the fords of the Jordan. Forty-two thousand Ephraimites were killed at
that time.

(Judges 12:5)

This can be compared to today’s (biometric) access control by checking a (phonetic) password,
or to a rudimentary classification into accents/dialects/languages.

The Ritchie Boys (after Camp Ritchie, Maryland), a special military intelligence unit in the
US army composed of Jewish immigrants, were in Europe after the invasion of Normandy,
close to the front lines, interrogating prisoners and collecting information. They normally



Formal Aspects 93

preserved a strong German, non-native accent. When returning to their unit – sometimes
from behind enemy lines – and upon being asked for the password, in a few cases, they
were mistakenly taken for the enemy and shot dead because of this strong German, that is,
non-native, accent. This can be seen as another, tragic application of the shibboleth principle.
We can imagine a similar application which can also have a severe impact on people. It
is well known that banks have algorithms for distinguishing high-risk and low-risk credit
users. Residential area is one important criterion – and it is, in specific constellations, highly
correlated with regional accents. When automatic procedures are employed for recognising a
stigmatised regional variant, for instance within a call-centre application, the only difference
might be that they are not based on a single word but on a bunch of features. The similarity
will be a considerable percentage of false alarms.

The Merriam-Webster online defines shibboleth as ‘a use of language regarded as distinctive
of a particular group’ – thus we could say that what we want to do in paralinguistics is to find
shibboleths that distinguish different groups, whether it be different social classes, learners of
a foreign language with different proficiency levels, or different emotions. In the same way,
we might speak of ‘bags of shibboleths’, echoing bags-of-words. Note that in dialectology,
the term isogloss is used for the regional, geographic distributions of specific words, and
isophone for specific sounds. Both can be considered as shibboleths distinguishing dialects.
Thus, ‘language’ as used in the definition of Merriam-Webster online given above is used in
a broad sense: the use of specific words (lexemes) or phrases, or the use of specific phonetic
varieties of such linguistic units.

It is intuitively plausible that such shibboleths, especially those with strong connotations,
can be very useful in modelling paralinguistics. The problem is, however, that they might be
sparse – even hapax legomena, that is, found only once in the database; thus chances are high
that they have to be modelled as OOV words. If we wanted to avoid OOV words, we would
have to include all words in the lexicon that possibly might occur. However, we would then
expand the lexicon enormously, and this is not a good idea either because it means that the
word error rate goes up: there are too many words that can be confounded with each other.
On the positive side, there is even quite a lot of information in the distinction between content
word and function word, and in a rough assignment of words to a few cover classes. This will
now be exemplified with two studies.

Chung and Pennebaker (2007) used a text analysis program called ‘Linguistic Inquiry and
Word Count’ (LIWC) for counting both content and style words within any given text, and for
mapping about 2000 words or word stems onto (negative and positive) emotion and function
word classes. The most commonly used words are function words (I, the, and, to, a, of, that,
in, it, my, . . .), that is, (personal) pronouns, articles, conjunctions, or prepositions. They found
across multiple studies and experiments that the use of first person singular is associated with
negative affective states; that the combined use of first person singular pronouns and exclusive
words predicts honesty; that, within dyads, the person who uses ‘I’ words to a lesser extent
tends to be the higher-status participant; and that females tend to use first person singular
pronouns at a consistently higher rate than do males.

In Batliner et al. (2011) and Schuller et al. (2007) experiments are reported using a database
with German children giving commands to Sony’s pet robot Aibo; this is the same database
as used in the Interspeech 2009 Emotion Challenge (Schuller et al. 2009b); further details can
be found in Batliner et al. (2008), Steidl (2009) and in Section 2.13.1 above. Note that before
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this challenge, only a subset of the whole database was used for processing. A large feature
vector with more than 4000 features modelling different types of acoustic and linguistic
parameters was employed for classifying automatically three emotion (affect) classes, the
social emotion motherese, emphatic as a pre-stage to negative, and the negative emotion angry,
together with the default case neutral. Six POS classes were annotated and modelled: nouns,
inflected adjectives and participles, not-inflected adjectives and participles, verbs, auxiliaries,
and particles/interjections. A cross-tabulation of the four emotion categories with the six POS
classes illustrates the high impact of POS due to the unbalanced distribution: more adjectives
for motherese (e.g., good boy), more verbs for emphatic (e.g., stop), and more nouns and fewer
particles for angry (e.g., vocative Aibo). In Schuller et al. (2007) performance is reported for
employing the feature sets separately, in Batliner et al. (2011) the features were employed
in combination and different measures for the contribution of the single types were reported.
POS features obviously model (positive or negative) valence and syntactic/semantic salience
to a high extent: only employing these six POS features to distinguish the four classes yielded
a competitive classification performance, compared to only employing the prosodic features
of duration, energy, or spectrum or cepstrum (e.g., MFCC) separately. This shows the high
impact of such a rough measure which seems to be quite robust against ASR errors. This might
be due to a high contingency of duration characteristics with POS main classes: content words
are, on average, longer than function words. Thus, even misrecognised words provide salient
information if confusion occurs only within cover classes.

4.3.2 Phrase Level: The Case of Filler Phrases and Hedges

No, I say, dash it!
(Berti Wooster in P.G. Woodhouse, Right Ho, Jeeves)

Filler phrases are words or combinations of words (phrases) that are in some respect sort of
not very important for interpreting the referential meaning of an utterance, I’d say. Lakoff
(1973a) introduced the term hedges for deintensifying words such as sort of, technically,
strictly speaking, in some respects, in a sense, and tried to establish semantic criteria. In
German, well-known fillers are irgendwie ‘somehow’ or ‘sort of’ (some time ago rather fancy
in the post-flower-power sub-culture), and sozusagen ‘in a way’ (idiosyncratic habit, very
conspicuous in TV interviews and talk shows). There is no clear dividing line between pure
fillers and modal particles (Fischer 2007) or sentence adverbs. The term ‘hedges’ seems to
be used – somewhat vaguely – for ‘a class of devices that supposedly soften utterances by
signalling imprecision and noncommitment’ (Dixon and Foster 1997, p. 90), ‘expressing the
speaker’s lack of commitment to an entire proposition’ (Ranganath et al. 2013, p. 97), and
sort of used synonymously for ‘fillers’.

The very fact that fillers/hedges do not have a specific syntactic function or semantic
meaning, apart from this vague desintensifying function which, however, obscures this very
function if employed too often, makes them well suited for indicating paralinguistic functions.
Thus while, for a strictly semantic analysis, we might be tempted to throw them away, for a
paralinguistic analysis, it is worth making them the object of investigation. This has been done
by three studies to which we now turn.
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The observation made by Lakoff (1973b) that women use hedges more often than men in
order to sound feminine, based rather on anecdotal evidence, has been examined by (Dixon
and Foster 1997, p. 89), employing a sample of South African students:

The results showed that contextual influences eclipsed the effects of gender; in fact, no
main effects were found for speaker gender. . . . perhaps reflecting differences in social
status, both sexes used sort of to express tentativeness more frequently when talking to
male addressees. When speaking to female addressees, on the other hand, men deployed
facilitative you know hedges more readily than women.

This is in line with studies that scrutinised the prejudice that women are more talkative than
men. When we try to summarise the outcomes, it has to be ‘it always depends’, namely on the
specific circumstances. Thus, phenomena such as hedges are definitely paralinguistic markers,
but we have to take a close look at the sample, the context, and the scenario.

Salager-Meyer (2011) investigated the use of hedges in research papers by academics
belonging to different nationalities. She concludes that

research papers in French use much more prescriptive, authoritarian, and categor-
ical language than those written by English-speaking colleagues. . . . Arrogance and
over self-confidence (that is, a lack of hedging devices) have also been noted in Finnish
academic writing and in research papers written in Bulgarian and English by Bulgarian-
speaking scientists when compared with research papers written in English by native-
English-speaking scientists, thus suggesting that Finnish and Bulgarian academic writ-
ers show a higher degree of commitment and, consequently, a lower degree of deference,
toward the discourse community than their English counterparts.

(Salager-Meyer 2011, p. 36)

The author herself adds the caveat that several factors might additionally be taken into account,
such as the writer’s status, age, and sex.

Ranganath et al. (2013) studied, among other phenomena, the use of hedges in a speed
dating scenario:

Across the studies and labelers, friendly men tend to use less hedges, less uh, less
you know, and have more varied intensity . . . by far the strongest linguistic association
with awkward men and women is the use of hedges. . . . results suggest that hedges are
also used metalinguistically to indicate the speaker’s psychological distancing from or
discomfort with the situation; words which are distancing at the semantic or pragmatic
level acquire the metapragmatic connotations of distancing.

(Ranganath et al. 2013, pp. 103, 111)

Again, what we see is that the use of hedges is not gender-specific but rather characterises
personality.

Hedges seem to have similar distributions and functions as some disfluencies (see Sec-
tion 4.4); words such as well, I say, filled pauses such as uh, uhm, and hesitations/lengthening
often serve the same purpose.
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4.4 Disfluencies

Well, why is life worth living? That’s a very good question. Uhm, well, there are certain
things I–I guess that make it worthwhile. Uh, like what? Okay. Uhm, for me, ah, ooh, I
would say – what, Groucho Marx, to name one thing.

(Woody Allen, Manhattan)

As always, there are different terms, partly synonyms, to describe the phenomenon we want to
deal with in this section. We decided in favour of ‘disfluencies’ denoting all those phenomena
that can be observed in spontaneous, not preplanned, not acted, not prompted speech, and in
‘spontaneous writing’ which has not been corrected in a second pass. Disfluencies deviate
from ‘correct’ language use, although they are very common and only ‘atypical’ in the sense
that they have not been that often object of investigation in automatic speech processing. The
quotation by Woody Allen represents speech, translated into orthography. Similar things can
happen in careless, ‘spontaneous’ typing, so one of these sentences, if written carelessly, could
look like this: ‘well there ar ecetiran things that mammke it worhtwlhie.’ Although we want to
concentrate on speech in this section, we point out that there are definitely parallels in writing
that can be employed, for instance, in forensics; think of blackmailers making a telephone call
or writing a letter on a typewriter: here, speaker and writer identification or verification monitor
both the manifestations of dynamic processes, be it prosodic peculiarities or the timing of the
keystrokes manifested in density and blackening.

Fluency denotes the undisturbed flow in producing correct speech, disfluency denotes prob-
lems pertaining to segments, prosody, and grammar. Spontaneous speech differs from pre-
planned (read) speech in several respects. Overall, articulation and pronunciation can be less
pronounced and slurred, with more deletions and contractions. Moreover, it can display so-
called agrammatical phenomena such as (more) unfilled pauses (silence) and filled pauses
(uhm, well), and hesitations (lengthening of syllables) to provide additional time for planning;
repetitions, slips of the tongue, false starts with an interruption point and repair (fresh start),
because of planning difficulties; at the syntactic level, non-standard grammar – either agram-
matical or following the rules of some sub-standard variety, and more frequent use of ellipsis
(deletion of pronouns, etc.); and more colloquial choices from the lexicon. Similar phenomena
can be observed in less formal, more colloquial written language, such as emails and blogs;
here, typing errors are the equivalent of agrammatical phenomena in spontaneous speech.

Two early studies dealt with hesitations: Goldman-Eisler (1961) with the distribution of filled
and unfilled pauses, and Martin and Strange (1968) with the varying frequency of hesitations
in spontaneous speech, due to different experimental conditions. Wingate (1984) pointed out
that the term ‘dysfluency’ should be used only for pathological, that is, deviant speech (see
Section 5.6), because the prefix ‘dys’ denotes abnormality, for instance, in stuttering, whereas
‘dis’ denotes ‘apart’ or ‘not’, that is, simply ‘non-fluency’. Levelt (1983) developed a three-
stage model of self-repairs in speech: monitoring of own’s own speech and the interruption of
the speech flow as first phase; in the second phase, hesitations, pauses and the so-called edit
terms (uhm or no, I mean) can be observed; then, the repair follows in the third phase. This
model prepared the ground for the subsequent, elaborated and refined, models. Self-corrections
concern not only the chain of words but also prosody as the carrier of words in speech; this is
the topic of Levelt and Cutler (1983). The phenomena are embedded in a theory of ‘Speaking:
From Intention to Articulation’ in Levelt (1989).
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yes it’s okay Monday <uh> Sunday the fifth

Editing
Term

Interruption-
point

ReparansReparandum

<äh> Sonntag den fünftenja ist in Ordnung Montag

Figure 4.2 A speech repair

Commonly, a repair is segmented into four parts that have to be detected and processed
differently:

• reparandum, the “wrong” part of the utterance;
• interruption point (IP), the boundary marker at the end of the reparandum;
• edit(ing) term: special phrases which indicate a repair, such as well, I mean or filled pauses

such as uhm, uh (optional, most of the time missing);
• reparans, the correction of the reparandum.

Such repairs can be very complex; a simple example is given in Figure 4.2 from the Verbmobil
scenario (Spilker et al. 2001).

In the 1990s, ASR researchers began to be interested in spontaneous, that is, less regular
speech data. This interest initiated studies on prosodic differences between spontaneous and
read speech (Batliner et al. 1995a, 1997; Blaauw 1995; Daly and Zue 1992; Silverman et al.
1992), and on the modification of syntactic phenomena such as sentence mood within and
by spontaneous speech (Batliner et al. 1993). For dealing with the syntax and pragmatics of
spontaneous speech, other and more shallow approaches have been developed (Batliner et al.
1998). As spontaneous speech turned out to be ‘syntactically deficient’, another emerging topic
was the problem of how to deal with such agrammatical phenomena in order to obtain gram-
matically ‘clear’ speech which could be passed on to higher modules for further processing in
end-to-end systems such as Verbmobil (Wahlster 2000).

Spontaneous speech phenomena in general are dealt with in Llisterri (1992) and Shriberg
(2005). Hindle (1983) developed a first system of rules for resolving non-fluencies in speech.
Further approaches towards reaching this goal are reported in Bear et al. (1992), Heeman and
Allen (1999), Nakatani and Hirschberg (1993), Shriberg (1994), and Batliner et al. (1995b).
Spilker et al. (2001) describe the processing of speech repairs in the Verbmobil system and
point out and evaluate the problems one has to face when modelling speech repairs in a real
and full end-to-end system.

In ‘normal’ automatic speech processing, disfluencies are not an object of investigation but
something one wants to get rid of. However, in paralinguistics, their (speaker-specific) fre-
quencies, and their distributions can of course indicate specific paralinguistic functions such as
emotions, or especially experiencing flow (versus becoming stuck) in learning environments.
They can as well be taken as characterising speaker idiosyncrasies, that is, be employed
for speaker verification or identification, and for personality trait investigations. Cucchiarini
et al. (2000) found out that rate of speech correlates highly with perceived fluency. This has
been corroborated by Hönig et al. (2012) with a very large feature vector with and without
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duration/tempo features. Devillers et al. (2005) use manually annotated disfluencies for clas-
sifying automatically emotions within an emergency call-centre scenario. Naturally enough,
these features contribute less to classification performance in another scenario with another
type of interaction (giving commands to a robot), and thus a lower overall frequency of
disfluencies (Batliner et al. 2011).

It seems to us that the focus of interest has changed in automatic speech processing away
from a rather detailed modelling and processing of dialogues and especially disfluencies, to a
coarser-grained processing where phenomena are modelled more implicitly. In the same vein,
disfluencies still seem yet to be the Cinderella of computational paralinguistics; this might be
due to the complexity of the task of modelling them explicitly. However, they definitely are
modelled implicitly as well within approaches towards automatic assessment of non-native
prosody, for instance, with features representing speech tempo, rhythm, and duration (Hönig
et al. 2012).

4.5 Non-Verbal, Vocal Events

Mr. Swinhoe informs me that he has often seen the Chinese, when suffering from deep
grief, burst out into hysterical fits of laughter.

(Darwin 1872)

As pointed out earlier, ‘non-verbal’ is often used in a very broad sense, meaning ‘everything
that happens within human–human communication and which is not strictly verbal, that is,
belonging to linguistics’; we want to confine the realm of ‘non-verbal’ here to ‘vocal’ events.
So far we have addressed ‘verbal, vocal events’; in this section we turn to ‘non-verbal, vocal
events’. In their pure form, non-verbals can be segmented on the time axis; in this case, verbals,
that is, words, and non-verbals are mutually exclusive. Thus it is possible to model and process
non-verbal events along the lines of words in automatic speech processing. Sometimes non-
verbals such as filled pauses or some types of affect bursts or ‘vocal outbursts’ (Scherer 1994;
Schröder 2000) such as oh, wow cannot only be segmented out from the word chain but comply
with the phonotactics of a language as well; sometimes they do not, as is the case for coughing
or sobbing.

Quite a lot of non-verbals exist in a less pure form as well, not separable from but syn-
chronous with speech; these include laughing, sobbing, crying, coughing, which all can be
separate events or modulated onto the word chain. However, this phenomenon differs from
other paralinguistic parameters that are modulated onto the word chain as well (e.g., pitch)
or voice quality (e.g., harshness, breathiness, or laryngealisations). The latter only co-occur
together with a verbal event – there is no stand-alone pitch or laryngealisation, whereas non-
verbal events can be stand-alone as well. We can peel these non-verbals away from their
carrier, that is, from words, and produce them alone, with a sort of neutral phonation as carrier,
and vice versa. However, this is only possible if there is no articulation plus phonation yet, as
is the case for the so-called affect bursts which have to be conceived as holistic events.

Isolated non-verbals that are not embedded in an utterance can have functions similar to
(short) utterances and can be replaced by them; imagine wow instead of that’s really awesome,
sighing instead of I’m really sorry for you, uhm instead of well, or laughing instead of saying
I don’t think so or that’s funny. Of course, connotations can differ: while well instead of uhm
will not make much difference, breaking into laughter instead of saying that’s funny does.
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A frequent function of non-verbals might be the same as that of disfluencies: to indicate
planning, or to hold the floor. This replacement test holds of course for non-vocal/non-verbal
phenomena as well (shrugging, rising the eyebrows, head-shaking); however, these are outside
the vocal code.

Examples of some recent approaches that deal with non-verbals include sighs and yawns
(Russell et al. 2003), cries (Pal et al. 2006), hesitations and consent (Schuller et al. 2009a), so-
called ‘grunts’ (Campbell 2007a; Ward 1998, 2000a,b), and coughs (Matos et al. 2006). Provine
(2012) lists laughter amongst other ‘curious behaviour’ such as yawning and hiccupping. Even
silence can be conceived of as a non-verbal, paralinguistic phenomenon (Ephratt 2011) – after
all, in a strict sense, it is not possible not to communicate in a dyadic or multi-party scenario
(Watzlawick et al. 1967). Arguably, laughter is the prototypical non-verbal event, and therefore
the exemplar we want to illustrate in the following.

The layman’s idea of the default phonetic form of laughter is not wrong; it is often ortho-
graphically described as ‘hahaha’ ([h@|h@|h@] in SAMPA (Speech Assessment Methods
Phonetic Alphabet) notation). This form follows a syllable structure frequently occurring in
many languages. Of course, there are many more phonetic forms of laughter – voiced, unvoiced
or mixed – which do not necessarily obey phonotactic rules. The acoustics of laughter are
described in Bacharowski and Smoski (2001) and Trouvain (2001, 2003) and in further studies
referred to in these articles. Nwokah et al. (1999) studied mother–infant interactions, coining
the term speech-laughs for laughter modulated onto speech, and described the phonetic forms
of this type of laughter; before, laughter had been studied rather as an isolated event, not
modulated onto speech (Trouvain 2001).

Normally, laughter is conceived of as a non-linguistic or paralinguistic event; it has been
studied extensively by non-linguists, such as biologists and psychologists, because it can be
found in other primates as well. As one way to express emotions (especially joy), it was
dealt with by Darwin (1872); studies on its acoustics, however, as well as on its position in
linguistic context – in the literal meaning of the word (where it can be found in the word
chain; see Provine (1993) and Batliner et al. (2013)), and in the figurative sense (status and
function) – started more or less at the same time as automatic speech processing started to
deal with paralinguistic phenomena (Provine 1996). Rees and Monrouxe (2010) deal with
the ‘construction of power, identity and gender through laughter within medical workplace
learning encounters’, while Smoski and Bacharowski (2003) address the function of laughter
as reflecting a mutually positive stance between social partners. Holt (2010) covers reciprocal
and non-reciprocal laughters. Vettin and Todt (2004, p. 93) suggest that ‘ . . . laughter in
conversation may primarily serve to regulate the flow of interaction and to mitigate the meaning
of the preceding utterance’. Szameitat et al. (2009) establish different acoustic profiles of
distinct emotional expressions in laughter, and Kuiper and Martin (1998) and Bacharowski
and Owren (2001) relate laughter to positive and negative affect.

The context of laughter is addressed in Campbell et al. (2005) and Campbell (2007b), namely
different types of laughter and their function or different addressees in communication, and
in Laskowski and Burger (2007) who deal with the distribution of laughter within multi-
party conversations. The automatic classification of laughter is dealt with in Batliner et al.
(2013), Kennedy and Ellis (2004), Laskowski (2009), Laskowski and Schultz (2008), Petridis
and Pantic (2008, 2011), Truong and Leeuwen (2005, 2007), and further studies referred
to in these articles. Detecting, that is, locating in the word chain, laughter and especially
speech-laughs might not be easy; it is easier to decide whether laughter or speech-laughs
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occurred somewhere in an utterance (Batliner et al. 2013), and this might suffice in most
applications.

Naturally enough, different frequencies of laughter are reported in the literature, depending
on scenario and context: Petridis and Pantic (2008) use seven sessions from the Augmented
Multi-party Interaction Meeting corpus, where subjects were recruited for the task, and pre-
select those 40 laughter segments that do not co-occur with speech and are ‘clearly audible’
(total duration 58.4 seconds). Kennedy and Ellis (2004) report ‘1926 ground truth laughter
events’ found in 29 meetings (about 25 hours), the so-called ‘Bmr subset’ of the ICSI Meeting
Recorder Corpus, divided into 26 train and 3 test meetings. Laskowski and Schultz (2008)
report for the same partition 14.94% ‘of vocalisation time spent in laughter’ for train, and
10.91% for test; another subset of the ICSI meeting data (the so-called ‘Bro subset’) contains
only 5.94% laughter. This is due to different types of interaction and participants who were
more or less familiar with each other. On the other hand, only few laughter instances were
found in ‘transcript data of jury deliberations from both the guilt-or-innocence and penalty
phases of [a] trial’ (Keyton and Beck 2010, 386): ‘51 laughter sequences across 414 transcript
pages”. In Batliner et al. (2013), 0.6% of all tokens that are either words or laughter instances
are either speech-laughs or laughter; this low frequency is due to the task of the children in
this database who had to give commands to a pet robot. In contrast to Nwokah et al. (1999),
almost no combination of motherese with laughter, that is, speech-laughs indicating intimacy,
could be found. This illustrates that generic statements about frequencies, occurrences and
combinations cannot be made; it always depends on the type of interaction and scenario.

4.6 Common Traits of Formal Aspects

No man is an island.
(John Donne)

Each man is a whole Universe.
(Yuri Borev)

There are different systems of description for formal aspects which more or less overlap.
Examples can be found in Sections 4.4 and 4.5. It is not possible to find a system that is
consistent in itself and fully defined, because of the fringe phenomena that can be attributed
to one system or another; a description as family resemblances seems to be a better choice.
Moreover, we can describe classes based on their form or on their function: ‘grunts’ is a rather
formal term, whereas ‘hedges’ denotes functions. ‘Disfluencies’ is formal and functional at
the same time.

Kreiman and Sidtis (2011, p. 181) write with respect to recognising speaker identity from
voice: ‘Studies examining such small sets of features (whether in animal or human vocaliza-
tion) miss the point that perceptually important features emerge idiosyncratically in different
patterns, and that it is the unique relationship of a constellation of parameters taken from a
very large set that signals a given unique pattern.’ More successful than trying to recognise an
individual speaker might be to try and characterise social group traits from voice, or linguistic
functions such as focal parts or the end of the turn (yielding the floor) all of which are not
idiosyncratic but ‘cross-individual’; therefore, we simply have more instances for training.
However, there will be more variety. Thus, it is always an empirical question which can only
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be answered reliably if we employ a very large feature vector, and not only just a few features,
or only one specific type of features such as pitch (see Section 3.9).

Very often we eventually have to disentangle personal traits (speaker idiosyncrasies) from
supra-individual traits. Speakers can develop personal traits – employ specific kinds of rhotics,
or display above average percentages of segmental laryngealisations or specific pitch con-
tours. However, all this is of course influenced by supra-individual tendencies, such as group
behaviour, regional variants, or pathologies – similarly to the way personality influences and
shapes the individual expression of emotions. When we look closely at such an individual
speech behaviour, we could call this micro-paralinguistics. In contrast, the usual approach is
macro-paralinguistics, levelling out individual traits and aiming at tendencies across single
speakers. In practice, individual traits are – naturally enough – important if it is about one
suspect (forensics), or one patient (diagnostics and speech therapy); see Section 3.8.

There are single Lego bricks that can be assembled to construct an excavator that can be
used to transport sand from A to B. The same Lego brick can be used for constructing different
devices which in turn can be used for the same or for different purposes. In the same way,
there are single phonetic and linguistic parameters that can be used to build different linguistic
constructs that in turn can serve different linguistic and/or paralinguistic functions. Thus, we
have to keep in mind this multi-functionality of single (formal) parameters and of bundles of
parameters, when doing computational paralinguistics.
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5
Functional Aspects

The most intelligible factor in language is not the word itself, but the tone, strength,
modulation, tempo with which a sequence of words is spoken – in brief, the music behind
the words, the passions behind the music, the person behind these passions: everything,
in other words, that cannot be written.

(Friedrich Nietzsche)

The ‘big’ topics, when it comes to functions of paralinguistics, are arguably personality and
emotion. Besides these, there are more basic phenomena such as age and gender, and there
are more specific phenomena, such as deviant speech and discrepant communication. In this
chapter we start with the basic phenomena, which we subdivide into biological trait primitives
and cultural trait primitives. This should be taken as a convenient distinction, not as some
theoretical foundation; as always, there are fringe phenomena at the border between these
two types, and biological traits are modified by culture. Then, we will address personality
and emotion. Sections 5.5–5.8 deal with specific aspects. Sentiment analysis is similar to the
modelling of emotion and affect in speech and language; until recently (see Wöllmer et al.
2013), it has been confined to written language, and has evolved rather independently of
approaches used for speech. So far, the phenomena addressed are communicative in a broad
sense: they characterise human beings, constituting the edge conditions for communication,
but they are not only constituted within communicative settings. For all traits and states dealt
with so far, there are ‘normal’ ways of expressing them. Deviant speech/language is different,
due to factors such as idiosyncrasies or pathology, or to the use of a language variety that
is not one’s native language; another umbrella term is atypical speech. Social signals are
constituted and used within communicative settings; in the default case, they are used in an
honest way, that is, as agreed upon in society. However, there are different ways of discrepant
communication (see Section 5.8), such as irony, sarcasm, and deceptive speech (lying).

The different functions dealt with in this chapter can be imagined as having a layered figure–
ground relationship (Figure 5.1). First come biological trait primitives that are preshaped by
nature – of course, each individual has degrees of freedom but a child, for instance, cannot
employ an adult voice. Then come cultural trait primitives such as gender-specificity or native
language(s) – preshaped as well, within a specific societal setting. Personality develops and

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 5.1 Layered figure–ground relationship of paralinguistic functions

evolves based on this ground, and (the expression of) emotions are strongly influenced by
personality. All this can be studied by looking at speech, or by looking at language (sentiment
analysis); of course, written language as a means of communication is less immediate than
speech. There is a socio-cultural understanding of typical and atypical (deviant) speech. Speech
and language in social interaction can again be looked at as figure against the ground that is
built from all these components, evolving and instantiated within social interaction.

Of course, it is impossible to explicitly model this complex and layered figure–ground
relationship, which is responsible for the difficulties in finding out the relevant parameters.
Normally, we will just stay within one layer and try out to find one (complex) form, that is,
a bundle of formal elements, indicating one specific function. In some studies, two layers are
combined, for instance, when addressing the ability of autistic children to express emotions.
The arrows in Figure 5.1 only denote some of the most important relationships.

Adjacent layers are not easily distinguished from each other. Intuitively, we know what
belongs to biology and what to culture: which sex humans belongs to and their body height
are determined by biology and genes; the same holds for age. These traits can either be
dichotomised (sex) or measured (e.g., in centimetres or kilograms). Native language and
cultural background, however, are determined by region, upbringing, and culture. Such traits
cannot be measured exactly. Both biology and culture heavily shape and influence speech and
language, and speech and language characteristics can be used to find out about biological and
cultural traits.

At second glance, it is almost impossible to really disentangle biological and cultural traits.
Whereas ‘sex’ refers to biological differences, ‘gender’ – albeit often used as a politically
more correct term instead of ‘sex’ – refers to the cultural and social roles of men and women.
Speech and language are both not independent of biological and especially cultural constraints,
and effort is needed to disentangle the two factors. Moreover, terms such as ‘transgender’ and
‘transsexual’ indicate that even gender and sex are not binary. A straightforward distinction
can, however, be made between the research interests. We will speak about ‘biological trait
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primitives’ if we are (only) interested in the sex of a speaker, or his/her physical weight, size, or
height. We will speak about ‘cultural trait primitives’ if we are interested in the cross-individual
characteristics of groups of speakers – such groups can be constituted by one sex/gender, for
instance, if we are interested in average pitch height of women in one society and its change
across generations; and we can try to find out how each gender employs some of the formal
features exemplified in Chapter 4 differently, when indicating one and the same function.

Of course, the constituting traits of personality have much to do with cultural stereotypes; the
fuzzy criterion distinguishing the two is whether we are aiming at the individual (personality)
or at the group (cultural trait). We want to illustrate the difference with typical exemplars. On
the one hand, there are cultural traits signalling group affiliation. The group can be very large,
such as ‘young female teenagers in some parts of the United States’ (see Section 4.2.3). On the
other hand, the group can be rather small – even twins can develop traits that distinguish them
from others. Specific personality traits that are normally labelled based on others’ assessments
are likeability, charisma, or attractiveness. These traits can also be characterised by specific
voice characteristics. They are normally conceived of as characterising individuals.

In this chapter, we will try to present the most important phenomena (functions) and illustrate
them with studies. This cannot be done in an exhaustive way; yet, the chances are high that the
reader, interested in some specific function, will get a fairly complete picture when starting
with the literature referred to, ramifying the search into other studies. Of course, this holds
especially for the references that present a more complete overview and literature survey on
their topic than space allows us to present ourselves. For instance, Kreiman and Sidtis (2011)
provide excellent overviews and literature surveys on many of the topics dealt with in this
chapter. Whereas in Chapter 4, which focused on form, references were mostly made to studies
from within phonetics and linguistics (and in some cases, engineering), naturally enough, in
this chapter, which focuses on function, more references are given from psychology, sociology,
medicine, and engineering.

5.1 Biological Trait Primitives

The first rule of thumb for all radio personalities is to look absolutely nothing like how
they sound.

(Strong Bad, Homestar Runner)

The term race – a candidate for a biological trait primitive – is much debated and controversial
(James 2011). Hao (2002) found significant differences for gender and race in certain vocal
tract dimensions and formant frequencies, comparing controlled samples of white American,
African American, and Chinese male and female speakers. However, paralinguistic studies on
race seem to be sparse; this might mainly be due to the term being – rightly – stigmatised, but
also to the difficulties of disentangling race from ethnicity or social group. It seems to be rather
a matter of specifities of ethnic and/or social groups and of pertinent stereotypes – see Popp
et al. (2003, p. 317) who found that there are consistent beliefs about speech style for gender
and especially for race: ‘Black speakers, both women and men, were rated as more direct and
emotional, and less socially appropriate and playful, than White speakers.’ Kreiman and Sidtis
(2011, p. 149) summarise several studies on race and voice and conclude that ‘ . . . cues to a
speaker’s race are articulatory and learned, rather than anatomic and innate’. The speech of
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ethnic groups is often largely coextensive with regional and/or social accents which will be
dealt with in Section 5.2.

In the following, we will address sex (often called gender), age, and physical traits such as
height, size, and weight, and combinations thereof. Speaker recognition/detection/verification
can be conceived of as a special case of looking at combined traits, not across speakers but
within one speaker; here, the interest is not in finding out about characteristics of groups
but in employing such characteristics to identify an individual. Müller (2007, p. V) uses the
term speaker classification as ‘ . . . assigning a given speech sample to a particular class of
speakers . . . ’ and speaker recognition as a sub-field of speaker classification where the class
‘speaker’ has only one element, and the class ‘non-speaker’ more than one. In this very broad
sense, all functional aspects dealt with in this chapter are aspects of speaker classification.

Thus, we want to employ speech parameters to find biological traits – or, to use a somewhat
awkward term, ‘biologically defined groups’; conceptually, this can be distinguished from
using speech characteristics to find common traits in ‘culturally defined groups’. These groups
can be more or less coextensive.

Male and female voices differ due to physiological differences. The pharynx of males is
longer on average than the pharynx of women, resulting in an average fundamental frequency
(F0) of 110 Hz for males and 220 Hz for women. The vocal tract of females is shorter on average
than the vocal tract of males, resulting in about 20% higher formants for females than for males
(Kreiman and Sidtis 2011, pp. 124ff.). Note, however, that even this seemingly straightforward
physiological fact can be modified by cultural factors: the male–female formant differences
are much smaller amongst Danish than amongst Russian speakers (Johnson 2005). Apart from
physiological variations, there are some intervening factors that contribute to deviations and
especially to systematic differences: age, generation, and culture – age being a biological trait
as well, whereas generation should be conceived as a cultural trait (see Sections 4.2.2 and
5.2). Age differences are summarised in Kreiman and Sidtis (2011, pp. 110ff.): F0 is high for
children and decreases for adults aged under 60 years; after age 60, F0 decreases for females
but increases for males. For adults, control of pitch, loudness, formants, voice quality, and
tempo are quite stable, in contrast to the greater variability in children and seniors. Formant
frequencies of children are considerably higher than those of adults (Li and Russell 2001).
A comprehensive overview of the age-related acoustic variation in temporal as well as in
laryngeally and supralaryngeally conditioned aspects of speech is given in Schötz (2007); see
also Schötz (2006).

There is a long tradition of studies dealing with characteristics of vocal parameters with
respect to age and sex/gender. In a study of two cohorts younger and older than 80, Mysak
(1959) found a progressive upward trend in pitch as a function of age. In an early attempt
towards the automatic recognition of sex from speech, Wu and Childers (1991) and Childers
and Wu (1991) obtained up to 100% correct classification of speaker gender from vowels.
Torre and Barlow (2009) address effects of age and sex on acoustic properties of speech,
finding significant sex-by-age group interactions for F0, F1, and voice onset time.

The variable sex is often controlled for in studies within computational paralinguistics by
separately modelling females and males. With the increasing interest in ‘atypical’ speech and
the availability of databases spanning across age groups including children (Burkhardt et al.
2010; Schuller et al. 2010b), and with the additional interest in cross-linguistic/cross-cultural
issues, it might be both necessary and interesting to examine pertinent differences. Several
studies have addressed age and sex/gender, modelling them separately or together. Perceived
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age was classified automatically in Minematsu et al. (2002a,b, 2003). Metze et al. (2007)
report on a first comparative study of speaker age recognition, using German data annotated
with age and gender labels. In the Interspeech 2010 Paralinguistic Challenge (Schuller et al.
2010b), the ‘aGender’ corpus was used (Burkhardt et al. 2010) for a combined age and
gender classification task. Various features and classification techniques have been used by
the participants of this challenge (Bocklet et al. 2010; Kockmann et al. 2010; Li et al. 2010;
Lingenfelser et al. 2010; Meinedo and Trancoso 2010; Nguyen et al. 2010; Porat et al. 2010).
The database, baselines and results of the challenge are covered in Schuller et al. (2013b).

Other topics are the mismatches between adults’ and children’s speech and the use of
normalisation techniques to overcome them (Ghai and Sinha 2010), or the mismatch between
adult and older voices and its influence on automatic speech recognition (Vipperla et al. 2010).

As for physical size, formant frequencies seem to be more highly correlated with body size
than pitch, both in animals – see the results reported in Fitch (1997) for rhesus macaques – and
in humans (Evans et al. 2006; Gonzalez 2004; Krauss et al. 2002; Rendall et al. 2007). Possible
reasons are discussed in Kreiman and Sidtis (2011). Speakers can vary pitch to a considerable
extent, indicating different linguistic (stress, focus, sentence mood) or paralinguistic (emotion,
affect) functions; thus, a possible indication of size can be distorted. Another reason might
be that the larynx can grow independently of the body. This does not hold for the vocal
tract, though. Bruckert et al. (2006) show that women use voice parameters, such as formant
frequencies and dispersion, to assess male speakers’ characteristics, such as age and weight.
Judgements of pleasantness were based mainly on intonation. Mporas and Ganchev (2009)
propose a regression-based scheme for the direct estimation of the height of unknown speakers
from their speech, achieving an averaged relative error of approximately 3%.

5.1.1 Speaker Characteristics

We treat speaker characteristics in this section as well although it is shaped by all possible
factors. Dellwo et al. (2007) sketch both the foundations of speech production and the factors
responsible for individual speaker traits – basically the same factors that we try to structure
in this chapter. First come the – biologically conditioned – primitives (especially sex and
age), then the cultural primitives such as native language, regional dialect, and social variety.
These traits are modified by personality and short-term affective states, which in turn are
interdependent with deviant states (e.g., health conditions), the actual communicative situa-
tion, and specific intentions sometimes creating discrepant speech. Schultz (2007) establishes
a taxonomy for speaker characteristics along similar lines, taking into account physiologi-
cal, psychological, individual and collective factors, and discusses pertinent applications and
approaches within automatic speech processing. The other big topic, speaker classification in
forensic phonetics and acoustics, is covered by Jessen (2007) in the same book; in practical
forensic work, this is still done by phonetics experts and not by machines. The typical foren-
sic application is speaker identification, a well-known case being the Lindbergh–Hauptmann
trial; see Solan and Tiersma (2003) and Kreiman and Sidtis (2011, pp. 237ff.). The son of
the national hero Charles Lindbergh was kidnapped and killed, and later at trial, Lindbergh
identified the voice of the man to whom ransom was paid, saying Hey, doctor, as belonging
to the main suspect, Bruno Hauptmann, who was eventually executed. The quality of speaker
identification, both by experts and by machines, is much debated; so far, reliability seems
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to be higher if speakers are excluded as suspects than the other way round (Clifford 1980;
McGehee 1937).

The other field of speaker recognition is speaker verification, used in access control systems.
The system has to verify that the speaker belongs to a specific, normally limited group of
speakers who are allowed access.

An extensive survey of automatic speaker recognition and its fundamentals is given in Beigi
(2011). Taking a broader view, we can refer to Perrot et al. (2007) who address vocal disguise
and automatic detection, that is, how a voice can be transformed by electric scrambling
or intentional modification in order to falsify or conceal speaker identity, and how such a
disguised voice can be distinguished from the original voice. Majekodunmi and Idachaba
(2011) discuss speaker recognition in the context of other approaches towards revealing the
identity of individuals, such as fingerprint, face, and iris recognition.

5.2 Cultural Trait Primitives

At a VIP dinner last night an American woman asked me ‘where are you from?’ I said
Australia, she said ‘wow your English is amazing’.

(Mark Webber)

The prototypical cultural trait primitives are the first language of a speaker and its varieties.
Often, the classic ‘standard’ language is, however, a construct, codified and taught especially in
its written form and some standard pronunciation, and used as a sort of lingua franca (common
language, interlingua) within and across language communities. A straightforward application
for language identification (Muthusamy et al. 1994; Timoshenko 2012) within automatic
speech processing is the monitoring of radio or telephone communication by governmental
agencies. Admittedly, there is a weak borderline between a language as a genuine object of
investigation within linguistics and pure automatic speech recognition (ASR), and language
varieties as genuine objects of sociolinguistics and paralinguistics. Originally, both structural
linguistics and ASR made the (contrafactual) assumption of a monolithic system that only
allows specific realisations. Paralinguistics comes in when we deal with all the different
varieties of a language which are normally conceived of as fully fledged linguistic systems –
thus, the difference between languages and their varieties is due to historical and especially
political factors rather than to linguistic characteristics. The varieties can be seen – again – as
figure before the ground. The traditional sociolinguistic deficit hypothesis that these varieties
are deficient in some respect has been replaced by the difference hypothesis that they all are
of equal value – notwithstanding the fact that they can be more or less stigmatised.

A dialect is a regional variety of a language that differs with respect to lexicon, grammar, and
pronunciation from other dialects. As already mentioned in Section 4.3, these differences can
be pronounced or weak. Sometimes, the term vernacular is used for native, regional varieties
such as ‘African American Vernacular English’. Regional accents differ only with respect to
pronunciation; the term is widely used for English (British, North American) regional varieties
(Wells 1982), to distinguish local varieties or larger varieties such as Northern versus Southern
English, or American versus Australian English; as a linguistic term, it is less common for
referring to other language communities, such as German, although its use by Rakić et al.
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(2011) is perhaps justified by the decline of dialects which have given way to less distinct
regional varieties. For French, Woehrling and Mareüil (2006) distinguished three accents –
Northern French, Southern French and Romande Swiss – based on a perceptual evaluation
and using clustering and multidimensional techniques.

A sociolect is the variety of a social group with a local or a wider regional distribution, for
example, an ethnic (minority) group, the working class, or any specific sub-culture.

Apart from denoting the variety of a specific group and from its use within grammar and
prosody where it is used for different types of accentuation (word accent, phrase accent, focal
accent), the term ‘accent’ can also mean non-native or foreign accent, denoting segmental or
prosodic traits that do ‘not belong to’ the language that is spoken, indicating that it is not the
speaker’s first language. Non-native traits are taken as deficient at least as long as the speaker
wants to improve his or her pronunciation, lexicon, and grammar. Immigrants displaying more
or less strong non-native traits might be seen as speaking a somehow deficient variety; if
these individuals group together, forming a community, then their speech can evolve into a
vernacular. In the end, it might be an individual decision – and based on that, a decision
of group identification, self-affirmation, and eventually political correctness – whether the
speakers themselves and others regard a specific variety as something that should be taken
care of, or as something that expresses their identity.

Thus, the difference between non-native = deviant and non-native = vernacular can only
be defined ‘in the eyes of the speakers themselves’, not by using any linguistic criterion. In
practice, approaches towards vernaculars describe differences, approaches towards non-native
(second) languages (L2) produced by language learners assess differences between the native
(first) language (L1) and L2. As always, this is not a clear demarcation – the difference
can, however, be illustrated with prototypical examples, and it is visible when looking at
the different approaches towards non-native or regional accents and the like. We want to
cover non-native speech in Section 5.6 because it is normally seen – even by the speakers
themselves – as something they rather would like to improve, that is, as deviant/deficient.

A straightforward approach towards recognising local varieties is using methods developed
within automatic language identification, as done by Hanani et al. (2013) who apply a state-of-
the-art language identification system for recognising 14 regional accents of British English,
and for distinguishing the two largest ethnic groups in the city of Birmingham, the ‘Asian’
and ‘white’ communities. They obtain good performance for both tasks, compared with other
approaches and human recognition accuracy.

Gillick (2010) showed significant differences in word usage patterns within conversational
American English, derived from the output of a speech recognition system and yielding a
classification accuracy between 60% and 82% for predicting demographic traits of individual
speakers (gender, age, education level, ethnicity, and geographic region).

Prejudgements about regional accents exist and can lead to more or less unfavourable biases
in job interviews, as shown by Markley (2000) for US regional accents, and by Rakić et al.
(2011) for German regional accents (dialect regions). In a meta-analysis, Fuertes et al. (2012)
found 20 studies comparing and establishing the effects of standard accents versus non-standard
(foreign or minority) accents on interpersonal evaluation, and classified these characteristics
as belonging ‘ . . . to one of three domains that have been traditionally discussed in this area,
namely status (e.g., intelligence, social class), solidarity (trustworthiness, in-group–out-group
member), and dynamism (level of activity and liveliness)’.
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Thus, a promising avenue for research within computational paralinguistics and regional
accents/dialects can be seen within social-psychological basic research; further possible appli-
cations are of course within speaker identification (forensics), and within human–machine
communication: call-centre monitoring and other types of monitoring, and generally, adapta-
tion (entrainment) within human–computer interaction.

5.2.1 Speech Characteristics

So far we have discussed regional and social varieties of languages, not telling apart sub-
groups of speakers such as young versus old, or male versus female that can be characterised
by the use of specific speech markers. Group characteristics are based on and evolve into
cultural and personality stereotypes, but personality is dependent on biological traits (sex,
age, etc.) as well. In practice, it might not really be possible to disentangle all these factors
because for characterising and classifying or recognising an individual personality we have to
model and train with groups of speakers. Moreover, speakers can permanently display specific
speech characteristics such as breathy voice (in which case it is a personality trait such as
attractiveness), or they can employ them within specific interaction scenarios (in which case
we speak of a social signal such as intimacy).

In parallel to Section 5.1.1 where we addressed speaker characteristics, here we want to
illustrate speech traits characterising groups of speakers – or prejudices about such traits –
with a few exemplars; other phenomena and aspects will be covered especially in Sections 5.3
and 5.7. Strictly speaking, we are now no longer dealing with cultural trait primitives but with
cultural traits which are addressed in most of the other sections in Chapters 4 and 5 as well –
if not caused by nature, the objects of investigation in paralinguistics are cultural phenom-
ena. (See also the difference between the ‘extralinguistic’ and ‘paralinguistic’ mentioned in
Section 1.1.)

A well-known gender stereotype is that women are more talkative than men. This is not
backed up by the data; Mehl et al. (2007) found no reliable sex difference in daily word use.
Spender (1980), summarising work on the talkativity of men versus women, found no evidence
for women doing the talking. It seems to be more a matter of power: the more powerful people
are, the more they talk. For instance, in academia, professors talk more than students. To find
the proportion of speech per speaker in dyadic or multi-party scenarios is a straightforward
task; recently it has been addressed within speech activity detection and turn-taking detection
(Laskowski 2011; Laskowski et al. 2008).

Studies on paralinguistics are often done with a sample of speakers who display similar
characteristics – because homogeneous groups such as students are easier to recruit, and
because possible intervening factors can be kept more or less constant. Age is such a factor,
and age filtered by cultural developments (i.e., generation) is another factor. There is ample
evidence that traditionally, high pitch of females and femininity correlate, and that pitch of
females is higher than should be expected, based on physiological constraints (Spender 1980).
This has changed in some societies: Pemberton et al. (1998) compared recordings of Australian
women from 1945 and 1993, and found that women in 1993 had significantly deeper voices
than women of the same age recorded in 1945. More evidence is given in Section 4.2.2, for
instance, on the higher pitch of Japanese women and possible reasons for this. Determining
pitch height and gender is again straightforward and can be done automatically within cross-
linguistic studies.
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5.3 Personality

Her voice was ever soft,
Gentle, and low, an excellent thing in woman.

(Shakespeare, King Lear, Act V, Scene 3)

Were I hard-favour’d, foul, or wrinkled-old,
Ill-nurtured, crooked, churlish, harsh in voice, . . .

(Shakespeare, Venus and Adonis, stanza 23)

Personality is a concept that has been conceived and developed outside of linguistics, within
psychology; yet, the object of investigation can be similar to the object of investigation in
sociolinguistics. Interestingly, personality research relies heavily on metalanguage, that is,
on catalogues of terms denoting personality traits of different granularity, but speech and
language are not necessarily employed as ‘object languages’, that is, as features characterising
different personality traits; for instance, in Flett (2007), speech or language features are not
even mentioned. Yet, Sapir (1927) envisaged ‘speech as a personality trait’ in the title of his
short essay. In this section, we start with classic studies on speech and personality, then we
present studies dealing with single traits, and conclude with studies on bundles of traits.

Classic Studies

In an early study of ‘judging personality from voice’, Allport and Cantril (1934) found small
but consistent relationships with listeners’ judgements and both physical characteristics (age,
height, etc.) and personality traits (political preference, extraversion, etc.). In a survey on
‘speech and personality’, Sanford (1942) listed 106 studies dealing with different aspects of
speech and language related to and indicating personality such as style, specific linguistic
constructions, voice, and disorders of speech. The author concludes that ‘ . . . the problems
in this field are still more numerous than the facts’ (Sanford 1942, p. 811). Sanford (1948)
tried to establish ‘an empirical psychology of language’, dealing especially with the ‘rela-
tion between linguistic behavior and personal adjustment’, that is, with style, lexicon, syntax,
speech, and disorders of speech. Several studies addressed judgements on personality from
non-verbal properties of the voice (Addington 1968; Aronovitch 1976; Kramer 1963; Markel
et al. 1972), or more specific relationships such as the effect of regional dialect on judge-
ments of personality (Markel et al. 1967); cf. Section 5.2. Speakers with voice disorders
such as harsh-breathy or hypernasal voice quality elicited more negative responses on judge-
ments of personality than speakers with normal voice quality in Blood et al. (1979). The
collection of articles by renowned scholars such as Abercrombie, Osgood, and Hymes in
Markel (1969) conveys a broad conceptualisation of psycholinguistics as the study of speech
and personality.

In a cross-cultural (cross-linguistic) approach, Scherer (1972) compared judgements of
American and German listeners on personality traits, based on voice samples of American and
German male and female speakers, and discussed the differences.

Feldstein and Sloan (1984) addressed the speech tempo of extroverts and introverts and
stereotyped notions about it; they suggest that the stereotypes somewhat exaggerate the actual
differences with respect to the speech rates of extraverts (rapid) and introverts (slow).
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In a review of the literature, Scherer (1979) described the state of the art, in spite of a
wealth of (mostly German) studies, as ‘bleak’, characterised so far by phenomenologically
oriented hypotheses rather than by hard facts; instead, the author focused his review on
empirical studies on aspects of ‘normal’ personality, discussing vocal aspects (pitch, intensity,
and voice quality), fluency aspects (pauses, discontinuities), linguistic cues (morphology and
syntax), and conversational behaviour (length of turns and total verbal output). He refers to
a ‘ . . . lamentable lack of research on the relationship between linguistic style and normal
personality’. Nowadays, automatic text analysis can be employed for this, using large-scale
databases; see Chung and Pennebaker (2007) and Section 4.3.1 above. A comparable evaluation
can be found in Scherer and Scherer (1981). The development of research on speech and
personality during the last two decades has been influenced by the advent of the OCEAN model
(Section 3.1) and by the availability of massive computer power and larger-scale databases.
We follow a straightforward, albeit simplifying, partition into studies dealing with single traits
and studies dealing with bundles of traits (OCEAN or some other combination). The partition
is simplifying because even single traits such as ‘charismatic’ are normally conceived of and
modelled as consisting of several ‘sub-traits’.

Single Traits

In this discussion of single trait studies, we concentrate on a few traits that are obviously
attractive topics because they help identify the reasons for success, whether it be in gender
relationships, in presidential elections, in advertisements, or in professional life in general.

Men’s voices as dominance signals are addressed in Puts et al. (2006, 2007): in agreement
with the stereotypes mentioned in Sections 4.2.2 and 4.2.3, (artificially) lowered F0 and formant
dispersion (closer spacing of formant frequencies) were perceived as being produced by more
dominant men than the same parameters, artificially raised. In Puts (2005), positive evidence
is discussed for this evolutionary tendency that cannot be explained fully by differences in
body size: ‘Results indicate that low [voice pitch] is preferred mainly in short-term mating
contexts rather than in long-term, committed ones, and this mating context effect is greatest
when women are in the fertile phase of their ovulatory cycles. Moreover, lower male F0
correlated with higher self-reported mating success’ (Puts 2005, p. 388). In contrast to these
studies, (political) charisma and leadership seem to be positively correlated with higher pitch
(Weninger et al. 2012). This alleged contradiction might be resolved when we consider the
context: more intimate in face-to-face (gender) relationships, and more public when it is about
charisma and leadership (see Section 4.2.3).

Gregory and Gallagher (2002) analysed voices in presidential debates during eight of the
elections between 1960 (Kennedy–Nixon) and 2000 (Bush–Gore): they were able to employ
frequency below 500 Hz to predict the popular vote outcomes in all eight elections. Rosenberg
and Hirschberg (2005, 2009) identified the association of charisma, using speech samples
from American politicians. They found a significant agreement amongst raters, and signif-
icant correlations between charisma rating and duration of linguistic units, the number of
first personal pronouns used, the complexity of lexical items, pitch, intensity, and speaking
rate; for all these parameters, higher values indicated higher charisma. Weninger et al. (2012)
collected a corpus of YouTube speeches given by persons with leadership abilities such as exec-
utives of global players. The data were rated using ten labels from a leadership questionnaire
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which subsequently were mapped onto three cover dimensions – ‘achiever’, ‘charismatic’, and
‘teamplayer’ – which could be recognised automatically with up to 72.5% accuracy. Higher
variety in speech in general, higher loudness, and higher median F0 characterised achievers;
similar but less pronounced correlations were found for ‘charismatic’. The same feature char-
acteristics turned out to be relevant for related traits, namely for indicating confident speakers,
in Kimble and Seidel (1991): the more confident speakers were, the faster and louder they
responded to trivia questions.

Possible applications for systems that automatically determine emergence of leadership can
be found in automatic voice coaching, in detecting leadership qualities in multimedia and enter-
tainment, and in generating them in avatars (human–machine interaction, especially computer
games). Cost-intensive observer rating (Bono and Judge 2004) could be replaced by automatic
procedures. Similar applications can be envisioned for vocal attractiveness. Zuckerman and
Driver (1989) investigated the mutual dependency of physical and vocal attractiveness, and
elaborated on these traits in Zuckerman et al. (1990). The acoustic characteristics (especially
voice quality) of attractive voices were examined in Zuckerman and Miyake (1993). Bruckert
et al. (2010) showed that the well-established effect of facial averaging on attractiveness can
be replicated for averaging voices via auditory morphing, irrespective of the speaker’s or the
listener’s gender. This phenomenon could be largely explained by reduced aperiodicities and
thus a smoother voice texture, and a reduced distance to the means of pitch and timbre. The
nature of female vocal attractiveness is explored in Liu and Xu (2011). The most attractive
female voice is that which projects a small body size, and the most effective acoustic cue was
voice quality. Gender stereotyping is addressed in Ko et al. (2006) who show that measured
acoustic characteristics that differ between the genders are also relevant for within-gender
femininity.

A similar concept, namely likeability or pleasantness, is investigated by Burkhardt et al.
(2011), using the aGender corpus from the 2010 Interspeech Paralinguistic Challenge (Schuller
et al. 2010b); this task was later used in the Interspeech 2012 Speaker Trait Challenge (Schuller
et al. 2012b). Auditory spectral features seem to be most important for an automatic likeability
analysis.

Bundle of Traits

The ‘big five’ factor model of personality (OCEAN; see Section 3.1) has achieved a measure
of consensus in the community; however, it is still ‘just’ a model, and research deals with
either the full model, or parts of it, or some other bundle of traits.

Mairesse et al. (2007) report results for the recognition of the big five, both for conversation
and text, and for observer and self ratings, using classification, regression, and ranking models.
They present a catalogue of markers of the five traits, especially of extraversion, which displays
the most visible characteristics (comparable to arousal in emotion modelling) such as higher
loudness and faster speech rate, alongside a less controlled and less formal speaking style,
compared with introverts. Findings on markers of the other traits are more scanty, most likely
simply because the linguistic-acoustic markers of extraversion are more frequent and easier to
model. Using large text and speech corpora, they use different types of features such as counts
and characteristics of word categories, utterance type (commands, questions, assertions), and
prosody (pitch, intensity, speech tempo). As expected and especially when using observer
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reports, extraversion turns out to be the easiest trait to model, characterised by pitch and
variation of intensity, followed by emotional stability and conscientiousness. Openness to
experience is better modelled using textual characteristics. Generally, the results suggest that
observed personality may be easier to model than self-reports, at least in conversational data:

This may be due to objective observers using similar cues as our models, while self-
reports of personality may be more influenced by factors such as the desirability of the
trait . . . (Mairesse et al. 2007, p. 491)

As for observer versus self ratings, they propose the hypothesis

. . . that traits with a high visibility (e.g., extraversion) are more accurately assessed
using observer reports, as they tend to yield a higher inter-judge agreement . . . , while
low visibility traits (e.g., emotional stability) are better assessed by oneself. A person-
ality recogniser aiming to estimate the true personality would therefore have to switch
from observer models to self-report models, depending on the trait under assessment.
(Mairesse et al. 2007, p. 492)

Mohammadi et al. (2010) present preliminary results on ‘nonverbal behavioral cues’, that is,
prosodic features, for clips taken from Radio Swiss Romande (the French-speaking Swiss
broadcasting service), annotated with the big five traits by judges who did not understand
French. An automatic traits assignment yields significant results for all five traits, extraver-
sion scoring highest with a 76% recognition rate. This task later featured in the Interspeech
2012 Speaker Trait Challenge (Schuller et al. 2012b). Gawda (2007) tests the associations
between neuroticism, extraversion, and paralinguistic expressions, finding significant rela-
tions of introversion and neuroticism with speech fluency impediments. Ivanov et al. (2011)
describe an automated system for speaker-independent personality prediction in the context
of human–human spoken conversations (simulated tourist call centre, 24 speakers simulating
users and agents, personality measured by a big five personality test, feature extraction with
the open-source Speech and Music Interpretation by Large Space Extraction (openSMILE)
toolkit (Eyben et al. 2010b)). Again, only performance for conscientiousness and extraver-
sion was significantly above chance level. In the study of Oberlander and Nowson (2006),
OCEAN scores for participants producing personal weblog text were obtained by self rating;
openness scores were discarded, due to non-normal distribution. For binary text-based classi-
fication tasks, using a simple statistical classifier (naı̈ve Bayes), results are promising for all
four remaining traits but slightly worse for extraversion. This might illustrate the differences
between purely text-based classification and a classification based on purely acoustic or both
acoustic and linguistic information.

Concluding Remarks on Personality

Summing up, so far there seem to be fewer studies especially on the automatic modelling
of personality traits conveyed via acoustics and text than on emotions, and fewer on the full
big five model than on single traits. There might be several reasons for this state of affairs.
Emotions are easier to elicit with some experimental manipulation, and they are easier to
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annotate because they stand out locally from a non-emotional (i.e., neutral) context. They
are short-term, and can be investigated in a speaker-dependent way as well because speakers
can produce different emotions even within a single recording. Within-subject studies are
not possible for personality research – or only within a longitudinal design: personality is
long-term. Personalities cannot be induced, pertinent information has to be obtained by time-
consuming self ratings or observer ratings. Actors can be assigned to two basic types: those
who can impersonate different personalities (Meryl Streep), and those who always sort of
impersonate themselves (Humphrey Bogart, Woody Allen, and Bruce Lee). As far as we can
see, actors impersonating different personalities have not really been employed in research on
personality and speech/language, Polzehl et al. (2010) being an exception.

Single trait personality studies can focus on specific traits, relevant for and visible within
specific application tasks. Basically, results for single traits are corroborated in studies on the
big five. Traits such as extraversion are easier to model (observers’ labelling) because they
are correlated with ‘higher, longer’ characteristics; this can be compared with the modelling
of arousal in emotion research. Other traits cannot be modelled that easily, and results are not
unambiguous. It seems obvious that one has to employ text-based procedures for characterising
personality traits.

5.4 Emotion and Affect

But some emotions don’t make a lot of noise.
(Ernest Hemingway)

There is an abundance of studies on emotion/affect and speech; thus, we cannot aim at a
full coverage of the literature but will restrict ourselves to mention some central aspects and
exemplary studies, early, ‘classic’ ones, early ‘computational’ ones, and those representing
the state of the art today. Some of the methodological differences between personality and
emotion research are discussed in Section 5.3. Yet, personality is not only the ground for
emotion as figure (Reisenzein and Weber 2009; Revelle and Scherer 2009). We will see that
for similar classes such as extraversion as personality trait and activity/arousal as emotional
dimension, speech features are employed in a similar way (cf. Section 5.3).

Early Studies

The study of speech and emotion can be traced back to the early decades of the twentieth
century; see Scripture (1921) and Skinner (1935). The impressionistic study of Henry (1936)
dealt with linguistic expressions relating to fear and anger in a few exotic languages. In
early experiments on emotion and speech, Fairbanks and Pronovost (1939) and Fairbanks and
Hoaglin (1941) described durational and pitch characteristics of simulated emotions (anger,
contempt, fear, grief, and indifference), attributing a slower speech tempo to contempt and grief,
and distinguishing different pitch characteristics. Osgood’s semantic differential was used to
measure listeners’ attitudes to different intonational patterns in Uldall (1960) with respect to
ten scales of the type ‘bored versus interested’ and ‘polite versus rude’; the intonational features
had particular weight with respect to the three factors ‘pleasant versus unpleasant’, ‘interest
versus lack of interest’, and ‘authoritative versus submissive’. Lieberman and Michaels (1962)
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extracted pitch values from eight neutral test sentences read by three male American English
speakers in certain ‘emotional’ modes such as question, objective statement, fearful utterance,
or happy utterance, and presented the original utterances and different synthesised varieties
to listeners in forced judgement tests. Correct identification rates were 85% for unprocessed
speech, and 44% if only pitch information was presented. Davitz (1964a) presented an overview
of facial and vocal emotion research. Davitz (1964b) studied correlations between emotion
dimensions and speech parameters; semantically neutral carrier sentences were produced in
14 ‘emotional tones’. Ratings were obtained for (1) a forced choice recognition task, (2) scales
representing the auditory variables loudness, pitch level, timbre, and speech tempo, and (3)
the three dimensions valence, strength, and activity from Osgood et al. (1957). Correlations
between auditory ratings were strong for activity (more active indicated by ‘higher, louder,
faster’) but weak for valence and strength. Williams and Stevens (1972) employed actors
reading a dialogue containing different emotional situations, and subjected the recordings to
quantitative and qualitative analyses. Anger, fear, and sorrow produced characteristic, albeit
sometimes speaker-specific, differences with respect to, amongst others, pitch, spectrum,
and tempo. Averill (1975) contained a list of 558 words with emotional connotations. A
multi-dimensional scaling of similarity ratings for 11 acted emotions in Green and Cliff
(1997) yielded a three-dimensional interpretation with the dimensions ‘pleasant–unpleasant’,
‘excitement’, and ‘yielding–resisting’ which was eventually related to dimensions obtained
from similarity ratings for measures of ‘tone-of-voice’ such as high-low pitch or ‘pleasant–
unpleasant’: ‘Stimuli that were either highly pleasant or unpleasant were also excited, while
stimuli unmarked in pleasantness were low in excitement’ (Green and Cliff 1997, p. 429).

Frick (1985) reviewed prosodic markers of emotions in speech; as might be expected,
‘activity or arousal seems to be signaled by increased pitch height, pitch range, loudness,
and rate’ (Frick 1985, p. 412). Scherer (1981) presents a survey on the state of the art of
‘speech and emotional states’, containing tables summarising the studies done so far and the
results on vocal indicators of emotional states. Similar, updated overviews by Scherer and
colleagues can be found in later work (Banse and Scherer 1996; Juslin and Scherer 2005;
Johnstone and Scherer 2000; Scherer 2003; Scherer et al. 2003). Kehrein (2002) is one of
the early studies using non-prompted speech dealing with emotional dimensions (activation,
dominance, valence) and their prosodic characteristics.

Automatic Processing of Emotions

In the 1990s automatic speech processing began to address phenomena ‘above the word
chain’, that is, beyond pure speech recognition, and towards dealing with more natural, spon-
taneous speech data. Researchers employed prosodic information within higher linguistic
modules such as determination of stress (word accent), phrase/‘sentence’ accent, syntactic
boundaries, islands of reliability (passages that are important to convey and are thus pro-
nounced more clearly) and semantic focus, and dialogue act modelling. The view broadened
towards all those paralinguistic phenomena that are covered in this book – emotion and speech
being arguably one of the most attractive topics. Dellaert et al. (1996) explored different
pattern recognition techniques and used prosodic features to classify the emotional content
of utterances; the authors reported a classification performance close to human performance.
Cowie and Douglas-Cowie (1996) pointed out that prosodic departures from a reference point
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corresponding to a well-controlled, neutral state not only characterise emotions but also
deviant speech (central and sensory impairments caused by schizophrenia and deafness). Pro-
topapas and Lieberman (1997) concentrated on the effect of pitch for distinguishing stressful
from non-stressful conditions (re-synthesised pitch based on naturally occurring speech in
highly stressful and non-stressful conditions) and concluded that maximum F0 constitutes the
primary indicator.

Perhaps the first paper dealing with the automatic processing of ‘natural(istic)’ speech and
affect (mother–child interaction) was Slaney and McRoberts (1998) (see also Slaney and
McRoberts 2003). Here, adult-directed versus infant-directed speech were classified correctly
with a Gaussian mixture-model more than 80% of the time. Mothers’ speech was easier to
classify than fathers’ speech, and pitch was found to be an important measure. In a comparable
study Batliner et al. (2008a) use a larger feature vector and additionally contrasted infant-
directed and pet-robot-directed speech. Basic studies on mother–infant interaction are Rothman
and Nowicki (2004) who describe a test of the ability to decode emotion of varying intensity
in the voices of children, and Grossmann (2010) who reviews the literature on behavioural
findings on infants’ developing emotion-reading abilities and concludes that by the age of 7
months, infants reliably match and recognise emotional information across face and voice.

At the turn of the century, researchers began to use non-acted emotional data from human–
human or human–machine interactions such as appointment scheduling or call-centre dia-
logues (Ang et al. 2002; Batliner et al. 2000; Lee et al. 2001). The role of the machine was
sometimes played by a human Wizard of Oz. In a detailed review article, Cowie et al. (2001)
address potential applications, present an overview on psychological traditions, offer lists of
emotion words and of dimensional representations of emotions, list speech parameters and
feature types, and give a comparable overview for facial gestures. Cowie and Cornelius (2003)
can be seen as a sequel concentrating on the emotional states that are expressed in speech.

Batliner et al. (2000, 2003a) contrasted acted and naturalistic emotional speech from the
same scenario and demonstrated a marked performance deterioration from one speaker to
several speakers, and from acted to naturalistic data. Freely available and therefore widely
used acted databases are the Danish Emotional Speech Database (DES: Engberg et al. 1997)
and the Berlin Emotional Speech Database (BES: Burkhardt et al. 2005). DES and BES are
representative of the ‘early’ databases in 1990s but still serve as exemplars for the generation
of acted emotional databases in other languages. In the Linguistic Data Consortium (LDC)
Emotional Prosody Speech and Transcripts corpus, actors produced 15 distinct emotional
categories; this corpus was used, for instance, by Liscombe et al. (2003). Representatives in
real-life settings are TV recordings (the Vera-Am-Mittag (VAM) Corpus: Grimm et al. 2008),
call-centre interactions (Ang et al. 2002; Batliner et al. 2004; Devillers et al. 2005; Lee and
Narayanan 2005; Liscombe et al. 2005b), multi-party interaction (the ICSI meeting corpus used
in Laskowski 2009), and the Speech In Minimal Invasive Surgery (SIMIS) Database (Schuller
et al. 2010a). Typical human–machine interactions in the laboratory are stress detection in a
driving simulation (Fernandez and Picard 2003), tutoring dialogues (Ai et al. 2006; Liscombe
et al. 2005a; Litman and Forbes 2003; Zhang et al. 2004), information systems (Batliner
et al. 2003b), and human–robot communication (Batliner et al. 2008b); a still emerging field
is interaction with virtual agents (Schröder et al. 2008). Other topics are the detection of
aggressiveness and fear for homeland security, surveillance, and monitoring (Clavel et al.
2008; Schuller et al. 2008; Kwon et al. 2008), and estimates of excitability in sports videos
(Boril et al. 2011). Naturally enough, the state ‘interest’ and its counterpart ‘boredom’ are of
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great interest for several applications (Gatica-Perez et al. 2005; Jeon et al. 2010; Schuller and
Rigoll 2009; Schuller et al. 2006, 2007a, 2009a).

Crossing the Bridges

From the perspective of the present day, the automatic approaches towards emotion in speech
from only a few years ago were mostly quite straightforward. Matters were kept simple – acted
data, homogeneous groups of speakers, only a few prosodic features, and very pronounced
emotion classes such as the big six were employed. This has changed over the last few years.

The focus on prosodic features, and sometimes mel frequency cepstral coefficients (MFCCs;
see Chapter 8), in the early studies on the automatic processing of emotional speech has
gradually been replaced by a plethora of different feature types; moreover, linguistic (part-
of-speech, N -grams; see Chapter 9), and pragmatic (dialogue acts) modelling as well as
disfluencies and non-verbals have been employed. Quasi-standards such as WEKA (Hall
et al. 2009) for classification and openSMILE (Eyben et al. 2010b) for feature extraction
make it possible to aim for standards that make comparisons across studies easier. Employing
large feature vectors makes feature evaluation difficult; groups consisting of only one feature
type can be evaluated separately in a sort of univariate approach (Batliner et al. 2006a;
Schuller et al. 2007b), or in combination with other feature types in a sort of multivariate
approach (Batliner et al. 2011b). If we are aiming at utmost reality, we should use all data
available and not preselect good candidates (so-called open microphone setting); this means
in turn that we have to cope with ambiguous and less pronounced items as well. However,
prototypical realisations – be they acted or obtained from consensual annotations – can be
used for demonstrating emotions, for instance to autistic children (Baron-Cohen et al. 2009)
or in situations where we want to minimise the number of false alarms (Batliner et al. 2005;
Seppi et al. 2008).

We can reduce the complexity of the task and make it manageable if we concentrate on a few
consistent classes from the very beginning. If we want to address a multitude of emotions or
several complex ones, we have to reduce the complexity of the tasks later on in the processing
chain. The system of Sobol-Shikler and Robinson (2010) characterised over 500 affective
state concepts from the MindReading database. The data were acted, and classification was
pairwise. Devillers and Vidrascu (2006) used a ‘multi-level’ of granularity consisting of
dominant (major) and secondary (minor) labels, that is, a coarse level and fine-grained level.
The authors had to resort to the coarse-grained level when it came to classification, due to
sparse data.

Another challenge, especially for classification performance, is ‘within culture but across
corpora’ experiments (Eyben et al. 2010a). So far, there are not many studies addressing cross-
cultural aspects; and existing ones tend to use acted data. This is due to the complexity of the
task and to the necessity of comparing within a setting where everything else has to be kept con-
stant (‘other things being equal’). When comparing non-verbal emotional vocalisations such as
screams and laughter across two dramatically different cultural groups, Sauter et al. (2010) and
Sauter (2006) found that negative emotions most likely have vocalisations that can be recog-
nised across cultures, whereas positive emotions are communicated by culture-specific means.

Initiatives such as Combining Efforts for Improving Automatic Classification of Emotion in
Speech (CEICES: Batliner et al. 2006a), the Emotion Challenge at Interspeech 2009 (Schuller



Functional Aspects 123

et al. 2009b) and the Audio/Visual Emotion Challenges (Schuller et al. 2011a, 2012a) will
hopefully help in establishing standards. Further references on emotion processing can be
found in Batliner et al. (2011a) and Schuller et al. (2011b).

5.5 Subjectivity and Sentiment Analysis

Maybe the best proof that the language is patriarchal is that it oversimplifies feel-
ing. I’d like to have at my disposal complicated hybrid emotions, Germanic train-car
constructions like, say, ‘the happiness that attends disaster.’

(Jeffrey Eugenides, Middlesex)

The phenomena dealt with in subjectivity analysis and sentiment analysis (or opinion mining)
have much in common with the dimension of valence and the concept of appraisal in emotion
and affect processing. The difference lies mainly in the medium (text versus pure audio or
speech). Subjectivity analysis classifies the content of a text into objective and subjective;
sentiment analysis classifies the subjective content of a text into positive or negative. Pang
and Lee (2008) trace back the ‘sudden eruption of activity’ that could be observed in this
field at the beginning of this century to factors such as the rise of machine learning methods,
the availability of data sets, and the intellectual challenges and commercial and intelligence
sentiment-aware applications such as summarisation of reviews and recommendation systems.

Interestingly, so far there has not been much contact between the two sub-cultures of
emotion/affect processing on the one hand, and sentiment analysis on the other hand, although
the topics dealt with have much in common. A reason might be that the main academic
disciplines are still separated from each other: on the one hand natural language processing
which is rooted in artificial intelligence, and on the other hand speech processing as part of
engineering, or phonetics and psychology as part of humanities. However, recent approaches
try to unify speech and language for sentiment analysis (Cambria et al. 2013).

Wiebe et al. (2004) investigate several markers of subjectivity in language such as unique
words (so called hapax legomena), collocational clues (context), and adjective and verb fea-
tures. Unsupervised subjectivity classifiers are dealt with in Wiebe and Riloff (2005). Spertus
(1997) describes some approaches towards flame (abusive message) recognition, based on
the syntax and semantics of each sentence. Kennedy and Inkpen (2006) discuss methods for
determining the sentiment expressed by a movie review, based on valence shifters (negations,
intensifiers, and diminishers) such as counting positive and negative terms in a review, or
using support vector machine classifiers with unigrams and bigrams as features; combining
the two methods achieves better results than either method alone. Based on psycholinguis-
tic and psychophysical experiments targeting customer reviews on the Internet, Becker and
Aharonson (2010) argue for concentrating computational efforts on the final positions in texts.
Kousta et al. (2009) attribute a general processing advantage over neutral words to words that
express (negative or positive) valence ‘ . . . due to the relevance of both negative and positive
stimuli for survival and for the attainment of goals’. For multilingual subjectivity and senti-
ment analysis, Banea et al. (2011) identify and overview three types of methodologies: word
and phrase level annotations, sentence-level annotations, and document-level annotations. A
combination of methods from sentiment analysis and automatic speech analysis along the
lines of (Mairesse et al. 2007) seems promising. Evaluation can also be influenced by subtle
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(seemingly ‘innocent’) linguistic structural means such as the use of transitive or non-transitive
verbs (Fausey and Boroditsky 2010) or of anaphoric pronouns (Batliner 1984); cf. the weak
linguistic relativity in Section 2.11. An extensive survey on ‘Opinion Mining and Sentiment
Analysis’, pertinent techniques, approaches, and applications, is given in Pang and Lee (2008).
A comprehensive introduction to the field is provided in Liu (2012).

5.6 Deviant Speech

Life is a foreign language; all men mispronounce it.
(Christopher Morley)

In this chapter, we want to deal with all kinds of deviant speech which can be seen as ‘not
normal’, ‘wide spectrum’, or not typically developed speech. This can be pathological speech
which is normally a long-term phenomenon that has to be treated in some way. Due to
origin and cause, we can distinguish three sub-types of pathological speech: voice pathology
describes impaired phonation, for example, in post-laryngectomy speech; speech disorders
pertain to articulation problems, for example, due to congenital malformations (cleft lip and
palate), stuttering or hypernasality; language disorders are due, for example, to hearing loss
or aphasia (as a result of brain injury, a stroke, or dementia). Atypical speech can also be
observed related to disorders such as depression or autism spectrum condition (ASC) – this
is the preferred term in the UK; in the US, mostly autism spectrum disorder (ASD) is used.
Normally, such speech has developed as a long-term trait that has to be diagnosed, monitored,
and treated in some way.

Medium-term states which often are more or less self-induced and which do influence
speech and language use are sleepiness, intoxication (often caused by alcohol consumption),
a cold, or excessive voice strain. Even if this type of speech can make a very ‘pathological’
impression, it is due to a state that normally changes quite soon, often within hours, and does not
need any therapeutic treatment; of course, habitual drinkers can display the characteristics of
long-term deviant speech (trait), and a temporarily strained voice can turn into a pathological
voice. Within-speaker comparisons are possible for such medium-term states, whereas for
pathological speech, improvements are normally only observable over a longer period of time.

Non-native speech, that is, speaking in a second language (L2) that is not one’s mother
tongue, differs from the two types that we have mentioned so far: in many cases, the specific
level of proficiency (and thus, the level of deviation from the ‘correct’ pronunciation and use
of language) is something the speaker would like to overcome. At least, it is this population of
L2 learners that computer-aided language learning (CALL) and computer-aided pronunciation
training (CAPT) are aimed at. There are also speakers of an L2 who are more or less content
with their level of proficiency because they can make themselves understood and do not need
to impress with a close-to-native pronunciation; moreover, there are immigrant sub-cultures
whose language can evolve into a vernacular, thus changing the type of speech from ‘deviant’
into ‘cultural trait’ (Section 5.2).

When dealing with all these constellations, we implicitly contrast the characteristics of
deviant (i.e., atypical) speech with the typical speech as it should be – either after treat-
ment/teaching, or after the user state has changed because the person is no longer intox-
icated or sleepy, or her cold is over. Non-native speech is normally not subsumed under
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‘pathological’ speech. A more generic term is communication disorders which, however, does
not cover non-native speech, though this is also addressed in this section because the proce-
dures for annotation, processing, and classifying are very similar or the same across all these
types of deviant speech.

5.6.1 Pathological Speech

Sometimes I heard and understood and other times sounds and speech reached my brain
like the unbearable noise of an onrushing freight train.

(Temple Grandin)

Damico et al. (2010) and Harrison (2010) give a broad overview of communication disorders,
causes, assessment, and rehabilitation. Ruben (2000) estimates the cost of communication
disorders, with a prevalence (frequency) of some 5–10%, at between $154 billion and $186
billion per year in the US, equal to 2.5–3% of gross national product. Fritzell (1996) reports
data from hospital departments of phoniatrics in Sweden: phonasthenia (functional vocal
fatigue, i.e., voice too high, loud or hard) was the most common diagnosis, and the teaching
profession most affected, besides social workers, lawyers and clergymen. This tendency is
corroborated for the US in Titze et al. (1997).

A basic protocol for the functional assessment of voice pathology, including a set of minimal
basic measurements, is presented in Dejonckere et al. (2001): ‘perception (grade, roughness,
breathiness), videostroboscopy (closure, regularity, mucosal wave and symmetry), acoustics
(jitter, shimmer, Fo-range and softest intensity), aerodynamics (phonation quotient), and sub-
jective rating by the patient’. Using similar measurements and a multivariate regression model,
Bhuta et al. (2004) established correlations between acoustic features and perceptual evalua-
tion; three noise parameters turned out to be significantly correlated with the perceptual voice
analysis. Kent (1996) discusses several limits to the auditory-perceptual assessment of speech
and voice disorders and offers suggestions for their improvement. Kreiman et al. (1990) con-
trast assessments by naı̈ve and expert listeners: while the naı̈ve listeners used similar perceptual
strategies, clinicians ‘differed substantially in the parameters they considered important when
judging similarity’. Averaging across them might obscure important aspects. Kent and Kim
(2003) presents an acoustic typology of motor speech disorders from ‘a parametric assessment
of the speech subsystems (e.g., phonation, nasal resonance, vowel articulation, consonant
articulation, intonation, and rhythm)’ with respect to the global functions in speech such as
voice quality, intelligibility, and prosody. Schoentgen (2006) gives an overview of vocal cues
of disordered voices, proposes a classificatory framework, and warns against simply ‘dis-
tilling general rules or comparing results obtained in different frameworks’. Kreiman et al.
(1994) discuss the multidimensional nature of pathologic vocal quality, scrutinising the terms
‘breathy’ and ‘rough’.

Listeners’ ratings of speech disorders, especially of intelligibility, and their inter-rater
agreement constitute a pivotal topic in this field, addressed by numerous studies. In Zenner
(1986) on the so-called Post-Laryngectomy Telephone Test (PLTT) subjects had to read a
random set of words and phrases, and naı̈ve listeners had to write down what they heard.
McColl et al. (1998) investigated the intelligibility of tracheoesophageal speech in noise: as
the levels of background noise increased, listener ratings of intelligibility decreased. Bunton
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et al. (2007) studied auditory-perceptual ratings of dysarthria (a motor speech disorder due to
neurological injury): ‘ . . . auditory-perceptual ratings show promise during clinical assessment
for identifying salient features of dysarthria for speakers with various etiologies’. Sheard et al.
(1991) examined ratings of ataxic dysarthric speech samples with varying intelligibility:
‘Judges agreed equally well in rating dysarthric speech across the range from low to high
intelligibility.’ Wolfe et al. (2000) investigated the perception of dysphonic voice quality
by naive listeners: the most important perceptual dimension was ‘degree of abnormality’,
followed by high-frequency noise for females, and ‘breathy-overtight’ for males. Hardin et al.
(1992) examined the correspondence between nasalance scores and listener judgments of
hypernasality and hyponasality, reporting a good overall relationship. Keuning et al. (1999)
conducted a pilot study of the intra-judge reliability of the perceptual rating of cleft palate
speech before and after pharyngeal flap surgery: they reported no differences in intra-judge
reliability of experts versus non-experts.

Dejonckere et al. (1996) assess the perceptual evaluation of pathological voice quality with
respect to reliability and correlations with acoustic measurement. Lohmander and Olsson
(2004) critically review the literature on perceptual assessment of speech in patients with cleft
palate, pointing out excessive variability in the experimental design.

We now turn to studies dealing with (specific aspects of) pathological speech. The prevalence
of laryngeal carcinomas is 10 per 100 000 population (Zimmermann et al. 2003). Brown et al.
(2003) review the history and state of the art of post-laryngectomy voice rehabilitation;1 on the
use of different types of voice prosthesis, see also Hilgers and Schouwenburg (1990), Schutte
and Nieboer (2002), and Torrejano and Guimarães (2009). Speech impairment in oral cancer
patients is dealt with in Pauloski et al. (1993, 1998). The effects on the phonetics of speech
sounds of complete (replacement) dentures and dental prostheses in edentulous (toothless)
patients are discussed in McCord et al. (1994), Petrović (1985), and Jacobs et al. (2001).

Vanderas (1987) reviews a number of studies reporting incidences (prevalence) of cleft lip,
cleft palate, and cleft lip and palate by race; frequencies vary considerably. Sayetta et al. (1989)
discuss methodological problems that might be responsible for such discrepancies. However,
it seems safe to conclude that instances range roughly from 1 per 1000 to 2 per 1000 across
nations; see also Derijcke et al. (1996). Van Lierde et al. (2002) report significant differences
between cleft palate children and a typical control group for nasalance values and overall
intelligibility; see also Van Lierde et al. (2003). Whitehill (2002) deals with problems related
to speech intelligibility measured in speakers with cleft lip and palate. The psychophysical
effects of laryngectomy are addressed in Devins et al. (1994), those of cleft lip and palate in
the meta-analysis of Hunt et al. (2005).

For Parkinson’s disease in Europe, Campenhausen et al. (2005) report in a systematic
literature search crude and widely varying prevalence rate estimates from 65.6 per 100 000
to 12 500 per 100 000. Parkinson’s disease affects over 1 million people in North America
(Lang and Lozano 1998). Darkins et al. (1988) compared the prosody of typical, ‘normal’
subjects with that of patients with idiopathic Parkinson’s disease and claimed that ‘the striking
disorder of prosody in Parkinson’s disease relates to motor control, not to a loss of the linguistic
knowledge required to make prosodic distinctions’. Holmes et al. (2000) examined the acoustic
and perceptual voice characteristics of patients with Parkinson’s disease according to disease

1Laryngectomy is the removal of the larynx, as may be done in cases of laryngeal cancer.
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severity, finding limited pitch and loudness variability, breathiness, harshness, and reduced
loudness. Speech treatment for Parkinson’s disease is addressed in Ramig et al. (2008). Rusz
et al. (2011) present quantitative acoustic measurements for characterising speech and voice
disorders in early untreated Parkinson’s disease.

ASC is reported to occur in up to 1% of the population (Simonoff et al. 2008). Wing
and Potter (2002) discuss possible reasons for the increase in frequency reported in several
studies in recent decades – whether these are genuine rises or due to changes in diagnostic
criteria and increasing awareness and recognition of the condition. Children and adults with
ASC are reported to have specific speech and prosody characteristics such as ‘ . . . articulation
distortion errors, uncodable utterances due to discourse constraints, and utterances coded
as inappropriate in the domains of phrasing, stress, and resonance’ (Shriberg et al. 2001,
p. 1097). Moreover, they have major difficulties in recognising and responding to others’
feelings and emotional/mental states, that is, an impairment of theory of mind skills, both in
facial expressions (Baron-Cohen et al. 2009) and in the voice (Chevallier et al. 2011; Golan
et al. 2007; Van Lancker et al. 1989). Several aspects of this voice and language impairment,
especially with respect to prosody, are addressed by a number of authors (Bonneh et al. 2011;
Demouy et al. 2011; Grossman et al. 2010; McCann and Peppé 2003; Paul et al. 2005; Peppé
et al. 2007, 2011; Ploog et al. 2009; Russo et al. 2008; Van Santen et al. 2010). Mower et al.
(2011) describe an emotionally targeted interactive agent for children with ASC which should
help them to effectively produce social conversational behaviour.

In addition, we want to mention a few other impairments and syndromes where speech and
language are affected. People with hearing loss displaying deficiencies in speech production
are arguably one of the most important target groups, simply due to the prevalence of this
syndrome, amounting to millions of people in the US, and to the obvious fact that not only
perception and comprehension of speech and language, but also production must be taken
care of. Note that there are many degrees of hearing loss, and people can be equipped with
different types of hearing aids and cochlear implants. Shargorodsky et al. (2010) substantiate
the change in prevalence of hearing loss in US adolescents. Osberger and McGarr (1982)
carried out an in-depth study of the speech production characteristics of the hearing impaired.
Several aspects of providing patients with cochlear implants are addressed in Tobey et al.
(2003), Connor et al. (2006), and Lowenstein (2012).

Depression is another common disorder with typical voice and language characteristics
that can be detected and subsequently monitored in follow-up examinations (Chevrie-Muller
et al. 1978; Ellgring and Scherer 1996; Lott et al. 2002; Low et al. 2011).

Attention deficit (hyperactivity) disorder (AD(H)D) is a frequent developmental disorder.
Irrespective of its much debated prevalence and causes, adolescents diagnosed with ADHD
may display problems with respect to social skills and emotion recognition skills similar to
adolescents with ASC (Kats-Gold et al. 2007).

Automatic Processing

In clinical research on voice pathology, speakers often have to produce sustained vowels. Such
a database was employed by Dibazar and Narayanan (2002) who used MFCCs and measures
of pitch dynamics, modelled with Gaussian mixtures in a hidden Markov model (HMM) clas-
sifier, for the automatic classification of different speech pathologies. Lederman et al. (2008)
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successfully used HMMs for classifying the cries of cleft lip and palate infants with or without
an intra-oral plate. The automatic assessment of speech intelligibility (correlations between
human ratings and automatic measures such as the accuracy of a speech recognition system)
has been addressed by several studies: see Scipioni et al. (2009) and Bocklet et al. (2009)
comparing the automatic assessment of children with cleft lip and palate in Italian and Ger-
man; Stelzle et al. (2010) who evaluated an automatic computer-based speech assessment on
edentulous patients with and without complete dentures; and Bocklet et al. (2012) using Gaus-
sian mixture models and cepstral features for automatically evaluating pathological speech,
correlating the automatic system and the expert listeners.

Maier et al. (2009b) present a novel web-based system for the automatic evaluation of
speech and voice disorders, which has been evaluated for laryngectomised patients and for
children with cleft lip and palate; further details are given in Maier et al. (2009a). Middag
et al. (2009, 2011) utilise phonological features and language-independent procedures for pre-
dicting the intelligibility of pathological speech. Ringeval et al. (2011) describe an automatic
prosodic assessment of language-impaired children with ASC, unspecified developmental dis-
orders, and specific language impairments; they show that all these children had difficulties in
reproducing intonation contours, compared with typically developed children, confirming the
clinical descriptions of these subjects’ communication impairments. Haderlein et al. (2011)
demonstrate that an objective assessment of the intelligibility of pathological speech on the
phone can be done, using support vector regression (see Section 11.2.3), based on the word
accuracy and word correctness of a speech recognition system, and a set of prosodic features.
Such procedures can be used for the (remote) monitoring of speech rehabilitation.

Knipfer et al. (2012) and Rouzbahani and Daliri (2011) try to detect automatically whether
the speech/voice of a person is affected by Parkinson’s disease. Voice and prosody seem
to be very early indicators of Parkinson’s disease; Bocklet et al. (2011) report promising
performance when using prosodic features for differentiating automatically between typical
speakers and speakers with early-stage Parkinson’s disease. The most important prosodic
features were based on energy, pauses, and pitch. Mahmoudi et al. (2011) aimed to develop
and evaluate automated classifications of voice disorder in children with cochlear implants
and hearing aids into four different levels of disorder, employing HMMs and neural networks,
and one human expert as reference.

So far, satisfying results of automatic evaluation have only been achieved for cumulative
evidence (see Section 3.7), that is, for averaged evaluations of longer passages, and not for
single instance decisions, that is, for single segments.

The automatic processing and detection of chronic cough as a sign of an abnormal health
condition is addressed in Matos et al. (2006) using HMMs, following a keyword-spotting
approach; that is, coughs are modelled as words. Walmsley et al. (2006) attempt a cough/non-
cough classification using spectral coefficients and a probabilistic neural network, calculating
total number of coughs and cough frequency as a function of time. Similar research is reported
in Shin et al. (2009) and Drugman et al. (2011). Such procedures can be used for modelling
not only human non-verbal behaviour but also animal behaviour; see Giesert et al. (2011)
who analyse coughs in pigs to diagnose respiratory infections, motivated by the possibility of
an early detection of infected animals to reduce costs for treatment and indirect costs caused
by diminished mast and breeding results. Note that here, normal, short-term coughs (throat
cleaning) have to be distinguished from medium-term (temporary deviant) coughs produced
by infected pigs.
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5.6.2 Temporarily Deviant Speech

Here’s to plain speaking and clear understanding.
(Kasper Gutman in The Maltese Falcon)

Habitual, constant traits in the voice and in the linguistic usage of a speaker can be employed to
find out something about his or her biological and cultural trait primitives (Sections 5.1 and 5.2),
and about long-term deviations from typical speech and language (Section 5.6.1). If deviations
are not long-term but temporary (several hours or days), then they are caused by short-term
events such as catching a cold, staying up late, or drinking too much. Coughing is a formal
characteristic which can be segmented on the time axis; it can be a short-term symptom, elicited
by some respiratory tract irritation, a medium-term symptom, caused by a cold, or a long-term
symptom, caused by some long-lasting, abnormal health condition. We dealt with coughing
in Section 5.6.1. Here, we want to address two typical medium-term, temporary functional
traits or states: intoxication by alcohol consumption and sleepiness. They are attractive objects
of investigation, important for both the health sector and for private and public safety. Note
that there are also other states or traits such as stress (cognitive/emotional overload, not word
accent) which is subsumed under emotion/affect in Section 5.4, and which can be short-term
(a state), long-term (evolved into a trait), or medium-term (temporarily deviant).

Early studies on the effect of alcohol on the acoustic-phonetic properties of speech are
reported in Trojan and Kryspin-Exner (1968), Sobell and Sobell (1972), and Pisoni and Martin
(1989). Johnson et al. (1990) studied speech characteristics of the captain of the Exxon Valdez
during the stranding of the oil tanker. Further results are given in Cooney et al. (1998) and
Künzel and Braun (2003). Levit et al. (2001) may have been the first attempt to automatically
detect alcohol intoxication; they obtained up to 69% recognition rate for the two-class problem
‘below/above a blood alcohol concentration of 0.08%’, using prosodic features and artificial
neural networks. In-car alcohol detection is addressed in Schiel and Heinrich (2009). Possible
forensic applications are faced with two problems. First, it is of course easier to distinguish
between totally sober and fully drunk; this holds for both human and automatic assessment
(Schuller et al. 2012b). The crucial threshold decision – whether blood alcohol concentration
is above or below a legally defined limit – is, however, very difficult to make, based only on
speech parameters. Second, in a realistic setting, both sober and alcoholised speech for the
very same speaker may not be available but only speech that is one or the other.

Thorpy and Billiard (2011) is a compendium on the pathophysiological and clinical features
of sleepiness. Earlier studies addressing the characteristics of sleepy speech are (Vollrath 1993),
Bard et al. (1996), and Harrison and Horne (1997, 2000). Attempts to detect sleepiness from
speech automatically are reported in Nwe et al. (2006), Greeley et al. (2007), Krajewski et al.
(2009, 2012), and Zhang et al. (2010).

For both tasks so far, the performance for two-class problems in the studies reported on in
Schuller et al. (2013a) has been well above chance level but still too low for use in ‘critical’
applications with single instance decisions (see Section 3.7). Moreover, the caveat set out in
Schuller et al. (2013a) for the state of the art for sleepiness detection using speech holds more
or less for intoxication detection as well, albeit to a lesser extent: ‘ . . . small sample sizes,
irrelevant high time-since-sleep values, speaker-dependent modelling, and non-comparable
sleepiness reference values narrowed the generalisability of the results found so far’. Surveys
of the speech processing of intoxication and sleepiness, as well as conditions and baselines for



130 Computational Paralinguistics

both the speaker intoxication and the speaker sleepiness challenges at Interspeech 2011 are
given in Schuller et al. (2011c, 2013a). Speaker normalisation seems very promising, however,
narrowing down the pool of potential applications if only seen speakers can be processed.

As far as we can see, the temporary characteristics of speech while the speaker is eating
(e.g., hot potatoes) have not yet been researched; first attempts were reported in Vennemann
(1979) from a phonological point of view, assuming a marked reduction of the phoneme (and
thus phone) inventory.

5.6.3 Non-native Speech

Every American child should grow up knowing a second language, preferably English.
(Mignon McLaughlin)

Normally, non-native speech is – even if only implicitly – conceived as deviant, as something
that has to be improved. In line with the other parts of this section dealing with pathological
and temporarily deviant speech, we will concentrate on studies on speech dealing with the
first part of the endeavour: to find the differences between the target – the second language –
and the present state of proficiency. Trying to improve non-native speech draws heavily on
pedagogics and teaching, and not on computational paralinguistics in its strict snese, even if
we can easily imagine computational approaches such as computer-aided teaching or serious
language games. Eskenazi (2009) provides an overview of spoken language technology for
education and language learning that began in the 1980s, its history and main issues, pointing
out that ‘ . . . many of the techniques used in non-native pronunciation detection could be used
for handicapped speech as well’. ‘Handicapped speech’ is a subset of ‘pathological speech’,
covered in Section 5.6.1.

The main issues in the modelling and processing of non-native speech are pronunciation
in the sense of correct or incorrect pronunciation of segments or words, and prosody in the
sense of good or bad production of suprasegmental traits. Both non-native pronunciation and
prosody have to be detected, analysed, assessed, and corrected. In most studies so far, there
exist manual annotations of erroneous pronunciation and manual assessments of prosody,
strictly localised (i.e., per segment or word) or global (e.g., per utterance or per speaker).
Segments can be substituted by variants that are more or less similar to the target segment,
incorrect segments can be inserted, segments can be deleted. Prosodic errors are incorrect
placement of word accent (stress), and non-native intonation and rhythm. Whereas the degree
of freedom for stress placement is low, there is, at least in non-tonal languages, a certain
degree of freedom in the use of different types of phrasing (integrating or isolating) and
different types of intonation (tonal configurations). A native rhythm helps structure what is
perceived and contributes to a large extent to intelligibility.

As always, the task becomes more manageable if variability is reduced, for instance, by
modelling only one source language L1, and not by trying to establish L1-independent pro-
cedures; moreover, text-dependent procedures (using only a limited set of test-sentences, i.e.,
few types and many tokens per type) are always easier to model than unlimited, free speech.
In general, research first concentrated on different aspects of pronunciation; in recent years
research on prosody has caught up. In the future, the specific motivation of the language learner
might influence L2 modelling and teaching: whether we aim at pronunciation and prosody
that sound as native as possible, or whether we are content with high intelligibility – and this
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in turn depends on the primary use of L2, that is, whether it is used for communicating with
native speakers of the L2, or whether it is used as a third language (lingua franca), that is, not
especially in a native L2 setting.

One of the earlier paradigms for the automatic assessment of pronunciation quality by
machine is presented in Neumeyer et al. (2000). Piske et al. (2001) provide a thorough review
of the literature on foreign accent in a second language, and detail the relevant variables such
as motivation, age, and formal instruction; both age of L2 learning and amount of continued
L1 use were found to affect degree of foreign accent; see also Flege et al. (2006). Omar
and Pelecanos (2010) report on procedures for detecting non-native speakers and their native
language, and utilise the detected speaker characteristics within a speaker recognition system
to improve its performance. Speech rate seems to be a rather straightforward but reliable
indicator of degree of non-nativeness (Cucchiarini et al. 2000). In Hönig et al. (2012), the
impact of speech tempo (modelled by duration features) is demonstrated by regressions with
and without features modelling tempo for a database with read non-native English speech; the
difference in absolute terms is, depending on the constellation, between 4% and 20%.

Witt (2012) discusses the state of the art of research on computer-assisted pronunciation
teaching and its major components, and gives an overview of existing commercial language
learning software. ASR-based systems for language learning and therapy are exemplified
in Strik (2012) and Pellom (2012); the latter describes an on-line solution specifically
designed to address the shortcomings of more traditional learning methods and to improve
conversational fluency.

So far we have sketched the main issues in modelling non-native speech; it can also be
studied with respect to its role in other paralinguistic tasks. Graham et al. (2001) found
major differences between native and non-native listeners in their ability to identify emotions
expressed in voice. They suggest that, irrespective of the level of proficiency in L2, learners
of an L2 can only interpret emotional meaning when they have been exposed extensively to
pertinent utterances in the native L2 context. For similar experiments, see Chen (2009).

It is not only the ability to assess the emotional content of utterances in an L2, that is,
the perception, that changes; so also do others’ judgements, depending on speakers speaking
either their L1 or an L2. Lev-Ari and Keysar (2010) demonstrate that lower intelligibility of
a foreign accent causes non-native speakers to sound less credible. A comparable impact has
been reported for bilingual speakers. Several studies showed that bilingual speakers partly
changed their personality as perceived by the self and by others, depending on which of the
two languages they were speaking; see Chen and Bond (2010) for Chinese versus English,
Koven (2007) for French versus Portuguese, Ramı́rez-Esparza et al. (2006) for Spanish versus
English, and Danziger and Ward (2010) for Hebrew versus Arabic. All these studies corroborate
a weak form of linguistic relativity, as far as paralinguistic functions such as credibility or
personality traits are concerned.

5.7 Social Signals

One cannot not communicate.
(Paul Watzlawick)

So far, the phenomena addressed can be observed devoid of communicative context, either in
read speech or in public speech, without any distinct communication partner. In this section,
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we want to deal with paralinguistic functions that can (only) be observed and assessed within
a communication setting (human–human or human–machine, dyadic or multi-party). In such
situations, we can also try to detect and classify everything that has been mentioned in this
chapter so far: age, gender, personality, emotion/affect, and atypical speech. All these states
and traits, however, can basically also be observed without taking into account the interaction
between the partners. Thus it might be possible to define phenomena that can be observed and
analysed in isolation, those that only can be observed and analysed in some kind of interaction
such as ‘interest’ (in what/whom) or ‘intimacy’ (with whom), and perhaps those that solely
are constituted within a social setting such as back-channelling or entrainment (the mutual
adaptation of communication partners with respect to phonetic parameters such as pitch, or
to the use of words or syntactic constructions). In practice, it comes down to calling those
phenomena ‘social signals’ that can be observed in – and have some relevance for – social
interaction.

Among the ‘classic’ fields are pragmatics, ethnography of communication/speaking, lin-
guistic anthropology, sociology of language, sociolinguistics. New names are social signals
or behavioural signals. Each of these fields has, of course, specific traditional core topics and
perspectives.

For the ethnography of communication, culture is the object of investigation, manifested
and mirrored in language and speech. Typical topics addressed within this and neighbouring
fields such as sociology of language are female and male varieties of a language (Haas 1979),
forms of address (Brown and Gilman 1960), and taboo words or constellations, for instance,
when males are not allowed to address females (Jay 2009).

For traditional pragmatics which is rooted in linguistics and not in anthropology, the main
topics are speech act theory and dialogue acts; glancing through the topics addressed in, for
example, the Journal of Pragmatics, one realises that nowadays the perspective is based on
the humanities and not on artificial intelligence or engineering approaches, but the topics are
similar and mostly all-encompassing across fields. The same holds for the field of ‘social
signals’ that has been coined with a particular emphasis on machine analysis and synthesis
of human social signals (Vinciarelli et al. 2009) – the topics are similar, albeit that the field
of ‘social signal processing’ has been restricted explicitly to the non-verbal aspect by these
authors. An early and renowned predecessor is Malinowski (1923) who introduced the term
phatic communication into linguistics, especially for the introductory formulaic phrases in
a human–human encounter such as how are you or nice day, isn’t it – at first sight void of
meaning, but pivotal for constituting social relationships; see Senft (2009).

The classic introduction to linguistic pragmatics dealing with deixis, implicature, pre-
supposition, speech acts, and conversational structure, is Levinson (1983). The more recent
introduction by Mey (2001) broadens the view onto topics such as pragmatics across cultures
and social aspects. Krauss and Pardo (2006) argue that the phonological sound structure of
speech provides information on social behaviour.

Pentland and Madan (2005) and Pentland (2008) focus on ‘unconscious face, hand, and
body gestures [forming] a visual motion texture that conveys social signals’, that is, on rather
subtle patterns of human–human interaction. Vinciarelli et al. (2009) and Vinciarelli and
Mohammadi (2011) introduce ‘social signal processing’ as an emerging domain dealing with
the ability ‘to understand and manage social signals of a person we are communicating with
[as] the core of social intelligence’. They argue that next-generation computers should possess
this type of ability in order to become more effective.
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A related term is ‘behavioural signal processing’ as described in Black et al. (2010, p. 2030):
‘Human behavioral signal processing involves using signal processing methods and machine
learning algorithms to extract human-centered information from audio-video signals, including
social cues . . . , affect and emotions . . . , and intent . . . ’. This term does not necessarily focus
on social encounters alone; rather, studies within this domain deal with typical versus atypical
and distressed human behaviour.

The fields of ‘social signals’ and ‘honest signals’ are a specific cross-section of paralin-
guistics, under the umbrella of social interaction/communication, for instance, encompassing
phenomena that usually are listed as emotions or affect; social signal processing concentrates
on non-verbals, and both fields put emphasis on the technological aspect. We might say that
every paralinguistic event is a social signal in this sense when it is observed within a social
context, intended to perform a social function, or perceived by the communication partner as
a social signal. Being able to employ social signals has been described as social intelligence,
which seems to be closely related to emotional intelligence; both are members of the set of
multiple intelligences, with the close equivalent interpersonal intelligence (Gardner 1993).
The theoretical foundation of these multiple intelligences seems to be less clear and has been
widely questioned; yet, intuitively and in a pre-theoretical understanding, they are plausible.

Gregory et al. (2001, p. 37) found ‘that the F0 band [below 0.5 kHz] plays an important
role in transmission of social status and dominance information and that elimination of the
F0 leads to lessened perceived quality of conversation’. Ogden (2006) argues, based on
concepts developed within conversation analysis (Couper-Kuhlen and Selting 1996), that
the phonetic form of utterances influences their interpretation as agreement or disagreement.
Bousmalis et al. (2009) detail the multimodal formal means (non-verbal cues) for indicating
agreement or disagreement and list a number of tools and databases that could be used to
train automatic tools for the analysis of spontaneous, audiovisual instances of agreement
and disagreement. The display of frustration in conversations is analysed in Yu (2011). Two
types of frustration are established: combined verbal and non-verbal expressions, and non-
verbal expressions alone. The latter is claimed to be a stronger emotional display. Gravano
et al. (2011) describe acoustic/prosodic and lexical correlates of social variables found in
a corpus of task-oriented spontaneous speech. The data are labelled with the help of the
Amazon Mechanical Turk (see Section 6.1.2), for attempts of a speaker to be liked, to be
actually likeable, or to plan what to say. Significant differences in behaviour between single
and cross-gender parings were found for the realisations of correlates of the social variables.
Mori (2009) shows that not only linguistic but also prosodic features, especially pauses, and
non-verbal behaviours characterise turn-switching in expressive dialogues. Laskowski et al.
(2008) explore the relationship of social dimensions such as assigned role or seniority with
low-level features that characterise talkspurt deployment, that is, the alternating sequence of
utterances produced by the participants in a conversation; a talkspurt is the ‘ . . . speech by
one party, including his pauses, which is preceded and followed, with or without intervening
pauses, by speech from the other party perceptible to the one producing the talkspurt’ (Norwine
and Murphy 1938, p. 282). A system for ‘predicting, detecting and explaining the occurrence
of vocal activity in multi-party conversation’ is described in Laskowski (2011).

It can be expected that most – if not all – phonetic and linguistic parameters and means can
be employed in dyadic or multi-party conversations to regulate the interaction between partici-
pants. A prototypical phenomenon is back-channelling – giving feedback that one is still paying
attention. This can be done using facial or body gestures (head nodding, raised eyebrows),
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non-verbals or conversational sounds (unspecific grunts, particles such as uhm, mhm,
yes/yeah), or more explicit linguistic means (is that true?, oh, really?). Default back-
channelling is neutral, meaning ‘I’m still listening’ (Kießling et al. 1993); of course, more or
less negative or positive back-channelling is possible as well. As in the case of laughter (Sec-
tion 4.5), which can function as a back-channelling signal, other back-channelling signals nor-
mally only occur at specific positions in the conversation. The participant in the active, speaking
role would be very irritated if the listener either did not produce any back-channelling signals at
all, or did so in the wrong places. Grivičić and Nilep investigate the phonetic form of the token
yeah; produced with creaky voice, it indicates ‘ . . . passive recipiency and either a disprefer-
ence to continue the current topic, or a disalignment with the primary speaker’ (Grivičić and
Nilep 2004, p. 1). Sometimes it indicates a shift from recipient to speaker. Truong and Heylen
(2010) try to disambiguate automatically the functions of conversational sounds with the help
of prosody, focusing on the different functions of yeah such as back-channelling/assessment,
or signalling intention to take the floor. Ward (2006, p. 129) exemplifies the roles of lexical
conversational sounds in American English such as ‘ . . . low-overhead control of turn-taking,
negotiation of agreement, signaling of recognition and comprehension, management of inter-
personal relations such as control and affiliation, and the expression of emotion, attitude,
and affect’.

Emotional colouring, interpersonal expressive behaviour, disambiguating ambiguous emo-
tional expressions, and pertinent automatic procedures or conversational systems are addressed
in Acosta and Ward (2011), Mower et al. (2009), Yu et al. (2004), and Ambady and Rosenthal
(1992).

Entrainment is the term used for synchronising with and adapting to the interaction partner
with respect to acoustic-prosodic or linguistic parameters such as pitch or energy. Lee et al.
(2010, 2011) quantify prosodic entrainment in affective spontaneous spoken interactions of
married couples. We can speculate that, ontogenetically and phylogenetically, entrainment
leads to the register of intimacy that can be observed within a non-conflict-laden interaction
within couples, for instance, when picking up the phone: for a third person present, it is often
obvious that the spouse is calling and not anybody else. This register of intimacy can be
observed within the basically symmetric interaction between couples, and within other, non-
symmetric interactions; most prototypical is the interaction with a baby or toddler. There are
several other terms denoting this specific speech register, with more or less slightly different
connotations: child-directed speech, infant-directed speech, baby-talk, motherese, fatherese,
and parentese, the last two being politically more correct versions; they are mostly not used
to tell whether the mother, the father, or (one of the) parents are speaking. ‘Intimacy’ can
be used as a over term or it can be distinguished from ‘motherese’. There are other varieties
which differ from each other in some respect, such as pet-directed speech or pet-robot-directed
speech (Batliner et al. 2006b).

Kuhl (2004, 2007) advances the hypothesis that the earliest phases of language acquisition
require social interaction which affects the learning of speech based on statistical and prosodic
patterns – thus providing evidence for the pivotal role of motheresing in these phases. Zebrowitz
et al. (1992) demonstrated that simply showing pictures with baby-faced instead of mature-
faced children to adults before they had to give instructions to children over the phone was
sufficient to elicit baby-talk. Several aspects of the phonetics of motherese are dealt with in
the following studies: Fernald (2000) on infant-directed speech ‘as a form of “hyperspeech”
which facilities comprehension’; Kitamura and Burnham (1998) on differences in pitch height
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and range between mothers addressing either boys or girls; Liu et al. (2003) showing that
‘ . . . mothers’ vowel space area is significantly correlated with infants’ speech discrimination
performance’; Liu et al. (2003, p. F1) and Thiessen et al. (2005) on pitch contours in infant-
directed speech that facilitate word segmentation; and Trainor et al. (2000) and Trainor and
Desjardins (2002) on the more pronounced prosody of infant-directed speech and its role for
expressing emotions and discriminating vowels.

In several studies, different varieties of this register are compared with each other: Burnham
et al. (1998, 2002) analyse infant-directed, pet-directed, and adult-directed speech for similar-
ities and differences. Reissland et al. illustrate that depressed mothers are less attuned in their
‘maternal speech’ to their infants during storybook reading than non-depressed mothers; this
deficit ‘ . . . might force the infant into self-regulatory patterns that eventually compromise the
child’s development’ (Reissland et al. 2003, p. 255). Based on a comparison of mother–infant
gestural and vocal interactions in chimpanzees and humans, Falk (2004) speculates about the
role of motherese in the early development of foraging strategies and the prosodic and gestu-
ral conventionalisation of the meanings of certain utterances (words). Batliner et al. (2006b)
investigate the prosody of children addressing Sony’s pet robot dog Aibo and suggest that
these children used a register that resembles mostly child-directed and pet-directed speech and
to some extent computer-directed speech.

Shami and Verhelst (2007) explore different approaches towards feature extraction and three
machine learning algorithms for classifying within and across databases with infant-directed
speech versus adult-directed speech. Mahdhaoui and Chetouani (2009) and Mahdhaoui et al.
(2010) compare different types of motherese detector systems. Batliner et al. (2008a) employ
support vector machines (Section 11.2.1) and random forests (Section 11.2.1) to classify three
different types of speaker, namely mothers addressing their own children or an unknown adult,
women with no children addressing an imaginary child or an imaginary adult, and children
addressing a pet robot using both intimate and neutral speech, and discuss the most important
acoustic feature types.

5.8 Discrepant Communication

I’d kill for a Nobel Peace Prize.
(Steven Wright)

In contrast to deviant speech where the deviation from typical, normal speech is usually caused
by some external factor, we define discrepant speech and discrepant communication as chosen
intentionally by the speaker to serve specific purposes. For example, the speaker acts while
using deviant speech (e.g., pretends to be alcoholised or to stammer), pretends to be polite,
truthful, etc. while lying, or uses irony or sarcasm, or even specific, formulaic rhetorical figures
such as an oxymoron – a figure of speech consisting of incongruent components such as ‘heavy
lightness’. Moreover, the register chosen and the manner of speaking can be fully ‘normal’
and typical, but the speaker ‘speaks aside’ to some other person or to herself, and the dialogue
partner has to realise that the addressee has changed because otherwise misunderstandings
might occur.

In the case of discrepant communication, we normally want to find the ‘truth behind’. We
use the term ‘discrepant’ communication/speech to denote communicative behaviour, partly
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manifested within speech, that cannot or should not simply be taken at face value; to put it
another way, there is some mismatch between what is said or how it is said and what is meant.
Another possible term would be incongruent.

Discrepant communication usually refers to atypical speech, at least in the more technical,
frequency-oriented sense. Following Grice (1975, pp. 45ff.), we can assume that partners in a
conversation normally follow specific conditions in order to ensure the felicity of conversation,
the so-called cooperative principle and its four conversational maxims:

1. Maxim of Quantity – (1) Make your contribution as informative as is required. . . . (2) Do
not make your contribution more informative than is required.

2. Maxim of Quality – (1) Do not say what you believe to be false. (2) Do not say that for
which you lack adequate evidence.

3. Maxim of Relation – Be relevant.
4. Maxim of Manner – (1) Avoid obscurity of expression. (2) Avoid ambiguity. (3) Be

brief. . . . (4) Be orderly.

In discrepant communication, this is not really the case: lying violates the maxim of quality,
as the speaker knows that what he said is false; speaking aside violates the maxim of relation, as
it is not immediately relevant for the communication with the dialogue partner; and irony and
sarcasm violate the maxim of manner, because the message is intrinsically ambiguous. As far as
we can see, a violation of the maxim of quantity might be a topic better addressed in linguistic
semantics and in procedures such as topic spotting. In a general sense, these maxims can be
seen as philosophical abstractions that cannot be fully observed in daily life. For instance, there
is a delicate equilibrium between the requirements of Grice’s maxims and the requirements of
culturally adequate interactions that often are not very straightforward and require the use of
some indirect speech, as in the well-known avoidance of a plain ‘no’ in Far Eastern cultures.
A failure to master such subtle communication rules can as well be observed within cultures,
for example, in the speech of non-native speakers, speakers with autism spectrum condition,
Down’s syndrome, or hard-of-hearing speakers who are sometimes conceived as being less
polite than expected. In all these constellations, discrepant communication might take place.
However, this is not intended by the speaker, thus we subsume them under the heading ‘deviant
speech’ dealt with in Section 5.6.

Social signals dealt with in Section 5.7 are normally ‘honest’ signals (Pentland 2008);
discrepant signals show up in social settings as well but are not exactly ‘honest’ – at least, they
are indirect, and sometimes they are simply dishonest.

5.8.1 Indirect Speech, Irony, and Sarcasm

The week starts well.
(Attributed to Matthias Kneißl on his way to the scaffold)

Indirect speech is a conventionalised form of ‘pseudo-discrepant’ communication – it is pseudo
because the ‘direct’ meaning is not what is conveyed but another metaphorical one. Pinker
et al. (2008) mention Would you like to come up and see my etchings? functioning as sexual
come-on, and If you could pass the guacamole, that would be awesome functioning as a polite
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request. Conflicts would only arise if one of the communication partners prefers the literal
meaning of the utterance.

Rhetorical figures (e.g., an oxymoron such as bitter sweet) are another type of convention-
alised, intrinsically discrepant speech. Irony is a not (fully) conventionalised indirect way of
expressing facts or opinions, and often a play with words and their meaning. The statement
is incongruent with the linguistic or situational context. By and large, the definition of irony
given in Freud (1905) is still valid: ‘Its essence lies in saying the opposite of what one intends
to convey to the other person, but in sparing him contradiction by making him understand –
by one’s tone of voice, by some accompanying gesture, or (where writing is concerned) by
some small stylistic indications – that one means the opposite of what one says.’ However, the
paradox essence of irony is that it is perfect if it is concealed perfectly – and thus prone to mis-
understanding. A conventional example is nice weather, isn’t it? when the rain is pouring down.
In order to understand less conventional irony, the communication partner has to realise that
there is a discrepancy between the literal meaning of the statement and its context; for instance,
a favourable comment on some political action might be ‘irony-prone’ if the speaker is known
not to be a follower of this political direction. The paradox communication known from family
therapy (Watzlawick et al. 1967) is also discrepant; in some instances, it can be very close to
irony. A specific case, the so-called double-bind communication, is illustrated by Watzlawick
et al. (1967) with a story. A mother gives two ties to her son, and when he puts on one of them,
she complains about him not liking the other one. This can be an indication of a pathological
family system, or it can be just a joke, using the means normally employed in irony.

There is no easy distinction between irony and sarcasm; irony is indirect, sarcasm more
direct, in word or in deed; sarcasm is a sort of intensification of irony, intended to wound, as
in the statement of the main figure in Schiller’s drama Wilhelm Tell, ‘und mit der Axt hab ich
ihm’s Bad gesegnet’ (with the axe I blessed his bath), after the bailiff wanted to take a bath
with Tell’s wife and was subsequently killed by him. In between irony and sarcasm is this
famous statement from the Icelandic sagas. A great warrior, Atli Asmundson, was defending
the door to his hall and he fought hard. Finally, he was struck down and run through by a
spear. He looked down at the spear as he fell and said: ‘Those broad spears are in fashion now.’
(Those old Icelanders were (literally) dying for a good last sentence.) The use of ‘blessing’
in the sense of ‘killing’, and the mention of fashion in the context of one’s own death are
both discrepant; whereas Tell really intended to wound (lethally), Atli ‘only’ commented on
his (lethal) wound in his laconic last statement, thus Tell might be conceived as being more
sarcastic than Atli.

It is difficult to give any clear-cut definition for all these terms, thus we have followed the
usual strategy and resorted to illustrative examples. In the literature, irony is often not clearly
distinguished from – or is simply equated with – sarcasm. The vagueness of the non-linguistic,
contextual factors makes it difficult to process and recognise these phenomena automatically,
especially in real-life settings, because their modelling would presuppose an all-embracing
ontology, that is, a shared conceptualisation of all consistent and discrepant constellations.
Discrepant speech is of course also difficult to deal with within text-based sentiment analysis
(Section 5.5). For a straightforward analysis which only takes into account single words
(unigrams), even a negation of a negative word (‘not bad’, meaning ‘pretty good’), can be
problematic. This holds even more for ironic statements.

Colston and O’Brien (2000) contrast the slightly different function of verbal irony and
understatement, and Bryant and Tree (2002) distinguish the different impacts of acoustic and
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textual information on the recognition of verbal irony in spontaneous speech. The vocal and
especially prosodic cues of sarcasm are addressed in Rockwell (2000, 2007) and Cheang and
Pell (2008).

Indirect speech, irony and sarcasm are of course interesting topics in themselves. They are
of interest for an automatic processing of human–human and human–machine communication
because we want to either ignore them in automatic summarisation, or model them in senti-
ment/affect analysis, for instance, when classifying negative or positive reviews. First attempts
towards the automatic processing of irony and sarcasm in written language are reported in
Davidov et al. (2010) and Filatova (2012).

5.8.2 Deceptive Speech

All Cretan are liars.
(Epimenides, a Cretan)

Deceptive speech (lying) is not indirect but intended to sound fully ‘normal’; however, it
is discrepant because it is incongruent with reality. We can imagine a plethora of promising
constellations where a successful detection of deceptive speech could be beneficial: in any
therapeutic scenario where patients have to be monitored, in a mediation scenario (business
partners, divorce, conflicts between parents and children), and in forensic scenarios. All these
scenarios normally lead to single instance decisions with far reaching consequences, and
impose high demands on reliability and validity; they are critical in the sense of Table 1.1 on
page 16. We can imagine less critical scenarios, for instance, when we want to find out whether
interviewees are tending to hide the (complete) truth with respect to specific questions. Here,
we are aiming at cumulative evidence (Section 3.7), thus it is only important that we can
uncover some general tendencies.

In an early study, Fay and Middleton (1941) investigated the ability to judge truth-telling
or lying and found an accuracy of the judgements slightly above chance. Kraut (1978, 1980)
employed humans as ‘lie detectors’ and showed that observers were moderately accurate in
detecting lies, and that actors were consistently good or bad liars. Vocal cues to deception have
been dealt with by various authors: verbal and non-verbal cues (DePaulo et al. 1982); clear
speech or filtered/inverted speech (Scherer et al. 1985); verbal and acoustic-prosodic variables
(Anolli and Ciceri 1997); verbal cues (Reich 1981); and non-verbal strategies for decoding
deception (Zuckerman et al. 1982). Ekman and colleagues have investigated the ability of
experts and non-experts to detect lying (Ekman 1988; Ekman and O’Sullivan 1991; Ekman
et al. 1991). Ekman et al. (1999) claim that not only laypersons but even professionals con-
cerned with lying show poor performance in detecting lies, but some professional ‘lie catchers’
seem to be highly accurate. Vrij et al. (2000) found a higher percentage of detected lies with
an approach that used non-verbal and verbal indicators of deception. First attempts at auto-
matically distinguishing deceptive from non-deceptive speech are reported in Hirschberg et al.
(2005). Voice acoustical correlates of feigned depression and feigned sleepiness are addressed
in Reilly et al. (2004). Conceptualisations of non-cooperative and deceptive behaviour in
(virtual) humans and robots are described in Nijholt et al. (2012).

Despite high expectations, the performance of lie detectors is poor. We refer again to the
chapter in (Kreiman and Sidtis 2011) (recall Section 1.4.3 above) where the authors clearly
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illustrate these deficiencies. Thus, they must not be used for single instance decisions. It
remains to be seen whether they can help in establishing cumulative evidence, for instance, in
computer surveillance at airports.

5.8.3 Off-Talk

Enter Guildenstern and Rosencrantz. . . .
Hamlet You were sent for . . .
Rosencrantz To what end, my lord?
Hamlet That you must teach me. . . .
Rosencrantz [Aside to Guildenstern] What say you?
Hamlet [Aside] Nay then, I have an eye of you! [Aloud] If you love me, hold not off.
Guildenstern My lord, we were sent for.

(Shakespeare, Hamlet, Act II, Scene 2)

Speech is the primary means of interaction between humans in dyadic (dialogue) or multi-party
conversations. This is the ‘normal’ use and thus ‘typical’ for computational paralinguistics.
In this context, speech not addressed to any communication partner is atypical – not because
it is awkward or deficient but because it is less frequent and outside of any interaction/
communication. In line with Oppermann et al. (2001) and Siepmann et al. (2001), we want
to employ the generic term off-talk for this atypical use, contrasting it with on-talk for the
typical, frequent use of speech within conversations. The human dialogue partner(s) and any
automatic system involved have to detect off-talk and process it accordingly; otherwise, there
is a high risk of more or less fatal miscommunication. Again, the pivotal point is that this
type of speech is not only sparse within a communicative setting but in some way ‘deviant’,
that is, displaying characteristics differing from ‘normal’, typical speech – at least, this is
our hope because we want to treat it differently from speech directed towards the dialogue
partner. Of course, these characteristics are not only found in speech: we turn away from our
communication partner (head movement, gaze direction) when addressing someone else who
is present (cf. on-focus versus off-focus below), or we look down when addressing ourself
(self-talk).

Pre-school children can often be observed talking to themselves; for them, thinking aloud
and speech accompanying actions are an important means of self-regulation, learning, and
becoming acquainted with a theory of mind by attributing mental states to themselves. The
pivotal role of this private speech – also called egocentric speech by Piaget (1923) or self-
directed speech – has been pointed out by Vygotski (1962) and in later developmental research
studies. Thus, self-talk can be observed within an interpersonal communication; in this case,
it is ‘off-communication’, that is, off-talk. When observed without any interpersonal com-
munication, it is not exactly off-talk but private speech – most likely displaying some formal
characteristics of off-talk. Overviews of different aspects of private speech can be found in two
readers (Diaz and Berk 1992; Winsler et al. 2009). A generic description of private speech is
given in Ahmed (1994). For multimodal human–computer interaction, see Lunsford (2004).

Self-talk can be observed in the second aside produced by Hamlet in the quotation above;
this can be conceived of as ‘real’ private, self-directed speech, or as speech directed to the
audience. The first aside of Rosencrantz is addressed to Guildenstern, another partner in this
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multi-party interaction, and not directly to Hamlet who has asked for an explanation. Most
likely, both Hamlet and Rosencrantz turn away from each other when producing the aside.
Note that the question produced by Rosencrantz could as well be addressed to Hamlet without
being nonsensical, meaning: ‘I am asking you, what do you think yourself?’ This might,
however, be rather improper, considering that it would be produced by a courtier towards the
Prince of Denmark. The stage direction disambiguates.

In recent years, a new research topic has emerged, namely multimodal, multi-party interac-
tion with other humans, for instance in meetings, or with both other humans and computers, for
instance with information systems and/or embodied agents. In such scenarios, several speakers
can overlap, and light and audio conditions are less favourable. Perhaps because of these addi-
tional factors, so far, often rather coarse parameters have been employed for distinguishing
between on-focus and off-focus (the multimodal varieties of on-talk and off-talk) such as head
orientation in the video channel, and a binary decision of speech versus non-speech in the
audio channel. Gaze direction and/or head orientation in dyadic or multi-party conversations,
especially as indicators of attention and addressee, are dealt with in Stiefelhagen et al. (2002),
Stiefelhagen and Zhu (2002), Katzenmaier et al. (2004), Jovanovic and Op den Akker (2004),
Turnhout et al. (2005), and Rehm and André (2005); further references are given in Heylen
(2005). The fusion of gaze direction and/or head orientation with sound/speech is addressed
in Stiefelhagen et al. (2002), Katzenmaier et al. (2004), and Turnhout et al. (2005). For the
multi-party, human–human scenario of Stiefelhagen et al. (2002), a thorough analysis of gaze
direction has been conducted. However, as it makes no prosodic difference whether the one or
the other person is addressed, there is no detailed analysis of the audio channel. In Katzenmaier
et al. (2004) additionally human–machine interaction occurs. The main differences observed
in the audio channel are commands given to the machine versus conversation with the human
partners — a consequence of a low-complexity dialogue system. The scenario in Turnhout
et al. (2005) is similar to the triadic scenario in SmartWeb described below; from the audio
channel the length of the speech segment is computed and combined with facial information.
In a human–machine scenario, Batliner et al. (2008c) report up to 84.5% classification per-
formance for distinguishing between on-focus and off-focus, when using prosodic, linguistic,
and video information.

On-talk versus off-talk within the SmartWeb scenario is further dealt with in Oppermann
et al. (2001), Siepmann et al. (2001), and Batliner et al. (2002). Off-talk as a special dialogue
act has not yet been the object of much investigation (Alexandersson et al. 1998; Carletta et al.
1997), most likely because it could not be observed in those human–human communications
which were analysed for dialogue act modelling. In a normal human–human dialogue setting,
off-talk might be somewhat self-contradictory, because of the ‘impossibility of not communi-
cating’ (Watzlawick et al. 1967). We can, however, easily imagine the use of off-talk if someone
is speaking in a low voice not to but about a third person present who is very hard of hearing.

5.9 Common Traits of Functional Aspects

The common denominator of all the functional aspects we have addressed in this chapter is the
focus on distinguishing different typical or typical/atypical voice, speech, language varieties, or
phenomena that characterise different classes (categories) or differently graded peculiarities
(continua, dimensions); these varieties are characterised by more or less different formal
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biological trait primitives

cultural trait primitives

personality

emotion/affect social signals

deviant speech (not typical speech) discrepant communication

race, ethnicity, culture, social group, sex, gender, generation, age, height, size,
weight, speaker classification/recognition/identification/verification, …

(varieties of) first language: dialect, vernacular, regional accent, sociolect,
status, solidarity, power, group characteristics, cultural/personality stereotypes, …

voic epathology, speech disorder, language disorders;
sleepiness, intoxication, strain;
non-native speech, …

OCEAN (the big five): extraversion/energy/enthusiasm, agreeableness/altruism/affection,
conscientiousness/control/constraint, neuroticism/affectivity/nervousness, openness/
originality; dominance, charisma, leadership, attractivity, likability, pleasentness,   

irony, sarcasm, deception,
off-talk, … 

conversational sounds; entrainment,
intimacy, dominance, forms of
address, … 

dimensions: activity, dominance, valence, …
categories: anger, fear, sadness, joy, interest, anxiety, … 

Figure 5.2 Layered figure–ground relationship of paralinguistic functions, with examples of states and
traits

means. Nowadays, the methodologies employed in computational paralinguistics are largely
independent of the specific phenomena – apart from different edge conditions such as speaker-
dependent or independent modelling, two- or n-class problems, sparsity of data that impede
the use of standard procedures, and of course, apart from the fact that different phenomena
might be indicated by different (combinations of) features. In automatic processing, procedures
adapted from ASR are nowadays often used in a sort of Swiss Army knife approach. This
was different in the past, due to different research traditions; it is not clear yet whether in the
future, methodologies will ramify into different methodologies, each specialised for specific
tasks and applications.

Figure 5.2 displays especially those traits and states addressed in this chapter, in the same
layered presentation as in Figure 5.1. The list is not complete; we invite the reader to consider
and establish mutual relationships of the states and traits displayed, and of additional states
and traits. To give one example: age is a biological trait primitive and related to generation
(older/younger generation); generation is not only biologically but also culturally determined,
and influences the expression of personality, emotion/affect, and social signals. It can be indi-
cated by acoustic and linguistic means, and it can be investigated not only within computational
paralinguistics but also within all the other disciplines mentioned (e.g., psychology, sociology,
and socio-/psycholinguistics).
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Knipfer, C., Bocklet, T., Nöth, E., Schuster, M., Sokol, B., Eitner, S., Nkenke, E., and Stelzle, F. (2012). Speech intelli-

gibility enhancement through maxillary dental rehabilitation with telescopic prostheses and complete dentures: A
prospective study using automatic, computer-based speech analysis. The International Journal of Prosthodontics,
1, 24–32.

Ko, S., Judd, C., and Blair, I. (2006). What the voice reveals: Within- and between-category stereotyping on the basis
of voice. Personality and Social Psychology Bulletin, 32, 806–819.
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6
Corpus Engineering

The temptation to form premature theories upon insufficient data is the bane of our
profession.

(Sir Arthur Conan Doyle)

Human beings, for all their pretensions, have a remarkable propensity for lending them-
selves to classification somewhere within neatly labeled categories. Even the outrageous
exceptions may be classified as outrageous exceptions!

(William John Reichmann)

What one would need in almost ‘any case’ dealing with computational paralinguistics is speech
and language data alongside label information. This requires corpus engineering which, as used
here, means all the steps that are necessary before speech or language data can be processed
in classification, regression, or other procedures, whether stand-alone or within applications.
This involves basic, technical questions such as sample rate or type of microphone, and the
following steps (adapted from Batliner et al. (2011) and expanded):

1. deciding on existing recordings if appropriate (TV, broadcast, Internet, other), or
2. the design of an (application-oriented) recording scenario – this can mean simply ensur-

ing a quiet office environment or establishing an elaborate scenario such as multi-party
with/without virtual agents or robots

3. deciding on the type of speech (isolated vowels, read, prompted, acted, elicited, realistic/
natural(istic), other)

4. deciding on the type of recordings (close talk microphone, room microphone, video
recordings for documentation or, within a multimodal setting, for later processing)

5. recruitment of the necessary personnel such as subjects and supervisors (especially in a
Wizard of Oz setting), based on appropriate ethical considerations and privacy regulations

6. the recordings and – if necessary – subsequent transfer onto storage media with/without
resampling of the audio signal

7. transliteration, that is, orthographic transcription of the data, sometimes including the
annotation of extra- or non-linguistic events such as breathing or noise

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
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8. definition and extraction of appropriate units of analysis such as words, chunks, turns,
dialogue moves with appropriate criteria (intuitive or based on prosodic, linguistic, or
pragmatic criteria), or based on ‘physical’ criteria such as speech pauses, number of
frames, partitioning of speech files into n segments of equal length

9. (data-driven, iterative) establishing of phenomena to be annotated and processed
10. annotation of states or traits on a categorical or continuous basis, possibly with subsequent

mapping onto fewer main classes
11. establishing a gold standard for the annotations, based – if possible – on several anno-

tators, and evaluating the quality of these annotations by applying some measures of
correlation/correspondence

12. other pre-processing steps such as manual processing or correction of automatically
processed feature values, documentation

13. detailed documentation of recording conditions, room acoustics, all other details that
could be relevant

14. additional perception tests, if appropriate
15. defining and applying exchange formats, partitioning the data into training/development/

test sets
16. if possible, free release of the data (adequate licensing agreement, taking into account

privacy considerations).

Procedures should meet the standards if possible, and the number of speakers, recordings
per speaker, and annotators should be as high as possible, and transcriptions and annotations
should be as diverse and detailed as possible. Gibbon et al. (1997, 2000) give a broad and
extensive overview of all aspects of ‘standards and resources for spoken language systems’
and of ‘multimodal and spoken dialogue systems’. Schiel and Draxler (2004) and Schiel et al.
(2004) are intended ‘ . . . to be used as “cookbooks” providing practical help and ready-to-use
solutions for the production or validation of spoken language corpora’. Cowie et al. (2011a,b)
discuss principles, history, and basic issues in the collection of emotional databases; Cowie
et al. (2011a) deal with the labelling of such emotional databases.

Several aspects of the list given above have already been dealt with in this book, such as the
decision whether to employ acted or ‘realistic’ speech, units of analysis, and detailed versus
coarse categorical or continuous modelling. In this chapter, we will concentrate on annotations
and their evaluation, and on exemplars of databases.

6.1 Annotation

Automatic speech recognition (ASR) ‘traditionally’ needs transliterations (orthographic tran-
scriptions), that is, the spoken word chain. Everything else – technical noise, filled pauses,
other non-verbals – is basically not relevant. In the early days, these events were sometimes
not annotated at all; nowadays, they most often are. For computational paralinguistics we need
more than – even enriched – transliterations. When we analyse written language, this normally
involves further processing and clustering of words and phrases (see Chapter 9). For speech,
we can harness extralinguistic and linguistic context; besides, annotation is performed by
assigning labels to speech units (see Section 3.3). This can be done model-driven, data-driven,
or application-driven; mostly, a mixture of these three approaches is used. Models of ‘big n’
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type prevail for personality and emotion; notwithstanding the type of data, ‘big n’ annotation
is possible for personality traits simply because it is based on a generic model of long-lasting
characteristics. By and large, the same holds for biological and cultural trait primitives. It is
normally a bad choice for emotions if we are dealing with realistic, non-acted data because
subjects are free to ‘choose their own’ emotional state; thus, emotion annotation should nor-
mally be data-driven: we only can annotate what we find. Moreover, we can select only those
states or traits for annotation we are interested in. In a call-centre scenario, we might only be
interested in finding out whether and when a customer gets angry; in the case of non-native or
pathological speech, it might arguably be most important to assess intelligibility. Of course,
the more additional information we have, the better are our chances to employ this information
for processing the phenomena we actually are interested in: knowing the sex, the first lan-
guage, the age, the previous mental or emotional state – all this can be harnessed for modelling
and processing other states or traits. In other words, the more detailed annotations we have,
the better; however, we could also do with the labels for those phenomena we especially are
interested in.

Annotations can be binary-categorical, ‘yes–no’ attributions, or n-ary categorical, ‘multiple-
choice’ attributions. The concept of rating scales can be traced back to the ‘attitude scale’
proposed in Likert (1932), and can be seen as an extension of a yes–no attribution on an
ordinal (lower–higher) scale. Related to this is the semantic differential (Osgood et al. 1957;
Osgood 1964), intended to measure connotative meanings on a rating scale. Markel (1965)
makes an early attempt to prove that formal paralinguistic parameters can be annotated reliably.
In the same vein, Huttar (1968) evaluated functional distinctions (emotional states) on nine
seven-point semantic differential scales. Dimensions can be annotated with such rating scales
or quasi-continuously, for example, when scales from 1 to 100 or tools such as feeltrace (Cowie
2000) are used.

The pros and cons of categorical versus dimensional/continuous modelling and annotations
have been widely discussed, and the same holds for the granularity of annotation (coarse-
grained or fine-grained, complex/mixed or simple); more details are given in Sections 2.3 and
2.5. The meaningful number of annotators is addressed in Section 3.10. From the point of
view of basic research, we might favour the most detailed type of annotations; from the point
of application-oriented research, we might favour just the labels for those phenomena we are
most interested in.

6.1.1 Assessment of Annotations

As already mentioned in Section 2.4, the terms ‘ground truth’ and ‘gold standard’ are often
used more or less synonymously in the literature – here, we want to define ‘ground truth’ as
the actual truth as measured on the ground, as compared to the ‘gold standard’ that might
ideally be identical to the ground truth but might also be the (slightly) error-prone labelling
as seen from the ‘sky above’. Often in computational paralinguistics, the gold standard is not
reliable, that is, the training and testing label itself may be erroneous. This strongly depends
on the task: for example, the age of a speaker is usually known, but the emotion of a speaker
is usually difficult to assess. When interpreting results, one thus has to bear in mind that the
reference is usually the gold standard and not necessarily the ground truth. This has a double
impact: on the one hand, the learnt models are error-prone; on the other hand, the test results
might be over- or under-interpretations.
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Thus, in order to achieve a reliable gold standard close to the ground truth, usually several
annotators (labellers, raters) are used – the less certain the task is, the greater the number
of annotators. There are a couple of measures to identify the agreement among labellers –
inter-rater reliability — in the usual case where two or more labellers are involved.

If the task is modelled continuously, such as likeability of a speaker on a continuous scale, the
(mean) correlation coefficient and the (average) mean linear error (MLE), mean absolute error
(MAE) or mean square error (MSE), and standard deviation among labellers are frequently
used. If one is to be preferred reported in isolation, it may be the correlation in the case of
subjective tasks, as it is usually more informative in the given case of a gold standard without
reliable reference point. On the other hand, the MSE or similar may be preferred if the task has
a well-defined reference point and solid ground truth, as in the case of speaker age or height
determination, the reason being that this may be more intuitive to interpret.

In the case of categorical modelling, a variety of measures can be employed for agreement
evaluation such as Krippendorff’s alpha, or Cohen’s or Fleiss’s kappa. As a continuum can be
discretised, the latter statistics can also be used in this case, often with a linear or quadratic
weighting. Pearson’s correlation coefficient (Pearson 1901) and Spearman’s rank correlation
coefficient rho (Spearman 1904) can be used for such ranked intervals. Cohen’s kappa (Cohen
1960) is defined for two raters as follows:

κ = p0 − pc

1 − pc
, (6.1)

where p0 is the measured agreement among two labellers and pc is the chance level of
agreement. If labellers agree throughout, κ = 1. If they agree only on the same level as
chance, then κ = 0. Negative values indicate systematic disagreement. Fleiss’s κ (Fleiss 1971,
1981) – a generalisation of Scott’s π – is related to Cohen’s κ and suitable for more than two
raters. It is one of the most frequently encountered measures in the field. It requires all raters
to rate all data, and is particularly suitable for larger data sets. Linear and quadratic weighting
are commonly used in the case of ordinal-scaled class properties.

The values should be interpreted with care and, as such, do not necessarily imply any quality
assessment. According to Landis and Koch (1977), values of 0.4–0.6, for example, indicate
moderate agreement, while higher values are considered as good to excellent agreement (see
also Section 3.10). However, the number of categories and subjects has an impact on this value,
and there are easier and more difficult tasks. Thus, an excellent kappa value can also mean
that the task has been defined in such a way that the outcome is very homogeneous. To give a
straightforward example, when ‘anger’ is operationalised as ‘high pitched’ or the occurrence
of the word ‘angry’, then this procedure might result in a very good labeller agreement and
subsequent classification procedure; yet the validity of such an operationalisation may be rather
doubtful. At the other end of the scale, a very low kappa value normally goes together with
poor classification performance and indicates that something has gone wrong. In the middle
of the scale, values can indicate poor planning and instructions of the annotators; however, it
can also illustrate the difficulty of the task, which might result in different labelling strategies
which cannot be said to be right or wrong. Careful reasoning is required to distinguish these
two possibilities.
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Carletta (1996) introduced the kappa statistics into the area of discourse and dialogue
analysis. Several reliability coefficients are critically assessed in Krippendorff (2004), Hayes
and Krippendorff (2007), and Gwet (2008).

Further, a weight can be computed for each labeller. This can help to achieve a more
consistent gold standard. The justification is that labellers may suffer lapses in concentration
if they have to label huge amounts of data, or stop taking the task seriously at some time. The
evaluator weighted estimator (EWE) as described by Grimm and Kroschel (2005) provides an
elegant model to achieve a weighted gold standard yEWE,n:

yEWE,n = 1
∑K

k=1 rk

K∑

k=1

rk yn,k, (6.2)

where the subscript k = 1, . . . , K denotes the rater, yn,k is the label of rater k for instance n,
and rk is an evaluator-dependent weight. The average of the individual evaluators’ responses
thus takes the fact that each evaluator is subject to an individual amount of disturbance during
evaluation into account:
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These weights measure the correlation between the listener’s estimations yn,k and the average
ratings of all evaluators, ȳn,k , where

ȳn = 1

K

K∑

k=1

yn,k . (6.4)

The inter-evaluator agreement can be described by the correlation coefficients rk using equation
(6.3) and by the standard deviations σn of the assessments,

σn =
p

1

K − 1

K∑

k=1

(
yn,k − yEWE,n

)2
. (6.5)

The standard deviation indicates how similarly a speech or text instance is perceived by the
human judge in terms of the target problem. The inter-evaluator correlation measures the
agreement among the individual evaluators and thus focuses on the more general evaluation
performance (Grimm and Kroschel 2005). If the weights are chosen constant among raters,
the gold standard is the simple mean of the raters’ continuous labels yn,k .

Different multi-labeller evaluations have been conducted by Mower et al. (2009) who claim
that ‘the acoustic properties of emotional speech are better captured using models formed from
averaged evaluations rather than from individual-specific evaluations’; Steidl et al. (2005) who
proposed an entropy-based method for evaluating systematic confusions in the annotations of
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emotional speech; and Hönig et al. (2010a, b) and Hönig et al. (2011) who evaluated pairwise
and averaged annotations for the assessment of non-native prosody.

6.1.2 New Trends

To achieve annotations with labels yn for instance n of the computational paralinguistics task
of interest with reduced cost, new methods for community or distributed annotation such
as crowd sourcing, for example, by Amazon Mechanical Turk1 will be of interest. If one
further wants to reduce the amount of speech and language data prior to the labelling to those
instances that will likely result in the best gain for the system, the field of active learning
provides solutions to this end (Riccardi and Hakkani-Tur 2005); see Section 12.2 below. In
addition, to obtain even larger amounts of data without the usual amount of annotation effort,
merging databases for training (Schuller et al. 2011b) and semi- or even unsupervised learning
techniques have recently been shown beneficial (Zhang and Schuller 2012; Zhang et al. 2011).
In particular, the latter allows for exploitation of practically infinite amounts of data, such as
text, audio, and audiovisual video streams available on-line. A more complex, yet also very
promising alternative was shown in Schuller and Burkhardt (2010), where synthesised training
material was shown to be highly beneficial in cross-corpus testing, that is, using a different
database for training than for testing.

6.2 Corpora and Benchmarks: Some Examples

To illustrate the typical procedures of collection and preparation of data and later give some
results on typical tasks, we will now provide some examples of typical corpora in the field.

Fifteen years ago, a survey of paralinguistic corpora that both are well suited to computa-
tional processing and publicly available would have produced a reasonably manageable list.
This has changed, partly because researchers themselves have realised that isolated efforts will
not suffice, partly because the large governmental bodies increasingly require, as a condition
for funding, that databases collected within projects be made publicly available. Nowadays,
it seems not to be possible to provide an exhaustive list. Thus, we will restrict ourselves to
those corpora that have been employed within the four challenges held at the ISCA annual
conference, Interspeech 2009–2012 (Schuller et al. 2009b, 2010, 2011a, 2012), which cover
some of the main topics in paralinguistics as described in Chapter 5: biological and cul-
tural traits primitives, personality, emotion, and deviant (here, pathological) speech. We will
also describe TIMIT, which is a good example of how one can harness a rich transcription
and annotation for different paralinguistic tasks. Basically, all these corpora are available
from the owners; however, different conditions such as licensing fees, restrictions on com-
mercial use, or privacy requirements may apply. All the corpora have been widely used –
especially by the participants in the challenges, thus they can tell us a great deal in terms of
do’s and don’ts, promising and less promising approaches, and lacunas to be addressed in
the future.

1https://www.mturk.com/mturk/

http://www.mturk.com/mturk
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6.2.1 FAU Aibo Emotion Corpus

The Friedrich Alexander University (FAU) Aibo Emotion Corpus (AEC) (Steidl 2009) used
in the 2009 Emotion Challenge (Schuller et al. 2009b) is a corpus with recordings of children
interacting with Sony’s pet robot Aibo; see also Section 2.13.1 above. The corpus consists of
spontaneous German speech that is emotionally coloured. The speech is spontaneous because
the children were not told to use specific instructions but to talk to Aibo as they would talk
to a friend. The children were led to believe that Aibo was responding to their commands,
whereas the robot was actually controlled by a human operator. The wizard caused Aibo to
perform a fixed, predetermined sequence of actions; sometimes Aibo behaved disobediently,
provoking emotional reactions. The data were collected at two different schools, Mont and
Ohm, from 51 children (aged 10–13, 21 boys, 30 girls; about 9.2 hours of speech without
pauses). Speech was transmitted with a high-quality wireless headset (UT 14/20 TP SHURE
UHF series with microphone WH20TQG) and recorded with a DAT recorder (sampling
rate 48 kHz, quantisation 16 bit, 48 kHz down-sampled to 16 kHz). The recordings were
segmented automatically into ‘turns’ using a pause threshold of 1 s. Five labellers (advanced
students of linguistics) listened to the turns in sequential order and annotated each word
independently as neutral (default) or as belonging to one of ten other classes. Since many
utterances are only short commands and rather long pauses can occur between words due
to Aibo’s reaction time, the emotional/emotion-related state of the child can change within
turns. Hence, the data were labelled at the word level. If three or more labellers agreed, the
label was attributed to the word; all in all, there were 48 401 words.

Classification experiments on a subset of the corpus (Steidl 2009) showed that the best
unit of analysis is neither the word nor the turn, but some intermediate chunk being the best
compromise between the length of the unit of analysis and the homogeneity of the different
emotional/emotion-related states within one unit. Hence, manually defined chunks based on
syntactic-prosodic criteria (Steidl 2009) are used here (see also Batliner et al. 2010). The
whole corpus consisting of 18 216 chunks was used in the 2009 Challenge.

Two problems are formulated: a five-class and a two-class problem. The latter was chosen
subsuming the first by introducing the cover classes NEGative (subsuming angry, touchy,
reprimanding, and emphatic) and IDLe (consisting of all non-negative states). A heuristic
approach similar to that applied in Steidl (2009) is used to map the labels of the five labellers
at the word level onto one label for the whole chunk. Since the whole corpus is used, the
classes are highly unbalanced. Speaker independence is guaranteed by using the data of one
school (Ohm, 13 boys, 13 girls) for training and the data of the other school (Mont, 8 boys,
17 girls) for testing. In the training set, the chunks are given in sequential order and the chunk
ID says which child the chunk belongs to. In the test set, the chunks are presented in random
order without any information about the speaker. Additionally, the transliteration of the spoken
word chain of the training set and the vocabulary of the whole corpus is provided, allowing
for training of ASR and linguistic feature computation.

6.2.2 aGender Corpus

For the recording of the aGender corpus used in the 2010 Challenge, an external company was
employed to identify possible speakers of the targeted age and gender groups (Burkhardt et al.
2010; Schuller et al. 2010, 2013). The subjects received written instructions on the procedure
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and a financial reward, the calls were free of charge. They were asked to call the recording
system six times with a mobile phone, alternating indoors and outdoors to obtain different
recording environments. They were prompted by an automated interactive voice response
system to repeat given utterances or produce free content. Between each session a break of
one day was scheduled to ensure more variations of the voices. The utterances were stored on
the application server as 8 bit, 8 kHz, A-law. To validate the data, the associated age cluster
was compared with a manual transcription of the self-stated date of birth. Four age groups –
child, youth, adult, and senior – were defined. This choice was originally partially motivated
for usage in call-centre dialogue systems that can address these four different age groups in
different ways. For gender, children are not subdivided into female and male, thus giving three
‘genders’ and overall seven age/gender classes.

The content of the database was designed as follows. Each of the six recording sessions
contains 18 utterances taken from a set of utterances listed in detail in Burkhardt et al.
(2010). The topics of these were command words, embedded commands, month, week day,
relative time description, public holiday, birth date, time, date, telephone number, postal code,
first name, last name, and yes/no. The spoken contents were either free or restricted and
‘eliciting’ questions were used such as ‘Please tell us any date, for example the birthday of
a family member’. In total, 47 hours of speech in 65 364 single utterances of 954 speakers
were collected. Note that not all volunteers completed all six calls, and some called more
than six times, resulting in different numbers of utterances per speaker. The mean utterance
length was 2.58 s. Twenty-five speakers were selected randomly for each of the seven classes
as a fixed test partition (17 332 utterances, 12.45 hours) and the other 770 speakers as a
training partition (53 076 utterances, 38.16 hours), which was further subdivided into train
(32 527 utterances, 23.43 hours, 471 speakers) and develop (20 549 utterances, 14.73 hours,
299 speakers) partitions. Overall, this random speaker-based partitioning results in a roughly
40%–30%–30% train–develop–test distribution.

The age group can be handled either as combined age/gender task by classes as indicated
above or as age group task independent of gender by classes.

6.2.3 TUM AVIC Corpus

For the the second task in the 2010 Challenge, the Technische Universität München (TUM)
Audiovisual Interest Corpus (AVIC) database (Schuller et al. 2009a) was used. It features 2
hours of human conversational speech recording, annotated for different levels of interest.
The corpus further features a uniquely detailed transcription of spoken content with word
boundaries by forced alignment, non-linguistic vocalisations, single annotator tracks, and the
sequence of (sub-)speaker turns.

An experimenter and a subject sat on opposite sides of a desk. The experimenter played the
role of a product presenter and led the subject through a commercial presentation. The subject’s
role was to listen to the experimenter’s explanations and topic presentations, ask several
questions about anything of interest, and actively interact with the experimenter considering
his/her interest in the addressed topics. The subject was explicitly asked not to worry about
being polite to the experimenter, for example, by always showing a certain level of ‘polite’
attention.

Voice data were recorded by two microphones – one headset and one far-field microphone.
Recordings were stored at 44.1 kHz, 16 bit. Twenty-one subjects took part in the recordings,
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three of them Asian, the remaining European. The language throughout the experiments is
English, and all subjects are non-native, but very experienced English speakers.

To acquire reliable labels of a subject’s ‘level of interest’, the collected material was first
segmented into speaker and sub-speaker turns. Then it was labelled by four male annotators,
independently of each other. The annotators were undergraduate students of psychology.
The intention was to annotate observed interest in the ‘common sense’. A speaker turn was
thus defined as a continuous speech segment produced solely by one speaker. Back-channel
interjections (mhm, etc.) were ignored: every time there is a speaker change, a new speaker
turn begins. This is in accordance with the common understanding of ‘turn-taking’. Thus,
speaker turns can contain multiple and long sentences. In order to provide level of interest
analysis at a finer time scale, the speaker turns were additionally segmented at grammatical
phrase boundaries. A turn lasting longer than 2 s is split by punctuation and syntactical and
grammatical rules, until each remaining segment is shorter than 2 s. The segments resulting
from this ‘chunking’ are referred to as ‘sub-speaker turns’.

The level of interest is annotated by sub-speaker turn. To familiarise the annotators with a
subject’s character and behaviour patterns prior to the actual annotation task, the annotators
first had to watch approximately 5 minutes of video of a subject. Each sub-speaker turn had
to be viewed at least once to label the level of interest displayed by the subject. Five levels of
interest were distinguished as follows:

• disinterest (level −2) – the subject is tired of listening and talking about the topic, is totally
passive, and disengaged;

• indifference (level −1) – the subject is passive, does not give much feedback to the experi-
menter’s explanations, and asks unmotivated questions, if any;

• neutrality (level 0) – the subject follows and participates in the discourse, though it cannot
be recognised whether she/he is interested in or indifferent to the topic;

• interest (level +1) – the subject wants to discuss the topic, closely follows the explanations,
and asks questions;

• curiosity (level +2) – the subject shows a strong desire to talk and learn more about the
topic.

In addition to the levels of interest annotation, the spoken content was transcribed by one
annotator and checked by another. In this process, long pauses, short pauses, and further
types of non-linguistic vocalisations were labelled. These vocalisations are breathing (452),
consent (325), hesitation (1147), laughter (261), and coughing, other human noise (716). There
are in total 18 581 spoken words and 23 084 word-like units, including 2901 non-linguistic
vocalisations (19.5%). The overall annotation thus contains information by sub-speaker turn on
the spoken content, non-linguistic vocalisations, individual level of interest annotator tracks,
and the mean level of interest across annotators.

The gold standard is established either by majority vote on discrete ordinal classes or
by shifting to a continuous scale obtained by averaging over the single annotators’ level of
interest leading to a continuous representation. The subjects had a tendency to be quite polite:
almost no negative average level of interest was annotated. Apart from a higher resolution, the
continuous representation form allows for subtraction of a subject’s long-term interest profile
to adapt to the mood or personality of the individual.

The speakers (and 3880 sub-speaker turns) were divided into three partitions for training
(1512 sub-speaker turns, 51 min 44 s of speech, 4 female and 4 male speakers), system
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development (1161 sub-speaker turns, 43 min 7 s of speech, 3 female and 3 male speakers),
and testing (1207 sub-speaker turns, 42 min 44 s of speech, 3 female and 4 male speakers).
This was done speaker-independently to provide the best achievable balance with priority
accorded to gender, then next age, and finally ethnicity.

6.2.4 Alcohol Language Corpus

A brief description of the Alcohol Language Corpus (ALC) project is now given. Details can
be found in Schiel and Heinrich (2009) and Schiel et al. (2012). ALC as used in the 2011
Challenge (Schuller et al. 2011a) comprises 162 speakers (84 men, 78 women) aged 21–
75 years, mean age 31.0 years and standard deviation 9.5 years, from five different locations
in Germany. Non-native speakers, speakers with a strong dialect as well as non-cooperative
speakers were excluded from participation. To obtain a gender-balanced set, 154 speakers
(77 men, 77 women) were selected randomly; these were further randomly partitioned into
gender-balanced training, development and test sets.

Speakers voluntarily underwent a systematic intoxication test supervised by the staff of the
Institute of Legal Medicine, Munich. Before the test, each speaker chose the blood alcohol
content (BAC) she/he wanted to reach during the intoxication test. Using both Watson and
Widmark formulas (Schiel et al. 2012), the amount of required alcohol for each person was
estimated and handed to the subject. After consumption, the speaker waited another 20 minutes
before undergoing a breath alcohol concentration test (BRAC, not considered) and a blood
sample test (for BAC). The possible range is between 0.028% and 0.175%. Immediately after
the tests, the speaker was asked to undergo the ALC speech test, which lasted no longer than
15 minutes, to avoid significant changes caused by fatigue or saturation/decomposition of the
measured blood alcohol level. At least two weeks later the speaker was required to undergo
a second test while sober, which took about 30 minutes. Both tests took place in the same
acoustic environment and were supervised by the same member of staff, who also acted as the
conversation partner for dialogue recordings.

The speech signal was recorded with two different microphones, of which the Beyerdynamic
Opus 54.16/3 headset was used for the Challenge. It was connected to an M-AUDIO MobilePre
audio interface where the analogue signal was converted to digital and transferred to a laptop.
Signals were down-sampled to 16 kHz. All speakers were prompted with the same material.
Three different speech styles are part of each ALC recording: read speech, spontaneous speech,
and command and control.

A two-class task was constituted by division into ‘non-alcoholised’ (BAC in the range
[0, 0.05] per cent) and ‘alcoholised’ (BAC in the range ]0.05, 0.175] per cent) recordings.
Further, the data were partitioned into training, development, and testing sets.

6.2.5 Sleepy Language Corpus

Ninety-nine participants took part in six partial sleep deprivation studies for the recording
of the Sleepy Language Corpus (SLC) (Krajewski et al. 2012; Schuller et al. 2010) used
for the second task in the 2011 Challenge. The mean age of subjects was 24.9 years, with
a standard deviation of 4.2 years and a range of 20–52 years. The recordings took place in
a realistic car environment or in lecture rooms (sampling rate 44.1 kHz, down-sampled to
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16 kHz, quantisation 16 bit, microphone-to-mouth distance 0.3 m). The speech data consisted
of different tasks as follows: isolated vowels, including sustained vowel phonation, sustained
loud vowel phonation, and sustained smiling vowel phonation; read speech, from ‘Die Sonne
und der Nordwind’ (the story of ‘The North Wind and the Sun’, widely used within phonetics,
speech pathology, etc.); commands/requests, consisting of ten simulated driver assistance
system commands/requests in German, such as ‘Ich suche die Friesenstrasse’ (‘I am looking
for Friesen Street’); four simulated pilot to air traffic controller communication statements;
and a description of a picture and a regular lecture.

A well-established, standardised subjective sleepiness questionnaire measure, the Karolin-
ska Sleepiness Scale, was used by the subjects (self-assessment) and additionally by the
two experimental assistants (observer assessment, given by assessors who had been formally
trained to apply a standardised set of criteria). In the version used, scores ranged from 1 to
10: extremely alert (1), very alert (2), alert (3), rather alert (4), neither alert nor sleepy (5),
some signs of sleepiness (6), sleepy, but no effort to stay awake (7), sleepy, some effort to
stay awake (8), very sleepy, great effort to stay awake, struggling against sleep (9), extremely
sleepy, cannot stay awake (10). Given these verbal descriptions, scores greater than 7.5 appear
to be most relevant from a practical perspective as they describe a state in which the subject
feels unable to stay awake. For training and classification purposes, the recordings (mean 5.9,
standard deviation 2.2) were thus divided into two classes: not sleepy and sleepy samples
with a threshold of 7.5 (ca. 94 samples per subject; in total 9277 samples). A more detailed
description of the data can be found in Krajewski and Kroeger (2007) and Krajewski et al.
(2009, 2012).

The available turns were divided into male and female speakers for each study. Then the turns
from male and female subjects were split speaker-independently, in ascending order of subject
ID, into training (roughly 40%), development (30%), and test (30%) instances. This subdivision
not only ensures speaker-independent partitions but also provides for stratification by gender
and study set-up (environment and degree of sleep deprivation). Of the 99 subjects, 36 (20
female, 16 male) were assigned to the training set, 30 (17 female, 13 male) to the development
set, and 33 (19 female, 14 male) to the test set. All turns including linguistic cues on the sleepi-
ness level (e.g., ‘Ich bin sehr müde’ – ‘I’m very tired’) were removed from the test set – 188
in total.

6.2.6 Speaker Personality Corpus

The Speaker Personality Corpus (SPC) (Mohammadi et al. 2010) was used as one of three
corpora in the 2012 Challenge (Schuller et al. 2012). It includes 640 clips (one person per clip,
322 individuals in total) randomly extracted from the French news bulletins transmitted by
Radio Suisse Romande (the Swiss national broadcast service) during February 2005. The most
frequent speaker appears in 16 clips, while 61.0% of the subjects talk in one clip and 20.2%
in two. The average length of the clips is 10 seconds (roughly 1 hour 40 minutes in total).

Eleven labellers performed the personality assessment via an on-line application. Each
labeller listened to all clips and, for each one completed the BFI-10, a personality assessment
questionnaire commonly applied in the literature (Rammstedt and John 2007) and aimed
at calculating a score for each of the big five OCEAN dimensions (Wiggins 1996):
openness to experience (artistic, curious, imaginative, insightful, original, wide interests);



170 Computational Paralinguistics

conscientiousness (efficient, organised, planful, reliable, responsible, thorough); extraversion
(active, assertive, energetic, outgoing, talkative); agreeableness (appreciative, forgiving, gen-
erous, kind, sympathetic, trusting); neuroticism (anxious, self-pitying, tense, touchy, unstable,
worrying). The labellers had no understanding of French; thus only non-verbal cues could
be considered. They were allowed to work no more than 60 minutes per day (split into two
30-minute sessions) to ensure an appropriate level of concentration during the entire
assessment. Furthermore, the clips were presented in a different order to each labeller to avoid
tiredness effects in the last clips of a session. Attention was paid to avoiding clips containing
words that might be understood by non-French speakers (e.g., names of places or famous
persons) and might have a priming effect. For a given labeller, the assessment of each clip
yields five scores corresponding to the OCEAN personality traits. The scores for each clip and
each dimension were averaged over the different labellers. Then, based on the mean for each
personality dimension, the two classes high or low on trait were obtained: each clip is labelled
above average for a given trait if at least six labellers (the majority) assign it a score higher than
their average for the same trait; otherwise, it is labelled below average. Training, development
and test sets were defined by speaker-independent subdivision of the SPC, stratifying by
speaker gender.

6.2.7 Speaker Likability Database

In the 2012 Challenge the Speaker Likability Database (SLD) was also used (Burkhardt
et al. 2011), an age- and gender-balanced subset comprising 800 speakers from the German
aGender database (Burkhardt et al. 2010) used in the 2010 Challenge (see Section 6.2.2). For
each speaker, the longest sentence consisting of a command embedded in a free sentence was
used, in order to keep the effort involved in judging the data as low as possible. Thirty-two
labellers (17 male, 15 female, aged 20–42 years, mean 28.6 years, standard deviation 5.4 years)
were employed and paid for their work. To control for effects of gender and age group on the
likeability ratings, the stimuli were presented in six blocks with a single gender/age group.
To mitigate the effects of fatigue or boredom, each of the 32 labellers rated only three out
of the six blocks in randomised order with a short break between each block. The order of
stimuli within each block was randomised for each labeller as well. The stimuli had to be rated
on a seven-point Likert scale as for likeability, without taking into account sentence content
or transmission quality. A preliminary analysis of the data shows no significant impact of
participants’ age or gender on the ratings, whereas the samples rated are significantly different
(mixed effects model, p < 0.0001). To establish a consensus from the individual likability
ratings (16 per instance), the EWE (Grimm and Kroschel 2005) was used, as described in
Section 6.1.1. For each rater, this cross-correlation is computed only on the block of stimuli
which she/he rated. In general, the raters exhibit varying ‘reliability’ with a cross-correlation
ranging from 0.057 to 0.697.

The EWE rating was discretised into the two classes ‘likeable’ and ‘non-likeable’ based on
the median EWE rating of all stimuli in the SLD. For the challenge, the data were partitioned
into a training, development, and test set based on the subdivision for the 2010 Challenge.
Roughly 30% of the development speakers were shifted to the test set in a stratified way in
order to increase its size.
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SLD thus provides an interesting example of a corpus that was enriched after its original
release (aGender) by further annotation for a paralinguistic speaker trait. In this way, analysis of
interdependence and its potential exploitation in automatic analysis systems becomes feasible.

6.2.8 NKI CCRT Speech Corpus

The last corpus in the 2012 Challenge was the NKI CCRT Speech Corpus (NCSC) recorded at
the Department of Head and Neck Oncology and Surgery of the Netherlands Cancer Institute as
described in Van der Molen et al. (2009). The corpus contains recordings and perceptual evalu-
ations of 55 speakers (10 female, 45 male, average speaker age 57) who underwent concomitant
chemoradiation treatment (CCRT) for inoperable tumours of the head and neck. Recordings
and evaluations in the corpus were made before and after CCRT: before CCRT (54 speakers),
10 weeks after CCRT (48 speakers) and 12 months after CCRT (39 speakers). Not all speakers
were Dutch native speakers, yet all speakers read a Dutch text of neutral content.

Recordings were made in a sound-treated room with a Sennheiser MD421 dynamic micro-
phone and a portable 24-bit digital wave recorder (Edirol Roland R-1). The sampling frequency
was 44.1 kHz; the mouth to microphone distance was 30 cm.

Thirteen recently graduated or about to graduate speech pathologists (all female, native
Dutch speakers, average age 23.7 years) evaluated the speech recordings in an on-line exper-
iment on an intelligibility scale from 1 to 7. They were requested to do this in a quiet
environment. All annotaters completed an on-line familarisation module.

The samples were manually transcribed and an automatic phoneme alignment was gener-
ated by a speech recogniser trained on Dutch speech using the Spoken Dutch Corpus (CGN).
Transcription and phonemisation were provided for the participants. For the Challenge, the
original samples were segmented at the sentence boundaries. The training, development,
and test partitions were obtained by stratifying according to age, gender, and nativeness
of the speakers, roughly following a 40%–30%–30% split. The average rank correlation
(Spearman’s rho) of the individual ratings with the mean rating is 0.783. In accordance with
the Likability Sub-Challenge, the EWE was calculated and discretised into binary class labels
(intelligible, non-intelligible), dividing at the median of the distribution. Note that the class
labels of the speech segments are not exactly balanced (1200/1186) since the median was
taken from the ratings of the non-segmented original speech.

6.2.9 TIMIT Database

TIMIT (Fisher et al. 1986) is a well-known and popular database named after its origins:
Texas Instruments (TI) and the Massachusetts Institute of Technology (MIT). Originally, it was
intended to provide speech data for the development and evaluation of ASR systems. The rich
transcription, annotation, and documentation, however, make it well suited to computational
paralinguistic experiments as well. Thus it is well suited to speaker trait assessments such as
height determination experiments because it contains a sufficiently large number of speakers
(630 in total). Each of them produced ten phonetically rich sentences. In addition to featuring
sufficient different speakers, TIMIT provides a rich amount of metadata on its speakers’ traits:
their age, gender, height, dialect (one out of eight major American English ones), level of
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education, and race. All TIMIT recordings are in 16 bit, 16 kHz. In particular, TIMIT was
repeatedly used for speaker height determination (Mporas and Ganchev 2009).

6.2.10 Final Remarks on Databases

An overview of the databases introduced above is given in Table 6.1. One can see that once
speaker traits are targeted, the number of subjects is usually considerably higher. When the
state or trait is of more subjective nature, the number of labellers is usually higher, as in the
case of the SLD.

Further, one can see that the majority of the data is prompted rather than spontaneous. In
particular, for less researched paralinguistic tasks, databases featuring Germanic and Latin
languages prevail. These last two issues – dominance of prompted and thus phonetically
limited material and imbalance of languages featured – highlight the urgent need for more
diversity on the linguistic side.

Similarly, lab conditions prevail during recording, apart from data taken from broadcast
media and the few corpora recorded over the telephone.

Database size is strikingly small: often just a few hundred up to a few thousand instances
or a few hours of speech material are contained in the sets. This holds, in particular, for those
databases featuring more subjective states and traits. In fact, such a larger number of labellers
per speech clip can be even more cost-intensive than requiring a large number of diverse
speakers for the recordings in the first place. This is in stark contrast to related fields such
as speech recognition, where up to several years of speech material are used for training and
testing of systems.

To provide an impression of the state of the art in fully automatic paralinguistic recogni-
tion performance, Table 6.2 gives results from the series of comparative challenges held at
Interspeech since 2009. The databases shown served as the basis for comparison and the table
shows the baseline results as given by the challenge organisers, the best result by individual

Table 6.1 Overview of statistics from the examplary corpora: total time (hours), number of ‘chunks’
(units of analysis), subjects (subs), labellers (labs), and type (spontaneous, S, or prompted, P), language
(lang) by ISO 3166-1 two-letter country code, audio quality (lab condition, LAB, telephone, TEL, or
broadcast, FM), as well as bandwidth (kilohertz)

Corpus [h] # chunks # subs # labs Type Lang Audio [kHz]

FAU AEC 8.9 18 216 51 5 S DE LAB 16
TUM AVIC 2.3 3 880 21 4 S UK LAB 44
aGender 50.6 65 364 945 – P DE TEL 8
ALC 43.8 12 360 162 – P DE LAB 16
SLC 21.3 9 089 99 3 P DE LAB 16
SPC 1.7 640 322 11 S FR FM 8
SLD 0.7 800 800 32 P DE TEL 8
NCSC 2.0 2 386 55 13 P NL LAB 16
TIMIT 4.4 6 300 630 – P US LAB 16
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Table 6.2 Results of the Interspeech 2009–2012 challenges. Given are baseline results of the
challenges (base), the winner’s result (best), and the optimal result by majority vote over N best
participants. Vote results are not available (n. a.) for the continuous regression task of level of interest
recognition and the individual personality dimensions. UAR = Unweighted Average Recall, CC =
correlation coefficient (see Section 11.3.3)

Classes Best
Year Task Corpus # Base UAR[%]/∗CC Vote(N )

2009 Emotion FAU AEC 5 38.2 41.7 44.0 (5)
Negativity FAU AEC 2 67.7 70.3 71.2 (7)

2010 Age aGender 4 48.9 52.4 53.6 (4)
Gender aGender 3 81.2 84.3 85.7 (5)
Interest TUM AVIC [−1, 1] 0.421∗ 0.428∗ n. a.

2011 Intoxication ALC 2 65.9 70.5 72.2 (3)
Sleepiness SLC 2 70.3 71.7 72.5 (3)

2012 Openness SPC 2 59.0 n. a. n. a.
Conscientiousness SPC 2 79.1 n. a. n. a.
Extroversion SPC 2 75.3 n. a. n. a.
Agreeableness SPC 2 64.2 n. a. n. a.
Neuroticism SPC 2 64.0 n. a. n. a.
Personality SPC 5 x 2 68.3 69.0 70.4 (5)
Likeability SLD 2 59.0 65.8 68.7 (3)
Intelligibility NCSC 2 68.9 76.8 76.8 (1)

participating groups (but not for each individual personality dimension), and the usually over-
all best result to the present day as obtained by voting over the N best participants’ results.
Looking at these upper benchmarks, a ‘magic number’ seems to be a value of around 70%
UAR for two-class tasks along the time continuum (e.g., negativity, personality), and intelli-
gibility. For a higher number of classes, this number falls, except for gender which possesses
a solid ground truth. This seems to hold for the other results as well: the more subjective a
task is, the more challenging it seems to be. The baselines have been calculated with different
feature sets (cf. Appendix A.1), and partly with different classifiers. They should thus not be
compared directly across tasks – rather, all these results are meant to give a basic impression
on the obtainable and typical benchmarks for the named corpora.
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Modelling





7
Computational Modelling of
Paralinguistics: Overview

To manage a system effectively, you might focus on the interactions of the parts rather
than their behavior taken separately.

(Russell L. Ackoff)

To deal with the actual computational modelling of paralinguistics, we first give an overview
on the usual steps and building blocks involved. Then, in the subsequent chapters, we will
highlight these in detail, focusing on those methods and aspects most frequently encountered
in the field today (Schuller et al. 2011, 2013a,b).

A unified overview of a typical computational paralinguistics analysis system is given in
Figure 7.1. Each component is described below.:

Preprocessing. After digitalisation of the speech waveform, preprocessing takes place.
The aim of this step is usually to enhance the speech signal of interest (de-noising and
de-reverberation) or to separate frequency patterns which stem from independent sources
(source separation). In terms of enhancement, de-noising (reducing background noise) is dealt
with more frequently than de-reverberation (reducing the influence of varying room impulse
responses). Popular source separation algorithms include independent component analysis
(ICA) in the case of multiple microphones/arrays, and non-negative matrix factorisation (NMF:
Schmidt and Olsson 2006) in the case of single microphones. Additionally, automatic gain
control is performed in some cases to mitigate the influences of varying recording levels and
microphone gains.

Low-level descriptor extraction. Next, audio features are extracted – at approximately
100 frames per second with typical window sizes of 10–30 ms. Windowing functions are
usually rectangular for extraction of a low-level descriptor (LLD) in the time domain and
smooth (e.g., Hamming or Hann windows) for extraction in the frequency or time-frequency
domains. Many systems process features on this level directly, either to provide frame-by-
frame results, or to provide supra-segmental results by bagging of feature frames with a sliding
window approach or by using dynamical approaches which provide some sort of temporal
alignment and warping such as hidden Markov models or general dynamic Bayesian networks.

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 7.1 Unified perspective on computational paralinguistics analysis systems. Dotted boxes indi-
cate optional components. Dashed lines show steps carried out only during system training or adaptation
phases, where s(k), x , y are the speech signal, feature vector, and target (vector), respectively, a prime
indicates an altered version and subscripts indicate diverse vectors. The connection from classifica-
tion/regression back to the database indicates active and semi-supervised or unsupervised learning. The
fusion block supports integration of other signals by late ‘semantic’ fusion

Typical audio LLDs cover: intensity (energy, loudness, etc.), intonation (pitch, etc.), linear
prediction cepstral coefficients (LPCCs), perceptual linear prediction (PLP), cepstral coeffi-
cients (MFCCs, PLP-CCs etc.), formants (amplitude, position, width, etc.), magnitude spec-
tra (mel frequency bands, NMF based components), harmonicity (harmonics-to-noise ratio,
noise-to-harmonics ratio, etc.), vocal chord perturbation (jitter, shimmer, etc.), spectral statis-
tics (MPEG-7 standard, roll-off points, flux, variance, slope, etc.), and many more. These are
often augmented by further descriptors derived from the raw LLDs such as delta coefficients or
regression coefficients. Further, diverse filtering techniques (smoothing with moving average
filter, mean/variance normalisation, etc.) are often applied.

In addition to audio features, textual features, derived from the transcripts of the spo-
ken words, can be used. These are called linguistic LLDs. Typical features are: linguistic
strings (phoneme sequences, word sequences, etc.), non-linguistic strings (laughter, sighs,
etc.), and disfluencies (pauses, hesitations, etc.). Again, deriving further LLDs may be con-
sidered (stemmed, part-of-speech tagged, semantically tagged, etc.). Finally, these can be
tokenised in different ways, such as word (back-off) N -grams, character N -grams, etc. Note
that their extraction usually requires automatic speech recognition, which allows the poste-
riors from the speech recogniser to be used as an additional speech recognition confidence
feature.
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Chunking (optional). In paralinguistics analysis most phenomena (emotion and speaker
states and traits, etc.) are expressed by the evolution of certain LLDs over time. Thus, analysing
the short LLD frames directly is not feasible. In the chunking stage LLD frames are grouped
into meaningful temporal units of analysis. Typically, these units are between a few hundred
milliseconds and a few seconds. Different types of such units have been investigated in prior
studies: a fixed number of frames, acoustic chunking (e.g., by Bayesian information criterion),
voiced/unvoiced parts of speech, phonemes, syllables, words, or phrases in the sense of
syntactically or semantically motivated chunkings below the sentence level, or complete
sentences (Batliner et al. 2010). Obviously, high level chunking requires pre-analysis such as
speech activity detection, voicing analysis, or structural analysis based on (automatic) speech
transcripts.

(Hierarchical) functional extraction (optional). In this stage, functionals are applied to each
LLD within the analysis window (see above paragraph) (Eyben et al. 2010; Pachet and Roy
2009). The intention is a further information reduction and projection of the LLD time series
of potentially unknown and variable length to a scalar value for each applied functional and
LLD. This leads to what is called ‘supra-segmental’ analysis.

Frequently encountered functionals for speech chunks are: extremes (minimum, maximum,
range, etc.), means (arithmetic, absolute, etc.), percentiles (quartiles, ranges, etc.), standard
deviation, higher moments (skewness, kurtosis, etc.), peaks (number, distances, etc.), distinct
segments (number, duration, etc.), regression (coefficients, error, etc.), spectrum (discrete
cosine transformation coefficients, etc.), and tempo (durations, positions, etc.).

For linguistic LLDs, the following functionals can be computed for each chunk: vector space
modelling (bag-of-words, etc.), look-up (word lists, concepts, etc.), statistical and information
theoretic measures (salience, information gain, etc.). Also at this level, further and altered
features can be obtained from the raw functionals. That is to say, by going to longer tempo-
ral units, hierarchical functionals can be computed (functionals of functionals). Functionals
between LLDs, so-called cross-LLD functionals, are another option. Finally, another stage of
filtering (smoothing, normalising, etc.) is sometimes applied.

Feature reduction. The aim of this step is to remove redundant information from the features
and keep information related to the target of interest (e.g., emotion). The feature space is thus
usually transformed – typically by a translation into the origin of the feature space and a
rotation to reduce covariance between features in the transformed space. This is typically
achieved by principal component analysis (PCA) (Jolliffe 2002). Linear discriminant analysis
(LDA) additionally uses target information (usually discrete, i.e., class labels) to maximise the
distance between class centres and to minimise dispersion of classes. Next, a feature reduction
in the new space takes place by selecting a limited number of features. In the case of PCA and
LDA, this is done by choosing the components with the largest eigenvalues. These features –
principle components, for example – still require all the features of the original space to be
computed, because the features in the new space are linear (or other) combinations of all the
features in the original space.

Feature selection/generation (training/adaptation phase). It is now decided which features
to discard from the feature space, that is, which features are not correlated with the task of
interest. This may be of interest if a new task is not well known – for example, estimation
of a speaker’s weight, race or heart rate, or malfunction of a technical system from acoustic
properties. In such a case, a large number of features can be ‘brute-forced’. Only those well
correlated with the task at hand are kept. Typically, a target function is defined in a first step.
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In the case of ‘open loop’ selection, typical target functions are information gain or correlation
among features and correlation of features with the target of the task at hand. For ‘closed
loop’ selection, the target function is the accuracy of the learning algorithm, which is to be
maximised. Usually, an efficient search function is required in addition as a fully exhaustive
search is computationally hardly feasible in most cases. Such a search could start with an
empty set adding features in the ‘forward’ direction, with the full set deleting features in the
‘backward’ direction, or bi-directional starting ‘somewhere in the middle’ and then adding
and/or deleting features.

Often a random element is injected or the search is based entirely on an initial random
selection guided by principles such as evolutionary search (genetic algorithms). As the search
methods are usually based on the assumption of accepting a sub-optimal solution in order
to reduce computational effort, the principle of ‘floating’ is often added to overcome nesting
effects (Pudil et al. 1994; Ververidis and Kotropoulos 2006). That is, in the case of forward
search, a (limited) number of backward steps is added to avoid too ‘greedy’ a search. This
so-called ‘sequential forward floating search’ (SFFS) is among the most popular methods in
the field, as we typically desire a small number of final features out of a large set of features
– which is exactly what this algorithm provides. In addition, generating new feature variants
can be considered during the feature selection step, for example, by applying single feature or
multiple feature mathematical operations such as logarithm or division.

Parameter selection (training/adaptation phase). Parameter selection is the ‘fine tuning’ of
the learning algorithm and the models. This can include optimisation of a model’s topology,
initialisation values, type of transfer or kernel functions used, or step sizes and number of
iterations in the learning phase. In reality, the performance of a machine learning algorithm
can indeed be significantly influenced by the choice of an optimal or sub-optimal parametri-
sation. While this step is seldom carried out systematically, the most popular approach is
a grid search. As for feature selection, it is crucial not to use instances already used for
evaluation during the parameter tuning, as obviously this would lead to an overestimation of
performance.

Model learning (training/adaptation phase). This is the phase of supervised learning in
which the classifier or regressor model is built based on given labelled data. There are also
classifiers or regressors which do not need this phase (so-called ‘lazy learners’) as they decide
at run-time which class to choose for a test sample, for example, by the class label of an
example (training) instance with shortest distance in the feature space to the test sample.
However, these are not used often because they typically do not lead to sufficient accuracy in
the rather complex task of computational paralinguistics and are slow and memory-hungry at
run-time for complex tasks (with many training samples).

Classification/regression. In this step a target label is assigned to an unknown test instance.
In the case of classification, these are discrete labels. In the case of regression, the output is a
continuous value. In general, a high diversity of classifiers and regressors is used in the field
of computational paralinguistics, partly owing to the diverse requirements of the variety of
different tasks.

Fusion (optional). This stage exists if information from different input streams is to be fused
at the ‘late semantic’ level (fusion of labels and scores) rather than at an early level such as
the feature level (see, for example, Bocklet et al. 2010).

Encoding (optional). Once the final label has been assigned, the information needs to be rep-
resented in an optimal way for further processing in complex systems such as spoken language
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dialogue systems (De Melo and Paiva 2007). Here, standards should be followed to ensure
reusability. Examples of such standards are: VoiceXML, Extensible MultiModal Annotation
markup language (EMMA: Baggia et al. 2007), Emotion Markup Language (EmotionML:
Schröder et al. 2007), or Multimodal Interaction Markup Language (MIML: Mao et al. 2008).
Besides the target label, additional information such as confidence scores should also be
encoded together with the label in order to allow for disambiguation strategies in subsequent
processing steps.

Audio databases (training/adaptation phase). Audio databases contain the stored audio of
and ground-truth labels for exemplary speech, to be used for model learning and system
evaluation. In addition, a transcription of the spoken content, for example, may be given
and/or the labelling of further target tasks.

Acoustic model (AM). The acoustic model contains a numerical representation of the learnt
dependencies between the acoustic observations and the labels (classes, or continuous values
in the case of regression).

Language model (LM). The language model contains statistical dependencies between units
(words, syllables, etc.) of the input language.

In the following chapters, all the above steps except for fusion and encoding are explained in
more detail: acoustic features and pre-processing (Chapter 8), linguistic features (Chapter 9),
and feature reduction, modelling, and evaluation (Chapter 11). Then examples of practical
application using these steps and methods are described in Chapter 12.
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8
Acoustic Features

Just because your voice reaches halfway around the world doesn’t mean you are wiser
than when it reached only to the end of the bar.

(Edward R. Murrow)

There’s no reason for increased volume. I am scanning your interrogatives quite satis-
factorily.

(K.I.T.T., car in US TV series Knightrider)

This chapter describes the extraction of acoustic features from the speech signal. We will touch
on digitalisation of the speech signal, pre-processing and enhancement, short time analysis
for time-domain and frequency-domain low-level descriptor (LLD) extraction. The choice of
LLDs is based on those most frequently found in the field of computational paralinguistics
(Schuller et al. 2011, 2013a,b).

8.1 Digital Signal Representation

In order to process the speech signal digitally, the analogue signal sana(t) in continuous time t
is represented by a sequence of equidistant impulses at the time instants t = f (k�t) (Parsons
1987). The area of these impulses is proportional to the analogue amplitude sana(k�t). If the
length of the sample impulse a(t) is chosen very short and given that the area of the impulse
is constantly unity, the sampling can be expressed by a discrete convolution of sana(t) and a(t)
in time steps �t (Ruske 1993):

sana,T (t) =
+∞∑

k=−∞
�t · sana(k�t) · a(t − k�t). (8.1)

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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For ideally short sampling impulses a(t) can be approximated by a Dirac impulse (Parsons
1987):

a(t) =
{

0 for |t | > τ
2

1
τ

for |t | ≤ τ
2 ,

(8.2)

lim
τ→0

a(t) = δ(t).

In the discrete convolution one can exchange the function sana(k�t) with sana(t) and change
the order:

sana,T (t) = sana(t) ·
+∞∑

k=−∞
�t δ(t − k�t). (8.3)

The process of sampling can therefore be represented as a product of the function sana(t) with
a sampling function. This sampling function is an infinite series of Dirac impulses periodic
with the sampling period �t (Parsons 1987).

For the choice of the sampling period �t and the sampling frequency fsample, the sampling
theorem applies:

fsample = 1

�t
≥ 2B. (8.4)

For further explanations the reader is referred to Oppenheim et al. (1996). At this point suffice
it to say that, if the sampling frequency is chosen too low, aliasing artefacts will be audible
when an analogue signal is reconstructed from the digital signal representation (i.e., when
playing the signal on a loudspeaker).

If the sampling theorem holds, the perfect reconstruction of the original analogue signal
is possible, if the periodic high-frequency spectral parts – which are introduced by the Dirac
sampling – are cut off by an ideal Küpfmüller low-pass filter (Oppenheim et al. 1996). The
corresponding convolution in the time domain can be interpreted as interpolation with infinite
(in time) sinc functions (sin(x))/x which in their sum reconstruct the complete original signal:

sana(t) =
+∞∑

k=−∞
sana,T (k�t) sinc

(

π
t − k�t

�t

)

. (8.5)

In practice, an ideal low-pass filter is not feasible. Thus, the sampling frequency has to
be chosen higher than the actual bandwidth of the signal. For speech digitalisation typically
16 kHz is used because important frequencies in speech are normally below 7.5 kHz. For
music, frequencies up to 20 kHz are audible and relevant, thus the typical sampling rate of
HiFi audio compact discs (CDs) is 44.1 kHz.

Next to the time discretisation by sampling, the continuous analogue amplitude values need
to be discretised to digital values (Wendemuth 2004). The word length w (in bits) of the binary
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number is limited (typically between 8 and 32 bits). The number Q of quantisation steps for
w-bit encoding is:

Q = 2w. (8.6)

This limited number of steps results in a deviation between the original value and its quantised
counterpart, which is called the quantisation error. This leads to quantisation noise in the
reconstructed signal. For equally sized quantisation intervals (linear quantisation), this noise
can be estimated in terms of the signal-to-noise ratio (SNR) rq as:

rq = 10 log
PS

PN
� 20 lgQ = 20 lg2w [dB], (8.7)

where PS is is the power of the analogue signal, and PN is the power of the quantisation noise.
For longer word lengths the following approximation holds:

rq � 6 dB/bit. (8.8)

Better SNR values can be achieved by adapting the quantisation steps to the signal char-
acteristics such as by the International Telecommunication Union’s (ITU) A-law which is
primarily used in Europe or the μ-law primarily used in Northern America and Japan in the
telephony sector.

An example of a digitised speech waveform is shown in Figure 8.1 for the spoken phrase
‘computational paralinguistics’. The acoustic parameters described in the following will be
illustrated for this example.

8.2 Short Time Analysis

Speech signals are time varying, that is, they change over time (Deller et al. 1993). Thus,
signal parameters are also time-varying. However, one can make the assumption that these
parameters change at magnitudes slower than the signal samples themselves. The progress
over time of the parameters can be considered as new signals sampled at a considerably
lower frequency as compared to the original signal (O’Shaughnessy 1990). Their sampling
frequency will henceforth be referred to as parameter sampling frequency, in contrast to the
signal sampling frequency as was introduced above.

In short time analysis the signal is considered in a given short interval within which the
speech signal is assumed to be stationary (Deller et al. 1993). To this end, a weighting of the
signal in the time domain by a ‘window’ function w(τ ) is carried out. The window emphasises
the signal’s values close to the time instant t and suppresses distant values. The faded signal
part at time t can be described by a multiplication with the window function as:

sana(τ )w(t − τ ). (8.9)

In particular, two opposing constraints influence the choice of the window length T . Most
importantly, the window needs to be long enough to allow the parameter of interest to be
reliably determined. At the same time, however, it needs to be short enough to ensure that the
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Figure 8.1 Plot of a digital speech waveform of the spoken phrase ‘computational paralinguistics’
spoken by two male speakers (the authors of this book; ‘computational’ by BS, ‘paralinguistics’ by AB).
The signal amplitude on the y-axis is the value of the samples s(t) quantised to 16-bit (range −32 767 to
32 767) and then normalised to the range −1.0 to 1.0. It is dimensionless and has no SI unit here, as it is
a digital sample value without a direct physical meaning such as voltage or power. All derived measures,
such as signal energy, thus also do not have a unit

parameter does not change within the window, that is, the speech signal is ‘quasi-stationary’
within the window. As a result, a compromise has to be made which leads to an uncertainty
by analogy with Heisenberg’s uncertainty principle, the Heisenberg–Gabor limit, which says
that a function cannot be both time- and band-limited:

�τ · � f ≥ 1

4π
, (8.10)

where �τ and � f are the uncertainty in time and frequency.
Furthermore, the sampling theorem also applies for the choice of the parameter sampling

instants t . Common window lengths for speech analysis are 20–40 ms. However, the windows
usually overlap by approximately 50% if the window function is a soft function and not a
rectangular one. Typical speech parameter sampling frequencies are therefore around 100 Hz,
that is, the window is typically shifted in steps of 10 ms. The parameter sampling frequency
is often measured in frames per second because the windows of the audio signal are usually
referred to as ‘audio frames’. Usually, the audio signal values outside the window are set to
zero. This is called the ‘stationary’ approach. On the other hand, the non-stationary approach
assumes the signal outside of the window to be undefined. Alternatively, one can attempt to
synchronise the window T with the speech signal’s fundamental period T0 in order to profit
from the signal’s inherent periodicity and reduce the distortions which arise from windowing
to a minimum.
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A crucial factor thus is the choice of the optimal windowing function. In fact, this choice
depends on the type of parameter to be determined. For parameters in the time domain,
rectangular windows often are sufficient. For a frequency transformation, window functions
with a narrow and rectangular spectrum, but which also decay rapidly in the time domain
(cf. the Heisenberg–Gabor limit), are needed. A compromise are comparably ‘soft’ window
functions which rise and fall slowly in time and thus also in frequency. In addition, one wishes
to avoid side maxima in both domains. Consider the rectangular window, for example. In the
frequency domain its correspondent is the wavy sinc function. The Gaussian function – at
the other extreme – has no side maxima in either domain. However, it is of infinite length in
both domains. In general, the reduction of side maxima comes at the cost of a wider main
maximum. Among common window functions are (represented for the interval [− T

2 ,+ T
2 ]):

• The rectangular window. This window has the narrowest main maximum in the frequency
domain, that is, the smallest bandwidth. However, it has large side maxima – the first with
an amplitude of −16 dB:

w(τ ) =
{

1 for τ = − T
2 , . . . ,+ T

2
0 otherwise.

(8.11)

• The Hamming window. This window is most commonly employed for parameters in the
frequency domain. Its side maxima are the smallest at −42 dB, even at frequencies close to
the main maximum:

w(τ ) = 0.54 + 0.46 cos
(

2π
τ

T

)
and τ = −T

2
, . . . ,+T

2
. (8.12)

• The Hanning window. In the time domain this window can be represented either as a cos2

window or as a Hamming window with different constants. In comparison to the Hamming
window, the time domain function is zero at the beginning and end of the period interval:

w(τ ) = cos2
(
π

τ

T

)
and τ = −T

2
, . . . ,+T

2
. (8.13)

The three window functions are shown in Figure 8.2 within the interval [− T
2 ,+ T

2 ]; following
the stationary approach, they are set to zero outside the interval.

0

0.5

1

Rectangular Hamming Hanning

w(t)

2
T+

2
T

Figure 8.2 Frequently used window functions for speech analysis: Rectangular, Hamming, and
Hanning
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8.3 Acoustic Segmentation

For many applications a continuous audio stream can be directly analysed frame-by-frame. In
other applications, however, chunking is required for ‘supra-segmental’ analysis (cf. Chapter
10). In the case of speech analysis, such chunks could be speech or non-speech segments,
voiced or unvoiced segments, syllables, words, or larger syntactic entities.

Often speech segments in between ‘silences’ are to be analysed. The ‘silences’ might be
filled with background noise, and the events of interest could be words or acoustic events,
for example. The process of discriminating speech from silence and/or background noise
is called voice activity or speech activity detection (VAD/SAD). The simplest method is to
apply a threshold to the energy envelope of the speech signal. Usually, a hysteresis with
two thresholds is used, to introduce dependence on the signal’s past. If the first threshold is
exceeded, a second, lower threshold may not be underrun during a given time frame in order
to detect an onset of speech. If we assume the background noise changes less quickly than
the speech signal of interest, we can use an adaptive algorithm to obtain the thresholds. First,
we determine the histogram of the signal level. In the described case with background noise,
this results in a distinct maximum at the average level of the background noise. This level
plus a delta can then be used for speech onset determination. This histogram then needs to be
updated on-line to allow adaptation to varying noise and speech levels.

More complex solutions are based on multi-dimensional feature information and machine
learning. These approaches can be trained well to the signals of interest and therefore usu-
ally allow better results – but at the cost of greater effort. Both approaches, however, can
be efficiently combined: only when a speech onset is expected owing to the signal energy
thresholding is the classifier-based decision used to ensure that the speech onset belongs to
the type of signal we are interested in.

8.4 Continuous Descriptors

In this section the most common speech parameters, also referred to as acoustic features, or
acoustic low-level descriptors (LLDs), are described. In the description we assume the case
of digitised audio, that is, the signal is denoted by s(k) in the discrete time domain with
the discrete time index k for the index of the current sample value. Further, in the short time
analysis of the signal we require a second time variable: a discrete frame index n for the instant
of measurement of parameters in contrast to the running time index k of the audio samples
themselves.

Among the most important parameters for speech signals are the intensity, the fundamental
frequency F0 and the voicing probability, the formants, that is, resonance frequencies FX

of the vocal tract, and their associated bandwidths. Also, jitter and shimmer are sometimes
of interest. These are micro-perturbations of the fundamental frequency and the intensity,
respectively.

8.4.1 Intensity

Rather than modelling the actual perceived intensity which – according to psychoacoustic
models – depends on the pitch, duration, and spectral shape of a stimulus (Zwicker and Fastl
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1999), a basic LLD is frequently used: the physical energy E of the signal s(k), defined as
(Kießling 1997)

E =
+∞∑

k=−∞
s2(k). (8.14)

For a frame at time n the energy E(n) is:

E(n) =
n+ N

2 +1∑

k=n− N
2

[s(k)w(n − k − 1)]2, (8.15)

assuming a window function w(k) which is non-zero for k = n − N
2 , . . . , n + N

2 + 1 and
typically rectangular. The same assumptions are also made for the following parameters. A
numerically more constrained alternative to the energy E is the root means square (RMS)
energy, which is defined as the square root of E(n). It is plotted in Figure 8.3 (bottom) for our
example utterance ‘computational paralinguistics’.

Figure 8.3 also shows a logarithmic representation of the energy, which is closer to the
way we perceive the loudness of a signal: a signal that has double the amplitude of another
signal is perceived far less than twice as loud, that is, our hearing sensation is non-linear in
this respect. A loudness measure even closer to human perception of loudness is the loudness
shown in Figure 8.4. It loosely follows the concepts of the Zwicker loudness model introduced
in (Zwicker and Fastl 1999), but makes several simplifying assumptions. Technically this
loudness measure is implemented as the sum of the auditory spectral bands introduced in
Section 8.4.7.

8.4.2 Zero Crossings

The number of zero crossings per time within a frame, that is, the zero crossing rate (ZCR:
Deller et al. 1993), is defined as

ZCR(n) =
n+ N

2 −1∑

k=n− N
2

s0(k), with s0(k) =
{

0 if sgn[s(k)] = sgn[s(k − 1)]

1 if sgn[s(k)] �= sgn[s(k − 1)].
(8.16)

The zero crossing rate (Figure 8.5) provides information about the frequency distribution
(Furui 1996): for a pure sine oscillation the number of zero crossings is twice the sine’s
frequency. Since the general audio signal is usually a complex compound of different frequency
components, the ZCR mainly indicates whether or not the signal contains strong low-frequency
components – in this case the ZCR would be low. This is very useful for telling whether a
speech signal is voiced or not. If it is voiced, it usually has a low ZCR.
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Figure 8.3 Logarithmic energy (top) and root mean square (RMS) energy (bottom) for the phrase
‘computational paralinguistics’

8.4.3 Autocorrelation

Another useful basic descriptor is the autocorrelation function (ACF) R(d), here the short-time
ACF. For signals which are unrestricted in time it is defined as

R(d) =
+∞∑

k=−∞
s(k)s(k + d), (8.17)
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Auditory loudness of 'Computational Paralinguistics'
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Figure 8.4 Auditory loudness computed from the perceptual linear prediction (PLP) auditory model
for the phrase ‘computational paralinguistics’. In contrast to the simple energy measures, the emphasised
parts of the utterance and syllable nuclei are better correlated with maxima (especially for syllables ‘tio’
and ‘nal’)
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Figure 8.5 Zero crossing rate plotted for the spoken phrase ‘computational paralinguistics’. A signif-
icantly higher zero crossing rate is visible for noise-like sibilants, /S/ in ‘tio’ and /s/ in ‘uis’ and ‘tics’
(SAMPA notation)
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or the normalised short-time ACF as

r (d) = R(d)

R(0)
, (8.18)

where d is the delay parameter. The ACF is axisymmetric:

R(−d) = R(d). (8.19)

For time-varying signals, the short-time ACF can be defined in a non-stationary (the signal
is weighted only once) or stationary (the signal is weighted twice) way. For the commonly
used stationary approach, at time n,

R(n, d) =
+∞∑

k=−∞
s(k)w(n − k − 1)s(k + d)w(n − k − 1 − d). (8.20)

This definition is in accordance with the ACF for infinite signals. The finite limits result from
setting values outside the window equal to zero. Some important characteristics of the ACF
are (O’Shaughnessy 1990):

• R(0) is a global maximum which is identical to the energy of the analysed signal;
• the ACF of a periodic signal is periodic itself;
• scaling of the signal amplitude by a factor a results in scaling of the ACF by a2.

In the case of a (quasi-)periodic signal structure, a shift of the window has little influence on
the ACF, that is, a phasing invariance is given.

An example of the ACF applied to short time analysis windows for the utterance ‘compu-
tational paralinguistics’ is given in Figure 8.6.

8.4.4 Spectrum and Cepstrum

Most parameters, besides the ones described so far, are best extracted in the spectral domain.
Thus, the non-stationary speech signals must be transformed to the spectral domain by applying
the principle of short time analysis (Schuller 2006): from the time signal s(k) with a window
function w(k) we can determine the short time spectrum at time k with n as variable for the
Fourier transformation. The short time spectrum is thus a function of time n and frequency m.
The complex short time spectrum S(m, n) is obtained from (Oppenheim et al. 1996):

S(m, n) =
n+ N

2 −1∑

k=n− N
2

s(k)w(n − k − 1)e
− j2πmk

N . (8.21)

An example visualisation of a short time spectrum (a so-called spectrogram) of our example
phrase ‘computational paralinguistics’ is shown in Figure 8.7.



Acoustic Features 195

Short-time ACF of 'Computational Paralinguistics'
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Figure 8.6 Short-time window autocorrelation function for the utterance ‘computational paralinguis-
tics’. Periodic patterns are clearly visible for voiced parts such as vowels. Low energy (white) of the
ACF can be seen for the silences, closure sounds, and noise-like sibilants

To improve readability in the following, we switch back to an analogue frequency description
with f as the continuous frequency.

According to the simplified linear source filter model of speech production, a speech signal
can – in the frequency domain – be seen as a multiplication (convolution in the time domain)
of the excitation function E( f ), the excitation transfer function G( f ), the transfer function of
the vocal tract H ( f ), and a transfer function R( f ) of the radiation into the space outside the
human body scaled by an amplitude factor A (Deller et al. 1993; Fant 1973). Most prosodic

FFT log-magnitude spectrum of 'Comutational Paralinguistics'
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Figure 8.7 Short-time discrete Fourier transform (DFT) spectrogram of spoken phrase ‘computational
paralinguistics’. Voiced sounds visible through periodic patterns and formants through energy concen-
trations at higher frequencies (especially for ‘para’ and ‘ling’)
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information (intonation, melody, etc.) is contained in the excitation information, while all other
linguistic and paralinguistic information (segments/phones/phonemes, speaker traits, etc.) is
contained in the vocal tract transfer function. Thus, to extract one of these functions, we must
eliminate the influence of the other functions. The speech signal in the frequency domain is
given by:

S( f ) = E( f ) · G( f ) · H ( f ) · R( f ) · A. (8.22)

Taking logarithms on both sides of this equation turns the product into a summation. The
signal part that is due to E( f ) can be eliminated or extracted by low- or band-pass filtering.
In the case of low-pass filtering these parts must indeed be low-frequency in order not to
cut away formants (see Section 8.4.8). The spectral low-pass can be implemented by a back-
transformation of the logged powers of the spectrum into the time domain. This leads to the
cepstrum, with the independent variable d being the ‘quefrency’ (O’Shaughnessy 1990). The
variable d is a unit of time which corresponds to the delay in the ACF; this is the reason for
the choice of the same identifier.

In the cepstrum the additive overlay of the individual components of the linear source filter
model remains:

x(d) = IDFT[log |S( f )|2]

= IDFT[log |E( f )|2 + log |G( f )|2 + log |H ( f )|2 + log |R( f )|2 + log |A|2] (8.23)

= e(d) + g(d) + h(d) + r (d) + A,

where (I )DFT is the (inverse) discrete Fourier transformation, and e(d), g(d), h(d), and r (d)
are the time-domain equivalents of their capitalised counterparts in the frequency domain.
The cepstrum is real-valued if it is computed from the amplitude or power spectrum because
both are axisymmetrical (Deller et al. 1993). The desired low-pass can be obtained by cut-
ting the cepstrum after the fundamental period T0. Variants of the cepstrum use other back-
transformations such as the discrete cosine transformation (DCT) or principal component
analysis for decorrelation.

Figure 8.8 shows an example of a cepstrum. The upper parts (above 4 ms on the y-axis) are
related to the excitation function and show the first peak of the periodic Dirac pulse excitation
function at T0 for the vowels and a noise-like excitation (without dominant peaks) for the
consonants and pauses.

If we instead map the power spectrum onto mel scale bands by using triangular overlapping
filters equidistant on the mel scale and then take the logarithms of the powers in each mel
frequency band, we obtain the widely used so-called Mel-frequency cepstral coefficients
(MFCCs: Davis and Mermelstein 1980). The mel scale takes human hearing perception into
account, where lower frequencies are resolved better by human hearing than higher ones
(Zwicker and Fastl 1999). An example plot of the Mel-band spectrogram and the actual
MFCC can be found in Figure 8.9. The MFCC (bottom plot) is evidently more noise-like, due
to the decorrelation with the DCT. The conversion of a linear frequency scale with frequency
f in hertz to a mel scale Mel( f ) is given by:

Mel( f ) = 2595 · log

(

1 + f

700

)

. (8.24)
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Figure 8.8 Short-time DFT-based cepstrum of the spoken phrase ‘computational paralinguistics’. Peaks
at 6 ms delay (left-hand side) and 8 ms delay (right-hand side) are clearly visible and indicate the first
impulse of the periodic Dirac impulse sequence as excitation signal. Peaks and patterns close to 0 ms
delay resemble the vocal tract impulse response

26 Mel-band spectrum of 'Computational Paralinguistics'
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MFCCs 1-12 of 'Computational Paralinguistics'
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Figure 8.9 Mel-band spectrogram (top) and 12 MFCCs (bottom) for the spoken phrase ‘computational
paralinguistics’. The MFCC plot looks more noise-like, due to the decorrelation of the individual
coefficients; in the mel-band spectrum the structure which is visible in the DFT spectrogram can still be
seen, especially the vocal tract resonances, while the fine-grained structure from F0 is almost eliminated
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MFCCs are among the most popular speech features for automatic speech recognition and a
large number of other speech processing tasks. Usually, coefficients from 0 up to 16 or higher
are used. In particular, for speech recognition, the coefficients 0–12 are most frequently used.
Coefficient 0 describes the signal energy. Coefficients 1–12 (approximately) primarily describe
the phonetic content, while higher-order coefficients describe more the vocal tract, and thus,
speaker characteristics. They are likewise important for speaker identification systems, but
less relevant for ASR.

There exist alternatives that are more tailored to model human factors, such as human factor
cepstral coefficients as introduced in Skowronski and Harris (2002).

8.4.5 Linear Prediction

A simple model for the production of speech is based on the assumption that voiced sounds –
in particular, vowels – can be well modelled by the vocal tract resonance frequencies, the
formants (Deller et al. 1993). From this we can conclude that subsequent samples of a speech
signal are not independent but rather correlated, that is, linear dependencies exist among them.
Thus, it should be possible to predict a sample value s(k) with knowledge of its predecessors.

Given a digital speech signal s(k), with k = −∞, . . . ,+∞, we may assume that the long-
term average (the direct component) is zero. To model the linear dependencies, the methods
of linear predictive coding (LPC) are widely used. The principle behind this is a linear system
which describes an output value s(k) as a linear combination of a limited number of preceding
values s(k − i) (Furui 1996):

ŝ(k) = −
p∑

i=1

ai s(k − i). (8.25)

The negative sign is chosen to simplify the following equations. Obviously, one cannot expect
an error-free estimation ŝ(k) of the actual value s(k). Therefore, one obtains an error e(k),

e(k) = s(k) − ŝ(k). (8.26)

Substituing equation (8.25):

s(k) = −
p∑

i=1

ai s(k − i) + e(k). (8.27)

The coefficients ai are the linear predictor coefficients. The summation length p is the order
of the predictor. The predictor coefficients now have to be determined in order that – within a
given interval – the values k approximate the actual values of s(k) well, that is, the prediction
error is minimised. The usual optimisation criterion is the quadratic error. Also, the order p
should be as low as possible in order to keep the number of required predictor coefficients
low (Furui 1996). The predictor coefficients need to be computed for each frame, due to the
non-stationarity of speech signals (short time analysis, Section 8.2). It can be seen that the
predictor polynomial represents a digital filter of the order p which can be used to produce



Acoustic Features 199

either the speech signal s(k) or the error signal e(k), with e(k) or s(k) respectively as input
signals. The coefficients ai fully describe the linear system. If one uses the speech signal as
input to the predictor, the system represents a digital transversal filter and the error signal is
obtained as

e(k) = s(k) +
p∑

i=1

ai s(k − i). (8.28)

In the following, we will use the z-transformation for the mathematical derivation. The
(two-sided) z-transformation is given as:

S(z) =
+∞∑

k=−∞
s(k)z−k . (8.29)

With the z-transformations E(z) and S(z) of the signals e(k) and s(k), and applying the rule
of the z-transformation that s(k − i) corresponds to S(z)z−i in the z-domain, we have

E(z) = S(z)

(

1 +
p∑

i=1

ai z
−i

)

, (8.30)

and for the transfer function H (z),

H (z) = E(z)

S(z)
= 1 +

p∑

i=1

ai z
−i . (8.31)

In the inverse case, when the system is excited by the error signal and produces the
speech signal, the filter is a mere recursive filter and the transfer function is the recipro-
cal. This is a very simple model for speech production, where the vocal tract is seen as
linear filter which is excited by a regular series of pulses created by the vocal chords (for
voiced sounds). The excitation pulses are not linearly predictable by the above method with
a low number of predictor coefficients and thus produce prediction errors. For unvoiced
sounds, the excitation is given by white noise. The vocal tract transfer function has only
poles, that is, the system represents an all-pole model (Deller et al. 1993). These poles can
be computed directly from the predictor coefficients ai . These have to be determined for
a given order p such that the deviation between the estimated signal and the real signal
is minimal.

The quadratic error α within the interval of analysis (for the moment from k = −∞ to +∞,
later within the open window region) is

α =
∑

k

e(k)2 =
∑

k

[
p∑

i=0

ai s(k − i)

]2

. (8.32)
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Note the inclusion for simplicity of a coefficient a0 which is constant and equal to 1. In order
to find the minimum of this error function with respect to the coefficients, we differentiate
partially with respect to each predictor coefficient and set the derived error equal to zero:

dα

dai
=

∑

k

⎡

⎣2s(k − i)
p∑

j=0

a j s(k − j)

⎤

⎦ != 0. (8.33)

After exchanging the order of the sums we get

p∑

j=0

a j

∑

k

s(k − i)s(k − j)

︸ ︷︷ ︸
ri, j

!= 0. (8.34)

We can now substitute the so-called correlation coefficients ri, j as shown above. This results
in a system of linear equations which allows us to apply linear algebra methods to solve for
the p predictor coefficients a j , which will not be detailed here:

p∑

j=0

a jri, j = 0, for i = 1, . . . , p. (8.35)

It is, however, noteworthy that the predictor error αp within an interval of analysis decreases
monotonously with increasing predictor order p as the estimation of the signal improves:

αp ≤ αp−1. (8.36)

Linear prediction is also relevant in the frequency domain where in fact it is closely related to
the ACF. The minimisation of the prediction error in the time domain – according to Parseval’s
theorem – results in a corresponding minimisation in the frequency domain. It can thus be
shown that the filter yields – in the spectral domain – the smoothed envelope of the original
fine-grained spectrum (O’Shaughnessy 1990). At the same time the digital filter transforms
the error signal into a white spectrum. This means that its corresponding time signal is either
a series of delta pulses – such as the pulse train excitation in case of voiced sounds – or white
noise – as in the case of unvoiced excitation (Fant 1973).

Now let us first determine the LPC spectrum of the inverse filter denoted by a subscript
‘inv’. Because it is a mere transversal filter (see above), its impulse response is identical to the
LPC coefficients ai (extended by a0 = 1 at time 0):

hinv(k) ≡ 1, a1, a2, . . . , ap. (8.37)

The discrete complex spectrum is obtained directly by applying the discrete Fourier transform:

Hinv(m) ≡ DFT(hinv(k)), with m = m� f, (8.38)

� f = 1

N�t
= fsample

N
, N = p + 1. (8.39)
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LPC smoothed DFT spectrogram 'Computational Paralinguistics'
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Figure 8.10 Short-time LPC spectrum (approximating the spectral envelope) for the utterance ‘compu-
tational paralinguistics’. White lines show minima and black areas show smoothed maxima resembling
the spectral envelope. The black areas (maxima) are correlated with the location of the formants and the
maxima in the spectrogram. The fine-grained periodic structure caused by the periodic excitation signal
is gone in the LPC spectrum

And with the DFT,

Hinv(m) =
p∑

k=0

hinv(k)e− j2πmk/N . (8.40)

The DFT thus has
[ p+1

2

] + 1 real values and p+1
2 imaginary values. We now compute the

squares of the absolute values of the complex spectrum and obtain the power spectrum with[ p+1
2 + 1

]
values. Figure 8.10 shows an example of short-time LPC spectra for our example

utterance. The smooth nature of this spectrum can clearly be seen. In the example 256 bins are
used (i.e., the same resolution as for the fast Fourier transform (FFT) spectrogram in Figure
8.7).

In case of the recursive all-pole model (denoted by the subscript ‘rec’) we have

Hrec(z) = 1

Hinv(z)
(8.41)

and

Hrec(m) = 1

Hinv(m)
. (8.42)

Taking logarithms,

log[Hrec(m)] = − log[Hinv(m)]. (8.43)
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On the logarithmic scale we thus only have to change the sign in order to obtain the spectrum
of the recursive filter from the spectrum of the inverse filter.

As the LPC filter can only have poles, it can model formants of vowels, but not nasal sound
or anti-formants, which would be zeros in the transfer function. Unlike the short time spectra
computed via plain DFT, the LPC spectra are very smooth and do not show the waviness of
the fundamental frequency. This comes, however, at the cost that for noise-like patterns like
fricative sounds, LPC modelling is not well suited due to the spectrum still being approximated
by p poles.

As speech spectra fall by approximately 6 dB per octave, the efficiency of the LPC analysis
can be improved by a priori emphasis of higher frequencies with a first-order ‘pre-emphasis’
filter with the high-pass transfer function (O’Shaughnessy 1990)

Hpre(z) = 1 − μz−1, (8.44)

where the pre-emphasis coefficient μ is usually chosen around 0.9.
In order to model the vocal tract transfer function H (z) adequately, all important formants

need to be captured by the model. For each formant, a pole pair is required according to Fant
(1973). This fact results in a minimum predictor order pmin equal to twice the number of the
formants. In practice, the actual predictor order is higher than the theoretical minimum by two
or three to ensure proper capture of all formants in non-ideal conditions.

As stated above, the error α in the analysis interval falls monotonically with increasing
predictor order p. For low p the error falls rapidly at first until all formants are captured by the
model. At and after approximately p = 16, it remains almost the same. Another significant
decrease takes place once the fine-grained structure of the spectrum caused by the fundamental
frequency and its harmonics is captured by the linear model (typically if p exceeds the length
of the fundamental period). However, an error always remains due to non-linearities and
time-varying aspects.

8.4.6 Line Spectral Pairs

Line spectral pairs (LSPs) or frequencies (LSFs) are sometimes used for channel transmission
of LPCs owing to their reduced sensitivity to quantisation noise, stability, and their ability to
be interpolated. The basic principle of LSPs is the decomposition of the linear predictor (LP)
polynomial for H (z) as given in equation (8.31) (Kabal and Ramachandran 1986) into

P(z) = H (z) + z−(p+1) H (z−1) (8.45)

and

Q(z) = H (z) − z−(p+1) H (z−1), (8.46)

where P(z) and Q(z) correspond to transfer functions of the vocal tract with the glottis closed
and opened, respectively. These two functions have roots only on the unit circle, unlike H (z),
which can have roots anywhere in the z-plain. Thus, P(z) and Q(z) are palindromic and
antipalindromic polynomials, respectively. For the determination of the LSPs, we evaluate
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Figure 8.11 Line spectral pairs (LSPs) 1–5 (solid lines) and formant candidates 1–5 (dots) for ‘compu-
tational paralinguistics’. Each pair of line spectral frequencies and the corresponding formant are plotted
in the same shade of grey. The line spectral pairs – in theory – should enclose the corresponding formant
as upper and lower bounds for voiced sounds. As can be seen in the plot, this is true in most cases

P(e jω) and Q(e jω) in a grid search for ω = 0, . . . , π , that is, we need to solve for the roots
of the two polynomials of order p + 1. These roots are all complex symmetrical pairs ±ω –
hence the name LSPs (Furui 1996). Two roots are located at 0 and p; p/2 further roots need
to be determined for P(z) and Q(z). The final result is p roots, that is, the same number as
there are LPC coefficients. Figure 8.11 shows LSPs for our example utterance.

8.4.7 Perceptual Linear Prediction

While the LP coefficients are well suited to describing the phonetic content by good approxi-
mation of high-energy regions and filtering of the more speaker-specific fine-grained harmonic
structure of the speech spectrum due to the source, they do violate principles of human hearing.
Perceptual linear prediction (PLP) thus extends LP by psychophysics of the human hearing in
order to base computations on an auditory spectrum estimate. The principles incorporated in
the PLP procedure are:

• Critical band spectral resolution. Due to the linear model, LP coefficients treat all fre-
quencies equally, whereas in the human auditory system the spectral resolution is roughly
linear up to 800 or 1000 Hz and decreases non-linearly thereafter. PLP overcomes this by
remapping the frequency axis according to the Bark scale and integrating the energy in the
critical bands for a a critical band spectrum approximation.

• Equal-loudness hearing curve. To simulate the increased human sensitivity to the mid-
frequency range of the audible spectrum at a conversational speech level, in PLP the critical
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band spectrum is multiplied by an equal loudness curve which attenuates frequency ranges
which are below or above the 400–1200 Hz range.

• Intensity–loudness power law of hearing: The non-linear relation of a sound’s physical
intensity and its subjectively perceived loudness is approximated by the power law of
hearing. A cube-root amplitude compression is applied to the loudness-equalised critical
band spectrum.

The spectrum thus derived shows less detail and is characterised by a smaller dynamic
range (see Figure 8.12 and compare with Figure 8.9, top). This allows for good modelling

26 band auditory spectrum of 'Computational Paralinguistics'
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RASTA-filtered 26 band auditory spectrum of 'Computational Paralinguistics'
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Figure 8.12 Auditory spectrogram (top) as used for perceptual linear prediction and RASTA (RelAtive
SpecTrA) filtered auditory spectrogram (bottom) shown for the spoken phrase ‘computational paralin-
guistics’. The auditory spectrum is very similar to the mel-band spectrum, except for the scaling of the
magnitudes and the visible attenuation of the lower (below 4) and higher bands (above 24). The RASTA
filtered spectrum shows more smoothness along the time axis: high-frequent and near-stationary parts
are eliminated, while units occurring at the rhythm of speech are preserved
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by a low-order all-pole model. After estimation of the auditory-like spectrum, the spectrum
is converted to ACF values r . Then, these autocorrelations serve as inputs to standard LPC
analysis, resulting in PLP coefficients (Hermansky 1990). By a standard recursion, these
coefficients can be converted to cepstral coefficients, yielding PLP-CC.

Interestingly, PLP features achieve results similar to LP features at a lower predictor order,
which is an indication that they encode the speech information in a more optimal way. This
reduces the complexity of the following processing, especially the parameters needed in a
learning algorithm.

An extension of PLP are RASTA (RelAtive SpecTrA) PLP coefficients (Hermansky et al.
1992). These aim at improved noise robustness in cases where there is a mismatch between
recording conditions for training and testing data. In the RASTA method, a band-pass filter
is applied to each band envelope of the critical band spectrum estimate. The filter emphasises
frame-to-frame envelope changes between 1 Hz and 10 Hz with the following transfer
function:

H (z) = 0.1 · 2 + z−1 − z−3 − 2z−4

z−4 · (1 − 0.98z−1)
. (8.47)

The idea behind this is that the vocal tract positions change at different speed in conversational
speech usually higher than channel effects do, or background noise does. Moreover, human
hearing seems to be less sensitive to slowly varying stimuli (Hermansky 1990).

In detail, the processing steps of RASTA-PLP are: DFT, logarithm, frame-to-frame
band-pass filtering, equal loudness curve, power law of hearing, inverse logarithm, inverse
DFT, solving linear equations for LPCs, and cepstral recursion if cepstral parameters
are required.

8.4.8 Formants

Formants are resonance frequencies of the vocal tract transfer function. They vary according
to the spoken content (i.e., the phonemes). In particular, the lower resonance frequencies of
the vocal tract, that is, formants F1 and F2, are well correlated with the phonetic content. They
allow for mapping of vowels to regions in the F1, F2 plane. In several languages (e.g., Dutch)
F3 also plays an important role for the spoken content, whereas the higher formants describe
speaker characteristics.

For vowels and non-nasal consonants the transfer function of the vocal tract H (z) can
be approximated as an all-pole transfer function (Section 8.4.5). This corresponds to a mere
recursive digital filter, as is implemented by linear prediction. The poles of H (z) are considered
the formants of the speech signal. When speaking about formant extraction, we usually aim
to describe – in order of relevance – the centre frequency, the bandwidth, and the amplitude.
Formants are mostly computed from LPCs, but also via some methods based on short time
spectra. In those spectra the formants are seen as dominant maxima, for example, in the spectral
envelope or – in ideal cases – even directly from the time-domain speech signal (Rigoll 1986).
There are, however, a number of difficulties when using a spectral representation as a starting
point for formant extraction. Most dominantly, single spikes might exist which exceed the
vocal tract’s resonance frequencies in amplitude and/or overlap with them – for example, from
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the fundamental frequency or from external noise. Next, the resonance frequencies or formants
can be too close to each other, leading to their ‘melting’ due to limited spectral resolution.
These fundamental problems can only be eased by LPC analysis.

In the following we consider formant analysis by linear prediction (Broad and Clermont
1989). The purely recursive linear prediction filter creates a smooth envelope of the short time
spectra. Spectral maxima are modelled well, whereas areas of low spectral energy are not.
In the linear model, speech production is modelled by the chain of speech generation (see
Section 8.4.4), starting with the excitation E(z) (periodic or noise), excitation spectrum G(z),
vocal tract H (z) and radiation R(z) (Fant 1973; Parsons 1987). However, we model the poles
of the spectral function S(z) of the speech signal. That is, in the transfer function HLP(z) of
the prediction filter we do not know which of these components the poles originate from and
HLP(z) cannot thus be directly assumed as the optimal estimation of H (z). Rather, we have to
determine which of the poles of HLP(z) are due to formants (McCandless 1974). The poles of
the filter polynomial can first be determined by suitable numerical solver algorithms such as
the Newton–Raphson method. This algorithm is initiated by an estimate of the first pole and
then calculates the polynomial value and its derivative. Next, iteratively improved estimates
are calculated. The iteration terminates once the delta of subsequent solutions is smaller than a
predefined threshold. The polynomial can then be divided by this pole and the algorithm starts
again on the now reduced polynomial until all poles are computed. At the end, a re-iteration
for each pole with the full polynomial helps to overcome limited numerical precision of the
first estimation round. Because the vocal tract position and thus the poles change comparably
slowly over time we can speed up this process by using the poles from the previous speech
frame as initialisation. For our phrase ‘computational paralinguistics’ the formant extraction
result for F1–F3 is shown in Figure 8.13.
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Figure 8.13 Formant candidates for F1 − F3 (dots) and fundamental frequency F0 (solid line) shown
for the spoken phrase ‘computational paralinguistics’; formant candidates obtained via factorisation of
LPC polynomial, no smoothing or post-processing is applied to formant candidates
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As mentioned earlier, a method to determine formants which is not based on LPC is by
smoothing short time spectra obtained through a DFT. The idea is to obtain a smoothed
spectral envelope (just as in the case of LP), which is freed from the waviness caused by
the fundamental frequency. Due to the harmonics of the fundamental frequency, the spectrum
shows equidistant maxima at a distance of F0. Obviously, these maxima can easily be confused
with formants if the spectrum is not smoothed. Smoothing of the spectrum can be obtained by
convolving it with a smoothing function. However, this method is not very precise.

If formant analysis is based on the spectral appearance, a peak-picking algorithm is needed
to decide on the ‘right’ maxima among all possible extreme values of the spectral envelope.
This holds both for spectral smoothing and linear prediction spectra. Typically, peak candidates
are first found for each speech frame, then their evolution over time is taken into consideration
in a second stage of smoothing.

Altogether, formant tracking has not been perfectly solved hitherto (Gläser et al. 2010).
Among the main challenges are unfavourable signal conditions, in particular insufficient spec-
tral resolution in the case of neighbouring formants of similar amplitude and peaks from other
sources (not formants). Moreover, in a strict sense formants are only defined for vowels radi-
ated via the mouth. The usage of the nasal cavity changes the real transfer function of the vocal
tract significantly, as new nasal formants are added and formants might be compensated by so-
called anti-formants, that is, zeros in the transfer function (Deller et al. 1993). Such a deletion
of formants can also occur due to zeros in the excitation spectrum G(z). In addition, depending
on the speaker and the phoneme, often the amplitude of the formants F3 and above is too low in
comparison to surrounding noise. This is mostly the case for dark vowels. It makes an accurate
detection of these higher formants problematic. Finally, there is no ground truth for formant
trajectories – only gold standards – when formant extraction algorithms are tested on natural,
spontaneous speech. Only small data sets with manual expert formant labels exist. One such set
is the MSR-UCLA VTR database, for example. This set is a partition of the TIMIT corpus (see
Section 6.2.9), manually labelled by expert phoneticians (Deng et al. 2006). An alternative, yet
less realistic, approach to validity measurement is the use of synthesised speech. Exact formant
positions are known from synthesiser parameters (Fulop 2010). Due to these problems, for-
mant tracking is still an ongoing area of research and new approaches are still introduced, such
as biologically inspired algorithms based on gammatone filter banks, (e.g., Gläser et al. 2010).

The tracking of anti-formants, on the other hand, is seldom of interest. Only a couple of
references are given at this point to help the interested reader. The autoregressive moving
average (ARMA) method is presented in Miyanaga et al. (1986), where a filter with an
autoregressive part to handle the poles and a moving average part to handle the zeros is used.
A more common method is to use the reciprocal or logarithmic vocal tract transfer function
and then apply the same methods as for the poles (Steiglitz 1977).

8.4.9 Fundamental Frequency and Voicing Probability

The fundamental frequency F0 or the fundamental period length T0 plays a key role among
speech parameters. Human perception is far more sensitive to changes in the fundamental fre-
quency than to changes in other speech signal parameters (Zwicker and Fastl 1999). Therefore,
a precise detection of F0 is crucial and has a significant influence on the performance of par-
alinguistic speech analysis algorithms, as shown in the authors’ work on emotion recognition
in speech (Batliner et al. 2007), for example. F0 detection might seem an easy task at first,
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because we only have to determine the period length of a quasi-periodic signal (Hess 1983).
However, several factors make it more challenging than this. In fact, it is one of the most diffi-
cult tasks in speech signal analysis. As we know, speech production is a non-stationary process.
The position of the vocal tract during articulation may change rapidly, leading to significant
changes of the shape of the time-domain signal. This may occur also from one fundamental
period to the next (Kießling 1997). Furthermore, the multiplicity of articulator positions of
the human vocal tract used, in combination with the multiplicity of human voices, results in
a huge variety of possible time-domain structures of the speech signal. Then, narrow-band
lower-order formants could be confused with the fundamental frequency. In particular, the
first formant of female voices can overlap with F0 because it is typically found around 200–
1400 Hz. Also, the excitation signal of the human voice itself is not always regular and does
not always have a regular periodicity. This effect is especially strong for pathological voices,
but holds also for all healthy voices. The voice can further switch into the ‘strohbass’ regis-
ter, which is characterised by a very low frequent and irregular excitation as low as 25 Hz
(laryngealisations, see Section 4.2.3). The range of the fundamental frequency across a large
number of speakers (including children) spans almost four octaves (50–800 Hz). Finally, the
transmission channel causes distortions and band limitations. This is especially problematic
in the case of (narrow-band) telephone speech (300–3400 Hz), where the actual fundamental
frequency (typically 50–250 Hz) is significantly suppressed. This case is known as a ‘miss-
ing fundamental’. Our hearing system creates the sensation of a ‘virtual pitch’ based on the
periodic structure of the higher harmonics of F0 (Zwicker and Fastl 1999).

These issues have led to a large number of pitch detection algorithms (PDAs) for various
conditions, none of which works to full satisfaction in all conditions (Heckmann et al. 2010).
Some algorithms aim at determination of the fundamental period T0, while others aim at
detection of F0. Due to the relation

F0 = 1

T0
, (8.48)

the two are interchangeable and will not be differentiated in what follows. In algorithms where
T0 is to be determined, it is considered as a momentary value, that is, the time from the
beginning of one period to the beginning of the following one. If F0 is to be determined, the
average period length of average frequency over a short time analysis window is considered.
If the speech signal was strictly periodic, both definitions would lead to the same result.

Each PDA can be sub-divided into three steps: pre-processing with the aim of data reduction;
the actual extraction; and post-processing, usually with the aim of smoothing the overall pitch
trajectory, for example, with the Viterbi algorithm (see Section 11.2.2) (Hess 1983).

Independent of these steps, all PDAs can be grouped into two families (O’Shaughnessy
1990): those operating in the short-time domain (mostly applying a DFT), where two or three
consecutive fundamental periods are typically observed within one frame; and those operating
in the continuous-time domain, processing the input sample by sample and tracking each
single pitch period.

We deal first with the short-time domain PDAs. The most obvious way is to determine
the fundamental frequency directly from the short-time spectra by finding the lowest spectral
maximum. However, this is not robust enough (e.g., in the case of a missing fundamental
frequency as outlined above). Better results are obtained by analysing the sub-harmonic
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structure of the power spectrum (Hermes 1988). F0 results as the largest common divisor of
the frequencies of all harmonics. An efficient approach is to compress the power spectrum
affinely along the frequency axis in the ratios 1:2, 1:3, etc., and then add the compressed
spectrum to the original spectrum. By a coherent contribution of all higher-order harmonics of
F0, the peak at F0 is emphasised. An example of the F0 contour obtained with this algorithm
is shown in Figure 8.14. This method is known as sub-harmonic summation (SHS). A related
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Figure 8.14 F0 extracted with the sub-harmonic summation (SHS) method: without post-processing
(top) and with Viterbi smoothing as post-processing (bottom). A higher pitch is observable for the first
speaker (first word) compared to the second speaker (second word). The smoothed result shows longer
continuous voiced segments (not always correct, for example, at the ‘p’ in ‘com-pu’ there should be a
short unvoiced pause) due to costs for changes between voiced and unvoiced.)
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Figure 8.15 F0 extracted with the cepstrum based method; no smoothing or post-processing is applied

approach is the direct analysis of neighbouring maxima in the power spectrum to determine
the fundamental frequency.

An alternative approach makes use of the cepstrum (Ahmadi and Spanias 1999): the fun-
damental period T0 can then be determined as significant peak at the right end along the
quefrency axis (Section 8.4.4). Close to the origin of the cepstrum, the vocal tract impulse
response including the formants is located. In the case of unvoiced sounds the excitation func-
tion is noise-like, such that no peaks occur at the right end of the cepstrum and the energy in
this region is lower. By a simple threshold decision one can thus distinguish between voiced
and unvoiced sounds. In general, the cepstral method can be considered as relatively robust.
Figure 8.15 shows an example of F0 extracted with a cepstrum-based method.

A method which makes use of the maximum likelihood principle is presented in Botros
(1999). The method is also based on short time analysis in the spectral domain. Within a limited
segment in time, a periodic signal with unknown period length T0 is separated optimally from
Gaussian-distributed noise by this method. Yet, neither is a real-world speech signal ideally
periodic, nor a real-world background noise Gaussian-distributed. This requires adjustments
of the method for the application to speech signals which we will not detail here.

Let us now turn to PDAs based on correlation methods. As a periodic signal has a peri-
odic ACF (see Figure 8.6) with distinct maxima at the beginning of each period, the most
straightforward approach uses the ACF. In order to reduce the influence of the first formant,
the spectrum is flattened by LPC analysis: the signal is first band-limited to around 800 Hz.
Next, it is inserted into an inverse LPC filter with a low predictor order, for example, of 4.
Because of this low order, the computational effort remains small and it is ensured that the
fundamental frequency is well preserved in the residual signal, whereas the first formant is
eliminated. This is known as the simplified inverse filtering technique (SIFT: Markel 1972).
Using the LPC residual signal, however, gives best results only in the case of non-disturbed
speech with sufficient presence of high frequencies. For low, dark vowels the error signal has a
rather low amplitude and will be dominated by noise, which is not attenuated by the LPC filter.
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Figure 8.16 Voicing probability computed from the first distinct peak of the autocorrelation function
in relation to the total signal energy

In the ACF based PDAs, F0 is then determined by the first significant peak after the inherent
one at the origin of the ACF (Boersma 2001). Wrong period values need to be eliminated or
interpolated at this stage and potential changes in the period need to be foreseen. The ACF
method can further be used to determine the harmonicity of the speech signal, that is, the
harmonics-to-noise ratio (HNR): the ACF’s first peak at the origin reflects the overall signal’s
energy. The HNR is then obtained by relating the peak at the origin to the next distinct peak –
an example of this linear HNR can be seen in Figure 8.16. If this peak is considerably lower,
we have clear evidence of a non-periodic signal. A logarithmic HNR can be calculated by

HNR(n) = 10 · log
ACF(T0)

ACF(0) − ACF(T0)
, (8.49)

where T0 is the fundamental period.
In summary, PDAs based on short time analysis are typically robust against noise, bandwidth

limitation at the lower frequency end, and phase distortion. They do not, however, permit a
period-by-period determination of T0 which is needed if we want to measure the pitch period
aligned micro-perturbations of F0 and energy (jitter and shimmer; see Section 8.4.10).

Therefore we now consider PDAs which operate in the time domain. These can be charac-
terised by the amount of effort put into pre-processing. The two extremes here are that either
there is no pre-processing done, and the pitch period extraction stage operates on the original
signal, or the pre-processing filters out everything except for the fundamental oscillation.

PDAs in the time domain analyse the speech signal period by period and determine the
periods’ boundaries (Hess 1983). This makes them more susceptible to local deviations caused
by noise, for example, and thus less reliable than the majority of the short-time PDAs. In the
case of highly non-periodic excitation signals, however, they usually provide better results.
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We discuss PDAs operating directly on the time domain signal. The fundamental period is
the response of the vocal tract to a single excitation pulse. The vocal tract is a lossy and passive
linear system, thus, the impulse response is a sum of exponentially dampened oscillations. We
can therefore expect maxima and minima at the beginning of each period to be more significant
than towards the end. This allows us to determine T0 with a peak search. There are, however,
several problems which prevent this approach from working in practice. One of these is that
F1 is dampened only weakly whereas the signal envelope changes comparably faster, and in
the case of a phase-distorted signal the formants may appear as if excited at different moments
in time. This makes time-domain analysis rather difficult. However, these PDAs are very
fast because only comparisons and decisions are needed in an implementation. The overall
processing is as follows. The influence of higher-order formants is eased by low-pass filtering
and LPC analysis (see the correlation-based methods discussed earlier). Next, all maxima
and minima are found with a peak picking algorithm. Those which are not significant are
eliminated until a single, most dominant extreme value remains per period. Post-processing,
which takes the temporal context (e.g., previous periods) into account, can correct or eliminate
obviously error-prone candidates.

The disadvantages of these approaches are that they do not work if the actual fundamental
is not present in the signal (virtual pitch), and that it is difficult to implement the low-pass
filtering because the range of possible F0 values might not be known beforehand, and thus
could potentially be very large and include the first and possibly second formant.

8.4.10 Jitter and Shimmer

Jitter and shimmer are considered as micro-prosodic descriptors as opposed to the prosodic
descriptors intensity and pitch dealt with so far. Like the HNR, they describe the quality of the
excitation signal and thus the quality of the voice. They belong to the group of voice quality
features. Figure 8.17 shows an example plot.

Jitter is the deviation of the length of the fundamental period from one period to the next.
This information is particularly helpful in speaker age or voice pathology determination,
for example, as with increasing age or certain pathological conditions, the regularity of the
periodic excitation decreases. Also the heart rate can have an influence on jitter (Orlikoff and
Baken 1989). We can distinguish between the period-to-period (or local) jitter Jpp, which is
the deviation from one period to the next and is given by

Jpp = T0(n) − T0(n − 1), (8.50)

and the period or cycle jitter Jc of the deviation of the current fundamental period from the
‘ideal’ fundamental period T 0 which is obtained by averaging all pitch periods in the analysis
interval,

Jc = T0(n) − T 0. (8.51)

Jitter is known to be particularly high at the beginning and end of a sustained vowel sound.
In a similar way, shimmer is the variation of the amplitude from one period to the next. It

is typically measured on a logarithmic scale in decibels. According to Haji et al. (1986), a
healthy person’s shimmer is between 0.05 and 0.22 dB.



Acoustic Features 213

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0 0.5 1 1.5 2

jit
te

r 
(d

el
ta

 F
0 

/ F
0)

time (s)

0 0.5 1 1.5 2
time (s)

Jitter of 'Computational Paralinguistics'

ticsuislingraPanaltiotapuCom

ticsuislingraPanaltiotapuCom

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

sh
im

m
er

 (
dB

)

Shimmer (log.) of 'Computational Paralinguistics'

Figure 8.17 Jitter (top) and shimmer (bottom) for the utterance ‘computational paralinguistics’ in
voiced regions (both are zero for unvoiced regions). Jitter in particular is higher at the onset (beginning)
of vowels, where the periodic excitation signal is not yet stable, or the analysis window (50 ms for
F0 extraction) contains voiced and unvoiced parts – where the unvoiced parts cause high jitter and
shimmer values
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8.4.11 Derived Low-Level Descriptors

From all the above LLDs, derived features – what Pachet and Roy (2009) call analytical
features – can be computed. These could be combinations of the above, for example, the
energy weighted by the pitch, or other features normalised by the pitch or energy. Little
research in this direction has been done so far, but it seems a promising avenue for the future.
More established methods in speech processing are the use of delta regression coefficients and
the smoothing of the low-level descriptor time series. We will now briefly describe both these
methods.

According to Young et al. (2006) delta regression coefficients (first differential) can be
computed from a time series (x(t)) using the regression equation

d(t) =
∑W

i=1 i · (x(t + i) − x(t − i))

2
∑W

i=1 i2
, (8.52)

where W is half the size of the symmetric window which is to be used for computation of the
regression coefficients (a common default is W = 2). In the same way, acceleration coefficients
(second-order differential) can be computed as delta coefficients of delta coefficients by
applying equation (8.52) to d(t).

In order to minimise artefacts caused by windowing and short time analysis, smoothing is
usually applied to each LLD time series x(t). A simple moving average filter of length W
frames is applied to obtain the smoothed series x̂(t):

x̂(t) = 1

W

W−1∑

i=0

x

(

t − W − 1

2
+ i

)

. (8.53)

W must be an odd number greater than or equal to 3, as, for the special case of W = 1,
x̂(t) = x(t).

Other possible derived features could be low-/high-pass or band-pass filtered versions of
LLD, envelopes of LLD, or LLD with a non-linear function applied (e.g., logarithmic or
exponential LLD).
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9
Linguistic Features

Language is the source of misunderstandings.
(Antoine de Saint-Exupéry)

Language most shews a man: Speak, that I may see thee.
(Ben Jonson)

Let us now take a look at linguistic features – again, based on the most frequently encountered
types in the field of computational paralinguistics (Cambria et al. 2013; Schuller et al. 2011,
2013a,b). This will touch upon in-domain data-driven methods as well as domain-independent
knowledge-based approaches. A multiplicity of methods exist when dealing with linguistic
analysis, some of which including deeper linguistic analysis. Thus, we can only present a
subset of the predominant approaches.

9.1 Textual Descriptors

So far, we have dealt with acoustic parameters that capture the ‘tone of voice’. However,
methods that take into account the linguistic content have repeatedly proven their value for
computational paralinguistics tasks, such as emotion recognition (Devillers et al. 2003; Polzin
and Waibel 2000; Schuller et al. 2004b, 2005). These can be used in isolation (e.g., Schuller
2012) or in combination with acoustic analysis methods (e.g., Devillers and Vidrascu 2006).

These methods are based on converting unstructured text into a machine-readable represen-
tation, such as feature vectors. The dimensions of these feature vectors are usually given by a
‘vocabulary’ that is determined during the training phase of the recognition algorithm.

The feature vectors are often extracted from text, or human transcriptions of speech. Such
‘ground truth’ transcriptions by humans are not necessarily perfect; for example, human error
rates of 4% are reported on transcription of spontaneous speech in Lippmann (1997). However,
transcription by humans can be used as a ‘canonical’ reference allowing, for instance, for
comparison of results of semantic analysis, eliminating the effect of varying speech recognition
results as a confounding factor.

Still, in many real-world tasks such as spoken document retrieval, the transcription has to
be determined by means of automatic speech recognition (ASR). Especially in the case of

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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spontaneous speech, devising the exact transcription can be a highly challenging problem
(Athanaselis et al. 2005; Mesaros and Virtanen 2009; Steidl et al. 2010; Wöllmer et al.
2009). It has to be noted, however, that perfect speech recognition accuracy does not seem
to be a necessary precondition for robust recognition of paralinguistic information (Metze
et al. 2011; Seppi et al. 2008). Small substitution errors (such as misrecognition of suffixes)
are often eliminated by reducing words to their stems (see below) before linguistic feature
extraction; other substitutions, insertions and deletions are not critical unless they change the
‘tone’ of the content with respect to the paralinguistic trait being analysed, such as replacing
a word connoted with positive affect by a similar sounding one with negative connotation.

This section presents different approaches that were mostly introduced for the processing
of text comprised of words; yet, they can be transferred to any domain dealing with sequences
of symbols. Particularly in spoken language analysis, non-linguistic vocalisations such as
sighs and yawns (Russell et al. 2003), laughs (Campbell et al. 2005; Truong and Leeuwen
2005), cries (Pal et al. 2006), and coughs (Matos et al. 2006) can also be considered to be
‘words’ (Batliner et al. 2006; Schuller et al. 2006). Generalising this to multimedia analysis,
behavioural events can be modelled as words, as in Eyben et al. (2011). In the following – for
the sake of simplification – we will speak of ‘words’ consisting of ‘characters’ representing the
basic string units of analysis, and use ‘speech’ and ‘text’ in the sense of ‘audio with symbolic
content’ and ‘symbolic content’.

9.2 Preprocessing

When written text is analysed, some pre-processing usually has to be done. Delimiter characters
such as spaces or punctuation are commonly used for segmentation, also called tokenisation,
of chunks of text into smaller units of analysis, such as words. Furthermore, capitalisation
is mostly normalised (e.g., by converting everything to lower case), in order to avoid using
different descriptors for the same word in different capitalisations. This can be extended so
as to allow certain word replacement rules, for example, to cover for varieties such as British
English, American English, and Australian English, or even to consider words as identical
below a specified edit distance (e.g., Schuller et al. 2004a).

9.3 Reduction

It is commonly found that only a fraction of the words contained in a text actually convey
relevant information about the paralinguistic task to be analysed (e.g., affect-related words).
While this can be addressed in the feature space through feature selection (e.g., by information
gain) or reduction schemes (see Section 11.1), information reduction at the symbolic level is
often considered more meaningful. Two techniques are usually applied to this end: stopping
and stemming.

9.3.1 Stopping

Stopping is based on a set of rules deciding which words are irrelevant and should hence be
removed from the text. These rules can be defined a priori by experts, such as the exclusion
of function words (e.g., ‘the’), or can be derived from data. Such data-driven stopping can
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be achieved by removing words that occur very frequently (because they are assumed to
be uncorrelated with the target task), and also by excluding very rare words, such as words
occurring less often than a predefined minimum word frequency. The latter is done since for
such rare words, it is hard to obtain reliable statistics on the relation with the target task, as
would be required by data-based machine learning methods.

9.3.2 Stemming

Stemming is a reduction method applied in natural language processing. It is used to map
different morphological forms of the same word to a single symbol, the ‘stem’. For natural
language, this means, for example, merging different flexions, such as ‘written’, ‘writing’,
‘writes’, or members of the same word family, such as ‘writer’ in this example, to a stem
symbol, ‘writ’. A number of algorithmic approaches exist to automatically compute these
mappings, among which Porter’s stemmer (Porter 1980) is probably the most popular. This
algorithm was designed for English, although modifications exist for multiple languages,
such as Dutch (Kraaij and Pohlmann 1994). It models each word as a string of the form
[C](VC)m[V], where the symbols C and V denote sequences of one or more consecutive
consonants or vowels, respectively, and the superscript operator m indicates m-fold repetition
of its string argument. m is also called the measure of the word. The algorithm itself consists
of five steps, each applying a set of replacement rules to the word. Each of these rules can be
associated with certain pre- and post-conditions restricting their application. Examples of these
rules include the removal of plural and participle endings, as well as the replacement of suffixes
(e.g., ATION → ATE; IVENESS → IVE). An example of a post-conditioned rule would be
‘(m > 0) LY → ε’ (ε denotes the empty string), which would reduce ‘cheaply’ to ‘cheap’ but
leave ‘reply’ unchanged, because ‘rep’ would have a measure of 0 while ‘cheap’ has a measure
of 1. Should more than one rule match in a step, only the rule with the longest matching suffix
is applied. Still, due to the simple string replacement approach, Porter’s stemming algorithm
can lead to information loss at the semantic level, for example, when ‘relativity’ (as used
in a text about physics) and ‘relatives’ are both stemmed to ‘relativ’. Besides information
reduction, an advantage of stemming is that words may be assigned to the correct stem even if
some small speech recognition errors are present (e.g., substitution of ‘writer’ by ‘writing’).

9.3.3 Tagging

Tagging can be thought of as a generalisation of stemming to arbitrary symbol sequences
(not just natural language), mapping each word to an equivalence class (‘tag’). An example
of tagging in natural language processing is part-of-speech (POS) tagging, also known as
grammatical tagging or word-category disambiguation, which leads to very compact repre-
sentations. Equivalence classes, in this case, comprise ‘open’ word classes such as adjectives
adverbs, nouns, verbs excluding auxiliary verbs, and interjections (Batliner et al. 1999). Addi-
tionally, ‘closed’ word classes are defined which contain defined sets of auxiliary verbs,
clitics, coverbs, conjunctions, determiners (articles, quantifiers, demonstrative adjectives, and
possessive adjectives), particles, measure words, adpositions (prepositions, postpositions, and
circumpositions), preverbs, pronouns, contractions, and cardinal numbers. Sometimes only
auxiliary verbs and particles are tagged (Batliner et al. 2006). In the case of POS tagging,
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simple word-based string processing is usually not considered sufficient because of ambigu-
ities; hence, in order to also use the context in which a word appears, techniques such as
dynamic programming or hidden Markov models are applied for automatic POS tagging. An
alternative is to use higher semantic concepts as tags, such as generally positive or negative
terms (Batliner et al. 2006).

9.4 Modelling

9.4.1 Vector Space Modelling

After text pre-processing, linguistic descriptors are extracted, most commonly in the form
of feature vectors with real-valued components (vector space modelling). The dimensions of
these vectors (the vocabulary) usually correspond to either words (‘bag-of-words’), sequences
of words (‘bag-of-N -grams’), or sequences of characters (‘bag-of-character-N -grams’).

Bag-of-Words

Bag-of-words (BoW) can be though of as the simplest method of converting a sequence of
symbols into a real-valued feature vector, by counting the occurrences of symbols in the
string to be analysed. Hence, each feature represents the frequency of a specific symbol. It
is assumed that recognition is based on ‘sufficiently’ long sequences of symbols, such as
paragraphs of texts, or even whole weblog entries. Mathematically, every such sequence is
denoted by S = (w1, . . . , wS), where S = |S| is the sequence length, and wi , i = 1, . . . , S,
are the words in that sequence, possibly pre-processed by stemming or tagging as introduced
above.

Of all the words wi in the sequence, the BoW method considers all those that are contained
in a predefined vocabulary, that is, a finite set of words V = {w1, . . . , wV }, with V = |V|
being the size of this vocabulary. Typically, one chooses a vocabulary based on a training set
L from the task to be analysed. In the simplest case, it is constituted of all words that occur at
least once in L.

Once a vocabulary is defined, each sequence S j can be mapped to a BoW feature vector
x j = (xi, j )T

i of dimension V . The value of xi, j can be simply defined as the number fi, j of
occurrences of the word wi in the sequence S j . As a simplification, for example for naı̈ve
Bayes classifiers, binary word occurrence features xi, j ∈ {0, 1} can be used, indicating the
presence (1) or absence (0) of a word i in S j . Alternatively, the logarithm of the number of
occurrences can be used, leading to ‘term frequency’ (TF) features:

TFi, j = log
(
c + fi, j

)
. (9.1)

Here, c is a trivial constant that ensures that the above expression is well defined for fi, j = 0.
In most cases, c is set to 1.

An alternative transformation of fi, j takes into account the fact that frequently occurring
words bear little information as to the task to be analysed. Instead of completely removing these
words from the text, as done by data-based stopping (see Section 9.3.1), fi, j is downscaled
by the ‘inverse document frequency’ (IDF), which is defined as log(|L|/Li ), where Li is the
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number of training sequences containing word wi . The term ‘document frequency’ stems from
the text information retrieval domain. This results in the feature

IDFi, j = fi, j · log

( |L|
Li

)

. (9.2)

Naturally, both the TF and IDF transformations can be combined, which results in the
so-called TFIDF (term frequency and inverse document frequency) approach:

TFIDFi, j = log
(
1 + fi, j

) · log

( |L|
Li

)

. (9.3)

The above transformations do not take into account the fact that feature vectors might stem
from sequences of varying length, which might result in vastly different representations of
word sequences that are actually similar regarding the relative frequencies of words. Besides
applying transformations to the individual components of the feature vectors x j , ‘global’
normalisation of all x j can be used. Often, vectors are normalised such that all vectors have
the same norm. The norm is usually chosen to be the average norm of the vectors corresponding
to the training set L. This results in the following transformation:

xnorm
j =

1
|L|

∑L
k=1

∣
∣xk

∣
∣

|x j |
· x j . (9.4)

The norm | · | can be chosen as the L1 norm, resulting in a normalisation by the sequence
lengths, or as the Euclidean norm, etc.

A disadvantage of the BoW method is the modelling of isolated words without their ‘left’
and ‘right’ neighbouring context in a string. Thus, BoW ignores word positions or word
dependencies. N -grams partly overcome this. A simple extension thus combines these BoW
and N -grams.

Bag-of-N-Grams

Bag-of-N -grams (BoNG) modelling is a straightforward extension of BoW modelling that
takes into account neighbouring relations between symbols. Instead of allowing only single
symbols in the vocabulary, additionally ‘N -grams’ of words are considered. The term N -
gram stems from language modelling in ASR; in our context, it simply denotes a fixed length
sequence of symbols, where N is the length. Typically, bigrams (2-grams) or trigrams (3-
grams) are used in addition to single words (‘unigrams’). N -grams of different order N can be
combined arbitrarily – one usually defines the minimum N -gram length gmin and the maximum
N -gram length gmax of the feature space.

In complete analogy to the BoW approach, a vocabulary of N -grams is determined on the
training set, and frequencies fi, j of N -gram i in sequence S j are computed – either as ‘raw’
frequencies, or using any of the transformations listed above (TF, IDF, etc.) Note that the
N -grams are usually determined after performing stopping and stemming – this usually
increases the number of observations per N -gram and helps model the context between
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meaningful words. Even with stopping and stemming at word level, however, N -gram mod-
elling leads to a combinatorial explosion – note that the size of the feature space grows
exponentially with increasing N (V N ). To avoid this, N -grams are usually only considered
if they occur with a certain minimum frequency. The feature representation resulting from
combination of N -grams of different order and subsequent discarding of rare N -grams bears
some similarity to the common ‘back-off’ language models in ASR that allow the combining
of likelihoods of lower-order N -grams instead of explicitly modeling all possible N -grams. A
disadvantage of BoNG modelling is its sensitivity to speech recognition errors, as for correct
determination of the feature value several consecutive words have to be recognised accurately.

Bag-of-Character-N-Grams

The N -gram principle underlying the BoNG approach can also be applied at the character level,
rather than the word level. This results in the bag-of-character-N -grams (BoCNG) approach.
The vocabulary thus consists of fixed-length sequences (N -grams) of characters, instead of
N -grams of words, and it is determined by analogy with BoNG – with tokens corresponding
to characters instead of words. In particular, it is common to combine N -grams with different
lengths, ranging from a minimum string length of cmin characters to a maximum string length of
cmax characters, and to discard occurrences of rare N -grams in order to prevent combinatorial
explosion of the feature space. Similarly to the use of word-internal or cross-word phoneme
context in ASR, N -grams can be extracted just from whole words (such that ‘word boundary’
would contain the 3-gram ‘o-r-d’ but not ‘d-b-o’), or across word boundaries (such that ‘word
boundary’ would also contain ‘d-b-o’). Stopping can be applied at the word level before
determining the BoCNG space, while stemming at word level is usually left out since the
BoCNG approach can be thought of as implicit stemming: words from the same family share
certain character substrings, resulting in similar BoCNG representations.

An advantage of BoCNG over BoNG is its ability to handle unseen compound words, if these
consist of substrings contained in the feature space. This may be relevant for ‘open-vocabulary’
languages such as German, which allow the formation of long compound words. For instance,
the word ‘spracherkennung’ (speech recognition) could be represented by the features ‘s-p-r-
a-c-h’ and ‘e-r-k-e-n-n’ in a BoCNG space with cmax ≥ 6, while it would be out-of-vocabulary
in a BoW space comprising the (stemmed) feature dimensions ‘sprach’ and ‘erkenn’.

The BoCNG principle can in turn be generalised to word sub-units other than characters.
For example, to merge phonetically similar vocabulary entries, N -grams of phonemes as
determined by an ASR engine can be used, which has proven to be advantageous (Iurgel
2007). Many other variants of N -gram vector space modelling can be conceived, such as
N -grams of syllables, applying the same core principles (reduction, vocabulary selection,
frequency transformation) as outlined above.

9.4.2 On-line Knowledge

All of the approaches presented so far are data-driven in the sense that a human-labelled set of
training text is required for the particular task to analyse. In contrast, so-called open-domain
methods rely on on-line knowledge sources that are publicly available and provide linguistic
and common-sense knowledge about words, concepts and phrases, for example, in the form of
lexical and semantic relations. These relations are represented in machine-readable form, for
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example, as semantic networks where words or concepts are represented as nodes in a graph
and relations are represented by named links (Jurafsky and Martin 2000). A more specific
type of on-line knowledge source is made up of annotated dictionaries, where properties of
terms are stored as tags, without modelling relations between terms. Then, instead of relying
on training data to compute statistics on the relation of word occurrence and the paralinguistic
task being analysed, as done in the data-driven methods presented above, expert rules specific
for the task are combined with general-purpose syntactic and semantic knowledge.

This chapter concludes by outlining an example algorithm to derive the sentiment of the
author from written reviews of movies, purely based on on-line knowledge sources (Schuller
and Knaup 2011; Schuller et al. 2009). Before presenting the algorithm in more detail, three
exemplary open-domain linguistic information sources are introduced, which are also used by
the algorithm.

ConceptNet

ConceptNet (Havasi et al. 2007) is part of the Commonsense Computing Initiative aiming at
machine understanding of text written by humans. Hence, it contains a large set of semantic
networks of concepts in a machine-readable format, focusing on common-sense knowledge
extracted from public sources such as Wikipedia. Furthermore, the ‘wisdom of the crowd’
is included by crowd-sourcing of non-specialist humans, through an interface that allows for
editing by users, and includes appropriate measures to avoid false claims and detect mistakes
to a certain extent (Havasi et al. 2007). Concepts consist of one or more words, such as ‘sleep’
or ‘watch a movie’. ConceptNet does not allow for retrieving concepts by syntactic category
information, and hence does not feature word sense disambiguation; however, sufficiently
specific concepts can usually be formulated to avoid ambiguities. Concepts are normalised
by removal of punctuation, stopping, stemming, and ordering of stems in alphabetic order, so
that minor syntactic variations are merged, and word order is ignored (Havasi et al. 2007).
Figure 9.1 shows the histogram of the size of the concepts in ConceptNet (for version 3). As
can be seen, the lion’s share of concepts in this knowledge source consists of multiple words.

Concepts are interlinked by relations with intuitive meaning, such as ‘IsA’, ‘UsedFor’, or
‘PartOf’. Thus, it is possible to represent knowledge in the form of predicates. Each predicate
consists of two concepts and a relation, for example, ‘UsedFor(bed, sleeping)’ (‘A bed is used
for sleeping’).

Figure 9.2 shows an example storage of predicates in ConceptNet from the domain of
movies. Here, ‘movie’ is connected to ‘actor’ by the ‘PartOf’ relation, and also to ‘fun’ by
a ‘HasProperty’ relation; thus, it is obvious that a concept can be part of many relations.
Note that relations are unidirectional, since inversion of a predicate is not always meaningful.
Negated predicates are also supported. Each predicate stored in ConceptNet has a confidence
score which can be increased/decreased by users in a crowd-sourcing fashion (Havasi et al.
2007). The current (as of 2013) version 5 of ConceptNet covers multiple languages, including
English, French, Spanish, German, Japanese, Chinese, Hindi, and Arabic.

General Inquirer

As an example of a ‘dictionary’ type of knowledge source, let us briefly introduce the General
Inquirer database (Stone et al. 1966). In this database, terms are mapped to tags, some of
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Figure 9.1 Histogram based on ConceptNet 3: frequency of concept occurrence plotted against size of
concepts in words (Schuller and Knaup 2011)

which correspond to paralinguistic dimensions; for example, for sentiment analysis from text,
the tags ‘Positiv’ and ‘Negativ’ (sic) are of particular interest. For this specific domain, 1915
terms, such as ‘adore’, ‘master’ and ‘intriguing’, are assigned the ‘Positiv’ tag, while the
‘Negativ’ tag comprises terms such as ‘accident’, ‘lack’, and ‘boring’. For rudimentary word
sense disambiguation, terms are partially annotated with POS information, definitions, and
frequencies of occurrence.

WordNet

Finally, as an example of a source of lexical information, let us present the WordNet database.
Based on current psycholinguistic and computational theories of human lexical memory
(Fellbaum 1998), it groups words into equivalence classes by synonymy – these equivalence
classes are accordingly called synsets – and connects synsets by lexical or semantic relations.

movie

funactor

PartOf HasProperty

Figure 9.2 An example of a concept and relations within the concept in ConceptNet
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This is the main difference from ConceptNet which features relations expressing common-
sense knowledge. Examples of WordNet relations include hyponymy (a word is a specific
instance of a more general word), meronymy (a word is a constituent part of another word),
or antonymy (a word is the opposite of another word). Despite the conceptual difference
from ConceptNet, some of these relations are found in similar form in the latter; for exam-
ple, meronymy arguably corresponds to the ‘PartOf’ relation in ConceptNet. In contrast to
ConceptNet, entries in WordNet are strictly separated into syntactic categories, including
nouns, verbs, adjectives, and adverbs.

Example Algorithm

Based on the three knowledge sources introduced so far, an effective algorithm for linguistic
analysis can be derived. While the algorithm was designed with the target domain of movie
review valence estimation (sentiment analysis) in mind (Schuller and Knaup 2011; Schuller
et al. 2009), some of the core principles can arguably be applied to other paralinguistic domains
of interest, such as gender or personality analysis.

The idea of the algorithm is to find the verbs and nouns (as filtered out by POS tagging)
which are ‘closest’ to words related to the domain of interest (such as affect) as determined
by General Inquirer tags. WordNet then serves to replace words unknown to General Inquirer
by synonyms, and ConceptNet is used to ‘filter out’ expressions not relating to the domain
of interest. The algorithm is represented in Figure 9.3 as a flow-chart. Let us now detail the
individual processing steps.

First, the text is split into sequences S of words or similar entities. The sequences S are
then analysed by a syntactic parser for POS tagging. The POS classes (openNLP notation in
parentheses) include adjective (JJ), adverb (RB), determiner (DT), verb (VB), and noun (NN).
For example, the sequence ‘a carefully designed plot’ will be tagged as ‘a/DT carefully/RB
designed/VB plot/NN’. Since we are not interested in complete coverage of the syntax of
longer sequences, but rather simple expressions that are similar to the predicates contained
in the knowledge sources introduced above, the parser performs rather simple chunking into
shorter units such as noun phrases (NP), verb phrases (VP), or prepositional phrases (PP).
In particular, this kind of parsing produces a ‘flat’ structure which is very well suited for
the subsequent processing steps. Words of the DT class and punctuation are removed in the
pre-processing step.

s(k) xiPreprocessing

Target Identification

Task Info Extraction

General Inquirer Word Net

Expression Building Filtering

Concept Net

Figure 9.3 Open-domain linguistic analysis based on on-line knowledge sources
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The linguistic content of each sentence is converted to one or more ternary expressions
(T-expressions) of the form 〈target, verb, source〉. The three parts of the T-expression are
required to occur in the same sentence. T-expressions originate in research on automatic
question answering (Katz 1997), and were subsequently ported to paralinguistic text analysis,
particularly sentiment classification in product reviews (Yi et al. 2003).

The ‘target’ of a T-expression refers to a feature term, for example, a movie in the case of
sentiment analysis in movie critics. What is considered a ‘feature term’ has to be defined by
expert rules, or a knowledge source such as ConceptNet can be used. In particular, terms can
be filtered by using ConceptNet’s ‘PartOf’ or ‘HasProperty’ relations. For example, in movie
review valence estimation, the predicate ‘PartOf(actor, movie)’ suggests that if the subject of
the sequence is an actor, a T-expression related to the movie domain can be built. Additionally,
databases of named entities can be employed; in the example, to filter movie titles and actor
names. Furthermore, in this step, personal pronouns (e.g., ‘it’) can be resolved based on other
expressions built from the sequence.

Next, sources need to be identified for each target, that is, words conveying the actual
information of interest such as affect, gender, or personality. Sources are identified by syntactic
as well as semantic restrictions. Syntactic restrictions ensure that the source is being directed
to the target in question, and involve breaking down the sequence into units of statements, and
associating a source with the target if and only if both occur in the same section without a
border indication separating them. These border indications are subordinating conjunctions,
prepositional phrases, coordinating conjunctions, and punctuation such as commas or colons.
Semantic restrictions relate to finding sources connected to the task at hand. Here, this is
exemplified by the concept of valence.

To find the source candidates, first all verbs are retrieved from the section of the target, and
General Inquirer is used to determine their value v. A word wi is assigned a value v(wi ) = 1
if it has the General Inquirer tag Positiv, and a value v(wi ) = −1 if it is tagged as Negativ.
Should a word not exist in General Inquirer, WordNet synsets are used to look up its synonyms
for potential matches. After this process, some of the the words in the sequence are tagged with
valence. For all verbs, the siblings – the direct neighbours – are first scanned for adverbs. If the
adverb has a valence tag, a T-expression of the form 〈target, verb, adverb〉 is generated. Thus,
for example, ‘a/DT carefully/RB designed/VB plot/NN’, can result in a T-expression such as
〈plot, designed, carefully〉 – although ‘design’ does not have a valence value, and ‘careful’ has
positive valence. If no valence-related adverbs are found, but the verb carries a valence value
(e.g., ‘love’), the verb is considered to be the source. Note that multiple expressions can exist
for a given target if there are multiple source words contained in the phrase being analysed. For
example, since two adverbs are contained in ‘a/DT carefully/RB designed/VB, superbly/RB
executed/VB plot/NN’ (‘carefully’ and ‘superbly’), and both of these have valence values,
this phrase results in two corresponding T-expressions: 〈plot, designed, carefully〉 and 〈plot,
executed, superbly〉.

It remains to define a fall-back strategy for the case where the sequence considered does not
contain a verb. In this case, for example, binary expressions of the form 〈target, adjective〉 can
be built. In the movie review example, ‘an/DT excellent/JJ setting/NN’ could be represented as
the binary expression 〈setting, excellent〉, since no verb exists in this sequence, yet ‘excellent’
has a positive valence value.

Once expressions have been generated by the above procedure, the strength of the relation
of source and target has to be determined. This strength can be measured as the distance of



Linguistic Features 227

source and target in the sequence. One makes the assumption that a source is mostly directed at
the ‘closest’ target. A simple method is to only keep the expression with the shortest distance
between the target word and its target for further processing. Alternatively, a maximum distance
can be enforced (Morinaga et al. 2002; Turney and Littman 2003); though it has been shown
(Zhang and Ye 2008) that this can degrade performance when applied to sentiment analysis.
In the following, a more generic approach will be presented that computes a score function
s for each expression containing target ti and source wi . The design of the score function is
inspired by Ding et al. (2008). It is based on the multiplicative inverse of the distance of source
and target, but with an additional constant factor c and an exponent e for ‘fine-tuning’:

s(wi , ti ) = c · v(wi ) · 1

D(wi , ti )e
. (9.5)

Here, setting c > 1 boosts the score s in the case of small distance of wi and ti , while it
has little effect for D(wi , ti ) � 1. v(·) ∈ {−1, 1} denotes knowledge-based assignment of
words to a binary label. In the case of sentiment analysis, it corresponds to the valence tag
(‘Negativ’ = −1, ‘Positiv’ = +1) assigned by General Inquirer. That said, the function v could
obviously denote any binary label for a computational paralinguistics task (e.g., personality).
D(wi , ti ) ≥ 1 is the word distance between wi and ti . An exponential decay function with
exponent e is used to further boost or lower the score based on the distance. For e > 1, the
score decreases more rapidly for greater D(wi , ti ); e < 1, leads to a slower decrease of the
score for larger distances.

The final output of a sequence – the accumulated score S of the N expressions it
contains – is

S =
N∑

i=1

s(wi , ti ). (9.6)

A binary class (−1 or 1) can be chosen by taking the sign of S,

sgn(S) =
{

1 u ≥ 0
−1 u < 0,

(9.7)

or S serves as a feature for classification or regression in combination with data-driven analysis.
In some cases, expression (9.6) cannot be evaluated because no target or source words are

found in a sentence. In this case, a fall-back mechanism has to be employed, returning, for
example, S = 0. Failure to extract target words can be caused by very short sequences, or
colloquial language: colloquial terms are sparsely contained in general-purpose dictionaries.
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10
Supra-segmental Features

The whole is more than the sum of its parts.
(Aristotle)

You will win because you have enough brute force. But you will not convince.
(Miguel de Unamuno)

When we are interested in information which is ‘hidden’ in the way low-level features evolve
over a given timespan, then we need to extract ‘supra-segmental’ features from the low-
level frame-wise features. In fact, this is usually the way to represent paralinguistic feature
information, as it provides a greater reduction of information that otherwise may depend too
strongly on the phonetic content (Schuller et al. 2009). Such information could be affect that
is expressed by a speaker within an utterance, mood expressed over a series of utterances, or
speaker states such as alcohol intoxication or sleepiness, and traits such as age, gender, and
speaker identification. The general principle of supra-segmental features is to obtain a single,
fixed length feature vector which describes a sequence of low-level descriptors (LLDs) of
possibly variable length (Ververidis and Kotropoulos 2006).

Common methods to obtain a supra-segmental feature vector are: mapping of the LLDs
to a single vector by applying functionals to the LLD time series (Section 10.1), stacking of
low-level feature frames optionally followed by a dimensionality reduction, for example, by
principal component analysis (Section 10.3).

When we compute a supra-segmental feature vector, the first step is to define the segments
or units of analysis. As discussed in Section 8.3, feasible units of segmentation for speech are
either continuous segments of speech activity which are separated by silences or non-speech
segments, or semantic segments such as words, phrases, or sentences which can be determined
from ASR transcriptions. These segments will vary in length from one segment to the next.
This fact is a considerable problem which we encounter and have to consider when we compute
supra-segmental feature vectors. Not all methods can handle segments of variable length (e.g.,
stacking of feature frames).

An alternative for segmentation is to use segments of fixed length. This can be either a
subdivision of the variable-length segments into fixed-length sub-segments, or a systematic
‘blind’ segmentation of the complete input into segments with a typical fixed length of a
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few seconds. As another dynamic length segmentation approach, segmentation based on the
Bayesian information criterion (BIC) can be performed as suggested by Cettolo and Vescovi
(2003). If the BIC measured between two adjacent sliding windows differs over a given
threshold, a segment boundary between the two windows is assumed.

10.1 Functionals

Functionals are relations which map a (time) series of input values of arbitrary length to a
single output value. Statistical descriptors such as mean and variance are examples of simple
functionals. More advanced functionals are, for example, regression coefficients or the number
of maxima found in the input series. They can be applied to all frame-level numeric feature
vectors, both acoustic and linguistic. Moreover, functionals can be applied hierarchically, that
is, another set of functionals can be applied to a series of supra-segmental feature vectors. We
discuss this in Section 10.2.

To demonstrate the principle of mapping a time series of variable length to a feature vector
of fixed length, we give the following example. Let us assume we apply M = 4 functionals
(mean, variance, maximum and minimum value) to N = 2 LLD series (pitch, energy) both
of length L = 10 frames. As we apply each functional to each LLD, we get M · N = 8
supra-segmental features in a single vector which summarises all L input values.

The most common functionals used in computational paralinguistics are summarised by
group in Table 10.1. The functional groups include:

Means Various types of mean values.

Moments Statistical nth-order moments.

Extremes Extreme values and range of input signal.

Percentiles Percentile values and percentile ranges. The nth percentile is the value
below which n% of all values of the input are found. Standard percentiles are the
first, second, and third quartiles, corresponding to the 25th, 50th (median), and
75th percentiles. A percentile range is the difference between two percentiles
(larger percentile minus smaller percentile).

Regression Linear and quadratic (and higher) regression coefficients estimated by
fitting a line or parabola (or equivalent function) to the input series by minimising
the quadratic error between the line/parabola and the input series. Corresponding
linear and quadratic regression errors are computed as absolute and quadratic
differences between the input values and the estimated line and parabola.

Peaks Statistics describing the local extrema in the series and their distribution.

Segments Statistics describing the distribution of segments in the series. Seg-
ments can be identified in a number of ways ranging from high-level methods
such as speech versus non-speech segments, to low-level methods such as delta-
thresholding, for example, when the change in the input signal over N frames is
higher than a given threshold α, a new segment boundary is detected.

Samples Copies of input series values at given time steps, usually relative to the
full segment length, that is, at n% of the input.
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Table 10.1 Common functionals in computational paralinguistics, ordered by type

Means

Arithmetic, quadratic, geometric mean
Mean of absolute values
Mean of all non-zero values

Statistical moments

Variance and standard deviation
Kurtosis and skewness
Centroid
Zero crossing rate and mean crossing rate

Extreme values

Maximum, minimum, range

Percentiles

Quartiles and inter-quartile ranges
Percentiles and various inter-percentile ranges

Peak statistics

Number of maxima/minima
Mean and standard deviation of maxima/minima
Mean distance and standard deviation of distance between maxima/minima
Peak mean to arithmetic mean ratio

Segment statistics

Number of segments
Mininum, mean, maximum segment length
Standard deviation of segment length

Samples

Copies of input values at fixed (relative) time steps, e.g., middle, end

Modulation Functionals which describe signal modulations: discrete cosine
transformation (DCT) coefficients, modulation spectra, and linear predictive
coding (LPC) coefficients, for example.

A standardised coding for feature names (including functionals) has been proposed by the
CEICES initiative. The full coding scheme is printed in the Appendix (Section A.2).

10.2 Feature Brute-Forcing

The principle of applying functionals to time series can be expanded to an (infinite) multi-layer
hierarchy. Functionals of LLDs can be computed over short (around 1 second) segments –
resulting in first-level supra-segmental feature vectors. Then, functionals are again applied to
a set of these supra-segmental feature vectors (e.g., over one sentence or speech segment).
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This process can be repeated for even higher levels such as paragraphs or recording sessions.
The set of functionals can be different for each level, and usually it is reduced more and more
for higher levels. A large set of functionals is usually used at the first level. At higher levels,
the mean and moments are usually the most promising functionals.

Now, by applying all available and commonly used functionals to all available LLDs
(optionally in a hierarchical way) we can brute-force very large feature sets (Schuller et al.
2008). Not all combinations of low-level features and functionals make sense in general and
some might not be relevant for all tasks; however, one can let machine learning methods deal
with selection of relevant features for every task.

This method stands in contrast to designing a small set of features which are based on
expert knowledge. For every paralinguistic task, expert studies must be carried out to find
relevant acoustic and linguistic features which can then be implemented. The advantage of
this method is that if the experts find ‘good’ features, and the features can be robustly extracted
automatically without manual correction, such methods are computationally efficient due to
the rather small number of features. However, experts have not identified perfect features for
paralinguistics tasks, and the ones they have defined are not robustly extractable. As a small,
blunt example we would mention gender recognition: given the fact that the pitch of female
voices is twice as high as that of male voices, we can formulate a simple expert rule for speaker
gender detection based on pitch as a single feature. However, pitch detection algorithms might
return double or half of the actual pitch value (e.g., if the actual fundamental frequency is
missing the algorithm might pick the first harmonic; see Section 8.4.9). In this case the gender
detection result is likely to be incorrect.

The ‘brute-force’ approach, on the other hand, generates a large number of features which
are not designed specifically for the task at hand. However, most of the features are robust to
extract, and machine learning algorithms will select feature sets which are highly correlated
to the task of interest. If a feature is unsuitable due to extraction errors (like pitch in the above
example), it might not be well correlated with the class and discarded by the feature selection
algorithm (see Section 11.1).

Figure 10.1 gives a full overview of the principle of hierarchical feature extraction.

10.3 Feature Stacking

The advantage of using functionals for supra-segmental modelling is that they can map
variable-length input sequences to a fixed-size vector. However, information is lost in this
process, depending on the type(s) of functionals used. For example, the arithmetic mean dis-
cards information about the variations over time, while the standard deviation describes these
variations but discards information about the average value. This reduction of information is
often desirable, especially when the segments are very long.

For some tasks, such as those dealing with identifying short speech events (e.g., non-
linguistic vocalisations) in continuous streams, an alternative supra-segmental modelling
approach might be better suited: feature frame stacking. The concept is very simple: all
L frames (N low-level features) of an L-frame sequence are concatenated into a supervector.
This results in an N · L-dimensional feature vector for each segment.

A precondition for this method is that all segments must have the same length, so that the
dimensionality of the supra-segmental feature vector remains constant. Also, the method is
unsuitable for segments longer than approximately L = 100 (typically 1 second), because the
resulting feature vector will be too large.
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Figure 10.1 Systematic hierarchical speech feature brute-forcing. A horizontal division is shown by
LLDs and functionals – the functionals are not calculated if frame-level processing is carried out. A
vertical division into acoustic or signal-type features and linguistic or symbolic features is also shown

If feature stacking is to be applied to time series of variable length or long time series, a
heuristic frame selection method could be applied, where only every nth frame is selected, or
frames at given relative positions (cf. the ‘samples’ functional).

Moreover, in order to reduce the dimensionality of the supervectors (in the case of long
segments), data reduction methods such as principal component analysis or linear discriminant
analysis can be applied. As a side effect the resulting features in the transformed (and optionally
reduced) feature space are also decorrelated, which can be beneficial for some machine learning
algorithms which assume independence among the features. The features in the original space
are highly correlated because values of the same feature at consecutive time instants are usually
highly correlated for speech signals (see linear predictive coding, Section 8.4.5).
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11
Machine-Based Modelling

Much learning does not teach understanding.
(Heraclitus)

In this chapter, we deal with the actual machine-based modelling once a feature representation
has been found. We start with the feature relevance analysis, leading on to the actual machine
learning. We confine ourselves to the approaches encountered most often in the field of
computational paralinguistics today (Schuller et al. 2011, 2013a,b). Beyond the machine
learning algorithms presented and the variations thereof, there are almost infinitely many
others. However, those chosen also present a good balance of basic methods, including static
modelling of single feature vectors such as after extraction of supra-segmental features, as
well as dynamic approaches that are suitable for modelling on a frame-by-frame level. The
first type – static modelling – includes decision trees, support vector machines, and neural
networks, together with the recently highly successful approach of memory modelling. As
for the second type – dynamic modelling – hidden Markov models have been selected as
a representative exemplary approach. This choice is motivated by the fact that they are the
quasi-standard in many speech processing tasks. We include classification and regression to
allow for discrete class-based and continuous modelling.

Finally, we deal with testing protocols, discussing partitioning and balancing of data, per-
formance measures, and also result interpretation. The latter aspect is related to the ‘magical
numbers’ discussion that was given above in Section 3.10, this time, however, going into detail
for the calculation of such measures.

11.1 Feature Relevance Analysis

The feature extraction methods described so far generate large feature spaces. This is true for
both the ‘brute-forcing’ of acoustic features by more or less exhaustive application of statistical
functionals to contours of LLDs, and the vector space modelling of linguistic content. Large
feature spaces are problematic both in classifier training and evaluation, as an increase in the
number of features is usually accompanied by both a growth in the complexity of optimisation
algorithms for training, and a growth in the size of the resulting model. Furthermore, increasing
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the number of model parameters comes with the danger of ‘over-fitting’: more features usually
help to better fit a model to the characteristics of the training data, but this is prone to low
generalisation to unseen test data. We have already given a hint on feature selection techniques
tailored to linguistic features, such as stopping and stemming. This chapter now provides a
unified view on this issue.

The most straightforward approach to feature selection is to evaluate each feature’s merits
by computing statistical and information-theoretic measures such as the correlation coefficient
(CC) of the feature with (continuous-valued or ordinal) class labels (see equation (11.99)), or
the information gain ratio (IGR) with respect to nominal class labels (see equation (11.6)).
These can be used to obtain a ranking of features, keeping only a specified number of ‘top’
features, or those with CC or IGR above a minimum value.

This procedure, however, has two main disadvantages. First, especially in the context
of feature brute-forcing, such selection methods are usually not sufficient, since for each
information bearing feature there might be multiple features of similar nature which would
then be selected as well, resulting in a highly correlated feature space after selection. To
combine feature selection with feature space decorrelation, correlation-based feature selection
(CFS) can be employed (Witten and Frank 2005). This is based on defining the following filter
function M for the feature subset S with k = |S| features:

M(S) = k · CCcf
√

k + k(k − 1)CCff
, (11.1)

In the above, CCcf denotes the mean CC of features in S with the class label, and CCff is
the average CC of features in S with each other. The underlying idea is that ‘good’ subsets
of features have high predictive power regarding the class label, yielding a high value in the
numerator of equation (11.1), and a low degree of redundancy among the features, yielding a
small value in the denominator.

However, CFS does not solve the second disadvantage of statistical feature selection, which
is that these statistics might not be related to the requirements of the classifier; for instance,
support vector machines (SVMs) are robust to zero-information features, as will be explained
below (cf. Section 11.2.1). Thus, information-theoretic measures or simple statistics of feature
subsets are not always indicative of the expected classifier performance using these subsets.
These considerations lead to the introduction of ‘wrapper-based’ evaluation, which directly
uses the performance of the intended classifier as an evaluation measure (Schuller 2006;
Witten and Frank 2005). In particular, this means that for every feature subset considered, a
classifier has to be trained and evaluated, which can easily become computationally expensive.
While this can be partly alleviated by tuning classifier (hyper)parameters, such as the SVM
complexity constant (see Section 11.2.1), for fast training and evaluation, this comes at the
risk of introducing a bias, as it is not clear how the feature subsets considered would behave
in the final system using classifier parameters tuned for optimal system performance.

To provide a truly optimal feature set, the above criteria (wrapper-based evaluation, CFS,
etc.) would have to be evaluated on all possible feature combinations. It is easy to see that

there are

(
N
|S|

)

possible subsets of size |S| of a feature space of size N ; thus, exhaustive
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evaluation of all possible feature combinations has exponential complexity in N , rendering it
effectively infeasible for brute-forced feature spaces of several hundred or thousand features.

Thus, efficient search algorithms become mandatory. Probably the most straightforward
algorithm is ‘greedy hill climbing’, This procedure starts from an initial ranking of the features
(e.g., by CC), and iteratively selects the best of the remaining features, either by the rank of the
feature itself, or by evaluation of the subset resulting from adding the feature to the current set
(e.g., by CFS). This procedure, however, is prone to ending up in local minima (‘nesting effect’).
Thus it is usually combined with a ‘backtracking’ option that allows for removing features
and replacing them by other candidates further down the list of relevant features, which might
be more helpful in combination. Combining greedy hill climbing with backtracking yields the
so-called ‘floating search’, and if greedy selection and backtracking are applied iteratively, the
resulting algorithm is known as sequential floating forward search (SFFS).

In the case of large brute-forced feature sets, SFFS usually yields rather small subsets of
the original feature set. If one merely wants to remove unnecessary features, one can ‘invert’
the above procedure (‘backward’ instead of ‘forward’ search) – one thus starts with the full
feature set and iteratively removes features, for example, those with low IGR. However, if the
initial set is large, this variant is usually much more expensive than forward search.

A number of further measures and search functions exist, and one can also add further
combinations or alterations of features throughout search, usually by random injection or
genetic algorithms to limit the search space (Pachet and Roy 2009; Schuller et al. 2005,
2006a,b).

All the above methods are purely data-based. Often, they yield a feature set that is both
sub-optimal (due to the approximative nature of search algorithms) and hard to interpret, as it
is usually a mixture of features from different groups. For example, a selected feature might
have a counterpart of similar nature that is easier to interpret, which was not selected because
it has slightly lower correlation with the target variable. Especially CFS and similar methods
often yield ‘grab bag’ types of feature sets where the value of individual features is unclear,
because they are more focused on decorrelation rather than relevance analysis. At this point,
expert knowledge can be used to replace ‘blind’ statistical selection of feature subsets by
semantic criteria, such as evaluating only feature subsets corresponding to functionals of a
single low-level descriptor (LLD), or only a single functional type of several LLDs. While
such feature selection is often inferior to a combination of SFFS and wrapper-based selection
in terms of resulting system performance, it has the potential to deliver deeper insights into
the nature of the features. For example, it could turn out that the median of the LLDs is better
suited than the arithmetic mean.

In contrast to the feature selection methods described above that are closely related to
feature relevance, feature reduction methods aim to compress the information contained in the
full feature space. An example of a feature reduction method is principal component analysis
(PCA) (see Kroschel et al. 2011), which computes an orthogonal transformation matrix such
that the dimensions of the resulting feature space are uncorrelated and ordered by decreasing
variance – then, usually only the first few dimensions are kept. This basically assumes that
any kind of variance in the features has to be preserved and is thus susceptible to noisy or
zero-information features. Linear discriminant analysis (LDA) (again see Kroschel et al. 2011)
can be viewed as an extension of PCA that also considers class labels in computation of the
transformation matrix, in order to spread class centres in the feature space. Both PCA and
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LDA, however, can easily lead to feature representations that are very hard to interpret, since
every dimension of the resulting feature space is a linear combination of potentially large
numbers of input features with positive and negative coefficients.

11.2 Machine Learning

Based on the extraction of features as outlined in the previous chapter, a system has to be
designed to map these features to the target variable of interest, such as the age or emotion of
a speaker. One can generally distinguish between rule-based schemes and machine learning
techniques. The former are based on expert knowledge as touched upon in Chapter 3; the
latter – and these make up the vast majority of today’s approaches – assume only the coarse
structure of the classification or regression scheme to be given, for example, determining the
target class using a sequence of threshold decisions (decision trees, see below). The exact
parameters of the scheme are determined by statistical optimisation – usually, minimising the
error that would occur when classifying a set of labelled training data.

One can very roughly subdivide machine learning based schemes into static and dynamic
classification. The choice between these two is closely connected to the choice of frame-wise
or supra-segmental features: static classifiers (or regressors) map a feature vector of fixed
size to a target label, while dynamic classifiers handle feature sequences of varying length,
allowing for time warping.

11.2.1 Static Classification

‘Static classification’ refers to the process of assigning a discrete class label to an unknown
feature vector of fixed dimensionality. As examples of static classifiers, two classifiers which
are frequently used in computational paralinguistics, are briefly described in the following:
decision Trees and support vector machines.

Decision Trees

Let us begin with decision trees (DTs: Kroschel et al. 2011; Quinlan 1993). The structure of
these is very similar to a rule-based classification scheme; however, instead of using expert
knowledge, the sequence of rules to apply is determined automatically from training data.
Thus, an advantage of DTs is that they produce human-readable sets of rules, making clas-
sification transparent and intuitive to understand (assuming that one starts from interpretable
features, see above).

The type of DTs considered in this book perform comparisons with constants in order
to decide to which next comparison to branch, until a class label decision can be reached.
Mathematically, trees are typically considered as a sub-class of graphs. Starting from a generic
undirected graph, the conditions for a tree are that the graph is acyclic and connected, that is,
each node needs to be reachable by a path from each other node. The classification process
can be modelled as a path in this graph. As a graph, a DT is defined by a set of nodes V and
a set E ⊆ V × V of edges e, such that e = (v1, v2) ∈ E represents a connection from node
v1 ∈ V to node v2 ∈ V . As a tree, the condition |E | = |V | − 1 holds.

A path of length P through the tree is a sequence v1, . . . , vP , vk ∈ V with (vk, vk+1) ∈ E ,
k = 1, . . . , P − 1. Each path starts at the ‘root’ node r , which is the one and only node in the
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Figure 11.1 An example of a decision tree: a binary classification problem is solved in a feature space
of dimension 3. Circles are root and inner nodes, rectangles are leaves (with class labels)

graph that does not have incoming edges, that is, E contains no element of the form (v, r ),
v ∈ V . Given a feature space of dimension N , a partial function

a : V → {1, . . . , N }
is defined, mapping all nodes that have outgoing edges (inner nodes) to features. This function
is usually injective, that is, each feature only occurs at most once in the tree.

The edges traversed in a path correspond to branch decisions based on the values of these
features. Each edge is assigned a feature interval. To determine the class label of a pattern vector
x = (x1, . . . , xN )T , one follows a path through the tree that satisfies the following criterion:
starting at the root node, the nodes v in the path are interconnected by the edge for which xa(v)

is within this edge’s interval. The number of outgoing edges of a node depends on quantisation
of the features into Jn intervals per feature n, resulting in a finite number of outgoing edges.
In particular, the root node and each inner node v have Ja(v) outgoing edges. The quantisation
intervals are determined in the learning process (see below). An important special case is the
binary decision tree: here, each inner node has two outgoing edges with intervals of the form
] − ∞, ξ ] and ]ξ,+∞[ corresponding to a threshold decision at each node. The intervals are
determined using simple ‘binning’ as in histogram calculation (Witten and Frank 2005); an
alternative is to use sigmoid functions for the decisions (Landwehr et al. 2005).

Furthermore, each path ends at a ‘leaf’. The ‘leaves’ are the nodes b without an outgoing
edge, that is, for which in E there exists no (b, v) with v ∈ V . Based on a mapping from leaves
to class labels, the class of the leaf in which the path ends is determined. An example of a
binary DT is shown in Figure 11.1.

It remains to outline an optimisation criterion for determining the parameters of the tree.
Generally, one aims to maximise the information gain for each node in the traversed path,
with respect to correct classification using the ‘remaining’ features at each node (features that
have not been used in the previous decisions). To this end, the Shannon entropy H (Y ) of the
distribution of the class probabilities (Y1, . . . , YM ) can be employed:

H (Y1, . . . , YM ) = −
M∑

i=1

Yi log2(Yi ). (11.2)
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One now considers the amount of information needed to assign an instance to a class
i ∈ {1, . . . , M}. This information is determined on the training set L of pattern vectors x with
known class attribution y according to

H (L) = −
M∑

i=1

Ŷi log2(Ŷi ), Ŷi = |Li |
|L| , (11.3)

where Li is the set of elements in L with class attribution i .
To determine an optimal tree structure, one uses an ‘information gain’ (IG) approach. One

considers the value of each individual feature n with respect to the class assignment. This is
measured as the remaining information needed for classification before and after observing
the value of feature n. For each n the set L is divided into the subsets Ln, j , j = 1, . . . , Jn , on
basis of the different values of n, such that Ln, j only contains those vectors where feature n is
in the interval j . The remaining average information H (L|n) needed after observation of the
feature n for the class assignment results as the weighted average of the information H (Ln, j ),
as required to classify an element of the subset Ln, j :

H (L|n) =
Jn∑

j=1

|Ln, j |
|L| H (Ln, j ). (11.4)

Based on this, the IG can be defined formally as the reduction in the entropy, that is, the
information needed for the assignment, by addition of the feature n:

IG(L, n) = H (L) − H (L|n). (11.5)

In particular, if all elements in L, whose features n have the same value, belong to the same
class – this is the case, in particular, if a feature has a different value for each element in
L – then H (L|n) = 0, and one obtains a maximal IG(L, n). Thus, the above definition can
be problematic since it tends to favour features with a large number of different values Jn ,
which can lead to over-fitting. One can compensate for this by introducing the information
gain ratio (IGR)

IGR(L, n) = IG(L, n)

H

( |Ln,1|
|L| , . . . ,

|Ln,Jn |
|L|

) . (11.6)

The term in the denominator is called the split information and is computed according to
equation (11.2). This is the information one obtains by splitting the set L according to the
values of the feature n.

It remains to outline an effective algorithm to determine the optimal sequence of features
in the DT. Similarly to the feature selection issue outlined above, an exhaustive enumer-
ation of possible trees is generally not feasible due to the exponential complexity in N .
Thus, one mostly relies on greedy algorithms, where at every step a feature is selected by
a local optimisation criterion. A global optimum is thus not guaranteed. A popular instance
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of such a greedy algorithm for the training of DTs is the iterative dichotomiser 3 (ID3)
algorithm (Quinlan 1983). ID3 is based on dynamic programming, determining sub-trees
for subsets of features and concatenating them to yield a DT for the overall feature set.
For a given set of features M ⊆ {1, . . . , N } and training set L, the algorithm proceeds
as follows:

1. Termination 1: If all elements in L belong to class i , return a leaf labelled i .
2. Termination 2: If M is empty, return a leaf labelled by the most frequent class in L.
3. Else proceed recursively: Search for the feature n′ with the highest IG(R), that is,

n′ = arg max
n∈M

IG(L, n).

For all j = 1, . . . , Jn′ construct a DT by ID3 on the feature set M − {n′} and the training
set Ln′, j . Return a tree with the root labelled by the feature n′ whose edges lead to the
constructed DTs.

From the above, it is easy to see that ID3 always terminates, as in every recursive call the
remaining set of features decreases, eventually leading to one of the ‘termination’ branches of
the algorithm being executed. The recursive step is further visualised in Figure 11.2.

Extensions of ID3 are the C4.5 and J48 variants that introduce pruning of sub-trees (Quin-
lan 1987, 1993) for increased efficiency. During pruning, a whole sub-tree can be replaced
by a leaf if the error probability is not significantly increased by this substitution. Note
that this reduces the number of features, that is, an inherent feature selection by IG(R)
is given.

DTs usually are not used with large feature sets as introduced above. This is because they
are prone to over-fitting: assuming that the number of training vectors is small in comparison
to the number of features, it is easy to perfectly model the training set by a DT. Typically, large
feature sets are thus randomly sub-sampled, and for each subset a DT is built. In classification,
the decisions of all subspace DTs are fused, for example, by majority voting, yielding the so-
called random subspace method for building decision forests (Ho 1998). Random sub-sampling
can also be used for selecting training instances, resulting in random forests (Quinlan 1996).
Decision forests and random forests are known as competitive classifiers for paralinguistic
tasks, delivering performance similar to the classifiers introduced below.

Figure 11.2 ID3 algorithm: a recursive call for the feature n′. The feature maximises the IG(R) for the
classification of L within M (Kroschel et al. 2011)
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Support Vector Machines

Probably the most frequently used classifiers in computational paralinguistics are support
vector machines (SVMs). This popularity can be attributed to a few convenient properties –
mainly their ability to handle large feature spaces (as those generated by feature brute-forcing),
sparse features (features that are ‘almost always’ zero, such as frequently encountered in vector
space modelling of linguistic features – see Chapter 9), and their robustness to over-fitting.
These properties were pointed out in (Joachims 1998) in the context of classification by
linguistic features, and they have since also been exploited for acoustic classification. Further-
more, SVMs can be easily extended to continuous class labels by considering support vector
regression as introduced in Cortes and Vapnik (1995) – details are given in Section 11.2.3.

The core idea of SVMs is built around binary linear classifiers, optimised to provide the best
possible separation between classes in the feature space – in contrast to other classifiers with
linear decision boundaries, such as nearest neighbour classifiers. This optimisation criterion
leads to classification based on so-called ‘support vectors’ lying in between the centres of grav-
ity of the classes and defining the decision boundary. Support vectors are chosen by solving a
quadratic optimisation problem, for which efficient algorithms are available. As a result, classi-
fication is based on a small subset of the learning instances, reducing the danger of over-fitting.
Finally, to solve non-linear decision tasks, the ‘kernel trick’ is applied to map into a higher-
dimensional decision space but retaining the low complexity of the support vector principle.

In general, SVMs are thus capable of discriminating between two classes, that is, solving
binary decision problems. We first focus on this task. Multi-class SVMs can be designed
based on a combination of binary SVMs, through diverse strategies, for example, by training
SVMs for each pair of classes and summing the ‘votes’ for each class during recognition,
or by forming a binary decision tree (cf. above) with threshold decisions replaced by SVM
classification.

Starting from this broad picture, let us now flesh out the underlying mathematical principles.
SVMs are trained based on a set of learning instances L, L = |L|, where each of the instances
xl ∈ L, l = 1, . . . , L , is given a class label yl ∈ {−1,+1}. The labels −1 and +1 are used in
order to simplify the mathematics. We will refer to the patterns xl with yl = +1 and yl = −1
as ‘positive’ and ‘negative’ instances, respectively. Thus we can write L as

L = {(xl , yl ) | l = 1, . . . , L}, where yl ∈ {+1,−1}. (11.7)

Like any linear classifier, SVMs are defined by a hyperplane H (w, b) consisting of the
normal vector w and the scalar bias b,

H (w, b) = {x | wT x + b = 0}. (11.8)

Let us assume first that a perfect separation of the training instances is possible, that is, that
there exists a hyperplane such that all positive instances reside on one side of the plane while
all negative instances are found on the other side. Mathematically, this can be expressed as the
side conditions

yl = +1 ⇒ wT xl + b > ε,

yl = −1 ⇒ wT xl + b < −ε (11.9)
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which have to be fulfilled for all training instances. Assuming that such a hyperplane exists,
a normalisation of the side conditions can be realised by appropriate scaling of w and b
(Cristianini and Shawe-Taylor 2000) such that

yl = +1 ⇒ wT xl + b ≥ +1,

yl = −1 ⇒ wT xl + b ≤ −1 (11.10)

holds for all training instances xl , l = 1, . . . , L . Thus, we can define the margin of separation
μL as the minimum of the magnitude of the distances of all points x1 . . . xl in L to H :

μL(w, b) = min
l=1,...,L

|D(xl)| (11.11)

where D(x) is the signed distance of a point x to the hyperplane H ,

D(x) = wT x + b

||w|| . (11.12)

SVMs are based on the principle of ‘maximum margin’, that is, maximum discrimination
between the two classes is reached by maximising the margin of separation. Mathematically,
we look for the hyperplane H∗ = H (w∗, b∗) with maximal value μ∗

L(w∗, b∗) to separate the
training set L. The instances x sv

l ∈ L which are closest to the hyperplane H∗ are called support
vectors of H∗ with respect to L. From (11.10) and (11.12) it follows that their distance D∗(x sv

l )
from the hyperplane H∗ is

D∗(x sv
l ) = ±1

||w|| . (11.13)

As a consequence, positive and negative instances are spread apart by at least a ‘corridor width’
of 2/||w||. The borders of this corridor are made up of the support vectors. This is illustrated
in Figure 11.3.

Instead of maximising the width of the corridor, 2/||w||, one can minimise the expression
1
2wT w. This results in a convex minimisation problem, which has a unique solution w∗. The
minimisation has linear side conditions resulting from the separation condition (11.10):

yl (w
T xl + b) − 1 ≥ 0, with l = 1, . . . , L . (11.14)

This is a classical boundary value problem which can be solved using Lagrange multipliers,
as explained by Cortes and Vapnik (1995) in detail.

The derivation so far has been based on the assumption that training instances can be
separated flawlessly by a hyperplane in the feature space. Generally, however, this is not the
case. We can model this in the current approach by allowing vectors to be placed on the ‘wrong
side’, by introducing so-called ‘slack’ variables ξl ≥ 0, l = 1, . . . , L , giving the deviation from
the ‘ideal’ boundary condition:

yl = +1 ⇒ wT xl + b ≥ +1 − ξl,

yl = −1 ⇒ wT xl + b ≤ −1 + ξl . (11.15)
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Figure 11.3 Example (optimal) hyperplane H ∗(w, b) (thick solid line) in a feature space of dimension
2. The maximum margin of separation μ∗ is shown as the two dotted parallel lines. “x” and “o” symbols
represent instances of the two classes to be separated

Obviously, one wants as little deviation from the ideal boundary conditions as possible – thus,
the expression

1

2
wT w + C ·

L∑

l=1

ξl (11.16)

needs to be minimised, where C is an error weighting factor that needs to be determined –
an example of a classifier ‘hyperparameter’ that is left to engineering, usually by considering
a separate validation set (cf. Section 11.3.1). It can be shown that the above optimisation
problem (the ‘primal problem’) is equivalent to the ‘dual problem’ of maximising

L∑

l=1

al − 1

2

L∑

k=1

L∑

l=1

akal yk yl(x
T
k xl), (11.17)

with the side conditions

0 ≤ al ≤ C, l = 1, . . . , L , (11.18)

L∑

l=1

al yl = 0. (11.19)

In this model, the normal vector and bias of the hyperplane are given by

w =
L∑

l=1

al yl xl , (11.20)

b = yl∗ (1 − ξl∗) − xT
l∗wl∗ , (11.21)

where l∗ denotes the index of the training vector xl with the largest coefficient al . This
representation has an interesting interpretation. The normal vector w is now a weighted sum
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of training instances with the coefficients al ≤ C , l = 1, . . . , L; these weighting coefficients
replace the slack variables ξl in the optimisation problem. The support vectors are the training
instances xl that satisfy al > 0. This is also called support vector expansion (Smola and
Schölkopf 2004).

For the optimisation of the dual problem (11.17), L2 terms of the form xT
k xl have to be

computed, resulting in quadratic complexity in terms of the number of training instances.
However, there exist efficient dynamic programming algorithms to solve the dual problem,
breaking it down into smaller optimisation problems that can be solved analytically and
subsequently combining the results. One such algorithm is sequential minimal optimisation,
which is introduced in detail by (Platt 1998).

Classification by linear SVMs as introduced above exactly corresponds to a simple linear
classifier and is given by

dw,b(x) = sgn(wT x + b), (11.22)

where sgn is the sign function (9.7). It is easy to see that the decision rule (11.22) performs an
implicit weighting of features by relevance. The vector w can be interpreted as a weight vector
assigning each feature i to a weight wi in the decision rule. A large absolute value of weight
wi means that the decision is heavily influenced by the value of feature i . Thus, SVMs are very
robust to ‘nuisance’ dimensions carrying zero information with respect to the target class –
geometrically, such dimensions will not affect the maximum margin hyperplane, causing the
corresponding entries in w to vanish.

Linear SVMs as introduced so far are only able to solve pattern recognition problems where
the instances belonging to the (two) different classes can be separated with a certain acceptable
error by a hyperplane in the space X . For classes that can only be separated non-linearly, one
can apply non-linear transformations. Figure 11.4 depicts an example of a two-class problem
in one-dimensional space which cannot be solved flawlessly by any kind of linear boundary.
However, by mapping the vectors into a two-dimensional space by means of a quadratic
vector-valued function �, the instances can be separated without error.

In general, such transformations � are of the form

� : X → X ′, dim(X ′) > dim(X ). (11.23)
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Figure 11.4 Example of projection into a higher-dimensional space to solve a binary problem that can-
not be solved linearly in one-dimensional space (left). By mapping � : x1 �→ (x1, x2

1 ), linear separation
is possible without error in the new higher-dimensional space (right) (Kroschel et al. 2011)
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Applying this transformation to the normal vector w (11.20), we have

w =
∑

l:al>0

al yl�(xl). (11.24)

The decision function dw,b(x) results in:

dw,b(x) = sgn(wT �(x) + b). (11.25)

If no further constraints are put on �, this drastically increases the complexity of SVM training
and classification, since every dimension of the resulting feature vectors has to be computed
explicitly. This is where the so-called ‘kernel trick’ (Schölkopf and Smola 2002) comes into
play. Note that for classifier training in the transformed space, only scalar products of the form
�(x)T �(x ′) have to be computed:

wT �(x) =
∑

l:al>0

al yl�(xl )
T �(x), (11.26)

Explicit computation of � is also not needed for evaluation of the decision function. Thus,
only the result of the scalar product �(x)T �(x ′) has to be given as a function, the so-called
‘kernel function’K �(x, x ′), which fulfils

K �(x, x ′) = �(x)T �(x ′). (11.27)

The kernel function additionally needs to be positive semi-definite, symmetric, and satisfy the
Cauchy–Schwarz inequality. In widespread use is the polynomial kernel of order p,

K �
p (x, x ′) = (xT x ′ + 1)p. (11.28)

In this example, it can be easily seen how drastically the application of the kernel function
K � instead of the transformation � reduces the required computation effort. To compute a
polynomial of order p in the space X , a total of

(
dim(X ) + p

p

)

≈ dim(X )p

p!
(11.29)

terms would need to be calculated, while the computation employing the polynomial kernel
requires only O(dim(X )) operations, regardless of the polynomial order p. Note that using
p = 1 (‘linear kernel’) results in a simple linear SVM as introduced in the examples above.

Frequently used non-linear kernels, besides higher-order polynomial kernels, include the
Gaussian kernel, also known as the radial basis function kernel,

K �
σ (x, x ′) = exp

( ||x − x ′||2
2σ 2

)

, (11.30)
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where σ is the standard deviation of the Gaussian, and the sigmoid kernel,

K �
k,�(x, x ′) = tanh(k(xT x ′) + �), (11.31)

with amplification k and offset �.
There exist many further kernels for special requirements, such as the Kullback–Leibler

(KL) divergence kernel frequently used in Gaussian mixture model (GMM) SVM ‘supervector’
construction. In this case, feature dimensions correspond to GMM mixture weights, means
and variances; instead of measuring their distance by the standard scalar product, the KL
divergence of the corresponding Gaussian distributions is (approximately) computed.

For non-numeric input, that is, symbol sequences, a string subsequence kernel can be used
(Lodhi et al. 2002). This directly maps textual information to a high-dimensional feature
space without explicit calculation of features. The underlying model is based on counting the
number of observations of substrings in a given string, similar to BoCNG (see Section 9.4.1),
but allowing non-contiguous substrings: for example, ‘ser’ exists in ‘serene’ (as in BoCNG),
but also in ‘superb’. However, in the latter case, the non-contiguity is penalised by reducing
the number of observations by a decay factor λ ∈ [0, 1]. The mapping of text to this substring
space can be modelled as a transformation �, yet an implicit calculation is done by using
a kernel function K �(s, t) for strings s and t . It is implemented effectively through string
similarity, which can be computed by dynamic programming (see Section 11.2.2) (Lodhi et al.
2002).

Apart from special cases such as the above where a kernel function is tailored to the
problem, the optimal kernel function for a generic classification or regression problem is
usually found empirically, such as by cross-validation (see Section 11.3.1) using SVMs with
different kernel functions and kernel hyperparameters (polynomial order, etc.) Recently, so-
called multi-kernels have been introduced to provide a data-based solution to the search for
optimal kernel functions (Yang et al. 2011). The basic idea is to consider a weighted sum of
kernels as a kernel function, optimising alternately the hyperplane parameters and the weights
of the kernels. This leads to implicit selection of the kernel function best suited to the problem,
similar to the implicit selection of features and training instances as outlined above.

In computational paralinguistics, tasks are often correlated with each other – for example,
detection of basic emotions such as happiness can be regarded as a task similar to binary
classification of low and high arousal. Both tasks can be ‘taught’ to a single SVM classifier,
joining the training vectors for both tasks (Ls andLt ) in a single training setLs∪t and employing
a kernel function respecting the task similarity Ss,t between tasks s and t – meaning that a
positive instance in Ls should also be a positive instance for task Lt . In the general case of
multiple tasks, this leads to the introduction of a positive definite and symmetric task similarity
matrix, S = (St1,t2 ), that is employed in a multi-task kernel function. For example, the linear
kernel is extended to

K MT(x (t1), u(t2)) = St1,t2 x (t1)T
u(t2). (11.32)

where x and u belong to tasks t1 and t2, respectively. Non-linear multi-task kernels are
explained in detail in (Evgeniou et al. 2005). Multi-task learning is especially promising in
cases where only little training data is available for a given task while a large training base
exists for similar tasks (Widmer and Rätsch 2012).
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Neural Networks

This section gives a short introduction to artificial neural networks (ANNs) and describes the
extension for classification and regression of time series with long-range context called long
short-term memory (LSTM) networks and their bidirectional variants (BLSTM). Combining
LSTM with recurrent neural networks (RNNs) yields (bidirectional) long short-term memory
recurrent neural networks ((B)LSTM-RNNs).

ANNs are capable of learning arbitrary (also non-linear) functions (Niemann 2003), and
belong to the most popular machine learning algorithms, since the first mathematical models
introduced by McCulloch and Pitts (1943). This model still provides the basis for today’s ANNs
(e.g., Schuller 2006). ANNs are motivated by the physiological neural networks in the central
nervous system of vertebrates. The main information processing unit is the neuron. Via its
axon a neuron emits a certain activity of electrical impulses (Rigoll 1994). These impulses are
propagated to the synapses of other neurons through a complex network of connections. The
activity of a single neuron is based on the cumulative activation at its input. A higher neuron
activity results in a higher impulse frequency. An ANN thus consists of neurons and their
directed connections. It is fully described by the network topology (the layout of the neurons
and the connections), multiplicative weights for all the connections, and the type of neurons
(e.g., the transfer function employed in the neurons) as well as the encoding of the output.
Figure 11.7 shows an example of such an ANN. The feature vector x = {xi }, i = 1, . . . , N ,
is applied as input to the network at its N input neurons. The values of the feature vector
are multiplied by the weights wi , i = 0, . . . , N , which can be written as a weight vector
w = {wi }. The additional weight w0 has a special meaning: it represents a permanent additive
offset rather than being a multiplicative weight. After application of the weights, the weighted
inputs are summed, resulting in a value u. This u is then processed by the neuron with its
(usually) non-linear transfer function T (u). The output v of this function is the output of the
neuron, which is forwarded to the next layer of neurons. For T (u), in most cases a steep
decision function is preferred. A visualisation of a single neuron is given in Figure 11.5.
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Figure 11.5 An example of an artificial neuron
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Figure 11.6 Sigmoid function for various values of the steepness parameter α. For α → ∞ a binary
threshold decision function is approximated

A popular neuron transfer function is the sigmoid function

T (u) = 1

1 + e−αu
, (11.33)

where α is the steepness parameter (see Figure 11.6). Other popular functions include the
hyperbolic tangent function as a special case of the sigmoid function which has an extra
additive offset, and the unit step function

T (u) =
{

0 if u < 0
1 if u ≥ 0.

(11.34)

The sigmoid function is popular because it approximates an ideal threshold decision (cf.
Figure 11.6) very closely (given a large α) while being differentiable. The differentiability is
needed for training of the network with a gradient descent algorithm.

There are many different neuron topologies, that is, ways of arranging and connecting
neurons. We now introduce the most important and most common of these.

Feed-Forward Neural Networks

A feed-forward neural network (FNN) has connections from the input neurons (top layer) to
the output neurons (bottom layer) only. Upward connections, also called recurrent connections,
that is, connections to the input layer, or connections that would form a loop in some way,
are not allowed in this type of network. The best-known implementation of the FNN is the
multilayer perceptron (MLP) (Deller et al. 1993): This has at least three layers: one input layer,
one or more hidden layers, and one output layer. All connections feed forward from one layer
to the next without backward connections – hence the name FNN. MLPs have no memory
over time, that is, they treat all input patterns independently. The outputs ŷ j , j = 1, . . . , M ,
of the last layer can be written as a vector ŷ. If the network is used as a regressor, usually only
one output neuron is present and the output resembles the regressor value. A regressor for
multiple (dependent) targets can thus be constructed if more than one output neuron is used.

For classification, the neuron activation values of the output layer have to be mapped to a
discrete class representation. This is referred to as ‘encoding’. Typically one output neuron
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per class is used. The class of the neuron with the highest output activation is chosen as
classification result. Usually a ‘softmax’ function is used as a transfer function in the output
layer. This function normalises the sum of all outputs to 1. This allows the outputs to be
interpreted as posterior probabilities P( j |x) of each class:

P( j |x) = ŷ j = eu

∑M
j=1 eu

. (11.35)

The advantage of these posterior probabilities is that they provide a measure of confidence for
the classification decision.

In the recognition phase, the net is computed layer by layer from the input layer to the output
layer. For each layer the weighted sum of the inputs from the previous layer (or the input data,
for the first layer) is computed for each neuron. The output of each neuron in the layer is
computed via the neurons’ transfer functions. With the softmax function at the output layer
neurons and the given encoding, the class recognised is assigned with a maximum search.
As an alternative, we could choose, for example, a binary encoding of the classes with the
network’s outputs, but this is not optimal in cases where classes with neighbouring indexes
are not close to each other in the feature space.

Back-Propagation

Among the multiplicity of learning algorithms which are available for ANNs, the gradient
descent based back-propagation algorithm (Rumelhart et al. 1987) is one of the most popular.
Let W = {w j }, j = 1, . . . , J , summarise the weight vectors w j of a layer, where J is the
number of neurons in this layer. To measure the progress of the network training, the mean
square error (MSE) E(x, W ) between the gold standard y and the network output ŷ = f (x, W )
is used as the objective function:

E(x, W ) = |y − ŷ|2 (11.36)

For simplicity, in the following we consider the case of a single output. An extension of the
equations to multiple outputs is straightforward. Other objective functions can be used instead,
among them the McClelland error or cross-entropy. Before the training of the weights with
back-propagation, the weights must be initialised to non-zero values. This is typically done
by a pseudo-random generator. Then, three steps follow for the back-propagation, repeated
over a number of epochs (one epoch is one pass of all three steps) until a stopping criterion is
reached. These three steps are:

1. Forward pass (computation of outputs, given a vector of inputs).
2. Computation of the objective function (e.g., the MSE as in equation (11.36).
3. Backward pass with weight adaptation by the corrective term

wi → wi + 	wi = wi − β · δE(x, W )

δwi
, (11.37)

where β is the update step size, which is to be determined empirically, and wi is an
individual weight in the network.
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The iterative updating of the weights is typically stopped after a given maximum number of
iterations or when the change in the output error (objective function result) from one iteration
to the next is below a defined threshold (Schalkoff 1994). Experience is needed in order to be
able to determine a ‘good’ set of learning parameters. However, automated approaches exist
to learn these parameters. To avoid over-fitting to a given set of training data, a large enough
number of training instances is required compared to the number of parameters (weights) in
the network and the dimensionality of the feature vector.

An alternative to gradient descent based back-propagation is resilient propagation which
incorporates the previous change of weights into the current change of weights (Riedmiller
and Braun 1992).

By automatic learning of the weights in the input layer, ANNs are able to cope with
redundant and irrelevant feature information. The learning process is further discriminative as
the information over all classes is learnt at once (Rigoll 1994). Their high degree of parallelism
is one of the main advantages for efficient implementation on modern multi-core architectures
or graphics and general purpose processors with many hundreds of computation pipelines.

If the temporal context of a feature vector is relevant, that is, the vector is part of a time
series, this context must be explicitly presented to a feed-forward network. This can be done,
for example, by using a fixed-size sliding window which combines several feature vectors into
a ‘supervector’, as in (Lacoste and Eck 2005).

Recurrent Neural Networks

Another technique for modelling past context with neural networks is to extend feed-forward
networks with (cyclic) backward connections. The resulting network is then called a recurrent
neural network (RNN). RNNs can theoretically map from the entire history of previous inputs
to the current output. The recurrent connections build a kind of memory, which allows input
values to persist in the hidden layer(s) over multiple time steps and thus influence the network
output in the future. On sequences of finite length, RNNs can be trained by a modified back-
propagation algorithm called ‘back-propagation through time’ (BPTT) (Werbos 1990). The
network is first unfolded over time. Then the training follows the same steps as if training a FNN
with back-propagation. However, in each epoch the outputs must be computed and processed
in sequential order. Details are given in (Werbos 1990). If future context (i.e., data following
the current frame) is also required to compute the outputs, one possible solution is to introduce
a delay between the input values and the output targets. Figure 11.7 shows an example.

Input Layer

Hidden Layer

Output Layer

Figure 11.7 Example of a recurrent neural network, with three input-layer, two hidden-layer, and two
output-layer neurons. The dashed line connections depict exemplary possible recurrent connections
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Figure 11.8 Bidirectional neural network: input i , output o, and two hidden layers processing input
sequences forwards (h f ) and backwards (hb) over time t (Dotted arrow connections)

A more elegant implementation of modelling of future temporal context is provided by
a bidirectional recurrent neural network (BRNN). Two (sets of) independent hidden layers
are used instead of one. Both are connected to the same input and output layers. The first
hidden layer (set) processes the input sequence forwards and the second one backwards.
The network therefore at any frame has access to the full input sequence in both forward and
backward directions. There is no need to define the number of input frames which are stacked –
and thus the amount of context that can be modelled. Figure 11.8 illustrates this principle.
Bidirectional networks, however, must have the complete input sequence available before it can
be processed.

Long Short-Term Memory

Although BRNNs have access to past and future information, the range of temporal context
that can be modelled is limited to a few frames because of the ‘vanishing gradient’ problem
described by Hochreiter et al. (2001): the influence of an input value decays (recurrent weight
less than 1) or blows up exponentially (recurrent weight greater than or equal to 1) over time,
as it cycles through the network with its recurrent connections and gets dominated by new
input values. To overcome this problem, long short-term memory (LSTM) was introduced
by Hochreiter and Schmidhuber (1997). In a recurrent neural network, the hidden layers are
replaced by LSTM hidden layers. In an LSTM hidden layer, the non-linear units (neurons)
are replaced by LSTM memory blocks (cf. Figure 11.9). Each LSTM block contains one or
more self-connected linear LSTM cells. In each cell a so-called ‘constant error carousel’ is
found which has a recurrent connection with a fixed weight of 1, and which implements a
potentially permanent memory. Through ‘gates’ (multiplicative units) the data flow in the cell
is dynamically controlled, and potentially the content could be erased and/or new content could
be stored in the cell. LSTM cells are thus able to overcome the vanishing gradient problem and
can learn the optimal amount of contextual information relevant for the learning task through
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…EC

Figure 11.9 LSTM memory cell: the usual neuron (large black circle) on top is added by input (I),
output (O), and forget (F) gates that collect activations controlling the cell by multiplicative units (small
black circles). The actual memory is realised by a recurrent connection with the fixed weight 1.0 that
maintains the internal state (error carousel: EC)

the weights at the inputs of the multiplicative gate units. Figure 11.10 highlights the vanishing
gradient problem for RNNs and how it is overcome by LSTM (right).

An LSTM layer is composed of recurrently connected LSTM blocks, each of which con-
tains one or more memory cells. Each memory cell has a constant error carousel and three
multiplicative ‘gate’ units: the input, output, and forget gates. The gates perform functions
analogous to read, write, and reset operations in computer memory cells. More specifically, the
cell input is multiplied by the output activation of the input gate, the cell output by that of the
output gate, and the previous cell memory state (from the error carousel) by the forget gate (cf.
Figure 11.9). Usually, the same non-linear transfer function, denoted by Tg in what follows, is
applied for all three gates. A popular choice is the hyperbolic tangent function. For the transfer
function of the ‘original’ neuron (topmost unit in Figure 11.9) a sigmoid function, denoted
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Figure 11.10 Vanishing gradient problem of a recurrent neural network (left) and of an LSTM recurrent
neural network (right). The ‘degree of memory’ of past events is indicated by grey shading. it , ht , ot

are input, hidden, and output layers, respectively, at time t . Recurrent connections are indicated by
black arrows. LSTM: black circle and lined circle filled input, output, and forget gates (I , O , and F ,
respectively) indicate passive and active states
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Input Layer
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Output Layer

Figure 11.11 Example of enrichment of a recurrent neural network by LSTM cells

by Ti in what follows, is usually chosen. It is the actual input neuron of the LSTM cell, and
it would be the only neuron in a standard FNN or RNN. Everything after the input neuron is
the LSTM extension. The output transfer function of the LSTM cell after the error carousel is
henceforth referred to as To. Popular choices for this function are sigmoid or softmax function.
The weight of the recurrent connection in the error carousel is chosen as 1 in order to realise
the permanent storage effect.

The overall effect is that the network is able to store and retrieve information over long
periods of time. For example, as long as the input gate remains closed (i.e., its output activation
is zero or close to zero), the internal state of the cell cannot be overwritten by the current input
and can therefore be made available to the net later in the sequence when the output gate is open.

Figure 11.11 depicts an example of LSTM cells integrated into an RNN. If αin,t denotes
the activation of the input gate at time t before the transfer function Tg has been applied and
βin,t represents the input gate activation after the (sigmoid) transfer function, the input gate
activations (forward pass) can be written as

αin,t =
I∑

i=1

wi,inxi,t +
H∑

h=1

wh,inβh,t−1 +
C∑

c=1

wc,insc,t−1 (11.38)

and

βin,t = Tg(αin,t ), (11.39)

respectively. wi, j corresponds to the weight on the connection from node i to j . The indices i ,
h, and c enumerate the inputs xi,t , the cell outputs from other blocks in the hidden layer, and
the memory cells. I , H , and C are, respectively, the number of inputs, the number of cells in
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the hidden layer, and the number of LSTM cells in one block. Finally, sc,t corresponds to the
state of a cell c at time t .

In a similar way, the forget gate (‘for’) activations before and after applying the transfer
function Tg can be computed by

αfor,t =
I∑

i=1

wi,forxi,t +
H∑

h=1

wh,forβh,t−1 +
C∑

c=1

wc,forsc,t−1, (11.40)

βfor,t = Tg(αfor,t ). (11.41)

The memory cell value αc,t is a weighted sum of inputs at time t and hidden unit activations
at time t − 1:

αc,t =
I∑

i=1

wi,cxi,t +
H∑

h=1

wh,cβh,t−1. (11.42)

To determine the current state of a cell c, the previous state is scaled by the activation of the
forget gate and the input Ti (αc,t ) by the activation of the input gate:

sc,t = βfor,t sc,t−1 + βin,t Ti (αc,t ). (11.43)

The computation of the output gate (‘out’) activations follows the same method as the calcu-
lation of the input and forget gate activations. However, now the current state sc,t , rather than
the state from the previous time step, is considered:

αout,t =
I∑

i=1

wi,outxi,t +
H∑

h=1

wh,outβh,t−1 +
C∑

c=1

wc,outsc,t , (11.44)

βout,t = Tg(αout,t ). (11.45)

Finally, the LSTM cell output is determined as

βc,t = βout,t To(sc,t ). (11.46)

Note that the originally proposed version of the LSTM cell architecture contained only input
and output gates. Forget gates were added later by Gers et al. (2000) in order to allow the
memory cells to reset themselves whenever the network needs to forget past inputs completely.

Like RNNs, LSTM networks can be trained by the BPTT algorithm. They have demonstrated
remarkable performance in a variety of pattern recognition tasks such as phoneme classification
(Graves and Schmidhuber 2005), handwriting recognition (Graves 2008), keyword spotting
(Wöllmer et al. 2011c), affective computing (Wöllmer et al. 2010), and driver distraction
detection (Wöllmer et al. 2011b). LSTM networks can be either unidirectional or bidirectional.
The bidirectional variant is known as BLSTM. Further details on LSTM can be found in
Graves (2008).
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11.2.2 Dynamic Classification: Hidden Markov Models

Speech and language are sequential, and an audio or text stream X = {x1, x2, . . . , xT } accord-
ingly yields a sequence of T feature vectors xt at times t . So far, however, we have mostly
dealt with classification of single feature vectors without the use of temporal context. One
exception were the different types of RNNs and LSTM-RNNs discussed in Section 11.2.1.
Yet, even these are not able to ‘warp’ data in time, for example, stretching or shortening of
vowels in speech in comparison to a reference pattern or model.

The most frequently encountered algorithms for sequence classification are hidden Markov
models (HMMs: Rabiner 1989), a simple form of dynamic Bayesian networks (DBNs). This
is due to their dynamic modelling ability throughout different hierarchy levels and a well-
formulated, generative stochastic framework. In ASR, for example, at a low level, phonemes
are modelled; at a higher level, words are built from the phonemes. Each class i is modelled
by a HMM which represents the probability P(X |i), where X is the ‘observation’ (the feature
vector at a given time), which is generated by the HMM. Applying Bayes’ rule allows P(i |X )
to be determined given that P(X |i) and the class priors P(i) are known and the priors of the
feature vector observations P(X ) are ignored.

A Markov model can be seen as a finite-state machine which can change its state at any step
in time. In a HMM, at each time step t a feature vector xt is generated depending on the current
state s and the state-dependent emission probability bs(x). The likelihood of a transition from
state j to state k is expressed by the state transition probability a j,k (O’Shaughnessy 1990).
The probabilities a0, j are required to enter the model in a state j with a certain probability.
In order to simplify calculations and algorithm implementation, a non-emitting initial state
s0 and a non-emitting final state sF are usually defined (Kroschel et al. 2011). The structure
of such a model is shown in Figure 11.12. In this example, the most commonly used type of
HMM for speech processing is depicted – the left–right model. In this type, the state number
cannot decrease over time, that is, only transitions from left to right are allowed. A specific
variant is the ‘linear’ model, where no state can be skipped. Other topologies allow states to
be skipped, such as the Bakis topology in which one state may be skipped. If any state can be
reached from any other state with non-zero probability, that is, the states are fully connected,
the model is referred to as ‘ergodic’.

We speak of a ‘hidden’ Markov model, as the sequence of states remains unknown – only the
observation sequence is known (Rabiner 1989) to an outside observer. Note that the ‘Markov
property’ is valid, that is, that the conditional probability distribution of the hidden variable
s(t) at time step t , given the values of the hidden variable s at all times, depends only on

x1

s1

x2

s2

x3

s3s0 sF

a1,1 a2,2 a3,3

a1,2 a2,3a0,1 a3,F

b1 b2 b3

Figure 11.12 Example of a linear left–right HMM: three emitting states are shown. Squares, observa-
tions; circles, switching states; arrows, conditional dependencies
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the hidden variable s(t − 1), that is, values of earlier steps in time have no influence (Jelinek
1997). Further, the observation x(t) depends only on the value of the current state’s hidden
variable s(t).1

The probability P(X |i) can be computed by summing over all possible state sequences:

P(X |i) =
∑

Seq

as0,s1

T∏

t=1

bst (xt )ast ,st+1 , (11.47)

where Seq stands for the set of all possible state sequences. For an efficient computation of
this probability, the forward algorithm is applied. In principle, the forward algorithm is a more
efficient recursive way to calculate the complete generation probability (see equation (11.27))
by use of ‘forward variables’ (see equation (11.53) below). Instead of summing over all possible
state sequences, the size of the search space and the associated computational complexity can
be reduced by the Viterbi algorithm. This algorithm only considers the instantaneously most
probable state sequence, which results in a speed-up, however, at the cost of the global optimum
(Jelinek 1997):

P̂(X |i) = max
Seq

{

as0,s1

T∏

t=1

bst (xt )ast ,st+1

}

. (11.48)

In the recognition phase, the class i associated with the model that has the highest probability
P(X |i) for a given input is chosen. To compute this probability for unknown inputs, the
parameters a j,k and bs(xt ) need to be known for each model. Just as for the static classifiers,
these parameters are estimated in a training phase given a large set of training data. The most
popular method for this purpose is the forward–backward algorithm (described below under
‘Estimation’).

In most speech application scenarios the state emission probabilities bs(xt ) are modelled by
Gaussian mixtures (GMs) – often loosely referred to as Gaussians. Such mixtures are linear
superpositions of Gaussian functions. With the number of mixture components M and the
‘mixture weight’ of the mth component cs,m , the emission probability density function (PDF)
can be formulated as (Jelinek 1997)

bs(xt ) =
M∑

m=1

cs,mN (xt ; μs,m
, �s,m), (11.49)

where N (·; μ,�) is a multivariate Gaussian density with the mean vector μ and the covariance
matrix �. Apart from such ‘continuous’ HMMs, ‘discrete’ HMMs are also used. Conditional
probability tables for discrete observations bs(xt ) are used in the latter case instead of GMs.

1Note that, for better readability, the time t is used in the subscript or argument in this section, following Rabiner
(1989).
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Estimation

The parameters of HMMs can be determined by the Baum–Welch algorithm (Baum et al.
1970), which is a special case of the expectation maximisation (EM) algorithm. If the maximum
likelihood (ML) estimates of the means and covariances of the Gaussians for each state s are
to be computed, we have to take into account that each observation vector x contributes to
the state parameters. This is because the overall probability of an observation x is based on
the summation of all possible state sequences. Thus, Baum–Welch estimation assigns each
observation to each state in proportion to the probability of the observation of the respective
feature vectors in the state. Denoting by Ls,t the probability of the model being in state s at
time step t , Baum–Welch estimation of the means and covariances of a single Gaussian PDF
is obtained as follows:

μ̂
s
=

∑T
t=1 Ls,t x t

∑T
t=1 Ls,t

, (11.50)

�̂s =
∑T

t=1 Ls,t (xt − μ
s
)(xt − μ

s
)T

∑T
t=1 Ls,t

, (11.51)

where the hat symbol denotes estimated parameters.
The Gaussian PDFs are initialized and estimated with a single Gaussian mixture component

at first. Then, ‘up-mixing’ to more Gaussian mixture components is achieved in a simple
way by seeing the mixture components as sub-states. The mixture weights are now the state
transition probabilities of these sub-states. These state transition probabilities are estimated
by the relative frequencies

â j,k = A j,k
∑S

s=1 A j,s

, (11.52)

where A j,k denotes the number of transitions from state j to state k, and S denotes the number
of states of the HMM.

The forward-backward algorithm is applied for the computation of the probability Ls,t . The
‘partial’ forward probability αs(t) for an HMM which represents the class i is defined as

αs(t) = P(x1, . . . , xt , st = s|i). (11.53)

This can be interpreted as the joint probability of having observed the first t feature vectors
and being in state s at time step t . The recursion

αs(t) =
[

S∑

j=1

α j (t − 1)a j,s

]

bs(xt ) (11.54)

allows for an efficient computation of the forward probability, S being the number of emitting
states.
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The backward probability represents the joint probability of the observations from time step
t + 1 to T :

βs(t) = P(xt+1, . . . , xT |st = s, i). (11.55)

It can be computed by the recursion

β j (t) =
S∑

s=1

a j,sbs(xt+1)βs(t + 1). (11.56)

To compute the probability of being in a state at a given time step, we have to multiply the
forward and backward probabilities:

P(X , st = s|i) = αs(t) · βs(t). (11.57)

Thus Lst can be determined as

Lst = P(st = s|X , i) = P(X , st = s|i)
p(X |i) = 1

p(X |i) · αs(t) · βs(t). (11.58)

If we make the assumption that the model has to reach the last state S when the last
observation xT is to be made, that is, the last observation has to be emitted in the last state,
then the probability P(X |Mt ) equals αS(T ). This means that Baum–Welch estimation can be
executed as described above.

In the recognition phase, the Viterbi algorithm is usually applied to speed up the search over
all possible paths. It is similar to computing the forward probability. However, the summation
over all possible paths is replaced by a maximum search to allow for the following forward
recursion:

φs(t) = max
j

{φ j (t − 1)a j,s}bs(xt ), (11.59)

where φs(t) is the ML probability of observing the vectors x1 to xt and being in state s at time
step t of a given HMM which represents class i . Thus, the estimated ML probability P̂(X |i)
equals φS(T ).

Hierarchical Decoding

HMMs are particularly suited for decoding of continuous speech, that is, both segmenting and
recognising continuous streams of audio. In addition, their probabilistic formulation permits
hierarchical analysis in order to unite knowledge at different levels. Let S be a sequence of
speech units such as a spoken sentence. The sequence X of T feature vectors is from the phrase
S (Ruske 1993). A classifier should provide an estimate Ŝ of the sequence of speech units
which is as close as possible to the actual sequence S. According to Bayes’ decision rule, the
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decision is optimal on average if the classifier chooses the class which – based on the current
observation – has the highest probability. For the optimal decision it is thus required that

p(Ŝ|X ) = max
S j

p(S j |X ), (11.60)

where S j are the possible observed sequences. We thus have to determine the probability for
all possible sequences S j . In practice it is scarcely possible to do this. Therefore, Bayes’ law
is applied and the equation is reformulated as follows:

p(S j |X ) = p(X |S j )
p(S j )

p(X )
. (11.61)

As the probability p(X ) depends purely on the feature vector series X and therefore is
independent of S j , it can be neglected for the maximum search over all sequences S j , yielding:

p(X |S j )
︸ ︷︷ ︸

AM

· p(S j )
︸ ︷︷ ︸
LM

!= max, (11.62)

where the acoustic model (AM) and the language model (LM) represent the acoustic properties
of the inputs and the semantics or syntax, respectively. In order to scale the influence of the
LM, an exponential factor � – the so-called LM scale factor – can additionally be introduced.
This leads to

p(Ŝ|X ) = max
S j

p(X |S j ) · p(S j )
�. (11.63)

� is usually determined in experiments or is learnt in a semi-supervised manner (White et al.
2009). It is typically in the range of 10 ± 5.

The sequence which maximises the above expression is output as the best estimate Ŝ:

Ŝ = arg max
S∈U

p(X |S) · p(S)�, (11.64)

where U represents all possible/allowed sequences. Let us now assume that each sequence
S j is a sequence of speech units a1, a2, a3, . . . , aA. In the following a single sequence S j is
highlighted for simplicity. For this sequence,

p(S j ) = p(a1, a2, . . . , aA). (11.65)

If we further assume that the acoustic realisations of the speech units are independent of each
other, the units can be modelled individually:

p(X |S j ) = p(x1, . . . , xi )p(xi+1, . . . , x j ) . . . p(xk+1, . . . , x A). (11.66)

It is assumed that no pauses occur between these units and silences or pauses between
words, for example, are treated as units of their own. Note that the unit boundaries i, j, . . . , k
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and unit number A are unknown at first and need to be determined by the classifier (decoding
and classification, respectively).

In the same way each speech unit can contain a sequence of sub-units one level lower in the
hierarchy – again assuming independence of the sub-units. Speech units could be phonemes,
triphones, or syllables, for example. If the units are modelled by HMMs, the Viterbi algorithm
can be applied on all three layers for the decoding (Ruske 1993): for the search of the state
sequence within the HMMs, for the sequence of the individual phoneme HMMs, that is, Ŝ,
and for the sequence of the words.

At the phoneme transitions the LM is applied to model higher-level information such as word
transition probabilities (Furui 1996). A language model can contain N -grams, for example,
which model the conditional probability of a sequence of consecutive phonemes or words. The
Viterbi path determines the best path through all layers and thus the best sequence of speech
units. For an illustrative example, see the ‘trellis’ diagram in Figure 11.13 (Rabiner 1989).

If the ‘vocabulary’ size (i.e., the number of speech events) is very large, the Viterbi search
can become computationally very demanding and slow.

Although at time t only a single column needs to be analysed in the trellis diagram
(Figure 11.13), all emission probabilities in all states for all models need to be computed.

Paralinguistic Event 3 

Paralinguistic Event 1 

Paralinguistic Event 2 

PSE 1 

PSE 3 

PSE 2 

PSE 1 

PSE 2 

PSE 3 

t Paralinguistic 
Event 3 

Paraling. 
Event 1 

Paralinguistic 
Event 2 

Figure 11.13 Viterbi search of the optimal state sequence to produce an observation series. The Trellis
diagram shows speech units (e.g., words), referred to as ‘paralinguistic events’ (in the example, three
different ones), and sub-units (e.g., phonemes) denoted as ‘paralinguistic sub-events’ (PSE, again, three
different ones). A path is shown over time in upward arrows. Squares represent observations (feature
vectors). HMMs (one per unit) are sketched in Bakis topology. After backtracking the sequence of
paralinguistic events as Paralinguistic Event 3, then 1, then 2 is recognised as the best path, as is shown
along the horizontal time axis
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In the case of large vocabulary continuous speech recognition (LVCSR) this may easily require
computation of more than 100 000 normal distributions every 10 ms (Ruske 1993). To speed
up computations, we can make use of the fact that many paths in the trellis offer little or no
hope of ever leading to the overall best path. These paths can be removed, leading to the ‘beam
search’ method. The candidates with the lowest scores are ‘pruned’, keeping only the N high-
est scored paths. By accepting a sub-optimal solution (usually less than a 1% increase in error
probability), a considerable speed-up and reduced memory consumption are achieved. The
algorithm is implemented by smart list management in five consecutive steps (Lowerre 1976).

First, a list of all active states at time step t is set up. This list contains all points of the trellis
diagram with a current probability that exceeds a given threshold.

Then, from this list of states all possible subsequent states in the next time step are computed
that can be reached by the Viterbi path diagram. The algorithm works recursively as usual
and the effect is the same as when applying the path diagrams in a backward direction. Next,
the list of subsequent states is reduced by deleting states with path probabilities below the
threshold, which is the actual pruning step. This threshold should be constantly adapted to
the current step in time. Thus, the ‘beam width’ (number of paths considered per time step)
is increased or reduced according to the validation of the concurring paths’ ascent or decline.
The beam width is decisive for the trade-off between higher accuracy (broadened width) and
higher speed (narrowed width).

Optionally, at transitions between speech events (e.g., words), the value of the LM can be
used and in any case a jump to the first state of the first model of the new speech event takes
place. Further, the information for back-tracking is stored. Finally, the best sequence of units
is obtained at the end of the pruned forward search by the usual backtracking.

In practical applications, this particularly efficient search algorithm can reach reductions of
the number of states to be computed by a factor of 1000.

11.2.3 Regression

In contrast to classification, where a discrete class label is assigned to the input, in regression a
continuous value or score is assigned as the target to an input vector or a sequence of input vec-
tors. We briefly describe two popular methods for regression in computational paralinguistics:
support vector regression and neural networks.

Support Vector Regression

The mathematical principles underlying support vector regression (SVR) are a fairly straight-
forward extension of SVM-based classification (Smola and Schölkopf 2004). Similarly to
training a classifier to separate two classes with maximum margin, the goal is to find a
regression function f (x) that is as ‘flat’ as possible.

Let us first consider linear SVR, which defines a real-valued linear N -dimensional function

f (x) = wT x + b, (11.67)

described by a vector w and a scalar b. Again, we assume a labelled set of training patterns
L, but the target labels yl are now (conceptually) continuous (yl ∈ R) rather than binary
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(−1 or +1). Analogously to the criterion for maximisation of the SVM classifier mar-
gin, flatness of f (x) can then be achieved by minimising the dot product wT w under the
conditions

yl − wT xl − b ≤ ε,

wT xl + b − yl ≤ ε,
(11.68)

similarly to the boundary conditions for SVM (11.9). Thus, the regression function is allowed
to have a deviation of at most ε from the actual targets. Just as not all classification problems
can be separated flawlessly by a linear boundary, in the general case not all targets yl can be
estimated using a linear function with only an error of at most ε. Thus, one again introduces
non-negative slack variables ξl and ξ ∗

l as for SVM training. The resulting boundary conditions
for SVR are thus given by

yl − wT xl − b ≤ ε + ξl,

wT xl + b − yl ≤ ε + ξ ∗
l .

(11.69)

Intuitively, this allows vectors to be mapped to values with an error greather than ε – but
naturally, this is penalised by an error weighting term as in SVM training. This results in the
‘primal problem’, to minimise

1

2
wT w + C

L∑

l=1

(ξl + ξ ∗
l ), (11.70)

where C is the error weighting factor. As in the case of SVM, this problem can be transformed
to an equivalent ‘dual’ optimisation problem, namely to maximise

L∑

l=1

yl(al − a∗
l ) − ε

L∑

l=1

(al + a∗
l ) − 1

2

L∑

k=1

L∑

l=1

(ak − a∗
k )(al − a∗

l )xT
k xl , (11.71)

subject to the side conditions

0 ≤ al , a∗
l ≤ C, l = 1, . . . , L , (11.72)

L∑

l=1

(al − a∗
l ) = 0. (11.73)

After determining the coefficients al and a∗
l , the vector w for the regression function is obtained

as a weighted sum of training vectors,

w =
L∑

l=1

(al − a∗
l )xl . (11.74)

Analogously to SVM, the vectors xl ∈ L for which al − a∗
l �= 0 are the support vectors of

the regression function (Smola and Schölkopf 2004). These correspond to the training vectors
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with an absolute deviation of exactly ε from the target value. Using the above, the linear
regression function to determine the value for an unseen pattern vector x becomes

f (x) =
L∑

l=1

(αl − α∗
l )xT

l x + b. (11.75)

The bias b is given by

b = max
l

{−ε + yl − wT xl | al < C or a∗
l > 0} (11.76)

Note the strict inequalities in the above equation.
The regression function as defined above can now be extended to non-linear regression by

applying the same kernel trick as for SVM. The resulting non-linear regression function is
obtained by simply substituting the standard dot product xT

l x by application of the kernel
function K �:

f (x) =
L∑

l=1

(αl − α∗
l )K �(xl, x) + b. (11.77)

Neural Networks

In Section 11.2.1 we introduced the concept of artificial neural networks in the light of
classification. However, these networks are primarily regressors, as the output values of the
neuron units are of continuous nature. For classification additional effort with a maximum
search over N outputs and softmax activation function in the output layer is required.

In the case of regression, the output layer neurons often have linear transfer functions, to
best cover the range of all possible output values without an inherent non-linear bias.

11.3 Testing Protocols

A crucial issue in computational paralinguistics is to select the classifier or regressor best
suited to a given problem. This requires appropriate measures for performance assessment. In
this section, the error in the classifier’s predictions will be of most interest; while a number
of further practical and conceptual aspects can be considered as performance criteria, such as
computational complexity and on-line learning capability, these are usually properties known
in advance.

11.3.1 Partitioning

So far, prediction errors have been considered as ‘loss functions’ for classifier training, for
example, in the backpropagation algorithm for training of neural networks. The loss function
is used to optimise the classifier parameters, such as the neuron weights or the support vectors
of a SVM. Assessing only the training set error, however, is not sufficient, as any problem
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can be modelled with zero training set error by sufficiently complex models – trivially, by a
‘look-up’ function representing the pairs of training set instances and labels. Thus, the crucial
issue is generalisation of the models to test cases not seen in training.

Ideally, systems such as emotion recognisers would be evaluated in real-life applications by
users (see Schuller et al. 2009a). However, this is usually too costly for system development
in a rapid prototyping fashion, such as choosing between different SVM kernel functions
for a given recognition task. Hence, to evaluate systems in fair conditions resembling real-
life applications, one usually relies on so-called ‘held-out data’: a portion of the available
labelled data is not used in training but rather presented to the classifier after training, allowing
assessment of the ability of the classifier/regressor to generalise to a certain degree. Holding
out data also means not using these data in any ‘tuning’ of the steps in the chain of processing,
including pre-processing, feature extraction (such as choosing the cut-off frequencies for Mel
bands or the number of MFCCs), normalisation (such as determining the means and variances
used in mean–variance normalisation), and selection of ‘hyperparameters’ for the learning
algorithm (such as the error weighting factor in SVM optimisation, or the number of states
and mixtures per state in an HMM). For the reasons given above, such ‘tuning’ should not
be done on the training data, as this would cause a bias towards more complex models – yet
tuning to a specific set of held-out test data is not optimal either, since it is not clear whether
the adjustments made would generalise to other data. Thus, besides a training and testing
partition, usually a disjoint development partition is needed for such tuning steps to simulate
truly ‘unseen’ test data in the system evaluation, that is neither used for training nor for system
tuning. In training of the final classifier, trained using the hyperparameters determined on the
development set, this partition can be added to the training data.

The requirement of appropriate partitioning of labelled data adds a technical perspective
to corpus engineering (Chapter 6). This is because a variety of criteria often need to be
respected in evaluation. For example, it is often desired to have disjoint sets of subjects in
the partitions of the database (‘speaker’ or ‘subject independence’). If the latter criterion is
not met, for example, an emotion classifier could learn how exactly the training subjects
express their emotions, instead of generalising to a larger population. Furthermore, factors
that influence the expression of the paralinguistic trait of interest (e.g., age or gender) should
be similarly distributed in the partitions – for example, a system that has only seen adult
speech in training cannot be expected to generalise to children’s speech (Steidl et al. 2010).
Finally, the distribution of the class labels should be similar among partitions, that is, resemble
a uniform distribution. Balancing these factors with respect to the partitions is also known as
‘stratification’. In order to prevent ‘mis-tuning’ of the system, in particular the data found in
the development partition should be similar in nature to the test partition. Given large enough
data sets, random splitting of the data often provides for stratification, but neglects other
criteria such as speaker independence. In any case, it has to be ensured that the splitting can
be reproduced, such as by delivering lists of training, development, and test instances along
with the corpus. Only then can a corpus serve for comparative evaluations of systems.

Concerning the size of the partitions, a compromise has to be found between having enough
training data and ensuring significance of results by providing enough instances to develop
and test on. A 40–30–30 ‘percentage split’ of the data is often used for training, development,
and testing. In the case of learning schemes where model evaluation takes considerable time,
such as for dynamic classification using HMMs, smaller test partitions are used. For smaller
data sets, one often prefers cross-validation over a percentage split scheme. The idea is that by
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exchanging the ‘roles’ of the partitions (those used for training, development, and testing) in
a cyclic fashion, a maximal amount of data can be used both for training and testing, without
ever evaluating a model on data seen during training. To this end, one splits the overall data
set into J sets of equal size (J -fold cross-validation), respecting stratification – in this case,
one speaks of stratified cross-validation – and possibly other criteria as discussed above. In
each cycle j = 1, . . . , J , the data partition with index j is used for testing while training on
the remaining ones, possibly holding out another partition, for example, ( j + 1) mod J , for
development. It is easy to see that by this scheme, after J cycles each partition has been used
for testing once, and at the same time the maximum amount of training data was provided in
each cycle. To evaluate the classification performance, one usually provides the mean of the
evaluation measure (see below) reached for each cycle, and additionally the standard deviation
to estimate the reliability of the evaluation. For J = 3, one obtains a scheme similar to a
standard percentage split with swapping roles. Other ‘popular’ choices are J = 5 or J = 10.
Obviously, the computational effort for evaluation increases with J , due to both the higher
number of classifiers to be trained and evaluated, and the increased amount of training data
available in each cycle. Conversely, for simple statistical reasons the performance estimate
across folds gets more and more reliable the higher the value of J used. An extreme case of
cross-validation is to leave a single instance out at each cycle – this is known as leave-one-out
(LOO). A variant of LOO is to group instances by a certain attribute (such as speaker ID) and
perform a ‘leave-one-group-out’ (‘leave-one-speaker-out’) cross-validation.

11.3.2 Balancing

Related to stratification, a highly relevant issue for computational paralinguistics evaluation
is the balancing of class label distributions. Sometimes instances of a certain class of interest
occur rarely – for instance, instances of intoxicated speech are rather hard to obtain, while sober
speech is easy to acquire in large quantities. As a result, data sets will be highly imbalanced
across classes. A similar issue for regression tasks is that continuous labels often resemble
a Gaussian distribution with a high concentration of instances around the centre of the scale
(Weninger et al. 2012). Because the error measures used in training often involve some kind
of average deviation from the ground truth (such as mean squared error in case of neural
network training), such imbalance can lead to classifier bias in predicting the most frequently
occurring class (‘majority class’), or predicting the mean of the training label distribution
in the case of a regressor. In extreme cases, it can lead to underrepresented classes or parts
of the label distribution being completely ignored. Examples of classifiers sensitive to class
imbalance include SVMs, DTs and neural networks. In contrast, ML-based classification (e.g.,
by HMMs) does not suffer from this problem.

Strategies to alleviate this problem can be divided in two rough categories: training set
resampling and adjustment of the training objective (Schuller et al. 2009a,b,c). The former
is rather straightforward to apply for categorical class labels: either training instances of the
majority class are deleted (‘down-sampling’), or instances of the minority class(es) are dupli-
cated (‘up-sampling’). For continuous class labels, this is less straightforward. An advantage
of training set resampling is that the classifier training procedure can be left unmodified as a
‘black box’, which is often desirable in practical system development. Except for very large
databases, up-sampling is usually preferred over down-sampling since it does not remove
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potentially valuable information from the training set. If ‘pure’ up-sampling is not possible
due to space and memory requirements, mixed up- and down-sampling can be applied. In order
to focus re-sampling on those instances of particular relevance, one can use more advanced
approaches such as the ‘synthetic minority over-sampling technique’ (Chawla et al. 2002). In
most cases, test set instances are not balanced, in order to model the natural distribution of
instances, as encountered during data collection, in system evaluation.

Adjustment of the classifier training objective for imbalanced training sets is mostly imple-
mented by assigning different weights to different kinds of class confusions (‘cost-sensitive
classification’) or deviations from the ground truth, in order to introduce heavier penalties
for errors on the underrepresented instances. This can be particularly suited to sequential
classification tasks – for example, in time continuous emotion prediction – where it is not
straightforward to resample the training set.

11.3.3 Performance Measures

Having discussed appropriate partitionings into training, development, and test set, let us now
discuss actual criteria for the evaluation on the development and test sets (see also Kroschel
et al. 2011). We will consider the case of classification first, that is, define measures taking
into account the correctness of discrete class attributions. Then, we will move on to criteria
for regressors, evaluating by continuous-valued error functions.

Classification Measures

Let us assume the task of classifying into C ≥ 2 distinct classes – one speaks of C-way
classification. We can then consider the result of the classification as a mapping ŷ : X → C,
C = {1, . . . , C}. In particular, this implies that each test instance is mapped to exactly one
class i ∈ {1, . . . , C}. Thus, the class prediction for a pattern vector x ∈ T can be denoted as
ŷ(x). Let us further denote by Ti the set of test instances belonging to class i , and by Ti = |Ti |
the corresponding number of instances of class i . Thus we have

T =
C⋃

i=1

Ti =
C⋃

i=1

{xi,n | n = 1, . . . , Ti }. (11.78)

It follows that the test set is of cardinality |T | = ∑C
i=1 Ti . One can also model the assignment

of multiple classes to a single instance – this can be of value, for example, for emotion
recognition, to model mixtures of classes such as ‘happily surprised’ or ‘angrily surprised’
(Mower et al. 2011). Mathematically, one then obtains a mapping to the power set of the set
of classes, ŷ : X → 2C . However, for the sake of simplicity this will not be considered further
in this chapter.

The most common measure to evaluate the quality of the mapping ŷ is the probability of
correct classification – usually termed the accuracy or recognition rate:

Accuracy = # correctly classified test instances

# test instances
=

∑C
i=1

∣
∣
{

x ∈ Ti | ŷ(x) = i
}∣
∣

|T | . (11.79)
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By considering the recognition rate only for a specific class i , one obtains the recall mea-
sure REi :

REi =
∣
∣
{

x ∈ Ti | ŷ(x) = i
}∣
∣

Ti
. (11.80)

With pi = Ti/|T | as the prior probability of class i in the test set, we further have

Accuracy =
C∑

i=1

pi REi . (11.81)

The weighting by pi in equation (11.81) leads to the name weighted accuracy (WA) or
weighted average recall (WAR). Obviously, if the distribution of class labels among test
instances is highly non-uniform, this leads to a bias of the measure towards the recall of
the most frequent class. In particular, if the classifier always chooses the most frequent
class i∗, then Accuracy = pi∗ – thus yielding seemingly good performance with a ‘dummy’
classification rule. For such unbalanced problems, one might thus prefer a constant weight 1/C
in the calculation of accuracy. This weighting yields the unweighted average recall (UAR),
sometimes referred to as unweighted accuracy (UA):

UA =
∑C

i=1 REi

C
. (11.82)

Instead of expressing the classifier behaviour in a single measure, one can also assemble
the ‘confusion matrix’ C = (ci, j ) whose entries correspond to the number of confusions of a
given pair of classes:

ci, j = ∣
∣
{

x ∈ Ti | ŷ(x) = j
}∣
∣ . (11.83)

Normalising each row of the confusion matrix to sum to 1, one obtains conditional probabilities
pc

i, j = P(ŷ(x) = j |x ∈ Ti ) that can be useful in the fusion of multiple classifiers (Wöllmer
et al. 2011a).

Let us now consider the important special case of binary classification (C = 2). This plays
a major role in detection tasks, where conceptually one class, the ‘positive’ class, contains
the instances of interest (e.g., emotional, intoxicated or sleepy speech) to be found in a large
pool of data, while the other class models the ‘negative’ class comprising all other data. This
class is often also referred to as ‘background’, ‘garbage’ or ‘rejection’ class. Without loss of
generality, we will assume the set of classes to be C = {+1,−1}, containing the positive and
the negative class, and T = T+1 ∪ T−1 accordingly. By this definition we obtain the number
of true positives (TP) similar to the numerator of equation (11.80):

TP = ∣
∣
{

x ∈ T+1 | ŷ(x) = +1
}∣
∣ . (11.84)

Conversely, the number of false positives (FP) is given by

FP = ∣
∣
{

x ∈ T−1 | ŷ(x) = +1
}∣
∣ . (11.85)
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With TP and F P we can define the precision (PR):

PR = TP

TP + FP
, (11.86)

intuitively corresponding to the conditional probability that a positively classified instance is
indeed a positive one. Considering decisions for the negative class −1, one can analogously
introduce true negatives (TN) and false negatives (FN):

TN = ∣
∣
{

x ∈ T−1 | ŷ(x) = −1
}∣
∣ , (11.87)

FN = ∣
∣
{

x ∈ T+1 | ŷ(x) = −1
}∣
∣ . (11.88)

Using the above definitions, recall for a binary problem is usually defined as

RE = TP

TP + FN
(11.89)

– it is easy to see that this is equivalent to RE+1 in terms of (11.80). Further, one defines
specificity (SP) and negative predictive value (NPV),

SP = TN

TN + FP
, (11.90)

NPV = TN

TN + FN
. (11.91)

TP, TP, FN, and TN correspond to the entries of a 2 × 2 confusion matrix,

C =
(

TP FN
FP TN

)

. (11.92)

From (11.92) it is obvious that the sum of TP, FN, FP and TN is constant – equivalent to the
number of instances in the test set. Thus, a trade-off between these measures has to be found.
This is often done by uniting precision and recall in the so-called F1 measure, which is defined
as the harmonic mean of both:

F1 = 2
RE · PR

RE + PR
. (11.93)

The subscript 1 indicates equal weighting of precision and recall. If one wants to put more
emphasis on one or the other, one can consider alternative weighting, such as doubling up the
weight of one. In general, this yields the Fβ measure,

Fβ = (1 + β2)
RE · PR

RE + β2PR
. (11.94)
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Thus, for example, F2 would put more emphasis on recall than precision. In terms of TP, FN
and FP, we have that

Fβ = (1 + β2)TP

(1 + β2)TP + β2FN + FP
(11.95)

– thus, the measure F does not take into account the number of true negatives.
An alternative method is to determine the receiver operating characteristic (ROC) of the

classifier. This is possible if the classifier outputs a probability of the positive class. For exam-
ple, in neural networks, the activations of the output units indicate posterior class probabilities
if they are normalised to sum to 1. One can then define a threshold θ such that all instances
with a probability of the positive class above θ are accepted, and compute the true positive
ratio (TPR) and false positive ratio (FPR). TPR is equivalent to recall (11.89) in the case of
binary classification, while

FPR = FP

TN + FP
. (11.96)

From (11.89) and (11.96), it follows that FPR and TPR both increase monotonically with
more and more instances being classified as positive. Thus, by monotonically increasing θ ,
a monotonic function FPR(TPR) can be obtained. By interpolation (e.g., using the rectangle
rule), one can integrate this function over the range [0, 1] and obtain the area under curve
(AUC) measure, in the range [0, 1]. A similar measure is obtained by considering the detection
error trade-off (DET) curve, which is the function FNR(FPR) which shows the false negative
rate (FNR) in terms of the false positive rate and is defined by analogy with the above. One
can then calculate the intersection (E, E) of the DET curve with the identity line and obtains
the equal error rate (EER) E . This corresponds to the optimal classifier configuration if one
considers FNR and FPR as equally important.

Note that all the above measures for the two-class case can be generalised to the multi-class
scenario if one considers a ‘one-versus-all’ scenario, picking a class i ∈ {1, . . . , C} as the
‘positive’ class and considering everything else as negative.

Regression Measures

To conclude the discussion of evaluation criteria, let us now briefly introduce the most com-
mon measures for evaluation of regression functions, that is, prediction of continuous-valued
quantities instead of discrete class labels. By analogy with the above, we denote the predic-
tion of the regressor by ŷ, which is now a mapping X → R. Just as for classification, we
only consider prediction of a single value (univariate regression), not vector-valued quantities
(multivariate regression).

Recall that the test set is denoted by T . Let us further denote the actual label of instance
xn ∈ T , n = 1, . . . , |T |, by yn . Probably the most straightforward measure is the expected
deviation of ŷ from the actual labels, the mean linear error (MLE)

MLE = 1

|T |
|T |∑

n=1

|ŷ(xn) − yn|. (11.97)
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Note that the absolute value is needed here since otherwise overshooting and underestimation
would cancel each other out. Hence the above measure is also called mean absolute error
(MAE). An alternative is to take the square instead of the absolute value, yielding the mean
square error (MSE). Often also the root of the MSE is considered (root mean squared error
(RMSE)). MSE and RMSE are closely related to the variance and bias of the classifier
(Wackerly and Scheaffer 2008). Sometimes the relative error is considered instead of the
absolute error, resulting, for example, in the mean absolute percentage error (MAPE):

MAPE = 1

|T |
|T |∑

n=1

∣
∣
∣
∣

ŷ(xn) − yn

yn

∣
∣
∣
∣ . (11.98)

However, this leads to numerical problems for ground truth labels close or equal to zero and
can thus become hard to use in practice.

All of the above measures are scale variant, that is, their value depends on the range
of the ground truth labels. For example, if a regressor is trained for arousal values that are
determined from observer ratings on a five-point scale (−2 to 2) converted to a quasi-continuum
by averaging (see Chapter 6), and the same type of regressor is trained on ratings in [−1, 1],
one would expect half the MAE in the latter case, without any meaningful difference in actual
performance. A scale-invariant measure for regression is the correlation coefficient (CC) of
prediction and ground truth,

CC =
∑|T |

n=1

(
ŷ(xn) − ŷ

)
(yn − y)

√
∑|T |

n=1

(
ŷ(xn) − ŷ

)2 · ∑|T |
n=1 (yn − y)2

, (11.99)

with the average prediction

ŷ = 1

|T |
|T |∑

n=1

ŷ(xn), (11.100)

and the average test set label

y = 1

|T |
|T |∑

n=1

yn. (11.101)

The CC can be understood as the covariance of the predictions and the ground truth labels,
normalised to the range [−1,+1] – thus, positive values indicate agreement of the two, zero
corresponds to chance, and negative values indicate systematic deviations.

To sum up, MAE and similar measures are often useful as an intuitive measure – for example,
in height estimation, the MAE measures by how many centimetres the regressor in question
would be mistaken on average. However, as its range varies by task it is of little use for
cross-task comparisons (e.g., to determine if age or height can be estimated more precisely).
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11.3.4 Result Interpretation

It is obvious that the value of an evaluation measure depends on the choice of the test
instances. Results might be skewed by choosing a test set biased towards ‘hard’ or ‘easy’
cases, which can be very hard to detect in advance. To remedy this problem, one can introduce
an additional level of evaluation, which might be termed ‘meta-evaluation’: evaluating the
reliability of evaluation. We have introduced such ‘meta-evaluation’ on-the-fly in the context
of cross-validation, where the mean and standard deviation of the evaluation measures are
usually reported across multiple different partitionings of the same data in order to assess
the stability of the evaluation measure depending on the choice of training and test instances.
Besides, it is often of interest to assess whether observed performance differences, obtained on
a fixed partitioning of the database by multiple classifiers or regressors, are caused by random
fluctuations or structural differences.

To address these questions, one typically uses significance tests. Let us start by considering
the issue of comparing the accuracies of two classification systems on a specific test set, before
turning to regressors, and performance comparison across different partitionings. As a first
example, we introduce the McNemar test (Dietterich 1998; Gillick and Cox 1989; McNemar
1947). This is based on summarising the results of the two classification systems A and B in
a contingency table:

A B

correct incorrect
correct n00 n01

incorrect n10 n11

Its elements are defined as follows:

• n00 (n11) are the numbers of instances in the test set T which are classified correctly
(incorrectly) by both systems;

• n10 is the number of instances classified correctly by B but incorrectly by A;
• n01 is the number of instances classified correctly by A but incorrectly by B.

Obviously, the sum of the entries in the contingency table, n00 + n01 + n10 + n11, equals
the number of instances in the test set, |T |. Furthermore, the accuracies of A and B can
be written in terms of the above quantities as n00+n01

|T | and n00+n10
|T | . Thus, the deviation in

classification performance is given by the quantities n01 and n10. A significance test aims
to answer the question whether this deviation can be explained by a random process with
sufficient probability.

To this end, one assumes that the quantities in the contingency table are observations of
one random variable, each. In particular, the random variable corresponding to n10 shall be
denoted by N10. Thus one can formulate a null hypothesis H0 about its distribution, allowing
the probability p of the observation n10 to be calculated. If p is small, one concludes in turn
that the observed difference between the systems is not caused by a random process described
by N10. One also speaks of a significant difference between A and B at a significance level
α if p ≤ α. The exact threshold α depends on the problem statement, particularly on the
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required confidence in the decision. For automatic classifiers and regressors, one typically
uses α = 0.05 (5% level) or α = 0.01 (1% level).

The null hypothesis of the McNemar test is that N10 follows a binomial distribution with
success probability p = 1/2 and sample size k := n10 + n01, that is,

P(N10 = n10) =
(

k

n10

) (
1

2

)k

. (11.102)

The underlying idea is that those k elements of the test set which are classified correctly
only by one system are distributed between the observed quantities n10 and n01 with equal
probability. One writes

H0 : N10 ∼ B

(

k,
1

2

)

. (11.103)

The above null hypothesis is verified by means of a random variable M ∼ B(k, 1
2 ). M has

expected value E{M} = k/2. One now considers the probability α that M deviates from its
expected value as is described by n10 in the contingency table. Because of the symmetry of
the binomial distribution, one obtains:

p =
⎧
⎨

⎩

2 · P(n10 ≤ M ≤ k) if n10 > k/2
2 · P(0 ≤ M ≤ n10) if n10 < k/2
1 if n10 = k/2.

(11.104)

Using the formula for the cumulative distribution function of the binomial distribution, one
can determine these probabilities analytically:

P(n10 ≤ M ≤ k) =
k∑

m=n10

(
k

m

) (
1

2

)k

,

P(0 ≤ M ≤ n10) =
n10∑

m=0

(
k

m

) (
1

2

)k

. (11.105)

The probability p is the probability of error if H0 is true but is rejected because of the
observation of n10 – this is called Type I error. One has to bear in mind that the value of p does
not say whether A or B is better – this has to be determined by examining the contingency
table.

Often, instead of exactly computing α via (11.105), one uses an approximation by a normal
distribution. According to the central limit theorem, for large k the random variable

N ∗
10 = N10 − k

2 − 1
2√

k
4

(11.106)

approximately follows a Gaussian distribution with μ = 0 und σ = 1. To increase the quality
of the approximation, one additionally performs a continuity correction by the term − 1

2 . With
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(11.106) and the cumulative distribution function of the normal distribution (for which no
closed-form solution exists; it has to be computed numerically) one can approximate the
probabilities from (11.105). The above approximation is particularly useful in practice for
large k, for which an exact computation would be difficult for numerical reasons. As a rule of
thumb, one should use the approximation (11.106) only if k > 50 and n10 is not close to zero
or k (Gillick and Cox 1989).

A disadvantage of the McNemar test is that one needs the contingency table, which makes
it unsuitable for performance comparisons where only the accuracies are known, not the
predictions themselves. As an alternative that is easier to compute, one can use a simpler variant
of the binomial test. One assumes that the probabilities of correct classification of the systems,
pA and pB , are known. Without loss of generality we assume that pB > pA. In practice, one has
to estimate these probabilities by the accuracy values obtained. Analogously to the McNemar
test, one then supposes that the observed performance difference is due to random fluctuations
from the average probability of correct classification, pAB = (pA + pB)/2, and disproves this
hypothesis at a chosen level of significance.

One considers the number of correct classifications on the test set as a random variable Nc,
for which one can assume a binomial distribution given the statistical independence of the
prediction errors from each other. The null hypothesis is that Nc follows a binomial distribution
with success probability pAB :

H0 : Nc ∼ B(|T |, pAB). (11.107)

One then computes the probability of observing the improved accuracy of B as

P(Nc > pB · |T |) = 1 − P(Nc ≤ pB · |T |). (11.108)

By analogy with the above, the binomial distribution is usually approximated by a normal
distribution, leading to the random variable N ∗

c given by

N ∗
c = Nc − pAB · |T |√|T |pAB(1 − pAB)

= Nc/|T | − pAB√
pAB(1 − pAB)

√
|T | (11.109)

which follows a standard normal distribution (the continuity correction is omitted for the sake
of simplicity). As a test quantity, one computes the realisation of N ∗

c corresponding to the
observed accuracy of B,

n∗
c,B = pB − pAB√

pAB(1 − pAB)

√
|T |. (11.110)

Then, if

1 − P(N ∗
c ≤ n∗

c,B) = 1 − F(n∗
c,B) < α, (11.111)

one can reject H0 at significance level α. The above is a ‘one-sided’ test, testing if ‘B is better
than A’ – for symmetry reasons in the above definition, this is equivalent to testing if A is
worse than B. One can also define a two-sided test analogously to the McNemar test above, but
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this is rarely used. Because normally distributed quantities are often denoted by the symbol z,
the above test is called a z-test.

For a given significance level α, one can now consider the ‘line of significance’

1 − F(n∗
c,B) = α. (11.112)

Solving for pB , one obtains a function pB(pA) indicating how good B has to be to surpass
the baseline system A at significance level α. Equivalently, one can regard the accuracy
difference pB − pA required for reaching significance at a level α as a function of the baseline
accuracy. An example of this function is given in Figure 11.14 for classification experiments
with sample sizes of N = 1000 and N = 10 000, and α chosen as 0.001, 0.01, or 0.05. The
required accuracy improvement is given by the intersection of the vertical line corresponding
to the baseline accuracy and the curve corresponding to the level of significance. The vertical
line in Figure 11.14 indicates chance level accuracy (pA = 0.5) for a (balanced) binary
classification task, as widely encountered in computational paralinguistics.

From Figure 11.14, it is obvious that the required accuracy difference to reach significance
becomes smaller and smaller with better baseline accuracy. This is rather intuitive, as one
expects small absolute improvements in systems with already good performance to be ‘more
significant’ than the same absolute improvement for lower performing systems.

An advantage of the z-test is that it only requires the accuracies of both systems and the size
of the test set. However, the assumption of independence of errors is not necessarily made in
practice, for example in the case of sequence labelling by neural networks, where the prediction
on one frame strongly depends on the previous predictions. Furthermore, it is assumed that
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the accuracies of both systems can be estimated reliably, which requires sufficiently large test
sets. Despite these theoretical limitations, the z-test is among the most widely used (Dietterich
1998).

Let us now briefly discuss significance testing for regressors, which can be derived from
similar considerations to those above. Recall that the correct or incorrect decision of a clas-
sifier for each instance can be modelled as a Bernoulli experiment with success probability
corresponding to the classifier’s (true) accuracy. The modelling of the classifier’s accuracy
as a normally distributed random variable resulted from the approximation of the binomial
distribution (modelling sums of Bernoulli distributed random variables), which is justified
by the central limit theorem. More precisely, this approximation holds if the error on each
instance is statistically independent of the other errors, and follows the same distribution –
one speaks of independent identically distributed (i.i.d.) random variables. If we now consider
the absolute deviation of a regressor’s prediction on instance n of the test set from the ground
truth, |ŷ(xn) − yn|, as a random variable, the central limit theorem tells us that the sum of
this random variable taken across the test set will be approximately normally distributed for a
sufficiently large test set. Obviously, the same holds for the MAE (11.97), which is the above
named sum scaled by the size of the test set.

Suppose we have two regressors A and B delivering predictions on the same test set. Without
loss of generality, we assume that B has a lower MAE than A. We have two random variables
MAEA and MAEB. A one-tailed significance test is based on the null hypothesis

H0 : MAEA > MAEB, (11.113)

or equivalently,

H0 : MAEA − MAEB > 0. (11.114)

Let

Dn = |ŷA(xn) − yn| − |ŷB(xn) − yn| (11.115)

denote the difference of the absolute errors made by A and B on instance n, and let the sample
mean of Dn be denoted by D, and the sample standard deviation by σD = 1

|T |−1

∑|T |
n=1(Dn −

D)2. We now test if D is significantly different from zero. For this one generally uses a t-test
instead of a z-test, based on the so-called t-distribution. The advantage of the t-distribution
is that it does not depend on the unknown true mean and standard deviation of the errors, but
only on the sample size (degrees of freedom). For large sample sizes, it is equivalent to the
standard normal distribution. As our test quantity we obtain

t = D

σD

√
|T |, (11.116)

which resembles the test quantity (11.110) of the z-test. The significance test is given by
comparing the probability that t is observed under H0 to the significance level α,

1 − F |T |
t (t) < α, (11.117)
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where F |T |
t is the cumulative distribution function of the t-distribution with |T | degrees of

freedom. If this probability is smaller than α, one can reject the null hypothesis of equal
performance of A and B in terms of MAE. By setting the degrees of freedom to the size of the
test set, one uses a paired t-test, respecting that the sampling of the errors of A and B is not
independent – they are carried out on the same test set.

So far, the choice of the test set has been assumed fixed – thus, the above methods still do not
allow us to assess whether some observed performance differences are caused by particular
choices of training and test data, rather than fundamental properties of the classifier. Thus, let
us now consider the case of repeated evaluation using various partitionings of the data set. Let
J denote the number of such partitionings – such as in J -fold cross-validation. Furthermore,
let E (1)

A , . . . , E (J )
A , E (1)

B , . . . , E (J )
B denote the evaluation measure reached by classifiers (or

regressors) A and B in partitionings 1, . . . , J . E can represent any of the measures discussed
in this chapter, such as accuracy, UAR, MAE, or RMSE. We can then define the performance
difference of A and B on partitioning j , j = 1, . . . , J , as

E ( j)
D = E ( j)

A − E ( j)
B . (11.118)

Then, we proceed to test whether this difference is significantly different from zero, similar to
the MAE significance test above. In particular, a t-test can be used with test statistic

t ′ = ED

σED

√
J , (11.119)

where ED and σED are the sample mean and standard deviation of the observed performance
differences. Analogously to (11.117), the one-tailed significance test is given by evaluating
the inequality

1 − F J
t (t ′) < α. (11.120)

For a more in-depth discussion of evaluation by resampled training and test sets, see Dietterich
(1998).

Besides evaluating performance differences across multiple partitionings, the t-test
described above is also useful as a replacement for the binomial test for accuracy differ-
ences where the assumption of independence across test instances is not met (e.g., if emotion
is determined by a neural network or HMM at the frame level). Here, one can compute the
evaluation measure of interest (such as the MAE) in a larger unit of analysis that is analysed
independently of the others (e.g., a user turn), and then compare the performance measure-
ments obtained analogously to the comparison across partitionings. This has been proposed for
word accuracy significance testing in automatic speech recognition by (Gillick and Cox 1989).
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12
System Integration and Application

The stability of the whole is guaranteed by the instability of its parts.
(Karin Meissenburg)

Having discussed the theoretical foundations of computational modelling of paralinguistics, we
now dig deeper into the engineering side of things: how to implement systems for actual use in
real-life conditions. This may include practical aspects such as using standards as EmotionML
for the output encoding or even encoding of the features used (see Section A.2 in the Appendix).
As not all these considerations can be covered here, three aspects were selected: distributed
processing, autonomous and collaborative learning, and confidence measures. Many other
issues exist, which are also partly covered in the literature, such as noise and reverberation
robustness, distant talking, speech coding artefacts, and gating, that is, how soon after speech
onset a reliable estimate can be made on the paralinguistic target task. Pointers to suitable
literature can be found in recent surveys (Schuller et al. 2011, 2013a,b). Further, the techniques
often strongly resemble those used in related speech and speaker recognition tasks.

12.1 Distributed Processing

Looking at the related field of automatic speech recognition (ASR), we observe that not many
developments have had as much influence as the deployment of the technology in mobile
services, which have turned out to be a ‘killer application’. This comes as the use of ASR
in daily life has increased the availability of realistic data for research and development of
improved recognition technology, leading to a virtuous circle of better usability and more
widespread usage. In particular, self-improving ASR systems have been implemented for
mobile services (Gilbert et al. 2011). In this respect, ASR may have paved the way for
future usage of speech technology in mobile applications. To the best of our knowledge,
there does not exist a ready-to-use service for mobile computational paralinguistics. Thus,
this section contains a bit of ‘tea-leaf reading’. Yet, the area of possible applications is
widespread, including ‘hearing glasses’ for individuals with difficulties in understanding, for
example, affective cues, such as persons on the autism spectrum or cochlear-implanted patients,
entertainment applications, and gaming. Just as for ASR, implementing such applications

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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seems to offer some promise, as the ever present scarcity of labelled, realistic data could
be remedied by relying on input from mobile devices such as phones to gradually build
paralinguistic models based on real-life speech.

In the following, we will assume that such mobile services require a suitable architecture
for distributed processing, where parts of the chain of processing are done on the mobile client
while model building and classification/regression are carried out on a server. The design of
such architectures will be the focus of this section.

Moving from a stand-alone architecture to a distributed architecture, the questions of
transmission and storage of audio features become crucial. Obviously, for the ‘low-level’
transmission protocols, plenty of standards exist. However, one has to keep in mind the
required transmission bandwidth, and the storage cost – in a distributed architecture, we
assume that a database of labelled audio features is maintained by the server. To illustrate the
required bandwidth, let us consider the baseline feature set for the Interspeech 2009 Emotion
Challenge (see Section A.1), where the dimension of the features per speech sample is 384
(Schuller et al. 2011), computed as supra-segmental functionals spanning time periods of
approximately 1 second. Recall that more recent studies in affect recognition (e.g., Zhang et al.
2011) employ thousands of features. Thus, it makes sense to employ feature compression.
This can be done, for example, by the split vector quantisation (SVQ) algorithm. In contrast to
simple vector quantisation (VQ), it uses several codebooks for different ‘parts’ of the vectors,
that is, subspaces of the feature space. Let us denote the number of codebooks by L – using
codebooks of M-bit words, we have

L =
⌈

N

2M

⌉

. (12.1)

Formally, a codebook is a mapping cl : {1, . . . , K } → X , where K = 2M is the codebook
size. The range of this mapping (the code vectors) is determined by application of a clustering
algorithm such as K -means. In the feature compression step for a vector x to be transmitted,
for l = 1, . . . , L the index i∗

l ∈ {1, . . . , K } of the closest codebook entry is determined,

i∗
l = arg min

il

d(cl(il), x). (12.2)

The (weighted) Euclidean distance metric is usually used for d(·). Then, as a compressed
feature vector, the vector (i∗

1 , . . . , i∗
L )T is transmitted. It follows that the transmission size per

feature vector is L · M bits. Note that with L · M bits, we can either encode 2L·M reference vec-
tors ∈ X , as would be done in standard VQ, or (2M )L combinations of 2M reference sub-vectors
in the L subspaces of X corresponding to the codebooks. Thus, given a fixed transmission
bandwidth, SVQ is better suited to large feature spaces than VQ, as it improves generalisation
and drastically reduces the computational complexity of the encoding step (12.2). In the feature
decompression step, a feature vector in the original space X is reconstructed by table look-up.

Assuming N · 32 bits for transmission of an uncompressed N -dimensional vector (single
precision floating point numbers), the compression rate (CR) obtained by using SVQ is

CR = 32 · N

L · M
. (12.3)

In Han et al. (2012), the trade-off between CR and unweighted average recall (UAR) for affect
recognition is analysed, indicating that CRs of 20–40 are feasible without expecting significant
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Figure 12.1 Example flow-chart of a distributed system for computational paralinguistics. Components
typically contained in a stand-alone system are shown in light grey, while dark grey nodes indicate
components in a distributed architecture similar to distributed speech recognition. Network sinks are
shown in medium grey

decreases in UAR when applying SVQ. As a positive side effect, the quantisation according to
a server-side codebook ensures that speech samples are stored only as references to samples of
speakers in the reference database used to create the codebook – thus, no ‘personal’ features
of the speakers are transmitted, in comparison to traditional feature space reduction or feature
selection methods.

In Figure 12.1 we observe an important feedback loop from classification to feature extrac-
tion, referring to the fact that the distributed architecture allows relying on existing mobile
services for ASR, generating lexical features and sending them to a server for recognition.

Ideally, end user systems performing paralinguistic analysis should be free in their choice
of a server-side recognition engine, enabling easy integration of new resources and closing the
gap between analysis and synthesis applications. To this end, one needs to rely on standardised
interfaces. Examples of standards that can be used in distributed paralinguistic analysis are
those for distributed speech recognition such as the (European Telecommunications Stan-
dards Institute) ES.202.050, and generic communication protocols such as web services. In
the area of feature extraction for computational paralinguistics, the CEICES feature coding
scheme (Batliner et al. 2011) provides a standard at an abstract level (see also Section A.2)
and open source feature extraction engines (see Chapter 13 and Eyben et al. 2010) do so
at the implementation level. Moreover, one needs a standardised interface to communicate
recognition results to the client side for interpretation, for example, by a dialogue management
or speech synthesis component. In this context, one might mention the Extensible MultiModal
Annotation (EMMA) markup language (Baggia et al. 2007) or the Emotion Markup Language
(EmotionML) proposed in Schröder et al. (2007) as examples from the area of affect recog-
nition. Yet, at the time of writing, a generic standard for encoding paralinguistic information
still has to emerge.

As has been touched upon in the above discussion, acquiring data on the server, be it in the
form of compressed or uncompressed feature vectors, can be used for autonomous learning
whose theoretical foundations will be discussed subsequently.
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12.2 Autonomous and Collaborative Learning

Data scarcity constitutes a major bottleneck in computational paralinguistics which limits
real-world application (Schuller 2012). The term ‘data scarcity’ (or ‘sparsity’) stems from the
machine learning field and usually refers to the shortage of labelled data points for training and
evaluating machine learning algorithms. It is obvious that in the digital age data per se are not
scarce at all. In particular, speech data as such are available in vast quantities from the Internet,
radio and TV broadcasts. The bottleneck is thus obtaining the (para)linguistic labels (such as
lexical transcription, speaker attributes, arousal and valence annotation) for these data – one
should probably speak of label scarcity rather than data scarcity.

The traditional approach to obtaining labelled data has been to employ human experts for
labelling. Such manual annotation, however, remains extremely time-consuming and expensive
despite recent efforts in crowd-sourcing (Raykar et al. 2010). Semi-supervised learning (SSL:
Chapelle et al. 2006) seems to be a promising alternative. Here, a system that has been
trained on a small amount of human labelled data L = {(x1, y1), . . . , (x L , yL )} automatically
annotates a corpus of unlabelled data U . This is usually done iteratively through the following
SSL meta-algorithm, stopping after a predefined number I of iterations:

• Initialisation: Set L(0) := L, U (0) := U
• Iteration: Repeat for i = 1, . . . , I :

1. Train classifier ŷ(i−1) on L(i−1)

2. Use ŷ(i−1) to label U
3. Pick N instances x (i)

1 . . . , x (i)
N ∈ U with highest classifier confidence

4. Set L(i) := L(i−1) ∪
{(

x (i)
1 , ŷ(x (i)

1 )
)

, . . . ,
(

x (i)
N , ŷ(x (i)

N )
)}

5. Set U (i) := U (i−1) \
{

x (i)
1 , . . . , x (i)

N

}

Instead of running I iterations, a convergence criterion such as the relative change in the
weight vector w of a support vector machine (SVM) with respect to the previous iteration
step can be used. It remains to clarify how to determine the N instances in step 3 of the
SSL algorithm. This requires a measure of the confidence of the classifier in its decision.
Often, a simple measure derived from the classification rule can be used. For instance, in
SVM classification, the distance from the hyperplane is a rough approximation of classifier
confidence – the further away from the hyperplane, the more certain the decision is. The
computation of confidence measures will be addressed in more detail below.

SSL is popular in automatic speech recognition (Gilbert et al. 2011; Wessel and Ney 2005;
Yu et al. 2010), and initial studies in affect recognition have been carried out (Zhang et al. 2011)
– at the time of writing, it remains to be applied to other domains within the computational
paralinguistics field.

An extension of the basic SSL algorithm is co-training (Blum and Mitchell 1998). This
seems to be especially suited to ‘multimodal’ tasks, that is, tasks where multiple views can
be exploited. Co-training relies on two assumptions: compatibility and independence (Blum
and Mitchell 1998; Du et al. 2011). Compatibility requires that each view is sufficient to
train a good classifier. The assumption of independence demands that the classification of
an instance by one view is conditionally independent of the classification by the other. For
example, it can be used for acoustic-linguistic recognition of paralinguistic aspects. If only
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acoustic information is used, the feature vectors can be split in a meaningful way, such as
partitioning by energy-related, spectral, and cepstral descriptors.

Suppose that we have two ‘modalities’ or ‘views’ A and B on the same classification task.
In co-training one iteratively trains a sequence of classifiers on these views, such as feature
set subspaces. Thus, the co-training algorithm can be written as follows:

• Initialisation: Set L(0) := L, U (0) := U
• Iteration: Repeat for i = 1, . . . , I :

1. Train classifiers ŷ(i−1)
A , ŷ(i−1)

B on L(i−1)

2. Use ŷ(i−1)
A , ŷ(i−1)

B to label U
3. Pick N instances x (i,A)

1 . . . , x (i,A)
N ∈ U with highest confidence of classifier A

4. Pick N instances x (i,B)
1 . . . , x (i,B)

N ∈ U with highest confidence of classifier B

5. Set L(i) := L(i−1) ∪
{(

x (i,A)
1 , ŷA(x (i,A)

1 )
)

, . . . ,
(

x (i,A)
N , ŷA(x (i,A)

N )
)

,
(

x (i,B)
1 , ŷB(x (i,B)

1 )
)

, . . . ,
(

x (i,B)
N , ŷB(x (i,B)

N )
)}

6. Set U (i) := U (i−1) \
{

x (i,A)
1 , . . . , x (i,A)

N , x (i,B)
1 , . . . , x (i,B)

N

}

Note that one can introduce a balancing step into steps 3 and 4 to focus on underrepresented
classes, as proposed by Blum and Mitchell (1998). A related modification of the above
algorithm is training set resampling, picking a random subset of U for labelling – as pointed
out by Blum and Mitchell (1998), this results in better coverage of the data distribution
underlying U , rather than picking only those instances that are ‘easy to classify’. Furthermore,
the algorithm can be extended to more than two views (Zhou and Li 2005). Finally, it is
noteworthy that the independence assumption of the views generally leads to ‘contradictory’
training sets, where an instance can be added with different labels.

Let us now depart from fully automatic annotation by classification systems and address
collaborative learning. The aim here is efficient exploitation of the human workforce in
labelling, by concentrating efforts on those instances that are ‘hard to classify’, and whose
manual labelling is thus assumed to be of particular interest for system improvement. The active
learning (AL) meta-algorithm implements this paradigm by exploiting classifier confidence
similarly to SSL – yet focusing, conversely, on the instances with low confidence, and adding
them to the training set along with their human annotation. This results in the following AL
meta-algorithm:

• Initialisation: Set L(0) := L, U (0) := U
• Iteration: Repeat for i = 1, . . . , I :

1. Train classifier ŷ(i−1) on L(i−1)

2. Use ŷ(i−1) to label U
3. Pick N instances x (i)

1 . . . , x (i)
N ∈ U with lowest classifier confidence

4. Obtain manual annotation y(i)
1 , . . . , y(i)

N of these instances

5. Set L(i) := L(i−1) ∪
{(

x (i)
1 , y(i)

1

)
, . . . ,

(
x (i)

N , y(i)
N

)}

6. Set U (i) := U (i−1) \
{

x (i)
1 , . . . , x (i)

N

}
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Similarly to SSL, a ‘balancing’ step can be introduced to focus more on the instances of
the minority class (Zhang and Schuller 2012). To select the ‘most informative’ instances for
human labelling, a variety of criteria can be employed in AL besides choosing those with
the lowest confidence of the classifier as is exemplified in the above, similar to the method
proposed by Riccardi and Hakkani-Tur (2005) for ASR. Alternatives include the expected error
reduction method, which aims to measure how much the generalisation of the model would
be improved by adding instances (Roy and McCallum 2001), and the expected model change
based method, which chooses the instances that impact the current model most greatly (Settles
and Craven 2008). Instead of focusing the choice of instances on a particular classifier, one can
also utilise multiple classifiers and consider those samples with the lowest classifier agreement
as most informative (Liere 2000; McCallum and Nigam 1998). In the area of paralinguistics,
AL shows good performance in emotion recognition (Wu and Parsons 2011; Zhang and
Schuller 2012); as for SSL, other areas of applications are still to be explored at the time of
this writing.

12.3 Confidence Measures

When a computational paralinguistics system (or almost any automatic recognition system) is
employed in a real-world application, it is not reasonable to expect perfect accuracy. This may
be due to environmental influences (e.g., ambient noise), but also to divergence of the data used
to train the system and the application scenario (e.g., training an affect recognition model on
acted emotions, but applying it in monitoring of real conversations). Still, whenever accurate
recognition is not possible, one would ideally expect the model to signal that its prediction
should not be relied upon. In this case, appropriate actions can be taken, for example, a dialogue
manager would not change strategy based on unreliable detection of anger.

We have introduced several intuitive concepts of classifier confidence so far. An intuitive
notion of classifier confidence is closely related to posterior class probabilities, that is, the
system’s estimate of the probabilities p(i |x) that a pattern vector x belongs to class i ∈
{1, . . . , C}. For example, in the calculation of the receiver operating characteristic (ROC:
see Section 11.3.3) we adjusted a ‘confidence’ threshold based on the posterior probability
of the positive class. It is easy to see how this is intuitively related to confidence – a high
posterior probability of the positive class means that the posterior probability of the negative
class is close to zero, indicating high confidence; conversely, a posterior probability close to
1
2 indicates low confidence.

It remains to describe how class posteriors can be obtained from a classifier in the general
case. Let us start with the example of a linear classifier, such as an SVM with a linear kernel,
whose classification rule is based on computing the distance of the pattern vector x to be
classified, from the hyperplane given by normal vector w and bias b:

d(x) = wT x + b. (12.4)

Recall that by the definition of the linear classifier, d > 0 indicates a decision for the positive
class while d < 0 indicates the opposite. Intuitively, the larger the value of d, the higher the
posterior probability of the positive class, and vice versa. To obtain a posterior ‘pseudo’-
probability of the class +1 in the range [0, 1], we can thus ‘convert’ d into a strictly monotonic
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function that has as domain the real numbers (R) and the range [0, 1]. The prototype of such
a function is the sigmoid function, or logistic function, where a and b are free parameters:

π (u) = 1

1 + e−(a+bu)
= ea+bu

ea+bu + 1
. (12.5)

With the distance function (12.4) we obtain the desired mapping from a pattern vector to the
posterior pseudo-probability p of the positive class as

p(+1|x) = π (d(x)). (12.6)

The parameters a and b are usually determined by standard iterative curve fitting methods,
such as Newton’s method (Menard 2002). More specifically, the learning problem in the
optimisation is to predict the binary labels of the training data as a Bernoulli trial (outcome 0
for the negative class, or 1 for the positive class) from the values of d on the training data.

A generalisation of the logistic function to multiple outcomes (classes) is the softmax
function (11.35), introduced in its basic form in Section 11.2.1, in the context of neural
networks for multi-class discrimination. In its general form, it is given by

�i (u) = ebT
i u

∑C
k=1 ebT

k u
(12.7)

For example, the components of the vector u can correspond to activations of the output layer
of a neural network; in this case, u is C-dimensional, and a pseudo-probability equivalent to
(11.35) is obtained by choosing bi as the i th unit vector. Determining the coefficients bi , i =
1, . . . , C , from training data, such as by maximum a posteriori estimation, yields a so-called
maximum entropy classifier, which is suitable for deriving posterior probabilities from features
such as acoustic or language model likelihoods (White et al. 2007), resembling confidences in
an intuitive sense. Generalising this idea further, one can think of any discriminative classifier
(such as SVMs or DTs) to map a vector consisting of features (such as acoustic stability,
classifier likelihoods, or classifier agreement) to class posteriors.

All in all, we conclude that while confidence measures are state-of-the-art in ASR – a survey
can be found in (Jiang 2005) – surprisingly little attention has been paid to confidence measures
in computational paralinguistics. Furthermore, when we consider tasks with uncertain ground
truth such as training an emotion classifier on observer ratings, it can be argued that confidence
measures should also take into account the rater (dis)agreement – at the time of writing, this
has been addressed only in preliminary studies (Deng et al. 2012).
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13
‘Hands-On’: Existing Toolkits
and Practical Tutorial

Our goal is to show that you can develop a robust, safe manned space program and do
it at an extremely low cost.

(Elbert Leander ‘Burt’ Rutan)

An apprentice carpenter may want only a hammer and saw, but a master craftsman
employs many precision tools. Computer programming likewise requires sophisticated
tools to cope with the complexity of real applications, and only practice with these tools
will build skill in their use.

(Robert L. Kruse)

This chapter provides practical examples of paralinguistic feature extraction and live emotion
recognition with the openSMILE (open-source Speech and Music Interpretation by Large-
space Extraction) toolkit.1 The toolkit has a strong focus on real-time, incremental processing.
Moreover, openSMILE provides a simple console application where modular feature extraction
components can be freely configured and connected via a single configuration file. Both incre-
mental on-line processing for live applications and off-line batch processing are supported.

In this chapter we will first give an overview of related toolkits which can also be used to
extract some features, or can be used together with openSMILE to perform machine learning
tasks and model learning. Then we briefly introduce and describe the openSMILE toolkit and
its architecture and finally present a brief hands-on ‘computational paralinguistics how-to’ in
Section 13.3.

13.1 Related Toolkits

Related, popular feature extraction tools used for speech research include the Hidden Markov
Model Toolkit (HTK: Young et al. 2006), the PRAAT software (Boersma and Weenink 2005),

1http://opensmile.sourceforge.net/

Computational Paralinguistics: Emotion, Affect and Personality in Speech and Language Processing, First Edition.
Björn W. Schuller and Anton M. Batliner. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

http://opensmile.sourceforge.net/
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Figure 13.1 Modular architecture of the openSMILE toolkit

the Speech Filing System2 (SFS), the Auditory Toolbox,3 a MATLABTM toolbox4 (Fernandez
2004), the Tracter framework (Garner et al. 2009), and the SNACK5 package for the Tcl
scripting language. However, not all of these tools are distributed under a permissive open-
source licence (e.g., HTK and SFS).

Another comprehensive tool for emotion recognition experiments and dialogue systems is
the EmoVoice framework (Vogt et al. 2008).

13.2 openSMILE

This section introduces openSMILE’s architecture as illustrated in Figure 13.1.6

To provide comprehensive and standardised cross-domain feature sets, flexibility and exten-
sibility, and incremental processing support, a number of requirements had to be met. First,
incremental processing demands the ability to push audio data sample-wise from arbitrary
input streams such as files or the sound card through the chain of processing (cf. Figure 13.2).
Then, a ring-buffer memory for features is needed to provide memory efficient temporal context

2http://www.phon.ucl.ac.uk/resource/sfs/
3http://cobweb.ecn.purdue.edu/ malcolm/interval/1998-010/
4http://affect.media.mit.edu/publications.php
5http://www.speech.kth.se/snack/
6A more detailed description can be found in the openSMILE documentation available in the download package at
http://sourceforge.net/projects/opensmile/.

http://www.phon.ucl.ac.uk/resource/sfs
http://www.speech.kth.se/snack
http://sourceforge.net/projects/opensmile
http://cobweb.ecn.purdue.edu/malcolm/interval/1998-010/
http://affect.media.mit.edu/publications.php
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Figure 13.2 openSMILE: incremental data-flow at the low-level descriptor (LLD) level in the ring-
buffer memories. Short thick unbroken arrow: current write pointer (Eyben et al. 2010)

and buffering of dynamic length. Next, for an efficient design, reusability of data is required
to avoid duplicate computation of commonly used parameters such as fast Fourier transform
(FFT) spectra (see Figure 13.2). Moreover, fast and ‘lightweight’ algorithms were favoured
and the core functionality was implemented in C and C++ without third-party dependencies
where possible, in order to make the toolkit portable and easy to install and use.

A modular design enables an arbitrary combination of features and invites the research
community to add new feature extractor components to the code through an application
programming interface (API) and a run-time plug-in interface. To handle asynchronous feature
streams, universal timing information is available for processing of multiple streams.

Let us now look at openSMILE’s modular architecture enabling incremental processing, and
the features which are currently implemented. Figure 13.1 shows the overall data-flow archi-
tecture of openSMILE. The data memory is the central link between all other components –
data sources (writing from external sources to the memory), data processors (reading from
the memory, modifying the data, and writing back to the memory), and data sinks (reading
from the memory and writing to external devices or displaying a result).

The principle of ring buffer based incremental processing can be seen in Figure 13.2 by
an example with three levels: wave, frames, and pitch. The ‘cWaveSource’ component writes
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<Datamemory
Level>:

F0 Frame 5
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cPitch (=cVectorProcessor)

cWaveSource (=cDataSource)
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<func>

Figure 13.3 openSMILE: incremental data-flow at the functional level in the ring-buffer memories.
Short thick unbroken arrow: current write pointer (Eyben et al. 2010)

audio samples (from a file or audio device) to the ‘wave’ level. The current write position
pointers are indicated by vertical arrows. The ‘cFramer’ component produces non-overlapping
frames of size 3 from these wave samples. It writes the frames to the ‘frames’ level. Finally,
the ‘cPitch’ component (simplified in this example) calculates a pitch descriptor for each of
the frames. It saves this descriptor to the ‘pitch’ level. Since all boxes in the plot contain values
(i.e., data), the buffers have been filled with previous data, and the write pointers have been
warped.

Figure 13.3 shows the processing done at higher levels such as the application of func-
tionals in order to project a time series to single feature values. Two functionals, ‘max’
and ‘min’, are shown. These are calculated over two overlapping frames from the pitch
parameter and saved to the level ‘func’. The buffer size is matched to the block size of
the reader and writer. In the pitch functionals example the read block size of the func-
tionals component thus would be two frames because two pitch frames are required for
processing at once. openSMILE supports multi-threading for increased computational perfor-
mance. For utmost parallelisation on multi-core computers, components with computationally
demanding operations can be run in separate threads. The individual components can be
freely instantiated, configured, and connected to the data memory via a simple, text-based
configuration file.
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Table 13.1 openSMILE: supported low-level descriptors (LLDs). Abbreviations are explained in the
text and in the list of abbreviations at the front of the book

Group LLDs

Waveform ZCR, extremes, direct component
Signal energy RMS & logarithmic
Loudness Intensity & approximated loudness
FFT spectrum Phase, magnitude (lin., dB, dBA)
ACF, cepstrum ACF, cepstrum
Mel/Bark spectrum Bands 0–Nmel

Semitone spectrum FFT based and filter based
Cepstral Cepstral features, e.g., MFCC, PLP-CC
Pitch F0 via ACF and SHS methods, probability of voicing
Voice quality HNR, jitter, shimmer
LPC LPCC, reflection coefficients, residual, LSP
Auditory Auditory spectra and PLP coefficients
Formants Centre frequencies and bandwidths
Spectral Energy in N user-defined bands, multiple roll-off points, centroid, entropy,

flux, and relative positions of extrema
Tonal CHROMA, CENS, CHROMA based features

13.2.1 Available Feature Extractors

openSMILE provides a large number of low-level descriptors (LLDs) for automatic extraction
and the application of several filters, functionals, and transformations to these (see Table 13.1).
Mel spectra, MFCCs, and PLPs can be computed numerically, compatible with the popular
automatic speech recognition (ASR) toolkit HTK (Young et al. 2006). PLP computation can
be carried out as in the original paper by Hermansky (1990) or in custom modifications by
selecting individual steps only.

LLDs can be processed frame by frame with these filters: weighted differential and raised-
cosine lowpass as in Schuller et al. (2007), first-order infinite impulse response (IIR) lowpass/
highpass, comb-filter bank with arbitrary number of filters, moving average smoothing filter,
and regression (delta) coefficients (xW ) of arbitrary order W (see Section 8.4.11). These are
computed from any feature contour x(n) again in HTK style (Young et al. 2006) with the
parameter W (order):

d(n) =
∑W

i=1 i · (x(n + i) − x(n − i))

2
∑W

i=1 i2
. (13.1)

Additional arithmetic operations include add, multiply, and power, for creation of custom
features by combining existing operations.

Functionals comprise statistical descriptors, polynomial regression coefficients, and trans-
formations as found in Table 13.2. They can be applied to any data (LLDs or functionals)
hierarchically with unlimited depth as described in Schuller et al. (2008). Their choice follows
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Table 13.2 openSMILE: supported functionals

Group Functionals

Extremes Extreme values, positions, ranges
Means Arithmetic, quadratic, geometric
Moments Standard deviation, variance, kurtosis, skewness
Percentiles Percentiles and percentile ranges
Regression Linear and quadratic approximation coefficients, regression error, and centroid
Peaks Number of peaks, mean peak distance, mean peak amplitude
Segments Number of segments by delta thresholding, mean segment length
Sample values Values of the contour at configurable relative positions
Times/durations Up- and down-level times, rise/fall times, duration
Onsets Number of onsets, relative position of first/last on-/offset
DCT Discrete cosine transformation coefficients
Zero crossings ZCR, mean crossing rate

the CEICES standard (see Section A.2) developed by seven leading sites in the field (Batliner
et al. 2006, 2011).

The modular architecture allows the use of any implemented processing functionality in
arbitrary combinations, for example, one may use a mel-band filter bank as functionals. This
enables brute-forcing of large, unrestricted feature spaces of several thousand features. The
idea is not to compute more features than data points, but rather to provide a broad basis
of features from which to select those highly relevant to a given task, similar to the work
described by Pachet and Roy (2009). For exchange with other popular software modules,
supported file formats include Attribute Relation File Format (ARFF: Witten and Frank 2005)
from the WEKA data mining software, the LibSVM format, Comma Separated Value (CSV)
tables, HTK (Young et al. 2006) binary parameter files, and raw binary files. Further features
include a built-in audio and speech activity detection which can be used for audio stream
chunking in real time.

To conclude, openSMILE was introduced as an example of a feature extractor tailored to
be an efficient, on-line or batch scriptable, open-source, cross-platform, and extensible tool
implemented in C++. It is increasingly turning into a standard toolkit – in particular in the
field of computational paralinguistics.7 Moreover, the openEAR (open-source Emotion and
Affect Recognition) project builds on openSMILE and extends it with integrated classification
algorithms and pre-trained models for affect recognition tasks (Eyben et al. 2009).

13.3 Practical Computational Paralinguistics How-to

In this section we present a small tutorial which covers how to get started with openSMILE.
First, we explain how to obtain and install openSMILE. If you already have a working

7openSMILE was awarded third place in the Association for Computing Machinery (ACM) Multimedia 2010 Open-
Source Software competition. Furthermore, it has been employed as the standard feature extractor for baseline feature
computation and used by participants in six research challenges in the field since 2009.
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installation of openSMILE you can skip directly to Section 13.3.2, where we explain how to
use openSMILE for your first feature extraction task.

13.3.1 Obtaining and Installing openSMILE

The latest stable open-source release of openSMILE can be found at http://opensmile.
sourceforge.net/. It is distributed under the GNU General Public Licence (GPL), which allows
for private, research, and commercial use, but requires any modifications and dependent code
to be made available to the community under the same or a compatible licence.8

This tutorial is based on the 1.0.1 open-source release from http://opensmile.sourceforge.
net/. Check this website for updates and the latest compilation and installation instructions
in the openSMILE book. These are not included here because they are subject to constant
change. The release versions include pre-compiled Linux and Windows binaries for 32-bit and
64-bit Intel architecture based computer systems. The source can be built without any third
party libraries on Linux systems with autoconf and automake and on Windows systems with
Visual Studio. If live audio recording or playback is needed, a version of openSMILE linked
to the PortAudio library is required.

The following material assumes that you have a working installation of openSMILE on
your system and that you are familiar with the command line interface in either Windows or
Linux. We will further assume that you are using Linux, that is, the commands and filenames
given are for the Linux shell. The syntax for the Windows shell is similar, and we assume that
if you are an advanced Windows user, you will know how to run the commands properly in
Windows. In general, we recommend running openSMILE under Linux, as it delivers better
performance, and batch scripting is easier to carry out due to a broad on-board availability of
shells and scripting languages (especially Perl and Python). Always bear in mind that the open-
source version of openSMILE is and will always be a tool and not a fully featured product
or software package. It can be used for data and signal processing, and feature extraction.
Conversions of various input data formats, batch processing, handling of data labels and
meta-data, and post-processing or conversion of output data formats must be performed with
external scripts.

13.3.2 Extracting Features

All functions of openSMILE are available through the main binary SMILExtract. To check if
you can run SMILExtract, type:

SMILExtract -h

If you see the usage information and version number of openSMILE, then everything is set up
correctly. You will see some lines starting with (MSG) at the end of the output, which is debug
output and which you can ignore for the moment.

8Proprietary licensing and commercial versions of openSMILE and openEAR can be obtained through audEER-
ING UG (limited) (http://www.audeering.com/). The company also provides professional consulting and support to
researchers and companies who wish to use openSMILE in commercial product development.

http://opensmile.sourceforge.net/
http://opensmile.sourceforge.net/
http://www.audeering.com
http://opensmile.sourceforge.net/
http://opensmile.sourceforge.net/
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Note that you may have to prefix a “./” on Unix-like systems, if SMILExtract is not in your
system path but instead in the current directory.

We will now start using SMILExtract to extract basic audio features from an uncompressed
wave audio file. You can use your own wave files if you like, or use some of the files
provided in the wav-samples directory. openSMILE does not support any formats other than
uncompressed pulse code modulation (PCM) wave at the time of writing, so if your audio
material is in another format you will have to convert it to wave using tools such as ffmpeg
or mplayer, which both support any existing audio format. Note that some tools produce an
extended wave header format which openSMILE cannot read. When reading such a wave file
you will get an error message saying that it is not a supported wave file. The problem can
be solved by using the command line tool ‘sox’ to convert your wave file to a single channel
wave file (‘sox input.wav -c 1 output.wav’) – in this case sox creates an output wave file with
the old, standard Resource Interchange File Format (RIFF) header (sometimes it is sufficient
to just use ‘sox input.wav output.wav’).

For a quick start, we use an example configuration file provided with the openSMILE dis-
tribution. Type the following command in the top-level directory of the openSMILE package:

SMILExtract -C config/demo/demo1\_energy.conf -I wav\_samples/
speech01.wav -O speech01.energy.csv

If you see only (MSG) and (WARN) type messages, and Processing finished! in the last
output line, then openSMILE ran successfully. If something fails, you will get an (ERROR)

message.
Note for Windows users: Due to sub-optimal exception handling and memory management

in Windows, if an exception indicating an error is thrown up in the Dynamic Link Library
(DLL) and caught in the main executable, Windows will display a program crash dialogue.
In most cases openSMILE will have displayed the error message beforehand, so you can just
close the dialogue. In some cases however, Windows kills the program before it can display
the error message. If this is the case, please use Linux, or contact the authors and provide some
details on your problem.

Now, open the file speech01.energy.csv in a text editor to see the result. You can also
plot the result graphically using gnuplot9 or MATLAB for example.

Next, we will generate the configuration file for the above example step by step, to learn how
openSMILE configuration files are written. openSMILE can generate configuration templates
for a given list of components that you want to have in your configuration. The configuration
file that we will now create will be capable of reading a wave file, computing per-frame signal
energy, and saving the output to a CSV file. First, create a directory myconfigwhich will hold
your new configuration files. Then type the following (without newlines) to generate your first
configuration file (demo1.conf):

SMILExtract -cfgFileTemplate -configDflt cWaveSource,cFramer,

cEnergy,cCsvSink -l 1 2> myconfig/demo1.conf

The -cfgFileTemplate option causes openSMILE to generate a configuration file tem-
plate. The -configDflt takes a comma separated list of components which will be part of

9See http://www.gnuplot.info/

http://www.gnuplot.info
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the generated configuration. In this example: cWaveSource to read a wave file, cFramer to
perform windowing on the audio signal, cEnergy to compute the signal RMS energy, and
cCsvSink to write the computed energy values to CSV text file. The -l 0\ option sets the
log level to 1 in order to suppress any debug messages, which should not be in the con-
figuration file (you will still get ERROR messages at log level 1, for example, messages
informing you that components you have specified do not exist). The template text is printed
to the standard error output, thus we use 2> to dump it to the file myconfig/demo1.conf.
If you want to automatically add comments which describe the individual option lines in
the generated configuration file, add the option -cfgFileDescriptions to the above
command line.

The newly generated configuration file consists of two logical parts. The first part looks
like this (note that comments in the examples are initiated by ; or // and may only start at the
beginning of a line):

;= component manager configuration (= list of enabled

components!) =

[componentInstances:cComponentManager]

// this line configures the default data memory:

instance[dataMemory].type = cDataMemory

instance[waveSource].type = cWaveSource

instance[framer].type = cFramer

instance[energy].type = cEnergy

instance[csvSink].type = cCsvSink

// Here you can control the amount of detail displayed for the

// data memory level configuration. 0 is no information at all,

// 5 is maximum detail.

printLevelStats = 1

// You can set the number of parallel threads (experimental):

nThreads = 1

This part contains the configuration of the component manager, which determines what com-
ponents are instantiated when SMILExtract is run. There always has to be one cDataMemory
component, followed by other components. The name given in [] after the instance variable
specifies the name of the component instance, which must be unique within one configuration.
The value assigned to the instance[].type variable determines the type of the component
to be instantiated (e.g., cFramer).

The next part of the file contains the component configuration sections, each of which begins
with a section header as illustrated in the following example:

[waveSource:cWaveSource]

...

[framer:cFramer]

...

[energy:cEnergy]

...

[csvSink:cCsvSink]

...
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The section header follows the format [instanceName:componentType], where instan-
ceNamemust be the same name as in the componentInstances section. The template component
configuration sections are generated with all available values explicitly set at their default val-
ues. This functionality is currently experimental; some values might override other values
or have a different meaning if explicitly specified. Therefore, you are advised to carefully
check all the available options and list only those in the configuration file which you require.
Nonetheless, it is considered good practice to explicitly specify as many options (even if they
are identical to the default values) as possible, in case the default value changes in a later
release. Specifying values explicitly will ensure compatibility of your configuration files with
future versions. Moreover, this will increase the readability of your configuration files because
all parameters can be viewed in one place without looking up the defaults in the manual. To
see up-to-date documentation (the documentation in the openSMILE book is only updated
for major releases) of all available configuration options for a particular component, type the
command

SMILExtract -H cComponent

and replace cComponentwith the name of the component in question. The component name in
this case is always evaluated as if it had a wildcard at the end. For example, cM as component
name would match cMfcc and cMelSpec and thus would show the online help for both
components.

Once the template configuration file is ready, you have to configure the component con-
nections. To do this, assign so-called data memory ‘levels’ to the dataReader and dataWriter
components by replacing the XXXX placeholders in each source, sink, or processing component
in the respective reader.dmLevel and writer.dmLevel lines. You can choose arbitrary
alphanumeric names for the writer levels, since the dataWriters automatically register and
create the level you specify as writer.dmLevel with the data memory. The component-to-
component connection is achieved by assigning the level as read level to reader.dmLevel

of another component. Here, the following rules apply. For each level only one writer may
exist, that is, only one component can write to a level; however, there is no limit to the number
of components that read from a level (enabling reusability of data by multiple components).
Further, one component can read from more than one level if you specify multiple data
memory level names separated by a ; such as reader.dmLevel = energy;loudness

to read data from the levels energy and loudness. Data are thus concatenated
column-wise.

In our example we want the cFramer component to read from the input PCM stream, which
is provided by the cWaveSource component, then create overlapping frames of 25 ms length
every 10 ms. Finally, we want to save these frames to a new level which we call “energy”.
Thus, we change

[waveSource:cWaveSource]

writer.dmLevel = <<XXXX>>

to

[waveSource:cWaveSource]

writer.dmLevel = wave
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and in the framer section

[framer:cFramer]

reader.dmLevel = <<XXXX>>

writer.dmLevel = <<XXXX>>

...

to

[framer:cFramer]

reader.dmLevel = wave

writer.dmLevel = waveframes

copyInputName = 1

frameMode = fixed

frameSize = 0.025000

frameStep = 0.010000

frameCenterSpecial = left

noPostEOIprocessing = 1

(Note that we removed a few unnecessary frameSize* options, set the frameSize to 25 ms
(0.025 seconds), and changed the rate at which frames are sampled (frameStep) to 0.010
seconds.)

Next in the processing chain is the cEnergy component, which reads the audio frames created
by the cFramer component and computes the logarithmic signal energy for each frame. The
cCsvSink finally writes the energy values to a CSV format text file called myenergy.csv. To
achieve this, we change the corresponding lines to

[energy:cEnergy]

reader.dmLevel = waveframes

writer.dmLevel = energy

...

rms = 0 ; disables root-mean-square energy

log = 1 ; enables logarithmic energy

...

[csvSink:cCsvSink]

reader.dmLevel = energy

filename = myenergy.csv

...

We are now ready to run our own configuration file in SMILExtract:

SMILExtract -C myconfig/demo1.conf

This will open the file “input.wav” in the current directory (be sure to copy a suitable wave file
and rename it to “input.wav”), then compute frame-based signal energy, and save the result to
the file “myenergy.csv”. The output should be the same as with the example configuration file
which we have used before.
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To use a file other than “input.wav” as input, change the filename= line in the waveSource
section. If you want to be able to pass the input file name and the output file name to openSMILE
on the SMILExtract command line, you have to add a command to the configuration file to
define a custom command line option. To do this, change the filename lines of the wave source
and the CSV sink to

[waveSource:cWaveSource]

...

filename = \cm[inputfile(I):file name of the input wave file]

...

[csvSink:cCsvSink]

...

filename = \cm[outputfile(O):file name of the output CSV file]

...

You can now run

SMILExtract -C myconfig/demo1.conf -I wav\_samples/speech01.wav
-O speech01.energy.csv

This concludes our brief introduction to configuring and running openSMILE. For the most
recent documentation, refer to the openSMILE book and the on-line help contained in the
binary as well as reading the source. The configuration file created in the above example is of
limited use in practice. openSMILE is released with much more powerful configuration files
than this example.

Predefined configurations for HTK compatible computation of MFCCs 0–12 with delta and
acceleration coefficients and without/with cepstral mean removal are contained in the files

MFCC12 0 D A.conf

MFCC12 0 D A Z.conf

respectively. Instead of the zeroth cepstral coefficient, logarithmic energy can be used by using
these configuration files:

MFCC12 E D A.conf

MFCC12 E D A Z.conf

The same files are available for HTK compatible PLP coefficients:

PLP 0 D A.conf

PLP 0 D A Z.conf

PLP E D A.conf

PLP E D A Z.conf

A set of basic prosodic descriptors (pitch and intensity) is contained in

prosodyShs.conf

for pitch extracted with the SHS algorithm and in

prosodyAcf.conf
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for pitch extracted with a cepstrum and ACF based method. In newer releases smileF0.conf
contains the configuration to run the most recent and best speech pitch extraction algorithm
available in openSMILE. At the moment this is SHS followed by a Viterbi smoothing stage.

Further, all the baseline feature sets of the Interspeech Emotion and Paralinguistics Chal-
lenges are available as openSMILE configuration files. The feature set of the Interspeech
2009 Emotion Challenge is available in the file emo_IS09.conf and IS09.conf in newer
releases. The feature set of the Interspeech 2010 Paralinguistics Challenge is available in the
file paraling_IS10.conf and IS10.conf in newer releases. Only in newer releases are
the features sets for the Interspeech 2011 Speaker State and 2012 Speaker Trait Challenge, the
Audio Visual Emotion Challenges (AVEC) 2011, 2012, and 2013, as well as the 2013 Com-
putational Paralinguistics Evaluation (ComParE) Challenge contained. The features contained
in these sets (excluding the most recent sets of 2013) are summarised in Tables A.1 and A.2
in the Appendix.

The general command to extract features with a Challenge configuration file is (example
for IS10):

SMILExtract -C paraling IS10.conf -I input.wav -O output.arff -

instname input1

-label1 class label for input wav

This will extract a single static feature vector for the utterance in the file input.wav and
create the ARFF file output.wav containing a header with the names of all the features and
a single feature vector for input.wav. If output.arff already exists, the feature vector for
input.wav will be appended to the file.

The Challenge configuration files require (via an include) an additional configuration file
named arff_targets.conf. This file configures the reference label targets to be included
in the ARFF file in order to be able to perform and evaluate classification experiments with the
WEKA software on the ARFF files produced. It also defines the option -label1 (or similar for
other Challenge tasks, for example, age, gender). The -instname parameter controls which
instance name is written (as first string attribute) to the ARFF file. This is useful at a later
stage for assigning automatically produced predictions for the task or certain feature values to
a particular instance (and associated with it the corresponding input file). The instance name
could be the same as the input file name. Actually, this is often the default choice.

If a single wave file contains multiple utterances, and the start/end times of these are known
from an external label file, openSMILE can be called once for each utterance on the same
input wave file by using -start and -end command line options, which accept the start and
end time of the segment to process in seconds. For example:

SMILExtract -C paraling IS10.conf -I input.wav -O output.arff -

instname input1 -label1 class label for input wav -start

1.2 -end 5.0

For these options to work, the configuration file must define them and route them to the
appropriate options in the wave source component. This can be done by adding the following
two lines to the configuration file in the cWaveSource section:

[waveIn:cWaveSource]

...
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start = \cm[start{0}:start in input wave file in seconds]

end = \cm[end{-1}:end in input wave file in seconds]

See the avec20\11.conf file for an example. For other output formats, the configuration
file needs to be modified, and the cArffSink component needs to be replaced by a cCsvSink
component for CSV text file output, for example. Alternatively, the ‘live’ classifier sinks can
be used to classify the feature vectors directly (e.g., cLibsvmLiveSink) and display the results
on the console output.

13.3.3 Classification and Regression

openSMILE is primarily a feature extractor. However, it also has components which implement
on-line classifiers. These include LibSVM and recurrent neural networks at the time of writing.
The current releases of openEAR10 (Eyben et al. 2009) show examples of how to use these
on-line classifiers. Further examples are found in the latest code releases from the SEMAINE
(Sustained Emotionally coloured Machine-human Interaction using Non-verbal Expression)
EU project.11

Before openSMILE can be used in live recognition mode, it is required to build good models
for your task. General models, for example, those shipped with openEAR, are trained on small,
prototypical databases and do not generalise well to real input data, where reverberation,
background noise, microphone transfer functions, etc. pose challenging conditions.

Therefore, to build your own personal toy computational paralinguistics recogniser, record
some data, for example, from yourself and ideally also from a few friends with your laptop
computer’s microphone, or through your mobile phone. Recordings should be a couple of
phonetically balanced short sentences (4–6 seconds in length). Including a small number of
distinct emotion, affective state, or speaker attribute classes (e.g., angry, neutral, sad, happy,
or young, old, male, female) will give you the best results for a start.

Once you have recorded all your data, put the files into sub-directories (representing the
emotion classes) of a single directory (named after your database), for example:

mydatabase/angry/recording1 angry.wav

mydatabase/happy/recording1 happy.wav

mydatabase/happy/recording2 happy.wav

For the above directory structure openSMILE provides a Perl script in scripts/

modeltrain to automate the process of feature extraction. From that directory, run:

perl stddirectory smilextract.pl /path/to/mydatabase emo IS09.

conf mydatabase emo IS09.arff

You can also use a different configuration file, but you must adapt the options for the
ARFF instance targets in either the cArffSink configuration section of the stddirec-

tory_smilextract.pl Perl script.

10http://www.openaudio.eu
11http://www.semaine-project.eu/

http://www.openaudio.eu
http://www.semaine-project.eu
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The above command produces the ARFF file mydatabase_emo_IS09.arff in the current
directory. You can load this file with the WEKA software using the WEKA Explorer Graphical
User Interface (GUI) and try a wide range of classifiers and classifier options there. For details
we refer to the WEKA documentation available at http://www.cs.waikato.ac.nz/ml/weka/.

LibSVM models which can be used in a live recogniser with SMILExtract can be built with
the buildmodel.pl script in the directory scripts/modeltrain. The script requires the
programs svm-train and svm-scale to be pre-compiled. See the script’s source code for
additional documentation.

References

Batliner, A., Steidl, S., Schuller, B., Seppi, D., Laskowski, K., Vogt, T., Devillers, L., Vidrascu, L., Amir, N., Kessous,
L., and Aharonson, V. (2006). Combining efforts for improving automatic classification of emotional user states.
In Proc. of IS-LTC 2006, pp. 240–245, Ljubljana.

Batliner, A., Steidl, S., Schuller, B., Seppi, D., Vogt, T., Wagner, J., Devillers, L., Vidrascu, L., Aharonson, V., and
Amir, N. (2011). Whodunnit: Searching for the most important feature types signalling emotional user states in
speech. Computer Speech and Language, 25, 4–28.

Boersma, P. and Weenink, D. (2005). Praat: doing phonetics by computer (Version 4.3.14). http://www.praat.org/.
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14
Epilogue

I think we’re on the road to coming up with answers that I don’t think any of us in total
feel we have the answers to.

(Kim Anderson, Mayor of Naples, Florida)

In this book we have presented an overview of computational paralinguistics: its history,
topics, methodologies, and the state of the art in Part I; and computational modelling –
features, machine learning procedures, and system integration, together with a hands-on, in
Part II. Throughout, we have referred to lacunas and desiderata. It might be informative to
contrast the state of the art in computational paralinguistics with that in automatic speech
processing, especially in automatic speech recognition (ASR): more than 40 years of research
in ASR versus some 15 years of research in computational paralinguistics. ASR is about
words, their sequence in the spoken word chain, and the meaning (semantics) encoded in this
sequence. Computational paralinguistics is about a multitude of different phenomena signalled
in between or by words or with modulations onto words. Parallel are the developments from
(strictly) controlled to more realistic data, from small to larger databases, from simple to
complex modelling and feature spaces, and from the modelling of single phenomena towards
more complex phenomena. Different is the type of reference (in the sense of Section 2.4):
a word is a word is a word – even if there is almost an indefinite number of combinations
of words, and even if the targeted sequence of words can be obscured by noise, slurring,
disfluencies, foreign accents, and so on. However, in principle, the target is not as evasive as
it can be in computational paralinguistics where there often is no stable ground truth (again in
the sense of Section 2.4), and where data and especially single classes can be very sparse and
processed with more or less competing annotations and models. These difficulties result in a
performance which is often sub-optimal, compared to the state of the art in ASR. It has been
– and still is – one of the ‘cross-sub-cultural’ tasks to make it plausible that some 75% correct
for a two-class problem can be as ‘good’ (meaning: representing the state of the art in the field)
or even ‘better’ than some 75% correct word recognition with a lexicon of some 1000 words.

Especially with the advent of easily obtainable toolboxes, all the means necessary for
employing a multiplicity of machine learning approaches are now available for studies within
computational paralinguistics, such as (the fusion of) large feature vectors modelling acoustic,
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competing models
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Figure 14.1 The state of the art of computational paralinguistics – and beyond

linguistic, or other types of information. However, there is as yet no smooth cooperation
between different fields such as phonetics, linguistics, psychology, sociology, and medicine
on the one hand, and engineering approaches on the other hand, nor a satisfying and fruitful
cross-disciplinary understanding and cooperation. It will take some time to match together
the different standards that we have mentioned throughout this book, especially in Chapters
2 and 3. Some of the key topics in this respect are the different performance-based metrics,
the different criteria such as classification performance versus interpretability, or ‘closed-
world’ performance versus (different kinds of) usability measures. Eventually, we are aiming
at answers for the simple question Is it helpful? – for basic research and especially within
applications.

Figure 14.1 closes this epilogue and attempts to summarise the present state of the art of
computational paralinguistics and the future directions in which it might go.





Appendix

A.1 openSMILE Feature Sets Used at Interspeech Challenges

Tables A.1 and A.2 show the low-level descriptors (LLDs) and functionals and their frequency
across the six openSMILE toolkit standard feature sets which were used for the Interspeech
and Audio/Visual Emotion Challenge (AVEC) baselines. The challenges are: the Interspeech
2009 Emotion Challenge (Schuller et al. 2009), the Interspeech 2010 Paralinguistics Chal-
lenge (Schuller et al. 2010), the Interspeech 2011 Speaker State Challenge (Schuller et al.
2011b), the Interspeech 2012 Speaker Trait Challenge (Schuller et al. 2012b), and the first
and second Audio/Visual Emotion Challenge (AVEC 2011 (Schuller et al. 2011a) and AVEC
2012 (Schuller et al. 2012a)).

All six feature sets contain supra-segmental features. That is, the acoustic LLDs such as
energy and pitch (which are sampled at a fixed rate – typically 5 or 10 ms), are summarised
over a given segment (of variable length) into a single feature vector of fixed length. This is
achieved by applying statistical functionals to the LLD. Each functional maps each LLD signal
to a single value for the given segment. Examples of functionals are mean, standard deviation,
higher-order statistical moments, and quartiles. The openSMILE toolkit (Eyben et al. 2010)
is used for feature extraction.

All LLDs are computed for short, overlapping windows of the original audio signal. The
windows are typically 20–60 ms long and are shifted at a rate of 5 or 10 ms (cf. above).

LLDs are filtered over time by a simple moving average low-pass filter in order to remove
artefacts introduced by this windowing. First-order delta coefficients (resembling the first
derivative) are computed for each LLD. The total number of features is – in principle –
obtained by multiplying the number of LLDs by 2 (considering the delta coefficients), and
then multiplying by the number of functionals.

For the Interspeech 2009 Emotion Challenge feature set (EC), for example, 16 LLDs and
16 delta LLDs by 12 functionals yields 384 features. However, for the other feature sets
exceptions hold from this strict brute-forcing rule. These exceptions are indicated in footnotes
in Tables A.1 and A.2 which are explained in the captions. The exceptions eliminate features
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Table A.1 Low-level descriptors (LLDs) in openSMILE standard features sets. Interspeech 2009
Emotion Challenge (EC), Interspeech 2010 Paralinguistic Challenge (PC), Interspeech 2011 Speaker
State Challenge (SSC), Interspeech 2012 Speaker Trait Challenge (STC), Audio/Visual Emotion
Challenges (AVEC) 2011/2012 (A′11, A′12). The PC and SSC sets also include the number of voiced
segments (F0 onsets)

EC PC SSC STC A′11 A′12

Number of descriptors

# LLDs 16 38 59 64 31 31
# Functionals 12 21 39 40 42 38

# Features 384 1 582 4 368 6 125 1 941 1 841

LLDs:

RMS energy
√ √ √ √ √

sum of auditory spec. (loudness)
√1 √ √ √ √

sum of RASTA filt. aud. spec.
√ √

zero crossing rate
√ √ √ √ √

energy in 250–650 Hz, 1–4 kHz
√ √ √ √

spectral roll-off pts. 25, 50, 75, 90%
√ √ √ √

spectral flux
√ √ √ √

spectral entropy
√ √ √ √

spectral variance
√ √ √ √

spectral skewness
√ √ √ √

spectral kurtosis
√ √ √ √

spectral slope
√ √

psychoacoustic sharpness
√ √ √

harmonicity
√ √ √

MFCC 0
√

MFCC 1–10
√ √ √ √ √ √

MFCC 11–12
√ √ √ √

MFCC 13–14
√ √

log mel frequency band 0–7
√1

LSP frequency 0–7
√

26 RASTA spec. bands (0–8 kHz)
√ √

F0 (ACF based)
√

F0 (SHS based)
√

F0 (SHS based, Viterbi smoothing)
√ √ √ √

F0 envelope
√

probability of voicing
√ √ √ √ √ √

jitter
√ √ √ √ √

jitter (delta: ‘jitter of jitter’)
√ √ √ √ √

shimmer
√ √ √ √ √

logarithmic HNR
√ √ √

Description of feature name abbreviations: RMS, root mean square; MFCC, Mel-frequency cepstral
coefficients; RASTA refers to a technique of band-pass filtering in the log-spectral domain as used in
PLP feature extraction; PLP, perceptual linear predictive coding; LSP, line spectral pair; F0, fundamental
frequency; ACF, autocorrelation function; SHS, sub-harmonic summation; HNR, harmonics-to-noise
ratio.
1Only used for the TUM AVIC baseline (PC).



Table A.2 Functionals in openSMILE standard features sets. Interspeech 2009 Emotion Challenge
(EC), Interspeech 2010 Paralinguistic Challenge (PC), Interspeech 2011 Speaker State Challenge
(SSC), Interspeech 2012 Speaker Trait Challenge (STC), Audio/Visual Emotion Challenges (AVEC)
2011/2012 (A′11, A′12)

Functional: EC PC SSC STC A′11 A′12

positive arithmetic mean
√4 √4 √4

arithmetic mean
√ √ √ √4 √4 √4

root quadratic mean
√ √ √

contour centroid
√ √

standard deviation (std. dev.)
√ √ √ √ √ √

flatness
√ √ √

skewness
√ √ √ √ √ √

kurtosis
√ √ √ √ √ √

quartiles 1, 2, 3
√1 √ √ √ √

inter-quartile ranges 2–1, 3–2, 3–1
√1 √ √ √ √

percentile 1%, 99%
√ √ √ √ √

percentile range 1%–99%
√ √ √ √ √

% signal above min. + .25, .5 range
√ √ √

% signal above min. + .75 range
√1 √

% signal above min. + .9 range
√1 √ √ √ √

% signal below min. + .25 range
√ √

% signal below min. + .5, .75, .9 range
√

% frames signal rising
√ √ √ √

% frames signal falling
√ √

% frames signal has left/right curv.
√6 √6

% frames that are non-zero
√2 √2

linear regression offset
√ √1 √3

linear regression slope
√ √1 √ √3 √3 √3

linear regression error (lin.)
√1 √3 √3 √3

linear regression error (quad.)
√ √1 √

quadratic regression coefficient a
√ √3 √3 √3

quadratic regression coefficient b
√ √3

quadratic regression error (lin.)
√3 √3

quadratic regression error (quad.)
√ √3

maximum, minimum
√

maximum − minimum (range)
√

rising/falling slopes mean & std. dev.
√3 √3 √3

inter peak distances mean & std. dev.
√3 √3 √3

amplitude mean of maxima
√3 √3 √3

amplitude mean of minima
√3 √3 √3

amplitude range of maxima
√3 √3 √3

relative position of max, min
√ √1 √

linear predictive coding gain
√ √ √3,5 √3,5

linear predictive coding coeff. 1–5
√ √ √3,5 √3,5

peak distances mean
√ √3

peak distances standard deviation
√ √3

peak value mean
√ √3

peak value mean – arithmetic mean
√ √3

segm. length mean, max, min, std. dev.
√2 √ √5

input duration in seconds
√2 √2

1Only used for the TUM AVIC baseline (PC). 2Only applied to F0. 3Not applied to delta coefficient contours. 4For delta
coefficients the mean of only positive values is applied, otherwise the arithmetic mean is applied. 5Not applied to voicing
related LLDs. 6Only applied to voicing related LLDs.



310 Appendix

which do not contribute any meaningful information, for example, because they are always
constant.

A.2 Feature Encoding Scheme

The feature sets shown in the previous section provide a first step towards unification of
features. However, if one wishes to encode the type of features in a proprietary feature set, a
standard encoding scheme seems desirable. There is no agreed-upon taxonomy of feature types
yet, let alone a machine-readable feature encoding scheme, except the one based on Batliner
et al. (2011) which will be shown here. A common understanding may be guaranteed within
a single research group; this is, however, not possible across groups and different research
traditions. Just to give one simple example: features representing the temporal alignment of
pitch or energy extrema – which are measured in milliseconds – can be conceived still as
representing pitch or energy. This is not incorrect because pitch or energy extrema without
such an alignment are not very meaningful. However, when classifying prosodic boundaries,
accentuation, or emotion, one realises that there is a high correlation between these parameters
and genuine duration parameters such as overall duration of phonetic/linguistic entities. Thus,
we define such features as duration features – but of course, one still wants to keep in mind
that they are modelling pitch or energy contours. Another example is ‘mixed’ parameters:
there has to be agreement on whether to attribute them to the one or the other category, or to
a ‘mixed’ or ‘not-attributable’ category. All these questions are part of a general taxonomy of
acoustic or linguistic parameters.

If a database has been thoroughly processed and annotated, another problem pertains to size
of units, manual versus automatic processing, etc. To give another simple example: pitch values
can be obtained from different pitch detection algorithms, or from fully manual procedures,
or they can be based on manual corrections of automatic extraction results. These questions
are part of a partly general, partly specific taxonomy of types of processing.

The feature encoding scheme developed within the CEICES initiative is one step towards a
standardisation, comparable to first attempts to define standards such as SAMPA for phonetic
coding or EARL (Schröder et al. 2007) for emotion coding.

The scheme is realised in 8-bit ASCII coding; fields are delimited by full stops. Each
position (column) has its specific semantics. Each line fully describes one feature.

Table A.3 provides an overview on the entire scheme, Table A.4 shows the details for
linguistic feature types, and Table A.5 displays the codes of functionals. The tables include
a large number of abbreviations to keep the scheme to three one-page tables. Note that
linguistic descriptors (L) are encoded as 6-tuples, acoustic descriptors (A) as 20-tuples,
and functionals (F) as 6-tuples. Full stops within one field are only delimiters, without
their own semantics. Each column within a field is used to encode specific types. The six
L positions are mutually exclusive. In the A field, sub-fields (two columns each) delim-
ited by full stops denote one acoustic type; mixed types denoted in two different sub-fields
are possible.

To give an example of a feature code, the minimum of words’ pitch could have the following
code:

S1I00010M1D4R5111L000000A00.00.10.00.00.00.00.00.00.00C0000110000F00.01.01
N00X0000000000T- - - - - - - - - -PWoPitchMin.
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Table A.3 Feature coding scheme: overview. The alpha-numeric number assigns the position of the
respective column within that field. l, r: left, right; ctxt: context

Identifier S1

Site Id I12345

Mic quality M1
1 close-talk, 2 reverberated, 3 room, 9 other

Domain D1
1 fixed frame-rate, 2 subword, 3 word, 4 chunk,
5 turn, 6 speaker, 9 other

Reference R1 domain segm. I: basic
0 none, 1 acoust., 2 synt., 3 semantic, 5 synt. + acoust., 9 other
2 domain segm. II: strategy
0 implicit, 1 manual + heuristics, 2–3 dummy manual,
4 other manual, 5–7 dummy autom., 8 other autom., 9 other
3 subdomain segm.
0 none, 1 manual, 2 autom., 9 other
4 LLD/orthography/non-verbals
1 manual, 2 automatic, 3 mixed, 9 other

Linguistic L123456

Acoustics A12. duration (1 interval, 2 position)
34. energy
56. F0
78. spectral
90. formant (9 number, 0 type)
ab. cepstral (number)
cd. voice quality
ef. wavelets (number)
gh. pause
ij dummy

Comp. context C1 voiced, 2 unvoiced, 3 fixed frame, 4 sub word, 5 word,
6 chunk, 7 turn, 8 speaker, 9 whole db, 0 outside sub-corpus
0 not appl., 1 applicable, 2 incl. l local ctxt, 3 incl. r local ctxt,
4 incl. l+r local ctxt, 6 only l local ctxt, 7 only r local ctxt,
8 only l+r local ctxt

Functionals F12.34.56

Norm. context N12

etXetera X1234567890

Text T1234567890
string

Previous name P1234567890.....
alphanumeric



Table A.4 Linguistic descriptors in detail

1. column: Bag-of-Words

0 non-applicable
1 stopping
2 stemming
3 stopping and stemming
4 truncated words
5 character N -Gram
6 class-based clustering
7 dummy
8 dummy
9 other

2. column: POS

0 non-applicable
1 API
2 APN
3 AUX
4 NOUN
5 PAJ
6 VERB
9 other

3. column: Higher Semantics

0 none
1 vocative
2 positive-valence
3 negative-valence
4 commands-directions
5 interjections
6 dummy
7 dummy
8 dummy
9 other

4. column: Non-Verbals

0 none
1 breathing
2 laughter
3 cough
4 interjection
5 (human) noise
6 dummy
7 dummy
8 dummy
9 other

5. column: Disfluencies

0 not applicable
1 filler pauses
2 syllable length
4 hesitation (nasal)
5 hesitation (vocal)

(continued)
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Table A.4 (Continued)

6 hesitation (vocal, nasal)
7 dummy
8 dummy
9 other

6. column: reserved for later use

Table A.5 Functionals in detail by type and code. Abbreviations: cf combination
functional, ivl interval, lin linear, pos position, quad quadratic, rvl reversal, std dev
standard deviation, zcr zero crossing rate

00 non-applicable

extreme values

01 min, 02 max, 03 min pos, 04 max pos,
05 range, 06 mean min dist, 07 mean max dist, 08 min slope,
09 max slope, 50 on-pos, 51 off-pos, 59 other pos

mean

10 arithmetic, 11 quadratic, 12 geometric, 13 harmonic,
14 absolute, 15 conf. ivl both, 16 conf. ivl upper, 17 conf. ivl lower, 18 centroid

percentiles

20 quartile 1, 21 quartile 2 (median), 22 quartile 3, 23 quartile range 21,
24 quartile range 32, 25 quartile range 31 (iqr), 29 percentile other

higher statistical moments

30 std dev, 31 variance, 32 skewness, 33 kurtosis,
34 length, 35 sum, 36 zcr, 37 most frequent value (mode)

specific functionals/regression

38 up level time, 39 down level time, 40 micro variation, 41 #segments,
42 #rvl points, 43 #peaks, 44 mean dist rvl points, 45 std dev dist of rvl points,
46 mean peak distance, 47 ratio, 48 error, 49 other stat functional,
60 reg error, 61 lin reg coeff 1, 62 lin reg coeff 2, 63 quad reg coeff 1,
64 quad reg coeff 2, 65 quad reg coeff 3, 66 #ivls,
67 mean ivl length, 68 #positive ivls, 69 #negative ivls
70 DCT coeff 1, 71 DCT coeff 2, 72 DCT coeff 3, 73 DCT coeff 4, 74 DCT coeff 5,
79 other spectral coefficient

genetic functions

80 cf absolute value, 81 cf signum, 82 cf log, 83 cf reciprocal value, 84 cf power,
85 cf add, 86 cf minus, 87 cf mult, 88 cf div, 89 cf other

linguistic functionals

90 boolean TF, 91 word count TF, 92 log word count TF, 99 other TF functional
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discrepant communication, 107, 135, 136
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evaluation measures, 267
evaluator weighted estimator, 163
expectation maximisation (EM), 258
extralinguistic, 114
extralinguistics, 5
extraversion, 54, 117, 118

F-measure, 269, 270
F0, 82, 84
face, 13
false negatives, 269
false positives, 268
false start, 96
falsetto, 86
family resemblances, 40
fatherese, 134
FAU AEC database, 165
feature brute-forcing, 232, 233
feature reduction, 235
feature selection, 235
feature smoothing, 214
feature stacking, 233
feed-forward neural network, 249

feedback loop, 283
feeling, 56
felt, 35, 37
felt vs. perceived, 29, 35, 36
femininity, 34, 90
filled pause, 9, 96
filler, 94
first language (L1), 113
five-factor model, 54
foreign accent, 113
form, 10, 11
formal aspects, 100
formant synthesis, 12
formants, 205
free variant, 11, 81
frequency, 59
frustration, 133
full-blown emotion, 55
function, 10, 11
function word, 92, 93
functionals, 10, 231, 233
fundamental frequency, 207

gaze, 140
gender, 33, 95, 108, 110
General Inquirer, 223
generation, 6, 12
gestalt, 33
gesture, 13
glottalisation, 87
goats, 64
God’s truth, 67
gold standard, 32, 33, 161
ground truth, 31–33, 161
grunt, 99, 100

hamburger, 65
Hamming window, 189
Hanning window, 189
hapax legomenon, 59, 93
harmonics-to-noise ratio, 207
head orientation, 140
hearing aids, 128
hearing loss, 127
hedges, 94, 95, 100
height, 110
Heisenberg–Gabor limit, 188
hesitation, 96, 99
hidden Markov model, 256
Hidden Markov Model Toolkit, 289
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HMM synthesis, 12, 13
hocus-pocus, 67
holding the floor, 88
honest signals, 133
hyperfunctional dysphonia, 90
hypernasality, 124

identification, 13
incongruent, 136, 137
indirect speech, 136, 138
induced, 26, 27
infant-directed speech, 134, 135
information gain, 240
insertion, 130
instinctual, 37
intelligibility, 128
intensity, 190
intentional vs. instinctual, 29, 36, 37
interest, 23
interlingua, 112
interpersonal intelligence, 133
interpersonal stance, 22, 57
interruption point, 96, 97
interval level, 32
intimacy, 90, 134
intoxication, 124, 129
introversion, 118
involvement, 25
irony, 38, 136–138
irregular phonation, 86, 87, 89
islands of reliability, 120
isogloss, 93
isophone, 93

Jamesian perspective, 56
jitter, 86, 212

kappa, 70, 162
kernel function, 246

laboratory (lab) speech, 62
lambs, 64
language, 5
language disorders, 124
language identification, 112, 113
language model, 260
laryngealisation, 86, 87, 89, 90
laughter, 9, 98–100
leadership, 116, 117
leave-one-out, 266

levels of measurement, 32
lexeme, 92
lexical function, 83
lexicon, 91, 92
LibSVM, 302
lie detector, 138
likeability, 117
line spectral frequencies, 202
line spectral pairs, 202
linear prediction, 198
linear predictive coding, 198
lingua franca, 112
linguistic anthopology, 132
linguistic relativity, 42
linguistics, 11
listeners’ ratings, 125
long short-term memory, 252
long-term, 22, 23
long-term traits, 22
low-level descriptor, 10, 190, 230, 237
LPC spectrum, 200
lying, 38, 136, 138

macro-paralinguistics, 101
macro-sociolinguistics, 80
major emotion, 31
majority voting, 31
masculinity, 34
maxim of manner, 136
maxim of quality, 136
maxim of quantity, 136
maxim of relation, 136
McNemar test, 273
measured vs. assessed, 31, 32
measured vs. perceived, 24, 36
medium-term, 22, 24, 124
mel scale, 84
meta-assessment, 15
MFCC features, 196
micro-paralinguistics, 101
micro-sociolinguistics, 80
minor emotion, 31
mirroring, 16
mixed emotion, 31
MLE, 270
modal particle, 94
modal voice, 86
mode, 24
mood, 22, 57
morpheme, 79
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motherese, 134
motor speech disorders, 125
MSE, 271
multi-functionality, 101
multi-party conversation, 133
multilayer perceptron, 249
multimodal, 12, 14, 43, 44, 62
multimodality, 5, 13, 44
multiple intelligences, 133

N-gram, 222
nasalisation, 90
natural language, 5
naturalistic, 26–29
NCSC database, 171
neuroticism, 54, 118
nominal level, 32
non-critical, 16
non-mirroring, 16
non-native accent, 113
non-native speech, 124, 130
non-verbal, 98, 99
non-verbal behaviour, 10
non-verbal behavioural cues, 118
non-verbal communication, 10
non-verbals, 134
null hypothesis, 272
null hypothesis decision, 68, 70
null hypothesis testing, 68, 70

observer’s paradox, 26, 63
OCEAN, 54, 116, 117
off-focus, 139, 140
off-line, 16
off-talk, 139
on-focus, 139, 140
on-line, 16
on-line knowledge sources, 222
on-talk, 139
ontologies, 13
open microphone setting, 122
openEAR, 294, 302
openness, 54
openSMILE, 289, 290, 294
openSMILE download, 295
opinion mining, 123
ordinal level, 32
out-of-vocabulary word, 92
overall performance, 64, 65
oxymoron, 137

paradigmatic, 61
paradox communication, 137
paralanguage, 8, 9
paralinguistics, 3, 5, 7, 9
parentese, 134
Parkinson’s disease, 126, 128
part-of-speech, 11, 91, 94
pathological speech, 124–126
perceived, 35, 37
perceptual linear prediction, 203
persona, 53
personality, 6, 53, 107, 109, 115
personality dimension, 54
personality trait, 22, 23, 34, 54, 57, 84,

115
personality type, 34
pet-directed speech, 134, 135
pet-robot-directed speech, 134
pharynx, 110
phatic communication, 132
phonasthenia, 125
phonation, 86
phoneme, 79
phonetics, 11
phonotactics, 89
phrase accent, 83
pitch, 82–84, 86, 90, 114, 207
pitch detection algorithm, 208
pitch register, 83, 84
pleasantness, 117
PortAudio, 295
post-laryngectomy speech, 124
post-laryngectomy voice rehabilitation,

126
posture, 13
potency, 34
power law of hearing, 204
PRAAT, 289
pragmatics, 80, 132
precision, 269
private speech, 139
private vs. social, 39, 40
probability of voicing, 207
prompted, 26, 27, 30
pronunciation, 130
prosody, 130
prototype, 40
prototypical vs. peripheral, 40
pruning, 262
pulse register, 87
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question, 85

race, 109
RASTA (RelAtive SpecTrA), 205
rate of speech, 97
ratio level, 32
read, 26
recall, 268
receiver operating characteristic, 69, 270
rectangular window, 189
recurrent neural network, 251
reference, 32, 33
regional accent, 82, 112–114
reification, 67
repair, 96
reparandum, 97
reparans, 97
repetition, 96
rhetorical figure, 137
rhotics, 81
rhythm, 130
RMSE, 271
robots, 16

sampling, 185
sampling theorem, 186
sarcasm, 38, 136–138
scripted, 26, 27
second language (L2), 113
segmental, 81
segmental level, 81
segmentation, 24, 58
segmentation of units, 58
self-assessment, 36
self-directed speech, 139
self-learning, 284
self-regulation, 139
self-talk, 139
semantic differential, 34
semantic focus, 120
semantics, 9
semi-supervised learning, 284
semiotics, 7
seniority, 133
sentence adverb, 94
sentence mood, 83
sentiment analysis, 107, 108, 123
sex/gender, 33, 108, 110
sheep, 64
shibboleth, 92, 93

shimmer, 212
short-term, 23, 24
short-term states, 22
sigh, 99
significance level, 272
silence, 99
simple moving average, 214, 307
single instance decision, 64, 65
size, 110, 111
SLC database, 168
SLD database, 170
sleepiness, 124, 129
slip of the tongue, 96
SNACK, 290
social constructivist perspective, 56
social intelligence, 133
social signals, 24, 107, 131–133
sociolect, 82, 113
sociolinguistics, 80, 132
sociology of language, 132
sociophonetics, 80
softmax function, 250
source filter model, 195
source-filter production model, 194
SPC database, 169
speaker characteristics, 111
speaker classification, 110, 111
speaker identification, 111
speaker idiosyncrasy, 89
speaker recognition, 110
speaker verification, 112
speaking aside, 136
speech, 5
speech characteristics, 114
speech disorders, 124
Speech Filing System, 290
speech only, 43
speech production, 195
speech tempo, 131
speech-laugh, 99, 100
split vector quantisation, 282
spontaneous, 25–27, 29, 30
state, 22, 24, 57
stemming, 91, 219
stereotypes, 29
stopping, 218
stratification, 265
stress, 83
structuralism, 7, 79
stuttering, 124
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sub-harmoanic, 87
sub-harmonic summation (SHS), 209
subjectivity, 123
subjectivity analysis, 123
substance, 11
substitution, 130
support vector machines, 242
support vector regression, 262
supra-segmental, 11, 81, 190
supra-segmental level, 82
symbol, 28
symptom, 28
syntagmatic, 61, 62
synthesis, 6, 12, 13

tagging, 219
talkspurt, 133
taxonomy, 21
temporarily deviant speech, 129
temporary, 24
textual unit, 59
theory of mind, 127, 139
thinking aloud, 139
TIMIT database, 171
ToBI, 67
tokenisation, 91, 218
Tracter framework, 290
trait, 21, 22, 24, 29, 57, 101
traits vs. states, 21, 35
true negatives, 269
true positives, 268
TUM AVIC database, 166
turn-switching, 133
turn-taking, 88
typical, 60, 61, 108
typically developed, 60
typically developed speech, 124

understatement, 137
unfilled pause, 96
unimodal, 5, 43, 44
unimodal vs. multimodal, 43
unit, 24
unit selection, 12

universal vs. culture-specific, 29, 41
up-sampling, 266
unweighted accuracy, 268
unweighted average recall (UAR), 70, 268
uptalk, 85, 90
usability, 12, 15, 16

valence, 56, 123
vanishing gradient problem, 252
vector quantisation, 282
vernacular, 112, 113
vision-only, 43
Viterbi algorithm, 257
vocabulary, 92, 220
vocal, 98
vocal factor, 9
vocal fry, 87
vocal tract, 110
voice activity detection, 190
voice pathology, 124, 125
voice quality, 86, 126, 212
vowel, 89

weak thresholds, 69
weight, 110
weighted accuracy, 268
weighted average recall (WAR), 70
WEKA, 303
window function, 187
Windowing, 187
Wizard of Oz, 28, 63
wolves, 64
word, 91
word accent position, 83
word boundaries, 88
word class, 91
WordNet, 224
written language, 43, 91
WYALFIWYG, 68

yawn, 99
yielding the floor, 88

zero crossing rate, 191
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